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Abstract

The interaction of light and matter is a widely studied field in physics:
Both quantum mechanical and classical effects have been treated to a
large extent in theoretical studies but also in a wide range of experi-
ments. One particularly interesting manifestation of such interactions
are macroscopic materials with a linear response to the light field. This
can be either a response due to the electric or due to the magnetic field,
depending on the internal structure of the medium. However, the mag-
netic response is typically much weaker than the electric response and
magnetic effects have been neglected in the majority of theoretical con-
siderations.

The recently emerging field of metamaterials brings new possibilities
of tailoring the electromagnetic properties of a medium, which gives rise
to a class of materials with both electric and magnetic responses that
have not been observed in naturally occurring materials - hence the name
metamaterial.

For such materials the theories developed for purely dielectric media,
materials with no magnetic response, do not hold anymore. The main
goal of this thesis is to generalize electromagnetic theory, especially for
the interaction of the light field with electric and magnetic dipoles, to

arbitrary magneto-dielectric media. In particular, this includes lossy



i

magnetic materials and biaxial anisotropic media, but also a general in-
vestigation of the nature of light-matter interactions from the magnetic
point of view. Magnetic and electric effects are often treated very dif-
ferently. It is my aim to show the similarities, and immense symmetry
between them, and therefore always treat electric and magnetic effects
side by side whenever possible, and wherever a theory is only prop-
erly derived for the electric quantities, I shall complement the magnetic
analogies to fill these gaps.

The second part of this thesis covers another important aspect of
light-matter interaction, the transfer of coherence between atoms and
the electromagnetic field inside a cavity, which is of particular impor-
tance in the context of quantum thermodynamics and the resource the-
ory of coherence. This work is not directly linked to the main body of
the thesis, but builds on the same theoretical framework of light-matter
interaction in the Jaynes-Cummings model. We examine the catalytic
nature of quantum optical coherence, in particular, the degradation of a
coherent state in the cavity as coherence is transferred to a sequence of
atoms through a Jaynes-Cummings interaction. In comparison with an
earlier, rather artificial proposal of the catalytic creation of coherence,
we investigate the role of correlations and the robustness of this more

natural protocol of coherence transfer.
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Macroscopic QED



Chapter 1

Introduction

1.1 Fundamentals of electromagnetism

The basis of all studies of electromagnetism, and with that, the one thing we postulate

without proof, are Maxwell’s equations. They tell us how electric and magnetic

fields influence each other, and how they are both influenced by electric charges and

currents as the fundamental sources of the fields. The differential form of Maxwell’s

equations is

V-E:ﬁ
€0
V-B=0
0B
E=——"
V X 5
OF
V X B = eopo— + 1o,

ot
where p is the charge density and J the current density satisfying

dp
o TV =0

(1.5)

This continuity equation describing the conservation of charge is not an additional

condition but can be deduced from Maxwell’s equations alone: If we apply the di-
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vergence on both sides of equation we get

OF
0= EO[LQV : W + /LUV -J (16)

which, using equation reduces to the continuity equation. In principle we could
also require charge conservation as a basic principle and the first of Maxwell’s equa-
tions then follows as a consequence. Similarly, equation is equivalent to the
statement that there are no direct sources of the magnetic field, i.e. no magnetic
monopoles.

We can obtain the charge and current density from discrete particles of charge

¢;, position r; and velocity v; as
p(r,t) =Y qd(r —mi(t))
J(r,t) =Y qoi(t)d(r —ri(t)),

which gives the connection from the field equations to the equations of motion of
charged particles. This connection builds the foundation of all light-matter interac-
tion and shows the codependency of mechanical variables with the electromagnetic

field variables.

1.1.1 Electromagnetic waves

In the absence of any charges or currents, the solution to equations[I.I] to[I.4] can be
easily found: Taking the curl of equation [I.3} in combination with equation [I.4] gives

VX(VXE):—QVXB

ot
O*E
=— —. 1.7
£00 53 (1.7)
In free space we also have V - E = 0 so that the left side of equation reduces to

Vx(VxE)=V(V-E)-V’E
= -V’E, (1.8)
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and we arrive at the Helmholtz equation

1 0°FE
2E -
VB ¢ ot?

—0 (1.9)

1
VEomo

with ¢ being the speed of light, ¢ = Similarly, we can derive the equivalent

equation for the magnetic field,
10°B

2
VB + 5 —n =0 (1.10)

from the curl of equation Both the electric and the magnetic fields can thus be

written in terms of plane waves,
E(k,w) = Epe*r=) 4 g e~ilkr—et) (1.11)

B(k,w) = Bpe'*r=) 4 BZe_i(k’"_Wt) (1.12)

where any linear combination of such waves is a solution as well. Plugging a specific
solution into the Helmholtz equation, we see that the frequency w and the wave

vector k must fulfil the relation

w2

k— = =0, (1.13)

c2

so for a fixed k, the frequency w is determined by w = kc.

1.1.2 Scalar and vector potential

Instead of describing the electromagnetic field by six degrees of freedom, i.e. the
three spatial components of both 2 and B, we can reduce some of the redundancy
in Maxwell’s equations by introducing a scalar potential ¢ and a vector potential A
and thereby reducing the problem to four unknowns. From V - B = 0 we know that
the magnetic field must be completely transverse, and we therefore can express it as
the curl of another field,

B =V x A. (1.14)
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To be consistent with Maxwell’s equations, we must now write the electric field as

0A
E=-—"-Vo. (1.15)

The first part is to satisfy equation [I.3] where an additional gradient field V¢ has
to be added to simultaneously satisfy equation in the existence of charges. Now
A and ¢ are not uniquely defined, as different choices can lead to the same electric
and magnetic fields. The choice that we will be using in this work is the Coulomb
gauge, which is defined by the additional constraint that V- A = 0. In this gauge,

Maxwell’s equations reduce to the two field equations

2 1 82 T
10

where the superscripts L and T denote the longitudinal and transverse parts of the
current density (note that V-J* = —%). This is particularly helpful in electro- and
magneto-statics to deduce the fields caused by charge or current distributions. The

electric field can then be calculated from the scalar potential,

o(r) = / o) gy (1.18)

dmeglr — 1|

and the magnetic field from the vector potential

A(r) = / 1o (r') (1.19)

diclr — |

1.2 The dipole

As we have seen, the only necessary ingredients to describe the sources of the electro-
magnetic fields are charges and currents. In principle, even charged particles alone,
like for example electrons or protons are sufficient, as we can describe currents as
moving (or rotating) charges. Here, we now want to introduce the concept of dipoles
as an additional and extremely helpful way to describe charge distributions and their

effect on the electromagnetic field.
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1.2.1 Electric dipole moment

An electric dipole describes the set of two charges, +¢q and —¢g which are located at a
small distance [. If we are interested in fields sufficiently far from the dipole, or with
sufficiently large wavelength, it is helpful to take the limit of infinitesimally small
separation between the charges, [ — 0 while keeping the product d = ¢l constant.
The vector quantity

d=ql =qle (1.20)

is called the dipole moment, where e is the unit vector pointing from the negative
to the positive charge. The dipole moment of any continuous charge distribution is
defined by the integral

d= /p(r)r d*r (1.21)
which, for a distribution made by two discrete point charges, simplifies to equation
[[.20] again.

The dipole moment has a particularly important role: Together with the total
charge Q = [ p(r)dr , knowing the dipole moment is often sufficient to describe
the effect of any arbitrary charge distribution on the electric field at a point far from
the distribution. Let us have a look at the general expression for the potential at a

point 7 given a (static) charge distribution p(r’) around the origin:

d(r) = 4;€O/|f(_r2,‘d3r’ (1.22)

For arbitrary charge distributions this may be a rather messy integral. If the charge
distribution is confined within a region small compared to the distance to the point
of interest r, we can make the approximation " < r to simplify the situation. We

first pull out the constant distance 7,

1

1 1 r-r "\ °
=—[1-2 — 1.23
|r — 7| r( r2 +(7‘)) ( )

’

. 7N 2 . .
and now expand the square root in terms of A = -2 + (’”7) which we know is
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small whenever 7’ < r:

(1+A)2=1--A+0(A? (1.24)

1 1 ror 1 /r\°
_ -l 4+ — — = | — 1.25
|r — /| r[ + r2 2(7") + ] ( )

and inserting this back into the integral, equation [1.22] gives

Hence, we have

dreg | r

1 1 . 1 1
o(r) = —/p(r/)dsr'—l——Qf'-/p(r')r’d3r’——3/... (1.26)
r r
—_— —_——
Q d
where we have introduced the normalized vector # = r/|r|. Now we can see that
the first term, the most dominant one at far distances, is the potential due to the

total charge (). The second term, which becomes dominant for electrically neutral

distributions, is exactly the potential due to a dipole, i.e.

1 7-d
" dmeg 12

Gaip(T) (1.27)

with d being the dipole moment of the distribution. Hence, the total charge and
dipole moment are sufficient to describe the field caused by any localized charge dis-
tribution up to second order in the inverse distance to the object. The corresponding

electric field of such a dipole follows as

37(F-d) —d

E(r) = deqrs

(1.28)
In fact, for a simple point dipole this is exactly its electric field, as all other terms
in the expansion vanish[T}

If there is a large number of dipoles in a medium, we can define a polarization

!Two things should be mentioned at this point. First, this expression is not valid at » = 0, in
fact it diverges. Second, for oscillating dipoles the electric field has an additional term proportional
to %2 In general, the given expression can be used whenever [ < r < A for [ being the size of the
charge distribution, r the distance from it and A the wavelength of interest. This is the regime we
will need in this work. For a generalization to other situations, see for example Chapter 9 in [1].
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P as the sum of all electric dipole moments per unit volume, i.e. a dipole moment

density,
d
P = E v (1.29)

so that the total dipole moment of a macroscopic object is
d— / Pav. (1.30)

In dielectrics, external electric fields can displace the average positions of electrons
relative to their nuclei and thereby invoke such polarizations, even where no dipole
was present before. This is why the polarization is often directly proportional to
the electric field, but we will come to that later. Now let us consider a polarization
which is homogeneous over a certain volume, for example within a dielectric slab in a
constant electric field. One might wonder what the corresponding charge distribution
looks like. If the material was electrically neutral before, the total charge should still
be zero. Furthermore, inside the material, the number of electrons and protons is
still the same, so the average charge density inside the material should also be zero.
Only on the surface can we expect to see a difference, as on one side there will be
a higher electron density, while on the other side the nuclei will be slightly closer to
the surface. In fact, one can easily verify that the charge density per surface element

is exactly equal to the polarization induced in the material,

JZZ%:Z%:Z%. (1.31)

From this, we can calculate the (volume) charge density induced by the polarization:

The total charge that is displaced out of the material over a surface S is

Q= —/SP-ndA (1.32)

with n being the outward normal of the surface. Hence, the volume charge density,

which is defined via @ = [ pdV can be related to the polarization as

paip = —V - P. (1.33)
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Now a few remarks are in order. First, we must not forget that in a general situation
there can be single charges that are not part of any dipoles, and therefore the total

charge distribution should rather be

P = Pdip + Prtree- (134)

{ e

Figure 1.1: A slab of dielectric in which a polarization P has been induced by an electric field. The
surface charge density o is the total charge which is displaced from the dielectric divided by the
surface area of the unit volume, i.e. it can be understood as the charge of exactly one dipole divided
by its area. The right hand side depicts the same situation, when the medium charges are paired
up to a different set of dipoles. This in fact leads to an opposite polarization, but together with
the now unbound charges at the sides, describes the same physical situation when looked at from a
distance. It also makes the intuition of surface charges easier as inside the medium all charges can
be paired up, making it electrically neutral, while the surface charges remain unpaired.

Second, the polarization, or in general the dipole distribution is not uniquely
defined. Consider the situation of figure|1.1]for example. If we have a distribution of
positive charges mixed with another distribution of negative charges, it is up to us
to decide which charges to pair up to a dipole (as long as the distances between the
charges remains sufficiently small). The resulting physical situation is not changed,
as changing the declaration of dipoles thereby also changes which charges remain
free, and where surface charges will build up. However, in most situations occurring
in nature, the displacements of electrons with respect to their nuclei will be small

compared to the interatomic distance and the choice of dipoles therefore always clear.
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1.2.2 Magnetic dipole moment

The magnetic dipole is a bit less straightforward as we cannot simply construct it
from two magnetic monopoleg?] If we want to describe a magnetic dipole in terms of
electric quantities, we can do so by introducing an infinitesimally small current loop.
As we will see, this produces the same magnetic (far) field as the electric field from
the electric dipole. Naturally, such a dipole could be formed for example by the spin
or orbital angular momentum of an electron.

The magnetic dipole moment, or just magnetic moment, is then defined as the
product of the current I in the loop and the area S it surrounds. The direction of
the moment points orthogonal to the surrounded surface, consistent with the right

hand rule with respect to the current direction:
m = 1Sn (1.35)

For an arbitrary current distribution, confined to a relatively small object around

the origin, we can get the magnetic moment through
m = /r x J(r)dV (1.36)

which reduces to equation for a discrete current loop. For an arbitrary but dense
distribution of magnetic dipoles we can again introduce a macroscopic quantity, the

magnetization M as the magnetic moment per unit volume,

M= % (1.37)

We now expand the vector potentia]E]

_ IU_O J(’I‘,) 3,r/
A(r) = 47r/ = r’|d (1.38)

2We could, but we are assuming a world without magnetic monopoles so this construction would
be pointless.

3We are not troubling ourselves with time-varying fields yet and thus simply write the total
current in the following, noting that the longitudinal part is zero in magnetostatics.
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in the same manner as in the previous section, leading to

Afr)~ 10 F / J(r')d3r'+712 / (7 r) J() dr’ — 71?, / } (1.39)

The first term vanishes in the case of a closed current loop, or in general whenever
there is no net current flowing through the volume of interest. The second term can

be rewritten using Stokes’s theorem, for a single current loop this gives
/ (7 r) J(r') dr' = g‘j(f ) Idl!

:—f“x/]dA

=m X7 (1.40)
Hence, we can write the vector potential of a magnetic dipole as
1
A(r) = HO 2 m x (1.41)

and the magnetic field follows ad']

3r(r-m) —m

B(r) = 1.42
(7) = o P ( )
For a distribution of magnetic dipoles we can write the vector potential as
A() /'I’O/M(T/)X(T._Ir>d3/
r — /|
/ M(r') x V’ |d
/
VX_M(%?» / (1.43)
47r lr — 7|

where in the last step we used the vector identity V x (¢pF) = V¢ x F + ¢V x F

and the fact that
, n x M(r')
[0 MO g [ M) "

4The same limitations to the validity as in the electric case apply.
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vanishes for finitely localized magnetization distributions. Hence, we can identify the
effective current which causes the vector potential of a magnetic dipole distribution
M as

Jy=VxM. (1.45)

We now have a similar situation with currents as we had with charges before.
Inside a bulk medium with a constant, homogeneous magnetization, there will be no
net currents present as the currents from two neighbouring parallel dipoles will be
opposite to each other and cancel out. Again, only the edge contributions matter, in
this case this is an effective surface current around the whole mediumpl

Finally, we need to make a quick detour to electrodynamics to include the effect
of oscillating electric dipoles on the vector potential. We noted earlier that the first
term in equation vanishes in electrostatics. This is no longer the case if we allow
time-varying charge distributions. Using partial integration we can rewrite the term

as

/ Ty = — / (V- J()) P (1.46)

which, using the continuity equation V-J = —% turns out to be simply the derivative

of the dipole moment of the charge distribution

dp od
"Ly = = 1.4
/ "ot T o (1.47)
We can thus identify a further contribution to the effective current from the electric
dipoles,
oP
Jp=—. 1.48
Y (1.48)

1.3 Electromagnetic waves in macroscopic media

Let us now come to a more macroscopic treatment of matter. With the use of
the relations derived in the previous section, Maxwell’s equations can be adapted

to include the averaged effect of electric and magnetic dipole densities in media

5One should not imagine this as electrons actually travelling all around the material, but more
like a conveyor system made out of many small wheels or rollers, each of which moves in the same
direction at the surface, without necessarily moving as a whole.



CHAPTER 1. INTRODUCTION 13

without explicitly having to account for every charge in the medium separately. We
first express all charge and current densities that are attributed to dipoles in terms

of the corresponding polarization and magnetization,

V- P=—pap (1.49)

vV x M + %—1; = Jaip- (1.50)

The total charge and current densities thus are split up into the contributions from

the medium dipoles and additional free, unbound charges or currents:

P = Pree T Pdip (151)
J = Jpee + Jdip (1.52)

With this, we can rewrite Maxwell’s equations to in terms of polarization

and magnetization so that only free charges and currents remain explicitly in the

equations,
V- (SOE + P) = Pfree (153)
V-B=0 (1.54)
0B
E=-——"— 1.
V x 5 (1.55)
0
V x (ug'B— M) = a(gOE + P) + J free- (1.56)

This suggests a new definition of macroscopic fields D = egE + P and H = ;' B —
M with which the equations take their original form again, but with different field

variables:
VD = pee (1.57)
V-B=0 (1.58)
oB
E=——— 1.59
V x g ( )
VxH= a—D + Jfree. (160)

ot
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In linear and isotropic media the polarization and magnetization depend linearly on
the corresponding fields, P = x.E and M = x,,H, with x. = ¢,—1 and x,, = p,—1
being the electric and magnetic susceptibility. The relationships between the new

and the old fields are therefore also linear,
D=ce,E=cE (1.61)

and
B = pop-H = unH (1.62)

where () and fi(,y are called the (relative) permittivity and permeability, respec-
tively. To be more exact, this linear relationship is valid only for a certain frequency

component of the fields, i.e.
D = /Dwei“tdw = /5wEwei‘”tdw (1.63)

and
B = /Bwewdw = | poH e“dw. (1.64)

In a medium without any excitable dipoles present, y = 0 and ¢, = 1 = p, for all
frequencies. In that case the fields are related by the (constant) vacuum permittivity
and permeability €y and p.

We have thus introduced new fields which intrinsically contain the effect of the
dipoles but still satisfy a set of equations in the same structure. In the absence
of free charges and currents, we can derive in analogy to the first section, the new

Helmholtz equations in a linear medium:

2

V’E, — “u’E, =0 (1.65)
C
2 n’
V’B, — —w’B., = 0. (1.66)
C

The refractive index n is defined as

n =/l (1.67)
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and describes how the wave vector of a plane wave solution of equations [L.57H1.60
is altered compared to a wave in vacuum of the same frequencyﬂ k = nkq. All the
medium does here is introduce the additional factor of n in the wave equation, and
we could incorporate this effect by replacing ¢ with the new speed of light in the
medium,
c 1 1 1
v=—

n JZolo Erllr R

This is called the phase velocity, as it describes the speed with which points of

(1.68)

constant phase move in a propagating wave.

Most common media have a refractive index bigger than or equal to 1, which
means light usually doesn’t travel faster then '} However, values below 1 or even
negative values are possible in special cases. Furthermore, since the response of a
medium usually depends on the frequency of the wave, the refractive index is also in
general a function of frequency. Free space without any dipoles can be interpreted
in the same framework as a medium of refractive index 1.

Complex refractive indices describe lossy media, where part of the electromagnetic
field is absorbed by some of the dipoles which do not decay into the electromagnetic
field again but rather into other, mechanical degrees of freedom. Consider a plane
wavef| E = Ege'**=“) entering a medium with complex refractive index

n = ngr + tn;. The wave in the medium will have the form
E = Eoei(nkoxfwt) _ Eoei(anoxfwt)efn[kox. (169)

Thus, the real part of the refractive index ng changes the effective wavelength and
wavevector, whereas the imaginary part leads to an exponential decay of the ampli-
tude. The first effect is called dispersion, the second describes absorption.

Special care needs to be taken for so-called negative index materials. In most

materials, the ratio between the wave vectors in vacuum and in the medium is the

6 Actually, the refractive index just alters the relation between k and w, but when a wave enters
the medium, the energy needs to be preserved, so w stays constant and k& will change accordingly.

"The term “travel” should be interpreted carefully here, as the refractive index describes the
travelling speed of individual nodes and antinodes of a light wave, and not that of photons or wave
envelopes.

80ne should not be confused by the complex conjugate missing, as we can in principle describe
the fields as complex quantities. However, as measurements always reveal the real part of such a
complex field one often writes the real part directly. Here we have simply left it out for simplicity.
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positive solution of the square root in equation [I.67 and by convention, the refractive
index is therefore defined to be positive as well. However, whenever both ¢ and p
have negative real parts, the refractive index needs be chosen to be the negative
solution so that E = Ee'("k0r=t) ig still a solution of the wave equations. More

details about negative refractive indices will follow in section [1.8.1]

1.4 Electromagnetic field quantization

A quantized description of the electromagnetic field can be obtained by expressing
the energy of the field in terms of harmonic oscillators and introducing the usual
bosonic field operators by comparison with a quantum harmonic oscillator. This is a
rather credulous method, trusting that the operators obtained by such a replacement
indeed represent the correct quantum behaviour. Most importantly, the correct form
of the energy in terms of canonical variables must be known. We skip the derivation
of the Hamiltonian here as it is well known and not relevant to our problems, but
the interested reader can find a proper Lagrangian derivation for example in Ref. |2]
or [3].

In this shorter quantization procedure, we already anticipate that the electro-
magnetic field can be described as a harmonic oscillator. We thus first write the
field operators as plane wave solutions and derive the field energy in terms of the
wave amplitudes. We will then compare this expression to the Hamiltonian of the
quantum harmonic oscillator and make the corresponding replacements of the wave
amplitudes to bosonic creation and annihilation operators so that the Hamiltonian
of the electromagnetic field takes the expected form.

We first attempt to find solutions to Maxwell’s equations by solving the wave

equation in free space, equation We write the solutions in the form [4]

E(rt) = e (Ape'®ret) 4 Ay emikr—ean) (1.70)
kX
1 4 ,
B(r,t) = Z ——(ki X ek,\) (Ak)\el(kTiwkt) + AZ)\eiz(kTiwkt)) (171)
kA K

with wy, = c|k| and orthonormal unit vectors egy-exy = dyn that satisfy egy-k = 0 for

polarizations A = 1,2. This is the most general solution fulfilling the wave equations.
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In principal we could have an arbitrary polarization vector ex. However, the first
Maxwell equation restricts the allowed polarizations to the plane orthogonal to k, so
we only need a basis of two orthogonal vectors (which we can choose arbitrarily) to
represent all allowed polarizations.

The allowed wavevectors k depend on the boundary conditions: For a box of
dimensions V = L x L x L with periodic boundaries we must have k; = nz% for
t = x,y, 2z and integer numbers n; = 0,41, +2,.... With that, we can calculate the

energy stored in the electromagnetic field within the box,

1 1
H=-= /(50}32 + —B?dV

2 Ho
= Z EOV(A]@)\AZ)\ + AZ)\A’@)\)7 (172)
kA

where we have made use of the identities
/ T e = L (1.73)
L
for n, n’ € Z and
(k X ekk) . (k? X ek/\/) = k‘QBkS\ ey = l{?Q(S)\)\/ (174)

(with A=\ 4 1 mod 2).
We now compare our Hamiltonian to the energy of a quantum mechanical har-

monic oscillator written in terms of ladder operators ag, and dL/\

. 1 1
H=Y hw (ajai + 5) => hawi (aiaj + a}a,») . (1.75)

In order to write the electromagnetic energy in this form, with a frequency w; = wg,

we identify the amplitudes Ag)with quantum operators by making the replacement

* hwk A

From what we know about quantum mechanics, we now also have to impose the
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bosonic commutation relations on our new operators,
[&k)\, dL,)\,] = 5kk/(5>\,\/. (177)

With the new operators, the quantized field operators now read

~ I , :
E(r.t) = Z \/ 2‘;};0 €L <dkxez(kr_m) + &L/A,G_Z(k”_mv (1.78)
ko

and

» / h A i(kr—w ~ —i(kr—w
B('I",t) = Z — QV{;‘Owk (k X ek,\) (ak/\e (k t) + CLTk,XG (k t)> . (179)
kA

The same method can be used in environments different from free space, as long as
there is no absorption. The spatial mode functions and the allowed wave vectors
need to be modified according to the environment. It can be easily verified that in a
homogeneous isotropic medium these modifications are equivalent to simply making
the replacements ey — €, 1o — p and ¢ — ¢/n.

For waves in open space, i.e. without boundary conditions, we can push the
boundaries of the box to the limit L — oo. This leads to a continuity of modes with
a density % = 2% We thus have to replace the sum over discrete k into an integral,

Dok — % [ dk or, as we have a three-dimensional distribution of wavevectors,

Z—)(L)S/d?’k: (1.80)
o . .
k
This changes the Hamiltonian to
H = (27‘()3 / dgk ZEO(A’C)\A;;)\ + AIZAA’CA)’ (181)
A
leading to replacements

AL R G0 (1.82)
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with commutators

[,y | = 3k — K)o (1.83)

now following a continuous delta-distribution for the wave-vector. The final quan-

tized field operators take the form

- hw ~ ilker—w ~ —i(kr—w
E(’I", t) = /dsk E 2(T)k:;goek)\ <ak/\€ (k ) + CLL//\,G (k t)> (184)
A
and
N h ) )
_ 3 E :_ A i(kr—wt) A —i(kr—wt)
Blr.t) = /d - \ 2(2m)%eqwy, (o ew) (ak)\e T lne ) ’
(1.85)

1.5 Atom-photon interactions: Dipole radiation

The main concern of this thesis is with the interaction of the electromagnetic field
with single (oscillating) dipoles, in particular with the impact of medium permeability
and permittivity on the rate of spontaneous emission. This is, if we treat the dipole
as a quantum mechanical object with two distinct energy states, the rate at which
it decays from the excited state to the ground state. Spontaneous emission is purely
mediated by the vacuum fluctuations of the electromagnetic field, in contrast to
stimulated emission which is due to interaction with excited field modes.

The spontaneous emission rate can be derived from the quantized electromagnetic
field to a very good accuracy using perturbation theory, i.e. treating the interaction
of the dipole with the field modes as a small perturbation (see for example [5,/6])
which leads to the well-known Fermi golden rule |7]. The total Hamiltonian, without

the vacuum energy of the system reads

H =" hwifyars + hwale) (e| + d - E (1.86)
kA

where the first term is the electromagnetic field energy, the second the energy of

the dipole, described as a two-level system with energy difference hw,, and the last
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term describes the interaction, which we will treat as a small perturbation. We have
chosen the energy levels so that zero energy coincides with the ground state of the
dipole and the field. d = dé, = d(|e) (g| + |g) (e|) is the dipole operator with d
being the classical transition dipole moment of the system of interest (for example
an atom). The dipole operator can also be described by raising/lowering operators
#*+/= for the atomic levels |e) and |g) as d = d(#+ + 77), so the coupling between
dipole and field modes can be understood as an exchange of a single excitation.
In the rotating frame of the atomic and bosonic frequencies we can then write the

Hamiltonian as

Hy =ih) g (fzmei(’"’”” — &kke*“’“*wt)) (Afe™al 4+ 7memwal) (1.87)
kX
with
Wi
2€0hV

Jer = d - €py (1.88)

being the coupling strength in vacuum. We will assume the system to be initially
in the state |e) |0) = |e, 0), the atom is excited and the field is in the vacuum state.
After a time ¢, we describe the state of the evolved system by the eigenstates of the
unperturbed Hamiltonian, i.e. the joint eigenstates of the uncoupled electric field

and the atom:

(1)) =D ealt) |n) (1.89)

The coefficients ¢, (t) can be found in first order time-dependent perturbation theory
by

t

D) = — - /dT (n| Hy(1) e, 0). (1.90)

0

St =

We are interested in the decay of the atomic excitation into a single field excitation

with mode indices k and \. Therefore we write

t

ca(t) = - / A7 (g, 1| ginigpe "B 77T e, 0)
0
) i(wk—wA)t _ 1
N (2 'r‘e
= igpre’™ ( (1.91)

W — W4)
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The spontaneous emission rate is determined by the transition probability of the

dipole excitation to any field mode after a time t,
_INT LW 1.92
1= o3Il (192
kX
We start by calculating the transition probability to an arbitrary field mode:

RO = g Prsing: (24 (199

To get the contribution of all allowed modes in an infinite space we have to approach

the limit V' — oo first, so instead of summing over discrete modes we again integrate,

D(k;) = (dki)_l L (1.94)

Thus, the overall transition probability can be written as

using the mode density

V() = / dSk%Z N0 (1.95)

which, together with equations [L.88| and [L.93| can be broken down to a frequency

d|*t? -
D ()2 = L/uﬁsinc? (“ 2“%) dw. (1.96)

"~ 6m2ephc’

integral

For sufficiently large timescales we can approximate the square sinc-function by a
delta-distribution which picks only the value w = w4 and we thus replace w? in the

integral by w? to get
_ ldPwit

O = o (1.97)
and therefore |d|2 5
_ wa

= 3neohd (1.98)

This is the spontaneous emission rate of a dipole in vacuum.
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1.5.1 Generalized considerations

As has been suggested already in 1946 by Purcell |§], the existence of a medium can
change the local density of electromagnetic field modes and therefore have an effect
on the spontaneous emission rate of atoms embedded in such a medium. Therefore
it makes sense to derive a general formula for the spontaneous emission rate valid for
arbitrary environmental configurations. We start with equation but now leave

the electric field operator unspecified,

t
R =—1 / a7 (g, kA d - Be a7 |, 0)

0
t

_ _%d<kA|E|o>/dmi<wer

i(wp—wa)t 1
— ——d (k) E|0)

h (1.99)

i(we —wa)

where we use the time-independent representations of the field and dipole operators.
Note that the electric field still has a spatial dependence (on the position of the

dipole). With that, the spontaneous emission rate can be written as
d 1
= 2> |l
kX
i i A 2,9 . 9 [ Wk — WA
5 o e (52

d 27 d? .
=~ % Z h2 ’ <k>\| E” |0> |2t5(wk — CUA)

2 d?
=2 | (kA B [0) 8w = wa) (1.100)

where EH = éE - d is the component of the electric field parallel to the dipole
axis. This is the most commonly used form of Fermi’s golden rule for spontaneous

emission |7].



CHAPTER 1. INTRODUCTION 23

We note that the states |kA) build an orthogonal basis of the single-photon space,
> kA (kA = 1. (1.101)
kA

To make use of this, we write the delta-distribution of equation [1.100] in its integral

representation

[e%e} d2 R )
Y =/ dt ) 5] (k| B} [0) et

o0 kX

00 d2 o R )
_ / At D (O By [l) (JeA| B [0) e

oo kX

> d?  iH - —iw
:/ dt S 5 (O el o) (o] B J0) e

- kX

where in the last step we used the fact that hwy is the eigenvalue of the field Hamilto-
nian H for the state vector |k), in order to replace the dependence on the wavevector
k. Now we can use the completeness relation from equation [1.101] to obtain

00 d2 . R )
v = / dt? (0] Eye /") 0) et (1.102)
Rewriting this to
2 P A s s )
v = / dt? (0| EHelHt/hEHe’lHt/helHt/h |0) e 1At (1.103)

and applying the Hamiltonian operators to the field operator and state vectors,
UM E e~ Hi/h — ) (t) and H |0) = 0 in the Heisenberg picture, leads to

N = /_ Z dt% (0] Ey(0) By (t) |0) e ™At (1.104)

Hence, the spontaneous emission rate in a medium is entirely determined by vac-
uum fluctuations of the electric field operator. These can be obtained from quantizing
the electromagnetic field as shown above, however, this is not always easy. Another
method for obtaining these field fluctuations is using Green’s functions, as will be

described in section We will finish with a quick example of a case when it is
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indeed easy to quantize the electromagnetic field and use equation [1.100] to calculate

the medium modifications to the spontaneous emission rate.

1.5.2 Example: Magnetodielectrics

Let us consider a medium with a homogeneous, real permittivity € and permeability
p. Following the same quantization procedure as introduced in section for the

macroscopic medium, we find that the quantized electric field operator reads

y [ hw ~ i(kr—w ~ —i(kr—w
E(’P,t) = /dBkZ mem <ak>\e (k t + aL,/\,e (k t)> (1.105)
A

with a dispersion relation of

w=kv=——. 1.106
N (1.106)

We start with Fermi’s golden rule in integral form

7= hg

2md> .
T Z/d3k| (kM| B} [0) P3(wr — wa). (1.107)
A
Now the meaning of the delta-distribution becomes obvious, we thus change the
k

ep ?

integration variables to spherical coordinates and substitute & by w =

B 2 d?

7= Z/@dw/dgo/euw%inede\ (kX B 10) [26(wi — wa)
A

omd® . 5
— %,/_ggdwiz:/dgo/sinﬁdﬂ (kX B |0) |2 (1.108)
A

The transition element of the electric field | (k| EH |0) |* narrows down to the only

non-vanishing component

. hw, 1 ik hewy,
k) Zd- i(kr—wgt) 0 2 _
< ’Z\/ 2(2m)ed’ TR 0017 = 55

We can always choose angular coordinates such that |2d - eg|? = cos? §, and we can

1 2

Ed ST 5%

(1.109)

do this for each polarization separately as they both appear in two separate integrals
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which are merely being summed up. With this, the emission rate becomes

27 2h€\/_ Z/dgp/sm@cos 6do

2
_de

37rh

3
W2

M\»—A

€ (1.110)
We see that the modification of ,ugg% or, equivalently, ny comes from the changed
density of modes % together with the different form of the quantized field operator.
In the case of a purely dielectric material the rate is simply

dzw 2 3 1
> ;;Mo £2 = yel (1.111)

which is often interpreted as a modification to the vacuum rate of n = /z,. Here
we see the dangers of such terminology as one might be tempted to infer from this
a modification for magnetodielectrics of n = /u,.€,, but the magnetic permeability

does not come into the formula with the same power as the permittivity.

1.6 Method of Green’s functions

Green’s functions are powerful tools in a wide range of mathematical and physical
applications. They were developed as a means for dealing with inhomogeneous dif-
ferential equations but can be used in a broad spectrum of situations. In physics,
they are extensively used to describe the linear response of a system to an external
perturbation like for example the scattering of a light beam in a complex medium.
Together with the fluctuation dissipation theorem [9], one can also obtain field fluc-
tuations of a quantum operator as in our case, the electric field fluctuations. We
will start by giving a general definition of the mathematical framework of Green’s

functions and then show the applications for quantum electromagnetism.

1.6.1 Mathematical definition

A Green’s function in its most general form is the solution of a differential equation
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DGt —t)=0(t—1) (1.112)

together with corresponding boundary conditions, where & can be any differential
operator. With this function G(¢), one can reconstruct the solution to any inhomo-

geneous differential equation of the form

D(t) =g(t) (1.113)

by integrating
f(t) = /dt’G(t —t)g(t). (1.114)

We can interpret this intuitively as solving the dynamics of a system f(¢) for a single
point-source, and then using this to derive the solutions for arbitrary systems by just
summing up or, in fact, integrating over all sources that are actually present, giving
each of them the solution of the initial point source.

If we want to describe the problem with oscillating functions we can use a Fourier

decomposition
1 it
S w 1.11
16 = 55 [ de5(0) (1115
and
1

g(t)

/dwe_iwtg(w). (1.116)

Now equation [1.114] can be written in frequency space in the simple form

" or

f(w) = Gw)g(w) (1.117)

where G(w) = [ dte™'G(t) is the Fourier transform of the Green’s function. In other
words, the Green’s function in frequency space relates one frequency-component of
the solution f(w) to the same frequency-component of the source g(w).

This formalism can be generalized to more than one dimension. The most general

form then reads
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with (Sl](t — t,) = (SU(S(t — t/), so that

fi(t) = /dt’Gij(t—t’)gj(t’) (1.119)
or in Fourier space
filw) = Gij(w)g;(w) (1.121)

where the summation convention is implied whenever an index repeats.

1.6.2 Green’s Functions in quantum physics: Kubo Formula

In physics we can find a relation between Green’s functions and the linear response
of a system of interest. Consider a perturbation to a system given by a Hamiltonian

in the interaction picture of the form

[:Isource(t) = _¢j(t)éj(t)' (1~122)

We can approximate the time evolution of the expectation value <OAZ(t)> using first

order perturbation theory as

(0.0) = (0N, + 5 [t {[Howelt). 00)]), (1123)

or if we are interested in the change of the operator due to the perturbation,
5(0u(1)) = % /_ ; At { [ A e ). 0:(1)] ) (1.124)
_ —% /_ Z atot — 1),(t) { [0,().0(1)] ). (1.125)

Comparing this to equation [1.114] we can identify a Green’s function as

Gist— ') = %Q(t ~t){[0u0).0,]) (1.126)



CHAPTER 1. INTRODUCTION 28

so that

5 <o}(t)> - /Oo dt'Gi(t —1)o;(1). (1.127)

—00

This expectation value can in principle be with respect to any quantum state of the
system, typically one is interested in the vacuum state or the more general thermal

state .

e AH
p=—+— (1.128)

Tr(e=PH)

with § = 1/kgT. With this, we can describe the response of the physical quantity
<O(t)>, i.e. the expectation value, or the classical average of the operator O, to any

linear perturbation ¢(t).

1.6.3 Example: Green’s function of the vector potential

We are now interested in the response of the vector potential to an external current
(see for example [10] for more detail). The corresponding interaction Hamiltonian

has the form

~

o () = — / & it r) At ). (1.129)

As we are in the interaction picture, the time dependency of the field operators
fll-(t, r) is still given by the free Hamiltonian of equation and thus the operators
have the same form as derived above. In addition to the sum over indices we also
have a continuous integration over space here. This however does not change the

general structure. In analogy to section we write

5 (Atr)) = —%/: dt’/d3r’8(t 3t ([Aut), At ) (130)
and identify the Green’s function as
Gisltm, 1) = %e@) ([At. ). A,0.9)]) (1.131)
and its Fourier transform with respect to the time coordinate

Gij(w,r, 7" :/dtei“tGij(t,r,r'). (1.132)
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Now, the response of a single frequency component can be described by

5<Ai(w,r)> = /d3r’Gik(w,r,r’)jk(w,r’) (1.133)

with summation convention implied. At the same time, we know that Maxwell’s
equations can be used to describe the dynamics of the classical vector potential. Since
the change in expectation value indeed represents the classical value (the averaged
field absence of sources is always zero, and both the operators and the classical
fields follow the same equations of motion), we should be able to obtain this Green’s
function directly from solving the corresponding classical wave equations where the
electrical current takes the role of the source term and is replaced by a Dirac delta-
function. This can also be verified by showing that the Greens function as defined
in expression still satisfies the same equation as the corresponding classical

Greens function.

1.6.4 Application to spontaneous emission rates

We can use the framework developed above to calculate the field fluctuations from
equation in terms of the Green’s function. We start by rewriting the decay
rate in terms of the vector potential, considering only the transverse part for now,
so that E, = iwA,,

2
wyd;d;

v = %Sﬁ(wmr,r)
where Sj;(w, v, 7') = [ dte™'S;;(t,r,7') is the frequency representation of the corre-
lation function

Si(t e ') = <Ai(t,r)Aj(O,r’)> . (1.134)

Now we can use the fluctuation dissipation theorem [9]

1
Im Gjj(w,r, ") = %(1 — e‘ﬁ“’)Sl-j(w, r,r) (1.135)

at zero temperature, i.e. e #“ = 0, which corresponds to expectation values with

respect to the vacuum state, to relate the decay rate to the imaginary part of the
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Green’s function,
Qwid d;

———Im G,j(wa,r, 7). (1.136)
The main idea behind the fluctuation dissipation theorem is that due to the causality
of the Green’s function, the imaginary part of its spectrum can be written as (for

simplicity, we omit the spacial dependency in the following derivation)

1
% (Gij(w) — Gji(—w))
1 oo

= —57 N dt et < [flj(()), Az(t)] > )

and the remaining commutator can be reduced to a simple expectation value: If

Im Gij (CL)) =

we look at the first part of the commutator for a thermal state we see that we can

rewrite it to

<A]( > =Tr (e BHA t)>
—Tr ( (e PH A 0))
=Tr <e BH i(1) _Bﬁflj(())>
— Ty (e i zﬁ)Aj(O))

Il
S

wﬂmx»

and incorporate the additional imaginary time into a change of variable in the inte-

gral,
InGiy(o) =55 [t (At =i8)4,0)) - (A(0A4,0)))
- 2175 (/ dt =(t+if) <A (t)A, (0)> —/: dt & <A (t)Aj(o)>),

finally leading to the result of equation [1.135
We have thus replaced the quantum vacuum fluctuations by an expression con-
taining the Green’s function which, even though still quantum, can be easily obtained

from classical Maxwell’s equations.
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1.7 Local fields

Let us come back to macroscopic media again which shall be the main concern of this
work. We must make ourselves aware of some of the peculiarities one can run into
when working with this rather phenomenological theory. In fact, no medium is truly
macroscopic, there are no continuous homogeneous polarization or magnetization
densities. Usually approximating the distributions to be homogeneous over larger
scales is fine, but when dealing with the emission properties of single dipoles or other
microscopic bodies we need to be a bit more careful.

Whenever we are treating such objects in macroscopic electromagnetic fields, we
need to take into account the fact that the microscopic elements do not see the
averaged macroscopic field but rather the actual microscopic field at the particular
position. This microscopic field will still be the sum of the external field and the
contributions from the dipoles that make the medium, but we can no longer just
do a volume average of all those dipoles. Or at least, the volume over which we
could average without introducing inaccuracies is much smaller than the typical
dimensions of the material structure. Practically, of course, treating every medium
dipole individually is computationally impossible. Luckily however, there are still
some assumptions and simplifications which can be made to get an insight on the
actual locally acting field. The most intuitive and straightforward model is the
Clausius-Mossotti model, sometimes also named after Lorentz and Lorenz who both
derived an equivalent formula [11,[12].

In this model, the vicinity of the body of interest is treated microscopically, while
the rest of the medium is described as a macroscopic homogeneous medium. This
can be understood equivalently as defining a virtual cavity around our body, the
inside of which we treat as vacuum (e = ¢g) filled with a discrete array of dipoles.
This cavity has no effect on the macroscopic fields outside as it is purely a theoretical
construct (and on average it has the same dipole density as the rest of the medium),
which is why this model is also referred to as the virtual cavity model.

In the following we shall see two different but mathematically equivalent deriva-

tions of this virtual cavity model.
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Figure 1.2: “Macroscopic” local field model: The field at the dipole position is the sum of the
average macroscopic field F,.g, the field due to the surface charges induced by the macroscopic
medium at the boundary to the cavity Eg, and the contributions from the dipoles inside the cavity
taken into account microscopically.

Macroscopic derivation Let us first come to the textbook derivation of the
Clausius-Mossotti local field (see for example [13-15]). We start by separating the
medium into two regions. A spherical region around the dipole which forms the
virtual cavity in which we treat the medium microscopically, and the region around
that sphere which we shall treat macroscopically. This means we describe the region
in the cavity not as a homogeneous medium but as a region of vacuum, filled with
dipoles at discrete positions.

The electric field at the centre of the sphere can be described by the sum of three
different fields, as shown in figure [I.2} The average field in the medium E,., the
field due to surface charges building up at the cavity boundary Eg and the field from
the dipoles inside the sphere F,.... Note that there are no real unbound surface
charges accumulating anywhere. However, as we are treating the dipoles inside the
sphere separately, we cannot “use” them to neutralize the charges at the boundary
(if we would, then some of the discrete dipoles would remain as unpaired charges
and we’d have the same surface contribution again, just somewhere else).

The average field E,,, is by definition the macroscopic field E in the medium. The
field Es due to surface contributions can be calculated using the charge distribution

ps = —V - P caused by the inhomogenity of the polarization field at the virtual
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boundary,

E():—w——v/dv’

47T€0|T — 1|

47r50]r — 7|

/dV’ (V- P{r)) (r =) (1.137)

dreg  |r —7')?

with P(r) = PO(r — R) being the macroscopic polarization of the medium around
the virtual cavity of radius R. Using either the derivative of the Heaviside-theta or

equivalently Gauss’s theorem we can write this as an integral over the sphere surface

PP (r—r)

drteg |r — |3 (1.138)

Eg(r) = /R2 sin 0'd0'dy’

with 7 being the outward normal unit vector. We are interested in the field at the

centre of the sphere,

.. p
E5(0) = /sin@’dﬁ/dgo'r T
471'80
1P
1.139
=3 (1.139)

Now the last part missing is the electric field of the dipoles d; inside the sphere,

Epcar ZE di,r;) = Zv(d T’) (1.140)

where the dipole positions r; are given relative to the centre of the sphere. For

sufficiently symmetric dipole orderings it can be shown by explicitly summing up all
dipoles in a shell that this contribution is exactly zero at the position of the dipole
in the centre of the sphere:

E, .:(0) =0 (1.141)

With this, the total acting field at the centre of the sphere is simply

1P
Eloc = Eavg + ES(O) + Enear(o) =F+ 38_ (1142)
0
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or in terms of macroscopic fields,

1 2
—D+:E. (1.143)

Eloc =
350 3

Microscopic derivation The previous derivation can seem a bit unintuitive, so
I will briefly present a more simple, rather fundamental approach to the problem
(see [14] for more details about the two different approaches) as depicted in figure
1.3l First we note, that if we were to apply an external field, then every dipole within
a symmetric configuration of dipoles would feel only this external field, since as we
have shown before, the fields of the other dipoles in the vicinity cancel out. So the
local field is indeed exactly equal to the externally applied field. All we need to do
is simply relate the externally applied field to the average macroscopic field in the
medium. This can be done by averaging over a sufficiently large volume, for example

the sphere we have already introduced above:

E = Eavg = Eext + Edip
1
= Eou + 3 / dVZ E(d;,r;)

= Eext - %Z%dz

1
= Euu — 5P (1.144)
And therefore

1
Eloc = Eext =F+ gP (1145)

We can in fact interpret the averaging of the dipole fields as analogously to calcu-
lating the field due to surface charges/currents as it has been done in the previous
derivation, only now we calculated the surface contributions due to the polarization

inside the sphere and not outside of it.

Some additional remarks In principal this way of deriving the local field is valid
in a broad range of materials. However, one must be careful in some cases. First
of all, we have assumed here that the dipole of interest is part of the medium, and

thus has the same polarizability as the surrounding dipoles. If the dipole itself is
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Figure 1.3: “Microscopic” local field model: The field at the dipole position is equal to the externally
applied electric field Eex. The macroscopic field E,y, inside the medium is the sum of the external
field and the average of the fields from the induced dipoles Fqi,. This average can be calculated
from the surface charges of a spherical cavity, i.e. the charges due to dipoles inside the cavity. The
local field can hence be calculated from the average field E,,, by subtracting the dipole contribution
Edip~

an impurity in the medium, its different polarizability can have an effect on the
surrounding fields and one must use different methods, like for example the Onsager
model [16}[17] which considers a tiny empty cavity, or even more general models [18].
Furthermore, the assumption that the fields of the surrounding dipoles cancel out can
only be made in sufficiently symmetric configurations. In anisotropic media, to which
we will come shortly, this must be taken into account as well and the model must be
adjusted [18-22]. In absorbing media the model in principle remains valid, however,
only in the classical realm. If we are dealing with a quantized description of the field
one must make sure to include the noise fluctuations of the polarization appropriately
[23,24]. A generalization of this in the magnetic media will be addressed in chapter
4.3

1.8 (Meta)materials

The main focus of this thesis is to generalize some aspects of the theory of light-
matter interactions to more general kinds of media. The recently emerging field of
metamaterials |25-H32] gives rise to numerous new medium properties and thereby
physical effects that have been ignored for the most part of history. This section
shall give a general introduction to metamaterials and the novel properties they can

exhibit, with a special focus on magnetodielectric and anisotropic media.
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In contrast to normal materials, the fundamental building unit of metamaterials
are not atoms but larger, specifically engineered objects which give the material their
desired properties. In principal, this can be done as long as the desired wavelength is
large compared to the dimensions of the fundamental building blocks. In that case,
we can infer the macroscopic properties of the medium from the individual building
blocks just like they are inferred from the atoms or molecules in a conventional ma-
terial. This makes it possible to engineer novel electromagnetic properties which are
otherwise hard or impossible to obtain, ranging from strong magnetic permeabilities
to the famous example of negative refractive indices.

The basic idea in engineering specific metamaterials is often to arrange compo-
nents of different electromagnetic properties in periodic structures to get the desired
combination when taken in the macroscopic average. These objects can simply be
alternating slices of bulk media, or more elaborate structures like tiny electric circuit
elements. In the following we will give an overview of the specific materials which

will be treated in this thesis: magnetodielectric media and anisotropic media.

1.8.1 Magnetodielectric media

Strong magnetodielectric media are something that is found only very rarely in na-
ture. Conventional materials usually do not possess high permeabilities as atoms
have extremely weak magnetic dipole moments, their magnetic polarizability is two
orders of magnitude smaller than the electric polarizability. This is understandable
in the context of the complications of making a magnetic dipole out of purely electric
material. The magnetic permeability is often simply approximated by the vacuum
permeability po. This makes it very hard to determine how magnetic media actually
impact on physical effects. Part of this thesis is to rigorously derive formulas for the
spontaneous emission rate for magnetodielectric media without making any approx-
imations about the permeability. In particular, we allow the permeability to have
large, but also complex or negative values.

With metamaterials, one is not limited to the polarizability of atoms or molecules
anymore, and using more complex structures, arbitrary permeabilities can be engi-
neered. Custom magnetic materials can be extremely useful for optical data pro-

cessing and quantum information technologies, most notably is the potential in mag-
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netic resonance imaging [29,133,134]. The most famous example of customization of
the magnetic permeability is the split ring resonator [35|, which is composed of two
concentric rings in a plane, each with a gap. Every ring can be understood as the
minimal example of an L.C resonator which still exhibits a notable inductive element,
namely one loop of a coil. With these resonators, one can reach an effective negative

permeability, which is an essential ingredient for negative refractive index materials.

Negative refractive index materials In the 1960s, Veselago first considered the
possibility of the refractive index of a medium being negative [36,37]. A negative
refractive index would be obtained when both the permeability i and the permittivity
e are negative. In such a case, the negative root of n = /i€, has to be chosen to
describe the effect of the medium properlyﬂ[n conventional materials, even though
materials with negative u, and materials with negative ¢ are known, these do not
occur at the same time. Silver and gold for example have negative € even at the
visible spectrum, but positive p. Combining materials of negative ¢ with negative
1t materials can lead to effective materials of simultaneous negative ¢ and p. The
split ring resonators introduced above are among the earliest artificial realizations
to exhibit negative u. Combined with a lattice of conducting wires for the negative
permittivity, one can obtain a composite material with a frequency band in which
both ¢ and p and thus the refractive index n are indeed negative [25].

The applications are wide: Negative index materials have been proposed to be
used for sub-wavelength imaging or cloaking devices. In both cases, the advantage

lies in the way that light beams are deflected in the material. From Snell’s law
sin 0y, = nsin Oyt (1.146)

it follows that in a material with n < 0, the light beam is deflected to the opposite
side of the surface normal. Figure [1.4] shows how a slab of negative index material
effectively acts like negative space in the optical sense, which opens completely new

paths to focusing. In theory, this could be used as a perfectly focussing lens [3§]

9In principle the sign of n is arbitrary. It has by convention been set to be the positive root
in usual materials so that the imaginary part is positive when describing a lossy medium. For
consistency with this convention, in the case that both € and u are negative, n must be chosen as
the negative root as well.
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Figure 1.4: Light beams entering a negative refractive index material. The red dashed arrows show
typical deflection in positive index materials. A material of refractive index —1 of length [ effectively
removes a free-space distance of equal length: At position B behind the metamaterial, the light
beams have exactly the same position and momentum as at a point A, which is at a distance [ from
the material. One could also understand this as negative optical path length inside the material.

which removes the restrictions to the resolution know from usual lenses as it deflects
all parts of a beam at the interface.

The simultaneous negativity of € and p has more consequences. Electromagnetic
waves in negative refractive index materials are said to be left-handed, as the fields
E, H and the wavevector k form a left-handed system instead of the usual right-
handed relation. Hence, the Poynting vector points in the opposite direction from
the wavevector, and the directions of energy propagation (phase velocity) and in-
formation propagation (group velocity) are opposedm This opens questions in the
framework of quantum information and communication, one example is the sponta-
neous emission rate of a dipole embedded in a negative-index medium. The form
often used in literature of v = nys,e. [39] would suggest a negative value for the emis-
sion rate. This can only be resolved by re-deriving the spontaneous emission rate for
magnetodielectrics, with which the formula correctly reads v = nj,vgree [40,41]. The

negative permeability now makes up for the negative value of the refractive index,

1ONote that negative refractive index alone does not necessarily lead to opposite signs of phase
and group velocity. There have been rare cases reported [28] where both the group and the phase
velocity had negative signs (this is the case when both n < 0 and n + wg—z < 0).
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therefore leading to a positive rate again.
The possibility for losses in the medium, which will inevitably be present in any

realistic materials, calls for an even more rigorous treatment, which will be the basis
of chapter

1.8.2 Anisotropic media

Anisotropic media have different properties in different directions. In particular, in
the case of optical anisotropy, or birefringence, electromagnetic fields feel a different
refractive index depending on which direction they are pointed. This can be the re-
sult of a certain kind of metamaterial construction, but also occurs naturally in many
crystals with non-cubic lattice structure or in certain materials under stress. Com-
mon naturally occurring birefringent crystals are for example quartz or calcite, but
also anthracene which has current applications in quantum optics [42,43]. Metamate-
rials can often have anisotropies as unintended side-effects, especially when stacking
together lower-dimensional structures like metal strips, cylinders, or the split ring
resonator described earlier [25].

The most famous effect of anisotropy is double-refraction: When a light beam
enters the medium, it is split into two polarization components, each being deflected
to a different angle due to the different refractive index they feel. Double-refraction
has already been observed in 1669 [44] in calcite crystal, even though it took until
the 19th century for it to be theoretically explained with different polarizations.

Mathematically, anisotropic media can be described by a matrix-valued permit-
tivity € or permeability p. For dielectrics for example, this means the permittivity e

takes the form of a tensor ¢;; such that D; = ¢;; F/, or in matrix form
D =¢FE. (1.147)

It can be shown that one can always find an orthogonal basis in which the permittivity
matrix is diagonal, these basis vectors are called the principal axes of the crystal. In
the following we will refer to the permittivity matrix € as this diagonal matrix in the
basis of the principal axes.

As we can see from equation [I.147] the electric field and the displacement field are

no longer parallel in general, and the electric field is not necessarily divergence-free
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anymore, even in the absence of free charges.

For a propagating wave, the electric field is in general not orthogonal to the
wavevector, nor are two different polarization vectors orthogonal to each other, as
will be shown later. Instead, the corresponding orthogonality constrains can now be
understood to be under a different metric obtained by multiplying ¢ in between the
two vectors. The wavevector is thus orthogonal to the displacement field k- D =
kTgE = 0 and for two quantum-mechanically orthogonal polarization states, the
displacement field of one is orthogonal to the electric field of the other, E, - Dy =
EngEg = 0 and vice versa. Hence, no orthogonal basis can be formed with any three
of the vectors FE;, D;, and k. Figure illustrates the alignment of the different

vectors compared to the plane orthogonal to the wave propagation ||

\_ D,

D, 7

/ E,

Figure 1.5: Electric and displacement field polarization vectors of a wave with wave vector k in
an anisotropic medium. Both D; and D- are orthogonal to k, but not orthogonal to each other.
Instead, D1 L E5 and Dy L E;. The blue plane depicts the plane orthogonal to k, or equivalently
the plane formed by D and D5 .

Uniaxial media A special but very common case of anisotropy is the uniaxial
medium, in which two of the three entries of the diagonal permittivity matrix are
equal E The third entry marks the optic axis of the medium, rotation around this
axis keeps the optical properties invariant. Electromagnetic waves with wavevector

parallel to the optic axis propagate just like in an isotropic medium: The displace-

10One must be careful when talking about propagation as in fact, the Poynting vector and the
wave vector are not aligned either, hence the direction of energy transport and signal transport are
different as well. The Poynting vector is not even unique as it is different for the two polarizations
(double-refraction!).

12 Anisotropic magnetodielectrics are rather rare but can exist, in that case by uniaxial we mean
a medium in which permittivity and permeability tensors have the same symmetry.
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ment field will always be in the plane orthogonal to the special axis, so the refractive
index is the same for any polarization. In this case, also the electric field will be in
the same plane and parallel to the corresponding displacement field.

For arbitrary wavevectors, one can always find one polarization which is in the
plane orthogonal to the optic axis. For this polarization, again, the electric and the
displacement field are parallel and the wave behaves like in an isotropic medium.
Therefore, this polarization mode is also called the ordinary wave. The polarization
orthogonal to the ordinary wave is called the extraordinary wave, for such waves
the medium effect is completely anisotropically, i.e. these waves experience all the

anisotropic effects described above.

Biaxial media The term biaxial itself might be a bit misleading at first, as biaxial
media actually describe the most general case with three different values in the
permittivity tensor. One can however always find two unique axes which have a
special role, similar to the single optic axis of the uniaxial medium. There is now
exactly two directions of k for which all polarizations feel the same refractive index.
These are called the wave-normal optic axes [45]|, they always lie in the plane of
the two principal axes with the largest and the smallest permittivity. Apart from
those two special cases, wave propagation in a biaxial medium is rather complicated,
and always depends both on the polarization and the direction of propagation. In
general, there are no ordinary waves in biaxial media.

Anisotropic media, both biaxial and uniaxial, have a lot of applications in op-
tics and quantum information technologies. Polarizers for example have stronger
absorption for certain directions of the fields and thereby only let light of a certain
polarization pass unaffected. They can be made in a metamaterial fashion as for
example a simple grid of parallel wires, but also exist on the atomic scale in some
anisotropic crystals. By aligning polymer chains in one direction one can enforce
that valence electrons only move freely in this direction but not orthogonal to it.
Polarizers are present in all branches of technology. They are used in a lot of medical
applications for diagnostics, in quantum information and communication for polar-
ization measurements, but also in every day objects such as LCD displays, sunglasses
or photographic filters. The other big application in quantum optics is the polarizing

beam splitter, which makes use of the double-refraction property of birefringent crys-
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tals and thereby separates the two polarizations of a beam or even a single photon.
This can be used for example to entangle path and polarization degrees of freedom
of photonic qubits.

Apart from the intended applications, birefringence also appears in a lot of situa-
tions as a side effect, as certain materials wanted for other applications happen to be
anisotropic. Most importantly, nonlinear crystals used for the generation of second
harmonics are almost always anisotropic [46,47]. Furthermore, some materials used
as host crystals for single impurities in quantum computing or communication appli-
cations are strongly anisotropic. It is especially these unintended anisotropies that
have often been ignored so far, which calls for a deeper investigation of the effects,
especially quantum mechanical effects which are affected by the anisotropy. Chapter
aims to solve some of the open questions related to anisotropic materials, especially
the form of the quantized field operators and the case of emitting atoms embedded

in such media.



Chapter 2

The B vs. H debate

“The unhappy term ‘magnetic field’ for H should be avoided as far as
possible. It seems that this term has led into error none less than Maxwell

himself”

A. Sommerfeld

For the most part in literature, the magnetic fieldd!] B and H are used almost
interchangeably. This is due to the fact that almost all materials we find in nature
are purely dielectric or at least only very weakly magnetic. In non-magnetic media
the two fields are related only by a constant factor and it does not make any difference
which field is used to describe physical effects. However, when magnetic responses
become stronger, we need to clearly distinguish between the two fields, just like
we do for the electric fields, in order to specify whether and how the macroscopic
magnetization of the medium contributes to certain effects and interactions. There
is great dispute in the field already about which field to actually call the magnetic
field (e.g. [1] vs. [48]), but more importantly, about which field a magnetic dipole
couples to [49,50].

Maxwell’s equations are only of limited help here as they do not explicitly state
the form of the interaction of fields and matter. A Lagrangian or Hamiltonian formal-
ism can give more information, however, any derivation of the Hamiltonian is based

on initial assumptions which are only verified by comparing the resulting equations

'T will make no choice of which field to call the magnetic field, but instead just call them B- or
H- field and refer to them both as magnetic fields.

43
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of motion to Maxwell’s equations. Hence, in principle, different versions of the in-
teraction energy can be derived, using different macroscopic fields.

Nevertheless, there are a few clues on which we can base some basic statements.
In the following T aim to answer two questions. First, the question of which is
the fundamental field, as compared to the non-fundamental field which is to be
understood as the field “loaded” by the magnetizations/polarizations of the medium.
Second, which fields do electric and magnetic dipoles couple to? For electric dipoles,
after similar discussions [51], there is now a wide consensus that both these fields
are the E-field 23], for the magnetic fields there are some arguments for both B
and H. In the following we shall see how different arguments for either field arise
depending on which fundamental physical principal we base the discussion on. We
will also present a potential solution to the coupling of magnetic dipoles which does

not violate any of the arguments that favour a particular field.

2.1 What is the “fundamental” field?

Before we come to this question, we should make ourselves aware that the term funda-
mental is no physically rigorous definition, but merely an intuition, and interpretation
for our understanding of the world. Deciding which field is more fundamental would
have no actual physical implication on anything we could measure or observe. This
is maybe already the first part of the answer: All fields, E, D, H, B are in some
sense fundamental and we can in principle describe the world in any combination of
magnetic and electric fields. Especially, in free space, there is no difference between
those quantities. Once we introduce charges and currents, and thereby electric and
magnetic dipoles we simply define a relationship between E and D, and between B
and H so that we can write Maxwell’s equations in a macroscopic manner without
explicitly having to include all the dipoles in the equations. But of course these
fields have a slightly different character, which can be readily observed for example
at their behaviour across interfaces. In the following, T will present different argu-
ments showing how both the fields B and H can be seen as fundamental in some

sense and why, in my personal opinion, the B-field is the truly fundamental one.
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2.1.1 Duality arguments

It was shown by Heaviside and Larmor that in the absence of free charges or cur-
rents, Maxwell’s equations are completely symmetric between the electric and mag-
netic fields [52,53|. More specifically, if we introduce new fields according to the

transformation

E(9) = E cosf + '?H sin 0 (2.1)
0

H(0) = H cosf — 1/@Esin@ (2.2)
and

D(0) = Dcost + ,| > Bsin6 (2.3)

B(f) = Bcost — 0D sing (2.4)

these fields follow the same set of equations as the original fields. Not only Maxwell’s
equations, but in fact any physical property, like for example the energy density
$(E-D+ B - H) or the Poynting vector E x H are invariant under this transfor-
mation. Just like the macroscopic fields transform, we must transform the dipole
moments, polarization / magnetization and permeability /permittivity accordingly.
One particularly interesting transformation is the case of § = 7/2 which transforms

the fields into their dual counterparts

E+ H (2.5)
D+ B (2.6)

(apart from a constant factor which is really just a question of definition).

This symmetry can be seen directly in Maxwell’s equations, for example the fields
D and B are divergence-free while E and H are not. In a similar manner, in electro-
/magnetostatics, E and H are curl-free while D and B are not. Consequently, at
an interface to a macroscopic medium, the perpendicular components D+ and Bt

are continuous while the field strengths of E*- and H™' are lower inside the medium
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as the dipoles act to screen part of the field.

Arguing by the duality of the electromagnetic fields, it becomes apparent that if
we understand E as the fundamental electric field, the fundamental magnetic field
should be its dual, H.

2.1.2 Experimental accessibility

In the laboratory, people usually talk about H and FE, i.e. experiments are usually
designed in terms of those fields, and measurements reveal exactly these, indepen-
dent of the materials in play. This seems to fit well with the duality argument.
However, the reason for this is more of a practical nature and has not much to do
with duality [48]. Magnetic fields are created by building up a current in a loop
or coil. The quantity readily accessible to the experimentalist is the current, which
directly determines H. The field B in turn, would depend on the permeability of
the medium in which we want to create the field.

When creating electric fields, for example at a capacitor, the easiest way to quan-
tify the field strength is to read the voltage of the electricity source, which is related
to the field E between the two plates. If one were to measure the more fundamental
quantity of the charge on the plates, then the medium-independent quantity one
could determine from this information would be indeed the displacement field D.

So if we study this situation carefully we see that indeed D and H are the
fields which purely depend on free charges and currents but not on the macroscopic
quantities of magnetization or polarization of a medium. In the next argument we
will look a little deeper into this connection between D and H or, equivalently,
between E and B.

2.1.3 No magnetic monopoles

There is a reason why we all learnt about E and B long before even knowing that
there are more fields than these two. Before making the transition to macroscopic
electrodynamics, Maxwell’s equations are usually written in terms of E and B only,
even though any other choice would work just as well. This is because it is the only
combination of fields with which we can introduce magnetic and electric dipoles and

with them, polarization and magnetization in terms of electric charges and currents
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I. Pp
V-E=pkv.p
VXE =-B
VxB=E+]+P+vxM
Ip Iu
II.
V-D=p
VXD=—-H—-M-VXP
VXxH=D+]
III1. VI.
V-E=p-V-P V-D=p
V-H=-V-M V-B=0

VXE=-H—-M VXD=—-B—-VUxP
VXH=E+J+P |VXB=D+]J+VxM

Figure 2.1: Maxwell’s equations, written in terms of either possible pair of electric and magnetic
fields, with p and J being the free charges and currents. In representation I.; all matter terms can
be accounted for as electric charges and currents, while in II., we would need magnetic charges and
currents to describe the matter terms in a similar manner. For better visibility, natural units of
¢ =¢o = 1 are used in this diagram.

and thereby reduce all macroscopic considerations to the bare fundamental quan-
tities. Let us have a look at figure [2.1] which shows Maxwell’s equations written
in all of the four possible pairs of electric and magnetic fields. We see that in any
other combination of fields, the polarization or magnetization appears in places which
usually do not contain any contributions from matter.

It turns out that if we were to include magnetic monopoles/charges into the
equations, those occurrences could be easily described as dipole moments formed by
magnetic charges in the same manner as we usually describe all dipoles to be formed
by electric charges: So in analogy of the correspondence between dipole moments to

electric charge and current

V-P=—pp, P=Jp, VxM=Jy (2.7)
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we could as well describe them as formed by magnetic charges j and currents J:
V'M:—ﬁ]u,M:jM,VXP:jp (28)

Just like the set of equations I. is written in terms of electric charges and currents,
the dual version of them, II. now look as if all polarization and magnetization came
from magnetic charges and currents.

Of course none of these equations actually require the existence of magnetic
(monopole) charges, as they all occur in the form of dipoles. But it tells us that
there is something very fundamental about the fields E and B, at least if we deny
the existence of magnetic monopoles. Then these are exactly the two fields we
need to write Maxwell’s equations without even needing to introduce the concept
of polarization or magnetization, as we can express everything in terms or electric
charges and currents.

In principle we can use any combination of fields to write any of the four equations.
The combination used usually in macroscopic electrodynamics, a mix of all four fields,

does not even require to include any (bound) currents or charges:

V.D=0 (2.9)
V-B=0 (2.10)
0B
oD

However, we again see that the fields D and H carry a special role: They appear
exactly in those equations in which we would include the matter contributions due to
electric monopoles, so we can indeed understand them as those fields which contain
the polarizations and magnetizations caused by electric charges and currentsﬂ So

with this in mind, we make the final conclusion:

2At the same time we could say that E and B can in principle contain polarizations and
magnetizations caused by magnetic monopoles.
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In the absence of magnetic monopoles, the magnetic field B is fundamental in the

sense that only in a formulation of Maxwell’s equations in E and B, we can account

for all matter contributions in terms of electric currents and charges.

Coming back to the dual symmetry of the fields, this conclusion is not necessarily
in contradiction with duality: While the dual symmetry connects the fields E and
H, and D and B, this same symmetry thereby also naturally pairs up the fields
FE and B, as compared to their dual counterparts H and D. In a world with
only electric monopoles, E and B are fundamental just like in a world with only
magnetic monopoles (which would be its dual), D and H would be fundamental.
It is in fact exactly this circumstance of no magnetic monopoles that breaks the
symmetry between the fields and makes one pair more workable than the other. Just
imagine how beautifully symmetric Maxwell’s equations would be in a world with

both magnetic and electric monopoles.

2.1.4 Lorentz transformation

Another argument supporting our choice of E and B as the natural, fundamental
couple comes from a completely different point of view:

The Lorentz transformation of the electromagnetic field tensor F*” couples ex-
actly the two fields E and B, which we just declared fundamental, with each other,
while D couples to H [54]. A Lorentz-boost of velocity v transforms the components
of the field parallel (B and £j) and orthogonal (B, and E|) to the translation axis

according to

B| = By, (2.13)
Bl = B, (2.14)
1
B, =——— (B-vxE),, (2.15)
, 1
E,=—— (E4+vxB), (2.16)
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and the fields D and H similarly as

H| = Hj, (2.17)
D = Dy, (2.18)
1
H =——(H-vxD),, (2.19)
1-%
, 1
D, =—— (D+vxH), . (2.20)
02

This is a nice reassurance as it comes from a rather different theoretical background

and yet still results in the same natural pairing of field variables.

2.2  Which field does a dipole interact with?

The more important question is that of the coupling between magnetic matter to the
electromagnetic field, most fundamentally, the magnetic dipole coupling. A quick
comparison of units shows that m - H can’t be correct as it does not describe an
energy, the options with the correct units would be either m - uoH or m- B. At first
glance one might be tempted to think that the correct coupling term thus must be
m - B. First, there is no additional constants in the electric coupling, and second, if
we follow the usual procedure of replacing every occurrence of po by i of the medium,
we get m - ulH = m - B again.

On the other hand, duality tells us that, if we assume the coupling of electric
dipoles d - E to be correct, the magnetic dipole must couple to the field H, and in
order to keep the units correct, to m- o H . In fact, this additional factor pg is purely
historically originated, due to a different definition of the magnetic dipole moment as
compared to the electric dipole. So in a duality transform, the corresponding dipole
moment to d would be pgm. In refs. |55,56] a coupling Hamiltonian of the form
d- E + uym - H is indicated which supports the duality argument, while in other
sources [49] a coupling to the field B is implied.

As it seems impossible to make fully justified arguments about the coupling of a

dipole to either one of the macroscopic fields, we present in the following a different
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solution or even circumvention of the problem:

It appears that a point dipole should never be treated within a purely macroscopic
formalism in the first place, as the dimensions of the dipole if treated as a point-
source (even with a position-uncertainty) are clearly not significantly larger than, if
at all compatible with, the atomic lattice spacing of the medium. Therefore we must
treat the dipole as being in the vacuum it really is in, and describe its environment
microscopically. If we do that, the question of the coupling to the electromagnetic
field in fact becomes redundant as both fields B and poH are equal in vacuum.

For obvious reasons we can’t calculate the coupling of our dipole to every single
other dipole in the medium. However, it turns out that the local field as introduced
in section is a perfect candidate for a description in terms of macroscopic fields

while keeping the dipole itself in vacuum.

The only fully justifiable answer to the question which field a dipole couples to will

thus be “the local field”.
In the electric case, equation [I.143] it can be directly seen that the fields F,.

and Dy, at the dipole position indeed only differ by €y (they must, as we imposed a
vacuum at the dipole position) and thus are both equally valid candidates. According
to the Clausius-Mossotti local field approximation, the dipole actually couples to a

mix of the macroscopic fields E and D:

1 1 2
d-Ey,=—d -Dy=d - (—D+ -FE 2.21
toe = I ( 3o 3 ) (2.21)
In the following we will derive an analogous relationship for the magnetic fields which
similarly lets us answer the question of the coupling of magnetic dipoles by “the local

magnetic field”.

2.2.1 Derivation of the local magnetic field

The derivation of the local magnetic field follows a similar approach as in section
[I.7} We describe the medium microscopically in a spherical cavity around the dipole
of interest and divide the locally acting field into macroscopic contributions By,
boundary contributions Bg and contributions from the magnetic dipoles inside the
cavity Bjear- Instead of surface charges we now have to include surface currents

Jy =V X (MO(r)) going around the sphere to compensate for the discontinuity of
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macroscopic permeability at the virtual cavity boundary. Their contribution to the

magnetic field in the centre can be calculated as

BS(T)ZVXA:VX/dV/'uO—JM
Art|r — 1|
:/dV’“O (r x M) (r) (V S ) (2.22)
4 lr — /|

which evaluated at r = 0 is

Px P x M
Bs(0) = / sin0'de a0 X4" x M)
T

_ /sin@’de/dcp“uo ((r- M)r — M)

47
po (4w
== —=—M — 47 M
47 \ 3
2

= —5mM. (2.23)

The contributions from local dipoles inside the sphere cancel out just like the electric
dipoles. With this, we have

2
Bioc = Bayg + Bs(0) + Byear(0) = B — gqu (2.24)
or equivalently
1 2
Bloc = gB + g[,l,()H (225)

which, since we treated the dipole as in vacuum, can also be written in a dual
symmetric form of equation [1.143

1 1 2
Hloc = _Bloc = B+ -H. (226)
o 3hto 3
We arrive at the same conclusion as for the electric field, the magnetic dipole couples

neither purely to one of the macroscopic fields B or H, but to the local field, which



CHAPTER 2. THE BVS. H DEBATE 53
is a mixture of bothPt

m - By = pom - Hy,e = m - (%B + ;MOH) (2.27)
When comparing this to the electric coupling we note that this is exactly the dual
version of the electric dipole coupling. We should stress here the universality of
this approach: Even though in the derivation we used the magnetic field B, which
appears fundamental but not dual to E, we finally arrived at an expression which is
exactly the dual version of the electric local field. This is reassuring in that the local
field is indeed a solution which does not rely on any assumptions to the different

nature of the two magnetic fields or their coupling.

2.2.2 Weak-permeability approximation

Just like in the case of an electric dipole, which is often taken to couple to the
(macroscopic) electric field E, we can make a similar approximation for the magnetic
dipole. If we take i to be similar to but not exactly p, the magnetic dipole coupling

can be approximated by
m - Bloc = oMm - Hloc ~Mm - ,uoH (228)

rather than m - B. Of course, this is a very rough and bold approximation as for
the same justification we could as well set B ~ pugH which then would remove
any distinction of which field the dipole couples to. The only reason for favouring
m - poH to m- B is that this term appears with a larger factor of 2/3, so m - puoH 1is
a slightly less bad approximation than m - B. The main point of this approximation
is merely to show the connection to the electric dipole coupling for which local field
effects are often not taken into account but instead, the dipole is taken to couple to
the field E. So in the same framework, one then would have to say that the magnetic
dipole couples to the field H. This again agrees perfectly with the dual symmetry

of electromagnetic fields in which H is indeed the dual correspondence of E.

3Note that the derivation could equivalently be carried out in terms of the magnetic field H.
We have simply chosen to use B so that the magnetization of the medium can be straightforwardly
described by electric currents in the most familiar way.



Chapter 3
Dipole emission in anisotropic media

Optical anisotropy is a very common phenomenon not only in metamaterials but also
in nature, and makes the generalization of macroscopic media descriptions [57,58| to
take into account a direction-dependency of the medium responses to external fields.
The optical properties of anisotropic media have been widely studied for dielectric
materials [45,[58-68], given that many quantum technologies and optics experiments
rely on the use of uniaxial or biaxial crystals [42,43,/46,47]. However, spontaneous
emission of atoms embedded in an anisotropic host medium has not been the focus of
research as in most cases, the anisotropy is rather a side product of the experimental
setup than an intended propertyﬂ In the following we will present a derivation of
the spontaneous emission properties of an electric dipole in a uniaxial host crystal
and propose a numerical model to approximate the emission rate in general biaxial
media. This work has been published in [70|ﬂ Furthermore we generalize the formula
for uniaxial media to magnetodielectrics and show that the emission rate of magnetic

dipoles in such a medium takes the dual form of the electric dipole expression.

'In the appendix of [69], an expression for the spontaneous emission rate in a uniaxial medium
has been derived from a classical approach, however, a quick check of the derivation shows an error
along the calculation which leads to an incorrect final result.

2Material reprinted with permission from A. Messinger, N. Westerberg, and S. M. Barnett, Phys.
Rev. A, vol. 102, p. 013721, 2020. Copyright 2020 by the American Physical Society.

o4
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3.1 Quantization of the electromagnetic field

We can calculate the spontaneous emission rate using Fermi’s golden rule, equation
1.100} so we first need the form of the quantized electric field operators. We thus
start with the wave equation from equations for the electric field,

VxVxE= —,uOD = —uogE. (3.1)

In an anisotropic dielectric, the electric field is no longer divergence-free, so we cannot
replace the double curl by a Laplacian as we did in section [I.4]to find the usual wave
equation. However, we can still introduce a decomposition of the (complexﬁ) electric

field into plane waves,
E(rt) = / Bk Ejelkr—rt) (3.2)

and try to find solutions for E. Equation in the reciprocal space now reads
k x k x E, = —wiuozEy (3.3)
which we can also write as

1
—e ' (K*Er, — k(k - Ei)) = wiEy. (3.4)
o~
This is nothing but an eigenvalue problem with E} and w} being the eigenvectors

and eigenvalues of a matrix M with entries
1
M;; = ™ > ent (Ko — ki) . (3.5)
0

If we choose our coordinate system so that the permittivity tensor is diagonal, its

1

inverse is also diagonal, 5i_j1 =0y = ijé, and we can simplify
ij i

Mi':

e (k*6ij — kik;) . (3.6)

3 Again, the complex conjugate of each frequency component is omitted for simplicity here.
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Note that in this notation the doubly occurring index 7 is not summed over. From

the structure of M we can infer some properties of the solutions already, which will

prove helpful later:

Theorem 1

1.

2.

There are no more than two non-trivial solutions (with eigenvalues # 0).
All solutions A satisfy wg \ = w_g» and Ey || E_g \ and

k- (eEky) =0.

Ey - (eE v) = 0 for different solutions wy y # wi -

(k X Ek7)\) . (k X Ek,)\’) = —wk»\wk,)\/Ekﬂ\ . (gEk:,/\’)-

1
1o

Proof:

1.

2.

This can be seen by explicitly checking that Rank(M) < 2.

Equality of forward and backward frequencies follows from the symmetry of

equation The Eigenvectors are identical apart from an arbitrary pre-factor.

. This can be seen in equation where the left side is clearly orthogonal to k,

and the right side parallel to eEy, y:

1

2

k- (cBkp) = — o
k

k-(kxkxE) =0 (3.7)

This proof is best understood as a variation of the well-known proof of eigen-
vector orthogonality of real symmetric matrices: The matrix M is a product of
the diagonal matrix ¢! and the symmetric matrix N = t (k1 —kk'). For

a fixed k (we ignore the index in the following as it is not relevant) and two
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different polarizations E; and E,, we can write

e 'NE, = wiE, (3.8

& NE, = wicE, (3.9

& E, - (NEy) = wiE, - (¢E») (3.11

where in the last step we made use of the fact that both N and ¢ are symmetric.

For the second solution E,, we also know that NE; = wicE5. Plugging this
in the left side of equation gives

& (wi —w3) By - (eBy) =0 (3.13)

So for two different frequencies wy # wy we must have E; - (¢E;) = 0.

5. We know that —wi \yueErxr = k x k X Ey for solutions Ej and wg,».

Multiplying a second solution Ey » from the left, we get

—w,i)\uoEk’)\/ . (gEk,)\) = Ek,)\/ . (k x k x Ek,)\) (314)

= (k X Ek7)\) . (k X Ek7)\/). (315)

This is nearly what we wanted to show apart from the pre-factor wj, ,. For
A =X, we have wg » = wg ) and we are done. In the case that wg v # wg ),
we have shown that Ey ) - (¢Ek ) = 0, so the whole left side is zero and the

pre-factor does not matter.

We can interpret these observations the following way: The first statement simply
states the fact that the waves can have two different polarizations as the third degree
of freedom is taken away by V - D = 0. We can also go a bit deeper and say that
we indeed only have exactly two choices now, as linear combinations of those two
solutions are not eigenvectors. Physically, this means that even though electromag-

netic waves in linear combinations of the two polarization modes can exist, such a
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state could not be described by one unique frequency or dispersion because the two
polarization modes are affected differently by the medium. This is exactly what the
effect of double-refraction describes.

Observation (2.) is simply describing the reciprocity of the medium. (3.) tells
us that in the medium, it is D = ¢FE and not E that is orthogonal to the wave
vector. This naturally fulfils the first Maxwell equation. Similarly, (4.) means
that for different polarizations, E LDy v, i.e. the electric field polarization of
one mode is orthogonal to the displacement field polarization of the other. This
comes in handy when calculating the energy stored in the electric field which requires
knowledge of the term E - D. Finally, (5.) draws the connection to the magnetic
field, i.e. Hy - By = Eg - Dy . In particular, for different polarizations we have
H, 1 By y, although in this case we could as well write By LBy, y or Hy y LHy, \
because we still treat the permeability p as a scalar and H and B are parallel.

With these solutions, let us write the electric and magnetic field as

E(T’, t) = /d3k2 Z (975N (Ak)\ei(kr_wk’)‘t) + A;::)\e_i(kr_wk’AtU (316)
A
D(T’, t) = /d3k de;@\ (Ak)\ei(kr_wk’)‘t) + A;;Ae_i(kr_wk”\tm (317)
B(rt) = / dSkZ —w—k: X gy (Apre’Fr=emat) 4 A omilkr—wral)) (3.18)
kX

k X € (Ak)\ei(kriwk’kt) + Az)\eii(kriwk”\t)) (319)

H(r /dde—

with eg\ = Eg/|Eg| the normalized eigenvectors and Ay, the field amplitudes,

HoWk A

and calculate the energy stored in the field

:%/E(nt).D(r,t)—|—H(r,t)«B(r,t) v

: . 1
2 48 /ddk Z (ek/\ gepx + -(k x ex) - (k< ek,\/)) (AkAAk)\/e i)t 4 ¢ c)

. 1
+ 473 /d3kz <ek>\ CE€py — Moww/(k X egy) - (k x ek,\/)> <Ak,\A k€ —iw—u)t 4 c.c.)

AN

where we have used the integral representation of the Dirac delta function to elimi-
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nate integration over k' and written w) short for w0~ Using (5.) we see that the
pre-factors in the first line cancel out,

1

Howw

€r) - E€kN + /(k X ek,\) : (k X ek/\/) = €\ E€kN F e - ECLN (320)

and we additionally use (4.) on the second line to obtain

H = (271’)3 / d3k$ Z (S5 £6k>\ (AkAA]*@)\ + A;;)\Ak)\) . (321)
A

Comparing this to the Hamiltonian of a quantum harmonic oscillator, we see that

we must introduce ladder operators ag) and dLA with commutation relations
[,y ] = 00k — K)o (3.22)

and make the replacements

. h .
A;g%\/ Ger (3.23)

2(277)3ek)\ *E€EN

With this we can write the field operators as
Blr.t) = / kS exnina(r, 1) (3.24)
A
Dirt) = / S cenina(r 1) (3.25)
A
B(r,t) :/d%z LA ernlip (T, 1) (3.26)
A

Wi\

. -1 1
H(T’,t) :/d3kzw—— (k X €k>\) ﬂk,,\(r,t) (327)
T Wk Ho
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with

7
Gpn(r,t) = \/ RA (3.28)

2(27‘(’)3616)\ *E€EN

(anreter=onat) 4 gf je-ther=onan ). (3.29)

Note that the biggest difference from the quantized field in an isotropic medium is
the potential dependency of the frequency on the polarization and on the full vector
k instead of its length only. Furthermore, the pre-factor of g (7, t) introduced for
the quantization, and with this inevitably also the vacuum fluctuations of the fields,
have an additional dependency on the alignment of the polarization vectors with

respect to the crystal axes, ey - gega.

3.2 Spontaneous emission of electric dipoles

We now have everything we need to calculate the spontaneous emission rate in such
a medium. We simply plug the field operator into Fermi’s golden rule, and then have

to solve the emerging integral

Z| (fld- E0) "6(wpr — wa)

wex |d - e
8h7r2/ Z k)\’ k)\’ (ka—wA). (330)

Ep) - EC€K

The problem is, in general anisotropic media, even though solutions can be found,
the form of the polarization vectors and frequencies is a complicated function of the
wave vector orientation. Nevertheless, we can make a few general steps towards the
solution already without explicitly knowing the eigenvectors and eigenvalues of M.
Just like in the isotropic case, we need to convert the k-integral into a frequency
integral to apply the delta-distribution. We thus make the substitution & — wgy
with dk = ng adwg/c to rewrite equation into

1 . e\ o Wi |d - exa|?
= — sin Odpdd (—) dwg—————9§ — 31
V=G EA /sm © ) Y=o em (Wir — wa) (3.31)
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and evaluate the delta-distribution,

3 3 |d - 2
Wy . Mg\ ’d ek,\|
V= g % /smGdcpd@( . ) (3.32)

€r) - EE€EN

where the k index now is to be understood as the wavevector corresponding to the
atomic frequency w, with the orientation given by the angles 6 and ¢. All we are
left with now is an integral over the angular degrees of freedom of the wavevector.
These integrals are not straightforward to solve for general anisotropic mediaf] This
is why we will start with the more symmetric case of uniaxial media, in which the

solutions have a more simple form and we can solve the integral analytically.

3.2.1 Uniaxial dielectrics

We define our medium to have a permittivity tensor ¢ = diag(eq, €2, 2). The wave

equation for such a medium has the (un-normalized) solutions

0 —eo(k3 + k3)
€ko = —k3 y €ke = e1k1ks (3-33)
k’g Elklkg

with corresponding angular frequencies

ck 1
o= — = L 3.34
Wk No \/ Ho€2 ( )
L K- EK
Whe = — = k, (3.35)
Te Ho€1€2

where k = k/k is the normalized wave vector. We call n, and n. the ordinary
and extraordinary refractive indices, they describe the effective dispersion that a
wave of a certain electromagnetic field mode feels. The first solution corresponds to
the ordinary wave. Its polarisation vector ey, is orthogonal to the wavevector, and
the frequency w, does not depend on the orientation of k, just like it is the case

in an isotropic medium. The extraordinary wave, eg., exhibits more complicated

4To the best of our knowledge, there is no analytical solution.
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behaviour as it feels the full anisotropy of the medium. In particular, as can be seen
from equation [3.35] the extraordinary refractive index depends on the orientation of
the wave vector with respect to the crystal axes.

Using these solutions, we can now write down an explicit expression for the
spontaneous emission rate of an atomic dipole. We define the dipole moment as d =
(dy,ds cos ¢, dy sin ¢) according to the symmetry of the medium. As there is nothing
distinguishing the y-axis and z-axis, we choose ¢ = 0 for the dipole orientation
without loss of generality, but note that for any other angle the result will be the

same. We furthermore choose spherical coordinates to match the same symmetry,
k = k(cos 6, sin @ cos o, sin 0 sin )T (3.36)

The expression in equation is now most easily solved by considering the two

polarization modes separately, and summing them up at the end.

Contributions from ordinary waves: The first integral to solve is

3

w3 . Mo\ ? |d - x|’
- bdgda (- 3.37
7 8h? /Sm y ( c > €ko * £€ko ( )

which describes the rate of transition into an ordinary wave excitation. The com-
ponent d; of the dipole does not contribute to this rate, as ordinary waves have
polarisations in the plane with permittivity € only. The emission rate due to ordi-

nary waves thus simplifies to

d3w? yor2 im0 sin 0
Yo = 8h7r2/ dgp/ df (poe2) - (3.38)

which can be easily solved,

2 3 3/2 2,3
_ dswi g /2 dswy

°  4xh 2 _47rheoc3no (3.39)

The result has a dependency on the ordinary refractive index n, = \/ea/go only.
This is in agreement with our expectations of the ordinary waves behaving like in

an isotropic medium of permittivity 5. Note however the factor of % as compared



CHAPTER 3. DIPOLE EMISSION IN ANISOTROPIC MEDIA 63

to the total emission rate of such an isotropic medium. We can understand this in
the isotropic limit as the ordinary waves contributing to three quarters of the total

emission rate for a dipole in the y-z plane.

Contributions from extraordinary waves: Extraordinary waves can have field
components in any direction, so we cannot omit any parts of d for this calculation and
have to include the whole term |d - ekA|2 However, products of two different spatial
components of the polarization vector, eégege) can be omitted due to its structure:
The products are always anti-symmetric in k; and k; and therefore will cancel in

symmetric integration domains. For example,

e oc (K3 + k3 ks (3.40)
exdery o kikakiks = ki kaks. (3.41)

2 2
We therefore replace |d - eke|2 by the only non-vanishing terms <dlege)) + <d26§€26)) )
This yields

Y / " / dp —(Hoz122)" 2 sinf
2h 27r £162(g95in% 0 + ¢ cos? 0)5/2

x [d3e} cos® § cos® p + die; sin® ] (3.42)
WA 3/2 d%€1+4d%82 (3 43)
~3an!" 4,/75 ‘ '

This cannot be expressed as a simple function of the extraordinary refractive index

e (3.44)

Ne = 551/2 (cos®@/es + sin® 0 /z;)
anymore, which is in stark contrast with both the contribution from the ordinary
wave, and the emission rate in isotropic media. The difference is in the fact that
there are now two dipole orientations which both contribute with different factors to
the rate as well as that the extraordinary refractive index itself is a function of the

emission direction.
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Figure 3.1: Angular distribution f(6) of the spontaneous emission rate (in units of the vacuum
emission rate) to a fixed polar angle ¢, for various configurations ¢, . € {1, 7} of a uniaxial medium
with fixed e, (left) and fixed &, (right). A change in &, only changes the sides of the distribution,
leaving the emission to an angle §# = 7/2 constant, while a change in ¢, impacts on the relative
distribution, leaving the total rate (integrated over all angles) constant.

Total emission rate: The total emission rate can now be calculated from the sum

of extraordinary and ordinary rates,

Y=Y T e
B w3 (51 + 3¢y

3nh \ 4z

We note that for a dipole oriented parallel to the ;-axis, the emission rate is that of

d3 + \/S_Qd%) : (3.45)

an isotropic medium with permittivity 5. This is surprising as one intuitively might
expect that the dipole will couple most strongly to the electric field components
which are parallel to the dipole axis, i.e. in this case to the z-component EY). This
field component feels only the permittivity ;, so we would expect a very strong
dependency of the emission rate to £; and not es.

To resolve this paradox, we must take into account variations of the angular
emission distribution. The typical donut-shaped emission pattern only occurs in an
isotropic medium, where the angular dependency in the integrand is simply the cos? §
term describing the overlap between the dipole and the emission direction. In our
case we have additional dependencies from the anisotropy. Consider the emission
per unit angle by a dipole d = (d;,0,0). Extraordinary waves are the only modes

that contribute to the emission for such a dipole. The emission rate for this case is
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the d; component of equation [3.42

2w

6152 sin® 02
dgp 0 2

(e28in? 0 + &1 cos? 6)5/2

sin ¢ (3.46)

From this we extract the emission rate per solid angle d)2 = dpdfsin 0 as

m widi/ 50[

0= sene |2l 0}

€1
;;g; L [£(0)/<E) (3.47)

so that the total emission rate is given by

3

/YH = _’YVac/O de f(e) sin 6. (348)

4

If we look at the case § = 7/2 we see that the emission towards directions orthogonal
to the dipole indeed solely depends on £, just like we expected. The dependency of
the total rate on €, must therefore come from the other possible emission directions,
which we deemed less dominant. Figure shows the angular dependency of the
dimensionless per-angle emission rate f(0) = 58 n>(6) sin? 6.

The shape of the angular distribution arises from an interplay between the pre-
ferred emission angle orthogonal to the dipole axis (that is the |dH -ekC}Q x cos?f
term), and the preferred direction of wave propagation, which is determined by the
effective refractive index n.. Hence, for a large enough ratio £5/¢1, the emission will
peak towards two azimuthal angles 6,,., = 7/2 £ Af. The shift of the emission peak
can be calculated from maximizing the function f(f) which leads to the condition

df

a7 _ 4
5 =0 (3.49)

& sinfcosd (2(eosin” 0 + &1 cos® §) — 5(ey — £1) sin®§) = 0. (3.50)

We see that according to the cos# term, in the centre of the distribution, orthogonal
to the dipole axis there is always an extremum, but we do not know yet if it is a
minimum or a maximum. As we know the emission towards the dipole axis is always

zero, the nature of the extremum is determined by the existence of further extrema
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in the interval [0, 7]. We thus set
(2(e28in” @ + £ cos® ) — 5(e2 — 1) sin*6) =0 (3.51)
to find additional minima, which simplifies to
2¢1 + 3sin® f(e; — e3) = 0. (3.52)

This has solutions

2
9 = arcsin m (353)

€1

whenever i—f > g . Hence, whenever these additional solutions exist, the extremum
at the centre of the distribution is a minimum while these additional two angles are

the new maxima. The shift of these emission peaks

2
Af = arccos 3E -1 (3.54)

€1

further increases with the larger ratios e5/e1, while the emission towards an angle
0 = 7/2 is fixed only by £;. In fact, the relative angular distribution with respect to
the total emission f(6)/ [[ f(0)sin6d6] indeed only depends on the ratio r = &5 /e;.
It is this interplay of angular distributions which in the end leads to a cancelling of

the dependencies on £, in the total rate.

Random dipole orientation The lack of an appearance of ; in the emission
of a dipole d = (d;,0,0) also has consequences for another scenario. If we average
equation for random dipole alignments, one might expect €; to appear at least
with a factor of % However, the averaged spontaneous emission rate of unordered

emitters is

v _ i (1 e 42
e 3mh 6.c2 6

®One might argue that the spherical nature of the coordinates play a role as well and we should
indeed consider the function f(0) = f(6)sin@ (i.e. the total emission towards a certain azimuthal
angle instead of fixing a polar angle ¢ as well). This does not lead to any qualitative differences,

and merely changes the condition for two maxima to Z—f > %

\/5) . (3.55)
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We see that indeed €7 only appears in one of six parts and the total rate is by no
means an average of the permittivities in the three directions. This should be kept

in mind as it can lead to unexpectedly strong impacts of €5 in uniaxial media.

3.2.2 Biaxial dielectrics

The wave equation of a medium with three different permittivity values,
¢ = diag(ey, &y, €,) is far more complicated than a uniaxial medium as there are no
more symmetries present. The eigenvectors and eigenvalues can still be found, from

solving an eigenvalue equation quadratic in w? |60] we can write them as

ki/(ex — ex)

€4+ — kg/(éy — Ek,) (356)
k3/ (e, — k)

o = E Ly (3.57)

Nt v/ HOE R+

with an effective permittivity
2exEyEy,

tk:i:Sk

Eps = (3.58)

for t, = k-e(Tr(e)I—¢)k, sk = \/ti — deyeye, k- ek and K = k/k. This specific form
of writing the eigenvectors can lead to singularities for certain configurations of ;.
This should not concern us as it is only a feature of the unnormalized eigenvectors
as we express them here and we should simply note that one can always find an
alternative expression with finite entries (for example by multiplying the whole vector
by (gi — €k)).

The integral arising from Fermi’s golden rule with these solutions appears to be
beyond analytic solvability. However, as the dispersion is still linear in k£ and the
polarization vectors (apart from normalization) also do not depend on the length
of k but only its directionality, we can perform the integration over k in a similar

manner to equation to arrive at

|d - x|’ 32 .
0dod 3.59
Y= 2h 27r /ZekoA ceior (f0gk)™ " sin ¥ ( )
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where we have used the dispersion % = /e and applied the delta-distribution
over the frequency. The remaining integral can only be solved numerically. In the
following we propose a model to approximate the solution of this integral with an
analytic expression based on the results from uniaxial media:

We choose a dipole orientated along the z-axis to start with, and explore the
limits where ¢, takes the same value as either of the other two permittivities. For
instance, we know that if ¢, = ¢,, the dipole points along the extraordinary axis,
so we can identify €, = ¢, with €2 and ¢, with €3 of a uniaxial medium, and from

equation the emission rate follows as

dQWANS/Q
P = S Ve (3.60)

Likewise, if €, = €, the dipole points along the ordinary axis and we identify ¢, = ¢,

with 5 and ¢, with £; so that in that case the rate must be

® _ dzwAuO (ex + 3€Z)'

3rh 4,/e,

Now we are interested in the behaviour of the emission rate with ¢, in between and

gl (3.61)

beyond these two known points. We do this by studying the numerical solutions of
equation which are calculated using Wolfram Mathematica.

If we fix €, and ¢,, we find nearly linear behaviour with ¢, (see Fig. crosses).
This suggests that we try a linear interpolation in ¢, between the two known values

from the uniaxial cases,

() _ ~(a)
a v g
V(e =7+ ey — ) ——— (3.62)
A2 i Ey — Ex €y — Ex
_ Twake (e , 3.63
3rh c 4./e, * VEx T /€2 ( )

which is drawn in Fig. blue line. The result is already close to the numerical
solution but not perfect, especially as the expression W puts €, in a special role
even though our choice of fixing ¢, and ¢, was arbitrary.

As there is nothing distinguishing ¢, and ¢, from each other (e, is special because

of the dipole alignment we chose), we can derive an equivalent formula to be linear
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Figure 3.2: Dependency of the spontaneous emission rate in units of the vacuum emission rate on
the relative permittivity e,/eo with fixed values of ¢, = 1.5¢9 and e, = 5e( for a dipole aligned
with the e,-axis. Analytical models obtained from linear interpolation with e, linear interpolation
with €, and an average of both (solid lines) are compared to numerical results (crosses).

in €, (green line in Fig.

3/2
dQWAMo/

v(ex) = 5= (\/_+ Z\/g_zx—él\;a) (3.64)

and take the mean of both to make the model fully symmetric,

Y= V(Ex) ;V(Sy) (3.65)
d2WAMg/2

6mh

Ex Ex — Ey
{\/§+\/_+\/_+\/_ \/_-I—\/_} (3.66)
As can be seen in Fig. (orange curve), this now perfectly fits the numerical data.
To check the range in which this model is valid, various configurations for ¢, and
e, are shown in Figure [3.3] We note that the permittivity parallel to the dipole
orientation has the weakest impact on the emission rate, as variations in €, barely
change the graph unless there is a large difference between ¢, and ¢,, for example
the blue curve on the left which has large €, but small €, and similarly the right end
of the green curve.

To simplify the expression a bit we can also introduce new variables, n, =
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25

€/€

Figure 3.3: Comparison of the averaged model (solid lines) with numerical results (crosses) for
various different configurations of ¢, /g9 = 6, 3, 1 (blue, red, green group of graphs) and ,/¢¢ = 4,
2, 1.2 (light, medium, dark graph from each group) for a dipole aligned with e,. The corresponding
values for €, and ¢, are also indicated by arrows where they match the value of ¢, for each curve.

#;O(\/@%— VEx), N— = ﬁ%(\/@— VEx) and nj =, /<= to write Eq. (3.65)) as

(ny +my)* +3n2
= vac- 3.67
Y n4 <n+ n TLH>2 — n% Y ( )

This again shows that approximations such as v = naygYvac With ngy, = #5(\/5 +
VEy++/€z) as they are often done are not always advisable as the parallel permittivity
¢, indeed has a very different role compared to the other two. In the limit of small n_
for example the easiest approximation would be v = n, V.., i.e. an average without

€.

Arbitrary dipole alignment So far we have only considered a dipole which points
exactly along one of the principal axes of the medium. In order to get a general
expression we first need to deal with the term |d - egy|*, which may include cross-
terms. If we take a closer look at the polarization vectors in Eq. , we see
that, again, the product of two different components ¢ and j of an eigenvector is
antisymmetric in both k; and k;: er; does not have any asymmetric parts, egs o< kiko
and egz o< k1ks for both modes. Therefore, all cross-terms cancel out over symmetric

integration domains and we can simply write the emission rate for arbitrary dipole
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alignment as the sum of the three dipole component contributions,

1
Y = 5 (EVew + ENey + ENes) (3.68)

with 7., being the emission rate for the same dipole if it was aligned to the principal

axis of &;.

3.2.3 Local Field effects

So far we derived a purely macroscopic theory. However, as we have seen in section
[1.7] microscopic elements like dipoles indeed feel the locally acting microscopic field
rather than the averaged macroscopic field. In isotropic media for example, the local

field correction to the spontaneous emission rate is given by
Noc = LQ/Y (369)

where L is the local field factor defined by E,,. = LE, the form of which depends
on the model used.

In anisotropic media, we must assume that the correction will also depend on the
direction of the electric field. Independently of the local field model, a general ansatz

would be a correction tensor of the form
Ey. = éE (370)

We will not focus on the model to use and on the exact form of the correction here,
as other works have covered this topic already, see for example [16,20-22,[71] to name
a few.

We will instead show how any local field correction can be incorporated into the
expressions for the spontaneous emission rate, as long as the effects are linear in the
electric field:

For a tensor-valued correction, the |d - E]Q term in the integral needs to be re-
placed by |d - LE|* = | d;L;;E;|*. Instead of solving the integral again for this
new corrected field, we let L act on the dipole vector to its left, |(d' L) E|* = ]ch -E|?

and plug the adjusted dipole vector d= éTd into the previously obtained solutions.
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For a local field correction represented by a diagonal matrix L;; = d;;L; which does
not depend on the wave vector, we obtain the new expressions for the corrected

spontaneous emission rate

ué‘iuﬁ” €1+3€2 .5 2 12
o= (g L2 + /e [2d2 (3.71)
in uniaxial, and
1
Yioe = = (LYo, + 2 L3y)e, + d2L3)e,) (3.72)

in biaxial media. As in this case the correction is a scalar factor for every dipole
component, we don’t expect any qualitative difference in the efficiency or accuracy
of our model.

To conclude, we have developed a model to approximate the emission rate of an
electric dipole in a biaxial dielectric medium with a closed analytic expression which
holds for a wide range of medium configurations and is easily adjustable according to
local field models. The advantage of our analytic form is that it is not only a better
approximation than the average refractive index, but also holds the potential for
qualitative studies of the dependency of the emission rate on each of the permittivities
and the interplay between them. We expect that this will prove useful in designing

novel media or choosing tailored materials for specific applications.

3.3 Magnetic generalization

We now want to include magnetic effects into our treatment of anisotropic media.
First we extend the general theory to anisotropic magnetodielectrics, that is, mate-
rials for which both the permeability and the permittivity are described by a matrix
quantity which is not the identity. Later we will calculate an expression for the emis-
sion rate of magnetic dipoles in a special uniaxial magnetodielectric medium and

compare it to the electric dipole.

3.3.1 Wayves in general anisotropic magnetodielectrics

The wave equation to solve for the electric field now reads
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kx p'(k x Ey) = —wpeEy, (3.73)

where we have used again the expansion of the electric field into plane waves,
E(r,t) = / Bk Epe'*r—ert), (3.74)

Despite it being more complicated we can still formulate the wave equation as an

eigenvalue problem of a new matrix M which represents the operation

M- =g (k x (K x -)) . (3.75)

For a medium in which £ and u are diagonal in the same basis (this is not necessarily

always the case, but a reasonable assumption), we can write J/ in that basis as

Mi; = . ((k : ﬁk) pidij — kikjﬂiﬂj) (3.76)
|1les =

with |u| = det u = pipops and p;(e;) being the diagonal entries fu(ey). Even if
the electric and magnetic principal axes are not the same, M still has well-defined
entries which can be found by inverting the permeability or permittivity matrix.
The solutions of this problem have similar properties as for the purely dielectric
medium. In section we have already shown that (1.) there are no more than two
non-trivial solutions (with eigenvalues # 0), (2.) the problem is entirely symmetric
between forward and backward propagation of waves, wg x = w_gx, Eg||E k., and
(3.) all eigenvectors, including the trivial solution k, are mutually orthogonal with
respect to the metric given by an inner product with g, i.e. Ey - (eEg ) = 0 for
Wk 7 Wk These are still valid in the magnetodielectric case, the proofs follow

exactly the same line. Furthermore we now add the modified statement (4.)

(kX Egy)-p (kX Egy) = —wiswenEry - (Eg), (3.77)

which is the correct form to represent Hy, \-By, v = Ej \- Dy, v in a magnetodielectric

medium. The proof of this can be deduced from the dielectric case using Ex \ - (k X
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pH(kx Egy)) = (kx Egy)-pu ' (kx Ey ). With this, the electric field quantization

introduced in section 3.1 for dlelectrlc media remains valid, and the quantized version
of the magnetic fields follows straightforwardly from Maxwell’s equations. We thus

write the field operators in the form

E(r.t) = / d*k " epxin (1, 1) (3.78)
D(r,t) = / P’k dek,\ﬁk,,\(r,t) (3.79)
B(r.t) - / d?’k:Z—k: X exritpr(rs1) (3.80)

Wi\

H /dgk Z —LL ki X ek,\) Uk )\(’l" t) (381)

Wee =

with egy = Ey\/|Ek)| being the normalized eigenvectors of the adjusted matrix M

and

167T36k)\ *E€EN

Gen(r,t) = \/ s (3.82)
(ak,\e ilkr—wrat) 4 gf e~ (k"‘—wmt)> (3.83)

staying the same, so that the field Hamiltonian takes the diagonal form
H= %/d%« B(r.t) D (r.1) + H(r.t)- B(r.1) (3.84)

1
A

again. Note that the dependency of the pre-factor of 4\ on the projection of £ onto
the electric field direction is an arbitrary choice, and could equivalently be written

as the projection of y to the direction of the magnetic field H, keeping in mind that
Hy - Bypy=FEy)-Dy).
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3.3.2 Solutions in uniaxial magnetodielectrics

We now consider a uniaxial medium in which the magnetic and electric anisotropy
axes are aligned, so that we can write ¢ = diag(ey, €2,62) and p = diag(p1, pi2, p2).
Interestingly, the electric polarization vectors are the same as in the dielectric, the

magnetic anisotropy only affects the orientation of the magnetic field in this case,

0 —eo(k3 + K3)
€, TE X —k3 y €k TM X erkiks . (3~86)
]{?2 51]61]63

To compare, the magnetic field polarization vectors hy \ = ' (k X ey ) (apart from

constant prefactors) can be written as

—pio (k3 4 k3) 0
hi,TE p1kiko , v o —ks |- (3.87)
[le’lkfg ]{;2

The corresponding frequencies are

K- UK
kj ==
Wk, TE = = - \/ k, (3.88)
nNTE Eolb1 2
L K- ER
WEe. T™M — ¢ == k (389)
’ nTM [2E1E2

with k = k/k. We can see that, in contrast to uniaxial dielectrics, we do not

have an ordinary and an extraordinary wave anymore, as the frequency now always
depends on the propagation direction. Instead, we can identify a transverse electric
(TE) mode, for which only the electric field is orthogonal to the wavevector, and a
transverse magnetic (TM) mode, in which only the magnetic field is. Similarly, for
the TE mode, the dispersion relation depends only on the alignment of k with respect
to p, while the TM mode has the equivalent dependency on g. In the dielectric limit
the TE mode reduces to an ordinary wave just like for a purely magnetic material the
TM mode would behave like an ordinary wave. We note that this is fully symmetric

with respect to the electromagnetic duality.
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3.3.3 Electric dipole radiation

We can now calculate the spontaneous emission rate of an electric dipole

d = (di,ds,0) like in the dielectric case by inserting these solutions into

3 3 |d- 2
. /sinedgzdeZ(Q) 1d-em (3.90)
A

8hm? C €L -gem'

Solving the remaining integrals yields a contribution from TM waves

CU:Z 3/2 d%ﬁl + 4d%€2

= 3.91
™ 37Thlu2 4 /—82 ( )
and from TE waves
Gws e (3.92)
= 5 ) )
YTE 1h 2241

For the TM waves the result is the same as for a scalar permeability of us, as there
are only magnetic fields in the (y,z) plane involved. Hence, the emission rate of a

dipole aligned with the anisotropy axis still only depends on the medium properties

in the plane orthogonal to that axis, ) o ug/%;/?. We can write the total emission
rate as 5 5 )
Wa M2 [ o 2
=—.,/—|d d5(~ - 3.93
7= 30 o < 18202 + 2(4M1€2 + 4M251)) (3.93)

from which we deduce that for random dipole alignment, the average emission rate

1 1 1
Yavg X 4/ /;—; (5@#2 + 5#152 + 6#251)) (3.94)

has terms depending on p; with a relative factor of 1/2 while €1 occurs only with a
weight of 1/6.

3.3.4 Magnetic dipole radiation

We now calculate the spontaneous emission rate for a magnetic dipole m = (m;y, ms, 0)
in the anisotropic magnetodielectric, using Fermi’s golden rule, assuming an interac-
tion energy porin - H. We note that indeed this might not be the exact form of the
coupling of the dipole to the field, but in analogy to the electric coupling, this would

be the basis for calculations taking local field effects into account. The spontaneous
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emission rate thus can be calculated from

27 .
v = ﬁz | (f] porie - H |0) [26(wrr — wa)
7

2
’m ,u (ek)\ X k)‘

= 4] — 3.95
8h7’[‘2/ Z WEAEEN " E€EA <Wk>\ CUA) ( )

2

m - pHeps X K)

sin Odpdd. (3.96)

3,,2 5
_ Wik (Q)
8hm? /; c

Note that for the sake of symmetry we can also write this entirely in terms of the

€k EE€EN

magnetic polarization vectors,

_ wAHg ”A 3 |m- h|” hia|”
fdpdo .
=S /Z o) T b th/\ sin fd¢p (3.97)

We see that this is in complete analogy to the electric dipole emission rate, and by

inserting the solutions from section [3.3.2] we consequently obtain a total emission

w 3 1
V= 3/71:7;0 \ o <m1/~0252 + m2(4€1M2 + sz)) : (3.98)

In the case of an isotropic medium, this reduces to the known form of the magnetic

rate of

dipole emission rate
3,22
_ Wapem
Viso = 37Th

which corresponds to a Purcell enhancement of ne. For the case of a weakly magnetic

113 (3.99)

material, we can also take the approximation of y; = pp which would lead to an

emission rate
w3 2

3 1
Tdiel = 5 % V€2l (m%& + mg(zel + Zeg)) (3.100)

of a magnetic dipole embedded in a dielectric host.
In comparison of the emission rates of magnetic and electric dipoles, these results
confirm the duality of the fields E and H, with replacements of ¢ to u, and of d

to ppm being made. Just like for the electric dipole, the results vary significantly
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from the rate obtained when considering an isotropic medium of averaged refractive

index. This is true even for magnetic dipoles in purely dielectric media.



Chapter 4

Dipole emission in absorbing

magnetodielectrics

In this chapter, we explore the emission properties of electric and magnetic dipoles in
absorbing media, i.e. we derive the spontaneous emission rate for materials in which
both the permittivity ¢ and the permeability ;1 may take non-vanishing complex
values. As there are losses to other degrees of freedom in the system, we cannot
simply use a quantized field description as in chapter [3] such operators would not
be valid quantum operators anymore. This becomes very clear when considering the
Hamiltonian of the electromagnetic field in such a situation. The energy stored in
the field alone is not conserved, and such a Hamiltonian would not be Hermitian
and would lead to a non-unitary time evolution. In order to fully quantize the field
variables in a lossy medium one must also include the medium excitations to restore
overall energy conservation [72|. One could in principle use these new operators
for the coupled system and calculate the rate of spontaneous emission to such joint
excitations. However, we instead choose the more straightforward approach of using
the Green’s function method introduced in section to obtain the emission rate
from the classically derived Green’s function of the system. With this method, the
emission properties of electric dipoles in absorbing dielectrics have been successfully

derived in previous works [39.[73L|74].

79
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4.1 Electric Dipoles

While the Green’s function in dielectric media has received a lot of attention in
research, the more general case of magnetodielectric media has been less investigated.
Especially the case of absorbing materials has so far not been covered in sufficient
detail. In the following we give the most general expression for the Green’s function of
media with arbitrary, complex values of both the permittivity € and the permeability
L.

We could in principle derive the emission rate of electric dipoles from the Greens
function of the vector potential A as sketched in section [1.6.3] However, as we
later want to make a connection to the magnetic field and its Green’s function, it is
preferable to use the Green’s function of the electric field E here which, as is shown
in appendix [A] differs from the vector potential Green’s function only by a factor of
—w?.

We first split the displacement field into two components,
D=cFE+ Py (4.1)

where Py is the noise polarization which includes any part of the polarization field
which is not proportional to E. It has been shown [72] that in a quantum theory
of absorbing media the displacement field D can no longer be exactly proportional
to E while satisfying the fluctuation-dissipation theorem, and introducing the noise
polarization is a way of including these additional fluctuations.

In our case the noise polarization simply takes the role of the dipole of interest,

i.e. the source of the electric field. The wave equation in frequency space then reads
VxVxE=—uw?E + uw’Py. (4.2)

For the transverse part of the electric field we rewrite this to the inhomogeneous

differential equation
(V? +w’ue) E" = uiw’PY,. (4.3)

The longitudinal part has been studied in detail for dielectrics for example in [73]. As
it has no dependency on p even in magnetodielectric media, no new results will arise

by a more general treatment and therefore we restrict this work to the transverse
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fields.
We treat the noise polarization Py as the source of the electric field E, so want

the Green’s function to be the solution of
(V2 + w’pue) Gyj(w, . r') = pw’a)(r — 7') (4.4)

where (5;‘9(7") is the transverse delta-function which ensures we pick only the transverse

component of Py. With this Green’s function, the averaged electric field arising from

equation |1.133[ will now solve our wave equation. Note that replacing ¢ <E,-(w, r)>

by E; is valid here since the classical Maxwell’s equations in media already describe
macroscopic averaged field variables, and the mean value without any sources is
always zero [10].

We can solve equation in Fourier space by using the integral representation

of the transverse delta function,

1 kil \
55(7‘) = (27‘(’)3 /dgk ((51] — k‘2]) ek s (45)

so that

kik;
(—k* 4+ w?ue) Gijlw, k) = pw” (51-» - k—;) : (4.6)
One should mention that due to the symmetry of the problem, the Green’s function
does not depend on the individual positions but only on the vector translating be-
tween them, G,;(w,r,r") = G;j(w,r — 7). We thus calculate the Green’s function of

the relative coordinate R = r — 7’ from the Fourier transform

1

Gij (w, R) = (271‘)3

/ PkGij(w, k)e* (4.7)

with -
L
2 52] k2

Gij(w, k) = —pw e

(4.8)

Solving the resulting integral is a rather tricky task. We closely follow the procedure
used in [73|] for dielectrics for the following derivation. We express equation in
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terms of a spatial derivative of the exponential function in the Fourier transform,

— (51] — k2j> € kR = ﬁ (Glaj — 5Z-jV2) € kR (49)

and solve the remaining integral after pulling out the derivatives,

[iw? , , kR
Gij((«d, R) = W (318] — (SUV ) d kk2 <w2,u€ — /{;2> (410)
1 1 1\/E W
" Ire (8:0; — 6:;;V?) G (et — 1) (4.11)
1 (2. 3 1 o (0ij  RiR;
=-——13 i+ s =i 4.12
g (32(\/@@ 0ij + 5 EHW (R + 7 + O(R) (4.12)

where in the last step we are omitting higher-order terms in R as we are only inter-
ested in the solution at R = 0.

For real values of € and u, the calculation of the spontaneous emission rate of
electric dipoles from equation is straightforward as we only need to take into

account the first, explicitly imaginary term,

1 3
ImGyj(w, R=0) = o (VEpw)?oij, (4.13)
and we get]
2d,;d;
Y= — hJImGij(WA,RZO)
d? 3
- 37Th6< VEHwa)
def'Zl n3
= —_ 4.14
3rhcdeg &, ( )

Comparing with equation we see that this differs from the free-space emission
rate by the constant factor v = g%ac = Nl Voae Which is in agreement with literature
[40,41] and the rate we derived in section using Fermi’s golden rule.

If we want to allow values for € or 1 with non-vanishing imaginary parts, greater

'Tn comparison to section we note the missing —w? as this is the Green’s function for the
electric field instead of the vector potential, and <E2EJ> = —w? <A1AJ> which is compensated by
the different form of the Green’s function.
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care needs to be taken. In particular, complex values of p will give rise to a divergency
of the imaginary part of the Green’s function at R = 0 due to the second term in
equation [£.12] This is a result of the macroscopic model being used in combination
with a microscopic point dipole, rather than an actual physical phenomenon. A
similar problem appears in the calculation of longitudinal emission rates already
for imaginary values of ¢ [39,/73]. One way of avoiding the singularities and at
least obtaining a qualitative expression is to introduce a high-frequency cutoff, or
equivalently, averaging the Green’s function over a small area around R = 0. We do

this by a Gaussian smoothing of the form

2\? _or 2y
0) :/dV/dV' (—) - 1ley 2)Gij(w,r,'r’)

 kiky
oﬂ,us 1{72

where we have used the the k-space representation of the Green’s function, equation
4.8 This way, we can perform the volume integration already without even having
to deal with the exact form of G;;(w, k),

iy / . ’ 3 2,32
/ av / dV'e B gik(r—r') %e_kh . (4.15)

We are now left with

~ pw? B2 Oy — S
Gij(w,O) = — /dgke_”]—k

(2m)3 w2pe — k2
K
_ ey /d%e’“if—(l ~ )
(2m)3 w?pe — k?
L [P
32 w?pe — k?

where in the second step we have used the fact that the integral is anti-symmetric

for k; and k; if ¢ # j. We want the width of the Gaussian to be small compared to
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the wavelength, so we solve the last integral in the limit euw?p? < 1 which gives?]

2
~ pw o (11
Gl-j(w,O) ~ —7J (; + 5 —5/10.))

2 .

pwdi; (1 4
=—— |- = . 4.16
(5 v (4.16)

The sign in the second line depends on the arguments of ¢ and pu, for positive imagi-
nary parts of the refractive index, the square root is positive as well. The spontaneous
emission rate follows as

_ PPwip

= et (Retoue) + 25 ) 1

The first term of this result is equal to the already known emission rate in lossless
media, the second term can be understood as an additional correction due to the
medium absorption. It should be noted that there is still an undetermined factor p
in this which describes the width of the Gaussian and which, if set to zero, leads to
a divergence again.

However, this can still be used as a qualitative result from which we can deduce
the scaling of the correction term with ¢, and pu,. As a first point, we see that
the correction only depends on magnetic losses and one might think that electric
losses therefore have no effect on the emission rate. However, this is only true if
Imp, = 0 for which the calculation for the lossless medium gives the correct result
again. For complex p,., the effect of electric losses comes into play in the first term
as the imaginary parts of €, and p, in combination can still lead to a change of the

real part of the product nu,,
% % . 3 i§¢ L ily
Re (u,«z;“r) = Re (!urhe 2%|e,|2e%2 E)

3, 1 3 1
- |Mr‘2‘€r|2 COS (§¢,u + §¢s) .

2For the very interested reader:
2 2
J dke™ R o VE (%4;# + \/—epmw2emer P /A 4 9 /e w? DawsonF ( Euw2P2/47r))

w2 pe—k2 - 2
with DawsonF being the Dawson integral defined by DawsonF(x) = exp(fxz) fom exp (yZ)dy.
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4.2 Magnetic Dipoles

In order to calculate the emission rate of magnetic dipoles we need to find the Green’s
function of the magnetic field. Like before, we assume a coupling of the magnetic
dipole to the field H to calculate the emission rate to have the best possible approx-
imation and allow for later treatment of local field models equivalent to the electric
case.
In a similar manner to the noise polarization discussed earlier, we separate the
noise magnetization ag’
B =pH + poMy (4.18)

and can now write the wave equation as
V xVxH=—psw’H + wcpoM y. (4.19)
For the transverse part of the magnetic field we can rewrite this aﬁ
(V? + w?pe) H = ew’ngMy, (4.20)

in perfect analogy to the electric field. We can therefore see that the spontaneous
emission rate in absorbing media is indeed invariant under dual transformations and
the magnetic dipole emission rate is simply obtained from the electric case by making
the appropriate replacements, or simply identifying the corresponding elements of
each wave equation with each other. We thereby follow the Green’s function of the
magnetic field H,

1 0ij RiR;

Do L (2 mia L (%
Gy (w,R) = e (3@(@w) 0ij + e <R + ) +O(R)> (4.21)

3There is some discussion about whether to include the noise magnetization in B or H, which
determines the prefactor of M . However, this is not expected to make any difference in the final
result as a different factor should be compensated by the Green’s function, so we will keep to the
given form here.

4Just like for the electric field, there can be longitudinal magnetic fields as well in specific
circumstances. We will not focus on that case in this work, but a quick comparison shows that the
longitudinal emission rate can be deduced from the electric case with the same dual symmetry.
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yielding the spontaneous emission rate of a magnetic dipole

2u2mym;
N = _—“0’;; Ditm G (ws, R =0)
m2w3 o c
~ TWARO (i) +2-5 Tm(e,) ) .
S hed ( e(ne,) + Y, m(e ))

Note that the pre-factor po has been kept together with the magnetization/dipole
moment, i.e. the whole expression poM % makes the source term, and in the final
expression for the emission rate we need pdm;m; in the place of the dipole moment
again. Thereby no additional changes are necessary in the Green’s function itself,
and we have somewhat covered up the historical different definition of the magnetic
dipole moment.

Just like the electric dipole emission can be equivalently derived from the vector
potential A, in which case the electric current is understood as the source of the
field, we can also derive the magnetic emission rate from the same vector potential or
alternatively, one can even directly derive the Green’s function for the magnetic field
(B) from the Green’s function of the vector potential. Using the Green’s function
of the B-field for the derivation leads to the same result in lossless media, but
runs into great trouble when losses come into play, as in that case extra care needs
to be taken when choosing the field variables and sources so they still satisfy the
fluctuation-dissipation relation. The main difference in the result is the phase of the
permeability x [} A derivation of the magnetic Green’s function from the vector
potential together with further discussion of the arising problems can be found in
Appendix [A]

4.3 Local field effects

In section we claim that the dipoles in fact couple to the microscopic, local fields
instead of the macroscopic, averaged electric or magnetic fields, so we have to adjust
our results to a local field theory for absorbing media as well.

It has been shown in [23] that in absorbing media it is no longer sufficient to

5This is work in progress.
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simply include local field effects as

5T+22

3

NNoc = (422)

to the spontaneous emission rate as would follow from a classical picture. The reason
is that this formalism does not take into account the fluctuations of the field operators
that are due to the medium absorptions. Instead, one needs to explicitly include the

noise polarization or magnetization as part of the total polarization or magnetization,
P=y.E+Py (4.23)

M =y, H+ My, (4.24)

and start with the local field expression in its original form,

E.=E+-—. (4.25)

Separating the noise term then yields

. . 1 . 1151\7
Ey,=E+ (¢, —1NE+-"X
! taler - DE+
2. 1P
_& i 1N
3 380

(4.26)

and equivalently

. 2. 1.
Hm:“;’H+§MN (4.27)

for the magnetic field. This means, if we replace the field operators by their local field

equivalent, the spontaneous emission rate for an electric dipolelﬂ now is composed of

6We restrict calculations to the electric field from here, noting that the local magnetic field is
indeed dual to the electric field and thus all results will be.
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the commutators

(r,w)El (1,

<0 loc j

_ (w)+25(3)+2< ‘E rw)Ej(
+92< ‘PNer)PfV](r W)

+M< ‘E rw)PJE](r W)

loc,i

)| 0)

0> (4.28)
0)
0).

The calculation of these additional commutators for magnetodielectrics is the same

90

+M< ‘PNl r o.;)EJr (r',w')

9eo

as in Ref. [23] which was conducted for pure dielectric materials and leads to

e 4217 2did; -
Noc = 3 9h€] RG(ET)(SU(S(p)
4d;d, O +2 (4.29)
Er

where the bars indicate the (unphysical) limit of p — 0. Just like before, we run into
singularities at this point and therefore a small volume average has to be taken.

Even though the form of the equation is the same as in Ref. [23], the result
is not the same for magnetodielectrics. The difference to the dielectric lies in the
different Green’s function of this problem[] which we shall study in the following.
From equation we can readily obtain the real part of the last term,

Er+2 5+ er+2 (1 i MOM’/‘WQ(Sij
Re G (0 = Re |— — + —/E e g
3 j( WA)} e[ 3 (p+20 5,uw) 3m

w3,u05ij C 1 3
=_Z 7 w_pRe (erptr + 2p,) + §Im(\/57.ur + 2ppr/Er fir)

I7mc

Again, we only consider the transverse part, as the longitudinal part does not depend
on the magnetic permeability and thus remains unchanged. As we see, even in the
local field corrections of the electric field we find an indirect influence of the magnetic
permeability, as it changes the vacuum fluctuations of all fields.

Due to the symmetry of the problem, the results for magnetic dipoles follow

"On comparison to Ref. [23] one should also note that the Green’s function is defined as that of
the vector potential, so different pre-factors occur.
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exactly analogously with the appropriate replacements. The corrected spontaneous

emission rate of a magnetic dipole must therefore be

2
ma, oy +2 2,M m;m; _
o) — T‘ + #Re(ur)@ﬁ(m
) . (4.30)
Mot 5 Hr (H)
- WRG(M)RG { 3 G (vaA)}
with
oy + 2 /—(\[-7) Ly + 2 1 7 anrwz(&j
R G:.7 (0 = Re |— — 4+ — /e Uy _—
“I 3 i (0wa) ¢ 3 p+20 erhintd 3
3e00;: 1
- _% LipRe (erptr + 2¢,) + 51}&1(\/54@3 + 2874/67«/@)1 ,

if we assume our initial model of the noise magnetization to be correct.



Chapter 5
Conclusion and outlook

In this part of the thesis, we have studied the interaction of electric and magnetic
dipoles with the electromagnetic field in various different situations with a special
focus on the magnetic fields in macroscopic media.

We have presented a canonical quantization of the macroscopic field in a general
magneto-dielectric anisotropic medium, and from that derived explicit formulas for
the spontaneous emission rate of both electric and magnetic dipoles in uniaxial media.
In comparison of these two, our results confirm the duality of the fields E and
H, with replacements of € to p, and of d to pym being made. The results vary
significantly from the emission rate obtained from considering the approximation of
an isotropic medium of averaged refractive index. We furthermore presented a model
to describe the emission rate of an electric dipole in a biaxial dielectric medium with
an analytic form. The advantage is that it is not only a better approximation than
the average refractive index, but also bears the potential for qualitative studies of
the dependency of the emission rate on each of the permittivities and the interplay
between them. This can prove particulary useful in designing novel media or choosing
tailored materials for specific applications.

We have furthermore generalized the theory of spontaneous emission including
local field effects for both electric and magnetic dipoles using the Green’s functions of
the fields £ and H. We have used a (Gaussian averaging to obtain qualitative results
in the regimes where the regular Green’s function diverges due to an incompatibility
between macroscopic and microscopic models in absorbing media.

We have shown that all our results are fully symmetric with respect to the electro-
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magnetic duality and independent of our interpretations of the nature of the different
fields E, D, B and H if we assume a coupling of the dipoles to the respective local
fields. However, in the magnetic case, we also observed that different results can be
obtained depending on which magnetic field is used to derive the emission rate. This
difference stresses the importance of the question which fields and sources must be
used for a correct and justified treatment. This goes even beyond the calculation
of the spontaneous emission rate, questions like the magnetization being a function
of B or H and the relationship of the noise magnetization to the bosonic polariton
operators still need a sound and rigorous investigation. This is the matter of ongoing
research and will hopefully lead to a deeper insight into the nature of the different

field variables in absorbing magnetic media in the future.



Part 11

Coherence and catalysis in the

Jaynes-Cummings model
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Chapter 6
Introduction

Coherence [75,|76], the property of a system to be in a superposition of different
energy eigenstates, is one of the crucial elements of quantum physics. Together
with entanglement, it marks the difference from states that can be described by
classical theories. Recently, especially the role of coherence in quantum thermody-
namics [77,/78| has sparked increasing interest. In the resource theory approach,
coherence is described as a resource [79-82] which can enable (at least approxi-
mately) non-energy conserving operations which would otherwise be forbidden [81].
The extraction of work using quantum coherence [83] is an idea that has particularly
attracted attention.

Even though coherence cannot be created from strictly energy conserving oper-
ations, it can be transferred between two systems when they interact, i.e. it can be
created in one system at the cost of using it up in another. It was shown in 2014
by Aberg [84] that under certain circumstances, a coherent reservoir can enable a
coherence-creating operation on an external system with an accuracy that does not
degrade upon use: An observation, which leads to the paradox of the catalytic use
of coherence, which is only resolved by taking correlations between the systems into
account [85].

While the suggested setup of [84] is in principle physically possible, it requires
very artificial conditions, both in terms of the reservoir state and the nature of the
interaction. In the work presented in this chapter, which was published in [86], we
present an analysis of Aberg’s idea in a more realistic framework: We study the

catalytic capacity of the sequential interaction of a coherent state with a series of
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two-level atoms through a Jaynes-Cummings Hamiltonian. Being one of the most
important models for the interaction of light with atoms, the Jaynes-Cummings in-
teraction presents itself as a natural choice. It allows for a fully quantum mechanical
treatment whilst at the same time remaining exactly solvable [87-89|, and it is easy
to realize experimentally using techniques from cavity quantum electrodynamics [90].
Coherent states are the natural choice for the resource state in such a cavity, given
their classical limit and intrinsic robustness. Furthermore, the quantum optical prop-
erties of coherent states have been extensively studied, and in the sense of enabling
operations, lasers are routinely used to induce quantum operations on the electronic

states of trapped atoms and ions [91].

6.1 Coherence as a resource

Let us start with a short introduction of the concept of coherence and its relevance
as a resource in the framework of quantum thermodynamics. The key idea is that
since coherence can be described as a thermodynamic resource it must be consumed
as it is used. The word “coherence” is used in a lot of different contexts, in this
work by coherence we mean specifically the property of a state being in a quantum
superposition of different energy eigenstates, as opposed to a single eigenstate, or a
statistical mixture thereof. A good measure [79,80| of how much coherence a state
exhibits is the off-diagonal entries of its density matrix in the energy eigenbasis,

which can for example be quantified by the [; norm of coherence,

Ch(p) = Z |pij]- (6.1)

i#]
A 'classical" mixed state would only have entries on the diagonal, so with this
definition in mind, we can think of coherence as non-classicality of a state. Another
measure, which also remains tractable in infinitely large Hilbert spaces is given by

the relative entropy of coherence,

Oent(ﬁ) = S(ﬁdiag) - S(ﬁ) (62)
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where S(p) = —Tr(plogp) is the von-Neumann entropy and pging = Y, pii 1) (i
is the density matrix which contains only the diagonal entries of p. The relative
entropy of coherence thus is the difference in entropy between a quantum state and
the corresponding decohered classical state: Reducing the entropy of a classical state
without changing its classically obtainable statistics (the diagonal elements) is thus
equivalent to increasing its coherence. The “further” away a state is from a classical
mixture, the more coherence it exhibits, with the maximal possible coherence always
corresponding to a state of zero entropy. Both definitions, although not giving the
same number for the same state, work equally well, at least for finite dimensional
Hilbert spaces. To properly describe coherence as resource we need the following

basic ingredients of resource theories:

Free states These are states without any resource value, which should be easy to
create. In our case this is incoherent states (energy eigenstates or classical

mixtures thereof).

Free operations Operations which do not increase the resource, here those are
incoherent operations. It can be shown that these are exactly the strictly
energy preserving operations, that is, operations that commute with the system

Hamiltonian.

Maximal states Maximally coherent states, in our case, should be able to allow
for the creation of any other quantum state of same dimension with the use
of incoherent operations only. A maximal coherent state of dimension d is for

example the equal superposition \/ia > 0.

Both coherence measures we have introduced allow for a treatment as a resourcel in
this framework: They do not increase under incoherent operations, they are zero for
incoherent states, and both have their maximal value for maximally coherent states,
which are equally weighted coherent superpositions of arbitrary phase.

Now let us see how coherence can enrich the landscape of thermodynamics, which

traditionally only deals with statistical mixtures of energy eigenstates. Taking co-

LOne must be careful not to confuse the resource theory of coherence with the thermodynamic
resource theory in which coherence is only one type of resource. While in thermodynamics, only
Gibbs (thermal) states are considered free, in coherence resource theory all incoherent states, in-
cluding pure energy eigenstates, are free.
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Figure 6.1: Possible energy transfer protocol between two identical reservoirs using coherence. a:
The initial state, with both baths having the same energy distributions. b: One atom from each
bath is chosen randomly, and allowed to interact via equation [6.3] c: If the atoms are initially in
coherent superpositions, then an interaction time can be chosen such that the atom from the right
reservoir ends up with more energy than the left, so that the average energy in the right reservoir
increases while it decreases on the left. If the atoms are instead described by a statistical mixture,
no energy transfer between the reservoirs is possible.
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herence into the picture fundamentally changes some of its basic principles, indeed
it may fairly be stated that the inclusion of superposition is the principal defining
feature of quantum thermodynamics [78/92|. In particular, it can be shown that more
work can be extracted from a system that exhibits coherence than from an incoher-
ent system with exactly the same energy probability distribution. Let us illustrate
this with a simple example. Suppose we have two identical baths of two-level atoms
at equal temperature, as shown in Figure [6.1p. One atom from each bath is chosen

randomly and interacts with the other via the unitary interaction

A~

as illustrated in Figure [6.1p. Here, 64 = |e) (g| and 6_ = |g) (e| are the atomic rais-
ing and lowering operators, respectively, so that the interaction mediates an energy
exchange between the atoms. If the atoms are in a statistical mixture, as described
by the thermal density matrix

lg) (gl + e~ [e) (e|

= 6.4
p 1 + e—ﬁw ’ ( )

then no energy will flow on average, as predicted by classical thermodynamics. If
the atoms are returned to their reservoirs and the process is repeated then there will
be no net energy exchanged between the reservoirs.

Now let us consider what happens if the atoms are instead in a coherent super-
position. We replace the thermal mixture (equation with the coherent quantum

state
_g) e e)

V14 e B

for each atom in both baths. This system has the same energy probability distribu-

|¥) (6.5)

tion as the classical thermal states. However, under time evolution of the interaction
Hamiltonian V, the two atoms in contact now perform coherent oscillations, so that

the joint state of these atoms after time ¢ is given by

) |g) + Ve (cos (M — %) [g) ) — sin(At — 7) [e}[g) ) + e [e} e}

[(t)) = 1+ e B

(6.6)
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d
4
to maximize the amplitude of |g) |e) compared to the state |e) |g), producing the

Knowing the phase of the initial atoms, we can choose an interaction time A, =

two-atom state

_g) lg) + v2e 2 |g) e) + e [e) |e)
|Ymax) = T . (6.7)

Thus the second atom ends up with more energy than the first. When the atoms are
returned to their respective reservoirs, the right reservoir gains energy on average
(Figure ). As this process is repeated, energy is steadily extracted from the
first reservoir and deposited in the second. Such a setup could then be used, for
example, to drive a heat pump, and in this way, work is extracted from the system.
This simple example illustrates that the presence of coherence enables operations that
would otherwise be thermodynamically forbidden, so that coherence can be exploited
as a source of work. In a sense, this is not surprising, as coherence is just another
form of knowledge about the system which we can use to extract energy: although
the coherent bath has the same energy probability distribution as the incoherent one,
it has zero entropy.

As we have seen, coherence fundamentally changes how we have to think about
thermodynamics. Its function as a thermodynamic resource from which one can
extract work [81}18393,/94] means it is of great importance to study how coherence

can be distributed amongst systems, or generated under given constraints.

6.2 Catalytic Coherence: Aberg’s proposal

In the following, we will briefly discuss the idea of catalytic coherence proposed by
Aberg [84]. The original claim in this proposal was that a specific resource state could
be used to build up coherence in an unlimited set of two-level atoms (or in general,
qubits) in a catalytic manner, that is without degradation of the resource state. The
resource state considered in [84] is an infinite-dimensional quantum system in an

equally weighted superposition of L consecutive energy eigenstates

L-1
iy + 1), (6.8)
=0

’77L lo

E\H
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which we will call a Ladder state. For simplicity and without loss of generality we
can choose the relative phase # = 0. The interaction of an atom with this reservoir

shall perform the operation

A 1
e) > Ule) = —=(le) + 6.9
&) &) ﬁ(|> ) (6.9)
on the atom at least approximately, thereby bringing it from an incoherent to a

maximally coherent state. This can be realized by an interaction of the form

VU)= Y |n)(n|Un) (0@ A" (6.10)

n,n'=0,1

where the first part acts on the Hilbert space of the atom and A* = > li+k) (s
a shift operator of the reservoir. This interaction will leave the joint atom-reservoir

system in the state

(V1) =V(U)le) @ |nLi) = % (Ig) ® Alnrie) +[e) @ |nLi)) - (6.11)

At first glance this looks like a highly entangled state, however, the two states of the
reservoir, A [0 i) = [MLie+1) and |nL4,) have a large overlap given that the size of the
"ladder" L is large and thus there is not much actual entanglement (i.e. dependence
of the atomic state on the state of the cavity or vice versa) present. The reduced

density matrix of the atom
pa = Trp |¥) (V| (6.12)

can now be described as a mixture of the states |[+) and |—),

= (1= 37 ) ) G+ 519 1 (6.13)

For large L, this is approximately describing the desired (pure) state |+): When

measured, the atom will be found in |+) with a probability of

P(H)=1- (6.14)
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Similarly, the reservoir is now described by a mixture of the initial state and another
Ladder state with a shifted offset

pr = = (I2.00) (ML) + A |nLs) (Mogel A7) (6.15)

N | —

The claims of [84] stating a catalytic process are based on the observation that
although this is not the same as the initial state, both parts of this mixture work
equally well for a subsequent interaction round with another atom, so no knowledge
is required of which of the two states the reservoir is in. Thus, without needing to
reset the reservoir into its initial state again, one can repeat the interaction with new
atoms and therby (approximately) transform an arbitrary number of them into the

desired superposition state.

6.3 Correlations

It has been shown [85] that this argument does no longer hold when taking correla-
tions into account. Considering only the reduced density matrices of the atom and
the reservoir separately ignores a crucial piece of information: The reservoir after
the first interaction is not randomly in one of two Ladder states but rather entan-
gled with the atom. Let us have a closer look at this entanglement: Two physical
systems are separable, i.e. without entanglement, if we can write their state vector

as a product of the two subsystem state vectors

(Wiot) = [1) [¥2) (6.16)

and thus both systems have a clearly defined state, inependent of each other. In
terms of the density matrix this means that the reduced density matrix of each

subsystem represents a pure state which can be written as a projector,

pi = i) (Wil . (6.17)

After the interaction of the resource with the atom in the above protocol, the two

systems are no longer separable. However, the entanglement is very weak which we
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can see by writing

vy = \if (1) ® A 1) + le) ® [es))

L— L
1
- < Z|lo+l+1 + le) Z\lo+l>
\/_ =0 0

All terms apart from the two edge contributions [ = [y and [ = [y + L in the two
sums are the same, so the corresponding part of the superposition can be written as

a product,

1

1 R
ﬁ<|g>®ﬁ|lo+L>+<|g>+|e>)ﬁ;!lo+l>+|e> f|l0>)
(6.18)

For large L, the sum in the second term is much larger than the two individual terms,

W) =

which is the reason why in [84] the assumption is made that the state is indeed
approximately separable with the atom approximately in the state \/ii(]g> + le)).
However, it is exactely this non-separability which is important here. Even when
taking into account the possibility for the atom to be not in the desired state as
is done with the reduced density matrix in equation [6.13] one ignores the reson
for this possibility and its connection to the resource state: Describing a quantum
system as a mixed state usually is a means of describing the system despite some
lack of information about it. Here, however we do have that information, it is the
information about how the atom is entangled to the cavity. If the atom was later
measured, this would also have an effect on the reservoir (and all atoms that have
interacted with that reservoir afterwards). In particular, if the atom was found in
the state |—), the reservoir would no longer be in a Ladder state at all but become

projected to a simple superposition of two energy levels

1
EOZO) —llo+ L+1)) (6.19)

as all states which were overlapping between the initial and the shifted ladder can-

(| =

cel out now. Such a state has much less coherence left and can’t be used for the

protocol anymore. The probability for this to happen is very small for big enough
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Ladder states but never zero. One further point to note is that our interpretation of
the entangelment depends very much on the basis we choose. In equation for
example, the cavity state is described as a mixture between the cavity state if the
atom was in the state |g) and the cavity if the atom was in the state |¢). In this
basis, it indeed appears like it does not matter which state the cavity actually is in.
In other words, if one were to measure the atomic state in its energy basis, the cavity
would indeed not be degraded. However, we could just as easy describe the same

mixed state as . )
or = (1 - ﬁ) W) (0] 4 5 90 (0 (6.20)

with W) being the state the cavity would be projected to when meauring the atom
in the basis of |+). And then we would see that, while |V ) is still approximately a
ladder state, the state (U_| is far from being a good resource.

It is important to note that it does not matter when the atoms are measured, or
even if they are measured at all. Due to the entanglement between all atoms and the
reservoir, measuring one of the atoms at any time in the wrong state will corrupt the
whole system. And if they are not measured, they are still not in the exact individual
superposition states we desired, but in a largely entangled system (the possibility of
what would happen if one were to meausre is enough to change the nature of the
whole system).

If we calculate the coherence of the whole system we also note that the total
coherence is not increasing, only the coherence of the subsystems is. We thus see
that coherence is not additive between subsystems, at least not if they are entangled
with each other. Therefore, the apparent paradox of catalytic coherence is no paradox
at all but just a manifestation of this non-additiveness, i.e. Aberg has successfully
shown that one can indeed create an arbitrary number of copies of states which
exhibit a fixed amount of coherence from one single finite resource, but not that the
total coherence of the whole system can be increased to arbitrary values.

Instead of using Ladder states and the idealized interaction described above, in
the following we want to investigate the behaviour and robustness of coherent states

in a Jaynes-Cummings interaction for the same task.
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6.4 Variations to the initial protocol

6.4.1 Coherent states

Let us first recap the basic properties of coherent states, for more detail or proofs
see for example Refs. [95./96].
A coherent state is defined as a superposition of the form
olof2/2 @

o) = 5= > Tln) (6.21)

n=0

where a can be any complex number and |n) are the energy eigenstates of a har-
monic oscillator. In the limit of large average photon number |o| — oo such a state
resembles a classical state, while for & — 0 it becomes identical to the vacuum state.
Any coherent state can be also created from the vacuum state with the displacement
operator

~

D(a) = g4~ (6.22)

la) = D(a)|0). (6.23)

It is easy to show that coherent states are eigenstates of the photonic annihilation

operator,
ala) = ala) (6.24)

which gives them some intrinsic robustness to photon losses. The average photon

number of a state |a) is 7 = |a|* and the photon number probability

B ‘&‘Qne—\aP

P(n) = | (n|o) |* o

(6.25)
follows a Poissonian distribution with width An = |a| = v/fi. Even though the set
of all coherent states form a (over)complete basis, they are not mutually orthogonal,

as
| (Bla) > = e7le=AF (6.26)

vanishes only in the limit |a — 3] > 1.
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Coherent states in phase space A good way of representing coherent states and
getting an intuitive picture of them is by looking at quasi-probability distributions
in phase space, a two-dimensional space where the two axes correspond to the two
quadratures ¢ = 5(a' +a) and p = 3i(a’ — a). For a coherent state, the expectation

values of these quadratures are
(alqlo) = Im (o) (6.27)

and
(a|pla) = Re(a), (6.28)

and we will always find a coherent state to be centred around the position in phase
space which corresponds to these coordinates, i.e. we can actually understand the
two axes as giving the real and imaginary part of a coherent state. An example
representation of a coherent state is shown in Figure [6.2

As the two quadrature operators are not commuting, a proper probability distri-
bution over both quadratures at the same time is impossible (just like it is impossible
to measure both simultaneously with full accuracy). However, there are some distri-
butions which at least give the right distribution of one quadrature when integrating
over the other. One such distribution is the Husimi Q-function, which represents
a quantum state p at the phase-space position (¢, p) by how much it overlaps to a

coherent state of the corresponding quadratures |a) = |q + ip),

Q(0) = Qlq +ip) = = {al o) (6:29)

or purely in terms of the quadratures,

Le ) o~ (g +ip)"
Q(q,p) = p 9 Z Vil <m

n,m

pln). (6.30)

Hence, instead of using the two coordinates ¢ and p one can intuitively also use the
complex coordinate a = ¢+ ip to denote a position in phase space. A density matrix

describing a coherent state p = |3) (8] will have a Gaussian distribution

Qla) = Zel=P (6.31)

(e
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0123456
q q

Figure 6.2: Phase space representation of a coherent state (left) and a squeezed state (right). The
center of the coherent state distribution is at the phase-space coordinate p = 0, ¢ = 3, corresponding
to a state |a) with @ = 3. The squeezed state has the same average quadratures, but a reduced
variance in q at the cost of a higher variance in p.

centred around the point o = (3, or in terms of quadrature coordinates, p = Ref3 and
q = Imp. Keep in mind that coherent states are not mutually orthogonal and hence
even the distribution of a perfect coherent state has a finite width as it has non-
vanishing overlap with other coherent states. In fact, coherent states are minimal

uncertainty states and their uncertainty in both variances is

(6.32)

and therefore also all valid phase-space distributions must have finite width. A
related class of states to coherent states are squeezed states, which can for exam-
ple arise from coherent states after non-linear interactions. Squeezed states still
have minimum uncertainty as well, but have it weighted differently between the two
quadraturesﬂ In phase space this literally looks like squeezing an initially round blob
in one direction and thereby making it longer, as can be seen in Figure [6.2

Using the number state decomposition, the coherence of a coherent state as de-

2Tt is also possible to squeeze a coherent state with respect to its photon number and phase
distribution (leading for example to a banana-like shape in phase space), but for large photon
numbers and weak squeezing this is almost identical to quadrature squeezing.
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fined by the relative entropy can be calculated as [80]
> 2n ! 2
N —laf? la[*"logn! 5 o
Cent(p) =€ ngzo — la|* log o (6.33)

6.4.2 The Jaynes Cummings Model

The Jaynes-Cummings model [87-89,97| describes the interaction of a two-level sys-
tem, such as two levels of an atom, resonantly coupled with a bosonic mode, for
example the electromagnetic field inside a cavity. The interaction Hamiltonian is
given by

H = —ihg (a6, —a's_), (6.34)

where @ and a' are the usual bosonic ladder operators of the field and 6 the atomic
lowering and raising operators. If we bring the Hamiltonian of the dipole interaction,
as introduced in equation back to our mind, we see that the Jaynes-Cummings
Hamiltonian indeed describes the same interaction in the rotating wave approxi-
mation, i.e. fast rotating terms like ag_e *“+“4)t and their complex conjugate are
omitted due to their weak impact on measurable outcomes’] Furthermore we only
take into account one discrete mode of the cavity and ignore all the details about the
nature of the field or the two-level system, as we are only interested in the general
dynamics. All underlying physical information are compacted within the coupling
strength ¢g. In the rotating wave approximation as we have it here, the total num-
ber of excitations is a constant of the motion, and the effect of the interaction is
to induce a unitary operation within subspaces of constant total energy, giving an
exactly solvable model for atom-light interaction. Note that as this is a strictly
energy-conserving operation it is an incoherent operation in the context of coherence
resource theory.

From solving the Schrédinger equation we find that a general atom-cavity state

of the form

(0) = Gulg) In) + Eq le) n) (6.35)

3In the calculation of spontaneous emission rates with first order perturbation theory they also
vanish as they correspond to the creation or annihilation of two excitations simultaneously (atomic
and photonic) instead of an exchange of excitations.
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whose time evolution is given by the Hamiltonian [6.34] satisfies

G, = gE,_1\/n (6.36)
E, =—gGni1vn+1. (6.37)

The evolution of an initially excited atom interacting with an arbitrary cavity state,
|W(0)) = >, caln)le), is thus given by

() = icn [cos(\/n——l—lgt) In) [e) + sm(mgt) In + 1) |g>] (6.38)

n=0

Note that the frequency of this oscillation is different in each constant energy sub-
space, and depends on the total excitation number n 4+ 1: thus as time progresses
the oscillations for different total energy drift in and out of phase, giving rise to the
famous collapses and revivals of the Jaynes-Cummings model [87,(89,97,98]. Our
interest, however, is in interaction times that are much shorter than the collapse and
revival times. A key feature of the evolution is that at any given time ¢ > 0 the
atom and field mode will be in an entangled state and it is this entanglement that
encapsulates the back action on the state of the field mode.

We will be primarily interested with the cavity mode being in a coherent state,

which results in a time evolution of the joint state

(o) = 3 ;‘_"_ cos (Virt Tgt) n} [e) + sin (Vi T Tgt ) In+1) |e)]. (6.3

n!

After a quarter rotation the atom can be found in a coherent superposition state
with high probability and very weak entanglement to the cavity. Just like in Aberg’s
proposal we can thus approximately rotate an atom from an initially incoherent
state into the desired coherent superposition. For simplicity and without loss of
generality we restrict ourselves to real values of a so that with the given interaction,
we can indeed rotate the atomic state into the superposition |+) = \/LQ (lg) + le)),
other values will only lead to different phases of the superposition state that can be
reached.

In the following chapter we are going to explore the interaction of a sequence of
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atoms with the same coherent state under such an operation and study the coherence

transfer, the building up of correlations and the robustness of the resource state with

repetitive interactions.



Chapter 7

Coherence catalysis in the

Jaynes-Cummings model

As has been shown already [85], no process can create coherence fully catalytically,
degradation is always hidden in the emerging correlations between subsystems. How-
ever, it is still important to know how much coherence can be practically extracted
from a reservoir, and how many subsystems could in principle be put in a coher-
ent superposition before the entanglement becomes too strong and the protocol too
unreliable. In quantum computing applications, this is an important information as
superpositions of computational states are usually created by exactly these coherence
transferring interactions. In this chapter, we investigate in particular the catalyticity
of a coherent state resource, and study the trade-off between the state’s accuracy
in preparing exact atomic superposition states and its ability in performing many
interactions without degradation under the natural interaction between atoms and
the electromagnetic field in the rotating-wave approximation, i.e. the interaction

described by the Jaynes-Cummings model.

109
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7.1 Successive interactions with the same cavity

We start by rewriting equation in the basis of |+) and shifting the second term

in the sum to obtain

olaf2/2 &

7% ; :;:7|n> [<cos(\/n——|—1gt) + Y sin(ﬁgt)) l+)
+ (cos(\/n——i-lgt) — %ﬁsin(\/ﬁgt)) |—)} :

V(1) =

We want to maximize the probability of the atom ending up in the state |+). A
good approximation of the ideal interaction time for this is obtained by maximizing
the probability for the centre of the photon number distribution, i.e. maximizing
’cos(\/ﬁ——l—lgt) + sin(\/ﬁgt) ‘2 with . = a®. We choose an interaction time ¢; defined
by

Vit gt = % (7.1)

which is not the exact maximum but a good enough approximation for large photon

numberg] The probability of measuring the atom in the state |—) for this choice is

—a2 2n 2
P = s e leos (v F Tgh) — 4 sin(y/ngt) (7.2)

~ 27 4 o(L) (7.3)

which tends to zero in the limit of large n. A detailed derivation of this approximation
can be found in Appendix |Bl There are two main conditions that determine how well
our protocol will work. The first is that the spread in Rabi frequencies v/n + 1g is
small compared to the central frequency, or in other words, the spread in photon
number is small compared to the mean photon number, so that it is possible to
choose t; satisfying v/n + 1gt; ~ m/4 for all n with appreciable amplitude in the
superposition. The second condition is that the distribution ¢, = \a/—% is such that

the shifted state, with one additional photon in the field, has large overlap with the

'One could choose /figty = T or /n + 3gt1 = % instead for similar arguments without changing

the probabilities in first order approximation. The exact interaction time minimizing the failing
probability for a = 10 was found numerically as v/n + 1.5726gt; = 7.
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initial state so that the atom and the cavity are not too entangled after the processﬂ
There is a tension or complementarity between these two conditions: a narrower
distribution means the former condition is readily satisfied, but requires a sharper
change in the coefficients ¢,,, making the second more difficult to meet.

Comparing this interaction to the one described in section we note two main
differences: First, the operation V' (U) did not make a distinction between the energy
levels of the reservoir. The atom would lose half a quantum of energy no matter which
state the reservoir is in. In the Jaynes-Cummings interaction on the other hand, each
energy level of the cavity causes a different strength of rotation of the atomic state
and the interaction time needs to be chosen according to the mean photon number
in the cavity. Secondly, as a consequence of this, the success probability does not
only depend on the size of the resource state as was the case in Aberg’s proposal [84]
but also on the offset, i.e. the mean photon number. For a coherent state these two
are linked together as there is only one parameter a. However, for a more general
case like squeezed states this indeed makes a difference.

After having measured the atom in the state |[+) or |—), the cavity is projected
to the state

olal2/2 22

e =T (cos(vir+ Tgn) & Ysin(viagn) ) . (7)

| W

Without information on the atomic state, the cavity must be described as a mixed

state with the density matrix
p=P "chaV>+ <‘chaV|+ + P "chaV>_ <\chaV|_ (7-5)

where Py =1 (Veay|Veay), is the probability of the respective measurement outcome
(if it were measured).

For large o, as P, — 1, the system can be understood as approximately in the
state [Weay), [+) , where the states of the field at the atom are independent of each
other.

This cavity state shall now be used again to bring another initially excited atom

2To help picture this reasoning, consider a general state |¥) , [e) + |¥) 5 |g). If (U4|¥p) =1 the
two systems are not entangled at all as we can just write |¥) , (|e) + |g)) instead. If (¥ 4|¥g) =0
then the system is maximally entangled.
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to a coherent superposition, i.e. we now start with the state |¥2(0)) = [Wea) , le)
and use equations (6.35)-(6.37)) to find the corresponding time evolution

(ot

laf? .
) = f/ﬁ ; \jm [(‘/F sin(vn — 1gty) + cos(\/ﬁgtl)> \/Tﬁ sin(y/ngt)|g, n)
+(\/Tﬁ sin(y/ngt,) + cos(v/n + 1gt1)> cos(v/n+ 1gt)le, n)} .

As the cavity is not in the exact same state as in the first round, an adjustment of
the interaction time might be necessary according to the new mean photon number.
This process can be arbitrarily repeated and the evolution of the cavity state after NV
rounds can be found iteratively. The coefficients of the joint state (|, as defined
by

_la? o
(n] (£*V [Uy) = e v ) (7.6)
can be obtained from the previous coefficients
1 N
T (n) = 5 { Iv- (n = D70 sin(Vighy) £ f-1, () cos (Vi + Tgty)
(7.7)

with fo(n) = 1 and ¢ being the interaction time chosen for the corresponding round.
This can be calculated for any combination of atomic states {+} = {41, £, ...}, the
sign determining fx (+} is always defined by the state of the last atom the cavity
interacted with, +y.

The state of the cavity depends on the measurement outcome of all the atoms it
interacted with and therefore we expect the success probability of following rounds
to depend on these, too. In the case of not measuring the atoms, we thus expect the
atoms to be correlated both with each other and with the cavity after the interaction.
For all theoretical considerations it is sufficient to calculate the dynamics separately
for an outcome |We,,), and |W.,,)_after each round (and therefore to calculate 2V
possible cavity states) as if we always measured the atomic state. Even if the atoms

are not actually measured, the true state of the joint system can always be obtained
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by simply taking the corresponding superposition of all possible outcomes,

W) = 30 F T o) (et ) 1) |+ gy )| [ ) ).

n

(7.8)
In any practical application, one would probably not directly measure the atoms
after the protocol (if we could measure them in the basis of |£), we wouldn’t need
the protocol in the first place)rf]. However, as analyzing the complete state of the
increasingly large quantum system does not reveal very much insight, we instead
focus on the special cases of having measured something particular, which is nothing

but an analysis of the corresponding parts of the superposition we are interested in.

7.2 Evolution of the cavity field

In each round, one atom is brought from the excited state to approximately the
state |+), we therefore expect the mean photon number in the cavity to increase by
half a photon per round. Numerical results obtained for an initial coherent state of
« = 10 confirm that the mean photon number after a successful interaction is indeed
increased to ny = 100.502. However, after an unsuccessful round in which the atom
was measured in the state |—), the mean photon number in the cavity decreases to
n_ = 99.812. This is not in contradiction with energy conservation as a measurement
in the {|+),|—)}-basis can change the energy of the system. As the original goal
of the protocol is to use coherence of the resource state to create coherent atomic
states we want to avoid the necessity of measurement during the protocol. For this
reason, we seek to adjust the interaction times of future rounds only according to an
assumed increase of half a photon per round in all numeric calculations throughout
this work instead of using the actual number obtained from measuring the atom.
Figure[7.1)shows the photon number distribution of the cavity field after the atom

3A measurement is a not an incoherent operation. Take for example a measurement in the |4)
basis of an atom in an energy eigenstate. After the measurement the atom will be in a maximally
coherent state. The coherence in this case comes from the measurement device itself which needs
to use a coherent reference to determine the measurement outcome. In fact, in most cases such a
measurement is actually performed by rotating the atom first and then measuring in the compu-
tational basis, i.e. coherence is actively created in the atom by interaction with another coherence
reservoir.
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Figure 7.1: Photon number distribution of the cavity field after one successful (blue) or failed
(orange) interaction.

has been measured in the state |+) or |—) after the first round. It appears that the
atomic state |—) is mostly correlated with the low and high photon number sides of
the distribution after interaction. Thus, the possibility of ending up in |—) removes
the “wings” of the distribution from the cavity state W), , suggesting that success
in producing the desired state |+) acts to reduce the amplitude uncertainty in the
cavity, i.e. squeeze the state of the field. This is confirmed in our numerical example

of @ = 10. The variance of the photon number distribution P, (n) is given by
(Any)® = (A%) — (Ay)® = 100.211. (7.9)

The width of the distribution is increased with respect to the initial coherent state
with average photon number ny = 100, but is smaller than that of the coherent state
with average photon number ng + 1/2.

The variance of the phase distribution [99]

P6) = 5= 3 ¢ Galy) (glm) (7.10)

n,m=0

increases similar to the decrease of the number variance, leaving the product un-
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changed. Only when considering the mixed cavity state without measurement of
the atom, both the phase and number variances increase and the total uncertainty
(Anior)? (Ao )? increases by around 2% in our example.

We further note that the photon number distribution of the cavity after a failed
round is very different from the corresponding cavity state in [84]: While in the ladder
state, all terms in the superposition have equal probability amplitudes, and therefore
in the failed cavity state (U_|, most of the terms exactly cancel out and leave the
cavity in a state of very low coherence, when using coherent states this does not
happen. Here, the poissonian photon number distribution of the initial state makes
sure that in a superposition of that state with a shifted-photon-number version of
it, no term cancels out completely, so we are still left with a large superposition of
states and therefore with a significant amount of coherence.

The evolution of the number and phase uncertainty during the first three rounds
of interactions can be seen in Figure[7.2] The photon number variance seems to in-
crease linearly with the number of rounds by the same amount the phase uncertainty
decreases when taking into account only successful rounds. Without the information
of the atomic states after interaction, both phase and number uncertainties increase,
there is no squeezing present in that case, as the uncertainty due to entanglement
apparently overweights the effects of the squeezing.

To help intuition about what is happening to the resource state, Figures [7.4]
show the Husimi Q-function in phase-space for successful and unsuccessful inter-
actions. Each failing round pushes the cavity state further towards a (squeezed)
vacuum. Furthermore, we see that successful rounds can still somewhat compensate
for unsuccessful rounds as they bring the cavity closer to a coherent state and further
push up the photon number. If we omit knowledge of the outcomes, the mixed cavity

state does not exhibit any squeezing below the original width.
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Figure 7.2: Evolution of the number (orange) and phase (blue) uncertainties of the cavity state
after several iterations. The lines show the variance of exact coherent states when assuming an
increase of half a photon per round, filled circles show the variance of the cavity state after all
atoms have been found in |+), empty circles show the variance of the mixed cavity state without
any information on the atomic states.
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Figure 7.3: Q-function of the cavity state before the interactions and after 3,6 and 9 rounds of
interactions in the case of all atoms being found in the intended state.
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Figure 7.6: Q-function of the (mixed) cavity state before the interactions and after 3,6 and 9 rounds
of interactions without knowledge of the atomic state.
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Figure 7.4: Q-function of the cavity state before the interactions and after 3,6 and 9 rounds of
interactions in the case of all atoms being found in the undesired state.
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Figure 7.5: Q-function of the cavity state after 1,3,6 and 9 rounds of interactions in a mixed sequence
with the first atom being found in the undesired state but all following rounds being successful.

7.3 Catalyticity and Robustness

In the following we want to investigate the performance of coherent states in the
presented scheme. As the nature of the cavity field changes with each round we

expect the success probabilities to change, too.
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Figure [7.7]shows the conditional success probabilities in the r-th round after r —1
consequent successful or unsuccessful rounds. For the first case we see an increase
of the success probability with rounds that goes even beyond what can be expected
due to the increase of the mean photon number in the cavity. This suggests that the
deformation or squeezing of the coherent state must have a further positive effect
on the success. We therefore want to know if a squeezed coherent state has any

advantage to a regular coherent state in the given interaction.

P(++") P+
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0.99595} * constantt  0.980F ) * constant t
adjusted t 0.975F ) adjusted t

0.99590 . 0070
0.99585 . 0.965! .

2 3 4 5 6 7 8' 2 3 4 5 6 7 8'

Figure 7.7: Left: Probability for the last (r-th) qubit to be found in the |+) state after all previous
were measured in |+) with (orange) or without (blue) adjustment of interaction times according
to an increase of half a photon in the cavity per round. The dashed line shows the probability
for obtaining the state |+) when the cavity field starts in a new coherent state with an increased
photon number of 1/2 per each step. Right: Probability for the r-th qubit to end up in the state
|[+) after all previous were measured in |—).

7.3.1 The effect of squeezing

An analysis of the success probabilities for squeezed initial states shows that reducing
the variance of the number distribution can indeed lead to higher success probabilities
up to a certain squeezing strength. Figure [7.§] shows the probability of the atom

ending in the state |[+) when the cavity is in a quadrature-squeezed statdﬂ

|, () = D(a)5(¢) |0) (7.11)

with D(«a) = eodf—ava being the displacement operator and S(¢) = e3(@®=a'?) 5

squeezing operator. For a mean photon number of 100.5, the maximal success prob-

“For high photon numbers and weak squeezing, this is approximately equivalent to squeezing in
the photon number.
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Figure 7.8: Probability of measuring the qubit in the state |+) after one round with the cavity
initially being in a g-quadrature squeezed state with mean photon number 7 = 100.5, as a function
of the squeezing parameter (. The dashed line shows the probability without squeezing.

ability with such a squeezed state is Py . = 0.99613: This is far above the value
obtained when the the cavity field is re-used in the second interaction step. The
effect of squeezing, together with growing photon numbers, would therefore suffice
to explain the observed increase of success probabilities as discussed in [7.3] How-
ever, we can also observe something else: After reaching its maximum at a certain
squeezing strength (, the success probability rapidly starts decreasing again and we
expect the same to happen for the evolved cavity state once it reaches a certain level
of squeezing. Due to the increasing complexity of the system, this point has not
been reached in the numeric simulations. At the limit of small squeezing parameter
¢, we can approximate the photon distribution of an amplitude squeezed state by a

Gaussian number distribution with reduced width:

\/217T_ﬁexp {_(7;; ﬁ)Q} N \/ﬁexp {_éZe—_Z)Q} . (7.12)

Following this, the analytic approximation of the success probability using this

squeezed state is given by

e X1 4 2)2 1
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which has a maximum of 1 — &= at a squeezing strength of e 2 = % when omitting
higher order terms.

This study of squeezed states is a clear manifestation of the trade-off between
the width of the distribution and the overlap with the shifted state we mentioned
earlier. If the state is squeezed too much, the distribution of the photon number is
very narrow and thus the interaction time chosen will lead to a very exact rotation
for the biggest part of the superposition and only to small errors overall. However,
the overlap of such a strongly squeezed state with the state shifted in photon number
(that is, the overlap between the two possible cavity states after interaction), will be
smaller than for a wider distribution and therefore the approximation of the atomic
state being separable from the cavity starts to fail. On the other hand, if the state
is not squeezed enough, the distribution is wide enough to ensure a good separation
between atom and cavity but the rotation of the atom is less exact. This is why we

see the success probability decreasing in both directions of the squeezing strength in

figure

7.3.2 Correlations

The second graph in figure shows that after failure the success probability for
the next round is only slightly reduced which is in contrast to the abrupt breakdown
of the performance when using ladder states in the scheme proposed by [84|.E] This
effect does not change significantly when more unsuccessful rounds occur. However,
we see that there must still be correlations between the operation performed by the
resource and the state of the atoms from previous interactions.

Comparing conditional probabilities after two rounds, we see that the probabil-
ities after the second round of interaction strongly depend on the outcome of the
first round: The failing probability given that the first atom ended up in the state
|—) is more than twice as large as after a successful first round. However, as it is
very unlikely to actually find the first atom in the state |—), the overall probability

of success in the second round P(+2) (without any information on the first round) is

®Omne has to be careful here: This is a feature of the interaction used in [84] and not of the
Ladder states per se. When using Ladder states in a Jaynes-Cummings interaction, they show
similar behaviour as coherent states: After a failed round, the photon numbers are distributed
on two peaks around the ladder boundaries and the remaining coherence can be used for another
round.
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still higher than that of the first round. A comparison of probabilities can be found
in Table [7.1l

Table 7.1: Probability amplitudes after two rounds for |a| = 10 with adjustment of interaction
times after the first cycle. Bold ciphers show the deviation from the corresponding single-atom
probabilities for easier comparison.

P(+1) P(42)  P(+9|4+1) P(H2)P(+1) P(+2N41)
0.995909 0.995915 0.995932  0.991841 0.991858
P(—1) P(—2)  P(+2|=1) P(+2)P(=1) P(+2N—1)
0.004091 0.004085 0.991631  0.004074 0.004056

Analytical expressions for the joint probabilities in terms of the “scaling param-
eter” of our problem, 1/7, up to second order, are given in Table Again, we see
that the state of the two atomic qubits after the interaction is non-separable, since
the joint probabilities show (weak) correlations. This correlation is not evident if
we consider only the first order of the approximation. Comparing our results to the
scheme proposed by Aberg [84] we see that although the single-atom probabilities
in both models scale linearly with the inverse size of the state, i.e. % and %, the
Jaynes-Cummings model using coherent states is much more robust against multiple
failures: The probability for ending up in the state |—) for two consecutive atoms in
this case scales as ﬁ_12 compared to being still % in Aberg’s scheme.

To allow for comparison of the scaling with the number of rounds, a plot of the
failure probability as a function of « is shown in Figure [7.9] for the first five rounds
of ending up in the state |—). Alongside these plots are shown trend lines, which
allow us to roughly estimate the dependence of the worst-case probability P(—") on
n as

P(=")=P(—=N —g-pnyN..N =) ~ % (7.14)

This ~ 1/n" dependence on 7 confirms the analytical results and reinforces our
suspicion that coherent states are indeed more robust to the extraction of coherence
than Ladder states in Aberg’s scheme [85], as the probability of failure in all rounds

decreases exponentially with the number of rounds r.
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Table 7.2: Comparison of probabilities and joint probabilities obtained from using coherent states
in a Jaynes-Cummings interaction and using Ladder states in the scheme proposed by Aberg [84].
The product of single-atom probabilities are calculated from first-round probabilities only. Using
the total probability after the second round P(+3) = P(+ N +) 4+ P(+ N —) would only lead to
changes in higher orders, P(+2) = P(£)+0O (Z5). Interaction times are kept constant for simplicity,
giving a lower bound to success probabilities. In this table, we set the interaction time such that
gt/ + 1 = 7/4, when p is an arbitrary real number and p < 7. These expressions were derived
by Atirach Ritboon.

. Aberg’s
Jaynes-Cummings &
scheme
_ (m+2)? 74 —4(5—40p+16u?) 72 +64(1+2u)7+16 1
P (+> 1 oan T 409672 1 2L
P(—) (7+2)2  wt—4(5—40p+16p2) w2 +64(142p)7+16 1
647 409672 2L
_ _ (m+2)* 1
P(=) x P(=) 09677 iz
N (m+2)2 (372 +47+12) 1
P ( n ) 4096702 4L

7.4 Discussion

As was shown in [85], the scheme proposed by Aberg does not describe a catalytic
process, i.e. coherent superpositions can not be created an arbitrary amount of times
with constant efficiency. The reason for this is the fact that the possibility of ending
up in the wrong state, no matter how small it may be, has an effect on the resource
state. This effect is strong enough to lead to an effective breakdown of the protocol
once an atom is found in that state. Consequently, probabilities of multiple failed
rounds don’t scale like the the product of single-round probabilities and therefore
exponential with rounds but rather similar to the probability of one single failure.
This can be understood intuitively: If one qubit is measured in the undesired state
|—), the probability of measuring the next qubit in |—) as well is in the order of O(1)
and does not depend on the original size of the resource state anymore. Therefore,
also the probability of multiple failures does not scale any better (qualitatively) than
the single-failure probability, P(—") = P(—|-""")P(—|-""2)..P(=) ~ O (7).

For the Jaynes-Cummings interaction proposed in this work we have seen that,

even though we still find correlation between the atoms and a decrease of efficiency
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Figure 7.9: Double-logarithmic plot of the probability for all atoms to end up in the state |—) during
one to five rounds as a function of a. The graphs were obtained from numeric calculations with
adjustment of interaction times. The dotted lines show power series 0.3667a~1%°4 0.2693a3-899,
0.30640 5847 0.4884a~ 7895 and 1.0225a 27" (top to bottom) obtained from fitting the numerical
data for a > 3.

after failure, the interaction is much more robust against multiple failure. In partic-
ular, both numerical and analytical estimations suggest that the failure probability
indeed is exponential in the number of (unsuccessful) rounds. This is due to the fact
that even after measuring an atom in the state |—), the cavity does not instanta-
neously lose all its coherence but is transformed to a different state which still has
a high degree of coherence and can still be used for the interaction to some degree.
It can be shown [86] that a coherent state |a) can produce approximately O(a?)
copies of coherent atoms before the resource is degraded too much. If one compares
the coherence contained in such an amount of atoms with the coherence of the re-
source, this suggests that the extraction of coherence through the Jaynes-Cummings
interaction is in fact close to optimal.

On the other hand, it should be noted that even in the case of success, the cavity
undergoes a slight change of its state. For the repetition rates that were investigated
in this work we only saw an improvement due to these cavity changes. Nevertheless,
we have to assume that this improvement will not last for an infinite amount of

repetitions and at some point will turn into a decrease of success probabilities, espe-
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cially if we explain the improvement with the squeezing of the cavity state. So, even
though coherent states in a Jaynes-Cummings interaction show more robust features
with regard to failure, they have a trade-off in terms of stability in the successful

case when compared to Ladder states in Aberg’s scheme.



Chapter 8
Conclusion

In the second part of this work, we have investigated the nature of coherence as a
resource within the coherent state Jaynes-Cummings model. We have explored the
extent to which a sequence of atoms, prepared initially in their excited state, could
be prepared in a state close to a desired coherent superposition by interacting with
a single cavity mode which is initially in a coherent state. We have shown that in
such a protocol, the probability with which the atoms are transformed to the de-
sired superposition state scales linearly with the inverse mean photon number of the
cavity and that in repeated interactions, the probability of finding r atoms in the
undesired, orthogonal state scales exponentially with the number of failed rounds
r. We have compared our results with the original proposal of [84] and concluded
that, in contrast to the strong correlations that build up between the ladder states,
in the implementation presented here, subsequent atoms are almost independent af-
ter interacting with the resource state. We have furthermore studied the phase and
photon number statistics of the cavity state and the changes thereof associated with
the repeated interactions. We have found that, even though a successful interaction
has some effect of degrading the cavity state, for the same reason an unsuccessful
interaction does not destroy all coherence and therefore does not lead to an instanta-
neous breakdown of the efficiency. We have studied the relation between the cavity
statistics and the efficiency of the protocol and found that slightly squeezed coherent
states indeed have the highest probability in obtaining the desired atomic states after
interaction.

Our results are reassuring in light of the extensive use of coherent states in the-
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oretical and experimental quantum optics, and also illustrative of the limitations of

using coherence as a thermodynamic resource.



Appendix A

Green’s functions derived from the

vector potential

The Green’s function for the vector potential can be derived in exact analogy to the
electric field Green’s function as derived in chapter |4] by comparing the differential
equations that determine the Green’s functions: For the transverse electric field we

have
(V? + w?ue) E" = Py (A1)

whereas for the vector potential the equations read
(V? +w?pue) A= —pJ" (A.2)

where P}, and J” are the respective sources of the field according to choices of
writing the Hamiltonian as H = d- E or H = J - A. Hence, the only difference
between the Green’s function of the electric field and that of the vector potential are

a factor of —w?. The Green’s function of the vector potential ng‘) can be written as

) 5o — Fiks
- i 22
G (w, k) = M—w2u€ — (A.3)
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in Fourier space, or

A 1 1 i\ /EpwW
G (w, R) = " drme (0,05 — 6,5V7) R (e et 1) (A-4)
1 0ij  RiR;
" Arew? ( V)0 + 8“ (R TR ) +O(R>> A9

with the same Gaussian averaging to be performed for absorbing magnetic media.
As shown in equation the spontaneous emission rate is calculated from this
Green’s function as 2w2d "

=A I m G Nwa,r,7). (A.6)
Now, just like the Green’s function for the electric field E can be obtained from
ng‘) by multiplying —w? as E = iwA, we can also obtain a Green’s function for the
magnetic field B using B =V x A. From

Bi(r)B;(r)) = { [V x A(r V' x A(r' A7
(BB = (7 Am) (7)) ) (A7)
we know that the Green’s functions must fulfil

G\P) (w,r,r") = Eikﬁkejmna,’nGl(f) (w,r,r") (A.8)

v

with ¢;;, being the Levi-Civita tensor and 0, being the derivative with respect to
r’. As we already know Gy, (w,r,7") = G, (w, 7 — 1’), we can replace the second
differential operator 9/, by —0,, and rewrite equation in terms of the relative

coordinate R =r — 7/,
GEJB) (w, R) = —eiklaksjmnamGln(w, R) (Ag)

We start with the vector potential Green’s function as expressed in equation and

rearrange the derivatives according to

5,~kl8ksjmn8m (Ehc‘)m — 5lmV2) = ((‘M)j — 5ijV2) Vz (AlO)
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so that the magnetic Green’s function takes the form

——l—(@aj—aﬁvﬁ)v?%(& 1) (A.11)

(B) —

These derivatives are not well defined in the limit R — 0 and lead to singularities in
the form of Dirac delta-functions. However, for real values of € and u, the imaginary

part remains well defined,

_M 7 .
ImGgf)(w,R) = Im (47TRQ iqR [R R;i(q 2R2 4 3igR — 3) — 5in2(q2R2 _ 1)])

¢
—521% + O(R)

with ¢ = \/epw.

If we want to consider absorbing media we can use a similar Gaussian averaging
method as in section For this we first have to take one step back and write

equation as a Fourier decomposition again,

1 1 i\/E W
G (w, R) = —m (0:0; = 6V?) VP (VT —1)
aa 5 ) N 5 eik:R
B (277) ( V)V /d ka(k2—auw2)

N) /d?’ka <5ij B %> olkR

- (2m)3 k? — epw?

We can now use this expression to calculate the smoothed version of the magnetic

Green’s function

kik;
é( ) w 0 dV AV’ e /23%(7”2+T'2) dBka (6” B k_2> eik(r—'r")
ij 27r k? — epw?

,LL(SZJ k2 p2
dke™ v ——«—
~ 3n2 / ¢ k? — euwz

e by <4w L2VER) () )

6r \ p®

P’ p —(\/Ew)?
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Let us see what happens if we wanted to use this Green’s function to calculate the
spontaneous emission rate of a magnetic dipole. We still assume a coupling of the

form m - H =m - ;' B, so from

2 ia
7= 30 (kA o - i B10) [26(e — wa)
kX

the emission rate follows as

3

2 3
(B _ WMo Qil 2 Re(n? 4 < I A 12
g Shc . P ( " m(n°u,) + Re(n’p,) + 4w e m(fr ) (A.12)

where now indeed the full rate is included, not only the transverse part (the lon-
gitudinal part is the term proportional to 1/p3). This is not the same rate as the
one calculated in section with the Green’s function of the field H, and only
coincides in the case of u = |u|, i.e. a medium without magnetic losses. In fact,
this result could be obtained from that in section by multiplying the argument
of the real and imaginary parts with ﬁ The reason for the differences lies in the
choice of the sources and corresponding fields: In this calculation, the final result has
1

a pre-factor of Tl because the H field is rewritten in terms of B in the commutator

and hence only the absolute value of the permittivity comes into play. In the other
case one has a pre-factor of ui% inside the Green’s function as the Green’s function
itself is that of the H field. It is still not entirely clear how to fully justify a certain
approach over another, which is the topic of ongoing research, however, the choice
as described in the main body appears to be the more reasonable, especially due
to its agreement with duality. We furthermore note that the general technique of
retrieving the Greens function from the vector potential is still valid, we could for

example obtain the Green’s function of the H field from

(H) _ 1 B
Gy (w,R) = —G; (w, R) (A.13)
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which gives the same Green’s function as derived in section [{.2]
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Approximation of success
probabilities in the

Jaynes-Cummings interaction

We evaluate the analytical expressions of the probability P(—) up to the order of

O (1/n?), setting the optimal interaction time to satisfy gti\/fi +pu = 7/4. We

approximate the Poisson distribution of a coherent state with a Gaussian [4]

exp[—ﬁ]Z—T ~ \/217T_ﬁexp [_(”2—;”)2] | (B.1)

and replace the summation in 1) by an integration ) — fooo dn. As the centre
of the Gaussian is far away from the origin, the integration limit can be extended

from 0 — oo to —oo — oo without effecting the result. Following this, the probability
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of obtaining the state |—) in the first round is calculated as
[e.e]
dn

~ e~ -m2n oo [Tl (n — nt 1—p)
V8 4 n+u

2
e (nmn—1)?/4n g <E\/1 i (n - n— #))
4 n+p

eV L - 2
- ¢ /dﬁe‘g /2 cos [ X 1—1——(5 7#4-3/ )
2 \2rn 4 n+

—0o0

X sin (E\/1+—(5 __“+1/2)>,
4 n—+p

where £ = n —n — 1/2. The second term can be approximated by Taylor expansion

P(-)

of the trigonometric functions and

o0

ez (I (=1)") 135 (n— 1)y/7
/ e dr = 5 NS R 0, (B.2)

—00

leading to

P(-) = -

(r+2)2 7 —4(5 — 40 + 16p2)72 + 64(1 + 2u)7 + 16 1
O . (B.3
647 409672 * (B-3)



Bibliography

1]
2]

131

[4]
[5]

6]

7]
18]

19]

[10]

[11]

J. D. Jackson, Classical Electrodynamics. John Wiley & Sons, 1999.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms.
Wiley-VCH, 1989.

D. P. Craig and T. Thirunamachandran, Molecular quantum electrodynamics:

an introduction to radiation-molecule interactions. Courier Corporation, 1998.
R. Loudon, The quantum theory of light. OUP Press, 2003.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics, vol. 3 of Course of
Theoretical Physics. Pergamon Press, 1958.

C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics 2, vol. II.
Wiley-VCH, 2 ed., 2019.

E. Fermi, Nuclear Physics. University of Chicago Press, 1950.

E. M. Purcell, “Spontaneous emission probabilitis at ratio frequencies,” Phys.
Rew., vol. 69, no. 681, 1946.

R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics,
vol. 29, no. 1, p. 255, 1966.

E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics Part 2, vol. 9.

Butterworth-Heinemann, 1996.

O. F. Mossotti, “Discussione analitica sull’influenza che I'azione di un mezzo
dielettrico ha sulla distribuzione dell’elettricita alla superficie di piu corpi elet-

trici disseminati in esso,” Mem. Soc. Ital., vol. 24, p. 49, 1850.

133



BIBLIOGRAPHY 134

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

R. Clausius, Die Mechanische Behandlung der FElectricitit.  Wiesbaden:
Vieweg+Teubner Verlag, 1879.

P. Debye, Polar Molecules. Dover Publications, New York, 1945.

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic

perspective,” American Journal of Physics, vol. 50, no. 8, pp. 704-709, 1982.

A. R. von Hippel, Dielectrics and Waves. John Wiley and Sons, New York,
1954. chapter 3.

A. Aubret, M. Orrit, and F. Kulzer, “Understanding local-field correction factors
in the framework of the onsager-béttcher model,” ChemPhysChem, vol. 20, no. 3,
pp. 345-355, 2019.

L. Onsager, “Electric moments of molecules in liquids,” Journal of the American
Chemical Society, vol. 58, pp. 1486-1493, Aug 1936.

P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in
dielectrics: microscopic derivation of local-field effects,” Physical review letters,
vol. 81, no. 7, p. 1381, 1998.

I. Rebane, “Spontaneous emission rates of a single impurity molecule in a uni-

axial host crystal,” Optics Communications, vol. 217, no. 1, pp. 265 — 268, 2003.

R. A. Vallée, M. Van Der Auweraer, F. C. De Schryver, D. Beljonne, and M. Or-
rit, “A microscopic model for the fluctuations of local field and spontaneous
emission of single molecules in disordered media,” ChemPhysChem, vol. 6, no. 1,
pp- 81-91, 2005.

C. Lo, J. Wan, and K. W. Yu, “Geometric anisotropic effects on local field
distribution: Generalized clausius-mossotti relation,” Computer Physics Com-
munications, vol. 142, pp. 453-456, 12 2001.

A. H. Sihvola, “On the dielectric problem of isotrophic sphere in anisotropic

medium,” Electromagnetics, vol. 17, no. 1, pp. 69-74, 1997.



BIBLIOGRAPHY 135

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

[32]

[33]

S. Scheel, L. Knoll, D.-G. Welsch, and S. M. Barnett, “Quantum local-field
corrections and spontaneous decay,” Physical Review A, vol. 60, no. 2, p. 1590,
1999.

M. E. Crenshaw, “Comparison of quantum and classical local-field effects on
two-level atoms in a dielectric,” Physical Review A, vol. 78, no. 5, p. 053827,
2008.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz,
“Composite medium with simultaneously negative permeability and permittiv-
ity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, May 2000.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a neg-
ative index of refraction,” Science, vol. 292, no. 5514, pp. 77-79, 2001.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero
metamaterials and electromagnetic sources: Tailoring the radiation phase pat-
tern,” Phys. Rev. B, vol. 75, p. 155410, Apr 2007.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simul-
taneous negative phase and group velocity of light in a metamaterial,” Science,
vol. 312, no. 5775, pp. 892-894, 2006.

M. C. K. Wiltshire, “Bending light the wrong way,” Science, vol. 292, no. 5514,
pp. 60-61, 2001.

N. Litchinitser and V. Shalaev, “Photonic metamaterials,” Laser Phys. Lett.,
vol. 5, pp. 411-420, 2008.

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering ez-
plorations. New York: John Wiley & Sons, 2006.

L. Solymar and E. Shamonia, Waves in Metamaterials. Oxford University Press,
2009.

G. Duan, X. Zhao, S. W. Anderson, and X. Zhang, “Boosting magnetic resonance
imaging signal-to-noise ratio using magnetic metamaterials,” Communications
Physics, vol. 2, Mar. 2019.



BIBLIOGRAPHY 136

[34] M. J. Freire, L. Jelinek, R. Marques, and M. Lapine, “On the applications of pr=-
1 metamaterial lenses for magnetic resonance imaging,” Journal of Magnetic
Resonance, vol. 203, no. 1, pp. 81-90, 2010.

[35] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism
from conductors and enhanced nonlinear phenomena,” IEEE Transactions on
Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075-2084, 1999.

[36] V. G. Veselago, “Properties of materials having simultaneously negative values
of the dielectric (¢) and magnetic (u) susceptibilities,” Sov. Phys. Solid State,
vol. 8, p. 2854, 1967.

[37] V. G. Veselago, “The electrodynamics of substances with simultaneously nega-
tive values of ¢ and u,” Soviet Physics Uspekhi, vol. 10, no. 4, p. 509, 1968.

[38] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85,
pp- 3966-3969, Oct 2000.

[39] S. M. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing
dielectric media,” Phys. Rev. Lett., vol. 68, pp. 3698-3701, Jun 1992.

[40] P. W. Milonni and G. Maclay, “Quantized-field description of light in negative-
index media,” Optics Communications, vol. 228, no. 1, pp. 161 — 165, 2003.

[41] P. W. Milonni, Fast Light, Slow Light and Left-Handed Light. Series in Optics
and Optoelectronics, Taylor & Francis Group, LCC, 2005.

[42] D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal,
S. Gotzinger, and V. Sandoghdar, “Turning a molecule into a coherent two-level
quantum system,” Nature Physics, vol. 15, pp. 483-489, Feb. 2019.

[43] D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. G6tzinger, and V. Sandogh-
dar, “Coherent coupling of a single molecule to a scanning fabry-perot micro-
cavity,” Phys. Rev. X, vol. 7, p. 021014, Apr 2017.

[44] R. Bartholin, “Experimenta crystalli islandici disdiaclastici quibus mira & in-
folita refractio detegitur,” 1669.



BIBLIOGRAPHY 137

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

G. H. C. New, “Biaxial media revisited,” Furopean Journal of Physics, vol. 34,
pp. 1263-1276, jul 2013.

M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe,
and S. P. Kulik, “Anisotropically and high entanglement of biphoton states gen-
erated in spontaneous parametric down-conversion,” Phys. Rev. Lett., vol. 99,
p- 063901, Aug 2007.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger,
E. Rosencher, and J. Nagle, “Second-harmonic generation at I»=1.6 I(Em in
algaas/al203 waveguides using birefringence phase matching,” Applied Physics
Letters, vol. 72, no. 23, pp. 2942-2944, 1998.

D. J. Griffiths, Introduction to electrodynamics. Cambridge University Press,
4th edition ed., 2017.

K. K. Pukhov, “Radiative characteristics of the doped nanocrystals,” Optical
Materials, vol. 35, no. 10, pp. 1762 — 1764, 2013. 3rd International Conference
on the Physics of Optical Materials and Devices.

A. Rahmani, P. C. Chaumet, and G. W. Bryant, “Discrete dipole approximation
for the study of radiation dynamics in a magnetodielectric environment,” Optics
express, vol. 18, no. 8, pp. 8499-8504, 2010.

J. R. Ackerhalt and P. W. Milonni, “Interaction hamiltonian of quantum optics,”
JOSA B, vol. 1, no. 1, pp. 116-120, 1984.

O. Heaviside, “Xi. on the forces, stresses, and fluxes of energy in the electromag-
netic field,” Philosophical Transactions of the Royal Society of London.(A.),
no. 183, pp. 423-480, 1892.

J. Larmor, “Ix. a dynamical theory of the electric and luminiferous medium,”
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, no. 190, pp. 205-300, 1897.

J. A. Stratton, “Electromagnetic theory,” 1941.



BIBLIOGRAPHY 138

[55]

[56]

[57]

58]

[59]
[60]

[61]

[62]

[63]

|64]

[65]

6]

[67]

|68

A. Einstein and J. Laub, “iber die im elektromagnetischen felde auf ruhende
korper ausgeiibten ponderomotorischen krifte,” Annalen der Physik, vol. 26,
p. 541, 1908.

S. M. Barnett and R. Loudon, “Theory of radiation pressure on mag-
neto—dielectric materials,” New Journal of Physics, vol. 17, p. 063027, jun 2015.

S. Scheel and S. Y. Buhmann, “Macroscopic qed-concepts and applications,”
Acta Physica Slovaca, vol. 58, pp. 675809, 2008.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propaga-
tion, interference and diffraction of light. Elsevier, 2013.

G. New, Introduction to nonlinear optics. Cambridge University Press, 2011.
J. Braat and P. T6rok, Imaging Optics. Cambridge University Press, 2019.

B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons,
2019.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes,

Electrodynamics of continuous media, vol. 8. elsevier, 2013.

H. C. Chen, “Dyadic green’s function and radiation in a uniaxially anisotropic

medium,” International Journal of Electronics, vol. 35, p. 633, 1973.

W. 5. Weiglhofer, “Dyadic green’s functions for general uniaxial media,” IEE
Proceedings H - Microwaves, Antennas and Propagation, vol. 137, pp. 5—10, Feb
1990.

W. S. Weiglhofer, “Analytic methods and free-space dyadic green’s functions,”
Radio Science, vol. 28, no. 5, pp. 847-857, 1993.

A. Yariv and P. Yeh, Optical Waves in Crystals. New York: Wiley, 1983.

F. A. Jenkins and H. E. White, Fundamentals of Optics. New York: McGraw-
Hill, 1965.

D. R. Lovett, Tensor Properties of Crystals. Philadelphia: Adam Hilger, 1989.



BIBLIOGRAPHY 139

[69] R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy
Transfer Near Interfaces, pp. 1-65. John Wiley & Sons, Ltd, 2007.

[70] A. Messinger, N. Westerberg, and S. M. Barnett, “Spontaneous emission in
anisotropic dielectrics,” Phys. Rev. A, vol. 102, p. 013721, Jul 2020.

[71] A. Sihvola, Homogenization of a dielectric mizture with anisotropic spheres in
anisotropic background, vol. TEAT-7050 of Technical Report LUTEDX/(TEAT-
7050)/1-15/(1996). |Publisher information missing|, 1996. Published version:
Electromagnetics, 17(3), 269-286, 1997.

[72] B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in
dielectrics,” Phys. Rev. A, vol. 46, pp. 4306—4322, Oct 1992.

[73] S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms
in absorbing dielectrics,” Journal of Physics B: Atomic, Molecular and Optical
Physics, vol. 29, pp. 3763-3781, aug 1996.

[74] S. M. Barnett and R. Loudon, “Sum rule for environmentally modified sponta-
neous emission rates,” Quantum and Semiclassical Optics: Journal of the Furo-
pean Optical Society Part B, vol. 10, no. 4, p. 591, 1998.

[75] R. J. Glauber, “The quantum theory of optical coherence,” Physical Review,
vol. 130, no. 6, p. 2529, 1963.

[76] L. Mandel and E. Wolf, Optical coherence and quantum optics. Cambridge

university press, 1995.

[77] J. Gemmer, M. Michel, and G. Mahler, Quantum thermodynamics: Emer-
gence of thermodynamic behavior within composite quantum systems, vol. 784.
Springer, 2009.

[78] J. Goold, M. Huber, A. Riera, L. Del Rio, and P. Skrzypczyk, “The role of
quantum information in thermodynamics - a topical review,” Journal of Physics
A: Mathematical and Theoretical, vol. 49, no. 14, p. 143001, 2016.

[79] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys.
Rew. Lett., vol. 113, p. 140401, Sep 2014.



BIBLIOGRAPHY 140

[80]

[81]

[82]

83

[84]

[85]

[86]

187]

38

[89]

Y.-R. Zhang, L..-H. Shao, Y. Li, and H. Fan, “Quantifying coherence in infinite-
dimensional systems,” Phys. Rev. A, vol. 93, p. 012334, Jan 2016.

J. A. Vaccaro, F. Anselmi, H. M. Wiseman, and K. Jacobs, “Tradeoff between
extractable mechanical work, accessible entanglement, and ability to act as a ref-

erence system, under arbitrary superselection rules,” Physical Review A, vol. 77,
no. 3, p. 032114, 2008.

G. Gour, M. P. Miiller, V. Narasimhachar, R. W. Spekkens, and N. Y. Halpern,
“The resource theory of informational nonequilibrium in thermodynamics,”
Physics Reports, vol. 583, pp. 1-58, 2015.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, “The extraction of
work from quantum coherence,” New Journal of Physics, vol. 18, p. 023045, feb
2016.

J. Aberg, “Catalytic coherence,” Physical Review Letters, vol. 113, no. 15,
p. 150402, 2014.

J. A. Vaccaro, S. Croke, and S. M. Barnett, “Is coherence catalytic?,” Journal
of Physics A: Mathematical and Theoretical, vol. 51, p. 414008, 2018.

A. Messinger, A. Ritboon, F. Crimin, S. Croke, and S. M. Barnett, “Coherence
and catalysis in the jaynes—cummings model,” New Journal of Physics, vol. 22,
no. 4, p. 043008, 2020.

B. W. Shore and P. L. Knight, “The jaynes-cummings model,” Journal of Modern
Optics, vol. 40, no. 7, pp. 1195-1238, 1993.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical
radiation theories with application to the beam maser,” Proceedings of the IEEE,
vol. 51, pp. 89-109, Jan 1963.

N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus
incoherence: Collapse and revival in a simple quantum model,” Phys. Rev. A,
vol. 23, pp. 236-247, Jan 1981.



BIBLIOGRAPHY 141

[90]

91

92|

(93]

[94]

[95]

[96]

197]

98]

[99]

J.-M. Raimond and S. Haroche, “Exploring the quantum,” Ozford University
Press, vol. 82, p. 86, 2006.

A. Ashkin, Optical trapping and manipulation of neutral particles using lasers:

a reprint volume with commentaries. World Scientific, 2006.

S. Vinjanampathy and J. Anders, “Quantum thermodynamics,” Contemporary
Physics, vol. 57, no. 4, pp. 545-579, 2016.

P. Solinas, H. J. D. Miller, and J. Anders, “Measurement-dependent corrections
to work distributions arising from quantum coherences,” Phys. Rev. A, vol. 96,
p. 052115, 2017.

P. Kammerlander and J. Anders, “Coherence and measurement in quantum
thermodynamics,” Scientific Reports, vol. 6, p. 22174, 2016.

D. F. Walls and G. J. Milburn, Quantum Optics. Springer, 1994.

M. Fox, Quantum Optics. Oxford Master Series in Physics, Oxford University
Press, 2006.

S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics.
Oxford University Press, 1997.

S. Haroche and J.-M. Raimond, FEzploring the Quantum. Oxford University
Press, 2006.

S. M. Barnett and J. A. Vaccaro, The Quantum Phase Operator: A Review.
CRC Press, 2007.



	Thesis cover sheet
	2021MessingerPhD
	I Macroscopic QED
	Introduction
	Fundamentals of electromagnetism
	Electromagnetic waves
	Scalar and vector potential

	The dipole
	Electric dipole moment
	Magnetic dipole moment

	Electromagnetic waves in macroscopic media
	Electromagnetic field quantization
	Atom-photon interactions: Dipole radiation
	Generalized considerations
	Example: Magnetodielectrics

	Method of Green's functions
	Mathematical definition
	Green's Functions in quantum physics: Kubo Formula
	Example: Green's function of the vector potential
	Application to spontaneous emission rates

	Local fields
	(Meta)materials
	Magnetodielectric media
	Anisotropic media


	The B vs. H debate
	What is the ``fundamental'' field?
	Duality arguments
	Experimental accessibility
	No magnetic monopoles
	Lorentz transformation

	Which field does a dipole interact with?
	Derivation of the local magnetic field
	Weak-permeability approximation


	Dipole emission in anisotropic media
	Quantization of the electromagnetic field
	Spontaneous emission of electric dipoles
	Uniaxial dielectrics
	Biaxial dielectrics
	Local Field effects

	Magnetic generalization
	Waves in general anisotropic magnetodielectrics
	Solutions in uniaxial magnetodielectrics
	Electric dipole radiation
	Magnetic dipole radiation


	Dipole emission in absorbing magnetodielectrics
	Electric Dipoles
	Magnetic Dipoles
	Local field effects

	Conclusion and outlook

	II Coherence and catalysis in the Jaynes-Cummings model
	Introduction
	Coherence as a resource
	Catalytic Coherence: Åberg's proposal
	Correlations
	Variations to the initial protocol
	Coherent states
	The Jaynes Cummings Model


	Coherence catalysis in the Jaynes-Cummings model
	Successive interactions with the same cavity
	Evolution of the cavity field
	Catalyticity and Robustness
	The effect of squeezing
	Correlations

	Discussion

	Conclusion
	Green's functions from vector potential
	Approximation of success probabilities



