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A b s t r a c t

The experiments detailed in this thesis were conducted to investigate the effects of the 
prenatal environment, specifically excess aromatisable testosterone and the non- 
aromatisable 5a-dihydrotestosterone, on early adult reproductive function in female sheep, 
focusing on ovarian antral follicle development.

In Chapter 3, blood samples and the largest antral follicles were obtained from sheep 
prenatally exposed to excess testosterone propionate (TP) (tissue collection over 5 years) 
and 5a-dihydrotestosterone (DHT) (tissue collection in 1 year) and controls. The aim was 
to determine the effect of prenatal androgen treatment on ovarian function in the young 
adult ewe, specifically on circulating steroid concentrations (oestradiol and progesterone), 
ovarian weight, and on large antral follicle characteristics (follicle diameter, follicular fiuid 
oestradiol, progesterone and testosterone concentrations). Prenatal androgenisation by TP 
reduced the proportion of ewes undergoing at least one reproductive cycle during the first 
breeding season. Compared with controls, ovarian weight and peripheral concentrations of 
oestradiol were increased in ewes prenatally treated with TP. In addition, the largest 
(generally two) antral follicles recovered from ovaries of ewes exposed prenatally to 
aromatisable testosterone demonstrated an increase in size, and an increase in follicular 
fluid oestradiol and progesterone, both markers of follicle differentiation.

In Chapter 4, ovaries were harvested from control and TP androgenised ewes at 10- and 
22-months of age to investigate the effect of prenatal treatment with TP on small antral 
follicle health and steroidogenesis in adulthood. In early antral follicles following antrum 
formation follicle health was improved in 10 month old ewes and more follicles had 
acquired the ability to produce oestradiol in 22 month old prenatally TP treated ewes.

In Chapter 5, the (generally two) largest antral follicles were obtained from ovaries from 
control and prenatally androgenised (TP) 10 and 12 month old ewes to determine the 
mRNA expression profile for differentiation, steroidogenic, survival and apoptotic genes in 
granulosa cells. Granulosa cells of TP ewes demonstrated increased mRNA expression for 
LHR and HSD3B1 and reduced mRNA expression for FSHR. Gene expression levels of 
various proliferation and apoptotic makers in granulosa cells were similar between control 
and androgenised ewes.

In Chapter 6, granulosa cells were isolated from the (generally two) largest antral follicles 
recovered from control and prenatally androgenised (TP and DHT) ewes of 10-months of 
age. These were cultured in vitro under different gonadotrophin conditions to determine if 
granulosa cell steroid production is intrinsically different between androgenised and 
control ewes, or whether the external (hormonal) environment causes the differences 
detected in antral follicle function. Unfortunately, investigation into the mRNA expression 
profiles of FSH- and LH- responsive genes in granulosa cells after culture was not possible 
due to low cell numbers. Oestradiol production was increased independent of 
gonadotrophins, and progesterone production in response to LH was increased in cells 
from TP-treated ewes compared with control cells, while prenatal androgenisation by DHT 
resulted in reduced granulosa cell oestradiol production compared with cells from both 
control and TP androgenised ewes. Prenatal androgenisation through DHT resulted in 
reduced granulosa cell progesterone production when compared with cells fi*om TP treated 
animals.

The results presented in this thesis provide evidence that prenatal androgen treatment 
causes programming of adult ovarian function in sheep. Exposure to excess TP results in 
altered large antral follicle function such as increased growth and steroidogenesis. 
Specifically, androgenisation using TP and not DHT leads to increased steroidogenesis
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(oestradiol and progesterone) in large antral follicles, therefore these abnormalities are 
programmed through oestrogen action. Increased LHR and reduced FSHR mRNA 
expression, together with an earlier acquisition of steroidogenic capability provide 
evidence for the first time that follicles recovered from TP treated ewes are further 
differentiated. Future studies should be directed towards establishing whether intra-ovarian 
levels of gene expression equate with protein production. Furthermore, further studies need 
to address any molecular changes in somatic cells of early antral follicles. Finally, a study 
abolishing gonadotrophins using a GnRH antagonist using supplementation treatments 
should be performed, to truly determine if it is indeed LH that is responsible for abnormal 
antral follicle growth and development in prenatally TP-treated ewes.
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C h a p t e r  1. R e v i e w  o f  t h e  L i t e r a t u r e

1.1 I n t r o d u c t i o n

Successful reproduction is, obviously, key to the survival of any species and environmental 

perturbations which impact on this process will have wide ranging effects on the health and 

wellbeing of a population. While the environment may influence an organism’s 

reproductive physiology at any stage of its life cycle, early developmental processes, such 

as those occurring during in utero life, are particularly susceptible. For many years it has 

been recognised that gestational exposure to steroids programmes normal sexually 

dimorphic physical development (Jost et al, 1973). However, exposure to abnormal 

concentrations of steroids (for example as a consequence of steroid-releasing tumours or 

congenital adrenal hyperplasia) can lead to physiological dysfunction in later life. This 

subject has recently received global attention, as we are constantly exposed to chemicals in 

our environment that can bind to and activate steroid receptors, the so called ‘steroid 

mimetics’ or ‘endocrine disrupters’ and it has been proposed that abnormal exposure of the 

foetus to these chemicals, or to abnormal endogenous steroid concentrations, can 

programme disease states in later life leading to sub or infertility.

Polycystic ovarian syndrome (PCOS) is the most common female endocrine disorder of 

women of reproductive age affecting 5-10% of women between the ages of 12 and 45 

(Franks, 1995; Franks et a l, 2008). Despite extensive research the aetiology of PCOS is 

poorly understood. However, it is believed that a subset of women with this condition have 

been exposed to elevated concentrations of androgen in utero (Franks et al, 2006). This 

hypothesis, and a quest to understand the consequences for the reproductive axis of 

exposure of the female foetus to androgens, has led to the development of several animal 

models, including the in utero androgenised ewe, and this model will be described in detail 

in section 1.5. During the last few decades, considerable advances have been made with 

respect to the control mechanisms that regulate female reproduction. However, the precise 

mechanisms, particularly those of intra-ovarian origin, that control follicular growth and 

development remain elusive. An understanding of the basic mechanisms that control 

follicular development will help us to address common causes of infertility. Therefore, a 

major challenge for research scientists is to determine the precise mechanisms that 

underpin follicular growth and development.

The overall aim of the studies presented in this thesis is to further characterise the effect 

that the prenatal environment, specifically excess androgens has on reproductive function, 

and determine the ovarian features that are programmed before birth. Results gained from
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using the prenatally androgenised sheep model will contribute to a greater understanding of 

the mechanisms that control ovarian follicle growth and development. Specifically, the 

studies aim to investigate whether androgenisation in utero causes alterations in antral 

follicle function, hormone responsiveness and the expression of specific differentiation, 

steroidogenic, survival and apoptotic factors.

1.2 S h e e p  a s  a  m o d e l  f o r  in v e s t ig a t in g  f o l l ic l e  g r o w t h  a n d  d e v e l o p m e n t

It is important to address our choice of an ovine model for studying the programming of 

ovarian follicle growth and development, rather than using the human or more popular 

rodent models. Availability of suitable ovarian tissue is a major restriction in the study of 

follicle development in humans, therefore single- or double-ovulatory species like the 

sheep represent a physiologically relevant model to elucidate the basic reproductive 

mechanisms before embarking on more focused clinical investigations (Campbell et al, 

2002). In smaller mammals (mouse, rat,) multiple follicles mature into preovulatory 

follicles (polyovulatory), in contrast to some breeds of sheep where, like humans, only one 

follicle matures into the dominant/preovulatory follicle. Further, sheep have a reproductive 

cycle that more closely resembles that of women, with distinct luteal and follicular phases 

which is not the case in the rodent, in which the cycle is much shorter in duration 

(Marcondes et a l, 2002). The neuroendocrine control of the ovine oestrous cycle has been 

intensively studied, therefore, there is a wealth of background information on which to 

base future studies. An additional attraction in using the sheep as a model is that they, like 

humans, are long-lived and have a relatively long gestation period (147 days), during 

which time ovine and human foetuses show a similar timing and sequence of ovarian 

development (Juengel et al, 2002; Sawyer et a l, 2002). Specifically, in humans and sheep, 

formation of the follicle pool is completed prenatally (which dictates the longevity of adult 

female fertility) (Baker, 1963), thus mechanisms in primordial follicle formation elucidated 

in the sheep can be applied to the human (Campbell et a l, 2002). In contrast, in the rat and 

mouse follicular formation does not begin until the perinatal period and is completed 

within one to two weeks of birth. A final attraction of the ovine model is that the duration 

of follicle growth and development (primary follicle to ovulation) is similar (5-6 months) 

in sheep and humans (Campbell et a l , 2002). All of these features make using the sheep a 

highly appropriate choice as a model for studying ovarian follicle growth and 

development.



1.3 E n d o c r in e  C o n t r o l  o f  t h e  O e s t r o u s  C y c l e  in  S h e e p

The sheep is a polyoestrous seasonal breeding mammal with a reproductive cycle usually 

lasting 16-18 days that results from the co-ordinated interaction of three main reproductive 

tissues, the brain, pituitary gland and the ovary (Goodman, 1994). Reproductive function is 

controlled by a variety of physiological and hormonal factors, which in turn are responsive 

to a range of environmental factors including other animals, light, temperature and 

nutrition. Sheep are seasonal breeders with distinct periods of cyclicity observed during 

the autumn and winter months, thus ensuring that lambs are bom at a time when climatic 

conditions are favourable and when adequate levels of nutrition are available. Periods of 

cyclicity (in the absence of pregnancy) are interspersed with periods of acyclicity 

(anoestms) during the spring and summer months. While reproductive cycles usually last 

16-18 days there may be variation, particularly at the beginning and end of the breeding 

season (Hafez, 1952).

The ovine oestrous cycle can be divided into two functionally distinct parts; a relatively 

short follicular phase and a longer luteal phase. The follicular phase typically lasts for 2-3 

days and is the period where the selected preovulatory follicle(s) secretes high 

concentrations of oestradiol (Baird, 1978) and enters the final stages of maturation, 

ultimately culminating in ovulation approximately 30-40h after the onset of behavioural 

oestms (Hutchinson et a l, 1987). The luteal phase typically lasts for 14-15 days and is 

hormonally dominated by progesterone secretion from the corpus luteum (CL) that has 

developed from the ovulatory follicle. In the absence of pregnancy, luteolysis is initiated 

14-15 days after ovulation, signalling the end of the luteal phase and the commencement of 

the next follicular phase. In the absence of a conceptus, it is essential that any CL regress 

in order to maintain cyclicity. This is achieved by the direct actions of a luteolytic signal. 

Conversely, in the pregnant animal the luteolytic signal is absent, and progesterone 

secretions from the CL remain high, which presents a negative feedback at the 

hypothalamo-adenohypophyseal level, and subsequently terminal follicle growth and 

ovulation is inhibited. The primary luteolytic signal in ewes is PGp2a (Coding, 1974). 

Luteolysis generally occurs between days 12-15 of the oestrous cycle (Bazer et al, 1997) 

and it is characterised by (i) a marked decrease in progesterone secretion; followed by (ii) a 

marked decrease in luteal size and weight.

1.3.1 The Hypothalamo-Pituitary Ovarian Axis

The hypothalamo-pituitary-ovarian axis is responsible for controlling reproduction and 

oestrus in sheep, and the disruption or removal of any one component alters the entire 

reproductive activity of the female. This axis is a tightly interrelated system whereby
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normal functioning of the ovary (follicle development, ovulation) is driven almost entirely 

by the pituitary hormones luteinising hormone (LH) and follicle stimulating hormone 

(FSH), whose secretion in turn is controlled via the hypothalamic hormone gonadotrophin 

releasing hormone (GnRH), and the feedback of steroid hormones.

1.3.1.1 Hypothalamic control

The hypothalamus is located at the base of the brain and it is connected to the pituitary 

gland by the hypophyseal stalk, which contains numerous nerve terminals and capillaries. 

The hypothalamus, via the hormones it secretes, has several effects on key physiological 

processes such as temperature homeostasis, appetite and heart rate. However, of primary 

interest in this thesis is the key role the hypothalamus plays in the regulation of 

reproduction. Gonadotrophin-releasing hormone (GnRH) is the major hormone released by 

the hypothalamus that regulates reproduction. It has also been found to be involved in the 

control of ovine oestrous behaviour (Caraty et a l , 2002). In the sheep there are about 2000 

neurones that synthesise and release GnRH and they are located in a loose continuum 

largely in the medial preoptic area sending their axons to the median eminence (Lehman et 

al, 1986; Caldani et a l, 1988). This distribution is similar to that observed in other 

species such as the rodent and rhesus monkey (Silverman et al, 1994). The scattered 

distribution probably reflects the fact that GnRH neurones do not originate in the brain but 

migrate from the olfactory placode during development (Schwanzel-Fukuda & Pfaff, 

1989). In the sheep this migration is complete by about day 52 of gestation and 

immunoreactive fibres are located in the median eminence by day 66, increasing in density 

with time (Caldani et al, 1995). Thus, it is probable that the anterior pituitary gland is 

under the regulation of hypothalamic factors from the mid point of gestation. GnRH is 

secreted in a distinctive pulsatile manner (Clarke & Cummins, 1982), which is a reflection 

of the synchronised activity of the GnRH neurons in the hypothalamus (Catt, 1999). In 

more recent years the presence of a hypothalamic factor that inhibits gonadotrophin release 

from the pituitary gland has been identified. The discovery of gonadotrophin inhibitory 

hormone (GnIH), was made in the Japanese quail (Tsutsui et a l, 2000) and the mammalian 

orthologue RFamide-related peptide 3 (RFRP-3) has recently been described in the ovine 

hypothalamus (Qi et a l, 2009). The precise role that inhibitory peptides might play in the 

control of LH and FSH secretion is currently unknown.

1.3.1.1.1 Patterns of GnRH secretion

Attempts to monitor the activity of the GnRH neurones have been made since the 1970’s 

when increased electrical activity in the hypothalami of monkeys was found to be 

associated with changes in episodic LH release (Wildt et al, 1981). Since this time more
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direct measurements of the release of GnRH have been made via push pull perfusion 

(Levine & Ramirez, 1982) or microdialysis (Sisk et a l, 2001) in the median eminence or 

direct measurement of the decapeptide in the cerebrospinal fluid (CSF) or the portal blood 

of several species (rat: (Sarkar et a l, 1976), sheep: (Clarke & Cummins, 1982; Skinner et 

al, 1995), Rhesus monkey, (Pan et a l, 1993), cow: (Yoshioka et a l, 2001), horse (Irvine 

& Alexander, 1987)). It has become clear that each pulse of LH is preceded by a pulse of 

GnRH although each GnRH episode does not necessarily result in LH secretion. The 

pattern of GnRH secretion has also been shown to vary throughout the course of the 

oestrous cycle and during the yearly cycle of seasonally breeding species. Specifically, 

throughout the luteal phase of the ovine oestrous cycle, GnRH secretion is characterised by 

high amplitude, low frequency pulses (Clarke et a l, 1987; Moenter et al, 1991). However, 

during the transition to the follicular phase, and as a result of a decrease in plasma 

progesterone concentrations, GnRH pulse frequency increases (Clarke et a l, 1987; 

Moenter et a l, 1991). As plasma oestradiol concentrations progressively increase 

throughout the follicular phase (due to the increase in production of oestradiol from the 

dominant follicle or several preovulatory follicles), this results in a continued increase in 

the GnRH pulse frequency together with a decrease in pulse amplitude, giving rise to a 

preovulatory surge in GnRH secretion (Moenter et a l, 1993). During the transition into 

anoestms the frequency of GnRH pulses decreases markedly as a result of the change in 

melatonin secretion, and they remain low for the duration of anoestms (Barrell et al, 

1992), having a dramatic effect on gonadotrophin secretion.

1.3.1.2 The control of the anterior pituitary gland

The pituitary gland is divided into two main subdivisions, the anterior and posterior 

pituitary gland which have different embryological origins first documented by Martin 

Heinrich Rathke in 1838. Specifically the anterior pituitary arises from an outgrowth of 

the oral cavity (Rathke’s pouch) while the posterior pituitary is formed from a diverticulum 

from the floor of the brain and is, therefore, neural tissue. GnRH is transported to the 

anterior pituitary gland, where it has its action, in the hypothalamo-hypophyseal portal 

system, which is a distinct vascular connection. The main hormones released by the 

anterior pituitary gland that regulate reproduction are the gonadotrophins, namely follicle- 

stimulating hormone (FSH) and luteinising hormone (LH), primarily influencing ovarian 

function and steroid hormone secretion. FSH is the major key regulatory hormone involved 

in follicle growth and development, and LH concomitant with FSH (to a much lesser 

extent) are the key hormones involved in terminal preovulatory follicle maturation and 

ovulation. FSH plays a major role in growth and maturation of ovarian antral follicles, 

granulosa cell proliferation, prevention of atresia, induction of aromatase (the enzyme
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responsible for oestradiol production), and induction of LH and FSH receptors in the ovary 

(Richards, 1994).

The pituitary gland is very active during development and this activity reaches a peak 

during mid gestation in the sheep followed by a period of relative inactivity during the pre­

pubertal period (Brooks et al, 1995). Interestingly there is a sex difference in prenatal 

pituitary activity such that gonadotrophin release is lower in male foetuses in mid gestation 

due to the negative feedback actions of testosterone (Sklar et a l, 1981; Matwijiw & 

Faiman, 1989). Using immunocytochemistry, the common alpha subunit of the 

gonadotrophins and the beta subunit of LH were detected in a small portion of ovine 

pituitary cells at day 70 of gestation (earliest stage investigated) (Thomas et al, 1993). 

However, the beta subunit of FSH was not detected until some 30 days later. Thus, it 

appears that the hypothalamus is competent to release GnRH from the middle of gestation 

and gonadotrophs are capable of synthesising the gonadotrophins from an early stage of 

foetal life. GnRH receptors must also be present because GnRH has been shown to be 

involved in the development of the pituitary gland. Specifically, the implantation of a 

GnRH agonist (buserelin) subcutaneously into 70 day old foetuses markedly inhibited LH 

and FSH release at day 110, reduced the expression of mRNA for the beta subunits of LH 

and FSH and substantially lowered testicular weight (but not ovarian weight) at birth 

(Brooks and Thomas, 1995). In addition the reproductive axis appears to be responsive to 

some elements of steroid feedback by mid gestation suggesting that perturbations of the 

reproductive axis by either endogenous or exogenous factors will have consequences for 

all levels of the reproductive axis.

1.3.2.1 Patterns of Gonadotrophin Secretion

The patterns of the synthesis and release of LH and FSH diverge in several physiological 

situations. LH is secreted into the peripheral circulation, and like GnRH, it is secreted in a 

pulsatile manner. It is generally accepted that LH surge generation is dependent on a 

sustained increased secretion of GnRH into the pituitary portal blood system (Clarke et al, 

1987; Moenter et al, 1991). Additionally, evidence in sheep indicates that oestradiol plays 

a key role in sensitising the pituitary gland to GnRH, and this is also an integral component 

of LH surge induction (Clarke & Cummins, 1984; Kaynard et a l, 1988). LH, and to a 

much lesser extent FSH, are the hormones that play the major role in terminal 

follicle/oocyte maturation (oocyte nuclear maturation to metaphase I and ovulation (Hafez, 

1999)). This is achieved via a massive preovulatory LH surge associated with a sustained 

surge of GnRH (Goodman, 1993). This preovulatory LH surge consists of a combination



of high frequency, low amplitude pulses of LH secretion (Rawlings & Cook, 1993), where 

the development and progression of the LH surge in the ewe depends entirely upon GnRH 

stimulation throughout its time course (Clarke et a l, 1987; Moenter et al, 1991; Evans et 

a/., 1996).

LH secretion throughout the oestrous cycle (Figure 1.1)

Stage of the oestrous cycle has a dramatic effect on LH secretion. During the luteal phase, 

similar to GnRH secretion, LH secretion is tonic, being relatively low and infrequent. In 

this phase of the oestrous cycle LH pulses follow GnRH pulses (Clarke et al, 1987). Tonic 

release of LH is generally observed as basal peripheral levels of 0.1-2.0ng/ml, interspersed 

with small episodes (5-15ng/ml) that persist for approximately 30 minutes, and occur every 

3-12 hours (Baird et a l, 1976; Hauger et al, 1977). Following luteolysis, and hence 

during the follicular phase, tonic secretion of LH continues. However, as the follicular 

phase progresses, the pulse frequency increases dramatically where the time between 

pulses can decrease to as little as 40 minutes and this typically lasts for 10-12 hours. 

Similar to the pattern of GnRH secretion during the follicular phase, LH pulse amplitude 

also decreases, yet overall, levels of LH secretion continue to increase with each pulse of 

LH preceded by a pulse of GnRH (Clarke & Cummins, 1982). This high frequency, low 

amplitude sustained period of LH secretion culminates in the preovulatory LH surge.

FSH secretion throughout the oestrous cycle (Figure 1.1)

Similar to LH, FSH varies depending on stage of the oestrous cycle. Throughout the 

oestrous cycle of the ewe, generally, there are four peaks of bioactive FSH (Phillips et a l , 

1994). Two of these peaks occur during the luteal phase, and are between 4-6 days apart 

(Bister & Paquay, 1983; Campbell et al, 1991b), with the second peak, in particular, 

stimulating the development of large oestrogenic follicles (Souza et a l, 1997). A third 

peak of FSH occurs, coincident with the preovulatory LH peak, denoting the preovulatory 

FSH surge (Phillips et a l, 1994). Finally, a fourth FSH peak occurs shortly following the 

preovulatory FSH surge, and it is of slightly greater duration, but is of lower amplitude 

(Phillips et al, 1994).

1.3.1.3 Ovarian Control

The third element in the reproductive axis, the ovary, produces three main groups of 

steroid hormones -  progestins, oestrogens and androgens. The primary gonadal steroids in 

the ewe, progesterone, oestradiol-17p, testosterone and androstenedione are synthesised 

from cholesterol (Withers, 1992). Large antral ovarian follicles secrete oestradiol, whereas



in the ovary the major source of progesterone is the corpus luteum (CL), a temporary 

endocrine structure that is formed following the release of the oocyte from the follicle 

during ovulation.

laiêûîive tlood s>mplin2 -  
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Figure 1.1 Schematic representation of serum profiles of LH and FSH (top panel), and 
estradiol-17(3 (oestradiol) and progesterone (bottom panel) throughout an oestrous cycle in 
the ewe (x-axis: dO = day of ovulation, y-axis: relative concentrations of hormones). 
Except for high concentrations during the preovulatory surge, serum LH concentrations 
remain basal throughout the luteal phase of the cycle. Pulses of LH secretion are detectable 
in frequently collected blood samples. FSH secretion remains almost non-pulsatile and 
periodic peaks in FSH secretion occur once every 4-5 d throughout the oestrous cycle. 
Periodic peaks in oestradiol secretion also occur, but they tend to coincide with nadirs in 
serum FSH concentrations. Serum progesterone concentrations increase from day 0 to day 
11 and then reach a nadir by day 15 after ovulation. Figure adapted from Duggavathi 
(2004) and based on data from (Pant et al., 1977; Bartlewski et al., 1999; Evans, 2003).



Oestradiol and Progesterone (Figure 1.1)

Patterns of oestradiol secretion have been difficult to ascertain over the years due to the 

low concentrations of this hormone in peripheral circulation of the sheep. Typical 

peripheral concentrations are generally between 1-lOpg/ml (Deaver & Dailey, 1983). As 

the follicular phase progresses over a period of 2-3 days oestradiol levels rise. This arises 

due to a decrease in progesterone concentrations following luteolysis and the coinciding 

rise in pulsatile LH secretion (Baird et al, 1976). It is generally the largest non-atretic 

preovulatory follicle(s) that is the source of the majority of oestradiol secretion (Hay & 

Moor, 1975). Oestradiol levels then reach a peak at the time of the onset of the 

preovulatory LH surge, coincident with the onset of behavioural oestrus, where they then 

begin to decline and return to basal levels.

In the ovary, the CL is responsible for the majority of progesterone secretion and synthesis. 

Progesterone concentrations vary throughout the oestrous cycle. For the first 3 days 

following ovulation serum progesterone levels are low. However, these then gradually 

increase reaching a maximum concentration of between 1.5-3ng/ml by day 8-9 depending 

on the breed of sheep (Bindon et al, 1979) and stage of the breeding season. This 

progesterone concentration will be maintained throughout the luteal phase of the cycle 

until about day 14 when, in the absence of pregnancy, it will fall dramatically to basal 

levels within 24-48 hours. This fall in progesterone is as a result of the active destruction 

of the CL by prostaglandin PGF2a which is produced from the uterus (McCracken et a l , 

1970). In the pregnant ewe, high progesterone concentrations from the CL will be 

maintained until approximately mid-gestation [between days 60-80], from when on 

placental progesterone production increases dramatically, increasing peripheral 

concentrations of progesterone even further until the point of parturition (Denamur, 1968).

Inhibin, Activin and Follistatin

It has become apparent over the years that, in addition to steroids, peptides derived from 

the ovary, such as inhibin, activin and follistatin have key regulatory roles in controlling 

reproduction. Inhibin and activin are structurally-related peptides, which are functionally 

diverse, whereas follistatin is an activin-binding protein that is functionally (but not 

structurally) similar to inhibin (Findlay, 1993). Inhibins and activins are members of the 

TGF-P superfamily. There are two forms of inhibin, inhibin A (a-^A) and inhibin B (a- 

pB), which are generated as a result of the fact that inhibins are dimers of a unique a 

subunit linked to either a pA or pB subunit. Furthermore, three forms of activin are 

generated following dimérisation of P subunits, and they are termed activin A (PA-PA), 

activin AB (PA-PB) and activin B (PB-PB) (Webb et al, 1994; Knight & Glister, 2001).
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Follistatin is encoded by a single gene, although there are numerous isoforms as a result of 

alternative mRNA splicing and post-translational modifications (Shimasaki et a l, 1988; 

Sugino et al, 1993)

Inhibin is found in high concentrations in follicular fluid and appears to act in synergy with 

oestradiol to inhibit tonic FSH secretion. It is thought that oestradiol acutely inhibits FSH 

secretion in the short-term, whereas inhibin, may control FSH secretion in the medium to 

longer term, by setting the overall level of negative feedback (Baird et al, 1991; Campbell 

et al, 1991b).

Inhibin concentrations tend not to fluctuate enormously throughout the oestrous cycle 

although they are found to increase and be highest during the late follicular phase 

(Campbell et al, 1990; Findlay et a l, 2000; Knight et a l, 1998). This is presumably as a 

result of production from large preovulatory oestrogenic follicles, although secretion has 

also been demonstrated from non-oestrogenic large follicles and small follicles, albeit at 

lower concentrations (Campbell et al., 1991). It is only the follicle, and not the CL, that 

seems to be the major source of inhibin production (Campbell et al., 1991) in the sheep 

ovary.

The situation regarding the regulatory roles of activin and follistatin in controlling 

reproduction is less clear. Activin is secreted by granulosa cells within the ovary 

(Drummond et al, 1996; Findlay et a l, 2001) but also acts as an autocrine and/or paracrine 

factor within the pituitary gland to promote FSH production and release (Ling et al, 1988; 

Carroll et a l, 1989). Follistatin was initially isolated from follicular fluid and identified as 

a protein that inhibited FSH secretion. Since then its primary function has been determined 

to be the binding and bioneutralization of activin (Knight, 1996), thus indirectly controlling 

FSH secretion.

Initially, it was suggested that follistatin and activin were unlikely to act in an endocrine 

manner given that peripheral concentrations of follistatin throughout the cycle are 

relatively constant (Khoury et al, 1995) and there is very little free activin present in the 

circulation (McConnell et a l, 1998). However, studies in sheep have determined that the 

suppressive effects of follistatin are mediated, in part, by neutralising circulating activin 

(Padmanabhan et al, 2002).
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1.4 F o l l i c l e  G r o w t h  a n d  D e v e l o p m e n t

Follicle growth and development describes the growth of an ovarian follicle as it 

progresses through the different stages of development from the time that it is recruited 

from the primordial pool, formed during oogenesis, until the time that it either ovulates or, 

in the case of the vast majority of follicles, becomes atretic. In domestic ruminants, as in 

many other mammalian species, follicle growth and development are controlled by a 

complex system, which incorporates both endocrine mechanisms involving the HPO axis, 

as well as other intra- and extra-ovarian factors. The whole process can best be described 

using the terms proposed by Hodgen (1982) -  Recruitment, Selection and Dominance.

1.4.1 Ontogeny of Follicle Growth and Development in Sheep

1.4.1.1 Oogenesis

Oogenesis is defined as the formation, development and maturation of female gametes 

(Crisp, 1992). In sheep, oogenesis commences early in foetal life (day 23-24 of gestation) 

with the arrival of 1,000-2,000 stem cells termed primordial germ cells (PGC) (Crisp, 

1992). These primordial germ cells originated in the primitive ectoderm and migrated 

during early development into the genital ridges. By approximately day 40 of gestation, all 

of the germ cells present in the ovary are surrounded by somatic cells and enclosed into sex 

cords that are located in the cortex (Van den Hurk et a l, 1995, 1997); they are now 

mitotically-active oogonia (Smith et a l, 1993, 1997). These germ cells, which have 

differentiated into oogonia, proliferate via a series of mitotic cycles until approximately 

day 90 of gestation, where it is thought that they may number 600,000 (Crisp, 1992). At 

this time, germ cells in foetal ovaries are predominantly oogonia or isolated oocytes (70- 

90%) with few primordial and primary follicles present (Clark et a l, 1996; Smith et a l, 

1993, 1997). Germ cells are only transformed into oocytes when mitotic proliferation is 

completed, which usually begins by day 75 and is generally completed by day 100 of 

gestation in sheep (Smith et al, 1993). However, meiosis at this stage is not complete and 

the oocyte becomes arrested in the diplotene stage of the first meiotic division (Bacharova, 

1985; Hirshfield, 1991; Van den Hurk et al., 1997; Webb et al., 1999).

1.4.1.2 Quiescent primordial follicle population

The formation of a large reserve of quiescent primordial follicles, residing in the outer 

cortex of the ovary, is classified as the first stage of follicle development (Hirshfield,

1991). The stimulus for the transformation from oogonia to oocytes is still relatively 

unknown (Crisp, 1992). ‘Naked’ oogonia - which lack follicular cell investment, become 

isolated and surrounded by a layer of flattened follicular cells. This signifies the
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appearance of primordial follicles (Crisp, 1992). Primary follicles, which contain one 

complete layer of cuboidal granulosa cells, can be observed around day 100 in sheep and 

by day 120 approximately 19% of the germ cell population may be present in follicles with 

up to three concentric layers of granulosa cells (Smith et al, 1997).

Primordial follicles contain a single layer of pre-granulosa cells, resting on a basal lamina, 

which surround an oocyte arrested in the diplotene stage of meiosis. These pre-granulosa 

cells normally cease to divide and enter a generally prolonged period of quiescence 

(Hirshfield, 1991). In most mammalian species the number of primordial follicles in the 

ovaries appears to be fixed by late foetal life or shortly thereafter in early postnatal life 

(McNatty et al, 1992), and this resultant store of follicles is referred to as the primordial 

pool. It is from this non-growing pool that follicles are gradually recruited during the 

reproductive life of the animal. In addition, together with meiotic arrest, large numbers of 

germ cells are lost through a process of attrition between days 75-90 of foetal life; a 

process that continues throughout early postnatal life (McNatty et al, 1992).

In sheep, the first primordial follicles appear on about day 75 of foetal life, and by day 135, 

just prior to birth, approximately 90% of germ cells are in primordial follicles and 4% in 

growing follicles that may develop to between 0.25 and 0.80mm in diameter, while the 

remainder are present as isolated oocytes (McNatty et al, 1992; Smith et al, 1997; Sawyer 

et al, 2002). Pre-granulosa cells encapsulate the majority of oocytes (McNatty et al,

1992). The size of the follicle pool is inherently variable, even between genetically 

identical animals of the same age (Gosden & Telfer, 1987) and it has been estimated that 

the number of primordial follicles in young ewes is ca. 0.4-3 x 10̂ , with a large between- 

animal and between-breed variation (Cahill et al, 1979). External factors, such as nutrition 

can also have an impact and there are data which clearly show that under-nutrition in foetal 

and/or neonatal life will dramatically reduce the concentration of oogonia and primordial 

follicles in the ovine ovary (Borwick et al, 1994, 1995; Robinson, 1996; Rae et al, 2001).

1.4.1.3 Morphology of follicle growth

The time it takes for a primordial follicle to progress to ovulatory size is about 180 days 

and is longer in sheep and cattle compared to most laboratory species. Following a 

prolonged period of quiescence, the first signs that follicle growth has resumed is a change 

in granulosa cell morphology from a flattened to a cuboidal appearance, followed by 

proliferation of the granulosa cells and an increase in the size of the oocyte (Hirshfield, 

1991; Paton & Collins, 1992; Braw-Tal, 2002). This is followed by a period of committed
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growth and development whereby follicles cannot go back into a quiescent state 

(Scaramuzzi et al, 1993). Recommencement of growth from the primordial pool is likely 

to be under the control of intra-ovarian/oocyte-derived factors, and studies in sheep (Cahill 

& Mauleon, 1980) and cows (Scaramuzzi et al, 1980) have indicated that every day, about 

3 and 6 follicles, respectively, grow from the pool of primordial follicles. As they acquire a 

cuboidal layer of granulosa cells, they become intermediary and then primary follicles. 

However, it is likely that the exact number of follicles entering the growth phase is 

dependent on the pool of non-growing follicles (Krarup et al, 1969). As the follicle 

continues to grow, it attains several distinctive morphological features, namely: a thick 

acellular zona pellucida (ZP) that surrounds the oocyte, the theca interna (steroidogenic 

cells), the theca externa (connective tissue cells), a capillary network, a basement 

membrane and a fluid-filled cavity called an antrum (Hirshfield, 1991).

Creation of an antrum

Follicles do not possess a major pool of extra-cellular fluid from the beginning of their 

development (Gosden et al, 1988). However, in the latter stages of follicle growth, when 

the follicle is between 0.2 and 0.4mm in diameter in sheep, fluid-filled spaces develop 

between the granulosa cells that eventually combine into a single, large, fluid-filled antral 

cavity (Hirshfield, 1991; Webb et al., 1999). This fluid within this antral cavity is called 

follicular fluid and is essentially a filtrate of thecal blood (Crisp, 1992). Follicular fluid 

contains substances from local secretion and metabolism (Gosden et al, 1988); especially 

steroids, glycosaminoglycans and many other metabolites (McNatty, 1978; Hafez, 1993a). 

Follicular fluid plays a distinct role in the physiologic, biochemical and metabolic aspects 

of nuclear and cytoplasmic maturation of the oocyte and the release of the egg from the 

ruptured follicle (Hafez, 1993a).

1.4.1.4 Cellular proliferation & differentiation

Granulosa cell proliferation increases with increasing follicle size, with maximum follicle 

growth during the antrum formation stage (Hirshfield, 1991). It is difficult to ascertain the 

exact rate of proliferation, and subsequent growth of a follicle from one size to another, 

since the rate of granulosa cell proliferation is affected by a variety of factors. However, as 

mentioned previously, the full course of follicle growth in adult ruminants is in the region 

of 180 days (Campbell et al, 1995), compared to rodents, where it is only several weeks. 

While cellular proliferation is at a maximum during antrum formation, and shortly 

thereafter, this does decrease dramatically in the preovulatory follicle, where growth is 

very slow (Hirshfield, 1986). The somatic cells in the mature ovarian follicle display a high
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degree of differentiation and a variety of tissue-specific, functional features (Hirshfield, 

1991). However, this is not the case in immature follicles early on, which are less 

differentiated, but highly proliferative.

1.4.1.5 Follicular steroidogenesis

As well as playing a key role in the generation of the preovulatory GnRH/LH surge, 

oestradiol also plays an imperative intra-ovarian role in preventing atresia (Reilly et al,

1996) and regulating follicle development (Drummond & Findlay, 1999; Schams & 

Berisha, 2002; Beg et al., 2003). In order that steroids, including oestradiol, can be 

synthesised by steroidogenic cells, they must first acquire cholesterol either via de novo 

synthesis or by the uptake of cholesterol (Strauss et al, 1981; Gwynne & Strauss, 1982; 

Brown & Goldstein, 1997). The actual biosynthesis of oestradiol incorporates both the 

theca and granulosa cell layers. These 2 layers must integrate fully to facilitate the 

conversion of cholesterol to oestradiol. The conversion of the various precursors depend 

entirely upon many enzymes, in particular several members of the large cytochrome P450 

family of heme-containing enzymes, and hydroxysteroid dehydrogenases (HSD) (Strauss 

& Penning, 1999) (Figure 1.2). The proposed nomenclature for cytochrome P450 enzymes 

states that each family member is designated GYP followed by a unique number identifier 

that is a function of the protein’s catalytic activity (e.g. CYPllA for cytochrome P450 

side-chain cleavage enzyme) (Strauss & Penning, 1999).

The rate-limiting step in gonadal steroidogenesis is the transfer of cholesterol from the 

relatively cholesterol-rich outer mitochondrial membrane to the cholesterol-poor inner 

mitochondrial membrane (Stocco & Clark, 1996; Stocco, 2000). This regulated step in 

steroid production is catalyzed by the steroidogenic acute regulatory protein (StAR) (Lin et 

al, 1995; Arakane et al, 1998). Following transportation to the inner mitochondrial 

membrane, cholesterol is converted to pregnenolone, and CYPllA catalyses this 

conversion (Strauss & Penning, 1999). CYPllA is localised to both granulosa and theca 

layers in the sheep follicle (Huet et al, 1997). However, the next 2 steps take place almost 

exclusively in thecal cells. Firstly, CYP17 catalyses the conversion of pregnenolone and 

progesterone to dehydroepiandrosterone and androstenedione. Secondly, 3P-HSD 

(HSD3B1) catalyses the conversion of pregnenolone into progesterone, 17a- 

hydroxypregnenolone into 17a-hydroxyprogesterone, and dehydroepiandrosterone into 

androstenedione (Conley et al, 1995; Huet et al, 1997; Strauss et al, 1999). Type I 17^- 

HSD catalyses the conversion of the weak androgen, androstenedione, to the more potent 

androgen, testosterone (Strauss & Penning, 1999). Finally, testosterone and/or
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androstenedione are aromatised into oestradiol in the granulosa cells by CYP19 (Huet et 

al., 1997). Therefore, the whole process of oestradiol synthesis in the follicle is a two-cell 

two-gonadotrophin system (Fortune & Quirk, 1988) whereby, under the direction of LH, 

theca cells essentially produce androgens that can be used as a substrate for oestradiol 

synthesis in the granulosa cells under the direction of FSH. In addition, there is evidence 

that the increase in oestradiol secretion positively feeds back to stimulate more androgen 

secretion from the theca cells (Fortune & Quirk, 1988; Roberts & Skinner, 1990; Bao & 

Garverick, 1998).
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Figure 1.2 Pathways of synthesis and catabolism of steroid hormones in ovarian somatic 
cells. Adapted from Strauss & Penning (1999). Enzymes involved in catalysing each step 
are shown in boxes. (CYPllA: cytochrome P450 side chain cleavage; CYP17: 
cytochrome P450 17a-hydroxylase 17,20 lyase; CYP19: cytochrome P450 aromatase; 
HSD3B1: 3 P-hydroxysteroid dehydrogenase; 17P-HSD: 17p-hydroxysteroid
dehydrogenase; 20a-HSD: 20a-hydroxysteroid dehydrogenase).

1.4.1.6 Atresia

The vast majority of follicles (>99%) in the ewe fail to progress to a stage of terminal 

maturation and ovulation (Hsueh et al, 1994; Jolly et al., 1997a, b). Instead they undergo a 

degenerative process known as atresia, which is characterised by sudden and widespread 

death of the granulosa cells (Byskov, 1978, 1979) by apoptosis. Atresia is an irreversible 

process that can occur at any stage of development. It is evident that atresia is not equally 

prevalent across all stages of follicular development, given that the greatest loss of oogonia 

and primary oocytes occurs during foetal life and during the prepubertal period 

(Hirschfield, 1989: Fotrune, 1994). The vast majority of follicles become atretic at the 

early antral stage of development (2-3 mm) since it is at this time that the follicles become 

gonadotrophin-dependent, particularly to FSH (Scaramuzzi et al, 1993) and if they are not
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exposed to above-baseline levels of FSH they will unavoidably die (Hirshfield & Midgley, 

1978).

It also seems likely that atretic follicles may play a role in regulating ovarian function, 

mainly as a result of their altered steroidogenic capacity, i.e. by losing their capacity for 

oestrogen production (Hsueh et al., 1994).

Morphologically, the pattern of atresia seems to commence with the appearance of a few 

apoptotic granulosa cells. Within 24h, many degenerating granulosa cells are observed 

throughout the granulosa layer, and within a few days, only a few remnants of the 

granulosa cells and oocyte can be found (Osman, 1985; Hirshfield, 1991). In pre-antral 

and antral follicles classical indications of atresia may include all or some of the following 

features: sloughing of granulosa cells into the antrum, formation of pyknotic nuclei, 

shortening of thecal cells, oocyte shrinkage and death, degeneration of the basement 

membrane, loss of the capillary network and a reduction in the proportion of mitotic bodies 

(Marion et al., 1968; Paton & Collins, 1992).

Physiologically, the changes that occur during atresia include a reduction in granulosa cell 

aromatisation, with the resultant loss in aromatase activity (Huet et al., 1997; Jolly et al., 

1997a). As a result there is a shift in the oestrogen to progesterone ratio with a general 

decline in oestrogen synthesis concomitant with an increase in testosterone and 

progesterone production (Hsueh et al., 1994).

1.4.1.6.1 Apoptosis

Apoptosis (in the ovary) is a hormonally controlled, genetically regulated process of 

selective cell deletion (Tilley et al., 1991: Hsueh et al., 1994; Elmore, 2007) occurring in a 

coordinated fashion that can be postponed by the action of extrinsic growth factors 

(Williams et al., 1990). Apoptosis involves the activation of a group of cysteine proteases 

called “caspases” and a complex cascade of events that link the initiating stimuli to the 

final demise of the cell (Thomberry & Lazebnik, 1998). Caspases are widely expressed in 

an inactive proenzyme form in most cells and once activated can often activate other 

procaspases, allowing initiation of a protease cascade (Cohen, 1997). To date, ten major 

caspases have been identified and broadly categorized into initiators (caspase-2,-8,-9,-10), 

effectors or executioners (caspase-3,-6,-7) and inflammatory caspases (caspase-1,-4,-5) 

(Cohen, 1997; Rai et al, 2005). The mechanisms of apoptosis are highly complex and 

sophisticated, involving an energy-dependent cascade of molecular events. To date.
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research indicates that there are two main apoptotic pathways: the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway. Recent evidence has 

suggested that the two pathways are linked and that molecules in one pathway can 

influence the other (Igney & Krammer, 2002). The extrinsic and intrinsic pathways 

converge on the same terminal, or execution pathway (Elmore, 2007). The execution 

pathway is initiated by the cleavage of caspase-3 and results in DNA fragmentation, 

degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of 

apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by 

phagocytic cells (Cory & Adams, 2002). The extrinsic signalling pathways that initiate 

apoptosis involve transmembrane receptor-mediated interactions. These involve death 

receptors that are members of the tumour necrosis factor (TNF) receptor gene superfamily 

(Locksley et al, 2001). Upon ligand binding to the appropriate receptor (e.g. Fas ligand to 

Fas receptor), cytoplasmic adapter proteins are recruited which exhibit corresponding 

death domains that bind with the receptors. The relevant adaptor protein associates with 

procaspase-8 via dimérisation of the death effector domain. At this point, a death-inducing 

signalling complex (DISC) is formed, resulting in the auto-catalytic activation of 

procaspase-8 (Kischkel et al, 1995). The intrinsic signalling pathways that initiate 

apoptosis involve a diverse array of non-receptor-mediated stimuli that produce 

intracellular signals that act directly on targets within the cell and are mitochondrial- 

initiated events (Elmore, 2007). The stimuli that initiate the intrinsic pathway produce 

intracellular signals that may act in either a positive or negative fashion. The control and 

regulation of these apoptotic mitochondrial events occurs through members of the BCL-2 

family of proteins (Cory & Adams, 2002).

Intracellular effectors of apoptosis

The presence or absence of hormonal signals triggers a cascade of intracellular events in 

ovarian cells that ultimately induce or repress apoptosis. Several genes have been proposed 

to have a role in ovarian function and apoptosis, with the BCL-2 gene family, whose genes 

are expressed in mammalian ovaries, the subject of much investigation (Johnson et al, 

1993; Flaws et al, 1995; Tilly et al, 1995). The BCL-2 gene family comprises a large 

family of proteins, whose individual members can act in either an anti-apoptotic or pro- 

apoptotic manner when differentially expressed. The BCL-2 family of proteins governs 

mitochondrial membrane permeability and can be either pro-apoptotic or anti-apoptotic. To 

date, a total of 25 genes have been identified in the BCL-2 family (Youle & Strasser, 

2008). Essentially, they can be divided into 3 distinct subgroups: (i) anti-apoptotic 

proteins with multiple BCL-2 homology (BH) domains and a transmembrane region; (ii)
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pro-apoptotic proteins with the same structure, but missing the BH4 domain; and (iii) pro- 

apoptotic ligands with only the BH3 domain (Hsu & Hsueh, 2000). The effects of BCL-2 

proteins seem to be cell type-specific since, in a study using BCL-2 gene-knockout mice, 

the number of oocytes and primordial follicles was dramatically reduced, but the degree of 

granulosa cell apoptosis was virtually unaffected (Ratts et al, 1995). Conversely, mice 

produced following over-expression of BCL-2 had a larger endowment of primordial 

follicles than normal mice, as a result of a decrease in apoptosis (Flaws et al, 2001). 

Another member of the BCL-2 gene family that plays an important role in follicular atresia 

is myeliod cell leukaemia factor 1 (MCL-1) which is an anti-apoptotic protein (Sato et al, 

1994; Krajewski et al, 1995; Hsu & Hsueh, 2000). Using the yeast 2 hybrid system MCL- 

1 was identified as the main ovarian anti-apoptotic BCL-2 protein (Hsu & Hsueh, 2000). 

MCL-1 is expressed in the developing follicle, particularly in oocytes, granulosa cells and 

granulosa lutein cells and is considered to have an important follicular developmental role 

(Krajewski et al, 1995; Hartley et al, 2002). Its antagonist, BAX, is also expressed in 

granulosa cells during follicular development (Choi et al, 2004). Immunohistochemical 

localization of BAX in the human ovary reveals abundant expression in granulosa cells of 

early atretic follicles, whereas BAX protein is extremely low or non-detectable in healthy 

or grossly-atretic follicles (Kugu et al, 1998). In addition to the BCL-2 family, there are 

several more families of genes that mediate the effects of endocrine, autocrine and 

paracrine hormones and growth factors on follicle atresia. The major downstream effector 

of apoptosis, for both the intrinsic and extrinsic apoptotic pathways is caspase-3 (CASP3) 

(Matikainen et al, 2001; Johnson & Bridgham, 2002), which in turn activates endogenous 

nucleases responsible for DNA fragmentation (Thomberry & Lazebnik, 1998). Caspase-3 

is considered to be the most important of the executioner caspases and is activated by any 

of the initiator caspases (caspase-8, caspase-9, or caspase-10) (Elmore, 2007). Studies 

using CASP3 gene knockout mice determined that CASP3 is functionally required for 

granulosa cell apoptosis during follicular atresia (Matikainen et al, 2001). Granulosa cells 

from healthy follicles possess, almost exclusively the inactive (unprocessed) form of 

CASP3, whereas granulosa cells from atretic follicles demonstrate increased 

concentrations of activated CASP3 (reviewed, Johnson & Bridgham, 2002; Feranil et al, 

2005).

Hormonal regulation of atresia

There are a multitude of factors that seem to be involved in the process of atresia, and these 

include various hormones (FSH, LH and GH) and growth factors (insulin, IGF-1) that act 

in an endocrine, autocrine, paracrine and juxtacrine manner. Prior to puberty, all of the
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follicles initially recruited will become atretic due to the absence of LH pulses to support 

final growth, enhanced oestradiol production and ovulation (Rawlings et al, 2003).

Extra-ovarian hormones

The main endocrine hormones involved in regulation of atresia are the gonadotrophins, 

FSH and LH. As described earlier, all ovine follicles larger than 2.5mm are gonadotrophin- 

dependent, as observed in studies using hypophysectomised ewes (Dufour et al, 1979; 

Campbell et al, 1999). When ewes are treated with inhibin rich bovine follicular fluid 

(bFF), FSH concentrations drop dramatically, yet pulsatile LH secretion is largely 

unaffected, resulting in the loss of all follicles that are larger than 2.5 mm (Miller et al, 

1979; McNeilly, 1984). However, FSH does not have a survival effect on all classes of 

follicles, as FSH alone does not promote the survival of pre-antral follicles (McGee et a l ,

1997), but does enhance survival of antral follicles (Chun et al, 1996).

In general, LH plays a slightly less important role initially, although it does play a key role 

in maintaining the health of the preovulatory follicle when FSH concentrations are 

declining (Scaramuzzi et al, 1993; Webb et al, 2003). However, LH may not always 

function as a survival factor since, when administered at high concentrations, this 

gonadotrophin can actually stimulate atresia (McNeilly et al, 1992).

1.4.1.7 Ovulation

The rare follicles that escape atresia continue to grow, develop and ovulate. Late in the 

follicular phase, the pre-ovulatory surge of LH initiates a complex sequence of events 

which results in redistribution and lutéinisation of granulosa and theca cells in the 

ovulatory follicle, inevitably giving rise to rupture of the follicle and ovulation, followed 

by the formation of a CL (Crisp, 1992; Richards et al, 1998). Generally, there are three 

major changes that take place in preovulatory follicles during the process of ovulation 

(Richards et al, 1998). Firstly, there is cytoplasmic and nuclear maturation of the oocyte. 

Secondly, there is disruption of cumulus cell cohesiveness among the granulosa cells and 

lastly the external follicular wall thins and eventually ruptures (Hafez, 1993b).

1.4.1.8 Lutéinisation

Lutéinisation is the key cellular response to the preovulatory gonadotrophin surge, and 

both granulosa and theca cell layers undergo lutéinisation. There is likely to be a large 

number of genes involved in the process of lutéinisation. However, it is most probable that 

it is the preovulatory surge of LH that is primarily responsible for initiating the
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lutéinisation process (McClellan et al, 1975). Its effects are mediated via the up-regulation 

of LH receptors on luteal cells during lutéinisation (Diekman et al, 1978).

The key physiological feature of lutéinisation is the switch from an oestrogenic to a 

progestogenic state. This is primarily achieved via two key pathways: (i) there is an up- 

regulation of cholesterol side-chain cleavage (CYPllA) and 3P-HSD enzymes, which 

convert cholesterol and pregnenolone to progesterone (Strauss & Penning, 1999); and (ii) 

there is a concomitant decrease in cytochrome P450 aromatase (CYP19) and cytochrome 

P450 17a-hydroxylase 17,20 lyase (CYP17) enzymes, which normally convert 

progesterone to androgens and oestrogens (Strauss & Penning, 1999). Therefore, the 

overall effect is a switch from high oestrogen production to high progesterone production.

1.4.2 Functional Dynamics of Follicle Growth

Describing the process of follicle growth and development based on 

anatomical/morphological criteria is, at best, only loosely related to the functional activity 

of the follicle (Crisp, 1992), as morphological criteria do not sufficiently evaluate the true 

physiological capacity of individual follicles (Terqui et al, 1988). The terms recruitment, 

selection and dominance are more appropriate terms to define the various stages of follicle 

growth and development and are proposed as a result of the fact that follicles seem to 

develop in waves throughout the oestrous cycle and non-breeding season (Evans et al, 

2000).

1.4.2.1 Recruitment

Recruitment is the term given to the continual process in which a cohort of quiescent 

primordial follicles begins to mature rapidly in an environment conducive to follicular 

growth. This growth does not seem to be a random affair, since it seems that follicles are 

recruited as groups (Fortune, 1994; Webb et al, 1999b; McGee & Hsueh, 2000). The 

mechanisms involved are unclear but may involve intra-ovarian and/or other as yet 

unknown factors (Findlay & Drummond, 1996). The exact number of follicles recruited in 

cohorts is difficult to estimate accurately as growth is slow and occurs over a prolonged 

period of time (Hirshfield, 1989) and because it is difficult to distinguish between growing 

transitional and non-growing primordial follicles (Smith et al, 2008). The mechanisms 

regulating recruitment are somewhat unclear, but there are likely to be 3 scenarios: (i) 

given that quiescent follicles seem to be under some sort of constant local and/or systemic 

inhibitory system to remain dormant (Wandji et al, 1996), initiation of growth may be due 

to a decrease in these inhibitory factors; (ii) initiation of growth may be a result of an 

increase in the actions of stimulatory factors; or (iii) initiation of growth may be a
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combination of (i) and (ii). Although positive associations between FSH levels and initial 

recruitment have been reported (Edwards et al, 1977; Wang & Greenwald, 1993), it is 

difficult to determine the mechanisms by which FSH exerts its effects since primordial 

follicles do not possess functional gonadotrophin receptors (Rannikki et al, 1995; 

G'Shaughnessy et al, 1997; Oktay et al, 1997). Other intra-ovarian/oocyte-derived 

factors have also been proposed to have an effect on recruitment and these include anti- 

Mullerian hormone (AMH) (Durlinger et a l , 1999, 2002a, 2002b), growth differentiation 

factor-9 (GDF-9) (Dong et al, 1996; Bodensteiner et al, 1999; Vitt et al, 2000b), and 

other members of the TGF-P superfamily (Findlay et al, 2002).

1.4.2.2 Emergence

Unlike recruitment, which occurs almost continuously throughout the reproductive lifespan 

of the animal, selection of the species specific ovulatory quota from a cohort commences 

well before the onset of puberty. Selection is characterised by antral follicles 

(approximately 2.5mm in sheep) (Webb et al, 2003) escaping the fate of atresia in 

response to increases in circulating FSH (McGee & Hsueh, 2000), ultimately leading to the 

establishment of a dominant follicle or co-dominant follicles. Using ultrasonography it has 

been established in sheep that between one and three antral follicles emerge or grow from a 

pool of small antral follicles (1-3 mm in diameter) every 4 to 5 days (Souza et al, 1998; 

Evans et al, 2000; Duggavathi et al, 2004). In sheep, slight increases in plasma FSH, and 

consequently oestradiol, are associated with waves of follicle growth (Bartlewski et al, 

1999; Evans et al, 2000). When elevations in the concentrations of FSH are blocked using 

injections of inhibin-rich bFF, this delays the first wave of follicle growth in cows 

(Turzillo & Fortune, 1990). Despite the fact that FSH is the predominant survival factor at 

this stage of follicle development, the exact cellular mechanisms by which it exerts its 

effects are unclear, but are likely to involve synergistic actions with intra-follicular 

hormones/growth factors such as IGF-1 and oestradiol (Evans et al, 2000).

1.4.2.3 Selection & dominance

Following emergence, the cohort of follicles grows over the next 48-72h, after which one 

or two follicles are selected for further growth and become larger than the others 

(selection). The term dominance is given to a follicle(s) which develops rapidly, whilst 

other cohort follicles have their growth suppressed and undergo atresia; these are termed 

subordinate follicles (Fortune, 1994; Bao & Gaverick, 1998; Webb et al., 1999a). Once a 

follicle has attained dominance and reached its maximum size, it persists for 3-6 days 

before becoming atretic if the animal is in the luteal phase of the oestrous cycle (Ginther et 

al, 1989; Knopf et al, 1989). Alternatively, if luteal regression occurs during the growth
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phase of the dominant follicle, the follicle continues to remain dominant over the entire 

follicular phase and eventually ovulates (Kastelic et al, 1990).

It is somewhat unclear how one or two follicles are selected to be dominant from a pool of 

similarly sized cohort follicles. In the bovine, the main morphological difference that is 

observed when follicles are selected for dominance is follicle diameter (Ginther et al, 

1996; Fortune et al, 2001). Follicle diameter increases very rapidly in dominant follicles 

relative to subordinate follicles, whose growth rates reduce dramatically. The actual point 

at which selection of a dominant follicle occurs is difficult to ascertain, since the first signs 

of follicle deviation are likely to be biochemical/molecular and not just a difference in size 

(Fortune et al, 2001). However, the follicle that is eventually selected as being dominant is 

likely to have attained this position by virtue of having an increased capacity to respond to 

small increases in FSH and by producing larger quantities of oestradiol (Badinga et al, 

1992; Bodensteiner et al, 1996; Evans & Fortune, 1997). In addition, the dominant 

follicles selected are those that have acquired more LH receptors, particularly on their 

granulosa cells, and this facilitates oestradiol synthesis in response to LH as well as FSH 

(Fortune, 1994; Ginther et al, 1996). Indeed, various studies have demonstrated that 

dominant follicles have increased levels of mRNAs encoding various steroidogenic 

enzymes (e.g. CYP19A1, CYP17, CYPllA, HSD3B1, StAR) in addition to gonadotrophin 

receptors (Fortune, 1994; Xu et al, 1995; Bao et al, 1997; Bao & Gaverick, 1998; Webb 

et al, 1999a) hence their ability for increased steroid synthesis. Recent molecular evidence 

in the bovine shows that the dominant follicle continues to acquire more LH receptors 

together with a reduction in FSH receptors (Mihm et al, 2006) and, as a result within the 

dominant follicle, there is a transfer from FSH to LH dependence.

It is uncertain how one follicle continues to grow and is dominant, while others fail to. The 

most likely hypothesis is that the dominant follicle produces large amounts of oestradiol 

and inhibin which feedback at the hypothalamo-hypophyseal level to reduce FSH secretion 

(Ginther et al, 2000a). Hence, FSH concentrations drop to a level that is inadequate for 

subordinate follicles to grow and, thus, they become atretic. However the dominant follicle 

has reached a level of growth and differentiation that facilitates it remaining healthy and 

growing, even in the face of lower concentrations of FSH (Zeleznik & Kubik, 1986; 

Ginther et al, 1999, 2000b).
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1.4.3 R e g u l a t i o n  o f  F o l l i c l e  G r o w t h  &  D e v e lo p m e n t

The process of follicle growth and development is regulated by many extra- and intra- 

ovarian hormones and growth factors.

1.4.3.1 Extra-ovarian regulation

It has been well established that the gonadotrophins, FSH and LH, are the primary 

endocrine hormones that regulate follicle growth and development. Their role will be 

discussed, as will the role that other extra-ovarian hormones play in regulating the process 

of follicular growth and development.

Follicle-Stimulating Hormone

As stated previously, FSH plays the major role in growth and maturation of ovarian antral 

follicles (Phillips et al, 1994). Despite the suggestion that FSH may be involved in the 

initiation of primordial follicle growth (Peters, 1979), in sheep, as in many other mammals, 

there does not seem to be an essential requirement for gonadotrophins in the early stages of 

follicle growth since studies have shown that pre-antral (Dufour et al, 1979) and antral 

follicles up to 2.5mm in diameter are still evident in ewes following hypophysectomy 

(Driancourt et al, 1987; McNatty et al, 1990). Granulosa cells acquire FSH-specific 

receptors during the pre-antral stage of their development (Liu et al, 1998). Specifically, 

FSH receptor mRNA has been detected in follicles with only 1-2 layers of granulosa cells 

(Tisdall et al, 1995); if follicles are to progress to the antral stage of development the 

granulosa cells must competently respond to FSH stimulation (Zeleznik & Hillier, 1984). 

If they fail to achieve this, their fate is likely to be an atretic one since studies have shown 

that atresia is accompanied by a decrease in levels of FSH receptors and their mRNAs in 

granulosa cells (Abdennebi gr a/., 1999).

The actions of FSH are not solitary and can be synergistic, as evidenced by a wealth of 

information illustrating the inter-play between FSH and various intra-ovarian growth 

factors, such as the insulin-like growth factors (IGFs), oestradiol and inhibin (Campbell & 

Webb, 1995; Campbell & Baird, 2001).

At the granulosa cell level, in addition to granulosa cell proliferation, FSH plays an 

essential role in granulosa cell differentiation (McNatty et al, 1992). Firstly, FSH induces 

aromatase activity in healthy large antral follicles (>3mm in diameter in sheep) (McNatty 

et al, 1992; Duggavathi et al, 2006), secondly in conjunction with oestradiol, FSH has 

been shown to stimulate the development of LH receptors on granulosa cells (Erickson et
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al, 1982; Lapolt et al, 1990; Kanzaki et al, 1994), and finally FSH stimulates the 

production of oestradiol and progesterone from the granulosa cells of preovulatory follicles 

(Campbell et al, 2003; Duggavathi et al, 2006).

Luteinising Hormone

Whilst FSH clearly has a primary role in regulating the growth of follicles and antrum 

formation, as stated earlier LH plays its primary role in follicle development and grov^h 

during terminal maturation of the ovulatory follicle(s) (Campbell et al, 1999).

The pattern of LH receptor appearance is similar to that of FSH receptors in that LH 

receptors can also be present in follicles from an early stage of development. In particular 

they are localised to the theca cells during the early stages of follicular development. 

However, during the later stages of growth, granulosa cells have been shown to express LH 

receptors (Richards et al, 1987; Yuan et al, 1996; Abdennebi et al, 1999), implicating 

LH in the terminal maturation process (McLeod et al, 1982). LH has similar actions to 

FSH in that it is mitogenic and strongly differentiative. LH has been shown to increase the 

proliferation of thecal cells in vitro, and studies also indicate that it increases LH receptor 

numbers (Magoffin & Weitsman, 1994) as well as androgen and progesterone production 

(Campbell et al, 1995; Armstrong et al, 1996). One of the ways in which LH stimulates 

granulosa cell differentiation is by stimulating aromatase activity (Scaramuzzi et al, 1993).

1.4.3.2 Intra-ovarian regulation

The gonadotrophins play key roles in the regulation of follicle growth and development. 

However, it has become evident that there are a number of other hormones/growth factors 

that seem to act in an autocrine and/or paracrine manner that also affect the processes of 

follicular growth and development. The roles of growth factors in follicular development 

and survival are dependent on gonadotrophin status and differentiation state of the follicle 

(Webb et al, 2003). Locally produced intra-follicular factors have been implicated in the 

processes of follicular proliferation and differentiation in the sheep, as in other mammalian 

species. The most important of these seem to be inhibin, activin, follistatin and members of 

several growth factor superfamilies. Many of these factors are produced in various cell 

compartments within the follicle, namely the granulosa, theca and oocyte.

24



Oocyte-derived factors

In recent years it has emerged that the oocyte can also regulate granulosa cell proliferation 

and differentiation (Eppig, 2001). Two oocyte-derived growth factors, which are members 

of the TGF-P superfamily seem to play key roles in development; (i) growth differentiation 

factor-9 {GDF-9)', and (ii) bone morphogenetic protein-15 {BMP-15), which is also known 

as GDF-9B. GDF-9 is produced by both sheep and cattle oocytes throughout follicle 

development and ovulation (Bodensteiner et al, 1999). The importance of GDF-9 for 

early follicle development has been illustrated in mice, since follicles in null-mutant mice 

for GDF-9 fail to develop beyond the primary follicle stage due to a complete failure in the 

development of the somatic cells (Dong et al, 1996; Carabatsos et al, 1998; Elvin et al, 

1999b). In addition, in GDF-9 null-mutant mice, there appears to be an increase in the 

expression of the KITl gene by granulosa cells (Elvin et al, 1999b), which encodes kit 

ligand (KL), concomitant with increases in the concentrations of circulating FSH (Dong et 

a l , 1996). Thus, GDF-9 seems to be an important inhibitor of KL production, KL being 

an important factor in promoting oocyte growth and development (Packer et al, 1994; 

Reynaud et al, 2000). Therefore, GDF-9 may act as an autocrine regulator of oocyte 

growth and development by inhibiting KL-stimulated growth of oocytes. BMP-15 protein 

is also produced by oocytes and the BMP-15 gene was first shovm to have a role in ovarian 

function in studies using the Inverdale and Hanna breeds of sheep. These sheep carry 

naturally occurring X-linked mutations that cause an increase in ovulation rate in 

heterozygotes {FecX^/FecX^) and ovarian failure in homozygotes {FecX^/FecX^) (Davis et 

al, 1991; 1992; Braw-Tal et al, 1993; Smith et al, 1997; Galloway et al, 2000), which is 

similar to that observed in GDF-9 null-mutant mice. Thus BMP-15, like GDF-9 is essential 

for early follicular development in sheep, specifically the primary to secondary transition. 

The exact mechanism by which follicular development is increased in the heterozygous 

animal is not yet fully apparent, and there seems to be little or no difference in 

gonadotrophin levels in these mutant sheep.

Both GDF-9 and BMP-15 are mitogenic, promoting the proliferation of granulosa cells 

from small antral follicles (Hayashi et al, 1999; Otsuka et al, 2000; Vitt et al, 2000a). In 

terms of differentiative properties, GDF-9 produced by fully grown oocytes can suppress 

the expression of LHR (Elvin et al, 1999a; Joyce et al, 2000), and stimulate progesterone 

production from granulosa cells (Elvin et al, 1999a). Conversely, BMP-15 has been shown 

to suppress FSH-induced production of progesterone by granulosa cells (Otsuka et al, 

2000).
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Inhibins, activins and follistatin

The regulatory roles of inhibin, activin and follistatin in controlling reproduction at the 

endocrine level have been highlighted earlier. However, it has become evident that these 

peptides also execute an intra-ovarian function. Inhibin, activin and follistatin have 

opposing actions in the process of steroidogenesis, suggesting they are part of a complex 

intra-ovarian regulatory system that has yet to be fully elucidated. Moreover, because they 

can regulate the amount of androgen substrate available for oestradiol synthesis by 

follicles, these factors are also likely to be important in the processes of selection and 

dominance.

Inhibin is produced by the granulosa cells of follicles, although in primates it is also 

produced by luteal cells (Findlay, 1993). It seems that inhibin may play a role in 

regulating steroidogenesis in both theca and granulosa cells. Inhibin has been shown to 

suppress FSH-induced aromatase activity in cultured rat (Ying et al, 1986) and primate 

(Miro & Hillier, 1992) granulosa cells. In cattle (Wrathall & Knight, 1995), human 

(Hillier, 1991) and rat (Hsueh et al, 1987) theca cells, inhibin has been found to increase 

LH-induced androgen production. Inhibin, therefore, seems to be involved in ensuring that 

there are adequate levels of androgen produced to facilitate increasing oestradiol synthesis 

in preovulatory follicles.

Activin is important for follicle development and has been shown to induce proliferation of 

granulosa cells in various sized follicles in vitro (Li et al, 1995; Miro & Hillier, 1996). 

This is supported by a study utilising knockout mice lacking the activin type IIB receptor, 

where follicle development was arrested at the early antral stage, although this may also be 

in part due to the fact that FSH concentrations are also reduced in these animals (Nishimori 

& Matzuk, 1996). Activin has also been shown to increase (i) FSH receptor expression 

(Xiao et al, 1992b); (ii) FSH-induced aromatase (Hillier & Miro, 1993); (iii) oestradiol 

production (Hutchinson et al, 1987) and (iv) oocyte maturation (Alak et al, 1998; Sidis et 

al, 1998). In addition, activin has also been associated with a delay in the onset of atresia 

and lutéinisation (Hutchinson et al, 1987), and a decrease in LH-induced androgen 

production (Wrathall & Knight, 1995).

An intra-ovarian role for follistatin was illustrated with the finding that its presence can 

reverse the inhibitory effects of activin on both LH- and oestradiol-induced androgen 

secretion in theca cells (Wrathall & Knight, 1995). Given that follistatin is not produced in 

any great quantities by relatively undifferentiated granulosa cells (Shimasaki et al, 1989;
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Nakatani et al, 1991) -  cells that produce large amounts of activin, and have many activin 

binding sites present (Findlay et al, 2000) -  this is likely to be one of the reasons activin is 

‘free’ to promote FSH receptor expression in small follicles. In addition, follistatin may be 

involved in promoting follicle atresia or lutéinisation, given that studies in rats have 

indicated that follistatin can suppress aromatase activity and inhibin production, 

concomitant with increasing progesterone production (Xiao et a l , 1992a).

Oestrogen

It is well established that steroids perform an important feedback role to regulate 

gonadotrophin secretion, but it has become apparent that oestrogen in particular may be a 

key intra-ovarian modulator of follicle growth and development (Schams & Berisha, 

2002). The principal oestrogen is oestradiol-l?p which can bind to two forms of receptor, 

(ERa and ERP) (Kuiper et al., 1996; Drummond et al., 1999). ERa and ERg exhibit 

species-/tissue-/cell-specific localisation and levels of expression (Drummond & Fuller, 

2010). The beta form of the oestrogen receptor is primarily present in the ovary (granulosa 

cells, theca cells, corpora lutea (CL), and oocyte) (Drummond et al, 1999b; Pelletier et al, 

2000; Juengel et al, 2006), while ERa, although also localised to the ovary (granulosa and 

theca cells) has been found predominantly in testis, epididymis, mammary gland, brain 

(pituitary gland), adipose, bone, heart, and uterus (Drummond et al, 1999b; Pelletier et al, 

2000; Taylor & Al-Azzawi, 2000; Juengel et al, 2006; Weiser et al, 2008). Information 

on the expression of the respective ER mRNAs and proteins in granulosa cells of different 

follicle sizes is limited (Drummond & Fuller, 2010). In situ hybridisation and RT-PCR 

studies in the rat indicate that there is more ERP than ERa mRNA in the ovary (Drummond 

et al, 1999b) and mRNAs for ERa and ERp are present in granulosa cells of follicles with 

at most two to three layers of granulosa cells (Drummond et al, 1996; Drummond et al, 

1999b; Juengel et al, 2006).

Oestrogen has marked effects on somatic cell proliferation and differentiation. It has been 

demonstrated that oestrogen is a potent mitogenic agent, stimulating proliferation of 

granulosa cells, and ultimately it increases the number and size of ovarian follicles in vivo 

and in vitro (Gore-Langton & Daniel, 1990; Hulshof et al, 1995). In terms of oestrogen’s 

properties to differentiate cells, it induces the appearance of receptors for FSH and LH 

(Drummond & Findlay, 1999; Bao et al., 2000). In addition, studies in rats highlight that, 

as follicles develop to medium size, the number of oestrogen receptors increases, and this 

is accompanied by increases in the expression of aromatase in granulosa cells (Bao et al, 

2000), further signifying a role for oestrogen in follicle growth and development.
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1.5 T h e  A n d r o g e n is e d  E w e  M o d e l

Animal models that exhibit altered/reduced reproductive ability, specifically disrupted or 

arrested follicular development, provide valuable resources to investigate the intra- 

follicular environment that is required for normal follicular growth and development. One 

such model is the prenatally androgen treated ewe. This model is also very useful for 

determining the effects of environment on reproductive physiology. In this model, 

pregnant ewes are injected with lOOmg of either testosterone propionate (TP) or the non 

aromatisable androgen, 5a-dihydrotestosterone (DHT) twice weekly during a specific 

window of in utero development (days 30-90 - term =147 days). It is during this period 

that the reproductive axis and external genitalia become sexually differentiated (Clarke et 

al, 1976). Numerous studies have found that excess prenatal testosterone treatment during 

this period leads to a range of reproductive, growth and metabolic disruptions as well as 

abnormalities in the external genitalia and reproductive behaviours. Studies using both TP 

and DHT models have focused mainly on two breeds of sheep; the Suffolk and the Poll 

Dorset. These breeds have similar length breeding seasons (September/October-January), 

are of similar adult weights and normally produce about 1.5 offspring per pregnancy. 

Despite these similarities differences between the two breeds in the degree of reproductive 

disruption caused by foetal androgen exposure have been observed and are highlighted 

when present. The breed used in the studies described in this thesis is the Poll Dorset.

1.5.1 Disruption of reproductive function

1.5.1.1 Reproductive cyclicity

Exposure of the female lamb to prenatal TP results in a suite of adult reproductive 

disorders (Clarke et al, 1977; Wood & Foster, 1998; West et al, 2001; Sharma et al, 

2002; Birch et al, 2003; Savabieasfahani et al, 2005; Steckler et al, 2005; Unsworth et 

al, 2005; Steckler et al, 2007a) ultimately leading to reproductive failure (Clarke et al, 

1977; Birch et al, 2003). Early studies by Clarke et al. (1977) showed that Finnish 

Landrace/Dorset Horn cross ewes, whose mothers had been implanted ^vith Ig testosterone 

for different periods of pregnancy, showed marked disruption of ovulatory cycles. 

Specifically, the percentage of ewes ovulating having been androgenised between days 30 

to 80 or 50 to 100 was 57% and 77%, respectively. Importantly, none of these ewes had 

regular cycles during the period of observation, confirming the idea that androgenised 

ewes either do not ovulate or do so at erratic intervals. In contrast, ewes exposed to 

androgen between days 90 and 140 of foetal development had normal regular cycles in 

adulthood (Birch et al, 2003; Steckler et al, 2007b). The ‘critical period’ and dose of 

androgen required to disrupt cycles in the Suffolk ewe was further refined by scientists in
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Doug Foster’s group at The University of Michigan (Wood & Foster, 1998) and the timing 

and dose of androgen used in our studies have been informed by this extensive work. In 

recent years two separate groups have revealed that the time of the first reproductive cycle 

in androgenised Dorset and Suffolk ewes is similar to that of control animals (Sharma et 

al, 2002; Manikkam et al, 2006). However, cycles in the androgenised animals show 

disruptions in that only 72% of the Dorset ewes had cycles in the first breeding season and 

none in the second breeding season (Birch et al, 2003). Similar studies in the Suffolk ewe 

(Sharma et al, 2002) revealed a less extreme phenotype with the duration of the first 

breeding season and the number of reproductive cycles being similar between controls and 

androgenised animals. It should, however, be noted that in the Dorset breed of sheep the 

complete absence of cyclicity in the second breeding season found in an earlier study 

(Birch et al, 2003) was not evident in a later study (Unsworth et al, 2005). Although the 

number of cycles was substantially reduced, changes in progesterone concentrations that 

meet the criteria for a cycle (see Materials and Methods) were evident. Studies performed 

for over a decade have shown that the number of normal, regular cycles in the 

androgenised Dorset ewe varies from year to year (Jane Robinson; personal 

communication) suggesting that other environmental, genetic or experimental factors may 

also play a role. Additionally, a group of animals that were exposed to TP from day 60-90 

of gestation (the second half of the ‘critical period’) had fewer cycles than the controls in 

their first breeding season (86%) which was further reduced in the second season (Birch et 

al, 2003). This was not observed in the study by Sharma et al., (2002). The severity of 

reproductive defects and the timing of onset of reproductive perturbation programmed by 

prenatal TP excess are highly variable between breeds and within individuals of the same 

breed which highlights the interaction between genetics and environment.

1.5.1.2 Steroid Feedback Mechanisms

As detailed earlier, for proper patterning of gonadotrophin secretion during development 

and cyclicity both stimulatory and inhibitory neuroendocrine steroid feedback mechanisms 

must be effective. In order to study these feedback mechanisms ewes of both the Dorset 

and Suffolk breeds have been ovariectomised soon after birth and a one centimetre long 

Silastic implant of oestradiol is implanted subcutaneously to provide an unvarying 

physiological concentration of the steroid (l-2pg/ml). Using this ovariectomised steroid 

replaced model (OVX + E) extensive studies have demonstrated that prenatal TP treatment 

reduces hypothalamic sensitivity to all three major feedback mechanisms involved in the 

control of the cyclic changes in GnRH/gonadotrophin secretion, namely (1) oestradiol 

negative feedback, (2) oestradiol positive feedback (Wood & Foster, 1998; Sharma et al.
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2002; Sarma et al, 2005; Unsworth et al, 2005) and (3) progesterone negative feedback 

(Robinson et al, 1999). Oestradiol negative feedback is the predominant feedback system 

operational before puberty, with a reduction in the sensitivity to this feedback mechanism 

responsible for the pubertal rise in GnRH and LH release (Foster, 1994). Investigations 

using the OVX + E ewe found that exposure to prenatal TP advances the time of the 

pubertal rise in LH from about 30 weeks of age to about 10 weeks (Wood & Foster, 1998). 

This is similar to the time of the LH rise in ram lambs that have been gonadectomised and 

implanted with a small implant of oestradiol (7-8 weeks). Studies using ovary-intact 

androgenised sheep, found females to be hypergonadotrophic (LH only) and exhibit 

reduced sensitivity to oestradiol negative feedback (Sarma et al, 2005). Similar responses 

have been observed in the DHT exposed animals showing that testosterone does not need 

to be aromatised to oestrogen to have these actions (Wood & Foster, 1998).

In addition to the disruption of oestradiol negative feedback, prenatal TP treatment also 

alters oestradiol positive feedback (Wood & Foster, 1998; Sharma et al, 2002; Birch et al, 

2003; Unsworth et al, 2005) which is necessary for the generation of the preovulatory 

GnRH/LH surge (Moenter et al, 1991). Specifically, the prenatally TP-treated OVX + E 

ewe of both breeds is unable to respond to follicular-phase concentrations of oestrogen 

with a preovulatory-like surge of GnRH/LH (Wood et al, 1995; Herbosa et al, 1996). We 

know that the masculinisation of oestrogen positive feedback is brought about by the 

oestrogenic actions of TP because prenatal exposure to DHT does not disrupt the ability of 

oestrogen to trigger the GnRH surge (Wood & Foster, 1998). The ovary-intact Dorset ewe 

(like the OVX + E Dorset) is unable to respond to exogenous oestrogen with a LH surge, 

either before puberty or just before the start of the second breeding season (Unsworth et al, 

2005). In contrast LH surges were present, but delayed and dampened in the ovary intact 

Suffolk ewe (Sharma et al 2002). The difference may lie in the breed of sheep used 

(Suffolk vs. Dorset) as, although these breeds are of similar adult weight, their body 

composition may be sufficiently different to affect the distribution and metabolism of the 

administered steroid and, thus, the concentration delivered to the foetus. Reasons for the 

difference in the ability to respond to oestradiol with an LH surge in the ovary-intact 

versus the OVX + E Suffolk ewe are discussed later.

The final feedback mechanism altered in prenatally TP-treated animals is the action of 

progesterone inhibition, important for suppression of the release of GnRH during the luteal 

phase of the oestrous cycle and the blockade of ovulation (Karsch, 1987). This was tested 

in OVX + E Dorset ewes using a low physiological concentration of exogenous
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progesterone provided by a single intravaginal CIDR device (2-3 ng/ml). Prenatal TP 

females manifested reduced responsiveness to progesterone negative feedback in a similar 

manner to males (Robinson et al, 1999). This was observed both in the presence and 

absence of oestrogen (which induces receptors for progesterone) and at the time of the 

breeding and anoestrous seasons.

Associated with these neuroendocrine feedback abnormalities is an alteration in 

gonadotrophin secretion manifested as hypersecretion of LH but not FSH (Sharma et a l , 

2002; Sarma et al, 2005). Hypersecretion of LH associated with reproductive 

abnormalities is also evident following prenatal exposure to excess testosterone in female 

rhesus monkeys (Abbott et al, 2005) (see section 1.5), mice (Sullivan & Moenter, 2004), 

and rats (Foecking et al, 2005) and it is also seen in women with polycystic ovary 

syndrome (Katz & Carr, 1976; Rebar et al, 1976). A relatively recent study investigating 

the mechanisms that mediate hypersecretion of LH determined that excess prenatal TP 

treatment, by its androgenic action only, amplified the GnRH induced LH response, 

leading to LH hypersecretion (Manikkam et al, 2008). It is thought that this programming 

involves developmental changes in expression of pituitary genes responsible for LH 

synthesis and release.

1.5.1.3 Ovarian Defects
In addition to reproductive neuroendocrine disruptions, excess prenatal TP treatment leads 

to several ovarian defects in sheep (West et al, 2001; Steckler et al, 2005; Manikkam et 

al, 2006; Steckler et al, 2007a). The first study to investigate the ovarian histology in 

prenatal TP-treated sheep found that ovaries of 5 week old Suffolk female lambs were 

heavier/larger and observed a mutlifollicular morphology, with many large antral follicles 

visible (West et al, 2001). This had also been noted in 3 week old Dorset lambs (Wood et 

al, 2000). Furthermore, more recent studies have determined that both follicle numbers 

and ovarian volume are increased in prenatally TP-treated ewes (Manikkam et al, 2006). 

A possible explanation for the multifolliculate condition observed in the androgenised ewe 

is that these antral follicles fail to regress (undergo atresia). This hypothesis was tested by 

Manikkam et al., (2006) who determined that the persistence of antral follicles was 

significantly longer in prenatally TP-treated ewes. However, larger ovaries, multifollicular 

morphology and increased numbers of primary, preantral, and antral follicles (growing 

follicles) at 10 months of age (Steckler et al, 2005) are only observed when sheep have 

been prenatally treated with TP and not DHT, demonstrating that these ovarian features are
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mediated through the action of oestrogen and not androgens (Steckler et al, 2005; Steckler 

et al, 2007a).

Additional studies in the Suffolk breed of sheep have found decreased numbers of 

primordial and increased numbers of growing follicles in prenatal testosterone and DHT- 

treated foetuses on day 140 of gestation (D140), suggesting enhanced follicle recruitment 

from the primordial pool (Steckler et al, 2005; Smith et al, 2008). However, no 

differences in numbers of oocytes and follicles were determined in either prenatal 

testosterone or DHT-treated foetuses on day 90 (D90) of gestation (Smith et al, 2008), 

suggesting that prenatal TP and DHT excess does not affect germ cell development and 

primordial follicle formation. The absence of differences in germ cells in both prenatal 

testosterone and DHT-treated foetuses on D90 of gestation provides evidence that any 

difference in ovarian reserve seen at a later time point are likely to be as a result of 

increased follicular recruitment or follicle persistence and not differences in initial ovarian 

reserve. In 10 month old sheep, increased numbers of growing follicles and reduced 

numbers of primordial follicles were found in prenatally TP-treated females but not in 

DHT-treated females (Smith et al, 2008). Studies using cortical biopsies from ovaries of 8 

month old Dorset sheep, while not controlled for cycle stage as in the Steckler 2005 study, 

provided further support in favour of enhanced recruitment (Forsdike et al, 2007).

The mechanisms by which prenatal TP treatment programs increased ovarian size and 

multifollicular ovaries are not clear. On the one hand increased number of antral follicles 

may contribute towards increased ovarian size. Alternatively, this may be as a result of 

increased stromal volume, a feature which has not yet been explored in prenatal TP-treated 

females.

A study into luteal function in the Suffolk model demonstrated prenatal TP excess reduced 

the number of corpora lutea in those animals that cycled (Manikkam et al, 2006). This 

finding suggests that these large antral follicles are unable to luteinise in the proper manner 

and instead continue to proliferate and grow (failure to undergo atresia).

1.5.1.4 Gonadal and Genital Development

Gonadal steroids mediate sexual differentiation of the reproductive phenotype. Early 

studies in rabbits initiated the concept that testosterone acting systemically and anti- 

mullerian hormone acting locally, directs the differentiation of the male internal genitalia 

(Jost et al, 1973). In genetic males (XY), the gonads differentiate into testes. The Wolffian
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duct then proliferates in the presence of testosterone into the vasa deferentia and seminal 

vesicles. In females (XX), the primordial gonads differentiate into ovaries. Then, the 

Mullerian duct develops (as Mullerian inhibiting factor is absent) to give rise to the uterus, 

fallopian tube and vagina. The bipotential external genitalia in the presence of DHT are 

masculinised to form the penis and scrotum. Therefore, external appearance of male or 

female organs depends on the presence or absence of testosterone during a critical period 

of development.

Prenatal TP exposure has a virilising effect on the external genitalia of female lambs. TP- 

treated lambs have genitalia that are similar to males, in that they exhibit a penis and 

scrotal tissue, but with no testicular tissue. Internally, the ovaries are located in the correct 

anatomical position (Wood & Foster, 1998) and exhibit a blind-ending uterus but no 

vagina (Unsworth et al, 2005). The degree of masculinisation of the external genitalia in 

the female has been found to be proportional to the concentration amount of TP exposure 

(Wood & Foster, 1998). Using a 200mg weekly dose, masculinisation was maximal, with 

development of a penis and an empty scrotum. Partial masculinisation occurred with an 

80mg dose, with a split scrotum and urethral opening between the two empty scrotal folds 

at an intermediate distance between those of normal males and females. Minimal 

masculinisation was found with a 32mg dose, with normal placement of the urethral 

opening. Timing was also found to be important with androgens present between days 30 

and 50 of gestation causing genital abnormalities but not between days 65 and 85 of 

pregnancy (Foster et al, 2002). Alteration of the female reproductive phenotype towards 

male phenotypic features also occurs in humans from prenatal androgen exposure. 

Congenital adrenal hyperplasia, the commonest cause of genital ambiguity of the external 

genitalia at birth in female children is invariably as a result of 21-hydroxylase deficiency 

(Hughes, 1998).

1.5.2 Foetal and Postnatal growth

Steroid hormones have effects on normal growth of body tissues in concert with growth 

hormone effects. Studies in sheep have shown alteration of normal foetal growth can be 

programmed by inappropriate foetal steroid exposure. TP-treated Suffolk sheep 

demonstrate foetal growth retardation and reduced birth weight and height (Manikkam et 

al, 2004; Steckler et al, 2005). Additionally, prenatally TP-treated ewes, but not the 

males, exhibit catch-up growth between 2-4 months of their birth (Manikkam et al, 2004). 

Unpublished studies in the Dorset ewe have shown that both TP and DHT animals have 

significantly lighter body weights at birth but both exhibit catch up growth about the time
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of puberty. The TP ewes then continue to grow compared to controls and DHT ewes and 

are significantly heavier by about 10 months of age (Robinson JE, Hastie PM, and Evans, 

unpublished data). Studies in rats have also found a significant reduction in pup birth 

weight in both sexes when foetuses were exposed to TP (Wolf et al, 2002). Reduced birth 

weight (intrauterine growth retardation) and postnatal catch-up growth are both viewed as 

risk factors for adult onset diseases like metabolic syndrome (Ong & Dunger, 2002).

1.5.3 Prenatal androgen excess causes metabolic problems

It is well known that sex steroids influence insulin sensitivity (insulin sensitivity refers to 

the actions of insulin on glucose), with androgenic contraceptives taken orally by women 

leading to insulin resistance (Godsland et al, 1992). Prenatal exposure to TP in sheep leads 

to elevated insulin concentrations in fasted adult sheep (hyperinsulinaemia) as well as a 

significantly increased release of insulin in response to an iv infusion of glucose (insulin 

resistance). This has been reported in both the Dorset and Suffolk breed (DeHaan et al, 

1987; Rosser et al, 2003).

1.6 P o l y c y s t i c  o v a r y  s y n d r o m e  (P C O S )

PCOS is the most common endocrine disorder in women of reproductive age, affecting 

approximately 5-10% of women of reproductive age in the developed world (Dumesic et 

al, 2007; Franks et al, 2008). PCOS is the major cause of anovulatory infertility, 

menstrual disturbances and hirsutism (excessive hairiness). Clinical and biochemical 

features of PCOS are typically heterogeneous, but the distinctive multifollicular ovarian 

morphology is a characteristic feature of the syndrome (Tsilchorozidou et al, 2004; Franks 

et al, 2006; Franks et al, 2008). The cause of the syndrome remains uncertain, although 

there is evidence that genetics have an important role, with the disease thought to be as a 

result of an interaction of a small number of key genes with environmental and in 

particular nutritional factors (Franks et al, 1997).While its peripubertal onset and familial 

clustering suggest a heritable etiology for PCOS, several candidate genes, including those 

regulating insulin action, androgen biosynthesis and gonadal function, have failed to fully 

explain its prevalence (Dumesic et al, 2007). One of the possible causes of PCOS is 

prenatal androgen excess and recent studies have provided additional evidence in support 

of this (Xita & Tsatsoulis, 2006). Ovarian hyperandrogenism is the cardinal feature of 

PCOS, with in vitro studies of PCOS theca cells showing intrinsically increased androgen 

biosynthesis and augmented expression of several steroidogenic enzymes, including 

cytochrome P450 cholesterol side chain cleavage (CYPllAl), 17a-hydroxylase/17-20 

lyase (CYP17A1) and 38-hydroxysteroid dehydrogenase (HSD3B1) (Nelson et al, 1999;
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Nelson et al, 2001). As highlighted earlier, many of the neuroendocrine, metabolic and 

ovarian disruptions of the prenatally TP-treated ewe are similar to those seen in women 

with PCOS, thus the androgenised model has evolved as an alternative for understanding 

the etiology of polycystic ovary syndrome.

The characteristic morphological feature of polycystic ovaries in anovulatory women is an 

accumulation of antral follicles in the range of 2-8mm in diameter (Franks et al, 2008). 

There is conflicting evidence in support of enhanced follicular recruitment in PCOS 

patients. A reciprocal increase and decrease in the proportions of primary and primordial 

follicles, respectively, in ovaries of women with PCOS was reported in one study (Webber 

et al, 2003), although other studies can be interpreted to refute these findings (Hughesdon, 

1982; Maciel et al, 2004). Excess postnatal weight gain amplifies reproductive disruptions 

caused by TP excess, as fewer obese TP-treated Suffolk ewes are able to generate an LH 

surge (Steckler et al, 2009), an observation that is also seen in women with PCOS 

(Dumesic et al, 2007).

In addition to the prenatally androgenised ewe model, there are several other models of 

PCOS, most notably that of the rhesus monkey (Dumesic et al, 1997; Abbott et al, 2008; 

Dumesic et al, 2009). Prenatal TP-treated monkeys, like PCOS patients, manifest 

anovulatory infertility (Abbott et al, 2004), adiposity-dependent compensatory 

hyperinsulinemia (Abbott et al, 2005; Recabarren et al, 2005), hypergonadotropism 

(Dumesic et al, 1997), neuroendocrine feedback defects (Steiner et al, 1976; Dumesic et 

al, 2002), functional hyperandrogenism (Eisner et al, 2002; Zhou et al, 2005) and 

polycystic ovaries (Dumesic et al, 2002). In addition, like the androgenised ewe model, 

prenatal androgenisation in the rhesus monkey accelerates follicle differentiation and 

diminishes the ovarian reserve (Dumesic et al, 2009). However, interestingly, the 

prenatally TP-treated rhesus monkey does not show intrauterine foetal growth retardation 

or post natal catch-up growth (Abbott et al, 2008).

1.7 I n t r o d u c t i o n  t o  E x p e r im e n t a l  A p p r o a c h e s

In summary, follicle growth and development is a complex system which is regulated by a 

variety of extra- and intra-ovarian hormones. The prenatally androgenised ewe provides an 

excellent model to investigate follicular growth and development, specifically at the 

terminal follicle stage. Additionally, the use of the prenatally androgenised ewe facilitates 

further characterisation at the individual follicle level of polycystic ovary syndrome due to 

the parallels between the syndrome and the animal model. Furthermore, to the best of our
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knowledge, there has been no investigation in identifying abnormalities in large persistent 

antral follicles observed on ovaries from ewes prenatally treated with either TP or DHT. 

Therefore, this study provides novel information into the abnormalities within large antral 

follicles from prenatally androgenised ewes. Lastly, results from the study will contribute 

to our understanding of prenatal programming of adult ovarian function.

The central aim of the experimental work undertaken in this thesis has been to identify 

abnormalities in large antral follicles from prenatally androgenised ewes, and where/when 

abnormalities were determined, to further characterise underlying cellular changes in these 

follicles. Further characterization centred on determining (1) steroid hormone levels in the 

follicular fluid of abnormally large follicles (Chapter 3), (2) steroidogenic capability in 

smaller antral follicles (Chapter 4) and (3) differentially expressed genes controlling 

steroidogenesis, proliferation, atresia and differentiation in antral follicles in granulosa 

cells from abnormally large follicles (Chapter 5). Further to this central aim, two secondary 

aims comprised (1) assessing health status in early antral follicles (Chapter 4) and (2) 

determining peripheral steroid concentrations in prenatally androgenised ewes (Chapter 3). 

The final aim comprised a functional study, determining if granulosa cells are intrinsically 

different between androgenised and control ewes in respect to unstimulated or 

gonadotrophin-dependent steroid production (Chapter 6).

Four experimental chapters are reported in this thesis (chapters 3 to 6) and a description of 

Materials and Methods common to several experimental chapters is contained in General 

Materials and Methods (Chapter 2). Within each experimental chapter a brief discussion of 

the findings is given. A General Discussion (Chapter 7) is used to collate the findings from 

all of the experiments.
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C h a p t e r  2: G e n e r a l  M a t e r ia l s  a n d  M e t h o d s

This chapter contains a detailed description of the Materials and Methods used in each 

experiment.

2.1 A n im a l  H u sb a n d r y

All animal procedures used in the study were approved by the Faculty's Ethics and Welfare 

Committee and were carried out in accordance with the UK Animals (Scientific 

Procedures) Act 1986 (Project number PPL 60/3485; ‘Prenatal programming of 

reproductive function’). Sheep were maintained under normal husbandry conditions at the 

University Farm, Cochno Road, Glasgow, UK. In winter months they were housed indoors 

and in the summer months they were on pasture. Lambs were obtained from a breeding 

flock of Poll Dorset ewes which has been maintained at the University Farm since 2003.

2.2  T h e  i n  u t e r o  a n d r o g e n ise d  e w e  m o d e l

Experiments were conducted using control ewes (C) and those that were exposed to 

androgens during foetal development (androgenised ewes). Androgen treatment involved 

foetal exposure to testosterone propionate (TP) or the non aromatisable androgen, 5a- 

Dihydrotestosterone (DHT) employing an identical method to that previously described 

(Steckler et al, 2005; Unsworth et al, 2005). Briefly, the reproductive cycles of ewes from 

the breeding Dorset flock were synchronized using an intravaginal CIDR device (Inter Ag, 

NZ), and animals in oestrus were mated with a Dorset ram. Mating activity was monitored 

with a raddled ram and pregnancy confirmed at about 60 days post mating by 

transabdominal ultrasound. Mated ewes (which were assumed and then confirmed 

pregnant) were injected i.m. twice weekly with 100 mg TP or DHT in vegetable oil from 

30-90 days of pregnancy (term 147 days). The dose and mode of testosterone and DHT 

administration were chosen to reflect the large body of data available relative to postnatal 

reproductive disruptions (Masek et al, 1999; Robinson, 2001; West et al, 2001; 

Manikkam et al, 2006; Steckler et al, 2007b). Prenatal TP treatment produces circulating 

concentrations of testosterone in female foetuses in the range observed in male foetuses 

(Wood et al., 1991). Ewes giving birth to control offspring for these studies received no 

treatment as it has been established that the response of their offspring does not differ from 

that of offspring to mothers injected with vehicle (Steckler et al., 2007). Studies were 

performed on five groups of ewes, one group per year, which were bom to mothers who 

had been exposed during their pregnancy to TP, DHT or to no hormone. Year groups of 

sheep will be referred to in this thesis as year group 1 for year 1, year group 2 for year 2
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etc. Year groups 1-4 contained two treatments, either control ewes or ewes treated with TP 

in utero, while year group 5 ewes contained an additional in utero DHT treatment group.

The groups of sheep used in the study are illustrated in Table 2.1

Year

Group

Age at 

Slaughter

Date of 

Slaughter

No. of 

control ewes

No. of TP 

ewes

No. of DHT

ewes

1 22 months February

2005

9 7 0

2 12 months April 2006 7 6 0

3 10 months February

2007

7 10 0

4 10 months March 2008 7 6 0

5 10 months March 2009 14 15 8

Table 2.1. Details of the groups of sheep used in the studies. Sheep spanning 5 years 
(2005-2009 inclusive) were used.

2.3 B l o o d  S a m p lin g

Blood samples were collected from control and androgenised ewe lambs by jugular 

venipuncture twice weekly from approximately 25 weeks of age which was in 

October/November (puberty -30 weeks -  Quirke et al, 1985) until the end of February in 

all five groups of sheep. Dorset ewes normally enter the anoestrous season in January at 

this latitude (55°55’N). All blood samples were collected by Dr Peter Hastie, Dr Jane 

Robinsion and Prof Neil Evans. Blood was collected into tubes containing heparin (1 drop 

of 5000IU/ml per tube) as anticoagulant. Immediately after collection plasma was 

separated via centrifugation (usually 3000 rpm for 15 minutes at 4°C) and stored at -20°C 

until required for assay. The occurrence of ovulatory cycles was determined from 

measurements of progesterone in plasma, and peripheral oestradiol concentrations were 

investigated as short-term experiments indicated that concentrations are elevated in the 

prenatally TP-treated Suffolk ewe (Veiga-Lopez et al, 2008).

2.4 C o l l e c t i o n  o f  O v a r ie s  a n d  I s o l a t i o n  o f  G r a n u l o s a  c e l l s

Ewes were euthanased by lethal barbiturate overdose (Somulose, 1 ml/10kg BW, Dechra 

Veterinary Products, Shrewbury, UK). The euthanasia procedure was performed by either 

Dr Peter Hastie or Dr Jane Robinson. Ovaries were recovered from each ewe, cleaned of 

blood and surrounding excess tissue, weighed, and ovarian maps drawn detailing the 

location and number of large antral follicles in addition to noting the presence or absence 

of any corpora lutea. All follicles greater than 3.5 mm in control and DHT ewes and
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greater than 5 mm in TP ewes were excised free from stroma and measured using callipers. 

Follicles of this diameter were chosen for excision as in the normal sheep, follicles 

>3.5 mm in diameter are gonadotrophin dependent and likely to contain the dominant 

follicle with highest oestradiol synthesizing capacity (Dufour et al, 1979; Miller et al, 

1979; McNeilly, 1984; McNeilly et al, 1992). As ovaries from ewes androgenised in utero 

with TP (but not with DHT) contain many follicles much larger than 3.5 mm (Smith et al, 

2008), an increased diameter threshold was set at 5 mm in order to recover the putative 

dominant follicle. In most ewes (control - 29/35, TP -  28/37 and DHT -  6/8 ewes), two 

follicles per ewe were excised using such diameter thresholds, while only one (in 6/35 

controls, 7/37 TP-treated, and 2/8 DHT-treated ewes) or three follicles (in 2/37 TP-treated 

ewes) were recovered from the remaining experimental ewes. Follicular fluid was aspirated 

gently from all the dissected follicles using a 25 gauge needle attached to a 1 ml syringe to 

minimise aspiration of live granulosa cells. Follicular fluid was immediately frozen in 

liquid nitrogen and then stored at -80°C until used for steroid hormone analysis. Granulosa 

cells were isolated and collected by hemisecting follicles and using a plastic inoculation 

loop to gently scrape the cells from the follicle wall (Glister et al, 2001). Cells were 

washed in Phosphate Buffered Saline (PBS) (or culture media; for details of culture media 

see section 2.8), and collected by centrifugation at 1000 rpm for 5 minutes. After 

centrifugation, the granulosa cell pellet was either re-suspended in 500 pi TRIzol 

(Invitrogen, Paisley, UK), snap frozen and stored at -80°C until RNA extraction, or re­

suspended in PBS or media for subsequent cell culture. Time from euthanasia of the ewe to 

pelleting of the granulosa cells was less than 1 hour. Please note, that for year groups 1 and 

2 ovaries were collected and follicles excised by Dr Monika Mihm and Dr Paul Baker.

2.5  F o l l ic l e  C l a s s if ic a t io n

Based on follicular fluid oestradiol concentration of the two largest follicles recovered 

from each ewe (or the three largest follicles recovered in 2/37 TP-treated ewes), follicles 

were classified as the dominant follicle (DF - with higher intrafollicular oestradiol) or the 

subordinate follicle (SF - lower intrafollicular oestradiol) (Evans & Martin, 2000; Austin et 

al, 2001; Ryan et al, 2007). DF have the potential to continue to ovulation, while SF 

regress. However, in the case of a sheep breed with an ovulation rate of 1.8 (Hall et al, 

1986), the two largest follicles in control sheep may also represent two follicles with the 

ability to ovulate following luteolysis, despite some differences in oestradiol synthesizing 

capacity. Thus the SF classification in control ewes may include some co-dominant 

follicles (Fortune et al, 2004). In addition, largest follicles with lower intrafollicular 

oestradiol than the second largest follicle may also represent regressing dominant follicles.
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Again this possibility can not be excluded from our classification of control SF, although 

the bovine literature shows that regressing DF have very high intrafollicular progesterone 

concentrations (Sunderland et al, 1994) which was not the case here (see results Chapter 

3). Follicles classified as dominant based both on highest oestradiol and largest follicle 

diameter out of the follicles recovered occurred in 59% (17/29), 57% (16/28) and 50% 

(3/6) of control, TP- and DHT-treated ewes, respectively. When only one follicle was 

recovered per ewe, then that follicle was classified as DF independent of intrafollicular 

oestradiol concentrations, as there was no evidence that another follicle was present that 

was larger (with higher follicular fluid oestradiol) and therefore potentially a dominant 

follicle.

2 .6  RIA P r o c e d u r e s  f o r  d e t e r m in a t io n  o f  s t e r o id  c o n c e n t r a t io n s

Radioimmunoassay (RIA) is a competitive technique developed in 1960 for measuring 

very small concentrations of a substance (Yalow & Berson, 1960). The basic theory of an 

RIA is that the hormone, e.g. oestradiol, in the samples/standards will compete with a 

known amount of iodinated (radioactive) oestradiol to bind to a limiting amount of a 

specific oestradiol antibody. Thus, the percentage of iodinated oestradiol bound to the 

antibody will decrease as the concentration of unlabelled (non-radioactive) oestradiol 

within the sample/standard increases. The amount of unlabelled oestradiol bound in 

unknown samples is then indirectly quantified by comparison to the displacement of 

iodinated oestradiol by known standards. In all RIA’s the limit of assay sensitivity was 

assigned to those samples in which the concentration of steroid was below the sensitivity 

of the assay. All reagents and chemicals were obtained from Invitrogen Ltd. (Paisley, UK) 

unless otherwise stated.

Dilutions

Concentrations of the steroid hormones oestradiol and progesterone in plasma, the 

follicular fluid of the largest antral follicles and conditioned culture media were determined 

using radioimmunoassay (RIA). Testosterone concentration was determined only in 

follicular fluid. All follicular fluid samples were diluted in MAIA buffer (0.01 M PBS, 

0.1% gelatin, and 0.1% sodium azide, pH 7.0). Follicular fluid samples were diluted 1:100- 

1:1000 for oestradiol, 1:10 -  1:100 for progesterone and 1:100 -  1:1000 for testosterone 

concentration determination. Follicular fluid samples for oestradiol, progesterone and 

testosterone assays required no prior extraction. A volume of 10-200 pi and 100 pi of 

plasma was used to determine oestradiol and progesterone concentrations, respectively in 

the peripheral circulation. Plasma samples for progesterone assay required no prior
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extraction, while 200 pi of plasma was extracted in duplicate to determine peripheral 

oestradiol concentrations. A volume of 10-200 pi of conditioned media was used to 

determine oestradiol and progesterone concentrations in conditioned media. Conditioned 

media for oestradiol and progesterone assays required no prior extraction.

Oestradiol RIA - Assay Reagents and Procedure

Oestradiol concentrations were determined using a commercial RIA kit (MAIA Oestradiol 

Kit, Bio-Stat Limited, Stockport, UK. Cat no. 370001). The primary antibody (rabbit 

antiserum) was diluted to 1:10 with MAIA assay buffer (0.01 M PBS, 0.1% gelatin, and 

0.1% sodium azide, and adjusted to pH 7.2) prior to use. The reference preparation was 

diluted to give ten standard curve points ranging from 0.195-100 pg/ml (0.039-20 pg/tube). 

The secondary antibody used was anti-rabbit antiserum, raised in goat, and was supplied 

ready diluted. The secondary antibody is coupled to magnetic particles to facilitate 

recovery of the oestradiol bound to the primary antibody. Samples pooled from each year 

group were used in each assay as quality controls.

Plasma oestradiol concentrations were measured in year groups 1-4 using a validated 

method (Evans et., al 1994). Briefly, duplicate 200 pi of plasma samples for each date (see 

Chapter 3) and steroid standards were extracted in 16x100 mm boro silicate glass tubes 

(Fisher Scientific UK Ltd, Loughborough, UK) using 2 ml diethyl ether (Rathbum 

Chemicals Ltd., Walkerbum, Scotland, UK). Samples were vortexed for 15 minutes then 

frozen for 5-10 seconds in a methanol dry ice mixture. The liquid fraction was poured off, 

dried down to remove remaining ether by evaporation, re-suspended in 300 pi of MAIA 

buffer and briefly vortexed for 1 minute. The serum oestradiol concentrations were then 

determined using the assay procedure and reagents as detailed below. For determination of 

oestradiol in follicular fluid and conditioned media duplicate sets of standards and samples 

were added to MAIA buffer in a small volume for a final assay volume of 300 pi.

Non-specific binding tubes (in duplicate) containing 300 pi of assay buffer and 50 pi of 

normal rabbit serum (1:200) were added. All other tubes received 50 pi of the diluted 

primary antibody (1:10) except those for total counts and non-specific binding, and were 

vortexed and incubated for 1 hour at room temperature. Next, 50 pi of ^^^I-oestradiol 

(range 9000 -12500 cpm) were added to all tubes, which were then vortexed and incubated 

for two and a half hours at room temperature. The total counts tubes were capped and set 

aside at this point. Finally, 250 pi of the magnetically linked secondary antibody were 

added to all tubes, which were vortexed and incubated at room temperature for 20 minutes.
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Following incubation, all tubes were placed in magnetic racks for 20 minutes during which 

time the magnetic particles linked to the secondary antibody (bound to the first antibody 

and oestradiol) are pulled to the bottom of each tube. Next, while the tubes are in the 

magnetic racks the supernatant was poured off by inverting the racks. Following this, the 

tubes were blotted on soft absorbent paper and 1 ml dH2 0  was added to all tubes to wash 

away any unbound primary antibody and left for 10 minutes. Next, the magnetic racks 

holding the tubes were inverted again to pour off the supernatant, and the tubes were 

blotted well on soft absorbent paper. Following the second round of blotting, the tubes 

were counted using a gamma counter for 90 seconds and average cpm were calculated 

(Cobra™ II Auto-Gamma®, Packard Bioscience UK).

Progesterone RIA - Assay Reagents and Procedure

Progesterone concentrations were measured using a commercial Coat-a-Count RIA kit 

(Diagnostic Products Corp., Los Angeles, CA). Duplicate sets of standards were made up 

to 100 pi with assay buffer, while 100 pi of the unknown samples were added to each tube. 

Thus either 100 pi of undiluted plasma, or follicular fluid or conditioned media samples 

were diluted in assay (MAIA) buffer to give a total volume of 100 pi were then added to 

the assay. The reference preparation was diluted to give eleven standard curve points 

ranging from 0.039 -  40 ng/ml. The tubes used in this assay have the primary antibody 

attached to them. Non-specific binding tubes (in duplicate) contained 100 pi assay buffer. 

In the case of total count and non-specific binding tubes, plastic tubes without the primary 

antibody attached to them were used. A volume of 750 pi of ^^^I-Progesterone (~ca. 38000 

cpm) was added to all tubes, which were then vortexed and incubated for 3 hours at room 

temperature. Next, tubes were placed in magnetic racks except those for total counts, the 

supernatant was poured off by inverting the rack, and tube openings were blotted several 

times on soft absorbent paper to remove any unbound ^^^I-Progesterone. Following 

blotting, the tubes were counted for 60 seconds using a gamma counter (Cobra™ II Auto- 

Gamma®, Packard Bioscience UK).

Testosterone RIA - Assay Reagents and Procedure

Follicular fluid concentrations of testosterone were measured without prior extraction 

using an established assay (Sheffield & O'Shaughnessy, 1989). Duplicate sets of standards 

and appropriate follicular fluid dilutions were added to MAIA buffer in a small volume for 

a final assay volume of 100 pi. The reference preparation was diluted to give eleven 

standard curve points ranging from 0.01 -  10 ng/ml. Tritiated testosterone was diluted 

from stock in MAIA buffer to give approximately 3000 cpm. The primary antibody (rabbit
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antiserum) (GE Healthcare, Amersham Place, Buckinghamshire, UK) was diluted to 1:900 

in MAIA buffer, and 100 pi of primary antibody were added to all tubes, except total count 

and non-specific binding tubes. Non-specific binding tubes (in duplicate) contained 200 pi 

assay buffer. Next, 50pl of ^H-testosterone were added to all tubes, which were then 

vortexed and incubated for 2 hours at room temperature. Following incubation, 400 pi of 

dextran charcoal buffer (0.2 g/100 ml of MAIA buffer) was added to all tubes (except total 

count tubes), which were vortexed and left for 10 minutes. All tubes except the total count 

tubes were then centrifuged at 3,000 rpm for 10 minutes at 4°C. The dextran charcoal 

buffer enables separation of bound and free labelled hormone and thus in this assay binds 

the free radioactive hormone. The principle of the method is that free labelled hormone 

will bind to the charcoal particles and by suspending the charcoal in appropriate media the 

antibody-bound labelled hormone can be excluded. Removal of the supernatant after 

centrifugation of the charcoal suspension allows the separated bound radioactive hormone 

to be counted (Jacobs, 1969). The supernatant was decanted into vials containing 4 mis of 

scintillation fluid. Radioactive isotopes react with the scintillation fluid to produce light 

and these light emissions are detected by a scintillation analyzer. The vials were capped, 

shaken and then counted for 60 seconds using a liquid scintillation analyzer (1600TR 

liquid scintillation analyzer, Packard Bioscience, UK).

2.7  M o l e c u l a r  B io l o g y

Where relevant, RNase-precautions were adopted. Hence gloves were worn at all times and 

changed frequently. All pipette tips used were certified RNase, DNase and protease free. 

Ninety-six well plates, eppendorf tubes and molecular grade water were all exposed to UV 

light prior to use. Molecular biology grade water was used in all enzymatic reactions.

RNA Extraction

The extraction of RNA from granulosa cells was performed using the TRIzol reagent 

(Invitrogen Ltd, Paisley, UK) according to the manufacturer’s protocol. TRIzol reagent is a 

mixture of guanidine thiocyanate and phenol in a mono-phase solution which dissolves 

DNA, RNA and protein following the lysis of cells or homogenization of tissue. Guanidine 

thiocyanate is a chaotropic agent, disrupting the hydrogen bonds between biological 

molecules. Thus, its addition disrupts the cell membrane, enabling cell lysis, denatures 

proteins including RNases, and separates rRNA from ribosomes. Depending on the year 

group, granulosa cell preparations were re-suspended in 1ml of TRIzol reagent prior to 

freezing or granulosa cell pellets were removed from the -80°C freezer, TRIzol reagent was 

added and cells were then pipetted several times to homogenise the lysates. Cell samples
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required minimal homogenization since the TRIzol reagent disassociated most of the 

tissue. To ensure complete dissociation of nucleoprotein complexes samples were allowed 

to stand for 5 minutes at room temperature. Chloroform (0.2 ml of chloroform per 1 ml of 

TRIzol reagent) was added to each sample, which was then shaken vigorously for 15 

seconds and allowed to stand at room temperature for a further 5 minutes. Centrifugation at 

12,000 rpm for 15 minutes at 4°C separated the TRIzol reagent cell mixture into 3 phases. 

The lower phase contains protein, the interphase contains DNA and the colourless aqueous 

upper phase contains RNA. The upper phase was transferred into a new tube for RNA 

precipitation and the rest discarded. Isopropanol (0.5ml of isopropanol per 1 ml of TRIzol 

reagent) was added to each sample, mixed, and then incubated at room temperature for 10 

minutes before being centrifuged at 12,000 rpm for 10 minutes at 4°C. Centrifugation 

results in the RNA precipitate forming a pellet at the bottom of the tube. The supernatant 

was then removed taking care not to remove any of the pellets. Ice cold 70% ethanol (1 ml 

of 70% ethanol per 1 ml of TRIzol reagent) was added and the sample vortexed briefly to 

wash the RNA pellet. The sample was then centrifuged at 12,000 rpm for 10 minutes at 

4°C. Supernatant was poured off and the RNA was dried briefly for 5-10 minutes at room 

temperature and re-suspended in 20 pi of RNase-ffee water. Extracted total RNA samples 

were stored at -80°C after quantification (see below).

RNA extraction before and after granulosa cell culture

Due to the fact that a relatively low number of granulosa cells were available for seeding 

from individual experimental follicles, and few live cells were recovered after 6 days of 

culture, a specialized commercial RNA extraction kit (RNAqueous®-Micro Kit, Ambion, 

Warrington, UK), optimized for the purification of total RNA from micro sized samples 

such as 10-500,000 cultured cells was used to extract RNA from all granulosa cells 

recovered before and after culture in Year group 5. The extraction was performed exactly 

according to manufacturer’s protocol. Briefly, uncultured and cultured granulosa cells 

(pelleted) were re-suspended and mixed in 100 pi lysis solution containing guanidinium 

thiocyanate, a strong chaotropic agent disrupting cell membranes and rapidly inactivating 

ribonucleases. The lysate was then mixed with ethanol and applied to a silica-based filter 

that selectively binds RNA. The lysate/ethanol mix was centrifuged at 14,000 rpm 

(maximum speed) for 10 seconds. The RNA is now bound to the silica-based filter. 

Proteins, DNA, and other contaminants were removed in three rapid ethanol washing steps. 

The first washing step entailed the addition of 180 pi of ethanol wash solution 1 to the 

silica-based filter, followed by centrifugation for 10 seconds at 14,000 rpm. The second 

and third washing steps required the addition of 180 pi of ethanol wash solution 2 to the
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silica-based filter followed by centrifugation for 10 seconds at 14,000 rpm. The bound 

RNA was eluted in concentrated form in a volume of 20 pi of elution solution and 

quantified (see below).

DNase I Treatment

Isolated total RNA was DNase I treated (Ambion, Warrington, UK) as per manufacturer’s 

protocol to remove DNA contamination from RNA preparations. DNase I is an enzyme 

that non-specifically cleaves DNA to release 5 '-phosphorylated di-, tri-, and 

oligonucleotide products thus degrading contaminating DNA from the RNA preparation. A 

volume of 5.3 pi of analytical grade H2O, 1.2 pi of DNase buffer (xlO) and 0.5 pi of 

DNase I were added to a 0.5 ml eppendorf tube. To this mix, 5 pi of isolated RNA 

(corresponding generally to 1 pg of RNA (range 0.7-1.2 pg) was added and incubated at 

37°C for 40 minutes. To stop the reaction 4 pi of reaction stop mix was added, the 

preparation vortexed and incubated for 1 minute. The reaction stop mix removes the 

DNAse I and divalent cations (e.g. Mg^^) from the sample thus stopping the enzymatic 

activity of DNAses. The preparation was centrifuged at 14,000 rpm for 1 minute, the 

reaction stop mixture containing the DNase I, fragments of the genomic DNA and cations 

forming a pellet at the bottom of the tube, facilitating easy removal of the supernatant 

containing the DNase I-treated total RNA into a new eppendorf tube. All DNase I treated 

samples were stored at -80°C prior to RNA quantification by spectrophotometry (see 

below) and reverse transcription.

Reverse Transcription PCR

Reverse transcription is a natural process that creates single stranded complementary DNA 

(cDNA) from an RNA template using the enzyme reverse transcriptase (Bustin, 2000). 

Complementary DNA was synthesized from DNase I treated total RNA isolated from 

granulosa cells of individual follicles using the Superscript III First-Strand Synthesis 

System (Invitrogen Ltd, Paisley, UK), according to the standard protocol provided. The 

50 pi reaction mixture comprised 300 ng of total RNA, 690 pmols of random hexamer 

primers, 0.2 mM of each dNTP (dATP, dCTP, dGTP and dTTP), 5 x first strand buffer, 

0.1 M dithiothreitol, 30 U RNase inhibitor and 150 U Superscript III reverse transcriptase 

(all reagents from Invitrogen, Paisley, UK). Briefly, 300 ng of total RNA was primed with 

random hexamers. The priming mixture was incubated at 65°C for 5 minutes to denature 

RNA secondary structure, and then immediately chilled on ice enabling random hexamers 

to bind to the complementary sequence. The reverse transcription reaction was carried out 

at 50°C for 50 minutes to allow extension of the synthesis strand by the reverse

45



transcriptase enzyme, and afterwards the enzyme was inactivated by incubating at 70°C for 

10 minutes. To act as a negative control, the Superscript III reverse transcriptase enzyme 

was substituted with sterile nuclease-free water. A negative control sample was included 

only for a subset of samples from every year group, because in some granulosa cell 

preparations, due to the very small number of cells isolated, the low amounts of RNA 

extracted were not sufficient for a negative reverse transcription control.

Quantification of Nucleic Acids

The quantity and quality of DNase I treated total RNA and reverse transcribed cDNA were 

assessed using a Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies Ltd., 

Delaware, USA) to measure optical density (OD) at wavelengths of 230 nm, 260 nm and 

280 nm. Nucleic acids absorb light at 260 nm, while proteins absorb light at 280 nm. 

Absorption at 230 nm corresponds to organic compounds such as thiocyanates, (e.g. the 

guanidinium thiocyanate contained within TRIzol reagent that was used to isolate the 

RNA, phenol used in the extraction and ethanol used to precipitate the cDNA). 

Concentration of RNA was quantified by measuring absorbance at 260 nm using a 

spectrophotometer and calculated as follows: RNA concentration (pg/pl) = (OD 260) x 

(dilution factor) x (40 pg RNA/ml)/ (1 OD260 unit). Concentration of cDNA was 

calculated as follows: DNA concentration (pg/ml) = (OD 260) x (dilution factor) x (50 pg 

DNA/ml) / (1 OD260 unit). High purity of a sample was indicated by an OD260 nm/ 

OD280 nm ratio reading of approximately 1.8 for DNA and approximately 2.0 for RNA. A 

secondary measurement of nucleic acid purity is provided by the OD260 nm/ OD230 nm 

ratio; a value lower than 1.8-2.2 suggests the presence of organic compound contaminants.

Semi-quantitative Real-Time PCR 

Overview of the technique

The essential components in a PCR amplification reaction include the target cDNA, Taq 

polymerase, two locus specific oligonucleotide primers, deoxynucleotide triphosphates, 

reaction buffer and Mĝ "̂ . The first step in the reaction is dénaturation where a high 

temperature is used to melt the double-stranded RNA-cDNA duplex into the single­

stranded cDNA (in later cycles double-stranded amplified DNA is melted). Primer 

annealing follows at a lower temperature, which is optimised (as high as possible) to 

prevent binding of primers to non-specific binding sites (non-complementary nucleotide 

sequences) on the target cDNA. The final step in the process is extension, where Taq 

polymerase extends the double strand from the primer by adding complementary 

nucleotides in a 5’-3’ direction. Each thermal cycle doubles the amount of target sequence
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in the reaction. The cycle is repeated multiple times (usually 35-40 times), amplifying the 

copies of the target DNA exponentially (2̂ ’̂"̂ )̂.

Real-time PCR is a method which allows amplification of DNA by PCR to be monitored 

while the amplification is occurring (VanGuilder et al, 2008; Logan et al, 2009). The 

major advantage of this is that it allows relative or absolute (based on a standard curve) 

quantification, i.e. determination of the amount of template cDNA in the sample before 

amplification by PCR (VanGuilder et al, 2008; Logan et al, 2009). The technique is 

specific and extremely sensitive, capable of detecting very low levels of mRNA gene 

expression.

In this study, relative quantification was used to determine changes in gene expression. 

Relative quantification determines steady-state mRNA levels of a target gene across 

multiple samples and expresses it relative to the levels of mRNA for one or more reference 

gene(s) (housekeeping genes). Thus the technique is suitable for investigating 

physiological changes in gene expression levels. Therefore, relative quantification does not 

require pure standards with known concentrations, but the sequence must be known for 

both reference and target transcript species (Schmittgen & Livak, 2008).

Relative quantification in the study presented was achieved using the Brilliant^^ SYBR 

Green I Master Mix (Stratagene, La Jolla, USA) used in conjunction using an Mx3000P 

real-time PCR system (Agilent Technologies UK Ltd, Stockport, UK). SYBR Green I is a 

fluorescent dye, which binds non-specifically to double-stranded DNA (dsDNA). It 

exhibits little fluorescence when it is free in solution, but its fluorescence increases up to 

1,000-fold when it binds dsDNA. Following each cycle of amplification in the PCR 

reaction, the fluorescence of the samples is determined, providing an indirect measure of 

the number of amplified (double stranded) sequences. Subsequently, the cycle threshold 

value (Ct) is determined, which is defined as the number of cycles required to reach a 

minimum (predetermined) fluorescent threshold. The threshold is ideally set at the 

beginning of the exponential phase of amplification to ensure that efficiency of each 

reaction is maximal and not influenced by compound depletion in the reaction. For relative 

quantification of mRNA concentrations the comparative Ct method was used, wherein the 

mRNA expression of each gene of interest was quantified relative to the mRNA expression 

of the endogenous reference gene ACTB (User Bulletin no. 2, PE Biosystems, UK). 

Validation experiments confirmed that the amplification efficiencies of the genes of 

interest eenà-ACTB were comparable, the slope of the difference between Ct values for each 

standard concentration from ACTB and the gene of interest were <0.1 (that is the slopes
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were parallel) and, thus, gradients of standard curves of genes of interest were within 5% 

of the ACTB slope (Figure 2.1). Parallelism of standard curves is important when using the 

relative quantification analysis for mRNA expression (i.e. expression levels are related to a 

reference gene), because if there is a disparity in the amplification efficiencies between the 

reference gene and the gene of interest, the delta Cx values (estimating expression relative 

to the reference) will differ due to differences in amounts of template added, rather than 

only due to sample differences in mRNA expression (Schmittgen & Livak, 2008).

Gene Amplification 
efficiency of 

standard curves

Accession
Number

Amplicon 
Size (base 

pairs)

Melting 
Temperature 
of Amplicon 

(Tm)
ACTB 97% U39357 73 79°C
LHR 99% L36329 109 76°C

FSHR exon 4/5 96% L07302 94 IT C
FSHR exon 9/10 98% L07302 110 80°C

CYP19A1 95% AJ012153 96 75°C
HSD3B1 100% X17614 78 78°C

INHA 97% L28815 189 87°C
INHBA 96% NM 001009558 72 80°C

FST 98% M63123 122 85°C
MIF 95% XM 001033608 87 83°C

CCND2 100% NM 001076372 101 82°C
MCL-1 98% NM 001099206 51 74°C
CAPS3 96% NM 001077840 87 75°C
BAX 99% NM 173874 182 84°C

Table 2.2 PCR amplification efficiencies for the genes of interest used, as calculated by 
determining the cycle threshold number for 5 cDNA concentrations (625, 125, 25, 5 and 
1 ng) added as a template.

Real-Time Quantitative PCR reaction

The Brilliant^'^ SYBR Green Master Mix (Stratagene, La Jolla, USA) in conjunction with 

the ThermoCycler System (Stratagene, La Jolla, USA) was used to measure mRNA 

expression. Real-time primer sets were designed from species-specific sequences of genes 

using Primer Express Software v2.0.0 (Applied Biosystems), synthesised by Eurofins 

MWG Operon (Ebersberg, Germany), and used at a concentration of 1000 nM. Primers 

were designed across intron boundaries to avoid amplification of genomic DNA (should 

any remain in samples after DNAse treatment). Reactions were carried out in duplicate 

using 96-well PCR plates in a final reaction volume of 10 pi made up of 5 pi Brilliant™ 

SYBR Green I Master Mix (Stratagene, La Jolla, USA), 2 pi primer mix and 3 pi cDNA 

(50 ng year groups 2 and 3, 400 ng year groups 4 and 5) template or negative control. The 

plates were sealed after addition of the SYBR, template and primer mix and then 

centrifuged at 1000 rpm for 1 minute. To facilitate optimisation and troubleshooting, both 

negative control and a positive quality control sample were included in all reactions. To act
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as a negative control, cDNA template was substituted with sterile nuclease-free water. As a 

positive control, a sample of pooled cDNA was used and run for each gene of interest on 

each plate. The standard thermal profile set-up within the thermal cycler was used for all of 

the genes investigated and is shown in Figure 2.3. Note that an initial phase (segment 1) of 

95°C for 10 minutes is used to activate the hot start DNA polymerase, thus allowing 

reactions to be set up at room temperature. Heating at this temperature denatures proteins 

around the active site of the DNA polymerase, thus allowing access to template and to free 

dNTPs. Primer annealing temperature was determined empirically through numerous trials 

using different annealing temperatures (data not shown) but were based on the melting 

temperatures (Tm’s) supplied by the primer express software (58 to 60°C), with annealing 

temperatures generally 3-5°C lower than the Tm. Excitation and emission maxima of the 

Brilliant™ SYBR Green Master Mix are at 497 nm and 520 nm, respectively; therefore, 

fluorescence emission was measured after each primer extension step at 520 nm. Reactions 

with primer pairs to amplify the normalising reference gene and the gene of interest were 

always run on the same plate.

Amplification Plots
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Figure 2.1 Fluorescence of standards during PCR amplification of CYP19A1 transcripts. 
From left to right the cDNA template standard concentrations are 625 ng (blue), 125 ng 
(red), 25 ng (green) and 1 ng (grey) per well. The threshold bar (brown horizontal bar) was 
used to measure the cycle threshold number (Cj) for each standard in order to create a 
standard curve and determine the amplification efficiency for each gene of interest.
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Figure 2.2 Standard curve of initial quantity and cycle number at which fluorescence 
levels crossed the threshold fluorescent intensity during the PCR amplification of 
CYP19AI. The sample threshold cycle number at each cDNA template standard 
concentration was used to determine the efficiency of the PCR reaction, ensuring 
amplification efficiences were 95-100% for each gene of interest and similar to that of 
the ACTB PCR efficiency.

Melting Curve Analysis

During the melting step the temperature was increased by small increments and the 

fluorescent emission was measured continuously. SYBR Green I binds only to the minor 

groove of double stranded DNA, so dissociates as the PCR product begins to denature, 

resulting in a dramatic decrease in fluorescence. A melting curve is produced, which 

represents the rate of change in fluorescence as temperature increases, therefore peaks 

represent temperatures at which there is a rapid melting of specific PCR products (Figure 

2.4). Peaks at a lower Tm than that of the specific PCR product expected indicate the 

melting of primer-dimers which can form during PCR, while several peaks with a range of 

TmS suggest the formation of non-specific products. Therefore, the presence of a single 

peak for all products indicates that the product is pure and specific if the Tm is in 

accordance to the one predicted. The intensity of the fluorescent signal differs between 

samples as a result of differing quantities of the DNA at the end of the reaction between 

each sample. Frequently, very small peaks at very high temperatures were observed in all 

reactions, and considered to be artefacts.
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Thermal Profile
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Figure 2.3 The standard thermal profile used for ail of the genes investigated using real­
time PCR. Initially, the Sure Start Taq DNA Polymerase in the Brilliant' '̂'  ̂ SYBR Green I 
Master Mix is activated by heating at 95°C for 10 minutes (segment 1). This denatures the 
proteins surrounding the active site of the DNA polymerase allowing free dNTP access. 
Following activation of the DNA Polymerase, target amplicon amplification is achieved by 
40 sequential cycles of denaturing (95°C for 30 seconds), primer annealing (56°C for 1 
minute) and extension (72°C for 30 seconds). Fluorescence levels are measured after the 
extension step (END) (segment 2). Finally, the dissociation (melting) curve of the 
generated products is determined by denaturing (95°C for 1 minute), annealing of all 
double-stranded products (55°C for 30 seconds) and then gradual dénaturation of duplexes 
up to a temperature of 95°C. During the gradual increase in temperature, fluorescence 
levels are measured continuously (ALL) to determine the melting temperature of the 
specific PCR product which is compared with that predicted from the primer express 
programme.
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Figure 2 .4  Dissociation (melting) curve analysis following PCR amplification of the 
CASP3 gene. The peak represents the temperature at which the greatest rate of change in 
fluorescence (high to low) occurs as the temperature increases, resulting in double stranded 
cDNA melting apart to become single stranded. In this example, the melting temperature 
of the CASP3 amplicon was 75°C which was identical to the predicted Tm.

2.8 G r a n u l o sa  CELL CULTURE

Sheep ovaries were collected from the abattoir for control setups, and from experimental 

control and prenatally androgenised ewes and placed in transport media (Ml99 medium, 

supplemented with 1% (vol/vol) antibiotic-antimycotic solution and 3 mM 1-glutamine (all 

reagents from Sigma Ltd, Poole, UK). Ovaries were trimmed and placed in 70% ethanol 

for 30 seconds, then rinsed and maintained in transport media until dissection. Follicles 

were excised, follicular fluid aspirated, and granulosa cells recovered as described in 

section 2.4. Granulosa cells scraped in 500 pi of zero supplemented media (McCoy’s 5A 

modified medium supplemented with 1% (vol/vol) antibiotic-antimycotic solution, 

10 ng/ml bovine insulin, 10 ng/ml Human long R" lGF-1, 3 mM 1-glutamine, 20 mM 

HEPES, 5 pg/ml apotransferrin, 5 ng/ml sodium selenite, and 0.1% BSA; all purchased 

from Sigma Ltd, Poole, UK) were pelleted by centrifugation at 1,200 rpm for 5 minutes 

followed by removal of the supernatant. All subsequent work was carried out in a laminar 

flow hood under sterile conditions. Red blood cells were lysed by re-suspending the pellet 

in 200 pi of dHiO followed by the addition of 800 pi of 0.1 M PBS. Granulosa cells were 

washed twice by re-suspending the pellet in 500 pi of zero supplemented media,
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centrifuging for 5 minutes at 1,200 rpm followed by removal of the supernatant. Following 

the second wash, granulosa cells were re-suspended in 410 pi of zero supplemented 

medium. Ten microlitres of the granulosa cell suspension was used to determine the 

number of live cells by Trypan blue exclusion as described below. Following isolation and 

washing granulosa cells were incubated in hormone supplemented medium at 37°C in a 

humidified 5% CO2 atmosphere for 6 days. After 48 and 96 hours of culture, 

approximately 200 pi conditioned media was removed from each well very slowly to 

minimise disruption to the granulosa cells, stored at minus 20°C until RIA and replaced 

with 200 pi of the appropriate fresh media. Fresh media was placed in the incubator for at 

least 2 hours prior to replacement of conditioned media to allow equilibration. At 144 hrs 

of culture, 200 pi conditioned media was removed very slowly, stored at -20°C and 

granulosa cell viability determined by Tyrpan blue exclusion (see below).

2.9 D e t e r m in a t io n  o f  n u m b e r s  o f  l iv e  c e l l s  u sin g  T r y p a n  b l u e  e x c l u s io n  

Granulosa cell viability and live cell numbers were determined by Trypan blue exclusion. 

The technique is based on the principle that live cells possess intact cell membranes that 

exclude certain dyes, such as Trypan blue, whereas dead cells do not. Therefore, when 

viewed under the microscope live cells appear as white/clear, while dead cells have a blue 

appearance. Briefly, 10 pi of the washed granulosa cell suspension is mixed with the 

appropriate volume of 0.4% Trypan blue (for example 10 pi in a 1:2 dilution) and 

incubated for 1 minute. Of this Trypan blue/granulosa cell mix solution 10 pi are applied 

to a haemocytometer. The number of live and dead cells is then counted in the 25 squares 

using a standard light microscope, which gives the proportion of live cells (viability), and 

the total number of live cells per ml of the cell preparation is calculated using the formula: 

(No. of live cells) x 10'* x 2 (based on example given, or other dilution factor) Trypan Blue. 

This gives the total cell number per ml, if less or more than 1 ml is available before culture, 

or after culture following recovery of cells from wells, then this figure is multiplied by a 

volume correction factor to obtain the total number of cells present in the suspension.

2.10 H is t o l o g y  a n d  I m m u n o f l u o r e s c e n c e  

Quarter Ovary Collection and Cryosectioning

Following excision of the largest antral follicles from each ewe in year groups 1 and 3, the 

remaining ovarian tissue after follicular excision was quartered and a complete quarter 

unaffected by the excision process was either snap-frozen in liquid nitrogen (year group 1) 

or frozen in aluminium foil (year group 3) on dry ice and then stored at -80°C for 

subsequent histology and immunofluorescence.
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All tissue sections were cut using a cryostat (Leica CM1850, Leica, Heidelberg, Germany). 

Quarter ovaries from year groups 1 and 3 were embedded onto appropriate sized 

cryocassettes using embedding material (OCT, Shandon, UK) and stored on the ultra-cold 

freezing bar until the embedding material was solid. The cryocassette was then attached to 

the cryostat cutting head and left for 1-2 hours to equilibrate the temperature between the 

cutting head and the ovary. The blade holder was set at an angle of 5°C and the 

temperature in the chamber was set at -23°C. This temperature was chosen following a 

period of optimisation to ascertain the optimal cutting conditions for ovarian tissue. Once 

sections were cutting freely, 14 pm serial sections were cut. Ten microscope slides were 

set-up on top of the cryostat at any one session. Serial sections were thaw mounted onto 

Polysine"^  ̂ coated microscope slides (VWR International, Leicestershire, UK. Cat. No. 

631-0107). When section 1 was cut it was thaw-mounted onto microscope slide number 1. 

Section 2 was mounted onto slide 2 and so on. Section 11 was then mounted back onto 

slide one and so on. It was possible to get at least 3 sections on one microscope slide. 

Once all 10 microscope slides were completed they were placed in a storage box in the 

chamber of the cryostat. Sections were cut through as much of the ovary quarter as was 

practically possible to ensure that the correct diameter of each antral follicle could be 

properly ascertained. Each quarter ovary produced between 100 and 270 sections. 

Following sectioning, all slides were stored at -80°C until processing.

Histological Processing and Characterization of ovaries

Every 10*̂  frozen section from each quarter ovary was histologically stained with 

haematoxylin and eosin for follicle identification, sizing (diameter) and health 

determination as described in section 4.2.5. Frozen ovarian sections were fixed for 20 

minutes in 4% (w/v) paraformaldehyde in 0.1 M phosphate buffer. Slides were then 

washed twice (5 minutes each) in 0.1 M phosphate Buffer, followed by a 3 minute wash in 

gently running tap water. Slides were then stained with haematoxylin for 5 minutes to stain 

the nucleus of cells, after which they were again washed for 3 minutes in gently running 

tap water. Sections were differentiated in acid-alcohol (0.5% (v/v) HCl in 70% (v/v) 

ethanol) for a few seconds, and then placed under gently running tap water (slightly 

alkaline) for 3 minutes. Sections were then counterstained with 1% (w/v) aqueous Eosin 

for 20 seconds. Slides were then passed up through a graded series of ethanol solutions to 

dehydrate the sections, being immersed for 5 seconds, 10 seconds and 2 x 3  minutes in 70, 

90 and 100% (v/v) ethanol solutions, respectively. Once dehydrated, sections were finally 

washed twice (3 minutes each) in Histo-Clear®, after which the sections were coated in 

DPX mountant and cover-slips were attached.
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Immunofluorescence

Every 10**’ frozen section from each quarter ovary was utilised for immunofluorescence to 

determine the presence or absence of the active form of Caspase 3 (CASP3) and 3-beta 

hydroxysteroid dehydrogenase (HSD3B1) in granulosa and theca cells, and aromatase 

(CYP19A1) in granulosa cells of antral follicles. Antigen retrieval was not required for any 

of the antibodies used. Frozen ovarian sections were quickly thawed and fixed for 20 

minutes in 4% (w/v) paraformaldehyde in 0.1 M phosphate buffer. Slides were then 

washed three times with 0.05 M (pH 7.6) Tris buffered saline (TBS). To eliminate non­

specific binding sites, sections were incubated with 10% (v/v) normal goat serum for 20 

minutes at room temperature before incubating with primary antibodies for 2 hours at 4°C. 

Primary antibodies were against (1) CASP3 (rabbit polyclonal against activated form of 

human/mouse CASP3; AF835, R&D Systems, Minneapolis, MIN, USA), (2) HSD3B1 

(rabbit polyclonal antibody against human recombinant type I HSD3B; kindly supplied by 

Dr. J.I. Mason, University of Edinburgh; validated for sheep gonads (Quirke et al., 2001) 

and (3) CYP19A1 (mouse monoclonal antibody against human CYP19A1; MCA1974T, 

AbD Serotec, Oxford, UK). Primary antibodies were diluted 1:500 (CASP3), 1:1000 

(HSD3B1) and 1:250 (CYP19A1) in TBS/0.3% Triton/0.25% BSA. Negative control 

sections were incubated in carrier fluid only (TBS/0.3% Triton/0.25% BSA). After 

washing for 3 x 5 minutes in TBS, sections were incubated with fiuorescently labelled 

secondary antibody for 45 minutes. The secondary antibodies used were goat anti-rabbit 

IgG (AlexaFluor® 488 F(ab)2 fragment; Invitrogen (Molecular Probes), Paisley, UK) for 

CASP3 and HSD3B1, and goat anti-mouse IgG (AlexaFluor® 594 F(ab)2 fragment; 

Invitrogen (Molecular Probes), Paisley, UK) for CYP19A1. Sections were coverslipped 

using FluorSave™ Reagent (Merck Chemical Ltd, Nottingham, UK), sealed using nail 

varnish and then viewed under a fluorescent microscope (Leica DM4000, Leica 

Microsystems (UK) Ltd., Milton Keynes, UK).

2.11 S t a t is t ic a l  A n a l y s e s

Results were log 10 transformed when normality tests using the raw data failed. For all 

parameters, log 10 transformation was sufficient for data to pass normality teats. All 

analyses were carried out using Minitab (Minitab 15, Coventry, UK) or Stata™ (Stata 

version 10, StataCorp, College Station, Texas, USA).

A Fishers exact test was used to determine the differences in the proportion of any variable 

(e.g. percentage of ewes able to cycle in the first breeding season).
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When only one factor was included in a statistical test (e.g. the effect of prenatal treatment 

on total ovarian weight when data were combined over all 5 years) a one way ANOVA 

was implemented and a Tukey’s post-hoc test was used to determine any differences 

between levels within the one factor. For some data, if two factors were included (e.g. 

effects of prenatal treatment or year group on total ovarian weight) a two way ANOVA 

was used and Tukey’s post-hoc test was used to determine any differences between levels 

within the one factor.

A general linear model (GLM) was used to analyse the data for chapter 3 to 5, when there 

were 2-3 factors (e.g. prenatal treatment, follicle classification, year group) that could 

influence dependent variables (e.g. follicular fluid diameter and steroid production). A 

GLM is as an extension of linear multiple regression for a single dependent variable. In 

multiple regression, more than one independent factor is used to predict the dependent 

variable. One way in which the general linear model differs from the multiple regression 

model is in terms of the number of factors that can be analyzed (multi-level modeling). A 

GLM allows random factors in addition to fixed factors to be included in a model unlike 

ANOVAs and multiple regression models. A P value of less than 0.05 was considered 

statistically significant for all types of analyses.
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C h a p t e r  3 . E f f e c t  o f  p r e n a t a l  a n d r o g e n  t r e a t m e n t  o n  s y s t e m ic  o v a r ia n  a n d

INDIVIDUAL l a r g e  ANTRAL FOLLICLE FUNCTION IN ADULTHOOD

3.1 I n t r o d u c t io n

Evidence accrued from previous studies has demonstrated that TP treatment in utero 

during the critical period of sexual differentiation and gonadal development leads to a raft 

of reproductive disruptions, at both the neuroendocrine and ovarian level (Sarma et al, 

2005; Steckler et al, 2005; Unsworth et al, 2005; Manikkam et al, 2006; Padmanabhan et 

al, 2006; Steckler et al, 2007a; Smith et al, 2008). While the breed of sheep used and 

individual variation appear to determine the severity of the phenotype, prenatal TP 

treatment of Suffolk (Manikkam et al, 2006; Veiga-Lopez et al, 2008) and Dorset (Birch 

et al, 2003; Unsworth et al, 2005) ewes results in the progressive loss of reproductive 

cycles, due to anovulation. Persistency of large follicles with elevated systemic oestradiol 

concentrations have been described in the Suffolk model, which demonstrates a less severe 

phenotype, with normal ovulations detected (Sarma et al, 2005; Steckler et al, 2008; 

Veiga-Lopez et al, 2008). However, no group has investigated systemic oestradiol 

concentrations or large follicle development in prenatally TP-treated Dorset ewes, in which 

exogenous oestradiol is not able to generate gonadotrophin surges (Unsworth et al, 2005) 

although progesterone elevations in the breeding season, in some cases followed by 

prolonged periods of elevated progesterone, appear to indicate some ovulatory activity 

(Unsworth et al, 2005). This would provide further insights into the abnormal 

programming of ovarian and specifically follicular steroidogenesis by androgen excess.

Recent studies into the reproductive dysfunction of prenatally TP-treated ewes have 

focused on neuroendocrine, growth and metabolic disruptions (Birch et al, 2003; 

Manikkam et al, 2004; Unsworth et al, 2005). At the ovarian level, follicular studies have 

concentrated on recruitment of primordial follicles and preantral follicle development 

(Steckler et al, 2005; Smith et al, 2008) or on the morphological description of large 

antral follicle growth using ovarian ultrasound (Manikkam et al, 2006; Steckler et al, 

2007a). Androgenisation by TP but not DHT, which is considered to be a non-aromatisable 

androgen, resulted in follicular persistence with lack of dominance as more and more 

follicles failed to regress in Suffolk ewes (Manikkam et al, 2006; Steckler et al, 2007a), 

providing evidence that follicle growth and atresia in adult ewes are altered by the in utero 

programming actions of oestrogen. As follicle persistence or loss of dominance during 

normal or manipulated ruminant cycles are related to alterations in follicular steroid 

synthesis (Mihm et al, 1999), it is conceivable that abnormal programming of follicular
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steroidogenesis occurs in individual large antral follicles due to TP excess in utero, and 

this, to the best of our knowledge, has not yet been investigated. Furthermore, while a lot 

of information has been gathered relative to the abnormal programming of neuroendocrine 

events and systemic ovarian function by prenatal TP excess, the relative roles of oestrogen 

and androgen in programming specifically follicular dysfunctions, particularly within the 

largest antral follicles, remain to be determined.

The main aim of this study was to determine how individual large antral follicle function, 

specifically growth and steroidogenesis is altered in prenatally TP- and DHT-treated 

Dorset ewes. Diameter, intrafollicular oestradiol, progesterone and testosterone 

concentrations and the oestradiol to progesterone ratio were the follicle parameters 

investigated in the two largest follicles per animal, classified into the dominant follicle 

(DF) with highest intrafollicular oestradiol and the largest subordinate follicle (SF). For the 

first time, peripheral oestradiol concentrations were investigated in and out of the breeding 

season to provide more insights into the programming of follicular steroidogenesis by TP. 

Additionally, the study aimed to confirm previous observations in the prenatally TP-treated 

ewe, with regards to increased ovarian weight and altered reproductive cycles determined 

from progesterone profiles (West et al, 2001; Birch et al, 2003; Unsworth et al, 2005). 

Finally, this study is the first to investigate the consistent effects of prenatal 

androgenisation by TP (and not DHT) over several year groups within the same study, 

instead of studying only one group of animals.

3.2 M a t e r ia l s  a n d  M e t h o d s

3.2.1 Animals and Prenatal Treatment

Poll Dorset ewes were androgenised in utero using an established model (Robinson et al, 

1999; Steckler et al, 2005) and euthanased at 10- (Year Group 3, Control = 7, TP = 10, 

Year 4, Control = 7, TP = 6 and Year Group 5, Control = 14, TP = 15, DHT = 8), 12- 

(Year Group 2, Control = 11, TP = 7 ewes) and 22-months of age (Year Group 1, Control 

= 9, TP = 7) for ovary collection. Reproductive cycles were not synchronised at any stage 

throughout the study.

3.2.2 Collection of blood samples

Plasma samples were collected by jugular venipuncture into heparinised tubes from control 

and androgenised ewe lambs twice weekly from 25 weeks of age (puberty ~30 weeks 

Foster, 1994) until about a month after the expected end of the breeding season in all five 

groups of sheep (Section 2.3). All samples were assayed for progesterone to determine 

ovulatory cycles, while a subset of samples were selected for the determination of
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oestradiol concentrations (two plasma samples were taken three days apart at the beginning 

(December), after the end of the breeding season (February) and in year group 1 only, in 

the middle of June (anoestrous). Following collection, samples were stored at -20°C until 

required for assay.

3.2.3 Collection of tissues

Ovaries from control, TP and DHT-treated females were harvested at 10- and 22-months of 

age and each ovary was weighed following recovery. Following this, ovarian maps were 

drawn for each ovary and in the majority of ewes the largest (generally two) antral follicles 

were identified from surface measurements using callipers, excised and the follicular fluid 

collected as described in section 2.4. In order to be excised, follicles had to be greater than

3.5 mm in diameter in control and DHT-treated ewes, and a minimum of 5 mm in diameter 

in TP-treated ewes. In 6/35 control, 2/8 DHT animals and 7/37 TP ewes only one follicle 

fulfilled the size criteria and was thus excised. In two TP-treated ewes from year group 4 

three follicles fulfilled the size criteria, and all three were excised as it was not possible to 

distinguish the largest two by diameter. Of the similarly sized follicles the two with highest 

intrafollicular oestradiol were used in the study. Prior to follicular fluid collection, 

individually excised follicles were again measured by callipers to accurately determine 

their diameter.

3.2.4 Hormone Assays

Concentrations of the steroid hormones oestradiol and progesterone in plasma and 

follicular fluid of the largest antral follicles were determined using validated 

radioimmunoassays (RIA) (plasma oestradiol (Evans et al, 1994), plasma progesterone 

(Padmanabhan et al, 1995), follicular fluid oestradiol and progesterone (Evans & Martin, 

2000). Testosterone concentration was determined only in follicular fluid. All follicular 

fluid samples were diluted in MAIA buffer (0.01 M PBS, 0.1% gelatin, and 0.1% sodium 

azide, pH 7.0). Follicular fluid samples were diluted as detailed in section 2.6 and required 

no prior extraction. Two hundred pi of plasma from ewes of year groups 1-4 were 

extracted with diethylether (Rathbum Chemicals Ltd., Walkerbum, Scotland, UK) in 

duplicate to determine oestradiol concentrations in plasma samples. No prior extraction 

was required for determination of progesterone concentrations in plasma. The limit of 

assay sensitivity was assigned to those samples in which the concentration of oestradiol, 

progesterone or testosterone was below the sensitivity of the assay despite the maximum 

volume available added to the assay. Pooled follicular fluid and plasma samples were used 

in each assay as quality controls. The gamma counter used was a Cobra™ II Auto-Gamma®
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(Packard Bioscience, UK) and the liquid scintillation analyzer, 1600TR liquid scintillation 

analyzer (Packard Bioscience, UK).

Oestradiol RIA

Plasma and follicular fluid oestradiol concentrations were determined using a commercial 

RIA kit (MAIA Oestradiol Kit, Bio-Stat Limited., Stockport, UK. Cat no. 370001). Plasma 

oestradiol concentrations per ewe at the start (December) and after the end of the breeding 

season (February) were established by averaging the two samples taken three days apart. 

Samples were run for each year group (1-4) in one assay per year group (n = 4 assays). 

Mean intra-assay coefficient of variation for one quality control sample (per year group) at 

a concentration of 1.03, 1.02, 1.18 and 1.45 pg/ml was 8.9%, 9.1%, 9.7% and 9.3% for 

sheep year groups 1, 2,3  and 4, respectively. Sensitivity of the assay, calculated as two 

standard deviations below the mean counts per minute (CPM) at maximum binding, was 

0.25 ± 0.03 pg/ml. Extraction efficiency, determined by spiking samples with iodine 

labelled estradiol followed by extraction by diethyl ether and finally counting the 

remaining iodinated estradiol was calculated as 78%. However, standards were also 

extracted, thus levels of oestradiol in plasma should not have been underestimated. 

Follicular fluid samples were assayed in duplicate for year groups 2-5 over two assays per 

year group (n = 8 assays). Mean intra-assay coefficient of variation for one quality control 

sample at a concentration of 12.25, 14.16, 17.18 and 13.45 ng/ml was 4.6%, 5.1%, 4.6% 

and 4.8% for sheep year groups 2, 3, 4 and 5, respectively. Mean inter-assay coefficient of 

variation for one quality control sample (for each year group) was 6.9%, 6.1%, 6.6% and 

7.8% for sheep year groups 2, 3, 4 and 5 respectively. Sensitivity of the assay, calculated as 

two standard deviations below the mean counts per minute (CPM) at maximum binding, 

was 3.5 ± 0.50 pg/ml.

Progesterone RIA

Progesterone concentrations were measured in plasma samples from ewes in year groups 

1-5 by RIA using a Coat-a-Count RIA kit (Diagnostic Products Corp., Los Angeles, CA) 

previously validated for use in sheep (Padmanabhan et al, 1995). Elevations in 

progesterone concentrations in blood samples were used to indicate reproductive cycles, 

such that a cycle was determined to have occurred if progesterone concentrations were 

raised to greater than 1 ng/ml for two but no more than three samples (therefore, spanning 

at least 10 but no more than 14 days; normal length of the ovine luteal phase) before 

decreasing to values less than 1 ng/ml for at least one sample (normal length of the 

follicular phase) before the onset of the following cycle (Birch et al, 2003). Ewes were
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defined as in the breeding season if control ewes displayed a progesterone cycle at the time 

of sample collection.

Samples were run in one assay for each year group (n = 5 assays). Mean intra-assay 

coefficient of variation for one quality control sample at a concentration of 0.65, 0.67, 

0.85, 0.56 and 0.55 ng/ml was 8.8%, 9.5%, 9.1%, 8.7% and 8.3% for sheep year groups 1,

2 . 3 . 4  and 5, respectively. Sensitivity of the assay, calculated as two standard deviations 

below the mean CPM at maximum binding, was 0.23 ± 0.03 ng/ml.

Follicular fluid samples were assayed in duplicate for year groups 2-5 over two assays per 

year group (n = 8 assays). Mean intra-assay coefficient of variation for one quality control 

sample at a concentration of 23.4, 35.5, 27.2 and 33.2 ng/ml was 6.3%, 7.7%, 6.9% and 

7.9% for year groups 2 , 3 , 4  and 5 respectively. Mean inter-assay coefficient of variation 

for one quality control sample (for each year group) was 8.7%, 8.8%, 9.1% and 9.5% for 

sheep year groups 2 , 3 , 4  and 5, respectively. Sensitivity of the assay, calculated as two 

standard deviations below the mean CPM at maximum binding, was 0.8 ± 0.06 ng/ml.

Follicular Fluid Testosterone RIA

Follicular fluid concentrations of testosterone were measured without prior extraction 

using an established assay (Sheffield & O'Shaughnessy, 1989). The primary antibody 

(rabbit antiserum) (GE Healthcare, Amersham Place, Buckinghamshire, UK), was diluted 

to 1:900 in MAIA buffer.

Testosterone concentrations were determined over two assays. Mean intra- and inter-assay 

coefficients of variation for one quality control sample at a concentration of 56.5 pg/ml 

were 9% and 13% respectively and the sensitivity of the assay, calculated as two standard 

deviations below the mean CPM at maximum binding, was 10.23 ± 0.04 pg/ml.

3.2.5 Statistical Analyses

A Fisher’s exact test was utilised to determine any differences in the percentage of ewes 

cycling in the first breeding between prenatal treatment (control, TP and DHT) groups. A 

Fishers exact test was used to determine any differences in the proportion of ewe lambs 

cycling in the first breeding season when data was combined over all 5 years. A General 

Linear Model (GLM), with year group (1-4), prenatal treatment (Control, TP) and sample 

time-point (December, February and June) as the fixed factors was applied to determine 

any influences on circulating concentrations of oestradiol. A GLM, with prenatal treatment 

(Control, TP and DHT) and year group (1-5) as the fixed factors was applied to determine 

any differences in ovarian weight. A one-way ANOVA was used to determine any 

differences in ovarian weight when data was combined over all 5 years. If there were more
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than 2 levels to a factor, a Tukey’s post hoc test was used to determine significant 

differences between levels within that factor.

For individual follicle parameters (follicle size, follicular fluid oestradiol, progesterone and 

oestradiol: progesterone ratio) a GLM with year group (2-5), prenatal treatment (Control, 

TP, and DHT) and follicle classification (DF - follicle with highest intrafollicular 

oestradiol, and generally but not always the largest follicle, and SF - the second of the two 

largest follicles recovered but with lower intrafollicular oestradiol than the DF) as the fixed 

factors was used to determine any influences on follicle function. In addition, any logical 

interactions between factors were included in the model. Because the factor ‘animal’ is 

known to contribute to the variation in results, but could not be included in the GLM 

analyses, a generalised least square (GLS) model was also applied to the data with the 

same fixed factors as for the GLM analyses, but with ‘animal’ included as a random factor 

to determine whether this altered the outcome of GLM analyses. However, the GLS 

analysis did not consider interactions and only had limited post hoc analyses. Because of 

this and the good agreement between GLM and GLS analyses, the results from the GLM 

analyses are presented. If there were more than 2 levels to a factor, a Tukey’s post hoc test 

was used to determine significant differences between levels within that factor.

A two way ANOVA with follicle classification (DF and SF) and prenatal treatment 

(control and TP) as the factors was used to determine any influences on follicular fluid 

testosterone concentrations.

3.3  R e su l t s

3.3.1 Reproductive Cycles in the First Breeding Season

Representative plasma progesterone profiles from control, TP and DHT-treated ewes are 

shown in Figure 3.1. The proportion of ewes undergoing at least one reproductive cycle 

during the first breeding season in year groups 1 to 5 is shown in Figure 3.2. Despite 

consistent absolute reductions in (TP) androgenised ewes from year groups 1,2,3 and 5, 

there was no difference between treatment groups in the proportion of ewes cycling in the 

first breeding season when results were analysed separately for each year. Data were 

combined across the 5 year groups of sheep for analysis and the proportion of ewes 

demonstrating at least one reproductive cycle in the breeding season was significantly 

reduced (P < 0.05) by prenatal androgenisation (Figure 3.3).
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Figure 3.1 Plasma progesterone profiles from representative control, testosterone 
propionate (TP) and 5a-dihydrotestosterone (DHT) treated ewes from year group 5. Blood 
samples were taken twice weekly from early September (the expected onset of puberty 
(-30 weeks) to the end of January (end of the first breeding season).
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Figure 3.2 Effect of prenatal androgen (TP = testosterone propionate, DHT = 5 a- 
dihydrotestosterone) treatment on the proportion of sheep with reproductive cycles in the 
first breeding season. The total number of ewes within each year and treatment group are 
shown inside each column on the bar graph.
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Figure 3.3 Effect of prenatal androgen (TP = testosterone propionate, DHT = 5a- 
dihydrotestosterone) treatment on the proportion of sheep with reproductive cycles in the 
first breeding season when data is combined over the 5 year groups. Within a treatment
group, means without a common superscript differ (P < 0.05).
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3.3.2 Circulating Oestradiol Concentration

A summary of the circulating oestradiol concentrations measured in ewes from year groups 

1-4 is shown in Table 3.1. Peripheral concentrations were elevated in TP-treated ewes (P < 

0.001) from year group 1 sheep compared with control ewes when samples were collected 

in June (animals were 14 months old and out of the breeding season). Peripheral oestradiol 

concentrations were also elevated in TP-treated ewes from 10 month old sheep from year 

groups 3 and 4, when samples were taken in February (just after the end of the breeding 

season) (P < 0.001 and < 0.05 respectively). Peripheral oestradiol concentrations were 

increased in TP ewes aged 8 months (year group 4), when sheep were in the breeding 

season. No significant difference in circulating concentrations of oestradiol between the 

two treatment groups (C and TP) was found in year groups 2 and 3 when samples were 

collected in December during the middle of the first breeding season.

Age of 
ewe at 
time of 
sample 
(year 

group)

Month 
samples taken

In the 
breeding 
season?

Control plasma 
oestradiol 

concentration 
(pg/ml)

TP plasma 
oestradiol 

concentration 
(pg/ml)

P
value

14 months 
(1)

June No 0.62 ±0.13 
(n=8)

1.39±0.11
(n=7)

<0.001

8 months 
(2)

December Yes 0.61 ±0.09 
(n=8)

0.73 ±0.14 
(n=7)

0.675

8 months
(3)

December Yes 1.54 ±0.42 
(n=9)

2.7 ± 0.62 
(n=10)

0.112

10 months
(3)

February No 0.29 ± 0.06 
(n=9)

0.99 ± 0.2 
(n=10)

<0.001

8 months
(4)

December Yes 0.48 ±0.16 
(n=3)

2.01 ±0.66 
(n=6)

0.0243

10 months
(4)

February No 0.33 ±0.01 
(n=3)

1.44 ±0.24 
(n=6)

0.0354

Table 3.1 Peripheral oestradiol concentrations in control and prenatally TP-treated ewes 
from year groups 1-4, in (December samples) or out of the breeding season (February 
samples). The average concentration of two samples taken three days apart in the month 
was used to determine peripheral oestradiol concentrations. TP = testosterone propionate. 
Values presented are mean ± SEM.
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3.3.3 Ovarian Weight

Ovaries recovered from ewes treated prenatally with TP were significantly heavier in year 

group 3 (P < 0.01) and year group 5 (P < 0.001) in comparison to control ewes 

(Figure 3.4). There was no significant difference in ovarian weight between control and 

TP-treated ewes in year groups 1, 2 and 4. Ovaries recovered from ewes treated prenatally 

with DHT in year group 5 were lighter in comparison to TP-treated ewes (ANOVA, P < 

0.05), however, there was no significant difference in ovarian weight between the DHT 

and controls groups. In addition, year group 1 control ovaries, recovered from ewes 12 

months older than ewes from the other year groups, were heavier compared with year 

group 2, 3 and 5 control ovaries. Overall, androgenisation by TP significantly (P < 0.05) 

increased total ovarian weight compared to both control and DHT-treated groups when 

data were combined from all the year groups (Figure 3.5).

3.3.4 Individual Large Antral Follicles

3.3.4.1 Follicle Diameter

The diameter of DF and SF recovered from control and androgenised ewes is shown in 

Figure 3.6. Prenatal androgenisation by TP increased follicle diameter of the largest 

follicles compared to controls. Androgenisation by DHT led to intermediate follicle 

diameters, which did not differ from diameters measured in control or TP-treated ewes. 

There was no overall difference in follicle diameter between follicles classified as DF or 

SF (Figure 3.11) However, an interaction between prenatal treatment and follicle 

classification was determined, as DF recovered from TP-treated ewes only were larger than 

SF recovered from the same ewe (Figure 3.12). There was no difference between year 

groups in the follicle diameter of DF and SF recovered.

3.3.4.2 Follicular Fluid Oestradiol Concentration

Follicular fluid oestradiol concentrations within DF and SF recovered from control and 

androgenised ewes are shown in Figure 3.7. Prenatal androgenisation by TP increased 

follicular fluid oestradiol concentration overall in both DF and SF compared with follicles 

from control and DHT-treated animals. Androgenisation by DHT had no effect on 

follicular fluid oestradiol concentration compared to controls. Follicular fluid oestradiol 

concentrations were also increased in DF versus SF (Figure 3.11), which confirmed the 

follicle classification and suggests a higher health status in the DF (follicle health being 

linked with intrafollicular oestradiol production (Tetsuka & Nancarrow, 2007) compared 

with the SF within the same animal. There was no difference between year groups in the 

follicular fluid oestradiol concentration of DF and SF recovered.
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Figure 3.4 Effect of prenatal androgen (TP = testosterone propionate, DHT = 5a- 
dihydrotestosterone) treatment on total ovarian weight in the five year groups of sheep 
studied. Values presented are mean ± SEM. (Group 1 - C  = 8;TP = 6: Group 2 -  C = 7; 
TP = 6: Group 3 -  C = 7; TP = 10: Group 4 -  C = 7; TP= 6 ewes and Group 5 -  C = 14, TP 
= 15 and DHT = 8). Within a year group, means without a common superscript differ (P 
<0.05).
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Figure 3.5 Effect of prenatal androgen (TP = testosterone propionate, DHT = 5a- 
dihydrotestosterone) treatment on total ovarian weight when weights are combined across 
the 5 year groups used in the study. Values presented are mean ± SEM. Means without a 
common superscript differ (P < 0.05).
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3.3.4.3 Follicular Fluid Progesterone Concentration

Follicular fluid progesterone concentrations within DF and SF recovered from control and 

androgenised ewes are shown in Figure 3.8. Prenatal androgenisation by TP increased 

follicular fluid progesterone concentration overall in both DF and SF compared with 

follicles from control and DHT-treated animals. Androgenisation by DHT had no effect on 

follicular fluid progesterone concentration compared to controls. Follicular fluid 

progesterone concentrations were similar between DF and SF (Figure 3.11). Follicular 

fluid progesterone differed between year groups, specifically intrafollicular progesterone 

concentrations were higher in year group 2 compared to 3.

3.3 4.4 Follicular Fluid Oestradiol to Progesterone Ratio

Prenatal androgenisation had no effect on the follicular fluid oestradiol to progesterone 

ratio (Figure 3.9). The oestradiol to progesterone ratio was increased in follicles classified 

as DF versus SF, confirming our functional classification (Figure 3.11). Follicular fluid 

oestradiol to progesterone ratio was lower in year groups 2 and 5 compared to year groups 

3 and 4.

3.3.4.S Follicular Fluid Testosterone Concentration

Follicular fluid testosterone concentrations from DF and SF recovered from control and 

androgenised ewes of year group 2 are shown in Figure 3.10. Prenatal androgenisation by 

TP had no effect on follicular fluid testosterone concentrations in DF and SF recovered 

from each ewe. Follicular fluid testosterone concentrations were increased in follicles 

classified as SF versus DF.
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Figure 3.11 Intrafollicular characteristics (follicle diameter, follicular fluid oestradiol, 
progesterone, oestradiol to progesterone ratio and testosterone) of dominant (DF) and 
subordinate (SF) follicles when was combined across both treatment groups and all year 
groups. Values presented are Mean ± SEM. Within a follicle classification, means 
without a common superscript differ (P < 0.05). Note that follicular fluid testosterone 
levels were only investigated in year group 2.
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Interaction Plot for Follicle Diameter
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F igu re 3 .12 Interaction plot for the average follicle diameter recovered from dominant 
(DF) and subordinate (SF) follicles from control and testosterone propionate (TP) treated 
ewes. Follicle classification 1 = DF, follicle classification 2 = SF.

3.4 D isc u ssio n

The main aim of this study was to determine the effect of prenatal androgen treatment on 

ovarian function and, specifically, on large antral follicle characteristics (such as follicle 

diameter and follicular fluid steroid concentrations) in the postpubertal ewe. Results from 

this study, using five year groups of Dorset sheep, have very much extended earlier 

findings on the effect of excess TP during foetal life on reproductive dysfunction. Earlier 

studies examining effects of prenatal TP treatment on various levels of the hypothalamo- 

pituitary-ovarian axis have used Dorset ewes (Birch et al, 2003; Uns worth et al, 2005), 

Suffolk and Merino sheep (Clarke et al, 1977; Sharma et al, 2002; S arma et al, 2005; 

Steekler et al, 2005; Steckler et al, 2007a), rats (Gorski, 1986) and monkeys (Abbott et 

al, 2005). In the current study prenatally TP-treated young adult Dorset ewes showed less 

cyclicity, but increased ovarian weight and elevated peripheral oestradiol concentrations. 

And for the first time we have now identified intrafollicular abnormalities within the 

largest follicles present at the beginning of the non-breeding season, which may be 

responsible for some or all of the systemic steroid changes caused by prenatal exposure to 

aromatisable testosterone (through TP). Specifically, DF and SF from androgenised ewes 

showed increased size and intrafollicular oestradiol and progesterone concentrations
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compared with controls, but only when animals were androgenised with TP and not DHT. 

Thus, programmed increased follicular steroidogenesis seen postnatally arises through the 

oestrogenic action of TP administered to pregnant ewes. The effects of prenatal 

androgenisation on reproductive cyclicity, peripheral steroid concentrations, ovarian 

weight and the follicular parameters of the largest two follicles recovered from each ewe 

are discussed in greater detail below.

At this stage it is pertinent to highlight that significant differences in results (such as 

ovarian weight and follicular fluid progesterone concentrations) between year groups of 

ewes approximately the same age were observed. We aimed to investigate the consistent 

effects of prenatal androgenisation on ovarian function, but interestingly, significant 

differences were not seen in all years despite significant overall effects using a GLM. 

These year to year differences may be due to (1) maternal body condition; the breeding 

ewes in one year group could be of a better condition than in other groups, affecting transit 

of steroid at the level of the placenta (Jansson et al, 2006; Luther et al, 2007; Jansson et 

al, 2008) or (2) ewe lamb body condition; the prenatally treated ewes in one year group 

could gain at a different rate than those in other groups altering responses to programmed 

changes within the regulatory hormonal axis (Cleal et al, 2007). One further factor must 

be taken into account. Specifically, one year group stands out from the others in terms of 

the percentage of control animals having reproductive cycles; year 4, bom in 2007. In the 

late summer of 2006 there was an outbreak of Scrapie at the University Farm and more 

than half the breeding flock had to be culled. It was difficult to replace these ewes with non 

pregnant animals at this time of year and eventually a low number of ewe lambs from 

Northern Ireland were sourced that had been bom in January/Febmary 2006. They were 

bred in November (when about 40 weeks of age) and their lambs were bom from late April 

to the beginning of May 2007. The young age of the mothers and their relatively light 

weight during gestation, as well as the late time of mating and thus late births may have 

contributed to the lack of cycles in their offspring in their first breeding season. Ewe lambs 

may have been too young at the normal time of start of the breeding season, and perhaps 

had smaller weight gains due to lowered milk yield of the mothers, reducing the number of 

animals reaching puberty at the start of the breeding season. Further, most of these ewes 

carried a single pregnancy and the majority had male offspring which is reflected in the 

very low number of control females that were available for use in the 2007 Year group 4 (n 

= 3). However, findings from this study over several years still confirm previous results 

that prenatal TP excess causes not only neuroendocrine abnormalities (Robinson et al, 

1999; West et al, 2001; Sharma et al, 2002; Birch et al, 2003; Sarma et al, 2005) but
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also altered ovarian function, specifically the occurrence of reproductive cycles and large 

antral follicle growth and differentiation (Manikkam et al, 2006; Steckler et al, 2007a). 

Thus, this highlights one of the benefits of our experimental approach, i.e. using groups of 

sheep over several years to determine consistent effects of prenatal androgenisation.

Previous studies using the same breed of sheep clearly demonstrated that significantly 

fewer TP ewes entered the first breeding season, with similar percentages (64-70%) of TP 

ewes cycling in the first breeding season to our study (Birch et al, 2003; Unsworth et al, 

2005). However, while the studies performed on the Dorset ewes at the Babraham Institute 

in Cambridge showed that control animals had about 6 progestogenic cycles in the first 

breeding season (Birch et a\, 2003; Unsworth et al, 2005) this has not been the case in 

studies carried out at the University of Glasgow where animals only had about 3 cycles. 

The reasons for this probably relate to the late time of mating and thus late time of birth, 

and the latitude where the animals were maintained. Specifically, lambs were bom in 

Cambridge (52°12’N) in late Febmary meaning that they would have their first 

reproductive cycle at about 30 weeks of age which would occur in late September/early 

October. The first breeding season usually ended in mid January some 100 days later 

which would facilitate the completion of 6 regular cycles. In the case of the lambs bom in 

Glasgow, Scotland (55°52’N) lambs were bom later in the year, from late March to late 

April resulting in the first cycle in November. Cycles normally ceased in early January and 

so only about 3 regular cycles would be observed.

In the androgenised animals, as was first reported by Clarke, Scaramuzzi and Short (1976, 

cycles were not regular. The reasons for this are not known, but most likely reflect 

recognised abnormalities of the positive feedback exerted by oestradiol, control of the 

formation and lifespan of the corpus luteum, and follicular abnormalities. As prenatally 

TP-treated Dorset ewes are unable to produce a GnRH and thus LH surge due to reduced 

sensitivity to oestradiol positive feedback at the level of the hypothalamus, (Sharma et al, 

2002; Birch et al, 2003; Unsworth et al, 2005), the mechanisms by which prenatally TP- 

treated ewes can produce some normal looking progesterone profiles indicating 

reproductive cycles are unknown, given that in a normal ewe the majority of progesterone 

is secreted by the corpus luteum during the oestrous cycle (Berisha & Schams, 2005). One 

possibility is that lutéinisation of follicles in the androgenised ewe may not require a 

“surge” release of LH, but that a sustained increase in LH pulse frequency observed within 

the prenatally androgenised ewe (Sarma et al, 2005) is sufficient to luteinise follicular 

somatic cells of several large differentiated antral follicles. Subsequent timely regression of
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the corpus luteum or copora lutea will depend on the capability of the uterus to produce 

prostaglandin 2 alpha and release it into the uterine vein (McCracken et al, 1970). As 

abnormalities in uterine anatomy are present from birth in androgenised ewes (for 

example, a blind-ending body of uterus not connecting with the vagina), this may lead to 

abnormal function, i.e. its inability to generate and release enough prostaglandin F2a for 

luteolysis to occur, which in turn will cause the prolonged progesterone cycles which have 

been observed.

Elevated peripheral concentrations of oestradiol were identified in three out of the four 

groups of androgenised ewes studied. We were unable to determine whether differences in 

peripheral concentrations of oestradiol could be determined from year group 2 ewes in the 

non-breeding season, as no blood samples were available. To the best of our knowledge, 

no group has investigated peripheral oestradiol concentrations in the TP-treated Dorset ewe 

both within and outwith the breeding season. Previous studies in the Suffolk model have 

determined that the preovulatory oestradiol rise is increased in the prenatal testosterone-but 

not DHT-treated ewe relative to controls (Veiga-Lopez et al, 2009). Additionally, at 24 

weeks of age, circulating concentrations of plasma oestradiol is increased in TP-treated 

Suffolk ewes (Sarma et al, 2005). Furthermore, during the follicular phase, peak and total 

peripheral oestradiol produced, as well as total oestradiol released in response to 

gonadotrophins, are increased in TP-treated Suffolk ewes (Steckler et al, 2008). While the 

phenotype differs between the two androgenised sheep models, as the ovary intact Suffolk 

ewe can produce an LH surge in response to oestradiol (Sharma et al, 2002; Veiga-Lopez 

et al, 2008; Veiga-Lopez et al, 2009) while the ovary-intact Dorset ewe does not 

(Unsworth et ah, 2005 and J E Robinson, unpublished observations), our findings of 

elevated systemic oestradiol in the Dorset model during the breeding season but also in the 

non-breeding season very much extend findings from the Suffolk model, which have 

mostly been determined in normally cycling animals. Thus, both ovulatory (Suffolk model) 

and non-ovulatory (Dorset model) follicles appear to be secreting abnormally high 

amounts of oestradiol into circulation of adult prenatally androgenised ewes.

The effects of elevated peripheral oestradiol concentrations could be wide-ranging as 

oestradiol has many functions both at the neuroendocrine and ovarian levels (Cardenas et 

al, 2001; Britt et al, 2004). Oestradiol itself has acknowledged local intrafollicular actions 

(Rosenfeld et al, 2001), stimulating proliferation of granulosa cells in rats (Richards, 

1994; Drummond & Findlay, 1999a) and, in synergy with FSH, is responsible for 

granulosa cell differentiation including aromatase and LH receptor induction (Drummond
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et al, 2002). Elevated peripheral concentrations of oestradiol suggests altered ovarian 

somatic cell steroidogenesis in prenatally TP-treated ewes, with the majority of oestradiol 

production taking place in the granulosa cells of antral follicles (Hay and Moor 1975). And 

indeed, the two largest antral follicles from androgenised ewes produced more oestradiol 

than follicles from control ewes in our study. Oestradiol is also known to reduce granulosa 

cell apoptosis (Lund et al, 1999; Rosenfeld et al, 2001) and, therefore, increased follicular 

synthesis of the hormone could explain increased follicle growth leading to the larger 

diameters observed by us and others, and the persistence observed in prenatally TP-treated 

ewes where follicles fail to regress (Manikkam et al, 2006). The effects of elevated 

peripheral oestradiol concentrations at the neuroendocrine level during both breeding 

season and seasonal anoestrus, however, may be predominantly negative in a model that is 

characterised by the absence of GnRH/LH surges despite the increased LH pulsatility seen 

in prenatally TP-treated Suffolk (Sarma et al, 2005) and Dorset (Robinson et al, 1999) 

ewe. Chronic exposure to excess oestradiol from soon after birth has been shown to delay 

or prevent the onset of progesterone cycles in females (Foster et al, 1986; Jackson et al, 

2009). Evidence of excess oestradiol concentrations affecting the LH surge mechanism is 

provided by results from chronic post natal exposure to low levels of oestrogen for over a 

year, starting when lambs were four weeks old, which delayed the induction of the surge 

mechanism (Malcolm et al, 2006). Exposure of prenatally TP-treated Suffolk ewes to 

excess oestradiol postnatally (admittedly at a much higher concentration than those 

detected in our study) resulted in increased progesterone cycle irregularity and abolished 

the LH surge in more TP-treated ewes compared to those who were not exposed to excess 

oestradiol postnatally (Jackson et al, 2009). Therefore, the LH surge mechanism in the 

Suffolk ewe is susceptible to further programming by postnatal exposure to oestradiol, 

while in the Dorset model the more extreme phenotype may be due to early and continuous 

systemic elevations in oestradiol.

It must be highlighted that, in the current study, only two blood samples taken three days 

apart at two time points were used to ascertain peripheral concentrations of oestradiol 

within and after the end of the breeding season. Therefore, in order to gain a more accurate 

and perhaps more consistent profile of peripheral oestradiol concentrations within and 

outwith the breeding season, future investigations should utilise more frequent blood 

sampling of TP and control ewes over a longer period of time. This infrequent sampling 

may be one of the reasons why elevated oestradiol was not observed in every year group or 

in all the December blood samples.

79



In utero exposure to TP but not DHT increased total ovarian weight in adult ewes, 

suggesting the pre- and postnatal effects of TP are mediated through the action of 

oestrogen in utero. Previous studies into the effects of prenatal programming by TP and 

DHT at different stages of development have provided partially conflicting results. In one 

study, 3 week old Dorset ewes and 5-week old Dorest lambs exposed prenatally to TP 

demonstrated results similar to this study, determining total ovarian weight to be greater 

than those of controls (West et al, 2001). However, using the Suffolk breed, ovarian 

weights were similar to controls in 10 month-old lambs exposed to either TP or DHT 

(Smith et al, 2008). Interestingly, in Suffolk 140 day old foetuses, ovarian to body weight 

ratio also appeared to be similar between TP-treated ewes and controls (Steckler et al,

2005), while a more recent study using the same breed of sheep determined that both 

prenatal TP and DHT treatment increased both ovarian weight and ovarian volume in 140 

day old foetuses (Smith et al, 2008). The disparity between results could be due to year 

effects (see above), but, importantly, also breed differences, as just like the loss of the LH 

surge, the Dorset sheep could be more sensitive to effects of prenatal TP excess compared 

to the Suffolk. Thus in the Suffolk phenotype, ovaries recovered from both control and 

androgenised ewes in the breeding season may contain corpora lutea and large follicles 

leading to similar weights. Foetal ovaries in the Suffolk phenotype may then show more 

differences, as earlier activation in TP foetuses will lead to heavier ovaries (Smith et al,

2008). Irrespective of these disparities, increased ovarian weight in the absence of corpora 

lutea suggests increased ovarian volume, which is related to higher antral follicle numbers 

in ruminant species (McNatty et al, 1993; Ireland et al, 2008), and thus potentially 

implies increased follicle survival, or, specifically, increased proliferation or reduced 

apoptosis of follicular somatic cells. Indeed, this study showed that androgenised ewes had 

larger DF and SF than control ewes, supporting previous ultrasound-based studies of large 

antral follicle development in the Suffolk model (Manikkam et al, 2006).

Our approach differs to that of other researchers using the androgenised sheep model in 

that our research focuses on intrafollicular data acquired from individual DF and SF. 

Fundamental to our investigation was the correct classification of DF and SF within each 

ewe. DF and SF classification is generally based on morphological (size) and functional 

biochemical (oestradiol production) criteria in both the bovine and ovine (Evans & Martin, 

2000; Austin et al, 2001; Ryan et al, 2007). Monitoring of ovarian follicle development 

by transrectal ultrasonography, i.e. tracking follicle growth over a period of several days, is 

the gold standard to identify dominant and subordinate follicles following selection. 

Ovarian scanning revealed ovine dominant and largest subordinate follicles reach
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maximum diameters of 5-7 and 3-5 mm, respectively (Bartlewski et al, 1999; Evans et al,

2000). DF and SF classification can also be determined by using follicular fluid oestradiol 

concentrations, the dominant follicle typically characterised by higher follicular fluid 

concentrations (-41 ng/ml in sheep) than that of the largest subordinate follicle (0.6 ng/ml) 

in both the ovine (Evans & Martin, 2000) and bovine (Austin et al, 2001). As we were not 

able to monitor follicle development by transrectal ultrasonography to identify DF and SF 

following DF selection, our follicle classification was based solely on follicular fluid 

oestradiol concentrations and largest diameters achieved per ewe. Therefore, it is possible 

that our SF classification in control ewes does not only include what are traditionally 

termed the largest subordinate follicle, but also ‘co-dominant’ follicles, or older dominant 

follicles, particularly when follicles with less intrafollicular oestradiol were similarly or 

even larger-sized than the DF. Such follicles are indeed abundant in a sheep breed which 

on average ovulates 1.8 follicles per cycle (Hall et al, 1986). In androgenised ewes the 

traditional terms do not appear to apply, as both largest follicles recovered are at least as 

large as control DF, and at least equally or more steroidogenic than DF in normal ewes 

(Evans & Martin, 2000). Additionally, based on ultrasound monitoring normal DF 

selection within androgenised Suffolk ewes does not seem to apply as large follicles 

remain on ovaries without regression (Manikkam et al, 2006).

Prenatal androgenisation by TP increased follicle diameter of the two largest follicles (both 

DF and SF) compared to controls. In some androgenised ewes (with TP), more than two 

follicles reached sizes of greater than 5 mm in diameter, which was never seen in the 

control ewes. Previous studies in Dorset female lambs aged 3 and 5 weeks have 

demonstrated that prenatal androgen excess through TP resulted in ovaries containing large 

antral follicles, in comparison to control ovaries where no follicles greater than 2 mm in 

diameter were found (West et al, 2001). The same study and subsequent studies 

determined that the proportion of growing follicles in each size class (primary, secondary, 

antral) was increased in ovaries from Suffolk and Dorset TP-treated ewes compared with 

controls (West et al, 2001; Steckler et al, 2005; Smith et al, 2008). Within antral 

follicles, fluid accumulation is mainly responsible for the increase in diameter, but somatic 

cells still proliferate (Crisp, 1992; Campbell et al, 1995). Therefore, an increase in 

follicular fluid volume, or alternatively increased somatic cell proliferation or a 

combination of both could lead to the increased growth of antral follicles seen in prenatally 

TP-treated sheep and is most likely the cause of the increased ovarian weight. Continued 

growth to a larger follicle diameter suggests disruption in the mechanisms controlling
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follicle growth and atresia, again perhaps mediated as a result of the intra-ovarian actions 

of oestrogen as discussed above (Lund et al, 1999).

It is interesting to note that, in our study, no overall difference in follicle diameter between 

follicles classified as dominant or subordinate was determined. However, an interaction 

between prenatal treatment and follicle classification was found, as DF with highest 

intrafollicular oestradiol were also the largest follicle in TP-treated ewes, while this was 

not always the case in control ewes. Ovarian follicle development in sheep is characterised 

by 2-4 follicle waves per cycle (Evans et al, 2000), with at least one or more follicles 

(depending on the breed of sheep) continuing to grow until ovulation. Interestingly, 

dominance may not be as stringent as in monovulatory species such as the cow as, in some 

multiple ovulating sheep, follicles from the second last wave may also ovulate (Bartlewski 

et al, 2000; Driancourt, 2001). In our study of control Dorset ewes usually just one follicle 

greater than 5.5 mm was present on the ovaries at the end of the breeding season, but did 

not always have highest intrafollicular oestradiol. Thus our SF classification within each 

control ewe may have included some old DF (see discussion above), in which oestradiol 

production begins to decline before morphological regression (Fortune et al, 2001). In 

comparison in prenatally TP-treated ewes DF and SF were generally larger than 5.5 mm in 

diameter, and there were often more than 3 follicles with diameters of greater than 4 mm, 

indicating abnormal large follicle development and a reduced dominance mechanism. 

Therefore in TP-treated ewes, growth and oestradiol synthesis in large follicles are clearly 

regulated in parallel, while this is not always synchronous during normal follicle wave 

development in controls.

Due to the multifollicular appearance of ovaries from young Dorset and Suffolk ewe lambs 

(West et al, 2001) or postpubertal Suffolk ewes treated with TP in utero (Steckler et al, 

2005; Manikkam et al, 2006), this prenatally androgenised ewe has been proposed as a 

model for Polycystic Ovary Syndrome (PCOS), one of the most common female endocrine 

disorders affecting approximately 5-10% of women of reproductive age (Franks, 1995; 

Dumesic et al, 2007). Women affected with PCOS present with polycystic ovaries, 

hypersecretion of LH, in part, from reduced hypothalamic sensitivity to steroid negative 

feedback, and infertility (Katz & Carr, 1976; Rebar et al, 1976; Norman et al, 2007), all 

characteristics seen in the prenatally androgenised ewe. There is a debate as to whether the 

prenatally TP-treated ewe is a relevant model to investigate PCOS in relation to follicle 

growth and development. The characteristic morphological feature of polycystic ovaries in 

anovulatory women is accumulation of antral follicles in the range of 2-8 mm in diameter
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(Franks et al, 2000). In other words, there is an apparent failure to select a dominant 

follicle (which always becomes larger than 8 mm), and it is assumed that antral follicles 

5 to 8 mm have been arrested in development (Franks et al, 2008). Follicle arrest at the 2 

to 8 mm diameter in PCOS women differs from the ovarian phenotype of prenatally TP- 

treated ewes where, in this investigation and previous studies, antral follicles are regularly 

observed to be larger than that shown to be DF size, follicles appear to have normal 

granulosa and theca cell layers and, at least in the Suffolk breed of sheep, are able to 

respond to an LH surge with ovulation (Manikkam et al, 2006; Steckler et al, 2007a), a 

marker of the ability to undergo final differentiation. While the cellular changes in such 

abnormally large follicles have not yet been characterised, it is predicted that the granulosa 

cells of such highly differentiated and steroidogenic follicles are no longer solely FSH- 

responsive, a characteristic of PCOS follicles, which also demonstrate reduced granulosa 

but greatly increased theca cell layers (Franks et al, 2000; Franks et al, 2008). Therefore, 

there may be two different underlying mechanisms that result in altered terminal follicular 

development in ovaries from TP-treated ewes versus PCOS women.

Androgenisation by DHT led to intermediate follicle diameters of DF and SF, which did 

not differ from diameters measured in control or TP-treated ewes. Similar follicle 

diameters of DF and SF between TP- and DHT-treated groups, while follicle diameters are 

increased in TP-treated compared to controls ewes, suggest that an increase in follicle 

diameter is a result of additive effects of both excess androgens and oestrogens. However, 

previous studies investigating the role of prenatal androgen excess on postpubertal 

follicular growth determined that abnormalities largely occurred through oestrogenic 

programming, as the characteristic multifolliculate phenotype was not present in DHT 

exposed ovaries (Smith et al, 2008). In accordance with the latter study, we never saw 

examples of multiple large follicles on ovaries from DHT-treated ewes in year group 5, 

despite the lack of significant size differences between the largest follicles recovered from 

DHT- and TP-treated ovaries. Clearly, this requires further examination over several years.

Prenatal androgenisation by TP increased follicular fluid oestradiol concentration in both 

DF and SF compared to follicles recovered from control and DHT-treated animals. 

Androgenisation by DHT had no effect on follicular fluid oestradiol concentration 

compared to controls. Therefore, increased follicular oestradiol synthesis by large antral 

follicles of adult TP-treated ewes arises as a result of oestrogenic programming in utero. 

Follicular fluid oestradiol concentrations within DF recovered from control ewes 

(-35 ng/ml) were similar to those detailed in previous studies (Murdoch & Dunn, 1982;
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Jolly et al, 1997; Evans & Martin, 2000). Oestradiol plays an important role in 

reproduction and other biological processes regulating the growth, differentiation and 

function of reproductive tissues, as well as of a number of other organs, such as bones, the 

brain and the cardiovascular system (Drummond, 2006). Oestradiol is required for follicle 

development past the antral stage as determined in CYP19A1 knockout mice (Britt et al,

2001). Additionally, CYP19A1 knockout mice have reduced numbers of primordial and 

primary follicles and this reduction is not corrected by postnatal oestradiol treatment, 

suggesting that oestradiol stimulates the initial formation or activation of primordial 

follicles (Britt et al, 2004). Thus, both these results demonstrate that oestradiol has a role 

in initial and terminal follicle development. Therefore, increased concentrations of 

oestradiol in utero as a result of aromatisation of excess testosterone could lead to the 

increased recruitment seen in Suffolk androgenised ewes through the action of oestrogenic 

programming (Steckler et al, 2005; Smith et al, 2008). Postnatally, this increase in 

recruitment may be maintained as a result of increased oestradiol synthesis within large 

antral follicles leading to higher than normal intra-ovarian oestradiol, and the consequence 

will be accelerated depletion of the primordial follicle pool.

Follicular fluid oestradiol concentrations (and the oestrogen: progesterone ratio) are 

directly related to follicle health and granulosa cell differentiation (Evans & Martin 2000). 

Oestradiol synthesis is mediated by the aromatase enzyme in granulosa cells and higher 

availability of androgen precursors from the theca (Rosenfeld et al, 2001). The fact that 

testosterone levels were not increased in follicular fluid of follicles from TP-treated ewes 

may point to a very functional aromatase system, able to convert extra precursor into 

oestradiol. Increased production and secretion of oestradiol into the circulation from 

multiple large follicles may, thus, be responsible for increased plasma oestradiol 

concentrations detected in prenatally TP-treated ewes in our study for both the breeding 

and the non-breeding season. Oestradiol production by granulosa cells is dependent on 

FSH during cohort emergence, but on LH following selection (Campbell et al, 1995), and 

the increased LH pulsatility determined previously in prenatally TP-treated ewes (Sarma et 

al, 2005) may, thus, be responsible for maintaining high oestradiol synthesis in the large 

antral follicles. However, while the principle of increased follicular oestradiol production 

being due to increased LH pulsatility clearly applies to DF growth and persistent DF in 

normal ruminants (Roberson et al, 1989; Kojima et al, 1992), it may not be the case in 

androgenised ewes treated with TP, as excess DHT in utero also leads to increased LH 

pulsatility but not to enhanced large antral follicle oestradiol production (Veiga-Lopez et 

al, 2009). It is possible that higher differentiation in larger antral follicles of TP
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androgenised ewes is accompanied by an increase in LH responsiveness, for example due 

to higher receptor expression similar to what is seen in growing DF in cattle (Mihm et al

2006), which allows such follicles to respond maximally to the elevated LH. While such 

investigations are the subject of the next chapters, increased (inherent or possibly LH- 

stimulated) follicular oestradiol production may then have the consequence of continued 

somatic cell survival and proliferation leading to the abnormally large sizes determined for 

the follicles recovered from TP-treated ewes in this study.

Prenatal androgenisation by TP increased follicular fluid progesterone concentration in 

both DF and SF from adult ewes compared to follicles recovered from control and DHT- 

treated animals. Androgenisation by DHT had no effect on follicular fluid progesterone 

concentration compared to controls. Therefore, increased follicular fluid progesterone 

concentration in large antral follicles of prenatally TP-treated ewes arises as a result of 

oestrogenic programming. As far as we are aware, no previous literature exists on 

follicular fluid progesterone concentrations from individual large antral follicles recovered 

from prenatally androgenised ewes. Elevated progesterone concentrations in the follicular 

fluid of follicles recovered from prenatally TP-treated ewes may imply that the follicle is 

luteinising prematurely in the absence of a LH surge and ovulation. Thus, granulosa and 

theca cells may be differentiating prematurely into large and small luteal cells as occurs 

normally after the surge but before the expulsion of the oocyte (Fortune et ah, 1994) 

possibly due to the elevated LH pulsatility present in prenatally TP-treated ewes (Sarma et 

al, 2005). However, there clearly is no concomitant fall in oestradiol normally seen in 

preovulatory follicles after the surge (Murdoch & Dunn, 1982), as the oestradiol to 

progesterone ratio in DF and SF is similar in control and TP-treated ewes. Additionally, 

granulosa cell morphology visualised during harvest (see Chapter 6) is unaltered. Thus, 

these two findings suggest that in TP-treated ewes follicular somatic cells are prevented 

from lutéinisation despite abnormally high progesterone synthesis. Similarly, dominant 

follicles following their loss of dominance and dominant follicles after prolonged 

persistence due to maintained frequent LH pulses in the bovine also increase their 

progesterone synthesis, as can older cystic follicles (Calder et al, 2001; Bridges & 

Fortune, 2003; Vanholder et al, 2006). In all these cases, however, oestradiol synthesis is 

reduced and, thus, the oestrogen to progesterone ratio is lowered, while in our study, 

unusually, both progesterone and oestradiol synthesis appear similarly increased in 

follicles from TP-treated ewes.
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Similar to oestradiol, progesterone is required for many aspects of female reproductive 

function including sexual behaviour, mammary gland development, ovulation, 

implantation and the maintenance of pregnancy (Brosens et al, 2004; Peluso, 2006). Intra- 

ovarian actions of progesterone include inhibition of granulosa cell proliferation 

independent of its ability to influence gonadotrophin levels (Hirshfield, 1984). 

Additionally, progesterone itself has been shown to enhance granulosa cell progesterone 

secretion in cultured rat granulosa cells (Schreiber et al, 1980), and slows the rate of 

mitogen-induced proliferation of granulosa cells in rats and humans (Chaffkin et al, 1993; 

Peluso & Pappalardo, 1998). It is difficult to predict the intra-ovarian role progesterone has 

on large antral follicles. Interestingly, progesterone prevents apoptosis of rat granulosa 

cells (Peluso & Pappalardo, 1998; Svensson et al, 2000; Shao et al, 2003), and such 

increased cell survival could further explain the persistent large antral follicles observed on 

TP-treated ovaries. In addition, we speculate that enhanced intrafollicular oestradiol 

counteracts the anti-proliferative effects of progesterone leading to continued growth of 

large antral follicles in TP-treated ewes.

Prenatal androgenisation by TP had no effect on follicular fluid testosterone 

concentrations. However, SF had higher intrafollicular testosterone than DF. This may be 

explained by lower aromatisation of androgen precursor produced by theca cells in SF, and 

thus accumulation of androgen in follicular fluid, similar to what has been described for 

atretic follicles in sheep (Tsonis et al, 1984).

In conclusion, results in this study have clearly demonstrated for the first time that 

abnormal high steroidogenesis within DF and SF in androgenised ewes is programmed 

prenatally through oestrogenic action of TP. It remains to be seen, however, which cellular 

factors (genes) or pathways mediate the changes in granulosa and/or theca cell 

steroidogenesis and proliferation/apoptosis proposed for the highly steroidogenic and 

abnormally large follicles recovered from TP-treated ewes.
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C h a p t e r  4. E f f e c t  o f  p r e n a t a l  t e s t o s t e r o n e  t r e a t m e n t  o n  s t e r o id o g e n ic

ENZYME EXPRESSION AND ATRESIA IN SMALL ANTRAL FOLLICLES OF ADULT EWES

4.1 In t r o d u c t io n

The multifollicular ovarian morphology first observed in prenatally TP-treated Dorset and 

Suffolk ewes (West et al 2001), and recently studied in more detail (Manikkam et al, 

2006; Steckler et al, 2007a), may be the result of increased follicular recruitment and/or, 

alternatively, of follicular persistence from a failure to regress (Manikkam et al, 2006; 

Steckler et a l , 2007a). Ovine large antral follicles are described as persistent if they are 

observed on the ovary for 12 or more days (Flynn et al, 2000). Follicular persistence as a 

result of prenatal TP has been demonstrated in the Suffolk ewe, leading to increasing sizes 

and longer lifespan of the largest follicles during both the first and second breeding seasons 

(Manikkam et al, 2006; Steckler et al, 2007a). Additionally, when antral follicles from 

3mm were grouped into three size classes that functionally correspond to FSH-dependent 

cohort follicles (3-4 mm), follicles selected for ovulation (4-8 mm), and follicles larger 

than ovulatory size follicles (8 mm) (Campbell et al, 1995; Driancourt, 2001), follicles 

within each size class stayed longer in the ovary of TP exposed ewes compared to control 

follicles (Manikkam et al, 2006). Furthermore, this follicular persistence is programmed 

by oestrogenic and not androgenic action of prenatal TP, as TP, but not DHT treatment, 

increased the number of large follicles (Steckler et al, 2007a).

Chapter 3 demonstrated that prenatal androgenisation by TP results in enhanced growth 

within DF and SF leading to an enhanced ability to synthesize oestradiol and progesterone. 

It is not known at what stage of follicle development prenatal androgenisation by TP 

enhances follicle differentiation. Previous studies investigating the effect of prenatal 

exposure to excess testosterone on early follicle development (follicles less than 1 mm in 

diameter) in foetal ovaries (day 90 and 140 of gestation) and in adult ovaries (10 months of 

age) showed enhanced follicle recruitment (Steckler et al, 2005; Forsdike et al, 2007; 

Smith et al, 2008), increased numbers of antral follicles (Forsdike et al, 2007; Steckler et 

al, 2007a) and increased oestrogen receptor alpha and androgen receptor protein in 

granulosa cells of antral follicles (Ortega et al, 2009). Thus, more recruitment appears to 

also lead to more follicles developing to the antral stages, and antral follicles may be able 

to respond more to intra-ovarian oestradiol and androgen. However, to the best of our 

knowledge no group has characterised in detail follicle health, thus continued survival, and 

onset of gonadotrophin-dependent follicle differentiation, i.e. the ability to synthesize 

steroids, following antrum formation in androgenised ewes. The enhanced ability of early 

antral follicles to be able to synthesize and respond to oestradiol and other steroids, and
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thus avoid atresia and continue development in higher than normal numbers (due, for 

example, to the antiapoptotic and proliferative effects of oestradiol), may be significant in 

the development of the multifollicular phenotype described for the androgenised ewe.

The studies described in this chapter had three main aims. The primary objective was to 

determine whether the follicular morphology observed in prenatally TP-treated ewes is as a 

result of a reduction in antral follicle atresia. The second aim was to determine whether the 

size distribution within antral stages is altered as a result of excess TP in utero, possibly 

indicating abnormal follicle development. The final goal was to determine the 

steroidogenic capability and differentiation status, specifically the presence of CYP19A1 

and HSD3B1 proteins within granulosa and theca cells, of antral follicles ranging from 0.2- 

4mm in diameter from control and prenatally TP-treated ewes, thus spanning 

gonadotrophin-independent (0.2 to 3 mm) and -dependent (>3 mm; specifically FSH- 

dependent) follicle stages (Dufour et al, 1979; Campbell et al, 1995). In these studies it 

was important to use good markers of follicular differentiation and the two enzymes fulfil 

this role. Specifically, aromatase (CYP19A1) and 3 beta-hydroxsteroid dehydrogenase 

(HSD3B1) are responsible for the production of oestradiol and progesterone, respectively, 

in follicular granulosa and theca cells (Logan et al, 2002; Amsterdam et al, 2003). Both 

these steroid enzymes are markers of gonadotrophin-dependent follicle differentiation: 

CYP19A1 is present solely in granulosa cells from follicles greater than 3.5 mm in 

diameter and its expression deceases in atretic follicles (Huet et al, 1997), while HSD3B1 

is initially only localised to theca cells (Logan et al, 2002), but is usually present within 

granulosa cells of preovulatory follicles (Conley et al, 1995; Webb et al, 1999a) in 

addition to primary and secondary follicles (Conley et al, 1995; Logan et al, 2002). Thus, 

HSD3B1 is expressed in granulosa cells of early preantral follicles but then is absent until 

the preovulatory stage. Therefore, expression of both enzymes has been shown to be 

upregulated in ruminant granulosa cells from highly differentiated, selected follicles (Bao 

& Garverick, 1998).

In order to achieve these objectives, ovaries were harvested from control and TP-treated 

ewes at 10- (year group 3) and 22-months of age (year group 1) to investigate the effect of 

prenatal androgen treatment on small antral follicle health and steroidogenesis. Follicle 

health was investigated by histological analysis of atresia using haematoxylin and eosin 

staining, and by immunofluorescence to determine the presence or absence of the pro- 

apoptotic Caspase 3 (CASP3) protein in follicular somatic cells. Studies of various 

experimental models of apoptosis suggested that the presence of active CASP3 is a reliable
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indicator of apoptosis (Gown & Willingham, 2002; Duan et al, 2003; Yacobi et al, 2004). 

Immunofluorescence was also utilised to determine the presence or absence of CYP19A1 

and HSD3B1 proteins in follicular somatic cells from all individually identified antral 

follicles 0.2-4 mm in diameter.

4.2  M a t e r ia l s  a n d  M e t h o d s

4.2.1 Animals and Prenatal Treatment

Poll Dorset ewes were androgenised in utero using an established model (Robinson et al, 

1999; Steckler et al, 2005) and euthanased at 10- (Control = 7, TP = 10) and 22-months of 

age (Control = 9, TP = 7 ewes) for ovary collection.

4.2.2 Quarter Ovary Collection

Ovaries were collected in February when most ewes (94%) were out of the breeding 

season. Following excision of the largest antral follicles (controls from 3.5 mm, TP from 

5 mm) for subsequent follicular studies presented in chapter 3 the remaining ovarian tissue 

was quartered, and complete quarters were then either snap-frozen in liquid nitrogen (22 

months old animals) or wrapped up in tinfoil then placed on dry ice (10 month old ewes) 

and then stored at -80°C for subsequent histology and immunofluorescence.

4.2.3 Histology

Sections were cut as described in section 2.10. Serial sections were cut at a thickness of 

14 pm and each quarter ovary produced between 100 and 270 sections. Following 

sectioning, all slides were stored at -80°C until processing. A proportion of the frozen 

ovarian sections were histologically stained to allow for the identification of follicular 

structures. Frozen ovarian sections were quickly thawed and fixed for 20 minutes in 4% 

(w/v) paraformaldehyde in 0.1 M phosphate buffer. Following fixation, sections were then 

washed and histologically stained with haematoxylin and eosin as described in section 

2.10, coated in DPX mountant and finally cover-slips were attached.

4.2.4 Antral Follicle Identification and Size Measurements

Haematoxylin and eosin staining of every 10^ section was used to determine the number 

and sizes of antral follicles, and antral follicle health in quarter ovaries from TP and control 

sheep. Images of each sequential section were captured under a light microscope (Leica 

DM4000, Leica Microsystems (UK) Ltd., Milton Keynes, UK). Ovarian maps were drawn 

from sequentially captured images to enable individual identification of all antral follicles 

and ensure no duplication of follicles analysed. Antrum formation begins when follicles
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reach 0.15-0.2 mm in diameter (Campbell et al, 1995; Webb et al, 1999b), and thus all 

antral follicles from 0.2 mm in diameter were counted and their diameter determined from 

the section which showed individual follicles at their largest size. The mean diameter was 

determined by taking two measurements at right angles to each other from and to the basal 

lamina (Irving-Rodgers et al, 2001) using the QWin program (Leica Microsystems (UK) 

Ltd., Milton Keynes, UK). Follicles were classified into three size classes, specifically 

>0.2-<l mm (early antral, gonadotrophin-independent), 1-2 mm (acquisition of FSH 

dependence) and >2 mm (FSH dependent) (Dufour et al, 1979; Miller et al, 1979; 

McNeilly, 1984; Campbell et al, 1995). As stated above, the largest follicles had already 

been excised from the control and TP ovaries.

4.2.5 Assessment of Follicle Health

Deciding when a follicle has entered atresia remains somewhat subjective and various 

criteria have been used to determine the health of antral follicles histologically (Irving- 

Rodgers et al, 2001; Rodgers & Irving-Rodgers, 2009). All antral follicles individually 

identified were classified as healthy or atretic (Irving-Rodgers et al, 2001; Rodgers & 

Irving-Rodgers, 2009). Follicle health classification in this study was based on the number 

of pyknotic granulosa cells, separation of the granulosa layer from the basal lamina, and 

disruption of the theca layer. Pyknotic bodies represent a relatively late stage in apoptosis, 

and have been widely used in the histological classification of atretic sheep and cattle 

ovarian follicles (Marion et al, 1968; Cahill et al, 1979; Driancourt et al, 1985; 

Driancourt, 1987). In this study we defined healthy follicles as having no/few minor 

degenerative changes with <2 pyknotic bodies per field of view (Driancourt & Mariana, 

1982). Atretic follicles were characterised by a destruction of follicular structure (large 

parts of the granulosa cell layer separated from the basement membrane, a disrupted 

basement membrane, apoptotic granulosa cells (more than 2 pyknotic bodies per field of 

view), and/or a noticeable decrease in the number of granulosa cells within the granulosa 

cell layer (Driancourt & Mariana, 1982). Representative images of the follicular 

morphology of follicles classified as either healthy or atretic are shown in Figures 4.1 and 

4.2. To confirm follicle health status, as determined by the aforementioned histological 

markers, immunofluorescence for the presence of the activated form of the pro-apoptotic 

marker CASP 3 was performed (Gown & Willingham, 2002; Duan et al, 2003; Yacobi et 

al, 2004).
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Figure 4.1 Representative images of follicles classified as healthy based on morphological 
features. Follicles classified as healthy had little or no pyknosis of granulosa cells and 
granulosa cells were ordered and closely packed to the basement membrane with little or 
no separation between cells. GC = granulosa cells; BM = basement membrane; T1 = theca 
interna. Scale bars = 100 pm
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Figure 4.2 Representative images of follicles classified as atretic based on morphological 
features. Follicles classified as atretic displayed pyknosis in several granulosa cells and the 
granulosa cells were separated from the basement membrane. GC = granulosa cells; BM = 
basement membrane; T1 = theca interna. Scale bars = 100 pm
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4.2.6 Immunofluorescence

The immunofluorescence protocol used was as described previously (Bellingham et al,

2009), without the need for antigen retrieval prior to primary antibody incubation. Primary 

antibodies used in the study were: (1) CASP3 (rabbit polyclonal against activated form of 

human/mouse CASP3; AF835, R&D Systems, Minneapolis, MIN, USA), (2) HSD3B1 

(rabbit polyclonal antibody against human recombinant type I HSD3B; kindly supplied by 

Dr. J.I. Mason, University of Edinburgh; validated for sheep gonads (Quirke et al, 2001) 

and (3) CYP19A1 (mouse monoclonal antibody against human CYP19A1; MCA1974T, 

AbD Serotec, Oxford, UK).

4.2.7 Statistical Analyses

A Students t-test was used to determine any differences in the total number of follicles 

analysed per ewe between prenatal treatment groups. A Fisher’s exact test was used to 

determine any differences in the proportion of follicles classified as healthy within each 

age group and each of age group of the same prenatal treatment. A Fisher’s exact test was 

also used to determine any differences in the proportion of all antral follicles, the 

proportion of all follicles (and healthy follicles only) within each size class (0.2-1 mm, >1- 

2 mm and >2 mm) between prenatal treatment and age groups.

A Fisher’s exact test was used to determine differences in the proportion of follicles 

immunoreactive for HSD3B1 in granulosa and theca cells and CYP19A1 in granulosa cells 

over all sizes class and within each size class.

4.3  R e s u l t s

4.3.1 Antral Follicle Numbers and Health

The average total number of antral follicles per ewe was increased (P < 0.05) by prenatal 

androgenisation when ewes were 10 months of age, however by 22 months of age this 

increase was lost (Table 4.1). A higher proportion of antral follicles were histologically 

classified as healthy (36.9%) in quarter ovaries from TP-treated ewes than in control 

ovaries (19%) when ewes were 10 months old (P < 0.001). No difference in the proportion 

of healthy antral follicles between the two treatment groups was found in the quarter 

ovaries from ewes aged 22 months. A higher proportion of healthy antral follicles were 

present in control ewes at 22 months of age compared to when ewes were only 10-months 

old (P < 0.05). Immunofluorescence for the active form of CASP3, the pro-apoptotic 

marker, showed that CASP3 was found in granulosa, theca and interstitial cells (Figure

4.3). Thirty-nine and seventy-seven antral follicles from 0.2 mm in diameter were analysed
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for activated CASP3 expression from quarter ovaries recovered from control and 

prenatally TP-treated ewes in year group 5, respectively. Of the analysed follicles, none of 

those classified as healthy by histological features in either treatment group contained any 

granulosa or theca cell in which active CASP3 was present. This confirmed that follicles 

were indeed healthy as histological and immunofiuorescent evaluation of follicle health 

concurred (Table 4.2). The majority of follicles classified as atretic by histology (26/30 for 

control and 40/52 for TP ovaries) were found to have >20 granulosa or theca cells positive 

for active CASP3, thus histological and immunofiuorescent evaluation of follicle atresia 

concurred.

10 mont ks of age 22 mont ks of age
Control
(n=7)

TP
(n=10)

Control
(n=9)

TP
(n=7)

Total number of antral 
follicles analysed per 

treatment group

105" 298“ 183" 179"

Total number of antral 
follicles analysed per 
treatment group/ewe

15" 30“ 20" -25"

Percentage of antral follicles 
classified as healthy

19.0%" 36.9%“ 33.9%" 29.6%"

Table 4.1 Effect of prenatal testosterone on the proportion of healthy antral follicles from 
0.2 mm in diameter in ewes aged 10 and 22 months. Follicle health was determined 
histologically by haematoxylin and eosin staining Within a year group, percentages 
without a common superscript differ (P < 0.05).

4.3.2 Antral Follicle Size

There was no difference between treatments in the proportion of follicles (healthy and 

atretic) belonging to each size class (Table 4.3). Clearly, the overall majority (80-90%) of 

antral follicles individually identified in quarter ovaries from experimental sheep was less 

than 1 mm in diameter, with approximately two third classified as atretic (Tables 4.3 and

4.4). At both 10- and 22-months of age there was no difference between the two treatment 

groups in the proportion of healthy antral follicles classified into the two size classes larger 

than 1mm (>1-2 mm, >2 mm) (Table 4.4). However, at 10 months of age androgenisation 

by TP increased the proportion of healthy follicles in antral follicles 0.2-1 mm in diameter. 

The proportion of healthy follicles in the >1-2 mm and >2 mm size classes increased with 

age (P < 0.05), and in control ewes the proportion of follicles in the larger size classes (>1- 

2, and >2 mm) also increased with age (P < 0.05).
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Figure 4.3 Representative images of active caspase 3 (CASP3) expression in ovine antral 
follicles. (A) CASP3 is not present in granulosa and theca cells in follicles classified as 
healthy. (B) Corresponding negative control for follicle in panel (A). (C) CASP3 is localized 
to granulosa cells (labelled) of an antral follicle classified as atretic. (D) Corresponding 
negative control for follicle in panel (C). GC = granulosa cells; BM = basement membrane. 
T1 = theca interna. Scale bars = 20pm.

Control TP
Total number of antral follicles analysed 39 77

Percentage of antral follicles classified as healthy 
but with at least one granulosa or theca cell positive 

for CASP3 staining

0%
(0/9 follicles)

0%
(0/25

follicles)
Percentage of antral follicles classified as atretic 

with +ve CASP3 staining out of all follicles 
histologically classified as atretic

86.7%
(26/30

follicles)

76.9%
(40/52

follicles)
Table 4.2 Summary of the immunohistochemistry study investigating activated caspase 3 
(CASP3) immunoreactivity in granulosa and theca cells of healthy and atretic follicles 
within quarter ovary sections obtained from a subset of animals from the 22 month old 
group. C = 2; TP = 2 ewes.
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10 months old 22 months old
Follicle Control TP Control TP

Diameter (n=7) (n=10) (n=9) (n=7)
>2 mm 3.81% 3.69% 6.56% 3.91%

>1-2 mm 6.67% 9.75% 13.11% 13.41%
0.2-1 mm 89.52% 86.56% 80.33% 82.68%

Table 4.3 Percentage size distribution of all antral follicles (healthy and atretic) into three 
follicle diameter classes (0.2-1 mm, between 1-2 mm and >2 mm) in prenatally 
testosterone propionate (TP) treated and control sheep when 10- or 22-months old.

10 months old 22 months old
Follicle Control TP Control TP

Diameter (n=7) (n=10) (n=9) (n=7)
>2 mm 0.95% 1.68% 2.73% 1.68%

>1-2 mm 0.95% 3.71% 6.01% 6.14%
0.2-1 mm 17.20%" 31.52%" 25.14% 21.79%

Table 4.4 Percentage of antral follicles classified as healthy by morphology into three 
follicle diameter classes (0.2-1 mm, between 1-2 mm and >2 mm) in prenatally 
testosterone propionate (TP) treated and control sheep when 10- or 22-months old. 
Within a year group, percentages without a common superscript differ (P < 0.05).

4.3.3 Antral Follicle Steroidogenesis

A summary of the immunocytochemical results relating to the expression of the 

steroidogenic enzymes HSD3B1 and CYP19A1 in quarter ovaries from ewes aged 10 and 

22 months is shown in Table 4.5. A representative immunolocalization image of HSD3B1 

and CYP19A1 in ovine antral follicles positive for each enzyme is shown in Figure 4.4. 

The enzyme HSD3B1 was detected in theca, granulosa and luteal cells, while CYP19A1 

was present solely in the granulosa cells, as expected.

Ten Month Old Lambs (Table 4.5)

Approximately three times more small antral follicles were found (and analysed) in the TP 

compared with the control quarter ovaries, as was noted earlier in this chapter. Of these, a 

substantial proportion exhibited immunoreactivity for HSD3B1 in thecal cells and this 

proportion did not differ between the control and androgenised animals (C, 65.00%; TP, 

70.59%). A much lower percentage of follicles contained granulosa cells that were 

immunoreactive for this enzyme and, although this value was twice as large in the control 

animals, it was not significantly different (C, 7.27%; TP, 13.73%). Granulosa cells from 

four antral follicles less than 1 mm in diameter were immunoreactive for HSD3B1, and 

this was only noted in ovaries from TP-treated animals.

CYP19A1 was confined solely to granulosa cells, and we did not observe any follicles 

containing this enzyme in thecal cells. About twice the proportion of follicles in TP
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animals contained immunoreactive granulosa cells compared to the controls (TP, 18.30%; 

C, 9.09%), although this proportion did not differ significantly. The majority of 

immunoreactive follicles were larger than 1 mm in diameter with only 1.8% (C) and 4.6% 

(TP) of the <lmm antral follicles labelled for CYP19A1.

Twenty-Two Month Old Ewes (Table 4.5)

Between one third and one half of all antral follicles in quarter ovaries from the older 

animals had thecal cells immunoreactive for HSD3B1 and this was not different between 

the control and androgenised animals (C, 43.76%; TP 37.93%). In marked contrast, only 

one antral follicle (1/183) from the combined treatment groups showed granulosa cell 

immunoreactivity for HSD3B1, and this follicle belonged to the control ovaries. Relatively 

few antral follicles showed granulosa cell immunoreactivity for CYP19A1 (C, 17.71% 

diameter range 0.6-2.88 mm: TP, 25.29%, diameter range 0.42-2.36 mm) and this did not 

differ between treatment groups. A higher (P<0.05) proportion of follicles with granulosa 

cell immunoreactivity for CYP19A1 was detected in the very small (<1 mm) antral follicle 

size class (C, 1.04%; TP, 11.49%) from prenatally TP-treated ovaries (P < 0.05).

Immunohistochemical
Analysis

10 Months of age 22 Months of age
Control
(n=7)

TP
(n=10)

Control
(n=9)

TP
(n=7)

Total number of 
antral follicles 

analyzed for ICC 55= 153" 96= 87=
HSD3B1 in TH cells 

from all sizes of 
analyzed follicles

36 (65.00%)= 108 (70.59%)= 42 (43.76%)= 33 (37.93%)=

HSD3B1 in GC cells 
from all sizes of 

analyzed follicles
4 (7.27%)= 21 (13.73%)= 1 (1.04%)= 0 (0%)=

HSD3B1 in GC cells 
from follicles <1 mm 

in diameter
0 (0%)= 4(2.61%)= 0 (0%)= 0 (0%)=

CYP19A1 in GC from 
all sizes of follicles 

analyzed
5 (9.09%)= 28(18.30%)= 17(17.71%)= 22 (25.29%)=

CYP19A1 in GC from 
follicles <1 mm in 

diameter
1 (1.82%)= 7 (4.58%)= 1 (1.04%)= 10(11.49%)"

Table 4.5 Number and percentage (brackets) of small antral follicles immunoreactive for 
the steroidogenic enzymes HSD3B1 and CYP19A1 in control and prenatally androgenised 
(TP) ewes aged 10 and 22 months, n = number of animals per group."’*’ Within an age 
group, percentages without a common superscript differ (P < 0.05). IHC = 
immunocytochemistry, GC = granulosa cells, TH = theca cells.
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Figure 4.4 Representative images of CYP19A1 (red) and HSD3B1 (green) in ovine 
ovarian follicles from a control ewe aged 10 months. (A) CYP19A1 is localised to the 
granulosa cells (labelled), while no positive staining is apparent in the theca cells of the 
follicle. (B) CYP19A1 negative control. (C) HSD3B1 is localised to theca and granulosa 
cells (labelled), and to the luteal cells of the corpus luteum. (D) HSD3B1 negative control. 
Various follicle features are labelled. Individual scale bars are shown for each individual 
image. Scale bars on each image represent 100pm.

4.4 D isc u ssio n

This study is the first to have illustrated that androgenisation by TP programs antral follicle 

health, increasing the proportion of healthy antral follicles smaller than 1 mm in 10 month 

old ewes. However, the effect of a significant reduction in antral follicle atresia is lost 

when ewes are 22 months old. Additionally, granulosa cell aromatase steroidogenic ability 

is acquired at an earlier stage of follicle development, indicative of advanced follicle 

differentiation, as a result of prenatal androgenisation by TP when ewes are 22 months old. 

The implications of the results found in this study are discussed in further detail below.

4.4.1 Antral Follicle Numbers and Health

Prenatal TP treatment was associated with a reduction in the proportion of atretic antral 

follicles from 10 month old sheep, however, by 22 months of age this improvement in 

follicle health was no longer evident. However, there was a relatively large proportion 

(12/52) of follicles in ovaries recovered from 22 month old TP ewes where histological
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atresia was not confirmed by activated CASP3 expression, in comparison to control ewes, 

where only 4/30 follicles classified as atretic were negative for CASP3 staining. Therefore, 

the subjective histological evaluation appeared to overestimate atresia, particularly within 

the TP-treatment group. Thus, if CASP3 expression is taken as the benchmark of atresia in 

follicles, then 37/77 (48%) of TP follicles should be considered healthy compared with 

13/39 (33%) of control follicles. This clearly increases the proportion of healthy antral 

follicles in TP ovaries similar to what is seen in 10 month old ewes, although the increase 

was not enough to achieve statistical significance. Therefore, the loss of improved follicle 

health at 22 months of age in prenatally TP-treated ewes may relate to the methodology 

used to determine follicle health. Thus, androgenisation by TP appears to prevent apoptosis 

and enhances survival of early gonadotrophin-independent antral follicles, and, if this 

continues to later stages of development, could also explain the persistent growth of large 

follicles observed in ovaries from TP-treated ewes (Manikkam et a l, 2006; Dumesic et al, 

2007; Steckler et a l, 2007a). Prenatal androgenisation by TP improving follicle health in 

our study with Dorset ewes is in contrast with results obtained from the Suffolk model, 

where the additive effects of testosterone’s oestrogenic and androgenic action increased the 

absolute number of healthy antral follicles (both <1 mm in diameter and those >1 mm in 

diameter), but not the proportion of healthy antral follicles in 10 month old sheep (Smith et 

a l, 2008). Discrepancies in the results obtained between the two studies could be as a 

result of the different breeds of sheep used in the study (Dorset vs Suffolk), and the fact 

that the Dorset breed is more susceptible to the programming actions of testosterone 

(Sharma et a l, 2002; Unsworth et a l, 2005; Manikkam et a l, 2006; Manikkam et al, 

2008). Additionally, in Smith’s study, ovaries were collected in early-mid January, which 

is still in the breeding season for this breed (Robinson & Karsch, 1984) and the 

reproductive cycles were synchronised by prostaglandin F2a . In contrast, the ovaries from 

the 10 month old Dorset ewes in the current study were collected in late February (out of 

the breeding season) and without synchronisation of reproductive cycles.

As seen in Chapter 3, abnormally large antral follicles from prenatally TP-treated ovaries 

seem to have acquired the ability to avoid atresia causing follicles to grow for longer and 

attain larger maximum sizes in both breed models. However, the observation of more 

healthy small antral follicles, when Suffolk androgenised ewes are 10 months of age, may 

also be due to enhanced recruitment leading to a larger proportion of growing follicles 

within the follicle pool, and thus higher absolute numbers of growing antral follicles. 

Evidence for prenatal testosterone enhancing recruitment exists in both the Dorset 

(Forsdike et a l, 2007) and Suffolk (Steckler et a l, 2005; Smith et a l, 2008) model, and
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altered recruitment is facilitated by androgenic programming (Smith et al, 2008). 

Unfortunately, as quarter ovarian sections were used in our study using the Dorset model it 

was not possible to determine accurately whether there were absolutely more antral 

follicles within each ovary as a result of prenatal androgenisation by TP. Therefore, future 

studies should use the whole ovary as the starting material and use a stereological 

approach, as described (Smith et al, 2008), to determine if increased follicle survival also 

results in an increase in the total number of healthy antral follicles. This would also enable 

determination of the effect of breed of sheep on follicle recruitment in prenatally 

androgenised ewes. Future studies should also determine whether it is testosterone’s 

oestrogenic or androgenic action that results in improved antral follicle health within the 

Dorset breed. Therefore, prenatal androgenisation should be achieved using the non- 

aromatisable precursor DHT in order to delineate the oestrogenic and androgenic effects of 

prenatal TP on antral follicle health.

At 10 months of age androgenisation increased the proportion of healthy follicles 0.2- 

1 mm in diameter (gonadotrophin independent stage (Scaramuzzi et al, 1993)). Thus, it 

appears that prenatal programming by TP improves follicle health at a specific stage of 

antral follicle growth, and this improved follicle health may be independent of 

gonadotrophin (FSH) status. Given the altered endocrine environment of increased LH 

(Sarma et al, 2005) and increased insulin concentrations (Recabarren et al, 2005) seen in 

prenatally androgenised ewes, this may directly or indirectly (via effects on other follicles) 

support (small) antral follicles in TP ewes. Insulin has been shown to increase estradiol 

production in cultured bovine granulosa cells from small antral (1 to 4 mm) follicles 

(Armstrong et a l, 2002), demonstrating a direct action on follicle function, while 

oestradiol, in turn, is a survival factor (Rosenfeld et a l, 2001). Additionally, insulin 

treatment has been shown to increase the number of follicles greater than 3 mm in diameter 

after ovulation in sheep (Hinch & Roelofs, 1986), and the addition of insulin also increases 

the number of small follicles in pigs (Matamoros et a l, 1991). Thus, increased 

concentrations of peripheral insulin could promote oestradiol production, and the anti­

apoptotic actions of oestradiol may result in improved antral follicle health. More small 

antral follicles (0.2-1 mm) will then continue to grow and reach sizes normally indicative 

of the FSH dependent stage of development. The proportion of healthy antral follicles 

larger than 1 mm is much lower, and unchanged in androgenised ewes (our study) but this 

may lead to more healthy antral follicles > 1 mm if absolute numbers are increased (Smith 

et al, 2008). Average concentrations of FSH are unchanged (Sarma et al, 2005), and may
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be able to support a larger number of FSH-dependent follicles, but transient FSH 

elevations and follicle wave growth have not been monitored in androgenised ewes.

A higher proportion of larger antral follicles (>1-2 and >2 mm in diameter) were seen as 

ewes grew older in both treatment groups, which mirrors that seen in women (Broekmans 

et a l, 2007; Broekmans et a l, 2009). Additionally, a higher proportion of larger antral 

follicles (>1-2 and >2 mm) were classified as healthy when ewes were 22 months of age in 

both treatment groups. Thus, it appears that the effects of improved follicle health by 

prenatal androgenisation in small antral follicles (0.2-1 mm) are lost as sheep age and 

controls “catch up” with their TP-treated counterparts. This could be as a result of 

enhanced follicle depletion present in the Suffolk TP-treated ewe (Smith et al, 2008) 

leading to fewer antral follicles at 22 months of age, however this does not explain 

improved follicle health.

However, the survival or anti-apoptotic mechanisms programmed by the effects of prenatal 

TP, which improve follicle health in smaller than 1 mm and in large antral follicles, are 

unknown. Therefore, expression of pro- and anti-apoptotic factors may be altered in 

smaller sized FSH-independent follicles. Both CASP3 and BAX play roles in small antral 

follicle atresia (Mani et a l, 2010), thus future studies into the investigation of follicle 

atresia should use semi-quantitative immunohistochemistry to determine if the protein 

levels of either factor are altered by prenatal androgenisation.

4.4.2 Antral Follicle Steroidogenesis Capacity

HSD3B1 was present in thecal cells of antral follicles, from 0.24 mm in diameter as has 

been previously determined (Logan et a l , 2002). Androgenisation by TP did not increase 

the proportion of antral follicles immunoreactive for HSD3B1 in thecal cells. By 22 

months of age, the proportion of follicles with HSD3B1 present in the theca cells in 

controls and TP-treated ewes was reduced compared to ewes aged 10 months. We are 

unaware of any previous studies that have investigated the proportion of antral follicles 

immunoreactive for HSD3B1 in theca cells in aging sheep. Thus, from our results, it would 

appear that in sheep, as the ovary ages, the proportion of antral follicles synthesising 

progesterone in the theca decreases.

Granulosa cells from small antral follicles were immunoreactive for both HSD3B1 and 

CYP19A1 (Conley et a l, 1995; Logan et a l, 2002) and no thecal cells showed 

immunoreactivity for CYP19A1 as expected (Logan et al, 2002). Expression of HSD3B1
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in granulosa cells is a follicle differentiation marker, as its expression was only determined 

in selected dominant follicles (Bao & Gaverick, 1998; Fortune et al., 2001). As more early 

antral follicles are healthy, and large antral follicles show much enhanced progesterone 

synthesis, we asked whether the HSD3B1 enzyme was already expressed in granulosa cells 

from smaller antral follicles in TP-treated ovaries which would demonstrate premature 

follicular differentiation. Androgenisation by TP was associated with small antral follicles 

less than 1 mm in diameter showing immunoreactivity for HSD3B1 in granulosa cells from 

10 month old ewes. However, due to the small number of follicles analysed, no statistical 

difference was achieved between the two treatment groups in the proportions of early 

antral follicles immunoreactive for HSD3B1 in granulosa cells. Thus, prenatal 

androgenisation by TP did not lead to premature differentiation using HSD3B1 protein 

localisation as the differentiation marker.

Prenatal TP treatment was associated with a higher proportion of small antral follicles (<1 

mm in diameter) immunoreactive for CYP19A1 in granulosa cells in the older age group of 

sheep. In normal sheep, the aromatase protein is not observed in granulosa cells of any 

follicles <3 mm in diameter (Logan et al, 2002), but is present in follicles between 3.5 and 

5 mm in diameter (Huet et a l, 1997), and as a result can be used as a differentiation 

marker for terminal follicle development. This suggests that early antral follicles from 

0.2 mm in diameter from prenatally TP-treated ewes are already further differentiated than 

their control counterparts of a similar size. Thus, it appears that prenatal androgenisation 

by TP results in premature follicle differentiation during the early stages of antral follicle 

development, specifically at the small antral follicle stage, and continues through to the 

large antral stage. Previous evidence that prenatal androgenisation by TP enhances follicle 

differentiation at 10 months of age exists within the Suffolk breed, where follicles 

exhibited antrum formation at smaller sizes (Smith et al, 2008).

Oestradiol production by granulosa cells, both in vivo (McNatty et a l, 1985; Campbell et 

al, 1998) and in vitro (Campbell et a l, 1996) is stimulated by FSH, whereas withdrawal of 

FSH support in vivo, in the absence of LH, leads to an acute decrease in oestradiol 

secretion and atresia of cohort and dominant follicles (Campbell et a l, 1999). It is well 

established that it is mainly the action of FSH that induces the expression of CYP19A1 in 

granulosa cells (Gore-Langton & Dorrington, 1981; Richards, 1994) and, in regard to 

follicle development, this induction usually occurs in the FSH-dependent stage (Campbell 

et a l, 2003; Evans, 2003a). However, there is no evidence to suggest that it is the action of 

FSH that increases the survival of early antral follicles, as follicles of this size are

102



considered FSH-responsive for proliferation of cells, but not FSH-dependent for enhanced 

growth and differentiation (Scaramuzzi et al, 1993) Only granulosa cells within large 

antral follicles show CYP19A1 protein localisation (Logan et a l, 2002), when follicles are 

FSH dependent. It appears that androgenisation induces aromatase expression within early 

antral follicles considered independent of FSH and, thus, some other factors, such as lGF-1 

(Spicer et al, 1993; Costrici et al, 1994; Richards, 1994) and insulin (Christman et al, 

1991; Armstrong et al, 2002) could induce granulosa cell CYP19A1 expression.

Early antral follicles are able to synthesise oestradiol given that the required steroidogenic 

enzymes are expressed in theca cells of preantral follicles (Conley et a l, 1995; Logan et 

al, 2002) and, thus, the precursor required for oestradiol synthesis is available. While 

increased systemic oestradiol concentrations in prenatally androgenised ewes (by TP) seen 

in Chapter 3 are most likely due to increased DF and SF capacity for steroidogenesis, 

premature differentiation of granulosa cells of antral follicles less then 1 mm in diameter 

may also add to the ovarian secretion of oestradiol.

It is difficult to speculate about how advanced follicle development arises in prenatally 

androgenised ewes. Previous studies of the effects of continual exposure to elevated 

concentrations of gonadotrophins on antral follicle development in Booroola Merino sheep 

determined that follicles synthesise steroids and mature at smaller diameters compared to 

those exposed to normal levels of FSH and LH (McNatty & Henderson, 1987). However, 

in the androgenised Suffolk ewe, FSH concentrations remain static and low (Sarma et al, 

2005) indicating that small antral follicles may have an inherent high FSH-responsiveness 

or an FSH-independent mechanism for growth and differentiation (induction of oestradiol 

production). Such a FSH-independent mechanism for growth and differentiation of small 

antral follicles may involve other growth factors such as insulin or lGF-1 being present in 

higher concentrations within the ovary in TP-treated ewes. It is also possible that the 

advanced follicle differentiation is a result of elevated peripheral concentrations of LH 

observed in prenatally TP-treated ewes (Robinson et al, 1999; Sarma et al, 2005). In 

order to investigate antral follicle differentiation and their ability to respond to FSH, 

insulin, lGF-1 and LH in TP-treated animals, future studies should use 

immunohistochemistry to investigate both the presence and amount of FSHR, lGF-1 and 

insulin receptor, and LHR present in granulosa cells of early antral follicles.

In conclusion, the results from this study demonstrate that androgenisation by TP programs 

antral follicle health and follicle development such that survival of early antral follicles is
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enhanced, and an important aspect of follicle differentiation, specifically aromatase 

acquisition in granulosa cells, is achieved at smaller sizes. It remains to be seen whether 

this is related to advanced FSH- or indeed LH-dependence in small antral follicles, if it is 

the androgenic or oestrogenic action of testosterone that results in premature follicle 

differentiation, or whether it is the action of elevated systemic LH that drives this 

dysfunction of antral follicle development.
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C h a p t e r  5. E f f e c t  o f  p r e n a t a l  t e s t o s t e r o n e  t r e a t m e n t  o n  g r a n u l o s a  c e l l

GENE EXPRESSION IN DOMINANT AND SUBORDINATE FOLLICLES OF ADULT EWES

5.1 In t r o d u c t io n

As demonstrated in Chapter 3, prenatal androgenisation by testosterone propionate (TP) 

treatment in sheep during a specific critical period in gestation results in follicular 

abnormalities within the largest follicles designated the dominant (DF) and subordinate 

follicle (SF) based on intrafollicular oestradiol. Specifically, DF and SF from TP-treated 

ovaries show enhanced growth and increased oestradiol and progesterone synthesis. The 

mechanism by which this increase in growth and steroidogenesis arises is unknown. An 

increase in the number of granulosa cells, as a result of reduced apoptosis and/or increased 

proliferation, could explain increased growth. Such abnormal proliferation and reduced 

apoptosis within persistent follicles leading to polycystic ovaries has been shown in rats 

(Salvetti et al, 2009). Additionally, an increase in follicular fluid oestradiol and 

progesterone in DF and SF implies that these follicles are highly differentiated, as both 

characteristics sequentially (first enhanced oestradiol, then enhanced progesterone 

synthesis, (Sunderland et a l, 1994; Evans et al, 2000)) are markers of preovulatory 

follicle differentiation (Webb et al, 2003). Thus, changes in the expression profiles of 

follicle growth, survival and differentiation genes would help explain the mechanisms by 

which prenatal TP androgenisation programs adult antral follicle function.

In order to characterise further the follicular and cellular abnormalities underlying 

excessive and prolonged large antral follicle growth and enhanced steroidogenesis in TP- 

treated ewes, granulosa cell mRNA expression for genes known to regulate gonadotrophin 

responsiveness, steroidogenesis, cell proliferation, cell survival or apoptosis in growing 

antral follicles before and after dominant follicle selection (Bao et a l, 1997; Mihm & 

Austin, 2002; Fortune et a l, 2004; Webb & Campbell, 2007) were studied. The genes 

investigated included those conveying gonadotrophin responsiveness, luteinising hormone 

receptor (LHR) and follicle stimulating hormone receptor (FSHR exon 4/5 and FSHR exon 

9/10), and the steroidogenic enzymes aromatase (CYP19A1) and 3-beta hydroxysteroid 

dehydrogenase (HSD3B1). We expected that, as a result of prenatal programming 

increasing steroidogenesis, granulosa cell CYP19A1 and HSD3B1 mRNA expression 

would be upregulated by prenatal androgen excess. Additional genes studied included 

those encoding the FSH dependent somatic cell differentiation markers inhibin alpha 

(INHA), inhibin beta subunit A (INHBA) and follistatin (FST), the cell proliferation 

marker Cyclin D2 (CCND2), the cell differentiation marker, macrophage migration 

inhibitory factor (MIF) and the cell differentiation marker betaglycan (BGCAN). The final
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group of genes investigated encompassed those encoding proteins with either pro-apoptotic 

or anti-apoptotic function. The pro-apoptotic markers included caspase-3 (CASP3) and 

BCL2 associated X protein (BAX), while myeloid cell leukemia sequence 1 (MCL-1) is 

anti-apoptotic (Johnson & Bridgham, 2002). As a result of the stimulation of growth in 

large antral follicles by prenatal androgenisation (Chapter 3), we would expect an 

upregulation of the expression of anti-apoptotic genes {MCL-1) and a downregulation of 

the expression of pro-apoptotic genes (CASP3 and BAX) within granulosa cells of DF and 

SF. To the best of our knowledge, no group has studied the granulosa cell mRNA 

expression profiles within DF and SF recovered from prenatally TP-treated ewes. This 

investigation will, therefore, facilitate the molecular characterisation of granulosa cells 

within DF and SF recovered from TP-treated ewes. A brief introduction to each gene 

together with a description of its function is given below.

Gonadotropin responsiveness (LHR, FSHR exon 4/5 and FSHR exon 9/10)

The gonadotrophins, FSH and LH, are the primary endocrine hormones that regulate 

follicle growth and development, particularly during the terminal stages of follicular 

growth (Phillips et al, 1994; Campbell et al, 1999). The receptors for the gonadotrophins, 

luteinising hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR), are 

required for gonadotrophin action (Simoni et al, 1997; Dufau, 1998). Follicle stimulating 

hormone receptor and LHR are expressed in granulosa cells of large, highly differentiated 

antral follicles (Hillier, 2001). Changes in the pattern of expression of mRNA for 

gonadotrophin receptors and steroidogenic enzymes within follicular cells appear to be 

closely linked to changes in peripheral concentrations of gonadotrophins and steroids 

(Webb et al, 2003). Any changes in gonadotrophin receptor transcript levels are likely to 

alter gonadotrophin responsiveness (Mihm et al, 2006). Both LHR and FSHR genes 

encode G-coupled protein receptors (Simoni et a l, 1997; Dufau, 1998; Hillier, 2001). The 

post-receptor signalling systems that relay gonadotrophin action into the cell nucleus rest 

mainly on adenylyl cyclase, cAMP production and activation of protein kinase A (PKA) 

(Richards, 1994; Richards et al, 1998). Stimulation by FSH via FSHR and LH via LHR 

increases intracellular cAMP formation and activation of genes required for proliferation 

and differentiation (Hillier, 2001). The effect of prenatal programming by excess 

androgens on the ability of granulosa cells from DF and SF to respond to the 

gonadotrophins is unknown. The ability of granulosa cells to respond to gonadotrophins is 

likely to be abnormal given the increased LH pulsatility within androgenised ewes (by TP) 

(Sarma et al, 2005; Veiga-Lopez et a l, 2009). Growing DF show an upregulation of LHR 

and downregulation of FSHR mRNA in granulosa cells (Mihm et al, 2006), and
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preovulatory follicles in the follicular phase (which may be similar to the large persistent 

follicles seen in prenatally TP-treated ewes), show increased LH- but decreased FSH- 

receptor binding (Ireland & Roche, 1983b). Thus, from these previous results, it is 

speculated that prenatal androgenisation would up regulate granulosa cell LHR expression, 

but down regulate FSHR expression within large antral follicles. This study investigated 

the granulosa cell expression levels of two FSHR amplicons. The FSHR exon 4/5 primer 

combination detects mRNA encoding the extracellular ligand binding portion of the 

receptor, which includes alternate transcripts not encoding the functional FSH receptor 

(Simoni et al, 1997). In comparison, the amplicon using the FSHR exon 9/10 primer 

combination encodes the intracellular domain of FSHR (Simoni et al, 1997). Although 

exon 10 is fundamental for signal transduction, it is not necessary for ligand binding 

(Gromoll & Simoni, 2005). Both transcripts were investigated to determine the expression 

profiles of both the ligand binding and signal transduction domains of the FSHR.

Steroidogenesis (CYP19A1 and HSD3B1)

The steroidogenic enzymes aromatase (CYP19A1) and 3 beta-hydroxysteroid 

dehydrogenase (HSD3B1) are responsible for oestradiol and progesterone production, 

respectively (Conley et a l, 1995; Gruber et a l, 2002); Amsterdam et a l, 2003). Follicular 

steroidogenesis requires both theca and granulosa cells for the production of steroids, 

working together in cooperation (Drummond, 2006). Progesterone, androgens and 

oestrogen are synthesised by the ovary in a sequential manner, with each serving as 

substrate for the subsequent steroid in the pathway. Such pathways have not been studied 

in antral follicles from androgenised ewes. In the sheep, CYP19A1 is present solely in 

granulosa cells from follicles greater than 3.5 mm in diameter (Huet et al, 1997; Logan et 

al, 2002), while HSD3B1 is localised to both granulosa and theca cells in similarly sized 

follicles (Conley et al, 1995; Logan et al, 2002). Granulosa cell CYP191A and HSD3B1 

expression in ovine DF is high compared to developing follicles that are smaller (3 to 

5 mm) in diameter (Duggavathi et a l, 2006). Increased expression of both of these 

enzymes within granulosa cells of DF and SF could explain the higher intrafollicular fluid 

oestradiol and progesterone concentrations observed in TP-treated ewes (Chapter 3) due 

to increased steroid synthesizing capacity.

FSH-dependent cell differentiation (INHA, INHBA and FST)

Abnormal differentiation of DF and SF by prenatal androgenisation through TP was also 

investigated by determining granulosa cell expression of inhibin alpha (INHA) subunit, 

inhibin beta subunit {INHBA) and follistatin {FST). The INHA gene encodes the a-subunit
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necessary to form the peptide inhibin whose role, in synergy with oestradiol, is to inhibit 

tonic FSH secretion from the pituitary by inhibiting the stimulatory actions of activins 

(Mann et a l, 1990; Baird et a l, 1991). As detailed earlier, circulating concentrations of 

inhibin A are highest during the late follicular phase (Campbell et a l, 1990; Findlay et al, 

2000), as a result of production from large preovulatory oestrogenic follicles. INHBA 

encodes the pA-subunit required to form either inhibin A (a-pA subunits) or two of the 

three activin peptides which are generated following dimérisation of P subunits, activin A 

(PA-PA) and activin AB (PA-PB) (Webb et a l, 1994; Knight & Glister, 2001). Granulosa 

cell INHBA expression increases as follicle size increases, the DF producing ever 

increasing amounts throughout its growth until ovulation or regression (Roberts et al, 

1993). FST binds to and bio-neutralises the actions of activin (Ying, 1988) which in an 

indirect way promotes lutéinisation as activin inhibits lutéinisation (reviewed, Knight & 

Glister, 2006). FST is present in granulosa cells of antral follicles and as the follicle 

matures expression increases and follicular fluid concentrations also increase, while during 

atresia granulosa cell FST expression is reduced (Roberts et a l, 1993; Lin et al, 2003; 

Glister et a l, 2006). Any changes in the expression levels of these genes will also affect 

FSH secretion and may affect FSH-dependent differentiation of antral follicles within 

prenatally androgenised ewes.

Cell proliferation and differentiation (CCND2 and MIF)

The protein encoded by Cyclin D2 (CCND2) gene belongs to the highly conserved Cyclin 

family, whose members are characterised by a dramatic periodicity in protein abundance 

through the cell cycle. Cyclins function as regulators of Cyclin dependent kinases 

(CDK’s), CCND2 forming a complex with, and functioning as, a regulatory subunit of 

CDK4 or CDK6, whose activity is required for cell cycle Gl/S transition (Sicinski et al, 

1996) and, thus, promotes cell proliferation. Knockout CCND2 studies in mice suggest 

essential roles of this gene in ovarian granulosa and germ cell proliferation (Sicinski et al, 

1996). Both FSH and oestradiol have been shown to induce CCND2 expression in 

granulosa cells in mice (Robker & Richards, 1998). CCND2 has been shown to be an 

indirect marker of follicle survival, as in the bovine, CCND2 expression within granulosa 

cells is upregulated within DF when compared to SF (Mihm et a l, 2008). In addition, 

CCND2 is downregulated when follicles luteinise in response to the LH surge, therefore, 

when cell proliferation ceases during final differentiation before ovulation (Sicinski et al, 

1996; Robker & Richards, 1998; Hemandez-Gonzalez et al, 2006). Thus, reductions in 

CCND2 granulosa cell expression may mark follicle differentiation within the ruminant 

follicle, demonstrating a shift from cell proliferation to differentiation.
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Macrophage Migration Inhibitory Factor (MIF) was discovered as an activated T- 

lymphocyte-derived protein that inhibits the random migration of macrophages in vitro but 

is also secreted by macrophages in response to cytokine stimulation (Nishihira, 1998; 

Wada et al., 1999). MIF exerts a variety of biological functions and is expressed in cells 

other than those belonging to the immune system (Wada et a l, 1999). Various possible 

roles of MIF in different aspects of reproduction, such as ovulation, blastocyst 

implantation, and embryogenesis have been identified (Nishihira, 1998). MIF is expressed 

in the bovine CL (Bove et a l, 2000), providing evidence for a role for MIF in the 

processes of CL formation, and, thus, may be a possible marker of lutéinisation 

(differentiation). In the ovine, MIF is localised to large luteal cells in CL and granulosa 

cells of primary, secondary and tertiary follicles (Rath-Coursey et al, 1999). Similar to 

CCND2, in the bovine, MIF is a follicle dominance marker gene, with mRNA levels 

elevated in the DF compared to the SF (Mihm et a l, 2008). Any changes in the expression 

profile of CCND2 and MIF will provide an insight into whether prenatal androgenisation 

by TP alters granulosa cell proliferation and differentiation in large antral follicles from 

adult ewes.

Differentiation and apoptosis -  Betaglycan (BGCAN) (TGFbeta III receptor)

Transforming growth factor (TGF)-beta is a multifunctional cytokine that modulates 

several tissue development and repair processes, including cell differentiation, cell cycle 

progression, cellular migration, adhesion, and extracellular matrix production (Massague, 

1990; Moulton, 1994; Clark & Coker, 1998). Previous studies in sheep have shown that 

ovarian cells express both TGFB mRNA and proteins involved in numerous ovarian 

functions (Findlay et al, 2001; Knight & Glister, 2003). Similar to other growth factors, 

the signals of TGFB are mediated by the interaction with various cell surface receptors (Lin 

& Moustakas, 1994; Chang et a l, 2002). One such receptor is the TGFbeta III receptor, 

also known as betaglycan (BGCAN). In addition to serving as a co-recptor for TGFP, 

betaglycan also increases the affinity of inhibins for the activin type IIA receptor, thereby 

blocking activin binding and signalling through this receptor (Lewis et a l, 2000), possibly 

playing an important role in regulating follicular growth (Forde et a l, 2008). BGCAN 

expression is induced by FSH in cultured human granulosa cells (Liu et al, 2003), and 

may be an indirect differentiation marker as BGCAN mRNA expression is down regulated 

in the DF compared to the SF (Evans et al, 2004; Forde et a l, 2008). Any changes in the 

expression pattern of BGCAN will provide an insight into the differentiation status of 

granulosa cells of DF and SF of prenatally TP- ewes. This will also allow the estimation of
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the relative roles of activin A and inhibin A within such follicles, as any BGCAN 

upregulation may increase inhibin’s ability to antagonize activin actions.

Cell survival/apoptosis (MCL-1, CASP3 and BAX)

Increased expression of anti-apoptotic genes together with decreased expression of pro- 

apoptotic genes, thus reducing granulosa cell death, would result in follicles failing to 

regress and continuing to grow achieving larger follicle sizes. Such enhanced growth of 

follicles from prenatally androgenised ewes was seen in Chapter 3. As stated previously 

granulosa cell death during follicular atresia results from apoptosis (Tilly et al, 1991; 

Hsueh et al, 1994a; Rolaki et al, 2005). Apoptosis is the most characterised event in 

atretic follicles and is a highly regulated, physiological process (Jolly et a l, 1994; Jolly et 

al, 1997a, b). Apoptosis occurs at all stages of follicle development and, within the 

follicle, the first sign of atresia is apoptotic granulosa cells (Kugu et a l, 1998; Irving- 

Rodgers et al, 2001). Many prosurvival and proapoptotic proteins are involved in 

apoptosis (Johnson & Bridgham, 2002; Rolaki et a l, 2005). The BCL-2 gene family 

comprises a large family of proteins, whose individual members can act in either an anti- 

apoptotic or pro-apoptotic manner when differentially expressed (Hsu & Hsueh, 2000). 

One such member is myeliod cell leukaemia factor 1 (MCL-1) which is an anti-apoptotic 

protein (Sato et a l, 1994; Krajewski et al, 1995; Hsu & Hsueh, 2000). Using the yeast 2 

hybrid system MCL-1 was identified as the main ovarian antiapoptotic BCL-2 protein (Hsu 

& Hsueh, 2000). MCL-1 is expressed in the developing follicle throughout gestation, 

particularly in oocytes, granulosa cells and in the adult ewe in granulosa lutein cells and is 

considered to have an important follicular developmental role (Krajewski et al, 1995; 

Hartley et al, 2002). Within bovine dominant follicles MCL-1 granulosa cell expression is 

upregulated (Evans et a l, 2004) and, thus MCL-1 also acts as a DF survival marker gene. 

Its antagonist, BAX, is also expressed in granulosa cells during follicular development 

(Choi et al, 2004). Immunohistochemical localization of BAX in the human ovary reveals 

abundant expression in granulosa cells of early atretic follicles, whereas BAX protein is 

extremely low or non-detectable in healthy or grossly-atretic follicles (Kugu et al, 1998). 

The major downstream effector of apoptosis, for both the intrinsic and extrinsic apoptotic 

pathways is caspase-3 (CASP3) (Matikainen et a l, 2001; Johnson & Bridgham, 2002), 

which activates endogenous nucleases responsible for DNA fragmentation (Thomberry & 

Lazebnik, 1998). Studies using GASP3 gene knockout mice determined that CASP3 is 

functionally required for granulosa cell apoptosis during follicular atresia (Matikainen et 

al, 2001). Granulosa cells from healthy follicles possess almost exclusively the inactive 

(unprocessed) form of CASP3, whereas granulosa cells from atretic follicles demonstrate
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increased concentrations of activated CASP3 (reviewed, Johnson & Bridgham, 2002; 

Feranil et al, 2005) and increased expression of the CASP3 gene within human granulosa 

cells (Izawa et a l, 1998) and ovine luteal cells (Rueda et a l, 1999). In PCOS patients 

granulosa cell apoptosis is reduced through lower ovarian CASP3 mRNA and activated 

protein expression (Das et a l, 2008). Thus, any changes in expression of these three anti- 

and pro-apoptotic genes {MCL-1, BAX and CASP3) will provide an insight into the effect 

of prenatal testosterone on the programming of apoptosis in granulosa cells of DF and SF 

from adult ewes.

In summary, increased growth, enhanced differentiation and steroidogenesis within the 

largest antral follicles may be due to differences in the expression of genes involved in 

gonadotrophin responsiveness, steroidogenesis, cell differentiation, cell survival factors 

and apoptosis. The aim of this study was to determine the effect of prenatal 

androgenisation by excess TP on the mRNA expression levels of a selected number of 

genes mentioned above within granulosa cells of DF and SF.

5.2 M a t e r ia l s  a n d  M e t h o d s

5.2.1 Animals and Prenatal Treatment

Ewes were androgenised using an established model (Robinson et al, 1999; Steckler et al, 

2005) and euthanased at 10- (Year Group 3, Control = 7, TP = 10, Year 4, Control = 7, TP 

= 6 and Year Group 5, Control = 14, TP = 15, DHT = 8) and 12-months of age (Year 

Group 2, Control = 7, TP = 6 ewes) for ovary collection.

5.2.2 Isolation of Granulosa Cells

Ovaries from control and TP-treated ewes were harvested at 10 and 12-months of age and 

the largest antral follicles over 3.5 mm (controls) or from 5 mm (TP androgenised ewes) 

were identified from surface measurements using callipers, excised and the follicular fluid 

collected as described in section 2.4. Granulosa cells from individual follicles were 

collected, washed and stored as described in section 2.4 prior to RNA extraction.

5.2.3 Molecular Biology

RNA was extracted from granulosa cells recovered from DF and SF using the TRIzol 

reagent and DNase I treated. Following DNase I treatment, RNA quantity and quality was 

determined by spectrophotometry. Superscript III First-Strand Synthesis System 

(Invitrogen Ltd, Paisley, UK) was used to synthesise cDNA from 500 ng of total RNA 

isolated from granulosa cells of individual follicles. Following reverse transcription, cDNA 

quality and quantity was also determined by spectrophotometry. The semi-quantitative
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real-time PCR (qPCR) method was used to measure gene expression within the granulosa 

cells and validation studies were conducted to ensure that the amplification efficiencies of 

the genes of interest were similar to the references gene. Precise details of all these 

methods are given in section 2.7. The qPCR reactions were performed in duplicate, and a 

reagent blank was included within each plate to detect contamination by genomic DNA. 

The sequences of the forward and reverse primer for each gene of interest used in the study 

are shown Table 4.1. We quantified LHR, FSHR exon 4/5, FSHR exon 9/10, CYP19A1, 

HSD3B1, INHA, INHBA, FST, CCND2, MCL-1, BGCAN, MIF, CASP3 and BAY mRNA 

expression using the comparative Ct (cycle threshold) method (Schmittgen & Livak, 2008) 

and we calculated gene expression relative to the reference gene {ACTE). The expression 

profiles of the genes of interest used in the study were (in some cases) investigated only in 

certain years, depending on the availability of cDNA (year group 4). Table 5.2 lists the 

year groups that were studied for each gene of interest.

5.2.4 Statistical analyses

For individual follicle gene expression profiles within granulosa cells of DF and SF, a 

GLM with year group (2-5), prenatal treatment (Control and TP) and follicle classification 

(DF and SF) as the fixed factors was used to determine any influences on follicle mRNA 

expression. In addition, any logical interactions between factors were included in the 

model. If there were more than 2 levels to a factor, a Tukey’s posthoc test was used to 

determine significant differences between levels within that factor. Because the factor 

‘animal’ is known to contribute to the variation in results, but could not be included in the 

GLM analyses, a generalised least square (GLS) model was also applied to the data with 

the same fixed factors as for the GLM analyses, but with ‘animal’ included as a random 

factor to determine whether this altered the outcome of GLM analyses. The ‘animal’ effect 

was significant, but overall did not alter the results from the GLM analysis. However, the 

GLS analysis did not consider interactions and only had limited post hoc analyses. Because 

of this and the agreement between GLM and GLS analyses, the results from the GLM 

analyses with interactions and posthoc tests are presented. In addition to the GLM results, 

GLS analysis showed that follicle classification tended to influence levels of an interesting 

subgroup of FSH-dependent transcripts, and these results will also be presented.
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Gene of Interest Year Groups Studied
LHR 2, 3, 4 and 5

FSHR exon 4/5 2, 3, 4 and 5
FSHR exon 9/10 2, 3 and 5

CYP19A1 2, 3, 4 and 5
HSD3B1 2, 3, 4 and 5

INHA 2 and 3
INHBA 2 and 3

FST 2, 3 and 4
BGCAN 2 and 3
CCND2 2, 3 and 5

MIF 2, 3, 4 and 5
MCL-1 2 and 3
BAX 2 and 3

CASP3 2, 3 and 5
Table 5.2 The year groups investigated for each gene of interest used within the study into 
the effects of prenatal androgenisation by testosterone propionate on granulosa cell mRNA 
gene expression from dominant and subordinate follicles.

5.3  R e s u l t s

Gonadotrophin responsiveness - Expression of mRNA encoding LHR, FSHR exon 4/5 

and FSHR exon 9/10 in granulosa cells of DF and SF.

Quantification of mRNA species in granulosa cells from DF and SF showed different 

mRNA levels for the gonadotropin receptor genes LHR and FSHR (using both primer 

combinations) between TP-treated and control ewes (Figures 5.1, 5.2 and 5.3, 

respectively). In granulosa cells of DF and SF, LHR was consistently expressed at a higher 

level in TP-treated ewes than in controls (Figure 5.1). LHR mRNA levels were also 

increased in granulosa cells from follicles classified as dominant compared to those 

classified as subordinate (Figure 5.6). Differences in the expression of LHR mRNA 

between years was apparent, with expression in year group 5 significantly different to all 

other year groups. While there was only a tendency for FSHR exon 4/5 mRNA expression 

to be lower in follicular granulosa cells of TP-treated ewes using the primer combination 

which encodes the extracellular ligand binding portions of the receptor (Figure 5.2), 

prenatal androgenisation by TP clearly reduced the expression of FSHR exon 9/10 mRNA 

expression in granulosa cells of DF and SF from each ewe (Figure 5.3). FSHR mRNA 

levels were similar in granulosa cells from follicles classified as dominant compared to 

those classified as subordinate using both primer combinations (Figure 5.6). Equally, there 

was no difference between each year group in FSHR mRNA levels using both primer 

combinations. Analysis tables for LHR, FSHR exon 4/5 and FSHR exon 9/10 mRNA 

granulosa cell expression within DF and SF, which list the P values determined for each 

factor included within the statistical model, are shown in Figures 5.1, 5.2 and 5.3 

respectively.
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Expression of mRNA encoding CYP19A1 and HSD3B1 in granulosa ceils of DF and 

SF.

Quantification of mRNA species showed that CYP19A1 expression in granulosa cells of 

DF and SF was similar in TP-treated ewes compared to controls (Figure 5.4). Granulosa 

cell CYP19A1 expression was reduced in granulosa cells from follicles classified as 

dominant compared to those classified as subordinate (Figure 5.6). Differences in the 

expression of CYP19A1 mRNA between years was apparent, with expression in year group 

3 significantly lower to all other year groups. In granulosa cells of DF and SF, HSD3B1 

was consistently expressed at a much higher level in TP-treated ewes compared to controls 

(Figure 5.5). HSD3B1 mRNA levels in granulosa cells from DF follicles were reduced 

compared to those detected in SF follicles (Figure 5.6). Year group had a significant effect 

on granulosa cell HSD3B1 expression, with levels in year group 5 being higher than in 

those observed in year groups 3 and 4. Analysis tables for CYP19A1 and HSD3B1 mRNA 

granulosa cell expression within DF and SF, which list the P values determined for each 

factor included within the statistical model, are shown in Figures 5.4 and 5.5, respectively.

FSH dependent cell differentiation - Expression of mRNA encoding INHA, INHBA 

and FST in granulosa cells of DF and SF.

Quantification of mRNA species showed that INHA, INHBA and FST expression in 

granulosa cells of DF and SF were similar in TP-treated ewes compared to controls 

(Figures 5.7, 5.8 and 5.9, respectively). There was a tendency for the ewe year group to 

influence granulosa cell INHA mRNA expression, with levels in year group 3 higher than 

those within year group 2. While both GLM and GLS analysis showed that FST mRNA 

levels were increased in granulosa cells from DF follicles compared with those detected in 

SF follicles (Figure 5.13), only GLS analysis showed that SF INHA mRNA levels tended 

to be (P < 0.1) and SF INHBA mRNA expression was significantly higher in DF compared 

to SF granulosa cells (Figure 5.13). Analysis tables for INHA, INHBA and FST mRNA 

granulosa cell expression within DF and SF, which list the P values determined for each 

factor included within the statistical model, are shown in Figures 5.7, 5.8 and 5.9 

respectively.
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FSH R e x o n  4/5

n = 28

DF
SF

Follicle Classification 

LHR

r j  SF

n = 34

F SH R  e x o n  9/10

%20

>15-

-10-

£ 5-

0-1

Follicle Classification

DF
SF

n = 25

Follicle Classification

CYP19A1

DF
SF

r
n = 32

Follicle Classification

HSD3B1

0.6

0.4-

n = 33

DF
SF

Follicle Classification

Figure 5.6 Mean mRNA expression in granulosa cells from dominant (DF) and 
subordinate (SF) follicles for the follicle differentiation markers follicle stimulating 
hormone receptor (FSHR), luteinising hormone receptor (LHR)) and steroidogenic 
enzymes (aromatase (CYP19A1) and 3-beta hydroxysteroid dehydrogenase (HSD3B1)) 
investigated in the study. Figure is based on combined data from the 4 year groups studied 
and combined across the two treatment groups. Values presented are mean ± SEM. ACTB 
= p-Actin Within a follicle classification, means without a common superscript differ, 
when GLM analysis was used (P < 0.05).
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Cell proliferation and differentiation - Expression of mRNA encoding CCND2, 

BGCAN and MIF in granulosa cells of DF and SF.

Quantification of mRNA species showed that CCND2 expression in granulosa cells of DF 

and SF was similar between TP-treated ewes and controls (Figure 5.10). Granulosa cell 

CCND2 mRNA levels were reduced in year group 5 compared to year groups 2 and 3. 

Only GLS analysis determined that SF CCND2 mRNA levels in granulosa cells were 

increased compared to transcript levels found in DF (Figure 5.13). Analysis tables for 

CCND2, MIF and BGCAN mRNA granulosa cell expression within DF and SF, which list 

the P values determined for each factor included within the statistical model, are shown in 

Figures 5.10-5.12, respectively. Quantification of mRNA species showed MIF expression 

in granulosa cells of DF and SF to be similar between TP-treated and control ewes (Figure 

5.11). Only GLS analysis showed that granulosa cell MIF mRNA levels in DF tended (P = 

0.06) to be higher compared with those detected in SF (Figure 5.13). Granulosa cell MIF 

mRNA levels were reduced in year group 5 compared to year groups 2, 3 and 4, while 

expression levels were increased in year group 4 compared to year group 3. Prenatal 

androgenisation by TP had no effect on the granulosa cell expression of BGCAN mRNA in 

DF and SF recovered from each ewe (Figure 5.12). Equally, BGCAN mRNA levels in 

granulosa cells from DF were similar to those detected in SF (Figure 5.13). Granulosa cell 

BGC4A mRNA levels were reduced in year group 2 compared to year group 3.

Cell apoptosis - Expression of mRNA encoding MCL-I, CASP3 and BAX in granulosa 

cells of DF and SF.

Granulosa cell MCL-1 mRNA expression levels in DF and SF were similar between 

treatment groups (Figure 5.14). There was also no difference in granulosa cell MCL-1 

expression between DF and SF (Figure 5.17), while expression levels were reduced in year 

group 3 compared to year group 2. Expression levels of CASP3 mRNA in the granulosa 

cells of DF and SF recovered from each ewe were unchanged when ewes were prenatally 

treated with TP (Figure 5.15). CASP3 mRNA levels in granulosa cells from DF follicles 

were similar to those detected in SF follicles (Figure 5.17). Granulosa cell CASP3 mRNA 

levels were reduced in year group 2 compared to year groups 3 and 5. Prenatal 

androgenisation by TP had no effect on the expression of BAX mRNA in the granulosa 

cells of DF and SF recovered from each ewe (Figure 5.16). BAX mRNA levels in granulosa 

cells from DF were similar to those detected in SF (Figure 5.17). Granulosa cell BAX 

mRNA levels were increased in year group 2 compared to year group 3. Analysis tables for 

MCL-1, CASP3 and BAX mRNA granulosa cell expression within DF and SF, which list 

the P values determined for each factor included within the statistical model, are shown in 

Figures 5.14, 5.15 and 5.16, respectively.
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Figure 5.13 Mean mRNA expression in granulosa cells from dominant (DF) and 
subordinate (SF) follicles for the FSH dependent follicle differentiation markers (inhibin 
subunit alpha (INHA), inhibin subunit beta A {INHBA) and follistatin (FST)), follicle 
differentiation markers (betaglycan (BGCAN) and macrophage migration inhibitory factor 
(MIF)) and the follicle proliferation marker cyclin D2 (CCND2) investigated in the study. 
Figure is based on combined data from the 4 year groups studied and combined across the 
two prenatal treatment groups. Values presented are mean ± SEM. ACTB = P-Actin 
Within a follicle classification, means without a common superscript differ, when GLM 
analysis was used (P < 0.05).
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Figure 5.17 Mean mRNA expression in granulosa cells from dominant (DF) and 
subordinate (SF) follicles for the anti-apoptotic myeloid cell leukaemia factor 1 (MCL-1) 
and the pro-apoptotic marker genes caspase 3 (CASP3) and BCL-2 associated protein X 
(BAX) investigated in the study. Figure is based on combined data from the 4 year groups 
studied and combined across the two treatment groups. Values presented are mean ± SEM. 
ACTB = p-Actin  ̂ Within a follicle classification, means without a common superscript 
differ, when GLM analysis was used (P < 0.05).
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5.4 D i s c u s s i o n

This study is the first to have identified changes in granulosa cell transcripts in DF and SF 

as a result of prenatal programming by excess TP. The approach used within this study 

differs from that of previous investigations into the effects of programming through 

prenatal androgen excess in that we have determined molecular changes within granulosa 

cells recovered from individually identified and characterised DF and SF, rather than 

investigation into the endocrine environment (Robinson et a l, 1999; Sarma et a l, 2005; 

Savabieasfahani et al, 2005), or antral follicle persistence, and histological studies into 

antral follicle numbers or follicular gene expression (Steckler et al, 2005; Manikkam et 

al, 2006; Steckler et a l, 2007a; Smith et a l, 2008).

Prenatal androgenisation by TP increased mRNA expression for LHR and HSD3B1 and 

reduced mRNA expression for FSHR in follicular granulosa cells of the largest follicles 

recovered (DF and SF) from each ewe over several years. Prenatal androgenisation by TP 

had no consistent effect on the mRNA expression for granulosa cell genes regulating 

oestradiol production (CYP19A1), FSH-dependent cell differentiation {INHA, INHBA and 

FST) and proliferation (CCND2), differentiation {BGCAN & MIF), and apoptosis {MCL-1, 

MIF, CASP3 & BAX). The implications of these findings on follicle development within 

prenatally androgenised ewes are discussed below.

It is again pertinent to highlight that, as in Chapter 3, significant differences between year 

groups (despite ewes being of the same age) were attained for several genes. Possible 

reasons for these differences were discussed in the third chapter. In particular, year groups 

2 and 5 show most differences to the other year groups and are characterised by an almost 

opposing (in terms of predicted functions of proteins) transcript profile. Year group 2 

granulosa cells express more mRNA for LHR, CYP19A1, CCND2, MCL-1 but also BAX, 

and less mRNA for INHA, BGCAN and CASP3. In contrast, year group 5 granulosa cells 

express more mRNA for HSD3B1 and CASP3, but less mRNA for LHR, CYP19AI, 

CCND2 and MIF. This translated into only a few differences in follicular fluid oestradiol 

to progesterone ratio (lower in year group 5 compared to year groups 3 and 4) between 

year groups, but not into differences in follicle growth between years.

In addition, several differences in transcript levels were detected between dominant and 

subordinate follicles. Within DF, LHR, FST and MIF (GLS only) mRNA gene expression 

was higher compared to SF, while FSHR exon4/5 (GLS only), HSD3B1, CYP19A1, INHA
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(GLS only), INHBA (GLS only) and CCND2 (GLS only) mRNA gene expression was 

reduced in DF compared to SF.

Increased mRNA expression of LHR in granulosa cells of DF and SF from TP-treated ewes 

suggests increased ability to respond to peripheral concentrations of LH, as previous 

studies in the bovine have shown that mRNA and protein binding changes go hand in hand 

(Ireland & Roche, 1983). Hypersecretion of LH in androgenised Dorset (West et a l, 2001) 

and Suffolk (Sarma et a l, 2005) ewes, together with the proposed increased 

responsiveness to LH implies that increased follicular steroidogenesis and enhanced 

growth may be driven by the actions of LH. Increased LH pulsatility stimulates follicular 

growth and oestradiol production in follicles with increasing LH responsiveness as seen in 

the follicular phase of the cycle (Lucy, 2007), and in dominant follicles made persistent by 

extending a frequent LH pulse profile while inhibiting any surges (Bridges & Fortune, 

2003). It is also well known that, within granulosa cells of large antral follicles, LH 

stimulates the synthesis of progesterone (Denning-Kendall & Wathes, 1994). Thus, LH 

may be the gonadotrophin that induces abnormally large follicle development combined 

with high oestradiol and progesterone secretion in androgenised ewes. A reduction in 

FSHR mRNA expression provides further evidence that increased follicle steroidogenesis 

and growth is driven more by the actions of LH than FSH. This avenue should be explored 

further in order to provide conclusive poof that the ovarian abnormalities of increased 

growth and steroidogenesis are as a result of the actions of LH. In a proposed future in vivo 

study, endogenous FSH and LH secretion would be inhibited in the long-term (by means of 

a GnRH antagonist or potent agonist) in control and prenatally androgenised ewes. 

Exogenous LH would then be administered in a manner that replicates the peripheral LH 

concentrations and episodic profiles seen in prenatally androgenised ewes (Sarma et al, 

2005). The resultant ovarian morphology and histology, and the follicular expression 

profiles of LHR and FSHR (real-time PCR), in addition to other genes found to be 

abnormally regulated, such as HSD3B1 would then be investigated. A recent short-term 

study of GnRH antagonist treatment with gonadotrophin supplementation in the follicular 

phase was carried out in the prenatally androgenised Suffolk model (with a less severe 

phenotype), showing that persistent large follicles are still able to respond to different LH 

environments with atresia or ovulation (Steckler et a l, 2008). This supports the concept of 

high LH responsiveness in large growing follicles from prenatally androgenised ewes.

Reduced mRNA expression of FSHR concomitant with an increase in LHR expression in 

granulosa cells of DF and SF from TP-treated ewes provides further evidence that prenatal
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androgenisation by TP results in enhanced DF and SF follicle differentiation, as both these 

molecular characteristics are markers of continued dominant follicle development (Mihm 

et al, 2006). Such enhanced differentiation could represent a degree of premature 

lutéinisation of granulosa cells within DF and SF from androgenised ewes in the absence 

of an LH surge. However, in luteinising follicles in vivo and in vitro oestradiol secretion is 

abandoned in favour of progesterone secretion (Auletta & Flint, 1988), which is clearly not 

the case in follicles from this androgenised ewe model. Further study into whether 

increased granulosa cell mRNA LHR and reduced FSHR expression results in a differential 

response to the gonadotrophins in vitro is necessary.

Prenatal androgenisation resulting in a reduction in granulosa cell FSHR expression within 

DF and SF is in stark contrast to results obtained in women affected by PCOS (Catteau- 

Jonard et a l, 2008). Here, granulosa cell FSHR expression was significantly higher in 

small (8-13 mm) and large (17-22 mm) follicles recovered from PCOS patients undergoing 

controlled ovarian hyperstimulation during a cycle for subsequent in vitro fertilisation 

(Catteau-Jonard et al, 2008). Differences between the two studies could be as a result of 

the controlled ovarian hyperstimulation resulting in a much elevated peripheral FSH 

environment that does not replicate the hormonal environment typically present in 

prenatally androgenised ewes (McNatty et al, 1985; Fry & Driancourt, 1996; Manikkam et 

al, 2008).

Reduced mRNA expression for FSHR, increased mRNA expression for LHR in granulosa 

cells and increased oestradiol and progesterone follicular fluid concentrations in both DF 

and SF from prenatally androgenised ewes seen in Chapter 3 implies that the follicle 

hierarchy is lost and this, to a certain extent, abolishes follicle selection. However, 

differences seen between DF and SF in LHR and FSHR mRNA expression were clearly 

present in both treatments (see below), as no interaction between prenatal treatment and 

follicle classification in granulosa cell mRNA expression levels of the three gonadotrophin 

receptors studied {LHR and the two FSHR transcripts) was present. Thus, this finding 

implies that a follicle hierarchy is still maintained in terms of LH responsiveness in the 

largest follicles, mirroring the results for intrafollicular oestradiol, in prenatally 

androgenised ewes.

Elevated granulosa cell LHR mRNA expression in follicles classified as DF compared to 

SF provided additional validation of the follicle classification criteria used in the study, as 

LHR expression is upregulated within oestrogenic DF in the bovine (Mihm et al, 2006;
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Ryan et al, 2007). Further evidence for validation of our follicle classification criteria was 

obtained by the observation that granulosa cell FSHR mRNA expression tended to be 

downregulated (GLS analysis only) in follicles classified as DF in comparison to SF, 

which parallels that seen in other ruminant studies (Evans et a l, 2004; Mihm et a l, 2008). 

Conversely, no such decrease in granulosa cell FSHR exon 9/10 mRNA, the signalling 

domain of the receptor, was determined in DF compared to SF, which appears to point 

towards similar functional FSHR transcription in DF and SF in our study. Finally, 

CYP19A1 expression was reduced in follicles classified as dominant compared to those 

classified as subordinate. While this does not support the oestradiol results obtained from 

follicular fluid analysis, it seems that the absolute high levels of CYP19A1 transcripts 

within granulosa cells of SF recovered from TP-treated ewes are responsible for this 

observation, yet no interaction between prenatal treatment and follicle classification was 

determined.

Prenatal androgenisation through TP resulted in increased mRNA expression levels of 

HSD3B1 in granulosa cells of DF and SF. Increased progesterone production seen within 

DF and SF may, therefore, be largely as a result of increased granulosa cell HSD3B1 

expression, most likely as a result of increased stimulation by intracellular cAMP due to 

increased responsiveness to LH (Spicer et a l, 1993). Granulosa cell HSD3B1 expression 

within DF was reduced in comparison to SF. This result does not support our finding of 

equal progesterone production in the two largest follicles recovered or results from ovine 

follicle wave studies showing that intrafollicular progesterone is increased in DF compared 

to SF (Evans & Martin, 2000). One possible explanation for this finding is that the control 

SF isolated in our study may have included older dominant follicles with higher HSD3B1 

transcription. Also, increased HSD3B1 enzyme transcription may compensate for the 

reduced LH responsiveness leading to similar progesterone production in SF. No 

significant prenatal treatment and follicle classification interaction was determined, thus 

prenatal TP treatment does not specifically program increased granulosa cell HSD3B1 

expression in SF. Further study into whether the increased follicular fluid progesterone 

within DF and SF is as a result of an inherent increase in granulosa cell progesterone 

production, or if the increase is driven by increased responsiveness to LH is required.

In the present study, mRNA expression levels for CYP19A1 in granulosa cells of DF and 

SF were unchanged by prenatal androgenisation. This does not concur with our finding that 

androgenisation by TP resulted in increased follicular fluid concentrations of oestradiol in 

DF and SF (Chapter 3). Therefore, increased oestradiol production from DF and SF of
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prenatally TP-treated ewes is not due to increased transcription of the aromatase gene. 

Increased oestradiol synthesis may still occur with maintained but not elevated aromatase 

transcription as the reverse is seen in cultured bovine dominant follicles, where no changes 

in granulosa cell aromatase activity are present, despite dominant follicles losing their 

oestrogen activity when they become atretic (Badinga et a l, 1992). Additionally, 

CYP19A1 mRNA levels are unchanged when induced by FSH in growing bovine dominant 

follicles despite changes in follicular fluid oestradiol (Bao et a l, 1997). Thus, it appears 

that it is the translational or post-translational control of aromatase activity which is 

significant for aromatase function in follicles. Increased follicular fluid oestradiol 

concentrations in androgenised DF and SF may be as a result of increased precursor 

availability compared with controls, in combination with maintained high aromatase 

expression. Increased precursor concentrations (of testosterone and androstenedione) 

within theca cells for subsequent conversion to oestradiol should be investigated in TP- 

treated ewes, by both determining the mRNA expression and protein levels of the enzymes 

necessary to produce them, such as cytochrome P450 17a-hydroxylase (CYP17) and 

cytochrome P450 side chain cleavage (CYPl 1 A) (Jakimiuk et a l, 2001; Amsterdam et al, 

2003). As expected, we did not observe increased precursor (testosterone) in follicular 

fluid of androgenised ewes, as the predicted high aromatase activity should prevent such 

accumulation.

Previous studies into granulosa cell expression of follicles less than 7 mm in diameter (an 

earlier stage of follicle development) revealed that CYP19A1 levels were actually lowered 

in follicles recovered from PCOS patients (Jakimiuk et al, 1998). However, as follicles do 

not progress much further in development than 8 mm in diameter in PCOS patients without 

FSH hyperstimulation (Forsdike et al, 2007), we cannot directly compare CYP19A1 

expression results to those from this study where follicles are in the terminal stages of 

follicle development.

Given the increased steroidogenesis within DF and SF recovered from TP-treated ewes 

seen in Chapter 3, the relative expression levels of steroidogenic acute regulatory protein 

(StAR) should be investigated. The rate-limiting step in gonadal and adrenal 

steroidogenesis is the transfer of cholesterol from the relatively cholesterol rich outer 

mitochondrial membrane to the cholesterol-poor inner mitochondrial membrane (Strauss et 

al, 1999; Miller, 2007). StAR mediates this rate-limiting step of steroidogenesis, 

delivering cholesterol to the inner mitochondrial membrane (Strauss et al, 1999; Miller,

2007). Within bovine DF, any increase in StAR mRNA expression co-incides with an
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accumulation of intrafollicular steroids (Nimz et a l, 2009). As a result of prenatal 

androgenisation by TP increasing steroidogenesis, we would propose that the expression of 

StAR is upregulated, thus increasing the availability of cholesterol within the inner 

mitochondrial membrane for subsequent conversion to pregnenolone by cytochrome P450 

side chain cleavage (CYPl 1 A).

Investigation into the granulosa cell mRNA expression profiles for the FSH dependent 

follicle differentiation marker genes INHA, INHBA and FST revealed no differences 

between treatment groups. These results support the hypothesis that the ovarian 

dysfunction seen is most likely as a result of LH action only and not FSH. Prenatal 

androgenisation by TP had also no effect on the granulosa cell transcription of the BGCAN 

gene which, if upregulated, would possibly have indicated enhanced inhibin action and 

diminished activin action (Lewis et al, 2000; Forde et a l, 2008). Granulosa cell BGCAN 

expression levels were also similar between DF and SF, and this may show the lack of 

distinct follicle hierarchy in androgenised ewes, and possibly that the control SF group is 

more heterogeneous than the SF of a monitored follicle wave. However, FST mRNA 

expression was shown to be elevated in DF versus SF granulosa cells, contrary to follicular 

fluid concentrations within bovine DF (Austin et a l, 2001), while GLS analysis showed 

that INHBA mRNA levels were elevated in granulosa cells from SF. This may point to a 

potential emphasis on activin expression and function in follicles classified as SF, while 

counteracting activin in DF may be essential for further differentiation (Austin et al, 

2001).

No previous studies have investigated granulosa cell CCND2 expression, as a proliferation 

marker gene, in abnormally large DF and SF recovered from prenatally androgenised ewes. 

Our results show that prenatal androgenisation by TP had no effect on the granulosa cell 

expression profile for CCND2, thus, the increased growth seen in the DF and SF recovered 

(Chapter 3) is not due to enhanced CCND2 expression. However, it is possible that in 

largest follicles from androgenised ewes the stimulus for cell cycle progression (FSH and 

oestradiol) is limited by lutéinisation factors (progesterone) signalling the exit of the cell 

cycle, as would normally occur in preovulatory follicles undergoing lutéinisation (Richards 

et al, 1998). This would overall lead to unaltered CCND2 transcription. Proliferation is 

increased in granulosa cells recovered from unstimulated (no exogenous FSH) 4-8 mm 

follicles of anovulatory PCOS women (Das et a l, 2008), although granulosa cells were 

isolated from follicles at an earlier stage of development compared to the follicles used in 

this study. The study cited above used a different proliferation marker, namely Ki-67
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(antigen KI-67), and it is possible that excess proliferation is driven by increased granulosa 

cell expression of Ki-67 in androgenised females rather than the Cyclins. Therefore, Ki-67 

granulosa cell expression in DF and SF should be investigated in the future to determine if 

granulosa cell proliferation is increased through actions of Ki-67 (Endl & Gerdes, 2000). 

Expression levels of CCND2 in granulosa cells were slightly increased in SF versus DF 

based on GLS analysis. This finding again highlights the fact that SF in this study may be a 

more heterogeneous group of follicles than SF monitored during DF selection, as granulosa 

cell CCND2 expression was upregulated within bovine DF compared to SF (Mihm et al.,

2008). This finding is not due to prenatal TP treatment altering differential granulosa cell 

expression in DF and SF, as no prenatal treatment and follicle classification interaction was 

observed.

Prenatal androgenisation by TP had no effect on MIF granulosa cell expression in DF and 

SF. As MIF is a differentiation (for dominance and lutéinisation) marker (Rath-Coursey et 

al, 1999; Bove et al, 2000), it was thought that prenatal exposure to excess TP in utero 

would increase MIF expression in DF and SF, which are larger and more steroidogenic 

than in controls. Despite this, expression levels of MIF were similar in granulosa cells from 

DF compared to SF, with no interaction between prenatal treatment and follicle 

classification detected. Therefore, differential MIF transcription does not appear to 

contribute to the abnormal differentiation of largest follicles recovered from androgenised 

ewes.

Prenatal androgenisation by TP had no effect on the transcription levels of a selection of 

pro- and anti-apoptotic genes within the granulosa cells of DF and SF. Expression levels of 

BAX, CASP3 and MCL-I were similar between treatment groups. As androgenisation by 

TP results in excessive follicular growth (West et al, 2001; Steckler et al, 2007a), we 

would expect the apoptotic mechanisms in granulosa cells to be altered by prenatal 

androgenisation. Our results are in contrast to those found in anovulatory PCOS women. 

Studies in 4-8 mm follicles from PCOS patients investigating CASP3 localisation and 

expression in granulosa cells using immunohistochemistry and real-time PCR, determined 

that CASP3 expression levels decreased in comparison to controls (Das et al, 2008). The 

reduction in CASP3 levels does support the idea that granulosa cell apoptosis, at least in 

earlier stages of follicle development, is perhaps lowered and thus potentially prenatally 

programmed by androgen excess. Again, the Das study cited investigated an earlier stage 

of follicle development, thus perhaps another executioner of apoptosis is differentially 

expressed at later stages of follicle development in the prenatally androgenised ewe model.
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In fact, the lack of differential mRNA expression of these three apoptotic marker genes 

could be as a result of the selection of inappropriate apoptotic markers investigated given 

there are many effectors of apoptosis (Amsterdam et a l, 2003; Choi et al, 2004; Tsai et 

al, 2005; D'Haeseleer et a l, 2006). However, the markers investigated in this study are 

considered to be the main players in granulosa cell apoptosis (Amsterdam et al, 2003). For 

all three apoptotic markers investigated {MCL-1, CASP3 and BAX), expression levels were 

similar between DF and SF. In carefully monitored bovine DF MCL-1 expression in 

granulosa cells is upregulated compared to SF (Evans et a l, 2004). This again may 

indicate that DF and SF in our study were a lot closer in terms of apoptosis potential than 

DF and SF recovered following monitoring of a follicle wave. The lack of differential 

expression between DF and SF in the apoptotic genes investigated was independent of 

treatment, as there was no significant prenatal treatment with follicle classification 

interaction.

This chapter focused on the differential expression of a number of genes of interest. 

However, as not all transcripts are translated into functional protein, in order to 

conclusively prove that those transcripts differentially expressed actually alter the amount 

of protein present within granulosa cells a future study determining the protein levels of 

those genes (LHR, FSHR ex 4/5, FSHR exon 9/10 and HSD3B1) should be undertaken. 

This would be achieved by either western blotting from granulosa cell preparations isolated 

from DF and SF or by means of immunohistochemistry of whole DF and SF followed by 

semi-quantification of the protein levels with the aid of confocal microscopy and the use of 

the appropriate software similar to that described previously (Ortega et a l, 2009).

In conclusion, the results of this experiment have for the first time provided molecular 

evidence that prenatal androgenisation is able to program the granulosa cell transcription of 

large antral follicles possibly underlying the enhanced follicle differentiation and increased 

growth and steroidogenesis. Clearly, further studies are required to elucidate whether 

expression of other key genes is affected and causatively involved in the abnormal follicle 

development, and whether increased growth and steroidogenesis in DF and SF of 

prenatally androgenised ewes results from a differential response to the gonadotrophins or 

are due to intrinsic differences within granulosa cells.

141



C h a p t e r  6. D o e s  p r e n a t a l  p r o g r a m m in g  b y  e x c e s s  a n d r o g e n s  a l t e r  t h e

INTRINSIC a n d / o r  GONADOTORPHIN-STIMULATED PRODUCTION OF OESTRADIOL AND 

PROGESTERONE BY GRANULOSA CELLS?

6.1  In t r o d u c t io n

Prenatal androgenisation by TP in sheep results in enhanced growth and steroidogenesis of 

DF and SF as detailed in Chapter 3. Furthermore, the molecular abnormalities revealed in 

Chapter 5 of increased granulosa cell LHR mRNA expression together with decreased 

FSHR mRNA expression demonstrate enhanced DF and SF differentiation as a result of 

prenatal androgenisation through TP. Additionally, increased follicular progesterone 

production is likely related to elevated expression of HSD3B1 mRNA in granulosa cells. 

However, it is still unknown how prenatal programming by TP results in increased 

oestradiol and progesterone synthesis within DF and SF and possibilities for increased 

granulosa cell steroidogenesis include (1) prenatal programming by TP altering the 

external hormonal environment such that peripheral concentrations of LH are increased 

(Sarma et a l, 2005) which then in turn drive the increased synthesis of both steroid 

hormones within granulosa cells (2) prenatal programming by TP alters granulosa cells 

themselves, such that they inherently produce increased amounts of steroid hormone, i.e. 

there is an inherent difference within large antral follicle granulosa cells regardless of the 

peripheral hormonal environment, or (3) a combination of (1) and (2). There is some 

evidence for this: PCOS, which may be due to prenatal androgenisation, results in an 

increase in inherent follicular somatic steroid production, as steroidogenic enzymes have 

been shown to be intrinsically upregulated in theca cells recovered from 3-5mm follicles 

from PCOS patients (Wickenheisser et al, 2000).

The relationship between endocrine changes (such as LH and FSH secretion) and ovarian 

changes (such as granulosa cell steroid production) in vivo is complex, as one depends and 

responds to changes in the other (Duggavathi et al, 2005). Cell culture provides an 

approach where the actions of specific factors can be determined independent of 

feedbacks, which means specifically for this study, that the putative differential effects of 

LH and FSH on granulosa cell steroid production from control and prenatally androgenised 

follicles can be explored. Previous efforts to develop a physiological granulosa cell culture 

system in animal models (ovine, bovine and rat) have been characterised by a consistent 

decline in oestradiol production with time in culture while progesterone production 

increases (Luck et a l, 1990; Meidan et a l, 1992; Spicer et al, 1993; Gong et al, 1994). 

These two characteristics are suggestive of the onset of lutéinisation and do not mimick 

changes occurring during continued follicle growth and development. Previous cultures
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have also used foetal calf serum in their culture system to facilitate the adhesion (and thus 

survival) of cells to the plate surface (Luck et a l, 1990; Langhout et al, 1991; Spicer et 

al, 1993; Gong et a l, 1994). However, foetal calf serum may introduce unknown 

contaminants, such as inhibin, growth hormone or other growth factors into the culture, 

which may affect cellular responsiveness to subsequent stimuli. Indeed, many previous 

culture systems employ relatively short-term cultures in which cells undergoing early 

lutéinisation retain the ability to synthesize oestradiol (Gong et a l, 1994). Results from 

such studies can be misleading because the hormonal 'responses' to treatment may just 

reflect a change in the rate of luteinization. Therefore, we used a 6 day culture system 

developed for bovine (Gutierrez et al, 1997) and ovine (Campbell et a l, 1996) granulosa 

cells which does not use foetal calf serum, and where the cellular phenotype of granulosa 

cells particularly from medium antral follicles is maintained. Within this culture system 

FSH can induce oestradiol production by bovine granulosa cells and this induction is 

related to an increase in CYP19A1 mRNA expression (Manuel Silva & Price, 2000).

In order to determine if granulosa cells are intrinsically different between androgenised and 

control ewes (as suggested by the molecular changes), or whether the external (hormonal) 

environment causes the differences detected in antral follicle function, granulosa cells from 

DF and SF were cultured in vitro for 6 days under different gonadotrophin conditions, zero 

supplemented media, ovine FSH only, and human recombinant LH together with FSH. 

Oestradiol and progesterone production were investigated to address the following 

questions: Are granulosa cells from DF and SF from TP ewes inherently more 

steroidogenic independent of gonadotrophin stimulation, or more LH-, and less FSH- 

responsive in terms of steroid hormone synthesis; or do they show similar steroid hormone 

synthesis to cells from control ewes when exposed to the same hormone conditions. The 

aim was also to determine the expression profiles of FSHR and LHR together with the FSH 

and LH responsive genes CYP19A1, HSD3B1 and CCND2 following culture to determine 

if prenatal programming by androgenisation resulted in differential expression of these 

genes under gonadotrophin stimulation.

Additionally, as in Chapter 3, this study aimed to delineate the effects of prenatal 

androgenisation which arise as a result of oestrogenic action and those that are due to the 

action of androgens. This was achieved by replacing TP with DHT to induce prenatal 

androgenisation.
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It is with these aims in mind that granulosa cells recovered from DF and SF of control and 

prenatally androgenised ewes (both by TP and DHT) were cultured in a serum-free culture 

system for 6 days in differing hormonal conditions. This study is referred to as the 

experimental culture throughout the chapter. To the best of our knowledge no group has 

investigated the effect of prenatal androgenisation on granulosa cell steroid production and 

the response to FSH and LH in vitro, removed from the effect of peripheral LH and FSH 

concentrations. Subsequently, and to address two issues arising from experimental cultures 

which related to differences in live cell numbers plated and the dose of FSH and LH 

needed for stimulation, granulosa cells obtained from follicles excised from abattoir sheep 

ovaries were cultured to determine (1) the effect of seeding different densities of granulosa 

cells on live cell numbers and viability over the 6 day culture period and (2) to determine 

what ovine LH (oLH) dose the recombinant human LH used in the experimental cultures 

relate to.

6.2 M a t e r ia l s  a n d  M e t h o d s

6.2.1 Experimental Culture of Granulosa Cells

Granulosa cells were obtained and cultured under serum-free conditions by a previously 

described method (Gutierrez et al, 1997; Glister et a l, 2005). Ovaries from experimental 

year group 5 sheep (10 months of age) were recovered, the largest (generally two) antral 

follicles excised from the stroma and granulosa cells harvested from individual follicles as 

described previously in section 2.4. Granulosa cells were washed, seeded and cultured as 

detailed in section 2.8. Following the second wash, granulosa cells were re-suspended in 

410pl of zero supplemented medium. Harvested cells were split into eight 50 pi aliquots 

and 6 were seeded into wells, thus different numbers of live cells were plated per well. The 

remaining 100 pi of harvested cells were stored for subsequent gene expression analysis 

and 10 pi used to determine live granulosa cell numbers. Trypan blue exclusion was used 

to determine live cell numbers before seeding and after 6 days of culture as described in 

section 2.9. Granulosa cells were cultured using three different culture media treatments: 

(1) 0 supplemented media (2) 1 ng oFSH (NHPP oFSH 20) and (3) 1 ng oFSH and

11.67 ng human recombinant LH (Serono Ltd, UK). Conditioned media was removed and 

replaced with fresh media every 48 hours as described in section 2.8. Ovaries collected 

from experimental group 5 sheep were collected over 3 days, therefore three independent 

cultures were used in the study. Duplicate wells were pooled for each timepoint (48 hrs, 

96 hrs and 144 hrs) and for each media condition for subsequent steroid assay as described 

in section 2.6.
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6.2.2 Control Cell Culture Set-Ups

Granulosa cell isolation and control culture to determine the effect of plating 

different cell densities on live cell numbers and viability

Ovine ovaries were collected from a local abattoir on three different days and placed in 

transport media (M l99 medium, supplemented with 1% (vol/vol) antibiotic-antimycotic 

solution and 3 mM 1-glutamine (all reagents from Sigma Ltd, Poole, UK). Approximately 

40 follicles >5 mm in diameter were excised, follicular fluid was aspirated, and granulosa 

cells recovered as described in section 2.4. Granulosa cell preparations were pooled into 3 

preparations prior to washing. Granulosa cells were washed, live cell numbers determined, 

and cultured as described in section 2.8, with two alterations. Firstly, due to the low 

numbers of granulosa cells recovered from individual follicles in the experimental culture, 

for all washes zero supplemented media was replaced with 0.1 M PBS to minimise the loss 

of granulosa cells during washing. Only following the second 0.1 M PBS wash, granulosa 

cells were re-suspended in 1 ml of supplemented zero media. Secondly, following 

determination of live granulosa cell numbers by Trypan blue exclusion (section 2.9), 

granulosa cells were seeded in a volume of 50 pi at various densities (32K/well, 16K/well, 

8K/well and 4K/well) in wells containing 200 pi of media with or without gonadotrophin 

treatments. For each cell density, three different media conditions in duplicate were used, 

which included (1) 0 supplemented media (2) 1 ng oFSH (NHPP oFSH 20) supplemented 

media and (3) 1 ng oFSH and 11.67 ng human recombinant LH (Serono Ltd, UK) 

supplemented media. Conditioned media was removed every 48hours and replaced with 

fresh media as described in section 2.8. Conditioned media was stored at -20°C for 

subsequent steroid assay as described in section 2.6. Three independent cultures were 

carried out, and within each independent culture three 96 well plates were used to 

determine live cell numbers and viability at (1) 48 hrs (2) 96 hrs and (3) 144 hrs. Duplicate 

wells were pooled for each timepoint (48, 96 and 144hrs) and for each treatment (0, 1 ng 

FSH and 1 ng FSH + 11.67 ng human recombinant LH). After 48, 96 and 144hrs granulosa 

cells were harvested, counted using a haemocytometer and cell viability determined by 

Trypan blue exclusion (section 2.9).

Dose response to oFSH and oLH

Ovine ovaries were collected from a local abattoir on three different days and placed in 

transport media (M l99 medium, supplemented with 1% (vol/vol) antibiotic-antimycotic 

solution and 3 mM 1-glutamine (all reagents from Sigma Ltd, Poole, UK). Granulosa cells 

were harvested and pooled from ~40 follicles >5 mm in diameter as described in section 

2.4. Granulosa cell preparations were generally pooled into 3 preparations prior to
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washing. Granulosa cells were washed and live cell numbers and viability determined 

using Trypan blue exclusion as described in sections 2.8 and 2.9, respectively. Following 

determination of granulosa cell viability and live cell numbers, granulosa cells were seeded 

at 75,000 live cells/50 pi per well in 200 pi pre-equilibrated media. There were in total ten 

different treatments containing Ing/ml oFSH (NHPP oFSH 20), and increasing 

concentrations of oLH (NIDDK oLH S26) and human recombinant LH (Serono Ltd, UK). 

The ten different treatments investigated were (1)0 supplemented media, (2) 0.1 ng oFSH, 

(3) 1 ng oFSH, (4) 10 ng oFSH, (5) 100 ng oFSH, (6) 0.1 ng oLH + 1 ng oFSH, (7) 1 ng 

oLH + 1 ng oFSH, (8) 10 ng oLH + 1 ng oFSH, (9) 100 ng oLH + 1 ng oFSH and (10)

11.67 ng human recombinant LH + 1 ng oFSH. Conditioned media was removed at 48 

hours and replaced with fresh media as described in section 2.8. Conditioned media was 

stored at -20°C for subsequent steroid assay as described in section 2.6. Three independent 

set-ups were carried out on three different days, and live numbers of granulosa cells and 

viability determined after 144 hours by Trypan blue exclusion (section 2.9).

6.2.3 Steroid Concentrations in Conditioned Media - RIA

Concentrations of the steroid hormones oestradiol and progesterone in a volume of 10- 

200 pi conditioned media were determined by validated radioimmunoassays using the 

assay procedure and reagents as detailed in section 2.6. Unextracted conditioned media 

from both experimental and control set-ups were included within the same assays. For the 

oestradiol assay, mean intra-assay and interassay coefficient of variation for one quality 

control sample at a concentration of 1.21 ± 0.13 pg/ml was 8.5 and 9% respectively. 

Sensitivity of the assay, calculated as two standard deviations below the mean CPM at 

maximum binding, was 0.50 ± 0.04 pg/ml. For the progesterone assay, mean intra-assay 

and interassay coefficient of variation for one quality control sample at a concentration of 

2.61 ± 0.33 ng/ml was 9 and 10.2% respectively. Sensitivity of the assay, calculated as two 

standard deviations below the mean CPM at maximum binding, was 0.1 ± 0.02 ng/ml. The 

limit of assay sensitivity was assigned to those samples in which the concentration of 

hormone was below the sensitivity of the assay despite using the maximum volume 

available.

6.2.4 Molecular Biology

Total RNA isolated from granulosa cells before and after culture was isolated, DNase I 

treated and reverse transcribed using the methods detailed in section 2.7. Due to the 

recovery of a very small amount of total RNA from some individual follicles, as a result of 

a lack of granulosa cells following pelleting, only a subgroup of granulosa cell preparations

146



were selected to act as negative controls within this year group. The quantity and quality of 

cDNA and RNA were assessed using spectrophotometry, as detailed in section 2.7. The 

quantitative real-time PCR method used to measure gene expression within granulosa cells 

recovered from DF and SF before and after culture and the primer pairs used are detailed in 

section 2.7 and Table 5.1, respectively. Total RNA yield from cultured granulosa cells 

varied between 1-600 ng/pl, 500 ng of tRNA was reverse transcribed, while 400 ng of 

cDNA was added to the PCR reaction mixture. In spite of this seemingly high 

concentration of cDNA added to the reaction mix, not many cultured samples obtained a 

sufficiently low cycle threshold number for ACTS and the genes of interest {CYP19A1, 

LHR and CCND2). The cDNA concentration and quality of a selected few samples after 6 

days of culture following RNA extraction and reverse transcription, together with the cycle 

threshold achieved for ACTB are shown in Table 6.1.

Follicle ID Prenatal
Treatment

cDNA
Concentration

(ng/jil)

A260:280 A260:230 ACTB
cycle

threshold
number

21SF-0 TP 732 1.82 1.53 31.46
21SF-FSH TP 734 1.83 1.19 32.72

21SF-LH&FSH TP 1245 1.8 1.64 34.33
27DF -  0 TP 470 1.52 1.2 32.19

27DF -  FSH TP 463 1.69 0.99 32.08
27DF -LH&FSH TP 508 1.8 1.69 30.92

33D F-0 DHT 1061 1.76 1.34 36.03
33DF-FSH DHT 1328 1.81 2.22 35.12

33DF-
LH&FSH

DHT 1019 1.82 1.51 35.87

4D F -0 Control 930 1.8 1.25 33.78
4DF-FSH Control 1050 1.8 1.02 33.98

4DF -  LH&FSH Control 1087 1.81 1.33 34.67
Table 6.1 The quality and quantity of cDNA from selected cultured granulosa cells after 6 
days of culture isolated from dominant (DF) or subordinate(DF) follicles following reverse 
transcription of 500 ng of total RNA. Also presented is the ACTB the cycle threshold 
number achieved after real-time PCR amplification. A260 = absorbance at 260 nm, A230 
= absorbance at 230 nm, ACTB = Beta Actin, TP = testosterone propionate, DHT = 5a- 
dihydrotestosterone.

6.2.5 Statistical Analyses

The results for follicle size, intrafollicular concentrations of oestradiol and progesterone, 

the oestradiol to progesterone ratio (Chapter 3) and expression of mRNA encoding LHR, 

FSHR exon 9/10, CYP19A1 and HSD3B1 in granulosa cells of DF and SF recovered from 

each ewe from Year Group 5 have been described previously (sections 3.3.4 and 5.3). The 

results presented in this chapter for these dependent variables are solely on the effect of
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prenatal treatment and follicle classification. This allows the results obtained in vitro to be 

compared to those seen in vivo.

For individual follicle parameters (follicle size, follicular fluid oestradiol concentration, 

follicular fluid progesterone concentration and follicular fluid oestradiol: progesterone 

ratio) a two-way AMO VA with prenatal treatment (Control, TP, and DHT) and follicle 

classification (DF or SF) as the two factors was used to determine any influences on 

follicle function. In addition, any logical interactions between factors were included in the 

model. A Tukey’s posthoc test was used to determine significant differences between 

levels within a factor.

A two-way ANOVA, with prenatal treatment and follicle classification as the two factors 

was used to determine any influences on granulosa cell mRNA expression for LHR, FSHR 

exon 9/10, CYP19A1 and HSD3B1 in year group 5 (10 month old) sheep only. In addition, 

any interaction between the two factors was determined. A Tukey’s posthoc test was used 

to determine significant differences between levels within a factor.

A two-way ANOVA with follicle classification (DF or SF) and prenatal treatment (control, 

TP and DHT) as the two factors was used to determine any difference in the number of 

granulosa cells plated per individual follicle. Any interaction between follicle classification 

and prenatal treatment was also investigated. A Tukey’s posthoc test was used to determine 

significant differences between levels within a factor

In vitro steroid production of oestradiol and progesterone from experimental granulosa 

cells at 48, 96 and 144 hours was initially normalised to production per 1000 live cells 

plated. Data were assessed using a GLM with day of culture setup (three independent days, 

1-3), prenatal treatment (Control, TP and DHT), media conditions (0, 1 ng oFSH and

11.67 ng human Rec LH + 1 ng oFSH), culture time-point (48, 96 and 144hrs) and follicle 

classification (DF and SF, see explanations above) as the fixed factors potentially 

influencing the results. Interactions were also considered in this analysis. If there were 

more than 2 levels to a factor, a Tukey’s posthoc test was used to determine significant 

differences between levels within that factor. Because the factor ‘follicle’ is known to 

contribute to the variation in results, but could not be included in the GLM analyses, a 

generalised least square (GLS) model was also applied to the data with the same fixed 

factors as for the GLM analyses, but with ‘follicle’ included as a random factor to 

determine whether this altered the outcome of GLM analyses. Again results from the GLM
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and GLS analyses are consistent, with few exceptions, for example, where only the GLS 

analysis highlighted a significant effect of the combined gonadotrophin treatment on in 

vitro progesterone production. In addition, steroid production between 96-144 hours was 

normalised to 1,000 live cells counted after 6 days of culture, which was only possible in a 

very reduced number of samples, and analysed using the same GLM model but without 

culture time-point as a fixed factor.

To determine relative changes in steroid production over time or with gonadotrophin 

supplementation, the percent change in oestradiol or progesterone production normalised 

to 1,000 live cells plated was calculated 1) from 48 to 96 hrs, and from 96 to 144 hrs 

separately for each media condition, and 2) following FSH or FSH+LH supplementation of 

the basic medium for each time-point (48 hrs, 96 hrs and 144hrs). A student t-test was used 

to determine any differences in relative changes in steroid production between cells from 

control and androgenised (TP and DHT) ewes.

To assess granulosa cell viability data was expressed as (1) absolute live cell numbers and 

(2) a percentage - the number of live cells divided by the total number of cells (live and 

dead) at each time point. A general linear model (GLM) was utilised, percentage cell 

viability being the dependent variable and with cell density (32K, 16K, 8K and 4K), media 

conditions (0, 1 ng oFSH only and 1 ng oFSH + 11.67 ng human recombinant LH) and 

culture time-point (48 hrs, 96 hrs and 144 hrs) as the three fixed factors, and any 

interactions between these factors was determined. Any differences between levels within 

a factor were determined by Tukey post-hoc test.

To assess the effect of oFSH and oLH on granulosa cell steroid production (both oestradiol 

and progesterone), data were expressed as pg/10000 live cells plated (oestradiol) and 

ng/10000 live cells plated (progesterone). A general linear model was utilised with culture 

time-point (48 hrs, 96 hrs and 144 hrs) and media treatments for FSH dose (0, 0.1 ng 

oFSH, 1 ng oFSH, 10 ng oFSH and 100 ng oFSH) or LH dose response (1 ng oFSH plus 

0.1 ng oLH, 1 ng oLH, 10 ng oLH, 100 ng oLH and 11.67 ng human recombinant LH) as 

the two fixed factors, together with any interactions between these factors. Any differences 

between levels within factors were determined by Tukey post-hoc test.
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6.3 R e s u l t s

6.3.1 Dominant and Subordinate Follicle Characteristics -  Year Group 5

6.3.1.1 Follicle Size

Prenatal androgenisation by TP increased follicle diameter of the two largest follicles 

compared to controls (Figure 6.1). Androgenisation by DHT led to intermediate follicle 

diameters, which did not differ from diameters measured in control or TP-treated ewes. 

There was no overall difference in follicle diameter between follicles classified as DF or 

SF.

6.3.1.2 Follicular Fluid Oestradiol Concentration

Prenatal androgenisation by TP increased follicular fluid oestradiol concentration overall in 

both DF and SF compared to control and DHT-treated animals (Figure 6.1). 

Androgenisation by DHT had no effect on follicular fluid oestradiol concentration 

compared to controls. Follicular fluid oestradiol concentrations were also increased in DF 

versus SF, which confirms the follicle classification and suggests a higher health status in 

the DF (Evans & Martin, 2000).

6.3.1.3 Follicular Fluid Progesterone Concentration

Prenatal androgenisation by TP increased follicular fluid progesterone concentration 

overall (DF and SF) compared to control and DHT-treated animals (Figure 6.1). 

Androgenisation by DHT had no effect on follicular fluid progesterone concentration 

compared to controls. Follicular fluid progesterone concentrations were similar between 

DF and SF.

6.3.1.4 Follicular Fluid Oestrogen to Progesterone Ratio

Prenatal androgenisation had no effect on the follicular fluid oestradiol to progesterone 

ratio (Figure 6.1). The oestradiol to progesterone ratio was increased in follicles classified 

as DF versus SF, confirming our functional classification (Evans & Martin, 2000).

6.3.1.5 Expression of mRNA encoding LHR, FSHR exon 9/10, CYP19A1 and HSD3B1 

in granulosa cells of DF and SF recovered from each ewe from Year Group 5 only.

Prenatal androgenisation by TP reduced granulosa cell FSHR exon 9/10 mRNA expression 

within DF and SF (Figure 6.2). Prenatal androgenisation by TP had no effect on LHR, 

CYP19A1 and HSD3B1 granulosa cell mRNA expression. However, there was a tendency 

(P = 0.1) for a treatment with follicle classification interaction for LHR and CYP19A1 

transcript levels; specifically, granulosa cell transcript levels were similar between DF and
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SF of controls, while DF transcript levels were higher in follicles from androgenised ewes. 

Granulosa cells mRNA expression levels of LHR, FSHR exon 9/10 and HSD3B1 were 

similar between DF and SF, while CYP19A1 expression was higher in DF compared to SF, 

supporting the follicular fluid results and our follicle classification (Figure 6.2). The 

analysis table listing the P values determined for each factor is shown in Figure 6.2.
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6.3.2 Number of Live Cells Plated Across Prenatal Treatment Groups

The number of live granulosa cells plated per treatment group (control, TP and DHT) per 

follicle classification (DF and SF) is shown in Figure 6.3. There was no difference in the 

number of live granulosa cells plated due to treatment group (P = 0.135). The number of 

live granulosa cells plated per follicle classification is shown in Figure 6.4. There was no 

difference in the number of live granulosa cells plated in DF compared to SF (P = 0.519). 

No interaction between prenatal treatment and follicle classification was determined.

15000i

10000

E3 C o n tro l  - DF
E3 TP - DF
EZ3 DHT - DF

C o n tro l  - SF
TP - SF
DHT - SF

T re a tm e n t  a n d  Follicle C lass if ica tion

Figure 6.3 Average number of live granulosa cells plated per follicle per prenatal 
treatment group (control C, TP and DHT). Follicles were classified as either dominant 
(DF) or subordinate (SF) based on follicular fluid oestradiol concentration. (TP = 
testosterone propionate, DHT = 5a-dihydrotestosterone). Values presented are mean ± 
SEM. DF -  C = 14, TP = 15, DHT = 8; SF -  C = 12, TP = 13, DHT = 4.

DF vs  SF
8000-1

3 ®
c  .52 6000- 2 =
0)0 
0) ^
2  ® 4000-

H
® = 2000-

Follicle Classification

Figure 6.4 Average number of live granulosa cells plated per follicle when follicles were 
classified as either the dominant (DF) or subordinate follicle (SF) and data combined 
accross treatment groups Values presented are mean ± SEM. DF = 36 follicles, SF = 29 
follicles.
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6.3.3 Experimental Granulosa Cell Culture

Granulosa Cell Oestradiol Production -  Data normalised to 1,000 live granulosa cells 

plated

Prenatal treatment with DHT reduced oestradiol production by granulosa cells from the 

two largest follicles in vitro, in comparison to cells from follicles of both control (P < 

0.001) and TP-treated (P < 0.001) ewes independent of gonadotrophin addition to media 

(Figure 6.5). However, there was no difference in the in vitro granulosa cell oestradiol 

production between follicles from control and TP-treated ewes. Granulosa cell oestradiol 

production normalised to the number of cells plated declined with time over the 6 days of 

culture (P < 0.001). Granulosa cell oestradiol production was higher in those follicles 

classified as DF compared to those classified as SF, confirming the frmctionality of the 

classification originally based on follicular fluid oestradiol. There was an interaction 

between prenatal treatment and follicle classification (P = 0.008), with, oestradiol 

production increased in granulosa cells from SF compared to DF from DHT-treated 

animals, while granulosa cell oestradiol production was reduced in SF compared to DF 

from both control and TP-treated ewes (Figure 6.6). Oestradiol production increased when 

FSH was added (P = 0.017), therefore, granulosa cells were overall FSH responsive during 

culture: however, the addition of LH did not enhance oestradiol production further. There 

was no media*prenatal treatment interaction, therefore, differences in gonadotrophin 

receptor mRNA expression in TP cells did not translate into a different oestradiol response 

to gonadotrophins in vitro. The day that the granulosa cell culture was set-up had a 

significant effect on oestradiol production (Table 6.2); oestradiol synthesis was higher 

from set-up 1 compared with set-ups 2 (P = 0.015) and 3 (P = 0.004). A summary of the 

results relating to oestradiol production is shown in Figure 6.5.

Day of Culture Number of

Control

Follicles

Number of TP

Treated

follicles

Number of 

DHT Treated 

Follicles

Total

1 0 10 4 14

2 7 8 3 18

3 13 8 2 21

Table 6.2 The number of follicles recovered and cultured from each prenatal treatment 
group on the three separate days ovaries were removed and follicles recovered from 
experimental sheep. TP = testosterone propionate, DHT = 5a-dihydrotestosterone.

155



Is

c
o

c
R
C .

E
o

U

>
( N

3

" 3
O

(4- ,
o

Q

cr
ÙC

V :

H

00
o
o

_ u

u

' oPu*
s
s

I

c
_c

3— U
s i
g  3  

CX U

CO

C
g

+ j

o
3

"Oo
Û .

o

03
L .4-1
0)
0)

O

o  in (r— T—
(p e iB |d  S ||8 3  3AM OOOk/Gd)

u o p o n p o j d  |O j p e j ; s 3 0

c
o

+ 3
( Q
O

g
’(/)
(/)

_ 2

O
_ 0 )

o

c
0 )

E
%
0)

( Ü4W
( Ü

c
Q )

o
P̂  o

o
3

T3
O

ÛJÛ O  " O  
3  ̂ <P

" O

§
.3 CU

I ii ;
3

c «  O  3 O
T3 T3

I s
II<U IZI

O  2  
c/3 
0.)

, 0  T3 ^
(U rn
3

I
C

c/3
(U

_3
3
>

C u

3
OJ

C U
a,  
3
c/3

X

3

 ̂ I
II P C

T 3
3
3

( N

( N

3

CO ^

i i
-H  g
c/3 » -II-

o
o

2̂
ÛÛ
3

r - -
< 0

11
3

o  "
3  H

2 ^  o
X ) 3 (D

I I I !

I I
^  '2  
c .  . 3

^  g

M
=  -X

g â
0Û n  
3 M

3:

zc/3
P̂

3

(N

C Uf—'

g
3

CU
<L>
3
0

" O
3
0
u

3
T o
<u

- S
OJ
£

- a

a "

II

U

I S
0

<5
T o

. 2 2 2
3

1
X

0 (U (U c /1
<u

T o 3 , 0 3
<u

T 3
c

2 C u

X
II

£ II 3 2 c u H
3 C u c/3 3 c/3 X
<u
c/3

E— ' CU
3 "3 X 0

- o t
CJ

U h
c/1Urn3 U) c/3

T 3 c/3
2
3

OÛ

\ o ' 3
0

3
a .

3 C3Û Q H
P 3 11

k .
a> T D 0 k-l

0 [ C
>
0 3

(4-1
0

4—<

c 2
c /1
X 11

3
. 2

3 3 3 U
”3 73

_ 3 . 2 1

3
T 3

3

g
• 2
3 '-B 23

X
Q

2
k .
C U ' o <u

C u

] o
E

. 2

c u
Ù
£

" O
(U
3
c u

J
C u
c u

(U
T 3
0
£

2 T 3 £ 3
c/3

00
0
0

2
<u

2
3

0
0
c/3

_ 3
X

(U
3

§
0

2

0
CJ
2

"3
u

s

(U
>

—

CU
£

0
T 3

i
(U

g
P u

00
C/Î ( 2 3

3
0 Û

s
c /1 £ c/3 0 II
'— " u> 'V 3 0Û

X
0v d

2
3
3

3
" O

<U
3
3

0
3

g
3

" 2
0

3
X
3

3

2 . 2 . 2

0£  X 3 X <u3
c/3

0
U) a £ £

CDCO



I n te r a c t io n  P lo t fo r  L oglO  O estr a d io l P rod u ction
Data Means

2
c0
1 
I
a.
0 ■o re
1Oo
2
c -0.8-
3z 21

Treatm ent
1
2

-  - 3

Follicle Classification

Figure 6.6 Interaction plot between follicle classification (dominant (DF) or subordinate 
(SF) follicle) and prenatal treatment (control, testosterone propionate (TP) and 5a- 
dihydrotestosterone (DHT)) for mean granulosa cell oestradiol production over a six day 
serum-free culture. Follicle classification - 1 = DF, 2 = SF. Treatment classification -  1 = 
control, 2 = TP and 3 = DHT.

Granulosa Cell O estradiol Production -  Data normalised to 1,000 live granulosa cells 

counted after 6 days of culture

Prenatal androgenisation by DHT had no effect on oestradiol production by live granulosa 

cells at 144hrs in vitro compared with control cells (Figure 6.7). However, there was a low 

tendency (P = 0.1) for TP cells to produce more oestradiol compared with control and 

DHT cells. Granulosa cell oestradiol production was higher in those follicles classified as 

DF compared to those classified as SF (P < 0.001). There was no interaction between 

prenatal treatment and follicle classification. Oestradiol production increased when FSH 

was added (P = 0.034), therefore, granulosa cells were overall FSH responsive during 

culture, however, the addition of LH to FSH reduced oestradiol production compared to 

FSH only media (P = 0.024). There was no media*prenatal treatment interaction, therefore, 

differences in gonadotrophin receptor mRNA expression in TP cells did not translate into a 

different oestradiol response to gonadotrophins in vitro. The day that the granulosa cell 

culture was set-up had a significant effect on oestradiol production, granulosa cell 

oestradiol synthesis was higher from set-up 1 compared with the other two days (P = 0.003 

and 0.008, respectively).
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Percent change in Granulosa Cell Oestradiol Production with time in culture

Prenatal androgenisation by TP and DHT maintained granulosa cell oestradiol production 

(normalised to the number of cells plated) from 96 to 144hrs in unsupplemented medium 

compared to a severe drop when control cells were cultured under the same conditions (P < 

0.05) (Figure 6.8). Similarly, prenatal androgenisation by TP maintained granulosa cell 

oestradiol production from 96 to 144hrs in culture media supplemented with FSH&LH 

compared to a severe drop when control cells were cultured in the same medium (P < 0.05) 

(Figure 6.8).

Percent change in Granulosa Cell Oestradiol Production with addition of 

gonadotrophins to the media

At 96 and 144hrs control cells increased their oestradiol production (normalised to the 

number of cells plated) 3 and 7-fold, respectively, in response to FSH, which was a higher 

percent change than that seen following culture of cells from androgenised ewes (Figure 

6.9). The addition of LH to FSH had no effect on the percent change in granulosa cell 

oestradiol production relative to zero supplemented media at any of the culture time-points, 

nor were there differences between treatments in this response (data not shown).
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Oestradiol production at 96hrs related to 48hrs 
cultured in zero supplemented media

Oestradiol production at 96hrs related to 48hrs 
cultured in LH & FSH supplemented media

Oestradiol production at 144hrs related to 48hrs 
cultured in zero supplemented media

Oestradiol production at 144hrs related to 48hrs 
cultured in LH & FSH supplemented media

200-1

e

i
150-

o

I 100-

I 50-
2

1 0-

Oestradiol production at 144hrs related to 96hrs 
cultured in zero supplemented media

s 2 ' “ l

lilÈ A

Oestradiol production at 144hrs related to 96hrs 
cultured in LH & FSH supplemented media

■2 2

L i i

Figure 6.8 Effect of prenatal androgenisation by TP (testosterone propionate) and DHT 
(5a-dihydrotestosterone) on granulosa cell oestradiol production in vitro. Oestradiol 
production is related to the production at 48 and 96hrs, respectively, in the same media 
conditions. Oestradiol production is combined from both follicle classifications. Values 
presented are mean ± SEM. Between treatment groups, means without a common 
superscript differ (P < 0.05). Control = 20, TP = 26, DHT = 9 follicles.
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Percent change oestradiol production 
following culture with FSH at 48 hours

200n

N ^  150-

a 100-
u o

2 52 ü
(/) oo

Percent change oestradiol production 
following culture with FSH at 96 hours

o  0) ra 400 

1 1 1  300

l i lO
l i t ,00
(A <0 Q.
Q) 0> □
O W l Ê A A

Percent change oestradiol production 
following culture with FSH at 144 hours

_  1000-,iff” i  
600-̂

«oj

Figure 6.9 Effect of FSH on relative oestradiol production in vitro, by granulosa cells 
recovered from control ewes and ewes prenatally androgenised by TP (testosterone 
propionate) and DHT (5a-dihydrotestosterone). Oestradiol production is related to the 
number of cells plated and then expressed relative to zero supplemented media at each 
culture time-point (48, 96 and 144hrs). Oestradiol production is combined from both 
follicle classifications. Values presented are mean ± SEM. Within a treatment group, 
means without a common superscript differ (P < 0.05). Control = 20, TP = 26, DHT = 9 
follicles.
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Granulosa Cell Progesterone Production -  Data normalised to 1,000 live granulosa 

cells plated

Prenatal androgenisation by TP tended (P = 0.1) to enhance granulosa cell progesterone 

production compared to controls independent of gonadotrophin addition to the medium. 

Androgenisation with DHT tended (P = 0.1) to reduce granulosa cell progesterone 

production compared to controls, and significantly reduced progesterone production from 

the two largest follicles compared with TP prenatal treatment (P = 0.009). Analysis using 

GLS (but not GLM) showed that LH added to FSH enhanced progesterone production 

when compared with the zero culture medium (P < 0.001). Despite progesterone 

concentrations in media being normalised to cells plated at 0 hours and live cell numbers 

declining with time in culture (see Figure 6.10) no significant drop in progesterone 

concentrations in media was found with time in culture indicating an actual increase in 

progesterone production by surviving cells. In fact, GLS (but not GLM) analysis showed a 

significant increase in progesterone media concentrations (P = 0.014) between 48 and 144 

hours. An interaction between prenatal treatment and follicle classification was 

determined, progesterone production from granulosa cells of DF and SF recovered from 

TP-treated ewes was more similar than progesterone production by cells from DF and SF 

recovered from the control and DHT groups (P = 0.023) (Figure 6.11). Granulosa cell 

progesterone production was increased in SF compared to DF (P = 0.006). There was no 

media*prenatal treatment interaction, therefore, differences in gonadotrophin receptor 

mRNA expression in TP cells did not translate into a different progesterone response to 

gonadotrophins in vitro. The day that the granulosa cell culture was set-up had a significant 

effect on progesterone synthesis, production was increased in the culture set up on day 2 

compared to both 1 (P = 0.008) and 3 (P < 0.001).
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In te ra c t io n  P lo t fo r  Log 10 P ro g e s te ro n e  Production
Data Means■o
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Follicle Classification

Figure 6.11 Interaction plot between follicle classification (dominant or subordinate 
follicle) and prenatal treatment (control, testosterone propionate (TP) and 5a- 
dihydrotestosterone (DHT)) for granulosa eell progesterone production over a six day 
serum-free culture. Values presented are the mean ± SEM. Follicle classification - 1 = DF, 
2 = SF. Treatment classification -  1 = control, 2 = I P and 3 = DHT.

Granulosa Cell Progesterone Production -  Data normalised to 1,000 live granulosa 

cells counted after 6 days of culture

Prenatal androgenisation by either TP or DHT had no overall effect on granulosa cell 

progesterone production at 144hrs by live cells from a smaller subset of DF and SF (Figure 

6.12). Gonadotrophin addition to the media also did not effect granulosa cell progesterone 

production. There was no difference in granulosa cell progesterone production between DF 

and SF. Progesterone production from granulosa cells of DF and SF recovered from TP- 

treated ewes tended to be more similar than progesterone production by cells from DF and 

SF recovered from the control and DHT groups (P = 0.089). There was no interaction 

between the factors culture media and prenatal treatment; therefore, differences in 

gonadotrophin receptor mRNA expression in TP cells did not translate into a different 

progesterone response to gonadotrophins in vitro. The day that the granulosa cell culture 

was set-up had no effect on progesterone synthesis.
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Percent change in Granulosa Cell Progesterone Production with addition of 

gonadotrophins to the media

The addition of LH to FSH had no significant effect on the percent change in granulosa 

cell progesterone production (relative to zero supplemented medium) in any of the 

treatment groups at 48 and 96hrs of culture (Figure 6.13). However, relative progesterone 

production was significantly increased after 144hrs of culture when LH was added to FSH, 

but only in the TP androgenised group (Figure 6.13).

6.3.4 Control (Abattoir) Granulosa Cell Cultures 

Granulosa cell viability

The effect of the gonadotrophins (FSH and FSH&LH), time (48, 96 and 144hrs) and cell 

density plated (32,000, 16,000, 8,000 and 4,000 live cells plated) on absolute live 

granulosa cell numbers and percentage viability over a 6 day culture period is shown in 

Figure 6.14. The addition of FSH or LH together with FSH to the culture media had no 

effect on granulosa cell percentage viability and live cell numbers. From 0-48hrs granulosa 

cell percentage viability and live cells numbers significantly decreased (P < 0.001), 

however, from 48hrs to the end of the culture at 144hrs no significant difference in 

granulosa cell percentage viability and live cell numbers was determined. Higher cell 

densities improved the granulosa cell percentage viability and live cell number (P < 0.001). 

The number of live granulosa cells and granulosa cell percentage viability was reduced 

when cells were plated at 8,000 and 4,000 live cells in comparison to when cells were 

plated at 32,000 live cells (P = 0.004 and < 0.001, respectively). Granulosa cell percentage 

viability and live cell numbers over the six day culture period was also reduced when cells 

were plated at 4,000 compared to 16,000 live cells per well (P < 0.001). There was a 

tendency for a reduction in granulosa cell percentage viability and live cell numbers when 

cells were plated at 8,000 compared to 16,000 (P = 0.067). There was no difference in live 

cell numbers and granulosa cell percentage viability when cells were plated at 8,000 

compared to 4,000 and between 32,000 and 16,000 live granulosa cells per well.
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P ro g e s te ro n e  P ro d uctio n  a fte r 48 h rs  o f C u ltu re  
Related to Z ero  S u p p lem en ted  M ed ia

g ^  300-1

l l L o o -

l l l  
« 9 100-
l l "2 ™ o

a

1 X
a

a

P ro g e s te ro n e  P ro d uctio n  a fte r 96 h rs  o f C u ltu re  
Related to Z ero  S u p p lem e n te d  M ed ia

S S ■§. 200

P ro g e s te ro n e  P ro d uctio n  a fte r 14 4h rs  o f C u ltu re  
Related to Zero  S u p p lem en ted  M ed ia

C sS 1000-,
I
8 Î  "8 800- ^ « s 
a: (g % 600

111 
l i t  200H
 ̂"I 0Cl

X
b
T

i i

Figure 6.13 Effect of LH addition to FSH in media on the percent change in granulosa cell 
progesterone production in vitro after 48hrs (top panel), 96hrs (middle panel) and 144hrs 
(top panel) of culture, where follicles were recovered from prenatally androgenised (TP = 
testosterone propionate, DHT = 5a-dihydrotestosterone) and control ewes. Granulosa cell 
progesterone production is related to the production determined in zero supplemented 
media (no gonadotrophin). Values presented are means ± SEM. Within a treatment 
group, means without a common superscript differ (P < 0.05). Control = 11, TP = 14, DHT 
= 6 follicles.
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LH - 32K
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LH - 8K
LH - 4K

y
Culture Timepoint
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5

supplemented media

E 3  0 - 32K 
BZI 0 - 16K 
B S  0 - 8K 
BS) 0 - 4 K

V
Culture Timepoint

FSH supplemented media

FSH - 32K 
FSH - 16K 
FSH - 8K 
FSH - 4K

Culture Timepoint

LH & FSH supplemented media

c 2000
E a  LH - 32K 
ES LH - 16K 
BS LH - 8K 
B3 LH - 4K

Culture Timepoint

Factor GLM P Value - 
Percent Viability 
(Live cell number)

Comparisons of 
levels within a factor

Tukey Post-Hoc test 
P value - Percent 
Viability (Live cell 
number)

Culture Media 0.296 (0.245) N/A N/A
Culture Time-point 0.374 (0.236) N/A N/A
Cell Density 0.000 (0.000) 32K vs 16K 0.732 (0.435)

32K vs 8K 0.004 (0.001)
32K vs 4K 0.000 (0.004)
16K vs 8K 0.067 (0.089)
16K vs 4K 0.000 (0.003)
8K vs 4K 0.112(0.334)

Figure 6.14 Mean percentage granulosa cell viability (A, C, E) and absolute granulosa live 
cell number per well (B, D, F) at three time-points (48, 96 and 144hrs) over a 6 day serum 
free culture system (n = 3 independent cultures). P values following Generalised Linear 
Model (GLM) analysis for each factor (and, where appropriate, levels within a factor) are 
shown in the table below the graphs, where percentage viability was used as the outcome 
measure. The values in parentheses are the P values obtained when granulosa live cell 
number was used as the outcome measure. Values presented are mean ± SEM. 0 -  zero 
supplemented media, FSH -  1 ng oFSH supplemented media, LH -  11.67 human 
recombinant LH supplemented media. 32K -  32,000 live granulosa cells plated, 16K -
16,000 live granulosa cells plated, 8K -  8,000 live granulosa cells plated, 4K -  4,000 live 
granulosa cells plated.
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Responses to oFSH

The effect of varying concentrations of ovine FSH on granulosa cell oestradiol and 

progesterone production over a 6 day culture period is shown in Figures 6.15 and 6.16 

respectively. We were unable to demonstrate that cultured granulosa cells from large 

(>5 mm) ovine follicles exhibited a dose-dependent oestrogenic response to FSH. 

Although absolute levels of progesterone production were elevated when higher doses of 

oFSH were used, we were unable to determine a significant dose-dependent progesterone 

response to oFSH. Similar to the experimental culture (granulosa cells from control and 

androgenised ewes), granulosa cell oestradiol production per live cell plated dramatically 

reduced during the culture period, while progesterone production increased throughout the 

6 day culture (P < 0.001).

Responses to oLH

The effect of varying concentrations of ovine LH on granulosa cell oestradiol and 

progesterone production over a 6 day culture period is shown in Figures 6.17 and 6.18, 

respectively. Human recombinant LH was also included as this was the exogenous LH 

source used in the experimental granulosa cell culture and it was necessary to compare its 

biological activity with that of ovine LH. We were unable to demonstrate that cultured 

granulosa cells from large (>5 mm) ovine follicles exhibited a dose-dependent oestrogenic 

or progestagenic response to exogenous ovine LH (when normalised to cells plated). 

Although absolute levels of progesterone produced were elevated using higher doses of 

oLH and the dose of recombinant human LH used, we were unable to determine a 

significant progesterone response. Similar to the experimental culture (granulosa cells from 

control and androgenised ewes) granulosa cell oestradiol production (normalised to 10,000 

cells plated) was reduced during the culture period (P = 0.04) partially reflecting the loss of 

cells over the first 48h, while progesterone production tended to increase throughout the 6 

day culture period (P = 0.08) indicating an increase in progesterone production per cell. 

The human recombinant LH dose produced an absolute progesterone response similar to 

that when an exogenous dose of 100 ng of oLH was used.
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6.4  D is c u s sio n

The results in this study provide evidence for the first time that prenatal androgenisation by 

DHT reduces inherent (gonadotrophin-independent) oestradiol production by granulosa 

cells from the largest two follicles in vitro using a serum-ffee culture system which 

provides the hormones insulin, IGF-1, and the oestrogen precursor androstenedione, with 

and without FSH and LH. Prenatal androgenisation by DHT also reduced progesterone 

production by granulosa cells in vitro, but, in accordance with the in vivo follicular fluid 

results, only relative to cells recovered from TP-follicles. Thus, the androgenic action o f  

prenatal testosterone decreases granulosa cell steroid production from DF and SF in vitro 

in adulthood. Prenatal androgenisation by TP had no overall significant effect on granulosa 

cell oestradiol production relative to controls, but appeared to affect the oestrogenic 

response to FSH in vitro, tended to increase in vitro progesterone production overall, and 

showed a significant progestagenic response to LH addition to FSH in the culture medium. 

However, the lack o f a significant media with treatment interaction in the analyses o f  in 

vitro oestradiol and progesterone production seems to indicate that granulosa cells from 

androgenised ewes do not show very large differences to controls in the steroidogenic 

response to FSH and LH. Thus, either granulosa cells from control animals are more 

responsive to the culture conditions (e.g. where excess insulin or IGF-1 are provided) than 

under in vivo conditions, or an important growth factor/hormone is not supplied within our 

culture system which exists within the peripheral circulation o f TP-treated ewes. It is 

important to bear in mind, that in control setups the dose and type o f LH used also did not 

significantly enhance in vitro oestradiol or progesterone production. Thus, lack o f 

differential response to LH may be due to the lack o f biopotency o f the LH used. However, 

control setups were performed one month later in May (non-breeding season), where 

granulosa cells obtained from anovulatory large follicles may perhaps have altered LH 

responsiveness compared with ovulatory follicles. These findings together with discussion 

o f the granulosa cell culture system used in the study are described in further detail below.

Data Normalisation Methods

In order to discuss the results from this study in greater detail it is important to highlight 

that for granulosa cell steroid production several data normalisation methods were used 

(i.e. steroid production per 1,000 live cells plated, steroid production per 1,000 live cells 

counted after 6 days o f  culture, percent change relative to production at another time-point 

or under a different media condition). Previous in vitro studies investigating steroid 

production over 6 days, normalise production between 96-144hrs to the number o f live 

cells at the end o f culture (Campbell et al, 1996; Campbell et al, 2006). Steroid
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production between 96 and 144 hours is chosen as this period represents the physiological 

responsiveness o f recovered granulosa cells (Armstrong e t a l ,  1996; Smith e t a l ,  2005; 

Silva e t a l ,  2006). However, due to so few live granulosa cells detected after 6 days o f  

culture using this culture system (probably as a result o f so few cells plated) other data 

normalisation methods such as those listed above were implemented. Such data 

normalisation has been used successfully in older publications, for bovine cells from 

preovulatory follicles (Fortune, 2003), bovine cells from antral follicle 1-8 mm in diameter 

(Langhout e t a l ,  1991) and rat cells from antral follicles (Fortune & Vincent, 1983). As a 

result, there are some examples where the results from the two data normalisation methods 

do not correlate (e.g. follicle classification and granulosa cell progesterone production -  

significant difference between DF and SF when steroid production normalised to 1,000 

live cells plated, however this significance is lost when steroid production is related to

1,000 live cells after 6 days o f culture). Such differences may also be due to only a small 

subset o f samples being available for analysis o f  steroid production related to live cells 

counted at 144h; with the inherent large variation o f culture setups, differences may not 

become apparent until a larger sample set is used. Any differences in results when steroid 

production was normalised using the different methods will be highlighted.

Androgenic programming of granulosa cell steroid production

Prenatal androgenisation by DHT but not TP reduced granulosa cell oestradiol production 

overall (data normalised to 1,000 live cells plated). Additionally, progesterone production 

by cells from DHT-treated animals decreased when compared to cells from TP-treated 

animals (data normalised to live cells plated), but was similar compared to controls. 

Therefore, the androgenic action o f testosterone administered in u tero  reduces the ability 

o f granulosa cells recovered from adult ewes to produce oestradiol and progesterone in the 

in v itro  environment used for this study. The decrease in oestradiol and progesterone 

production may be due to an intrinsic lowered synthesizing capacity, as granulosa cells o f  

both DF and SF from DHT-treated ewes were affected, independent o f gonadotrophin 

stimulation during in v itro  culture. Androgenisation by DHT reducing granulosa cell 

oestradiol and progesterone steroid production in comparison to cells from TP-treated 

animals replicates the in v ivo  results determined in Chapter 3, where follicular fluid 

oestradiol and progesterone concentrations within DF and SF also were lower in follicles 

from DHT versus TP-treated ewes. Taken together, these results add weight to the theory 

that it is the oestrogenic action o f testosterone that programmes postnatal follicular events 

such that it drives increased steroid production from large antral follicles, and suggests that 

the androgenic action o f testosterone if  anything may actually cause an intrinsic reduction
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o f the ability o f granulosa cells to produce steroids. The underlying mechanism that leads 

to a reduction in granulosa cell steroid production in vitro, particularly in relation to LH 

responsiveness should be investigated, given hypersecretion o f LH present in DHT-treated 

ewes (Veiga-Lopez et a l, 2009). In light o f this, future studies should investigate 

granulosa cell expression profiles o f LHR, FSHR, CP19A1 and HSD3B1 in granulosa cells 

recovered from DHT-treated ewes.

This study aimed to address whether increased steroidogenesis observed in DF and SF 

from prenatally TP-treated ewes (Chapter 3) is as a result o f an intrinsic increase in 

granulosa cell steroidogenesis or if  granulosa cells have perhaps an increased functional 

response to LH and reduced response to FSH. If prenatal androgenisation by TP results in 

an intrinsic alteration in granulosa cell steroidogenesis, we would expect granulosa cell 

steroid production to be increased when cells were cultured in the same media (e.g. zero 

supplemented media). If however, an altered response to either gonadotrophin is present 

within granulosa cells (i.e. LH stimulation would lead to an enhanced, and FSH stimulation 

to reduced granulosa cell oestradiol and/or progesterone production in vitro) we would 

expect a significant interaction between prenatal treatment and media hormone 

supplementation.

Differential Response to Gonadotrophins

No media with prenatal treatment interaction for both oestradiol and progesterone 

production was determined in this study (when data were normalised using both 1,000 live 

cells plated and 1,000 live cells after 6 days o f culture). Therefore, differences in 

gonadotrophin receptor mRNA expression in TP cells determined in Chapter 5 did not 

translate into a differential response to gonadotrophins in vitro. However, within granulosa 

cells o f this study, prenatal androgenisation by TP reduced granulosa cell FSHR exon 9/10 

expression, while LHR expression was similar between treatment groups. Therefore, 

despite prenatal treatment likely increasing the expression and thus the amount (number) o f  

LHR present in granulosa cells o f DF and SF (Ireland & Roche, 1983b) not enough potent 

LH was possibly available in the cell culture system to lead to a very strong differential 

response (either increase in oestradiol or progesterone production). In absolute terms, the 

recombinant human LH used clearly was more potent than even the highest dose o f ovine 

LH. This is not the case for FSHR, where the FSH dose given was sufficient to increase 

oestradiol (but not progesterone) granulosa cell production. Therefore, the dose o f FSH 

used in the experimental culture was biopotent. In vitro results not replicating those seen in 

vivo (i.e. the follicular fluid differences) could be explained as a result o f the presence o f
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potent growth factors within our culture system (e.g. insulin and IGFl, a type which is not 

neutralised by IGF binding proteins) (Ryan et a l, 2008), not normally present in such 

concentrations in vivo. If they are present in too high a concentration in vitro, they may 

override any major reduction in granulosa cell steroid production in response to FSH. Both 

insulin and IGF-1 have been shown to increase ovine granulosa cell oestradiol and 

progesterone production in vitro from both small and large antral follicles (Campbell et al.,

1996). In addition, FSH has been shown to enhance granulosa cell responsiveness to IGF-1 

(Glister et a l, 2001), rather than the opposite, leading to the possibility o f high doses o f  

IGF masking any effects o f FSH. However, there was some evidence o f a differential 

response to FSH in terms o f granulosa cell oestradiol production when a different data 

normalisation method was implemented. Granulosa cells obtained from DF and SF from 

control ewes showed a larger percent increase in oestradiol production when FSH was 

added to the zero supplemented media compared with cells from TP- and DHT-treated 

ewes. Thus, using this method o f normalisation prenatal androgenisation by TP and DHT 

appears to reduce granulosa cell FSH responsiveness to some extent. This in vitro result 

matches those seen in vivo in chapter 4 and results from granulosa cells in this study, 

where FSHR mRNA expression is downregulated in granulosa cells o f DF and SF as a 

result o f TP prenatal androgenisation.

DF and SF granulosa cells recovered from prenatally TP androgenised ewes did not 

respond to LH differentially in either oestrogen or progesterone production compared with 

cells obtained from follicles o f control ewes (data normalised to 1,000 live cells plated and

1,000 live cells after 6 days o f culture), because o f lack o f  a significant interaction. 

However, there was some evidence o f  an enhanced LH response in cells from 

androgenised ewes: when the percent change in oestradiol production from 96 to 144 hours 

was evaluated in media supplemented with FSH & LH, androgenisation led to maintenance 

of oestradiol production compared to a severe drop during culture o f granulosa cells 

recovered from control ewes. In addition, the percent change in progesterone production at 

144 hours following LH addition to FSH was only significant when cells were cultured 

from TP androgenised ewes. Thus, this hints at a slightly increased responsiveness to LH 

in granulosa cells o f DF and SF from TP-treated ewes. Increased responsiveness to LH 

agrees with results seen in vivo of increased LHR mRNA expression in granulosa cells o f  

DF and SF recovered from TP-treated ewes (Chapter 5). Despite an indication that DF 

have higher LHR mRNA in TP cells used for this in vitro study, this did not translate into a 

higher functional steroid response to LH in vitro.
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Gonadotrophin Independent Granulosa Cell Steroid Production

The lack o f a significant prenatal treatment and culture media interaction on both granulosa 

cell oestradiol and progesterone production suggests steroid production is altered 

independent o f gonadotrophin stimulation. In fact, a low overall tendency for increased 

progesterone production in cells from TP androgenised ewes was found. In addition, when 

the percent change in granulosa cell oestradiol production from 96 to 144 hours was 

evaluated in zero supplemented, androgenisation led to a maintenance in oestradiol 

production, compared with a severe drop during culture o f cells from control ewes. Thus, 

this finding is consistent with the belief that it is not the peripheral gonadotrophin 

environment that results in increased steroidogenesis within DF and SF (Chapter 3), but 

that prenatal androgenisation by TP programs increased granulosa cell steroidogenesis 

within DF and SF. Prenatal androgenisation programming increased androgenisation could 

be achieved either by changing other hormonal mediators o f  steroid synthesis not yet 

evaluated, such as insulin and IGF-1 (Spicer e t a l ,  1993; Glister e t a l ,  2001), or by 

altering the inherent constitutive capacity o f granulosa cells from TP androgenised ewes 

for oestradiol and progesterone synthesis.

Follicle classification and hierarchy

Our follicle classification criteria was given further validation as follicles classified as DF 

over all three treatment groups produced more oestradiol in v itro  than those classified as 

subordinate, which is indicative o f a dominant follicle (Evans & Fortune, 1997; Ireland e t 

a l ,  2004). Increased granulosa cell oestradiol production concurs with elevated oestradiol 

concentrations found within the follicular fluid o f DF in the third chapter. Granulosa cells 

from follicles classified as SF produced more progesterone than those classified as DF, 

thus mimicking progesterone concentrations within the follicular fluid o f SF and DF found 

in other studies (Evans & Martin, 2000). This is in contrast to the intrafollicular 

progesterone concentrations from the animals used in this study, where concentrations 

were similar in SF compared to DF. Again, the disparity between the in vivo  and in v itro  

results could be as a result o f  the in v itro  environment not mimicking that seen in vivo , 

with a growth factor or hormones (perhaps GH, insulin, IGF-1) either absent or in higher 

than normal concentrations. Progesterone production from DF and SF in v itro  was similar 

when recovered from prenatally androgenised ewes from TP only, whereas production 

increased in SF compared to DF in both the control group and DHT-treated group. 

Oestradiol production in DF and SF classified follicles from TP-treated animals was also 

similar, in comparison to those recovered from control and DHT-treated ewes, where 

oestradiol production was significantly higher in DF compared to SF. This confirms results
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observed in Chapter 3 and Chapter 5 of prenatal TP treatment leading to increased 

steroidogenesis (oestradiol and progesterone) within the largest antral follicles, and 

suggests that prenatal androgenisation by TP results in the loss o f functional follicle 

hierarchy. To the best o f our knowledge no group has investigated steroid production 

within dominant and subordinate follicles recovered from prenatally androgenised ewes in 

vitro . Therefore, for the first time these results provide in v itro  evidence that follicle 

hierarchy is diminished as a result o f prenatal androgenisation.

Culture System Used

Within our experimental culture system, FSH stimulated the production o f oestradiol; 

however, the addition o f 11.67 ng human recombinant LH did not further enhance 

oestradiol production. In fact, the addition o f LH to FSH reduced such enhancement o f  

oestradiol production. Ovine FSH stimulation o f oestradiol production in the experimental 

cultures is in contrast to our dose response control setup, where we were unable to 

demonstrate a dose oestradiol response to 1 ng FSH. This could be as a result o f the data 

normalisation method used for the dose response culture, as results were normalised to 

10000 live cells plated. Additionally, in our experimental culture, GLS analysis showed 

that a 11.67 ng dose o f human recombinant LH increased progesterone granulosa cell 

production when data were normalised to live cells plated. We were unable to demonstrate 

a dose response to oLH on oestradiol or progesterone production in our control culture, 

although in absolute values, higher doses o f LH stimulated increased production o f  

progesterone. As mentioned above, the effect o f a 1 ng dose o f FSH on oestradiol 

production differed between the experimental culture and the dose-response culture. This 

difference between the two cultures could be as a result o f  follicles being recovered at 

different stages o f follicle development. In the experimental study, only DF and SF 

follicles were recovered (some o f which were less than 5 mm in control animals, thus 

possibly including growing FSH dependent follicles (Dufour e t a l ,  1979; Miller e t a l ,  

1979), whereas the granulosa cells from follicles >5 mm in diameter were recovered for 

the dose response culture. Within this group older, regressing non-ovulatory follicles may 

be included, which are unresponsive to both FSH and LH in terms o f cAMP production 

(Jolly e t a l ,  1997a). The reasons for a lack o f response to exogenous LH on granulosa cell 

oestradiol and progesterone production are difficult to determine given that we followed a 

previously published and well characterised culture system (Gutierrez e t a l ,  1997; Glister 

e t a l ,  2005).
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General Steroid Production

Granulosa cell oestradiol production reduced over time (when normalised to 1,000 live 

cells plated) within our 6 day culture o f  experimental cells plated at very low densities (at 

all time points), in concordance with our dose response control culture where high starting 

cell densities.could be employed. In contrast, during experimental cultures progesterone 

production normalised to 1,000 live cells plated was maintained using GLM analysis (in 

fact it was significantly increased when analysed using GLS) despite a clear loss o f live 

granulosa cells. Therefore, despite using a well characterised culture system that is able to 

respond to FSH with physiological concentrations o f oestradiol (Gutierrez e t a l ,  1997; 

Glister e t a l , 2005), and having shown an FSH effect on oestradiol secretion in this study, 

the overall steroid secretion patterns observed suggest that this culture system promoted 

lutéinisation o f granulosa cells.

As it was only possible to culture a very small number o f granulosa cells per well within 

the experimental culture, and cells are lost during culture, this resulted in the difficulty to 

estimate live cell numbers at 144h for normalising steroid results. As any differences in 

steroid production per well (or normalised to the number o f cells plated) could be due to a 

differential decline in live cell numbers as a result o f different sources o f cells and added 

hormones, an investigation into the rate o f granulosa cell death and the effect cell density 

had on subsequent granulosa cell survival and viability was instigated.

The number o f live granulosa cells plated was similar per treatment group per follicle 

classification. This is important to determine as plating density (of bovine granulosa cells) 

has been shown to alter steroid production and cell health, albeit this was determined when 

a very large number o f cells (250,000 to 1.5 million live granulosa cells per well) were 

plated (Portela e t a l ,  2010). Low plating density favours oestradiol secretion and mRNA  

encoding estrogenic enzymes, whereas higher density inhibites oestradiol production and 

enhances progesterone secretion and levels o f mRNA encoding progestagenic enzymes 

(Portela e t a l ,  2010). Increasing plating density decreased the oestrogen: progesterone 

ratio and reduced cell health (Portela e t a l ,  2010). Our study also revealed that cell density 

had a significant effect on granulosa cell survival and viability. However, cell density only 

had significant effects on granulosa cell viability and live cell numbers when cells were 

plated at 32,000 and 16,000 compared to 4,000 live cells per well. Importantly, there was 

no significant difference when granulosa cells were plated at 8,000 and 4,000. The average 

number o f live granulosa cells plated was 3205, 7337 and 3917 for DF from the control, 

TP and DHT treatment groups, respectively, and 1822, 6384 and 2256 live granulosa cells
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for SF from control, TP and DHT groups, respectively. Therefore, the granulosa cell 

density at which follicles were plated is not expected to have an effect on granulosa cell 

live cell numbers and viability over the 6 day culture period. Therefore, from this 

observation it is likely that the rate o f granulosa cell death is similar between these plating 

densities and thus across all three treatment groups. O f note is the fact that the number o f  

live granulosa cells significantly dropped dramatically during 48 hours o f culture, 

independent o f the densities the granulosa cells were plated at. Live granulosa cells were 

not lost during the process o f  replacing conditioned media with fresh media, as no live 

granulosa cells were present in the conditioned media (data not shown). Therefore, it is 

unknown why using a well established culture system (Campbell et al, 1996; Gutierrez et 

al, 1997; Glister et al, 2005) resulted in such a dramatic loss o f  live granulosa cells during 

the initial 48 hours o f culture.

To the best of our knowledge, no other attempts have been made to culture granulosa cells 

from individual ovine follicles for a period o f 6 days. As previously stated, granulosa cells 

were cultured for six days as past studies have determined that only the 96-144h time 

period appears to reflect the physiological responsiveness o f recovered granulosa cells 

(Armstrong et al, 1996; Smith et al, 2005; Silva et a l, 2006). As the number o f  live 

granulosa cells plated was so low, it is hard to directly compare the results from our culture 

system to others. Previous granulosa cell cultures have varied in terms o f source o f the 

granulosa cells (emerging follicles, dominant follicles etc.) (Meidan et al, 1992; Spicer et 

al, 1993; Glister et al, 2005; Campbell et al, 2006; Ryan et a l, 2008), culture conditions 

and added hormones, whether cells from dissected follicles were cultured independently or 

pooled, the density granulosa cells were plated at, the model organism used (sheep or 

cattle) and, finally, the duration o f culture (Jimenez-Krassel & Ireland, 2002; Jimenez- 

Krassel et al, 2003; Ireland et a l, 2004; Campbell et al, 2006). Typically, culture periods 

have been o f either a shorter duration or identical to ours ranging from a culture period o f  

18hrs (Jimenez-Krassel & Ireland, 2002; Jimenez-Krassel et a l, 2003; Ireland et a l, 2004; 

Campbell et al, 2006) to 144hrs (Gutierrez et a l, 1997; Ryan et a l, 2008). Additionally, 

cultures have pooled follicles in order to achieve the optimum cell density for proliferation 

and oestradiol production o f the granulosa cells, thought to be between 50,000 and 75,000 

cells per well (Gutierrez et al, 1997; Jimenez-Krassel & Ireland, 2002). One group 

cultured granulosa cells from individual DF and SF from cattle (Ireland et al, 2004), 

where DF are much larger in size than those found in sheep, enabling enough live 

granulosa cells to be recovered to achieve the desired density. In our study, we chose not to 

pool granulosa cells and to culture granulosa cells from individual follicles, as we wanted
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to gain additional information on the follicle hierarchy within androgenised ewes. If 

follicles were pooled this information would be lost.

Gene expression profiles following in vitro culture

Unfortunately, investigation into the mRNA expression profiles o f FSH- and LH- 

responsive genes in granulosa cells after culture, which may have confirmed differences in 

survival or luteinization gene expression as well as in gonadotrophin responsiveness, was 

not possible, due to the low numbers o f  live granulosa cells plated. Thus, with the 

inevitable cell loss during the 6-day culture, we were unable to recover adequate amounts 

o f RNA from cells after culture, even when a specialised RNA extraction kit was utilised 

to isolate high quality and quantity RNA from very small samples. Therefore, future 

studies should pool the granulosa cells collected from several follicles o f  prenatally 

androgenised ewes in order to determine the expression profiles o f FSH- and LH- 

responsive genes following in v itro  stimulation. As stated earlier, the pooling o f follicles 

with the same classification has been used in previous granulosa cell culture studies due to 

the low number o f live granulosa cells isolated and the variability in the numbers o f  

granulosa cells isolated from individual follicles (Ireland e t ah , 2004). Pooling o f  

granulosa cells isolated from individual follicles would enable an increased number o f live 

granulosa cells to be plated, comparable to that used in previous studies (75,000 -  100,000 

live cells/200pl for culture in 96 well plates) (Ireland e t a l ,  2004; Campbell e t a l ,  2006). 

However, significantly more follicles would have to be recovered (therefore many more 

prenatally androgenised sheep would be required) if  follicles with the same classification 

are to be pooled for in v itro  cell culture. The results from such a study would not only help 

determine whether the differential gonadotrophin receptor expression between control and 

TP cells is maintained in vitro , thus help in elucidating whether the lack o f a strong 

functional differential gonadotrophin responsiveness was due to equal receptor expression 

or the equally supportive in v itro  conditions, but also provide direct functional evidence as 

to how the gonadotrophins, particularly LH, stimulate granulosa cell steroid production 

and enhanced growth in v ivo  (results in Chapter 3 and Chapter 5 suggest LH is the 

instigator o f enhanced growth and increased steroidogenesis). Additionally, such a study 

would be an ideal approach to investigate the possible induction o f  other lutéinisation 

genes, or other response systems (other growth factors) which may be altered before and 

after culture.

In conclusion, the results o f this experiment have demonstrated for the first time the effects 

of prenatal androgenisation on granulosa cell steroid production in v itro  and delineated the
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relative action o f androgens and oestrogens in u tero  on the programming o f follicular 

steroid production in the early adult ewe. Androgenisation by DHT results in a, most 

likely, inherent reduction o f the ability o f granulosa cells recovered from DF and SF to 

synthesise oestradiol. Studies provided some functional evidence that prenatal 

programming by TP reduces FSH stimulated granulosa cell oestradiol production, but may 

enhance progesterone production, both unstimulated and following LH stimulation, in 

adult ewes. Prenatal androgenisation also results in the loss o f follicle hierarchy in v itro  in 

relation to follicular capacity for steroid synthesis.
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C h a p t e r  7. G e n e r a l  D is c u s sio n

The prenatal environment may be the origin o f a number o f diseases in later life, including 

coronary heart disease and the related disorders stroke, diabetes, and hypertension (Barker,

1997). Prenatal programming by intrinsic and extrinsic factors that impact on the foetus can 

also lead to growth, metabolic and reproductive alterations in the offspring, the effects o f  

which are manifested during adulthood (Holemans et al, 1998; Tchemitchin et a l, 1999; 

Eriksson & Forsen, 2002; Walker & Humphries, 2007). Research from a wide range o f  

scientific disciplines has shown that the reproductive performance o f animals in adult life is 

also determined, in part, by a variety o f environmental and nutritional influences acting at 

different stages o f development from before conception until after birth (Rhind et al, 

2001). Thus, in addition to being o f fundamental scientific interest, results from this 

research will provide further information on the effects o f  excess testosterone in utero on 

the programming o f antral follicle function.

The primary aim o f  this thesis was to determine the effects o f prenatal testosterone 

treatment on ovarian follicle development, specifically on terminal follicle development by 

investigating antral follicle growth, steroidogenesis, apoptosis and differentiation using a 

variety o f methods. Given that the majority o f previous studies have used the Suffolk breed 

of sheep, which is less sensitive to the effects o f  prenatal androgens, and have focused on 

neuroendocrine defects (Sharma et al, 2002; S arma et a l, 2005; Manikkam et a l, 2008; 

Veiga-Lopez et al, 2008; Jackson et a l, 2009), follicle recruitment within the ovary 

(Steckler et al, 2005; Smith et a l, 2008) and large antral follicle growth (Manikkam et al, 

2006; Steckler et a l, 2007a), there was clearly a requirement to investigate the effects o f  

prenatal androgens on the programming o f antral follicle function and differentiation, 

especially when one considers the abnormal multifolliculate morphology observed in these 

animals (West et a l, 2001; Manikkam et al, 2006; Steckler et a l, 2007a). Thus, the 

molecular aspects o f ovarian function that can be programmed by excess prenatal 

androgens would be identified and investigation into the possible mechanisms that result in 

abnormal ovarian function, specifically on antral follicle dysfunction, would be possible.

This study into the effects o f prenatal androgenisation on reproductive physiology is 

unique, as we have obtained data in several groups o f sheep over five separate years 

(Clarke et al, 1977; Birch et a l, 2003; Unsworth et a l, 2005; Manikkam et a l, 2006; 

Steckler et al, 2007a). As a result, we are able to identify effects that are consistent over 

several years. Therefore, this enables those ovarian/follicle characteristics that are most 

likely to be programmed by excess androgen in utero to be identified and reduce the
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possibility that the abnormalities isolated are as a result o f a difference in maternal body 

condition or the external environment that both mothers and their offspring are exposed to 

throughout their lives (Luther e t a l., 2007).

Another advantage o f the present study was that a range o f  techniques were used to identify 

and characterise the effect o f  prenatal androgenisation on antral follicle function and 

development. Specifically, concentrations o f follicular steroids (radioimmunoassay), gene 

expression (real-time PCR), protein localisation (immunocytochemistry) and follicle health 

(histology) were used to identify abnormalities in antral follicle development. As a result, a 

comprehensive investigation into the effects o f excess testosterone in utero  on antral 

follicle function was achieved.

Prenatal androgenisation by excess TP resulted in increased antral follicle growth and 

steroidogenesis through the oestrogenic action o f testosterone (Chapter 3). The increase in 

systemic oestradiol, increased mRNA expression o f LHR  and H SD 3B1  and reduced mRNA 

expression o f FSHR in follicular granulosa cells (Chapter 5) points to higher LH- 

dependent differentiation o f large antral follicles from young androgenised ewes. 

Understanding the role LH has on the various aspects o f reproduction dysfunction within 

the androgenised ewe will allow for a greater insight into the mechanisms underlying 

excessive antral follicle growth and increased steroidogenesis. Given that increased growth 

and enhanced steroidogenesis is achieved only when TP is used for prenatal 

androgenisation, and both prenatal treatment androgens (TP and DHT) result in 

hypersecretion o f LH (Veiga-Lopez e t a l ,  2009), it appears that the LH response within 

follicles is abnormally activated in TP-treated ewes. GnRH antagonist treatment with 

gonadotrophin supplementation in the follicular phase in the prenatally androgenised (TP) 

Suffolk model (with a less severe phenotype), demonstrated that persistent large follicles 

are still able to respond to different LH environments with atresia or ovulation (Steckler e t 

a l ,  2008). This supports the concept o f  high LH responsiveness in large growing follicles 

from prenatally androgenised ewes. Therefore, we propose that the enhanced growth and 

steroidogenesis o f several follicles is as a result o f elevated LH. To answer this question, in 

a proposed future in v ivo  study, endogenous FSH and LH secretion would be inhibited in 

the long-term (by means o f a GnRH antagonist or agonist) in control and prenatally 

androgenised ewes. Exogenous LH would then be administered to controls in a manner 

that replicates the peripheral LH concentrations and episodic profiles seen in prenatally 

TP-treated ewes (Sarma e t a l ,  2005), while TP-treated ewes would receive peripheral 

concentrations in a manner usually seen in controls. The resultant ovarian morphology and
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histology, follicular fluid concentrations o f oestradiol and progesterone in DF and SF, the 

follicular expression profiles o f LH R  and FSHR, in addition to other genes found to be 

abnormally regulated, such as H SD 3B1  would then be investigated.

Prenatal androgenisation by DHT reduced granulosa cell steroid production within the DF 

and SF in vitro  and that this is most likely an inherent decrease in granulosa cell steroid 

production. In the future, granulosa cell gene expression (specifically, LHR, FSHR, 

H SD 3B1  and C YP19A 1) in DHT-treated ewes should be investigated to determine if  these 

genes are programmed by the androgenic action o f the androgen. As a result o f decreased 

granulosa cell steroid production, we would expect reduced transcript levels o f LHR, 

FSHR, H SD3B1  and CYP19A 1. Results from this study would enable the underlying 

molecular mechanisms leading to reduced steroid production in DHT-treated ewes and 

excessive follicle growth in TP-treated ewes to be further elucidated.

This study determined that prenatal androgenisation by TP resulted in premature antral 

follicle differentiation as seen by the presence o f aromatase within antral follicles less than 

1 mm in diameter (Chapter 4). Premature induction o f aromatase in TP-treated ewes 

implies that these follicles are abnormally differentiated given that aromatase is not 

normally present until follicles reach a diameter o f 3 mm in sheep (Logan e t a l., 2002). In 

sheep, FSH is responsible for the induction o f aromatase expression in antral follicles 

(Richards & Hedin, 1988) and small antral follicles less than 1 mm in diameter are not 

FSH dependent; however they are FSH-responsive (Campbell e t a l., 2003). Thus, it 

appears that an FSH-independent mechanism exists resulting in premature follicle 

differentiation. The most likely candidates that can induce early aromatase induction are 

various growth factors such as insulin and IGF-1 (Costrici e t a l., 1994; Campbell e t a l., 

1995; Campbell e t a l ,  2003; Evans, 2003a). Additionally, androgenisation could lead to 

follicles attaining FSH and LH dependency at an earlier stage o f  follicle development. To 

address this hypothesis, a study using immunocytochemistry should be initiated to 

determine whether FSHR and LHR are present within granulosa cells o f small (<1 mm) 

antral follicles o f TP-treated ewes and compared to controls. Within our study, we did try 

to localise LHR within TP-treated ewes, using an antibody raised against the human 

receptor (data not shown). However, as is sometimes the case with immunocytochemistry, 

this antibody did not appear to recognise the ovine ovarian receptor. The use o f another 

antibody might be more successful. An alternative to the use o f immunocytochemistry to 

identify the presence and location o f protein would be, in situ  hybridisation to determine if  

the expression if  LHR  mRNA is present in granulosa cells. This would determine if
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prenatal androgenisation leads to premature follicle differentiation and a possible 

dependency on LH for follicle growth. Premature follicle differentiation in prenatally TP- 

treated ewes appears to also apply to the subordinate follicle thus abolishing follicle 

selection to a certain extent. This presumptive loss in follicle hierarchy in TP-treated 

animals was also seen during in v itro  granulosa cell culture, where steroid production from 

SF was more similar to production from DF in TP animals, when compared to controls.

The reduction in the number o f antral follicles when TP-ewes are 22 months o f age seen in 

Chapter 4, together with enhanced follicular depletion (Smith e t a l ,  2008) and increased 

follicle recruitment from the primordial follicle pool (Steckler e t a ï., 2005; Smith e t a l ,  

2008) observed in previous studies in foetal sheep provide considerable evidence that the 

young prenatally TP-treated ewe is a suitable animal model to study ovarian aging in 

women (Broekmans e t a l ,  2009). In addition, ovarian abnormalities seen such as a high 

incidence o f cystic degeneration and subluteal function o f co rp o ra  lu tea, all characteristics 

of the ageing ovary in women, are also seen in TP ewes (Unsworth e t a l ,  2005). As the 

availability o f human ovarian tissue is at a premium, this model provides an excellent 

source o f tissue for research purposes. Thus, the prenatally androgenised ewe could be used 

to investigate further abnormalities (see above) that occur in both premature ovarian aging 

and timely ovarian aging in women, with the potential to develop novel therapeutic 

approaches to slow or rescue ovarian function.

Finally, the prenatally TP-treated ewe is seen as a model for PCOS given the similarities 

between the two (hypersecretion o f LH, multifollicular ovaries, hyperinsulinemia) as 

previously described (Dunaif e t a l ,  1989; Recabarren e t a l ,  2005; Franks e t a l ,  2006; 

Forsdike et a l ,  2007; Franks et a l ,  2008). In terms o f antral follicle development, PCOS is 

characterised by arrested follicle development at the 4-8mm stage (Franks, 1995; Franks e t 

a l ,  2000; Chang, 2007). However, the TP-treated model, follicles o f over 10mm in 

diameter are regularly observed (our studies and Steckler et al, 2007). Therefore, in the TP- 

treated ewe, follicles are able to continue to grow past the FSH dependent stage and 

continue to the LH dependent point o f  follicle development. Antral follicles within the 

androgenised ewe may be able to continue to grow due to the presence o f an as yet 

unidentified growth factor o f hormone in higher concentrations at a specific stage o f  

development, such as IGF-1, that is not present in PCOS women, or are programmed to 

respond to the same hormonal milieu (as that seen in PCOS women) by continuing to grow 

and failing to undergo atresia. Therefore, the prenatally androgenised sheep as an ovarian 

model for PCOS is a suitable model to study follicle recruitment; however is not an
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appropriate animal model to study the later stages o f follicle growth (selection and 

dominance).

Limitations of the Study

There were some limitations o f the present study. Firstly, in spite o f our best efforts to 

correctly identify DF and SF from each ewe we were not able to irrefutably determine that 

those follicles classified into the two groups are correct. In view  o f this, further studies 

should utilise transrectal ultrasonography, either with synchronisation o f reproductive 

cycles by prostaglandin F2a in controls and TP animals able to ovulate or when animals are 

outwith the breeding season, and only follicle waves are monitored, to ensure that both DF 

and SF are correctly identified. This is o f even more importance for granulosa cell culture, 

where granulosa cells should be isolated from follicles at similar stages o f  differentiation 

and within a follicular wave (Jimenez-Krassel & Ireland, 2002). Additionally, post mortem 

follicle collection (and classification) as was used in this study does not allow correlation o f  

enzyme expression patterns within antral follicles to the circulating endocrine milieu. In the 

future blood samples should be taken every day for a week prior to euthanasia in order to 

determine the hormonal milieu before ovary/follicle collection.

Another limitation with our study was that immunofluorescence was used and fluorescent 

labelling fades, usually after a period o f up to eight weeks. Thus, optimum staining is lost 

beyond this point, and it is sometimes not possible to re-examine microscopic slides several 

months after initial labelling. Therefore, a detection chemistry other than fluorescence, such 

as that o f the avidin-biotin-peroxidase complex, should be utilised to enable detection and 

localisation o f specific proteins. Additionally, we did not have the option o f quantifying 

CYP19A1 and HSD3B1 enzyme levels in follicle cell layers, as we had to use frozen 

sections for immunocytochemistry. Frozen sections were used as we were not able detect 

specific immunoreactivity for these steroidogenic enzymes (using the antibodies previously 

described) in Bouin’s fixed, wax embedded tissue, even when antigen retrieval was 

performed (data not shown). Using frozen sections it is difficult to determine individual 

follicular cells accurately within antral follicles and thus it was not possible to determine 

the proportion o f cells immunoreactive for a specific protein (e.g. HSD3B1). Wax 

embedded tissue would allow determination o f granulosa and theca cells and thus, would 

enable quantification (expressed as a proportion o f cells stained) o f protein in antral 

follicles.

Conclusion

The data presented in this thesis have demonstrated for the first time the varied effects o f  

prenatal androgenisation by either TP or DHT on the programming o f antral follicle
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function within the sheep. This study has shown in vivo, that prenatal androgenisation 

through the oestrogenic action o f testosterone increases steroidogenesis and enhances 

growth o f large antral follicles. Excess testosterone in utero  also results in premature antral 

follicle differentiation, suggestive o f  an earlier dependence on LH. In addition, for the first 

time in vitro , we have shown that the androgenic action o f testosterone reduces granulosa 

cell oestradiol production. A major task now is to determine the programming mechanisms 

in utero  by excess testosterone which leads to subsequent abnormal antral follicle and 

specifically granulosa cell function. Results from future studies will provide greater 

understanding into the long-term effects o f prenatal androgenisation, such as the 

programming o f granulosa cell genes, and into the mechanism(s) that result in abnormal 

antral follicle function.
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