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ABSTRACT 

Cleaner production in a sustainable and customised industrial environment has gradually 

become the focus of attention in industrial manufacturing. Additive manufacturing (AM) 

proposes a revolutionary paradigm for customised engineering design and manufacturing, 

attributed to its design freedom with limitless structural constraints. As an emerging 

manufacturing technology, most manufacturers and researchers are dedicated to the 

innovation of AM’s manufacturing mechanism and the improvement of part quality. 

However, the understanding of this emerging manufacturing technology is not yet sufficient 

in the resource efficiency perspective, which includes three environmental dimensions, 

namely production time, electrical energy consumption and material usage. 

In order to improve AM’s resource efficiency, this thesis aims to provide a general 

modelling scheme to predict time, energy and material consumptions of the AM process, 

utilise meta-heuristic algorithms to optimise the process parameters of AM, and minimise 

the three consumptions (i.e. time, energy and material).  

A hybrid data-driven and physics-based modelling method is proposed to build up the 

predictive models of AM’s time, energy and material consumptions. To start with, all 

consumption-related components of the existing AM technologies are classified into five 

types of module: axis movement, material processing, material feeding, component heating 

and auxiliary components. Then, hybrid modelling is performed on each module to obtain 

the relationships between the consumptions and process parameters. In physics-based 

modelling, the time, distance of axis movement and amount of material usage are calculated 

from the computer numerical control (CNC) programming language (also named G-code). 

In data-driven modelling, the remaining parameters are measured through experiments. A 

power meter is used to measure the apparent power and time of each module under different 

process parameters. The relationships between the measured parameters and process 

parameters are derived through regression analysis methods. In addition, some parameters 

in the predictive models are affected by the characteristics of machine and material in a 
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practical manufacturing context. For example, the actual speed of axis movement is affected 

by the high loads of stepper motors during high-speed printing. To further improve the 

prediction accuracy, additional experiments are conducted to test the actual values of 

affected parameters. The nature of additional experiments is determined by the machine 

characteristics. 

Meta-heuristics are developed to approximate the Pareto front of process parameters that 

consume the least time, energy and material. The predictive models are used as three 

objective functions to evaluate the performance of each solution of process parameters. Since 

the non-dominated sorting genetic algorithm (NSGA-II) has been widely used to solve 

optimisation problems with two or three objectives in industrial manufacturing, this study 

improves and applies NSGA-II to this optimisation problem. Experiments are designed to 

perform the optimisation under different combinations of optimisation parameters. A set of 

Pareto fronts is obtained. Hypervolume (HV) indicator is used to compare all obtained Pareto 

fronts before finally selecting the optimum solution sets of process parameters. In a practical 

manufacturing context, the optimisation result can provide guidance and a trend for selecting 

a feasible solution of process parameters.  

To validate the effectiveness of the prediction and optimisation method, two case studies 

are conducted on two different types of fused deposition modelling (FDM) 3D printers. The 

predictive models of time, energy and material consumptions for each printer have been built 

by following the proposed prediction method. To improve the prediction accuracy, 

additional experiments are performed on both FDM 3D printers, including testing the actual 

speed of axis movement and the actual density of thermoplastic material. According to the 

prediction results and experimental results, the feasibility of prediction models has been 

proved, which achieves an acceptable prediction accuracy. The consideration of machine 

characteristic has also been proved to further improve the prediction accuracies. 

The effectiveness of the optimisation method using NSGA-Ⅱ are also verified in two case 

studies. To evaluate and compare the qualities of obtained Pareto fronts, the hypervolume 

(HV) indicator has been used as the response of each optimisation test. The non-dominated 
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solutions of the Pareto front that has the maximum HV indicator are the optimum solutions 

for the AM task. This result can provide guidance for setting a feasible combination of 

process parameters in the prefabrication stage. The optimal solutions of process parameters 

are compared with the default setting of process parameters. The comparison results prove 

that the consumptions of optimal solutions are significantly reduced. Furthermore, the 

significances of optimisation parameters (i.e. population size, number of generations, 

crossover probability and mutation probability) for the response are analysed by using the 

range analysis and analysis of variance (ANOVA) methods. According to the analysis results, 

the significances of optimisation parameters for the HV indicator are not found to be 

consistent in these two cases. Since the predictive models are customised, there is no general 

rule to recommend the setting of process parameters and optimisation parameters for general 

AM technologies. 

The proposed prediction and optimisation methods provide a modular, customisable and 

flexible interface to personalise the predictive models, the optimisation objectives and the 

process parameter to be optimised. The method fully considers the characteristics of AM 

machine and material, process parameters, production environment, and customer demands. 

The use of manufacturing information provided by G-code significantly reduces the 

workload of the modelling process and achieves an acceptable prediction accuracy. 

Furthermore, the proposed method is unrestricted to any AM machine, task or complex 

structure of CAD design, and is also applicable to any other manufacturing technologies that 

fabricate through numerical control (NC) programming. 
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Additional experiments to improve prediction accuracy 

𝜌𝑎𝑐𝑡 Actual density of material 

𝐹𝑥  Speed of axis movement or rate of material feeding in X 

direction 

𝐹𝑦 Speed of axis movement or rate of material feeding in Y 

direction 

𝐹𝑥𝑎𝑐𝑡
 Actual speed of axis movement in X direction 

𝐹𝑦𝑎𝑐𝑡
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𝑉𝑢𝑛𝑖𝑡𝑎𝑐𝑡
 Actual volume of material feeding amount for each 
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ℒ𝐱𝑞
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𝑆𝐱𝑞
 A set of solutions dominated by individual 𝐱𝑞 
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CHAPTER 1  INTRODUCTION 

1.1. Background and motivation 

Additive manufacturing (AM), also called 3D printing (3DP), is a revolutionary 

manufacturing technology derived from rapid prototyping (Yang and Liu, 2020). AM 

fabricates three-dimensional (3D) models through a material deposition process layer by 

layer (Yang et al., 2017; Huang et al., 2016). A general AM process consists of three stages: 

prefabrication, printing and post-processing. In the prefabrication stage, a computer-aided 

design (CAD) in standard triangle language (STL) format is, first, imported into computer-

aided manufacturing (CAM) software, also known as slicer software (Jiang et al., 2019). 

After the setting of process parameters in CAM, the 3D model is sliced into multiple layers. 

The toolpath on each layer is programmed as the computer numerical control (CNC) 

programming language, also named G-code commands. In the printing stage, the AM 

machine fabricates the material by executing the G-code commands line by line. The 

material is deposited on the desired toolpaths to form the 3D object (Jiang and Ma, 2020). 

In the post-processing stage, some AM technologies need to post-process the printed object, 

such as removing the supporting material, surface finishing and part reprocessing, etc. 

(Mueller, 2012). 

Compared with subtractive manufacturing (SM), the thin-skin and lightweight production 

without additional requirements of dies, moulds and tools is the major highlight of AM 

technology (Kellens et al., 2017). Due to its layer-by-layer nature, AM realises the easier and 

faster manufacturing of parts with complex geometries, integrated assemblies and 

multifunctions (Ford and Despeisse, 2016; Jiang and Ma, 2020). Such a production mode is 

adaptable for mass customisation to produce highly differentiated products on demand 

(Huang et al., 2016).  

With the increasing demand in recent decades for customised production, AM has found 

an important role in numerous domains, including aviation, architecture, chemicals, 
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machinery, medicine, food, education and social culture, due to its limitless structural 

constraints (Frazier, 2014). With the continuous innovation of this technology, AM has 

expanded into various branches with different types of material-feeding and material-

processing mechanisms. Kellens et al. (2017) investigated existing AM technologies 

available on the market. These technologies are classified within seven categories: material 

extrusion (ME), direct energy deposition (DED), powder bed fusion (PBF), binder jetting 

(BJ), material jetting (MJ), sheet lamination and polymerisation. At present, several 

manufacturers are committed to the development of AM’s manufacturing mechanism and 

supporting software, in order to provide an easy-to-use and customised production 

environment (Yang and Liu, 2020). Several studies are focusing on improving the quality 

and mechanical properties of manufactured components, from the advanced commercial 

rapid prototypers to the open-source 3D printers (Tymrak et al., 2014). Nevertheless, this 

emerging technology still displays weaknesses in three perspectives of resource efficiency, 

namely time efficiency, energy efficiency and material efficiency. Each perspective needs to 

be concerned for the following reasons.  

From the time efficiency perspective, Chen et al. (2015) compared the process 

productivities of selective laser sintering (SLS), as a typical AM technology, and injection 

moulding, as a traditional manufacturing technology. According to the experimental results, 

due to the unique manufacturing mechanism of material deposition, SLS requires a much 

longer manufacturing time than the injection moulding to fabricate the same parts. The tool 

travelling, component heating and material deposition processes are the major factors that 

increase the time requirement of AM (Bhuvanesh and Sathiya, 2020). The researchers also 

stated that, although a high printing speed (e.g. 50 kg of material produced per hour) can 

accelerate the AM process, this negatively impacts the surface finishing with decreased 

resolution, and increases the power demands and occurrences of structural defects. Therefore, 

the problem of how to find a balance between improving time efficiency and also satisfying 

other demands is still to be addressed.  

From the energy efficiency perspective, Watson and Taminger (2018) presented a 

decision-support model to compare the feasibility of additive manufacturing (AM) and 
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subtractive manufacturing (SM), based on energy consumption during production. They 

stated that the key discriminating variable is the volume fraction of solid material contained 

in the boundary envelope, since the consumed energy of a specific part is determined by the 

volume of material to be added or subtracted. According to the comparison results, AM was 

found to be less energy efficient in producing a part with a large volume fraction or a higher 

ratio of support structure. Kellens et al. (2017) also stated that AM is more beneficial for the 

production of very small batch sizes, lightweight parts and part remanufacturing. However, 

some of the existing AM technologies need post-processing of the printed objects, since AM 

is unable to produce parts with equivalent dimensional tolerances and surface quality. 

Therefore, the development of an effective, high-precision prediction to estimate and reduce 

AM’s energy consumption is still to be addressed.  

From the material efficiency perspective, both AM and traditional manufacturing 

technologies face the problem of material waste due to their manufacturing mechanisms 

(Newman et al., 2015). Material waste in the subtractive manufacturing (SM) process is 

generated by removing the excess from the raw material to obtain the geometry of the desired 

part. However, material waste in the AM process is caused by the production of a support 

structure in order to realise the construction of complex structures. To improve the material 

efficiency, most research has focused on integrating the AM and SM processes, which aims 

to exploit their respective advantages and avoid their deficiencies. Thus, an innovative 

production mode has been developed, named hybrid manufacturing (HM). However, the 

method of using multiple manufacturing technologies is still challenging for the 

manufacturers with limited manufacturing resources. For the production using single 

manufacturing technology, an efficient, high-precision prediction and optimisation method 

can reduce material waste and material consumption. The related research for AM is still to 

be addressed.  

Research on the prediction and optimisation of time, energy and material consumptions 

mainly draws on SM technologies, such as cutting, drilling, turning and milling processes. 

Computer numerical control (CNC) milling is the typical technology, which has been applied 

in over 75.7% manufacturing businesses in the UK and over 67.4% manufacturing 
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businesses in the US (Swamidass and Winch, 2002). Based on G-code, it fabricates through 

the collaborative use of multiple tools to remove material from a solid workpiece and thereby 

form the desired geometry. Compared with AM, the popularity of SM is attributed to its 

excellent dimensional accuracy, cost efficiency and mechanical strength of manufactured 

products (Aramcharoen and Mativenga, 2014). Thus, the existing methods to reduce the time, 

energy and material consumptions of SM are relatively comprehensive. For AM, as an 

emerging manufacturing technology, the related research is still scarce at present. Most slicer 

software on the market can only provide an approximate prediction of time consumption of 

an AM process. The approximation only considers the time spent on material deposition 

based on the part volume, however, neglects the impact of process parameters, machine setup 

time, component warm-up time, production environment, etc. At present, there is still a lack 

of slicer software that can provide an accurate prediction of AM’s time, energy and material 

consumptions, and also recommend the most suitable process parameters for the 

manufacturers in terms of the CAD design, machine characteristics, production environment 

and customer demands. 

In practical manufacturing context, an efficient and accurate prediction of AM’s time, 

energy and material consumptions can significantly improve the resource efficiency and 

reduce the resource waste. Therefore, approaches to predict and optimise the above three 

indicators need to be developed, which will benefit not only AM industries but also any other 

manufacturing technology that fabricates by using CNC programming.  

1.2. Research objectives 

The main goal of this thesis is to develop a prediction and multi-objective optimisation 

method to estimate and reduce time, energy and material consumptions for AM technologies. 

These three consumptions are selected as the objectives to be predicted and optimised for 

the following reasons.  

Firstly, cleaner production has become the major goal in manufacturing industry. The 

improvements in energy, production and material efficiencies not only reduce manufacturing 
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costs but also deliver a number of environmental benefits, such as tackling climate change, 

and reducing material waste pollution and carbon emissions (Zhang et al., 2019). An efficient 

prediction and optimisation of AM’s time, energy and material consumptions can 

significantly improve the resource efficiency, especially for the mass production and mass 

customisation.  

Secondly, the existing slicer software on the market cannot provide a high-precision 

prediction of resource consumptions. Most software can only simulate the material 

deposition process and provide an approximate prediction of material deposition time. It is 

lack of consideration of the entire AM cycle and the impacts of process parameters, machine 

characteristics, production environment on the actual total consumptions.  

Thirdly, a general and systematic prediction and optimisation approach with regard to time, 

energy and material consumptions for all existing AM technologies has not yet been 

proposed in research to date. Most of the current research is focused on a single AM 

technology, or a single objective to be predicted or optimised. The lack of a more 

fundamental approach is a significant gap to be addressed. 

In this research, the prediction modelling of three consumptions is performed with 

consideration of the process parameters, coding rules and machine characteristics. These 

factors are considered for the following reasons. Due to the particularities of each AM 

machine, CAD designs produced by different machines will eventually produce different G-

code files, and have different time, energy and material consumptions. This is because the 

coding rules, components and operation mechanisms of the different machines are 

completely different. Therefore, in order to achieve an accurate prediction, a hybrid 

modelling method is proposed, in which the physics-based modelling fully uses the 

manufacturing information provided by G-code to calculate the time of axis movement and 

amount of material feeding; the data-driven modelling calculate the remaining parameters in 

the predictive models through the experimental measurements of machine characteristics. 

The obtained predictive models continue to be used in the process of multi-objective 

optimisation. Since different process parameters produce different G-code, which effects the 
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parameters in the predictive models, the entire process – from inputting the process 

parameters into CAM to the generation of G-code – is embedded in the fitness calculation 

of each solution of process parameters. The consequence of this is that the optimisation 

results are more convincing. 

The major focus of this research work is to improve the AM technologies from a resource 

efficiency perspective. From other perspectives, AM still faces weaknesses regarding the 

improvement of part quality, which is mainly affected by the build orientation, layer 

thickness and microstructure of solidified AM material (Bayraktar et al., 2016). An effective 

prediction and optimisation method of AM’s part quality is important, however, this will be 

another scope to be developed. 

1.3. Research contributions 

The contributions of this research work are summarised as two parts: the contributions of 

hybrid modelling method for AM’s consumption prediction, the contributions of multi-

objective optimisation method for reducing AM’s consumptions. Details of each part are 

discussed in the following sections.   

1.3.1. Contributions of hybrid modelling for predicting additive 

manufacturing time, energy and material consumptions 

One of the main contributions to this thesis is the hybrid modelling method based on G-code 

and experimental measurements. Details of this contribution are described as follows. 

Firstly, the module classification divides all consumption-related components of the 

existing AM technologies into five types of modules: axis movement, material processing, 

component heating, material feeding and auxiliary components. Since general AM 

technologies perform material deposition through the coordinated operation of multiple 

components, the module classification based on the function of each component can provide 
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a general and clear understanding of how the AM machine works, which components 

participate in the AM process and consume time, energy and material. Based on the classified 

components, it will be easier to perform the modelling of each module based on its functions.  

Secondly, a Gantt chart is formulated to display the running sequences, power profiles, 

and corresponding G-code commands of all modules participating in an AM process. Since 

the operation of each module is instructed by its corresponding G-code command, the power 

profiles and running sequences of all modules are related and determined by the G-code 

commands. This method aims to clearly reflects two information: 1). the running sequences 

of all modules; 2). the overlaps of running time of parallel modules. Above information also 

provide clear guidance for the modelling of total time, energy and material consumptions. 

Thirdly, the manufacturing information in G-code is sufficiently used in the physics-based 

modelling. Since every G-code file can provide detailed manufacturing information 

including the amount of material feeding, toolpath and speeds of axis movement, this 

information can be used to calculate the time of axis movement and the amount of material 

usage. This method has been shown to achieve a good precision of prediction and also 

reduces the workload of experiments in data-driven modelling.  

Fourthly, additional experiments are conducted to test some parameters in the predictive 

models that are affected by the machine characteristics in a practical manufacturing context; 

for example, the occurrence of a motor being out of step due to the high loads of high-speed 

axis movement and high-rate material feeding, which causes the axis movement module to 

fail to reach the target speed. Therefore, additional experiments are conducted to test the 

actual speed of axis movement. Note that the factors affecting the prediction accuracy are 

determined by the machine characteristics. Although this step takes more time to conduct 

the additional experiments, it fully considers the machine characteristics in a practical 

manufacturing context and has been validated in case studies to achieve better prediction 

accuracy.  
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Finally, the prediction method based on G-code can be extended to subtractive 

manufacturing (SM) process. Since G-code is used as a universal computer numerical 

control (CNC) programming language in both AM and SM technologies, the proposed 

modelling and optimisation method is expected to be further improved as the foundation to 

general manufacturing technologies that fabricates by using CNC programming.  

1.3.2. Contributions of multi-objective optimisation 

Due to the wide application in sophisticated optimisation problems, meta-heuristics 

algorithms are applied in the multi-objective optimisation process to search for solutions of 

process parameters related to the near-optimal approximate Pareto front (Liu, 2014). The 

consumptions of time, energy and material are used as objective functions to be minimised, 

while the process parameters are used as decision variables during the optimisation process. 

One contribution of the optimisation method is that the optimisation process embeds the 

inputting of process parameters into computer-aided manufacturing (CAM) for the 

generation of G-code, as shown in Figure 1.1. Since different process parameters produce 

different G-code, every new solution of process parameters has its unique G-code and unique 

predictive models of time, energy and material consumptions. This optimisation method can 

produce more convincing optimisation results, i.e., the solutions on the near-optimal 

approximate Pareto front, which are closer to the actual optimal solutions. 

 
Figure 1.1: Contributions of multi-objective optimisation 
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Another contribution is that the optimum solution set of process parameters with the 

minimum time, energy and material consumptions provides guidance to the setting of 

process parameters in CAM.  

Furthermore, referring to the predicted consumptions of the optimal solutions, additional 

works can be potentially extended to further reduce the consumptions from two aspects (as 

shown in Figure 1.1): 1). the improvement of design structure; 2). the improvement of path 

planning in G-code. Several studies have proposed the related path planning schemes to 

minimise the traveling distances of axis movement. Those schemes are reviewed in the next 

chapter. This study mainly focuses on the foundational work of prediction and optimisation 

of AM’s time, energy and material consumptions. How to integrate the above-mentioned 

expandable works into this PhD research will continue to be developed in future. 

1.4. Outline of thesis 

The organisation of this thesis is as follows. Chapter 2 conducts an in-depth literature review 

of the existing research in three perspectives: the improvement of AM’s time, energy and 

material efficiencies. The state-of-the-art prediction and optimisation methods for reducing 

time, energy and material consumptions for the AM process are summarised. Since most of 

the AM research has evolved from research into improving subtractive manufacturing (SM) 

technologies, this thesis also provides a literature review of the latter in the same area. Based 

on the literature review, research gaps are clarified, which motivates the work in this thesis.  

Chapter 3 proposes the framework of prediction and multi-objective optimisation for AM 

technologies. To begin, all consumption-related components of the existing AM technologies 

are summarised. Based on their functions, the components are classified into five modules: 

axis movement, material processing, component heating, material feeding and auxiliary 

components. Then, hybrid modelling is performed on each module based on the 

manufacturing information in G-code and experimental measurements. Considering that 

some parameters are affected by the machine characteristics, additional experiments are 
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performed to test the actual values of those parameters in order to improve the prediction 

accuracy. After the consumption modelling, the multi-objective problem is defined. Meta-

heuristics are applied to find solutions related to the near-optimal approximate Pareto front 

(Liu, 2014). Three predictive models of time, energy and material consumptions are used as 

three objective functions to calculate the fitness of each solution. The basic steps of the 

optimisation process are introduced in this chapter.  

Based on the framework in Chapter 3, Chapter 4 introduces the methods that have been 

applied in this research work. A hypothesis is made that the proposed prediction and 

optimisation method is effective in the prediction and minimisation of AM time, energy and 

material consumptions. The prototypes of the predictive models and the optimisation 

problem are defined in this chapter. Then, the methods used in the hybrid modelling are 

introduced, including the calculation based on G-code, and curve-fitting tool used for 

regression analysis. The methods used in multi-objective optimisation are also introduced, 

including the basic workflow of non-dominated sorting genetic algorithm II (NSGA-II), 

Taguchi design of experiments used to perform the optimisation tests, and hypervolume 

indicator used to evaluate the obtained Pareto fronts. In addition, the methods used in 

experimental validation are introduced, including the calculation of prediction accuracy, 

range analysis and analysis of variance (ANOVA) used to evaluate the significances of 

optimisation parameters to the optimisation results. 

Chapter 5 describes the details of the predictive models of time, energy and material 

consumptions for each module. In physics-based modelling, the time of axis movement and 

amount of material feeding are obtained from the manufacturing information in G-code. In 

data-driven modelling, experiments are conducted to derive the functional relationships 

between the measured power, time of each module and its related process parameters. The 

parameters affected by the machine characteristics (e.g. the actual speed of axis movement, 

the actual material density, etc.) are measured through additional experiments. Finally, all 

parameters in the predictive models are summarised as three types: parameters calculated 

from G-code, parameters obtained through experiments, and parameters whose values are 

decided by the running sequences of five modules. In the final section of this chapter, the 
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application indication of how to apply the prediction method to a new AM system is 

presented.  

Chapter 6 presents the application of meta-heuristics in this multi-objective optimisation 

problem. As part of this, NSGA-II has been widely used to solve optimisation problems, 

with two or three objectives in the area of industrial manufacturing. This study improves this 

algorithm to search for the optimum solution of process parameters that results in the 

minimum consumptions. Since the process parameters are used as decision variables to be 

optimised, and all process parameters belong to the range of real number, the real-coded 

genetic algorithm (GA) is applied. The binary tournament selection, simulated binary 

crossover (SBX) operator and polynomial mutation (PLM) operator are applied to produce 

new generations of candidate solutions. The basic steps of the optimisation process are 

described in this chapter. Experiments are designed to perform the optimisation under 

different parameters, including population size, number of generations, crossover probability 

and mutation probability. Each combination of optimisation parameters produces one Pareto 

front. Based on the experimental results, the hypervolume (HV) indicator is applied to 

evaluate the performance of each Pareto front before finally determining the optimum front. 

In the final section of this chapter, the application indication of how to apply the optimisation 

method to a new AM system is presented. 

Chapter 7 applies the proposed prediction method to two fused deposition modelling 

(FDM) 3D printers. Based on the modelling method described in Chapter 5, the predictive 

models of time, energy and material consumptions of two FDM printers are established. To 

improve the prediction accuracy, additional experiments are conducted to measure the actual 

values of some parameters, including the actual speed of axis movement and actual density 

of polylactic acid (PLA) filament material.  

Chapter 8 presents the prediction and optimisation results for the two FDM printers. Each 

printer has been assigned to print two AM tasks under different process parameters. A 

comparison is made between the predicted consumptions and the measured consumptions. 

The prediction accuracies are calculated by using mean absolute percent error (MAPE). 

According to the MAPE results, the prediction method is proved to achieve an acceptable 

prediction accuracy. Furthermore, the NSGA-Ⅱ algorithm is applied to search for the optimal 
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Pareto fronts of process parameters for another AM task printed by two FDM printers. The 

Taguchi robust design method is applied to design the experiments of optimisation tests 

under different optimisation parameters (i.e. population size, number of generations, 

crossover probability and mutation probability). Each test produces one Pareto front. The 

front that has the maximum HV indicator contains the optimum solutions for the AM task. 

The optimal solutions have been proved to significantly reduce the consumptions compared 

with the default setting of process parameters. Moreover, the range analysis and analysis of 

variance (ANOVA) are applied to evaluate the significances of optimisation parameters for 

the HV indicator. The analyses results indicate that significances of optimisation parameters 

depend on the predictive models and machine characteristics.  

Chapter 9 summarises this PhD research and proposes future research work, which 

includes improvement of material consumption prediction, acceleration and deceleration of 

axis movement, multi-task parallel manufacturing, experimental validations on the same AM 

machines and other AM technologies, additional optimisation tests under large optimisation 

parameters, prediction and optimisation of additional objectives, real-time consumption 

modelling and updating of predictive models. 
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CHAPTER 2  LITERATURE REVIEW 

2.1. Introduction 

The goal of this study is to develop an innovative method for predicting and optimising time, 

energy and material consumptions of additive manufacturing (AM) processes. The selected 

objectives are based on the current focus around the development of AM technologies. To 

clearly identify the knowledge gaps that have not been resolved by previous research, this 

chapter conducts a literature review to explore the research area of improving time, energy 

and material efficiencies for AM technologies. Based on the review, it is found that most 

methods are evolved from research work for improving subtractive manufacturing (SM) 

resource efficiency. Since both AM and SM technologies fabricates through computer 

numerical control (CNC) programming, the related prediction and optimisation methods for 

SM technologies are also reviewed in this thesis, aiming to explore and analyse the 

deficiencies of the existing methods for general CNC manufacturing technologies.  

In this chapter, the existing modelling methods to predict time, energy and material 

consumptions are reviewed on the parameter-based level, unit-based level and state-based 

level. The applications of optimisation techniques to improve AM and SM technologies are 

also reviewed, in which the optimised objectives include path planning, production planning, 

process parameters and consumption-related factors. Based on the review, current 

knowledge gaps are clearly identified and thus motivate this research. 

2.2. Improvement of time efficiency for additive manufacturing 

and subtractive manufacturing technologies 

As an emerging technology, AM has been found to possess a potential advantage of rapid 

prototyping compared with conventional SM technologies (Pei et al., 2013; Arora et al., 

2020). By offering the freedom to design complex structures, AM has been widely used in 
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mass customisation on demand without additional tooling and setup, which has a significant 

impact on the supply chain performance (Walter et al., 2004; Arora et al., 2020; Yılmaz, 

2020). For instance, Mueller and Kochan (1999) emphasised this statement through several 

applications of laminated object manufacturing (LOM), which is a common branch of sheet 

lamination technology. The review highlighted the remarkable suitability of LOM as a rapid 

patternmaking tool with high robustness in several domains, including moulding and plastics 

processing, foundries, medicine, ceramics, architecture and civil engineering. During the 

recent COVID-19 pandemic, AM is also playing an important role in producing healthcare 

facilities and medical equipment. Arora et al. (2020) summarised the use of AM at short 

notice, for items such as ventilators, face shields, swabs for COVID-19 testing, antimicrobial 

polymers, oxygen valves and 3D-printed lung models for surgical use. This demonstrates the 

increasing adoption of AM in the rapid production of customised designs.  

Although AM is exceptional for mass customisation, it still possesses certain weaknesses 

compared with SM in mass production. Bhuvanesh and Sathiya (2020) stated that the tool 

travelling, component heating and material deposition processes are the major factors 

hindering AM from being popularised. For instance, fused deposition modelling (FDM) 

technology constructs 3D objects through the extrusion of a thermoplastic filament. The 

limited print speed can significantly increase the time consumption, especially with the 

fabrication of large volumes. However, a high rate of material feeding (e.g. 50 kg/h) can 

affect surface finishing due to the decreased resolution, increase the energy consumption, 

and lead to occurrences of the stepper motor being out of step and insufficient melting of 

material (Wu et al., 2020; Bhuvanesh and Sathiya, 2020). Regarding the conflicts between 

multiple objectives, the core issue to be addressed is to search for the optimal balance 

between time efficiency and other demands, such as energy consumption, part quality, etc. 

This requires an effective prediction modelling and optimisation method that can optimise 

time efficiency together with other objectives.  

In the following sections, the state of the art regarding improving AM’s time efficiency is 

reviewed and summarised (see Figure 2.1). The research mainly focuses on two perspectives: 

prediction methods for time consumption and optimisation methods to reduce time 

consumption. The prediction methods mainly include the modelling based on part volume, 
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process parameters and machine working states. The optimisation methods include the 

optimisations of path planning and production planning. In addition, since several methods 

are evolved from research work for improving SM’s time efficiency, the related prediction 

and optimisation methods for SM technologies are also reviewed, as summarised in Figure 

2.2. The prediction methods mainly include the modelling based on material removal rate, 

G-code and machine characteristics. The optimisation methods include the optimisation of 

path planning and production planning. Details of each method are reviewed in the following 

sections.
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Figure 2.1: Existing research into improving time efficiency of AM technologies  
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Figure 2.2: Existing research into improving time efficiency of SM technologies  
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2.2.1. Research into prediction approaches for time consumption in 

additive manufacturing technologies  

The methods for estimating and modelling the time consumption of AM processes can be 

classified into three categories: state-based modelling, volume-based modelling and 

parameter-based modelling. State-based modelling is carried out in terms of machine 

characteristics. This method divides the manufacturing process into different working states. 

The time consumptions of one or more working states are modelled based on machine 

characteristics; for example, the running sequences of components. Volume-based modelling 

is carried out based on the design geometry; for example, the contour area of the printed 

layer, or the volume of the printed object. Parameter-based modelling is carried out in terms 

of process parameters set in the slicer software. This method aims to derive the functional 

relationships between the time consumption and consumption-related process parameters 

through experiments. The following three sub-sections respectively review the existing 

research on the above three types of modelling methods.  

2.2.1.1. State-based modelling of time consumption for additive manufacturing 

technologies 

With respect to state-based modelling, Zhang and Bernard (2013) developed an analytical 

modelling method to predict the time consumption of selective laser sintering (SLS) 

technology, which is a branch of powder bed fusion (PBF) technology. The method 

considered the consumption-related factors from the state of machine preparation to the end 

of the AM task. Since SLS fabricates by consolidating powder material on each layer, a 

beam deflection system is used to selectively scan the contour areas (Kruth et al. 2003; 2005). 

Thus, Zhang and Bernard (2013) divided the SLS process into three stages: material feeding 

by the powder roller, material processing by the laser beam and axis movement in Z direction 

to switch to the construction of the next layer. Nevertheless, the proposed method was only 

suitable for SLS due to its unique operating mechanism, in which (a) the build time of each 

layer was modelled based on the laser scanning rate and part volume, (b) the time spent on 
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material feeding was modelled based on the feeding rate of the roller, and (c) the movement 

time in Z direction was modelled based on the movement speed and part height. For other 

AM technologies, Campbell et al. (2008) utilised volumetric shapes to estimate the time 

consumption of stereolithography (SLA) technology, which is a common branch of 

polymerisation technology. SLA fabricates by using an ultraviolet (UV) laser to selectively 

cure the photosensitive resin (Zhou et al., 2000). Thus, the SLA process was divided into 

two stages: material processing by using a UV laser and axis movement in Z direction to 

construct the new layer. A time estimator was built to calculate the average scanning time 

of the laser per unit contour area on each layer (Campbell et al., 2008), which achieved a 

rapid estimation of the build time. This method was also limited to SLA technology, in which 

only two major components, i.e., UV laser and stepper motors for axis movement in Z 

direction, participate in the manufacturing process. 

Note that the above methods mainly focused on a single type of AM technology. Since 

different AM technologies have different components and manufacturing mechanisms, the 

division of working states is dependent on the type and characteristics of the AM machine. 

A general prediction method is still to be addressed for estimating the time consumptions of 

general AM technologies. 

2.2.1.2. Volume-based modelling of time consumption for additive manufacturing 

technologies 

With respect to volume-based modelling, Baumers et al. (2012) demonstrated a generic 

modelling method to predict AM’s time consumption based on part volume and layer 

numbers. The average build time per unit contour area on each layer was obtained through 

experimental measurements. Di Angelo and Di Stefano (2011) used artificial neural 

networks (ANNs) to develop an estimator of the build time of the contour area, which can 

be applied to various types of AM technologies, including fused deposition modelling 

(FDM), selective laser sintering (SLS), stereolithography (SLA), laminated object 

manufacturing (LOM), material jetting (MJ) and electron beam melting (EBM). The contour 

area was separated into two parts: the toolpath loops and the hatching distance between two 
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adjacent segments of toolpath. Thus, the build time was modelled based on the average 

toolpath length per unit area. ANNs were developed from the known case base, using 

sufficient training samples. 

Compared with state-based modelling, volume-based modelling can be more widely used 

in various AM technologies as it is based on the volume of a printed object. However, the 

execution of a predefined toolpath is the core working principle of computer numerical 

control (CNC) manufacturing technologies. Most studies have over-simplified the toolpaths 

on each layer and calculate the total time consumption by using the average time 

consumption per unit area or volume. Despite achieving the fast prediction of time 

consumption, the impacts of process parameters on the toolpath planning and layer slicing 

should also be considered in the prediction modelling. Besides, the above methods only 

modelled the build time of sliced layers but ignored the time consumptions of other 

manufacturing stages; for example, the time spent on component heating, nozzle calibration, 

etc. 

2.2.1.3. Parameter-based modelling of time consumption for additive manufacturing 

technologies 

With respect to parameter-based modelling, it is challenging for current research to develop 

an accurate predictive model without inputting a large quantity of data, including part 

geometry, machine characteristics, manufacturing details and production planning (Zhang et 

al., 2015). For instance, Bartolo and Lenz (2006), Bartolo (2007) and Matias et al. (2009) 

proposed analytical and thermo-kinetic modelling methods to simulate the material 

processing mechanism (i.e. photo-initiated curing reaction) of SLA technology. The thermo-

kinetic model was built to quantify the impacts of material properties and process parameters 

on the time consumption for completing the cure of one resin layer. The process parameters 

included layer thickness, ultraviolet (UV) light intensity and resin composition. The 

proposed method was limited to the SLA technology, since it mainly focused on the 

fundamental physical and chemical phenomena that determined the behaviour of thermoset 

materials in light-initiated curing applications.  
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Munguía et al. (2009) developed a time estimator using ANNs to model the time 

consumption of selective laser sintering (SLS) technology. Machine learning was applied to 

train and simulate the consumption model from a sufficient case base of more than 130 

models. Three consumption-related parameters were considered, including part height, part 

volume and bounding box. Zhang et al. (2015) demonstrated a predictive and adaptive 

modelling method using Grey Theory. With the assistance of experiments, the method 

utilised a Bayesian form to simulate the unknown functional relationships between the time 

consumption of AM processes and consumption-related factors, including process 

parameters, part volume, support volume and production planning. Since a large quantity of 

data inputs can increase the complexity of the modelling process, the above parameter-based 

modelling methods generally select the most important process parameters and information 

from the CAD design that affect the time consumption and production planning. In fact, 

since the programming of G-code is determined by the setting of process parameters through 

slicer software, the variations in any process parameter will change the planning of the 

toolpath, and therefore effect the final time consumption. Hence, all process parameters set 

in the slicer software should be considered in the modelling process to further improve the 

prediction accuracy.  

2.2.2. Research into optimisation approaches to reduce time consumption 

of additive manufacturing technologies 

The optimisation of AM technology is another way to improve time efficiency. Some 

research has been devoted to optimising the AM system itself to achieve a better G-code 

program; for example, by adjusting the coding rules for path planning. Other research has 

focused on optimising the production planning of multiple AM tasks to reduce time 

consumption or meet other demands. The following two sub-sections respectively review 

the existing optimisation methods from the above two perspectives. 
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2.2.2.1. Optimisation of path planning for additive manufacturing technologies 

Fok et al. (2016) developed a toolpath optimiser using the Christofides algorithm. The 

algorithm simulates the path planning of each layer as the ‘travelling salesman problem’ 

(TSP), which aims to minimise the travelling distance of axis movement, thereby reducing 

the time consumption. Fleming et al. (2017) proposed a path planning strategy using the 

greedy algorithm to simulate the TSP. The greedy algorithm is an intuitive algorithm 

commonly used in optimisation problem. It aims to search for the optimal solution at each 

step of the TSP and reduce the travelling distance between adjacent space-filling curves and 

layers. Similarly, Volpato et al. (2020) proposed a path planning method for material 

extrusion (ME) technology, which combined the greedy algorithm and the 2-opt heuristics 

algorithm (also called the nearest insertion). The distance of axis movement was mapped 

and reduced, and thus also reduced the build time. Ganganath et al. (2016) further improved 

the path planning method by using triangular and trapezoidal velocity profiles for ME 

technology. The Christofides and k-opt heuristics algorithms were applied to the 

conventional TSP to obtain the most time-efficient trajectories of axis movement. Jin et al. 

(2011; 2013) used closed non-uniform rational B-spline curves to represent the contours on 

each layer, and proposed an adaptive toolpath generation algorithm to minimise the build 

time and maximise the surface quality. The algorithm planned the contour toolpath for the 

boundary of each layer and the zigzag toolpath for the internal area of each contour.  

The above-mentioned path planning methods for single-head AM technologies can be 

further extended to multi-head AM technologies, since the collaboration of multiple printer 

nozzles to fabricate the different parts of a single object can significantly reduce the build 

time. Choi and Zhu (2010) demonstrated a path planning method for the decoupled motion 

of multiple nozzles. The toolpath of each nozzle was programmed independently, and the 

potential collisions were detected through a dynamic priority scheme. By comparing the 

movement speeds of two nozzles that conflicted each other, the one with a higher priority (at 

a higher speed) was instructed to continue the movement, while the other one with a lower 

priority was paused until the potential collision had passed. Bui et al. (2019) proposed a path 
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planning method for multi-head material extrusion (ME) technology. By integrating a tabu 

search with novel collision detection and resolution algorithms, the planner yielded a 

collision-free toolpath for the cooperation of multiple nozzles. Shembekar et al. (2018), Cai 

and Choi (2019) also developed similar collision-free path planning methods for instructing 

the movement of multiple nozzles and robotic arms. Furthermore, Coupek et al. (2018) 

proposed a path planning strategy for multi-axis movement in AM processes. The planning 

considered the adaption of build orientation and used integrated building blocks to replace 

the infill structure, which avoided the material usage of a support structure, and thus also 

saved build time.  

The methods on the level of path planning have been well explored in ME technology 

with a single nozzle, multiple nozzles or robotic arms. These methods are expected to be 

extended to other types of additive manufacturing (AM) and subtractive manufacturing (SM) 

technologies that fabricates by following the computer numerical control (CNC) 

programmed toolpaths. Besides, the variations of process parameters may also affect the 

layer slicing and path planning in prefabrication stage. Thus, apart from artificially 

improving the path planning, the optimisation of process parameters is another way to 

shorten the build time spent on the axis movement, however, the related methods in this area 

are still scarce.  

2.2.2.2. Optimisation of production planning for additive manufacturing technologies 

Due to the high processing costs of AM technologies, efficient production planning and 

scheduling of AM tasks can significantly reduce time consumption and operational costs. Li 

et al. (2017) defined a production planning problem and proposed a mathematical model to 

minimise the build time and operation costs of selective laser melting (SLM) technology, 

which is a common branch of powder bed fusion (PBF) technology. The build time and 

operation costs were modelled based on the machine set-up time, maximum build space, part 

volume and geometry. Meanwhile, two heuristic procedures were developed, namely ‘best-

fit’ and ‘adapted best-fit’, to search for the optimal solution for the allocations of tasks and 

machines. Chergui et al. (2018) defined a planning, nesting and scheduling problem solved 
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by a heuristic approach, which aimed to search for the optimal production planning of mass 

customisation in the AM process. A mathematical model of production time was built based 

on job due time, maximum build space, part volume and geometry. Fera et al. (2018) 

improved and applied genetic algorithm to the job scheduling for a single SLM machine. 

The optimisation models of build time and operation costs were built in a similar way, based 

on job due time, maximum build space, part volume and geometry. Through experimental 

validations, the proposed heuristics in above studies have been validated to obtain the 

optimal allocations and effectively shortened the production time of multiple AM tasks. 

Furthermore, Baumung and Fomin (2018) utilised a nesting algorithm to estimate the 

combinability of multiple CAD designs for scheduling the AM production process. The built 

time per design is directly obtained from the CuraEngine slicer software, which calculates 

the built time based on part volume. Based on the build time of each AM task and the 

available AM machines, an optimisation model was built to represent the utilisation of time-

oriented build space.  

It is found that most of the existing research mainly focus on optimising production 

planning in an ideal manufacturing environment, since the time modelling of printing 

process is only based on the part volume. In fact, the variations of process parameters have 

a great impact on the toolpath planning and layer slicing, thereby effect the actual time 

consumption of each AM task. These impacts cannot be reflected in the volume-based 

modelling methods. Besides, due to the unique manufacturing mechanism, same part volume 

printed on different machines may consume different built time. Thus, the entire AM cycle 

and machine characteristics should also be considered; for example, the machine set-up time, 

the running sequences and time of machine components, etc. 

2.2.3. Research into prediction and optimisation approaches for time 

consumption of subtractive manufacturing technologies  

As an emerging manufacturing technology, the research on improving AM’s time efficiency 

is relatively insufficient compared with the research on subtractive manufacturing (SM) 
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technologies. Both types follow the computer numerical control (CNC) commands to 

manufacture through material accumulation or material removal. The difference is that the 

time efficiency of SM is determined by cutting tool performance and machining parameters. 

High-speed milling (HSM) is one of the most representative technologies, which was first 

applied in aerospace engineering, and then the die and mould industry (Dewes and Aspinwall, 

1997). With respect to the cutting tool performance, the speed of HSM was found to be 

closely related to the type of cutting tool. Corduan et al. (2003) stated that carbide and high-

speed steel tools might cause complex changes of wear mechanism (e.g. adhesion, abrasion, 

corrosion, diffusion and fatigue) due to the unique mechanical and chemical properties of 

the tool material. Meanwhile, the regenerative chatter also affected the material removal rate 

and surface finish, which accelerated tool wear and reduced part quality (Burwell, 1957). 

With respect to the machining parameters, there have been several experimental studies 

conducted on ultra-HSM of dies and moulds in order to establish the impact of parameter 

variations on dimensional accuracy, tool life, tool failure and surface finish. According to 

the experimental results, it was found that the material removal rate in HSM was better and 

more stable, with a greater tool life, an acceptable surface finish, and a lower production 

time and costs (Elbestawi et al., 1997; Dewes and Aspinwall, 1997). Several studies have 

dedicated to proposing effective models to express the relationship between machining 

parameters and various demands (such as tool performance, tool life, surface finish, 

production time and costs, etc.), and to find the optimal solution of machining parameters to 

balance these demands. Due to the similarities between SM and AM, that both fabricates 

through computer numerical control (CNC) programming, the review in following sections 

is to derive inspirations from the relevant prediction and optimisation methods for SM 

technologies. 

2.2.3.1. Prediction of time consumption for subtractive manufacturing technologies 

Ou-Yang and Lin (1997) stated that the machining time of subtractive manufacturing (SM) 

processes was determined by the material removal volume. Some estimation methods were 

proposed to model the machining time based on material removal volume and material 

removal rates (Ou-Yang and Lin, 1997; Jung, 2002). Faassen et al. (2003) modelled the 



69 

 

functional relationship between machining parameters and chatter boundaries to improve the 

time efficiency of the HSM process. Experiments were conducted to test machine dynamics 

and material properties at different spindle speeds, which aimed to identify the maximum 

spindle speed within the chatter boundaries. Hbaieb et al. (2011) developed a similar model 

to calculate the machining time at different material removal rates.  

Apart from the prediction methods only based on material removal rates, various other 

methods further improved the estimations with a consideration of numerical control (NC) 

programs and machine characteristics. Coelho et al. (2010) proposed a practical method for 

estimating the machining time of a CNC milling process. It was stated that most commercial 

CAM software simply predict the machining time by dividing the toolpath length by the 

programmed material removal rate. In fact, due to the limitations of the machine capacity 

and CNC, the material removal rate is not always constant, thus this time estimate is different 

from the actual machining time. A global performance feature, named machine response time, 

was characterised based on the machine capacity at high milling speeds. According to the 

experimental results, it was found that the actual machining time was dependent on the 

machine characteristics: the longer machine response time resulted in a larger difference 

between actual and predicted milling times. Furthermore, Liu et al. (2013) proposed a 

feature-based estimation method to predict the machining time for a CNC milling process. 

The method modelled the machining time by fully considering the part geometry, process 

plan, toolpaths in NC programs and machine characteristics. Experiment results validated 

the feasibility of the proposed estimation method, with a better prediction accuracy 

compared with the time estimation from commercial CAM software. 

The prediction of time consumption for SM technologies has evolved from the modelling 

based on material removal rate to the modelling based on NC programs and machine 

characteristics. This integrated modelling method is also what the prediction methods of AM 

technology need to learn from. For instance, in a general AM process, the actual speed of 

nozzle motion is not always as constant as the expected printing speed predefined in slicer 

software, resulting in the deviation between the actual printing time and the time estimate in 

slicer software. In practical cases, the actual speed depends on the performance of stepper 

motors used for driving the nozzle motions on multiple axes, and the travelling distance of 
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nozzle depends on the programmed toolpaths. Therefore, an effective prediction considering 

the impact of machine characteristics and numerical control (NC) programs is also required 

for AM technologies.   

2.2.3.2. Optimisation of production planning and path planning for subtractive 

manufacturing technologies 

Kumar et al. (2014) stated that path planning and production planning have vital roles in 

improving the delivery performance of CNC manufacturing technology. With respect to the 

optimisation of production planning, a planning method using Single-Minute Exchange of 

Die and Overall Equipment Effectiveness techniques was carried out to reduce setup time 

and CNC machining time in an impeller manufacturing plant. The two techniques both 

effectively schedule the available resources, which achieved a 47% reduction in setup time 

and 14.6% improvement in the delivery performance. Wdowik et al. (2018) improved the 

existing programming tools and platforms for CNC milling, incorporating them as a simple 

and transparent programming interface which could be customised. In the prefabrication 

stage, an analytical estimation of CAD design was conducted to analyse the most appropriate 

machining tools, machining parameters to coordinate measuring machines and programming 

platform. The machining parameters include tool specifications, machining strategy, feed 

rate, cutting layer and velocity. Through the NC programs, the milling information was 

programmed in G-code format to instruct the machining operation and coordinate 

measurement. With respect to the optimisation of path planning, Balabokhin and Tarbutton 

(2017) developed a novel path planning algorithm to program a contour-parallel and iso-

scallop toolpath in a CNC milling process, which aimed to shorten the toolpath and milling 

time. The method transferred the milling surface from a triangular mesh to voxel-based depth 

maps, where the start points on the milling boundary were selected to plan the subsequent 

toolpath. Other cutting points were selected from start points at the maximum material 

removal rate within the tolerance limit. The path planning was repeated until the milling of 

the whole area was completed.  
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Compared with SM, the optimisation methods for improving AM’s time efficiency mainly 

focus on the optimal planning of two perspectives: toolpaths, machine and task allocation, 

as summarised in Figure 2.2. The method of reducing AM’s time consumption through the 

optimisation of process parameters has yet been well explored. From the perspective of the 

entire AM process, the setting of process parameters in prefabrication stage determines the 

subsequent layer slicing, numerical control (NC) programming of G-code, and thus effect 

the total time consumption. Therefore, referring to the research into SM, an effective time 

modelling and optimisation method integrated with process parameters, G-code in NC 

programs and machine characteristics is still to be addressed for AM. 

2.3. Improvement of energy efficiency for additive 

manufacturing and subtractive manufacturing technologies 

Energy sustainability is the major goal in the manufacturing industry, which aims to reduce 

carbon dioxide emissions from the use of electrical energy (Jeswiet et al., 2008.). Watson 

and Taminger (2018) compared the energy consumptions between subtractive manufacturing 

(SM) and additive manufacturing (AM) technologies. A decision-support model was 

developed, using the volume fraction to estimate the feasibilities of both technologies. The 

results indicated that AM is less energy efficient when fabricating an object with a higher 

ratio of the support structure. Yoon et al. (2014) performed another comparison between 

various manufacturing technologies, including bulk forming, subtractive manufacturing (SM) 

and selective laser sintering (SLS) processes. It was found that SLS was comparatively more 

energy consuming, when including the entire manufacturing cycle – from machine setup to 

post-processing – in the calculation (Chua and Leong, 2014, Ford and Despeisse, 2016, Peng 

and Sun, 2017). Since material processing or heating is synchronous with axis movement in 

general AM technologies, the energy spent on a component’s heating represents a large 

proportion of the total energy consumption. According to statistics by Sreenivasan and 

Bourell (2010) regarding SLS, it was found that approximately 40% of the total electrical 

energy usage is for material processing/heating, 25% is for axis movement, and the rest is 

for material feeding and other uses.  
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In the following sections, the state of the art in terms of improving AM’s energy efficiency 

is reviewed. As summarised in Figure 2.3, the research mainly focuses on two perspectives: 

prediction methods for energy consumption and optimisation methods to minimise energy 

consumption in the AM process. The prediction methods include the energy modelling based 

on part volume, process parameters, machine working states and machine components. The 

optimisation methods include the optimisation of process parameters to minimise energy 

consumption. Similarly, the related prediction and optimisation methods of SM are also 

reviewed. As summarised in Figure 2.4, the prediction methods mainly include the energy 

modelling based on machining parameters, NC programs, machine working states and 

machine components. The optimisation methods mainly focus on optimising machining 

parameters and production planning. Details of each method are reviewed in the following 

sections.
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Figure 2.3: Existing research into improving energy efficiency of AM technologies  
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Figure 2.4: Existing research into improving energy efficiency of SM technologies  
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2.3.1. Research into prediction approaches for energy consumption of 

additive manufacturing technologies 

The most recent research on predicting AM’s energy consumption can be classified into three 

categories: volume-based modelling, unit-based modelling and state-based modelling. 

Volume-based modelling uses measurements of average power per unit volume or mass of 

material. Unit-based modelling refers to the sub-modelling of each energy-consuming 

component in the AM machine. State-based modelling refers to the classification of the 

entire AM cycle into different states. Some studies have integrated one or two of the above 

modelling methods for estimating energy consumption. The related research is summarised 

as follows.  

2.3.1.1. Volume-based modelling for additive manufacturing technologies 

Luo et al. (1999) modelled the energy consumption of fused deposition modelling (FDM), 

selective laser sintering (SLS) and stereolithography (SLA) by measuring the power rate per 

process productivity, in which the process productivity was calculated as the average mass 

of solidified material per unit time. Sreenivasan and Bourell (2010) used a similar method 

to measure the mean power consumption per process productivity of SLS technology. 

Watson and Taminger (2018) also used a similar method to model the average energy 

consumption per unit volume of material. 

Predictions based on material volume provides a fast and simplified modelling method. 

Nevertheless, the CAD design consuming the same material volume fabricated under 

different process parameters or by different AM machines will produce different G-code and 

energy consumptions. The simple volume-based modelling cannot reflect the impact of 

process parameters and machine characteristics on the energy consumption. A more detailed 

prediction model considering the above impacts is required.  
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2.3.1.2. Unit-based modelling for additive manufacturing technologies 

Meteyer et al. (2014) demonstrated a modelling method to predict the energy consumption 

of a binder jetting (BJ) process on the unit-process level. The method divided the BJ machine 

into multiple energy-consuming components, including infra-red heater, curing oven, print 

head, roller, sinter part and others. Experiments were performed to measure the power and 

mean time of each component. However, the proposed modelling method was limited to BJ 

technology. Due to the unique mechanism of BJ machine, the toolpath of inkjet nozzle is 

similar to the nozzle of desktop 2D printer, which selectively deposits droplets of binder on 

the powder material when passing over the build platform. Thus, the toolpath of axis 

movement and the time spent on each layer’s printing are constant, which can be directly 

measured through experiments. To propose a prediction method for general AM 

technologies, the energy modelling only based on experimental measurement is not enough. 

For most AM technologies, the toolpaths of axis movement are not constant, but are 

programmed in terms of the process parameters, part geometry, and specific coding rules of 

the slicer software.  

2.3.1.3. State-based modelling for additive manufacturing technologies 

Baumers et al. (2011) developed a classification system by dividing the energy usage of 

selective laser sintering (SLS) into different states: the energy consumed by the construction 

of all layers in X and Y directions, the energy consumed by the axis movement in Z direction, 

and the energy consumed by the machine during warm-up. To calculate the printing time, 

the design geometry was divided into multiple voxels, and the total time consumption for 

the material deposition was approximated by the average time of each voxel. The energy of 

each layer’s construction was modelled as the summation of energy consumed by depositing 

each voxel. Balogun et al. (2014) presented a generic modelling method to estimate the 

energy consumed in a layered manufacturing process. The performances of three FDM 

machines were benchmarked under different working states, including start-up, warm-up, 

ready and build. The power requirement of each state was measured to formulate the 

consumption model, where the time spent on material deposition was calculated through the 
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part volume and the measurement of average deposited volume per second. Another study 

by Peng (2016), Peng and Sun (2017) classified the AM process into four working states: 

material heating, axis movement, material feeding and idle state. The energy consumption 

of each state was modelled directly through the volume of material usage and the average 

power per unit volume. On the basis of volume-based energy modelling methods, the above 

state-based modelling methods divide the entire AM process into multiple working states, 

which further refine the predictive model by considering the components functions and the 

running sequences of all energy-consuming components. However, for the modelling of 

printing state, the methods estimate the energy only based on the part volume without 

considering the impacts of process parameters on the toolpath planning and layer slicing.  

To further improve the prediction accuracy, Qin et al. (2017) proposed an Internet of 

Things framework to estimate AM’s energy consumption. The real-time raw data was firstly 

collected from the AM machine, including component temperatures, component powers, 

operating duration, etc. Based on the process parameters and design information, the data 

features were analysed by data analytical technologies, and then uploaded to the cloud 

database. The cloud integrated all relevant data used for discovering the energy consumption 

knowledge of the AM machine, including energy consumption status, behaviour and 

prediction information. This proposed framework presented the basic workflow of energy 

consumption estimation. Nevertheless, the specific data analysis methods and algorithms 

have not been elaborated. In the work published later that year, Qin et al. (2018) proposed a 

data-driven modelling method to exploit the energy consumption information using 

clustering and deep learning techniques. The data collected from AM machine, including 

process operations, design geometry, manufacturing environment and material condition, 

was processed through a clustering based merged neural network. The target value to be 

predicted was the energy consumption per unit part weight, which was calculated by 

measuring the energy consumption of each machine working state. Through the sensing and 

collecting data from practical AM process, the experimental results validated the merits of 

model performance. Nevertheless, the data of toolpaths in G-code file are not fully used as 

inputs of merged neural network, resulting in a large amount of experimental work for 

measuring the printing time. For general manufacturing technologies, the programmed 
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toolpaths significantly influence the construction time and therefore also affect the energy 

consumption during design construction. An effective physics-based modelling of printing 

time through the toolpaths of printer nozzle can avoid the time measurements based on part 

volume. However, the related modelling methods are still absent to date.  

2.3.2. Research into optimisation approaches to reduce energy 

consumption of additive manufacturing technologies 

Griffiths et al. (2016) utilised a Taguchi design of experiments method to optimise AM 

process parameters for a desired output response between part weight, scrap weight, 

production time and energy consumption. The optimisation was performed on four process 

parameters: build orientation, infill density, shell number and layer thickness. According to 

the experimental results, the main effects of the adopted parameters were emphasised on the 

energy consumption and other demands. A lower layer thickness was found to consume 

lower energy. Another research activity conducted by Hao et al. (2010) optimised the process 

parameters, internal lightweight structures and reaction temperatures to improve the AM 

time efficiency and reduce energy consumption through in-situ thermite material reaction. 

Qin et al. (2020) utilised the deep learning-driven particle swarm optimisation (PSO) to 

optimise AM’s energy consumption based on the real-time collected design-relevant data. 

On the basis of design-relevant data analytics approach proposed by Qin et al. (2018), the 

energy consumption knowledge in the design-relevant features was used to formulate the 

predictive model. The deep learning PSO was applied to search for the optimum design-

relevant features, including part-design features and process-planning features, to provide 

guidance of design revise and process parameter settings to reduce the energy consumption.  

Compared with conventional manufacturing, it is challenging to obtain a general rule for 

optimising AM energy consumption due to the specificity of different types of AM 

technologies. Most studies have focused on investigating the influence of major process 

parameters on energy demands through experimental tests. In order to build up a precision 

model for optimisation, each AM system need to be tested with respect to the relationship 
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between energy consumption and consumption-related factors. How to reduce the number 

of experiments while providing an effective prediction and optimization method is still to be 

addressed.  

2.3.3. Research into prediction and optimisation approaches for energy 

consumption of subtractive manufacturing technologies 

The related research into prediction and optimisation approaches for improving subtractive 

manufacturing (SM) energy efficiency is also reviewed in this section. The existing 

prediction methods mainly focus on the energy modelling based on four perspectives: 

machine working states, machine components, machining parameters and G-code in 

numerical control (NC) programs. The optimisation methods mainly focus on optimising 

machining parameters and production planning to reduce the energy consumption. Each 

method is reviewed as follows.  

2.3.3.1. Prediction methods for energy consumption of subtractive manufacturing 

technologies 

Based on the review, the existing prediction modelling methods of SM technologies are 

summarised into four categories: state-based, unit-based, parameter-based and code-based. 

State-based modelling divides the entire SM cycle into multiple states based on the machine 

operations. Unit-based modelling divides the milling machine into multiple components 

based on their manufacturing functions. Parameter-based modelling relates to the functional 

relationships between energy consumption and the consumption-related machining 

parameters. Code-based modelling uses manufacturing information in G-code provided by 

the NC programs.  

Gutowski et al. (2006) initially proposed a fundamental model on the state-based level to 

calculate the energy consumption of a computer numerical control (CNC) milling process. 

The model divided the manufacturing process into two states: the “ready-to-work” state at a 

constant power and the machining state at variable power. The energy consumed in each 
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state was modelling based on measured power, material removal rate and time consumption. 

Rajemi and Mativenga (2010) proposed the predictive model to minimise energy 

consumption, with a consideration of the milling process as well as the states of machine 

setup and tool changing. With the evolution of SM technology, multifunctional machines for 

the production of complex structures are being developed, accompanied by upgrades in 

energy modelling methods. Several studies integrated state-based modelling and unit-based 

modelling to improve and refine the prediction model to make it more realistic in a practical 

manufacturing context. The machining process was further refined into various machine 

operating states, such as start-up, standby (also named idle), machining with or without 

spindle acceleration or deceleration, and rotating with or without cutting. Meanwhile, the 

milling system was divided into multiple machine tool functional modules, such as the 

servos for manipulating the machinery, spindle for axis movement, rotated carousel and 

coolant devices (Kordonowy, 2002).  

Combined with state-based modelling, a modular modelling method can be implemented 

for each unit, based on the measured power and the scheduling of machine operations. For 

instance, Dietmair and Verl (2009a) demonstrated a unit-based and state-based modelling 

method to predict the energy consumption of a CNC milling machine. The machine 

components were divided into multiple modules, including machining, coolant, spindle, 

drives, hydraulics and cabinet. Each module was scheduled on a corresponding machining 

state, including chipping, spindle cooling, spindle rotation, axis movement, emergency stop, 

machine run-up and off. Calvanese et al. (2013) developed an analytical model to estimate 

the energy consumptions of main machine components, including spindle, axis, chillers, tool 

change system, auxiliaries, etc. The manufacturing process was divided into different 

working states, including start-up state, standby state, machining state, tool wear, tool 

changing, and axis movement at various cutting speeds and feed rates. The total energy 

demand was modelled as the sum of the power demands of each considered component 

during different machine working state (Kong et al., 2011).  

The research into unit-based and state-based modelling for SM technologies fully consider 

the entire SM cycle from the machine set-up to the end of milling process. On this basis, 

parameter-based modelling has been proposed to further improve the prediction accuracy, 
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since the variations in machining parameters determine the numerical control (NC) programs 

and machine operations, and thereby influence the prediction of energy consumption. Diaz 

et al. (2011) emphasised the impact of material removal rate on energy demand in the CNC 

milling process. They stated that an increased rate of material removal significantly 

shortened the machining time, but this led to increased loads on the spindle and axis 

movements with a higher power demand. Thus, a function expressing the characteristics of 

energy consumption of a machine tool was modelled at various material removal rates. Liu 

et al. (2015) demonstrated a hybrid model to estimate energy consumption in a slot milling 

process under various settings of cutting parameters and cutting force profiles. The cutting 

power at the tool tip was modelled under different cutting forces and the total power was 

modelled based on the measured cutting powers under different parameters, including depth 

of cut, spindle speed, and feed rate.  

The above prediction methods are mainly based on experiment data to carry out data-

driven modelling of the manufacturing system. To reduce the workload of experiments, 

several studies fully use the numerical control (NC) commands in prediction modelling. He 

et al. (2012) proposed a novel modelling scheme at the unit-based level to estimate the 

correlations between component powers and machining parameters. The time consumption 

of each machining operation was calculated from G-code information, including the 

coordinates and speed of axis movement, speed of spindle motion, material removal rate, etc. 

Avram and Xirouchakis (2011) proposed a unit-based and state-based modelling method to 

estimate the energy consumed by a machine tool system, in which the cutting power, spindle 

and feed axes power in in steady-state and transient state, and auxiliary component power 

were mainly considered. The time consumption of machining operations was calculated by 

processing the corresponding NC commands, which covered the cutter location data, length 

of each toolpath segment, spindle speeds and feed rates. Aramcharoen and Mativenga (2014) 

further improved the modelling scheme on both the unit-based and state-based levels. They 

combined the machining parameters and toolpaths provided by G-code with energy 

consumption in different processing states. Thus, a consumption model was built based on 

the running sequence of each component or unit, including machine start-up and setup, 

spindle rotation, tool cutting, tool changing, material feeding and coolant pumping. Since 
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the operation of each state and each unit followed G-code commands, their time 

consumptions were directly calculated from G-code. The researchers also stated that the 

manufacturing information in G-code and the modelling on both unit-based and state-based 

levels are expected to be applied in the prediction of AM energy consumption. From the 

afore-mentioned reviews, it is found that the related research on code-based modelling for 

AM technologies is still blank. Most methods are purely based on a large number of 

experiments to build up the data-driven model.  

2.3.3.2. Optimisation approaches to reduce energy consumption of subtractive 

manufacturing technologies 

To maximise energy efficiency, a feasible optimisation tool can be selected to search for the 

optimum production planning and optimum solution set of machining parameters. With 

respect to the optimisation of machining parameters, Deng et al. (2020) proposed a carbon 

utilisation efficiency model based on the characteristics of machining flow and material 

removal mechanism in a milling process. A multi-objective optimisation method using a 

particle swarm optimisation (PSO) algorithm was implemented to search for the optimum 

machining parameters with the minimum time and energy consumptions. Four main 

machining parameters were considered to be optimised, including spindle speed, feed speed, 

milling width and milling depth.  

With respect to the optimisation of production planning, Wang et al. (2018) demonstrated 

a hybrid modelling approach based on the Standard for Exchange of Product model data 

numerical control, which is an official standard that provides the contributing factors 

effecting energy consumption in machining process. A multi-objective optimisation problem 

was defined, wherein a set of preliminary machining schemes were generated in terms of 

energy demand information and rules. With the assistance of an ant colony optimisation 

technique, the optimal combination of operations, strategies, machining parameters, 

machine tools and cutting tools was selected from the preliminary machining schemes to 

maximise energy efficiency. Dietmair and Verl (2009b) presented a number of examples to 

illustrate how the model was applied in a real-time, strategic and tactical decision-making 
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process, to obtain the optimal resource allocation and minimise the energy consumption. A 

study by Rajemi et al. (2010) proposed an energy footprint model of turning and milling 

processes, wherein the critical parameters included the power of machine setup and start-up 

mode, time consumption of tool changing, energy footprint and velocity of tool cutting. The 

model was used to search for the optimum tool life and cutting conditions for machining, 

with the minimum energy requirements. A direct search method was applied to optimise tool 

life and corresponding machining parameters, including depth of cut, feed and velocity.  

Through the review of optimisation methods for improving AM and SM energy efficiency, 

it is found that the machining parameters or process parameters to be optimised are limited 

to a few important parameters. Due to the diversity of manufacturing mechanisms, the 

significance of each machining parameter to the total energy consumption is uncertain. To 

deliver convincing optimisation results, it is necessary to optimise all consumption-related 

parameters in energy modelling. In addition, the use of precise prediction accompanied with 

the optimisation of machining parameters is a feasible way to improve the energy efficiency 

of both AM and SM. Although there is no general rule for predicting and optimising energy 

consumption, power and time measurements of each consumption-related component are 

inevitable. From the review of code-based modelling of SM’s energy consumption, the 

manufacturing information in G-code can be fully used to calculate the time consumption of 

machining process. This method can be also extended in the consumption modelling of AM 

process, since AM technologies also fabricated by following the numerical control (NC) 

commands in G-code.  

2.4. Improvement of material efficiency for additive 

manufacturing and subtractive manufacturing technologies 

Material saving is challenging in both additive manufacturing (AM) and subtractive 

manufacturing (SM) technologies due to their special manufacturing mechanisms (Newman 

et al., 2015). In SM processes, material waste inevitably occurs during production by 

material removal, but this process allows high-precision production through the milling 
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process. In AM processes, the design with a higher proportion of support structure consumes 

a large amount of material, but this process provides the freedom to construct complex 

structures. Therefore, the application of individual manufacturing technology is often 

constrained by its production capabilities, such as the failure to fabricate complex structures, 

inability to use certain materials or a large amount of material waste (Newman et al., 2015; 

Zhu et al., 2013a). In order to improve efficiency, several studies have integrated multiple 

SM and AM processes to apply their respective advantages and overcome the drawbacks (i.e. 

hybrid manufacturing (HM) process).  

In the following sections, research on production planning in HM processes for improving 

material efficiency is reviewed. Furthermore, research on optimising the factors that affect 

the material efficiency of AM technologies are also reviewed. As summarised in Figure 2.5, 

the research mainly focuses on two perspectives: prediction methods for material 

consumption and optimisation methods to minimise material consumption in the AM process. 

The research of prediction modelling was based on layer thickness. The optimisation 

methods include the optimisation of build orientation, path planning and production planning. 

Details of each method are reviewed as follows.
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Figure 2.5: Existing research into improving material efficiency of AM technologies  
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2.4.1. Research into process planning to reduce material consumption of 

hybrid manufacturing technology 

HM technology has been widely applied in industrial manufacturing in recent years. It 

integrates multiple types of manufacturing processes or technologies to capitalise on and 

consolidate the advantages of each individual process, while also minimising their 

disadvantages (Newman et al., 2015). A feasible process planning of various additive 

manufacturing (AM) and subtractive manufacturing (SM) technologies can significantly 

reduce material waste. For instance, Zhu et al. (2013b) proposed a process planning 

algorithm entitled iAtractive to plan and schedule the additive, subtractive and inspection 

processes for a given CAD design. By dividing the design into multiple parts, three factors 

were analysed on each part, namely process capability, production time and material usage. 

Then, iAtractive implemented part-specific process planning to minimise the manufacturing 

constraints of complex geometries. This algorithm was further improved by Newman et al. 

(2015). Additional factors were defined as inputs to iAtractive (including process planning 

knowledge, geometry constraints and remanufacturing information of the existing part/raw 

material) to maximise the material efficiency and recycling of material waste for the next 

production. Le et al. (2017) developed a lifecycle method to evaluate the feasibility of 

remanufacturing existing parts/raw material in a hybrid manufacturing (HM) process. The 

process planning was based on the geometry constraints, available resources and machine 

characteristics. Ren et al. (2010) developed an integrated strategy to realise the automatic 

process planning of computer numerical control (CNC) machining and selective laser 

sintering (SLS). The method separated the CAD design into multiple parts with non-uniform 

layer thicknesses and toolpaths. Behandish et al. (2018) proposed a similar systematic 

computational algorithm to automate the process planning. The optimal solution set of 

machining parameters was obtained to maximise the time efficiency, and minimise the 

production costs and material consumptions. 

Based on the above, HM is found to be an efficient production mode for large-scale 

production enterprises to save materials. For the manufacturers such as individual users, it 

is challenging to integrate multiple AM and SM manufacturing processes due to the limited 
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manufacturing resources and capacities. For the manufacturing process performed by a 

single technology, it is still necessary to improve the existing manufacturing technology to 

reduce material consumption. 

2.4.2. Research into optimisation of factors affecting material efficiency 

of additive manufacturing technologies  

An effective prediction method of material usage is necessary for the improvement of 

material efficiency. A study by Meteyer et al. (2014) estimated the average material 

consumption of binder jetting (BJ) technology through experimental tests. Except for the 

metal powder, the liquid binder and cleaner used for bonding powders and the washing 

system were also estimated based on layer thickness and layer numbers. It was found that 

part geometry is the major factor that determines the material efficiency in an AM process. 

Yoon et al. (2014) stated that AM is outperformed in small-size production by conventional 

manufacturing technologies. This is because the poor recycling rate of AM is the bottleneck 

of AM development, especially for designs with a large proportion of support structures. 

This weakness is magnified when the time and energy consumed by the construction and 

post-processing of support material increase with the part volume (Watson and Taminger, 

2018).  

Several studies have focused on the optimisation of part geometry and process parameters 

through computer-aided manufacturing (CAM) to minimise AM material consumption. The 

build orientation and interior structure (or infill density) are the two main factors that affect 

the amount of material consumed by the support and internal structures. Regarding build 

orientation, Ahsan et al. (2015) investigated the impact of this on AM material saving 

through experimental tests. They stated that the toolpath and the number of contour areas on 

each layer varied with build orientation, and excessive contours could increase the 

construction time and surface quality defections. Therefore, Zhang et al. (2017) developed a 

feature-based optimisation algorithm to seek the optimal build orientation of multi-part 

construction. A finite set of alternative orientations for every single part was generated within 

the constraint of product quality. A genetic algorithm (GA) was applied to search for the 
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optimal orientation with the minimum build time and material usage among each finite set. 

Regarding the interior structure or infill density, Jin et al. (2017) developed a skeleton-based 

path strategy to minimise the interior volume of solid parts, which was based on the 

supporting angle, contour area and layer thickness.  

Based on the above, research on the prediction of AM’s material consumption is still 

scarce. Many commercial slicer software can provide estimates of material usage based on 

the part geometry in the prefabrication stage. However, the estimation is lack of accuracy 

since the impact of machine and material characteristics is not considered, for example, the 

insufficient melting and extrusion of thermoplastic material in fused deposition modelling 

(FDM) process. Besides, note that even if the same design structure is adopted, the different 

combinations of process parameters will yield different G-code, in which the commands 

used for instructing the machine to deposit material will be also different, resulting in 

different material consumption. Thus, it is vital to develop a precise and general modelling 

method based on the process parameters, and characteristics of the machine and material. 

Furthermore, the existing methods of optimising material consumption mainly optimise the 

major process parameters, such as build orientation and infill density. Considering the impact 

of each process parameters on the final consumption, the scope of optimisation should be 

expanded to all process parameters.  

2.5. Knowledge gaps 

Based on the review of existing research, the knowledge gaps are identified in this section. 

From the consumption modelling perspective, several studies have simplified the toolpath 

on each layer in the area and volume calculation. This prediction method of time 

consumption without considering the impacts of process parameter variations on the layer 

slicing and path planning results in a limited prediction accuracy. To further improve the 

prediction accuracy, the consumption modelling should consider all related process 

parameters, machine characteristics, and resources spent throughout the entire AM cycle. 

Besides, there is still a lack of prediction method associated with the path planning in CAM, 
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which reduces the workload of experimental measurements, and allows the predictive model 

to be expandable to the resource modelling for general manufacturing process using 

computer numerical control (CNC) programming. Furthermore, due to the diversity of AM 

mechanisms, most of the proposed modelling methods only focus on a single type of AM 

technology. A general prediction method is needed to achieve accurate prediction of general 

AM systems. 

From the multi-objective optimisation perspective, most studies have optimised only a 

few important process parameters (e.g. build orientation, infill density) to minimise as single 

objective from time, energy or material consumptions. In fact, all process parameters that 

can be personalised in CAM determine the corresponding G-code together with the 

programming process and the final consumptions. From the existing studies, there is still a 

lack of general multi-objective optimisation method, in which the inputs contain all process 

parameters for constructing the CAD design, and the outputs are no longer restricted to a 

single objective. 

Based on the above, a general prediction and multi-objective optimisation method is still 

required to predict and minimise time, energy and material consumptions of the AM process. 

To achieve an effective prediction of a specific AM task, the consumption modelling needs 

fully consider the related process parameters, characteristics of AM machine and material, 

production environment, and customer demands. To minimise the resource consumptions, 

the optimisation is supposed to provide the optimal solution of all related process parameters 

in prefabrication stage.  

2.6. Summary 

This chapter introduces the major focuses for improving AM technologies, and provides a 

literature review on the area of prediction and optimisation of time, energy and material 

consumptions of AM technologies. Since some AM research has evolved from the existing 
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research into SM technologies, the related work for improving SM technologies is also 

reviewed.  

Based on the preceding review of the literature, knowledge gaps have been identified to 

motivate the research work in this thesis and provide evidence of its contribution. The aim 

of this current work is to propose a general prediction and multi-objective optimisation 

scheme, to predict and minimise time, energy and material consumptions of the AM process. 

In the next chapter, the framework of the proposed methodology will be introduced. 
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CHAPTER 3  FRAMEWORK OF 

PREDICTION AND MULTI-OBJECTIVE 

OPTIMISATION FOR ADDITIVE 

MANUFACTURING TECHNOLOGIES 

3.1. Introduction 

The framework of prediction and multi-objective optimisation of time, energy and material 

consumptions for additive manufacturing (AM) technologies is described in this chapter. In 

order to provide a general prediction method, all energy-consuming components of the 

existing AM technologies on the market are investigated. Based on their manufacturing 

functions, the components are classified into five types of modules: axis movement, material 

processing, component heating, material feeding and auxiliary components. To clearly 

illustrate the running sequences of five types of modules, their power profiles integrated with 

the corresponding G-code commands are displayed in the form of a Gantt chart. Then, the 

hybrid data-driven modelling and physics-based modelling are performed, which aims to 

establish the models of time, energy and material consumptions related to the process 

parameters for each module. In physics-based modelling, the time and distance of axis 

movement with actual displacements, and the amount of material feeding are directly 

calculated from G-code. In data-driven modelling, the functional relationships between the 

consumptions and process parameters of the remaining modules are obtained from 

experiment data. The experiments mainly include: the apparent powers of all modules, the 

time consumptions of material processing module and component heating module, and the 

temperatures of modules to be heated.  

In addition, some AM technologies, such as fused deposition modelling (FDM), might 

experience a motor out-of-step problem in the actual production environment, which causes 

the failure of axis movement speed and material feeding rate to reach their targets. Moreover, 

the quoted density of some AM materials also deviates from the actual density. Thus, in order 



92 

 

to reduce the impact of above-mentioned similar machine characteristics on prediction 

accuracy, the proposed framework is upgraded with additional experiments to obtain the 

relationships between the actual and expected axis movement speeds, material feeding rates 

and material densities. The models of those parameters can replace the original parameters 

in the predictive models.  

Finally, meta-heuristics are applied to approximate the optimal combination of process 

parameters that consume the least time, energy and material. The predictive models of time, 

energy and material consumptions are used as the objective functions to calculate the fitness 

of each combination of process parameters. Since different process parameters produce 

different G-code and predictive models, the process from the generation of G-code through 

slicer software to the consumption prediction is embedded in the fitness calculation. Details 

of the proposed framework is described in the following sections.  

3.2. Classifications of consumption-related modules 

 

Figure 3.1: Power profiles of a general AM task printed by a typical FDM 3D printer  
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At the beginning of this study, a typical fused deposition modelling (FDM) 3D printer was 

tested by using a power analyser. The aims is to figure out how the various components of a 

typical AM machine cooperate to accomplish an AM task. Figure 3.1 presents the power 

profiles of the printer and its energy-consuming components participating in the AM process. 

The first plot in the grey box indicates the total power profile of the whole printer. The 

remaining five plots indicate the power profile of each component. In details, the bed heating 

refers to the heating of the build platform, which is done to make the base of the printed 

object firmly adhere to the build platform. Nozzle hotend heating refers to the heating of the 

hotend component located inside the nozzle, which involves melting the polylactic acid 

(PLA) filament material from solid to liquid. Axis movement refers to the movement of the 

printer nozzle. Material feeding refers to the extrusion and deposition of melted PLA 

material. The auxiliary components refer to those used for monitoring and controlling the 

machine status.  

Note that the running sequences of above components are decided by the machine 

characteristics and the coding rules of slicer software for the AM machine. In this example, 

according to the instructions of G-code commands, the bed heating first starts at the 

beginning of an AM task, and then followed by the heating of nozzle hotend. After both 

components reach their target temperatures, the axis movement and material feeding begin 

to construct the physical object. The auxiliary components remain in running state 

throughout the entire AM process. In addition, Figure 3.1 is also a representative case that 

illustrates the running power of general AM technologies. From this figure, two points are 

concluded:  

⚫ Firstly, the total power profile is a combination of the power profiles of all the 

components.  

⚫ Secondly, the time when each component starts to run strictly follows the instruction 

of the G-code command. 
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Figure 3.2: Module classifications of consumption-related components of current AM technologies on the market 
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Based on the above, it can be known that an AM system constructs a 3D object through 

the collaboration of various components with their unique functions. Thus, this study has 

classified all consumption-related components of AM technologies commonly used on 

the market into five types of modules. As shown in Figure 3.2, the module types are 

material processing, component heating, material feeding, axis movement and auxiliary 

components. The classification is based on the specific manufacturing function of each 

component, which is described as follows. 

⚫ The material processing module is to continuously process or heat the material to 

prepare it for deposition. For example, the nozzle hotend of a fused deposition 

modelling (FDM) machine is heated to melt the thermoplastic filament from a 

solid state to a liquid state. The ultraviolet (UV) light of material jetting (MJ) and 

polymerisation machines is to cure the photopolymer from a liquid state to a solid 

state. 

⚫ The axis movement module is to move the material processing module by 

following the predefined toolpath in G-code. For example, the XY axes gantry 

system of a binder jetting (BJ) machine is to drive the inkjet nozzle to the target 

coordinate in X and Y directions, while the build platform is to drive the inkjet 

nozzle to the next layer in Z direction. 

⚫ The material feeding module is to feed a specific amount of processed material on 

the target coordinates. The running of this module is usually accompanied by 

material processing to construct the 3D object. For example, the material feeding 

driven by the powder feeder of a direct energy deposition (DED) machine is 

synchronised with the heating of laser. This is to ensure that the metal powder is 

melted from solid to liquid and then deposited on the platform.  

⚫ The component heating module – as the name suggests – is to heat the components 

used to support the object construction. For example, heating of the build 

platform/bed of material extrusion (ME) and material jetting (MJ) machines is 

performed to ensure that the material at the bottom of the printed part does not 



96 

 

completely cool and instead adheres firmly to the platform. Similarly, the heating 

material container of a MJ machine ensures that material such as photopolymer 

and wax remain in a liquid state. The heated roller of a sheet lamination machine 

is used to apply pressure and activate the adhesive on the film to achieve the 

bonding of the two layers.  

⚫ The auxiliary components module plays an auxiliary role in supporting the 

manufacturing process, such as monitoring and controlling the machine status. 

The components in this module always keep running, irrespective of whether the 

AM machine is in a standby state or printing state. For example, the display unit 

is used to show the machine status; the user interface and connectivity provide a 

means to control the machine operation in a wired or wireless manner; the cooling 

system accompanies the manufacturing process to reduce the machine 

temperature; and the temperature sensor is used to monitor the temperature of 

components being heated.  

Note that some components may have more than two functions. For example, the build 

platform of a material jetting (MJ) machine is not only used to drive the movement of 

ultraviolet (UV) light in Z direction, but it is also heated to ensure that the deposited 

material adheres firmly to the platform. In this case, the component should be defined as 

two modules: axis movement module, and component heating module. Each module has 

only one function. This is to facilitate prediction modelling of the resource consumed by 

each function when the component performs multiple functions. 

To propose a general modelling method for long-term use, the module classification 

in Figure 3.2 can be used as the database to be updated and supplemented with the 

continuous development and innovation of AM technologies. For a novel AM technology, 

the energy-consuming components can be classified into different modules based on their 

functions, and the information of each module can be added to the blank area marked 

with a “+” sign in the database. If encountering a component with a new function, an 

additional new module can be defined to record the information of this component. 



97 

 

 

Figure 3.3: Examples of consumption-related modules of three different AM machines 
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Based on the above, Figure 3.3 presents three different AM machines as examples to 

illustrate the module classification according to the database in Figure 3.2. The first 

example is the Geeetech A10M dual extrusion fused deposition modelling (FDM) 3D 

printer, which uses a dual-material extrusion system to produce 3D objects. Specifically, 

the printer allows switching between two extruders that provide two different types of 

thermoplastics. The same as general FDM 3D printers, each extruder deposits material 

melted by the nozzle heater/hotend on the heated build platform/bed, accompanied by 

the axis movement driven by an XYZ-axes Cartesian system. Other components running 

in the standby state also participate in the manufacturing process to control and monitor 

the machine status. Therefore, the consumption modelling selects nine modules from the 

database: two material extruders, nozzle heater, build platform, Cartesian system, display 

unit, user interface and connectivity, cooling system and temperature sensor. 

The second example is the Optomec LENS CS 800 direct energy deposition (DED) 

printer. During the AM process, a powder feeder sprays the metal powders melted by a 

laser or electron beam to produce 3D objects, accompanied by axis movement driven by 

a combination of an XY-axes gantry system and Z table. This AM machine also provides 

an interchangeable rotary table and tilt-rotate trunnion to realise the 4-axis and 5-axis 

movements. These components are instructed by the corresponding toolpaths on multi-

axes in G-code programming. Therefore, 10 modules are selected to form the predictive 

models: laser, powder feeder, XY-axes gantry system, Z table, rotary table, tilt-rotate 

trunnion, cooling system, user interface and connectivity, display unit and temperature 

sensor.  

The third example is the Zortrax Inkspire Resin ultraviolet (UV) LCD 3D printer, 

which uses polymerisation technology to produce 3D objects. During the AM process, 

the resin photopolymer is solidified by the scanning of a UV beam emitted from the laser 

scanner/XY plotter, accompanied by axis movement driven by these two components in 

X and Y directions and the build platform/bed in Z direction. Therefore, there are six 
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modules selected for the modelling: UV light, laser scanner/XY plotter, build 

platform/bed, user interface and connectivity, display unit and temperature sensor. 

After the module classification for a specific AM machine, the power profile of an AM 

process performed by the machine can be measured and used to formulate a Gannt chart, 

in which the time node of each power variation corresponds to the start time of each 

module operation. The start time is determined by the G-code commands. Thus, a Gannt 

chart as shown in Figure 3.4 is generated to clearly identify the running sequences of all 

modules, and their correspondences to G-code commands and power profiles. In addition, 

this chart can intuitively reflect the overlap of multiple module operations on the time 

axis. This can facilitate the subsequent prediction modelling, and the design of 

experiments to measure the time consumption and apparent power of each module. 

 

Figure 3.4: Examples of the correspondence diagrams between modules, G-code 

commands and power profiles 
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Two examples of fused deposition modelling (FDM) 3D printers are presented. As 

shown in Figure 3.4, each module is distributed along the time axis as a Gantt chart by 

following the G-code commands. For both machines, the module of auxiliary 

components are running and consuming energy during the entire AM process. These 

components comprise the display unit, temperature sensor, and user interface and 

connectivity. However, the running sequences of other modules are completely different. 

For the ANYCUBIC i3 Mega 3D printer, the heating of the build platform/bed takes 

precedence over the nozzle heating. Once both components reach the target temperatures, 

the heating powers are stabilised to maintain constant temperatures. Then, the wire feeder 

and the XYZ-axes Cartesian system start running to construct the 3D object. For the 

Monoprice MP Mini Delta 3D printer, the difference is that the calibration of the central 

coordinates is required at the beginning of each AM task. Thus, the delta system of axis 

movement runs first, from the task starting until the task ends. After the calibration, the 

nozzle is heated to the target temperature and then the wire feeder begins to deposit the 

first layer of material. After completing the first layer, the build platform/bed is heated 

to ensure that the printed object adheres firmly to the build platform.  

The above two examples demonstrate the specificity of AM machines and the 

importance of G-code in this study. Details of the prediction and multi-objective 

optimisation for the two machines will be discussed as case studies in Chapter 7 and 

Chapter 8. In the following sections, the consumption modelling procedures and the 

multi-objective optimisation procedures will be introduced to illustrate the proposed 

framework.
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3.3. Framework of prediction and multi-objective optimisation 

 

Figure 3.5: Framework of prediction modelling and multi-objective optimisation for AM’s time, energy and material consumptions
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The framework of the proposed method is presented in Figure 3.5. To begin, a CAD design 

in standard triangle language (STL) format is imported into CAM (i.e. slicer software) to 

slice the 3D prototype into multiple layers (Yang et al., 2017). The slicer software provides 

an interface to personalise the process parameters according to the machine characteristics 

and customer demands. After the setting of process parameters, the slicer software encodes 

the printing information of each layer into G-code commands through computer numerical 

control (CNC) programming. The information is used to instruct the machine operation 

during the AM process. Then, for each module, the conceptual models of time, energy and 

material consumptions are built as the functions of process parameters. The functional 

relationships are derived in two ways: through physics-based modelling and data-driven 

modelling.  

In physics-based modelling, the data in G-code is processed to calculate three parameters 

of the models: the time, distance of axis movement with actual displacements and the amount 

of material feeding. In data-driven modelling, besides the above parameters calculated from 

G-code, the relationships between other parameters and process parameters are unknown 

and can only be obtained from experiments. The experiments consist of three parts: the time 

measurements of the material processing module and component heating module, the power 

measurements of all five modules and the current temperatures of components to be heated. 

All the above time consumptions and power are measured under different combinations of 

process parameters. After the experiments, the functional relationships between these 

parameters and the process parameters are derived by using regression analysis method. 

Polynomial regression is applied to curve-fit the functional relationships (i.e. to calculate the 

coefficient of the functions). 

When the predictive models are obtained, a multi-objective optimisation technique is 

applied to optimise the process parameters and minimise the time, energy and material 

consumptions of the current AM task. The optimisation results provide guidance to select a 

feasible solution set of process parameters and improve the structure of the CAD design. In 

the following sub-section, details of each step in the proposed framework are described.  
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3.3.1. Physics-based modelling based on G-code 

Physics-based modelling based on G-code is one of the main contributions of this study, 

since a CAD design can produce different G-code for different AM machines and different 

slicer software. Figure 3.6 presents an example of a CAD design manufactured by two 

different machines. Each machine has two supporting sets of slicer software. By importing 

the design in standard triangle language (STL) format into two sets of slicer software, this 

enables the generation of two G-code files for each AM machine based on its specific coding 

rules. Thus, four AM tasks with unique G-code files are generated. Each G-code file contains 

different commands to instruct the AM machines. The time, energy and material 

consumptions of these four tasks will also be different.  

 

Figure 3.6: G-code generation by different slicer software for different AM machines 

The main types of G-code commands are summarised in Table 3.1. These commands 

provide the AM machine with the target temperature of component heating, the accurate 

coordinates and corresponding speeds of axis movements, and the rate and amount of 

material feeding. For instance, a command starting with the letter “F” denotes the target 

speed of axis movement or the target rate of material feeding. A command starting with “G1” 

or “G0” denotes the commencement of axis movement or material feeding. A command 

starting with “X”, “Y” or “Z” denotes the target coordinate of axis movement in the X, Y or 
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Z direction. Commands starting with “M104” or “M140” denote the setting of target 

temperatures for the heating material processing module and the component heating module. 

Commands starting with “M109” or “M190” indicate to begin the heating of the above two 

modules. 

Table 3.1: Instructions of typical G-code commands in the AM process (Smid, 2003; 2010) 

Module type 

G-code 

command 
Meaning Unit 

Axis 

movement 

G1, G0 Begin axis movement  

G28 Home all axes back to the initial coordinates  

Fnnn Rate of material feeding/speed of axis movement mm/min 

Xnnn Target X coordinate of axis movement mm 

Ynnn Target Y coordinate of axis movement mm 

Znnn Target Z coordinate of axis movement  mm 

Material 

feeding 

Ennn Consumed amount of material feeding mm 

G92 E0 Reset the consumed amount of material feeding  

Material 

processing/ 

heating 

M104 Snnn 
Set the target temperature of the material 

processing component 
 

M109 Snnn 
Begin heating the material processing 

component to the target temperature nnn℃ 
 

Component 

heating 

M140 Snnn Set the target temperatures of components  

M190 Snnn 
Begin heating component to the target 

temperature nnn℃ 
 

Auxiliary 

components 

G4 Snnn Pause the machine for nnn seconds  

M106 Turn the cooling fan on  

M107 Turn the cooling fan off  

M84 
Disable the idle hold of axis movement and 

material feeding components 
 

Example of a G-code command 

G1 F9600 X119.483 

Y151.786 E24.523 

Axis movement to the target coordinate (X119.483, Y151.786) 

at a rate of 9600 mm/min for material feeding and the current 

consumed amount of material feeding is 24.523 mm 
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Figure 3.7: G-code commands of a typical AM task 

The G-code commands of a typical AM task are shown in Figure 3.7. According to the 

main types of G-code commands listed in Table 3.1, “G92 E0” indicates that the amount of 

material is reset back to zero at the beginning of the AM task. “M104 S205” and “M109 

S205” indicate that the components of the material processing module are set and heated to 

the target temperature of 205℃. “M140 S60” and “M190 S60” indicate that the components 
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of the component heating module are set and heated to the target temperature of 60℃. The 

G-code commands can provide three types of important information in the prediction 

modelling: 1). the running sequences of machine components; 2). the coordinates and speeds 

of axis movement. 3). the amount of material feeding. 

The running sequences of machine components are determined by the coding rules of 

slicer software. Since the AM machine executes G-code commands line by line, the machine 

will execute the next command after the current command is completed. For example, when 

the components of the material processing module are heated in the middle of the printing 

process, the axis movement module will be paused until the heated components reach the 

target temperature. During this period, the axis movement module will still be in running 

status at the previous power level. Thus, the time consumption of the axis movement module 

consists of two parts: the time spent on actual displacements with or without material feeding 

and the time spent on waiting for other components to finish running. In this study, we define 

the latter period of time as the ‘interval time’. According to the Gannt chart, the interval time 

is equal to the time spent on other components running.  

The coordinates, speeds of axis movement and the amount of material feeding can be 

processed for the physics-modelling of two modules: axis movement and material feeding. 

Three parameters of the predictive models are calculated, namely the time and distance of 

axis movement with actual displacements, and the amount of material feeding. The detailed 

calculation methods of above three parameters are described in next chapter.  

3.3.2. Data-driven modelling based on experiments 

Apart from the parameters calculated from G-code, the relationships between other 

parameters and process parameters are unknown because they cannot be calculated from G-

code. For example, for the heating of material processing module and component heating 

module, G-code only provides the commands “M140” and “M104” to instruct the AM 

machine to start heating the components, but it does not provide the time consumption and 
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power of this heating process. Therefore, data-driven modelling is applied to obtain the 

functional relationships between the remaining parameters and process parameters through 

experiments.  

Table 3.2 lists the modules that need to be tested through experiments. Power 

measurements are conducted to test the apparent powers of all five modules under different 

related process parameters. Time measurements are conducted to test the setup time or 

heating time of the material processing module and component heating module under 

different process parameters. For the axis movement module, the time consumption of axis 

movement with actual displacements is calculated from G-code, while the interval time is 

determined by the running sequences and time consumptions of other modules. For other 

four types of modules, their time consumptions are also determined by the running 

sequences and time consumptions of all modules. In addition, the current temperatures of 

the components to be heated in the material processing module and component heating 

module are also recorded at the beginning of each AM task. Since general AM technologies 

have sensors to monitor the temperatures of components being heated, the current 

temperatures of these components can be directly recorded from the AM machine. 

Table 3.2: List of modules to be tested through experiments 

Modules 
Related process 

parameters 

Apparent 

powers 

Setup time / 

heating time 

Current 

temperature 

Axis 

movement 
Speed of axis movement ✓   

Material 

feeding 
Rate of material feeding ✓   

Material 

processing 
Target temperature ✓ ✓ ✓ 

Component 

heating 
Target temperature ✓ ✓ ✓ 

Auxiliary 

components 
None ✓   

The apparent power is the combination of active power and reactive power. The former 

refers to the real electrical resistance power consumed by the alternating current (AC) power, 
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which is converted into thermal and mechanical energy during the AM process. The latter 

refers to the inductive and capacitive power consumed by the AC power passing through the 

inductive and capacitive components to build up the magnetic and electrical files (El-

Habrouk et al., 2000). The above two types of power both consume electrical energy in actual 

production. Therefore, this study selects to use the apparent power to build up the energy 

consumption model.  

 
Figure 3.8: Circuit connection of power and time measurements by using a power meter 

The circuit connection for the measurements of apparent power and time consumptions 

is displayed in Figure 3.8. To avoid disassembling the AM machine, a circuit box has been 

designed to separate the power cable of the AM machine into three wires: neutral, live and 

earth. This aims to conduct the power and time measurements only through the power cord 

without disassembling the AM machine. Two voltage probes are connected with the neutral 

and live wires to form a parallel circuit, which are used to measure the voltage of the AM 

machine. The current clamp-on probe is an electrical device with jaws, which is used to read 

the magnitude of AC flowing through a conductor (Gregorec Jr et al., 2006). In this study, 

the current clamp-on probe is used to measure the AC flowing through the live wire of the 

AM machine. Since general power meters have functions of measuring both time and 

apparent power, the time consumptions and apparent powers of the modules listed in Table 

3.2 are directly measured by following the circuit connection in Figure 3.8.  

To test the time and apparent power of each single module, G-code commands can be 

manually designed to instruct the AM machine to run the modules individually. Section 
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3.3.1 provides a detailed explanation of the G-code commands. The G-code commands used 

to instruct each individual module are summarised in Table 3.3. During the experiments, 

measurements are conducted under different settings of process parameters in these G-code 

commands. The process parameters include the speed of axis movement, rate of material 

feeding, and target temperatures of the material processing module and component heating 

module. 

Table 3.3: G-code commands for the time and power measurements of each single module 

Module G-code command Meaning 

Axis movement 

G1 Fnnn Xmmm Ymmm 

Move the printer nozzle to the target 

coordinate (Xmmm, Ymmm) in X, Y 

directions at a speed of nnn 

G1 Fmmm Znnn 

Move the printer nozzle to the target 

coordinate (Zmmm) in Z direction at a 

speed of nnn 

Material feeding G1 Fmmm Ennn 
Feed material with an amount of nnn at a 

rate of mmm 

Material processing 

M104 Snnn 

M109 Snnn 

Set the target temperature nnn of the 

material processing module and then heat 

the module to the target temperature 

Component heating 

M140 Snnn 

M190 Snnn 

Set the target temperature nnn of the 

component heating module and then heat 

the module to the target temperature 

Auxiliary components None 

This module keeps running throughout the 

entire AM task without the need for G-code 

commands 

Based on the experimental results, the functional relationships between the measured 

results and process parameters can be derived with the assistance of a curve-fitting tool. 

Curve-fitting is the process of generating the curve of a mathematical function with the best 

fit, based on a series of data points (Sandra, 1994). Regression analysis is used to curve-fit 
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the functional relationships and calculate the coefficient of functions. There are various 

regression analysis methods, such as linear, polynomial, Poisson, ride, lasso, logistic, elastic 

net, etc. (Liang and Zeger, 1993). In statistics, polynomial regression is a common form of 

regression analysis used to model the relationship between independent variables and 

dependent variables as a multi-degree polynomial. Thus, polynomial regression is selected 

as the tools to curve-fit the above relationships. 

Above two sections mainly introduce the basic flow of prediction modelling according to 

the proposed framework. The definition of predictive models and the methods used in the 

prediction modelling will be introduced in next chapter. Details of the modelling procedures 

for each module will be discussed in Chapter 5. 

3.3.3. Multi-objective optimisation  

The prediction is followed by multi-objective optimisation. Since meta-heuristic algorithms 

have been widely applied for solving sophisticated optimisation problems, a suitable 

optimisation technique can be selected from the existing meta-heuristic algorithms to solve 

the multi-objective problem in this study. According to Abdel-Basset et al. (2018) and 

Crespo-Cano et al. (2019), the major algorithms include genetic algorithm (GA), particle 

swarm optimisation (PSO), clonal selection, chemical reaction optimisation, evolution 

strategies, harmony search, teaching–learning-based optimisation, Tabu search and variable 

neighbourhood search.  

The basic flowchart of meta-heuristic algorithms applied in this study is presented in 

Figure 3.9. To start with, initial populations containing random solutions of process 

parameters are generated. Then, each solution is imported into the slicer software to generate 

the corresponding G-code file. Based on the G-code information and predictive models, the 

time, energy and material consumptions of each solution are predicted. Then, based on the 

rules of selection or guided search in different algorithms, the elite solutions are retained. 

After that, a new generation of candidate solutions is obtained through exploitation or 
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exploration steps (Abdel-Basset et al., 2018). This new generation and the retained solutions 

will continue to be imported into the slicer software for the next iteration of the optimisation 

process. The iteration will be stopped when the stopping criterion is satisfied. The optimal 

solution set of process parameters related to the near-optimal approximate Pareto front is 

finally obtained at the end of this optimisation process. To evaluate the performance of 

optimisation algorithm, hypervolume (HV) indicator is used to compare the optimal 

solutions obtained from multiple tests. The solution set with the maximum HV indicator can 

be compared with the default solution to validate the merit of optimisation method.    

 

Figure 3.9: Flowchart of general meta-heuristics (Deb and Goyal, 1996; Crespo-Cano et 

al., 2019) 
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Figure 3.10: Two-way feedback bridge between practical production and CAM 

Based on the above, reductions of AM’s time, energy and material consumptions can be 

achieved through two ways: optimisation of the CAM process parameters and improvement 

of the CAD design. As shown in Figure 3.10, one of the main contributions of this study is 

to establish a two-way feedback bridge between practical production and CAD design. At 

the start, the experimental results of the machine characteristics and production environment 

are fed back to build up the prediction models. At the same time, the G-code of the CAD 

design generated by CAM provides the manufacturing information to accomplish the 

prediction modelling. After obtaining the predictive models, the multi-objective optimisation 

is performed. The best solution set of process parameters can finally be fed back to CAM 

and CAD. In CAM, the optimisation result provides guidance or a trend for selecting a 

feasible solution of process parameters. In CAD, the optimisation result provides guidance 

for improving the design structure. 

3.4. Additional experiments for improving the framework of 

prediction 

In a practical manufacturing context, some parameters in the predictive models are affected 

by the characteristics of the machine and the material. For example, motor out-of-step 

commonly occurs during the fused deposition modelling (FDM) process. It is caused by the 

high loads and insufficient torques of stepper motors during high-speed axis movement and 
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high-rate material feeding, which leads to the axis movement module and material feeding 

module failing to reach the specified speeds and rates. To improve the prediction accuracy, 

additional experiments are conducted to test the actual speed of axis movement and actual 

rate of material feeding. As shown in Figure 3.11, the measured speeds and rates are used to 

replace the speeds and rates provided by G-code in the predictive models. In addition, the 

proposed material consumption model uses the quoted density of the polylactic acid (PLA) 

filament material. To improve the prediction accuracy, the actual material density can also 

be measured through experiments to replace this quoted density.  

 

Figure 3.11: Schematic of additional experiments for improving the framework of 

consumption prediction (e.g. FDM technology) 

By replacing the expected values with actual values, the predictive models are updated 

and continue towards the subsequent optimisation. The parameters that need to be 

additionally measured are determined by the characteristics of the AM machine and material. 

3.5. Summary 

This chapter introduces the framework of prediction and multi-objective optimisation of 

AM’s time, energy and material consumptions. The classification of consumption-related 

modules, hybrid modelling of each module, consideration of machine characteristics and 

multi-objective optimisation are the main contributions of this study. Details of each 

contribution is explained as follows. 

Firstly, the module classification divides the machine components into five types: axis 

movement, material processing, component heating, material feeding and auxiliary 
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components. The running sequences and power profiles of the five modules correspond to 

G-code commands, which provide clear guidance for the prediction of time, energy and 

material consumptions.  

Secondly, hybrid modelling consists of two parts: physics-based modelling based on G-

code and data-driven modelling based on experiments. The former makes full use of 

manufacturing information provided by G-code to calculate three essential parameters in the 

models: time, distance of axis movement with actual displacement and the amount of 

material feeding. For other parameters that cannot be calculated from G-code, experiments 

are conducted to test the relationships between these parameters and process parameters. 

Compared with traditional modelling methods, physics-based modelling based on G-code 

not only provides a precise prediction but also reduces the workload as it requires fewer 

experiments. Meanwhile, the entire process – from importing process parameters into CAM 

to the prediction of consumptions – is embedded into the optimisation process. This is 

because every new solution of process parameters has its own unique predictive model, as 

its G-code is unique. Thus, instead of providing a fixed predictive model, the proposed 

method has developed customisable modelling method with a consideration of process 

parameters, machine characteristics and environmental characteristics.  

Thirdly, in a practical manufacturing context, the values of certain parameters in the 

predictive models are affected by the characteristics of machine and material. Thus, 

additional experiments are conducted to test the relationships between the actual and 

expected values of affected parameters. The model of each parameter is used to replace the 

original parameter in the predictive models. This step fully considers the machine 

performance and improves the prediction accuracy. 

Finally, meta-heuristic algorithms are applied to search for the most feasible solution set 

of process parameters to minimise time, energy and material consumptions. The main 

procedures of the optimisation are also presented. Different from a traditional optimisation 

process, the modelling process from inputting process parameters into CAM to the 

generation of G-code, and then from the processing of G-code data to the prediction of the 
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three consumptions, is entirely embedded in the optimisation process. This method of 

integrating prediction with the optimisation process realises the customised modelling and 

optimisation with accurate prediction and optimisation results.  

This chapter only introduces the framework of consumption modelling and optimisation. 

The methodology used to realise this research work is presented in the next chapter. 
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CHAPTER 4  METHODOLOGY 

4.1. Introduction 

This chapter introduces the methodology of proposed research work. At first, the hypothesis 

is identified that the proposed prediction and optimisation method can be effectively used to 

predict and minimise the resource consumption for general AM technologies. Then, the 

prototypes of predictive models are defined in terms of classified modules. Based on the 

Gannt chart of all modules, the model of total time consumption is built by the union of the 

time consumption of each module. The total energy consumption is the sum of the integral 

of the apparent power over the time consumption of each module. The total material 

consumption is calculated through the amount of material feeding provided by G-code. 

Besides, the multi-objective problem to be optimised is also defined. The process parameters 

are defined as decision variables, and the predictive models of time, energy and material 

consumptions are defined as objective functions.  

After the definitions of predictive models and optimisation problem, the methods applied 

in hybrid prediction modelling are introduced in this chapter. In physics-based modelling, 

the G-code calculation method used to predict the axis movement time and material feeding 

amount is described. In data-driven modelling, the regression analysis method used to 

process the experiment data is described. In addition, a feasible optimisation technique is 

selected to search for the optimal solution set of process parameters that fabricates by using 

the minimum consumptions. Since the non-dominated sorting genetic algorithm (NSGA-II) 

has been widely used to solve optimisation problems with two or three objectives in 

industrial manufacturing, this study applies NSGA-II to this optimisation problem. The basic 

workflow of NSGA-II algorithm and the Taguchi design of experiments are described to 

perform optimisation tests under different combinations of optimisation parameters. The 

performance measures using hypervolume (HV) indicator are also described to compare all 

obtained Pareto fronts and select the optimum solution sets of process parameters.  
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At last, the methods used in experimental validation is presented to prove the hypothesis 

that proposed method is effective in solving the consumption prediction and optimisation 

problem for real-world AM machines. The methods used to calculate prediction accuracies 

and evaluate the significance of optimisation parameters for the HV indicator are described 

in this chapter.  

4.2. Hypothesis of research work 

To start with the research work, a hypothesis has been made that the proposed prediction and 

multi-objective optimisation method can realise an effective prediction and minimisation of 

time, energy and material consumptions for general AM technologies. Details of the 

hypothesis are as follows. 

⚫ The hybrid modelling method can achieve an efficient prediction of AM’s recourse 

consumptions, and the additional experiments for testing the model parameters effected 

by machine characteristics can improve and achieve an acceptable prediction accuracy.  

⚫ The multi-objective optimisation method using NSGA-II algorithm can effectively 

minimise the resource consumptions of an AM process, and provide a feasible solution 

of process parameters to guide the parameter settings.  

⚫ Since this research aims to lay the foundation for resource prediction and optimisation 

for general AM technologies, the proposed method is currently based on the assumption 

that the machine is intact and operate normally.  

4.3. Definition of conceptual predictive models 

This section describes the conceptual models of AM’s time, energy and material 

consumptions, which can be used as general models for all AM technologies. For specific 

cases, the models of each module should be further expanded and refined, based on the 

machine characteristics.  
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4.3.1. Conceptual predictive model of time consumption 

 

Figure 4.1: Time flows into five types of time-consuming modules 

This section introduces the conceptual modelling to predict time consumption in the AM 

process. Figure 4.1 presents the flows of total time consumption into five modules. In this 

study, the following notation applies: 

• 𝑇𝑀  denotes the finite set that contains the time consumptions of all time-

consuming modules, shown in Equation (4.1).  

 𝑇𝑀 = {𝑡𝑖 }𝑖=1
𝑚       (4.1) 

• 𝑚 denotes the total number of time-consuming modules. 

• 𝑡𝑖 denotes the total time consumption of the 𝑖𝑡ℎ module, which is modelled as a 

function of the process parameters in Equation (4.2). 

 𝑡𝑖 = 𝑓𝑖(𝐱)    (4.2) 

• 𝐱 denotes a finite set containing all process parameters, in which 𝑛 denotes the 

total number of process parameter and 𝐼𝑛 is the 𝑛th process parameter in this finite 

set 𝐱, as shown in Equation (4.3).  

 𝐱 = [𝐼1, 𝐼2, … , 𝐼𝑛]𝑇                               (4.3) 
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• Referring to the running sequences of modules, and since overlap exists between 

the time consumptions of the five types of modules, the total time consumption 

𝑡𝑡𝑜𝑡𝑎𝑙 of the entire AM process is modelled as the union of time consumed by each 

module, as expressed in Equation (4.4). Due to the different mechanisms of 

different AM systems, this conceptual model is supposed to be refined in terms of 

the running sequences of machine modules.  

 𝑡𝑡𝑜𝑡𝑎𝑙 = ⋃ 𝑡𝑖 
𝑚
𝑖=1  (4.4)                                     

4.3.2. Conceptual predictive model of energy consumption 

 

Figure 4.2: Energy flows into five types of energy-consuming modules  

After the conceptual modelling of time consumption described above, this section continues 

with the conceptual modelling of energy consumption in the AM process. Figure 4.2 

presents the energy flows into five modules. The energy consumption of each module is 

independent and has no intersections with other modules. In this study, the following 

notation applies: 

• 𝐸𝑀  denotes the finite set that contains the apparent powers of all energy-

consuming modules, as shown in Equation (4.5). 

 𝐸𝑀 = {𝑃𝑖 }𝑖=1
𝑚      (4.5) 
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• 𝑚 denotes the total number of time-consuming modules. 

• 𝑃𝑖 denotes the apparent power of the 𝑖𝑡ℎ module, which is modelled as a function 

of process parameters 𝐱 in Equation (4.6).  

 𝑃𝑖 = 𝑔𝑖(𝐱)     (4.6) 

• As expressed in Equation (4.7), the total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 is modelled 

as the sum of energy consumed by each module, which is calculated as the integral 

of apparent power 𝑃𝑖 over its total time consumption 𝑡𝑖. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∫ 𝑃𝑖𝑑𝑡
𝑡𝑖

0
                                                      𝑚

𝑖=1  (4.7) 

The last section provides the conceptual modelling of time consumption 𝑡𝑖  for each 

module. Thus, the time consumption models can be directly imported into Equation (4.7). 

Besides, the apparent powers of all five modules cannot be obtained from G-code. Thus, the 

relationships between the apparent powers and process parameters 𝐱 can only be derived 

from experiments. These experiments are designed to test the apparent power of each module 

under different process parameters. Based on the experimental results, polynomial 

regression is applied to curve-fit the above functional relationships (i.e. to calculate the 

coefficient values in the functions).  

4.3.3. Conceptual predictive model of material consumption 

This section introduces the conceptual modelling to predict material consumption in the AM 

process. The amount of material usage is provided by the G-code commands beginning with 

the letter “E”. Thus, the total material consumption 𝑀𝑡𝑜𝑡𝑎𝑙  in the AM process can be 

directly modelled based on the G-code. Generally, the consumed amount indicated by G-

code is in units of length or volume. However, in the subsequent experimental validation of 

the case studies, the mass of the printed object needs to be measured to calculate the 
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prediction accuracy. Therefore, this study uses mass as the unit to model the total material 

consumption 𝑀𝑡𝑜𝑡𝑎𝑙 , which is equal to the product of the material density 𝜌  and the 

cumulative volume ∑ 𝑉𝑢𝑛𝑖𝑡 of material feeding, as expressed in Equation (4.8). 

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝜌 ∙ ∑ 𝑉𝑢𝑛𝑖𝑡                                                          (4.8) 

4.4. Definition of the multi-objective problem for optimisation 

After the conceptual modelling in the previous section, three predictive models of time, 

energy and material consumptions for general AM technologies are obtained and used as 

objective functions for the multi-objective optimisation. This section introduces the 

definition of the multi-objective problem. Since the purpose of this study is to reduce time, 

energy and material consumptions of the AM process, the problem can be set as the 

minimisation of three objective functions, defined as follows:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ℱ(𝐱) =  [ℱ1(𝐱), ℱ2(𝐱), ℱ3(𝐱)]𝑇    𝐱 ∈ 𝑋𝑛             (4.9) 

 ℱ1(𝐱) = 𝑇𝑡𝑜𝑡𝑎𝑙       (4.10) 

 ℱ2(𝐱) = 𝐸𝑡𝑜𝑡𝑎𝑙      (4.11) 

 ℱ3(𝐱) = 𝑀𝑡𝑜𝑡𝑎𝑙       (4.12) 

 𝐱 = [𝐼1, 𝐼2, … , 𝐼𝑛]𝑇                               (4.13) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝐼𝑟
𝐿 ≤ 𝐼𝑟 ≤ 𝐼𝑟

𝑈         𝑟 = 1, 2, … , 𝑛              (4.14) 

In this study, the three objectives are treated with the same weights. In the above equations, 

ℱ(𝐱) is the vector function to be minimised. Its three elements respectively represent the 

three objective functions of time, energy and material consumptions 𝑇𝑡𝑜𝑡𝑎𝑙, 𝐸𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙 

which are designated as ℱ1(𝐱), ℱ2(𝐱) and ℱ3(𝐱). 𝑋 is defined as the finite set consisting 
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of all candidate solutions, wherein each solution 𝐱  indicates a 𝑛 -dimensional vector 

consisting of 𝑛 number of decision variables. Each decision variable represents one type of 

process parameter for AM. The constraint (𝐼𝑟
𝐿  and 𝐼𝑟

𝑈 ) of each decision variable 𝐼𝑟  is 

determined by the properties and production capacity of the AM machine.  

Table 4.1: Example of constraints of three decision variables/process parameters for a 

general FDM 3D printer 

Decision variables/process 

parameters 𝐼𝑟 

Upper limit 

𝐼𝑟
𝑈 

Lower limit 

𝐼𝑟
𝐿 

Constraints 

𝐼1 

Target temperature of 

component heating 

module 

𝐼1
𝑈: the highest 

temperature of the 

component heating 

module 

𝐼1
𝐿: the current 

room 

temperature 
25℃ ≤ 𝐼1 ≤  65℃ 

𝐼2 Speed of axis movement 

𝐼2
𝑈: the highest speed 

of axis movement 

𝐼2
𝐿: the lowest 

speed of axis 

movement 

300𝑚𝑚/𝑚𝑖𝑛 ≤ 𝐼2

≤ 9000𝑚𝑚/𝑚𝑖𝑛 

𝐼3 

Target temperature of 

material processing 

module 

𝐼3
𝑈: the highest 

temperature of the 

material processing 

module 

𝐼3
𝐿: the melting 

point of the 

material 
160℃ ≤ 𝐼3 ≤ 250℃ 

An example of three decision variables for a general fused deposition modelling (FDM) 

3D printer is presented in Table 4.1. The example has three process parameters (i.e. 𝑛 = 3) 

to be optimised, namely the target temperature 𝐼1 of component heating, the speed 𝐼2 of 

axis movement and the target temperature 𝐼3  of material processing. According to the 

characteristics of the FDM machine, the upper limit 𝐼1
𝑈 of 𝐼1 is defined as the highest 

temperature the component heating module can be heated to, while the lower limit 𝐼1
𝐿 is 

defined as the current room temperature. The upper limit 𝐼2
𝑈 and lower limit 𝐼2

𝐿 of 𝐼2 

are respectively defined as the highest and lowest speeds of axis movement. Similarly, the 

upper limit 𝐼3
𝑈  of 𝐼3  is defined the highest temperature that the material processing 

module can be heated to, while the lower limit 𝐼3
𝐿 is defined as the melting point of the 

material. In this way, the optimisation can finally find a vector of decision variables that not 

only optimises the three consumptions but also satisfies the constraints or achievable ranges 

of all variables (Chiandussi et al., 2012; Osyczka and Kundu, 1995). 
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4.5. Methods used in hybrid prediction modelling  

This section introduces the methods used in prediction modelling of AM’s time, energy and 

material consumptions. Based on the module classification, the consumptions of each 

module are modelled as functions of the process parameters. The relationships between the 

consumptions and process parameters are derived through two ways: physics-based 

modelling and data-driven modelling. Physics-based modelling processes the data in G-code 

to calculate the time, distance of axis movement with actual displacements and amount of 

material feeding. Data-driven modelling obtains the remaining parameters through 

experiments. According to experiment data, regression analysis is applied to derive the 

relationships between these parameters and process parameters. 

4.5.1. Calculation based on G-code in physics-based modelling 

G-code provides detailed manufacturing information, including the coordinates of axis 

movement, amount of material feeding, and variations in axis movement speed and material 

feeding rate. Thus, the time consumptions of axis movement with actual displacements can 

be obtained from G-code through physics-based modelling. Since the axis movement in X, 

Y, Z directions is commonly used in the existing AM technologies, this study mainly focuses 

on the time modelling of axis movement in X, Y, Z directions. The modelling of multi-axis 

movement is similar to the above method, which is discussed in Section 9.2.5 as future work. 

 

Figure 4.3: Example toolpaths in X, Y, Z directions based on G-code commands 
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Figure 4.3 presents an example schematic of axis movement with actual displacement in 

X, Y, Z directions. By following the G-code commands, the nozzle of the AM machine firstly 

moves from P0 (X0, Y0) to P1 (X1, Y1) with material feeding at a speed or rate of 𝐹𝑥𝑦1
, and 

then moves to P2 (X2, Y2) without material feeding at a speed of 𝐹𝑥𝑦2
. The movement from 

Layer1 to Layer2 at a speed of 𝐹𝑧 is for the layer construction in Z direction. The above three 

displacements represent the three typical movements in X, Y, Z directions in an AM process, 

for which the total consumption 𝑡𝑥𝑦𝑧 can be calculated as the accumulation of the average 

time spent on each displacement. As expressed in Equation (4.15), ∆𝑋  and ∆𝑌 

respectively denote the components of each displacement in X, Y directions, and 𝐹𝑥𝑦 

denotes the corresponding speed of axis movement or rate of material feeding. ∆𝑍 denotes 

both the displacement in Z direction and the layer thickness, and 𝐹𝑧  denotes its 

corresponding speed. 

 𝑡𝑥𝑦𝑧 = ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦
+ ∑

∆𝑍

𝐹𝑧
                        (4.15) 

In addition, motor out-of-step commonly occurs during high-speed printing in general AM 

technologies, which leads to the axis movement failing to reach the target speed. Thus, 

additional experiments are conducted to test the actual speeds 𝐹𝑥𝑦𝑎𝑐𝑡
  and 𝐹𝑧𝑎𝑐𝑡

  of axis 

movement in X, Y, Z directions. By replacing the speeds 𝐹𝑥𝑦 and 𝐹𝑧 provided by G-code 

with the actual speeds 𝐹𝑥𝑦𝑎𝑐𝑡
 and 𝐹𝑧𝑎𝑐𝑡

, the time consumption 𝑡𝑥𝑦𝑧 of axis movement with 

actual displacement is expressed as Equation (4.16). 

 𝑡𝑥𝑦𝑧 = ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦𝑎𝑐𝑡

+ ∑
∆𝑍

𝐹𝑧𝑎𝑐𝑡

                        (4.16) 
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4.5.2. Curve-fitting tool for regression analysis and R-square calculation 

in data-driven modelling 

The consumptions of some modules cannot be calculated from G-code, as relationships with 

process parameters can only be derived from experiments. As mentioned in Section 3.3.2, 

experiments should be conducted to test the apparent powers of all five modules under 

different related process parameters and the setup time or heating time of the material 

processing module and component heating module under different process parameters.  

Then, polynomial regression is applied to curve-fit the above functional relationships (i.e. to 

calculate the coefficient value in the functions) based on experimental results. Referring to 

Jenkins and Quintana-Ascencio (2020), the recommended sample size for regressions should 

be more than 25 data points. It indicates that each of the above indicators can be measured 

under 25 different related process parameters.  

Based on experimental data, this study utilises Curve Fitting Toolbox™ in MATLAB to 

apply the least squares method and provide the polynomial functions for fitting curves 

(Kraaikamp and Meester, 2005; Curve Fitting Toolbox, 2020). According to guidance 

provided by Polynomial Curve Fitting (2020), the selection of degree for the polynomial 

functions is based on the confidence bound. In statistics, the confidence bound, also named 

confidence interval, is an estimate computed from the statistical calculation of the observed 

data. It provides a range of plausible values for the unknown coefficient of the regression 

model. Besides, the bound is associated with the confidence level (i.e. the confident or 

probability that the true parameter value is in the estimated bound) (Kraaikamp and Meester, 

2005). A higher level of confidence results in a wider confidence bound. In general terms, 

the default value of confidence level in regression analysis is 0.95. It indicates that there is 

95% probability that the true parameter is in the estimated confidence bound.  

Referring to Kraaikamp and Meester (2005), the calculation of confidence bound is 

summarised as Equation (4. 17) to Equation (4. 20). An example of quadratic polynomial 

is presented to illustrate the calculation process. Note that 𝑝1 is an estimated coefficient of 



126 

 

the second order model term. The confidence bound of 𝑝1 is expressed as Equation (4. 18), 

wherein 𝑝1
𝐿  and  𝑝1

𝑈  denote the end points of the confidence bound, 𝛾  denotes the 

confidence level or the probability that the true parameter is in the estimated confidence 

bound. The values of two end points are calculated as Equation (4. 19) and Equation (4. 

20), wherein 𝑆𝑝1
 denotes the standard error of coefficient 𝑝1 . 𝑐  is a number from the 

standard normal distribution. As shown in Figure 4.4, the value of 𝑐 is determined by the 

confidence level according to the Z-score table. For example, the value of 𝑐 is 1.96 for a 

confidence level of 95%. 

 𝑓(𝑥) = 𝑝1𝑥2 + 𝑝2𝑥 + 𝑝3                            (4. 17) 

 Pr(𝑝1
𝐿 < 𝑝1 < 𝑝1

𝑈) = 𝛾                            (4. 18) 

 𝑝1
𝐿 = 𝑝1 − 𝑐𝑆𝑝1

                            (4. 19) 

 𝑝1
𝑈 = 𝑝1 + 𝑐𝑆𝑝1

                            (4. 20) 

 

Figure 4.4: Standard normal distribution of constant c 

The confidence bounds of the estimated coefficients determine the accuracy of regression 

model and also the selection of degree for the polynomial functions. Figure 4.5 presents an 

example of how to select a suitable polynomial degree according to the confidence bound. 

By using the Curve Fitting Toolbox™ in MATLAB, a set of data points generates multiple 

options of polynomial functions. When the coefficient’s bound in the highest order model 

term crosses zero, it cannot be sure whether this coefficient is different from zero. It indicates 



127 

 

that the census data is overfitted and the degree of polynomial curve is higher than needed 

for an accurate fit. Thus, the solution is to select as low a degree as possible for an accurate 

fit (Polynomial Curve Fitting, 2020). In the following case studies, the selection of 

polynomial degree during the curve-fitting of experiment data is based on this method. 

 

Figure 4.5: Schematic of R-square calculation 

To evaluate the performance of the curve-fitting results, this study uses R-square (𝑅2) as 

a statistical measure to evaluate the goodness of fit (Draper and Smith, 1998). As expressed 

in Equation (4. 21), 𝑅2 is calculated as the proportion of variance of a dependent variable, 

in which 𝑆𝑆𝑟𝑒𝑠 denotes the total sum of squares (TSS) and 𝑆𝑆𝑡𝑜𝑡 denotes the residual sum 

of squares (RSS). The values of the TSS and RSS are calculated through Equation (4. 22) 

and Equation (4. 23). 𝑓(𝑥) refers to a fitted regression model. The number of variables is 

defined as 𝑒 . The observed value of the 𝑠 th variable 𝑥𝑠  is defined as 𝑦𝑠  and its 

corresponding prediction value is defined as 𝑓(𝑥𝑠). �̅� denotes the average of all observed 

values. In the following sections, all curve-fitting results are evaluated using 𝑅2. When the 

value of 𝑅2 is closer to 1, it indicates that the measured data is closer to the fitted regression 

line.  

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                            (4. 21) 

 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑠 − 𝑓(𝑥𝑠))2𝑒
𝑠=1                       (4. 22) 

 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑠 − �̅�)2𝑒
𝑠=1                         (4. 23)                    
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4.6. Methods used in multi-objective optimisation 

In this study, time, energy and material consumptions are defined as the three objectives to 

be minimised in this multi-objective problem. A suitable optimisation technique should be 

selected based on the number of objectives to be optimised. Since non-dominated sorting 

genetic algorithm II (NSGA-II) is known to be an effective optimisation technique for 

solving a multi-objective problem with two or three objectives, it has been chosen to search 

for the optimal solution set of process parameters to minimise the above consumptions. This 

section introduces the methods used to solve the optimisation problem in this study, 

including the basic workflow of NSGA-II algorithm, the design of experiments for 

performing NSGA-II optimisation test, and hypervolume (HV) indicator used to evaluate 

the performance of NSGA-II algorithm. 

4.6.1. Non-dominated sorting genetic algorithm II 

Non-dominated sorting genetic algorithm II (NSGA-II) is one of the most popular multi-

objective optimisation techniques used to optimise machining parameters under three 

conflicting machining operation objectives. Compared with other multi-objective 

optimisation techniques, such as the strength Pareto evolutionary algorithm, multi-objective 

genetic algorithm (MOGA) and Pareto-archived evolution strategy, NSGA-II is advanced 

with two innovative characteristics: fast non-dominated sorting and fast crowding distance 

ranking (Deb et al., 2002; Yusoff et al., 2011). It also enables a faster computation with 

𝛰(𝑀𝑁2) complexity, in which 𝑀 denotes the number of objectives and 𝑁 denotes the 

population size (Curry and Dagli, 2014). According to (Deb et al., 2002), the NSGA-II 

algorithm can be classified into eight steps: population initialisation, non-dominated sorting, 

crowding distance ranking, elitism, selection, mutation, crossover and recombination. The 

basic flow of NSGA-II applied in general optimisation problems is presented in Figure 4.6 

and summarised as follows.  
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Figure 4.6: Flowchart of NSGA-II algorithm (Lin et al., 2019) 

As shown in Figure 4.6, a random set of individuals or solutions is generated to form the 

initialised population of size N. The fitness of each individual is evaluated through objective 

functions. Based on the fitness values, all individuals are sorted and the one that that is 

superior to other individuals (i.e., the one is not dominated by any other individual) is ranked 

as the lowest level. The remaining individuals are also ranked one by one. by following the 

principle of non-dominated sorting. For the ranking of individuals with the same sorted level, 

their crowding distances are calculated. The individuals with larger crowding distances are 
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ranked as the lower levels, since a large crowding distance results in a better diversity in the 

population (Khan and Baig, 2015). Then, the parents are selected from the current population. 

The criterion of this selection process is also based on the rank and crowding distance of 

each individual (Deb et al., 2002). An individual is selected as a parent when its rank is lower 

than the other. However, if the ranks of both individuals are same, the one with a larger 

crowding distance will be selected as the parent (Khan and Baig, 2015). After the selection, 

the parents are used to generate offspring through the crossover operator and mutation 

operator. The above parent generation and offspring generation form the new generation, 

which begins to be imported into the iteration of optimisation.  

Note that the process of iteration is different after the initial generation. First, the 

individuals in the combined population of size 2N are sorted through non-dominated sorting 

and crowd distance ranking. Then, the elite N individuals are remained based on their non-

dominated levels. For the individuals belonging to the same non-dominated set, the 

individuals with higher crowding distances are retained, while the rest are eliminated. After 

that, the parents are selected from the elite population of size N. The selected parents are 

used to generate offspring through the crossover operator and mutation operator. The above 

parent generation and offspring generation form the next generation, which continues to be 

imported into the next iteration of non-dominated sorting, crowd distance ranking, elitism, 

selection, crossover and mutation. The iteration stops when the number of generations 𝐺𝑒𝑛 

is reached (i.e. 𝑘 = 𝐺𝑒𝑛). A Pareto front containing the optimum solution is finally obtained.  

This section only introduces the basic workflow of original NSGA-II algorithm. Details 

of adjusting and applying the algorithm to solve the optimisation problem in this study will 

be discussed in Chapter 6. 

4.6.2. Taguchi design of experiments for NSGA-Ⅱ optimisation 

Experiments are designed to implement the non-dominated sorting genetic algorithm II 

(NSGA-II) algorithm at different settings of the optimisation parameters. The aim is to 
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evaluate the influence of optimisation parameters on the optimisation results, and compare 

the pareto fronts obtained from optimisation tests under different optimisation parameters. 

The optimisation parameters are also called the optimisation factors, including the 

population size 𝑁 , number of generations Gen, crossover probability pc and mutation 

probability pm. The population size 𝑁 refers to the number of individuals that always tends 

to a stable value during the optimisation process. The number of generations Gen refers to 

the maximum generation that optimisation finally reaches. The crossover probability pc 

refers to the probability that an individual in parent population produces offspring through 

the crossover operator. The mutation probability pm refers to the probability that an 

individual in parent population produces offspring through the mutation operator. 

There are various methods for the design of experiments in the area of industrial 

manufacturing, such as full factorial design, fractional factorial design, optimal design, 

mixture design, Taguchi robust design, screening design and response surface design 

(Carlson, 2001; Gunst and Mason, 2009). Taguchi robust design and full factorial design 

have been widely used in experiments related to genetic algorithm (GA) optimisation. Note 

that the computational time increases with the increasing of population size 𝑁 and number 

of generation Gen. In the case of large values of those two parameters (e.g., 𝑁 = 40, 𝐺𝑒𝑛 =

200), the computational time of a general personal computer (i.e., Dell Optiplex 7040) can 

be as long as 42 days in this study. Thus, due to the limitation of computing resources, a full 

factorial design for all possible combinations far exceeds our computational capability. For 

example, if each factor has three levels, there will be 81 tests of optimisations to be 

performed. Therefore, considering the scale of the experiments, Taguchi robust design – also 

called orthogonal design – is an efficient method to estimate the main effects and interactions 

of the representative test points in this study. Compared with full factorial design, an 

orthogonal design can greatly reduce the number of experiments through the rational and 

scientific application of orthogonal tables (Hao and Wang, 2014).  

An orthogonal table is designed by following two principles (Lee et al., 2013): 1) the 

number of each level in a single factor is equal, which means that each level has the same 

probability of participating in the experiments and excludes the interference from other 
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levels; and 2) any possible pair of levels across two arbitrary factors has the same number 

of occurrences. This is to ensure that the test points are evenly distributed in terms of the 

complete combination of attributes and levels.  

There are many existing orthogonal tables available in Taguchi robust design. Considering 

the computational capabilities of our computing resources, the L16(44) orthogonal table is 

applied to design experiments of NSGA-Ⅱ optimisation. It indicates that there are four 

factors being considered, and each factor is defined to have four levels. As shown in Table 

4.2, the four factors respectively refer to the four optimisation parameters, including 

population size 𝑁 , number of generations Gen, crossover probability pc and mutation 

probability pm. The values of four levels of each factor are determined by the computational 

capabilities of existing computing resources, and are also within the range of values 

commonly used in NSGA-Ⅱ optimisation. 

Table 4.2: Levels of NSGA-Ⅱ optimisation parameters 

Factor Symbol Levels 

1 Population size  𝑁 𝑁1 𝑁2 𝑁3 𝑁4 

2 Number of generations Gen Gen1 Gen2 Gen3 Gen4 

3 Crossover probability pc pc1 pc2 pc3 pc4 

4 Mutation probability pm pm1 pm2 pm3 pm4 

According to the level numbers and factor numbers, the L16 (44 ) orthogonal table is 

designed by following the above two principles. As shown in Table 4.3, 16 optimisation tests 

should be performed under different combinations of optimisation parameters. The levels of 

each parameter are evenly distributed in the table. Each level has four times to participate in 

the optimisation test. The output of each test is defined as the response of the corresponding 

parameter combination.  
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Table 4.3: Orthogonal table for the experiments of NSGA-Ⅱ optimisation 

Test No. 

Factor levels 

Population size 
Number of 

generations 

Probability of 

crossover 

Probability of 

mutation 

𝑵 Gen pc pm 

1 𝑁1 Gen1 pc1 pm1 

2 𝑁1 Gen2 pc2 pm2 

3 𝑁1 Gen3 pc3 pm3 

4 𝑁1 Gen4 pc4 pm4 

5 𝑁2 Gen1 pc2 pm3 

6 𝑁2 Gen2 pc1 pm4 

7 𝑁2 Gen3 pc4 pm1 

8 𝑁2 Gen4 pc3 pm2 

9 𝑁3 Gen1 pc3 pm4 

10 𝑁3 Gen2 pc4 pm3 

11 𝑁3 Gen3 pc1 pm2 

12 𝑁3 Gen4 pc2 pm1 

13 𝑁4 Gen1 pc4 pm2 

14 𝑁4 Gen2 pc3 pm1 

15 𝑁4 Gen3 pc2 pm4 

16 𝑁4 Gen4 pc1 pm3 

Each optimisation test will produce one Pareto front. To evaluate and compare the 

performances of all obtained Pareto fronts, the hypervolume (HV) indicator 𝐼𝐻(𝐴)  is 

applied to quantify the qualities of all fronts. In this study, the response of each optimisation 

test is defined as its corresponding HV indicator. The calculation method of HV indicator is 

discussed in the following section. 

4.6.3. Performance measures of near-optimal approximate Pareto fronts 

by using hypervolume indicator 

There are two criteria for evaluating the near-optimal approximate pareto front: the 

convergence of non-dominated solutions to the Pareto-optimal set, and the diversity or the 

spreading extent of non-dominated solutions (Deb et al., 2002). To compare the pareto fronts 
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obtained from optimisation tests, the above two criteria of non-dominated sorting genetic 

algorithm II (NSGA-II) can be quantified by using the hypervolume (HV) indicator. This 

section introduces the method of calculating HV indicator to evaluate and compare the 

solutions of obtained pareto fronts.  

The HV indicator is a set measure to evaluate the quality of a solution set by transforming 

the multi-objective problem into a single-objective problem. In more detail, it is used to 

calculate the maximum volume of objective subspace dominated by the overall optimisation 

set of solutions under consideration (Zitzler and Thiele, 1998; Zitzler et al., 2007). Figure 

4.7 presents an example of the HV calculation in a two-objective optimisation problem. A 

reference point 𝑅 is needed to calculate the area or volume of the region in the target space 

enclosed by the reference point and the non-dominated solutions.  

The position of the reference point is necessary as it determines the HV result and the 

optimal solution set from different searches. Regarding this issue, Ishibuchi et al. (2017) 

discussed the specification of the reference point for a fair comparison. Firstly, the objective 

space is normalised by defining the ideal point and the nadir point as (0, 0) and (1, 1), 

respectively (Deb et al., 2009). Secondly, to ensure that all solutions are uniformly 

distributed inside the area of HV and have similar contributions, the coordinates (𝑟𝑅, 𝑟𝑅) of 

the reference point 𝑅  should be defined as in Equation (4. 24). 𝑛𝑛𝑠  denotes the total 

number of non-dominated solutions obtained from all searches (Ishibuchi et al., 2017). 

 𝑟𝑅 = 1 +
1

𝑛𝑛𝑠−1
                           (4. 24) 

In this study, the specification of the reference point in the three-objective problem is 

similar to the two-objective problem. Figure 4.8 presents an example of non-dominated 

solutions in a three-dimensional coordinate, in which three normalised objectives ℱ1
′, ℱ2

′  

and ℱ3
′  respectively denote the time, energy and material consumptions in the AM process. 

The objective space is normalised by defining the ideal point and the nadir point as (0, 0, 0) 

and (1, 1, 1), respectively. The coordinates of the reference point should be (𝑟𝑅, 𝑟𝑅, 𝑟𝑅). For 
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example, there are five non-dominated solutions obtained from a search of NSGA-Ⅱ 

optimisation. The reference set 𝑅 ⊂ 𝑅3 should be defined as (1.25, 1.25, 1.25), according 

to Equation (4. 24). 

 

Figure 4.7: Example of HV indicator in two-objective optimisation problem 

 

Figure 4.8: Example of HV indicator in three-objective optimisation problem 
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After the objective normalisation and selection of the reference point, the HV indicator 

𝐼𝐻(𝐴)  can be calculated by the union of HV of all non-dominated solutions 𝐱 ∈ 𝐴 

(Brockhoff et al., 2008), as expressed in Equation (4. 25). Note that 𝜆  denotes the 

Lebesgue measure of the solution set A, while ℱ1
′ (𝐱) , ℱ2

′(𝐱) , ℱ3
′(𝐱)  indicate three 

normalised consumptions of each solution 𝐱. The coordinates of the reference point 𝑅 are 

defined as (𝑟𝑅 , 𝑟𝑅 , 𝑟𝑅) in three dimensions and the coordinate value is determined by the 

total number of non-dominated solutions. [ℱ1
′(𝐱), 𝑟𝑅] × [ℱ2

′(𝐱), 𝑟𝑅] × [ℱ3
′(𝐱), 𝑟𝑅] refers to 

the three-dimensional hypercubic of the domain dominated by solution 𝐱. This hypercubic 

is also bounded by the reference point 𝑅.  

 𝐼𝐻(𝐴) = 𝜆(⋃ [ℱ1
′(𝐱), 𝑟𝑅] ×𝐱∈𝐴 [ℱ2

′(𝐱), 𝑟𝑅] × [ℱ3
′(𝐱), 𝑟𝑅])           (4. 25) 

Note that the three objectives are treated with the same weights in this study. Thus, the 

HV indicator in Equation (4. 25) can be directly used in this optimisation problem. For the 

optimisation of three objectives with different weights, the weighted HV indicator 𝐼𝐻
𝑤(𝐴) 

evolved from HV indicator 𝐼𝐻(𝐴)  can be used, as expressed in Equation (4. 26) and 

Equation (4. 27). 𝜆𝑤(𝐻(𝐴, 𝑅)) denotes the weighted Lebesgue measure bounded by the 

solution set A and the reference point R. The weight function 𝑤(𝑧) is used to configure the 

importance of each solution point 𝑧 ∈ 𝐻(𝐴, 𝑅) in this area (Brockhoff et al., 2013). 

𝐼𝐻
𝑤(𝐴) = 𝜆𝑤(𝐻(𝐴, 𝑅)) = ∫ 𝑤(𝑧)𝑑𝑧

𝑧∈𝐻(𝐴,   𝑅)
                        (4. 26) 

𝐻(𝐴, 𝑅) = ⋃ [ℱ1
′(𝐱), 𝑟𝑅] ×𝐱∈𝐴 [ℱ2

′(𝐱), 𝑟𝑅] × [ℱ3
′(𝐱), 𝑟𝑅]                      (4. 27) 

Based on the above, a higher value of HV indicator means that the solution of process 

parameters has a higher convergence and dispersion; that is, there is a better performance of 

the solution (Zitzler et al., 2007; Auger et al., 2009). Finally, the optimum solutions are used 

as guidance for manufacturers to select the feasible process parameters in prefabrication 

stage.  
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4.7. Methods used in experimental validation  

This section introduces the methods used to analyse the prediction results and optimisation 

results of practical AM processes. The aim is to validate the hypothesis proposed at the 

beginning of this chapter, i.e., the proposed method can realise an effective prediction and 

optimisation of AM resource consumptions. For the analysis of prediction results, the mean 

absolute percent error (MAPE) is used as a statistical measure to evaluate the prediction 

accuracy of predictive models for an AM machine. For the analysis of optimisation results, 

the methods of range analysis and ANOVA are used to compare and quantify the significance 

of optimisation parameters on the HV indicator. Details of each analysis method are 

described in the following sub-sections. 

4.7.1. Calculation of prediction accuracy 

Mean absolute percent error (MAPE) is an effective statistical measure commonly used to 

calculate the prediction accuracy of a forecasting method. It is calculated as the average of 

the absolute percent errors in all experimental tests, as expressed in Equation (4. 28). 𝑛𝑡𝑒𝑠𝑡 

denotes the number of experimental tests.  𝐸𝑅𝑖  and 𝑃𝑅𝑖  respectively denote the actual 

value and the forecast value of the 𝑖𝑡ℎ test (De Myttenaere et al., 2016).  

 MAPE =
1

𝑛𝑡𝑒𝑠𝑡
∑ |

𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
|

𝑛𝑡𝑒𝑠𝑡
𝑖=1  (4. 28) 

This study uses MAPE to calculates the prediction accuracy of predictive models for an 

AM machine. 𝑛𝑡𝑒𝑠𝑡 denotes the number of experimental tests on the AM machine. 𝐸𝑅𝑖 

and 𝑃𝑅𝑖 respectively denote the actual consumption and the predicted consumption of the 

𝑖𝑡ℎ  test. 
𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
  denotes the prediction accuracy of consumption of the 𝑖𝑡ℎ  test. When 

𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
< 0 , the predicted consumption is higher than the actual consumption. When 

𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
= 0, the predicted consumption is consistent with the actual consumption. When 

𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
> 0, the predicted consumption is lower than the actual consumption. 
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4.7.2. Range analysis method 

Range analysis is an effective and intuitive result analysis method for Taguchi experiments. 

In static designs, the method calculates a separate mean for each factor level in order to 

compare the significant contributions of factors for the related response. Meanwhile, the 

most dominant factor and the optimal levels can be intuitively displayed from the main effect 

plots (Li et al., 2016).  

Table 4.4 gives a typical response table to illustrate the range analysis method. 𝑅 denotes 

the response of each experimental test. In this study, the response R represents the 

hypervolume (HV) indicator obtained from each optimisation test. At first, the mean 

response of each level for each factor is calculated from experimental results. Then, the 

difference (i.e. Delta) between the highest and lowest mean responses (i.e. ∑ R̅̅ ̅̅̅
𝑚𝑎𝑥  and  

∑ R̅̅ ̅̅̅
𝑚𝑖𝑛) for each factor is calculated. Finally, the main effects of all factors can be plotted 

and ranked from high to low based on the Delta values.  

Table 4.4: Response table for evaluating the main effects of factors for the related response  

Levels Calculation methods 

Factors 

Factor 01 Factor 02 Factor 03 … 

1 ∑ R1
̅̅ ̅̅ ̅̅ ̅̅

     

2 ∑ R2
̅̅ ̅̅ ̅̅ ̅̅

     

3 ∑ R3
̅̅ ̅̅ ̅̅ ̅̅

     

… …     

Delta ∑ R
̅̅ ̅̅ ̅̅ ̅

𝑚𝑎𝑥
− ∑ R

̅̅ ̅̅ ̅̅ ̅

𝑚𝑖𝑛
     

Rank     
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4.7.3. Analysis of variance method 

Based on the results from range analysis, the analysis of variance (ANOVA) method is 

applied to further identify the contribution and significance of a factor for the response 

(Barzegari and Rodrigue, 2009). It is a widely used statistical technique for the interpretation 

of experimental works.  

Table 4.5: ANOVA table for evaluating the significances of factors for the related response 

Factors 
Degree of freedom Sums of squares Mean squares 

F-Value P-Value 
DF 𝐒𝐒𝒑 𝐌𝐒𝒑 

Factor 01      

Factor 02      

Factor 03      

…      

Error  
𝐒𝐒𝐞 𝐌𝐒𝐞 

  
  

Total  𝐒𝐒𝒕     

Table 4.5 gives an example ANOVA table, which includes all the indicators used to 

quantify the significances of all factors. The indicators include total sum of squares SS𝑡, 

sum of squares SS𝑝, mean squares MS𝑝, degree of freedom DF, residual sum of the squares 

SS𝑒, residual mean squares MS𝑒, F-value and P-value. The calculation of each indicator is 

summarised as follows.  

The total sum of squares SS𝑡 quantifies the total variation of all observed responses from 

the mean response. As expressed in Equation (4. 29), SS𝑡 is calculated as the sum of all 

squared differences between the observed responses and the total mean response of all tests. 

𝑛𝑡𝑒𝑠𝑡 denotes the number of experimental tests and 𝑅 denotes the response of each test.  

 SS𝑡 = ∑ 𝑅2 −
(∑ 𝑅)2

𝑛𝑡𝑒𝑠𝑡
 (4. 29) 

The sum of squares SS𝑝 refers to the variation or deviation of the 𝑝𝑡ℎ factor from the 

mean response, as shown in Equation (4. 30). 𝑛𝑙𝑒𝑣𝑒𝑙 denotes the number of levels of each 
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factor. ∑ 𝑅𝑝
𝑖̅̅ ̅̅ ̅̅  denotes the mean response of the 𝑖𝑡ℎ level of the 𝑝𝑡ℎ factor. �̅� denotes the 

mean response of all tests. In this study, each factor is defined to have four levels (i.e. 

𝑛𝑙𝑒𝑣𝑒𝑙 = 4).  

 SS𝑝 = 𝑛𝑙𝑒𝑣𝑒𝑙 ∑ (∑ 𝑅𝑝
𝑖̅̅ ̅̅ ̅̅ − �̅�)2𝑛𝑙𝑒𝑣𝑒𝑙

𝑖=1  (4. 30) 

The mean squares MS𝑝 of the 𝑝𝑡ℎ factor is obtained by dividing the sum of squares SS𝑝 

by the degrees of freedom 𝐷𝐹. It represents the influence of this factor on the variations of 

response. As expressed in Equation (4. 31) and Equation (4. 32), the degrees of freedom 

𝐷𝐹𝑝 is calculated as the number of levels for the factor minus one. 

 𝐷𝐹𝑝 = 𝑛𝑙𝑒𝑣𝑒𝑙 − 1 (4. 31) 

 MS𝑝 =
SS𝑝

𝐷𝐹𝑝
 (4. 32) 

Since the ANOVA is used to examine the polynomial relationship between the factors and 

response, the amount of error between the data points and the regression model can be 

quantified through the residual sum of the squares SS𝑒 . It is a measure of the response 

deviations that the regression model is unable to explain. Referring to Gandhi et al. (2011), 

SS𝑒 is calculated as the difference between the total sum of squares SS𝑡 and the sum of 

squares SS𝑝 of all factors, as expressed in Equation (4. 33). A small SS𝑒 indicates a good 

fit of the data points to the regression model. Furthermore, the residual mean squares MS𝑒 

is obtained by dividing the residual sum of the squares SS𝑒 by its corresponding degrees of 

freedom 𝐷𝐹𝑒 , as shown in Equation (4. 34). 𝐷𝐹𝑒  is calculated as the difference between 

the total degrees of freedom 𝐷𝐹𝑡  and the degrees of freedom 𝐷𝐹𝑝  of all factors, as 

expressed in Equation (4. 35).  

 SS𝑒 = SS𝑡 − ∑ SS𝑝 (4. 33) 

 MSe =
SS𝑒

𝐷𝐹𝑒
 (4. 34) 

 𝐷𝐹𝑒 = 𝐷𝐹𝑡 − ∑ 𝐷𝐹𝑝 (4. 35) 
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Based on the above, the significance of each factor can be quantified by using the F-value 

and P-value. The F-value is a test statistic to determine whether the factor is associated with 

the response. It is calculated as the ratio of the mean squares MS𝑝 and the residual mean 

square MSe, as expressed in Equation (4. 36). A large F-value indicates that the factor is 

significant for the response.  

 F − value =
MS𝑝

MSe
 (4. 36) 

The F-value is used to calculate the P-value, which aims to finally quantify the statistical 

significance of a factor. Referring to Bower (2007), the P-value is a measure that indicates 

the probability of the evidence against the null hypothesis (i.e. the factor is not significant 

for the response). The probability (i.e. P-value) is based on an F-distribution that assumes 

the null hypothesis is true. According to F-Distribution Tables (2020), a significance level is 

firstly defined to determine whether this null hypothesis holds. Usually, the significant level 

is specified as 0.05. It indicates that the risk of this null hypothesis is 5% and the analysis is 

carried out 95% level of confidence (Pattanaika et al., 2018).  

Based on the F-Distribution table with a significance level of 0.05, the corresponding 

critical value 9.2766 is obtained for the F-distribution with 3 degree of freedom in the 

numerator (i.e. mean squares MS𝑝) and 3 degrees of freedom in the denominator (i.e. residual 

mean square MSe). According to the F-distribution in Figure 4.9, the factor with an F-value 

higher than the critical value, or a P-value less than the significant level indicates a strong 

evidence against the null hypothesis. It also indicates that the factor has a significant 

contribution on the response.  
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Figure 4.9: F-distribution with 3 degrees of freedom in the numerator and 3 degrees of 

freedom in the denominator 

In this study, experiments are designed to test the NSGA-Ⅱ optimisation process under 

different optimisation parameters. Since different combinations of optimisation parameters 

produce different Pareto fronts, it is necessary to figure out which optimisation parameter 

has a significant contribution on the hypervolume (HV) indicator of Pareto front. Therefore, 

the range analysis and ANOVA are applied to case studies to evaluate, rank and quantify the 

significance of each optimisation parameter. 

4.8. Summary 

In this chapter, the hypothesis of this research work is firstly identified. Then, the conceptual 

predictive models of AM’s time, energy and material consumptions are defined based on the 

classified modules. The methods applied to the hybrid prediction modelling are introduced, 

including the G-code calculation in physics-based modelling and the regression analysis in 

data-driven modelling. In addition, the basic workflow of NSGA-Ⅱ algorithm used in multi-

objective optimisation is introduced. Taguchi design of experiments is applied to perform 

NSGA-Ⅱ optimisation tests under different combinations of optimisation parameters. To 

evaluate the pareto fronts obtained from optimisation tests, the method of performance 

measures using hypervolume (HV) indicator is introduced. At last, the methods used in 



143 

 

experimental validation are introduced, including the calculation of mean absolute percent 

error (MAPE), range analysis and analysis of variance (ANOVA). 

Since this chapter only introduces the methods used to implement the proposed research 

work, the consumption modelling on each module will be described in detail in the next 

chapter. Chapter 6 will introduce the detailed description and application of NSGA-Ⅱ 

algorithm. 
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CHAPTER 5  PREDICTIVE MODELS OF 

TIME, ENERGY AND MATERIAL 

CONSUMPTIONS FOR ADDITIVE 

MANUFACTURING TECHNOLOGIES 

5.1.  Introduction 

The goal in this chapter is to present the detailed modelling procedures of time, energy and 

material consumptions in the AM process. Based on the proposed framework in last chapter, 

all consumption-related components are classified into five types of modules, namely axis 

movement, material processing, component heating, material feeding and auxiliary 

components. Details of the prediction modelling of each module are described in this 

chapter.  

To begin, different working states of each module are defined based on the power profiles. 

The axis movement module has two working states: the axis movement state with actual 

displacements and the standby state waiting for completion of other modules’ operations. 

The material processing module and component heating module both have two working 

states: the initial heating state for heating the module to the target temperature and the heat 

preservation state for maintaining the module at the target temperature. The material 

feeding module has two working states: the material feeding state with an actual feeding 

amount and the standby state waiting for the next feeding operation. The auxiliary 

components module has one working state: the continuous monitoring and control of the 

machine status.  

Next, the predictive models of time, energy and material consumptions of each working 

state are built as the functions of process parameters. In physics-based modelling, three 

parameters are calculated directly from G-code: the time, distance of axis movement with 

actual displacements and the amount of material feeding. For other parameters, data-driven 
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modelling is performed on each working state of the five modules. Experiments are 

conducted to measure the time consumption and apparent power of each state under 

different process parameters. The functional relationships between the measured results and 

process parameters are derived through polynomial regression method. In addition, factors 

affecting the prediction accuracy, such as the occurrence of motor out-of-step, and the 

deviation between actual material density and quoted material density, are also considered 

in this study. Thus, additional experiments are conducted, such as measurement of the 

actual axis movement speed, the actual material feeding rate and the actual material density. 

The experimental contents are determined by the characteristics of machine and material.  

To clearly understand the structures of predictive models, all parameters constituting the 

models are classified into three types: 1). parameters to be calculated from G-code; 2). 

parameters to be obtained from experiments; 3). parameters whose values are determined 

by the running sequences and resource consumptions of the five modules through the Gannt 

chart. In this chapter, different AM technologies are used as examples to illustrate the 

modelling process.  

The hybrid modelling method is one of the contributions of this research work. Firstly, 

the module classification divides all consumption-related components of general AM 

technologies into five types, each with different working states according to its function. 

This method of modularising different AM systems provides a clear, customisable and 

general modelling environment for the subsequent consumption modelling of each module. 

Secondly, physics-based modelling based on G-code makes a sufficient use of 

manufacturing information in G-code, which enables an effective prediction and also 

reduces the workload of data-driven modelling through experiments. Finally, the additional 

experiments fully consider the characteristics of each machine and material. According to 

the experimental validations, this step has been shown to produce a significant 

improvement in prediction accuracy. Details of the modelling process are described in the 

following sections.  
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5.2.  Definitions of different working states for each module 

 

Figure 5.1: Example of running time and apparent powers of five types of modules in a 

general AM process 

 

Referring to the module classification in Section 3.2, all consumption-related components 

are classified into five types: axis movement, material processing, material feeding, 

component heating and auxiliary components. This section defines the different working 

states of each module. Figure 5.1 presents a representative example of power profiles for a 

general AM machine. In this example, there are five modules and each one represents a 

component. Three regular patterns can be concluded from this figure. Firstly, all modules 

that need to be heated contain two stages: the initial heating state for heating the module to 

the target temperature and the heat preservation state for maintaining the module at the target 

temperature until the end of the AM task. Secondly, the auxiliary components module only 
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has one working state; that is, the continuous monitoring and control of the machine status 

throughout the entire AM process. Thirdly, once the two modules of axis movement and 

material feeding start to run according to the G-code instructions, they will continue in a 

running status in the subsequent process until the end of the AM task, regardless of whether 

other modules are running during the middle of this process. Based on the above, the working 

states of each module are defined as follows.  

The axis movement module has two working states: the axis movement state with actual 

displacements and the standby state waiting for completion of other modules’ operations. 

The time spent on the former state can be directly calculated from G-code, since G-code 

provides the detailed coordinates and speeds to instruct the motions of axis movement 

module. The time spent on the latter state is defined as the ‘interval time’. During this interval 

time, the motion of axis movement module is interrupted to wait for completion of other 

modules’ operations. In general, as shown in Figure 5.1, the apparent powers of these two 

states are the same, which are both defined as 𝑃𝑎𝑥𝑖𝑠. The total time consumption of the axis 

movement module is defined as 𝑡𝑎𝑥𝑖𝑠. This is the sum of the time consumption 𝑡𝑥𝑦𝑧 of axis 

movement with actual displacements and the interval time 𝑡𝑥𝑦𝑧
0 . In this study, 𝑡𝑥𝑦𝑧 can be 

calculated from G-code, while 𝑡𝑥𝑦𝑧
0   is determined by the running sequences and time 

consumptions of the other four modules. 

The material feeding module also has two working states: the material feeding state with 

an actual feeding amount and the standby state waiting for the next feeding operation. 

According to Figure 5.1, the apparent powers of these two states are the same, which are 

both defined as 𝑃𝑚𝑓
1 . The total time consumption of the axis movement module is defined 

as 𝑡𝑚𝑓
1 . For general AM technologies, 𝑡𝑚𝑓

1  is equal to the total time consumption 𝑡𝑥𝑦𝑧 of 

the axis movement module, since these two modules run simultaneously to deposit material 

on the toolpaths.  
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The material processing module and component heating module both need to be heated 

for general AM machines. The heating of the material processing module is to turn the 

material from solid to liquid. The heating of the component heating module is to warm up 

the components, such as the build platform and heated roller, to support the manufacturing 

process, as discussed in Section 3.2. Thus, these two modules both have two working states: 

the initial heating state for heating the module to the target temperature and the heat 

preservation state for maintaining the module at the target temperature. According to Figure 

5.1, the apparent power and time consumptions of the initial heating state for the material 

processing module are defined as 𝑃𝑚𝑝
1   and 𝑡𝑚𝑝

1  , while the apparent power and time 

consumptions of the initial heating state for the component heating module are defined as 

𝑃ℎ
1 and 𝑡ℎ

1. The apparent power and time consumptions of the heat preservation state for the 

material processing module are defined as 𝑃𝑚𝑝ℎ𝑝
1  and 𝑡𝑚𝑝ℎ𝑝

1 , while the apparent power and 

time consumptions of the heat preservation state for the component heating module are 

defined as 𝑃ℎℎ𝑝

1  and 𝑡ℎℎ𝑝

1 . 

The auxiliary components can be classified into two types. The first type is the 

components that monitor and control the machine status during the printing process, such as 

the display unit, temperature sensor, and user interface and connectivity. These components 

keep running even when the machine is in standby mode. The apparent power of this standby 

mode is defined as standby power 𝑃𝑠. The second type is the components that are used to 

support the printing process, such as the cooling system. When an AM task starts, the second 

type of components start to run and the power increases from standby power 𝑃𝑠 to a higher 

level to start up the machine. This increased power difference is defined as start-up power 

𝑃0. Thus, as shown in Figure 5.1, the total power of the auxiliary components is calculated 

as the sum of standby power 𝑃𝑠  and start-up power 𝑃0 . Based on the above, the entire 

module of auxiliary components has only one working state: the continuous monitoring and 

control of the machine status. Thus, the time consumption 𝑡𝑎𝑢𝑥 of the auxiliary components 

module is equal to the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 of the entire AM task. Since 𝑡𝑎𝑢𝑥 and 

𝑡𝑡𝑜𝑡𝑎𝑙  are unknown, their values are determined by the running sequences and time 

consumptions of the other four modules.  
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5.3. Predictive model of time consumption 

This section presents the predictive model of time consumption in the AM process. Based 

on the definitions of different working states for each module, the time consumptions of all 

working states of the five modules in the existing AM technologies are summarised in Table 

5.1.  

Table 5.1: Time consumptions of different working states for each module of the existing 

AM technologies 

Modules Working states 
Time 

consumptions 
AM technologies 

Axis 

movement 

Axis movement with 

actual displacements 
𝑡𝑥𝑦𝑧 

Material extrusion (ME);  

Binder jetting (BJ) 

Material jetting (MJ);  

Direct energy deposition (DED)  

Powder bed fusion (PBF);  

Sheet lamination  

Polymerisation 

Standby 𝑡𝑥𝑦𝑧
0  

Material 

processing 

Initial heating 𝑡𝑚𝑝
𝑎  

Heat preservation 𝑡𝑚𝑝ℎ𝑝

𝑎  

Auxiliary 

components 

Monitoring and 

control of machine 

status 

𝑡𝑎𝑢𝑥 

Component 

heating 

Initial heating 𝑡ℎ
𝑏 Material extrusion (ME) 

Material jetting (MJ) 

Sheet lamination Heat preservation 𝑡ℎℎ𝑝

𝑏  

Material 

feeding 

Material feeding 

with an actual 

feeding amount  

𝑡𝑚𝑓
𝑐  

Material feeding 

synchronised with 

axis movement 

Material feeding not 

synchronised with 

axis movement 

Material extrusion 

(ME) 

Material jetting (MJ)  

Direct energy 

deposition (DED) 

Polymerisation 

Binder jetting (BJ) 

Powder bed fusion 

(PBF)  

Sheet lamination 
Standby 

The axis movement modules of all general AM technologies have two working states: the 

axis movement state with actual displacements and the standby state waiting for completion 
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of other modules’ operations. The material processing modules also have two working states: 

the initial heating state and the heat preservation state. However, the auxiliary components 

modules of all existing technologies have only one working state: the monitoring and control 

of the machine status. The predictive models of time consumptions for all the above modules 

can be applied to all general AM technologies.  

The component heating module has two working states: the initial heating state for heating 

the module to the target temperature and the heat preservation state for maintaining the 

module at the target temperature. Different from the aforementioned three other modules, 

the component heating module only participates in the AM processes of material extrusion 

(ME), material jetting (MJ) and sheet lamination, and therefore there is no such module for 

other AM technologies.  

The material feeding module has two working states: the material feeding state with an 

actual feeding amount and the standby state waiting for the next feeding operation. Moreover, 

this module has two types of operation system for the existing AM technologies, as 

summarised in Table 5.1 One type of operation system refers to the material feeding that is 

synchronised with axis movement in X, Y directions, for example, material extrusion (ME), 

material jetting (MJ), direct energy deposition (DED) and polymerisation technologies. 

Figure 5.2 presents an example of material feeding in a DED process. When the printer 

nozzle needs to deposit material on a specific toolpath, the module runs in the material 

feeding state with an actual feeding amount. When the printer nozzle moves without 

depositing material, the module runs in the standby state to wait for the next G-code 

command to feed material.  

The other type of operation system refers to the material feeding that is not synchronised 

with axis movement, for example, binder jetting (BJ), powder bed fusion (PBF) and sheet 

lamination technologies. The material is supplied between the construction of two adjacent 

layers. Figure 5.3 presents an example of material feeding in a PBF process. When a PBF 

machine finishes the printing of one layer, the powder supply platform moves to the height 

of the next layer. Then, the powder for the next layer is transported from the powder stock 
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to the build platform by using a powder roller/recoater. In this case, when the AM machine 

needs to construct a new layer, the module runs in the material feeding state with an actual 

feeding amount. For the rest of the time, the module runs in the standby state to wait for the 

material feeding of the next layer.  

 

Figure 5.2: Example of material feeding synchronised with axis movement in a DED 

process 

  

Figure 5.3: Example of material feeding between the construction of two adjacent layers in 

a PBF process 

Based on the above, the material feeding module is always in one of the two working 

states and runs accompanied by axis movement. From the beginning of axis movement to 

the end of material deposition, the total time consumption 𝑡𝑚𝑓
𝑐   of the material feeding 

module in two working states is equal to the time consumption of axis movement during the 

material deposition process. 
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5.3.1. Time consumption of axis movement 

In this section, the predictive model of time consumption for the axis movement module is 

presented. According to the working states defined in last section, the total time consumption 

of the axis movement module has two parts: the time 𝑡𝑥𝑦𝑧 spent on the axis movement with 

actual displacements and the interval time 𝑡𝑥𝑦𝑧
0  spent in a standby state.  

 

Figure 5.4: Interval time between axis movement with actual displacements 

Figure 5.4 presents an example Gantt chart of the axis movement module to clearly 

illustrate the two working states. When there are other modules starting to run during axis 

movement, such as material processing and component heating, the axis movement module 

will be switched to standby mode and wait for the other modules to reach the target 

temperatures. When the target temperature is reached, it means that the G-code command 

line that commands this heating action has been successfully executed. Then, the axis 

movement module will be switched back to the state of axis movement with actual 

displacement, and the heated components will continue to be in the state of heat preservation 

until the end of the current AM process. Referring to Section 3.3.1, the time 𝑡𝑥𝑦𝑧
0  spent 

during this waiting period is named the ‘interval time’, with a value determined by the 
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running sequences and time consumptions of the other modules. The time consumption 𝑡𝑥𝑦𝑧 

of axis movement with actual displacements can be calculated from G-code, which is 

modelled as 𝑡𝑥𝑦𝑧 = ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦
+ ∑

∆𝑍

𝐹𝑧
. 

Based on the above, the total time consumption of the axis movement module is calculated 

as the sum of time consumption 𝑡𝑥𝑦𝑧 with actual displacement and the interval time 𝑡𝑥𝑦𝑧
0 , 

as expressed in Equation (5.1). If no interruption occurs during the process of material 

deposition, there will be no interval time and the value of 𝑡𝑥𝑦𝑧
0  will be zero (i.e. 𝑡𝑥𝑦𝑧

0 = 0). 

 𝑡𝑎𝑥𝑖𝑠 = 𝑡𝑥𝑦𝑧 + 𝑡𝑥𝑦𝑧
0  (5.1) 

5.3.2. Time consumption of material processing  

This section describes the predictive model of time consumption for the material processing 

module. In general AM technologies, materials need to be pre-processed before deposition, 

with heating being the major processing method. For example, a nozzle heater, electron beam, 

laser and ultraviolet (UV) light are all material processing modules used to melt materials 

from a solid to a liquid. Such a processing method usually takes a certain amount of time to 

reach the melting point of the material. In this study, the number of material processing 

modules is defined as 𝑢. Each module has two working states: the initial heating state and 

the heat preservation state. In the initial heating state, the consumed time of the 𝑎th module 

is defined as 𝑡𝑚𝑝
𝑎 . Through observations from experiments, the initial heating time 𝑡𝑚𝑝

𝑎  is 

related to the temperature difference ∆𝑇𝑚𝑝
𝑎  between the target temperature 𝑇𝑚𝑝

𝑎  and the 

current temperature 𝑇𝑚𝑝0
𝑎  of the module. Thus, 𝑡𝑚𝑝

𝑎  is modelled as a function of ∆𝑇𝑚𝑝
𝑎 , as 

expressed in Equation (5.2) and Equation (5.3). 

 𝑡𝑚𝑝
𝑎 = 𝑓(∆𝑇𝑚𝑝

𝑎 )                          (5.2)       

 ∆𝑇𝑚𝑝
𝑎 = 𝑇𝑚𝑝

𝑎 −𝑇𝑚𝑝0
𝑎                          (5.3)                                  
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To obtain the functional relationship in Equation (5.2), experiments are conducted to 

measure the time consumptions 𝑡𝑚𝑝
𝑎   under different temperature differences ∆𝑇𝑚𝑝

𝑎  . As 

shown in Table 5.2, the target temperature 𝑇𝑚𝑝
𝑎  in the G-code commands of “M104 S𝑇𝑚𝑝

𝑎 ” 

and “M109 S𝑇𝑚𝑝
𝑎  ” is manually assigned with different values. The value of 𝑇𝑚𝑝

𝑎   is set 

within the range from the melting point of the material to the maximum temperature that the 

material processing module can be heated to. The value of the current temperature 𝑇𝑚𝑝0
𝑎  is 

set within the range from the current room temperature to the maximum temperature of the 

module. Then, the defined G-code commands are used to instruct the heating of the material 

processing module from the current temperature 𝑇𝑚𝑝0
𝑎   to the target temperature 𝑇𝑚𝑝

𝑎  . 

During the experiments, a power meter is used to measure the initial heating time 𝑡𝑚𝑝
𝑎 .  

Based on the experimental results, polynomial regression method is applied to curve-fit 

the functional relationship between the initial heating time 𝑡𝑚𝑝
𝑎  and temperature difference 

∆𝑇𝑚𝑝
𝑎 . Thus, the coefficient in Equation (5.2) is finally obtained.  

Table 5.2: Information for measuring the time consumptions of the material processing 

module under different process parameters 

Time 

consumption 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡𝑚𝑝
𝑎  

Current 

temperature 
𝑇𝑚𝑝0

𝑎  
Current room 

temperature 

Maximum temperature of 

material processing module  

Target 

temperature 
𝑇𝑚𝑝

𝑎  
Melting point of 

material 

Maximum temperature of 

material processing module  

G-code commands 

M104 S(𝑇𝑚𝑝
𝑎 ) : Set the target temperature 𝑇𝑚𝑝

𝑎  of material processing 

module 

M109 S(𝑇𝑚𝑝
𝑎 ) : Heat the module to the target temperature 𝑇𝑚𝑝

𝑎  

After the initial heating, the material processing module is switched to the heat 

preservation state. This process is parallel to the operation of other modules until the end of 

the AM task. In this study, the time spent on this process is defined as the heat preservation 
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time 𝑡𝑚𝑝ℎ𝑝
𝑎 , whose value is determined by the running sequences and time consumptions of 

other modules. 

5.3.3. Time consumption of component heating 

This section describes the predictive model of time consumption for the component heating 

module. These modules also need to be heated to support the AM process, such as the build 

platform in material extrusion (ME) and material jetting (MJ) technologies, the heated roller 

in sheet lamination technology, etc. In this study, the number of component heating modules 

is defined as 𝑣. Each module has two working states: the initial heating state for heating the 

module to the target temperature and the heat preservation state for maintaining the module 

at the target temperature. In the state of initial heating, the consumed time of the 𝑏th module 

is defined as 𝑡ℎ
𝑏. This initial heating time 𝑡ℎ

𝑏 is related to the temperature difference ∆𝑇ℎ
𝑏 

between the target temperature 𝑇ℎ
𝑏 and the current temperature 𝑇ℎ0

𝑏  of the module. Thus, 

the consumed time 𝑡ℎ
𝑏 of the 𝑏th module is also modelled as a function of the temperature 

difference ∆𝑇ℎ
𝑏, as expressed in Equation (5.4) and Equation (5.5). 

 𝑡ℎ
𝑏 = 𝑓(∆𝑇ℎ

𝑏)                            (5.4)                                                                                                                                                                                                                                                            

 ∆𝑇ℎ
𝑏 = 𝑇ℎ

𝑏 − 𝑇ℎ0

𝑏                            (5.5) 

To obtain the functional relationship in Equation (5.4), experiments are conducted to 

measure the time consumptions 𝑡ℎ
𝑏 under various temperature differences ∆𝑇ℎ

𝑏. As shown 

in Table 5.3, the target temperature 𝑇ℎ
𝑏  in the G-code commands of “M140 S𝑇ℎ

𝑏 ” and 

“M190 S𝑇ℎ
𝑏” is manually assigned with different values. The values of 𝑇ℎ0

𝑏  and 𝑇ℎ
𝑏 are 

both set within the range from the current room temperature to the maximum temperature of 

the component heating module. Then, the defined G-code commands are used to instruct the 

heating of the component heating module from the current temperature 𝑇ℎ0

𝑏  to the target 
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temperature 𝑇ℎ
𝑏 . During the experiments, a power meter is used to measure the initial 

heating time 𝑡ℎ
𝑏.  

Based on the experimental results, polynomial regression method is applied to curve-fit 

the functional relationship between the initial heating time 𝑡ℎ
𝑏  and temperature difference 

∆𝑇ℎ
𝑏. Thus, the coefficient in Equation (5.4) is finally obtained.  

Table 5.3: Information for measuring the time consumptions of the component heating 

module under different process parameters  

Time 

consumption 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡ℎ
𝑏 

Current 

temperature 
𝑇ℎ0

𝑏  
Current room 

temperature 

Maximum temperature of 

component heating module  

Target 

temperature 
𝑇ℎ

𝑏 
Current room 

temperature 

Maximum temperature of 

component heating module  

G-code commands 

M140 S(𝑇ℎ
𝑏) : Set the target temperature 𝑇ℎ

𝑏 of component heating module 

M190 S(𝑇ℎ
𝑏) : Heat the module to the target temperature 𝑇ℎ

𝑏 

After the initial heating, the component heating module is then switched to the heat 

preservation state. This process is parallel to the operation of other modules until the end of 

the AM task. In this study, the time spent on this process is defined as the heat preservation 

time 𝑡ℎℎ𝑝

𝑏 , whose value is also determined by the running sequences and time consumptions 

of other modules. 

5.3.4. Time consumption of material feeding 

This section describes the predictive model of time consumption for the material feeding 

module. In the study, the number of material feeding modules is defined as 𝑤. Each module 

has two working states: the material feeding state with an actual feeding amount and the 

standby state waiting for the next feeding operation. Through observations from experiments 
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on real-world AM systems, it is found that the module is always in one of the two working 

states accompanied by axis movement. Therefore, the total time consumption 𝑡𝑚𝑓
𝑐  of the 

𝑐 th material feeding module is equal to the total time consumption 𝑡𝑎𝑥𝑖𝑠  of the axis 

movement module. Referring to Equation (5.1), the predictive model is expressed as follow. 

 𝑡𝑚𝑓
𝑐 = 𝑡𝑎𝑥𝑖𝑠 = 𝑡𝑥𝑦𝑧 + 𝑡𝑥𝑦𝑧

0                              (5.6) 

Furthermore, the material feeding module has two types of operating system, as shown in 

Figure 5.2 and Figure 5.3. The first type is applied in material extrusion (ME), material 

jetting (MJ), direct energy deposition (DED) and polymerisation technologies. In these AM 

technologies, the material feeding module runs synchronously with the axis movement 

module. There is no need for both modules to spend extra time waiting for material supply. 

The second type of operating system is applied in other AM technologies, including binder 

jetting (BJ), powder bed fusion (PBF) and sheet lamination technologies. In these AM 

technologies, material is supplied between the construction of two adjacent layers. Thus, the 

axis movement module needs extra time 𝑡𝑓𝑒𝑒𝑑
𝑐  to wait for the material to be transported 

from the powder stock to the build platform. This extra time 𝑡𝑓𝑒𝑒𝑑
𝑐  belongs to the interval 

time 𝑡𝑥𝑦𝑧
0  when the axis movement module is in a standby state, as expressed in Equation 

(5.7). The value of this time consumption 𝑡𝑓𝑒𝑒𝑑
𝑐  is calculated as shown in Equation (5.8), 

where 𝑡𝑙𝑎𝑦𝑒𝑟 denotes the time consumption of material feeding per layer. 𝐿𝑁 denotes the 

total number of layers in the current AM task. This is calculated as the height 𝐻 of the 

printed design divided by the layer thickness 𝐿𝑇, as shown in Equation (5.9). 

 𝑡𝑓𝑒𝑒𝑑
𝑐 ∈ 𝑡𝑥𝑦𝑧

0                           (5.7) 

 𝑡𝑓𝑒𝑒𝑑
𝑐 = 𝑡𝑙𝑎𝑦𝑒𝑟 ∙ 𝐿𝑁                          (5.8) 

 𝐿𝑁 =
𝐻

𝐿𝑇
                          (5.9) 
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Based on the above, the time consumption 𝑡𝑓𝑒𝑒𝑑
𝑐  is related to three parameters: the height 

of the printed design 𝐻, the layer thickness 𝐿𝑇 and the time of material feeding per layer 

𝑡𝑙𝑎𝑦𝑒𝑟. The height of the printed design 𝐻 is determined by the design geometry and build 

orientation. The layer thickness 𝐿𝑇  is one of the process parameters, which can be 

configured in slicer software in the prefabrication stage. The time of material feeding per 

layer 𝑡𝑙𝑎𝑦𝑒𝑟 needs to be measured through experiments, as listed in Table 5.4. It is a fixed 

constant with a value determined by the characteristics of the material feeding module (e.g. 

the moving speed of the powder roller, recoater, etc.).  

Table 5.4: Information for measuring the time consumptions of the material processing 

module  

Time consumption Related parameter 

𝑡𝑓𝑒𝑒𝑑
𝑐  Time of material feeding per layer 𝑡𝑙𝑎𝑦𝑒𝑟 

This study mainly focuses on the consumption prediction of fused deposition modelling 

(FDM) technology, which is a common branch of ME technology. The material feeding 

modules in the FDM process run synchronously with the axis movement modules. Thus, 

there is no need to calculate material feeding time 𝑡𝑓𝑒𝑒𝑑
𝑐  for FDM systems. For other AM 

technologies that feed material between the construction of two adjacent layers, experiments 

need to be conducted to measure the time 𝑡𝑙𝑎𝑦𝑒𝑟 of material feeding per layer.  

5.3.5. Time consumption of auxiliary components 

This section describes the time consumption modelling for the module of auxiliary 

components. Different from the above modules, the auxiliary components have only one 

working state throughout the entire AM process: the continuous monitoring and control of 

the machine status. Thus, the total time consumption 𝑡𝑎𝑢𝑥  is equal to the total time 

consumption 𝑡𝑡𝑜𝑡𝑎𝑙 of the AM task, as expressed in Equation (5.10). The value of 𝑡𝑎𝑢𝑥 is 

determined by the running sequences and time consumptions of the other four modules. 

 𝑡𝑎𝑢𝑥 = 𝑡𝑡𝑜𝑡𝑎𝑙                           (5.10) 
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Above all, the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙  of the entire AM process is refined by 

integrating Equation (5.1) to Equation (5.10). According to the Gannt chart of all modules, 

there exist overlaps of running time in a general AM process. Therefore, the total time 

consumption 𝑡𝑡𝑜𝑡𝑎𝑙  is modelled as the union of the time consumed by all five types of 

modules, as expressed in Equation (5.16). The time consumption of each type of module is 

defined from Equation (5.11) to Equation (5.15). 𝑡𝑎𝑥𝑖𝑠 denotes the running time of all axis 

movement modules. 𝑡𝑚𝑝  and 𝑡𝑚𝑝ℎ𝑝
  denote the running time of all material processing 

modules in initial heating state and heat preservation state. 𝑡ℎ and 𝑡ℎℎ𝑝
 denote the running 

time of all component heating modules in initial heating state and heat preservation state. 𝑡𝑚𝑓 

denotes the running time of all material feeding modules. 𝑡𝑎𝑢𝑥 denotes the running time of 

the module of auxiliary components. 

 𝑡𝑚𝑝=⋃ 𝑡𝑚𝑝
𝑎𝑢

𝑎=1                            (5.11) 

 𝑡𝑚𝑝ℎ𝑝
=⋃ 𝑡𝑚𝑝ℎ𝑝

𝑎𝑢
𝑎=1                            (5.12) 

 𝑡ℎ=⋃ 𝑡ℎ
𝑏𝑣

𝑏=1                            (5.13) 

 𝑡ℎℎ𝑝
=⋃ 𝑡ℎℎ𝑝

𝑏𝑣
𝑏=1                            (5.14) 

  𝑡𝑚𝑓 = ⋃ 𝑡𝑚𝑓
𝑐𝑤

𝑐=1                            (5.15) 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑎𝑥𝑖𝑠 ∪ 𝑡𝑚𝑝 ∪ 𝑡𝑚𝑝ℎ𝑝
∪ 𝑡ℎ ∪ 𝑡ℎℎ𝑝

∪ 𝑡𝑚𝑓 ∪ 𝑡𝑎𝑢𝑥 (5.16) 

Note that Equation (5.16) is a general predictive model of AM’s time consumption. In 

the modelling of a specific AM machine, the model should be adjusted based on the number 

and running sequences of machine components. 
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5.4. Predictive model of energy consumption 

This section establishes the predictive model of energy consumption in the AM process. 

Based on the definitions of different working states in Section 5.2, the apparent powers of 

all working states for the five modules in the existing AM technologies are defined in Table 

5.5. The related parameters that determine the apparent power of each working state are also 

defined.  

The axis movement module has two working states: the axis movement state with actual 

displacements and the standby state waiting for completion of other modules’ operations. 

According to observations of experiments, the module runs with stable apparent power in 

both working states. Thus, the power of the axis movement module is defined as 𝑃𝑎𝑥𝑖𝑠 . 

Based on its corresponding G-code commands (as listed in Table 5.5), the speed 𝐹𝑥𝑦 of axis 

movement in X, Y directions and the speed 𝐹𝑧 in Z direction are the related parameters that 

affect the value of apparent power 𝑃𝑎𝑥𝑖𝑠. Therefore, the apparent power 𝑃𝑎𝑥𝑖𝑠 is modelled 

as a function of axis movement speeds 𝐹𝑥𝑦 and 𝐹𝑧 in X, Y, Z directions. This predictive 

model is adoptable across all general AM technologies.  

The modules of material processing and component heating both have two working states: 

the initial heating state and the heat preservation state. In the initial heating state, the apparent 

powers of material processing and component heating are respectively defined as 𝑃𝑚𝑝
𝑎 , 𝑃ℎ

𝑏. 

In the heat preservation state, the apparent powers of two modules are defined as 𝑃𝑚𝑝ℎ𝑝
𝑎 , 

𝑃ℎℎ𝑝

𝑏 . Based on the G-code commands (as listed in Table 5.5), above apparent powers of 

these two modules are related to their target temperatures 𝑇𝑚𝑝
𝑎 , 𝑇ℎ

𝑏. Therefore, the apparent 

power of each state is modelled as a function of target temperature. For the material 

processing module, the predictive model is adoptable across all general AM technologies. 

For the component heating module, the predictive model is only adoptable for material 

extrusion (ME), material jetting (MJ) and sheet lamination technologies, because there is no 

such module in other AM technologies.  
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The material feeding module has two working states: the material feeding state with an 

actual feeding amount and the standby state waiting for the next feeding operation. 

According to observations of experiments, the module runs with stable apparent power in 

both working states. In this study, the power is defined as 𝑃𝑚𝑓
𝑐 . For some AM technologies 

including ME, MJ, direct energy deposition (DED) and polymerisation, the material feeding 

is synchronised with axis movement. According to its corresponding G-code command in 

Table 5.5, the apparent power 𝑃𝑚𝑓
𝑐  is related to the rate 𝐹𝑥𝑦 of material feeding. Thus, 

𝑃𝑚𝑓
𝑐  is modelled as a function of 𝐹𝑥𝑦. For other AM technologies including binder jetting 

(BJ), powder bed fusion (PBF) and sheet lamination technologies, the material feeding is 

between the construction of two adjacent layers. The apparent power 𝑃𝑚𝑓
𝑐   of material 

feeding is a fixed constant, since its related parameter (i.e. the time consumption of material 

feeding 𝑡𝑙𝑎𝑦𝑒𝑟 for one layer) is a fixed constant.  

The auxiliary components module has only one working state: the monitoring and control 

of the machine status. The module remains in this working state with stable apparent power 

throughout the entire AM process. Its apparent power is defined as 𝑃𝑎𝑢𝑥, which is a fixed 

constant and has no related parameters. 

The energy consumption modelling needs two important elements: time consumption and 

apparent power. The time consumptions of the five modules directly use the time models 

from the last section. The apparent powers of the five modules need to be measured through 

experiments. In the following sections, the energy consumption of each module is modelled 

based on Table 5.5. Experimental measurements of each module are also presented.
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Table 5.5: Apparent powers of different working states for each module of the existing AM technologies (G-Code – Reprap, 2020)  

Modules Working states G-code commands Powers 
Related 

parameters 
AM technologies 

Axis  

movement 

Axis movement with 

actual displacements 

G1 F(𝐹𝑥𝑦) Xnnn Ynnn 

G1 F(𝐹𝑧) Znnn 

𝑃𝑎𝑥𝑖𝑠 𝐹𝑥𝑦, 𝐹𝑧 

Material extrusion (ME) 

Material jetting (MJ)  

Direct energy deposition (DED) Polymerisation 

Binder jetting (BJ) 

Powder bed fusion (PBF)  

Sheet lamination 
Standby None 

Material 

processing 

Initial heating 
M104 S(𝑇𝑚𝑝

𝑎 )  

M109 S(𝑇𝑚𝑝
𝑎 )  

𝑃𝑚𝑝
𝑎  𝑇𝑚𝑝

𝑎  

Material extrusion (ME) 

Material jetting (MJ)  

Direct energy deposition (DED) Polymerisation 

Binder jetting (BJ) 

Powder bed fusion (PBF)  

Sheet lamination 
Heat preservation None 𝑃𝑚𝑝ℎ𝑝

𝑎  𝑇𝑚𝑝
𝑎  

Component 

heating 
Initial heating 

M140 S(𝑇ℎ
𝑏) 

M190 S(𝑇ℎ
𝑏) 

𝑃ℎ
𝑏 𝑇ℎ

𝑏 

Material extrusion (ME) 

Material jetting (MJ) 

Sheet lamination 
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Heat preservation None 𝑃ℎℎ𝑝

𝑏  𝑇ℎ
𝑏 

Material  

feeding 

Material feeding with 

actual feeding amount 

G1 F(𝐹𝑥𝑦) Xnnn Ynnn 

Emmm 

𝑃𝑚𝑓
𝑐  

𝐹𝑥𝑦 

 Material feeding 

synchronised with 

axis movement  

Material extrusion (ME) 

Material jetting (MJ)  

Direct energy deposition (DED) 

Polymerisation 

Standby None 𝑡𝑙𝑎𝑦𝑒𝑟 

 Material feeding 

synchronised with 

axis movement 

Binder jetting (BJ) 

Powder bed fusion (PBF)  

Sheet lamination 

Auxiliary 

components 

Monitoring and control 

of machine status 
None 𝑃𝑎𝑢𝑥 None 

Material extrusion (ME) 

Material jetting (MJ)  

Direct energy deposition (DED) Polymerisation 

Binder jetting (BJ) 

Powder bed fusion (PBF)  

Sheet lamination 
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5.4.1. Energy consumption of axis movement 

This section presents the energy consumption modelling for the axis movement module. The 

module has two working states: the axis movement state with actual displacements and the 

standby state. During the printing process, the module remains running with stable apparent 

power in both working states. For example, Figure 5.5 presents a typical axis movement 

module using a Cartesian system in fused deposition modelling (FDM) processing. The 

system is driven by three stepper motors. Each motor is responsible for the axis movement 

in each direction. When the nozzle moves only in X, Y directions, the motor in Z direction 

remains in the standby state with stable apparent power to wait for the next operation. 

Therefore, the total apparent power 𝑃𝑎𝑥𝑖𝑠  of the axis movement module is the sum of 

apparent powers of all stepper motors in the module.  

 

Figure 5.5: Three stepper motors in a Cartesian system of Original Prusa MINI+ FDM 

printer (MINI+, 2020) 

According to the G-code command to instruct the axis movement module in Table 5.6, 

the apparent power 𝑃𝑎𝑥𝑖𝑠 of this module is related to its speed 𝐹𝑥𝑦 in X, Y directions and 

speed 𝐹𝑧 in Z direction. Thus, 𝑃𝑎𝑥𝑖𝑠 is modelled as a function of 𝐹𝑥𝑦 and 𝐹𝑧, as expressed 

in Equation (5.17). To calculate the functional relationship, experiments are conducted to 

test the apparent powers 𝑃𝑎𝑥𝑖𝑠 of axis movement at different speeds 𝐹𝑥𝑦, 𝐹𝑧. As shown in 
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Table 5.6, the speeds 𝐹𝑥𝑦 and 𝐹𝑧 in G-code commands “G1 Fxy Xnnn Ynnn” and “G1 

Fz Znnn” are manually assigned with different values. The value of each speed is set within 

the range that the module can achieve. Then, the defined G-code commands are used to 

instruct the axis movement module to move at different speeds. During the experiments, a 

power meter is used to measure the apparent power of the module. Based on the experimental 

results, the functional relationship in Equation (5.17) is derived by using regression analysis 

methods. In this study, polynomial regression is applied to calculate the coefficient in this 

function. 

 𝑃𝑎𝑥𝑖𝑠 = 𝑓(𝐹𝑥𝑦, 𝐹𝑧) (5.17) 

Table 5.6: Information for measuring the apparent powers of the axis movement module in 

X, Y, Z directions under different process parameters (G-Code – Reprap, 2020) 

Apparent 

power 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑃𝑎𝑥𝑖𝑠 

Speed of axis 

movement in X, Y 

directions 

𝐹𝑥𝑦 

Lowest speed of axis 

movement module in 

X, Y directions 

Highest speed of axis 

movement module in 

X, Y directions 

Speed of axis 

movement in Z 

direction 

𝐹𝑧 

Lowest speed of axis 

movement module in 

Z direction 

Highest speed of axis 

movement module in 

Z direction 

G-code commands 

G1 Fxy  Xnnn Ynnn : Nozzle moves to the target coordinate 

(Xnnn, Ynnn) at a speed of 𝐹𝑥𝑦 

G1 Fz Znnn : Nozzle moves to the target coordinate (Znnn) at 

a speed of 𝐹𝑧 

Based on the above, the total energy consumption 𝐸𝑎𝑥𝑖𝑠 of the axis movement module 

is modelled as the integral of power 𝑃𝑎𝑥𝑖𝑠 over its time consumption 𝑡𝑎𝑥𝑖𝑠, as expressed in 

Equation (5.18). 

 𝐸𝑎𝑥𝑖𝑠 = ∫ 𝑃𝑎𝑥𝑖𝑠
𝑡𝑎𝑥𝑖𝑠

0
𝑑𝑡                       (5.18) 
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5.4.2. Energy consumption of material processing  

This section presents the energy consumption modelling for the material processing module. 

The module has two working states: the initial heating state and the heat preservation state. 

The following modelling is carried out for these two stages.  

In this study, the number of material processing modules is defined as 𝑢. The apparent 

power of the 𝑎th module in the initial heating state is defined as 𝑃𝑚𝑝
𝑎 , while the apparent 

power in the heat preservation state is defined as 𝑃𝑚𝑝ℎ𝑝
𝑎 . According to the G-code command 

to instruct the material processing module in Table 5.7, the apparent powers 𝑃𝑚𝑝
𝑎   and 

𝑃𝑚𝑝ℎ𝑝
𝑎   are both related to the target temperature 𝑇𝑚𝑝

𝑎   of this module. Thus, 𝑃𝑚𝑝
𝑎   and 

𝑃𝑚𝑝ℎ𝑝
𝑎  are respectively modelled as the functions of 𝑇𝑚𝑝

𝑎 , as shown in Equation (5.19) and 

Equation (5.20). To obtain the functional relationships in the two equations, a power meter 

is used to measure the apparent powers 𝑃𝑚𝑝
𝑎 , 𝑃𝑚𝑝ℎ𝑝

𝑎  of the material feeding module under 

different target temperatures 𝑇𝑚𝑝
𝑎 . As shown in Table 5.7, the target temperature 𝑇𝑚𝑝

𝑎  in 

the G-code commands “M104 S𝑇𝑚𝑝
𝑎 ” and “M109 S 𝑇𝑚𝑝

𝑎 ” is manually assigned with different 

values. The value of the target temperature 𝑇𝑚𝑝
𝑎  is set within the range from the melting 

point of the material to the maximum temperature that the module can be heated to. Then, 

the defined G-code commands are used to instruct the heating of the material processing 

module to different target temperatures 𝑇𝑚𝑝
𝑎 .  

Based on the experimental results, polynomial regression method is applied to curve-fit 

the functional relationships (i.e. to calculate the coefficients in Equation (5.19) and 

Equation (5.20)).  

 𝑃𝑚𝑝
𝑎 = 𝑓(𝑇𝑚𝑝

𝑎 )                       (5.19) 

 𝑃𝑚𝑝ℎ𝑝
𝑎 = 𝑓(𝑇𝑚𝑝

𝑎 )                      (5.20) 



167 

 

Table 5.7: Information for measuring the apparent powers of the material processing 

module under different process parameters  

Apparent power Related parameters 
Parameter ranges 

Lower bound Upper bound 

Initial heating 𝑃𝑚𝑝
𝑎  

Target 

temperature 
𝑇𝑚𝑝

𝑎  
Melting point of 

material 

Maximum temperature 

of material processing 

module  
Heat preservation 𝑃𝑚𝑝ℎ𝑝

𝑎  

G-code commands 

M104 S(𝑇𝑚𝑝
𝑎 ) : Set the target temperature 𝑇𝑚𝑝

𝑎  of material 

processing module 

M109 S( 𝑇𝑚𝑝
𝑎 ) : Heat the module to the target temperature 𝑇𝑚𝑝

𝑎  

Based on the above, the total energy consumption 𝐸𝑚𝑝  of the material processing is 

modelled as the sum of the time-integral of power of all modules, as expressed in Equation 

(5.21). 

 𝐸𝑚𝑝 = ∑ (∫ 𝑃𝑚𝑝
𝑎𝑡𝑚𝑝

𝑎

0
𝑑𝑡 + ∫ 𝑃𝑚𝑝ℎ𝑝

𝑎
𝑡𝑚𝑝ℎ𝑝

𝑎

0
𝑑𝑡)𝑢

𝑎=1  (5.21) 

5.4.3. Energy consumption of component heating 

In this section, the energy consumption modelling for the component heating module is 

presented. The module has two working states: the initial heating state and the heat 

preservation state. The following modelling is carried out for these two stages. 

In this study, the number of component heating modules is defined as 𝑣. The apparent 

power of the 𝑏th module in the initial heating state is defined as 𝑃ℎ
𝑏, while the apparent 

power in the heat preservation state is defined as 𝑃ℎℎ𝑝

𝑏 . According to the G-code command 

to instruct the module heating in Table 5.8, the apparent powers 𝑃ℎ
𝑏 and 𝑃ℎℎ𝑝

𝑏  are both 

related to the target temperature 𝑇ℎ
𝑏  of this module. Therefore, 𝑃ℎ

𝑏  and 𝑃ℎℎ𝑝

𝑏   are 

respectively modelled as the functions of 𝑇ℎ
𝑏, as expressed in Equation (5.22) and Equation 
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(5.23). To obtain the functional relationships in the two equations, a power meter is used to 

measure the apparent powers 𝑃ℎ
𝑏, 𝑃ℎℎ𝑝

𝑏  of the component heating module under different 

target temperatures 𝑇ℎ
𝑏. The target temperature 𝑇ℎ

𝑏 in the G-code commands “M140 S𝑇ℎ
𝑏” 

and “M190 S 𝑇ℎ
𝑏” is manually assigned with different values. The value of 𝑇ℎ

𝑏 is set within 

the range from current room temperature to the maximum temperature that the module can 

be heated to. Then, the defined G-code commands are used to instruct the heating of module 

to different target temperatures 𝑇ℎ
𝑏.  

 𝑃ℎ
𝑏 = 𝑓(𝑇ℎ

𝑏)    (5.22)                    

 𝑃ℎℎ𝑝

𝑏 = 𝑓(𝑇ℎ
𝑏)     (5.23)  

Table 5.8: Information for measuring the apparent powers of the component heating 

module under different process parameters  

Apparent power 
Related 

parameters 

Parameter ranges 

Lower bound Upper bound 

Initial heating 𝑃ℎ
𝑏 

Target 

temperature 
𝑇ℎ

𝑏 
Current room 

temperature 

Maximum temperature of 

component heating module  
Heat 

preservation 
𝑃ℎℎ𝑝

𝑏  

G-code commands 

M140 S(𝑇ℎ
𝑏)  : Set the target temperature 𝑇ℎ

𝑏  of component heating 

module 

M190 S(𝑇ℎ
𝑏) : Heat the module to the target temperature 𝑇ℎ

𝑏 

Based on the experimental results, polynomial regression method is applied to calculate 

the coefficients in Equation (5.22) and Equation (5.23). The total energy consumption 𝐸ℎ 

of the component heating is modelled as the sum of the time-integral of power of all modules, 

as expressed in Equation (5.24). 

 𝐸ℎ = ∑ (∫ 𝑃ℎ
𝑏𝑡ℎ

𝑏

0
𝑑𝑡𝑣

𝑏=1 + ∫ 𝑃ℎℎ𝑝

𝑏
𝑡ℎℎ𝑝

𝑏

0
𝑑𝑡)        (5.24) 
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5.4.4. Energy consumption of material feeding 

In this section, the energy consumption modelling for the material feeding module is 

presented. The module has two working states: the material feeding state with an actual 

feeding amount and the standby state to wait for the next feeding operation. In both working 

states, the module remains running with stable power so as to be ready for supplying material 

at any time. In this study, the number of material feeding modules is defined as 𝑤. The 

apparent power of the 𝑐 th module is defined as 𝑃𝑚𝑓
𝑐  . As discussed in Section 5.3, the 

material feeding module has two types of feeding operations. The modelling of each type is 

described as follows. 

The first type of feeding operation is mainly applied in material extrusion (ME), material 

jetting (MJ), direct energy deposition (DED) and polymerisation technologies. In these AM 

technologies, the material feeding module runs synchronously with the axis movement 

module. According to the G-code command for material feeding in Table 5.9, the apparent 

power 𝑃𝑚𝑓
𝑐  of this task is related to the feeding rate 𝐹𝑥𝑦 in X, Y directions. Thus, 𝑃𝑚𝑓

𝑐  is 

modelled as a function of 𝐹𝑥𝑦, as expressed in Equation (5.25).  

 𝑃𝑚𝑓
𝑐 = 𝑓(𝐹𝑥𝑦)                        (5.25) 

To obtain the functional relationship, a power meter is used to measure the apparent 

powers 𝑃𝑚𝑓
𝑐  of material feeding at different feeding rates 𝐹𝑥𝑦. The feeding rate 𝐹𝑥𝑦 in the 

G-code command “G1 Fxy Xnnn Ynnn Emmm” is manually assigned with different values. 

The value of 𝐹𝑥𝑦 is set within the range from the lowest feeding rate to the highest feeding 

rate of the material feeding module. Then, the defined G-code command is used to instruct 

the module to feed the material at different rates 𝐹𝑥𝑦. Based on the experimental results, 

polynomial regression method is applied to model the functional relationship in Equation 

(5.25). Thus, the coefficient in this function is finally obtained. 
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The second type of feeding operation is mainly applied in binder jetting (BJ), powder bed 

fusion (PBF) and sheet lamination technologies, as discussed in Section 5.3. In the material 

feeding state with an actual feeding amount, the module supplies material between the 

construction of two adjacent layers. In the standby state, the module is maintained at the 

previous power level to wait for the material feeding of the next layer. Thus, the apparent 

power 𝑃𝑚𝑓
𝑐   of the material feeding module and its related parameter (i.e. the time 

consumption of material feeding 𝑡𝑙𝑎𝑦𝑒𝑟  for one layer) are fixed constants. In these AM 

technologies, the apparent power 𝑃𝑚𝑓
𝑐  can be measured by using a power meter. 

Based on the above, the total energy consumption 𝐸𝑚𝑓 of material feeding is modelled 

as the sum of the time-integral of power of all modules, as expressed in Equation (5.26). 

 𝐸𝑚𝑓 = ∑ ∫ 𝑃𝑚𝑓
𝑐 𝑑𝑡

𝑡𝑚𝑓
𝑐

0
𝑤
𝑐=1                      (5.26) 
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Table 5.9: Information for measuring the apparent powers of the material feeding module under different process parameters (G-Code – Reprap, 2020) 

Apparent 

power 
Related parameters 

Parameter ranges Applied AM technologies 

Lower bound Upper bound Material extrusion (ME),  

Material jetting (MJ), 

Direct energy deposition (DED), 

Polymerisation 

𝑃𝑚𝑓
𝑐  

Rate of material feeding in X, Y 

directions 
𝐹𝑥𝑦 

Lowest speed of 

material feeding module 

in X, Y directions 

Highest speed of 

material feeding module 

in X, Y directions 

Time consumption of material feeding 

for one layer 
𝑡𝑙𝑎𝑦𝑒𝑟 Fixed constant 

Binder jetting (BJ), 

Powder bed fusion (PBF) 

Sheet lamination 

G-code 

commands 

G1 F(𝐹𝑥𝑦) Xnnn Ynnn Emmm : Nozzle moves to the target coordinate (Xnnn, Ynnn) with material feeding. The total amount of material feeding 

is mmm. The rate of material feeding or the speed of axis movement is 𝐹𝑥𝑦. 
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5.4.5. Energy consumption of auxiliary components 

This section presents the energy consumption modelling for the auxiliary components 

module. As discussed in Section 5.2, the auxiliary components are classified as two types 

based on their functions. Details of each type are described as follows. 

The first type is a component used to monitor and control the machine status during the 

printing process, such as the display unit, temperature sensor, and user interface and 

connectivity. These components keep running even when the machine is in standby mode. 

According to experimental results, the components maintain a stable apparent power 𝑃𝑠 no 

matter whether they are in standby mode or operating throughout the manufacturing process.  

The second type is a component used to support the AM process, such as the cooling 

system. When an AM task begins, these components start running until the end of the task. 

Meanwhile, the apparent power increases from standby power 𝑃𝑠 to a higher level to start 

up the machine. This mode is defined as the start-up mode in this study. This increased power 

difference is defined as the start-up power 𝑃0.  

Based on the above, the auxiliary components run throughout the entire AM task. A power 

meter is used to measure the total apparent power (i.e. 𝑃𝑠 + 𝑃0) before or after the printing 

process. The total time consumption 𝑡𝑎𝑢𝑥  of this module is equal to the total time 

consumption 𝑡𝑡𝑜𝑡𝑎𝑙  of the entire AM process. Therefore, the total energy consumption 

𝐸𝑎𝑢𝑥 of the auxiliary components is modelled as the product of total apparent power and 

total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 , as expressed in Equation (5.27). The value of  𝑡𝑡𝑜𝑡𝑎𝑙  is 

determined by the running sequences and time consumptions of the other four modules.  

 𝐸𝑎𝑢𝑥 = (𝑃𝑠 + 𝑃0)𝑡𝑡𝑜𝑡𝑎𝑙                     (5.27) 
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Above all, the total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 of the entire AM process is refined. By 

integrating Equation (5.17) to Equation (5.27), 𝐸𝑡𝑜𝑡𝑎𝑙 is modelled as the sum of the energy 

consumed by all five types of modules, as expressed in Equation (5.28). 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑝 + 𝐸ℎ + 𝐸𝑚𝑓 + 𝐸𝑎𝑢𝑥              (5.28) 

5.5.  Predictive model of material consumption 

The total material consumption can be directly modelled from the calculation of G-code. 

Thus, the conceptual model of Equation (4.8) in Section 4.3.3 is used as the final predictive 

model. Due to different materials being used in different AM technologies, the volume 

calculation of total material usage (i.e. ∑ 𝑉𝑢𝑛𝑖𝑡) depends on the particular type and state of 

material. The volume calculation of each type of AM technology is described as follows. 

Fused deposition modelling (FDM) is a common branch of material extrusion (ME) 

technology. The material most commonly used in FDM technology is polylactic acid (PLA) 

thermoplastic filament. As shown in Figure 5.6, the amount of material usage is in 

millimetres of length, which is provided by the G-code command beginning with the letter 

“E”. As discussed in the conceptual model of Equation (4.8), 𝑉𝑢𝑛𝑖𝑡 denotes the volume of 

material consumption in each displacement of axis movement. In the FDM process, the value 

of 𝑉𝑢𝑛𝑖𝑡  is calculated through Equation (5.29), in which ∅  denotes the diameter of 

material filament and ℓ𝐸  denotes the length of supplied material filament in each 

displacement of axis movement.  

 𝑉𝑢𝑛𝑖𝑡 = ℓ𝐸𝜋
∅2

4
    (5.29) 
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Figure 5.6: Volume calculation of material consumption in FDM technology 

The material most commonly used in powder bed fusion (PBF) technology is metal 

powder. As shown in Figure 5.7, the powders are firstly supplied on the new layer. Then, 

the laser or thermal print head runs, accompanied by the axis movement, to solidify the 

powder on the predefined toolpaths. In this case, the consumption of solidified powder is 

calculated through Equation (5.30), where 𝑉𝑢𝑛𝑖𝑡 denotes the volume of solidified powder 

in each displacement of axis movement, ∅ denotes the diameter of the laser or thermal print 

head, 𝐿𝑇  denotes the layer thickness and ℓ𝐸  denotes the distance of axis movement in 

each displacement.  

 𝑉𝑢𝑛𝑖𝑡 = ∅ ∙ 𝐿𝑇 ∙ ℓ𝐸   (5.30) 

 

Figure 5.7: Volume calculation of material consumption in PBF technology 

The material most commonly used in direct energy deposition (DED) technology is metal 

powder. As shown in Figure 5.8, the material feeding is synchronous with axis movement 
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in X, Y directions. During the printing process, the powders are sprayed onto the build 

platform through the powder feeder and melted by the laser or electron beam. In this case, 

the consumption of solidified powder is also calculated through Equation (5.30), where 

𝑉𝑢𝑛𝑖𝑡 denotes the volume of solidified powder in each displacement of axis movement, ∅ 

denotes the diameter of the laser or thermal print head, 𝐿𝑇 denotes the layer thickness and 

ℓ𝐸 denotes the distance of axis movement in each displacement. 

 

Figure 5.8: Volume calculation of material consumption in DED technology 

Similar to powder bed fusion (PBF) and direct energy deposition (DED) technologies, 

both sheet lamination and polymerisation technologies use lasers to solidify material on the 

predefined toolpaths of each layer. Therefore, the volume calculations for these two AM 

technologies also use the same method in Equation (5.30). 

Material jetting (MJ) technology fabricates by jetting liquid material onto the build 

platform. As shown in Figure 5.9, there are multiple print heads located on the jetting head. 

All print heads are extremely small and can provide resolutions up to 16 microns (Treatstock, 

2020). During the printing process, the material droplets are selectively jetted from the print 

heads onto the desired area, using a thermal or piezoelectric method (Yap et al., 2017). Then, 

the materials are cured by ultraviolet (UV) light to form the 3D object. Since the material 

feeding is synchronous with axis movement in X, Y directions, 𝑉𝑢𝑛𝑖𝑡  is defined as the 

volume of supplied liquid per displacement per print head. The value of 𝑉𝑢𝑛𝑖𝑡 is calculated 

as shown in Equation (5.31), where 𝑉𝑎𝑣𝑔 denotes the average volume of liquid supplied 

per unit displacement and ℓ𝐸 denotes the distance of axis movement in each displacement. 
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Based on the above, the total volume ∑ 𝑉𝑢𝑛𝑖𝑡 of material consumption is the sum of all print 

heads’ material consumed across all displacements.  

 𝑉𝑢𝑛𝑖𝑡 = 𝑉𝑎𝑣𝑔 ∙ ℓ𝐸   (5.31) 

  

 

Figure 5.9: Volume calculation of material consumption in MJ technology 

Binder jetting (BJ) technology uses a similar method to MJ. As shown in Figure 5.10, BJ 

fabricates by selectively jetting liquid binder to the layered powders by following the 

predefined toolpaths. Since the material feeding is synchronous with axis movement in X, Y 

directions, 𝑉𝑢𝑛𝑖𝑡 is defined as the volume of bonded powders in each displacement of axis 

movement. The value of 𝑉𝑢𝑛𝑖𝑡 is also calculated by using Equation (5.30). In this case, ∅ 

denotes the diameter of the print head, 𝐿𝑇 denotes the layer thickness and ℓ𝐸 denotes the 

distance of axis movement in each displacement. Based on the above, the total volume 

∑ 𝑉𝑢𝑛𝑖𝑡 of material consumption is the sum of all print heads’ material consumed across all 

displacements. 

 

Figure 5.10: Volume calculation of material consumption in BJ technology
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Table 5.10: Related parameters in the predictive model of material consumption for different AM technologies 

AM technologies Material forms Related parameters Predictive models 

Material extrusion 

(ME) 
Wire 

∅ ℓ𝐸 

𝑉𝑢𝑛𝑖𝑡 = ℓ𝐸𝜋
∅2

4
 

Diameter of material filament 
Length of deposited material in each 

displacement of axis movement 

Powder bed fusion 

(PBF) 
Powder 

∅ ℓ𝐸 𝐿𝑇 

𝑉𝑢𝑛𝑖𝑡 = ∅ ∙ 𝐿𝑇 ∙ ℓ𝐸 

Diameter of laser or 

thermal print head 

Distance of axis movement in each 

displacement 
Layer thickness 

Direct energy 

deposition 

(DED) 

Powder 
Diameter of laser of 

electron beam 

Distance of axis movement in each 

displacement 
Layer thickness 

Sheet lamination Sheet Diameter of laser 
Distance of axis movement in each 

displacement 
Layer thickness 

Polymerisation Liquid Diameter of laser 
Distance of axis movement in each 

displacement 
Layer thickness 

Binder jetting 

(BJ) 
Powders Diameter of print head 

Distance of axis movement in each 

displacement 
Layer thickness 

Material jetting 

(MJ) 
Liquid 

ℓ𝐸 𝑉𝑎𝑣𝑔 

𝑉𝑢𝑛𝑖𝑡 = 𝑉𝑎𝑣𝑔 ∙ ℓ𝐸 Distance of axis movement in each 

displacement 

Average volume of liquid material supplied per 

unit displacement 
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Based on the above, Table 5.10 summarises all related parameters to calculate the material 

consumptions in different AM technologies. For each AM technology, the corresponding 

calculation equation of 𝑉𝑢𝑛𝑖𝑡 is substituted into the conceptual model in Equation (4.8). 

The total mass of material consumption can finally be calculated through the product of the 

material density 𝜌 and the cumulative volume ∑ 𝑉𝑢𝑛𝑖𝑡 of material feeding. The material 

density 𝜌 in Equation (4.8) uses the quoted density of the material. For some materials 

where the density is unknown, a density meter is applied to measure the actual value of this 

parameter.  

5.6. Experimental measurements of parameters in the predictive 

models 

The previous sections introduce the detailed modelling procedures for predicting time, 

energy and material consumptions. In this section, the parameters in the predictive models 

are summarised in the format of tree diagrams. To clearly illustrate the diagrams, fused 

deposition modelling (FDM) and powder bed fusion (PBF) technologies are used as two 

examples to list all parameters that form the predictive models. To begin, the manufacturing 

flows of the two AM technologies are displayed and introduced. Then, the parameters are 

classified into three types: parameters calculated from G-code, parameters obtained from 

experiments, and parameters determined by the running sequences and time consumptions 

of the five modules. Based on the classification of parameters, it can clearly be seen which 

parameters need to be measured under different related process parameters.  

Figure 5.11 displays the manufacturing flow of FDM technology. At the start, material is 

treated through the material processing module (i.e. nozzle heater or hotend). Then, the 

construction of the first layer begins through axis movement and material feeding in X, Y 

directions. Once the material deposition on the current layer is completed, the nozzle moves 

to the height of the next layer through axis movement in Z direction. Then, the construction 

of a new layer is commenced. The AM process is completed when all layers are printed. 
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During the AM process, other modules – including component heating and auxiliary 

components – also participate in the printing. Their running sequences are determined by the 

machine characteristics. 

 
Figure 5.11: Manufacturing flow of FDM technology 

 

Figure 5.12: Three types of parameters for the time modelling of FDM technology 



180 

 

 

Figure 5.13: Three types of parameters for the energy modelling of FDM technology 

 

Figure 5.14: Three types of parameters for the consumed material modelling of FDM 

technology 



181 

 

As shown in Figure 5.12 to Figure 5.14, three types of parameters are needed to form the 

predictive models of FDM technology. The first type is a parameter in blue diagonal stripes 

that is directly calculated from G-code. The second type is a parameter in green horizontal 

stripes that is measured through experiments. The third type is a parameter in red vertical 

stripes that is dependent on the running sequences and time consumptions of other modules. 

In details, the first type of parameter to be calculated from G-code includes three parts: 

the time 𝑡𝑥𝑦𝑧  of axis movement with actual displacements, the time 𝑡𝑚𝑓
𝑐   of material 

feeding and the volume 𝑉𝑢𝑛𝑖𝑡 of material feeding per displacement of axis movement. The 

second type of parameter is derived from experimental measurements. Table 5.11 lists all 

parameters to be measured under different related process parameters. Note that the standby 

power 𝑃𝑠, start-up power 𝑃0 of auxiliary components, and current temperatures 𝑇𝑚𝑝0
𝑎  and 

𝑇ℎ0

𝑏  of the material processing module and component heating module are all fixed constants 

without any related process parameters. Furthermore, other parameters in Table 5.11 are 

measured under different values of their related process parameters. All of the time and 

apparent powers to be measured for this FDM technology are tested by using a power meter. 

All current temperatures to be measured are recorded directly through the display unit of the 

AM machine, since all general AM machines have temperature sensors to monitor the heated 

components. The third type of parameter is dependent on the running sequences and time 

consumptions of the five modules. These parameters are modelled based on the Gantt chart 

of the five modules. The parameters include the interval time 𝑡𝑥𝑦𝑧
0  during axis movement, 

and the heat preservation time 𝑡𝑚𝑝ℎ𝑝
𝑎   and 𝑡ℎℎ𝑝

𝑏   of the material processing module and 

component heating module. 
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Table 5.11: Parameters to be measured through experiments under different related process 

parameters for FDM technology 

Module Parameters Meanings 
Related process 

parameters 
Meanings 

Material 

processing 

𝑡𝑚𝑝
𝑎  Initial heating time 

𝑇𝑚𝑝
𝑎  Target temperature 

𝑃𝑚𝑝
𝑎  

Apparent power of initial 

heating 

𝑃𝑚𝑝ℎ𝑝
𝑎  

Apparent power of heat 

preservation 

𝑇𝑚𝑝0
𝑎  Current temperature None None 

Component 

heating 

𝑡ℎ
𝑏 Initial heating time 

𝑇ℎ
𝑏 Target temperature 

𝑃ℎ
𝑏  

Apparent power of initial 

heating 

𝑃ℎℎ𝑝

𝑏  
Apparent power of heat 

preservation 

𝑇ℎ0

𝑏  Current temperature None None 

Axis 

movement 
𝑃𝑎𝑥𝑖𝑠 

Apparent power of axis 

movement 
𝐹𝑥𝑦, 𝐹𝑧 

Speed of axis 

movement in X, Y, Z 

directions 

Material 

feeding 
𝑃𝑚𝑓

𝑐  
Apparent power of 

material feeding 
𝐹𝑥𝑦 

Speed of axis 

movement in X, Y 

directions 

Auxiliary 

components 

𝑃𝑠 Standby power None None 

𝑃0 Start-up power None None 

Figure 5.15 displays the working flow of powder bed fusion (PBF) technology. First, the 

laser in the material processing module is heated to the target temperature. Then, the powder 

for the first layer is supplied to the build platform by the material feeding module (i.e. powder 

roller or recoater). Next, the construction of the first layer begins through axis movement in 

X, Y directions. The powder is solidified by the laser. Once the material deposition on the 

current layer is completed, the build platform moves down to the height of the next layer 

through the axis movement module in Z direction. The material feeding and construction of 

the new layer are then continued. The AM process is completed when all layers all printed. 

During this AM process, auxiliary components also participate in the entire printing process. 

Different from FDM technology, the material feeding and axis movement of PBF technology 

are carried out separately during the AM process. Additionally, there is no component 

heating module in PBF technology. Thus, there are only four types of modules involved in 
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the PBF process, namely axis movement, material feeding, material processing and auxiliary 

components. 

 

Figure 5.15: Manufacturing flow of PBF technology 

 

Figure 5.16: Three types of parameters for the time modelling of PBF technology 
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Figure 5.17: Three types of parameters for the energy modelling of PBF technology 

 

Figure 5.18: Three types of parameters for the material modelling of PBF technology 

Figure 5.16 to Figure 5.18 present three types of parameters in the predictive models of 

PBF technology. In details, the first type of parameter can be obtained from G-code and 

comprises three parts: the time consumption 𝑡𝑥𝑦𝑧  of axis movement with actual 
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displacements in X, Y, Z directions, the time consumption 𝑡𝑚𝑓
𝑐  of material feeding and the 

volume 𝑉𝑢𝑛𝑖𝑡 of solidified powder in each displacement of axis movement.  

The second type of parameter is derived from experimental measurements. Table 5.12 

lists all parameters to be measured under different related process parameters. As discussed 

in Section 5.3.4, the material feeding module needs extra time 𝑡𝑓𝑒𝑒𝑑
𝑐   to transport the 

material from the powder stock to the build platform. During this time, the axis movement 

module is in a standby state to wait for the completion of material feeding. This period of 

time belongs to the interval time of axis movement. According to 𝑡𝑓𝑒𝑒𝑑
𝑐 = 𝑡𝑙𝑎𝑦𝑒𝑟 ∙ 𝐿𝑁 in 

Equation (5.8), the time consumption 𝑡𝑙𝑎𝑦𝑒𝑟  of material feeding per layer should be 

measured through experiments in order to calculate the total time 𝑡𝑓𝑒𝑒𝑑
𝑐  of material feeding 

for new layers. Furthermore, the current temperature 𝑇𝑚𝑝0
𝑎   of the material processing 

module, and the standby power 𝑃𝑠 and start-up power 𝑃0 of auxiliary components are all 

fixed constants without any related process parameters. Moreover, other parameters in Table 

5.12 are measured under different values of their related process parameters. All the time 

and apparent powers to be measured for this PBF technology are tested by using a power 

meter. All current temperatures to be measured are recorded directly through the display unit 

of the AM machine. 

The third type of parameter is dependent on the running sequences and time consumptions 

of the five modules. In PBF technology, this parameter includes two parts: the interval time 

𝑡𝑥𝑦𝑧
0  during axis movement and the heat preservation time 𝑡𝑚𝑝ℎ𝑝

𝑎  of the material processing 

module. 
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Table 5.12: Parameters to be measured through experiments under different related process 

parameters for PBF technology 

Module Parameters Meanings 
Related process 

parameters 
Meanings 

Material 

processing 

𝑡𝑚𝑝
𝑎  Initial heating time 

𝑇𝑚𝑝
𝑎  Target temperature 

𝑃𝑚𝑝
𝑎  

Apparent power of initial 

heating 

𝑃𝑚𝑝ℎ𝑝
𝑎  

Apparent power of heat 

preservation 

𝑇𝑚𝑝0
𝑎  Current temperature None None 

Axis 

movement 
𝑃𝑎𝑥𝑖𝑠 

Apparent power of axis 

movement 
𝐹𝑥𝑦, 𝐹𝑧 

Speed of axis movement 

in X, Y, Z directions 

Material 

feeding 

𝑡𝑓𝑒𝑒𝑑
𝑐  

Time of material feeding 

for new layers 
𝑡𝑙𝑎𝑦𝑒𝑟  

Time of material feeding 

per new layer 

𝑃𝑚𝑓
𝑐  

Apparent power of 

material feeding 
𝐹𝑥𝑦 

Speed of axis movement 

in X, Y directions 

Auxiliary 

components 

𝑃𝑠 Standby power None None 

𝑃0 Start-up power None None 

The above two examples illustrate three types of parameters that form the predictive 

models of different AM technologies. The parameters to be measured through experiments 

are determined by the machine characteristics. Based on the experiments, polynomial 

regression method is applied to curve-fit the functional relationships between the measured 

parameters and their related process parameters. The coefficients in these functions are 

finally obtained to form the predictive models.  

5.7. Additional experiments to improve prediction accuracy  

The previous section discusses the design of experiments for consumption modelling. This 

section presents the additional experiments for testing the actual values of certain parameters 

in the predictive models in order to improve the prediction accuracy. In a practical 

manufacturing context, some parameters in the predictive models are affected by the 

characteristics of the particular machine and material. For example, motor out-of-step is 

caused by the high loads and insufficient torques of stepper motors during high-speed axis 
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movement and high-rate material feeding. The occurrence of motor out-of-step leads to the 

axis movement module and material feeding module failing to reach the specified movement 

speeds and feeding rates. Therefore, to improve the prediction accuracy, additional 

experiments are conducted to test the actual speed of axis movement and actual rate of 

material feeding.  

Except for the above example, there are other similar factors that lead to deviations 

between the parameter values and the actual values. Thus, the purpose of additional 

experiments is to reduce the impact of these deviations on the accuracy of the predictive 

models. For AM machines with superior performance, or in the case of limited experimental 

resources and time, it is unnecessary to spend extra time on additional experiments. Based 

on the characteristics of different AM technologies, details of additional experiments are 

described below. Similar to the previous section, fused deposition modelling (FDM) and 

powder bed fusion (PBF) technologies as used again as two examples for illustration 

purposes.  

Figure 5.19 presents three common factors affecting the performance of an FDM 3D 

printer. The running of the X, Y, Z axes in a Cartesian system is driven by three stepper 

motors in X, Y, Z directions. Each motor is responsible for the axis movement in one 

direction. Through experiments on an ANYCUBIC i3 Mega FDM 3D printer and Monoprice 

Mini Delta three-linear slider FDM 3D printer, it was observed that a speed of axis 

movement above 3000mm/min can cause the overloading and out-of-step of the stepper 

motors. In addition, the material feeding module is driven by another stepper motor and the 

high-speed feeding of the polylactic acid (PLA) filament can also cause motor out-of-step. 

This is because the material cannot be melted in time when the feeding rate exceeds 

6000mm/min, resulting in an insufficient supply of material for each displacement.  
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Figure 5.19: Additional experiments on FDM technology 

Therefore, additional experiments are conducted to measure the actual movement speeds 

𝐹𝑥𝑎𝑐𝑡
 , 𝐹𝑦𝑎𝑐𝑡

 , 𝐹𝑧𝑎𝑐𝑡
  in X, Y, Z directions. Their functional relationships with the expected 

speeds 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 are modelled from Equation (5.32) to Equation (5.34). The coefficients 

in these functions are obtained by using polynomial regression method.  

 𝐹𝑥𝑎𝑐𝑡
= 𝑓(𝐹𝑥)                           (5.32) 

 𝐹𝑦𝑎𝑐𝑡
= 𝑓(𝐹𝑦)                           (5.33) 

 𝐹𝑧𝑎𝑐𝑡
= 𝑓(𝐹𝑧)                           (5.34) 

Based on the above, the actual resultant velocity 𝐹𝑥𝑦𝑎𝑐𝑡
 is calculated as the vector sum of 

the actual speeds 𝐹𝑥𝑎𝑐𝑡
, 𝐹𝑦𝑎𝑐𝑡

 in X, Y directions, as expressed in Equation (5.35). Both 

actual speeds 𝐹𝑥𝑦𝑎𝑐𝑡
  and 𝐹𝑧𝑎𝑐𝑡

  are used to replace the expected speeds 𝐹𝑥𝑦  and 𝐹𝑧  in 

Equation (4.16).  

 𝐹𝑥𝑦𝑎𝑐𝑡
= √𝐹𝑥𝑎𝑐𝑡

2 + 𝐹𝑦𝑎𝑐𝑡

2                       (5.35) 
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In addition, motor out-of-step commonly occurs during high-rate material feeding in 

general AM technologies. To improve the prediction accuracy, additional experiments are 

conducted to measure the actual amount 𝑉𝑢𝑛𝑖𝑡𝑎𝑐𝑡
 of material feeding per displacement of 

axis movement. The measured results can be used to replace the expected amount 𝑉𝑢𝑛𝑖𝑡 of 

material feeding provided by G-code. Furthermore, the actual density 𝜌𝑎𝑐𝑡 of material is 

also measured to replace the quoted density 𝜌. The improved conceptual model of material 

consumption is expressed as Equation (5.36). 

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑎𝑐𝑡  ∙ ∑ 𝑉𝑢𝑛𝑖𝑡𝑎𝑐𝑡
  (5.36) 

Similar to FDM, there are two factors affecting the performance of powder bed fusion 

(PBF) technology: the out-of-step of stepper motors caused by high-speed axis movement 

and the actual density of material, as shown in Figure 5.20. Since the powder is supplied by 

the powder roller, there is no motor out-of-step occurring during the material feeding. 

Therefore, the same experiments are conducted to calculate the coefficients between the 

actual speeds 𝐹𝑥𝑎𝑐𝑡
, 𝐹𝑦𝑎𝑐𝑡

, 𝐹𝑧𝑎𝑐𝑡
 and the expected speeds 𝐹𝑥, 𝐹𝑦, 𝐹𝑧. The actual material 

density 𝜌𝑎𝑐𝑡 is also measured. 

 

Figure 5.20: Additional experiments on PBF technology 

The results measured above are used to replace the original parameters in the predictive 

models. The additional experiments conducted in this step are based on the prediction 
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accuracy of the original models, machine performance and customer demands. During the 

process of data-driven modelling, this step requires more time and a greater number of 

experiments to improve the prediction accuracy.  

5.8. Application indication of prediction modelling  

The previous sections present the details of prediction modelling of AM time, energy and 

material consumptions. This section summarises the previous contents and provides a 

concise indication of applying the prediction modelling method to real-world AM systems. 

 

Figure 5.21: Basic workflow of prediction modelling of AM time, energy and material 

consumptions 
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 The basic workflow of the prediction modelling of a new AM machine is summarised in 

Figure 5.21. At the beginning, which type of AM technology the current machine belongs 

to needs to be clarified. Referring to the table of module classification in Figure 3.2, all 

energy-consuming components of the AM machine should be identified and classified into 

five types of modules based their functions.  

The second step is to figure out the manufacturing mechanism of the AM machine, i.e., 

the running sequences of modules, and the working states of each module. The aim is to 

formulate a Gannt chart that can intuitively reflect the operating rules of this AM machine. 

In this step, six power profiles need to be recorded and generated by using a power meter. 

⚫ At first, five modules are commanded to run separately to record the power profile of 

each module, as shown in Figure 5.22. Based on the manufacturing function, the 

working states of each module can be observed and classified. For example, when the 

material processing module is started to heat up to the specified temperature, it can 

be observed through the machine display that the module has two working states, 

namely initial heating and heat preservation. In initial heating state, the module is 

heated from the current temperature to the target temperature. In the heat preservation 

state, the module is maintained at the target temperature. It can also be observed from 

the power profile that the power curves in two states are completely different.  

⚫ In addition, the power profile of a general AM task printed by the AM machine needs 

to be recorded. Once the AM process starts, the power curve is gradually generated 

along the time axis, as shown in Figure 5.22. As each module is started up and 

running by following G-code commands, its starting point needs to be manually 

marked on the power profile. When the AM process is finished, the Gannt chart can 

be formulated by corresponding the power profiles of five modules to their starting 

points on the power profile of the AM task.  
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Figure 5.22: Instruction of the power profile of each module corresponding to the starting point on the power profile of an AM process 
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The third step is to identify the parameters that formulate the predictive models. The 

previous sections have defined the predictive models for general AM technologies. The 

parameters in the predictive models can be classified into three types: 

1). The first type refers to the parameters to be calculated from G-code, including the time 

of axis movement with actual displacements, and the amount of material feeding;  

2). The second type refers to the parameters to be obtained through experiments, including 

the apparent powers of all modules, the initial heating time and current temperatures of 

modules to be heated;  

3). The third type refers to the remaining parameters decided by the running sequences 

and time consumptions of the five modules based on the Gannt chart. 

Above parameters can be summarised to formulate the tree diagram as discussed in 

previous sections. The tree diagram can clearly show all the parameters needed to build the 

predictive models and their types.  

The final step is to obtain the models of above parameters through hybrid-modelling 

method. In physics-based modelling, the first type of parameters can be directly calculated 

from G-code. In data-driven modelling, the second type of parameters can be obtained 

through experiments under different process parameters. Regression analysis method is 

applied to process the experimental data and derive the functional relationships between 

measured parameters and their related process parameters. Based on the Gannt chart, the 

third type of parameters can be modelled as the functions of other parameters. For example, 

the time consumption 𝑡𝑎𝑢𝑥 of auxiliary components is equal to the total time consumption 

of other four modules. Once obtain the models of all parameters, the predictive models of 

AM time, energy and material consumptions can be finally formulated. 

From the practical applications of proposed modelling method, it is found that the 

predictive models of some specific modules need to be adjusted according to machine 
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characteristics. In order to facilitate the consumption modelling of general AM technologies, 

the following points are summarised to be noticed in a practical manufacturing context. 

• Firstly, the proposed method has assumed that some parameters in the models are 

related to the process parameters. For example, since the material processing module 

processes raw material by being heated to a specified temperature, the target 

temperature 𝑇𝑚𝑝
𝑎   is the only process parameter that determines the energy 

consumption of this module. Thus, in Section 5.4.2, we assume that the apparent 

powers 𝑃𝑚𝑝
𝑎   and 𝑃𝑚𝑝ℎ𝑝

𝑎   of material processing in initial heating state and heat 

preservation state are the functions of the target temperature 𝑇𝑚𝑝
𝑎 . However, due to 

the machine particularity, it is possible that the measured power is constant and is 

irrelated with the process parameter. In this case, the model of such parameters needs 

to be adjusted according to the experimental results.  

• Secondly, the additional experiments are optional and determined by machine 

characteristics and customer demands. For example, the stepper motors of some AM 

machines lose steps during the material deposition process, which results in the 

deviation between the actual speed and the expected speed of axis movement. In this 

case, the experimental measurements can be added to obtain the relationship between 

the actual speed and the expected speed. Nota that the purpose of additional 

experiments is to improve the prediction accuracy of the predictive models for some 

AM machines that have deviations between the ideal and actual values of some model 

parameters. For AM machines with superior performance, or in the case of limited 

experimental resources and time, there is no need to spend extra time on additional 

experiments.  

5.9. Summary  

The conceptual predictive models proposed in Chapter 4 are refined in this chapter. Detailed 

modelling principles and procedures of each module are presented in this chapter. To begin, 
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the different working states of each module are defined. Then, the time, energy and material 

consumptions of each working state are modelled as functions of related process parameters. 

All of the parameters that form the predictive models are summarised as three types: 

parameters calculated from G-code, parameters obtained from experiments, and parameters 

determined by the running sequences and time consumptions of the five modules. In more 

detail, the time consumption of axis movement with actual displacements and the amount of 

material feeding are directly modelled from G-code. Experiments are designed to measure 

the apparent powers and time consumption of other modules to complete the predictive 

models. Considering the factors affecting the prediction accuracy, additional experiments are 

designed to test the related parameters, such as the actual speed of axis movement, actual 

amount of material feeding and actual material density.  

The hybrid modelling based on the different working states of the modules is one of the 

main contributions of this research. An AM machine is divided into five types of modules, 

with different working states based on the functions of the components. This method 

provides a clear, general and customised environment to model the time, energy and material 

consumptions of each module. The physics-based modelling fully uses the manufacturing 

information of the G-code, since this code provides the accurate coordinates, speed of axis 

movement and amount of material feeding. Plus, G-code also provides the running 

sequences of the five modules. This information helps to clearly identify the time 

consumption and power profile of each module, which significantly simplifies the modelling 

process and reduces the workload of experiments in data-driven modelling. The data-driven 

modelling and additional experiments fully consider the characteristics of machine and 

material. This has been shown to achieve an effective prediction in subsequent experimental 

validations. 

To validate the effectiveness of proposed prediction method, two case studies of fused 

deposition modelling (FDM) 3D printers are presented in Chapter 7. But first, in Chapter 

6, three predictive models are used as objective functions in the loop of the optimisation 

algorithm.  
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CHAPTER 6  MULTI-OBJECTIVE 

OPTIMISATION TO REDUCE TIME, 

ENERGY AND MATERIAL 

CONSUMPTIONS OF ADDITIVE 

MANUFACTURING TECHNOLOGIES 

6.1.  Introduction  

This chapter introduces the details of multi-objective optimisation, which aims to obtain the 

most feasible solution set of process parameters to minimise the time, energy and material 

consumptions of an AM process. The improvement and application of meta-heuristic 

algorithms in this optimisation problem is an innovative approach. Due to the wide range of 

applications in sophisticated optimisation problems, one of meta-heuristic algorithms is 

selected as the optimisation tool. Since non-dominated sorting genetic algorithm II (NSGA-

II) has been widely used to solve optimisation problems with two or three objectives in 

industrial manufacturing, it is improved and applied in this study to determine the most 

appropriate solution of process parameters. On the basis of the original algorithm, the 

prediction process – from inputting the process parameters into CAM to the generation of 

G-code – is embedded into the process of objective function calculation. The reason for this 

is that each solution of process parameters generates a unique G-code file. The information 

in G-code is fully used by the consumption modelling and thus the predicted consumptions 

are also unique.  

This chapter explains in detail each optimisation step that was improved and applied in 

the problem. The steps include population initialisation, non-dominated sorting, crowding 

distance ranking, elitism, selection, crossover operator, mutation operator and recombination. 

Experiments are designed to produce Pareto fronts under different combinations of 

optimisation parameters, including population size, number of generations, crossover 

probability and mutation probability. hypervolume (HV) indicator is used to evaluate all 
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obtained Pareto fronts and determine the optimum front that has the maximum HV value. 

The solutions in the optimum Pareto front can be used as a reference, which aids the decision 

making of the most feasible solution of process parameters for consumption reduction. 

6.2.  Application of NSGA-II in the multi-objective optimisation 

problem  

In this study, the original NSGA-II is improved to be adaptable in this optimisation problem. 

Figure 6.1 presents the flowchart of the improved algorithm. To start, the optimisation 

problem has been defined in Section 4.4. The three objectives (i.e. 𝑀 = 3) refer to the total 

time, energy and material consumptions in an AM task. The population size 𝑁 refers to the 

number of individuals in the initialised population. Each individual represents one candidate 

solution of process parameters. The innovative improvement based on the original NSGA-

II is described as follows. 

In physics-based modelling, since each combination of process parameters will produce a 

unique G-code file, the parameters calculated from G-code will have unique values. As a 

result, the predictive models of different process parameters will also be different. Thus, the 

process of objective function calculation in the original NSGA-II needs to be adjusted in this 

study. As shown in Figure 6.1, the entire prediction process is embedded in the process of 

objective function calculation. In more detail, the process parameters of each solution in the 

current population are input into the slicer software to generate the corresponding G-code. 

After that, the data in G-code is processed to calculate the time of axis movement with actual 

displacements and the amount of material feeding. The calculated parameters are imported 

into the predictive models, while other parameters have already been obtained through 

experiments. Once the predictive models are formulated, the consumptions are predicted and 

used as the fitness values of each solution for the subsequent step of non-dominated sorting. 

Although the above process needs to be performed for every new-born individual of the 

offspring generation, it can achieve high-precision predictions and the final optimum 

solutions will be more convincing. 
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Figure 6.1: Flowchart of NSGA-II algorithm applied to the multi-objective optimisation 

problem in this study 
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In the following sections, the details of each optimisation step applied in this study will 

be discussed. 

6.2.1. Encoding scheme of population initialisation 

A random population is first initialised based on the problem constraints and ranges. 

Learning from the natural selection and genetic mechanism of Darwin’s theory of evolution, 

all candidate solutions in the population are converted into chromosomes and the process 

parameters are encoded as genotypes distributed on the chromosomes (Whitley, 1994; 

Mitchell, 1998). In this study, the population size is defined as 𝑁. It indicates that there are 

𝑁 numbers of individuals randomly created as chromosomes. Each individual represents a 

solution containing 𝑛  numbers of decision variables, which are encoded as 𝑛  genes 

distributed along the chromosome. As shown in Figure 6.2, 𝐼𝑟
𝑁 denotes the 𝑟th gene among 

the 𝑛  genes on the 𝑁 th chromosome. Each gene is assigned a random value within its 

variable range [𝐼𝑟
𝐿, 𝐼𝑟

𝑈]. The definition of the variable range is discussed as follow.   

 

Figure 6.2: Example of population initialisation using real-coded genetic operations  
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The process parameters to be optimised contain integers, decimals and percentages. 

Therefore, according to the number of types of process parameters, this study uses the real-

coded genetic algorithm (GA) to encode the decision variables. The variables are represented 

directly by the process parameters, where the ranges from lower bounds 𝐼𝑟
𝐿  to upper 

bounds 𝐼𝑟
𝑈 are determined by the machine characteristics. Figure 6.2 presents an example 

of the population initialisation process. In this example, assume that there are six (i.e. 𝑁 =

6 ) populations to be initialised, while five types of process parameters (i.e. 𝑛 = 5 ) are 

considered in this three-objective problem, namely layer thickness 𝐿𝑇, infill density 𝐼𝐷, 

target temperature 𝑇𝑚𝑝
1  of the material processing module, speed 𝐹𝑥𝑦 of axis movement 

with or without material feeding in X, Y directions, and speed 𝐹𝑧 of axis movement in Z 

direction. Therefore, six individuals are initialised as six chromosomes. Five genes (i.e. five 

process parameters) on each chromosome are randomly assigned within the user-defined 

parameter range.  

The granularity of each process parameters is defined based on the coding rules of slicer 

software. The reason is that some slicer software may have special regulations for the digital 

formats of some process parameters. For example, in Cura slicer software, the granularity of 

target temperature is 1℃  for the material processing module. It indicates that the target 

temperature input into the slicer software must be an integer. In order to ensure that the slicer 

software can generate G-code normally, the process parameter of target temperature needs 

to be rounded to an integer before importing into the software. 

After the initialisation, the parameters in each individual case are imported into the slicer 

software to yield the corresponding G-code file. The data in G-code is automatically 

processed to calculate the time consumption of axis movement and the amount of material 

feeding. After this, these results are imported into three predictive models to calculate the 

time, energy and material consumptions. These predicted results can be used as the fitness 

values for the subsequent non-dominated sorting and crowding distance ranking. Once all 

individuals in the initialised population are formulated (i.e. 𝑗 = 𝑁), the optimisation cycle 

will begin and continue to the next step.  
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6.2.2. Elitism based on non-dominated sorting and crowding distance 

ranking 

Deb et al. (2002) show in detail the calculation method of non-dominated sorting. The 

pseudo codes are presented in Appendix Ⅰ (1). The basic steps of applying the method in 

this study are summarised as follows.  

⚫ At first, the fitness values of each individual (i.e. every solution of the process 

parameters) are calculated through three objective functions ℱ1(𝐱) , ℱ2(𝐱) , ℱ3(𝐱) , 

which respectively denote the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙, total energy consumption 

𝐸𝑡𝑜𝑡𝑎𝑙, and total material consumption 𝑀𝑡𝑜𝑡𝑎𝑙 of individual 𝐱.  

⚫ Then, every individual needs to calculate two entities: the domination count ℒ𝐱𝑝
 of the 

individual 𝐱𝑝  and the solution set 𝑆𝐱𝑝
  containing all individuals dominated by 

individual 𝐱𝑝 . To determine the dominance relationship, any two individuals are 

compared with each other based on the fitness values. For example, when all three 

consumptions ℱ𝑂𝑏𝑗(𝐱𝑝)  of individual 𝐱𝑝  are less than the three consumptions 

ℱ𝑂𝑏𝑗(𝐱𝑞) of individual 𝐱𝑞, it means that individual 𝐱𝑝 dominates individual 𝐱𝑞. 

⚫ As the first step in finding the first non-dominated front, the individual 𝐱𝑝 with zero 

domination count (i. e. ℒ𝐱𝑝
= 0)  is ranked with level 𝐿1 . In other words, if the 

individual 𝐱𝑝 is not dominated by any other individuals in current population, then it 

belongs to the first non-dominated front. 

⚫ The rest of the individuals 𝐱𝑞 dominated by 𝐱𝑝 are assigned with domination counts 

reduced by one. Those individuals 𝐱𝑞 with new dominance values of zero (i. e. ℒ𝐱𝑞
=

0) are assigned with the second level 𝐿2, which belongs to the second non-dominated 
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front. The remaining individuals are compared by following the same non-domination 

criteria until all individuals are sorted.  

According to the front levels from low to high, the individuals in the current population 

are put into the parent population until it is filled, as shown in Figure 6.3. When individuals 

located in the same front level and yet exceeding the population size N are encountered (e.g. 

individuals on level 𝐿3 in Figure 6.3), the density of individuals will be compared through 

crowding distance ranking. This is to ensure that the individuals located in lesser crowded 

regions are preserved and others are eliminated. 

 

Figure 6.3: Schematic of NSGA-II non-dominated sorting and crowding distance ranking 

Referring to Deb et al. (2002), the pseudo codes of crowding distance ranking are 

summarised in Appendix Ⅰ (2). The crowding distance refers to the Euclidean distance 

between two adjacent individuals in the same front. It is calculated to estimate the density 

of individuals surrounding a particular individual (Verma et al., 2021).  

In this study, there are 𝐶 individuals located on the same front level. The two boundary 

individuals 𝐱1 and 𝐱𝐶 refer to the solution sets of process parameters that have at least one 

maximum or minimum consumption among the time, energy and material consumptions. 

This is to ensure that all intermediate individuals can participate in the comparison of 

crowding distance. The distance values 𝒟[𝐱𝑡]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of other intermediate individuals 𝐱𝑡 

are calculated as the absolute normalised differences between the objective values 

ℱ𝑂𝑏𝑗(𝐱𝑡+1)  and ℱ𝑂𝑏𝑗(𝐱𝑡−1)  of two adjacent individuals 𝐱𝑡+1  and 𝐱𝑡−1 , as shown in 
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Equation (6.1). ℱ𝑂𝑏𝑗
𝑚𝑎𝑥 and ℱ𝑂𝑏𝑗

𝑚𝑖𝑛 denote the maximum and minimum time, energy 

and material consumptions of all individuals on the current front level. 

 𝒟[𝐱𝑡]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑
ℱ𝑂𝑏𝑗(𝐱𝑡+1)−ℱ𝑂𝑏𝑗(𝐱𝑡−1)

ℱ𝑂𝑏𝑗
𝑚𝑎𝑥−ℱ𝑂𝑏𝑗

𝑚𝑖𝑛
3
𝑂𝑏𝑗=1       (6.1) 

The elitism is performed by following two criteria: for two individuals with two different 

non-domination ranks, the individual with the lower or better rank will be retained; otherwise, 

for two individuals in the same front, the individual with a higher (i.e. lesser crowded) 

distance will be retained (Deb et al., 2002). After that, all retained individuals in the elite 

population 𝑃𝑘+1 are used for the selection of parents to produce offspring 𝑄𝑘+1 through 

simulated binary crossover (SBX) operator and polynomial mutation (PLM) operator.  

6.2.3. Binary tournament selection 

Tournament selection is an efficient and robust selection mechanism commonly used in 

genetic algorithms (GAs) attributed to its adjustable selection pressure. Compared with other 

selection methods in GAs, the coding of tournament selection is simple and effective for 

both parallel and non-parallel architecture (Fang and Li, 2010). In NSGA-II, tournament 

selection is used to select individuals as parents from the elite population to a mating pool. 

The selected individuals are the ones whose genes will be inherited by the next generation 

(Miller and Goldberg, 1995). Usually, the tournaments are held between two individuals (i.e. 

binary tournament) (Blickle and Thiele, 1996). Therefore, this study utilises the binary 

tournament selection to realise the selection of parents.  

The pseudo codes of binary tournament selection are summarised in Appendix Ⅰ (3). To 

ensure that the population size of selected parents is N, the number of tournaments is defined 

as N. In each tournament, two individuals (e.g. 𝐱𝑚, 𝐱𝑛) in the elite population 𝑃𝑘+1 are 

randomly selected to participate the tournament. Based on the non-dominated levels, the 

individual that has the lower (or better) level is selected as a parent. When encountering two 

individuals on the same level, the crowded-comparison operator is used to guide the 
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selection, and the one that has a larger crowding distance is selected as a parent. The aim of 

this step is to achieve a uniformly spread-out Pareto front (Deb et al., 2002). After the 

selections, the parent population containing N individuals is used to produce offspring 𝑄𝑘+1 

through simulated binary crossover (SBX) operator and polynomial mutation (PLM) 

operator. 

6.2.4. Simulated binary crossover operator 

This study uses real-coded genetic algorithm (GA) to encode the decision variables. It 

indicates that the six genes on the chromosome are directly represented by six process 

parameters for the AM process. Therefore, simulated binary crossover (SBX) is applied as 

the real-coded recombination operator to deal with real parameters, which simulates the 

single-point crossover on binary strings of decision variables (Beyer and Deb, 2001; Deb 

and Agrawal, 1995, Raghuwanshi and Kakde, 2004; Deb et al., 2007). Note that each 

individual in parent population has a pre-defined probability pc to participate in the crossover 

process. It indicates that the individuals not participating in the crossover process will be 

replicated as offspring. 

 

Figure 6.4: Schematic of NSGA-II optimisation process using simulated binary crossover 

(SBX) operator and polynomial mutation (PLM) operator 
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The working principles of binary crossover are summarised into four attributes: 1) the 

total gene value of offspring is the same as the total gene value of the parent; 2) each point 

on the coded strings has the same probability to be the crossover point; 3) offspring have a 

higher probability to be close to the parent; and 4) the crossover point in the lower bit of a 

coded string leads to a smaller change in the gene value (Deb et al., 2007).  

SBX is applied by using the probability density function to simulate the above working 

principles of binary crossover. As shown in Figure 6.4, the process parameters located on 

the same locus of two parent chromosomes are 𝑝1 and 𝑝2, and their offspring are 𝑐1 and 

𝑐2. By following the above principles, the sum of the gene values of the parent is equal to 

the sum of gene values of the offspring, as expressed in Equation (6.2). A spread factor 𝛽𝑐 

is used to indicate the ratio of the absolute difference between offspring and parent, as 

expressed in Equation (6.3). When 𝛽𝑐 < 1, the offspring are enclosed by the parent; when 

𝛽𝑐 = 1, the offspring are the same as the parent; and when 𝛽𝑐 > 1, the offspring enclose the 

parent (Deb and Agrawal, 1995). By substituting 𝛽𝑐 into Equation (6.2), two offspring can 

be expressed as Equation (6.4) and Equation (6.5). 

 𝑝1 + 𝑝2 = 𝑐1 + 𝑐2     (6.2)                      

 𝛽𝑐 =
|𝑐2−𝑐1|

|𝑝2−𝑝1|
                             (6.3) 

 𝑐1 =
(𝑝1+𝑝2)

2
−

𝛽𝑐(𝑝2−𝑝1)

2
                        (6.4)                                                                       

 𝑐2 =
(𝑝1+𝑝2)

2
+

𝛽𝑐(𝑝2−𝑝1)

2
                 (6.5) 

Referring to Deb and Agrawal (1995), Deb et al., (2007), the probability distribution of 

spread factor 𝛽𝑐 is defined as a specified probability density function c(𝛽𝑐) in Equation 

(6.6). As shown in Figure 6.5, a larger distribution index 𝜂𝑐 gives a higher probability for 

creating the offspring closer to the parent. Additionally, a random number 𝑢𝑐 between 0 

and 1 is defined, which indicates the cumulative distribution function of c(𝛽𝑐) in Equation 



206 

 

(6.7). In Figure 6.5, 𝑢𝑐  refers to the area under the probability curve from zero to an 

arbitrary point 𝛽𝑐
0. The closer that the value of 𝑢𝑐 is to 0.5, the higher the probability that 

offspring are close to parents. Based on Equation (6.6) and Equation (6.7), the spread factor 

𝛽𝑐 can be expressed as Equation (6.8).  

 c(𝛽𝑐) = {
0.5(𝜂𝑐 + 1)𝛽𝑐

𝜂𝑐           𝛽𝑐 ≤ 1

0.5(𝜂𝑐 + 1)
1

𝛽𝑐
𝜂𝑐+2       𝛽𝑐 > 1

             (6.6)                                                                

 𝑢𝑐 = ∫ 𝑐(𝛽𝑐)𝑑𝛽𝑐
𝛽𝑐

0

0
                      (6.7)                                                                        

 𝛽𝑐 = {
(2𝑢𝑐)

1

𝜂𝑐+1          0 < 𝑢𝑐 ≤ 0.5

(
1

2−2𝑢𝑐
)

1

𝜂𝑐+1         0.5 < 𝑢𝑐 ≤ 1 
           (6.8) 

 

Figure 6.5: Probability density function of the spread factor 𝛽𝑐 for SBX operator (Deb et 

al., 2002) 

In this study, 𝜂𝑐  is a non-negative real number defined by users, which decides the 

probability density of the offspring process parameter being close to the parent process 

parameter, while 𝑢𝑐 is randomly assigned a value between 0 and 1 to determine the value 

of 𝛽𝑐  at each crossover operation. Referring to Equation (6.4) and Equation (6.5), 

Equation (6.9) and Equation (6.10) present examples of SBX crossover on the process 

parameter of layer thickness 𝐿𝑇. 𝐿𝑇1 and 𝐿𝑇2 denote the layer thickness on two parent 

chromosomes, while 𝐿𝑇1
′  and 𝐿𝑇2

′ denote the offspring after the SBX crossover. The 
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parameter values of the two offspring are determined by the user-defined value of 𝜂𝑐 and 

the random value of 𝑢𝑐. 

 𝐿𝑇1
′ =

(𝐿𝑇1+𝐿𝑇2)

2
−

𝛽𝑐(𝐿𝑇2−𝐿𝑇1)

2
                        (6.9)                                                                       

 𝐿𝑇2
′ =

(𝐿𝑇1+𝐿𝑇2)

2
+

𝛽𝑐(𝐿𝑇2−𝐿𝑇1)

2
                 (6.10) 

6.2.5. Polynomial mutation operator 

The polynomial mutation (PLM) operator evolved from Deb and Agrawal. (1995) prevents 

the premature convergence of sub-optimal solutions by using a polynomial probability 

distribution to mutate a gene on a parent chromosome to a neighbouring value (Subashini 

and Bhuvaneswari, 2012; Deb and Deb, 2014; Zeng et al., 2016). As shown in Figure 6.6, 

the PLM in real-coded genetic algorithm (GA) has an adjustable probability to create a 

solution close to the parent, or ensure the candidate solutions reaching the entire search space 

(Subashini and Bhuvaneswari, 2012). Here we define each individual in parent population 

has a pre-defined probability pm to participate in the mutation process. It indicates that the 

individuals not participating in the mutation process will be replicated as offspring. 

In this study, the parent gene of a variable 𝐼𝑟 is 𝑝3 and its offspring is 𝑐3. 𝑐3 can be 

expressed as a value distributed around the parent 𝑝3, as expressed in Equation (6.11). A 

spread factor 𝛽𝑚 is defined to determine the distance from offspring to parent in Equation 

(6.12). Similarly, the user-defined index 𝜂𝑚  can be any non-negative real number to 

determine the probability density of the offspring distribution, while 𝑢𝑚 is a random number 

between 0 and 1 to determine the value of 𝛽𝑚 at each mutation operation. Furthermore, 

𝑝3 − 𝐼𝑟
(𝐿)  and 𝐼𝑟

(𝑈) − 𝑝3  refer to the distances from the parent 𝑝3  to the lower bound 

𝐼𝑟
(𝐿) and upper bound 𝐼𝑟

(𝑈)
 of the variable 𝐼𝑟. This is to ensure the diverse distribution of 

new individuals in the range of each process parameter.  
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 𝑐3 = {
𝑝3 + 𝛽𝑚(𝑝3 − 𝐼𝑟

(𝐿))        0 < 𝑢𝑚 < 0.5

𝑝3 + 𝛽𝑚(𝐼𝑟
(𝑈) − 𝑝3)         0.5 ≤ 𝑢𝑚 < 1 

              (6.11)                                                                    

 𝛽𝑚 = {
((2𝑢𝑚)

1

𝜂𝑚+1 − 1)                 0 < 𝑢𝑚 < 0.5

(1 − [2(1 − 𝑢𝑚)]
1

𝜂𝑚+1)      0.5 ≤ 𝑢𝑚 < 1
            (6.12) 

In this study, the lower and upper bounds are determined by the range of the process 

parameter. Equation (6.13) presents an example of PLM mutation on the process parameter 

of layer thickness, assuming that the range of layer thickness is 𝐿𝑇 ∈ [0.045𝑚𝑚, 0.35𝑚𝑚]. 

Thus, the lower bound  𝐿𝑇(𝐿)  and upper bound 𝐿𝑇(𝑈)  are 0.045 and 0.35. Referring to 

Equation (6.11), the offspring 𝐿𝑇3
′  mutated from the parent 𝐿𝑇3  is calculated as 

Equation (6.13), where 𝜂𝑚 is an arbitrary non-negative real number and 𝑢𝑚 is a random 

number between 0 and 1.  

 𝐿𝑇3
′ = {

𝐿𝑇3 + 𝛽𝑚(𝐿𝑇3 − 0.045)        0 < 𝑢𝑚 < 0.5

𝐿𝑇3 + 𝛽𝑚(0.35 − 𝐿𝑇3)         0.5 ≤ 𝑢𝑚 < 1 
              (6.13) 

 

Figure 6.6: Probability density function of producing a mutated offspring using a PLM 

operator (Deb et al., 2002) 
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6.2.6. Recombination  

After the SBX crossover and PLM mutation, all created individuals form the offspring 

population 𝑄𝑘+1 . According to Figure 6.1 and Figure 6.3, the offspring 𝑄𝑘+1  and the 

parent 𝑃𝑘+1 are recombined as the next generation, whose population is of size 2N. All 2N 

individuals are looped back into the slicer software, their G-code files are produced, and 

their consumptions are obtained through the predictive models. Based on the predicted 

results, all individuals continue to be ranked through non-dominated sorting and crowding 

distance ranking. Then the elite individuals are retained for the tournament selection of 

parent population. The selected parents continue to produce offspring for the next iteration 

of optimisation. This iteration continues until it reaches the maximum number of iterations 

(i.e. 𝑘 = 𝐺𝑒𝑛 ). Finally, a near-optimal approximate Pareto front is obtained. The front 

contains all non-dominated solutions of process parameters on the first front level 𝐿1.  

Above sections present the details of each NSGA-Ⅱ optimisation step. The selection of 

optimisation algorithm is based on the number of objectives and overall complexity. 

Considering the 𝛰(𝑀𝑁2) complexity and the superior performance in solving optimisation 

problems with two or three objectives, NSGA-Ⅱ is found to be the feasible optimisation tool 

in this study. In the following case studies, the population size in optimisation tests is set 

within the range from 10 to 40 due to the limitation of our computing resources. Thus, it is 

not expected that NSGA-Ⅱ applied in this study is able to rapidly find the global optimal 

solutions. However, even at the vicinity of a local Pareto-optimal front, NSGA-Ⅱ is able to 

find a set of well-spread solutions as a guide for the manufacturers, since the crowded 

comparison can promote the diversified distribution of individuals in the objective space 

(Deb et al., 2002).  

Despite the advantages of NSGA-Ⅱ, this optimisation algorithm still faces a few 

weaknesses, especially in the high-dimensional optimisation problems. As the number of 

objectives increases, the feasibility of sorting through the dominance relationship will be 

reduced, and the complexity of crowding distance calculation will be increased. Thus, in 
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future work, if the optimisation problem is extended to more than three objectives, it is 

recommended to select another appropriate optimisation algorithm from meta-heuristics. 

6.3. Design of experiments for NSGA-Ⅱ optimisation 

The methodology of Taguchi design of experiments for NSGA-Ⅱ optimisation test has been 

discussed in Section 4.6.2. This study uses the L16 (44 ) orthogonal table, in which four 

factors represent four optimisation parameters: population size 𝑁, number of generations 

Gen, crossover probability pc and mutation probability pm. Each optimisation parameter is 

configured with four levels, as listed in Table 6. 1. Considering the scale of experiments and 

the computational capabilities of our existing computing resources, the levels of population 

size 𝑁 is set within the range from 10 to 40, and the number of generations Gen is set within 

the range from 50 to 200. Referring to Nebro et al. (2007), the crossover probability pc and 

mutation probability pm are set within the ranges of values commonly used in NSGA-Ⅱ 

optimisation. 

Table 6. 1: Specification of NSGA-Ⅱ optimisation parameters 

Factor Symbol Levels 

1 Population size  𝑁 10 20 30 40 

2 Number of generations Gen 50 100 150 200 

3 Crossover probability pc 0.85 0.9 0.95 1.00 

4 Mutation probability pm 0.15 0.20 0.25 0.30 

Based on the above, there are 16 optimisation tests to be performed under different 

combinations of optimisation parameters before an AM process. Each test will produce one 

Pareto front. The response of each test is the hypervolume (HV) indicator 𝐼𝐻(𝐴) used to 

compare the qualities of all obtained fronts. The calculation of HV indicator has been 

discussed in the methodology in Section 4.6.3. 
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Table 6. 2: Experiments of NSGA-Ⅱ optimisation tests under different combinations of 

optimisation parameters 

Test No. 

Factor levels 

Population size 
Number of 

generations 

Probability of 

crossover 

Probability of 

mutation 

𝑵 Gen pc pm 

1 10 50 0.85 0.15 

2 10 100 0.9 0.20 

3 10 150 0.95 0.25 

4 10 200 1.00 0.30 

5 20 50 0.9 0.25 

6 20 100 0.85 0.30 

7 20 150 1.00 0.15 

8 20 200 0.95 0.20 

9 30 50 0.95 0.30 

10 30 100 1.00 0.25 

11 30 150 0.85 0.20 

12 30 200 0.9 0.15 

13 40 50 1.00 0.20 

14 40 100 0.95 0.15 

15 40 150 0.9 0.30 

16 40 200 0.85 0.25 

6.4. Application indication of NSGA-Ⅱ optimisation 

The previous sections present the details of NSGA-II optimisation to minimise AM time, 

energy and material consumptions. This section summarises and provides an indication of 

applying the proposed optimisation method to real-world AM systems. 
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Figure 6.7: Basic workflow of multi-objective optimisation using NSGA-II  

The basic workflow of optimising resource consumptions before printing the CAD design 

is shown in Figure 6.7. The first step is to obtain the predictive models for the AM machine 

through the prediction modelling method discussed in last chapter. The predictive models 

are used to represent the objective functions to be minimised. Besides, the CAD design in 

Standard triangle language (STL) format needs to be prepared as the input of NSGA-II 

algorithm. According to the machine characteristics and customer demands, the process 

parameters to be optimised and their value ranges also need to be configured in the algorithm. 

The second step is to perform the NSGA-II algorithm under 16 different combinations of 

optimisation parameters. By the end of each test, the optimal solutions of process parameters 

should be recorded. The corresponding predicted consumptions of each solution should also 

be recorded.  
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The final step is to calculate the hypervolume (HV) indicator of each obtained front. 

Through comparison, the solutions on the front that has the maximum HV indicator will be 

taken as the suggestion for the process parameter setting of current AM task. 

6.5. Summary  

This chapter introduces the optimisation steps of the improved non-dominated sorting 

genetic algorithm II (NSGA-II) to search for the most feasible solution sets of process 

parameters with the minimum time, energy and material consumptions. Simulated binary 

crossover (SBX) and polynomial mutation (PLM) are used as the crossover operator and 

mutation operator to perform the real-coded recombination of process parameters. Taguchi 

design of experiments is applied to perform the optimisation under different combinations 

of optimisation parameters, including population size, number of generations, crossover 

probability and mutation probability. In each test, the HV indicator is applied to quantify the 

quality of the obtained non-dominated solution set on the first front level. The larger the HV 

indicator, the better the performance of the solution.  

The improvement of original NSGA-II is one of the contributions of this research. Since 

different process parameters produce different G-code, the prediction process – from 

inputting the process parameters into CAM to the generation of G-code – is embedded into 

the process of objective function calculation. This method results in more convincing 

optimisation results. In the following chapters, the proposed optimisation method will be 

applied to two fused deposition modelling (FDM) printers to validate its feasibility in a 

practical manufacturing context, and the results and analyses will be discussed. 

 



214 

 

CHAPTER 7  APPLICATION OF 

PREDICTION METHOD IN REAL-WORLD 

AM SYSTEMS 

7.1. Introduction 

This chapter aims to validate the feasibility of the prediction method. The proposed 

methodology has been applied to two different types of fused deposition modelling (FDM) 

3D printers: ANYCUBIC i3 Mega 3D printer and Monoprice Mini Delta three-linear slider 

3D printer. The former uses the Cartesian system to realise the axis movement, while the 

latter uses three parallel stepper motors with a three-linear slider to realise the axis movement. 

The components of each machine are first classified into five modules, namely axis 

movement, material feeding, material processing, component heating and auxiliary 

components. Then, a Gantt chart is created based on the coding rules of each machine to 

illustrate the running sequences and working states of all modules. Next, consumption 

modelling is performed on each module. In physics-based modelling, the time, distance of 

axis movement with actual displacements and amount of material feeding are modelled from 

the processing of G-code. In data-driven modelling, experiments are performed to measure 

the component heating time and the apparent powers of each module under different process 

parameters. Based on the experimental results, the functional relationships between the 

measured parameters and process parameters are derived by using polynomial regression 

method. Referring to Jenkins and Quintana-Ascencio (2020), it is originally planned that the 

number of data points for one regression model is 25. However, due to the impact of the 

COVID19 epidemic starting from 2019, we reduce the number of experiments in the limited 

time and use the existing collected data for the prediction modelling. 

Due to the unique operating mechanisms of different AM machines, the modelling of 

power and time consumptions of certain modules need to be customised and adjusted 
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according to the machine characteristics. In the following sections, details of the predictive 

models of two AM machines are described.  

7.2. Experimental setup 

This section introduces the experimental setup for the prediction of time, energy and material 

consumptions in the AM process. Two fused deposition modelling (FDM) printers are tested 

to validate the feasibility of the proposed prediction method. A power meter is applied to 

measure the apparent power and time consumptions of the components in two FDM printers. 

A density meter is applied to measure the actual density of the polylactic acid (PLA) material 

filament. The curve-fitting tool in MATLAB is used to analyse the functional relationships 

between the measured parameters and process parameters. Polynomial regression method is 

applied to calculate the coefficients in the functions. Details of each experimental device are 

described as follows. 

7.2.1. Fused deposition modelling 3D printers  

Fused deposition modelling (FDM) technology is one of the trendiest and foundational rapid 

prototyping technologies developed by Stratasys (Carneiro et al., 2015). It not only satisfies 

the functional requirements of specific structures but also enables the sufficient 

reproducibility and control of the desired microstructure and porosity of 3D objects (Too et 

al., 2002; Chua et al., 2010). In a typical FDM process, a physical object is created from the 

CAD design via computer numerical control (CNC) robotic extrusion of PLA filament 

material layer by layer (Agarwala et al., 1996). The toolpaths defined by G-code are used to 

instruct the material deposition are generated from the supporting slicer software, such as 

Cura, Slic3r, Simplify3D, etc. Since most of slicer software for FDM technologies is 

available for free to provide open-source code for developing third-party plug-ins, this study 

has chosen the FDM technology as the case study to verify the feasibility of the proposed 

modelling method. Two different types of FDM 3D printers have been used to compare the 

prediction accuracies of predictive models. 
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The first FDM machine to be considered is the ANYCUBIC i3 Mega 3D printer. The 

printer fabricates by using 1.75𝑚𝑚  diameter PLA filament as raw material and Cura 

developed by Ultimaker as the slicer software. Table 7.1 lists the specifications of this printer. 

As shown in Figure 7.1, three stepper motors of the Cartesian system are responsible for 

axis movement in X, Y, Z directions. The wire feeder/extruder driven by the fourth stepper 

motor is used to load the PLA filament from the spool to the machine nozzle. The hotend 

inside the extruder is used to melt the filament from solid to liquid. To assist the AM process, 

the heating of the build platform is synchronous with material deposition, which aims to 

ensure that the printed object is firmly attached to the platform. Additionally, the display unit, 

temperature sensor, and user interface and connectivity also participate in the AM process to 

monitor and control the machine status.  

 

 Figure 7.1: Consumption-related components of ANYCUBIC 3D printer (i3 Mega S, 2020) 

Table 7.1: Specifications of ANYCUBIC i3 Mega 3D printer (i3 Mega S, 2020) 

Technology 
Fused deposition 

modelling 
Supported material 

PLA, ABS, HIPS, 

wood 

Build size 210×210×205𝑚𝑚3 Printer dimensions 405×410×453𝑚𝑚3 

Layer resolution 0.04–0.3𝑚𝑚 Infill density 0–100% 

Extruder quantity  Single Nozzle diameter 0.4𝑚𝑚 

Bed temperature 0–80℃ 
Extruder 

temperature 
170–250℃ 

Filament diameter 1.75𝑚𝑚 PLA temperature 150–220℃ 

Print speed 10–150𝑚𝑚/𝑠 Cooling fans Enable/Unable 

Travel speed in X, Y axes 10–300𝑚𝑚/𝑠 Slicer software Cura 

Travel speed in Z axis 5𝑚𝑚/𝑠 Input rating 
110V/220V AC, 

50/60Hz 
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The second FDM machine to be considered is the Monoprice Mini Delta three-linear slider 

3D printer. Table 7.2 lists the specifications of this printer. The same as in the first case, the 

Monoprice printer also uses 1.75𝑚𝑚 diameter PLA filament as raw material and Cura as 

the slicer software. The difference is that the axis movement on the Monoprice machine is 

driven by the Delta system, in which the three-linear slider consists of three stepper motors. 

As shown in Figure 7.2, the three stepper motors achieve axis movement through the linkage 

motion instead of each being responsible for a single direction. In addition, the other 

components play the same roles as in the first case during the AM process, including the 

wire feeder/extruder, fourth stepper motor for material loading, nozzle hotend, build 

platform/bed, display unit, temperature sensor, and user interface and connectivity.  

 

Figure 7.2: Consumption-related components of Monoprice 3D printer (Monoprice, 2020) 

Table 7.2: Specifications of Monoprice MP Mini Delta 3D printer (Monoprice, 2020) 

Technology 
Fused filament 

fabrication 
Supported material 

ABS, PLA, wood fill, 

copper fill, steel fill, 

bronze fill 

Build size 110×120×180𝑚𝑚3 Printer dimensions 360×440×480𝑚𝑚3 

Layer resolution 0.05–0.2𝑚𝑚 Infill density 0–100% 

Extruder quantity  Single Nozzle diameter 0.4𝑚𝑚 

Bed temperature 0–60℃ 
Extruder 

temperature 
100–260°C 

Filament diameter 1.75𝑚𝑚 PLA temperature 150–220℃ 

Print speed 10–150𝑚𝑚/𝑠 Cooling fans Enable/Unable 

Travel speed in X, Y axes 10–150𝑚𝑚/𝑠 Slicer software Cura 

Travel speed in Z axis 10–150𝑚𝑚/𝑠 Input rating 
100–240VAC, 50/60 

Hz, 4A 
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7.2.2. Slicer software  

Cura is the official slicer software for both ANYCUBIC 3D printer and Monoprice 3D 

printer. The setting of the process parameters of both machines can be completed in Cura, 

and the running sequences of modules and path planning are determined by Cura’s coding 

rules for the machine in question. In the definition of NSGA-II optimisation decision 

variables, the process parameters to be optimised can be selected by manufacturers, while 

all other process parameters are set as defaults. In order to demonstrate how the proposed 

method works in real-world AM system, we selected six important process parameters as 

examples, including layer thickness 𝐿𝑇 , speeds 𝐹𝑥𝑦 ,  𝐹𝑧  of axis movement in X, Y, Z 

directions, extruder temperature 𝑇𝑚𝑝
𝑎 , bed temperature 𝑇ℎ

𝑏 and infill density 𝐼𝐷.  

7.2.3. Yokogawa CW500 power quality analyser 

A power meter is required to measure the apparent power and time consumptions of machine 

components. In this study, the Yokogawa CW500 power quality analyser and the supporting 

software CW500 Viewer are used to measure and analyse the recorded data in the form of 

scatter plots. Table 7.3 lists the specifications of the CW500 analyser, of which the 

maximum voltage and maximum current are 600V and 50A respectively. The sampling rate 

of 24µs indicates that the analyser enables the testing of an average of 41,666 samples per 

second. The range of record interval indicates that the granularity of the power plot extends 

from one point per second to one point per 10 minutes.  

The circuit connection of the power measurement is presented in Figure 7.3. A circuit box 

has been designed to separate the neutral, live and earth wires inside the power cord of an 

AM machine into three wires. This is to assist in the taking of power and time measurements 

from only the power cord instead of disassembling the AM machine. Then, two voltage 

probes and a current clamp-on probe are used to measure the voltage and current, 

respectively, of the AM machine.  
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Figure 7.3: Circuit connection of power and time measurements by using Yokogawa 

CW500 power quality analyser (CW500, 2020) 

Table 7.3: Specifications of Yokogawa CW500 power quality analyser (CW500, 2020).  

Sampling rate 24µs 

Voltage range 600V 

Current clamp range 50A 

Record interval range 1s–10mins 

7.2.4. Sartorius Practum313-1S Milligram Balance 

A density meter is required to test the actual density of the polylactic acid (PLA) material 

during additional experiments. As shown in Figure 7.4, this study uses a Sartorius 

Practum313-1S Milligram Balance as the density meter to measure the masses of PLA 

filament samples in both air and water environments. Specifications of the density meter are 

listed in Table 7.4. 

 

Figure 7.4: Sartorius Practum313-1S Milligram Balance (Sartorius YDK03, 2020) 
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Table 7.4: Specifications of Sartorius Practum313-1S Milligram Balance (Sartorius, 2020) 

Capacity  310𝑔 

Readability 0.001𝑔 

Repeatability (standard deviation) 0.001𝑔 

Typical stabilisation time (seconds) 3s 

Weighing pan size diameter 120𝑚𝑚 

Weighing chamber height 209𝑚𝑚 

Dimensions 360×216×320𝑚𝑚 

The actual density 𝜌𝑎𝑐𝑡  is calculated as shown in Equation (7.1), in which 𝑊𝑎𝑖𝑟 

denotes the mass of a PLA sample measured in air, 𝑊𝑤𝑎𝑡𝑒𝑟 denotes the mass of a sample 

measured in water and 𝜌𝐻2𝑂 denotes the density of water at the current room temperature. 

The value of 𝜌𝐻2𝑂 is provided by Sartorius YDK03 (2020).  

 𝜌𝑎𝑐𝑡 =
𝑊𝑎𝑖𝑟∙𝜌𝐻2𝑂

𝑊𝑎𝑖𝑟−𝑊𝑤𝑎𝑡𝑒𝑟
                          (7.1) 

7.3. Predictive models of ANYCUBIC i3 Mega 3D printer 

This section presents the modelling of time, energy and material consumptions of the 

ANYCUBIC i3 Mega fused deposition modelling (FDM) 3D printer. The modelling 

procedure follows the application indication in Chapter 5. Each step is described as follow.  

1) Module classification 

At first, the components are classified into five modules, namely axis movement, material 

feeding, material processing, component heating and auxiliary components. The axis 

movement module refers to the Cartesian system driven by three stepper motors in X, Y, Z 

directions. The material feeding module refers to the extruder. The material processing 

module refers to the nozzle hotend. The component heating module refers to the build 
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platform/bed. The auxiliary components module refers to the display unit, temperature 

sensor, and user interface and connectivity.  

2) Power and time tests of AM system 

Figure 7.5 presents the Gannt chart of five modules’ cooperation to print a general AM 

task manufactured by the ANYCUBIC printer. The first plot in the grey box indicates the 

total apparent power of all five modules throughout the entire task. Other sub-plots indicate 

the apparent power of each module operating independently. Note that the powers of the axis 

movement module and material feeding module are combined, because the four stepper 

motors of these two modules can only run synchronously. Thus, the powers of these two 

modules are measured together in this case study. Based on the power profiles, the working 

states of five modules are defined as follows.  

• The two modules of material processing (i.e., nozzle hotend) and component heating 

(i.e., build platform/bed) both have two working states: the initial heating state and the 

heat preservation state.  

• The axis movement module has two working states: the axis movement state with 

actual displacements and the standby state waiting for completion of other modules’ 

operations. Since there is no interruption during the material deposition, the axis 

movement module remains in the state of axis movement with actual displacements.  

• The material feeding module has two working states: the material feeding state with 

an actual feeding amount and the standby state waiting for the next operation of 

material feeding. When the heated modules reach their target temperatures, the axis 

movement and material feeding modules start to deposit material on each layer until 

the end of the AM process.  

• The auxiliary components module remains in the state of continuous monitoring and 

control of the machine status throughout the entire process. 
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Figure 7.5: Power profiles of ANYCUBIC i3 Mega FDM 3D printer and consumption-related component
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3) Generate prototypes of predictive models 

Based on the Gannt chart, the prototypes of predictive models can be formulated. The 

total time consumption is modelled as the union of time consumption of each module, as 

expressed in Equation (7.2). 𝑡𝑎𝑥𝑖𝑠 denotes the time consumption of axis movement module. 

𝑡𝑚𝑝
1  and 𝑡𝑚𝑝ℎ𝑝

1  denote the time consumptions of initial heating state and heat preservation 

state of material processing module (i.e. nozzle hotend). 𝑡ℎ
1  and 𝑡ℎℎ𝑝

1  denote the time 

consumptions of initial heating state and heat preservation state of component heating 

module (i.e. build platform / bed). 𝑡𝑚𝑓
1  denotes the time consumption of material feeding 

module. 𝑡𝑎𝑢𝑥 denotes the time consumption of auxiliary components. 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑎𝑥𝑖𝑠 ∪ 𝑡𝑚𝑝
1 ∪ 𝑡ℎ

1 ∪ 𝑡𝑚𝑝ℎ𝑝
1 ∪ 𝑡ℎℎ𝑝

1 ∪ 𝑡𝑚𝑓
1 ∪ 𝑡𝑎𝑢𝑥           (7.2)     

The total energy consumption is modelled as the sum of energy consumption of five 

modules, as expressed in Equation (7.3). 𝐸𝑎𝑥𝑖𝑠 , 𝐸𝑚𝑝 , 𝐸ℎ , 𝐸𝑚𝑓  and 𝐸𝑎𝑢𝑥  respectively 

denote the energy consumption of axis movement module, material processing module (i.e. 

nozzle hotend), component heating module (i.e. build platform / bed), material feeding 

module and auxiliary components. 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑝 + 𝐸ℎ + 𝐸𝑚𝑓 + 𝐸𝑎𝑢𝑥           (7.3) 

The total material consumption is modelled as the product of the material density 𝜌 and 

the cumulative volume ∑ 𝑉𝑢𝑛𝑖𝑡 of material feeding, as expressed in Equation (7.4). 

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝜌 ∙ ∑ 𝑉𝑢𝑛𝑖𝑡           (7.4) 

4) Hybrid modelling to obtain model parameters 

In the final step, the predictive models of resource consumptions of each module will be 

defined on the basis of the above prototypes. The parameters that formulate the models will 

be obtained in three ways: calculating from G-code, measuring through experiments, and 
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modelling based on the running sequences of the five modules. The hybrid modelling 

method applied to obtain the model parameters will be presented in the following sections. 

7.3.1. Predictive model of time consumption 

This section describes the time consumption modelling for each module in the ANYCUBIC 

i3 Mega fused deposition modelling (FDM) 3D printer. The predictive models of above time 

consumptions for five modules are described in the following sub-sections.  

7.3.1.1. Time consumption of axis movement 

The time spent on axis movement only includes the time spent on actual displacements with 

or without material feeding, since there is no interruption during the process of material 

deposition. Thus, there is no interval time 𝑡𝑥𝑦𝑧
0   during axis movement and thus 𝑡𝑥𝑦𝑧

0   is 

equal to zero. The total time consumption 𝑡𝑎𝑥𝑖𝑠 of axis movement is modelled as Equation 

(7.5). 𝑡𝑥𝑦𝑧 can be directly calculated from the coordinates and speeds of axis movement 

provided by G-code. 

 𝑡𝑎𝑥𝑖𝑠 = 𝑡𝑥𝑦𝑧 = ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦
+ ∑

∆𝑍

𝐹𝑧
                        (7.5) 

7.3.1.2. Time consumption of material processing  

This section models the time consumption of the material processing module. In the initial 

heating state, the time consumption 𝑡𝑚𝑝
1   is modelled as a function of the temperature 

difference ∆𝑇𝑚𝑝
1   between the current temperature 𝑇𝑚𝑝0

1   and target temperature 𝑇𝑚𝑝
1  . To 

obtain the functional relationship, experiments are conducted to test the time 𝑡𝑚𝑝
1  spent on 

initial heating under random temperature differences ∆𝑇𝑚𝑝
1  . In Table 7.5, the target 

temperature 𝑇𝑚𝑝
1   in the G-code commands “M104 S𝑇𝑚𝑝

1  ” and “M109 S 𝑇𝑚𝑝
1  ” can be 

manually assigned. The value of 𝑇𝑚𝑝
1   is set within the range from the minimum to the 
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maximum temperature that the nozzle hotend can be heated to. The value of the current 

temperature 𝑇𝑚𝑝0
1   is set within the range from the current room temperature to the 

maximum temperature of the nozzle hotend.  

Table 7.5: Information for measuring the time consumptions of the material processing 

module under different process parameters for the ANYCUBIC 3D printer 

Time 

consumption 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡𝑚𝑝
1  

Current temperature 

𝑇𝑚𝑝0

1  

Current room 

temperature  
23℃ 

Maximum temperature 

of nozzle hotend 
250℃ 

Target temperature 

𝑇𝑚𝑝
1  

Minimum 

temperature of 

nozzle hotend 

170℃ 
Maximum temperature 

of nozzle hotend 
250℃ 

G-code commands 
M104 S(𝑇𝑚𝑝

1 ) : Set the target temperature 𝑇𝑚𝑝
1  of nozzle hotend 

M109 S(𝑇𝑚𝑝
1 ): Heat the nozzle hotend to the target temperature 𝑇𝑚𝑝

1  

To ensure the diversity and dispersion of data points in the value space, the current 

temperatures 𝑇𝑚𝑝0
1   and target temperatures 𝑇𝑚𝑝

1   are randomly assigned within the pre-

defined ranges to ensure that the temperature differences ∆𝑇𝑚𝑝
1  are evenly dispersed in the 

coordinate system used for regression analysis. The experimental results are presented in 

Appendix Ⅱ (1–9) and summarised in Table 7.6. By using the polynomial regression tool 

in MATLAB, the regression model of 𝑡𝑚𝑝
1   is shown in Figure 7.6 and expressed as 

Equation (7.6). The 𝑅2 to evaluate the goodness-of-fit is calculated as 0.9920. 

 𝑡𝑚𝑝
1 = 0.2834∆𝑇𝑚𝑝

1 + 10.29                     (7.6)  

 ∆𝑇𝑚𝑝
1 = 𝑇𝑚𝑝

1 −𝑇𝑚𝑝0
1                         (7.7) 
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Table 7.6: Experimental results of the initial heating time under random temperature 

differences of the material processing module in the ANYCUBIC 3D printer 

Test No. 

Current temperature 
Target 

temperature 

Temperature 

difference 
Time consumption 

𝑇𝑚𝑝0

1  

(℃) 

𝑇𝑚𝑝
1  

(℃) 

∆𝑇𝑚𝑝
1  

(℃) 

𝑡𝑚𝑝
1  

(𝑠) 

1 131 180 49 24 

2 86 180 94 36 

3 84 180 96 37 

4 146 200 54 26 

5 72 200 128 47 

6 26 200 174 57 

7 78 220 142 53 

8 34 220 186 63 

9 30 220 190 65 

 

Figure 7.6: Regression model of initial heating time and temperature difference of the 

material processing module in the ANYCUBIC 3D printer 

The heat preservation of the material processing module is synchronous with the modules 

of axis movement and material feeding, according to the Gannt chart of the five modules in 

Figure 7.5. Therefore, the time 𝑡𝑚𝑝ℎ𝑝
1  spent in the heat preservation state is equal to the 

time 𝑡𝑎𝑥𝑖𝑠 spent on axis movement, as expressed in Equation (7.8). 

 𝑡𝑚𝑝ℎ𝑝
1 = 𝑡𝑎𝑥𝑖𝑠        (7.8)                  
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7.3.1.3. Time consumption of component heating 

This section models the time consumption of component heating module. In the initial 

heating state, the time consumption 𝑡ℎ
1  is modelled as a function of the temperature 

difference ∆𝑇ℎ
1  between the current temperature 𝑇ℎ0

1   and the target temperature 𝑇ℎ
1 . 

Experiments are conducted to test the time 𝑡ℎ
1  spent on initial heating under random 

temperature differences ∆𝑇ℎ
1 . In Table 7.7, the target temperature 𝑇ℎ

1  in the G-code 

commands “M140 S𝑇ℎ
1” and “M190 S𝑇ℎ

1” is manually assigned. The values of 𝑇ℎ0

1  and 𝑇ℎ
1 

are both randomly set within the range from the current room temperature to the maximum 

temperature of the build platform/bed.  

Table 7.7: Information for measuring the time consumptions of component heating under 

different process parameters for the ANYCUBIC 3D printer 

Time 

consumption 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡ℎ
1 

Current temperature 

𝑇ℎ0

1  

Current room 

temperature  
23℃ 

Maximum temperature 

of build platform/bed 
80℃ 

Target temperature 

𝑇ℎ
1 

Current room 

temperature  
23℃ 

Maximum temperature 

of build platform/bed 
80℃ 

G-code commands 
M140 S(𝑇ℎ

1) : Set the target temperature 𝑇ℎ
1 of build platform/bed 

M190 S(𝑇ℎ
1) : Heat the build platform/bed to the target temperature 𝑇ℎ

1 

The experimental results are presented in Appendix Ⅱ (10–22) and summarised in Table 

7.8. The results prove that the time consumption 𝑡ℎ
1  is functionally related to the 

temperature difference ∆𝑇ℎ
1. With the assistance of the polynomial regression method, the 

regression model of 𝑡ℎ
1 is shown in Figure 7.7 and expressed as Equation (7.9). The 𝑅2 

is calculated as 0.9624. 

 𝑡ℎ
1 = 4.778∆𝑇ℎ

1 − 10.4                       (7.9) 

 ∆𝑇ℎ
1 = 𝑇ℎ

1−𝑇ℎ0

1                         (7.10) 
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Table 7.8: Experimental results of the initial heating time under random temperature 

differences of the component heating module in the ANYCUBIC 3D printer 

Test 

No. 

Current temperature Target temperature 
Temperature 

difference 

Time 

consumption 

𝑇ℎ0

1  

(℃) 

𝑇ℎ
1 

(℃) 

∆𝑇ℎ
1 

(℃) 

𝑡ℎ
1 

(s) 

10 40.0 45 5 15 

11 36.0 45 9 31 

12 34.0 45 11 40 

13 29.0 50 21 94.5 

14 27.0 50 23 108 

15 26.0 50 24 118 

16 21.5 50 28.5 101 

17 47.0 60 13 46 

18 43.0 60 17 73 

19 29.0 60 31 128 

20 40.0 70 30 138 

21 35.0 70 35 159 

22 34.0 70 36 168 

 

Figure 7.7: Regression model of initial heating time and temperature difference of the 

component heating module in the ANYCUBIC 3D printer 

According to the Gannt chart of five modules in Figure 7.5, the heat preservation of the 

component heating module begins at the same time as the initial heating of the material 

processing module. Therefore, the time consumption 𝑡ℎℎ𝑝

1  of heat preservation consists of 

two parts: the time 𝑡𝑚𝑝
1  spent during initial heating of the material processing module and 

the time 𝑡𝑎𝑥𝑖𝑠 spent on axis movement, as expressed in Equation (7.11). 

 𝑡ℎℎ𝑝

1 = 𝑡𝑚𝑝
1 + 𝑡𝑎𝑥𝑖𝑠                        (7.11) 
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7.3.1.4. Time consumption of material feeding 

The material feeding is synchronous with axis movement during the processing of material 

deposition. Therefore, the time consumption 𝑡𝑚𝑓
1  of material feeding is the same as the time 

consumption 𝑡𝑎𝑥𝑖𝑠 of axis movement, as expressed in Equation (7.12). 

 𝑡𝑚𝑓
1 = 𝑡𝑎𝑥𝑖𝑠                           (7.12) 

7.3.1.5. Time consumption of auxiliary components 

The auxiliary modules, namely the display unit, temperature sensor, and user interface and 

connectivity, remain in operating status throughout the entire AM process. Therefore, the 

time consumption 𝑡𝑎𝑢𝑥  is equal to the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 , as expressed in 

Equation (7.13). 

 𝑡𝑎𝑢𝑥 = 𝑡𝑡𝑜𝑡𝑎𝑙                     (7.13) 

7.3.1.6. Total time consumption of all modules 

Based on the above models, the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 of an AM process is the union 

of time consumed by the five modules. According to the Gannt chart of the five modules in 

Figure 7.5, the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 of ANYCUBIC i3 Mega FDM 3D printer is 

modelled as the sum of time consumptions of three modules: material processing, component 

heating and axis movement, as expressed in Equation (7.14). 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡ℎ
1 + 𝑡𝑚𝑝

1 + 𝑡𝑎𝑥𝑖𝑠               (7.14)
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7.3.2. Predictive model of energy consumption 

This section describes the energy consumption modelling for each module in the 

ANYCUBIC i3 Mega FDM 3D printer. The predictive models of above energy 

consumptions for five modules are described in the following sub-sections.                    

7.3.2.1. Energy consumptions of axis movement and material feeding 

This section models the energy consumptions of the axis movement module and the material 

feeding module. Due to the unique manufacturing mechanism of this AM machine, the four 

stepper motors used to drive the two modules always run synchronously to deposit material. 

Thus, experiments are conducted to measure the total apparent powers of two modules 

together.  

Initially, the apparent power 𝑃𝑎𝑥𝑖𝑠  of the axis movement module is modelled as a 

function of speeds 𝐹𝑥𝑦 and 𝐹𝑧 in X, Y, Z directions. The apparent power 𝑃𝑚𝑓
𝑐  of material 

feeding is modelled as a function of the feeding rate 𝐹𝑥𝑦 in X, Y directions. To calculate the 

functional relationships, experiments are conducted to measure the apparent powers under 

different axis movement speeds and material feeding rates. When the two modules run 

together to deposit material on a specific toolpath, the speed of axis movement is the same 

as the rate of material feeding.  

Note that the axis movement and material feeding are driven by four stepper motors. Three 

stepper motors are responsible for the axis movement in X, Y, Z directions. One stepper 

motor is responsible for loading the material filament from spool to nozzle. Therefore, 

experiments are conducted to measure the apparent powers of all combinations of the four 

stepper motors. As shown in Table 7.9, the G-code commands are manually defined to 

instruct the modules to move for a sufficient displacement or to feed a sufficient amount of 

material filament. The value of each axis movement speed or feeding rate is set within the 

range from the lowest to the highest speed or feeding rate that the modules can achieve.  
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Table 7.9: Information for measuring the apparent powers of the axis movement module 

and material feeding module in X, Y, Z directions under different process parameters for 

the ANYCUBIC 3D printer (G-Code – Reprap, 2020) 

Apparent 

power 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑃𝑎𝑥𝑖𝑠 

Speed of axis 

movement in X, 

Y directions 

𝐹𝑥𝑦 

Lowest speed of axis 

movement in X, Y 

directions 

600𝑚𝑚

/𝑚𝑖𝑛 

Highest speed 

of axis 

movement in 

X, Y directions 

9000𝑚𝑚

/𝑚𝑖𝑛 

Speed of axis 

movement in Z 

direction 

𝐹𝑧 
Fixed speed of axis 

movement in Z direction 
300𝑚𝑚/𝑚𝑖𝑛 

𝑃𝑚𝑓
1  

Rate of material 

feeding in X, Y 

directions 

𝐹𝑥𝑦 

Lowest rate of 

material feeding in X, 

Y directions 

600𝑚𝑚

/𝑚𝑖𝑛 

Highest rate of 

material 

feeding in X, Y 

directions 

9000𝑚𝑚

/𝑚𝑖𝑛 

G-code commands 

G1 Fxy Xnnn Ynnn : Nozzle moves to the target coordinate (Xnnn, 

Ynnn) at a speed of 𝐹𝑥𝑦 

G1 Fz Znnn : Nozzle moves to the target coordinate (Znnn) at a 

speed of 𝐹𝑧 

G1 Fxy Xnnn Ynnn Emmm : Nozzle moves to the target coordinate 

(Xnnn, Ynnn) with material feeding; the total amount of material 

feeding is mmm 

Table 7.10 presents the speeds of axis movement or rates of material feeding in each test. 

To ensure the diversity and dispersion of data points in the value space, each test contains 

six different speeds or feeding rates whose values are randomly assigned within the pre-

defined ranges, except for the speed in Z direction. Note that the speed in Z direction has 

only one level (i.e. 𝐹𝑧 = 300 𝑚𝑚/𝑚𝑖𝑛), since the speed of axis movement in Z direction is 

a fixed constant due to the machine characteristics. The experimental results are listed in 

Appendix Ⅱ (23–31) and summarised in Table 7.10. 
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Table 7.10: Experimental results of apparent powers of axis movement and material feeding 

at different speeds in X, Y, Z directions for the ANYCUBIC 3D printer 

Test 

No. 
Stepper motors 

Speeds Avg. power  

𝑭𝒙𝒚, 𝑭𝒛 

(𝒎𝒎/𝒎𝒊𝒏) 

𝑷𝒂𝒙𝒊𝒔, 𝑷𝒎𝒇
𝟏  

(𝑽𝑨) 

23 X 900, 2400, 3600, 5400, 7200, 9000 7.96363 

24 Y 900, 2400, 3600, 5400, 7200, 9000 16.18841 

25 Z 300 15.31416 

26 Material feeding 900, 2400, 3600, 5400, 7200, 9000 41.34308 

27 X, Y 900, 2400, 3600, 5400, 7200, 9000 31.00807 

28 X, Z 900, 2400, 3600, 5400, 7200, 9000 22.452603 

29 Y, Z 900, 2400, 3600, 5400, 7200, 9000 24.016157 

30 X, Y, Z 900, 2400, 3600, 5400, 7200, 9000 31.53707 

31 X, Y, Z, material feeding 900, 2400, 3600, 5400, 7200, 9000 42.47047 

Through observations from the power profiles, the power of each test is distributed as a 

constant regardless of the speed variation. However, the total power of axis movement and 

material feeding driven by the four stepper motors is not the sum of the power of each 

individual motor. For instance, if the G-code file only has G-code commands for axis 

movement in X, Z directions, then the total power 𝑃𝑎𝑥𝑖𝑠 would be 22.452603𝑉𝐴. If the G-

code file has the commands for axis movement in three directions, then the total power 𝑃𝑎𝑥𝑖𝑠 

would be 31.53707𝑉𝐴. Thus, it can be concluded that the modules operate at different power 

levels for different combinations of the stepper motors. In a general AM process, it is certain 

that the G-code file contains all types of commands for the axis movement in three directions 

with material feeding, which means that all the stepper motors participate in material 

deposition. Thus, the total power of axis movement and material feeding would be 

42.47047𝑉𝐴, as expressed in Equation (7.15). 

 𝑃𝑎𝑥𝑖𝑠 + 𝑃𝑚𝑓
1 = 42.47047(𝑉𝐴)                   (7.15) 

Based on the above, the total energy consumption of axis movement 𝐸𝑎𝑥𝑖𝑠 and material 

feeding 𝐸𝑚𝑓 can be modelled as Equation (7.16). According to the prediction models of 

time consumptions in Section 7.3.1.4, the two modules run synchronous during the material 
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deposition process, and thus the time 𝑡𝑎𝑥𝑖𝑠 spent on axis movement represents the time 𝑡𝑚𝑓
1  

spent on material feeding.  

 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑓 = 𝑃𝑎𝑥𝑖𝑠𝑡𝑎𝑥𝑖𝑠 + 𝑃𝑚𝑓
1 𝑡𝑚𝑓

1 = 42.47047𝑡𝑎𝑥𝑖𝑠              (7.16) 

7.3.2.2. Energy consumption of material processing  

This section models the energy consumption of the material processing module. The 

apparent powers of 𝑃𝑚𝑝
1   initial heating state and 𝑃𝑚𝑝ℎ𝑝

1   heat preservation state are both 

modelled as functions of the target temperature 𝑇𝑚𝑝
1 . Experiments are conducted to measure 

the apparent powers 𝑃𝑚𝑝
1  , 𝑃𝑚𝑝ℎ𝑝

1   under different target temperatures 𝑇𝑚𝑝
1  . As shown in 

Table 7.11, the target temperature 𝑇𝑚𝑝
1  in the G-code commands “M104 S𝑇𝑚𝑝

1 ” and “M109 

S  𝑇𝑚𝑝
1  ” is randomly assigned within the range from the minimum to the maximum 

temperature that the module can be heated to.  

Table 7.11: Information for measuring the apparent powers of the material processing 

module under different process parameters for the ANYCUBIC 3D printer 

Apparent power Related parameters 
Parameter ranges 

Lower bound Upper bound 

Initial heating 𝑃𝑚𝑝
1  

Target 

temperature 
𝑇𝑚𝑝

1  

Minimum 

temperature of 

nozzle hotend 

170

℃ 

Maximum 

temperature of 

nozzle hotend  

250

℃ Heat preservation 𝑃𝑚𝑝ℎ𝑝

1  

G-code commands 
M104 S(𝑇𝑚𝑝

1 ) : Set the target temperature 𝑇𝑚𝑝
1  of nozzle hotend 

M109 S(𝑇𝑚𝑝
1 ) : Heat the nozzle hotend to the target temperature 𝑇𝑚𝑝

1  

The experimental results are listed in Appendix Ⅱ (1–9) and summarised in Table 7.12. 

It has been found that the apparent power 𝑃𝑚𝑝
1  of initial heating remains constant and is 

unrelated to the target temperature 𝑇𝑚𝑝
1  in this case study. The average power is calculated 

as Equation (7.17).                                                                            

 𝑃𝑚𝑝
1 = 82.23392(𝑉𝐴)                      (7.17) 
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Table 7.12: Experimental results of apparent powers of material processing at different target 

temperatures for the ANYCUBIC 3D printer 

Test 

No. 

Target temperature 
Apparent power of 

initial heating 
Apparent power of heat preservation 

𝑻𝒎𝒑
𝟏  (℃) 𝑷𝒎𝒑

𝟏  (VA) 𝑷𝒎𝒑𝒉𝒑

𝟏  (VA) Avg. (VA) 

1 180 80.09757 29.73025 

32.19572 2 180 84.61051 33.22233 

3 180 84.98951 33.63458 

4 200 83.81399 36.78407 

35.23348 5 200 79.60137 34.27343 

6 200 79.03716 34.64294 

7 220 79.70132 39.09674 

41.27564 8 220 83.61147 42.08892 

9 220 84.64236 42.64125 

Avg. (VA) 82.23392   

Different from initial heating, the apparent power 𝑃𝑚𝑝ℎ𝑝
1  of heat preservation gradually 

tends to be stabilised as a constant, and is proved to be correlated to the target temperature 

𝑇𝑚𝑝
1  according to the results in Table 7.12. Polynomial regression method is applied to 

calculate the coefficient between the apparent power 𝑃𝑚𝑝ℎ𝑝
1  and the target temperature 𝑇𝑚𝑝

1 . 

The regression model is presented in Figure 7.8 and Equation (7.18). The 𝑅2 to evaluate 

the goodness-of-fit is calculated as 0.8337.  

 𝑃𝑚𝑝ℎ𝑝
1 = 0.227𝑇𝑚𝑝

1 − 9.165         (7.18)  

 

Figure 7.8: Regression model of apparent power and target temperature for heat 

preservation in the material processing module in the ANYCUBIC 3D printer 
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Based on the above, the total energy consumption 𝐸𝑚𝑝 of material processing module is 

modelled as the sum of the time-integral of power in the above two working states, as 

expressed in Equation (7.19). 

 𝐸𝑚𝑝 = 𝑃𝑚𝑝
1 𝑡𝑚𝑝

1 + 𝑃𝑚𝑝ℎ𝑝
1 𝑡𝑚𝑝ℎ𝑝

1                  (7.19) 

7.3.2.3. Energy consumption of component heating 

This section models the energy consumption of component heating module. The apparent 

powers of 𝑃ℎ
1  initial heating state and 𝑃ℎℎ𝑝

1   heat preservation state are modelled as 

functions of the target temperature 𝑇ℎ
1 . Then, experiments are conducted to measure the 

apparent powers 𝑃ℎ
1, 𝑃ℎℎ𝑝

1  under different target temperatures 𝑇ℎ
1. In Table 7.13, the target 

temperature 𝑇ℎ
1  in the G-code commands “M140 S𝑇ℎ

1 ” and “M190 S 𝑇ℎ
1 ” is randomly 

assigned within the range from the current room temperature to the maximum temperature 

that the build platform/bed can be heated to. 

Table 7.13: Information for measuring the apparent powers of component heating under 

different process parameters for the ANYCUBIC 3D printer 

Apparent power Related parameters 

Parameter ranges 

Lower bound Upper bound 

Initial 

heating 
𝑃ℎ

1 

Target 

temperature 
𝑇ℎ

1 

Current 

room 

temperature  

23℃ 

Maximum 

temperature of 

build 

platform/bed 

80℃ 

Heat 

preservation 
𝑃ℎℎ𝑝

1  

G-code commands 
M140 S(𝑇ℎ

1) : Set the target temperature 𝑇ℎ
1 of build platform/bed 

M190 S(𝑇ℎ
1)  : Heat the build platform/bed to the target temperature 𝑇ℎ

1 

The experimental results of initial heating are listed in Appendix Ⅱ (10–22) and 

summarised in Table 7.14. It has been found that the initial heating power 𝑃ℎ
1 of the build 
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platform/bed is stabilised as a constant, as shown in Figure 7.5, and is unrelated to the target 

temperature 𝑇ℎ
1. The average power of 𝑃ℎ

1 is calculated as Equation (7.20). 

 𝑃ℎ
1 = 262.07253(𝑉𝐴)                      (7.20) 

Table 7.14: Experimental results of apparent powers of component initial heating at 

different target temperatures for the ANYCUBIC 3D printer 

Test No. Target temperature Apparent power of initial heating 

𝑇ℎ
1 (℃) 𝑃ℎ

1 (VA) 

10 45 264.51378 

11 45 263.45253 

12 45 268.94294 

15 50 263.22263 

16 50 265.86281 

17 50 274.71643 

18 50 257.56893 

13 60 258.98627 

14 60 257.47102 

20 60 255.56478 

19 70 264.10028 

21 70 251.13458 

22 70 261.40596 

Avg. (VA) 262.07253 

The apparent power of component heating in the heat preservation state is different from 

other modules, which is distributed in the form of periodic pulses with a certain cycle time 

and constant amplitude until the end of the AM task. Due to the machine characteristics, this 

intermittent heating is to ensure that the bed temperature remains at the target value. To 

simplify the modelling process, the power profile is divided based on the heating cycles. The 

average time consumption 𝑡𝑐𝑦𝑐𝑙𝑒
1  and the average energy consumption 𝐸𝑐𝑦𝑐𝑙𝑒

1  per cycle are 

measured at different target temperatures 𝑇ℎ
1.  

The results are obtained from the above experiments, as listed in Appendix Ⅱ (10–22) 

and summarised in Table 7.15. It has been found that the energy consumption 𝐸𝑐𝑦𝑐𝑙𝑒
1  per 

cycle is stabilised as a constant and is unrelated to the target temperature 𝑇ℎ
1. Thus, the 

average value of 𝐸𝑐𝑦𝑐𝑙𝑒
1  is calculated as Equation (7.21). Time consumption 𝑡𝑐𝑦𝑐𝑙𝑒

1  per 
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cycle is correlated to the target temperature 𝑇ℎ
1 . Thus, polynomial regression method is 

applied to calculate the coefficient between 𝑡𝑐𝑦𝑐𝑙𝑒
1  and 𝑇ℎ

1 . The regression model is 

presented in Figure 7.9 and Equation (7.22). The 𝑅2 to evaluate the goodness-of-fit is 

calculated as 0.9982. 

 𝐸𝑐𝑦𝑐𝑙𝑒
1 = 1331.00922(𝐽)                  (7.21)                                                                     

 𝑡𝑐𝑦𝑐𝑙𝑒
1 = 0.03306𝑇ℎ

12
− 4.839𝑇ℎ

1 + 193            (7.22)  

Table 7.15: Experimental results of energy and time consumptions per cycle of heat 

preservation at different target temperatures for the ANYCUBIC 3D printer 

Test 

No. 

Target temperature Energy per cycle Time per cycle 
Avg. (s) 

𝑻𝒉
𝟏 (℃) 𝑬𝒄𝒚𝒄𝒍𝒆

𝟏  (VAs) 𝒕𝒄𝒚𝒄𝒍𝒆
𝟏  (s) 

10 45 1337.38441 42.16667 

42.19475 11 45 1308.61239 42.84615 

12 45 1405.04383 41.57143 

13 60 1440.15482 21.43750 

21.68750 14 60 1365.08439 22.33333 

20 60 1299.66810 21.29167 

19 70 1281.65498 16.41860 

16.28120 21 70 1267.45592 16.72500 

22 70 1274.02414 15.70000 

Avg. (VAs) 1331.00922   

 

Figure 7.9: Regression model of time per cycle and target temperature for the heat 

preservation of component heating in the ANYCUBIC 3D printer 
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Based on the above, the energy consumption in the heat preservation state is modelled 

based on the energy 𝐸𝑐𝑦𝑐𝑙𝑒
1  per cycle and the total number of cycles. The number of cycles 

is calculated as the total time 𝑡ℎℎ𝑝

1  of heat preservation divided by the cycle time 𝑡𝑐𝑦𝑐𝑙𝑒
1 . 

The total energy consumption 𝐸ℎ of bed heating is the sum of energy consumed by the two 

working states, as expressed in Equation (7.23).  

 𝐸ℎ = 𝑃ℎ
1𝑡ℎ

1 + 𝐸𝑐𝑦𝑐𝑙𝑒
1

𝑡ℎℎ𝑝
1

𝑡𝑐𝑦𝑐𝑙𝑒
1                     (7.23) 

7.3.2.4. Energy consumption of auxiliary components 

This section models the energy consumption of auxiliary components, namely the display 

unit, temperature sensor, and user interface and connectivity. Before an AM task, the AM 

machine remains in standby mode with a stable power 𝑃𝑠 . When the task begins, the 

apparent power rises by 𝑃0 to start up the machine until the end of the task. Experiments 

are conducted to measure the standby power 𝑃𝑠 and the start-up power 𝑃0. The results are 

listed in Appendix Ⅱ (32, 33), and expressed as Equation (7.24) and Equation (7.25). The 

total energy consumption 𝐸𝑎𝑢𝑥 of the auxiliary components is modelled as Equation (7.26).  

 𝑃𝑠 = 18.47357(𝑉𝐴)                      (7.24) 

 𝑃0 =9.58706(𝑉𝐴)                       (7.25) 

 𝐸𝑎𝑢𝑥 = (𝑃𝑠 + 𝑃0)𝑡𝑡𝑜𝑡𝑎𝑙                    (7.26)  

7.3.2.5. Total energy consumption of all modules 

Based on the above models, the total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙 of the entire AM process 

is the sum of the energy consumed by the five modules, as expressed in Equation (7.27). 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸ℎ + 𝐸𝑚𝑝 + 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑓 + 𝐸𝑎𝑢𝑥            (7.27) 
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7.3.3. Predictive model of material consumption 

The modelling of material consumption is evolved from the initial conceptual model 

proposed in Section 4.3.3. For fused deposition modelling (FDM) technology, the amount 

of material feeding provided by G-code is in units of filament length. Therefore, the total 

mass 𝑀𝑡𝑜𝑡𝑎𝑙  is modelled as the product of material density 𝜌  and the total volume of 

material usage, as expressed in Equation (7.30). Note that 𝑟 denotes the diameter of the 

polylactic acid (PLA) filament material and 𝑙𝑒 denotes the cumulative extruded length of 

material. The value of 𝑙𝑒 is obtained from G-code commands beginning with the letter “E”. 

 𝜌 = 1.24𝑔/𝑐𝑚3                        (7.28) 

 𝑟 = 1.75𝑚𝑚                        (7.29) 

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑙𝑒𝜋(
𝑟

2
)2                     (7.30) 

7.3.4. Additional experiments to improve the predictive models 

Two factors that affect the prediction accuracy of the predictive models are considered in 

this case study, namely the occurrence of motor out-of-step during axis movement, and the 

deviation between the quoted material density and actual material density. Furthermore, the 

stepper motor responsible for material feeding also faces the problem of motor out-of-step. 

However, the reasons for this are complicated. On one hand, the motor loses step due to the 

high load of a high feeding rate and insufficient torques. On the other hand, when the material 

is supplied at a high feeding rate, it cannot be sufficiently melted in time, causing the material 

to become stuck in the nozzle and fail to be extruded onto the build platform. Therefore, in 

order to obtain the relationship between the actual and expected amounts of extruded 

material, a large number of additional experiments is needed for further modelling and 

analysis. This factor will be continued as future work to improve the predictive model of 

material consumption.  
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7.3.4.1. Actual speeds of axis movement 

This section presents the additional experiments to obtain the functional relationships 

between the actual and expected speeds of axis movement in X, Y, Z directions. In X, Y 

directions, the G-code commands are manually defined to instruct the AM machine to move 

the nozzle for a sufficient displacement at different expected speeds. To ensure the diversity 

and dispersion of data points in the value space, there are 7 sets of experiments set up for the 

speed measurements in each direction. The expected speeds 𝐹𝑥, 𝐹𝑦 in X, Y directions are 

randomly assigned within the pre-defined ranges. In Z direction, the nozzle moves at only 

one fixed speed due to the machine characteristics. There is only one actual speed to be tested 

at the expected speed of 5𝑚𝑚/𝑠. During the experiments, the total time of axis movement 

is recorded by the CW500 power meter to calculate the average speed. 

The experimental results are presented in Table 7.16 to Table 7.18. The functional 

relationships between the actual speeds 𝐹𝑥𝑎𝑐𝑡
 , 𝐹𝑦𝑎𝑐𝑡

  and expected speeds 𝐹𝑥 , 𝐹𝑦  are 

obtained by using the polynomial regression method, as shown in Figure 7.10 and Figure 

7.11. The regression models are expressed as Equation (7.31) and Equation (7.32), where 

𝑅2  to evaluate the goodness of fit are 1.0000 and 0.9999. The actual speed 𝐹𝑧𝑎𝑐𝑡
  is 

measured as Equation (7.33).  

 𝐹𝑥𝑎𝑐𝑡
= −0.001106𝐹𝑥

2 + 1.058𝐹𝑥 − 0.6637           (7.31) 

 𝐹𝑦𝑎𝑐𝑡
= −0.0017𝐹𝑦

2 + 1.108𝐹𝑦 − 1.647            (7.32) 

 𝐹𝑧𝑎𝑐𝑡
= 5.94827(𝑚𝑚/𝑠)                  (7.33) 
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Table 7.16: Experimental results of actual speeds of axis movement in X direction for the 

ANYCUBIC 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Predicted time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected 

speed 
Actual speed 

𝑭𝒙  

(𝒎𝒎/𝒔) 

𝑭𝒙𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

6600 

F900 440.00 440.00 15 15.00000 

F1800 220.00 221.00 30 29.86425 

F3000 132.00 133.00 50 49.62406 

F3600 110.00 112.00 60 58.92857 

F6000 66.00 70.00 100 94.28571 

F7200 55.00 60.00 120 110.00000 

F9600 41.25 47.00 160 140.42553 

Table 7.17: Experimental results of actual speeds of axis movement in Y direction for the 

ANYCUBIC 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Predicted time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected 

speed 
Actual speed 

𝑭𝒚  

(𝒎𝒎/𝒔) 

𝑭𝒚𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

6600 

F900 440.00 440.00 15 15.00000 

F1800 220.00 222.00 30 29.72973 

F3000 132.00 134.00 50 49.25373 

F3600 110.00 113.00 60 58.40708 

F6000 66.00 71.00 100 92.95775 

F7200 55.00 62.00 120 106.45161 

F9600 41.25 50.00 160 132.00000 

Table 7.18: Experimental result of actual speed of axis movement in Z direction for the 

ANYCUBIC 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Expected time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected speed Actual speed 

𝑭𝒛  

(𝒎𝒎/𝒔) 

𝑭𝒛𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

4640 F300 928 780.00 5 5.94827 
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Figure 7.10: Regression model of actual and expected speeds of axis movement in X 

direction for the ANYCUBIC 3D printer 

 
Figure 7.11: Regression model of actual and expected speeds of axis movement in Y 

direction for the ANYCUBIC 3D printer 

7.3.4.2. Actual material density 

The actual density of the polylactic acid (PLA) filament material is measured by using the 

Sartorius Practum313-1S Milligram Balance. Five samples are prepared for measurement of 

the masses 𝑊𝑎𝑖𝑟 , 𝑊𝑤𝑎𝑡𝑒𝑟  in air and water. Since the room temperature 𝑇  during the 

experiment is 22.5℃, the corresponding water density 𝜌𝐻2𝑂 is 0.99771𝑔/𝑐𝑚3 according 
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to Sartorius (2020). The experimental results are listed in Table 7.19 and the average value 

𝜌𝑎𝑐𝑡 of material density is calculated as Equation (7.34). 

 𝜌𝑎𝑐𝑡 = 1.23559𝑔/𝑐𝑚3                (7.34) 

Table 7.19: Experimental results of the actual density of PLA filament material  

Mass in air Mass in water Density of material 

𝑾𝒂𝒊𝒓 (𝒈) 𝑾𝒘𝒂𝒕𝒆𝒓 (𝒈) 𝝆𝒂𝒄𝒕 (𝒈/𝒄𝒎𝟑) 

0.160 0.031 1.23747 

0.124 0.024 1.23716 

0.097 0.019 1.24074 

0.117 0.023 1.24183 

0.104 0.019 1.22073 

Avg. (𝑔/𝑐𝑚3) 1.23559 

Based on the above, the parameters 𝐹𝑥𝑦𝑎𝑐𝑡
 , 𝐹𝑧𝑎𝑐𝑡

 , 𝜌𝑎𝑐𝑡  measured through additional 

experiments are used to replace the original parameters 𝐹𝑥𝑦, 𝐹z, 𝜌 in the predictive models. 

To validate the accuracies of the predictive models with and without additional experiments, 

two AM tasks have been printed by the AM machine and the actual consumptions have been 

recorded. The prediction results and the result analyses will be discussed in the next chapter. 
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7.4. Predictive models of Monoprice MP Mini Delta 3D printer 

This section presents the prediction of time, energy and material consumptions of the 

Monoprice MP Mini Delta fused deposition modelling (FDM) 3D printer. Same as the first 

case study, the modelling procedure follows the application indication in Chapter 5. 

1) Module classification 

At first, the components in the Monoprice printer are classified into five modules, namely 

axis movement, material feeding, material processing, component’ heating and auxiliary 

components. The axis movement module refers to the Delta system driven by three linked 

stepper motors in X, Y, Z directions. The material feeding module refers to the extruder. The 

material processing module refers to the nozzle hotend. The component heating module 

refers to the build platform. The auxiliary components module refers to the display unit, 

temperature sensor, and user interface and connectivity. 

2) Power and time tests of AM system 

Figure 7.12 and Figure 7.13 show the power profiles of a general AM task, for which the 

G-code is also generated by Cura. Note that the powers of the axis movement module and 

material feeding module are also combined, since the four stepper motors of these two 

modules can only run synchronously. Due to the unique coding rules of Cura, the running 

sequences of the modules are different from the first case study. Based on the power profiles, 

the working states of five modules are defined as follows.  

• The material feeding module has two working states: the material feeding state with 

an actual feeding amount and the standby state.  

• The axis movement module has two working states: the state of axis movement with 

actual displacements and the standby state. Based on the coding rules, the machine 

needs to calibrate the origin coordinates and initialise the material feeding amount at 

the beginning of each AM task. Therefore, the modules of axis movement and material 
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feeding driven by four stepper motors remain in operation throughout the entire task. 

The calibration is to move the nozzle from the final coordinates in the last AM process 

back to the platform origin. However, since the last coordinate is not provided in the 

current G-code file, the time consumption of this calibration process is unknown and 

not fixed. Thus, the calibration is temporarily not considered in this case study, and the 

modelling starts only from the initial heating of the nozzle hotend. For the continuous 

printing of multiple AM jobs, the consumptions of calibration process can be added 

into the predictive models when the last coordinate in the previous AM process is 

known. 

• According to the power profile, the material processing module (i.e., nozzle hotend) 

has three working states: the initial heating state, the transition state and the heat 

preservation state. When an AM task begins, the initial heating starts at a temperature 

5℃ higher than the target temperature. This coding rule is to ensure that the polylactic 

acid (PLA) material can be melted at a sufficient temperature to prepare for material 

deposition. Once the module reaches the specified temperature, the material deposition 

starts, and the heating stops for a period of time without a power supply. Here, we 

define this period as the transition time 𝑡𝑡𝑟𝑎𝑛𝑠. Then, the material processing module 

switches to the heat preservation stage until the end of the AM task. Due to the unique 

coding rules, when the deposition of first layer is completed, the temperature of the 

nozzle hotend is restored to the target temperature 𝑇𝑚𝑝
1  in the heat preservation state. 

• The module of component heating (i.e., build platform/bed) has two working states: 

the initial heating state and the heat preservation state. The initial heating begins when 

the first layer is completed. When reaching the target temperature, the module is 

switched to the state of heat preservation till the end of the AM process. 

• The auxiliary components module remains in the state of continuous monitoring and 

control of the machine status throughout the entire process. 
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Figure 7.12: Power profiles of Monoprice MP Mini Delta FDM 3D printer and consumption-related components 



247 

 

 

Figure 7.13: Power profiles of five types of modules in Monoprice MP Mini Delta FDM 3D printer 
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3) Generate prototypes of predictive models 

According to the Gannt chart, the total time consumption is modelled as the union of time 

consumption of each module, as expressed in Equation (7.35). 𝑡𝑎𝑥𝑖𝑠  denotes the time 

consumption of axis movement module. 𝑡𝑚𝑝
1  , 𝑡𝑡𝑟𝑎𝑛𝑠  and 𝑡𝑚𝑝ℎ𝑝

1   denote the time 

consumptions of initial heating state, transition state and heat preservation state of material 

processing module (i.e. nozzle hotend). 𝑡ℎ
1  and 𝑡ℎℎ𝑝

1   denote the time consumptions of 

initial heating state and heat preservation state of component heating module (i.e. build 

platform / bed). 𝑡𝑚𝑓
1   denotes the time consumption of material feeding module. 𝑡𝑎𝑢𝑥 

denotes the time consumption of auxiliary components. 

𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑎𝑥𝑖𝑠 ∪ 𝑡𝑚𝑝
1 ∪ 𝑡ℎ

1 ∪ 𝑡𝑡𝑟𝑎𝑛𝑠 ∪ 𝑡𝑚𝑝ℎ𝑝
1 ∪ 𝑡ℎℎ𝑝

1 ∪ 𝑡𝑚𝑓
1 ∪ 𝑡𝑎𝑢𝑥       (7.35) 

Same as the first case study, the total energy consumption is modelled as the sum of energy 

consumption of five modules, as expressed in Equation (7.36). 𝐸𝑎𝑥𝑖𝑠, 𝐸𝑚𝑝, 𝐸ℎ, 𝐸𝑚𝑓 and 

𝐸𝑎𝑢𝑥  respectively denote the energy consumption of axis movement module, material 

processing module (i.e. nozzle hotend), component heating module (i.e. build platform / bed), 

material feeding module and auxiliary components. 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑝 + 𝐸ℎ + 𝐸𝑚𝑓 + 𝐸𝑎𝑢𝑥           (7.36) 

The total material consumption is also modelled as the product of the material density 𝜌 

and the cumulative volume ∑ 𝑉𝑢𝑛𝑖𝑡 of material feeding, as expressed in Equation (7.37). 

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝜌 ∙ ∑ 𝑉𝑢𝑛𝑖𝑡           (7.37) 

4) Hybrid modelling to obtain model parameters 

The final step is to obtain the predictive models of each module on the basis of the above 

prototypes. The model parameters will be obtained through the hybrid modelling method. 

Details will be presented in the following sections. 
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7.4.1. Predictive model of time consumption 

This section describes the time consumption modelling for each module in the Monoprice 

MP Mini Delta fused deposition modelling (FDM) 3D printer. The predictive models are 

described in the following sub-sections.  

7.4.1.1. Time consumption of axis movement 

As shown in Figure 7.12, the axis movement module starts running at the beginning of an 

AM task. When the initial heating of the material processing module begins, the axis 

movement module is in the standby state to wait for completion of the component heating. 

Therefore, there is an interruption during axis movement. The interval time 𝑡𝑥𝑦𝑧
0  of this 

interruption represents the initial heating time 𝑡𝑚𝑝
1  of the material processing module (i.e. 

nozzle hotend). In Equation (7.38), the total time consumption 𝑡𝑎𝑥𝑖𝑠 of axis movement 

includes two parts: the time 𝑡𝑥𝑦𝑧 spent on axis movement with actual displacements and 

the initial heating time 𝑡𝑚𝑝
1   of the material processing module. The former is directly 

calculated from G-code and the latter is modelled in the following sections.  

 𝑡𝑎𝑥𝑖𝑠 = 𝑡𝑥𝑦𝑧 + 𝑡𝑚𝑝
1                      (7.38) 

7.4.1.2. Time consumption of material processing  

This section models the time consumption of the material processing module. In the initial 

heating state, due to the unique coding rules of the Monoprice 3D printer, the nozzle hotend 

is heated to a temperature that is 5°C higher than the target temperature 𝑇𝑚𝑝
1 . Thus, the time 

consumption 𝑡𝑚𝑝
1   is modelled as a function of the temperature difference ∆𝑇𝑚𝑝

1 + 5 

between the current temperature 𝑇𝑚𝑝0
1   and the temperature 𝑇𝑚𝑝

1 + 5 . Experiments are 

conducted to test the time 𝑡𝑚𝑝
1   spent on initial heating under random temperature 

differences ∆𝑇𝑚𝑝
1  . As shown in Table 7.20, the target temperature 𝑇𝑚𝑝

1   in the G-code 

commands “M104 S𝑇𝑚𝑝
1 ” and “M109 S𝑇𝑚𝑝

1 ” is randomly assigned with different values. The 
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value of 𝑇𝑚𝑝
1  is set within the range from the melting point of the material to the maximum 

temperature that the nozzle hotend can be heated to. The value of the current temperature 

𝑇𝑚𝑝0
1  is set within the range from the current room temperature to the maximum temperature 

of the nozzle hotend.  

Table 7.20: Information for measuring the time consumptions of the material processing 

module under different process parameters for the Monoprice 3D printer 

Time 

consumption 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡𝑚𝑝
1  

Current 

temperature 
𝑇𝑚𝑝0

1  
Current room 

temperature  
23℃ 

Maximum temperature 

of nozzle hotend 
260℃ 

𝑡𝑡𝑟𝑎𝑛𝑠 
Target 

temperature 
𝑇𝑚𝑝

1  
Melting point 

of material  
150℃ 

Maximum temperature 

of nozzle hotend 
260℃ 

G-code commands 
M104 S(𝑇𝑚𝑝

1 ) : Set the target temperature 𝑇𝑚𝑝
1  of nozzle hotend 

M109 S(𝑇𝑚𝑝
1 ) : Heat the nozzle hotend to the target temperature 𝑇𝑚𝑝

1  

The experimental results are presented in Appendix Ⅲ (1–4) and summarised in Table 

7.21. The results prove that the time consumption 𝑡𝑚𝑝
1   is functionally related to the 

temperature difference ∆𝑇𝑚𝑝
1 . By using the polynomial regression method, the regression 

model is shown in Figure 7.14 and expressed as Equation (7.39). Note that in a practical 

AM task, the temperature of initial heating is 5°C higher than the predefined target 

temperature 𝑇𝑚𝑝
1 . The 𝑅2 to evaluate the goodness-of-fit is calculated as 0.9920. 

 𝑡𝑚𝑝
1 = 0.4401(∆𝑇𝑚𝑝

1 + 5) + 1.934       (7.39) 

Table 7.21: Experimental results of initial heating time under random temperature 

differences and transition time at different target temperatures of the material processing 

module in the Monoprice 3D printer 

Test 

No. 

Current 

temperature 

Target 

temperature 

Temperature 

difference 

Initial heating 

time 

Transition 

time 

𝑻𝒎𝒑𝟎

𝟏  (℃) 𝑻𝒎𝒑
𝟏  (℃) ∆𝑻𝒎𝒑

𝟏  (℃) 𝒕𝒎𝒑
𝟏  (𝒔) 𝒕𝒕𝒓𝒂𝒏𝒔 (𝒔) 

1 32 150 118 50 29 

2 71 170 99 47 23 

3 63 190 127 60 20 

4 49 210 161 73 14 
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Figure 7.14: Regression model of initial heating time and temperature difference of the 

material processing module in the Monoprice 3D printer 

After the initial heating, the material processing module experiences a period of transition 

time 𝑡𝑡𝑟𝑎𝑛𝑠 without a power supply. Time measurements are also performed. The results in 

Table 7.21 prove that the transition time 𝑡𝑡𝑟𝑎𝑛𝑠 is related to the target temperature 𝑇𝑚𝑝
1 . By 

using the polynomial regression method, the regression model of the transition time 𝑡𝑡𝑟𝑎𝑛𝑠 

and target temperature 𝑇𝑚𝑝
1  is presented in Figure 7.15 and Equation (7.40). In this process, 

the temperature of the material processing module is still 5°C higher than the predefined 

target temperature 𝑇𝑚𝑝
1 . The 𝑅2 to evaluate the goodness-of-fit is 0.9487. 

 𝑡𝑡𝑟𝑎𝑛𝑠 = −0.24(𝑇𝑚𝑝
1 + 5) + 64.7              (7.40) 

 

Figure 7.15: Regression model of transition time and target temperature of the material 

processing module in the Monoprice 3D printer 
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After the initial heating, the module is switched to the heat preservation state and the 

material deposition starts to construct the 3D object. When the first layer is completed, the 

temperature of the material processing module is restored to the target temperature 𝑇𝑚𝑝
1  and 

the heat preservation continues. Therefore, the time spent on heat preservation consists of 

two parts: the heat preservation time 𝑡𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1  for the first layer at temperature 𝑇𝑚𝑝
1 +5, 

and the heat preservation time 𝑡𝑚𝑝ℎ𝑝_𝑟𝑒𝑠𝑡
1  for the remaining layers at the target temperature 

𝑇𝑚𝑝
1 , as expressed in Equation (7.41). 

 𝑡𝑚𝑝ℎ𝑝
1 = 𝑡𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1 + 𝑡𝑚𝑝ℎ𝑝_𝑟𝑒𝑠𝑡
1                  (7.41) 

According to the Gannt chart in Figure 7.12, the heat preservation time 𝑡𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1  refers 

to the time spent on material disposition of the first layer excluding the transition time 𝑡𝑡𝑟𝑎𝑛𝑠, 

as expressed in Equation (7.42). Note that 𝑞 denotes the total number of G-code command 

lines used to print the first layer in X, Y directions. The heating time 𝑡𝑚𝑝ℎ𝑝_𝑟𝑒𝑠𝑡
1  refers to the 

time spent on depositing the remaining layers, as expressed in Equation (7.43). 

 𝑡𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1 = ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦

𝑞
𝑔=1 −𝑡𝑡𝑟𝑎𝑛𝑠               (7.42)                          

 𝑡𝑚𝑝ℎ𝑝_𝑟𝑒𝑠𝑡
1 = 𝑡𝑥𝑦𝑧 − ∑

√∆𝑋2+∆𝑌2

𝐹𝑥𝑦

𝑞
𝑔=1                (7.43) 

7.4.1.3. Time consumption of component heating 

This section models the time consumption of component heating module. According to the 

power profile in Figure 7.12, the power 𝑃ℎ
1 of initial heating state gradually decreases from 

the maximum heating power 𝑃ℎ𝑚𝑎𝑥

1  to the heat preservation power 𝑃ℎℎ𝑝

1 . Once the module 

reaches the target temperature, the power of heat preservation state become stable. Figure 

7.16 presents the downward trend of the initial heating power 𝑃ℎ
1 with unstable fluctuations. 

To simplify the consumption modelling, the relationship between the heating power 𝑃ℎ
1 and 

the heating time 𝑡ℎ
1 is simplified to a polynomial function with a fixed slope. 
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Figure 7.16: Experimental result of the initial heating power of the build platform/bed in 

the Monoprice 3D printer 

Due to the unique heating method of this AM machine, it is necessary to understand the 

relationships between the maximum heating power 𝑃ℎ𝑚𝑎𝑥

1  , the heat preservation power 

𝑃ℎℎ𝑝

1 , the initial heating time 𝑡ℎ
1 and the target temperature 𝑇ℎ

1 of the build platform/bed. 

Thus, experiments are conducted to test the time 𝑡ℎ
1 spent on initial heating under random 

temperature differences ∆𝑇ℎ
1. As shown in Table 7.22, the current temperature 𝑇ℎ0

1  and the 

target temperature 𝑇ℎ
1  are both randomly set within the range from the current room 

temperature to the maximum temperature of the build platform/bed. During the experiments, 

the CW500 power meter is used to record the initial heating time 𝑡ℎ
1, the maximum heating 

power 𝑃ℎ𝑚𝑎𝑥

1  and the heat preservation power 𝑃ℎℎ𝑝

1 . 

Table 7.22: Information for measuring the time consumptions of component heating under 

different process parameters for Monoprice 3D Printer 

Time consumption; 

apparent powers 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑡ℎ
1 

𝑃ℎ𝑚𝑎𝑥

1  

𝑃ℎℎ𝑝

1  

Current 

temperature 
𝑇ℎ0

1  
Current room 

temperature  
23℃ 

Maximum 

temperature of build 

platform/bed 

60℃ 

Target 

temperature 
𝑇ℎ

1 
Current room 

temperature  
23℃ 

Maximum 

temperature of build 

platform/bed 

60℃ 

G-code commands 
M140 S(𝑇ℎ

1) : Set the target temperature 𝑇ℎ
1 of build platform/bed 

M190 S(𝑇ℎ
1) : Heat the build platform/bed to the target temperature 𝑇ℎ

1 
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The experimental results are presented in Appendix Ⅲ (5–9) and Table 7.23. It has been 

found that the maximum heating power 𝑃ℎ𝑚𝑎𝑥

1  and the heat preservation power 𝑃ℎℎ𝑝

1  are 

both related to the target temperature 𝑇ℎ
1. The initial heating time 𝑡ℎ

1 is unrelated to the 

target temperature 𝑇ℎ
1 or temperature difference ∆𝑇ℎ

1, while the decreasing slope remains 

around a stable value. The average slope is calculated as 0.10475. 

Table 7.23: Experimental results of heating powers under five random temperature 

differences and five different target temperatures of the component heating module in the 

Monoprice 3D printer 

Test 

No. 
𝑻𝒉𝟎

𝟏  (℃) 𝑻𝒉
𝟏 (℃) ∆𝑻𝒉

𝟏  (℃) 𝑷𝒉𝒎𝒂𝒙

𝟏  𝑷𝒉𝒉𝒑

𝟏  𝒕𝒉
𝟏 (𝒔) Slope 

5 30 40 10 26.32867 11.58044 112 0.131681 

6 30 45 15 28.50403 14.16599 147 0.097538 

7 23 50 27 32.65663 17.28068 162 0.094913 

8 33 55 22 38.49048 19.76008 187 0.100163 

9 31 60 29 41.07333 22.77295 184 0.099459 

Avg. slope 0.10475 

Based on the above, the time consumption 𝑡ℎ
1 of initial heating is modelled as a function 

of 𝑃ℎ𝑚𝑎𝑥

1  , 𝑃ℎℎ𝑝

1   and the average slope, as shown in Equation (7.44). The modelling of 

powers 𝑃ℎ𝑚𝑎𝑥

1  and 𝑃ℎℎ𝑝

1  will be discussed in Section 7.4.2.3. Based on the Gannt chart of 

five modules, the time consumption 𝑡ℎℎ𝑝

1  of the heat preservation is modelled as the time 

𝑡𝑥𝑦𝑧 spent on material deposition, excluding the time of the first layer’s construction and 

the initial heating time 𝑡ℎ
1, as shown in Equation (7.45). 

 𝑡ℎ
1 =

𝑃ℎ𝑚𝑎𝑥
1 −𝑃ℎℎ𝑝

1

0.10475
                        (7.44)  

 𝑡ℎℎ𝑝

1 = 𝑡𝑥𝑦𝑧 − ∑
√∆𝑋2+∆𝑌2

𝐹𝑥𝑦

𝑞
𝑔=1 − 𝑡ℎ

1                 (7.45) 
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7.4.1.4. Time consumption of material feeding 

This section models the time consumption of material feeding module, which has two 

working states: the material feeding state with an actual feeding amount and the standby 

state. Since the material feeding is synchronous with axis movement, the time consumption 

𝑡𝑎𝑥𝑖𝑠 of axis movement represents time consumption 𝑡𝑚𝑓
1  of material feeding, as expressed 

in Equation (7.46). 

 𝑡𝑚𝑓
1 = 𝑡𝑎𝑥𝑖𝑠                          (7.46) 

7.4.1.5. Time consumption of auxiliary components 

This auxiliary components, namely the display unit, temperature sensor, and user interface 

and connectivity, remain in an operating status throughout the entire AM process. Therefore, 

the time consumption 𝑡𝑎𝑢𝑥 is the same as the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙, as expressed 

in Equation (7.47). 

 𝑡𝑎𝑢𝑥 = 𝑡𝑡𝑜𝑡𝑎𝑙                        (7.47) 

7.4.1.6. Total time consumption of all modules 

Based on the above models, the total time consumption 𝑡𝑡𝑜𝑡𝑎𝑙 is the union of time consumed 

by all five modules. According to the running sequences of the five modules in Figure 7.12, 

𝑡𝑡𝑜𝑡𝑎𝑙 refers to the sum of time consumptions of two modules – material processing and axis 

movement – as expressed in Equation (7.48). 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑚𝑝
1 + 𝑡𝑥𝑦𝑧                    (7.48) 
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7.4.2. Predictive model of energy consumption 

This section models the energy consumption of each module in the Monoprice MP Mini 

Delta FDM 3D printer. The predictive models are described in the following sub-sections. 

7.4.2.1. Energy consumptions of axis movement and material feeding 

Based on the power profiles of axis movement module and material feeding module, it has 

been found that both modules have stable powers during material deposition process. Thus, 

the apparent power 𝑃𝑎𝑥𝑖𝑠 of the axis movement module is modelled as a function of speeds 

𝐹𝑥𝑦 and 𝐹𝑧 in X, Y, Z directions. The apparent power 𝑃𝑚𝑓
𝑐  of material feeding is modelled 

as a function of the feeding rate 𝐹𝑥𝑦  in X, Y directions. To calculate the functional 

relationships, experiments are conducted to measure the apparent powers under different 

axis movement speeds and material feeding rates.  

Table 7.24: Information for measuring the apparent powers of the axis movement module 

and material feeding module in X, Y, Z directions under different process parameters for the 

Monoprice 3D printer (G-Code – Reprap, 2020) 

Apparent 

powers 
Related parameters 

Parameter ranges 

Lower bound Upper bound 

𝑃𝑎𝑥𝑖𝑠 

Speed of axis 

movement in X, Y, 

Z directions 

𝐹𝑥𝑦, 𝐹𝑧 

Lowest speed of 

axis movement in 

X, Y directions 

600𝑚𝑚

/𝑚𝑖𝑛 

Highest speed of 

axis movement 

in X, Y 

directions 

9000𝑚𝑚

/𝑚𝑖𝑛 

𝑃𝑚𝑓
1  

Rate of material 

feeding in X, Y 

directions 

𝐹𝑥𝑦 

Lowest rate of 

material feeding in 

X, Y directions 

600𝑚𝑚

/𝑚𝑖𝑛 

Highest rate of 

material feeding 

in X, Y 

directions 

9000𝑚𝑚

/𝑚𝑖𝑛 

G-code commands 

G1 Fxy Xnnn Ynnn : Nozzle moves to the target coordinate (Xnnn, Ynnn) at 

a speed of 𝐹𝑥𝑦 

G1 Fz Znnn : Nozzle moves to the target coordinate (Znnn) at a speed of 𝐹𝑧 

G1 Fxy Xnnn Ynnn Emmm : Nozzle moves to the target coordinate (Xnnn, 

Ynnn) with material feeding; the total amount of material feeding is mmm 
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The axis movement and material feeding are driven by four stepper motors. Similar to the 

first case study, experiments are conducted to measure the apparent powers of all 

combinations of the four stepper motors. As shown in Table 7.24, the speed or feeding rate 

𝐹𝑥𝑦 in X, Y directions and the speed 𝐹𝑧 in Z direction are assigned within the range from 

the lowest to the highest speed or feeding rate. The coordinates in G-code commands are 

defined to instruct (a) the axis movement module to move for a sufficient displacement and 

(b) the material feeding module to feed a sufficient amount of material filament. 

The experimental results are listed in Appendix Ⅲ (10–18) and Table 7.25. The same as 

in the first case study, the power of axis movement is distributed as a constant regardless of 

the speed variation. Also, the modules operate at different power levels for different 

combinations of the four stepper motors. Since all stepper motors are involved in a general 

AM process, the total power of two modules is expressed as Equation (7.49).  

 𝑃𝑎𝑥𝑖𝑠 + 𝑃𝑚𝑓
1 = 28.25414(𝑉𝐴)              (7.49) 

Table 7.25: Experimental results of apparent powers of axis movement and material feeding 

at different speeds in different directions for the Monoprice 3D printer 

Test 

No. 

Stepper motors 

Speeds Avg. power  

𝑭𝒙𝒚, 𝑭𝒛 

(𝒎𝒎/𝒎𝒊𝒏) 

𝑷𝒂𝒙𝒊𝒔, 𝑷𝒎𝒇
𝟏  

(𝑽𝑨) 

10 X 1200, 3600, 5400, 9000 19.26776 

11 Y 1200, 3600, 5400, 9000 19.90313 

12 Z 1200, 3600, 5400, 9000 21.07183 

13 Material feeding 1200, 3600, 5400, 9000 28.55376 

14 X, Y 1200, 3600, 5400, 9000 18.72511 

15 X, Z 1200, 3600, 5400, 9000 20.30556 

16 Y, Z 1200, 3600, 5400, 9000 20.40393 

17 X, Y, Z 1200, 3600, 5400, 9000 20.29855 

18 X, Y, Z, material feeding 1200, 3600, 5400, 9000 28.25414 

Based on the above, the total energy consumption of axis movement 𝐸𝑎𝑥𝑖𝑠 and material 

feeding 𝐸𝑎𝑥𝑖𝑠 is modelled as the product of total power and time consumption 𝑡𝑎𝑥𝑖𝑠, as 

expressed in Equation (7.50). 

 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑓 = (𝑃𝑎𝑥𝑖𝑠 + 𝑃𝑚𝑓
1 )𝑡𝑎𝑥𝑖𝑠 = 28.25414𝑡𝑎𝑥𝑖𝑠             (7.50) 
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7.4.2.2. Energy consumption of material processing  

This section models the energy consumption of the material processing module. The 

apparent powers 𝑃𝑚𝑝
1   of initial heating and 𝑃𝑚𝑝ℎ𝑝

1   of heat preservation are modelled as 

functions of the target temperature 𝑇𝑚𝑝
1 . Experiments are conducted to measure the apparent 

powers 𝑃𝑚𝑝
1  , 𝑃𝑚𝑝ℎ𝑝

1   under different target temperatures 𝑇𝑚𝑝
1  . In Table 7.26, the target 

temperature 𝑇𝑚𝑝
1  in the G-code commands “M104 S𝑇𝑚𝑝

1 ” and “M109 S 𝑇𝑚𝑝
1 ” is manually 

assigned with within the range from the melting point of the material to the maximum 

temperature that the module can be heated to. 

Table 7.26: Information for measuring the apparent powers of the material processing 

module under different process parameters for the Monoprice 3D printer 

Apparent power Related parameter 
Parameter ranges 

Lower bound Upper bound 

Initial heating 𝑃𝑚𝑝
1  

Target 

temperature 
𝑇𝑚𝑝

1  

Melting 

point of 

material 

150℃ 

Maximum 

temperature of 

nozzle hotend  

250℃ 
Heat preservation 𝑃𝑚𝑝ℎ𝑝

1  

G-code commands 
M104 S(𝑇𝑚𝑝

1 ) : Set the target temperature 𝑇𝑚𝑝
1  of nozzle hotend 

M109 S(𝑇𝑚𝑝
1 ) : Heat the nozzle hotend to the target temperature 𝑇𝑚𝑝

1  

The experimental results are presented in Appendix Ⅲ (1–4) and Table 7.27. It has been 

found that the apparent power 𝑃𝑚𝑝
1  of initial heating remains constant and is unrelated to 

the target temperature 𝑇𝑚𝑝
1 . The average power is calculated as Equation (7.51). 

 𝑃𝑚𝑝
1 = 58.96088(𝑉𝐴)                     (7.51) 

Table 7.27: Experimental results of apparent powers of material processing at different target 

temperatures for the Monoprice 3D printer 

Test No. 
Target temperature 

Apparent power of initial 

heating 

Apparent power of heat 

preservation 

𝑻𝒎𝒑
𝟏  (℃) 𝑷𝒎𝒑

𝟏  (VA) 𝑷𝒎𝒑𝒉𝒑

𝟏  (VA) 

1 150 59.78204 16.72852 

2 170 60.24474 19.22486 

3 190 58.73848 21.20641 

4 210 57.07825 23.46649 

Avg. (VA) 58.96088  
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After the initial heating and transition processes, the power 𝑃𝑚𝑝ℎ𝑝
1  of heat preservation 

gradually tends to be stabilised as a constant and is found to be related to the target 

temperature 𝑇𝑚𝑝
1  . Polynomial regression method is applied to calculate the coefficient 

between the apparent power 𝑃𝑚𝑝ℎ𝑝
1  and the target temperature 𝑇𝑚𝑝

1 . The regression model 

is presented in Figure 7.17 and Equation (7.52). The 𝑅2 to evaluate the goodness-of-fit 

is calculated as 0.9982. 

 𝑃𝑚𝑝ℎ𝑝
1 = 0.111𝑇𝑚𝑝

1 + 0.1807                  (7.52) 

 

Figure 7.17: Regression model of apparent power and target temperature for the heat 

preservation of the material processing module 

Due to the unique coding rules in Cura, the temperature of heat preservation during the 

construction of the first layer is 5°C higher than the target temperature 𝑇𝑚𝑝
1  . Thus, the 

apparent power 𝑃𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1   of heat preservation for the first layer is improved from 

Equation (7.52) to Equation (7.53). For the remaining layers, the temperature of the 

material processing module is restored back to the target temperature 𝑇𝑚𝑝
1 . The apparent 

power 𝑃𝑚𝑝ℎ𝑝
1  of heat preservation for the remaining layers is expressed as Equation (7.52). 

 𝑃𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1 = 0.111(𝑇𝑚𝑝
1 + 5) + 0.1807              (7.53) 
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Based on the above, the total energy consumption 𝐸𝑚𝑝 of the material processing module 

is the sum of energy consumed by three states: the initial heating, the heat preservation 

during the construction of the first layer and the heat preservation during the construction of 

the remaining layers. It is expressed as Equation (7.54). 

 𝐸𝑚𝑝 = 𝑃𝑚𝑝
1 𝑡𝑚𝑝

1 + 𝑃𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1 𝑡𝑚𝑝ℎ𝑝_𝑓𝑖𝑟𝑠𝑡

1 + 𝑃𝑚𝑝ℎ𝑝
1 𝑡𝑚𝑝ℎ𝑝_𝑟𝑒𝑠𝑡

1        (7.54) 

7.4.2.3. Energy consumption of component heating 

This section models the energy consumption of component heating module. According to 

the previous discussion, the relationship between the initial heating power 𝑃ℎ
1 and the initial 

heating time 𝑡ℎ
1  has been simplified to a polynomial function with a fixed slope. The 

experimental results of the maximum heating powers 𝑃ℎ𝑚𝑎𝑥

1   and the heat preservation 

powers 𝑃ℎℎ𝑝

1  at different target temperatures 𝑇ℎ
1 have been listed in Appendix Ⅲ (5–9) 

and Table 7.23 in Section 7.4.1.3. 

According to the experimental results, it has been found that the maximum heating powers 

𝑃ℎ𝑚𝑎𝑥

1  and the heat preservation powers 𝑃ℎℎ𝑝

1  are both related to the target temperature 𝑇ℎ
1. 

Polynomial method is applied to calculate the coefficients between the apparent powers 

𝑃ℎ𝑚𝑎𝑥

1 , 𝑃ℎℎ𝑝

1  and the target temperature 𝑇ℎ
1. As shown in Figure 7.18 and Figure 7.19, the 

regression models of the apparent powers at the two heating stages are expressed as 

Equation (7.55) and Equation (7.56). The values of 𝑅2 to evaluate the goodness-of-fit are 

calculated as 0.9781 and 0.999, respectively. 

 𝑃ℎ𝑚𝑎𝑥

1 = 0.7895𝑇ℎ
1 − 6.065                 (7.55) 

 𝑃ℎℎ𝑝

1 = 0.56𝑇ℎ
1 − 10.88                  (7.56) 
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Figure 7.18: Regression model of the maximum heating power and target temperature for 

the initial heating of the component heating module in the Monoprice 3D printer 

 

Figure 7.19: Regression model of apparent power and target temperature for the heat 

preservation of the component heating module in the Monoprice 3D printer 

Based on the above models, the total energy consumption 𝐸ℎ of the component heating 

module is the sum of the time-integral of power in the two working states, as expressed in 

Equation (7.57).  

 𝐸ℎ = ∫ 𝑃ℎ
1𝑑𝑡

𝑡ℎ
1

𝑜
+ ∫ 𝑃ℎℎ𝑝

1 𝑑𝑡
𝑡ℎℎ𝑝

1

𝑜
=

(𝑃ℎ𝑚𝑎𝑥
1 +𝑃ℎℎ𝑝

1 )

2
𝑡ℎ

1 + 𝑃ℎℎ𝑝

1 𝑡ℎℎ𝑝

1        (7.57) 

7.4.2.4. Energy consumption of auxiliary components 

The auxiliary component, namely the display unit, temperature sensor, and user interface 

and connectivity, remain using stable power throughout the entire AM process. The total 
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time consumption 𝑡𝑎𝑢𝑥 of auxiliary components is the same as the total time consumption 

𝑡𝑡𝑜𝑡𝑎𝑙 of the entire AM task. Similar to the first case study, experiments are conducted to 

measure the standby power 𝑃𝑠  and the start-up power 𝑃0 . The results are listed in 

Appendix Ⅲ (19, 20) and the models are expressed as Equation (7.58) and Equation 

(7.59). The total energy consumption 𝐸𝑎𝑢𝑥 of the auxiliary components is modelled as 

the sum of the time-integral of power, as expressed in Equation (7.60). 

 𝑃𝑠 =10.77589(𝑉𝐴)                    (7.58)                                                                         

 𝑃0 =1.65420(𝑉𝐴)                    (7.59) 

 𝐸𝑎𝑢𝑥 = (𝑃𝑠 + 𝑃0)𝑡𝑡𝑜𝑡𝑎𝑙                (7.60) 

7.4.2.5. Total energy consumption of five modules 

Based on the above models, the total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙  is the sum of energy 

consumed by all five modules, as expressed in Equation (7.61). 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸ℎ + 𝐸𝑚𝑝 + 𝐸𝑎𝑥𝑖𝑠 + 𝐸𝑚𝑓 + 𝐸𝑎𝑢𝑥        (7.61) 

7.4.3. Predictive model of material consumption 

The Monoprice 3D printer uses the same polylactic acid (PLA) filament material as in the 

first case study. Thus, the modelling of material consumption is the same as the modelling 

from Equation (7.28) to Equation (7.30) in Section 7.3.3. The total length 𝑙𝑒 of extruded 

material is calculated from G-code commands. 
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7.4.4. Additional experiments to improve predictive models 

The factors that affect the accuracy of the predictive models are the same as in the first case 

study, namely the occurrence of motor out-of-step of the axis movement, and the deviation 

between the quoted and actual material densities. Additional experiments on testing the 

actual speeds of axis movement and the actual material density are presented as follows. 

7.4.4.1. Actual speeds of axis movement 

Additional experiments are conducted to obtain the functional relationships between the 

actual and expected speeds of axis movement in X, Y, Z directions. In each direction, the G-

code commands are manually defined to instruct the AM machine to move the nozzle for a 

sufficient displacement at different expected speeds. The expected speeds 𝐹𝑥, 𝐹𝑦, 𝐹𝑧 in X, 

Y, Z directions are randomly assigned within the pre-defined ranges. In each test, the total 

time of axis movement is recorded by the CW500 power meter to calculate the average speed. 

Experimental results are presented in Table 7.28 to Table 7.30. 

Table 7.28: Experimental results of actual speeds of axis movement in X direction for the 

Monoprice 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Predicted time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected 

speed 
Actual speed 

𝑭𝒙  

(𝒎𝒎/𝒔) 

𝑭𝒙𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

14130 

F900 942.0000 828 15 17.06522 

F1800 471.0000 418 30 33.80383 

F3000 282.6000 324 50 43.61111 

F3600 235.5000 289 60 48.89273 

F6000 141.3000 225 100 62.80000 

F7200 117.7500 208 120 67.93269 

F9600 88.3125 186 160 75.96774 
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Table 7.29: Experimental results of actual speeds of axis movement in Y direction for the 

Monoprice 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Predicted time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected 

speed 
Actual speed 

𝑭𝒚  

(𝒎𝒎/𝒔) 

𝑭𝒚𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

14130 

F900 942.0000 826 15 17.10654 

F1800 471.0000 418 30 33.80383 

F3000 282.6000 305 50 46.32787 

F3600 235.5000 284 60 49.75352 

F6000 141.3000 218 100 64.81651 

F7200 117.7500 201 120 70.29851 

F9600 88.3125 179 160 78.93855 

Table 7.30: Experimental results of actual speeds of axis movement in Z direction for the 

Monoprice 3D printer 

Displacement 

(𝒎𝒎) 

G-code 

command 

Predicted time 

consumption 

(𝒔) 

Actual time 

consumption 

(𝒔) 

Expected 

speed 
Actual speed 

𝑭𝒛  

(𝒎𝒎/𝒔) 

𝑭𝒛𝒂𝒄𝒕
  

(𝒎𝒎/𝒔) 

10720 

F900 714.6700 1270 15 8.44094 

F1800 357.3300 637 30 16.82889 

F3000 214.4000 384 50 27.91667 

F3600 178.6700 321 60 33.39564 

F6000 107.2000 199 100 53.86935 

F7200 89.3300 180 120 59.55556 

F9600 67.0000 162 160 66.17284 

Based on the experimental results, the functional relationships between the actual speeds 

𝐹𝑥𝑎𝑐𝑡
 , 𝐹𝑦𝑎𝑐𝑡

 , 𝐹𝑧𝑎𝑐𝑡
  and the expected speeds 𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧  of axis movement in X, Y, Z 

directions are obtained by using the polynomial regression method. The regression models 

are shown in Figure 7.20 to Figure 7.22 and expressed in Equation (7.62) to Equation 

(7.64), for which the 𝑅2  to evaluate the goodness-of-fit are 0.9882, 0.9881 and 0.9971, 

respectively.  

 𝐹𝑥𝑎𝑐𝑡
= −0.002364𝐹𝑥

2 + 0.7888𝐹𝑥 + 9.048          (7.62) 

 𝐹𝑦𝑎𝑐𝑡
= −0.002477𝐹𝑦

2 + 0.8274𝐹𝑦 + 8.593             (7.63) 

 𝐹𝑧𝑎𝑐𝑡
= −0.001985𝐹𝑧

2 + 0.7597𝐹𝑧 − 3.809             (7.64) 
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Figure 7.20: Regression model of actual and expected axis movement speeds in X direction 

for the Monoprice 3D printer 

 
Figure 7.21: Regression model of actual and expected axis movement speeds in Y direction 

for the Monoprice 3D printer 

 
Figure 7.22:Regression model of actual and expected axis movement speeds in Z direction 

for the Monoprice 3D printer 
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7.4.4.2. Actual material density 

The polylactic acid (PLA) filament material of the Monoprice 3D printer is the same as in 

the first case study. Therefore, the actual material density 𝜌𝑎𝑐𝑡  is also measured as 

Equation (7.34) in Section 7.3.4.2. 

7.5. Summary 

The case studies of two different FDM 3D printers are presented to build up the predictive 

models by following the proposed prediction methodology. To begin, the consumption-

related components in each machine are classified into five types of modules, namely axis 

movement, material processing, component heating, material feeding and auxiliary 

components. The different working states of each module are also defined. Then, the hybrid 

modelling method is applied to model the time, energy and material consumptions of each 

working state in each module. Physics-based modelling is applied to calculate three 

parameters based on G-code, namely the time, distance of axis movement with actual 

displacements and the amount of material feeding. For other parameters, data-driven 

modelling is applied to conduct experiments to measure the time consumptions and apparent 

powers of each working state under different values of the related process parameters. The 

functional relationships between the measured results and process parameters are derived 

through polynomial regression. Furthermore, factors affecting the prediction accuracy are 

also considered in both machines, namely the occurrence of motor out-of-step and the actual 

material density. Additional experiments are conducted to test the actual speeds of axis 

movement and the actual density of the polylactic acid (PLA) filament material. Those actual 

parameters are used to replace the original parameters in the predictive models. 

In the following chapter, the predictive models will be used to predict the resource 

consumptions of real-world AM processes. To validate the effectiveness of the prediction 

method, the predicted results will be compared with the actual consumptions to calculate the 

prediction accuracy.
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CHAPTER 8  VALIDATION OF 

PREDICTIVE MODELS AND MULTI-

OBJECTIVE OPTIMISATION 

8.1. Introduction  

This chapter validates the effectiveness of predictive models of the aforementioned two case 

studies in Chapter 7. Firstly, each fused deposition modelling (FDM) printer has been 

assigned two AM tasks under different process parameters. The consumptions with and 

without considering the impact of machine characteristics have been both predicted and 

compared with the actual consumptions. The prediction accuracy is calculated by using the 

mean absolute per cent error (MAPE), since MAPE is an effective statistical measure 

commonly used to calculate the prediction accuracy of a forecasting method (De Myttenaere 

et al., 2016). According to the results, it has been proved that the prediction method achieves 

acceptable prediction accuracy, and the additional experiments deliver an improvement of 

the prediction accuracy for both AM machines.  

In addition, the effectiveness of NSGA-II optimisation has been also validated in this 

chapter. The predictive models have been used as three objective functions in NSGA-II. It 

aims to search for the near-optimal approximate Pareto fronts of process parameters for a 

CAD design printed by two FDM printers. 16 optimisation tests have been performed on 

each printer under different optimisation parameters. Each test has produced one Pareto front. 

The hypervolume (HV) indicator of each front has been calculated and compared with each 

other to obtain the front that has the maximum HV indicator. The solutions of process 

parameters in the front can be used as a reference to aid the decision making of process 

parameter setting in the prefabrication stage. 
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The analyses of optimisation results obtained from Taguchi experiments are commonly 

conducted through two methods: range analysis and analysis of variance (ANOVA) (Dar and 

Anuradha. 2018; Khanna and Davim, 2015; Hwang et al., 2008; Cox and Reid, 2000). The 

range analysis aims to compare and rank the main effects of four optimisation parameters on 

the quality of obtained Pareto front (i.e. HV indicator of Pareto front). The ANOVA aims to 

further quantify the significant contributions of optimisation parameters on the HV indicator. 

The analysis results can provide guidance for manufacturers to personalise the most feasible 

optimisation parameters for optimisation testing of other CAD designs. 

According to the prediction results and optimisation results, the proposed method has been 

proved to be effective in predicting and optimising the resource consumptions for real-world 

AM systems. Details of the results analyses are presented in the following sections. 

8.2. Experimental validations of predictive models of two fused 

deposition modelling 3D printers 

This section presents and discusses the prediction results of four AM tasks printed by the 

ANYCUBIC i3 Mega 3D printer and the Monoprice MP Mini Delta 3D printer. The aim is 

to validate the effectiveness of proposed prediction method in real-world AM systems. At 

first, each AM machine has been instructed to print two different components under random 

combinations of process parameters. By using the predictive models defined in last chapter, 

the time, energy and material consumptions of each AM task are predicted. Then, the 

predicted consumptions are compared with the actual consumptions to calculate the 

prediction accuracies (i.e. mean absolute percent error (MAPE)) of the predictive models.  

8.2.1. Prediction results of ANYCUBIC i3 Mega 3D printer 

This section presents the prediction results of task 01 and task 02 printed by the ANYCIBIC 

3D printer. The orthographic views of two components are shown in Figure 8.1. After 



269 

 

importing the CAD designs in standard triangle language (STL) format into Cura slicer 

software, the process parameters in Table 8.1 are selected for demonstration and randomly 

assigned within the parameter ranges. Other process parameters are set to default values.     

Task 01 Task 02 

Figure 8.1: Orthographic views of two components printed by the ANYCUBIC 3D printer 

Table 8.1. Ranges and assigned values of related parameters input in the predictive models 

of task 01 and task 02 printed by the ANYCUBIC 3D printer 

Parameters of predictive models Symbols Units 
Parameter 

ranges 

Parameter values 

Task 01 Task 02 

Current temperature of build platform 𝑇ℎ0

1  ℃ None 22 23 

Current temperature of nozzle hotend 𝑇𝑚𝑝0

1  ℃ None 22 22 

Target temperature of build platform 𝑇ℎ
1 ℃ [23, 80] 60 53 

Target temperature of nozzle hotend 𝑇𝑚𝑝
1  ℃ [180, 250] 200 180 

Speed of axis movement in X, Y 

directions with material feeding 
𝐹𝑥𝑦𝑚

 mm/s [10, 150] 60 72 

Speed of axis movement in X, Y 

directions without material feeding 
𝐹𝑥𝑦𝑛

  mm/s [10, 300] 120 130 

Speed of axis movement in Z direction 𝐹𝑧 mm/s 5.94872 5.94872 5.94872 

Layer thickness 𝐿𝑇 mm [0.04, 0.3] 0.04 0.04 

Infill density 𝐼𝐷 % 
[0, 5, 10, 

15, …,100] 
20 20 

After the setting of process parameters, the G-code files used to print two components are 

generated. Then, three types of parameters are input into the models, including the process 

parameters defined in Table 8.1, the time of axis movement and the amount of material 

feeding calculated from G-code. Finally, the consumptions with and without the additional 

experiments on testing the actual speed of axis movement and the actual material density are 

both predicted, as listed in Table 8.2 and Table 8.3. To calculate the prediction accuracy, the 
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actual consumptions are measured by using the CW500 power meter and Sartorius density 

meter. The measured results are also presented in two tables and Appendix Ⅱ (34–35). 

Table 8.2. Prediction results of time, energy and material consumptions of task 01 printed 

by the ANYCUBIC 3D printer 

Consumptions 
Experiment 

result (𝑬𝑹) 

Prediction results (𝑷𝑹) 

Predictive 

model 

Accuracy 

(percent 

error) 

Improved 

predictive 

model 

Accuracy 

(percent 

error) 

Time (s) 3149.00000 3040.77213 3.43690% 3049.40426 3.16277% 

Energy (VAS) 579979.80000 530024.65949 8.61326% 531469.98655 8.36405% 

Material (𝑔) 2.42200 2.61691 −8.04745% 2.60761 −7.66350% 

Table 8.3. Prediction results of time, energy and material consumptions of task 02 printed 

by the ANYCUBIC 3D printer 

Consumptions 
Experiment 

result (𝑬𝑹) 

Prediction results (𝑷𝑹) 

Predictive 

model 

Accuracy 

(percent 

error) 

Improved 

predictive 

model 

Accuracy 

(percent 

error) 

Time (s) 2245.00000 2112.53469 5.90046% 2121.32766 5.50879% 

Energy (VAS) 364326.57000 332160.03772 8.82904% 333463.41855 8.47129% 

Material (𝑔) 1.99300 2.20535 −10.65479% 2.19750 −10.26091% 

Referring to the method (i.e.MAPE =
1

𝑛𝑡𝑒𝑠𝑡
∑ |

𝐸𝑅𝑖−𝑃𝑅𝑖

𝐸𝑅𝑖
|

𝑛𝑡𝑒𝑠𝑡
𝑖=1 ) to calculate the mean absolute 

percent error (MAPE) in Section 4.7.1, the MAPE of each predictive model is calculated as 

the average percent error of two tests. Table 8.4 presents the prediction accuracies of the 

predictive models.  

Table 8.4. Prediction accuracies of time, energy and material consumptions of task 01 and 

task 02 printed by the ANYCUBIC 3D printer 

Consumptions 

Prediction accuracies 

Predictive model Improved predictive model 

Task 01 Task 02 MAPE Task 01 Task 02 MAPE 

Time (s) 3.43690% 5.90046% 4.66868% 3.16277% 5.50879% 4.33578% 

Energy (VAS) 8.61326% 8.82904% 8.72115% 8.36405% 8.47129% 8.41767% 

Material (𝑔) −8.04745% −10.65479% 9.35112% −7.66350% −10.26091% 8.96221% 
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According to the results in Table 8.4, the accuracies of time, energy and material 

consumptions for printing both components are all improved after the additional experiments 

on testing the actual speed of axis movement and the actual material density. Due to the 

unique G-code for each AM task, the corresponding predictive models are different, resulting 

in the different prediction accuracies and accuracy improvements. This result not only 

confirms the effectiveness of the proposed prediction modelling method, and also verifies 

the impacts of machine characteristics and G-code on the resource consumptions. The 

reasons for the deviation between the predicted consumptions and the actual consumptions 

are discussed as follows. 

With respect to the accuracy of time consumption, this study has simplified the modelling 

by regarding the speed of axis movement as a constant. In a practical AM process, the axis 

movement on a displacement experiences three phases: the acceleration to target speed, the 

axis movement at a constant speed, and the deceleration from target speed to zero. 

Nevertheless, the measurements and calculations of acceleration and deceleration of axis 

movement are disturbed by the motor out-of-step, since the actual speed of axis movement 

is unknown when considering the phases of acceleration and deceleration. Therefore, this 

study has mainly focused on the additional experiments that test the actual speed of axis 

movement by treating the speed as a constant. The mean absolute percent error (MAPE) of 

time consumption is mainly due to the neglects of the acceleration and deceleration phases. 

To further improve the prediction accuracy, the measurements of acceleration and 

deceleration for axis movement will continue to be researched as future work.  

With respect to the accuracy of energy consumption, since the modelling is based on the 

apparent power and time consumption of each module, the MAPE of energy consumption is 

mainly due to the MAPE of time consumption. Another reason is that the apparent powers 

with fluctuations measured from five modules have been simplified in order to reduce the 

workload of modelling process. As discussed in Section 7.3.2.2, the apparent power of 

material processing module (i.e. nozzle hotend) at the state of heat preservation is gradually 
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stabilised from fluctuation. Thus, this study has simplified the apparent power to a constant 

whose value is related to the target temperature. In addition, as discussed in Section 7.3.2.3, 

the apparent power of component heating module (i.e. build platform) at the state of heat 

preservation is distributed in the form of periodic pulses. To simplify the modelling, this 

study has divided the apparent power based on the heating cycles and has modelled the 

energy consumption based on the average time consumption and average energy 

consumption per cycle.  

With respect to the accuracy of material consumption, the motor out-of-step is the main 

reason that effect the prediction accuracy. This study has implemented additional 

experiments to test the actual speed of axis movement. However, the stepper motor 

responsible for material feeding faces the same problem of motor out-of-step. Compared 

with axis movement, the reasons causing this problem in material feeding are more 

complicated, as discussed in Section 7.3.4. On one hand, the motor loses step due to the high 

load of a high feeding rate and insufficient torques. On the other hand, the material supplied 

at a high feeding rate cannot be sufficiently melted in time, causing the material to become 

stuck in the nozzle and fail to be extruded. Both of above two reasons result in the material 

supply being less than expected. To obtain the relationship between the actual and expected 

amounts of material feeding, additional experiments are needed to test the characteristics of 

the material and the stepper motor for material feeding. This work will continue to be 

researched as future work.  

8.2.2. Prediction results of Monoprice MP Mini Delta 3D printer 

This section presents the prediction results of task 03 and task 04 printed by the Monoprice 

3D printer. The orthographic views of two components are shown in Fig 8.2. According to 

the machine specification in Section 7.2.1, the process parameters of each component are 

randomly assigned within the parameter ranges, as shown in Table 8.5. Similar to the first 
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case study, this case study assigns values to the same process parameters in Table 8.5, while 

other process parameters are set to default values. 

Task 03 Task 04 

Fig 8.2: Orthographic views of task 03 and task 04 printed by the Monoprice 3D printer 

Table 8.5. Ranges and assigned values of related parameters input in the predictive models 

of task 03 and task 04 printed by the Monoprice 3D printer 

Parameters of predictive models Symbols Unit 
Parameter 

ranges 

Parameter values 

Task 03 Task 04 

Current temperature of build 

platform 
𝑇ℎ0

1  ℃ None 24 25 

Current temperature of nozzle hotend 𝑇𝑚𝑝0
1  ℃ None 20 32 

Target temperature of build platform 𝑇ℎ
1 ℃ [23, 60] 47 60 

Target temperature of nozzle hotend 𝑇𝑚𝑝
1  ℃ [180, 260] 182 200 

Speed of axis movement in X, Y 

directions with material feeding 
𝐹𝑥𝑦𝑚

 mm/s [10, 150] 63 50 

Speed of axis movement in X, Y, Z 

directions without material feeding 
𝐹𝑥𝑦𝑛

, 𝐹𝑧 mm/s [10, 150] 98 150 

Layer thickness 𝐿𝑇 mm [0.05, 0.2] 0.15 0.15 

Infill density 𝐼𝐷 % 
[0, 5, 10, 

15, …,100] 
20 20 

By importing the CAD designs and the pre-defined process parameters into the slicer 

software, the G-code files used to print two components are generated. By using the 

predictive models established in Section 7.3.4, the predicted time, energy and material 

consumptions with and without the additional experiments are calculated and presented in 

Table 8.6 and Table 8.7. In addition, the actual consumptions are measured to calculate the 

prediction accuracy, which are also presented in two tables and Appendix Ⅱ (34–35).  
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Table 8.6. Prediction results of time, energy and material consumptions of task 03 printed 

by the Monoprice 3D printer 

Table 8.7. Prediction results of time, energy and material consumptions of task 04 printed 

by the Monoprice 3D printer 

Consumptions 
Experiment 

result (𝑬𝑹) 

Prediction results (𝑷𝑹) 

Predictive 

model 

Accuracy 

(percent 

error) 

Improved 

predictive 

model 

Accuracy 

(percent 

error) 

Time (s) 358.00000 357.99159 0.23492% 329.49882 7.96122% 

Energy (VAS) 31059.93000 32065.28409 −3.23682% 29664.35516 4.49317% 

Material (𝑔) 0.50900 0.65299 −28.28880% 0.65067 −27.83301% 

Based on the above results, the mean absolute percent error (MAPE) of each predictive 

model is calculated as the average percent error of two tests. Table 8.8 presents the prediction 

accuracies of the predictive models. The reasons for the deviation between the predicted 

consumptions and the actual consumptions are discussed as follows. 

Table 8.8. Prediction accuracies of time, energy and material consumptions of task 03 and 

task 04 printed by the Monoprice 3D printer 

Consumptions 

Prediction accuracies 

Predictive model Improved predictive model 

Task 03 Task 04 MAPE Task 03 Task 04 MAPE 

Time (s) −8.85738% 0.23492% 4.31123% 2.38771% 7.96122% 5.17447% 

Energy (VAS) −11.62911% −3.23682% 7.43297% −0.32722% 4.49317% 2.08298% 

Material (𝑔) −26.13960% −28.28880% 27.21420% −25.69128% −27.83301% 26.76215% 

Consumptions 
Experiment 

result (𝑬𝑹) 

Prediction results (𝑷𝑹) 

Predictive 

model 

Accuracy 

(percent 

error) 

Improved 

predictive 

model 

Accuracy 

(percent 

error) 

Time (s) 1176 1280.16282 −8.85738% 1147.92052 2.38771% 

Energy (VAS) 88043.65 98282.34109 −11.62911% 88331.74660 −0.32722% 

Material (𝑔) 2.23500 2.81922 −26.13960% 2.80920 −25.69128% 
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From the time consumption perspective in task 03, note that the mean absolute percent 

error (MAPE) of the improved predictive model is increased from 0.23492% to 7.96122%. 

The reason is that although the impact of motor out-of-step for axis movement has been 

considered, the deviation of the initial heating time of the material processing module (i.e. 

nozzle hotend) still accounts for a certain percentage of MAPE. Since the volume of the 

printed object (i.e. 0.41195𝑐𝑚3) in task 03 is small, the time spent on component heating 

takes a high proportion of total time consumption, so that the deviation of time spent on 

components heating has a higher impact on the final prediction accuracy. According to the 

experiment result in Appendix Ⅲ (21), the time spent on axis movement with material 

feeding takes 75.98% of total time consumption. While the time spent on the initial heating 

of nozzle hotend takes 24.02% of total time consumption. Compared with task 03, the 

volume of printed object (i.e. 1.80885𝑐𝑚3) in task 04 is 4.39 times the volume in task 03. 

Therefore, according to the experiment results of task 04 in Appendix Ⅲ (22), the time 

spent on axis movement with material feeding takes 94.37% of total time consumption, while 

the initial heating time of nozzle hotend 04 takes 6.63% of total time consumption. Based 

on the above, it is concluded that the deviation between the predicted time and actual time 

of component heating has a more significant impact on the prediction accuracy for the small-

volume printing. The higher the volume of printed object, the lower the MAPE will be.  

Moreover, the consumption modelling has also simplified the speed of axis movement as 

a constant. Similar to the first case study, the impact of acceleration and deceleration on the 

prediction accuracy are not considered in this study. To further improve the prediction 

accuracy, the acceleration and deceleration of axis movement will continue to be researched 

as future work.  

From the energy consumption perspective, the consumption modelling has simplified the 

measured apparent powers with fluctuations to constant and regular values. For example, the 

apparent power of component heating module (i.e. build platform) at the state of heat 

preservation is gradually stabilised from fluctuation. Thus, this study has simplified the 
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apparent power to a constant whose value is related to the target temperature. This method 

can achieve the rapid modelling with an acceptable prediction accuracy.  

From the material consumption perspective, the motor out-of-step is also the main reason 

that effect the prediction accuracy. Details have been discussed in Section 8.2.1. To address 

this issue, additional modelling, experiments and result analyses are needed to improve the 

prediction accuracy of material consumption. This will be continued as future work. 

8.2.3. Comparison and discussion of the predictive models of two fused 

deposition modelling 3D printers 

According to the prediction results, the effectiveness of proposed prediction modelling 

method has been validated in two fused deposition modelling (FDM) printers. The mean 

absolute percent errors (MAPEs) prove that the predictive models can achieve acceptable 

prediction accuracies. In particular, the consideration of machine characteristics in different 

AM machines is found to achieve different degrees of improvement in prediction accuracy. 

The reason is explained as follow.  

As shown in Table 8.9, note that the prediction accuracies of time consumptions in Task 01 

and Task 02 printed by the ANYCUBIC 3D printer have been improved by 0.27413% and 

0.39167%, respectively. While the prediction accuracies of Task 03 and Task 04 printed by 

the Monoprice 3D printer have been improved by 11.24509% and 7.72630%. By comparing 

the accuracy improvements of two machines, it is found that the improvement of the 

Monoprice 3D printer is much higher than that of the ANYCUBIC 3D printer. The reason is 

due to the motor out-of-step of the axis movement module driven by three stepper motors, 

as discussed in Chapter 7. Through the observation of additional experiments on testing the 

actual speed of axis movement, the deviation between actual speed and expected speed of 

the ANYCUBIC 3D printer is smaller than that of the Monoprice 3D printer. In other words, 

the ANYCUBIC 3D printer performs better than the Monoprice 3D printer in terms of axis 
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movement. In the same way, the different improvement in the prediction accuracy of energy 

consumption between the two machines is also due to the above reason. 

Table 8.9. Improved prediction accuracies of predictive models after the additional 

experiments on two FDM 3D printers 

Consumptions 

Improvement of prediction accuracy after additional experiments 

ANYCUBIC 3D printer Monoprice 3D printer 

Task 01 Task 02 Task 03 Task 04 

Time (s) 0.27413% 0.39167% 11.24509% 7.72630% 

Energy (VAS) 0.24921% 0.35775% 11.30189% 7.72999% 

Material (𝑔) 0.38395% 0.39388% 0.44832% 0.45579% 

Based on the above, it can be concluded that the degree of improvement in prediction 

accuracy is determined by the machine performance. For machines with superior 

performance, or in the case of limited experimental equipment and time, it is optional to use 

the proposed prediction method without spending extra time on additional experiments. 
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8.3. Experimental validations of NSGA-Ⅱ optimisation applied 

to two fused deposition modelling 3D printers  

This section presents and analyses the optimisation results (i.e. hypervolume (HV) indicator) 

of an AM task to be printed by the ANYCUBIC i3 Mega 3D printer and the Monoprice MP 

Mini Delta 3D printer. The component in Fig 8.3 is used as the input of the NSGA-Ⅱ 

algorithm.  

 

Task 05 

Fig 8.3: Orthographic views of the component in task 05  

This study has used Python 3.8.2 to realise the programming and running of NSGA-Ⅱ 

optimisation algorithm. In order to reduce the time cost of optimisation process, three 

computing devices have been allocated to run the optimisation algorithm under different 

optimisation parameters. The configurations of three devices are listed in Table 8.10.  

Table 8.10. Computing devices used for the NSGA-Ⅱ optimisation tests 

Computing devices Configuration 

Dell Precision 5820 Workstation (WS)  Intel(R) Xeon(R) W2155 CPU 3.30GHz 3.31GHz 

Dell Optiplex 7040 personal computer (D-PC) 
Intel(R) Core(TM) i7-6700 CPU 3.40GHz 

3.41GHz 

High-performance computing cluster (HPC)  1 × Intel Xeon X3363 CPU 2.83GHz 

Programming language Python 3.8.2 
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Referring to the methodology in Section 4.6.2, the L16(44) orthogonal table has been 

used. It indicates that 16 optimisation tests should be performed under different 

combinations of optimisation parameters, namely population size N, number of generations 

𝐺𝑒𝑛, crossover probability 𝑝𝑐 and mutation probability 𝑝𝑚. Each test produces one Pareto 

front, whose hypervolume (HV) indicators are calculated and compared with other fronts to 

obtain the optimum front with the maximum HV indicator. Through the range analysis and 

analysis of variance (ANOVA), the optimisation parameters that mainly effect the value of 

HV indicator are obtained. Details of the optimisation results and results analyses are 

presented in the following sections. 

8.3.1. Optimisation result analyses of ANYCUBIC i3 Mega 3D printer 

This section presents and analyses the optimisation results for printing the component in Fig 

8.3 by the ANYCUBIC i3 Mega FDM 3D printer. The process parameters to be optimised 

and the constraints of each parameter are based on customer demands and machine 

characteristics. As a demonstration, six process parameters are selected to be optimised in 

this case study, including layer thickness LT, infill density ID, target temperature 𝑇𝑚𝑝
1  of 

material processing module (i.e. nozzle hotend), target temperature 𝑇ℎ
1  of component 

heating module (i.e. build platform), speed 𝐹𝑥𝑦𝑚
 of axis movement in X, Y directions with 

material feeding, and speed 𝐹𝑥𝑦𝑛
  of axis movement in X, Y directions without material 

feeding. As shown in Table 8.11, the constraints of process parameters are defined based on 

the machine characteristic in Section 7.2.1. The aim is to find the optimum solution of 

process parameters within the constraints for this AM task.     
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Table 8.11. Process parameters to be optimised for printing task 05 by the ANYCUBIC 3D 

printer 

Process parameters Symbols Units 
Parameter ranges 

Granularity 
Lower bound Upper bound 

Layer thickness LT mm 0.040 0.300 0.001 

Infill density ID % 0 100 5 

Target temperature of 

nozzle hotend 
𝑇𝑚𝑝

1  ℃ 180 250 1 

Target temperature of build 

platform 
𝑇ℎ

1 ℃ 23 80 1 

Speed of axis movement in 

X, Y directions with 

material feeding 

𝐹𝑥𝑦𝑚
 mm/s 10 150 1 

Speed of axis movement in 

X, Y directions without 

material feeding 

𝐹𝑥𝑦𝑛
 mm/s 10 300 1 

The optimisation results of 16 tests are presented in Table 8.12, which lists the non-

dominated solutions of process parameters on each Pareto front. Note that there are total 30 

non-dominated solutions (i.e. 𝑛𝑛𝑠 = 30 ) obtained from 16 optimisation tests. Therefore, 

according to the coordinate calculation method of reference point (i.e. 𝑟𝑅 = 1 +
1

𝑛𝑛𝑠−1
) in 

Section 4.6.3, the coordinates of the reference point 𝑅  should be (1.03448, 1.03448, 

1.03448) in the normalised objective space. By following the methodology in Section 4.6.3, 

the HV indicator of each Pareto front is calculated and also listed in this table.  
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Table 8.12: Optimisation results of HV indicators for printing task 05 by the ANYCUBIC 3D printer 

Test 

No. 

Number 

of 

optimal 

solutions 

Hypervolume 

indicator 

Optimal process parameter Consumptions 

Target 

temperature of 

build platform 

Target 

temperature 

of nozzle 

hotend 

Speed of axis 

movement in X, Y 

directions with 

material feeding 

Speed of axis 

movement in X, Y 

directions without 

material feeding 

Layer 

thickness 

Infill 

density 
Material Time Energy 

𝑰𝑯(𝑨) 𝑻𝒉
𝟏 𝑻𝒎𝒑

𝟏  𝑭𝒙𝒚𝒎
 𝑭𝒙𝒚𝒏

 LT ID 𝑴𝒕𝒐𝒕𝒂𝒍 𝑻𝒕𝒐𝒕𝒂𝒍 𝑬𝒕𝒐𝒕𝒂𝒍 

1 2 0.205503 
26 197 113 122 0.267 0 0.64680  128.41105 16701.79999 

26 212 86 128 0.232 0 0.62730  141.85412 18656.68471 

2 1 0.681671 23 212 109 157 0.226 0 0.61570  126.03740 14174.29752 

3 2 0.104885 
27 205 99 235 0.241 5 0.63442  144.89938 19714.49318 

32 217 92 140 0.226 0 0.61570  171.52166 27619.49927 

4 2 0.898252 
23 185 84 210 0.262 0 0.64490  111.22985 11918.82293 

23 182 100 182 0.226 0 0.61570  117.90507 12665.07925 

5 2 0.815477 
23 194 88 184 0.267 0 0.64680  113.45856 12299.97947 

23 193 102 200 0.226 0 0.61570  120.89312 13162.44822 

6 2 0.671497 
23 180 132 193 0.242 0 0.62824  112.37906 12001.78999 

23 180 136 196 0.241 0 0.62655  112.42780 12007.46269 

7 1 0.853262 23 188 120 151 0.226 0 0.61570  119.09979 12877.14671 
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8 3 0.917371 

23 180 124 190 0.264 0 0.64681  108.51476 11552.08691 

23 180 114 227 0.227 0 0.61796  116.76729 12512.46431 

23 180 130 255 0.226 0 0.61570  116.82823 12519.55623 

9 3 0.875220 

23 198 113 130 0.226 0 0.61570  122.14354 13397.49473 

23 188 112 184 0.223 0 0.62283  119.28379 12898.71929 

23 186 105 230 0.243 0 0.63586  114.43276 12304.95944 

10 3 0.930460 

23 181 108 184 0.262 0 0.64490  108.98000 11615.30731 

23 180 144 200 0.229 0 0.62195  116.64550 12498.29170 

23 180 135 204 0.226 0 0.61570  116.65654 12499.57594 

11 1 0.101774 23 181 130 202 0.262 0 0.64490  108.88348 11604.06674 

12 1 0.102479 23 180 129 199 0.262 0 0.64490  108.59982 11561.98672 

13 3 0.922440 

23 181 114 209 0.262 0 0.64490  108.93327 11609.86493 

23 182 135 233 0.226 0 0.61570  117.27987 12592.13633 

23 181 117 195 0.248 0 0.64310  112.71215 12049.93825 

14 2 0.372949 
23 180 113 193 0.267 0 0.64680  108.83823 11589.73092 

23 180 128 189 0.264 0 0.64681  108.51037 11551.57611 

15 1 0.670841 23 180 132 198 0.241 0 0.62655  112.42463 12007.09274 

16 1 0.618453 23 180 134 198 0.242 0 0.62824  112.37858 12001.73446 
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According to the above results, it is found that the solutions of process parameters in Test 

10 achieves the maximum HV indicator. Compared with other solutions, this solution 

achieves a better diversity of alternative solutions and consumes less time, energy and 

material. To validate the effectiveness of NSGA-Ⅱ optimisation, the optimal solutions in 

Table 8.12 are compared with the default setting of process parameters for the ANYCUBIC 

3D printer. The predicted consumptions are listed in Table 8.13. The improvements of 

resource savings are also calculated. It is found that compared with the default settings, the 

time, energy and material consumptions of the recommended settings are all reduced. The 

reductions in time and energy consumptions are particularly obvious. Within the parameter 

ranges, the lower component heating temperatures and infill density, and the higher print 

speed and layer thickness can consume less time, energy and material. This results not only 

verifies the effectiveness of the proposed optimisation method in real-world AM systems, 

and also confirm the impacts of process parameters on the resource consumptions. 

Table 8.13: Comparison of predicted consumptions between the default setting and 

recommended setting of process parameters for printing task 05 by the ANYCUBIC 3D 

printer 

 

Process parameters Consumptions 

𝑻𝒉
𝟏 𝑻𝒎𝒑

𝟏  𝑭𝒙𝒚𝒎
 𝑭𝒙𝒚𝒏

 LT ID 𝑴𝒕𝒐𝒕𝒂𝒍 𝑻𝒕𝒐𝒕𝒂𝒍 𝑬𝒕𝒐𝒕𝒂𝒍 

Defaults 60 200 60 120 0.15 10 0.65845 213.16305 20688.83035 

Recommendation 

23 181 108 184 0.262 0 0.64490  108.98000 11615.30731 

Resource saving percentages 2.05786% 48.87482% 43.85711% 

23 180 144 200 0.229 0 0.62195  116.64550 12498.29170 

Resource saving percentages 5.54332% 45.27874% 39.58918% 

23 180 135 204 0.226 0 0.61570  116.65654 12499.57594 

Resource saving percentages 6.49252% 45.27356% 39.58297% 

Based on the optimisation results, the main effects or the significant contributions of 

optimisation parameters on the HV indicator are analysed through two methods: range 
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analysis and ANOVA. Referring to the methodology in Section 4.7.2, the analysis results are 

listed in Table 8.14 and Table 8.15.  

Table 8.14: Main effects of optimisation parameters on the HV indicator for printing task 

05 by the ANYCUBIC 3D printer 

Levels Calculation methods 
Factors 

PS Gen pc pm 

1 ∑ 𝐼𝐻
1 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.472578 0.70466 0.399307 0.299635 

2 ∑ 𝐼𝐻
2 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.814402 0.580231 0.567617 0.655814 

3 ∑ 𝐼𝐻
3 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.502483 0.432691 0.483693 0.617319 

4 ∑ 𝐼𝐻
4 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.562257 0.634139 0.901104 0.778953 

Delta ∑ 𝐼𝐻(𝐴)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑚𝑎𝑥
− ∑ 𝐼𝐻(𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑚𝑖𝑛
 0.341824 0.27197 0.501797 0.479318 

Rank 3 4 1 2 

Table 8.15: ANOVA for evaluating the significances of factors on HV indicator for printing 

task 05 by the ANYCUBIC 3D printer 

Factors 
Degree of freedom Sums of squares Mean squares 

F-Value P-Value 
DF 𝐒𝐒𝒑 𝐌𝐒𝒑 

PS 3 0.29022 0.09674 1.01 0.497 

Gen 3 0.15969 0.05323 0.56 0.679 

Pm 3 0.57975 0.19325 2.02 0.289 

Pc 3 0.50031 0.16677 1.74 0.330 

Error 3 
𝐒𝐒𝐞 𝐌𝐒𝐞 

  
0.28719 0.09573 

Total 15 𝐒𝐒𝒕 1.8171    

According to the Delta values in Table 8.14, the main effects that each optimisation 

parameter has can be directly observed from Fig 8.4. The sequence of optimisation 

parameters based on their significances on the HV indicator 𝐼𝐻(𝐴)  is the probability of 

crossover pc, probability of mutation pm, population size N, and number of generation Gen. 

However, the effect trend of each factor is not obvious. The ANOVA results in Table 8.15 
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further prove this result, since the P-values of four factors for the response of HV indicator 

are all higher than 0.05. The reason for the above result is explained as follows. 

 

Fig 8.4: Main effects of optimisation parameters for HV indicator for printing task 05 by 

the ANYCUBIC 3D printer 

Due to limited computing resources, the range of possible values for the optimisation 

parameters is limited. Therefore, the initial population randomly generated at the initial stage 

of NSGA-Ⅱ optimisation has an impact on the optimisation result (i.e. the non-dominated 

solutions on the final Pareto front). In general optimisation problems using NSGA-Ⅱ, the 

larger values of population size N and number of generations Gen are supposed to produce 

a better Pareto front with a higher HV indicator. Therefore, in future studies, larger value 

ranges will be assigned to the optimisation parameters to confirm this hypothesis. 
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8.3.2. Optimisation result analyses of Monoprice MP Mini Delta 3D 

printer 

This section presents and analyses the optimisation results for printing the component in Fig 

8.3 by the Monoprice MP mini Delta 3D printer. The process parameters to be optimised are 

same as the first case study. In Table 8.16, the constraints of each process parameter are 

defined based on the machine characteristic in Section 7.2.1. 

Table 8.16. Process parameters to be optimised for printing task 05 by the Monoprice 3D 

printer 

Process parameters Symbols Units 
Parameter ranges 

Granularity 
Lower bound Upper bound 

Layer thickness LT mm 0.050 0.200 0.001 

Infill density ID % 0 100 5 

Nozzle temperature 𝑇𝑚𝑝
1  ℃ 180 260 1 

Bed temperature 𝑇ℎ
1 ℃ 23 60 1 

Speed of axis movement 

in X, Y directions with 

material feeding 

𝐹𝑥𝑦𝑚
 mm/s 10 150 1 

Speed of axis movement 

in X, Y, Z directions 

without material feeding 

𝐹𝑥𝑦𝑛
, 𝐹𝑧 mm/s 10 150 1 

The non-dominated solutions of process parameters on the obtained Pareto fronts are 

presented in Table 8.17. Note that there are total 41 non-dominated solutions (i.e. 𝑛𝑛𝑠 = 41) 

obtained from the optimisation tests. Thus, according to the coordinate calculation method 

of reference point in Section 4.6.3, the coordinates of the reference point 𝑅 are calculated 

as (1.025, 1. 025, 1.025) in the normalised objective space. The HV indicator of each test is 

calculated and listed in this table. 
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Table 8.17: Optimisation results of HV indicators for printing task 05 by the Monoprice 3D printer 

Test 

No. 

Number 

of 

optimal 

solutions 

Hypervolume 

indicator 

Optimal process parameter Consumptions 

Target 

temperature of 

build platform 

Target 

temperature 

of nozzle 

hotend 

Speed of axis 

movement in X, Y 

directions with 

material feeding 

Speed of axis 

movement in X, Y, 

Z directions 

without material 

feeding 

Layer 

thickness 

Infill 

density 
Material Time Energy 

𝑰𝑯(𝑨) 𝑻𝒉
𝟏 𝑻𝒎𝒑

𝟏  𝑭𝒙𝒚𝒎
 𝑭𝒙𝒚𝒏

, 𝑭𝒛 LT ID 𝑴𝒕𝒐𝒕𝒂𝒍 𝑻𝒕𝒐𝒕𝒂𝒍 𝑬𝒕𝒐𝒕𝒂𝒍 

1 2 0.05679  
36 200 74 63 0.164 5 0.63860  196.69652 16902.73072 

26 194 114 68 0.171 5 0.65016  189.12148 15278.91421 

2 2 0.12790 
38 193 100 94 0.156 0 0.63840  181.90703 15702.93931 

35 180 131 84 0.197 0 0.67799  156.34604 13347.27410 

3 4 0.45198  

36 184 105 72 0.183 0 0.65463  164.28251 14090.58844 

34 184 117 68 0.172 0 0.65075  168.69108 14251.91848 

26 190 106 117 0.164 0 0.64337  174.83718 14246.62660 

33 184 106 96 0.184 0 0.65610  163.32866 13810.45252 

4 1 0.36930  25 185 108 116 0.164 0 0.64337  172.52367 13878.91086 

5 2 0.26227  
48 183 129 110 0.156 0 0.63840  175.41236 15837.23351 

31 180 95 100 0.182 0 0.65775  172.82683 14195.95456 

6 3 0.50090  
24 180 128 118 0.183 0 0.65463  160.13160 12876.73090 

30 180 138 133 0.187 0 0.65611  159.80122 13261.23145 
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28 180 129 128 0.183 0 0.65463  159.94442 13133.31088 

7 4 0.79757  

23 180 136 148 0.184 0 0.65610  159.63029 12779.58175 

28 182 131 139 0.2 5 0.63922  163.07337 13394.39098 

24 180 136 68 0.195 0 0.66264  157.03996 12680.32587 

32 181 124 139 0.2 5 0.63922  162.63787 13619.84224 

8 4 0.69859  

23 181 128 123 0.155 5 0.63753  185.73613 14449.41341 

24 180 142 133 0.183 0 0.65463  159.83483 12858.14309 

23 181 136 115 0.172 0 0.65075  165.20622 13158.55101 

23 181 138 133 0.156 0 0.63840  173.86006 13702.48929 

9 3 1.03459  

39 180 133 144 0.156 0 0.63840  173.43093 14870.85264 

23 180 132 145 0.2 0 0.63967  154.35298 12448.33403 

29 180 137 146 0.2 5 0.63922  162.10246 13345.12478 

10 4 0.66706  

23 180 132 145 0.184 0 0.65610  159.66328 12781.64813 

23 180 133 138 0.183 0 0.65463  159.76684 12788.11809 

30 180 130 135 0.155 5 0.63753  184.93259 14931.91430 

30 180 145 138 0.156 0 0.63840  173.20790 14152.22691 

11 1 0.75998  23 180 129 149 0.2 5 0.63922  162.04564 12931.43157 

12 1 0.49560 23 180 142 129 0.164 0 0.64337  168.76029 13352.77241 

13 5 0.64876 

33 181 136 131 0.183 0 0.65463  160.29110 13530.15764 

26 181 129 105 0.184 0 0.65610  160.75934 13078.30336 

26 181 118 105 0.164 0 0.64337  170.42813 13700.15757 
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35 180 122 134 0.198 0 0.66323  155.35691 13305.34380 

38 180 133 135 0.196 0 0.65924  155.23012 13506.31625 

14 2 0.76798 
23 180 149 148 0.155 0 0.63753  184.30277 14328.84180 

23 180 129 149 0.2 5 0.63922  162.04564 12931.43157 

15 2 0.76792 
23 180 129 149 0.2 5 0.63922  162.04564 12931.43157 

23 180 147 145 0.155 5 0.63753  184.37444 14333.27794 

16 1 0.75998 23 180 129 149 0.2 5 0.63922  162.04564 12931.43157 
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According to the above results, the solutions of process parameters in Test 09 achieves the 

maximum HV indicator and consumes the optimum combination of time, energy and 

material consumptions. The optimal solutions are compared with the default setting of 

process parameters for the Monoprice 3D printer. As shown in Table 8.18, the time, energy 

and material consumptions of the recommended settings are less than the default settings. 

Similar to the first case study, the lower component heating temperatures and infill density, 

and the higher print speed and layer thickness can consume less time, energy and material. 

This result also verifies the effectiveness of the proposed optimisation method and the 

impacts of process parameters on the resource consumptions.  

Table 8.18: Comparison of predicted consumptions between the default setting and 

recommended setting of process parameters for printing task 05 by the Monoprice 3D 

printer 

 

Process parameters Consumptions 

𝑻𝒉
𝟏 𝑻𝒎𝒑

𝟏  𝑭𝒙𝒚𝒎
 𝑭𝒙𝒚𝒏

 LT ID 𝑴𝒕𝒐𝒕𝒂𝒍 𝑻𝒕𝒐𝒕𝒂𝒍 𝑬𝒕𝒐𝒕𝒂𝒍 

Defaults 60 200 50 100 0.2 25 0.67166 338.19389 76946.36341 

Recommendation 

39 180 133 144 0.156 0 0.63840  173.43093 14870.85264 

Resource saving percentages 4.95191% 48.71849% 80.67374% 

23 180 132 145 0.2 0 0.63967  154.35298 12448.33403 

Resource saving percentages 4.76283% 54.35962% 83.82206% 

29 180 137 146 0.2 5 0.63922  162.10246 13345.12478 

Resource saving percentages 4.82982% 52.06819% 82.65659% 

Furthermore, the main effects of optimisation parameters on the value of HV indicator are 

analysed through two methods: range analysis and ANOVA. Referring to the methodology 

in Section 4.7.2, the results are listed in Table 8.19 and Table 8.20.  
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Table 8.19: Range analysis of the effect of each factor on HV indicator for printing task 05 

by the Monoprice 3D printer 

Levels Calculation methods 
Factors 

PS Gen pc pm 

1 ∑ 𝐼𝐻
1 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.251493 0.500603 0.519413 0.529485 

2 ∑ 𝐼𝐻
2 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.564833 

 

0.51596 0.413423 0.558808 

3 ∑ 𝐼𝐻
3 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.739308 0.694363 0.738285 0.535323 

4 ∑ 𝐼𝐻
4 (𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 0.73616 

 

0.580868 0.620673 0.668178 

Delta ∑ 𝐼𝐻(𝐴)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑚𝑎𝑥
− ∑ 𝐼𝐻(𝐴)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑚𝑖𝑛
 0.487815 0.19376 0.324863 0.138693 

Rank 1 3 2 4 

Table 8.20: ANOVA for evaluating the significances of factors on HV indicator for printing 

task 05 by the Monoprice 3D printer 

Factors 

Degree of freedom Sums of squares Mean squares 

F-Value P-Value 

DF 𝐒𝐒𝒑 𝐌𝐒𝒑 

PS 3 0.63085 0.21028 10.13 0.044 

Gen 3 0.09314 0.03105 1.50 0.374 

Pm 3 0.23171 0.07724 3.72 0.155 

Pc 3 0.05029 0.01676 0.81 0.568 

Error 3 

𝐒𝐒𝐞 𝐌𝐒𝐞 

  

0.06226 0.02075 

Total 15 𝐒𝐒𝒕 1.06826    

According to the Delta values in Table 8.19, the main effects of each optimisation 

parameter can be observed from Fig 8.5. The sequence of optimisation parameters based on 

their significances on the HV indicator 𝐼𝐻(𝐴)  is the population size N, probability of 

crossover pc, number of generation Gen, and probability of mutation pm. The main effect of 

population size N is relatively significant compared with other parameters. The ANOVA 

results in Table 8.20 further prove the range analysis result, since P-values of population 
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size N is less than the significant level 0.05 for the response of HV indicator in this case 

study.  

 

Fig 8.5: Main effects of optimisation parameters for HV indicator for printing task 05 by 

the Monoprice 3D printer 

The reason for the above result is similar to the first case study. The value range of 

optimisation parameters is limited due to the limited computing resources. This leads to the 

optimisation result being overly dependent on the randomly generated initial population. 

Therefore, the contribution of the optimisation parameters on the optimal solutions is not 

significant in both case studies. 

8.3.3. Comparison and discussion of the optimisation results of two fused 

deposition modelling 3D printer 

From the comparison of the two case studies, the recommended values of the process 

parameters used to print the same component are different for the two AM machines. One of 
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the reasons is that the process parameters of the two machines have different value ranges. 

The other reason can be drawn that the optimisation result is determined by the machine 

characteristics. Since the predictive models are customised, the fitness values for the same 

solution on two machines will be different, leading to the different optimal solutions. 

Therefore, there is no universal rule to guide the specific value setting of process parameters 

for general AM technologies. However, from two case studies, the results can provide a trend 

to guide the parameter settings, for example, the lower component heating temperatures and 

infill density, and the higher print speed and layer thickness that consume less time, energy 

and material. 

In addition, in the first case study, the effect trend of optimisation parameters for 

hypervolume (HV) indicator is not obvious. In the second case study, the main effect of 

population size is significant compared with other parameters. A larger population size is 

found to produce a better Pareto front with a higher HV indicator. The reason for this result 

has been discussed in previous sections. The limited population size and number of 

generations may lead to the optimisation result being overly dependent on the randomly 

generated initial population. Therefore, future research needs to perform optimisation tests 

by assigning a larger value range to the optimisation parameters. 

Furthermore, the case studies have also recorded the computational time of each 

optimisation test. The experimental results are presented in Appendix IV and Appendix V. 

Through the observation from results, it is found that the larger values of population size and 

number of generations result in a longer computational time. To perform optimisation tests 

under larger optimisation parameters, the high-performance computing equipment is needed 

to speed up the computation. 

8.4. Summary 

This chapter validates the effectiveness of the predictive models in two case studies. Each 

FDM printer has been assigned two different AM tasks, and each AM task is printed under 
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a random combination of process parameters. The prediction accuracies of the predictive 

models with and without considering the impact of machine characteristics are both obtained, 

including the actual speed of axis movement and the actual density of thermoplastic material. 

The mean absolute percent errors (MAPEs) of the predictive models are mainly resulted 

from three reasons. 

  First, the axis movement speed has been simplified to a constant without considering the 

acceleration and deceleration phases. The purpose is to facilitate the measurement of actual 

axis movement speed when the stepper motors are in out-of-step conditions. Second, some 

apparent powers with fluctuations measured from five modules have been simplified to 

constant and regular values. The purpose is to achieve the rapid prediction with an acceptable 

prediction accuracy. Third, the motor for material feeding loses step due to the high load, 

insufficient torques, and the insufficient melting of material at a high feeding rate. To address 

above issue, additional work is needed to test the characteristics of machine and material in 

future. Except for the impact of machine performance, the proposed prediction method has 

been proved to be effective for real-world AM systems. The consideration of machine 

characteristic has also been proved to further improve the prediction accuracies on the basis 

of original predictive models.   

The feasibility of the multi-objective optimisation method is also verified in two case 

studies. The non-dominated sorting genetic algorithm II (NSGA-II) has been applied to 

search for the optimal Pareto fronts of process parameters for a component printed by two 

FDM printers. Three objectives to be minimised are respectively represented by the time, 

energy and material consumptions. The Taguchi robust design method has been applied to 

design the experiments of optimisation process. Four optimisation parameters are considered 

as four factors in the experiments, including population size, number of generations, 

crossover probability and mutation probability. Each factor is defined with four levels, 

whose values are within the range commonly used in NSGA-Ⅱ optimisation. Therefore, the 

L16(44) orthogonal table has been used, which indicates that 16 optimisation tests have been 

performed on each printer. Each test has produced one Pareto front. 
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To evaluate and compare the qualities of obtained Pareto fronts, the hypervolume (HV) 

indicator is used as the response of each optimisation test. The solutions of process 

parameters that have the maximum HV indicator is the optimum solution for the AM task. 

This result can provide guidance for setting a feasible combination of process parameters in 

the prefabrication stage. Furthermore, the significances of optimisation parameters on the 

HV indicator are analysed by using the range analysis and analysis of variance (ANOVA) 

methods. In the first case study of ANYCUBIC i3 Mega FDM 3D printer, the main effects 

of optimisation parameters on the HV indicator are not significant. In the second case study 

of Monoprice MP Mini Delta FDM 3D printer, the main effect of population size on the HV 

indicator is significant. The higher value of population size produces a better Pareto front 

with a higher HV indicator.  

Based on the above, the proposed prediction and optimisation methods have been proved 

to be effective for real-world AM systems. The consideration of machine characteristics has 

been verified to have a significant improvement of the prediction accuracy. The optimum 

solution of process parameters provides guidance for setting the feasible process parameters 

in prefabrication stage. Moreover, based on the analyses of optimisation results, it is 

concluded that the optimal solution of process parameters is determined by the machine 

characteristics. Due to the unique predictive models, there is no universal guidance regarding 

the most feasible setting of process parameters and optimisation parameters for general AM 

technologies. This conclusion further confirms the significance of proposed prediction and 

multi-objective optimisation method in this research work. 
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CHAPTER 9  CONCLUSION AND 

FUTURE WORK 

This chapter concludes the research work in this thesis and proposes the future research 

directions. To begin, the method of prediction and multi-objective optimisation is 

summarised. Based on the prediction results and optimisation results in previous chapter, a 

conclusion is made that proposed method is effective for the prediction and optimisation of 

time, energy and material consumptions in AM process. Then, the contribution of this PhD 

research is re-emphasised. At last, future work based on the finding of this research are 

discussed. 

9.1. Summary of research work and conclusion  

The prediction and multi-objective optimisation of time, energy, material consumptions for 

AM technologies have not been well explored. In this thesis, a general prediction modelling 

and optimisation method is proposed, aiming to achieve an accurate prediction and high-

efficient optimisation of three consumptions. 

  A hybrid data-driven and physics-based modelling scheme is proposed to build up the 

predictive models of time, energy and material consumptions based on machine 

characteristics. Through the investigation of the existing AM technologies on the market, all 

consumption-related components are classified into five types of modules: axis movement, 

material processing, material feeding, component heating and auxiliary components. Then, 

the consumptions of each module are modelled as functions of process parameters. To obtain 

the functional relationships, hybrid modelling is performed to obtain the coefficients 

between the consumptions and process parameters. In physics-based modelling, the time of 

axis movement and the amount of material usage are calculated from G-code. In data-driven 

modelling, the parameters that cannot be calculated from G-code are measured through 

experiments. The apparent power and time of each module is measured under different 

process parameters by using a power meter. Based on the experimental results, the functional 
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relationships (i.e. the coefficients between the power, time and process parameters) are 

derived through regression analysis methods. On the basis of predictive models, additional 

experiments are carried out to test the actual values of some parameters in the predictive 

models. The reason is that the values of those parameters are affected by the characteristics 

of machine and material in a practical manufacturing context, for example, the occurrence 

of motor out-of-step caused by the high loads of stepper motors during high-speed printing, 

the actual density of material, etc. To improve the prediction accuracy, additional 

experiments are conducted to test the actual speed of axis movement and the actual density 

of material. The measured results are used to replace the original values of parameters in the 

predictive models. 

Based on the predictive models, meta-heuristics are developed to approximate the Pareto 

front of process parameters to minimise the time, energy and material consumptions. The 

predictive models of three consumptions are used as three objective functions to be 

minimised. This study applies non-dominated sorting genetic algorithm II (NSGA-II) to this 

optimisation problem. Experiments are designed by using Taguchi robust design method to 

perform optimisation under different combinations of optimisation parameters (i.e. 

population size, number of generations, crossover probability and mutation probability). 

Each optimisation test can produce one Pareto front with non-dominated solutions of process 

parameters. Then, the hypervolume (HV) indicator is used to compare and evaluate the 

quality of Pareto fronts obtained from all tests. The front with the maximum HV indicator is 

the final optimum front, which provides guidance or a trend for setting the feasible process 

parameters in the prefabrication stage. 

The effectiveness of the prediction method and the multi-objective optimisation method 

has been validated on two different fused deposition modelling (FDM) 3D printers. 

Referring to the proposed prediction method, the predictive models of time, energy and 

material consumptions for each printer have been built up. By considering the impact of 

machine characteristics, additional experiments have been carried out to test the actual speed 

of axis movement and the actual density of thermoplastic material. Each printer has printed 

two AM tasks. The predicted consumptions with and without additional experiments are 
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both compared with the actual consumptions to calculate the prediction accuracies. In 

addition, NSGA-Ⅱ has been applied to an AM task to be printed by two printers, aiming to 

seek for the optimum solutions of process parameters. Referring to the proposed optimisation 

method, experiments of NSGA-Ⅱ optimisation have been performed on each printer under 

different combinations of optimisation parameters. Each optimisation test has produced one 

Pareto front. The non-dominated solutions on the Pareto front that has the maximum HV 

indicator are the optimum solutions for current AM task. Furthermore, the significant 

contributions of optimisation parameters on the response have been analysed through range 

analysis and analysis of variance (ANOVA) methods.  

According to the prediction and optimisation results of two case studies, the proposed 

method has been proved to achieve an effective prediction and optimisation of AM’s time, 

energy and material consumptions. The improved prediction accuracy after the additional 

experiments is determined by the machine performance. The optimum solutions of process 

parameters provide a reference for the setting of feasible process parameters in 

prefabrication stage. Since the predictive models are customised, there is no general rule to 

guide the setting of process parameters and optimisation parameters for general AM 

technologies. 

To the author’s best knowledge, the methods provide the basis for predicting and 

optimising above three consumptions for general AM technologies, and are also expected to 

be extended to any other manufacturing technologies that manufactures by using numerical 

control (NC) programming. The prediction method creates a modular, customisable and 

flexible interface to build up the predictive models with a consideration of machine and 

material characteristics, production environment, and customer demands. Details of each 

contribution are summarised as follows. 

• The module classification summarises and divides all consumption-related components 

of the existing AM technologies into five modules: axis movement, material processing, 

component heating, material feeding and auxiliary components. This method provides 
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a general, clear and concise modelling framework to realise the consumption modelling 

of each module based on its functions.  

• The physics-based modelling based on the manufacturing information in G-code largely 

reduces the workload of experiments in data-driven modelling. This method is unlimited 

to any AM machine and complex structure of CAD design, and is also adoptable to any 

other manufacturing technologies working with numerical control (NC) programming.  

• Since the power profiles and running sequences of all modules are related and 

determined by the G-code commands, their relationship is displayed in the form of a 

Gantt chart. This step clearly reflects the running sequences, working states and time 

consumptions of five modules, and also provides clear guidance for the consumption 

modelling of each module. 

• The impact of the machine characteristics on prediction accuracy has been considered 

in this study; for example, the occurrence of motor out-of-step during high-speed axis 

movement and high-rate material feeding, the actual density of material, etc. To improve 

the prediction accuracy, additional experiments can be carried out to test the actual 

values of affected parameters in terms of machine characteristics and customer demands.  

Meta-heuristics have been applied to search for the most feasible solutions of process 

parameters related to the near-optimal approximate Pareto front. The improved optimisation 

algorithm provides a customisable and flexible framework to personalise the optimisation 

objectives and the process parameter to be optimised. Details of the contribution are 

summarised as follows. 

• During the optimisation process, every new solution of process parameters is imported 

into computer-aided manufacturing (CAM) and produces its unique G-code file, whose 

manufacturing information determines the predictive models and the predicted 
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consumptions. Therefore, the process from inputting process parameters into slicer 

software to consumption prediction is embedded in the fitness calculation process. 

Instead of using a fixed predictive model, the above step fully uses the manufacturing 

information in G-code of each AM task, which makes the optimisation results to be more 

convincing. 

9.2. Future work  

This PhD research has proposed a foundational method for predicting and optimising the 

time, energy and material consumptions of AM technologies. However, there are some 

limitations and possible extensions that continue to be developed. The limitations are 

summarised as follows. 

⚫ Firstly, in order to build up the predictive models, it is inevitable to perform experiments 

on the AM machine to obtain the relationships between the process parameters and some 

parameters in the models. This requires a certain time cost and necessary equipment.  

⚫ Secondly, due to the unique characteristics of the machine components, the predictive 

models of some modules need to be customised according to the power profiles and 

coding rules. This study only provides a general modelling framework to guide how to 

divide machine components into different modules and how to model based on power 

profiles and G-code. However, it cannot provide a detailed modelling method for a 

single component that can be universally applied.  

⚫ Thirdly, the proposed foundational method requires the manufacturer to have an 

understanding of the components and functions of the AM machine being used at the 

beginning. In order to apply the method to industrial manufacturing, the entire process 

from module classification to prediction modelling, and then to multi-objective 

optimisation needs to be integrated as a complete system that is convenient for 

manufacturers to use. 
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On the basis of the research work in this paper, future work to further improve the 

proposed method will be presented in the following sections. 

9.2.1. Improvement of the predictive model of material consumption 

The stepper motor out-of-step during material feeding in the fused deposition modelling 

(FDM) process is still a problem to be addressed. There are two factors that are causing step 

losses. Firstly, a high feeding rate causes the overloading of the operation, which means that 

the stepper motor is incapable of transporting the material to the target coordinates at the 

specified speed, resulting in insufficient material supply. The relationship between the 

material feeding amount and the feeding rate is still unknown. Besides, during the 

experiments, the material needs to be heated while being supplied. A high feeding rate or an 

insufficient heating temperature both might lead to the insufficient melting of the material, 

which hinders the supply of it. This is the second factor causing step losses. Therefore, there 

are three more factors that affect the prediction accuracy of material consumption, namely 

the heating temperature, material melting speed and material melting point. The impact of 

these factors on the material feeding amount is still a problem to be solved.  

9.2.2. Acceleration and deceleration of axis movement 

This study temporally builds up the time model of the axis movement module by assuming 

that the printer follows the G-code instructions at a constant speed under ideal conditions. In 

a practical AM process, the axis movement on each displacement comprises three phases: 

accelerated motion, uniform motion and decelerated motion. In order to further refine the 

model, the measurement of acceleration requires a high-precision time-measuring 

instrument and additional experiments to be designed. The research on the acceleration 

calculation will be continued as future work. 
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9.2.3. Multi-task parallel manufacturing  

The case studies in the thesis focused on the prediction and parameter optimisation of a 

single AM task. The parallel printing of multiple 3D objects can further verify the 

practicability of the proposed method. When an AM machine fabricates more than two parts 

at the same time, the parameters of these parts are usually the same. If the multi-objective 

optimisation is applied to these tasks at the same time, it can avoid repeated optimisation 

processes and thereby efficiently obtain the optimal solution set. Therefore, more case 

studies of multi-task parallel manufacturing will be conducted as future work.  

9.2.4. Experimental validations on identical additive manufacturing 

machines  

This study has applied the proposed methodology to two different fused deposition 

modelling (FDM) machines. Further experimental validations will be conducted on multiple 

identical AM machines to verify whether the predictive models can be commonly used in 

identical AM machines using the same components.  

9.2.5. Experimental validations on other additive manufacturing 

technologies  

This study has applied the proposed methodology to two fused deposition modelling (FDM) 

machines. Further experimental validations will be conducted on other AM technologies to 

verify the feasibility of this method. Although the consumption-related modules on other 

AM technologies are different, their operations follow the same coding principles. Also, 

some AM technologies provide the multi-axis movement module; for instance, the five-axis 

movement in direct energy deposition (DED) technology. It realises the use of XA and YB 

axes in addition to the three linear axes in X, Y, Z directions, as shown in Figure 9.1. The 

two extra axes not only eliminate the support structures but also achieve the rapid 
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prototyping of non-planar surfaces with a higher quality of surface finish. The programming 

of G-code is similar to “G61.223 X123.105 Y21.017 Z8.126 A30 B90”, where A and B 

represent the rotary angle and tilt angle of the printer nozzle, respectively. Therefore, in 

future work, the predictive models need to add new modules to quantify the extra axes. 

 

Figure 9.1: Five-axis movement of AM technology 

9.2.6. Optimisation tests under large optimisation parameters 

The case studies in this thesis have implemented non-dominated sorting genetic algorithm 

II (NSGA-II) optimisation tests under different combination of optimisation parameters. 

However, the values ranges of population size and number of generations are limited due to 

the limited computing resources. In future work, additional optimisation tests will be 

performed under higher values of optimisation parameters.  

9.2.7. Predictions and optimisations of additional objectives 

Three parameters for prediction and optimisation are considered in this study, namely time, 

energy and material consumptions. In future work, new objectives can be defined to expand 

the model in terms of customer demands; for example, the printing capability (e.g. printing 

space, printing orientation) of the AM machine, the mechanical performance (e.g. tensile 

strength), surface roughness and hardness of the printed objects, etc.  
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9.2.8. Real-time consumption modelling and updating of predictive models  

The proposed prediction method performs the hybrid modelling for an AM machine with a 

number of experiments. To improve the adoptability of this method, the real-time 

consumption modelling during practical AM process should be continued as future work. A 

platform can be developed to collect and process the data of power, time, temperature in 

real-time. Besides, the platform can automatically classify the components into different 

modules with different working states, and build up the predictive models based on the 

collected data. This can avoid the manufacturers from spending time and cost on the 

consumption modelling before using the machine to work.  

In addition, the long-term use of an AM machine can produce mechanical losses. These 

losses mainly depend on seven factors: duration of use, intensity and load of use, quality and 

wear resistance of the mechanical equipment, accuracy or precision of the installation and 

assembly of the mechanical equipment, external influences during use, maintenance and 

repair, and the proficiency of users. Those factors not only affect the machine performance 

but also reduce the prediction accuracy (Aramcharoen and Mativenga, 2014; Hu et al., 2012). 

Therefore, in future work, the important parameters (e.g. apparent power, axis movement 

speed and time consumption) can be measured in real-time during the AM process. The 

predictive models can also be updated in real-time according to changes in the machine 

characteristics.  
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APPENDIX I  PSEUDO CODES OF NSGA-II 

ALGORITHM 

1. Pseudo code of non-dominated sorting in NSGA-II algorithm (Deb et al., 2002)  
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2. Pseudo code of crowding distance ranking in NSGA-II algorithm (Deb et al., 2002) 

 

3. Pseudo code of binary tournament selection in NSGA-II algorithm (Blickle and Thiele, 

1996) 
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APPENDIX II  EXPERIMENTAL RESULTS OF CONSUMPTION MODELLING 

AND VALIDATION OF ANYCUBIC I3 MEGA 3D PRINTER 

Predictive model of time and energy consumptions  

Appendix Ⅱ: Power profiles of material processing module at different target temperatures 𝑇𝑚𝑝
1  

1.  

2.  
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4.  

5.  
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6.  

7.  

8.  
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9.  

Appendix Ⅱ: Power profiles of the component heating module at different target temperatures 𝑇ℎ
1 

10.  

11.  
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12.  

13.  

14.  
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15.  

16.  

17.  
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18.  

19.  

20.  
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21.  

22.  

23. Appendix Ⅱ: Power profile of axis movement in X direction at different speeds 
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24. Appendix Ⅰ: Power profile of axis movement in Y direction at different speeds 

 

25. Appendix Ⅰ: Power profile of axis movement in Z direction at the speed of 300𝑚𝑚/𝑚𝑖𝑛 

 

26. Appendix Ⅱ: Power profile of material feeding module at different rates accompanied by material processing at the target temperature 𝑇𝑚𝑝
1  of 200℃. 

(Note that the operation of material feeding is stipulated to be accompanied by material processing due to the self-protection mechanism of the ANYCUBIC 

3D printer. This is to ensure that the material is extruded while being heated to prevent unmelted material from blocking the nozzle. Therefore, the power 
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𝑃𝑚𝑓
1  of material feeding is obtained by subtracting the heat preservation power 𝑃𝑚𝑝ℎ𝑝

1  at the target temperature of 200℃ from the total power of the two 

modules.) 

 

27. Appendix Ⅱ: Power profile of axis movement in X, Y directions at different speeds  
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28. Appendix Ⅱ: Power profile of axis movement in X, Z directions at different speeds  

 

29. Appendix Ⅱ: Power profile of axis movement in Y, Z directions at different speeds 

 

30. Appendix Ⅱ: Power profile of axis movement in X, Y, Z directions at different speeds  
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31. Appendix Ⅱ: Power profile of axis movement in X, Y, Z directions with material feeding at different speeds/rates.  

 

32. Appendix Ⅱ: Power profile of machine standby mode  

 

33. Appendix Ⅱ: Power profile of machine start-up mode 
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Experimental validations  

34. Appendix Ⅱ: Power profile of Task 01 manufactured by ANYCUBIC i3 Mega printer 

 

35. Appendix Ⅱ: Power profile of Task 02 manufactured by ANYCUBIC i3 Mega printer 

 

 

 



335 

 

APPENDIX III  EXPERIMENTAL RESULTS OF CONSUMPTION MODELLING 

AND VALIDATION OF MONOPRICE MP MINI DELTA 3D PRINTER 

Predictive model of time and energy consumptions  

Appendix Ⅲ: Power profiles of material processing module at different target temperatures 𝑇𝑚𝑝
1  

1.  

2.  
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3.  

4.  

Appendix Ⅲ: Power profiles of component heating module at different target temperatures 𝑇ℎ
1 

5.  
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6.  

7.  

8.  
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9.  

10. Appendix Ⅲ: Power profile of axis movement in X direction at different speeds 

 

11. Appendix Ⅲ: Power profile of axis movement in Y direction at different speeds  
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12. Appendix Ⅲ: Power profile of axis movement in Z direction at different speeds  

 

13. Appendix Ⅲ: Power profile of material feeding at different rates 

 

14. Appendix Ⅲ: Power profile of axis movement in X, Y directions at different speeds 
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15. Appendix Ⅲ: Power profile of axis movement in X, Z directions at different speeds  

 

16. Appendix Ⅲ: Power profile of axis movement in Y, Z directions at different speeds 

 

17. Appendix Ⅲ: Power profile of axis movement in X, Y, Z directions at different speeds  
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18. Appendix Ⅲ: Power profile of axis movement in X, Y, Z directions with material feeding at different speeds/rates  

 

19. Appendix Ⅲ: Power profile of machine standby mode  

 

20. Appendix Ⅲ: Power profile of machine start-up mode 

 

 



342 

 

Experimental validations  

21. Appendix Ⅲ: Power profile of job 03 manufactured by Monoprice MP Mini Delta printer 

 

22. Appendix Ⅲ: Power profile of job 04 manufactured by Monoprice MP Mini Delta printer 
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APPENDIX IV  NSGA-Ⅱ OPTIMISATION TEST RESULTS OF COMPUTATIONAL 

TIME OF ANYCUBIC I3 MEGA 3D PRINTER 

Test 

No. 

Optimisation parameters 
Computational time 

Computing devices Population size Number of generations Probability of crossover Probability of mutation 

N Gen pc pm 𝒕𝒄𝒐𝒎 

1 10 50 0.85 0.15 43784.68 D-PC 

2 10 100 0.90 0.20 134573.01 D-PC 

3 10 150 0.95 0.25 225610.33 D-PC 

4 10 200 1.00 0.30 295250.48 D-PC 

5 20 50 0.90 0.25 266033.57 D-PC 

6 20 100 0.85 0.30 284365.99 WS 

7 20 150 1.00 0.15 405293.39 WS 

8 20 200 0.95 0.20 547260.68 WS 

9 30 50 0.95 0.30 345108.35 WS 

10 30 100 1.00 0.25 658167.85 WS 

11 30 150 0.85 0.20 1437831.02 HPC 
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12 30 200 0.90 0.15 1037201.50 HPC 

13 40 50 1.00 0.20 1089475.40 D-PC 

14 40 100 0.95 0.15 1014549.49 WS 

15 40 150 0.90 0.30 1607494.47 WS 

16 40 200 0.85 0.25 1946296.44 WS 
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APPENDIX V  NSGA-Ⅱ OPTIMISATION TEST RESULTS OF COMPUTATIONAL 

TIME OF MONOPRICE MP MINI DELTA 3D PRINTER 

Test 

No. 

Optimisation parameters 
Computational time 

Computing devices Population size Number of generations Probability of crossover Probability of mutation 

N Gen pc pm 𝒕𝒄𝒐𝒎 

1 10 50 0.85 0.15 57330.23 D-PC 

2 10 100 0.90 0.20 176954.38 D-PC 

3 10 150 0.95 0.25 267551.38 D-PC 

4 10 200 1.00 0.30 424548.98 D-PC 

5 20 50 0.90 0.25 358133.01 D-PC 

6 20 100 0.85 0.30 349852.81 WS 

7 20 150 1.00 0.15 538202.92 WS 

8 20 200 0.95 0.20 773435.63 WS 

9 30 50 0.95 0.30 1114440.52 HPC 

10 30 100 1.00 0.25 1590633.02 D-PC 

11 30 150 0.85 0.20 1360739.3 D-PC 
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12 30 200 0.90 0.15 2397155.47 D-PC 

13 40 50 1.00 0.20 720718.59 WS 

14 40 100 0.95 0.15 2448221.01 D-PC 

15 40 150 0.90 0.30 2068115.22 WS 

16 40 200 0.85 0.25 3693249.92 D-PC 

 

 


