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Abstract

The dynamic expansion of CAG*CTG repeats in otherwise unrelated genes is 

responsible for a growing number of late-onset progressive disorders, including 

Huntington disease, myotonic dystrophy type 1 (DM1) and the spinocerebellar 

ataxias. As toxicity increases with repeat length, the intergenerational 

expansion of unstable CAG»CTG repeats leads to anticipation, an earlier age-at- 

onset in successive generations in these disorders. Crucially, disease associated 

alleles are also somatically unstable and continue to expand throughout the 

lifetime of the individual. In addition, evidence suggests that c/s-acting elements 

may be major modifiers of instability.

Here it was found that the toxicity of expanded polyQ-encoding CAG»CTG tracts 

correlates with both the expandability of the underlying CAG«CTG repeat and 

the GC content of the genomic DNA flanking sequences. PolyQ toxicity does not 

correlate with properties of mRNA or protein sequences, or with polyQ location 

within the gene or protein. These data thus strongly suggest that the observed 

inter-locus differences in polyQ toxicity are not mediated by protein context 

effects, but that the rate at which somatic expansion of the DNA delivers 

proteins to their cytotoxic state is a critical factor in expanded polyQ-disease 

age-at-onset.

Using human and mouse cell lines transgenic for an expanded human DM1 locus, 

it was found that an expanded CTG142 repeat alone is not sufficient for 

instability. Moreover, by generating mouse cell lines stably transfected with 

both a stable and unstable expanded CTG repeat, it was possible to assay the 

effect of cis-elements on these two loci in the same cell line over time. The 

sequences flanking the unstable repeat were hypermethylated, whereas the 

sequences flanking the stable transgenic repeat were unmethylated, suggesting 

an association between CpG methylation and repeat instability. However, 

methylation of the stable transgenic repeat failed to induce instability. In 

addition, it was revealed that transcription of an expanded repeat was not 

sufficient to induce instability.
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Analysis of genome-wide CAG»CTG microsatellite instability revealed a 

significant correlation between flanking sequence GC content and microsatellite 

mutability. This association was most significant for short (< 7 repeats) 

microsatellites and for those microsatellites located within exons. However, 

comparison of microsatellite lengths in the human and chimpanzee genomes 

revealed a complex association between flanking GC content and misalignment 

mutations at microsatellite loci, suggesting that the modifying effect of flanking 

GC content on expanded repeat instability may be specific to the expanded 

repeat disease loci

In conclusion, this work suggests that the rate of somatic repeat expansion is a 

major modifier of disease progression, and that c/s-acting elements in turn, 

modify repeat instability.
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1. Introduction

1.1 Trinucleotide repeats and human disease

The vast majority of tandemly repeated sequence elements in the human 

genome are thought to be non-pathogenic. However, a growing number of 

human diseases have recently been associated with the expansion and instability 

of tandem DNA repeats, tri-nucleotide repeats (TNRs) comprising the largest 

class of such repetitive elements (Gomes-Pereira and Monckton, 2006). TNR 

instability diseases can be further categorised into two principal classes 

depending upon repeat position relative to the associated gene (Figure 1.1). The 

first class, which includes myotonic dystrophy type 1 (DM1) and fragile X 

syndrome (FRAXA), is defined by a repeat expansion in a non-coding region of 

the gene. Whereas the second class is defined by a polyglutamine (polyQ)- 

encoding CAG repeat. The repeats at all these loci are typically small (~5 - 30 

repeats), polymorphic and stably transmitted within the general population. 

Disease associated alleles in patients have expanded beyond this range and 

typically contain at least 35 repeats. Although non-coding alleles, such as the 

DM1 repeat, may expand to thousands of repeats, inherited polyQ-coding alleles 

rarely exceed 100 repeats in humans (Gusella and MacDonald, 2000).

Expanded tri-nucleotide repeat instability is described as a ‘dynamic mutation’ , 

as the frequency and magnitude of length changes vary as the repeat number 

changes (Richards and Sutherland, 1992). These dynamic mutations are biased 

towards expansion, giving rise to increases of allele length from one generation 

to the next. Significantly, repeat toxicity increases with length, longer repeats 

resulting in greater levels of cell death and dysfunction in affected tissues, and a 

more severe phenotype in each disorder. Therefore, intergenerational increases 

in expanded triplet repeat length is consistent with ‘anticipation’ , a clinical 

characteristic common to these disorders, whereby an earlier age of disease 

onset and increased severity of symptoms is seen in successive generations 

(Gomes-Pereira and Monckton, 2006).
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(C T G )n
DM1

Figure 1.1 Genic location of disease associated unstable repeats. Transcription start and stop 
site are indicated. Exons are indicated as large boxes. Speckled boxes indicate untranslated 
regions, grey boxes indicate coding regions, and horizontal bar represents intergenic and intronic 
regions. The unstable repeat disorders shown are Huntington disease (HD), spinal-bulbar 
muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), Machado-Joseph 
disease (MJD), myotonic dystrophy type 1(DM1) and 2 (DM2), Friedreich ataxia (FRDA), Fragile X 
syndrome (FRAXA), Fragile XE mental retardation (FRAXE) and the spinocerebellar ataxias, type 
1, type 2, type 7, type 8, type 10 and type 12 (SCAs). After Gomes-Pereira and Monckton (2006).

In addition to intergenerational expansion, high levels of age-dependent, tissue- 

specific, expansion-biased somatic mosaicism occurs throughout the lifetime of 

affected individuals. Analysis of post-mortem brain tissue from Huntington 

disease (HD) patients found high levels of somatic mosaicism and very large 

expansions in the striatum, the primary affected tissue in this disorder (Kennedy 

et al., 2003). Similarly, DM1 patients have both significantly larger absolute 

repeat lengths and broader ranges of expansion length in muscle compared with 

blood, emphasising the relationship between tissue-specific somatic mosaicism 

and pathogenesis (Anvret et oL, 1993; Ashizawa et al., 1993; Thornton et al.,

1994). Thus, it has been proposed that whilst intergenerational repeat expansion 

accounts for the phenomenon of anticipation, somatic mosaicism may be a 

major contributing factor in disease progression and tissue specificity of 

symptoms (Gomes-Pereira and Monckton, 2006).
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1.2 Non-coding trinucleotide repeat disorders

The non-coding repeat disorders differ in repeat sequence type, mechanisms of 

pathogenesis and modes of inheritance, tend to have larger repeat size ranges 

than the coding trinucleotide disorders and are often multi-systemic in nature. 

These disorders are discussed below and summarised in Table 1.1.

1.2.1 Fragile X syndrome and Fragile XE mental retardation (FRAXE)

Fragile X syndrome is the most common form of inherited mental retardation in 

humans, and is caused by the expansion of a CGG«CCG repeat in the 5' UTR of 

the FMR1 gene (Kremer et al., 1991; Yu et al., 1991). The normal allele typically 

ranges in length from 7 to -55 repeats, whereas the disease associated allele is 

typically > 230 repeats in length. Expansion into the disease-associated range is 

accompanied by concomitant hypermethylation of the repeat tract and 

surrounding CpG island, resulting in transcriptional silencing of the FMR1 gene. 

Loss of the FMR1 gene product (an RNA-binding protein) results in clinical 

features such as mild to severe mental retardation, facial abnormalities, 

macroorchidism, hyperactivity and autistic features (Debacker and Kooy, 2007; 

Jin and Warren, 2000). Carriers of a ‘pre-mutation allele' (70 - 200 repeats) are 

usually unaffected, but may suffer from a poorly characterised disorder termed 

fragile X associated tremor ataxia syndrome (FXTAS) (Hagerman and Hagerman, 

2004). The clinical features of FXTAS include progressive action tremor and 

cerebellar ataxia (Jacquemont et al., 2003). As the pre-mutation allele is not 

hypermethylated and the FMR1 gene is over-expressed (Berry-Kravis et al.,

2003), FXTAS is thought to be due to a toxic RNA gain-of-function (Debacker and 

Kooy, 2007).

Fragile XE mental retardation (FRAXE) is caused by the expansion of a GCC«GGC 

repeat in the 5' UTR of the FMR2 gene, leading to hypermethylation-mediated 

transcriptional silencing (Knight et al., 1993; Knight et al., 1994). The normal 

and expanded repeat length ranges are similar to those of FRAXA, and affected 

individuals present with mild retardation and non-specific behavioural

16
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abnormalities. Unlike FRAXA, however, FRAXE is extremely rare (Cummings and 

Zoghbi, 2000a; Debacker and Kooy, 2007).

1.2.2 Friedreich ataxia (FRDA)

Friedreich ataxia (FRDA) is caused by the expansion of a GAA*TTC repeat in an 

intron of the gene frataxin (FXN), resulting in a reduction of the levels of the 

gene product, the protein frataxin (Campuzano et al., 1997; Campuzano et al., 

1996). FRDA, a progressive neurodegenerative disorder is the commonest cause 

of inherited ataxia in Caucasians. Symptoms, which typically manifest during 

puberty include gait and limb ataxia, cardiomyopathy, motor speech disorder 

(dysarthria), and occasionally diabetes. As FRDA is autosomal recessive, rarely 

occurring in successive generations, anticipation has not been observed in FRDA.

1.2.3 Spinocerebellar ataxia 12 (SCA12)

Spinocerebellar ataxia 12 (SCA12) is a rare, poorly characterised, autosomal 

dominant neurodegenerative disorder caused by the expansion of a CAG«CTG 

repeat. Affected individuals present with tremors of the upper extremities, 

which may progress to gait and limb ataxia and subtle parkinsonian symptoms. 

Evidence suggests that the repeat tract may be located within the 5’ UTR of the 

PPP2R2B gene, expression of which is brain specific (Holmes et al., 1999). As the 

range of expanded pathogenic alleles identified is very narrow (66 - 78 repeats), 

no correlation between expansion size and age at onset of symptoms is yet 

evident (Holmes et al., 2001).

1.2.4 Myotonic dystrophy type 1 (DM1)

Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular 

disorder with a broad range of phenotypes but typically characterised by 

myotonia, muscle weakness and progressive myopathy in adult onset individuals 

(Wieringa, 1994). A more severe congenital (CDM) form is associated with mental 

retardation, developmental abnormalities and pronounced hypotonia (Roig et 

al., 1994). All forms of DM1 are caused by a dramatic expansion in a CTG»CAG 

repeat in the 3' UTR of the dystrophia myotonica-protein kinase (DMPK) gene
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(Brook et al., 1992). The pathophysiology of DM1 is not fully understood, and 

several potential pathogenic mechanisms have been proposed.

It was originally proposed that repeat expansion may hinder normal transcription 

resulting in haploinsufficiency for DMPK. However, no consistent association 

between repeat expansion and changes in DMPK mRNA or protein levels has been 

found, and a DMPK knockout mouse model failed to recapitulate the DM1 

phenotype (Jansen et al., 1996; Reddy et al., 1998).

Repeat expansion-mediated alterations of local chromatin structure could result 

in haploinsufficiency of DMPK or its neighbouring downstream gene, SIX5. Indeed 

sequence analysis revealed that the CTG»CAG repeat of DM1 is also located in 

the promoter sequence of SIX5. Moreover, the DM1 CTG«CAG repeat tract forms 

part of a CTCF-dependent insulator element, and expansion of the repeat results 

in ablation of CTCF binding, heterochromatin formation and the production of 

antisense transcripts originating from the SIX5 promoter (Cho et al., 2005; 

Filippova et al., 2001). However, although mouse models deficient for SIX5 

developed ocular cataracts, a common phenotype in human DM1 patients, they 

failed to exhibit any other muscle related phenotypes of DM1 (Klesert et al., 

2000; Sarkar et al., 2000). The finding that the myotonic dystrophy type 2 (DM2) 

locus, a disorder with very similar phenotype to DM1, including myotonia, 

cataracts, distal weakness and cardiac arrhythmias, mapped to an independent 

locus on chromosome 3 argued against a role for SIX5 in DM1 pathogenesis (Day 

et al., 1999; Ranum et al., 1998). Moreover, the finding that the mutation 

underlying DM2 was a CCTG expansion in an intron of CCHC-type zinc finger, 

nucleic acid binding protein (CNBP) (Liquori et al., 2001), and that transgenic mice 

expressing an expanded CUG containing transcript in an unrelated mRNA 

developed myotonia and progressive myopathy (Mankodi et al., 2000) strongly 

suggested that DM1 pathogenesis was mediated by a toxic mRNA gain-of- 

function. However, it is possible that the few phenotypic differences between 

DM1 and DM2 are mediated by altered expression of the genes proximal to each 

locus.

How RNAs containing CUG/CCUG expansions mediate pathogenesis is still 

unclear. Expanded CUG and CCUG-containing nuclear RNA foci and widespread
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RNA splicing defects have been observed in cells of both DM1 and DM2 affected 

individuals (Liquori et al., 2001; Mankodi et al., 2003). It is proposed that 

sequestration of members of the muscleblind-like (MBNL) protein family into 

RNA foci causes the observed spliceopathy (Wheeler and Thornton, 2007). In 

support of this hypothesis MBNL1 co-localises with ribo-nuclear foci in both 

human DM1 and DM2 muscle and in a DM1 mouse model (Mankodi et al., 2003). 

Moreover, a Mbnll  knockout mouse model lacking an expanded CUG repeat had 

severe myotonia and splicing defects, further implicating MBNL1 depletion in DM 

pathogenesis (Kanadia et al., 2003). Also, the splicing defects observed in human 

DM1 and DM2 muscle were found to be strikingly similar to those of both a DM1 

mouse model and the Mbnll  knockout mouse model (Lin et al., 2006). M bnll’s 

alternately-spliced targets include a muscle-specific chloride channel (CIC-1), 

the insulin receptor (IR), and cardiac tropinin T (cTnT). The functional 

significance of the alternate splicing of M bnll’s targets was highlighted by a 

recent study of CIC-1, in which it was shown that correction of CIC-1 splicing 

eliminated myotonia in mouse models of DM1 (Wheeler et al., 2007).

Involvement of the first identified CUG-binding protein, CUG-BP1, in myotonic 

dystrophy was suggested by its association with expanded CUG-containing RNA 

and up-regulated expression in DM1 patients and cell culture models of DM1 

(Timchenko et al., 2001). However, subsequent studies have found no evidence 

for sequestration of CUG-BP1 into RNA foci (Lin et al., 1993; Mankodi et al., 

2003).

1.3 Coding trinucleotide repeat disorders (the 

polyglutamine disorders)

Unlike the more disparate phenotypes and genetic characteristics of the non­

coding trinucleotide repeat disorders, the polyglutamine disorders share many 

features. The polyglutamine disorders including Huntington disease (HD), spinal- 

bulbar muscular atrophy (SBMA), dentatorubropallidoluysian atrophy (DRPLA), 

Machado-Joseph disease (MJD, also known as spinocerebellar ataxia 3 (SCA3)), 

and the spinocerebellar ataxias, type 1, type 2, and type 7 are all late-onset
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neurodegenerative disorders (Gatchel and Zoghbi, 2005; Gusella and MacDonald, 

2000; Manto, 2005). Each disorder is caused by the expansion of an in-frame 

CAG*CTG repeat tract in a coding exon of a gene, resulting in a long polyQ 

stretch in the mature protein. With the exception of the polyQ tract, no 

significant sequence, structural or functional similarity between the various 

expanded-polyQ proteins has been identified. However, although the expanded- 

polyQ genes are ubiquitously expressed, each disorder affects a specific subset 

of neuronal cells, suggesting a role of protein context in pathogenesis. All 

polyglutamine disorders show an autosomal dominant mode of inheritance, 

except for the X-linked disorder SBMA. The repeat tract at these loci is typically 

small ( 5 - 1 5  rpts), polymorphic and stably transmitted in the normal population; 

expansion beyond a threshold repeat length (typically 35 - 40 glutamines) 

initiating pathology. The polyglutamine disorders are summarised in Table 1.2.

The precise mechanism of pathogenesis in the polyglutamine disorders is 

unknown. The observation that all polyQ disorders display a gain-of-function 

toxicity upon expansion suggested a common mode of pathogenesis. Moreover, 

the findings that (i), expanded polyglutamine peptides alone were cytotoxic and 

caused neurodegeneration in Drosophila (Marsh et al., 2000) and that (ii), an 

expanded CAG repeat, ectopically expressed in the hypoxanthine 

phosphoribosyltransferase gene (Hprt) resulted in a progressive late onset 

neurological phenotype in mice (Ordway et al., 1997), indicated that the 

expanded polyQ tract itself was central to pathogenesis. Loss of normal protein 

function may contribute to pathogenesis, however, the observation that mouse 

knockouts of various polyglutamine disorders do not exhibit the expected 

phenotype, suggests that loss-of-function is not the major mediator of polyQ 

pathogenesis (Matilla et al., 1998).

The discovery of expanded polyglutamine-containing inclusions in cells of all 

polyglutamine disorders suggested that aggregation of expanded polyglutamine 

proteins may be a common pathogenic mechanisms shared by these disorders 

(Michalik and Van Broeckhoven, 2003). Indeed, previous in vitro biochemical 

studies had already predicted that expanded polyQ tracts may function as polar 

zippers, capable of linking p-sheets together by hydrogen bonds between their
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main chain amides or polar side chains leading to gradual precipitation of the 

affected proteins (Perutz et al., 1994). However, large nuclear inclusions may 

represent an endpoint in cytotoxicity, smaller aggregates or soluble expanded 

polyglutamine acting as the cytotoxic element. Indeed, it has been proposed 

that inclusion body formation may function as a cellular coping response, by 

sequestering diffuse toxic mutant huntingtin (Arrasate et al., 2004).

How aggregates could mediate pathogenesis is still unresolved. The most 

credible current model suggests that sequestration of transcriptional regulators 

by polyglutamine aggregates results in widespread misregulation of gene 

expression and consequential cytotoxicity. This model is supported by several 

observations. Firstly, many models of polyglutamine disorder show widespread 

alterations in gene expression (Riley and Orr, 2006). Secondly, polyglutamine 

aggregates co-localize with other proteins; including several transcriptional 

regulators such as TATA-binding protein (TBP) and cAMP response element 

binding protein (CREB)-binding protein (CBP) (Dunah et al., 2002; Nucifora et 

al., 2001; Perez et al., 1999). Finally, short polyglutamine tracts are 

overrepresented in transcription factors, rendering them particularly susceptible 

to sequestration into aggregates. However, no depletion of TBP, Sp1 or CBP was 

found in brains of a HD mouse model despite the presence of nuclear inclusions 

suggesting that the transcription factors may be binding pre-aggregate soluble 

mutant huntingtin (Yu et al., 2002).

The observation that polyglutamine nuclear inclusions are ubiquitin positive and 

often contain chaperones, suggested the possible involvement of the ubiquitin- 

proteosome system in pathogenesis. An early study found that expanded ataxin-1 

was more resistant to degradation than wild type protein in vitro, and a SCA1 

mouse model deficient for E3-ubiquitin ligase, a core component of the 

ubiquitin-proteasome pathway, showed a more severe SCA1 phenotype despite 

the presence of fewer nuclear inclusions in their Purkinje cells (Cummings et al., 

1999). Employing a novel mass-spectrometry technique allowing the 

measurement of the by-products of the ubiquitin-proteasome system in vivo, it 

was shown that both total poly-ubiquitin chain levels and the relative 

proportions of various poly-ubiquitin conjugates were massively altered in the 

brain of HD mouse models and in the striatum and cortex of human HD post-
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mortem brain samples (Bennett et al., 2007). Localization of stress-response 

chaperones and the co-chaperone CHIP (C-terminus of Hsc70 interacting protein) 

to nuclear inclusions indicate that the component polyglutamines are misfolded 

(Al-Ramahi et al., 2006; Chai et al., 1999). As the ubiquitin-proteasome system 

and chaperones act together to rid the cell of toxic misfolded or cleaved protein 

fragments, their sequestration or misregulation by polyglutamine aggregates 

could lead to cell dysfunction and death.

1.3.1 Spinocerebellar ataxia 8 (SCA8), an atypical polyglutamine disorder?

Spinocerebellar ataxia 8 is an autosomal dominant progressive disorder showing 

incomplete penetrance. SCA8 is caused by a CTG«CAG expansion; affected 

individuals carrying 107 - 250 CTG repeats. Interestingly, carriers of shorter (71 - 

110 CTG) and longer (250 - 800 CTG) seem to show reduced penetrance. As early 

studies failed to identify an open reading frame encompassing the repeat or 

evidence of transcription in the CAG orientation, SCA8 was not thought to be a 

polyglutamine disorder (Koob et al., 1999). However, more recent work has 

identified anti-sense polyglutamine-encoding transcripts and the presence of 

polyQ-containing nuclear inclusions in both SCA8 mice and human post mortem 

brain samples, suggesting that SCA8 is indeed a polyglutamine disorder (Moseley 

et al., 2006). As both CUG and CAG transcripts originate from the SCA8 repeat, 

it is possible that the SCA8 phenotype results from both toxic RNA and expanded 

polyglutamine-mediated pathogenesis (Ikeda et al., 2007). However, the 

atypical relationship between repeat length and disease onset, as well as the 

presence of SCA8 expansions in unaffected individuals and in individuals with 

variable diseases such as bipolar disorder and schizophrenia are yet to be 

explained (Schols et al., 2003).

1.4 Genetic instability

Genetic instability of a trinucleotide repeat is a molecular characteristic 

common to all unstable trinucleotide repeat disorders. Instability of the disease- 

associated repeats is observed in both the germline and the soma of affected
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individuals, and is likely to be a major modifier of many characteristics of these 

disorders including tissue-specificity, age at onset of symptoms, rate of disease 

progression, and the degree of anticipation. As instability in all of these 

disorders involves a triplet repeat, is length-dependent, expansion-biased and 

exhibits a grossly similar threshold length for instability, it is highly likely that 

similar mechanisms mediate instability in all disorders. Thus, therapeutic 

intervention targeted at the process of repeat expansion could potentially be 

applied to treatment of all unstable repeat disorders, unlike therapies directed 

against downstream effects of repeat expansion.

1.4.1 Germline Instability

The observation that offspring tend to have repeat tracts which differ in length 

from the repeat tract in their parents indicates that repeat instability occurs in 

the germline. As longer repeats result in a more severe phenotype, 

intergenerational expansion of trinucleotide repeats upon transmission from one 

generation to the next underlies the characteristic of anticipation; whereby an 

earlier age at onset and more severe phenotype is typically observed in 

successive generations. However, both the direction (expansion or contraction) 

and magnitude of length changes observed upon transmission vary greatly 

between disorders, and exhibit a pronounced parent-of-origin effect (Brock et 

al., 1999; Gomes-Pereira and Monckton, 2006). Among the polyglutamine 

disorders SCA7 exhibits the most pronounced germline instability. Two 

independent studies reported repeat length changes ranging from -13 to + 85 

repeats upon transmission. Significantly, 95% of observed intergenerational 

contractions were observed upon maternal transmission, male transmissions 

typically resulting in a 4-fold greater increase in repeat length than female 

transmissions (David et al ., 1998; Gouw et al., 1998). In contrast, the range of 

intergenerational repeat length changes in MJD patients is narrower ranging 

from -8 to +9 repeats. And although paternal transmissions showed greater 

length changes than maternally transmitted alleles, no difference in the 

frequency of contractions or expansions were evident between paternal and 

maternal transmissions (Igarashi et al., 1996; Maruyama et al., 1995).
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Of the non-coding repeat disorders, the dynamics of repeat germline instability 

is best characterised for myotonic dystrophy type 1 (DM1). Although DM1 families 

exhibit anticipation and the concomitant expansion of the underlying CTG«CAG 

repeat tract, DM1 repeat length changes upon transmission show a pronounced 

parent of origin effect. Affected individuals presenting with the congenital form 

of myotonic dystrophy (CDM), almost exclusively inherit the expanded allele (500 

- >2000 CTG) maternally (Brunner et al., 1993; Tsilfidis et al., 1992).

Conversely, male transmissions of shorter DM1 alleles (< 85 CTG) tend to result 

in greater repeat length changes than female transmissions, explaining the 

observed over-abundance of founder grandfathers in DM1 families (Barcelo et 

al., 1993; Brunner et al., 1993). Indeed, transmission of long repeats from 

fathers to offspring often appeared to result in a contraction of repeat length 

(Lavedan et al., 1993). Analysis of sperm samples from affected fathers revealed 

broad distributions of repeat size ranges which extended into the upper limit of 

the normal repeat size range, suggesting that some of the observed 

intergenerational reductions in repeat size did result from contractions in the 

germline. However, more significantly, these studies revealed that repeat length 

distributions in sperm from DM1 fathers can differ markedly from the repeat 

length distribution in their blood; sperm samples rarely possessing alleles of 

> 1000 repeats (Jansen et al., 1994; Martorell et al., 2000; Monckton et al., 

1995). Thus, the majority of apparent repeat length reductions observed in 

paternal transmissions are likely to be artefacts of the contrasting levels of 

somatic mosaicism present in the germline and blood, the tissue from which 

most repeat size estimates are made. Thus, accurate predictions of repeat 

length changes from one generation to the next are affected by parental repeat 

length, sex of transmitting parent, age of transmission, age of sampling, and 

degree of somatic mosaicism, rendering genetic counselling of affected 

individuals difficult.

1.4.2 Somatic instability

As outlined above, genetic instability of disease-associated expanded repeats is 

not only present in the germline, but also occurs in somatic tissues of affected 

individuals. Analysis of repeat length variation in somatic tissues from DM1 and
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fragile X affected individuals by genomic DNA digestion or PCR amplification 

followed by hybridisation to a repeat-containing probe, revealed the presence of 

repeat length variation of expanded mutant alleles, as evidenced by smearing of 

the hybridisation signal (Devys et al., 1992; Lavedan et al., 1993; Mahadevan et 

al., 1992). Moreover, the levels of somatic repeat length variation observed 

differed between tissues (Lavedan et al., 1993). Varying degrees of somatic 

mosaicism have since been reported for the majority of expanded trinucleotide 

repeat disorders (Gomes-Pereira and Monckton, 2006).

Analysis of somatic repeat length variation in DM1 individuals found that levels 

of somatic mosaicism in blood correlated significantly with age (Wong et al.,

1995). More directly, analysis of repeat length heterogeneity in blood samples 

obtained from the same DM1 individuals over a 1 - 7 year time period found an 

increase in both expansion size and the degree of heterogeneity over time 

(Martorell et al., 1998; Wong et al., 1995). Taken together, these observations 

indicate that somatic mosaicism is age-dependent. A study of eight somatic 

tissues of a DM1-affected foetus at 20 weeks found significant repeat length 

variation (550 - 660 CTG) of the expanded allele, suggesting that somatic 

expansion of mutant alleles begins early in development (Lavedan et al.,  1993). 

Interestingly, larger studies found somatic instability of expanded DM1 repeats in 

foetuses after 13 weeks gestational age, and no instability in foetuses before 13 

weeks (Martorell et al., 1997; Wohrle et al., 1995). Thus, somatic mosaicism is 

an age-dependent process, which begins in the embryo and continues throughout 

the lifetime of an affected individual.

A role for somatic mosaicism in disease pathogenesis was suggested by the 

finding that the muscle, the primary affected tissue in DM1, exhibited greater 

levels of somatic mosaicism than most other tissues (Anvret et al., 1993; 

Ashizawa et al., 1993; Monckton et al., 1995). However, other tissues such as 

heart and kidney, typically less affected in DM1, exhibited even greater levels of 

instability than muscle, suggesting that other factors are involved in determining 

tissue-specificity of pathology (Lavedan et al., 1993). Similarly, a study of HD 

post-mortem tissues found levels of somatic mosaicism to be greatest in the 

brain, particularly the cerebral cortex and basal ganglia, regions of the brain 

associated with HD neuropathology (Telenius et al., 1994). Whereas the
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cerebellum, typically unaffected in HD brains, showed the lowest levels of 

mosaicism (Telenius et a /., 1994). Increased levels of somatic mosaicism were 

also observed in post-mortem DRPLA brains relative to other peripheral tissues 

(Ueno et al., 1995). However, unlike HD, the region of the brain which typically 

exhibits the greatest pathology in DRPLA, the dentate-nucleus, did not exhibit 

the greatest levels of mosaicism, again suggesting the involvement of other 

tissue-specific factors in mediating pathogenesis (Ueno et al., 1995).

Detailed quantitative analyses of somatic mosaicism were limited by poor 

resolution and failure to amplify and detect rare large alleles when estimating 

expansion size and heterogeneity from diffuse signals on autoradiographs. Use of 

small-pool PCR (SP-PCR) techniques allowed resolution of diffuse smears into 

distinct bands, permitting accurate quantification of the repeat length range 

present in affected tissues (see chapter 2) (Monckton et al., 1995). Employing 

SP-PCR, it was found that HD brains of early or pre-symptomatic individuals 

showed dramatic expansion-biased instability in the striatum and cortex, but low 

levels in the cerebellum. Indeed, expanded alleles > 1000 CAG repeats, 

representing a 25-fold increase in size of the inherited progenitor allele, were 

observed in the striatum, further suggesting a role for somatic mosaicism in the 

tissue-specificity of this disorder (Kennedy et al., 2003). Employing a 

combination of laser capture micro-dissection and SP-PCR to further dissect the 

relationship between somatic mosaicism and pathology, it was found that repeat 

length expansion tended to be greater in affected striatal neurons than in 

typically less affected striatal glia, and that neuronal repeat expansion 

progressed with early pathology (Shelbourne et al., 2007). As the striatum 

typically shows the earliest pathology in HD, these results suggest that somatic 

mosaicism may also play a role in the progressive nature of HD, as well as the 

tissue-specificity.

Data supporting a role for somatic mosaicism in disease progression and tissue 

specificity is lacking for most other polyglutamine disorders. This is largely due 

to (i) a lack of affected human tissue samples and (ii), analysed tissue samples 

are generally end-stage, containing a skewed repeat range distribution due to 

loss of cells containing larger, more toxic repeats as observed with end-stage HD 

samples (Kennedy et al., 2003).
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1.5 Animal and cell models of expanded repeat 
instability

Our knowledge of the levels of intra-tissue and inter-tissue somatic mosaicism in 

humans is limited for all trinucleotide disorders. This is primarily due to the 

obvious difficulty in obtaining samples of affected somatic tissues from affected 

individuals throughout their lifetime, particularly for those disorders which show 

neuropathology. In order to facilitate the detailed study of somatic mosaicism 

several mouse models of expanded repeat instability have been generated which 

recapitulate many of the features of mosaicism observed in humans such as 

expansion-bias, tissue-specificity, repeat length-dependence, and age- 

dependence (Gourdon et al., 1997; Libby et al., 2003; Mangiarini et al., 1997; 

Monckton et al., 1997; Sato et al., 1999; Shelbourne et al., 1999; van den Broek 

et al., 2002). Moreover, some models also exhibit intergenerational instability 

(Monckton et al., 1997; Sato et al., 1999) and progressive pathology (Reddy et 

al., 1998; Seznec et al., 2001) consistent with that observed in human patients .

1.5.1 Genetic instability in mouse models of polyglutamine disorders

Three out of four mouse lines transgenic for the first exon of the human HD 

gene, possessing a repeat tract of 114, 142, or 146 CAG repeats all exhibited 

both expansion-biased somatic and intergenerational instability, although size 

changes upon transmission were much smaller than those observed in humans 

(Mangiarini et al., 1997). Interestingly, somatic instability was most pronounced 

and first observed in the CNS, the striatum and cerebral cortex showing 

particularly high levels of mosaicism, similar to the situation subsequently 

observed in human HD patients (Shelbourne et al., 2007). Moreover, the 

cerebellum showed much less instability in two of the three mouse lines, again 

similar to that observed in humans, further implicating somatic mosaicism in 

tissue-specificity. The size of intergenerational transmissions increased with the 

age of the founder at conception suggesting that the somatic expansion was also 

age-dependent. Two HD knock-in mouse lines in which 72 or 80 CAG repeats 

were inserted into the endogenous mouse HD gene also exhibited both inter-
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generational and somatic instability (Kennedy and Shelbourne, 2000; Shelbourne 

et al., 1999). Intergenerational expansion showed a parent-of-origin effect, 

paternal transmissions showing an expansion-bias, whereas maternal 

transmission resulted in small contractions (Shelbourne et al., 1999). Employing 

SP-PCR it was found that CNS tissue showed higher levels of expansion-biased 

somatic instability than non-CNS tissues, that the striatum showed the highest 

levels of mosaicism, and that striatal instability increased in an age-dependent 

manner (Kennedy and Shelbourne, 2000; Shelbourne et al., 2007). Again, these 

features were consistent with those observed in human HD patients (Kennedy et 

al., 2003; Shelbourne et al., 2007).

A mouse model of DRPLA, harbouring and expressing a single-copy of the full- 

length human DRPLA gene containing a (CAG)78 also exhibited both 

intergenerational and somatic repeat instability (Sato et al., 1999). Somatic 

instability was expansion-biased, age-dependent, and tissue-specific, showing a 

broadly similar pattern of somatic heterogeneity as observed in human post­

mortem tissues (Ueno et al., 1995). The parent-of-origin effect observed upon 

transmission of the expanded allele was also comparable to that in humans, with 

paternal transmission showing a greater expansion-bias than maternal 

transmission, although the occurrence of contractions in the mouse model was 

far higher than that observed in human samples (Sato et al., 1999).

Similarly, four mouse lines transgenic for a 13.5 kb human fragment of the SCA7 

locus possessing a (CAG>92 repeat also showed both intergenerational and 

somatic repeat instability. As with the HD, and DRPLA models expansion-biased 

somatic instability was particularly pronounced in the brain (Libby et al., 2003).

Taken together the data from these HD mouse models recapitulate many of the 

characteristics of repeat instability observed in human patients and are 

consistent with expansion-biased, age-dependent, somatic mosaicism being a 

primary determinant of tissue-specificity and disease progression in the 

polyglutamine disorders.
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1.5.2 Genetic instability in mouse models of myotonic dystrophy type 1 
(DM1)

A series of DM1 mouse models harbouring a 45 kb segment of human DNA 

encompassing the DMPK gene containing 20, 55, and 300 CTG repeats have 

proved invaluable tools in elucidating the dynamics of expanded repeat stability 

in DM1 (Gourdon et al., 1997; Lia et al., 1998; Seznec et al., 2001; Seznec et al., 

2000). The first mouse lines contained a (CTG>55 repeat, and displayed moderate 

expansion-biased, instability (~1 CTG) in 7 % of transmissions (Gourdon et al., 

1997). Modest expansion-biased somatic instability ( ± 6  CTG) was observed in 

most tissues, the kidney, liver, pancreas and brain exhibiting high levels of 

repeat length variation. Interestingly, only slight instability was observed in 

muscle and heart, the tissues which exhibit greatest pathology in DM1 (Gourdon 

et al., 1997; Lia et al., 1998). A similar model system carrying a larger (CTGhoo 

repeat more accurately recapitulated features of DM1 instability observed in 

humans, although the length changes observed were smaller than those seen in 

humans. Approximately 95 % of transmissions were unstable with a ratio of 

expansions to contractions to no change of 90:5:5. In addition, as repeat size 

increased, the repeat length gain observed upon paternal transmission 

decreased, consistent with the observation in humans that congenital DM1 

usually results from maternal transmission of larger alleles (Seznec et al., 2000). 

Again, length and age-dependent somatic mosaicism was observed, with kidney, 

liver, and pancreas showing the highest levels of instability. Finally, it was 

shown the mice transgenic for the (CTG>300 repeat had severe muscle 

abnormalities, myotonia, and nuclear RNA foci in their myoblasts, phenotypes 

observed in human DM1 patients (Seznec et al., 2001).

A mouse knock-in model of DM1 containing the human DMPK region spanning 

exons 1 3 - 1 5  including a (CTG)s4 repeat in the orthologous position in the mouse 

Dmpk gene showed both age and tissue-specific somatic instability.

Interestingly, it was found that the genetic background of the mouse harbouring 

the mutant alleles affected overall levels somatic instability, suggesting the role 

of trans-acting factors in mediating repeat stability (van den Broek et al., 2002).
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A third mouse model, of particular relevance to the work presented here, 

created to model instability in DM1, is transgenic for approximately 1.2 kb of the 

3’ UTR of the human DMPK gene. The transgene, Dmt, used to generate the mice 

consisted of a (CTG)i62 repeat flanked by 100 bp of 5’ flanking sequence and 600 

bp of 3’ flanking sequence. Initial analysis of four such mouse lines (lines Dmt-B, 

C, D, and E) revealed modest levels of intergenerational and somatic instability 

(Monckton et al., 1997). Using SP-PCR, a more detailed analysis of somatic 

repeat length heterogeneity revealed significant age-dependent, expansion- 

biased instability in the tissues of the mouse line Dmt-D, but not in the lines 

Dmt-B, -C, or -E. Instability was pronounced in kidney, a 20-month-old mouse 

possessing repeats which had expanded to more than 650 CTG. As reported for 

human DM1 patients skeletal muscle also showed greater instability than blood 

(Fortune et al., 2000). Significantly, normalised for allele length, the levels of 

instability observed in this mouse model, are similar to those observed in blood 

of DM1 patients. Phenotypic data have yet to be reported for this mouse model.

1.5.3 The D m t-D mouse cell line model

Although whole-animal models of expanded trinucleotide disorders have proven 

powerful tools in the analysis of expanded repeat dynamics in many disorders, 

their generation and subsequent manipulation is necessarily time-consuming and 

frequently prohibitively expensive. The generation of cell culture models would 

provide more easily manipulated models of expanded repeat instability and 

present novel experimental avenues. To this end, cell cultures were established 

from lung, eye, and kidney tissue of a 6-month-old Dmt-D transgenic mice, with 

a repeat length of (CTG)i73, as estimated from tail tip DNA at weaning (Gomes- 

Pereira et al., 2001). After three-months in culture, all lines exhibited a typical 

fibroblast phenotype with a population doubling time of -30 hr. Lung and eye 

cell cultures showed very little  repeat length variation (± 5-10 repeats) even 

after 200 population doublings. The kidney cell lines showed highest levels of 

variability, expanding by -30 - 50 repeats after just 20 population doublings. 

Thus, the relative levels of repeat instability observed in these tissues in the 

mouse model (Fortune et al., 2000) are conserved between the cell lines. Cell 

lines derived from single cell clones of the kidney cell line also showed 

progressive expansion-biased instability, confirming that the principal dynamics
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of expanded repeat instability observed in humans and mouse models is 

conserved in this mammalian cell model (Gomes-Pereira et al., 2001).

1.6 Mechanisms of instability in the trinucleotide repeat 
disorders

The mechanism underlying expanded repeat instability is unknown. Given the 

striking similarities in repeat dynamics shared by all the trinucleotide disorders 

including expansion-biased, tissue-specific, age-dependent somatic mosaicism, 

and a broadly similar threshold length for instability, it is likely that the same 

process mediates instability in all disorders. As disease-severity increases with 

repeat length, the process of repeat expansion may offer a unique target for 

therapeutic action to all disorders.

1.6.1 Transcription

The involvement, if any, of repeat transcription in repeat instability is unclear, 

and largely supported by indirect evidence from mouse models. A role for 

transcription in repeat instability was suggested by the observation that in five 

HD mouse lines harbouring exon 1 of the human HD gene carrying an expanded 

CAG repeat (CAG112-CAG144), widespread somatic instability was only observed in 

the four mouse lines (lines R6/1, 2, 4, and 5) expressing the transgene. In 

contrast, the repeat was stable in the line, R6/0, in which expression of the 

transgene was not detected. Interestingly, the R6/0 line possessed a much 

longer repeat tract (142 CTG) than one of the lines, R6/1 (113 C TG ), exhibiting 

somatic instability (Mangiarini et al., 1997). Similarly, in the Dmt mouse model 

of DM1 (Monckton et al., 1997), the highest levels of transgene expression were 

observed in line Dmt’D, the line exhibiting greatest intergenerational and 

somatic instability. However, inter-tissue levels in transgene expression level did 

not correlate with the levels of somatic mosaicism observed between tissues 

(Fortune, 2001). Similarly, seven mice transgenic for a 45 kb region of human 

DNA encompassing the entire DMPK gene and carrying an unstable (CTG)ss repeat 

all showed expression of the repeat tract. However, inter-tissue transgene
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expression levels did not correlate with inter-tissue levels of repeat instability. 

Interestingly, a recent Drosophila model of MJD reported no germline instability 

in lines in which the transgene was not expressed. In contrast, three lines 

showing germline transcription of the transgenic repeat, exhibited expansion- 

biased, intergenerational instability (Jung and Bonini, 2007). However, as 

reported in mouse models, levels of instability were not correlated with levels of 

transcription. A study of somatic mosaicism and transcription in human tissues of 

individuals affected with SBAAA, reported a correlation between tissue instability 

and levels of the AR protein (Tanaka et a l ., 1999).

Taken together these data suggest that the occurrence of repeat transcription, 

but not necessarily levels of repeat transcription, may modify repeat instability. 

Thus, the association between repeat transcription and repeat instability may 

not reflect causality, but result from the requirement of a common factor 

necessary for both processes, such as an open chromatin state. A potential 

mechanistic explanation of the association of transcription and instability is 

discussed in the context of mismatch repair in a subsequent section.

1.6.2 Replication

An apparently intuitive mechanistic model of expanded repeat instability 

suggests that polymerase slippage during replication causes the expansions and 

contractions observed in trinucleotide disorders (Cleary and Pearson, 2005; 

Richards and Sutherland, 1992; Ruggiero and Topal, 2004). It was proposed that 

Okazaki fragments, generated during the 5’ to 3’ synthesis of lagging strand DNA 

were central to repeat instability. Due to its untethered nature, an Okazaki 

fragment could slip or form non-B-DNA structures during polymerisation, 

consequently reannealing out of register with the template strand, leading to 

expansions or contractions upon repair or resolution (Richards and Sutherland, 

1994). The observation that the threshold length for instability in trinucleotide 

repeat disorders (35-50 repeats; 105 - 150 bp) was not dissimilar to the length of 

Okazaki fragments (135 - 145 bp) seemed to lend weight to this expansion 

model. Subsequently, it has was shown that triplet repeats can form a variety of 

slipped-strand structures (S-DNA), and higher order structures in vitro (Pearson 

et al., 2002; Pearson et al., 1998b), although their existence is yet to be shown
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in vivo. Several variations of this basic model have subsequently been proposed. 

It was suggested that either the direction of replication through the repeat, or 

the relative proximity of the origin of replication of the repeat might alter 

instability by changing the lagging strand involved in Okazaki fragment 

polymerisation or by altering the initiation site of the Okazaki fragments at the 

repeat site, respectively. These models suggest that either direction of 

replication or origin of replication is changed on the mutant chromosome 

relative to the normal chromosome (Cleary and Pearson, 2005; Pearson et al., 

2002; Pearson et al., 1998b). However, no convincing evidence of involvement of 

direction of replication in repeat stability has been reported in mammalian 

systems.

Presence of the protein Flap endonuclease-1 (FEN-1), which acts in concert with 

other proteins to remove the RNA-primer at the 5’ end of Okazaki fragments for 

subsequent ligation to the main lagging DNA, strand increased the stability of 

expanded GAA«TTC repeats in vitro whereas FEN-1 deficiency increased 

expanded CTG»CAG instability in a yeast (Freudenreich et al., 1998). It was 

proposed that Okazaki fragments containing expanded repeats formed FEN-1 

resistant structures, leading to inefficient digestion by FEN-1, and consequential 

expansion of the lagging strand repeat tract (Gordenin et al., 1997). However, 

recent studies of FEN-1 deficiency found no effect of absence or 

haploinsufficiency of FEN-1 in a mouse model of DM1 instability, calling into 

question the suitability of yeast as a model system for expanded repeat 

instability (van den Broek et al., 2006).

Despite the appeal of this conceptually simple model, mounting evidence from 

mouse models and human patient samples refutes a major role for replication in 

expanded repeat instability. Data from mouse models of trinucleotide instability 

in DM1 (Fortune et al., 2000; Lia et al., 1998; van den Broek et al., 2002), HD 

(Kennedy and Shelbourne, 2000; Mangiarini et al., 1997), DRPLA (Sato et al., 

1999), and SCA7 (Libby et al., 2003) have failed to observe a correlation 

between the proliferative status of tissues and their degree of somatic 

mosaicism. Moreover, cell lines generated from a DM1 mouse model exhibiting 

expansion-biased age-dependent somatic mosaicism found no correlation 

between cell proliferation rate and instability (Gomes-Pereira et al., 2001).
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Indeed, apicidin-mediated inhibition of cell-division and replication in these 

cells did not reduce the levels of instability observed (Gomes-Pereira, 2002). In 

addition, the high levels of instability in the terminally-differentiated striatum 

of human HD patients argues that replication is not required for instability 

(Kennedy and Shelbourne, 2000).

1.6.3 Mismatch repair and expanded trinucleotide instability

DNA mismatch repair (MMR) is an evolutionary conserved system which serves to 

repair single base-base mismatches and 1 - 1 0  base mispairs, called 

insertion/deletion loops (IDLs), which occur in DNA. It is widely assumed that 

these mismatches occur primarily during replication by processes such as 

nucleotide misincorporation, polymerase slippage, and erroneous re-annealing of 

template and daughter strands. Thus, the MMR system serves to further improve 

the fidelity of replication by correcting errors missed by DNA polymerase 

proofreading. The importance of MMR is emphasized by the mutator phenotype 

observed in cells deficient for MMR, as most dramatically presented in tumors of 

hereditary non-polyposis colorectal cancer (HNPCC) patients, which show 

genome-wide microsatellite instability (de la Chapelle and Peltomaki, 1995).

AAMR is thoroughly reviewed elsewhere (Jiricny, 2006; Kunkel and Erie, 2005; Li, 

2008). The MMR system was first identified and characterised in E.coli. 

Subsequently, several components of the mammalian MMR system were 

identified by homology to their prokaryotic counterparts, and named 

accordingly. These include the human homologues of E.coli MutS, human MutS 

homologue 1 (MSH1), MSH2, and MSH6. The primary role of these ATPases is to 

recognise and bind to mismatches and IDLs, in order to initiate repair. The 

heterodimer MutSa, consisting of one copy of MSH2 and one copy of MSH6 binds 

single base-base mismatches and small (1-2 nucleotides) IDLs (Li, 2008; Palombo 

et al., 1995; Pearson et al., 1997) (Figure 1.2 A). Whereas the MSH2-MSH3 

heterodimer, MutSp, binds larger ( 3 - 1 6  nucleotides) IDLs (Genschel et al.,

1998; Li, 2008; Palombo et al., 1995) (Figure 1.2 B). Once bound, the MutS 

heterodimers recruit other repair proteins to the site of mismatch, most notably 

the MutL homologues, human MutL homologue 1 (MLH1), MLH3, postmeiotic 

segregation increased 1 (PMS1), and PMS2. The MutL homologues also
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Figure 1.2. Mismatch repair of single base-base mispairs and insertion/deletion loops.
A) The heterodimer MutSa recognises both single base-base mispairs and small IDLs, whereas
B) MutS(3 binds to larger IDLs (up to 16 nucleotides). Subsequent binding of the MutL heterodim ers 
initiates the repair process including strand discrim ination, exonulcease-m ediated removal o f the 
daughter strand region, and DNA re-synthesis and re-ligation. Normal B-DNA is shown in black. 
M ismatches are indicated in red.



heterodimerize into MutLa (MLH1+PMS2), MutLp (MLH1+PMS1), and MutLy 

(MLH1+MLH3). Little is known of the functions of MutLp and MutLy. Whereas 

MutLa seems to play an important role in coordinating and synchronising the 

downstream repair processes of strand-discrimination, exonuclease removal of 

the daughter strand segment, DNA re-synthesis and re-ligation (Kunkel and Erie, 

2005; Li, 2008) (Figure 1.2).

The observation that tumors of HNPCC patients exhibiting widespread 

microsatellite instability were deficient for components of the mismatch repair 

system, suggested that MMR could be a mediator of expanded trinucleotide 

repeat instability (de la Chapelle and Peltomaki, 1995; Vo et al., 2005). Indeed, 

instability was observed at the DM1 locus in breast cancer tumours (Shaw et al., 

1996). Subsequently, it was shown that purified human MSH2 bound slipped 

strand structures formed in both (CTG)3o-5o and (CAG)3o-so repeat tracts in vitro 

(Pearson et al., 1997). Interestingly, the binding affinity of MSH2 increased with 

increasing repeat length, further suggesting a potential link between AAMR and 

expanded repeat instability (Pearson et al., 1997). However, studies using mouse 

models of expanded trinucleotide instability, provided the most convincing 

evidence for involvement of AAMR in instability (Foiry et al., 2006; Gomes-Pereira 

et al., 2004; Manley et al., 1999; Savouret et al., 2003; Savouret et al., 2004; 

van den Broek et al., 2002; Wheeler et al., 2003).

Surprisingly, when crossed with MSH2-deficient mice, a HD mouse model in 

which both somatic and intergenerational instability was previously observed 

(Mangiarini et al., 1997), showed a dramatic reduction in instability at the 

transgenic HD locus compared to MSH2-proficient mice (Manley et al., 1999). 

Thus MSH2, which participates in both the MutSa and MutSp heterodimers, 

appeared to be required for instability, contrary to the loss of MSH2 function- 

induced microsatellite instability observed in HNPCC tumours. Similarly a 

‘humanised’ mouse model of HD in which a (CAG)m repeat was knocked-in to 

the murine HD locus showed progressive somatic expansion of the transgenic 

repeat in MSH2-proficient (HD111/+, MSH2+/+) mice. Whereas, no somatic 

instability was observed when these mice were crossed onto an MSH2 deficient 

(HD111/+, MSH2'1') background (Wheeler et al., 2003). Moreover, the appearance
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of expanded polyglutamine-staining nuclear aggregates was delayed in the MSH2- 

deficient mice (Wheeler et al., 2003). Mice transgenic for the human DM1 locus 

containing a >300 CTG repeat did not exhibit a significant change in overall 

mutability of the transgenic repeat when crossed onto a MSH2-deficient 

background (DMf300/+, MSH2'1'), but showed a marked shift from expansion- 

biased instability to a bias for contractions (Savouret et al., 2003). Taken 

together, these data certainly indicate a requirement for MSH2 in expansion- 

biased somatic instability.

To further dissect the relationship between AAMR and instability, mouse models 

of expanded repeat disorders were crossed onto backgrounds deficient for other 

components of the AAMR system. MSH2 recognises and binds to mismatches in 

vivo only as part of the MutSa and MutSp heterodimers, in which it is dimerized 

with MSH6 and MSH3, respectively. Two independent studies, in which different 

mouse models of DM1 repeat instability were crossed onto backgrounds lacking 

MSH3 (DM f84‘300/+, M5H3'/ ) showed a significant decrease in somatic instability 

compared to MSH3 positive mice (DM 184'300/+, MSH3+/+), consistent with the 

results observed for MSH2 deficiency (Foiry et al., 2006; van den Broek et al.,

2002). However, when crossed onto MSH6 deficient backgrounds (DM184'200/+, 

MSH6'1'), one study found a significant increase in the frequency of somatic 

expansions observed in some, but not all tissues (van den Broek et al., 2002), 

whereas the other study reported no difference in levels of somatic instability 

between the MSH6-deficient (DM 184'300/+, MSH&/ ) mice and MSH6-proficient mice 

(DM784'300/+, MSH6+/+) (Foiry et al., 2006). The observation that MSH6-deficient 

mice had decreased levels of both MSH2 and MSH3 in their ovaries, suggested 

that MSH6 deficiency may modify instability indirectly by altering levels of MutSp 

(Foiry et al., 2006). Taken together, these data suggest a major role for MutSp, 

responsible for recognising larger (3-15 nucleotides) IDLs, in instability.

The role of MutL proteins in instability is less well understood. Postmeiotic 

segregation increased 2 (PMS2) forms the MutLa dimer with MLH1. Mice, 

transgenic for the human DM1 CTG repeat were crossed onto a PMS2-deficient 

background to assess its role in somatic instability (Gomes-Pereira et al., 2004). 

PMS2-deficient DM1 mice (DM1U5/+, PMS21') showed a -50% reduction in the rate
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of somatic expansion compared to wild-type ( D M f 75l+, PMS2*f*). However, 

readily detectable somatic expansion was still present in PMS2-deficient mice, 

and mice heterozygote for PMS2 (DM7175/+, PMS2+ /) showed similar levels of 

instability to wild-type mice, showing that PMS2 is not absolutely required for 

instability. The authors proposed that the observed instability in the PMS2- 

deficient mice could be due to partial functional redundancy between MutL 

heterodimers (Gomes-Pereira et al., 2004).

Thus, it appears that both the MutS and MutL proteins are required for 

instability. The requirement of AAMR for instability powerfully argues against a 

replication-slippage model of instability, as if somatic expansions did accrue 

during replication, loss of AAMR would be expected to lead to an increase in the 

expansion rate. A cell division-independent, AAMR-mediated model of somatic 

expansion has been proposed Figure 1.3 (Gomes-Pereira et al., 2004). 

Complementary, non B-DNA slipped strand structures, S-DNA, form on opposite 

strands of a CAG«CTG repeat after DNA melting during processes such as 

transcription or chromatin remodelling, to which the MutSp heterodimer binds 

(Figure 1.3 A-B). In the absence of a strand-discrimination signal, it was 

suggested that repair would be conservative, favouring incorporation of the 

loop-out over excision. Thus, independent repair of the complementary loop-out 

structures leads to expansion of the repeat by the length of one loop-out. As the 

IDLs bound by MutSp are typically 3- 10 nucleotides long (though occasionally 

longer < 16 nucleotides), this model would lead to expansions of one to three 

repeats per cycle (Figure 1.3 C-H). Although this model can explain many of the 

characteristics of expanded repeat instability observed in humans and mouse 

models such as cell-division independence, requirement of a competent AAMR 

system and expansion in small ( 1 - 3  repeats) units, there is no direct evidence 

to support some of its underlying assumption such as the formation of 

complementary slipped strand structures at unstable expanded loci, and 

preference for incorporation over excision of loop-out structures by the AAMR 

system.
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Figure 1.3 Inappropriate m ism atch-repair (MMR) model of triplet repeat expansion.
A) Complimentary, small (1-3 repeats) S-DNA structures form on opposite strands of an expanded 
repeat tract B), which are recognised by the MutSp heterodimer. C) MutSp recruits a MutLp 
heterodimer D), and subsequent exonuclease activity, possibly carried out by the protein EX01, 
results in gap formation. E) Filling of the gap by a polymerase and subsequent ligation of the 
product completes repair o f the S-DNA. This restores the repeat tract to its original length, that is, 
its length before formation o f the S-DNA structures. F-H) Subsequent repair o f the complem entary 
S-DNA structure on the opposing strand leads to elongation of the repeat tract. Repeat DNA is 
indicated in blue, S-DNA in red, and non-repetitive flanking DNA in black (after Gomes-Pereira and 
Monckton, 2006).



The S-DNA structures central to this model have yet to be observed at expanded 

repeat loci in vivo. The instability changes observed in mouse knock-outs of MMR 

components may be due to other trans-effects induced by genome-wide mutator 

phenotype observed in such animals (Wheeler et al., 2003). Moreover, the 

absence of MSH2 in one HD mouse model did not completely inhibit instability 

but changed the ratio of contractions to expansions observed upon transmission 

in a sex-of-parent dependent manner, indicating, that MSH2 independent factors 

are also involved in germline instability (Wheeler et al., 2003).

1.7 C/s-acting modifiers of expanded repeat instability

1.7.1 Evidence of cis -acting modifiers of expanded repeat instability

In addition to the trans-effect of the mismatch repair system, the tissue- 

specificity and parent-of-origin effects on expanded trinucleotide instability 

suggests the involvement of many other trans-acting factors in repeat instability. 

In addition to these trans-acting modifiers considerable in vivo evidence suggests 

the involvement of c/s-acting modifiers of expanded repeat instability. Although 

a pool of thousands of CAG*CTG microsatellites is present in the human genome, 

expanded repeat instability occurs at very few loci, suggesting a role for local 

sequence elements in facilitating instability. Moreover, despite containing the 

same CAG«CTG repeat configuration, many expanded repeat loci show markedly 

different levels of intergenerational instability when normalised for progenitor 

repeat length, suggesting a modifying influence of genomic location on repeat 

stability (Brock et al., 1999). Evidence from mouse models of expanded repeat 

instability also suggests a role for c/s-elements in instability. A mouse model of 

DM1 transgenic for a (CTG)i62 repeat and 750 bp of human DM1 locus flanking 

sequence showed significantly differing levels of instability between lines, 

suggesting an effect of site of integration on stability (Monckton et al., 1997). 

Interestingly, a mouse model in which mice carried a much smaller repeat (55 

CTG) but were flanked by 45 kb of flanking human sequence exhibited 

intergenerational instability in 6 out of 7 lines (Gourdon et al., 1997). Thus, 

shorter transgenic repeats can be rendered unstable by incorporating more
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human flanking sequence. Moreover, mouse lines transgenic for a (CTGboo 

repeat tract flanked by the same 45 kb of human flanking sequence showed 

different patterns of somatic mosaicism between tissues (Seznec et al., 2000), 

again implicating cis-sequences in modifying instability. Finally, a SCA7 mouse 

model in which transgenic lines carried a (CAG)g2 repeat flanked by either its 

full-length human cDNA sequence (cSCA7) or by 13.5 kb of its genomic sequence 

(gSCA7) showed strikingly different level of repeat instability (Libby et al.,

2003). Mice carrying the SCA7 repeat in its genomic context showed both 

intergenerational and somatic instability, whereas the SCA7 cDNA mice showed 

little  instability, despite a high level of transcription. Moreover, independent 

mouse lines carrying the gSCA7 transgene lacking much of its original 3’ 

sequence showed little instability, suggesting that the deleted 3’ sequence 

contained c/s-elements necessary for instability (Libby et al., 2003). However, as 

few mouse lines were analysed in this study, it is possible that the observed 

differences were due to site-of-integration c/s-effects, as reported in the DM 

mouse models.

1.7.2 Internal c/s-acting modifiers of expanded repeat instability

The observation that all expanded trinucleotide disorders have a threshold 

repeat length, typically 35 - 50 repeats, below which dramatic instability is not 

observed, suggests that repeat-length is a major c/s-acting modifier of repeat 

stability (Cummings and Zoghbi, 2000b). Moreover, alleles in the expanded 

disease-associated range also exhibit length-dependent somatic and 

intergenerational instability in both human patients (Lavedan et al., 1993; 

Monckton et al., 1995; Telenius et al., 1994; Wong et al., 1995) and mouse 

models of expanded repeat instability (Seznec et al., 2000). The purity of the 

repeat tract at the disease loci also exhibits a powerful effect on repeat 

dynamics. The importance of repeat interruptions was highlighted by the 

observations that expanded unstable repeats at the SCA1 and SCA2 loci are 

always uninterrupted, whereas 98 % of the normal length stable alleles at these 

loci contain interruptions (Choudhry et al., 2001; Chung et al., 1993). Similarly, 

expanded unstable alleles at the FMR1 locus have typically lost one or both of 

the AGG interruptions present in the majority of normal length alleles (Eichler et 

al., 1994). Moreover, analysis of independent cases of expanded (> 40 CAG), but
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stable, SCA1 alleles have found the repeat tract to contain one or more 

interruptions (Chong et al., 1995; Frontali et al., 1999; Quan et al., 1995). With 

the exception of the GAA repeat underlying Friedreich ataxia all the triplet 

repeat disorders are caused by an unstable repeat with the composition (CNG)n, 

suggesting an influence of repeat sequence on instability.

How these internal cis-elements modify repeat stability is unknown. Repeat 

tract, length, purity and sequence may all affect the ability of the repeat to 

form instability mediating secondary structures. It has been shown that repeats 

of the type CAG»CTG have the propensity to form hairpins in vitro, and that the 

stability of these hairpins was repeat length-dependent (Gacy et al., 1995). 

Other in vitro studies found that the propensity of genomic SCA1 and FRAXA DNA 

to form S-DNA structures increased with repeat-length, whereas S-DNA structure 

formation was reduced by the presence of interruptions (Pearson et al., 1998a). 

The effect of repeat characteristics on the potential to form S-DNA structures is 

particularly interesting in context of the S-DNA initiated MMR-mediated model of 

expansion outlined previously. However, it is important to emphasise that none 

of these repeat structures have yet been identified in vivo.

1.7.3 Flanking sequence composition

Normalising for progenitor allele length it was found that the intergenerational 

instability of expanded repeat loci differ significantly (Brock et al., 1999). The 

same study detailed a significant positive correlation between the CG content of 

sequences flanking the expanded loci and their instability, suggesting an effect 

of flanking sequence composition on instability (Brock et al., 1999). 

Unfortunately, data are too sparse to determine if the relationship between 

intergenerational instability and flanking CG content is also true for somatic 

instability. How flanking CG content could modify instability is not known. 

Flanking sequence composition could affect the ability of the repeat to form 

certain higher order secondary structures (Michlewski and Krzyzosiak, 2004) or 

affect the melting potential of the locus, and thus the potential of the repeat to 

form S-DNA structures. A high number of guanine nucleotides flanking the repeat 

may undergo oxidative damage, initiating the base excision-repair pathway, 

which has also been suggested as a mediator of expansion (Kovtun et al., 2007).

44



It is possible that flanking GC content is a side-effect of higher order sequence 

requirements such as genic-location (i.e. proximity to the promoter region), 

CTCF-binding sites, nucleosome-phasing and chromatin structure, or CpG islands.

1.7.4 Epigenetic c/s-elements

As the length threshold of repeat instability (30-50 repeats) in most expanded 

trinucleotide repeat disorders approximates the number of bases found in a 

nucleosome (146 bp), chromatin structure has been suggested has a possible 

modifier of repeat instability (Wang, 2007). Using electron microscopy, it was 

found in vitro, that expanded DM1 CTG repeats formed very stable nucleosomes, 

suggesting that the CAG*CTG repeats might profoundly alter local chromatin 

structure (Wang and Griffith, 1995). In contrast, a subsequent study, found that 

CCG repeats from Fragile X patients, displayed strong nucleosome exclusion 

properties in a repeat-length dependent manner (Wang et al., 1996). The results 

of an independent study were in agreement with the previous studies and also 

reported that CAT or AGG interruptions within the (CAG)n and (CGG)n tracts of 

DM1 or fragile X syndrome, respectively, significantly reduced the nucleosome 

forming potential of the repeat tracts (Mulvihill et al.,  2005). Interestingly, in a 

small study employing primary fibroblast cell lines derived from DM1 individuals, 

loss of a DNase hypersensitive site 3’ of the repeat tract in expanded alleles 

suggesting transition from a relaxed to more condensed chromatin formation 

upon repeat expansion (Otten and Tapscott, 1995). Thus, expanded repeat 

sequence seems to have the potential to dramatically alter local chromatin 

structure.

In addition to sequence composition effects, epigenetic modification of 

bases within and surrounding expanded loci may play a role in determining 

chromatin structure at disease loci. CpG methylation is involved in regulation of 

both DNA structure and function including X-inactivation, genomic imprinting, 

regulation of gene transcription and chromatin re-modelling (Bernstein et al., 

2007; Takai and Jones, 2002). The majority of expanded repeat loci are located 

within or proximal to CpG islands, suggesting that CpG methylation of flanking 

sequences may be a cis-acting modifier of instability (Brock et al., 1999).

Indeed, the observation that the expanded unstable disease alleles and their 

flanking sequences in the FMR1 gene are completely methylated, whereas
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normal alleles possessed little or no methylation showed a direct association 

between CpG methylation and instability (Hornstra et al., 1993). Unlike the 

CGG»GCC repeat at the FMR1 locus, the CAG*CTG repeat disorders do not 

possess any internal CpG sites. However, hypermethylation of flanking sequences 

of expanded repeats was observed in congenital DM1 cases whereas shorter 

repeats were hypomethylated (Steinbach et al., 1998). The authors suggested 

that methylation might ablate binding of Sp1 proximal to the repeat thereby 

altering chromatin structure. A methylation-mediated alteration of chromatin 

structure was supported by a study of epigenetic properties of the DM1 locus 

(Filippova et al., 2001). It was found that the DM1 repeat was flanked by two 

CTCF-binding sites, and that methylation of these sites resulted in ablation of 

CTCF-binding. CTCF is a zinc-finger DNA binding protein which can act as a 

barrier to the propagation of condensed chromatin along a DNA molecule, as an 

insulator element mediating the interaction between enhancer and promoters. It 

was later shown that ablation of CTCF-binding removed resulted in antisense 

transcription through the DM1 repeat emanating from the promoter region of the 

SIX5 gene, located 3’ of the DMPK gene (Cho et al., 2005). In addition, loss of 

CTCF binding also affected the distribution of histone methylation across the 

locus, which may reflect changes in chromatin state. Significantly, CTCF-binding 

sites have been identified at many other expanded repeat loci (Filippova et al., 

2001).

However, despite the plethora of data associating epigenetic alterations with 

expansion of trinucleotide repeat loci, it is not clear how these changes might 

affect instability. Although it is possible that spread of heterochromatin at 

expanded disease loci affects transcription of the repeat, expression levels of 

expanded repeat loci do not correlate with their instability (see transcription 

section). Alternatively, it is possible that chromatin state modifies either the 

potential of the expanded repeats to form S-DNA structures or the ability of the 

mismatch repair machinery to correctly process S-DNA.
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1.8 Project Aims

1.8.1 Hypotheses

Based on the evidence outlined heretofore, the following hypotheses were 

proposed:

(i) Somatic repeat instability is a major modifier of age at onset of 

symptoms and disease progression in expanded trinucleotide repeat 

disorders.

(ii) C/s-acting elements are major modifiers of expanded trinucleotide 

instability.

(iii) C/s-acting elements are major modifiers of microsatellite instability.

1.8.2 Aims

A considerable body of in vitro and in vivo evidence suggests a role for c/s-acting 

modifiers of repeat stability. We propose to identify these elements by 

generating mammalian cell culture model systems of expanded repeat 

instability. Using published data of both locus instability and age at onset for the 

polyglutamine disorders, we intend to investigate the relationship between 

instability and disease progression. In addition, employing genome sequence 

data, we will attempt to identify sequence-based c/s-acting modifiers of repeat 

stability using bioinformatic techniques. Similarly, we will attempt to identify 

c/s-acting modifiers of genome-wide microsatellite instability by analysis of 

whole genome analysis of primate microsatellite flanking sequences.

It is hoped that the identification of such c/s-elements will add to our knowledge 

of the process of instability in these disorders and potentially offer new routes 

for therapeutic intervention.
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2. Materials and methods

Standard laboratory methods were performed as described in Sambrook and 

Russell (2001), unless stated otherwise.

2.1. Materials

The chemicals, molecular biology reagents, enzymes, kits, plastics and glassware 

used were obtained from suppliers such as Sigma-Aldrich Inc, New England 

Biolabs Ltd, Promega UK Ltd, Invitrogen Ltd and Qiagen GmbH, unless stated 

otherwise.

2.1.1 Cloning vectors

The vectors used to clone the transgenes generated in this project are outlined 

in Table 2.1.

Table 2.1: Vectors used in the course of this research project

Vector Name Source Use Further Information
pIRES-EGFP 
pGEM-T Easy 
pBluescript II 
PSURF2 
PJC5-4CD 
PPNT

Clontech
Promega
Stratagene
D. Porteous, Edinburgh 
A. West, Glasgow 
C. Haworth, Glasgow

EGFP cassette 
General cloning 
General cloning 
HyTK cassette 
HS4 insulator 
Neo cassette

www.Dromeaa.com 
Accession #: X52328 
(Boyd etal., 1999)
(Bell etal., 1999) 
(Tybulewicz etal., 1991)

2.1.2. Oligonucleotides

Custom oligonucleotides were designed with Primer3 primer design software 

(h ttp ://frodo .w i.m it.edu /), and were obtained from Sigma-Aldrich Inc. The 

primers used in the course of this research are presented in Table 2.2. 

Transgene binding sites are illustrated in Figure 4.2.

Table 2.2: Oligonucleotide name, sequence, melting temperature (Tm), and target sequence 

Name_______ Sequence (5’-3’)__________________________________ Tm Target
DM-C AACGGGGCTCGAAGGGTCCT
DM-BR CGTGGAGGATGGAACACGGAC
DM-H t c t c c g c c c a g c t c c a g t c c

DM-F c t g a c g t g g a t g g g c a a a c t g c

72°C Dmt transgene 
71 °C Dmt transgene 
66°C Dmt transgene 
73°C Dmt transgene
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DM-CR AGGACCCTTCGAGCCCCGTTC 73°C Dmt transgene
DM-ER AAATGGTCTGTGATCCCCCCA 67°C Dmt transgene
DM- GTCCGGTACCGAATTCCGCTAGCTCCTCCCAGACCTTC 70°C Dmt transgene
PRENK
MDmtD-B CACACCCTCCACTGACAGAA Mouse genome 5’ to 

DmtD transgene
MDmtD- AGCAGCTTGGATGCCTGTGGTA 60°C Mouse genome 3’ to
MR DmtD transgene
neoF1 CCTGCAGGTCAATTCTACCG 64°C neo cassette
neoR1 GGGGGAACTTCCTGACTAGG 64°C neo cassette
neoF4 GGCTACCCGTGATATTGCTG 64°C neo cassette
T7 GTAATACGACTCACTATAGGGC 60°C Vector sequences
T3 AATTAACCCTCACTAAAGGG 56°C Vector sequences
M13R GGAAACAGCTATGAC CATG 54°C Vector sequences
M13 (-21) GTAAAACGACGGCCAGTG 58°C Vector sequences
SP6 ATTTAGGTGACACTATAGAA 45°C Vector sequences
CMV_F1 CAAGTCTCCACCCCATTGAC 64°C HyTK cassette
Hygro_F1 GCCTGACCTATTGCATCCCC 64°C HyTK cassette
TK F1 AGAAAATGCCCACGCTACTG 64°C HyTK cassette
TK F2 T T  C CGGAGGACAGACACAT C 65°C HyTK cassette
TK F4 TCCTGGATTACGACCAATCG 65°C HyTK cassette
TK R1 TTGGCAAGTAGCCCGTAAAC 64°C HyTK cassette
TK R2 TCAGTTAGCCTCCCCCATC 64°C HyTK cassette
mP2-1 TTCGGTGACAGATTTGTAAATG 55°C Mouse Pms2 gene
mP2-5 GACTTCCAAAAACCCTGGTG 63°C Mouse Pms2 gene
Primer extensions containing restriction enzyme sites are underlined

2.1.3 Photographic and imaging equipment

Ethidium bromide stained agarose gels were visualised on a dual intensity 

transilluminator, and their image recorded via a digital camera connected to a 

desktop computer. Digital manipulation of gel images was carried out using 

Adobe® Photoshop® 7.0 software.

Mammalian cells were photographed in the visual and ultra-violet range using a 

Canon EOS300 camera connected to a Zeiss Axiozert S100 microscope.

X-ray autoradiographs were developed using a Konica-Minolta SRX-101A tabletop 

film processor.

2.1.4 General solutions

Denaturing solution

0.5 M NaOH, 1.5 M NaCl in dH20.
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Depurinating solution  

0.25 M HCl in dH20 .

N eutralis ing  solution

1.5 M NaCl, 0.5 M Tris-HCl in dH20 , pH 7.5.

H ybrid isation  solution

7% (w /v) SDS, 0.5 M sodium phosphate, 2 mM EDTA in dH20 , pH 7.2. 

2 0 X  SSC

3.0 M NaCl, 0.3 M sodium citrate in dH20, pH 7.0.

High stringency wash solution  

0.2% (w /v) SDS, 0.2 X SSC.

5X  Orange G loading dye

0.06% (w /v) Orange G, 50% (v/v) glycerol in dH20.

1kb+ DNA ladder (Inv itrogen)

60 ng/ul 1 kb ladder, 1X DNA loading dye in 1X TBE.

0.5%  TBE (Tris-borate-ED TA ) b u ffe r

45 mM Tris, 45 mM Boric Acid, 1 mM EDTA in dH20 , pH 7.0.

1 x 7 AE

40 mM Tris*Acetate pH 8.2, 1 mM EDTA in dH20.

TE b u ffe r

10 mM Tris*HCl pH 8.0, 1 mM EDTA in dH20.
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1X Custom PCR m ix  (ABgene)

45 mM Tris»HCl pH 8.8, 11 mM ammonium sulphate, 4.5 mM MgCl2, 6.7 mM p- 

mercaptoethanol, 4.4 pM EDTA, 1mM dATP, 1 mM dCTP, 1mM dGTP 1mM dTTP 

and 113 pg/ml BSA.

2.1.5 Tissue culture material

Tissue culture plasticware was obtained from Corning and Nalgene. Media, 

serum, antibiotics and reagents were obtained from Invitrogen (Gibco) and 

Sigma.

Dulbecco’s m odified  Eagle medium  (DMEM)

DMEM with 4500 m g/l D-Glucose, 110 mg/l Sodium Pyruvate, 862 mg/l L-Alanyl- 

L-Glutamine (GlutaMAX).

F o eta l bovine serum (FBS)

Heat inactivated, virus and mycoplasma tested, EU origin. 

Penicillin -streptom ycin solution (PSS)

Stock solution: 10,000 U/m l penicillin and 10,000 pg/ml of streptomycin utilising 

penicillin G (sodium salt) and streptomycin sulphate: prepared in normal saline. 

Working concentration: 100 U /m l penicillin, 100 pg/ml streptomycin.

Standard Growth Medium

DMEM with 10% (v/v) FBS, and 1% PSS (v/v).

Dulbecco’s Phosphate-Buffered Saline (D-PBS)

200 mg/l KCl, 200 m g/l KH2P04, 8,000 mg/l NaCl, and 2,160 m g/l Na2HP04-7H20. 

Trypsin-EDTA (10X)

Stock solution: 5 g /l Trypsin, 2 g /l EDTA»4Na, and 8.5 g /l NaCl 

Working concentration: 0.5 g /l Trypsin, 0.2 g /l EDTA«4Na in D-PBS
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G eneticin Liquid (G -418 Sulphate)

Stock Solution: 50 mg/ml active Geneticin® in CIH2O

Hysrom ycin B

Stock Solution: 50 mg/ml hygromycin B in D-PBS
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2.2 Methods

2.2.1 Tissue culture methods

All tissue culture work was carried out in a dedicated tissue culture laboratory in 

a category 2 laminar flow cabinet. The mouse DmtD kidney cell line, D2763K, 

hemizygous for the Dmt-D transgene, was supplied by Dr Mario Gomes-Pereira 

(Gomes-Pereira et al., 2001). HeLa cells were provided by Dr Christine Haworth.

Subculturing o f  cell lines

Cultured cells were grown in 25 cm2 vented flasks at 37°C and 5% CO2 . Growth 

media was aspirated from the culture flask taking care not to dislodge cells with 

the pipette tip. Cells were washed twice with 5 ml of D-PBS, after which 2.5 ml 

trypsin-EDTA (1 ml for HeLa cells) were added and the flask incubated at 37°C, 

5% CO2 for seven minutes (five minutes for HeLa cells). The culture was then 

examined under a light microscope to ascertain if the cells had successfully 

rounded up and lifted off the flask surface into suspension. If cells had failed to 

rise into suspension, the flask was gently tapped on the side and placed back in 

the incubator for a further 2 minutes. If the culture failed to lift from the flask 

surface, a sterile cell-scraper was used to dislodge cells into suspension. Trypsin 

was inactivated by the addition of 2.5 ml of culture medium (4 ml for HeLa 

cells). The suspension was repeatedly drawn into a 5 ml pipette to fragment cell 

clusters. An aliquot of cell suspension (typically 0.5 ml) was added to a fresh 

culture flask and made up to a final volume of 7 ml with fresh culture medium. 

Split ratios varied between 1:7 and 1:14, unless stated otherwise.

Volumes of reagents used were adjusted appropriately when using larger (75cm2 

or 125 cm2) culture vessels.
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Determination o f population doubling times

Following digestion with trypsin-EDTA and neutralisation with standard culture 

medium, a drop of cell suspension was added to a haemocytometer. Cells were 

counted under a light microscope and the number of cells/ml calculated. At 

least 100 cells were counted when possible. Cell counts from at least 3 

successive splits were used to calculate the population doubling times as follows 

(Martin, 1994):

ppT ln(N/No) 
t

where PDT is the population doubling time,

In is the natural log of the number,

N is the final cell count,

No is the initial cell count,

T is the time interval between No and N.

D eterm ination  o f  an tib io tic  k ill curves

Cells were trypsinised and resuspended in cell culture medium as outlined 

above. Approximately 400 cells were then added to each well of a six-well plate 

containing increasing concentrations (50 pg/ml - 1000 pg/ml) of the given 

antibiotic. The number of colonies (>5 cells) present at each concentration of 

antibiotic after 7 days was counted under a light microscope. Percentage 

survival at each antibiotic concentration was determined by expressing the 

number of colonies present as a fraction of the number of colonies present in 

the absence of antibiotic (0 pg/ml). The minimum concentration of antibiotic 

required to affect 0% survival after 7 days was used to select for cells stably 

transfected with the resistance gene.

Transfection o f  m am m alian cells

Mammalian cells were transfected via cationic lipid transfection using the 

reagent Lipofectamine™ 2000 (Invitrogen) as per the manufacturer’s 

instructions. In brief, cells were trypsinised, resuspended in cell culture
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medium, and counted as outlined above. Then, 5x105 cells were added to wells 

of a six-well plate containing 2 ml of culture medium and incubated in standard 

conditions for -24 hr until the culture was at least 90 % confluent.

The cell culture medium was aspirated from each well and replaced with 0.5 ml 

serum-free medium. Lipid-DNA complexes were formed by mixing DNA (5 ng - 30 

ng) and Lipofectamine™ 2000 (5 pi - 10 pi) in 500 pi of Opti-MEM® (Invitrogen) 

solution, followed by incubation at room temperature for 25 min. This solution 

was then added to each well and incubated in standard conditions for 4 hrs, at 

which time a further 1 ml DMEM (20% FBS) was then added to resulting in a final 

concentration of 10% FBS in each well.

Approximately 24 hr later, cells were trypsinised and resuspended in cell culture 

medium as described above, each transfected sample being split onto four 90 

mm culture dishes containing a final volume of 8 ml of standard growth medium 

and the desired concentration of antibiotic.

Iso lation o f  drug resistant clones

Cell culture dishes containing transfected cells were inspected 8-12 days post­

transfection by eye and light microscopy. The position of individual colonies was 

marked on the base of the dish with a fe lt tipped pen. The culture medium was 

removed from the dish and cells were washed gently with 5 ml of D-PBS. A dry, 

sterile glass ring was placed over each colony to which one drop (from a 200 pi 

pipette) of trypsin was then added. The dish was incubated at 37°C for 5 min. 

Care was taken not to disturb the rings on transfer to the incubator. The 

trypsinised cells were transferred to individual wells of a 24-well plate 

containing 1 ml standard growth medium without antibiotic. Upon reaching 

confluence cells were transferred to 12-well, and subsequently 6-well plates, 

from which they were transferred to 25cm2 flasks.
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Cyro-preservation of mammalian cell lines

Cells were trypsinised, resuspended in cell culture medium, and counted as 

outlined above. 1x106 cells were spun down by centrifugation at 300 g for 5 min. 

The supernatant was removed, taking care not to disturb the pellet, and the 

pellet resuspended in 1ml cell culture freezing medium (Recovery™, Invitrogen). 

The cell solution was transferred to a cryovial (NALGENE) and placed in a “Mr 

Frosty” freezing container (NALGENE) overnight at -80°C. The vials were then 

transferred to liquid nitrogen tanks.

E xtrac tio n  o f  nucleic acids fro m  m am m alian cells

DNA was extracted from cell cultures using a DNeasy® Mini Kit (Qiagen) as per 

the manufacturers instructions. RNA was extracted using an RNeasy® Mini Kit 

(Qiagen) as per the manufacturers instructions.

2.2.2 Molecular cloning 

Standard  m olecular cloning

Standard molecular cloning techniques followed the instructions set out in 

Sambrook and Russell (2001).

Plasmid DNA was purified from bacterial cultures using a QIAprep® Spin Miniprep 

Kit or EndoFree® Plasmid Maxi Kit (both Qiagen) depending upon desired final 

yield.

DNA fragments were purified from agarose gels using a QIAquick® Gel Extraction 

Kit according to the manufacturers instructions.

Plasmids were carried in Library Efficiency DH5a™ cells (Invitrogen).
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Molecular cloning o f expanded repeats

As long tandem repeats are unstable in bacteria undergoing frequent large 

deletions, bacterial colonies were screened for retention of the full-length 

repeat after every cloning step involving growth in bacteria. To further reduce 

the occurrence of deletion events MAX Efficiency® Stbl2™ Competent Cells 

(Invitrogen) were employed where possible.

2.2.3 Small-pool PCR

A detailed description of the theory and application of small-pool PCR (SP-PCR) 

is given in Gomes-Pereira et al. (2004), and is summarised here.

Sample p rep a ra tio n

The quality and quantity of sample DNA was assessed by UV spectroscopy and gel 

electrophoresis on a 0.8% TBE agarose gel. To reduce intra-aliquot variation 400 

ng of sample DNA was digested overnight with H/ndlll restriction endonuclease.

Digested DNA was serially diluted with 1 x TE buffer containing 0.1 pM of primer 

DM-C (carrier primer). The carrier primer, which is usually the forward primer to be 

used in the PCR reaction, serves to protect against loss of DNA due to 

degradation and adsorption of DNA onto the surface of the tube. Samples were 

typically diluted to 1 ng/pl, 500 pg/pl, 100 pg/pl and 20 pg/pl.

PCR

All SP-PCRs presented here consisted of forward primer DM-C (0.1 pM), reverse 

primer DM-BR (0.1 pM), 1x PCR buffer, 0.175 U Taq DNA polymerase, and 0.5 pi 

of sample DNA made up to a final volume of 7 pi with water. Each final reaction 

was covered with 20 pi of mineral oil to prevent evaporation. Amplification was 

performed in a standard bench top thermal cycler with a heated lid (105°C). An 

initial denaturing step was performed at 96°C for 180 s followed by 28 cycles of 

denaturing at 96°C for 45 s, annealing at 68°C for 45 s, and extension at 70°C for
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180 s. A final annealing step of 68°C for 60 s and extension step of 70°C for 600 s 

were then performed.

Gel electrophoresis

Each reaction was brought to a final volume of 10 jul by addition of 3 pi loading 

buffer, and 5 pi of the resulting mix was loaded onto a 1.5% (w /v) TBE agarose 

gel (20 x 40 cm) containing 500 nM ethidium bromide. Products were resolved in 

0.5x TBE running buffer in a refrigerated room. An initial voltage of 300 V was 

applied for 20 min followed by 200 V for 20 hr. Progression of DNA migration 

through the gel was determined by visualisation of the DNA ladders on a UV 

transilluminator.

Southern “squash” b lo ttin g

The regions of each gel not required for blotting were removed with a scalpel. 

Each gel was rinsed in dHzO and immersed in depurinating solution in a large 

tray for 10 min on a bench-top orbital shaker. The gel was then similarly washed 

with denaturing solution for 30 min and neutralising solution for 30 min, rinsing 

the gel with dhhO between each step.

Gels were then transferred to a bench covered with Saran Wrap. One sheet of 

nylon membrane (Nytran N, Amersham) followed by two sheets of blotting 

paper, all of which were pre-soaked in neutralising solution, were placed atop 

the gel; care being taken to expel any air bubbles between the layers by gently 

rolling a glass pipette across the surface of the nylon membrane and 

subsequently the blotting paper. The blot was then topped with approximately 6 

cm of paper towels and a glass plate carrying a weight of 1 kg. Transfer of DNA 

from the gel to the nylon membrane by capillary action was allowed for 16 h, at 

which time the blot was deconstructed and the membrane dried at 80°C for 2 h. 

DNA was fixed to the membrane by exposure to 1,200 J /m 2 of UV light.
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Hybridisation o f PCR products transferred to the nylon membrane

Membranes were soaked in dhhO, rolled and placed in a hybridisation bottle, to 

which 5 ml hybridisation solution was added. The bottle was incubated at 65°C 

in a rotating hybridisation oven for at least 45 min.

Double stranded DNA (-30 ng) and 2.5 ng of DNA marker were labelled with a -32P 

dCTP using Ready-To-Go™ Labelling Beads (Amersham) according to the 

manufacturers instructions. The radiolabelled probe was added to the 

hybridisation bottle along with 5 ml fresh hybridisation solution and incubated 

overnight at 65°C in a rotating oven.

The hybridisation solution was poured off and the membrane rinsed with wash 

solution, twice at 65°C in the hybridisation tube for 30 min and finally by shaking 

for 30 min in a large tray of wash solution. The membrane was dried for 2 h at 

80°C and exposed to an X-ray film for 4 - 16 h.

2.2.4 RNA analysis

All RNA work was carried out in a dedicated RNA lab. All solutions were made up 

with 0.1% (v/v) diethyl pyrocarbonate (DEPC)-treated water.

RNA ex trac tio n

Total RNA was extracted from cultured cells using an RNeasy® Mini Kit (Qiagen) 

according to the manufacturers instructions. RNA concentration and quality was 

determined by analysing sample absorbance at wavelengths of 260 and 280 nm, 

using a NanoDrop® ND-1000 spectrophotometer. A ratio of sample absorbance at 

260 and 280 nm of 2.0 - 2.1 indicated a pure RNA sample.

Sample quality was also analysed by gel electrophoresis of 2,500 ng of RNA on a 

1.35% TAE, 0.1% SDS, agarose gel. RNA was subsequently stained with ethidium 

bromide and visualised with UV light.
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cDNA synthesis

Prior to reverse transcription, RNA samples were treated with DNase I (RQ1 

RNase-free DNase I, Promega) to remove contaminating genomic DNA, according 

to the manufacturers instructions.

cDNA was synthesised from RNA prepared as outlined above. First strand cDNA 

synthesis was performed using Superscript II™ reverse transcriptase (Invitrogen) 

and random hexamers (Roche) according to the manufacturers instructions. 

2500ng of RNA were used in all reactions. Reactions lacking reverse transcriptase 

(RT) were also performed. Such RT- reactions allow for determination of the 

contribution of contaminating genomic DNA template to subsequent PCR 

amplifications from cDNA samples.

RT-PCR

Amplification of cDNA was performed using gene specific primers and standard 

PCR parameters.

2.2.5 Methylation assays

With the exception of Turbo™ NaeI (Promega), all methylation sensitive 

restriction enzymes and methylases were obtained from New England Biolabs, 

and used in accordance with the manufacturer's instructions.

2.2.6 Statistics and bioinformatics 

S tatis tics

SPSS® and Microsoft Excel were used for small-scale statistical calculations and 

data manipulation. For large-scale operations, statistical methods were 

implemented in the Perl programming language.
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Bioinform atics

All custom written software was implemented in the Perl (v5.8.4) programming 

language on a standard desktop PC. A MySQL relational database server (v12.22) 

was used for storage and manipulation of large datasets.

A computing cluster of 60 dual-processor Linux servers was used to carry out 

BLASTing of genome-wide microsatellite flanking sequences.

Online b io in form atics  resources

The following online resources were used for data acquisition and analysis during 

the course of the work presented here:

Ensembl Genome Browser http://www.ensembl.org/index.html

>  Genomic sequence data

>  Gene sequence data

NCBI http://www.ncbi.nlm .nih.gov/

>  Gene sequence data

>  BLAST

ExPASy Proteomics Server http://expasv.org/

>  ProtScale - protein primary sequence analysis

SAM http://www.soe.ucsc.edu/compbio/sam.html

>  Secondary structure prediction

Primer3 h ttp ://frodo .w i.m it.edu /

>  Primer design
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3. Correlation of polyglutamine toxicity with CAG*CTG 
triplet repeat expandability and flanking genomic DNA 
GC content

This chapter has been submitted as a journal article and was under review at the time of 
submission. It is presented here as such, and contains minor alterations suggested by Professor 
Darren G Monckton.

3.1 Introduction

Expanded tri-nucleotide repeat instability is described as a ‘dynamic mutation’ , 

as the frequency and magnitude of length changes vary as the repeat number 

changes (Richards and Sutherland, 1992). These dynamic mutations are biased 

towards expansion, giving rise to increases of allele length from one generation 

to the next. Significantly, repeat toxicity increases with length, longer repeats 

resulting in greater levels of cell death and dysfunction in affected tissues, and a 

more severe phenotype in each disorder. Therefore, intergenerational increases 

in expanded triplet repeat length is consistent with ‘anticipation’ , a clinical 

characteristic common to these disorders, whereby an earlier age of disease 

onset and increased severity of symptoms is seen in successive generations 

(Gomes-Pereira and Monckton, 2006). In addition to intergenerational expansion, 

high levels of age-dependent, expansion-biased, tissue-specific somatic 

mosaicism are also observed. Analysis of post-mortem brain tissue from HD 

patients found high levels of somatic mosaicism and very large expansions in the 

striatum, the primary affected tissue in this disorder (Kennedy et oL, 2003). 

Similarly, DM1 patients have both significantly larger absolute repeat lengths 

and broader ranges of expansion length in muscle compared with blood, 

emphasising the relationship between tissue-specific somatic mosaicism and 

pathogenesis (Anvret et al., 1993; Ashizawa et ai., 1993; Thornton et ai., 1994). 

Thus, it has been proposed that whilst intergenerational repeat expansion 

accounts for the phenomenon of anticipation, somatic mosaicism may be a 

major contributing factor in disease progression and tissue specificity of 

symptoms (Gomes-Pereira and Monckton, 2006).

Mutant polyQ-encoding CAG tracts also cause the atypical disorders SCA6 and 

SCA17. However, neither can be classified as a dynamic mutation since both are
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genetically relatively stable. Nearly all expanded CAG repeat SCA17 alleles are 

interrupted by stabilising CAA codons (Tomiuk et al., 2007), whilst even 

‘expanded’ SCA6 alleles are still relatively small (typically 20-30 repeats) 

(Frontali, 2001). Moreover, it seems likely that SCA6 represents a channelopathy 

rather than a true polyglutamine repeat disorder since truncating mutations in 

the same SCA6 associated CACNA1A calcium channel gene cause the highly 

overlapping episodic ataxia type 2A phenotype (Frontali, 2001).

The precise mechanism underlying the dynamic mutation of CAG»CTG repeats is 

unknown. The finding that levels of somatic repeat instability are independent 

of the proliferative status of cells (Gomes-Pereira et al., 2001) and tissues 

(Fortune et al., 2000; Kennedy and Shelbourne, 2000; Lia et al., 1998) argues 

against replication-centred models of repeat expansion . Several murine models 

indicate that a competent mismatch repair (AAMR) system is required to affect 

expansion at unstable loci (Foiry et al., 2006; Gomes-Pereira et al., 2004;

Manley et al ., 1999; van den Broek et al., 2002; Wheeler et al., 2003). It has 

been proposed that repeat expansion may result from the inappropriate repair of 

small mismatched loop-outs of 1-3 repeat units formed by the incorrect re­

annealing of the DNA strands after melting during the Go and Gi stages of the 

cell cycle (Gomes-Pereira et al., 2004). The small length changes of 1 to 3 

repeat units predicted by such a model are consistent with those observed in 

vivo.

In addition to obvious trans-acting factors involved in governing expanded repeat 

behaviour such as the mismatch repair system, sex of the transmitting parent 

and tissue type, numerous lines of evidence suggest a major role for c/s-acting 

factors in CAG«CTG instability. Expanded CAG«CTG instability is locus-specific, 

not genome-wide indicating that factors local to the repeat influence its 

mutability. While repeat length is obviously a major modifier of repeat stability, 

using length-normalised comparisons of intergenerational repeat expansion 

between disorders we previously found that CAG«CTG repeat loci differed 

significantly from one another, suggesting the involvement of other c/s-acting 

modifiers of repeat stability flanking the repeat itself (Brock et al., 1999). 

Likewise, a growing body of evidence from murine models of CAG»CTG instability
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support the involvement of c/s-elements in determination of repeat stability 

(Fortune et al., 2000; Libby et al., 2003; Mangiarini et al., 1997; Monckton et 

al., 1997; Seznec et al., 2000). It has been suggested that the ability of 

expanded CAG*CTG repeats to form unusual secondary structures, and the cell’s 

attem pt to process or repair these structures may be the underlying source of 

TNR instability (Chen et al., 1995; Gacy et al., 1995; Geschwind et al., 1997). 

Furthermore, it has been found that the propensity of CAG»CTG repeats to form 

certain DNA structures in vitro is both length and flanking sequence dependent 

(Pearson and Sinden, 1996; Pearson et al., 1998b). We have previously reported 

that the GC content of sequences flanking expanded CAG*CTG repeats correlates 

with their intergenerational expandability (Brock et al., 1999). It is possible that 

the GC content of CAG»CTG repeats flanking sequences affects their ability to 

form instability-mediating secondary structures. Alternatively, the GC content of 

the flanking DNA may mediate differences in downstream repair processes.

As all the dynamic repeat disorders that possess an expanded polyQ tract are 

dominant, display a similar inverse relationship between polyQ length and age at 

onset, are progressive, and lead to neuronal degeneration, it is likely that the 

fundamental mode of polyQ toxicity is broadly conserved between disorders.

This assertion is further strengthened by the finding that cleaved fragments of 

polyQ-proteins are cytotoxic (Li et al., 2000) and that insertion of a long polyQ 

tract into an unrelated protein can recapitulate many features of a polyQ- 

disease phenotype in mice (Ordway et al., 1997). Moreover, the formation of 

polyQ containing aggregates and transcriptional misregulation in affected tissues 

are molecular abnormalities clearly shared by the affected tissues in all 

disorders (Riley and Orr, 2006).

Although all expanded polyQ disorders show a similar inverse relationship 

between polyglutamine number and age at onset of symptoms, the absolute 

number of polyglutamine repeats required to affect a given age-at-onset of 

symptoms varies considerably between the disorders (Gusella and MacDonald, 

2000). For example, whereas an age-at-onset of 40 years in MJD typically 

requires >65 repeats, <45 repeats will effect a similar age-at-onset in SCA2 

(Gusella and MacDonald, 2000). These inter-locus differences in polyQ toxicity
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are widely assumed to be a consequence of the different protein contexts in 

which each polyQ tract is found in its host protein (de Chiara et al., 2005; La 

Spada and Taylor, 2003; Riley and Orr, 2006). That is, the protein sequences 

flanking each polyQ tract are assumed to somehow influence its cytotoxic 

potential, resulting in markedly different toxicity thresholds between disorders. 

As the size of the native expanded-polyQ containing proteins varies greatly (41 

kDa - 347 kDa), their primary sequences are not similar, and the position of the 

tract relative to the translation start site differs, it is highly likely that the polyQ 

tracts have very different protein contexts. The observations that polyQ tracts 

alone are cytotoxic, and that each disorder affects distinct sub-sets of neuronal 

cells, could suggest that portions of the proteins other than the polyQ tract are 

involved in pathogenesis. However, as the structures of most of the expanded- 

polyQ proteins are unknown and show no homology to proteins of known 

structure, how protein context mediates polyQ dynamics and toxicity is 

unresolved. Recent studies in yeast showed that altering the flanking sequence 

of an expanded Huntingtin exon 1 fragment, by the simple addition of a FLAG- 

tag, caused a previously non-toxic fragment of the htt exon 1 to induce 

characteristic length-dependent polyQ toxicity (Duennwald et al., 2006). In 

addition, it was also noted that flanking sequences affected the morphology of 

polyQ aggregate formation, offering a potential link between polyQ protein 

context and polyQ toxicity. In COS cells, deletion or replacement of the Josephin 

domain of expanded polyQ-containing ATXN3 significantly reduced the 

propensity of the protein to form aggregates (Gomes-Pereira and Monckton,

2006) as did deletion or replacement of the AXH domain of the ATXN1 protein 

(de Chiara et al., 2005). Other findings suggest that polyQ protein context could 

mediate cytotoxicity by affecting the ability of the ubiquitin-proteasome system 

to target and clear the cell of toxic expanded proteins and aggregates (Al- 

Ramahi et al., 2006; Chai et al., 2004; Chai et al., 2001). However, the precise 

role of aggregates in cytotoxicity is unresolved, and consequently, how protein 

context mediated effects on cellular aggregate formation and clearance play a 

role in disease pathogenesis is even less clear. Although dramatic alterations of 

flanking sequence can have profound effects on the dynamics of an individual 

polyQ tract in vitro, how to relate such observations to actual disease-associated 

polyQ tracts in vivo is very unclear. Moreover, although each individual study has 

shown an effect of flanking sequence on polyQ dynamics, taken together they
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offer no rationalisation of the observed inter-locus difference in toxicity 

observed between these disorders.

As repeat length contributes significantly to pathological load, longer repeats 

resulting in increased cell and tissue dysfunction, we rationalise that the rate of 

expansion of repeats in affected tissues is a major modifier of the age-at-onset 

of symptoms of a disorder. It is not suggested that CAG-expandability is the 

cytotoxic element in these disorders, but that the rate at which somatic 

expandability delivers proteins to their cytotoxic state is a critical factor in 

expanded polyQ.-disease pathogenesis, and is the underlying cause of the 

observed inter-locus differences in polyQ toxicity. Consequently, any modifier of 

the rate of somatic expansion, although not a direct cytotoxic element, will 

have a profound effect on disease progression within the affected individual, 

and may offer novel targets for therapeutic action. Here we test this hypothesis, 

by quantifying the relationship between polyQ toxicity, CAG«CTG expandability 

and flanking DNA GC content.
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3.2 Results

3.2.1 Locus toxicity correlates with repeat expandability

As a prerequisite to investigating the relationship between inter-locus polyQ. 

toxicity and CAG«CTG expandability, we carried out a detailed statistical 

analysis of the nature of the relationship between inherited repeat number and 

age at onset both within and between the seven polyQ disorders in order to 

obtain a robust measure and ranking of polyQ locus ‘toxicity’ . The majority of 

individuals with these disorders first develop symptoms in adult life, with a 

modal age at onset of 32 years. Juvenile cases, with an age at onset under 20 

years, are relatively rare, but develop an extreme phenotype that is very similar 

between the disorders and in which the well defined regional specificity of the 

adult onset neuropathology is lost (Barbeau et al., 1984; Benton et al., 1998; 

Cummings and Zoghbi, 2000b; Geschwind et al., 1997; Squitieri et al., 2006). 

Because of this differential extreme phenotype and the paucity of juvenile onset 

data for most of these disorders, cases with an age of onset under 20 years of 

age have been excluded from the analyses.

Testing a range of curve estimation regression models, an exponential decay 

function was found to best describe the relationship between age at onset and 

repeat number for all disorders (Figure 3.1). Subsequently, the repeat number 

corresponding to an age at onset of 32 years, the modal age at onset of all 

disorders, was derived from the equation of the regression analysis describing 

the relationship between age at onset and repeat length for each disorder (Table 

3.1). We propose that repeat numbers thus obtained, are a sound quantitative 

measure of the relative toxicity of each locus.

Taking into account the effect of progenitor allele length, we previously 

quantified observed differences of intergenerational variability between 

expanded CAG*CTG repeat loci; calculating the relative expandability of each 

locus using pedigree data gleaned from the literature (Table 3.1) (Brock et al.,

1999). Employing these values of expandability we found that locus toxicity and 

locus expandability were significantly correlated using a rank order test
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Table 3.1. Inter-locus polyQ toxicity and expandability of the dynamic DNA polyQ loci
Locus ra P-value Toxicity b Rank

Toxicity
Estimated 
Expandabilityc

Rank
Expandability

MJD 0.52 <0.001 75.4 1 0.07 (0.05-0.09) 1
DRPLA 0.21 <0.001 66.1 2 0.19(0.14-0.24) 4
SBMA 0.39 <0.001 53.3 3 0.08 (0.00-0.22) 2
HD 0.40 <0.001 52.2 4 0.29 (0.21-0.43) 5
SCA1 0.63 <0.001 51.7 5 0.14(0.00-0.24) 3
SCA7 0.39 <0.001 48.8 6 1.30 (0.80-1.65) 7
SCA2 0.41 <0.001 40.8 7 0.97 (0.65-1.33) 6
a Correlation coefficient (r) of age at onset versus repeat length obtained by fitting an exponential 
decay model to each dataset
b Repeat length corresponding to an age at onset of 32 years 
c Intergenerational instability of each disorder as described in Brock etal., 1999
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Figure 3.1. Determination of locus toxicity from regression lines describing the 
relationship between repeat length and age at onset for seven polyglutamine 
disorders. The polyQ disorders analysed were Huntington disease (HD) (dashed line), 
Machado-Joseph disease (MJD), spinal-bulbar muscular atrophy (SBMA), dentatorubral 
-pallidoluysian atrophy (DRPLA), spinocerebellar ataxia type 1 (SCA1), type 2 (SCA2) 
and type 7 (SCA7). Regression lines were determined using an exponential decay 
model. Locus toxicity was derived from the equation of the regression line of each 
disorder for an age at onset of 32 years (dashed line).



(Spearman's rank; rho = 0.79; P = 0.036; N = 7) (Figure 3.2A). Importantly, 

similarly significant correlations were obtained when an age at onset of 30 

(Spearman’s rank; rho = 0.78; P = 0.036; N = 7), 40 (Spearman’s rank; rho =

0.86; P = 0.014; N = 7) or 50 (Spearman’s rank; rho = 0.86; P = 0.014; N = 7) 

years was used to determine locus toxicity (Figure 3.2B), suggesting that locus 

toxicity values, as determined at 32 years age at onset, are broadly 

representative of the relationship between the variables throughout the dataset 

as a whole.

3.2.2 CTG«CAG expandability and locus toxicity correlate with flanking GC 

content

We previously described a significant positive correlation between repeat 

expandability and the GC content of flanking sequences; and postulated that 

flanking GC content may directly or indirectly modify repeat stability (Brock et 

a/., 1999). If repeat stability is indeed a major modifier of locus toxicity, and 

flanking GC content governs repeat stability, a strong association between locus 

toxicity and flanking GC content would be expected.

Here, employing the latest assembly of the human genome (NCBI 36) we 

characterise this relationship in finer detail and to a greater a distance from 

each locus. Employing the seven polyQ loci and two non-coding CAG«CTG loci, 

DM1 and ERDA1 (Mendlewicz et ai., 2004), a significant rank correlation between 

male germline expandability and flanking GC content was found up to a distance 

of 1,000 bp from the repeat when the combined flanking sequences of the loci 

were analysed (Table 3.2). Statistically significant correlations were also 

obtained when the 5’ and 3’ flanking sequences were analysed independently. 

The absence of any significant association (P < 0.05) at distances from 1 kb to 

100 kb suggests that the observed correlations proximal to the repeats are not a 

simple function of the wider chromosomal GC content surrounding each locus 

(Figure 3.3). Furthermore, as all significant correlations are found proximal to 

the repeat, it is unlikely that the results are errors incurred by multiple testing, 

and correction for multiple testing (Benjamini & Hochberg false discovery rate)
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Table 3.2: Correlation of flanking GC content with locus expandability of seven CAG-polyQ 
loci and non-coding repeats DM1 and ERDA1.

Distance from 5 1 flanking sequence 3' flanking sequence Both flanking sequences
epeat (bp) rhoa P (rhof P (BH)C rho P P(BH) rho P P(BH)

1 0 0 , 0 0 0 0.483 0.187 0 . 2 1 0 0.500 0.170 0.219 0.500 0.170 0.191
50,000 0.483 0.187 0.240 0.533 0.139 0.250 0.417 0.265 0.265
1 0 , 0 0 0 0.600 0.088 0.132 0.450 0.224 0.252 0.517 0.154 0.231
5,000 0.800 0 .0 1 0 * 0.030* 0.300 0.433 0.433 0.500 0.170 0.219
2,500 0.767 0.016* 0.036* 0.517 0.154 0.231 0.667 0.050* 0.090
1 , 0 0 0 0.867 0 .0 0 2 * 0.018* 0.600 0.088 0.198 0.850 0.004* 0.036*
750 0.850 0.004* 0.018* 0.783 0.013* 0.039* 0.833 0.005* 0.023*
500 0.700 0.036* 0.065 0.854 0.003* 0.014* 0.733 0.025* 0.056
1 0 0 0.403 0.282* 0.282 0.862 0.003* 0.027* 0.783 0.013* 0.039*

a Spearman’s rank correlation coefficient 
b P-value of Spearman’s rank correlation coefficient 
c P-value corrected for multiple testing 
* Significant at the 0.05 level
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Figure 3.2. Locus expandability correlates with locus toxicity. (A) Plot of locus rank 
toxicity at 32 years age of onset and locus rank expandability (B) Rank correlation 
(Spearman’s rho) of locus expandability and locus toxicity at an age of onset of 30 
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open squares)(rfto = 0.86; P -  0.014; N = 7), and 50 years (dotted line, open triangles) 
(rho = 0.86; P  = 0.014; N = 7).
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(Benjamini and Hochberg, 1995) resulted in a broadly similar profile of 

significant correlations (Table 3.2).

In order to further describe the area of significant association flanking the loci 

we determined a continuous GC content profile of DNA flanking nine CAG»CTG 

loci to a distance of 5 kb from the repeat using a sliding window of 100 bp and 

step size of 10 bp. Subsequently, the rank correlation of GC content with the 

expandability of all loci (Brock et al., 1999) was determined along the flanking 

sequences at each 10 bp interval. Interestingly, a substantial difference in the 

correlation profile of the 5’ and 3' sequences immediately adjacent to the loci is 

evident. The 5’ sequence shows an almost continuous significant correlation 

(n=7; P < 0.05) from a distance of 140 bp to 850 bp from the loci, whereas a 

more punctuated profile was found 3’ of the loci (Figure 3.4A). A similar profile 

was obtained upon analysis of polyQ-encoding CAG repeat loci separately (Figure 

3.4B).

Applying the same methodology, we analysed the association of flanking GC 

content with locus toxicity. As we possess reliable quantitative data for both GC 

content and locus toxicity a product-moment correlation (Pearson, r) was 

performed. A significant (P < 0.05) correlation between locus toxicity and 

flanking DNA CG content was observed from 100 bp (Figure 3.5) to approximately 

400 bp flanking the repeat tract (Figure 3.6A). A similar highly significant 

association with flanking GC content was observed both 5' and 3’ of the CAG 

repeat loci (Figure 3.6A).

The observed CAG repeat DNA flanking sequence GC content may reflect effects 

mediated at the level of the mRNA. Employing manually curated RefSeq mRNA 

sequences for each gene, we investigated the association between locus toxicity 

and mRNA sequence GC content. Firstly, no significant correlation between locus 

toxicity and total mRNA GC content was found (r = -0.28; P = 0.58; N = 7). 

Employing the sliding window approach as before, a significant correlation 

between flanking mRNA sequence and GC content was only found immediately 

proximal (< 100bp) to the repeat tract (Figure 3.6C). This region of significant 

correlation corresponds closely to the region of sequence defined by the 5’ and 

3’ boundaries of the repeat-containing exons in each gene (Figure 3.6B); further
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Figure 3.4. CAG*CTG locus expandability is correlated with proximal flanking GC content.
(A) Plot shows correlation of flanking GC content of nine CAG*CTG disorders (including DM1 and 
ERDA1) with locus expandability. (B) Plot shows correlation of flanking GC content of the seven 
CAG polyQ-encoding disorders only with locus expandability. Using a sliding window of 100 bp 
and step size of 10 bp, the Spearman’s rank correlation (rho) was calculated to a distance of 
2,000 bp both 5’ and 3’ of each repeat. The 5% statistical significance threshold (dotted lines) and 
the position of the repeat loci (vertical bar) are also shown.
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Locus toxicity correlates with GC content of flanking DNA sequences at distances of 100bp 
(r = -0.82; P =  0.024; N =7).
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suggesting that the correlation between flanking DNA GC content and locus 

toxicity does not reflect effects mediated at the level of the mRNA. In addition, 

locus toxicity did not correlate significantly with the distance (bp) of the repeat 

tract from either the transcription start site (Rank correlation; N = 7, rho = 0.43, 

P = 0.3) or translation start site (Rank correlation; N = 7, rho = 0.5, P = 0.22), 

suggesting that genic location is not a modifier of locus toxicity.

3.2.3 Locus toxicity does not correlate with flanking protein sequence 

properties

It is assumed that inter locus polyQ toxicity differences are mediated solely by 

protein context. As the structures of the proteins under investigation have not 

been resolved, we assessed the contribution of protein context to polyQ toxicity 

by carrying out in silico analyses of the primary sequence characteristics of each 

polyQ-containing protein. These analyses attempted to correlate polyQ toxicity 

with the physiochemical and predicted structural properties of the amino acid 

sequences flanking the polyQ tract. Protein properties were quantified using 

published, experimentally and empirically derived scales of protein 

physiochemical characteristics (Table 3.3). The close proximity of the polyQ 

tract to the N-terminus of the HD, AR and SCA7 proteins permitted only limited 

comparisons of amino acid sequence properties 5’ of the polyQ tract. Employing 

these scales of predicted amino acid composition, polarity, flexibility and 

hydrophobicity, no correlation with locus toxicity was identified (Figure 3.7). 

Similarly, no correlation between the predicted secondary structure flanking the 

polyQ tract and locus toxicity was found (Figure 3.8). Interestingly, several 

secondary structure prediction algorithms failed to identify any regions of 

conserved structure in the sequences flanking the polyQ repeat in each protein 

(Figure 3.9) (Frishman and Argos, 1995; Heinig and Frishman, 2004; Kabsch and 

Sander, 1983; Karchin et al., 2003).
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Table 3.3. Amino acid scales compared with inter-locus toxicity
Amino Acid Scale Source

Amino Acid Composition http://expasy.Org/txt/old-rel/relnotes.51.htm#statistics

Hydrophobicity (Eisenberg eta l . ,  1984)

Hydrophobicity (Kyte and Doolittle, 1982)

Polarity (Grantham, 1974)

Polarity (Zimmerman eta l . ,  1968)

Alpha-helix (Chou and Fasman, 1978)

Beta-turn (Chou and Fasman, 1978)

Beta-sheet (Chou and Fasman, 1978)

Average flexibility (Bhaskaran and Ponnuswamy, 1984)

Coil (Deleage and Roux, 1987)
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Figure 3.7. Correlation of polyglutam ine tract flanking primary sequence  
properties with locus toxicity. Using a window size of 21 amino acids and a step size 
of one, locus toxicity was correlated (Spearm an’s rank) with various physiochemical 
and compositional characteristics of the primary protein sequence at every amino acid 
position flanking the polyglutamine repeat. Repeat size was normalised to 21 glutamines. 
Dotted line represents the 5%  statistical significance threshold. As the 3 ’ sequence of 
ATXN3 extends just 83 amino acids from the repeat, all correlations beyond this point 
involve the remaining six sequences with a correspondingly higher 5%  significance 
threshold.
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Figure 3.7 (cont). Correlation of polyglutam ine tract flanking primary sequence  
properties with locus toxicity.
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Figure 3.8. Correlation of predicted flanking secondary structure with locus toxicity.
Using a window size of 4 amino acids and a step size of one, locus toxicity was correlated 
(Spearman’s rank) with the predicted secondary structure, as determined from scales of 
secondary structure formation potential of the primary protein sequence at every amino acid 
position flanking the polyglutamine repeat. Repeat size was normalised to 21 glutamines. 
Dotted line represents the 5% significance threshold. As the 3’ sequence of ATXN3 extends 
just 83 amino acids away from the repeat, all correlations beyond this point involve the 
remaining six sequences with a correspondingly higher 5% significance threshold.
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3.3 Discussion

The dynamic mutation disorders such as Huntington disease and myotonic 

dystrophy type 1 (DM1) are caused by expanded CAG«CTG repeats in their 

associated genes. Repeat toxicity increases with length, longer repeats resulting 

in greater levels of cell death and dysfunction in affected tissues, and a more 

severe phenotype in each disorder. Moreover, the observation that the most 

affected tissues in expanded CAG«CTG repeat disorders tend to possess the 

longest expansions, suggests that somatic mosaicism contributes to the tissue- 

specificity and progressive nature of these disorders (Kennedy et  a /., 2003; 

Shelbourne et al., 2007).

The polyglutamine disorders, defined by a polyglutamine (polyQ)-encoding CAG 

repeat, are the largest class of expanded CAG«CTG repeat disorders. Although 

the inverse relationship between age at onset and repeat length is broadly 

similar in the polyQ disorders, the number of repeats required to effect a given 

age at onset varies markedly between disorders (Figure 3.1). It is widely 

assumed that this ‘locus toxicity’ difference is due to protein context mediated 

effects on polyQ tract cytotoxicity. In fact, several studies have shown that 

protein context can be a major modifier of polyQ tract behavior in vitro (de 

Chiara et al., 2005; Duennwald et al., 2006; La Spada and Taylor, 2003). 

However, no rationalisation of how protein context determines the observed 

order of inter-locus toxicity has yet been described. We propose that the rate at 

which CAG»CTG repeats expand is a major modifier of age at onset and 

progression of symptoms in these disorders, and can largely explain the inter­

locus toxicity differences observed between the CAG»CTG disorders. Employing 

age at onset data for seven polyQ disorders we quantified these inter-locus 

polyQ toxicity differences and found that the order of polyQ toxicity correlated 

significantly with the underlying stability of the expanded CAG repeat tract.

We previously detailed a significant association between flanking GC content and 

locus expandability (Brock et al., 1999). Here, analyzing this relationship in finer 

detail and at greater distances from each locus, we found a significant positive 

correlation between proximal flanking GC content and repeat instability for both
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the polyQ-encoding CAG repeats and a larger sample including the non-coding 

repeat loci DM1 and ERDA1. Not surprisingly, flanking GC content was also found 

to correlate with polyQ toxicity. Significantly, we then showed that toxicity is 

not correlated with the flanking mRNA GC content or the properties of amino 

acid sequence flanking the polyQ tract. In addition, we found that toxicity was 

not significantly correlated with the position of the repeat tract within the gene 

or mature protein. Thus, we propose that the significant correlation between 

flanking DNA GC content and inter-locus polyQ toxicity is a consequence of 

flanking GC content effects on DNA repeat stability.

Germline instability data from affected families are abundant, whereas sound 

quantitative somatic instability data are very sparse. Therefore, we used 

previously published estimates of intergenerational locus instability as 

approximations of the relative level of somatic instability between disorders 

(Brock et al., 1999). Examining data from a published study of somatic 

mosaicism in post-mortem brain tissue of SCA1 and MJD affected individuals 

(Maciel et al., 1997), we found that the repeat-length normalised levels of 

somatic mosaicism in SCA1 were approximately double the levels found in MJD in 

both cerebral cortex (N Mjd  = 11; Nscai = 7; Mann-Whitney U = 0; P < 0.0001) and 

cerebral white matter (N Mjd  = 9; Nscai = 6; Mann-Whitney U = 0; P < 0.001) 

samples (Tables 3.4a and 3.4b); similar to the relative levels of germline 

instability observed in these disorders (Table 3.1). Furthermore, in mouse 

models of various trinucleotide disorders, those lines showing greatest 

intergenerational instability tend also to exhibit higher levels of somatic 

instability (Fortune et al., 2000; Mangiarini et al., 1997; Seznec et al., 2000).

Several clinical observations suggest that somatic expansion of repeats 

contributes towards age at onset of symptoms and disease progression. Firstly, 

individuals with expanded yet stable SCA1 loci exhibit significantly delayed onset 

of symptoms (Matsuyama et al., 1999; Quan et al., 1995) or remain 

asymptomatic (Frontali et al., 1999). These individuals contain histidine- 

encoding CAT interruptions in the expanded CAG repeat. CAG»CTG repeats 

containing interruptions tend not to expand, whereas loss of repeat interruptions 

is associated with repeat expansion (Choudhry et al., 2001; Chung et al., 1993). 

However, the aggregation dynamics of these histidine-containing tracts are



Table 3.4a. Age at death and repeat length of 11 MJD patients1

Normal Expanded 
Patient Age at Death Allele AlleleA

Mean no of 
bands in 
Cortex8

Mean no of 
Bands in 

White 
Matter0

Cortex0
(length

adjusted)

White
Matter6
(length

adjusted)
90-274 63 12 69 10 9 0.14 0.13
94-547 63 20 74 10 12 0.14 0.16
M-448 62 12 71 10 10 0.14 0.14
93-423 58 20 75 10 11 0.13 0.15
94-453 56 24 73 12 10 0.16 0.14
M-268 46 18 75 12 11 0.16 0.15
M-318 44 20 77 10 10 0.13 0.13
M-420 43 20 78 10 10 0.13 0.13
88-196 27 20 80 9 10 0.11 0.13
2303 56 12 75 10 0.13
1965 52 24 74 9 0.12

1. Table from Maciel et al. (1997)
B. Average of 3 experiments
C. Average of 3 experiments
D. Length adjusted somatic mosaicism (B/A)
E. Length adjusted somatic mosaicism (C/A)

Table 3.4b. Age at death and repeat length of 7 SCA1 patients1

Normal Expanded 
Patient Age at Death Allele AlleleA

Mean no of 
bands in 
Cortex6

Mean no of 
Bands in 

White 
Matter0

Cortex0
(length

adjusted)

White
Matter6
(length

adjusted)
94-538 77 31 44 11 0.25
M-652 68 30 45 11 13 0.24 0.29
M-378 65 29 45 11 12 0.24 0.27
91-288 57 30 54 15 15 0.28 0.28
93-441 53 28 54 16 15 0.30 0.28
90-276 45 30 56 11 14 0.20 0.25
92-271 38 31 56 13 14 0.23 0.25

1. Table from Maciel etal. (1997)
B. Average of 3 experiments
C. Average of 3 experiments
D. Length adjusted somatic mosaicism (B/A)
E. Length adjusted somatic mosaicism (C/A)

Table 3.4c. Mann-Whitney U-Test of length adjusted mosaicism in MJD and SCA1 
MJD SCA1

______________ (sample size) (sample size) U P-value
Cortex 11 7 0 6.30E-05
White Matter 9 6 0 0.0003996



similar to those of uninterrupted polyQ tracts (Calabresi et al., 2001), suggesting 

that delayed onset is due to increased locus stability, not altered protein 

toxicity. In addition, a large (N = 48) group of HD patients from Crete with 

expanded but stable HD loci had a median age at onset 15-20 years later than 

expected (Tzagournissakis et al., 1995). Significantly, the CAG repeat tract in 

these patients is uninterrupted, coding for a pure polyglutamine tract, further 

implicating somatic expansion, not polyglutamine toxicity, as the major modifier 

of disease progression (Kartsaki et al., 2006). The finding that the repeat tract 

does not contain interruptions suggests that elements, other than repeat type, 

length and purity modify repeat stability.

Our model of instability-mediated disease pathogenesis is further supported by a 

recent computational study which predicted that repeat expansion rate in 

somatic tissue determines both age at onset and the rate of disease progression 

(Kaplan et al., 2007). Employing mathematical modeling and computer 

simulations, it was shown that the more rapid disease progression observed in 

juvenile cases and the similar age at onset but more rapid disease progression 

observed in individuals homozygous for HD expansions could be accurately 

represented by a somatic-expansion rate model, but not by a cumulative 

polyglutamine toxicity model (Kaplan et al., 2007).

Despite a plethora of data implicating c/s-elements as potential modifiers of 

expanded CAG*CTG repeat stability, none have yet been identified in vivo other 

than flanking GC content. Flanking GC content may affect repeat stability by 

modifying the ability of the MMR machinery to process small mismatched loop- 

outs within the repeat tract. Modification of normal MMR by flanking GC content 

may be achieved directly through its effect on DNA melting potential. Indirectly, 

GC content may affect MMR by altering the ability of flanking sequences to form 

secondary structures, providing CpG sites for methylation leading to 

transcriptional changes or by alteration of chromatin state surrounding the 

repeat tract.

Our model provides a simple instability-mediated rationalization of the inter­

locus toxicity differences observed between polyQ disorders and re-emphasizes
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the importance of somatic mosaicism as both a powerful marker of disease 

progression and a possible site of therapeutic intervention.

3.4 Materials and methods

All genomic DNA analyses used the NCBI 36 (November 2005) assembly of 

the human genome, obtained from the Ensembl web server (url: 

http://www.ensem bl.org/index.htm l). The accession numbers of the mRNA 

sequences employed for each disorder were; NM_001007026 (ATN1), NM_000332 

(ATXN1), NM_002973 (ATXN2), NM_000333 (ATXN7), NMJXM993 (ATXN3), 

NM_000044 (AR), and NM_002111 (HD). The accession numbers of the protein 

sequences employed were; NP_001007027 (ATN1), NP_000323.2 (ATXN1), 

NP.002964.2 (ATXN2), NP_000324 (ATXN7), NP_004984 (ATXN3), NP_000035 

(AR), and NP_002102 (HD). Age at onset data for each locus, which was collated 

from published studies, was kindly supplied by Jim Gusella and Marcie 

MacDonald (Gusella and MacDonald, 2000). The data consists of age at onset and 

repeat number measurements for over 2,400 affected individuals, with over 100 

data points for each disorder. Protein scales were obtained from the ExPASy 

proteomics server (url: http://w w w .expasy.ch/).

All GC content analyses were performed with custom written software 

implemented in the Perl programming language. STRIDE, DSSP, and STR 

secondary structure predictions were performed via the SAM server (url: 

http://www.soe.ucsc.edu/research/compbio/sam.html). SPSS (version 13) was 

used for statistical analyses.
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4. Investigation of c/s-acting modifiers of DM1 
locus expandability in cell culture models

4.1 Introduction

Disease-associated expanded trinucleotide repeats are highly unstable in both 

germline and somatic tissue (Gomes-Pereira and Monckton, 2006). The 

mechanism underlying this expansion-biased instability is not precisely known. 

However, studies of murine models deficient for various components of the 

mismatch repair system have implicated a role for cell division independent 

mismatch repair in expanded repeat instability (Gomes-Pereira et a l., 2004; 

Manley et al., 1999; Pearson et al., 1997). Characterising repeat dynamics in 

individuals carrying expanded alleles and in animal and cell culture models of 

expanded repeat instability is crucial to determining the factors that mediate 

repeat expansion over time. Mounting evidence suggests somatic mosaicism is 

likely to be a major modifier of age at onset of symptoms and disease 

progression (Chapters 1 & 3), further emphasising the importance of 

understanding the process of expanded repeat instability.

Several observations suggest that c/s-acting factors modify expanded repeat 

instability (Brock et a l., 1999; Fortune et al., 2000; Frontali et al., 1999; Libby 

et al., 2003). The study of affected individuals has found that the sequence of 

the repeating triplet, the overall length of the repeat tract and its purity are 

major modifiers of repeat instability. Furthermore, when normalised for repeat 

length, expanded repeats of the same sequence at different loci exhibit 

markedly different levels of instability, suggesting that genomic location affects 

repeat stability (Brock et a l., 1999). In addition it was shown that locus 

expandability was significantly correlated with the GC content of the sequences 

directly flanking the expanded repeat loci (Brock et a l., 1999). Several murine 

models of expanded repeat instability have reported significantly differing levels 

of repeat instability between mouse lines carrying identical transgenes, further 

implicating genomic position as a modifier of repeat stability (Fortune et al.,

2000). A mouse model of SCA7 found that increasing the amount of endogenous 

human genomic sequence flanking an expanded repeat appeared to dramatically 

increase its instability upon integration into the mouse genome, suggesting the
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presence of modifiers of repeat stability within the flanking sequence (Libby et 

al., 2003).

The finding that site of transgene integration dramatically affects repeat 

stability has frustrated attempts to study c/s-acting modifiers of repeat stability 

in animal models as separation of the effects of transgene-specific c/s-elements 

from the effects of insertion site c/s-elements is complicated. The generation of 

sufficient numbers of transgenic mouse lines containing identical, randomly 

integrated, and unstable expanded repeat tracts to allow for identification of 

true transgene-specific c/s-elements is unfeasible. However, the generation of 

large numbers of mammalian cell lines carrying stably integrated transgenic 

repeats is feasible and thus, may offer a means to study and identify c/s-acting 

modifiers of repeat stability.

However, once integrated into a host genome, expanded repeats may undergo 

repeat-stability modifying epigenetic alterations of sequences proximal to and 

within the transgenic repeat. Transcriptional silencing of transgenes integrated 

into mammalian genomes over time has been widely reported (Elgin and Grewal, 

2003; Robertson et al., 1995). This phenomenon, called chromosomal position 

effect (CPE), results from the propagation of transcriptionally repressive 

condensed chromatin along the region of the host chromosome containing the 

integrated transgene (West et a l., 2002). Chromatin condensation of a 

transgenic repeat may affect its stability directly by altering its ability to form 

instability-mediating secondary structures, or indirectly by silencing its 

transcription. The relationship between expanded repeat stability and both its 

chromatin state and expression levels is unclear. However, an association 

between occurrence of transgene expression, and a presumptively open 

chromatin state, and presence of repeat instability has been indicated in several 

studies (Chapter 1).

Although chromatin condensation is self-propagating, vertebrate chromosomes 

contain distinct domains of condensed and open chromatin, suggesting the 

existence of elements that halt the spreading of chromatin condensation. Only 

one such vertebrate ‘insulator' element has been well characterised, the 

chicken (3-globin HS4 insulator (Chung et a l., 1997). Flanking a transgene with
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two copies of this insulator element has been found to protect against CPE 

silencing in many model systems (Potts et al., 2000; Recillas-Targa et a l., 2002; 

West et a l., 2002). How insulator elements function as barriers against the 

propagation of condensed chromatin is not fully understood. Although the 

chicken p-globin HS4 insulator element contains a binding site for CTCF (CCCTC- 

binding factor), a zinc-finger protein involved in regulation of gene expression 

domains by blocking non-specific enhancer-promoter interactions, CTCF does not 

seem to play a role in chromatin barrier activity (Recillas-Targa et a l., 2002).

The most convincing model of insulator barrier activity proposes that proteins 

recruited to the insulator element by upstream transcription factor (USF) 

proteins, mediate the acetylation and methylation of specific histone H3 and H4 

sites of proximal nucleosomes, preventing the propagation of histone 

modifications associated with chromatin condensation (West and Fraser, 2005; 

West et al., 2004).

Here, human and mouse cell lines containing stably integrated expanded repeat 

sequences are constructed, and their utility as models of expanded repeat 

instability is investigated. In addition, the ability of mammalian insulator 

elements to protect integrated repeats from chromosomal position effects on 

repeat stability is also studied.
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4.2 Results

4.2.1 The effect of flanking insulator elements on expanded repeat 
instability

4.2.1.1 A HeLa cell m odel o f  expanded repeat s tab ility

Studies of murine and cell culture models of expanded repeat stability have 

found that unstable transgenic repeats tend to be transcribed, though not all 

transcribed repeats are unstable. This association may reflect a requirement for 

expanded repeats to be located in open chromatin fibers, usually associated 

with areas of active transcription, in order to exhibit instability. Thus, we 

propose using flanking insulator elements to protect transgenic repeats from 

chromatin condensation and the possible consequential stabilising of the repeat. 

However, as the precise nature of the relationship between chromatin state and 

repeat stability is unclear, and much about the functioning of insulator elements 

is unknown, though counter-intuitive it is possible that insulator elements may 

have undesired effects on the stability of expanded repeats, such as preventing 

instability, rendering the use of insulators ineffective.

In order to assess the effect of proximal insulator elements on repeat dynamics, 

two constructs, one consisting of an expanded repeat flanked by insulator 

elements (Insulator +ve, INDI), another containing the same repeat lacking 

flanking insulator elements (Insulator -ve, ND), were constructed (Figure 4.1B, 

C). The repeat-containing portion of each construct consists of the Dmt 

transgene, cloned from Dmt-D mouse DNA. Dmt-D mice exhibit high levels of 

length-dependent expansion-biased instability, as do cell lines derived from 

tissues of Dmt-D transgenic mice (Chapter 1). The Dmt transgene consists of a 

CTG*CAG repeat from the human DM1 locus flanked by 113 bp and 593 bp of 

endogenous human flanking sequence 5’ and 3’ of the repeat, respectively 

(Figure 4.1 A). Sequencing of the constructs generated here found five 

interruptions in the 3’ -end of the repeat tract, resulting in a repeat with the 

following configuration:

(C T G )ii2 (C G G )(C TG )6 (C G G )(C TG )3(C G G )(C TG )6 (C G G )(C TG )6 (C G G )(C TG )8 .
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To allow for efficient selection of transfected cells, a neomycin cassette was 

cloned immediately 5' of the Dmt transgene. As the neo cassette was cloned in 

same orientation as the Dmt transgene, read-through of the CTG repeat may 

occur. Finally, the insulator positive construct was flanked by two copies of the 

chicken p-globin locus HS4 insulator at the 5’ end of the neomycin cassette and 

the 3’ end of the Dmt fragment.

HeLa cells were chosen as the cell culture system in which to model expanded 

repeat instability as, unlike many cancer cell lines, they possess a well 

characterised and functional mismatch repair system. Stably transfected, single 

HeLa cell clones were generated by cationic lipid transfection with linearised 

vector DNA followed by positive selection with G418 for 7 - 10 days. Between 7 - 

10 days post-transfection, single cell colonies (1 0 -5 0  cells) were identified 

under the light microscope, picked using the glass-ring technique (Chapter 2), 

and transferred to individual wells of a 24-well plate. Less than five single-cell 

clones were picked from any given culture dish, and care was taken not to pick 

colonies close together, as pairs of colonies often arise from cell clusters 

spalling-off from a parent colony. Single cell clone lines transfectant for the 

insulator -ve construct (N = 11) or insulator +ve construct (N = 12) were then 

maintained in culture for 50 population doublings (-50 days). Mouse kidney cell 

lines derived from Dmt-D mice carrying a mutant allele of ~CTGi75 repeats, 

showed dramatic expansion-biased instability (+ 30 - 40 CTG) at the mutant 

locus over 50 populations in culture (Gomes-Pereira et a l., 2001).

To investigate changes in repeat length, the transgenic repeat was amplified 

(using primers neoF5 and DM-BR) from each clone and visualised by hybridisation 

with a CTG-containing probe (DM56) (Figure 4.2). Four insulator +ve clones 

possessed repeats which differed markedly in size from the repeat tract 

contained in the transfectant DNA. However, several observations suggest that 

the repeat length changes observed are not a consequence of expansion-biased 

instability as reported previously for the Dmt transgene. Firstly, as two clones 

have expanded alleles, and two have contracted alleles, no expansion bias is 

evident. Secondly, the size of the contracted repeats is similar to contractions 

observed during cloning of the transgene in bacteria (data not shown), indicating 

that the transfectant DNA may have contained a heterogeneous population of
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Figure 4.2. Instability of transgenic (CTG)145 repeat in HeLa cells over 50 population 
doublings. Each lane represents DNA from an independent, stably transfected clone. The 
transgenic repeat tract was amplified with transgene-specific primers neoF5 & DM-BR.
The products were blotted and hybridised to a CTG repeat containing probe (DM56). The 
size in repeats is indicated to the right o f each autoradiograph. PCR of insulator negative 
plasmid DNA shows repeat size at time of transfection. Arrows indicate alleles exhibiting 
changes in repeat length. Asterisks indicates presence of a faint band.



constructs possessing different repeat lengths. This suggestion is supported by 

the observation that the two contracted alleles are apparently identical in size, 

suggesting that the deletion occurred pre-transfection. Alternatively, the two 

clones containing contracted alleles may not be independent clone lines, but 

have derived from the same single cell clone line. Analysis of the mutant allele 

in Dmt-D kidney cell lines revealed a dramatic increase in the average allele size 

and a broadening of the range of repeat sizes over time. These changes result in 

a both an increase in band size and smearing upon PCR amplification (Gomes- 

Pereira et a l., 2001). Here, the bands corresponding to the mutant expanded 

alleles are not more diffuse or ‘smeary’ than the shorter non-mutant alleles, 

suggesting that a single expansion or rearrangement event has occurred, as 

opposed to the numerous small expansions typical of instability at an expanded 

locus. One insulator -ve and one insulator +ve clone (both denoted as ‘X’ ) appear 

to have two alleles, suggesting that these clones contain multiple copies of the 

transgene. With the exception of clone ‘X’ , no obvious repeat instability was 

observed in the insulator -ve clones.

As no credible, expansion-biased instability was observed in any clones, it was 

not possible to draw conclusions regarding the effect of insulators elements on 

repeat stability from this experiment.

The levels of somatic mosaicism observed in DM1 are highly tissue specific, 

suggesting a modifying influence of trans-acting factors on repeat stability. 

Furthermore, cultured cells derived from various tissues of mice containing the 

Dmt transgene recapitulate the tissue specificity of expanded DM1 locus 

instability. Although HeLa cells contain a competent mismatch repair system, is 

possible that HeLa cells do not contain other trans-acting factors required to 

affect instability of expanded CAG»CTG repeats. Alternatively, as levels of 

repeat instability are repeat length dependent, it is possible the repeat tract 

employed here is too short to exhibit instability. Finally, the apparent stability 

of the mutant alleles may be due to chromosomal position effects in every 

clone.
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4.2.1.2 A mouse kidney cell model o f expanded repeat stability

In order to rule out cell-type specific effects it was decided to repeat the 

experiment using a cell line proficient for expanded CTG«CAG repeat instability. 

Dmt-D mouse kidney cells were previously generated from mice carrying the Dmt 

transgene and have been shown to exhibit dramatic, length-dependent, 

expansion-biased instability (Fortune et al., 2000; Gomes-Pereira et al., 2001; 

Gomes-Pereira and Monckton, 2004). Therefore, Dmt-D kidney cells possess the 

necessary trans-acting factors required to effect instability at expanded 

CTG»CAG loci. In addition, the expanded unstable repeat already present in this 

cell line (henceforth referred to as the ‘primary transgene’ or ‘primary repeat') 

could act as an internal control for instability.

The Dmt-D cell line employed here, D2761Kc2, cloned by limiting dilution of the 

original D2763K cell line, was supplied by Dr. Mario Gomes-Pereira (Gomes- 

Pereira and Monckton, 2004). Single cell clone lines transfectant for the 

insulator -ve transgene (N = 20) or insulator +ve transgene (N = 15) were 

generated as before, and maintained in culture for 60 population doublings (~ 55 

days). For clarity, henceforth these transgenes will be referred to as the 

‘secondary transgene’ or ‘secondary repeat’ . To investigate changes in repeat 

length, the transgenic repeats were amplified (using primers DM-C and DM-BR) 

from genomic DNA prepared 30 and 60 population doublings post-transfection 

from each clone and visualised by hybridisation with a CTG-containing probe 

(DM56) (Figures 4.3 & 4.4).

As observed for stably transfected HeLa clones, no obvious instability was 

observed in the secondary repeats in any cell line. In contrast, the primary 

repeat showed dramatic expansion-biased instability, with a mean expansion 

size of 28 repeats. Furthermore, the increased smearing of the primary repeat 

band over time, indicates a broadening of its repeat size range, typical of a 

repeat undergoing expansion via numerous small size changes.

Interestingly, five single cell clones carrying an expanded yet stable primary 

transgene were identified (Figure 4.5). The presence of a population of stable 

expanded alleles, from which these clones are assumed to have derived, is
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(CTG)n 284

Figure 4.5. A subset of Dmt-D kidney cells contain an expanded stable allele.
DNA was prepared from cells 30 and 60 population doublings post transfection. 
Both transgenic repeat tracts were amplified in the same reaction with the primers 
DM-C & DM-BR. The products were blotted and hybridised to a CTG containing 
probe (DM56). Size standards, in repeats, are indicated to the left o f the figure. 
Amplified transfectant plasmid DNA and amplified untransfected Dmt-D kidney cell 
DNA is also shown. The arrow indicates a population of stable expanded alleles in 
Dmt-D  kidney cells. Vertical bars on the right o f the figure indicate the repeat size 
range of the primary (P) and secondary (S) transgenes.



evident within the untransfected Dmt-D cells (Figure 4.5). Thus, approximately 

15% of expanded alleles within the Dmt-D kidney cells are stable.

As the secondary transgenic repeat used here is markedly shorter than the 

expanded primary repeat present in the Dmt-D kidney cells, and as expansion 

rate is length dependent, mutational events would be expected to occur less 

frequently at the transgenic allele over a given period of time. Thus, the time 

course over which the experiment was run may have been insufficient to observe 

expansion-biased instability at the transgenic loci. Five insulator -ve and five 

insulator +ve clones containing single copies of each transgene were maintained 

in culture for a further 40 population doublings, and repeat size analysed as 

before (Figures 4.6 fit 4.7). Clones containing single copies of each transgene 

were identified by PCR amplification of clone DNA with primer pairs designed to 

amplify across tandemly integrated transgenes, followed by visualisation of PCR 

products by blotting and hybridisation with radioactive probes. Yet again, no 

increases in repeat length or obvious broadening in band size was observed for 

the secondary repeats; in contrast to the continued expansion-biased instability 

exhibited by the primary transgenic repeat.

4.2.1.3  Small-pool PCR analysis of repeat length variation in stably 

transfected D m t-D kidney cell lines

The PCR-hybridisation method employed to analyse repeat length changes in the 

previous sections lacks the sensitivity to detect small (1-2 repeats) or rare 

changes in repeat length. In order to determine whether such repeat length 

changes have occurred, samples were analysed by small-pool PCR.

SP-PCR amplification of genomic DNA isolated 100 population doublings post­

transfection from both insulator negative and insulator positive cell lines 

revealed the presence of small of repeat length changes (+ /- 1 to 3 repeats) at 

secondary transgenic loci (Figure 4.8). Some larger (-10 to -30 repeats) 

contractions were also evident at the secondary transgenic loci (Figure 4.8 & 

4.9). The levels of repeat length variation at the secondary repeat loci appeared 

to increase over time, indicating that the observed repeat length changes 

accumulated during culture, and did not occur pre-transfection (Figure 4.9).
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Figure 4.6. Analysis of transgenic repeat lengths in Dmt-D kidney cells stably transfected 
with the insulator negative transgene, ND. DNA was prepared fom cells 30, 60 and 100
population doublings post transfection. Both repeat tracts were amplified in the same reaction with 
the primers DM-C & DM-ER.The products were blotted and hybridised to a CTG containing probe 
(DM56). Size standards, in repeats, are indicated to the left o f the figure. Amplified transfectant 
plasmid DNA and amplified untransfected Dm t-D kidney cell DNA is also shown. The arrow indicates 
a population of stable expanded alleles in Dm t-D kidney cells. Vertical bars on the right of the figure 
indicate the repeat size range o f the primary (P) and secondary (S) transgenes.



Figure 4.7. Analysis of transgenic repeat lengths in Dmt-D kidney cells stably transfected 
with the insulator positive transgene, INDI. DNA was prepared fom cells 30, 60 and 100
population doublings post transfection. Both repeat tracts were amplified in the same reaction with 
the primers DM-C & DM-ER.The products were blotted and hybridised to a CTG containing probe 
(DM56). Size standards, in repeats, are indicated to the left o f the figure. Amplified transfectant 
plasmid DNA and amplified untransfected Dm t-D kidney cell DNA is also shown. The arrow indicates 
a population of stable expanded alleles in Dm t-D kidney cells. Vertical bars on the right o f the figure 
indicate the repeat size range of the primary (P) and secondary (S) transgenes.
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ND7 - 30 PDs post-transfection ND7 -100  PDs post-transfection
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Figure 4.9. Small-pool PCR analysis of primary and secondary transgenic repeat tracts in 
DmtD kidney cells containing an insulator negative (ND) secondary transgene DNA was
prepared 30 and 100 population doublings post-transfection. Size standards, in repeats, are indicated 
the right o f the figure. Both transgenic repeats were amplified in the same reacion with the primers 
DM-C & DM-BR. The amount of genom ic template DNA used in each reaction (each lane) is 
indicated at the top of each panel. The white dashed line is shown to facilitate comparison o f band 
size between blots. PD = Population Doubling.



However, in contrast to the obvious expansion-biased instability observed at the 

primary repeat loci, no gross expansion bias was evident at the secondary loci 

(Figure 4.9).

In order to more accurately quantify the difference in repeat length variation 

between the primary and secondary transgenes, alleles were sized from single 

molecule amplifications using molecular imaging software (Kodak MSI, v 4.0.5). 

As the degree of length variation in the secondary transgene was very low, the 

number of molecules amplified was predicted using Poisson analysis. The mean 

repeat length of -40 and -25 alleles was determined for the primary and 

secondary transgenes at each time-point, respectively. Quantitative analysis of 

repeat length variation in three insulator negative cell lines found no expansion- 

bias in repeat instability at the secondary loci; one cell line showing a significant 

decrease in repeat length during culture (ND11, Mann-Whitney U = 59, P < 0.01). 

In contrast, the primary repeat tracts showed dramatic expansion biased 

instability (Figure 4.10).

As outlined previously, repeat instability is length dependent, longer repeats 

exhibiting higher levels of repeat length variation. Therefore, the secondary 

transgenic repeat employed here may possess too few repeats to effect 

observable/quantifiable levels of instability over the time-scale of this 

experiment. To address this issue, a repeat length normalised measure of 

primary repeat expansion was determined using the following equation:

mT2 -  mT1 
c “ mT1 -  35

where Ec = coefficient of expansion,

mT2 = median repeat length at time two 

mT1 = median repeat length at time one

Thus, for every repeat in the primary repeat tract above the stability threshold 

(35 repeats), an expansion of 0.12 repeats was observed between 30 and 100 

populations doubling in culture. Applying this coefficient of expansion to the 

secondary repeat, a median expansion of 14 repeats (42 bp) would be expected
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Figure 4.10. Change of transgenic repeat length in insulator negative cell lines as 
determined by SP-PCR. A) Repeat length of primary transgene at 30 population doublings 
and 100 population doublings post-transfection. B) Repeat length of secondary transgene at 
30 population doublings and 100 population doublings post-transfection. Boxplots show 
median (solid bar), 95% confidence limits of the median (box), and the 25-75 % inter-quartile 
range (T-bars). The Mann-Whitney U-Test was used to determine if repeat sizes observed at 
the two time-points were significantly different (** P < 0.01). § indicates median repeat size 
was estimated from a single observation from a standard PCR-hybrisation (not SP-PCR) 
analysis. Note: panels A and B have different scales



over the course of this experiment, well within the detection limits of the 

analytical techniques employed here, suggesting that the repeat length alone 

does not explain the observed stability of the secondary transgene. In addition, 

the coefficient of variation (the standard deviation of a sample expressed as a 

percentage of the mean) of primary repeat length is approximately 2.5 times 

greater than the corresponding value for secondary repeat length (N = 3; CV 

primary rpt = 13.6%; CV secondary rpt = 5.3%). This indicates that repeat length 

variation, irrespective of direction of change (expansions or contractions), is also 

reduced at the secondary repeat loci.

The observation that two transgenes containing an expanded CTG»CAG repeat 

flanked by the same human DNA sequences present in the same cell show such 

contrasting stability profiles is striking. Interestingly, such cells represent a 

potent model system for identifying c/s-acting modifiers of expanded repeat 

stability by facilitating comparison of a stable and unstable expanded repeat 

tract within the same cell.

4.2.2 Methylation state of expanded transgenic repeats

4.2.2.1 M ethylation state o f  transgenic repeats in m ouse Dm t-D  kidney  

celis

The finding that expanded CTG«CAG transgenic repeats with similar flanking 

sequences show different levels of stability in the same cell line suggest the 

involvement of c/s-acting modifiers of instability. As instability was not observed 

in 35 independent single cell Dmt-D clones, it is unlikely that simple site-of- 

integration position effects, such as flanking sequence composition or genic 

context, are the cause of the observed stability. However, it is possible that the 

secondary transgenes induce epigenetic changes in c/s, which are not conducive 

to repeat instability. Evidence from affected individuals and murine models of 

expanded CTG«CAG repeat disorders have implicated DNA methylation of 

expanded repeats and their flanking sequences as a potential modifier of repeat 

stability (Chapter 1).
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The methylation status of the primary and secondary transgenes was determined 

by methylation-sensitive restriction digest/PCR (MS-PCR) analysis. In brief, 

genomic DNA samples were digested with a methylation-sensitive restriction 

endonuclease with a recognition site within the transgenic sequence. Such 

restriction enzymes fail to cut their corresponding restriction site if it contains 

methylated CpG dinucleotides. Thus, subsequent PCR across the region 

containing the restriction site of interest will succeed only if the site was 

methylated and thus the template DNA sequence uncut and intact. An internal 

control sequence, either lacking or containing the site of interest (dependent on 

the observed methylation status of the test site) was also amplified in each 

reaction (Figure 4.11). A total of 8 CpG sites in the Dmt transgene were 

analysed, representing 14% of the 55 CpG sites present in the Dmt transgene 

(Figure 4.11). The primer combinations used to assay each site are given in 

Table 4.1.

Table 4.1. Dmt restriction sites and associated primer combinations used in methylation- 
sensitive restriction digest/PCR assays.

Primary transgene Insulator -ve  transgene Insulator +ve transgene

CpG Test Control Test Control Test Control
site primers primers primers primers Primers primers

1. Apal mDmtD-B neoF1 neoF4 neoF1 neoF4 neoF1
DM-CR neoR1 DM-CR neoR1 DM-CR neoR1

2. Nae\ mDmtD-B neoF1 neoF4 neoF1 neoF4 neoF1
DM-CR neoR1 DM-CR neoR1 DM-CR neoR1

3. Hpall DM-C mP2-1 DM-C mP2-1 DM-C mP2-1
DM-BR mP2-5 DM-BR mP2-5 DM-BR mP2-5

4. Hpall DM-C mP2-1 DM-C mP2-1 DM-C mP2-1
DM-BR mP2-5 DM-BR mP2-5 DM-BR mP2-5

5. Aval DM-F neoF1 DM-F neoF1 DM-F neoF1
mDmtD-MR neoR1 T3 neoR1 INDI_SR neoR1

6. NaeI DM-F neoF1 DM-F neoF1 DM-F neoF1
mDmtD-MR neoR1 T3 neoR1 INDI_SR neoR1

7. Nru\ DM-F neoF1 DM-F neoF1 DM-F neoF1
mDmtD-MR neoR1 T3 neoR1 INDI_SR neoR1

The MS-PCR analysis of both the primary and secondary transgenes was applied 

to genomic DNA isolated 30 population doublings post-transfection from both 

insulator negative (N = 12) and insulator positive (N = 15) cell lines. The primary 

and secondary transgenes were found to have significantly different levels of
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CpG methylation on the sequences flanking the expanded repeats (Fishers Exact 

test; P = 0.03). The DNA flanking the primary repeat was highly methylated in all 

27 clones (Figure 4.12). In contrast, the DNA flanking both secondary repeats 

was completely unmethylated in all 27 clones (Figure 4.12). The methylation 

profile of the stable primary repeats was identical to that of the unstable 

primary alleles.

4 .2 .2 .2  G eneration o f  cells lines transgenic fo r m ethylated  expanded  

repeats

The finding that the primary and secondary repeats are associated with hyper- 

methylated and hypo-methylated flanking sequences, respectively, suggests that 

the methylation status of sequences flanking DNA repeats may be a modifier of 

expanded repeat stability. In order to determine the effect of flanking sequence 

methylation on expanded repeat stability, three insulator negative constructs 

were generated, each containing different levels of flanking CpG methylation.

As hyper-methylation of the neo promoter sequence would likely silence 

expression of the neo gene, reducing the likelihood of positive selection of 

transfected cells, a semi-methylated construct in which only the repeat 

containing portion of the construct was methylated was generated (M.CpG 

ND)(Figure 4.13A). In brief, the plasmid pB-ND, containing the insulator negative 

construct (ND) was methylated with the methylase M.CpG (M.SssI) and digested 

with the restriction enodnucleases Ale I and Ncol. The digested fragments were 

resolved on an agarose gel, from which the Dmt containing fragment (M.Dmt) 

was purified. The M.Dmt fragment was then ligated to an umethylated fragment 

containing the neo portion of the ND construct. Ligation products were resolved 

on an agarose gel and the fragment corresponding to the ligated semi- 

methylated construct was purified. Integrity and methylation status of the 

M.CpG ND construct was assayed by digestion with methylation sensitive 

restriction endonucleases. Two partially methylated constructs were generated 

by methylation of the entire ND construct (including the neo cassette) with 

either M.Hhol or M.Hpall methylase; methyltransferases which methylate the 

CpG dinucleotides, contained in either Hha\ or Hpall restriction sites, 

respectively (Figure 4.13 B & C). As the neo promoter contains just 5 Hpall sites
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A) M.Chimera ND

pB-ND
(U n m e th y la te d )

A/col (sticky)

Ale I (blunt)

pB-ND
(M ethylated)

A/col (sticky)

Ale  I (blunt)

Digested, alkaline 
phosphatase treated 
and gel purified

Digested and 
gel purified

Ale  I

h -
ii i ii i ii iiiiii

mPGK-1
promoter

neo ORF I—
mPGK-1
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(CTG),4S

Ale I

/A/el
h -

2,703 bp

mPGK-1
promoter neo ORF

mPGK-1
polyA

Gel purified

(CTG)145

/Vcol

Ale IH
28 bp

B) M.Hpall ND

i mPGK-1 mPGK-1
promoter neo ORF polyA

esaxi
(CTG)

491 bp 307 bp-

C) M.HAial ND

BsaXI

491 bp

mPGK-1
promoter neo ORF

mPGK-1
polyA

SsaXI
(CTG)

307 bp-

Figure 4.13. Generation of methylated insulator negative constructs. A) Generation of 
M.Chimera ND from a methylated and unmethylated pB-ND vectors (see text for description 
of cloning strategy). Methylated pB-ND plasmid is shown in red. B) Methylated Hpall sites in 
M .Hpall ND (see text for description o f cloning strategy). C) Methylated Hha\ sites in M .H/ial 
ND (see text for description of cloning strategy). Vertical bars indicate position o f methylated 
CpG sites.



and 6 Hha\ sites, promoter activity may not be fully repressed by methylation at 

these sites, allowing for neo expression and positive selection. As DNA 

methylation patterns are not maintained in bacteria, all cloning steps were 

performed without the use of bacteria.

Dmt-D kidney cells, stably transfected with either the hh.Hha! transgene (N = 5), 

bh.Hpall transgene (N = 7) or M.CpG ND transgene (N = 9) were generated and 

maintained in culture for 40 population doublings (~ 38 days). Routine analysis of 

transgene integrity in each cell line by PCR amplification assays identified 

several lines in which large deletions in which the 3’ end of the transgene 

incorporating some or all of the Dmt sequence had been deleted. Clones in 

which some or the entire Dmt portion of the transgene was missing were 

excluded from the study.

MS-PCR of the remaining clones revealed that the M.CpG ND transgenes had 

retained their hyper-methylation in culture (N = 5), and the M.Hhal transgenes 

retained methylation at half of their Hha\ sites (N = 3). However, the M.Hpall 

transgenes appeared to have lost all CpG methylation (N = 5) (Figure 4.14).

To investigate changes in repeat length, the transgenic repeats were amplified 

(using primers DM-C and DM-BR) from genomic DNA prepared 20 and 40 

population doublings post transfection from each clone and visualised by 

hybridisation with a CTG-containing probe (DM56). Once again, no obvious 

repeat length variation was observed in the secondary repeat tracts over time, 

whereas expansion-biased instability was evident in most primary repeats (Figure 

4.15). In addition, SP-PCR analysis failed to reveal repeat length variation in the 

secondary repeat tracts of M.CpG ND (N = 2), M.Hhal (N = 2), or tA.HpaW (N = 1) 

cell lines (Figure 4.16).
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A) B) C)

M .Hpa \I A3
M.CpG D3 (20 PD) M.CpG D3 (40 PD) M.Hha\ P1 (40 PD) M.Hha\ A1 (40 PD) (40 PD)

100 pg 100 pg 100 pg 20 pg (CTG)n 500 pg 100 pg 500 pg 100 pg 500 pg (CTG)n
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M *  i  » . . .^  _ 117

Figure 4.16. SP-PCR analysis of methylated transgenic repeats in DmtD cell lines. A)
Repeat length variation is not evident in the hyper-methylated secondary transgene. B) Low 
levels of repeat variation are observed in the secondary transgene methylated only at Hha\ 
sites (N = 2). C) Repeat length variation is not evident in the secondary transgene methylated 
only at Hpall sites. Band sizes, in repeats, are shown on the right o f the blots. The amount of 
genom ic template DNA used in each reaction (each lane) is indicated at the top o f each panel. 
PD = population doubling.
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4.2.3 Semi-quantitative RT-PCR of expanded transgenic repeats

A positive association between repeat instability and repeat transcription has 

been suggested in transgenic models of expanded CTG»CAG disorders. 

Significantly, the Dmt-D transgene is expressed at low levels in kidney cells of 

the Dmt-D mouse model. Thus, differing expression levels of the primary and 

secondary transgenes may account for the contrasting stability profiles observed 

between the transgenic repeats.

In order to investigate transgene expression levels, total RNA was prepared from 

Dmt-D cell lines transgenic for the insulator negative (N =8) or insulator positive 

(N = 7) secondary transgenes. RNA concentration and purity was assayed by 

spectrophotometry; a ratio of sample absorbance at 260 nm and 280 nm of 2-2.2 

indicating a clean RNA sample. RNA integrity (degree of degradation) was 

assayed by gel electrophoresis (Figure 4.17A). Contaminating genomic DNA was 

removed by digestion with DNasel. cDNA was synthesised from RNA (2500 ng) 

using Superscript II reverse transcriptase (RT) primed with random hexamers. 

Samples were tested for the presence of contaminant genomic DNA by PCR 

amplification of the GAPDH gene from RT negative controls of each sample 

(Figure 4.17B).

As the primary repeat exhibits dramatic repeat length variation at 100 

population doublings post-transfection, RT-PCR across the repeat tract would 

result in a broad smear when resolved on a gel, rendering comparison of 

expression levels with the stable secondary transgene problematic. Thus, the 3’ 

flank of the primary transgene, insulator negative transgene, and insulator 

positive transgene was amplified using the primer pairs DM-F & mDmtD-MR, DM-F 

& T3, and DM-F & INDI_SR, respectively. Products were visualised by 

hybridisation with the probe RPR and quantified by densitometry, correcting for 

both input cDNA concentration and PCR efficiency (Figure 4.17C & 4.17D).

The analyses revealed that the primary transgene was expressed in all cell lines 

tested (N = 15). In addition, expression levels of the stable (N = 4) and unstable 

(N = 11) primary transgenes were not significantly different (Mann-Whitney U = 

28; P = 0.54) (Figure 4.18A). Expression of the secondary transgene was observed
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A) RNA Integrity

Insulator -ve Insulator +ve

28s rRNA

18s rRNA

B) cDNA purity

Insulator -ve Insulator +ve

C) RT-PCR of primary transgene

Insulator -ve

ND ND ND ND ND ND ND ND
4 6 7 8 10 11 15 20

Insulator +ve

INDI INDI INDI INDI INDI INDI INDI
4 6 7 11 13 15 24
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D) RT-PCR of secondary transgene

____________ Insulator -ve_______________
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4 6 7 8 10 11 15 20

___________ Insulator +ve__________

INDI INDI INDI INDI INDI INDI INDI
4 6 7 11 13 15 24
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Figure 4.17. Semi quantitative RT-PCR of primary and secondary transgenes in DmtD cell 
lines. A) RNA quality (degree of degradation) was assessed by agarose gel electrophoresis.
B) PCR amplification of the mouse GAPDH  gene from RT- controls for each sample failed to 
detect genom ic DNA contamination. C) RT-PCR of the primary transgene from both insulator 
negative and insulator positive cell lines (N = 15). D) RT-PCR of the secondary transgene from 
both insulator negative and insulator positive cell lines (N = 15). Matching RT- controls reactions 
performed for each RT-PCR were negative (not shown). Relative input amounts of cDNA were 
estimated by RT-PCR of the mouse GAPDH  gene from each cDNA sample. RT-PCR products 
were visualised by blotting and hybridisation to the probe RPR.
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Figure 4.18 Semi-quantitative RT-PCR analysis of primary and secondary transgenes.
A) Relative expresion levels of stable (N = 4) and unstable (N = 13) primary transgenes in 
DmtD  cell lines. B) Relative expresion levels of primary and secondary transgenes in nine 
insulator negative DmtD  cell lines. Expression levels are relative, and were estimated by 
densiom etric analysis of band density. All expression m easurements have been corrected 
for input cDNA template concentration and relative PCR efficiency.



in five of the eight insulator negative clones and four of the seven insulator 

positive clones. The insulator negative transgene was expressed at a significantly 

higher level than the primary transgene (Mann-Whitney U = 0, P = 0.02) (Figure 

4.18B). RT-PCR of the insulator positive transgene was not of sufficient quality 

to allow for quantification.

These results exclude gross differences in repeat expression level as a major 

modifier of the contrasting repeat length variation observed between the 

unstable primary transgenes and either the stable primary transgenes or the 

secondary transgenes.

4.2.4 A model system for the study of c/s-acting modifiers of expanded 

repeat stability

As outlined above (Section 4.1), chromosomal position effects complicate the 

study of c/s-acting modifiers of expanded repeat instability. Thus, a model 

system whereby transgenic repeats could be faithfully, and repeatedly directed 

to the same genomic location, thereby normalising for insertion-site effects, is 

desirable. Such a model system is outlined in Figure 4.19.

In brief, the model system utilises the technique of recombinase-mediated 

cassette exchange (RMCE), which allows for repeated targeting of replacement 

cassettes to the site of integration of the targeting cassette using the Cre-Lox 

system (Figure 4.19). Replacement of the targeting cassette can be efficiently 

selected for by gain of resistance to gancyclovir due to loss of the HyTK gene. 

Moreover, by flanking the targeting cassette with insulators elements, the 

replacement cassettes would be predicted to be maintained in an open 

chromatin state, which is potentially instability promoting.

Once constructed, the model system would allow for comparison of the effects 

of flanking sequence on instability both within and between disorders, 

independent of the effects of site of integration. For example, the length of 

endogenous flanking sequence surrounding an expanded repeat locus could be 

progressively reduced in order to identify the location of c/s-acting elements. In
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A) Positive selection (hygrom ycin) Selects for transfected cells
T
 ►

Ins Ins L1 Pro HyTK fusion gene pA 1L Ins Ins

B) Cre recombinase ^ x
MJD

SCA2

C1) Cassette exchange
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C2) Cassette inversion

<

Ins Ins L1 Vd aua6 uojsnj » j_Ah OJd 1L Ins Ins

D) Negative selection (gancyclovir) Selects for cassette exchange

Figure 4.19. Recombinase-mediated cassette exchange of expanded repeats. The targeting 
cassette consists of a hygromycin phosphotransferase gene fused to a thym idine kinase gene 
(HyTK) which allows for positive selection with hygromycin B and negative selection with gancyclovir, 
flanked by inverted Lox sites (L1 and 1L), and two pairs of insulator elements from the chicken 
fj-globin locus (Ins). A) Hygromycin B is used to select for cells that are stably transfected with the 
targetting cassette. B) Clones containing the targeting cassette are co-transfected with a CRE 
expressing plasmid and a replacement cassette containing the expanded repeat and its flanking 
sequences. C1) CRE-mediated intra-m olecular recombination between Lox sites results in exchange 
of the targetting cassette with the replacement cassette, whereas C2) inter-m olecular recombination 
between Lox sites leads to inversion o f the targeting cassette. D) Negative selection with gancyclovir 
selects for cassette exchange. Pro = human cytomegalovirus promoter, pA = simian SV40 polyA 
sequence. Grey boxes represent repeat flanking sequence, solid black bars represent vector 
backbone, dashed black bars represent genom ic DNA, and horizontal arrows represent transgene 
orientation.



addition, the inherent instability of different expanded loci could be compared 

in the same genomic context (Figure 4.19 B).

Targeting cassettes with and without flanking insulator elements were 

constructed using conventional cloning techniques. Inversion of the HyTK gene 

was observed upon incubation of targeting cassette plasmid DNA with Cre 

recombinase (data not shown), indicating that the Cre-Lox component of the 

system was functional. Subsequently, three single-cell derived HeLa clones 

containing a single copy of the targeting cassette were generated.

Unfortunately, due to time constraints, we were unable to further develop and 

utilise this novel system.
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4.3 Discussion

The characterisation of c/s-acting modifiers of expanded repeat stability in 

transgenic animal and cell culture models has been frustrated by site-of- 

integration effects on repeat stability; the genomic location of a transgenic 

repeat tract markedly influences its potential to exhibit instability. Here, a 

transgene targeting system, which allowed for direction of transgenic repeats to 

the same genomic location and protection against changes in chromatin state of 

the transgenic locus over time was proposed (Figure 4.19). Such a system would 

allow for the study of c/s-acting modifiers of expanded repeat stability 

independent of site-of-integration effects. It was proposed that by flanking the 

transgenic repeats with insulator elements, which prevent the propagation of 

condensed chromatin through a transgene, would maintain the transgenic DNA in 

an open-chromatin formation and allow for study of the transgenic repeats over 

long periods of time in culture unaffected by changes in chromatin state. Here, 

the feasibility of this system was tested by the analysis of both human and 

mouse cell lines transgenic for expanded repeats either with or without flanking 

insulator elements.

Analysis of repeat length variation in HeLa cell lines stably transfected with an 

expanded (CTG)n2 repeat failed to reveal gross instability in either the presence 

or absence of flanking insulator elements. As expanded CTG*CAG repeat 

instability is tissue-specific, it is possible that HeLa cells, which are derived from 

cervical cancer tissue, do not possess the relative trons-acting modifiers, such as 

a competent mismatch repair (MMR) system, necessary to affect instability. 

However, unlike many cancer cell lines, HeLa cells do not show widespread 

microsatellite instability, repair mispairs and hetero-duplexes efficiently, and 

are commonly used as a repair-proficient controls in studies of the MMR system 

(Panigrahi et al., 2005; Thomas et al., 1991; Vo et al., 2005).

Interestingly, significant length variation of the transgenic repeat was not 

observed in mouse Dmt-D kidney cells stably transfected with the same 

transgenes (secondary repeats). Small-pool PCR (SP-PCR) analysis did identify 

small repeat length variants of the secondary repeat. However, these events
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were rare and did not exhibit an expansion bias. The Dmt-D cell lines were 

proficient for expanded repeat instability, as evidenced by the continued 

expansion of the original Dmt-D repeat (primary repeat) in the cell lines created 

here, suggesting that c/s-acting factors mediate the dramatic difference in 

stability observed between the primary and secondary transgenic repeats in each 

cell line. In addition, the identification of a population of expanded, but stable 

primary repeats suggested that those c/s-elements may not be purely sequence 

based, but may be epigenetic and vary between cells within a given tissue.

Several disease-associated expanded repeats are associated with CpG islands 

(Brock et al., 1999), and previous studies have found expansion of the DM1 locus 

to be associated with changes in the methylation status and chromatin state of 

its flanking sequences (Cho et al., 2005; Filippova et al., 2001; Steinbach et al., 

1998). Methylation-sensitive restriction digest/PCR (MS-PCR) experiments were 

used to determine the methylation status of both the expanding primary repeat 

and stable secondary repeat in the stably transfected Dmt-D cell lines. The 

unstable primary repeat was hyper-methylated, whereas the stable secondary 

repeats were completely unmethylated, suggesting a positive association 

between CpG methylation of repeat flanking sequence and instability. These 

data are in agreement with similar analyses of genomic DNA from affected 

individuals (Steinbach et al., 1998). However, the expanded stable primary 

repeats identified in five Dmt-D cell lines were also hyper-methylated, excluding 

a simple binary association between presence of flanking CpG methylation and 

expanded repeat instability. The analyses carried out here were restricted to 

sequences directly proximal to the repeats and do not rule out differences in 

methylation pattern at sequences > 500 bp from the repeat tract. Furthermore, 

none of the assayed CpG dinucleotides are located within the 5’ CTCF site or 3' 

CTCF site located with the flanking sequences of the Dmt repeat tract. 

Methylation of these CTCF sites has been implicated with ablation of CTCF- 

binding, alteration of local chromatin state, and abnormal antisense 

transcription of the expanded repeat (Cho et a l., 2005; Filippova et al., 2001).
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If hyper-methylation of expanded repeat flanking sequences is required to affect 

instability, the use of neomycin to select for cell lines positive for the transgene 

may inadvertently select for stable, unmethylated repeats as the neo resistance 

gene will have been silenced in cell lines carrying hyper-methylated transgenes. 

However, Dmt-D cell lines stably transfected with semi-methylated constructs in 

which the repeat-containing Dmt portion of the transgene was methylated, but 

the neomycin cassette was unmethylated did not reveal gross repeat length 

variation in culture upon analysis by SP-PCR. These data also argue against a 

simple association between flanking CpG methylation and instability, but do not 

exclude a role for wider methylation context in mediating repeat stability. Due 

to degradation of the transgene during integration, relatively few cell lines 

containing complete transgenes were generated, limiting the power of this 

experiment. Moreover, as the relationship between DNA methylation and 

chromatin state is complex and not yet fully characterised, it is possible that the 

methylated secondary repeats do not possess the same chromatin structure as 

the unstable primary repeats.

Data from mouse models of expanded CAG«CTG disorders suggest that repeats 

that are not transcribed are stable, whereas transcribed repeats can be stable or 

unstable (Fortune et al., 2000; Mangiarini et al., 1997). However, the nature of 

the relationship is unclear as expression levels do not correlate with levels of 

instability (Fortune, 2001; Jung and Bonini, 2007; Mangiarini et al., 1997). It is 

possible that a common epigenetic feature, such as DNA methylation or 

chromatin state, facilitates both repeat transcription and instability. Semi- 

quantitative RT-PCR (sqRT-PCR) analysis revealed that both the stable and 

unstable primary alleles were expressed at similar levels. In addition, both the 

insulator positive and insulator negative secondary repeats were expressed in 

the majority of cell lines, and were expressed at a higher level than the primary 

repeats in the same cell line. Although these data exclude absence of 

transcription as the principal cause of the stability observed in the secondary 

repeats and the stable primary repeats the data do not completely exclude a 

role for transcription in the repeat stability profiles observed. Previous studies 

have identified bi-directional transcription at the DM1 locus in human DM1 cell 

lines and in Dmt-D mice (Cho et al., 2005; Fortune, 2001). It has been proposed 

that methylation-mediated ablation of CTCF-binding allows antisense-
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transcription through the DM1 repeat tract leading to changes in chromatin state 

and subsequent destabilisation of the repeat (Cho et a l . , 2005). It is possible 

that such bi-directional transcription is absent at the stable primary and 

secondary repeat loci.

As the Dmtin  transgene employed here contains 50 fewer repeats than the 

original Dmt162 transgene used to generate the Dmt-D mice, it is possible that 

the Dmtiu  repeat is simply too short to exhibit expansion-biased instability. 

However, a mouse model of Huntington disease transgenic for a 1.9 kb fragment 

of the HD gene containing a (CAG)n3 expansion exhibited dramatic repeat length 

variation in kidney at just 10 weeks (Mangiarini et al., 1997). Significantly, mice 

transgenic for a (CTG)s5 repeat surrounded by 45 kb of human DM1 locus DNA 

exhibited dramatic, expansion-biased repeat length variation in kidney at 16 

weeks, with 50 % of alleles having a repeat length differing from the original 

(CTG>55 repeats (Lia et al., 1998). Similarly, a knock-in mouse model of DM1, in 

which a (CTG)s4 repeat was inserted into the cognate position of the mouse 

DMPK gene showed dramatic instability in somatic tissues, particularly kidney, in 

which an average increase in repeat size of 13 repeats was observed in 6 months 

(van den Broek et al., 2002). In addition, the isolation of Dmt-D cell lines with 

expanded (~ CTG400) yet stable primary Dmt repeat tracts suggest that repeat 

length alone does not determine stability in the cell lines generated here.

Unlike the original Drnt^i transgene used to generate the Dmt-D mice, the 

DmUn transgene employed here was cloned immediately 3’ of a neomycin 

cassette required for positive selection of clones carrying the transgene. The 

presence of the neomycin cassette could affect the observed stability of the 

Dmtu2 transgene in two ways. First, as outlined above selection for neomycin 

resistance may inadvertently select for stable transgenes, by secondary selection 

for areas of open chromatin, methylation status of the transgene, or expression 

level, all of which may affect repeat stability. Secondly, the sequence of the 

neomycin cassette itself may contain, as of yet unidentified, repeat-stabilising 

elements. Indeed, the terminal 500 bp of the neo cassette, which directly 

precedes the Dmt transgene, has a low GC content (39% GC). Given the 

significant positive correlation between flanking GC content and expanded 

repeat instability reported previously (Brock et al., 1999)(Chapter 3), the low GC
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content of the neo cassette may have exerted a stabilising effect on the repeat 

sequence.

The contrasting instability of the expanding primary Dmt^i repeat and stable 

secondary Dmt^^2 repeat in the same cell lines, suggests the possible 

involvement of developmental triggers of instability. That is, DNA modifications 

which occur during development may be required to render an expanded repeat 

unstable. Indeed, the inhibition of DNA methyltransferases with 5-aza- 

deoxycytidine (5-aza-CdR) dramatically destabilised expanded (CTG)so and 

(CTGJiso repeats in fibroblast lines from human DM1 patients (Gorbunova et al., 

2004). However, the repeat length changes observed were very rare, and 

occurred in unusually large jumps and no mechanistic explanation of how global 

demethylation might affect expanded repeat stability was proposed.

In summary, HeLa cells and mouse Dmt-D kidney cells failed to exhibit instability 

in a stably integrated transgene containing a CTG112 repeat tract. The Dmt-D 

kidney cell lines were proficient for expanded CTG*CAG instability, as evidenced 

by the continued instability of an expanded CTG*CAG tract already present in 

this cell line. The differences in repeat length variation between the unstable 

and stable transgenic repeats in each cell line did not reflect differences in 

either DNA methylation state or the transcription level of the transgene. These 

data further emphasise the importance of identifying the c/s-acting modifiers of 

expanded repeat instability.
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5. C/s-acting modifiers of CAG*CTG microsatellite 
mutability

5.1 Introduction

Microsatellites are short, tandemly repeated DNA sequences, where the 

repeating unit is one to six base pairs in length and are thought to comprise 

between 2 - 4% of the human genome (Leclercq et al., 2007). Eukaryotic 

genomes are significantly enriched for microsatellite sequences (Bell and Jurka, 

1997; Dieringer and Schlotterer, 2003). For example, although the sequence 

(CAG)s would be predicted to occur once by chance in the human genome, over 

2,000 such sequences are present (Figure 5.1). This overabundance of 

microsatellite sequences is seen for all microsatellite motifs (Dieringer and 

Schlotterer, 2003; Ellegren, 2004). Despite decades of exhaustive study, it 

remains unclear whether this overabundance reflects some unknown function of 

microsatellites, or is simply a benign consequence of erroneous DNA replication.

Microsatellites are highly polymorphic. Microsatellite variation can occur as 

either a change in the sequence of the microsatellite (point mutations) or as 

changes in the length of the microsatellite (expansions or contractions) (Brohede 

and Ellegren, 1999; Kruglyak et al., 1998). The variability of microsatellite allele 

lengths, coupled with their ease of detection by PCR, rendered polymorphic 

microsatellites highly informative markers for use in genome mapping, DNA 

profiling, phylogenetic analyses and linkage analysis (Hagelberg et al., 1991;

Kong et al., 2002; Tamaki and Jeffreys, 2005). However, despite the widespread 

use of microsatellite based markers, the mutational processes by which 

microsatellites change in length is not fully understood. It is widely assumed that 

repeat-length changes occur by replication slippage, followed by failure of 

mismatch repair (AAMR) to correct the misalignment (Chapter 1) (Ellegren, 2004 ; 

Kelkar et al., 2008; Richards and Sutherland, 1994; Schlotterer and Tautz, 1992). 

A role for MMR in stabilisation of microsatellite sequences is further supported 

by the observation that widespread microsatellite instability, common to many 

human tumours, is usually associated with deficiencies in the AAMR system 

(Woerner et al., 2006). Whereas a role for non-reciprocal strand exchange (gene
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conversion) has been implicated as a mutational mechanism of minisatellite 

sequences (Jeffreys et al., 1994), its role in microsatellite evolution is unclear.

Similar to the disease-associated expanded simple repeats, the mutability of a 

microsatellite is positively correlated with its number of repeating units 

(Brandstrom and Ellegren, 2008; Ellegren, 2000; Webster et al., 2002). This 

appears to be true for all repeat motifs, however for a given number of repeat 

units different repeat motifs can display very different levels of mutability 

(Brandstrom and Ellegren, 2008; Ellegren, 2000; Webster et al., 2002). It is 

widely assumed that the association between the length of a microsatellite and 

its mutability reflects a greater potential for replication slippage in longer 

repeat tracts (Ellegren, 2004). However, the observation that the distribution of 

microsatellite repeat lengths in a given genome is stationary and that 

microsatellites appear to have an upper length limit suggest that other 

mechanisms are modifying microsatellite mutability (Ellegren, 2000; Li et al., 

2002). It is has been suggested that longer repeats may show a greater tendency 

to contract than shorter microsatellites resulting in a stable distribution of 

microsatellite allele lengths (Ellegren, 2000). In addition, mathematical 

modelling of microsatellite evolution has suggested that an equilibrium between 

replication-mediated expansion of microsatellites and microsatellite 

decay/shortening by accumulation of point mutations, best explains the 

microsatellite distributions observed in eukaryotic genomes (Ellegren, 2004; 

Kruglyak et al., 1998).

As for the expanded trinucleotide repeat loci, the observation that 

microsatellites of similar length and motif can show significantly different levels 

of mutability (Ellegren, 2004), suggested the presence of cis-acting modifiers of 

microsatellite mutation rate. Tumors of hereditary non-polyposis colorectal 

cancer (HNPCC), deficient for various components of the mismatch repair 

machinery, show genome-wide microsatellite instability (MSI) (de la Chapelle 

and Peltomaki, 1995; Dietmaier et al., 1997). However, despite the obvious 

trans-factor determination of HNPCC MSI, the observation that loci similar in 

sequence, location and length can display markedly different levels of instability 

suggested a contribution of flanking sequence to misalignment mediated repeat
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instability (Dietmaier et al., 1997; Richards et al., 1996). As of yet, no c/s-acting 

modifiers of microsatellite mutability have been identified.

A negative correlation between flanking GC content and allelic diversity of 

microsatellites was reported in alligators (Glenn et al., 1996). However, only 14 

di-nucleotide loci were analysed in that study and a subsequent study in 

Drosophila failed to find an association between mutability and flanking GC 

content (Bachtrog et al., 2000). Moreover, a genome-wide study of human and 

chimpanzee microsatellite evolution, found no correlation between isochore 

type and microsatellite mutability (Kelkar et al., 2008). However, as of yet, no 

study has examined the relationship between flanking GC content and 

microsatellite mutability for a specific repeat type on a genome-wide dataset.

We hypothesised that, although the mechanisms underlying microsatellite length 

variation and dynamic mutation of expanded repeats are likely to be different, 

flanking GC content may be a modifier of both processes. A significant positive 

association between flanking GC content and instability has been reported for 

the expanded repeat disorders (Brock et al., 1999) (Chapter 3). As dynamic 

mutation of disease-associated expanded repeats requires a functional MMR 

system we propose that a higher flanking GC may act to recruit or promote the 

activity of components of the AAMR acting on the expanded repeat. In contrast, 

as microsatellite instability is caused by failure to repair misalignments due to a 

defective AAMR system, loci with a lower flanking GC content may recruit or 

promote the activity of the AAMR machinery less effectively than microsatellites 

flanked by sequences with a high GC content. If this assumption were correct, a 

negative correlation between microsatellite mutability and flanking GC content 

would be predicted.

Here, in an attempt to identify c/s-acting modifiers of CAG*CTG microsatellite 

variability, the DNA sequence flanking CAG»CTG microsatellites in the human 

and chimpanzee genomes was analyzed, and sequence characteristics correlated 

with microsatellite mutability.
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5.2 Results

5.2.1 Definition and identification of all CAG*CTG microsatellites in the 
human genome

Despite the inherent simplicity of short tandem repeats, their definition and 

subsequent identification in genomic sequences is complex. Consequently, 

marked differences in how microsatellite sequences are defined exist between 

published studies of microsatellite mutability, and such differences are likely to 

have had a major effect on the observed experimental outcomes (Leclercq et 

al., 2007). Most notably, the minimum length (repeat number) of a 

microsatellite and the degree of imperfection (number of interruptions) 

permitted in a microsatellite varies between studies. Analyses of microsatellite 

mutability have generally excluded short (< 4 repeats) microsatellite sequences 

on the grounds that tandem repeat length mutations do not occur at very short 

microsatellites (Brandstrom and Ellegren, 2008; Kelkar et al., 2008; Webster et 

al., 2002). However, little  evidence exists to support this assertion, and that 

which does is based on small samples (Rose and Falush, 1998). Moreover, recent 

studies have reported apparent misalignment events at microsatellites consisting 

of as few as two repeats (Brandstrom and Ellegren, 2007). Thus, it was decided 

to include microsatellites of all lengths (> 2 repeat units) in the analyses 

presented here. Imperfect (interrupted) repeats are difficult to define. Although 

some evidence suggests that microsatellite evolution may be influenced by the 

presence of directly proximal microsatellite sequences (Almeida and Penha- 

Goncalves, 2004), no objective classification system exists to differentiate  

between a true interrupted microsatellite and two individual, but proximal 

microsatellites. Moreover, existing repeat detection algorithms vary greatly in 

their ability to identify interrupted repeat microsatellite sequences (Kelkar et 

al., 2008; Leclercq et al., 2007). Thus, it was decided to exclude imperfect 

microsatellites from these analyses.

All triplet motif microsatellite sequences in the human genome (assembly: NCBI 

36, October 2005) were identified using the Tandem Repeat Finder (TRF) 

program (Benson, 1999). To allow detection of short (< 4 repeat units) 

microsatellites, the minimum alignment score parameter of the TRF program
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was reduced from the default setting of 50 to 10 (TRF parameter settings: Match 

= 2, MisMatch = 7, In-Del = 7, pM = 75, pi = 20, MinScore = 10, MaxPeriod = 3) 

(Benson, 1999; Leclercq et a /., 2007). CAG*CTG repeats belong to the AGC-motif 

class of microsatellites, which consists of all microsatellites with repeating units 

of the sequence AGC in all three reading frames and their reverse complements 

(ACG, CGT, CAG, CTG, CGA, TCG). All non-AGC microsatellites were removed. 

Microsatellites were allowed to vary in length by fractions of the repeating unit. 

For example, the microsatellite ‘CAG CAG CAG CAG CAG C’ was defined as 

having a length of 5.3 repeats; the terminal cytosine nucleotide being included 

in the sequence of the microsatellite, not the flanking sequence. It was 

rationalised that such partial repeat units should be included in the 

microsatellite sequence as they are equally likely to be involved in the formation 

of misalignment-promoting non B-DNA structures as nucleotides internal to the 

microsatellite.

Finally, microsatellites less than 10 bp apart were removed as repeats in close 

proximity may not evolve independently (Almeida and Penha-Goncalves, 2004; 

Kelkar et al., 2008) and the presence of repetitive sequences immediately 

proximal to microsatellites will render identification of truly orthologous 

sequences difficult (Webster et al., 2002). Employing this approach 791,649 

perfect AGC-motif microsatellite sequences were identified in the human 

genome (Figure 5.1). As the human genome sequence is single copy, the 

identified microsatellites represent one allele at each locus. As expected, the 

number of microsatellite loci decreased with increasing repeat length, the 

majority (99.4%) of loci consisting of short (< 4 repeats) microsatellites.

5.2.2 CAG«CTG microsatellite length and flanking GC content in the human 
genome

Inappropriate mismatch repair (AAMR) by a competent AAMR system has been 

suggested as a major modifier of expanded repeat instability (Gomes-Pereira et 

al., 2004), whereas mutations in AAMR genes result in widespread microsatellite 

instability in many cancers (Woerner et al., 2006). As expanded trinucleotide 

instability is positively correlated with flanking DNA GC content, it has been 

suggested that flanking DNA GC content or other c/s-elements may modify
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expandability through effects on AAMR (Chapter 3) (Brock et al., 1999). Thus, it 

was hypothesised that flanking GC content may also modify microsatellite 

mutability through effects on AAMR. As the microsatellite sequences identified in 

the human genome represent a single snapshot in a continuum of mutation 

events, it is not possible to measure the actual mutation rates of individual loci 

from these data. Whereas short microsatellites may have arisen from chance 

point mutations, longer microsatellites are more likely to have arisen from 

misalignment mutation events; microsatellite length can be employed as an 

estimator of the true mutation rate. Thus, the relationship between 

microsatellite length (repeat number) and flanking GC content in the human 

genome was investigated.

Analysing all identified AGC-motif microsatellite loci (N = 791,649), a highly 

significant rank correlation was found between flanking GC content and 

microsatellite length (Table 5.1). This correlation was greatest for sequences 

proximal to the repeat (< 1000 bp). To facilitate visualisation of the data, the 

mean GC content for each repeat length was determined and plotted against 

repeat length (Figure 5.2). Visual inspection of the data suggested that whereas 

the length of ‘short' (< 7 repeats) microsatellites increased with increasing 

flanking GC content, no such relationship existed for ‘ long’ (> 7 repeats) 

microsatellites (Figure 5.2). Indeed, analysis of short microsatellites found a 

significant rank correlation between microsatellite length and both flanking GC 

content and mean flanking GC content for each repeat length (Table 5.1 &

Figure 5.3A). Conversely, no such correlation was found between long 

microsatellites and either flanking GC content or mean flanking GC content for 

each repeat length (Table 5.1 & Figure 5.3B).

As repeat length mutations in microsatellites associated with coding and non­

coding DNA are most likely subject to different selective pressure, the dataset 

was divided into exonic and non-exonic microsatellites. Using all predicted and 

manually annotated exon coordinates from the Ensembl genome server (Dec, 

2006), microsatellites were classified as exonic if all or part of the microsatellite 

sequence was located within an Ensembl exon. Approximately 6% (43,700) of all 

AGC microsatellites were identified as exonic. Exonic ACG-motif microsatellites 

(mean repeat number = 2.31 repeats) were significantly longer than non-exonic
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microsatellites (mean repeat number = 2.2 repeats) (Mann-Whitney U = 

21284239, P < 6 x 10'5), possibly reflecting the high frequency of long 

polyglutamine-encoding CAG repeats in human genes. In addition, the 

relationship between repeat length and flanking GC content was stronger for 

exonic repeats than non-exonic repeats (Tables 5.2, 5.3 and Figure 5.4). 

Although the increased length of exonic repeats is most likely due to the higher 

GC content of coding regions, this does not readily explain the highly significant 

correlation of exonic microsatellite length with flanking GC content.

5.2.3 C/s-acting modifiers of misalignment microsatellite mutability

Microsatellite mutability increases with repeat number (Brandstrom and 

Ellegren, 2008; Dieringer and Schlotterer, 2003; Kelkar et al., 2008; Rose and 

Falush, 1998). However, the repeat length of a given microsatellite is a crude 

estimator of the mutational process which delivered a locus to its present 

length. That is, a given microsatellite may have arrived at its present length by 

the addition or deletion of whole repeat units as a result of misalignment 

mutation, or by base substitution in the microsatellite or its flanking sequences. 

As the AAMR system is implicated in both instability of expanded disease- 

associated CAG»CTG repeats and both base substitution and misalignment 

mutations at polymorphic microsatellite loci, we sought to identify AGC 

microsatellite loci at which misalignment events had occurred. Once identified, 

the presence of c/s-elements common to both type of loci could be investigated. 

Microsatellite loci at which misalignment mutation events have occurred can be 

detected by comparing the repeat number at orthologous microsatellite loci in 

closely related species, such as the human and chimpanzee (Figure 5.5A).

To identify orthologous microsatellites in humans and chimpanzees, the 5' and 

3’ flanking sequences (100 bp) of all human AGC-motif microsatellites were 

aligned to the chimpanzee genome (assembly: CHIMP2.1, Mar 2006) using the 

BLASTn program (version blastall 2.2.18) (Figure 5.5 B). All BLAST searches were 

carried out on a computing cluster of 30 linux servers. In order to identify truly 

orthologous, perfect ACG-motif microsatellite pairs, at which misalignment
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A) Common ancestor

NNNNNCAGCAGCAGCAGCANNNNN
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Pan troglodytes Hom o sapiens

(i) No repeat num ber change in either species
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(ii) Detectable repeat number change in one or both species
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(iii) Undetectable repeat num ber change in both species
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B)

Hom o sapiensg ta tcg a tcg tcg a tcag ca g cag c ag ttg acag ctg g ac tg

BLAST unique human flanking 
sequences against the chimpanzee 

genome

(i) Repeat number change by m is-alignm ent repair mutation within the repeat tract
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Figure 5.5 Identification of orthologous microsatellite loci in the human and chimpanzee at 
which mis-alignment repair mutation events have occurred. A) Variation of m icrosatellite repeat 
number can be identified by comparing repeat number at orthologous hum an-chimpanzee loci. B) By 
aligning the unique sequences flanking a human m icrosatellite to their orthologous chim panzee 
sequences, (i) changes in repeat number resulting from the addition or deletion of whole repeat 
units can be distinguished from (ii) changes in repeat length resulting from point m utations in the 
flanking sequence. See text for a detailed description of the algorithm used.



mutation events had occurred a series of filters were applied the output 

obtained from the BLAST searches:

1) BLAST hits with an alignment length less than 100 bp or a percentage 

identity less than 95% were removed

2) Microsatellites mapping to non-homologous chimpanzee chromosomes 

were removed

3) Microsatellites mapping to more than one location on a homologous 

chimpanzee chromosome were removed

4) All loci for which the orthologous chimpanzee microsatellite was 

imperfect (interrupted) were removed

5) Finally, all loci which did not differ in length by whole repeat units (i.e. 

multiples of 3 bp) were removed

A total of 209,818 orthologous, perfect, AGC-motif microsatellite pairs were 

identified representing approximately 25 % of all human AGC microsatellites. In 

order to ascertain whether the set of orthologous microsatellites generated was 

a representative sample of all human AGC microsatellites, and free of significant 

sampling bias, the entire human AGC data set and the orthologous AGC dataset 

were compared. Repeat size did not significantly differ between the datasets 

( N a l l  HUMAN “ 791,649, N o r th o lo g o u s  = 209,818, Mann-Whitney U  = 49618853, P = 

0.296). In addition, the frequency distribution of repeat lengths for all human 

AGC-motif microsatellites and orthologous microsatellites did not differ 

significantly (Kolmogorov-Smirnov Z = 0.824, P = 0.51) (Figure 5.6).

As coding regions of the human and chimpanzee genomes are more highly 

conserved than intergenic regions, the flanking sequences of exonic 

microsatellites are more likely to be highly conserved and consequently more 

readily identified by the sequence comparison-based detection algorithm 

employed here, resulting in slight enrichment for exonic orthologous 

microsatellites. Indeed, the orthologous dataset was significantly enriched for 

exonic microsatellites (exonic loci/ total loci = 0.075) compared to the entire 

human AGC dataset (exonic loci/ total loci = 0.055) (%2 = 1142; P << 0.00001).
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Of the 209,818 orthologous loci identified, 324 loci differed by at least one 

repeat unit (approximately 0.2 % of all orthologous loci). Mutated loci were 

significantly longer than unchanged loci (N u n c h a n g e d  = 209,494, N m u ta te d  = 324, 

Mann-Whitney U = 42010, P < 0.00006), in agreement with previous observations 

that misalignment events occur more frequently at microsatellite loci consisting 

of four or more repeats. However, although the proportion of mutated loci 

increased with increasing repeat number (Figure 5.7A), 43% of all mutated 

microsatellites were observed at loci with fewer than four repeats. Interestingly, 

the proportion of mutated non-integer microsatellites (e.g. 2.3 repeats, 2.7 

repeats) was higher than the proportion of mutated integer microsatellites (e.g. 

2 repeats) for each repeat class (Figure 5.7B). This is consistent with our 

prediction that misalignment events can occur in any reading frame of a 

microsatellite sequence, and consequently partial repeat sequences at the ends 

of microsatellites may be involved in misalignment events. Thus, the sequence 

'CAG CAG C  should be defined as having 2.3 CAG repeat units as misalignment 

may occur in the first two CAG units or last two ACG units (in bold). The 

proportion of exonic microsatellites at mutated orthologous loci was not 

significantly different from the proportion of exonic microsatellites found at 

unchanged orthologous loci (%2 = 1.014; P = 0.314), suggesting that genic 

location is not a major modifier of mutability.

Analysis of the human sequences flanking the orthologous microsatellite loci 

revealed that mutated loci had a significantly higher flanking GC content than 

unchanged loci (Table 5.4). This finding suggests a role for flanking DNA GC 

content in microsatellite misalignment mutation. However, the flanking GC 

content of mutated and unchanged orthologous loci with the same repeat 

number did not differ significantly (data not shown). Moreover, analysis of loci 

which differed in length between humans and chimpanzees failed to find a 

significant correlation between flanking GC content and the magnitude of inter­

species microsatellite length change (Figure 5.8). This finding suggests, that 

once mutable, flanking sequence GC content may not be a modifier of 

mutability.
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Table 5.4. Mutated orthologous loci have higher flanking GC content than unchanged 
orthologous loci.

GC content 
(100 bp flanking 

sequence)

GC content 
(1,000 bp flanking 

sequence)

GC content 
(10,000 bp flanking 

sequence) N

Unchanged 45.67 44.36 43.47 209,494

Mutated 48.25 45.61 43.72 324

MW U 29,562,768.5 30,529,860 32,700,176

P <0.000006 0.00194 0.271

By necessity, human microsatellite sequences were defined as having a minimum 

of two repeating units. However, many orthologous chimpanzee loci were found 

to have one ‘repeat' unit. As human microsatellites were used to locate their 

chimpanzee orthologues, but not vice versa, similar one unit ‘microsatellites' 

would not be detected in the human genome using the methodology employed 

here. In order to investigate the nature of this ascertainment bias, and 

determine its effect on our analysis, the distribution of repeat length changes 

observed for human microsatellites of various lengths was determined (Figure 

5.9). As predicted, chimpanzee loci were significantly shorter than their human 

orthologues for short microsatellites (Figure 5.9A). A more balanced normal 

distribution of repeat length differences was observed for medium length 

repeats (Figure 5.9B), suggesting that sampling bias resulting from failure to 

identify one ‘repeat’ human orthologues of chimp microsatellites with four or 

more repeats did not affect this dataset. However, long (> 7 repeats) 

microsatellites tended to be typically shorter in chimpanzee than human (Figure 

5.9C). Although microsatellite mutability increases with repeat number, 

arbitrarily long microsatellites are not observed in eukaryotic genomes. It has 

been suggested that this microsatellite length limit reflects a tendency for 

longer repeats to undergo more contractions than expansions (Ellegren, 2000). 

Thus, as has been well documented, when a set of long microsatellites from one 

species are compared with a sister species, the loci in the sister species are 

typically shorter (Brandstrom and Ellegren, 2008). Thus, the apparent mutability 

of short and long microsatellite sequences is affected by two different 

ascertainment biases. However, exclusion of short and/or long microsatellites 

from our analysis failed to reveal a significant correlation between the
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magnitude of length change at mutated othologous loci and flanking GC content 

(data not shown).

5.2.4 Flanking GC content and CAG*CTG heterozygozity

Genome-wide, inter-species studies of orthologous microsatellite mutability 

allow for the analysis of large numbers of loci simultaneously. However, for any 

particular locus, only two alleles, one in each species is observed. As a 

consequence, such studies will tend to underestimate the true variability of loci. 

Whereas conventional genotyping analyses of microsatellite heterozygozity 

within a population are typically restricted to small sample sets and longer 

alleles, they provide more accurate measures of the true variability of individual 

microsatellite loci. Thus, we performed a meta-analysis of published data of 

exonic CAG«CTG microsatellite heterozygozity.

The repeat length of 51 exonic CAG»CTG microsatellites with a minimum repeat 

number of six was reported for 160 individuals in a Polish population (Rozanska 

et al., 2007). Here, consistent with our genome-wide analyses, no significant 

correlation between the reported heterozygozity and flanking GC content of the 

loci was found (Figure 5.10).

Moreover, the heterozygozity of normal length range polyglutamine loci shows a 

significant negative correlation with the instability of the repeat when expanded 

(Figure 5.11). This observation suggests that the mechanism underlying 

expanded repeat instability differs from that underlying the normal mutability of 

these loci.
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5.3 Discussion

The expandability of disease associated unstable CAG»CTG repeats is positively 

correlated with flanking GC content (Chapter 3) (Brock et ol., 1999). Competent 

mismatch repair (MMR) is required to effect instability at these expanded loci 

(Gomes-Pereira et a /., 2004; Manley et a /., 1999; van den Broek et al., 2002).

We have suggested that these observations may reflect a biological relationship; 

flanking GC content may promote the recruitment or action of MMR at expanded 

loci. AAMR is also involved in the variability of normal length microsatellites. 

However, unlike expanded repeat instability, microsatellite instability is 

increased by deficiencies in the AAMR machinery. Thus, we hypothesised that 

microsatellites flanked by GC-poor sequences may be more mutable than 

microsatellites flanked by GC-rich sequences, reflecting less efficient AAMR 

recruitment to, or activity at, microsatellites flanked by low GC content 

sequences. To investigate the effect of flanking sequence composition on 

microsatellite instability we carried out the first genome-wide study of flanking 

sequence effects on AGC-motif microsatellite mutability in humans.

We found a positive association between short (< 7 repeats) microsatellite length 

and flanking GC content. Consistent with our hypothesis, a negative correlation 

between flanking sequence GC content and microsatellite length was found for 

long (> 7 repeats) microsatellites. However, this correlation was not statistically 

significant. As exonic sequences tend to have a higher GC content than non- 

exonic sequences, longer ACG-motif microsatellites would be expected to arise 

by chance in exonic regions. Indeed, we found that exonic repeats were 

significantly longer than non-exonic microsatellites. Strikingly, the correlation 

between short (< 7 repeats) microsatellite length and flanking GC content was 

even more significant when microsatellites located within exonic sequences 

were analysed separately. This finding is particularly interesting given the exonic 

nature of the expanded CAG«CTG repeat sequences (Chapter 3). A correlation 

between short microsatellite length and flanking GC content was expected, as 

the probability of forming a GC rich repeat by random chance, such as a AGC- 

motif microsatellite, increases with the GC content of the host sequence. For 

example, whereas a single point mutation in the sequence ‘CGCCAGCAGCGG’
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would result in lengthening of the CAG repeat tract at least two such mutations 

would be required to result in a similar repeat expansion in the AT rich 

sequence, ‘AATCAGCAGAAT’ .

However, chance association of nucleotides would predict that approximately 

one (AGC)s sequence would occur in the human genome. However, over 2,000 

such (AGC)s sequences are observed. It seems unlikely that point mutations 

alone would result in such an overrepresentation of these sequences, unless base 

substitution in the flanking sequences was biased towards extending 

microsatellite length. Indeed, it has been suggested that the nucleotides directly 

flanking microsatellites show mutational biases (Vowles and Amos, 2004), 

however more recent work suggests no such biases are present (Webster and 

Hagberg, 2007). Thus, it is likely that processes such as misalignment mutation 

are also acting at short microsatellite loci. The lack of correlation between 

flanking GC content and repeat number for longer repeats, suggests that that 

local sequence composition is not a major modifier of mutability at these loci.

The observed repeat length of a microsatellite offers little insight into the series 

of mutational events that resulted in its present state. In order to identify loci at 

which misalignment mutation events have occurred, we sought to quantify 

repeat length variation at orthologous human and chimpanzee microsatellite 

loci. Pre-genomic era studies of human-chimpanzee microsatellite mutability 

were based on amplification of microsatellites in both species using primers 

designed for microsatellite marker detection in humans. As human microsatellite 

markers are typically long and highly polymorphic, and as a maximum length 

threshold exists for microsatellites (Ellegren, 2004), the orthologous loci in 

chimpanzee were usually found to be shorter than in humans. This 

‘ascertainment bias' frustrated early studies of microsatellite mutability based 

on inter-species comparisons. Publication of a high quality sequence of the 

chimpanzee genome facilitated the direct observation of microsatellite 

mutability on a genome-wide scale by comparison of orthologous microsatellites 

in the human and chimpanzee genomes. Whereas such inter-genome studies 

have furthered knowledge of the factors internal to microsatellites that affect 

their instability such as repeat number, motif size, and motif composition, few  

have analysed the effects of proximal flanking sequence on mutability.
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Moreover, previous studies have tended to analyse the mutability of 

microsatellites grouped by motif size (all dinucleotide microsatellites, all 

trinucleotide microsatellites, etc.). As within each motif-size class, motif 

composition is known to have a significant effect on mutability, such studies may 

fail to detect the effect of flanking sequences which are specific to repeats of a 

particular motif-composition (Kelkar et al., 2008). Moreover, most genome-scale 

studies exclude short microsatellite sequences, and are thus susceptible to the 

effect of sampling bias. Ostensibly, exclusion of short microsatellites is due to 

the widely held view that misalignment events are very rare at these loci, 

despite scant evidence to support this assumption. However, as approximately 

99% of all microsatellite sequences are composed of fewer than 4 repeats, their 

exclusion most likely reflects attempts to reduce the computational magnitude 

of the analysis.

We identified 209,000 orthologous ACG-microsatellites in humans and 

chimpanzees, of which 324 were found to have changed by at least one whole 

repeat unit. As orthologous loci were identified by aligning the 5’ and 3’ flanking 

sequences of human microsatellites with the chimpanzee genome, the observed 

changes were not due to point mutations of either the microsatellite or its 

flanking sequences. Thus, we concluded that the observed changes were due to 

misalignment mutation events. Consistent with previous studies, it was found 

that microsatellite mutability increased with repeat number. However, a large 

proportion (43%) of mutated loci consisted of fewer than four repeats, 

suggesting that misalignment mutation is a major source of repeat number 

variation, even at very short loci. Significantly, we found that the frequency of 

length changes at mutated orthologous loci increased with increasing non­

integer repeat units (mutability: 2.7 repeats > 2.3 repeats > 2.0 repeats), 

suggesting that such partial repeat units are an integral part of microsatellites as 

a biological unit.

Analysing flanking sequence GC content, it was found that mutated orthologous 

loci had a significantly higher flanking GC content than unchanged orthologous 

loci (Table 5.4). Moreover, consistent with our intra-human analysis, no 

correlation was found between the magnitude of length change observed at 

orthologous loci and flanking GC content. Taken together, the data from both
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the intra-human and inter-species analysis suggest the following model of 

mutability for AGC-motif microsatellites. Sequence composition dependent, 

point mutation mediated expansion of short microsatellites delivers loci to a 

length at which sequence composition independent, misalignment mutation 

becomes the dominant mutational process (Figure 5.12). Thus a given 

microsatellite sequence is most likely the product of both point mutation and 

misalignment mutation repeat length variations. Our proposed model of AGC- 

motif microsatellite mutability suggests that GC content-dependent point 

mutations delivers short repeats to a length at which a GC content independent 

process of misalignment mutation dominates (Figure 5.12). As microsatellites 

flanked by sequences with higher GC contents are more likely to reach this point 

of mutational ‘change-over', it would be predicted that microsatellites 

undergoing misalignment mutation would have a higher flanking GC content than 

those at which misalignment mutation has not taken place, as was found to be 

the case.

Despite the large sample size afforded by inter-genome analysis, such studies 

are subject to inherent biases, and biases resulting from the method of 

orthologous microsatellite detection employed. First, as only two alleles, one 

human and one chimpanzee are sampled, the direction and number of changes 

that have occurred cannot be inferred from the observed difference in repeat 

number between species. Moreover, where orthologous microsatellite pairs have 

independently mutated to the same repeat number, no change will be observed 

between species. Thus, inter-genome comparisons of microsatellite repeat 

number inherently underestimate the true levels of genome-wide mutability. 

Employing the genomic sequence of a third species as an out-group could serve 

to reduce, but not eliminate this bias. Secondly, as we have employed the 

flanking sequences of microsatellites identified in the human genome (focal 

genome) to locate those in the chimp genome (sister genome), but not vice 

versa, microsatellite loci of less than two repeats will not be identified in the 

human genome resulting in a distortion of repeat lengths observed for short 

microsatellites (Figure 5.9A). This sampling bias can be overcome by performing 

the reciprocal analysis employing the chimpanzee genome as the focal genome.
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Consistent with our inter-genome analysis no correlation between the flanking 

GC content of exonic microsatellites and their heterozygozity was revealed. 

Interestingly, we noted that the heterozygozity of the normal length range 

disease-associated polyglutamine-encoding CAG repeats was significantly 

negatively correlated with their expandability in the disease associated length 

range. This striking observation suggests that the process of expanded repeat 

stability is not simply an extension of the process (presumably misalignment 

mutation) underlying the mutability of the disease loci in their normal length 

range.
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6. Final discussion, main conclusions and future 
perspectives

Nearly two decades have passed since the expansion of a simple tandem repeat 

was identified as the mutation underlying fragile X syndrome (Kremer et al., 

1991). In the intervening years, a further 16 disorders have been linked to the 

expansion of usually benign short tandem repeats (Figure 1.1) (Gomes-Pereira 

and Monckton, 2006). The term ‘dynamic mutation' was applied to the process 

of repeat expansion to distinguish this atypical mutational process from more 

canonical genetic mutations (Richards and Sutherland, 1992). The repeat tracts 

at these loci are typically small and polymorphic in the general population. 

However, upon expansion the repeat tracts become pathogenic and 

hypermutable, exhibiting expansion-biased, tissue-specific instability. As repeat 

pathogenicity increases with length, longer repeats result in an earlier age of 

disease onset and increased severity of symptoms. Intergenerationally, dynamic 

expansion of disease-associated expanded repeats results in successive 

generations being affected more severely, and at an earlier age; a phenomenon 

termed ‘anticipation’ . Given the typically milder symptoms and later disease 

onset in first generation carriers of an expanded repeat mutation, the 

development of early, more severe symptoms in the final generation can often 

be the point at which the disorder is first identified in a family, followed by 

testing and diagnosis in the wider family. Thus, the process of dynamic mutation 

has a direct and devastating human cost on entire families, for which there is 

currently no effective therapy for prevention or cure.

As dynamic mutation is causative, and common to all these disorders, it  offers a 

unique site for therapeutic intervention. Unfortunately, in spite of intensive 

study over the past decade, our knowledge of the mechanism underlying 

dynamic mutation is limited.
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6.1 Main conclusions

6.1.1 Somatic mosaicism is a mediator of disease progression

Expansion of trinucleotide repeats in the germline is responsible for the 

phenomenon of anticipation, whereas length- and age-dependent expansion in 

somatic tissues is believed to be responsible for the tissue-specificity and 

progressive nature of the expanded repeat disorders (Fortune et al., 2000; 

Gomes-Pereira and Monckton, 2006; Shelbourne et al., 2007). As repeat toxicity 

increases with length, it is intuitive to assume that the rate at which repeats 

expand in affected tissues will be a major modifier of age at onset and 

progression of symptoms. Thus, assuming an equal inherited repeat length, 

disorders with faster expanding repeat tracts would be predicted to have an 

earlier age at onset than loci expanding more slowly. Indeed, the polyglutamine 

disorders show marked differences in the repeat number (termed ‘ locus 

toxicity’ ) required to effect a similar age at onset of symptoms (Figure 3.1). This 

inter-locus toxicity difference has been widely assumed to reflect protein 

context effects on the cytotoxicity of the expanded polyglutamine tract, 

although no evidence to support this assumption has been reported. However, 

we proposed that the inter-locus difference simply reflects differences in the 

rate at which somatic expansion delivers repeats to their cytotoxic state at each 

locus.

In order to test this hypothesis we analysed published data of locus 

expandability (Brock et al., 1999) and the relationship between repeat number 

and age at onset for seven polyglutamine disorders (Gusella and MacDonald, 

2000). Importantly, the repeat lengths quoted in both studies are data from 

affected individuals. Consistent with our hypothesis, we revealed a significant 

negative correlation between locus expandability and locus toxicity. That is, 

faster expanding loci such as SCA2 required fewer repeats to effect a given age 

at onset when compared to a more slowly expanding locus, such as MJD (Figure 

6.1). Our somatic expansion rate model of inter-locus toxicity is also consistent 

with several clinical cases in which individuals with expanded but stable repeats 

tend to have a later age of onset and milder symptoms than individuals with an 

unstable repeat of similar length (Chapter 3). Our model proposes that disease
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progression is governed by the rate at which somatic expansion delivers repeats 

to their pathogenic state, not just inherited repeat length. As such, this model 

predicts that age at onset of an individual homozygous for an expansion would 

be determined by the time taken for their longer allele to reach pathogenic 

length. That is, as the longer allele would take a shorter time to reach its 

cytotoxic state it would determine age at onset. Thus, an individual homozygous 

for an expanded allele would be expected to have an age at onset similar to that 

of an individual heterozygous for the longer expansion. However, as the second 

expanded allele would reach its pathogenic length not long thereafter in the 

homozygote, disease would progress more rapidly than for a heterozygote with a 

single pathogenic allele. Indeed, individuals homozygous for expanded alleles at 

the SCA1 (Goldfarb et al., 1996), SCA2 (Sanpei et al., 1996) and HD (Durr et al., 

1999) loci have a similar age at onset as length-matched heterozygotes. 

Significantly, a study of eight individuals homozygous for HD found that not only 

did age at onset occur within the range expected for heterozygotes with an 

expanded allele of similar length, but also that the rate of disease progression 

was significantly accelerated in the homozygous individuals (Squitieri et al., 

2003), consistent with a role for somatic expansion in disease progression.

Interestingly, during the course of our research an independent study employing 

computer simulations and mathematical modeling predicted that length- 

dependent somatic expansion underlies age at onset and disease progression in 

trinucleotide diseases (Kaplan et al., 2007). Our results, based on data from 

affected individuals are consistent with this model.

Here, we have reported for the first time, a correlation between locus 

expandability and locus toxicity, implicating somatic mosaicism as a modifier of 

disease progression. Our finding re-emphasizes the importance of the role played 

by somatic expansion in disease progression and highlights the importance of 

understanding the mechanism of dynamic mutation. Of course, we acknowledge 

that correlation does not mean causation. However, we argue that our data 

provides a simple and intuitive explanation of the inter-locus toxicity differences 

observed between the polyglutamine disorders based on real data from affected 

individuals.
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From a therapeutic perspective, the process of somatic expansion offers a 

potential site for intervention. Indeed, the data (Chapter 3) suggests that were 

the SCA2 tract as stable as the MJD repeat, the majority of SCA2 individuals with 

less than 60 repeats would not develop symptoms. Moreover, whereas therapies 

targeted to the downstream affects of expanded polyglutamine proteins in 

affected tissues are likely to be disease-specific, therapies directed to somatic 

expansion are more likely to be generally applicable to all expanded CAG#CTG 

repeat disorders. Indeed, although admittedly limited in scope, preliminary 

screens for chemical modifiers of expanded repeat instability have been 

promising (reviewed in (Gomes-Pereira and Monckton, 2006). For example, in 

cell models of myotonic dystrophy the chemicals caffeine, aspirin, and 5-aza-2- 

deoxycytidine have been found to increase expansion rate, decrease expansion 

rate and increase the frequency of large deletions, respectively (Gomes-Pereira 

and Monckton, 2004; Gorbunova et al., 2004). These experiments provide proof 

of principle that somatic expansion can be modified by chemical agents. As we 

gain a better understanding of the mechanism of dynamic mutation more 

rational design of therapeutic agents, possibly targeted to the mismatch repair 

system may be designed.

6.1.2 Flanking GC content is a c/s-acting modifier of expanded CAG«CTG 
repeat instability and genome-wide CAG«CTG microsatellite instability

Several observations have indirectly suggested a role for c/s-acting modifiers of 

expanded repeat stability. Identifying these c/s-elements may provide insights 

into the mechanism of dynamic mutation and provide potential sites for 

therapeutic intervention. Building on previous work (Brock et al., 1999), we 

detailed a significant positive correlation between proximal (< 500 bp) flanking 

DNA GC content and locus expandability, and locus toxicity for seven 

polyglutamine disorders (Chapter 3). We hypothesized that this correlation 

reflected a true biological relationship, and resulted from an influence of 

flanking GC content on expanded repeat instability. In further agreement with 

this hypothesis, when we expanded this analysis to include the non-coding loci 

DM1 and ERDA1 the association between flanking GC content and expandability 

became even more significant.
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As the polyglutamine encoding CAG repeats are located in exons, the differences 

in GC content at the DNA level may have reflected a requirement for particular 

amino acid sequences flanking the polyQ repeat in the mature protein; possibly 

consistent with the protein context mediated model of inter-locus toxicity. 

However, our analysis failed to reveal a similarly significant correlation between 

flanking GC content and locus toxicity at the level of the mRNA. Similarly, the 

physiochemical properties of the primary sequence flanking the polyglutamine 

tract did not correlate with toxicity, arguing against a protein context mediated 

model of inter-locus toxicity. Thus, we proposed that disease progression is 

modified by rate of somatic expansion, which is in turn, modified by flanking GC 

content.

How might flanking GC content modify dynamic mutation? Flanking sequence 

composition may affect the formation of instability mediating secondary 

structures or affect their downstream processing by the mismatch repair 

machinery. The formation of non B-DNA slipped strand structures is an 

assumption of the inappropriate mismatch repair model of repeat expansion 

(Chapter 1, Figure 1.3). It has been shown in vitro that flanking sequence can 

affect the propensity of CTG repeats to form S-DNA structures (Pearson et al., 

1998a). Flanking GC content may affect the formation of such structures by 

altering the size and lifespan of single stranded DNA bubbles formed during 

transcription or replication. Similarly, chromatin remodeling or nucleosome 

repositioning may result in DNA conformations favorable for secondary structure 

formation. Indeed, CTG repeats with as few as six repeats have been found to 

act as strong positioning signals for nucleosomes in vitro (Godde and Wolffe, 

1996). Flanking GC content may affect the positioning or remodeling of such 

repeat-anchored nucleosomes. Similarly, a higher flanking GC content may 

facilitate the formation of single-stranded DNA directly by promoting 

spontaneous DNA melting (DNA breathing) (Dornberger et al., 1999). 

Alternatively, once secondary structures formed the high flanking GC content 

may act to stabilize them. Current evidence suggests that the majority of 

contacts between the MutS heterodimers and DNA are with the DNA backbone 

rendering binding relatively sequence independent. However, recognition of the 

mismatched DNA requires the introduction of large conformational changes in 

the DNA which may be affected by the local sequence context (Kunkel and Erie,

164



2005). As AAMR is required for expanded repeat instability, it is possible that 

flanking GC content promotes/facilitates recruitment or binding of MMR 

components to slipped strand structures within the repeat. It is also possible 

that the higher order chromatin structure of the DNA may affect its accessibility 

to or the effectiveness of the AAMR machinery.

The mutability of normal (not hypermutable) microsatellites is thought to be 

mediated by replication slippage followed by failure to recognise or repair the 

misalignment by the AAMR system (Ellegren, 2004). The involvement of AAMR in 

microsatellite evolution is further suggested by the widespread microsatellite 

instability observed in tumours of HPNCC patients deficient for various 

components of the AAMR system. Although microsatellite mutation over an 

evolutionary timescale and the hypermutation of an expanded repeat locus over 

the lifetime of an individual are most likely mediated by different mechanisms, 

flanking GC content may modify the involvement of AAMR in both.

As microsatellite mutability increases with length, we analysed the relationship 

between flanking GC content and ACG-motif microsatellite length in the human 

genome. We revealed a striking correlation between flanking GC content and 

microsatellite length for short microsatellites (< 7 repeats), whereas the length 

of long microsatellites was not correlated with GC content. In order to identify 

microsatellites at which misalignment mutation events had occurred, we 

identified orthologous microsatellite loci in the human and chimpanzee at which 

the microsatellites differed in length by one or more repeat units. Two 

important, novel observations were made. First, although microsatellite 

mutability increased with increasing repeat number, many misalignment 

mutation events were observed at loci with fewer than four repeat units. 

Previous studies of microsatellite mutability have excluded microsatellites with 

fewer than four repeats on the false assumption that misalignment mutation 

does not occur at such loci. Thus, misalignment mutation of short microsatellites 

is a major source of variation in mammalian genomes. Secondly, mutability 

increased with increasing non-integer repeat number. That is, the magnitude of 

length changes observed at orthologous loci such as ‘CAGCAGCAGC’ (3.3 repeats; 

10 bp) was greater than those observed at loci such as ‘CAGCAGCAG’ (3 repeats; 

9 bp). This finding suggests that the conventional definition of microsatellite
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sequences in terms of whole repeat numbers is incorrect, and that these 

fractional repeat units are an integral part of microsatellites as they exist and 

change in cells. Thus, nucleotides which have been typically excluded from the 

microsatellite sequence and classed as flanking sequence in previous studies of 

microsatellite mutability, affect the mutation rate of the repetitive sequence. 

Mutated microsatellites had a higher flanking GC content than non-mutated 

microsatellites suggesting an effect of flanking sequence on microsatellite 

mutability. However, no significant correlation between the magnitude of length 

changes observed between orthologous microsatellite loci and flanking GC 

content was found.

6.1.3 C/s-acting modifiers of expanded repeat instability

In order to directly assess the role of flanking sequence elements as modifiers of 

expanded repeat instability, we proposed constructing a mammalian cell culture 

model which would facilitate the targeting of different expanded repeats and 

their endogenous flanking sequences to the same genomic location, allowing for 

comparison of repeat dynamics independent of genomic position effects (Figure 

3.19). To assess the feasibility of this system, we investigated the ability of 

mammalian cell lines to model expanded repeat instability.

Single cell-derived HeLa clones stably transfected with a C T G 1 4 3  repeat from the 

DM1 locus, failed to exhibit expansion-biased instability in culture. As HeLa cells 

have a well characterised and functional AAMR system, this result suggested that 

whereas a functional AAMR system maybe necessary for expanded repeat 

instability, competent AAMR is not sufficient for instability. Indeed, the 

observation that levels of somatic instability are tissue specific in affected 

individuals suggests the involvement of other tissue specific trans-acting factors. 

It is possible that these factors are absent in HeLa cells. However, similar results 

were obtained when single-cell Dmt-D clones were stably transfected with the 

same transgenic repeat. As the Dmt-D cells already contained a similar, unstable 

transgenic repeat the absence of trans-acting modifiers of instability could not 

explain the stability observed in our transgene. Thus, the presence of all the 

trans-acting factors required for expanded repeat instability is not always 

sufficient for instability to occur at an expanded repeat. This remarkable finding
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emphasises the dominant effect c/s-acting modifiers can have on repeat 

stability, and highlights the difficulty and unpredictability of generating 

mammalian models of expanded repeat stability.

However, the presence of two expanded repeats with identical immediate 

flanking sequences exhibiting markedly different levels of stability in the same 

cell line represented an ideal model system in which to study the affect of c/s- 

elements on repeat stability. CpG methylation of the sequences flanking 

expanded repeats has been suggested as a potential modifier or marker of 

repeat expansion (Filippova et al., 2001; Steinbach et al., 1998). Employing 

restriction-digest-PCR assays we revealed that whereas the flanking sequences of 

the unstable repeat were hyper-methylated, the sequence flanking the stable 

repeat were completely unmethylated. However, subsequent methylation of the 

stable repeat tract failed to induce instability, suggesting that methylation of 

the repeat tract and its immediate flanking sequences is not sufficient for 

instability. Taken together these data argue against a simple link between 

flanking sequence methylation and instability. However, they do not exclude 

methylation as a potential modifier of instability. It is possible that methylation 

during embryonic development triggers or facilitates instability by effects in c/s, 

such as changes in chromatin organisation or the recruitment of other epigenetic 

marks such as histone acetylation. If so, the generation of dynamic mutation 

models in adult mammalian cells may be very challenging. In addition, no 

association was found between repeat transcription and repeat instability, 

although all unstable repeats were transcribed. This is consistent with the 

general observation that transcription of expanded repeats is necessary, but not 

sufficient for instability.
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6.2 Future directions

Further research is required to characterise the effect of c/s-acting modifiers on 

expanded repeat instability. Our results suggest that flanking sequence 

composition, flanking sequence methylation and repeat transcription alone are 

not sufficient to facilitate instability. In order to further validate these results, 

the experiments presented here should be repeated using a longer (> 200 CTG) 

repeat tract, to rule out the unlikely possibility that the transgenic repeat 

employed here was not sufficiently long enough to exhibit instability. In 

addition, the use of a selectable marker such as HyTK flanked by lox sites would 

allow for excision of the selectable marker after generation of the stably 

transfected clones, eliminating the possibility of elements within the sequence 

of the selectable marker exerting a stabilising influence over the repeat tract.

Assuming our results are correct, several inter-related avenues of research seem 

a logical progression from the experiments presented here. Although both the 

degree of CpG methylation and expression level of a gene can reflect chromatin 

state, neither are direct measures of chromatin state. Moreover, although we 

revealed that flanking a repeat with insulator elements, which would be 

predicted to maintain the repeat in an open chromatin formation after 

integration into the host genome, had no affect on stability, we did not directly 

assess the chromatin state of the transgenes. DNasel sensitivity assays could be 

used to elucidate differences in the chromatin state of the stable and unstable 

transgenic repeats. Moreover, as CTCF-binding to sites directly flanking the DM1 

repeat has been suggested to lead to changes in chromatin state and repeat 

stability (Cho et al., 2005; Filippova et al., 2001), it would be interesting to 

assay for CTCF binding to the CTCF sites in the unstable and stable transgenes 

using chromatin immunoprecipitation (ChIP) assays. Although we have found no 

association between repeat stability and repeat transcription, it is possible that 

bi-directional transcription of expanded repeats is a modifier of stability.

Indeed, bi-directional transcription has been found at the SCA8 (Moseley et al.,

2006) and DM1 loci (Cho et al., 2005). Moreover, it has been suggested that anti- 

sense transcripts at the DM1 locus result in heterochromatin formation through a 

poorly understood process which results in the conversion of the anti-sense
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transcripts into small interfering RNA (siRNA), which subsequently target 

chromatin modifying factors to the DM1 locus (Cho et al., 2005). Interestingly, it 

has been shown that the Dmt transgene is bi-directionally transcribed in Dmt-D 

transgenic mice (Fortune, 2001).

We have provided evidence that somatic mosaicism may be a major modifier of 

disease progression in the expanded trinucleotide disorders, and that a somatic 

expansion rate model of disease progression can fully explain the striking inter­

locus toxicity differences observed between the polyglutamine disorders. In 

addition, we have shown c/s-elements can act as powerful modifiers of expanded 

repeat instability, and that a long, methylated, transcribed repeat is not 

sufficient for instability in mammalian cells. Thus, further investigation of the 

mechanism of dynamic mutation and the nature and function of its c/s-acting 

modifiers is required.
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