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Abstract  
 

Background:  Pre-hospital and Retrieval Medicine is a healthcare specialty focussed on 

the provision of advanced, specialist care to patients in any clinical setting - from the 

roadside to a major hospital. The ScotSTAR division of the Scottish Ambulance Service 

has a national remit for providing such services within Scotland. High clinical acuity and 

long travel time challenge the service by generating a significant workload from relatively 

few patients. ScotSTAR teams comprise only one or two servers, so waiting times are 

potentially long, and there is a relatively high per-patient cost. 

Aims: Firstly, this thesis aims to investigate if standard queueing theory could be used to 

describe two ScotSTAR teams: the Scottish Paediatric Retrieval Service (SPRS) and the 

Emergency Medical Retrieval Service (EMRS). The thesis then aims to develop a Discrete 

Event Simulation (DES) model and validate it against the real-world. From this model, the 

thesis then aims to describe the performance of the ScotSTAR teams using metrics which 

are unmeasurable in the real-world. Finally, the thesis aims to establish the performance 

frontiers of the ScotSTAR teams. 

Methods: Analysis of the ScotSTAR teams to map their operation with standard queueing 

theory was undertaken. This was used to develop a DES model, which performed 1000 

simulation iterations of a 4-year period. The output was compared to the real-world data 

for accuracy with regard to: number of missions, activation time of day, inter-arrival time, 

mission duration, and server utilization. The validated model was then used to derive 

values for length of queue, waiting time, and proportion of simultaneous retrievals. Finally, 

the model was run in an extended Monte-Carlo format to establish the relationship of the 

current system to proposed performance frontiers based on waiting time, simultaneous 

retrievals, and missed missions. 

Results: This thesis demonstrated that standard queueing theory could describe the 

operations of the ScotSTAR systems, describing M/G/1 and M/G/2 queue types for SPRS 

and EMRS respectively. The DES model based on this was able to accurately replicate the 

real-world system in retrospective simulation (mean model accuracy: SPRS = 91.0%, 

EMRS = 91.9%), and partially replicate the contemporaneous state of the system (mean 

model accuracy: SPRS = 82.2%, EMRS = 89.0%). The model then derived plausible 

values for length of queue, waiting times, and simultaneous retrieval proportions. Lastly, 

the model demonstrated a 95th percentile of waiting time (Wq
95) of 1 hour for secondary 

retrievals as being the most significant performance frontier. SPRS was demonstrated to be 

operating approximately 196 missions per year over this frontier, EMRS had capacity for 

an extra 26 primary or 23 secondary missions per year before reaching the frontier. 

Conclusions: Standard queueing theory is able to accurately describe the constituent 

parameters of the ScotSTAR systems. A discrete event simulation model can, with some 

limitations, accurately replicate the real-world to allow the derivation of performance 

descriptors which are unmeasurable in the real-world. Furthermore, such a model can also 

demonstrate the relationship between the current state of the system and potential 

performance frontiers. 
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Preface 

   This thesis will examine queueing theory as applied to the pre-hospital and retrieval 

medicine (PHaRM) systems of the Scottish Ambulance Service’s ScotSTAR division. 

ScotSTAR is one of several services that operate in the UK to deliver advanced medical 

care to patients at the scene of an accident or transfer them over long distances between 

healthcare facilities. However, due to the random nature of emergencies which comprise 

the work of the service, standard performance measures such as waiting time or service 

utilisation can be difficult to determine. This thesis will aim to describe the performance of 

this high-value system and define its limitations in a manner which is operationally useful 

and, more importantly, helpful to the patients whose care requires involvement of the 

specialist ScotSTAR teams. 

   In Part 1, the ScotSTAR systems will be defined according to conventional queueing 

theory. The challenges of applying queueing theory to the system are identified and 

discussed to explain the limitations of using formulaic queueing theory in particular.  

   In Part 2, computer models of the ScotSTAR systems will be developed and their ability 

to replicate the real world, through simulation, will be shown by analysis of a number of 

directly comparable parameters. 

   In Part 3, having shown the models’ abilities and limitations in replicating the real world, 

the computer models will be used to generate the standard queueing theory descriptors of 

the system. The limitations of these descriptors are explored and alternative, more useful, 

derived performance values for the ScotSTAR systems will be generated. The models will 

then be used to define the system’s performance frontiers by considering situations that are 

currently unobservable in the real world. 

   At the conclusion of the thesis, a progression through core theory, modelling and 

simulation should result in a clinically and operationally relevant analysis of the ScotSTAR 

systems. This analysis should be able to directly specify, for the ScotSTAR teams, 

referring rural clinicians, patients and their families, what the capabilities of the ScotSTAR 

services are, and the level of service they should expect from their integrated national 

critical care transport system. 

 

  



 XXIII 

 
 

Acknowledgements 

I would like to acknowledge the following people: 

 

My supervisory team, for their continual support, guidance, teaching and review during my 

research: 

Professor Danny Mackay   Professor Jill Pell 

Dr Alasdair Corfield    Mr Malcolm Gordon 

 

My academic reviewers who ensured that my educational goals were achieved: 

 Dr Oarabile Molaodi    Dr Claudia Geue 

 

The data analysts at ScotSTAR who assisted with data export from the ScotSTAR systems: 

 Mrs Shruti Babre    Mr Colin Devon 

 

For their ongoing support of the project from within ScotSTAR and the Scottish 

Ambulance Service: 

Dr Nicola Littlewood    Ms Kay Burley 

Mr Jim Dickie     Dr Drew Inglis 

Mr Kenny Mitchell    Dr Andrew Cadamy 

 

 

For those without whom this research would never have started: 

 Dr Stephen Hearns    Ms Carole Morton 

 Dr Fiona Russell    Dr Iain Young 

 Dr Andrea Calderwood   Dr Randal McRoberts 

 

For my most dedicated reviewer and the biggest supporter of my research - without whom 

this thesis would never have been finished: 

Dr Nicola Moultrie 

 

And all the rest of my family for their love and support, but particularly: 

Miss Ellen Moultrie   Miss Aila Moultrie 

Mr Brian Moultrie   Mrs Carole Moultrie 

  



XXIV 

Author’s Declaration  

This thesis, except where stated, is the result of my own work. 

Other than the listed abstracts, this work has not been published in any form. 

This work has not been submitted previously for examination or degree at either the 

University of Glasgow or any other institution. 

Dr Christopher E J Moultrie 

1st August 2021 



 

 

 

Part 1:   

Defining Applicable 

Queueing Theory 



 

 

 

 

Part 1  Chapter 1 

Introduction 

    

  



Part 1 | Chapter 1 Introduction 3 

 
 

1.1.   Int roduct ion  

   Pre-Hospital and Retrieval Medicine (PHaRM) is a medical sub-specialty focussed on 

the provision of advanced, specialist care to patients in a broad range of clinical 

environments. These environments range from: the pre-hospital arena, which includes 

patients’ homes, the roadside, remote countryside, factories and mountains (amongst 

others) – through remote and rural healthcare settings including general practice surgeries 

and community hospitals – to patients in major hospitals who need specialist clinical care 

during transfer to another healthcare facility. 

   The common feature of all of these environments is the imperative to take high-quality, 

specialist care to the patient and maintain that high standard of care – especially during 

inter-hospital transfers when the patient is taken out of the hospital and into the healthcare-

austere transport environment. 

   The effectiveness of PHaRM systems is predicated on the ability to transport such 

specialists, often with extensive equipment, across significant distances or challenging 

terrain in the shortest time possible, in order to minimize the time to initiation of 

potentially life-saving treatment. In Scotland, significant mountainous terrain, numerous 

inhabited offshore islands, and the requirement to serve hospital sites almost 300 miles 

distant to the teams’ base necessitates air transport, using both fixed and rotary wing 

modalities, in addition to road ambulances. 

  To effectively meet these challenges, this care is provided by Scotland’s Specialist Teams 

for Transport and Retrieval (ScotSTAR), a division of the Scottish Ambulance Service 

which is, in turn, part of the National Health Service (NHS) Scotland. ScotSTAR 

comprises three services: the Scottish Neonatal Transport Service (SNTS), the Scottish 

Paediatric Retrieval Service (SPRS) and the Emergency Medical Retrieval Service 

(EMRS). The clinical load of the ScotSTAR teams is characterised by high acuity, 

undifferentiated pathologies, unpredictable mission requirements, high probability of time-

sensitive illnesses or injuries and a need for rapid triage of patients to the correct team. As 

a result of these drivers, ScotSTAR operates a system which delivers very high quality, 

timely clinical care to some of the most unwell patients anywhere in the healthcare system. 

   However, such quality, capability and adaptability come with a correspondingly high 

financial demand on the Scottish Ambulance Service budget. Clearly, given the current 
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austere fiscal climate, there is a continual drive to maximise the number of patients to 

whom this type of care is delivered both for the benefit of patients, but also to reduce the 

per-patient cost. However, this must be balanced against the attendant risk of team non-

availability or delayed arrival to a patient with time-critical pathology because they are 

already engaged in another mission. Achieving an optimal balance between resource 

utilisation and ability to respond in a time-critical fashion to such requests is vital to the 

ongoing delivery of effective Pre-Hospital and Retrieval Medicine. The ability to 

demonstrate fiscal responsibility within the scope of current operations while clearly 

defining the limits of what is financially achievable will be pivotal in the future growth of 

the ScotSTAR service. 

   To achieve such a delicate balance, clear descriptors of the ScotSTAR system’s 

performance first need to be developed in order to reliably describe both the current system 

state, and its specification limits. The very nature of the work undertaken by ScotSTAR 

makes this extremely challenging, as the varied clinical nature of missions, the transport 

platforms and even time of day that the teams are called upon preclude the definition of 

anything as an “average” mission. Queueing theory was considered as a possible solution 

to these substantial challenges. Because it is based within the concept of stochastic 

processes it has, even in describing some of its most basic parameters, the potential ability 

to resolve much of the uncertainty associated with the perceived random nature of arrivals 

to the ScotSTAR systems. This ability stems, fundamentally, from the analysis of 

probability distributions within the data, rather than simply using a single average value. If 

it can be successfully applied, queueing theory may be able to reduce these seemingly 

random processes to clear, useful descriptors of the ScotSTAR systems performance. 

   This thesis was therefore developed to investigate the application of queueing theory to 

the ScotSTAR Pre-Hospital and Retrieval Medicine system. The thesis aimed, overall, to 

establish if queueing theory could be used to define useful system descriptors for the 

ScotSTAR systems. These descriptors could then directly support decisions pertaining to 

the operational provision of the ScotSTAR teams by better defining both the current state 

and the potential performance limits of this high-quality, high-cost healthcare service. 
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1.2.   Background 

   Pre-Hospital and Retrieval Medicine (PHaRM) is a relatively young medical sub-

specialty focussed on the provision of advanced, critical-care-level interventions to patients 

in remote, rural and limited critical care environments in both the out-of-hospital and in-

hospital settings.  

   The origin of physician-led pre-hospital emergency care can be traced back to the 1970s 

and 1980s when physician treatment teams from local hospital emergency departments 

could be dispatched to the scene of a major incident or major trauma. This continued to 

develop into stand-alone services such as London’s Helicopter Emergency Medical Service 

(HEMS), a physician-staffed helicopter established in 1990. By 2018, there were 440 

operational aeromedical pre-hospital care services across 24 European countries (Jones et 

al., 2018). An industry magazine review article of aeromedical providers in the USA in 

2007 documented 840 air ambulance helicopters in 2009, representing an estimated $2.5-

billion industry (Adams, C., 2017). In 2019, an estimate by the UK Association of Air 

Ambulances estimated the total number of HEMS missions at approximately 25,000 per 

year (Association of Air Ambulances, 2020). In addition to this pre-hospital role, PHaRM 

also encompasses the inter-hospital transfer of critically ill patients (Retrieval Medicine) 

from remote healthcare facilities, or between major hospitals. As an archetypal retrieval 

service, the Australian Royal Flying Doctor Service (Royal Flying Doctor Service 

Federation, 2019) transferred over 38,000 patients in the 2018-19 financial year with a 

A$337-million budget. As illustrated, PHaRM is a global, high-value healthcare system. 

 

1.2.1.  Pre-Hospital and Retrieval Medicine 

   PHaRM generally implies the provision of physician-led care which falls outside the 

purview of paramedic practice, either by the use of advanced procedures or non-paramedic 

formulary drugs. PHaRM services operate with a group of specially trained personnel. This 

usually consists of a senior physician or nurse from an emergency medicine, intensive care 

medicine or anaesthesia background for adult and paediatric retrieval services - with 

neonatal specialists providing a dedicated neonatal transport service. The senior care 

provider is usually assisted by a second team member consisting of a specialist retrieval 

practitioner from a nursing, paramedic, or more junior medical background. 
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   The provision of PHaRM care is normally described in two broad categories: 

1. Pre-Hospital Care (also known as Primary Retrieval) involves attending a patient at 

the site of their illness or injury – such as in their own home, in factories, inside 

road vehicles, at the roadside or in remote countryside, mountainous and maritime 

locations, amongst many others. The purpose of attending such patients, and indeed 

the almost sole raison d'être of pre-hospital teams worldwide is reduction of the 

time to life-saving intervention by taking major critical care interventions directly 

to the patient at the scene, rather than them having to be transferred to a hospital.  

   This may seem an arbitrary distinction within the urban environment however, in 

Scotland the geography - including mountains and numerous islands - can 

significantly prolong that journey to definitive care. Using the town of Dunoon as 

an example: it is less than 25 miles from the trauma centre of the Queen Elizabeth 

University Hospital, Glasgow in a straight line - but it is a 75 mile road journey, 

approaching 90 minutes duration even for an emergency land ambulance. 

Responding by helicopter from the ScotSTAR base at Glasgow Airport, the EMRS 

team could expect to be in attendance at a patient in Dunoon in less than 30 

minutes. Logically, the initiation of a blood transfusion to a haemorrhaging patient 

- or endotracheal intubation and mechanical ventilation of a patient with a severe 

head injury - one hour earlier than would be achievable if the patient had to be 

transferred to hospital is of clear benefit to the patient. But, the conduct of such 

procedures obviously takes time, and another facet of pre-hospital care is ensuring 

the right balance between undertaking interventions which are clearly necessary for 

the patient’s safety and survival before they arrive at hospital versus procedures 

which will not have a significant overall effect on the patient’s outcome but will 

delay their arrival at a place of definitive care. 

   Clearly, it requires a specialist team to balance the required clinical skills with the 

challenges of the resource-limited pre-hospital environment and the transport 

logistics (including those posed by the Scottish weather), often in remote locations, 

for the patient’s ultimate benefit. 
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2. Secondary Retrieval involves attending a critically unwell patient who is already in a 

healthcare facility but who needs the input of a specialist retrieval team for one of 

three main reasons: 

a) The patient is in a facility which is unable to deliver initial critical care - e.g. 

a General Practice (GP) surgery or a community hospital that does not have an 

on-site anaesthetist or emergency physician. 

b) The patient is in a facility which is unable to provide ongoing critical care - 

e.g. a rural general hospital or a community hospital with an on-site 

anaesthetist or emergency physician. Such sites are normally able to initiate 

critical care interventions but, due to the small number of patients who would 

require it, are not equipped with an intensive care unit for the patient’s ongoing 

treatment. 

c) The patient is already established in a high-acuity healthcare setting: a 

neonatal unit or intensive care unit - but requires transfer to a regional centre 

for the purposes of specific specialist input e.g. neurosurgery. This may be 

referred to as a Tertiary Retrieval. 

- This group also includes patients transferred to a national centre for the 

purposes of ultra-specialist intervention e.g. ECMO – in which case it may 

be termed a Quaternary Retrieval. 

   The major challenge of secondary retrievals comes after the initial resuscitation, 

stabilisation, and initiation of critical care – whether undertaken by a local hospital 

team, or by the attendance of a ScotSTAR team at the patient. At the conclusion of 

this process, the patient is usually clinically stabilised and is residing within a fully-

equipped but merely critical-care limited healthcare facility – conveying a state of 

both clinical and geographical safety. Clearly, however, it is not a definitive place 

of care and so the team must remove the patient from such a location, somewhat 

exposing them to the elements as they are loaded onto a transport road vehicle or 

aircraft. The transfer, which may be over several hours then takes place on a 

platform which is potentially cold, dark, and will subject them to vibration and 

acceleration forces (which have more profound effects on more haemodynamically 

unstable patients). It is universally the case that the transport platform will be a 

more challenging environment in which to deliver high-quality critical care than 
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even the most rural healthcare facilities in Scotland. Again, it is clear that a 

properly trained, experienced and equipped team is necessary to manage the risk 

and complexity of such transfers. 

 

1.2.2.  Scottish Ambulance Service, ScotSTAR Division  

   The Scottish Ambulance Service (SAS) is the national ambulance service of Scotland. It 

is a fully government-funded ambulance service forming part of National Health Service 

(NHS) Scotland. There is no cost to the patient at the point of care delivery – all funding 

for NHS Scotland healthcare (including ambulance care) is gathered through the UK and 

Scottish tax systems. 

   The Scottish Ambulance Service’s ScotSTAR division is comprised of three services: the 

Scottish Neonatal Transport Service (SNTS), the Scottish Paediatric Retrieval Service 

(SPRS) and the Emergency Medical Retrieval Service (EMRS). The service maxim of 

“critical care, anywhere” reflects the delivery of these services in the wide range of 

environments that define Pre-Hospital and Retrieval Medicine. The services are able to 

deliver standard critical care including, but not limited to: induction and maintenance of 

general anaesthesia, intubation, ventilation, invasive monitoring and advanced drug 

infusions through all stages of the patient journey. To serve such a wide clinical and 

geographical range, the ScotSTAR teams are supported by the transport assets of the 

Scottish Ambulance Service including dedicated road ambulances, rapid response cars, and 

the fixed and rotary wing aircraft of the SAS Air Wing. It should be noted that the Scottish 

Ambulance Service operate the only government-funded air-ambulances in the UK. There 

is no reliance upon charity or fund-raising and, in keeping with the rest of the NHS, there 

is no direct cost to the patient. 

 

1.2.3.   Scottish Paediatric Retrieval Service (SPRS) 

   The Scottish Paediatric Retrieval Service originally operated jointly from two sites at the 

Royal Hospitals for Sick Children in Edinburgh and Glasgow. In April 2015, the services 

were combined into a single operation from the ScotSTAR base at Glasgow Airport. The 

service has a national remit to transfer critically unwell children from any healthcare 

facility in Scotland to the paediatric intensive care units (PICUs) in the Royal Hospital for 
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Children, Glasgow and the Royal Hospital for Sick Children, Edinburgh. For less severely 

ill children, the high-dependency units (HDUs) of the Royal Aberdeen Children’s Hospital 

or the Tayside Children’s Hospital, Dundee are also available destinations. The service 

operates as a two-person team of a senior clinician (nurse consultant, consultant physician 

or registrar) with a specialist paediatric transport nurse. During the research period the 

SPRS team undertook an average of approximately 270 missions each year. 

 

1.2.4.   Emergency Medical Retrieval Service (EMRS) 

   The Emergency Medical Retrieval Service was established in 2004 to provide outreach 

critical care to patients in GP community hospitals in the Argyll and Clyde health board 

area. Since then, it has grown to provide a secondary aeromedical retrieval service to all of 

the remote West of Scotland including the highlands and islands from Stranraer to 

Stornoway, the far north of the Scottish mainland, and the Orkney and Shetland Isles (Fig. 

1.1). The provision of secondary retrieval services and dedicated critical care support to 

these locations remains the service’s principal function. In 2009, the service formally 

introduced a primary pre-hospital care service covering West and Central Scotland. It is the 

only ScotSTAR service which operates in the pre-hospital arena. In addition to standard 

critical-care procedures, EMRS also routinely carries three units of O-negative blood for 

emergency transfusion, can transfer patients undergoing cardio-pulmonary resuscitation 

(CPR) by using an AutoPulse mechanical CPR device (Zoll Medical Corporation, 

Massachusetts, USA) and can perform life-saving surgical procedures including 

resuscitative thoracotomy. The service is delivered by a two-person team comprised of a 

Consultant in Emergency Medicine, Intensive Care or Anaesthesia – accompanied by a 

specialist Retrieval Practitioner (from a nursing or paramedic background) or a second 

doctor (of higher specialty trainee level in one of the stated specialties). During the studied 

period, the service undertook approximately 270 secondary retrievals and just under 500 

primary (pre-hospital) retrievals each year. In addition, the service receives around 350 

telephone calls for specialist advice to support remote and rural clinicians delivering care 

to their patients locally, thereby reducing the requirement to transfer patients away from 

their homes and families. 
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Fig. 1.1: Location and type of healthcare facilities served by EMRS for secondary retrievals. Information 

courtesy of EMRS. (Map copyright OpenStreetMap contributors. Use in accordance with terms) 
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1.2.5.  Scottish Neonatal Transport Service (SNTS) 

   The Scottish Neonatal Transport Service has been operating for over 20 years. It has a 

national remit to transfer babies less than 28 days old in need of specialist care, 

intervention or investigation between delivery units, specialist neonatal units and neonatal 

intensive care units (NICUs). This service is provided by 3 teams:  

SNTS West   - based at the ScotSTAR base, Glasgow Airport 

SNTS South-East  - based at the Royal Hospital for Sick Children, Edinburgh 

SNTS North   - jointly provided by teams from the Royal Aberdeen 

Children’s Hospital and Ninewells Hospital, Dundee  

   Each service has both consultant neonatologists and specialist neonatal transport nurses 

who can flexibly combine into a team tailored to the clinical demands of a given transfer. 

For routine work and where practicable, teams will provide the service for their own 

respective geographic region. The SNTS service undertakes approximately 1500 transfers 

each year. 

   However, approximately 73% of the SNTS missions are elective or planned missions 

which occur at an arranged time. These missions therefore do not follow the same arrivals 

process as either the SNTS emergency missions or the SPRS and EMRS missions. The 

queueing theory explored in this thesis is applicable to SNTS emergency missions because 

of their expected random arrivals. However, both emergency and elective SNTS missions 

in a given geographical area are undertaken by the single serving team, with emergency 

missions being prioritised. Therefore, the random arrivals process will only describe a 

small amount of the work undertaken by the team, the remaining 73% will be expected to 

have a deterministic arrivals process, reflective of the planned nature of elective missions. 

   Although there is clearly a role for the analysis of SNTS teams, a separate and specific 

facet of queueing theory focusses on the deterministic arrivals and priority queues which 

define the majority of SNTS work. Resolving the operational queueing discipline and 

constructing the applicable methodology to describe this system is outside the scope of this 

thesis and the Scottish Neonatal Transport Service will not therefore be analysed. 
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1.3.   Queueing Theory 

   As outlined in sections 1.2.3 – 1.2.5, this thesis will focus on the services of the 

ScotSTAR systems that respond purely to emergency missions: the Scottish Paediatric 

Retrieval Service (SPRS) and the Emergency Medical Retrieval Service (EMRS). Both of 

these services respond to critically ill or injured patients, for whom the onset of such 

pathologies are generally considered random events. Answering many of the questions 

pertaining to the provision of pre-hospital and retrieval services relies upon resolving the 

random variation inherent in the system. It was postulated that due to its foundations in the 

stochastic processes of random-arrival service industries, queueing theory may be a 

suitable analytical technique for the studied systems. An initial understanding of the 

fundamentals of queueing theory was developed before a focussed literature review was 

undertaken to establish its applicability to healthcare systems. This is a general 

introduction to a well-established field in which reference is made to the publications listed 

in the Bibliography, unless otherwise specifically cited. 

 

1.3.1.   Basic Queueing Theory 

   Queueing theory emerged from the concept of Markov probability chains, with the prime 

publication by Erlang in 1909 based on his work regarding calls through the Copenhagen 

telephone exchange. He identified the mathematical solution for random telephone traffic 

in the system, coincidentally providing insight into the context-dependent nature of 

queueing theory (Gross et al. Fundamentals of Queueing Theory, 2008). Defining a 

specific queue type was simplified in the later work by Kendall who, in 1953, published a 

paper outlining the three major characteristics linking a physical queuing system to its 

descriptive theory. The system which he described, known as Kendall’s notation, continues 

to be the primary descriptor of queues to the present day (Kendall, 1953). 
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   Kendall originally described 3 components of queueing theory which describe a queue in 

the form A/S/c. The components are defined as: 

A:   Inter-arrival time distribution: defined as the frequency distribution of the time 

difference between the nth and (n+1)th arrivals into the system. This is 

exponentially distributed (Markovian) in the case of a random system. 

S:   Service time distribution: defined as the frequency distribution of the time 

difference between the beginning of service and the time at which the server 

would be able to serve the next arrival. 

c:   Number of servers available. 

 

   For both the inter-arrival and service times, the distribution is described in Kendall’s 

notation by using one of the following abbreviations: 

M (Markov) - Exponentially distributed inter-arrival or service times 

(coefficient of variation = 1). 

Ek (Erlang) - Gamma distributed inter-arrival or service times, with 

integer shape parameter = k. A special case of the 

gamma distribution. 

D (Deterministic) - A constant inter-arrival time or homogeneous service 

times. 

G (General) - Inter-arrival or service times not following a specific 

distribution. 

PH (Phase-Type) - Times from a stochastic mixture of a number of 

exponential distributions. 

H0 (Hypo-exponential) - Sum of sequential exponentially distributed times 

(with resulting coefficient of variation < 1). 

H2 (Hyper-exponential) - Sum of multiple parallel-sampled exponentially-

distributed times (with resulting coefficient of variation 

> 1). 
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The notation was subsequently extended to the form A/S/c/K/N/D, by the inclusion of 

three additional parameters: 

K: The number of places in the system. In this case: the number of patients which 

the system can physically accommodate, including those in service and those 

queueing – with patients who would increase the number above this maximum 

being turned away. Patients may not be turned away - in which case the queue 

could potentially become infinite. 

N: The size of the population from which patients (customers) are drawn. If this is 

of the scale of being significantly (i.e. several orders of magnitude) larger than 

the number of servers, it can be considered infinite. 

D: Finally, the queueing discipline – the mechanism by which the queue orders the 

arrivals. First-in-first-out (FIFO, aka First-come-first-served) is a common and 

relatable queue discipline. First-in-last-out may occur with pooled stock or 

resources.  

Queueing discipline also includes options for describing:  

Prioritisation - a higher priority patient will proceed to the front of the 

queue, regardless of arrival time relative to those ahead. 

Pre-emption - a higher priority patient will displace a patient already 

receiving service, requiring the displaced patient to be 

queued again. 

 

Thus, in Kendall’s notation: M/D/3/∞/∞/FIFO would describe a queue with Markovian 

(random) arrivals, 3 identical servers with deterministic service times, infinite places in the 

queue, infinite population and first-in-first-out queueing discipline. By convention, infinite 

places in the queue, infinite population and FIFO queue discipline are omitted from 

Kendall’s notation so this queue would be simplified to M/D/3. 
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1.3.2.   Calculation of Descriptive Values  

   Several classical equations are used to describe queues, particularly those with 

Markovian arrivals and service times (exponentially distributed inter-arrival times and 

service times). An initial understanding of these equations is required to establish if they 

can be used to generate meaningful operational information about the ScotSTAR systems. 

   Firstly, the general relationships applicable to a wide range of queue types (any which fit 

the G/G/c descriptor) are considered.  An important concept in queuing theory relates to 

server utilisation – the proportion of the available server time which is used in providing 

service. By comparing the average rate of arrivals to the system (λ), the number of servers 

(c) and the average service rate (1/service time) of a given server (μ) then the “traffic 

intensity” or “offered load” (ρ) for a system is described by:  

 ρ =  
λ

c μ 
     (1) 

  The measure of traffic intensity (ρ) is interchangeable with the utilization of a server – the 

proportion of time (probability) the server is busy (pb) – when ρ < 1. However, clearly 

arrivals to the system have the potential to exceed the total service rate (cμ) which will 

ultimately saturate the server, whose utilisation obviously cannot exceed 1, therefore 

describing: max
0 ≤ 𝜌

𝑝𝑏 = 1. Some care must therefore be taken in the application of these very 

similar terms. 

   The ability to develop operational parameters for queueing systems is then derived from 

the eponymous Little’s formulae. Little’s original formulae describe the relationships 

between number of patients in the system (L), number of patients in the queue (Lq), total 

time in the system (W), time spent waiting in the queue (Wq) and arrival rate (λ) as: 

 

𝐿 = 𝜆𝑊     (2) 

and 

𝐿𝑞 = 𝜆𝑊𝑞     (3) 

It also follows that since mean total time in the system (W) must be equal to the sum of 

mean time in the queue (Wq) plus the mean service time (S): 

𝑊 =  𝑊𝑞 + 𝑆     (4) 
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then by considering service time as the inverse of service rate (μ, as previously): 

𝑊 =  𝑊𝑞 +
1

𝜇
     (5) 

 

   From these relationships, it can be derived that for an M/M/1 type queue, the useful 

parameter of average waiting time in the queue is: 

𝑊𝑞 =
𝜌

𝜇−𝜆
     (6) 

For the studied systems, the number of servers is overtly known, and it would be relatively 

straightforward to establish arrival rate (λ) and service rate (μ). Using the formulae on the 

previous page, the utilization (ρ) could easily be calculated and (as above) the mean 

queueing time (Wq) would follow simply thereafter. Wq and ρ could both be useful initial 

descriptors of any ScotSTAR system as they would describe the average time which a 

patient would wait before their retrieval mission commenced and what proportion of the 

team’s time was being used in relation to a given service budget. 

   Furthering this, consider the probability of simultaneous retrieval requests – that is any 

request arriving when the required team is already engaged on another mission. For a 

single server team such as SPRS, the probability of a new referral encountering a busy 

server (pb) is equal to the utilisation of the server as a result of the “Poisson Arrivals See 

Time Averages” (PASTA) property pertaining to such arrivals. 

   For M/M/c systems, the expected number of customers (patients) receiving service (r) 

across all servers is described by: 

𝑟 =  
𝜆

𝜇
      (7) 

From this, the probability (Pw) of an arriving patient having to wait (experiencing a non-

zero waiting time) can be calculated for an M/M/c (exponentially distributed inter-arrival 

and service times with c servers) system using the Erlang-C formula: 

𝑃𝑤 =  

𝑟𝑐

𝑐!(1−𝜌)

(
𝑟𝑐

𝑐!(1− 𝜌)
+ ∑

𝑟𝑛

𝑛!
𝑐−1
𝑛=0 )

     (8) 

The probability of an arriving patient having to wait (Pw) is synonymous with the 

simultaneous retrieval probability and could form another potentially useful analysis of any 

ScotSTAR service by generating a descriptor which has a clear relationship to service 
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performance limits - in particular, via the Erlang-C formula being potentially applied to the 

EMRS system with 2 servers. 

   A critical consideration in using queueing theory is that its application relies on the 

system being in a steady state. This is defined for queueing theory as a value of ρ < 1. 

Should the system operate such that ρ ≥ 1 (with the exception of a purely deterministic 

system when ρ = 1), then the length of queue and the waiting time will continue to grow 

indefinitely. The concept of a “steady state” is a point of contention in queueing theory and 

is also likely to be in its application for the ScotSTAR teams because, by definition, it 

refers to ρ < 1; but by application it is generally assumed to also refer to a stationary 

arrivals rate (i.e. a uniform probability of activation with respect to time).  

Considering the earlier formulae: 

𝜌 =  
𝜆

𝑐 𝜇 
     and     𝑊𝑞 =

𝜌

𝜇−𝜆
    

these can be re-combined for a single server (c = 1) system as: 

𝑊𝑞 =  

𝜆

𝜇

𝜇−𝜆
     (9) 

so 

𝑊𝑞  =    
𝜆

𝜇
∗  

1

𝜇−𝜆
  =   

𝜆

𝜇(𝜇−𝜆)
    (10) 

thus, 

𝑊𝑞 =  
𝜆

𝜇2−𝜇𝜆
     (11) 

 

   So, for a constant average service rate (μ), an increasing arrival rate (λ) both increases 

the numerator and decreases the denominator (through subtraction of an increasing value 

of μλ), producing an exponential rise in Wq. This is illustrated overleaf (Fig. 1.2) for an 

arbitrary time unit where μ = 10 (10 served per unit time). If the relationship of Wq to the 

number of retrieval requests can be defined for the ScotSTAR systems, then a clear limit as 

to the number of missions which can be undertaken in order to achieve a specified average 

waiting time will be available. This could be used to inform on service provision strategy. 
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Fig 1.2: Average waiting time in queue (Wq) as calculated for constant server rate (μ) of 10 per arbitrary 

unit time, by arrival rate. Demonstrating exponential relationship. 

 

   The illustrated exponential relationship demonstrates that care must be taken in 

application of classical queueing theory to non-stationary arrivals processes – which are 

likely to be the case with the ScotSTAR systems. With time-varying arrivals, it would 

appear that because of the exponential relationship: busy periods would be expected to be a 

bigger influencer of the absolute waiting time than quiet periods for any given average Wq 

value. Simply using Wq would therefore risk significantly under-estimating the absolute 

waiting time at the busiest times of day. It is likely that the same limitation would be 

present in the application of the Erlang-C formula to describe additional retrieval requests 

and it would risk under-reporting the simultaneous retrieval probability at the times of 

maximum service demand. 

   In describing these limitations, it becomes apparent that the application of queueing 

theory is context dependent. Of the equations on the preceding pages which can potentially 

calculate descriptive values, utilisation (ρ) is generalized, but average waiting time in the 

queue (Wq) and the proportion of simultaneous retrievals (Pw) are specific to the M/M/c 

queue system. To use these calculations in the ScotSTAR systems, it will be necessary to 

prove that the ScotSTAR systems follow the M/M/c queue type – and if not then an 

accurate definition of the applicable queue type will be needed in order for the correct 

queueing theory components to be applied. 
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1.3.3   Networks of queues 

      One further concept in queueing theory which applies to the ScotSTAR system is that 

of a network of queues. There are a number of elements of ScotSTAR operations which 

could be considered to be represented by a network of queues. For example, each of the 

complete missions within the ScotSTAR system could be considered as a sequence of 

individual events which may include: waiting for a transport asset, travel times to different 

locations and different medical procedures or care, each with a corresponding different 

duration.  

   The description of networks of queues was initially provided by Jackson et al (Jackson et 

al., 1959). Networks able to meet the following properties can be described as a Jackson 

network: 

1. Arrivals to the system, to any given node, have exponentially distributed inter-

arrival times. 

2. Service times at each node are independent and exponentially distributed. 

3. The probability that a customer at node i will go next to node j is independent of 

the state of the system and is represented as routing probability rij . Routing to node 

0 means leaving the system. 

Patients in a Jackson network can enter the system by any node, traverse the system by any 

path, re-visit nodes, miss nodes entirely, or return to nodes for an infinite number of times, 

potentially remaining within the system indefinitely (Gross et al., Fundamentals of 

Queueing Theory).  

   The systems in ScotSTAR may therefore be better described as series queues because the 

system does not, fundamentally, give any option of choice to the “customer” (patient) to 

re-visit nodes. A patient entering the system will generally proceed through the given 

process without deviation or early departure – nor can they elect to return to the start of the 

system or re-visit one of the nodes e.g. once flown to a destination, they cannot simply 

decide for the aircraft to immediately return them to their point of origin. Thus, the process 

becomes strictly serialized, unidirectional (feed-forward), with the only option being to 

arrive at the first node and depart from the last. 

   If a ScotSTAR mission progressing from initial referral through to the patient being 

handed over to the receiving hospital team is arbitrarily considered as 5 nodes, numbered 
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sequentially, then arrivals to Node 1 would be expected to be represented by a Poisson 

distribution with rate λi and routing probability 𝑟𝑖𝑗
𝑖 ∈{1,2,3,4}

𝑗=(𝑖+1)

= 1 (i.e. at the first 4 nodes, the 

patients will only proceed to the next node in the system). At the final node the sole routing 

probability r5,0  = 1 (i.e. all patients leave the system). Arrivals to the (i+1)th node are equal 

to the inter-arrival distribution for M/M/c models. Thus, each component of the system 

could be relatively simply modelled for the ScotSTAR system if inter-arrival and service 

times could be demonstrated to be exponentially distributed. 
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1.4.  Literature Review 

   There are multiple published studies pertaining to the application of queueing theory to 

healthcare systems. However, a large number of these relate to applications in elective 

surgery and outpatient clinics which are not applicable to this thesis. Understandably, as 

elective surgery and outpatient medicine vastly outnumber the number of emergency 

admissions for both medicine and surgery for any given day, they account for a larger 

proportion of the healthcare system’s workload. In non-public healthcare systems, these 

are also a significant source of revenue for the hospital and are effectively a business 

stream with the attendant financial benefits to the hospital by their optimization. 

   However, more critically, these operate as “pull” systems. For surgery, as an example, 

patient are entered into a waiting list (itself a queue), weeks or months in length, with a 

relatively large number of servers in the form of operating theatres and surgical teams 

(including the embedded surgeons, anaesthetists and nursing staff), to which patients are 

allocated. The surgeries performed are relatively standardised for any given procedure and 

thus the service time becomes closer to deterministic. The nature of the system also allows 

a degree of flexibility: there is no treatment imperative and a patient’s surgery can be 

cancelled right up to the very last minute, with them being returned to the waiting list and 

experiencing a very low overall probability of an adverse outcome as a result. So, while 

these models provide useful insight and collateral information on the application of 

queueing theory to healthcare, they are not appropriate analogies for the systems being 

studied in this thesis. For ScotSTAR, arrivals are expected to be random, the causative 

pathology and hence length of service time is unpredictable and there is a treatment 

imperative, with patients not being accepted for service having a significant risk of adverse 

outcome. Operationally, even emergency surgery or acute medical admissions do not 

experience the same level of acuity as many ScotSTAR patients. Emergency surgical 

patients have the opportunity for some temporizing management in an Emergency 

Department or Intensive Care Unit prior to surgery. 

   The ScotSTAR pre-hospital and retrieval systems are therefore considered to be best 

aligned with ambulance services, emergency departments and intensive care units which 

share, to a varying degree, some characteristics: expected times of demand, unpredictable 

pathologies and a treatment imperative. Prior basic investigation of the ScotSTAR system 

demonstrated several challenging aspects to its analysis, namely varying demand by hour 

of day and the range of missions which are undertaken - resulting in varying mission 
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durations. While conducting this literature review, particular interest was given to studies 

considering non-stationary arrival processes, and non-deterministic or non-Markovian 

service times. 

 

1.4.1.   Literature search  

   During the initial background reading it became apparent that relatively few studies 

specifically describe queueing theory as applied to ambulance or PHaRM services. It was 

considered prudent therefore to include the partially analogous systems of emergency 

departments and intensive care units in the initial literature search. Because the specific 

components of queueing theory are relatively ill-defined in PHaRM contexts, some care 

was required to ensure that relevant papers were not missed. It was accepted that a large 

number of search results with significant manual screening would be required. Three 

databases were searched: Web of Science, PubMed and EMBASE, according to the search 

algorithms shown overleaf (Fig. 1.3). English language papers were searched for title, 

abstract and keywords using the string: 

queu* AND theory AND 

[ambulance* OR emergency OR intensive OR pre-hospital OR prehospital] 

This search was considered to include the required terms and applications, while being 

tolerant of spelling differences, including regional variation. Given its scope beyond 

healthcare research, “AND health*” was included in the Web of Science search to better 

focus the results. 

   390 papers were found during the initial literature search. 73 duplicates were 

electronically excluded. The remaining results were manually screened, with exclusions for 

non-healthcare applications, non-emergency healthcare or use in a setting which did not 

pertain directly to patient care (e.g. ambulance call centres). 

  Following this, 79 papers were assessed for eligibility. Exclusions were made on the 

grounds of queueing theory merely being mentioned but not applied to a real-world 

system, the specific queue type (e.g. M/M/c) not being described, or queueing theory being 

used only for a sub-component of the system (e.g. initiation of a dedicated chest pain 

pathway). At the conclusion of this, 17 papers were included in the Part 1 literature review. 

These are summarised in Table 1.1 and 1.2. 
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Fig 1.3: Literature search methodology demonstrating results from each database and exclusions during 

screening and eligibility assessment.  
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Table 1.1: Summary of papers included in literature review (1 of 2): 
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Table 1.2: Summary of papers included in literature review (2 of 2): 
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1.4.2.   Reviewed papers  

  There were only three studies identified which applied queueing theory specifically to a 

pre-hospital system. All of these applications were to urban ambulance services, not 

physician-led PHaRM services. 

   The earliest of the reviewed papers was Bell and Allen (Bell and Allen, 1969). This 

paper considered the use of base queueing theory in mathematically modelling the 

utilisation of an ambulance service in order to maximise server availability. The authors 

use an M/M/c queueing system to examine the number of ambulances which are free to 

immediately respond at any given time. The authors also, importantly, describe the service 

time as being the entire ambulance allocation time: from receipt of call, through delivery of 

patient care and transport to the hospital until the ambulance becomes free again. The 

authors state the challenges of non-stationary arrival rates but suggest the application of the 

described processes to relatively steady state periods of demand. 

   Scott et al. (Scott et al., 1978) described the response times of ambulances in Houston, 

Texas, USA. They applied several of the fundamental components of queueing theory to 

describe the ambulance service using an M/M/c queue. The authors described a Poisson 

arrival process with an average arrival rate λ = 5.86 calls per hour and an exponentially 

distributed response time μ = 0.502 hours. However, the authors plot a histogram within 

the paper which appears to demonstrate either a mixture or gamma distribution of service 

times. The authors noted time-varying demand for ambulances, but no clear corrective 

methodology is described. Nonetheless, the authors demonstrated the mathematical 

model’s close approximation of the real-world which would suggest that either a correction 

was in fact applied, or that the effect of time-varying demand on the overall analysis was 

negligible.  

   The more recent third paper focussed on ambulance services was by Singer and Donoso 

(Singer and Donoso, 2008). This paper used an M/M/c model to describe the operations of 

the ambulance control centre in answering emergency calls, and an M/G/c model to 

describe the ambulance vehicle service times. Of note, the authors clearly plot a gamma-

distributed ambulance service time and pragmatically note that the service time includes 

the time to return to base and re-stock equipment. Only when this is complete is the end of 

the service time reached and the ambulance is ready for re-allocation. The authors state the 

on-scene time for ambulances to be in the region of 30 – 40 minutes. The duration 
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probability histogram demonstrated the vast majority of missions to be completed in under 

3 hours. 

   Because ScotSTAR comprises deterministic travel times to and from a patient location, 

with the potential for relatively long on-scene times, it is considered likely that the 

ScotSTAR system will be most broadly analogous to the system studied by Singer and 

Donoso, also demonstrating gamma-distributed service times. 

    Then considering the other 14 studies which referred to the analogous systems of 

hospital emergency departments and intensive care units. A number of these studies (Chan 

et al., 2017, Green et al., 2006, Liu and Xie, 2018, Moreno-Carrillo et al., 2019, 

Goldwasser et al., 2016) use an M/M/c queueing system to describe the operations of either 

a hospital Emergency Department or Intensive Care Unit. Within these papers, a number of 

pertinent results were identified. 

   Green et al. (Green et al., 2006) used a queueing theory model to optimise staffing 

utilisation within the Emergency Department, with an intention to reduce waiting times. 

However, the queue type is of the M/M/c variety and uses a stationary, independent period 

by period (SIPP) methodology to account for the non-homogeneous Poisson arrivals 

process. Liu et al. (Liu and Xie, 2018) used a similar approach to an M/M/c system in 

order to describe the number of physicians required to meet a specified emergency 

department waiting time. Both papers were able to demonstrate an improvement in waiting 

times by optimization of the current resources, rather than the often-stated solution of 

providing more servers. 

      Goldwasser et al. (Goldwasser et al., 2016) used a time-series model to predict a 

number of admissions to intensive care units in Rio de Janeiro, similarly to that proposed 

within the ScotSTAR system. They then used an M/M/c queue model to simulate the effect 

of differing arrival rates on the stability of the system and to specify a number of beds 

which would be required to meet a given performance standard. Again, this is similar to 

that proposed within ScotSTAR. However, they do not comment on the time-dependency 

of the arrival rate – and the use of an M/M/c queue now appears unlikely to correlate with 

the overall ScotSTAR model given the previous papers citing gamma-distributed 

ambulance service times. Interestingly, however, their output graph describes the waiting 

time against the number of remaining ICU beds as a negative exponential relationship. 

This initially seems at odds with the expected results (see Fig. 1.2), but as the remaining 

number of beds is effectively 1 – Utilisation, then Goldwasser et al.’s plot is merely the 



Part 1 | Chapter 4 Literature Review 31 

 
 

expected appearance reflected about a vertical axis and the exponential increase in waiting 

time with increasing utilisation is maintained. This paper illustrates well the applicability 

of this relationship to the healthcare setting, particularly in the context of utilizing 

relatively scarce resources. 

   Moreno-Carrillo et al. (Moreno-Carrillo et al., 2019) and Lantz and Rosen (Lantz and 

Rosen, 2016) focussed on the ED triage process as an M/M/c queue. However, the target 

waiting time in both these papers is very short (approximately 5 minutes) and refers to a 

relatively short ED process, which is much more likely to demonstrate true Markovian 

(exponentially-distributed) service times than the ScotSTAR systems, which will clearly 

experience a significantly longer service time. Of note, Lantz et al. rationalized the number 

of servers (c) to either 1 or 2, corresponding to the number of nurses operating the triage 

service, according to the time of day. They were then able to use the Pollaczek-Khinchin 

formula (discussed later, section 1.7.4) to derive the expected average waiting time. 

   Recognizing the limitations of the M/M/c queue methodology, some studies developed 

the model with further parameters. 

   Hagen et al. (Hagen et al., 2013) also used an M/M/c queue with a constant long-term 

arrival rate, but added a priority function according to patient illness severity. Given that 

the ScotSTAR teams studied in this thesis generally do not prioritise patients, this approach 

is not directly relatable. 

   McManus et al. (Mcmanus et al., 2004) applied the M/M/c/k queue system to a paediatric 

intensive care unit (PICU). The authors effectively demonstrated the exponentially 

distributed PICU length of stay (Markovian quality) and, similarly to the ScotSTAR 

system, took the point of referral as the de facto entry point into the system. The paper also 

plots the ICU utilisation rate and plots the exponential relationship between ICU utilisation 

and patient rejection rate (i.e. patients being diverted to another ICU) – analogous to the 

simultaneous / missed retrieval rate of the ScotSTAR teams and commensurate with the 

expected relationship between utilisation and Lq in standard queueing theory. In 

developing upon the initial M/M/c model, the authors defined the system as having a finite 

capacity (K), equal to the number of beds in the PICU. A similar study, but applied to an 

emergency department, was undertaken by Jiang et al. (Jiang et al., 2019). 

   An alternative development of the M/M/c queue was undertaken by Chan et al. (Chan et 

al., 2017) who identified that demand which exceeded capacity introduced delay and 
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inefficiency into the system. More than simply delaying the arrival of a patient in the ICU, 

the authors demonstrated that increasing congestion actually increases service time. As a 

result, they used a non-standard M/M(f)/c queueing model, where M(f) describes service 

time as a function of underlying congestion. This likely has some similarity to ScotSTAR 

as the presence of multiple simultaneous retrieval calls may require the team to briefly 

diverge from the management of the current patient in order to provide telephone advice, 

for example. This will clearly increase the service time of the current patient, delaying the 

team’s availability to the next patient. 

   A number of papers had identified non-Markovian service times and therefore analysed 

their respective systems with an M/G/c queue. 

   Fitzgerald et al. (Fitzgerald et al., 2017) used a MATLAB Monte-Carlo simulation of an 

M/G/c queuing system to simulate the effects of adding a fast-track queue to the 

Emergency department. This study describes a non-stationary arrival Poisson-process with 

an inter-arrival time exponential distribution μ-value = 5 minutes. The method by which 

the non-stationary arrival process was generated is not stated. The authors state the service 

time to be gamma distributed, with shape dependent on the acuity level of the patient, to 

some degree analogous to the ScotSTAR EMRS model of primary vs secondary mission 

types. However, the process which patients go through from arrival at triage and 

subsequent distribution within the department clearly differs. The use of MATLAB in this 

study was of interest due to the stated intention of using the same program in the research 

for this thesis. 

   Wiler et al (Wiler et al., 2013) used an M/GI/c/K + GI queueing model to represent their 

Emergency Department. The authors in this paper address the problem of not having an 

underlying stationary Poisson process (on which the M/GI/r/s + GI model relies) by 

evaluating their process at three relatively stationary time periods which correspond with 

periods of relatively low and relatively high demand, in principle allowing extrapolation of 

the situations between. This is achievable in the Emergency Department context because 

the higher number of patient presentations allow an accurate analysis of the frequency 

distributions in any given time period. The authors used two two-hour time slots in which 

to analyse their model – representing 8304 and 4239 patients over the course of the whole 

study. As a conservative estimate, the quieter of the two periods still corresponds to a 

median arrival rate of 11 patients per hour. ScotSTAR teams on the other hand, may go for 

several days without a referral in a given 2-hour period and so such an analysis method 
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would not be appropriate for the ScotSTAR system. The authors also added a component 

to describe patients who left without being treated due to the busyness of the department. 

This draws parallels with one aspect of the ScotSTAR system because it includes the 

possibility of patients reneging from the system if the waiting time is too long. For 

ScotSTAR, this occurs almost exclusively in the context of primary, pre-hospital missions. 

If the pre-hospital waiting time is prolonged, then a patient will be reneged from the 

system, being transferred to hospital by a road ambulance with paramedic crew, rather than 

waiting for the EMRS Trauma Team to arrive. This process ensures that time to life-saving 

intervention is not delayed, instead being performed in a hospital rather than at the 

roadside. However, a large proportion of these patients will have been identified by 

ambulance control as likely to have a long wait and will never be referred to the ScotSTAR 

EMRS team. As such, the number of patients in this situation is unknown.  

    Lin et al (Lin et al., 2014) described a two-part queue: but with the initial queue 

demonstrating an M/G/c1/∞ pattern. Fundamentally, the paper focusses on the effect of 

blocking departures from the system (“exit block”) which although is a major challenge for 

the emergency department, does not constitute a significant problem for the ScotSTAR 

services because a suitable bed will generally be pre-identified. However, finding an 

available bed may be a lengthy process – which may prolong the mission duration, but 

generally does not result in exit block from the ScotSTAR system.  

  In their study examining the use of queueing theory with regard to the UK’s 4-hour ED 

waiting time target, Mayhew and Smith (Mayhew and Smith, 2008), used an M/G/c 

queueing system. In particular, they demonstrated that service time in the emergency 

department was gamma-distributed, resulting from the sum of multiple sub-processes, each 

with exponentially-distributed service times. The primary objective of this paper was to 

assess the required ED performance against the 4-hour target. The paper demonstrated the 

difficulties in doing this for 98% of patients, as was then the target. This approach could 

have some utility with ScotSTAR in respect of a performance standard. However, the 

ScotSTAR target would likely pertain more to the arrival of the team at the patient than the 

overall mission duration. 

   Finally, Zhu et al. (Zhu et al., 2013) studied multiple queues within an emergency 

department: with M/M/c for general service and M/G/1 re-queueing for people who 

required further medical review prior to ED discharge. The probability of patients 

following each of these paths (routing probability) was combined with the queueing 
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discipline in order to generate a Jackson network representing service within the 

Emergency Department. The Jackson network is a good reflection of ED operations but 

does not apply to the ScotSTAR system through which the movement of patients is strictly 

serialized. 

    

1.4.3.   Queueing theory applied to the ScotSTAR system  

   Based on the studied literature it could be expected that the ScotSTAR systems would 

most likely demonstrate queueing systems approximating the M/G/c type. An a priori 

prediction would expect arrivals to the system to occur randomly, with a long-term average 

value, but displaying a non-stationary, time-dependent Poisson component. Mission 

durations are unlikely to be Markovian due to the addition of the deterministic component 

of transport times to and from the patient, with the care of the patient itself likely involving 

multiple exponentially-distributed processes. It may be the case that the time on-scene can 

be approximated by the exponential distribution, in which case the overall distribution may 

be able to be approximated by a Markovian descriptor if this is the major contributor, 

rather than transport time. It is clear however that, by nature, queueing theory is context 

dependent and that an accurate understanding and representation of the system is required 

before any relevant facets of queueing theory can be accurately applied.  

   Firstly, the ScotSTAR systems must be analysed to establish, with respect to Kendall’s 

notation, the applicable queueing systems. This has the potential to significantly contribute 

to a gap in existing knowledge by accurately describing a time-varying arrival process with 

respect to inter-arrival time distributions and by correctly attributing the appropriate 

distribution to the service times of a pre-hospital and retrieval medical system. 

   Thereafter, the applicable Kendall’s notation definition of each queueing system could be 

used to establish if a primary formulaic solution exists and if it is able to describe the 

performance of the system sufficiently to achieve the overall research objectives.
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1.5.   Aims  

 

Part One of this thesis aims to: 

1. Investigate if the major individual queueing theory parameters (with respect to 

Kendall’s notation) of the ScotSTAR SPRS and EMRS services are commensurate 

with standard queuing theory – specifically: 

- Inter-arrival time distribution 

- Service time distribution 

- Number of servers 

- Places within the system 

- Population 

- Queueing discipline 

  

2. Describe the complete queueing systems of the ScotSTAR SPRS and EMRS 

services using Kendall’s notation. 

 

3. Derive system performance descriptors using queueing theory formulae and 

establish their validity and applicability for the real-world system. 

 



 

 

 

 

Part 1  Chapter 6 

Methods 
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1.6.   Methods  

 

1.6.1.   General 

1.  The operations of the ScotSTAR SPRS and EMRS retrieval teams 

were reviewed with regard to the relevant parameters of queueing 

theory, as outlined below (sections 1.6.2 – 1.6.8). 

2. All data were collected from the ScotSTAR retrieval teams’ 

electronic databases (Microsoft Access and Microsoft Excel: 

Microsoft Corporation, Redmond, Washington, USA) for the 4 year 

period of calendar years 2013 to 2016. 

3. Data were exported from the databases in Microsoft Excel format. 

4.  The number of each mission type undertaken by each team, per 

calendar year, were counted. 

4.  Analysis of inter-arrival times, service times and the associated 

probability distributions were undertaken using the Mathworks 

MATLAB software suite (version R2016a: Mathworks Corporation, 

Natick, Massachusetts, USA). 

 

1.6.2.   Inter-arrival Time Distribution (A) 

1  The arrival times (team activation times) of patients referred to the 

SPRS and EMRS systems were sorted and the time difference 

between consecutive activations of each team were calculated to 

generate the inter-arrival times. 

2.  An expected inter-arrival time exponential probability distribution 

was calculated from the number of missions undertaken. 

3.  The raw inter-arrival times were plotted as a histogram with one-

hour bins. 
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4.  An inter-arrival time exponential probability distribution was fitted 

to the raw inter-arrival time data using the MATLAB Statistics 

Toolbox distribution fitting function. The goodness-of-fit to the raw 

data was assessed using the Kolmogorov-Smirnov test. 

5.  It was noted that the non-uniform probability of activation by time 

of day created a non-exponentially distributed inter-arrival time and 

a corrective time-transform (section 1.6.3) was applied. 

6.  The difference between successive transformed activation times 

were calculated as the corrected inter-arrival times. 

7. The corrected inter-arrival times were plotted as a histogram with 

one-hour bins. 

8.  An inter-arrival time exponential probability distribution was fitted 

to the corrected inter-arrival time data. The goodness-of-fit was 

assessed using the Kolmogorov-Smirnov test. 

9.  The parameter values of the calculated, raw and corrected inter-

arrival time distributions were compared. 

 

1.6.3.  Correction of time-dependent Poisson 

distributions  

   During the inter-arrival time analysis it was identified that referrals to the system vary by 

time of day and are not uniform across a 24-hour period despite the precipitating event 

(critical illness or injury) being considered random in onset (conferring Markovian 

arrivals). This therefore represented a stochastic, rather than truly random system which 

would present a time-varying Poisson arrivals process. It was suspected that this could 

affect the inter-arrival time distribution, as from one day to the next the most likely 

activation time would be 24 hours apart. Given the relatively small number of activations 

per day for the ScotSTAR systems, then after enough days of operation, a number of 

modes could be expected to develop at intervals of approximately 24 hours inter-arrival 

time. It was therefore proposed that a time transform could be undertaken to correct for the 

time-dependent Poisson component and establish the underlying inter-arrival distribution. 
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   Based on first principles, if the time-transform is to successfully establish the underlying 

distribution, then it should correct the probability of activation so as to be uniform across 

the 24-hour period as time, and the number of missions, tend to infinity. 

   A correction method was therefore devised. Outwardly, the correction is a time-based 

transform similar to a Box-Cox transform. The correction was predicated on the principle 

that, with a uniform probability of activation per hour, the cumulative proportion of 

missions by time should equal the elapsed proportion of the day - i.e. 25% of missions 

would be expected to occur by 25% of the day (0600h). 

  Using this principle, the mission times could be corrected. For example, if the 25th 

percentile of the number of missions was found to occur at 1100h (the 45th percentile of 

time of day) then it could be considered that these missions were 5 hours “late” compared 

to their expected time given a uniform probability of activation (which should also be the 

25th percentile of time). Subtracting 5 hours from the activation times of missions starting 

at 1100h would therefore correct the activation time to that expected of a uniform 

distribution – the 25th percentile of time, or 0600h. 

    This method was expanded to apply over the whole of the 24-hour day by using an 

inverse empirical cumulative distribution function, allowing the correction value to change 

through the day in accordance with the varying probability of activation by time. The 

correction could therefore be applied dynamically to missions occurring at any time of day. 

By applying the correction in this fashion, it was possible to correct for the time-dependent 

component of mission activations while preserving the otherwise random nature of 

referrals to the ScotSTAR teams. 

   The EMRS Primary Missions data is shown below as an example (N.B. this section deals 

only with the application of the time transform, the effect on inter-arrival times is 

illustrated in the section of each respective team – sections 1.7 and 1.8): 
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1. The probability of activation by time of day was calculated from the mission activation 

times and plotted as a histogram with one-hour bins (Fig. 1.4). 

 

Fig 1.4: Raw probability of activation by time-of-day histogram (normalized to area under plot = 1) 

demonstrating maximal probability of activation in 1500h – 1600h time-period, with low probability 

of activation between 1800h – 0800h. 
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2. A non-parametric kernel distribution (Epanechnikov-type) was fitted to the activation 

probability, by hour of day (Fig. 1.5). 

 

Fig 1.5: Raw probability of activation by time-of-day histogram with fitted kernel distribution curve 

(Epanechnikov-type).  
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3. The kernel distribution empirical cumulative distribution function was calculated and 

plotted with the uniform probability cumulative distribution function (Fig. 1.6). 

Fig 1.6: ECDF curve of fitted kernel distribution (red line) and expected CDF line of uniform distribution 

(blue line) by time of day. 
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4. The activation ECDF was converted to an inverse-ECDF (I-ECDF) calculate the 

expected activation time of day compared to the true, real-world activation time (Fig. 1.7). 

  

Fig 1.7: Reference curve from I-ECDF and ICDF demonstrating relationship between real-world activation 

time of day and expected activation time of day based on uniform arrivals. Annotation demonstrates 

real-world arrival at 1200h would have been expected, according to uniform percentiles, at 

approximately 0740h. The mission effectively occurs 4h 20m “late”. 
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5. The correction value was calculated from the I-ECDF and used as the correction value 

for the arrival time of day. 

6. The real-world mission activation time of day was referenced as a lookup value for the 

resulting correction time curve (Fig. 1.8).  

 

 

Fig 1.8: Correction curve to transform time-dependent real-world arrival time into uniform arrival 

distribution. Demonstrating (as Fig. 1.7) 1200h mission arrival time receives a correction value of -

4h 20m (mission corrected to 4h 20m “earlier”). 
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7. The correction value is applied to the original mission activation datetime (N.B: 

date and time, not just hour of activation – it is therefore possible to correct arrival times 

across midnight). 

8. The correction process is applied across all the activation datetimes for all of the 

same team and mission types. 

9. After the time-transform is applied, the corrected activation times of day are 

extracted and plotted as a histogram with one-hour bins (Fig. 1.9). This should be 

contrasted with the un-corrected inter-arrival time distribution (Fig. 1.4). 

 

 

Fig 1.9: Histogram showing normalized (area under plot = 1) probability of activation by time of day after 

correction for time-dependency.  
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   A uniform probability of activation should result in the number of activations in hourly 

time bins being Poisson distributed around a mean (λ) which is 1/24th of the total number 

of missions in the studied period, as the time-period tends to infinity. Given 1945 primary 

retrieval missions undertaken by EMRS, this would be expected to produce 81 missions 

per 1-hour bin (1945 ÷ 24) in the case of a pure uniform distribution (Fig 1.10). As this is a 

Poisson arrivals process, the actual probability distribution of mission occurring in each 1-

hour time period conforming a uniform probability of activation is therefore expected to be 

a Poisson distribution with λ = 81. The final probability distribution (Fig. 1.11) appears to 

be well approximated to the expected Poisson distribution (outliers ~ n = 50 are noted). 

The corrected data distribution and the expected Poisson distribution were not significantly 

different on Kolmogorov-Smirnov testing (p = 0.62). 

 

Fig. 1.10: Frequency distribution histogram demonstrating number of activations in each one-hour time 

period after application of the time-transform. Expected Poisson λ-value = 81 missions per one-

hour time period for uniform probability of activation by time of day is illustrated (red line). 
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Fig. 1.11: Comparison of probability density histogram of number of missions per one-hour time period after 

correction for time-dependent arrivals and PDF of Poisson distribution with λ = 81. Distributions 

not significantly different (K-S test p = 0.62). 
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1.6.4.   Service Time (S)   

1.  The time between activation of a team for one mission and the point 

at which the team became available for their next mission was 

defined as the service time. Practically, this was calculated as the 

time difference between mission activation and the team’s return to 

base time, as recorded in the relevant electronic retrieval database. 

2.  The endpoint for mission duration was the return to base time. As 

this requires a separate process to enter into the retrieval medical 

notes, it is liable to be missed by the teams.  When not specifically 

documented, this time was bootstrapped using the time distribution 

from the previous recorded checkpoint: the time at which the patient 

was handed over to the receiving hospital. The hospital handover 

checkpoint has multiple opportunities and mechanisms for the time 

to be recorded and was therefore much more reliably recorded than 

the return to base time. This also applied to stood-down primary 

missions, where the team were activated but did not, for any one of a 

number of reasons, actually attend a patient. 

3.  The mission durations were calculated and plotted as a probability 

density histogram. 

4. A suitable probability distribution was fitted to the histogram and 

the goodness-of-fit assessed using the Kolmogorov-Smirnov test. 
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1.6.5.  Number of Servers (c)  

1.  The number of servers were defined as the number of clinical teams 

available to treat patients at any given time. The ScotSTAR teams 

are staffed and available 24/7, without variation in the number of 

available servers over time. The number of servers is therefore 

constant for the respective teams: 

  SPRS  1 server (team). 

  EMRS  2 servers (teams). 

 

1.6.6.  Number of places in system (K)  

1. The number of places within the system (receiving service and queueing) 

was calculated based upon the general description of the relevant 

ScotSTAR system. There is no physical limit on the number of patients 

who can be within the system for either of the studied teams and this 

value was therefore set at infinity for all systems. The practical 

implications for this will be discussed later. 

 

1.6.7.  Population (N)  

1.  The size of population from which the patient is drawn. This was 

defined as the entire population meeting the respective service’s age 

inclusion criteria within the geographical area of operation. 

2. The applicable population for SPRS was defined using public 

information from the National Records of Scotland (National 

Records of Scotland Mid-2015 Population Estimate for Scotland). 

3.  The applicable population for EMRS was defined using the NASA 

SEDAC population estimator (NASA Earthdata Socioeconomic 

Data and Applications Centre, Columbia University, Palisades NY, 

via URL: https://sedac.ciesin.columbia.edu) according to the 

approximate geographical boundaries of EMRS operations. 
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1.6.8.  Queueing Discipline (D)  

1.  From the general description and system process map for each 

service, the queuing discipline was calculated and defined. Both 

SPRS and EMRS only undertake emergency missions which are 

universally operated on a first-in-first-out (FIFO) queueing 

methodology and this could therefore be set as a constant queue 

discipline. 
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1.7.  Results 

   The results section will firstly define the applicable queueing theory parameters for the 

Scottish Paediatric Retrieval Service (SPRS), followed by the Emergency Medical 

Retrieval Service (EMRS). 

 

1.7.1.  Scottish Paediatric Retrieval Service (SPRS)  

1.7.1.1.  Description of SPRS queue operations  

   SPRS demonstrates the simplest studied queueing process: a single queue with a single 

server (the “corner shop” queue analogy) (Fig. 1.12). 

 

Fig. 1.12: Diagrammatic representation of SPRS single first-in-first-out queue and single server system. 

 

 

 

SPRS receives referrals from any hospital or healthcare facility within Scotland. The 

service provides outreach critical care and specialist transport to critically ill or injured 

children across a wide age range from 28 days old up to their 16th birthday.  

   SPRS is a single team, located at the ScotSTAR base at Glasgow airport. The team 

undertakes emergency, unscheduled transfers in a predominantly hub-and-spoke network. 

The team will respond to any call which is deemed to require their services and there is no 

prioritisation of missions or a facility to undertake elective transfers. Patients referred 

when the team is on another mission are managed at the local site, with advice from the 

transport team and the receiving Intensive Care Unit until the SPRS transport team are able 

to attend – or they are transferred by the local team; in which case they appear as if 

baulked or reneged from the system. 
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   Children who are transferred almost always require paediatric intensive care unit (PICU) 

level care. There are two PICUs in Scotland (as at November 2020):  

- The Royal Hospital for Children, Glasgow 

Queen Elizabeth University Hospital campus, Govan, Glasgow  

(formerly the Royal Hospital for Sick Children, Glasgow 

located in Yorkhill, Glasgow) 

- The Royal Hospital for Sick Children, Edinburgh 

Sciennes, Edinburgh 

(data  the opening of the new Royal Hospital for Children 

and Young People at the Little France healthcare campus, 

Edinburgh).  

The majority of children transferred therefore travel to one of these two sites, with the team 

then returning to the Glasgow ScotSTAR base. Although the system therefore 

demonstrates some features of a point-to-point network, the relatively large number of 

referring centres compared to only two receiving centres creates a network more akin to a 

hub-and-spoke operation - particularly as the team always returns to a single point of origin 

at the ScotSTAR base. The mode of network operation is arguably moot since queuing 

theory does not directly take this into account. However, an understanding of the network 

operation is important to the understanding the mission durations in section 1.7.1.3. 

    During the studied time period, calendar years 2013 – 2016, the SPRS system saw a 

progressive increase in the number of missions undertaken from 226 missions per year to 

299 missions per year as illustrated in Table 1.3 The cause of this rise was not investigated 

as part of this thesis but would form a potentially important factor if an attempt to predict 

future system performance is made. 
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Table 1.3: Number of SPRS retrieval missions by calendar year. All SPRS missions are emergency-type. 

Year Emergency Missions 

2013 226 

2014 261 

2015 290 

2016 299 

Total 1076 

 

 

 

1.7.1.2.  SPRS inter-arrival time distribution  

(Kendall’s notation component: A)  

   It was considered that the number of referrals to the SPRS system in each calendar year 

should follow a Poisson-type distribution as they reflect an underlying random process – 

that of the onset of major medical illness. The inter-arrival times were therefore expected 

to be exponentially distributed with a μ value equal to the mean inter-arrival time for the 

missions. Considering the complete study period: SPRS completed a total of 1076 missions 

in 1461 days (2016 being a leap year). The mean arrival rate (Poisson distribution λ) to the 

system is therefore: 

𝜆 =
1076

1461
=   0.73       (𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦)   (12) 

 

The reciprocal of this gives the mean inter-arrival time, corresponding to the expected 

exponential distribution μ-value: 

𝜇 =  
1

0.73 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
=    1.36         (𝑑𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (= 32ℎ 45𝑚)) (13) 
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  The probability density of the raw inter-arrival times by hour were plotted as a histogram. 

With the expectation of a Markovian arrivals process, an exponential distribution was 

fitted to the data (Fig. 1.13). The fitted distribution demonstrated μ = 1.29 (95% 

Confidence Interval: 1.22 – 1.37). The fitted distribution appeared a good fit for the real-

world data and was not significantly different on Kolmogorov-Smirnov testing (p = 0.10, 

test statistic = 0.04). 

   The expected exponential distribution μ-value of 1.36 was contained within the 

confidence intervals of the fitted distribution and the two distributions are therefore not 

considered significantly different. 

 

Fig. 1.13: Histogram demonstrating probability density of raw inter-arrival times for SPRS missions during 

calendar years 2013-2016, with fitted exponential distribution (μ = 1.29). Fitted distribution not 

significantly different to raw data (K-S test p = 0.10). 
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 However, it is generally known that referrals to the ScotSTAR teams vary through the day 

and it was considered that this may affect the inter-arrival distribution. Subsequent analysis 

of the probability of activation by time of day revealed that, as expected, the distribution is 

not uniform but is time-variable. Thus, the process is not pure Poisson but time-dependent 

Poisson and a pure exponential distribution does not apply to the system when considered 

across the full 24-hours of day. 

   This is reflective of more people generally seeking medical attention during the day, 

which translates to a higher number of retrieval requests. The number of retrievals 

increases sharply after 0800h to a peak probability of activation between 0900h-1000h.  

After this the probability of activation gradually decreases until approximately 2100h, 

following which the probability of activation falls more rapidly to the overnight values 

(Fig. 1.14). 

 

Fig. 1.14: Histogram of relative probability of activation (area under plot = 1) by time of day (1 hour bins) 

for SPRS missions in calendar years 2013 – 2016. Plot demonstrates mode probability of 

activation in 0900h – 1000h time period and diurnal variation in probability of activation by time 

of day. 
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   Based on this finding, the correction described in methodology section 1.6.3 was applied 

to the mission activations to create a more uniform probability of activation over the course 

of the day (Fig. 1.15). After applying this time-dependency correction, the inter-arrival 

time histogram (Fig. 1.16) demonstrated a closer approximation of the fitted exponential 

distribution than the uncorrected data (see Fig. 1.13). This was most noticeable in the 12-

24h inter-arrival time period. Although, the effect of the time-dependent Poisson process 

on the inter-arrival time distribution was not as marked in the SPRS system as it was for 

EMRS - which will be discussed later. The exponential distribution fitted to the corrected 

data demonstrated μ = 1.29 (95% CI: 1.22 – 1.37). The μ values and confidence intervals 

for the corrected vs uncorrected data were identical and they would therefore not be 

considered significantly different. Comparing the fitted distribution to the data 

demonstrated no significant difference to Kolmogorov-Smirnov testing, and the corrected 

data more closely resembled the fitted exponential distribution due to the lower K-S test 

statistic value when compared to the raw data (p = 0.30, test statistic = 0.03). 

Fig. 1.15: Histogram of relative probability of activation (area under plot = 1) by time of day (1 hour bins) 

for SPRS missions, after correction for time-dependency of arrivals process in calendar years 

2013 – 2016. Plot demonstrates mode probability of activation in 0000h – 0100h time period and 

relatively uniform probability of activation through 24-hour period. 
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Fig. 1.16: Histogram demonstrating probability density of inter-arrival times after correction for time-

dependent arrivals. SPRS missions during calendar years 2013-2016, with fitted exponential 

distribution (μ = 1.29). The data are not significantly different to the fitted distribution and are 

more closely approximated than the raw dataset (K-S test p = 0.30, test statistic = 0.03). 

 

 

 

 

 

 

 

 

 

 

 



Part 1 | Chapter 7    Results: SPRS System 60 

 
 

   The μ-value of the raw and corrected inter-arrival times were equal and the distributions 

can therefore be considered to not be significantly different (Fig. 1.17). This is an 

important finding as it demonstrates that the correction methodology does not mutilate the 

data. 

    

Fig. 1.17: Comparison of fitted exponential distributions for SPRS missions inter-arrival times, showing 

calculated inter-arrival time exponential PDF, μ = 1.26 (green line); raw inter-arrival time 

exponential PDF (red line) and time-dependency corrected exponential PDF (blue line) curves. 

The raw and time-dependency corrected PDF lines are superimposed as the parameter values are 

identical (μ = 1.29). 

 

 

With the inter-arrival time clearly demonstrating an equal exponential distribution in both 

time-dependency corrected and uncorrected data, the SPRS arrivals are Markovian (“M” in 

Kendall’s notation) in both raw and corrected forms. 
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1.7.1.3.  SPRS mission durations 

 (Kendall’s notation component: S)  

   In the period of the 2013 – 2016 calendar years, SPRS missions demonstrated a median 

duration of 4h 30m (mean duration = 5h 17m). Given these values, and the fact that 

missions cannot have zero duration, it was considered likely that the mission durations 

would not be exponentially distributed (i.e. would not be Markovian). 

The probability density of mission durations was plotted as a histogram using 30-minute 

bins. The overall appearance of the histogram appeared, consistent with established 

queueing theory, to be approximately gamma distributed (Fig. 1.18). 

   A gamma distribution was therefore fitted to the data and demonstrated values for shape 

parameter κ = 2.89 (95% CIL 2.63 – 3.17) and scale parameter θ = 0.076 (95% CI: 0.07 – 

0.08). The gamma distribution mean (by κθ) = 0.22 (days, 5h 16m). The measured mean 

was 1 minute longer than the gamma distribution mean, suggesting the distribution is 

appropriate. The raw data and fitted distribution were not significantly different on 

Kolmogorov-Smirnov testing (p = 0.16), suggesting the gamma distribution is an accurate 

representation of the real-world mission durations. 

   As the shape parameter is not an integer and a defined number of exponentially-

distributed duration sub-components cannot be specified then the distribution must be 

considered Gamma, rather than Erlang. Thus, the service time for SPRS would be 

classified as General (G), not Erlang (Ek).  
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Fig. 1.18: Histogram of probability density of mission duration (30-minute bins) for SPRS missions in 

calendar years 2013 – 2016, with fitted gamma distribution (κ = 2.89, Θ = 0.076) . Plot 

demonstrates mode duration in 3h 00m – 3h 30m range (median duration = 4h 30m, mean 

duration = 5h 17m). Data and fitted distribution are not significantly different (K-S test p = 0.16). 
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1.7.1.4.  SPRS number of servers 

 (Kendall’s notation component: c)  

   SPRS operates one team, available 24/7. The number of servers (c) can therefore be set at 

a constant value of one. 

 

 

1.7.1.5.  SPRS system capacity 

 (Kendall’s notation component: K)  

In the context of queueing theory, there is no physical limit to the number of patients who 

can be queued and so it is considered that K = ∞.  

   In reality, however, there is a practical limit to the number of patients who can be in the 

queue, but the value of this limit is currently unknown and the infinity value is considered 

acceptable for this thesis. This will be further explored in the discussion section. 

 

 

1.7.1.6.  SPRS population 

 (Kendall’s notation component: N)  

   SPRS operates across the whole of Scotland, so the applicable population is considered 

to be all children in Scotland between the ages of 28 days (younger being served by SNTS) 

and 16 years (older being served by EMRS).  

   Assuming that children under 28 days old represent 28/365 of the population under 1 

year old, the population served by the SPRS is approximately 915,000.  As this is 

approximately 5 orders of magnitude larger than the number of servers, it is considered for 

the purposes of defining the relevant queueing theory that for SPRS, N ≈ ∞. 
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1.7.1.7.  SPRS queueing discipline 

 (Kendall’s notation component: D)  

   In day-to-day SPRS system operations, there may be two referrals which arrive 

sufficiently close together for an ad-hoc triage to be undertaken by the retrieval clinician 

for the purposes of determining mission priority – but this is relatively rare. Generally, the 

inter-arrival times are such that it is not appropriate to “wait and see” if a more urgent 

referral arrives and the team will usually respond immediately to an activation request. The 

system therefore operates with a first-in-first-out (FIFO) queueing method; all patients are 

effectively the same priority and there is no pre-emption. 

 

1.7.1.8.  Formulation of SPRS system in Kendall’s notation  

   As described in section 1.3.1, Kendall’s notation follows the form A/S/c/K/N/D 

representing arrival time (A), service time (S), number of servers (c), number of places in 

the system (K), size of population (N) and queueing discipline (D) respectively. 

  Based on the above analysis, SPRS demonstrates: 

- Markovian (M) arrivals 

- Gamma distributed (a variant of general (G)) service time 

- One server 

- Infinite places in the system 

- Infinite population 

- First-in-first-out (FIFO) queueing 

 

Using Kendall’s notation, this is written in full as: 

M/G/1/∞/∞/FIFO 

By convention, infinite places within the system, infinite sampling population and FIFO 

queue discipline are omitted from the notation. The ScotSTAR SPRS system therefore 

demonstrates an overall queueing system of the type: 

M/G/1 
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1.7.2.  Emergency Medical Retrieval Service (EMRS)  

1.7.2.1.  Description of EMRS queue operation  

   EMRS demonstrated the queueing process of a single queue with two servers (the “Post 

Office” queue analogy (Fig 1.19). Despite this being a more complex queueing system 

than SPRS, it also has the potential to be the most efficient - as the use of two teams to 

serve a single queue allows any non-busy team to contribute to the service rate. 

 

Fig. 1.19: Diagrammatic representation of EMRS system: two independent mission types arriving to a single 

first-in-first-out queue with two servers, missions being preferentially allocated to the Duty 1 

team. 

 

   EMRS receives referrals from two sources, which form two different arrival processes.  

   The principal role of ScotSTAR EMRS is undertaking critical-care outreach and 

secondary inter-hospital transfer for patients in remote and rural healthcare facilities across 

the West and North of Scotland. Referrals are received from rural healthcare professionals 

via the Specialist Services Desk in the West of Scotland Ambulance Control Centre, in 

common with the other ScotSTAR teams. When a secondary retrieval is required, a team 

will activate immediately to attend the patient and undertake their transfer. If a team is not 

available, it is generally appropriate to wait for a team to become available as the longer 

duration and specialist nature of aeromedical secondary retrieval affords few options other 

than EMRS to safely complete such transfers. Although remote and rural healthcare 

facilities may have limited critical-care facilities, they are generally fully-equipped and 

staffed community hospitals or GP surgeries which are able, with remote support, to 

manage even critically unwell patients for a period of time. On the very rare occasions of 

excessive waiting time, or truly time-critical pathologies (e.g. ruptured abdominal aortic 

aneurysm) it may not be appropriate to wait for, or even to use, the EMRS team. When a 
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team is activated they will, generally, not deviate from that mission until it is complete. 

Due to the specialist equipment, procedures and drugs involved – and the need to minimise 

the quantities carried to reduce weight for air transfers, the team is not usually able to 

proceed to another mission without first returning to base to re-stock any consumables 

used during the mission. Missions are therefore fully complete, with a full start-to-finish 

duration recorded before the next mission would be considered to have started. 

   Primary, pre-hospital missions (predominantly major trauma patients) are referred via a 

dedicated Trauma Desk in the West of Scotland Ambulance Control Centre. At the Trauma 

Desk, a specialist clinician screens all the 999 calls arriving to ambulance control centres 

across Scotland to identify those for which the activation of a pre-hospital critical care 

team such as the EMRS Trauma Team may be of benefit. Those occurring within the 

EMRS area of operations for primary missions (see Fig. 1.33) will result in the tasking of 

the EMRS team. On receipt of such a tasking a team will, if available, respond in a time-

critical fashion either by road vehicle using blue lights and sirens, or by helicopter. The 

Duty 1 team will always be tasked first when available, otherwise the mission will be 

tasked to the Duty 2 team. The entire premise of an EMRS team attending patients in the 

pre-hospital environment is that of reducing time to life-saving interventions which cannot 

be provided by an ambulance service paramedic and would ordinarily need to be 

performed in a hospital. Resuscitative surgical procedures, establishing a definitive airway 

and emergency blood transfusion, amongst others, can be taken into the field by the EMRS 

trauma team – thereby allowing the intervention to occur earlier in the patient journey. If 

there is no team available to respond then such patients are generally reneged from the 

system. A prolonged wait for a team could result in a patient remaining in the healthcare-

austere pre-hospital environment when a “scoop-and-run” to hospital would have resulted 

in them receiving their life-saving intervention at the same point in time – but simply at a 

hospital, rather than by EMRS in the field. Clearly, therefore, it is not appropriate for 

patients to wait a significant time for EMRS to attend primary missions. It is important to 

note that the EMRS Trauma Team response is only funded, and therefore only available, 

between 0800h – 1800h (although 365 days per year). 

      During the studied time period: calendar years 2013 – 2016, the EMRS system saw an 

overall increase in the number of primary missions undertaken from 391 to 565 missions 

per year, and a fall in the number of secondary missions from 299 to 268 per year (Table 

1.4). It was recognized that as the primary missions service became established (EMRS 
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having only formally commenced primary pre-hospital operations in 2009), the number of 

missions was expected to increase in line with service growth. The magnitude and nature 

of this growth was not investigated as part of this thesis but could form a potential 

important factor if future system performance is to be predicted. 

 

Table 1.4: Number of EMRS primary and secondary retrieval missions by calendar year. 

Year Primary Missions Secondary Missions 

2013 391 299 

2014 522 275 

2015 467 240 

2016 565 268 

Total 1945 1082 

 

   Note that the principal purpose of EMRS is to provide equity of access to healthcare 

through secondary transfer of patients in remote and rural healthcare facilities requiring 

critical care. Secondary missions are therefore given precedence within each EMRS 

analysis section. 
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1.7.2.2.  EMRS inter-arrival time distribution  

(Kendall’s notation component: A)  

  The preceding SPRS analysis supported a hypothesis that the probability of activation by 

time of day for emergency retrieval services is not uniform. EMRS secondary missions are 

therefore expected to follow a “critical-illness presentations” pattern similar to the SPRS 

missions. EMRS primary missions, although also emergency missions considered to relate 

stochastically in a time-dependent fashion to incidents of major trauma, are expected to 

predominantly arrive within the funded 0800h – 1800h hours of operation of the EMRS 

pre-hospital service. 

     Histograms plotting the probability of activation by time of day for EMRS missions 

were generated. Secondary missions demonstrated a sharp increase in demand after 

approximately 0700h, rising to a peak at 1200h before falling steadily through the rest of 

the afternoon, evening and night to a minimum probability of activation in the 0400h – 

0500h time period (Fig. 1.20). 

   In keeping with the hours of operation, the EMRS primary pre-hospital missions rose 

sharply after the 0800h start-time for the service before reaching a peak in the 1600h – 

1700h time period. The probability of activation fell only slightly in the 1700h – 1800h 

time period before the histogram is truncated by the cessation of pre-hospital operations at 

1800h (Fig. 1.21). 
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Fig. 1.20: Raw probability of activation by time of day for EMRS secondary missions (1-hour bins), 

demonstrating variation in probability of activation by time of day and mode probability of 

activation in 1100h – 1300h period. Real-world data: calendar years 2013 – 2016.  
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Fig. 1.21: Raw probability of activation by time of day for EMRS primary missions (1-hour bins), 

demonstrating variation in probability of activation by time of day and mode probability of 

activation in 1500h – 1600h period. Real-world data: calendar years 2013 – 2016.  
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   In the 4-year study period, EMRS undertook a total of 1082 secondary missions and 

1945 primary pre-hospital missions in 1461 days. Using the same methodology as 

previously (section 1.6.3), the expected inter-arrival time exponential distribution μ values 

were: secondary missions μ = 1.35 and primary missions μ = 0.75. 

   An exponential distribution fitted to the secondary mission inter-arrival times 

demonstrated μ = 1.35 (95%CI: 1.27 – 1.43), corresponding to a mean inter-arrival time of 

32h 24m (Fig. 1.22). The fitted exponential μ was equal to the calculated μ value. The data 

distribution appeared to have a good approximation of the exponential distribution and this 

was confirmed by Kolmogorov-Smirnov testing (p = 0.40, K-S statistic = 0.03). 

 

Fig. 1.22: Probability density histogram of raw inter-arrival times for EMRS secondary missions (1-hour 

bins) and fitted exponential distribution,  μ = 1.35 (red line). Real-world data: calendar years 

2013 – 2016.    
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   Analysis of raw primary mission inter-arrival times demonstrates an initially exponential 

distribution, but with a multimodal appearance (Fig. 1.23). This was most obvious in the 

EMRS primary mission analysis compared to both EMRS secondary missions and SPRS 

missions.  The multiple modes started at approximately 22h and recurred approximately 

every 24h thereafter. 

   An exponential distribution fitted to the raw primary mission data demonstrated a μ of 

0.75 (95%CI: 0.72 – 0.78), corresponding to a mean inter-arrival time of 18h 00m. This 

value was again equal to the calculated inter-arrival μ value. However, based on the raw 

data, the multi-modal appearance of the distribution was not a good fit to the exponential 

distribution, confirmed by Kolmogorov-Smirnov testing (p < 0.0001, K-S statistic = 0.20). 

 

Fig. 1.23: Probability density histogram of raw inter-arrival times for EMRS primary missions (1-hour bins) 

and fitted exponential distribution,  μ = 0.75 (red line). Real-world data: calendar years 2013 – 

2016. 
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   Applying the time transform described in 1.6.2 to correct for the time-dependent 

probability of activation resulted in a more uniform appearance of the secondary mission 

activation time of day (Fig. 1.24) and the inter-arrival time distribution with an apparent 

reduction in the multi-modality of the histogram (Fig 1.25). The fitted exponential 

distributions after correction for time-dependent probability of activation demonstrated a 

secondary mission μ = 1.30 (95% CI: 1.22 – 1.37) which was not significantly different to 

the uncorrected distribution as each μ value was reciprocally contained within the other’s 

95% confidence interval. The corrected data were not significantly different to the fitted 

distribution on Kolmogorov-Smirnov testing and appeared to more closely approximate the 

distribution, with a lower test statistic value (p = 0.71, K-S test statistic = 0.02).    

    

     

Fig. 1.24: Normalized histogram (area under plot = 1) of time-dependency corrected probability of 

activation by time of day (hourly bins) for EMRS secondary missions. Mode probability of 

activation 0800h – 0900h. Real-world data: calendar years 2013 – 2016. 
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Fig. 1.25: Probability density histogram of inter-arrival times for EMRS secondary missions (1-hour bins) 

after correction for time-dependency. Fitted exponential distribution  μ = 1.30 (red line). Real-

world data: calendar years 2013 – 2016. 
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   The most noticeable improvement, however, was in the primary missions inter-arrival 

data where the substantially more uniform probability of activation by time of day (Fig. 

1.26) resulted in the multi-modality of the inter-arrival times being corrected to a close 

approximation of the exponential distribution (Fig 1.27). The corrected exponential 

distribution demonstrated μ = 0.74 (95% CI: 0.71 – 0.78). The corrected and uncorrected μ 

values were contained reciprocally within the opposing confidence interval and the two 

values are therefore not statistically significantly different. In contrast to the raw data, the 

corrected inter-arrival times were not statistically significant to the fitted distribution on 

Kolmogorov-Smirnov testing (p = 0.34, K-S test statistic = 0.02). 

 

 

Fig. 1.26: Normalized histogram (area under plot = 1) of time-dependency corrected probability of 

activation by time of day (hourly bins) for EMRS primary missions. Mode probability of activation 

1300h – 1400h. Real-world data: calendar years 2013 – 2016. 
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Fig. 1.27: Probability density histogram of inter-arrival times for EMRS primary missions (1-hour bins) after 

correction for time-dependency. Fitted exponential distribution μ = 0.74 (red line). Real-world 

data: calendar years 2013 – 2016. 
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   Of the two studied ScotSTAR systems, perhaps reflective of the larger number of 

missions adding statistical weight to the analysis, the EMRS system demonstrated the 

closest approximation of the fitted inter-arrival exponential distribution μ to the calculated 

μ value (Fig. 1.28 & 1.29). However, all the distribution μ values were contained within 

each of the fitting confidence intervals, so the fitted distributions themselves were not 

significantly different. As with SPRS, this is an important point in demonstrating that the 

correction process does not mutilate the inter-arrival data. 

 

 

Fig. 1.28: Comparison of EMRS secondary mission inter-arrival time exponential distribution PDFs for 

calculated (μ = 1.35, green line), raw (μ = 1.35, red line) and  time-dependency corrected (μ = 

1.30, blue line) distributions. Close approximation of μ values result in superimposition of lines on 

plot. Real-world data: calendar years 2013 – 2016. 
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Fig. 1.29: Comparison of EMRS primary mission inter-arrival time exponential distribution PDFs for 

calculated (μ = 0.75, green line), raw (μ = 0.75, red line) and  time-dependency corrected (μ = 

0.74, blue line) distributions. Close approximation of μ values result in superimposition of lines on 

plot. Real-world data: calendar years 2013 – 2016. 
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   The time-transform used (as described in section 1.6.3) corrects the time distribution 

across a 24-hour period. However, the pre-hospital (primary retrievals) component of 

EMRS does not operate outside the hours of 0800h – 1800h. As a result, it is theoretically 

impossible for a mission to be undertaken in the 1800h – 0800h period. Missions which 

occur at 1700h on Monday and 0900h on Tuesday are therefore, to the system, two hours 

apart; not 16 hours apart. 

   The calculated inter-arrival exponential μ value is representative of the mean inter-arrival 

time in days: i.e. μ = 0.75 = 0.75 days = 18h mean inter-arrival time.  

   However, in the EMRS context, 0.75 days would be more accurately considered 0.75 

operational days – an operational day being 10 hours long. Therefore, considering the 

inter-arrival time in the context of operational days: 

 

(μ = 0.75) 𝑥 (10ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑎𝑦) 

= 7.5ℎ (7h 30min) interarrival time during operating hours 

   7.5 ÷ 24 = μ = 0.31 if extrapolated to a 24-hour process. (14) 

 

or 

0.75−1 = 1.333 missions average per operating day. (15) 

so 

1.333 𝑥 (
24

10
) = 3.2 missions per 24h day by extrapolation (16) 

therefore 

1 𝑑𝑎𝑦

3.2 𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
 = 𝜇 = 0.31 (7h 30 mins mean inter-arrival time) for 24h operations. (17) 
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This application of operational hours is important in later analyses when the potential for 

simultaneous retrievals is considered. Based on a 10h operational day the difference 

between an average inter-arrival time of 7h 30m and 18h 00m is substantial. There is 

clearly an obvious operational difference with regard to service demand and the potential 

for team non-availability between these two results. 

   Given that EMRS treats both mission types with equal priority in a first-in-first-out 

queue, then the complete inter-arrival time distribution is an exponential distribution based 

on combination of both the primary (λp) and secondary (λs)  mission arrival rates. The 

resulting exponential distribution will demonstrate μ = 
1

𝜆𝑝+ 𝜆𝑠
 . 

   Secondary missions, with inter-arrival time exponential distribution μ = 1.33 accounted 

for 35.7% of the missions. Primary missions accounted for 64.3% of missions, with an 

absolute μ = 0.75 or μ = 0.31 if extrapolated for operations over a 24-hour period.  

  Each of the mission types demonstrates exponentially-distributed inter-arrival times after 

correction for time-dependency. This indicates that these are time-dependent Poisson 

processes. Secondary missions demonstrated an inter-arrival distribution which was not 

significantly different to exponential on raw values and so these missions clearly represent 

Markovian arrivals. Primary missions were not exponentially distributed on raw data 

analysis and so would be considered a general (G) inter-arrival time, but which can be 

corrected to an exponential (M) inter-arrival time. The ability to correct to an exponential 

distribution which does not demonstrate a significantly different μ value to the raw data 

distribution suggests that application of standard queueing theory to the corrected 

distribution could still yield appropriate average values. The EMRS missions can therefore 

be considered to also demonstrate corrected Markovian (M) arrivals.  
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1.7.2.3.  EMRS mission durations 

 (Kendall’s notation component: S)  

Secondary Missions    

   During the studied period, EMRS secondary retrievals demonstrated a median mission 

duration of 6h 15m (mean duration = 6h 34m). As with SPRS, a zero-time mission 

duration is impossible and the durations were therefore expected not to demonstrate an 

exponential (Markov service times) distribution. 

   The mission durations were plotted as a probability density histogram with 15-minute 

bins (Fig. 1.30). Again, in keeping with established queueing theory, the missions appeared 

to demonstrate an overall distribution consistent with a gamma distribution.    

   A gamma distribution was therefore fitted to the data, this demonstrated parameter values 

κ = 6.50 (95% CI: 5.98 – 7.07) and θ = 0.04 (94% CI: 0.04 – 0.05). The fitted gamma 

distribution mean (by κθ) = 0.27 (6h 32m). The gamma distribution mean was 2 minutes  

shorter than measured data mean, suggesting that the distribution is appropriate.  

   It could be argued that there are two gamma distributions within the secondary mission 

data with modes around 5h 30m and 8h durations. This may could correspond to North vs 

West sector missions – or rotary-wing vs fixed wing transport. The raw data distribution 

was not significantly different to the fitted gamma distribution on Kolmogorov-Smirnov 

testing (p = 0.37). With the raw data demonstrating a good approximation of the fitted 

gamma distribution, it was considered that specifically establishing the factors which may 

generate two underlying gamma distributions was outside the scope of this thesis. 

    

  



Part 1 | Chapter 7 Results - EMRS System 82 

 
 

Fig. 1.30: Probability density histogram of EMRS secondary mission durations (15-minute bins). Mean 

secondary mission duration = 6h 34m, median duration = 6h 15m. Fitted gamma distribution with 

parameter values κ = 6.50, Θ = 0.04 (red line). Real-world data: calendar years 2013 – 2016. 
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Primary Missions    

EMRS primary missions demonstrated a median duration of 1h 19m (mean duration = 1h 

32m) and appeared overall to be a good approximation of the fitted gamma distribution 

(Fig. 1.31) with parameter values κ = 1.96 (95% CI: 1.85 – 2.08) and θ = 0.03 (95% CI: 

0.03 – 0.03). The fitted gamma distribution mean (by κθ) = 0.06 (1h 27m). The gamma 

distribution mean was 5 minutes shorter than measured data mean, suggesting that the 

distribution is appropriate. Kolmogorov-Smirnov testing, however, demonstrated the 

difference between the fitted distribution and the raw data to be at the limit of non-

significance (p = 0.05). 

  Based upon this, the EMRS servers were deemed to exhibit service times which were the 

sum of two gamma distributions, with proportional representation of each based on the 

different number of secondary to primary retrievals. This would be classed as a type of 

general (“G” in Kendall’s notation) service time. 

 

 

Fig. 1.31: Probability density histogram of EMRS primary mission durations (15-minute bins). Mean 

primary mission duration = 1h 32m, median duration = 1h 19m. Fitted gamma distribution with 

parameter values κ = 1.96, θ = 0.03 (red line). Real-world data: calendar years 2013 – 2016. 
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1.7.2.4.  EMRS number of servers 

 (Kendall’s notation component: c)  

ScotSTAR EMRS operates 2 teams, available 24 hours, 365 days a year – and this value 

can therefore be set at a constant of 2.  

   Operationally, missions are allocated to Duty 1 first, being allocated to Duty 2 only if the 

Duty 1 team is unavailable. This has no direct implication for the queueing theory 

described here, however. 

 

1.7.2.5.  EMRS system capacity 

 (Kendall’s notation component: K)  

There is no physical limit to the number of patients who can wait to be retrieved and so it 

is considered that K =  ∞. As with the other teams, there is likely to be a practical limit to 

the number of patients who will wait for retrieval as opposed to being transferred by 

another means. This is perhaps most relevant to the EMRS primary missions, but the value 

is currently undefined. This will be explored further in the discussion section. 

 

1.7.2.6.  EMRS population 

 (Kendall’s notation component: N)  

EMRS operates secondary missions across the rural west and far-north of Scotland (Fig. 

1.32), serving an approximate population of 289,000 people aged 16 and over. For primary 

missions, EMRS serves the western central belt, the rural south-west and areas of the 

Borders and Highlands of Scotland, predominantly (Fig. 1.33). This area has an 

approximate population of 2.9 million. As the only ScotSTAR service which undertakes 

pre-hospital primary missions, EMRS covers all ages in the pre-hospital domain. The 

populations applicable to both mission types are significantly larger than the 2 EMRS 

teams (servers) by a minimum of 5 orders of magnitude. It is therefore considered that N ≈ 

∞. 

  



Part 1 | Chapter 7 Results - EMRS System 85 

 
 

Fig. 1.32: Approximate geographical boundary of EMRS area of operation for secondary missions (shaded 

red). Map copyright OpenStreetMap contributors. Reproduced in accordance with the terms. 
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Fig. 1.33: Approximate geographical boundary of EMRS area of operation for primary missions (shaded 

red). Map copyright OpenStreetMap contributors. Reproduced in accordance with the terms. 
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1.7.2.7.  EMRS queueing discipline 

 (Kendall’s notation component: D)  

   The system works with a first-in-first-out (FIFO) process. The availability of two teams 

serving the single queue also simplifies this process as even two missions arriving 

simultaneously will generally not require triage if both teams are available as they will 

both activate immediately. Although the more time-critical nature of primary missions has 

been discussed, they are also most able to be transferred by another means and be in an 

urban location where definitive care is not too far away – in contrast to remote secondary 

retrievals with no other means of transfer. The availability of two teams also creates a 

situation where there is deemed sufficient capacity within the system such that a “wait-

and-see” approach pending a higher-acuity transfer is not appropriate. These idiosyncrasies 

of real-world EMRS operations are generally considered to simplify to an FIFO process, 

without priority or pre-emption. 

 

1.7.2.8.  Formulation of EMRS system in Kendall’s notation  

  After analysing all the components above, the EMRS system can be defined in terms of: 

- Markovian (M) arrivals as the sum of: 

 - Markovian secondary mission arrivals 

- Markovian primary mission arrivals (after correction from 

General) 

- Sum of two gamma-distributed (therefore general (G)) service time 

- Two servers 

- Infinite places in the system 

- Infinite population 

- FIFO queueing 

 

Using Kendall’s notation (see section 1.3.1), then with infinite places in the system, 

infinite population and FIFO queueing omitted by convention – the raw EMRS system 

would be described by: 

G/G/2 

Which, when corrected for the non-homogeneous Poisson arrivals process becomes: 

M/G/2 
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1.7.3.  Summary of SPRS & EMRS queue descriptions 

As described in section 1.7.1 and 1.7.2, both SPRS and EMRS queueing systems can be 

described by Kendall’s notation. For reference and comparison, a summary of the queue 

descriptors is provided in Table 1.5, below. 

 

Table 1.5: Summary of ScotSTAR queueing system descriptions in Kendall’s notation. 

 

Service / System 
Queue Type 

(Kendall’s Notation) 

SPRS M/G/1 

EMRS M/G/2 
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1.7.4.  Formulaic calculation of operational values  

    Having ascertained the applicability of queueing theory to the ScotSTAR systems and 

described their queueing processes using Kendall’s notation (as section 1.7.3), the 

matching queueing theory formulae can be selected and their respective values can be 

calculated to establish if this is able to adequately describe the studied systems. 

 

1.7.4.1.  Selection of applicable queueing theory  

   Of the studied systems, only SPRS, of the M/G/1 queue type has formulaic answers for 

the major queueing theory parameters of average length of queue (Lq) and waiting time in 

the queue (Wq) by way of the Pollaczek-Khinchin formulae. 

   EMRS can be represented as an M/G/c system or be generalised to the G/G/c system and 

the Wq calculated using Whitt’s method (Whitt, 2000). Unfortunately, calculation of the 

result is mathematically complex and requires numerous assumptions with regard to the 

underlying inter-arrival time distributions which cannot be validated for the EMRS system. 

It is considered that even if a value can be calculated for the EMRS system, it is unlikely to 

be an accurate measure of the real-world. 

 

1.7.4.2.  SPRS formulaic results  

   The SPRS system can be described in terms of Lq and Wq by means of the Pollaczek-

Khinchin formulae. Using server utilisation (ρ), mean arrival rate in missions per day (λ) 

and variance of the service time (σ2
s (as κθ2) from the parameter values of the gamma 

distribution of SPRS service times), the first formula describes the average length of queue 

(Lq) as: 

𝐿𝑞 =  
𝜌2+ 𝜆2𝜎𝑠

2

2(1−𝜌)
    (18) 
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So, referencing the values calculated in the SPRS analysis (section 1.7.1): 

 λ  = 0.74   (1076 missions / 1461 days) 

 σ2
s = 0.02   (24.0 minutes) 

 ρ =  0.16   (16% utilisation) 

 

Therefore: 

𝐿𝑞 =  
 0.162+ 0.742∗0.02

2(1−0.16)
    (19) 

 

𝐿𝑞 =  
0.037

2∗0.84
     (20) 

 

𝐿𝑞 =  0.022 patients in queue   (21) 
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Then, by adaptation of the above formula using one of Little’s formulae: 

𝐿𝑞 = 𝜆 𝑊𝑞    (22) 

or, when rearranged: 

𝑊𝑞 =  
𝐿𝑞

𝜆
    (23) 

 

The second Pollaczek-Khinchin formula - for the calculation of Wq - is obtained as: 

𝑊𝑞 =  
(

𝜌2+ 𝜆2𝜎𝑠
2

2(1−𝜌)
)

𝜆
    (24) 

so, 

𝑊𝑞 =  
(

𝜌2

𝜆
+ 𝜆𝜎𝑠

2)

2(1 −𝜌)
    (25) 

 

Then, using the same values for mission arrivals rate (λ), utilisation (ρ), and service time 

variance (σ2
s) then average waiting time in the queue (Wq) can be calculated as: 

𝑊𝑞 =  
(

0.162

0.74
+ 0.74∗0.02)

2(1 −0.16)
   (26) 

 

𝑊𝑞 =  
0.049

1.68
    (27) 

 

𝑊𝑞 =  0.029 (days) = 42 minutes  (28) 

 

Formulaically therefore, the SPRS system was calculated to demonstrate a mean length of 

queue (Lq) of 0.022 patients in the queue and a mean waiting time in the queue (Wq) of 42 

minutes. 
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1.7.4.3.  EMRS formulaic results  

   As stated in section 1.7.4.1, there are few queueing theory results which pertain to the 

G/G/2 or M/G/2 queue. Those which do are either mathematically complex (Hokstad, 

1979), are only applicable to a specific service time circumstance (Knessl et al., 1990), or 

are simply outside the mathematical scope of application by clinicians (Boxma et al., 

2002). There are therefore no applicable formulaic results for EMRS within the scope of 

this thesis. 
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1.8.  Discussion 

   Overall, the analyses above have demonstrated that the ScotSTAR systems are (perhaps 

unexpectedly) well represented by some basic descriptors from standard queueing theory. 

This is a positive finding as it suggests that queueing theory in general, and results derived 

from it, should prove useful in describing, analysing and generating specifications for the 

studied systems. However, clearly there are significant challenges in applying formulaic 

queueing theory to the SPRS and EMRS systems, with several components of the real-

world system, such as non-stationary arrivals, having the potential to render the results of 

such analysis invalid. 

 

1.8.1.  Arrivals processes and effect on classical 

queueing theory 

  The studied systems have the common feature of attending patients who, on a continuum 

of clinical severity, have the most critical pathologies or highest need for specialist medical 

care. Such patients attended by the ScotSTAR teams do not choose the nature of their 

illnesses and injuries, nor the time of day at which they occur and so referrals to the system 

are considered broadly random in nature. Initially, it would seem reasonable to assume that 

these events would be sufficiently unpredictable as to occur with uniform probability 

across any time of the day or night in the long-term – thereby demonstrating a pure Poisson 

process with the expectation of exponentially-distributed inter-arrival times (Markovian 

arrivals). 

   However, there are some factors - such as circadian rhythm affecting medical illnesses or 

relatively little major trauma occurring when most people are asleep at night – which make 

these events more likely to occur at certain times of day. For example, the higher number 

of pedestrians and buses during rush hour makes it more likely that a pedestrian will 

sustain a major injury inflicted by a bus during this time than in the middle of the night. 

However, the number of such instances would not bear a fixed, predictable, relationship to 

either the number of pedestrians or buses – instead, the relationship would be stochastic. It 

could, however, be expected for a long-term average number of pedestrian versus bus 

accidents to remain relatively constant given a sufficiently long sampling time (e.g. per 

year). 
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   Much of queueing theory relies on the two fundamentals of a steady-state system and a 

stationary arrivals process. Steady state is defined by queueing theory as a traffic intensity 

(ρ) of less than one. This can easily be seen to hold true mathematically for the ScotSTAR 

systems as the mean mission duration multiplied by the number of missions generates a 

total workload which is substantially less than the number of server hours available. 

Using SPRS as an example: 

1076 missions x 5h 17m mean duration  ≈ 5685   hours of work in 4 years  

24h x 1461days x 1 server  = 35064  available server-hours in 4 years 

5685 ÷ 35064   = 16.2% traffic intensity (ρ) = utilization 

This can also be seen to hold true from the first-principles perspective in that all patients 

who are referred are indeed retrieved, with some spare time within the system. This 

demonstrates that the queue must be, at least transiently, zero and so ρ must be less than 

one. If the system instead demonstrated ρ greater than 1, the queue length would grow 

indefinitely. Also, because ρ is less than 1, it can be stated that ρ = utilization (as section 

1.3.2). 

   Stationary arrivals refer to a system in which the number of arrivals in successive equal 

time periods follow a Poisson distribution with a constant long-term average value (λ). 

While this may be true in the context of the number of ScotSTAR missions undertaken per 

month or per year, it is clearly not the case when successive hours of the day are 

considered. As demonstrated in each of the inter-arrival time (A) analyses (sections 1.7.1.2 

& 1.7.2.2), the number of missions occurring can vary greatly from one hour to the next. 

The ScotSTAR systems, therefore, are able to exhibit the queueing theory requirement of 

steady state, but not that of stationary arrivals. 

   This non-stationary, daily-cycle arrivals process created an unanticipated appearance of 

the raw inter-arrival distribution: the multi-modal component (see example: Fig 1.21). If, 

for example, the peak activation times for one mission type is 3pm on a given day, then the 

most likely time for another activation is 3pm: either immediately (as a true exponential 

inter-arrival time) or 3pm on the next day, or 3pm on the nth day. Thus, the inter-arrival 

modes tend towards being 24 hours apart as the number of studied days tends to infinity. 

   Based on this, using classical queueing theory it could be argued that as the inter-arrival 

time data are not exponentially distributed (and so do not display the Markov property), 
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then the system is not truly random. However, this argument would be based on the 

assumption of stationary arrivals. When this is considered a time-dependent Poisson 

process, in which arrivals to the system vary stochastically by time of day, the initial 

assumption of a random arrivals process is not violated; but it is illustrated that 

conventional queueing theory does not account for this factor. 

    It was considered that if the time-dependent variability of the Poisson process could be 

corrected then this conflict would be resolved and the ScotSTAR systems could be 

analysed within the domain of conventional queueing theory. However, there are few 

published methodologies for correcting time-dependent Poisson processes. When the 

suitability of such methodologies for use by non-mathematicians is considered, there are 

even fewer. A methodology similar to that of Wiler et al. (Wiler et al., 2013) – of confining 

analysis of inter-arrival times to busy periods or using a two-rate arrivals process could 

potentially be applied to reduce the effect of time-varying demand. Clearly defining the 

busy and non-busy periods would be potentially possible for EMRS primary missions (Fig 

1.20) which have defined hours of operation. However, it could be argued that this would 

create an artificial and arbitrary change in arrival rate which does not accurately reflect the 

nuances of delivering this service in the real world. In some of the other studied systems 

(e.g. SPRS emergency missions - Fig 1.14) it would be challenging to define the transition 

times between busy and non-busy periods either because of non-binary differences in 

activation rate, or fluctuations in the activation rates precluding the definition of a discrete 

point at which the rate change would occur. Furthermore, such an approach would 

inevitably require averaging of the arrivals across a high or low rate period. This would 

diminish the ability to detect the highest probability of additional retrieval requests, 

expected to coincide with the maximum probability of activation, and would instead spread 

them evenly through the whole high-rate period. Engaging such a methodology, which 

would intrinsically fail to capture data on the stated performance indicator of additional 

retrieval requests, would be inappropriate. 

   Subsequently, it was considered that calculating inter-arrival times only for missions 

occurring on the same day could provide some correction for the reduction in demand 

experienced by the services overnight. However, as many of the systems have an arrivals 

rate of less than one per day, the number of opportunities for such an analysis would be 

limited and could not be argued as being representative of the whole process.  
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   Lastly, methods to examine the system only at points where the time-dependent 

variability was minimised were considered. This could be accomplished by effectively 

removing a block of time from each day (a “saturated system” approach). For example: if 

the busy time of day, with little variability, was deemed to be between 1400 and 1800, then 

the hours between 1800 and 1400 would be excluded. In such analysis, activations 

occurring at 1759 on Monday and 1401 on Tuesday would be considered to be 2 minutes 

apart, not 20 hours and 2 minutes apart. However, it was considered that this was both too 

restrictive as it would only demonstrate that referrals to the system were random during the 

studied hours and, depending on the number of missions occurring within the selected time 

period, could represent only a minority of the missions. Therefore, it was deemed that in 

order to accurately define the ScotSTAR systems, an alternative correcting model was 

required - which could be applied to all the data across a 24-hour period and would 

accurately correct the time-dependent variability of the arrivals process. 

   In this thesis a computationally straightforward, potentially novel method was therefore 

developed to correct for the time-dependency of the processes across a full 24-hour cycle. 

The process used for the correction was similar to a Box-Cox transform used as a standard 

statistical tool, but this would appear, from the literature review, to be its first application 

in effecting a time-dependency correction for arrivals to a healthcare system. The results 

have also demonstrated that this methodology is able to correct the combination 

exponential and multi-modal inter-arrival distribution to that of a pure exponential 

distribution. The number of missions activated during certain hours of the day, even when 

collected over the 4 year period of this study may be small (e.g. EMRS missions overnight 

– Fig 1.20), which creates a still relatively coarse data resolution by restricting the 

sampling interval to hourly or longer. The calculation of the minute-by-minute correction 

value is based on a linear interpolation of these hourly values which themselves are 

averaged over the 4-year period of analysis. The correction is therefore also an average and 

may be imperfect for any individual instance of time-dependency correction. The 

correction method also appears to incompletely correct to the extreme ends of the analysis 

period (see Fig 1.22). Greater accuracy may be achievable with a higher resolution of data. 

It is conceivable that this method’s use of the cumulative distribution function (CDF) could 

be developed to create a progressive, adaptive correction value for individual missions and 

this may be a suitable target for future work. 
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   Overall, the applied methodology does appear to correct for the time dependent nature of 

the systems’ Poisson processes, despite limitations of coarse data points and long-term 

averaging, because none of the corrected inter-arrival distributions were significantly 

different to the exponential distribution on Kolmogorov-Smirnov testing. It is my future 

intent to publish this methodology in a peer-reviewed journal both for external critical 

review and, to be a useful contribution to the field of queueing theory if it can be shown 

that the correction allows the subsequent use of normal formulaic calculation. 

   Using the described time transform has converted the multi-modal distribution of the 

inter-arrival times to a pure exponential distribution. It has therefore allowed the inter-

arrival times to be classed as Markovian (M) in Kendall’s notation – and, particularly for 

the purposes of SPRS missions, allowed the use of some standard queueing theory 

features: namely, average length of queue (Lq) and average waiting time in queue (Wq) via 

the Pollaczek-Khinchin formula. This, however, does still present some challenges as the 

technique used to correct for time-dependency does not permit the calculated Lq or Wq 

values to be converted back to include time-dependency. This will be discussed further in 

specific reference to the formulaic calculation of parameters, below (section 1.8.7), but 

may be another target for future, more mathematically focussed, research. 

 

1.8.2.   Service times 

   Arguably, service times (mission durations) in the ScotSTAR system represent the single 

biggest deviation from published healthcare queueing theory – the vast majority of which, 

as discussed in section 1.3.4, use Markovian (i.e. exponentially-distributed) service times. 

Whereas the studied ScotSTAR services have been demonstrated to be gamma-distributed.    

   The gamma distributions of ScotSTAR mission durations (service time) indicates a 

process which is comprised of multiple sub-processes with independent, exponentially-

distributed service times. Some aspects, for example flight times, are deterministic or 

normally distributed and although approximated by the gamma distribution, the service 

times may, technically, be better defined as a mixture distribution. There is also, to some 

degree, a deterministic component applicable to the mission durations of all the ScotSTAR 

teams because they all serve certain sites from which a patient is more likely to be 

retrieved, potentially skewing the mission durations towards the sum of travel and on-

scene times for this one referring location. 
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   In the EMRS mission durations distribution, particularly for the pre-hospital primary 

missions, there may be a subtle multi-modal distribution – marked by the slight plateaus on 

the histogram (Fig. 1.34). This could potentially be explained by stood-down primary 

missions versus missions in which the patient was attended by the team. However, 

interestingly, when these missions were excluded from the analysis (Fig 1.35), the 

remaining mission durations demonstrated a distribution which more strongly suggested 

the presence of two remaining modes around 2h and 3h mission durations (Fig 1.36).  It is 

therefore considered likely that there are multiple sub-groups in this data which could be 

further analysed in order to fully define the EMRS mission durations. Such groups may be 

reflective of the differences between patients who do not receive major EMRS 

interventions and those who require extensive critical care input at the roadside, or the 

difference between road and air transport missions.  

 

 

Fig. 1.34: EMRS primary missions duration distribution histogram with 1-hour bins and fitted gamma 

distribution (red line) demonstrating three possible peaks within the data (annotated) which may 

betray the presence of three underlying distributions. 
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Fig. 1.35: EMRS primary mission durations distribution histogram for stood-down primary missions 

subgroup demonstrating overall distribution and fitted gamma distribution (red line). 
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Fig. 1.36: EMRS primary missions duration distribution histogram with 1-hour bins, after removal of stood-

down primary missions. Fitted gamma distribution (red line) and two possible, more clearly 

visible, peaks remaining within the data (annotated). 

 

 

 

The true distribution will likely have stochastic components relating to the probability of 

intervention or of a particular transport type. It may be argued that this is a somewhat 

academic point, given the non-significant difference of the data to the gamma distribution 

on Kolmogorov-Smirnov testing. However, the difference was at the limit of non-

significance, suggesting a better fit may be able to be achieved. Newer analytical 

techniques, such as machine learning, may be able to develop a more accurate and detailed 

definition for these distributions. Although outside the scope of this thesis and my ability at 

the time, I would potentially now be able to pursue this this with the skills gained during 

this thesis. This is highly likely to be a target for further development as the applicability 

of machine learning will also be discussed in relation to Part 2 of this thesis. 
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1.8.3.  Number of servers  

   It is considered, for both of the studied systems, that the number of servers is constant at 

one for SPRS and two for EMRS. While this is fundamentally the case, there is one 

operational consideration which potentially impacts upon this: team fatigue. Clearly, there 

is only a finite amount of work which one team can do, or so long they can work for before 

they will be too tired to continue to work safely. At this point, the team will go offline. 

Often, the time at which a team will become fatigued will bridge the time at which the next 

shift comes on-line and there are contingencies within each service to provide for an 

additional team if a time-sensitive emergency arrives. Therefore, although there is the 

potential for a time-varying number of servers to include a value of zero due to team 

fatigue, this is sufficiently rare occurrence as to be able to be excluded from this analysis. 

Should, however, there be a change in the shift pattern or a significant increase in the 

number of missions being undertaken this may change. In such circumstances, team fatigue 

may have the potential to impact significantly on the team’s ability to respond and an 

analytical method which includes this consideration may need to be sought. 

 

1.8.4.  Number of places in the system  

   For each of the teams, the number of places in the system (K), has been considered as 

being infinite. That is to say: no patients will be balked from the queue regardless of the 

number of patients already in the system. While this is technically correct, there are 

practical / operational considerations which create a differing behaviour in the real-world 

system. 

   The number of missions presented are assumed to be indicative of the true input of 

missions to the studied services. However, as an example, EMRS primary pre-hospital 

missions are allocated by a dedicated specialist clinician working on the ambulance control 

“Trauma Desk”. There are no hard criteria-based definitions of what should result in team 

activation and the team will not be diverted if they are already engaged in a mission (no 

pre-emption) unless there is an overwhelming need. Patients who would otherwise be 

served by the EMRS team are therefore transferred, appropriately, without EMRS 

intervention. This will ensure they reach hospital before the EMRS team would be able to 

respond to their original location. Such patients are, in real-terms, reneged from the queue - 

but because they have never been referred to a ScotSTAR service, they never appear to 
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join a ScotSTAR queue and so never appear in the data. If all the patients who would 

require the attendance of a ScotSTAR service could be captured at an earlier point in the 

process, a potentially different analysis could be required. It could be argued in this 

circumstance that EMRS is a two-queue, two-server system. One queue (for secondary 

retrievals) would retain the infinite places property, the other (for primary missions) would 

baulk new patients when there were already 2 receiving service. Investigation into the 

feasibility of collecting data on potential retrievals should be considered in light of this. 

   The same principle, effectively, applies to all of the ScotSTAR teams. However, in 

practical terms, the system will be more concerned by the waiting time in the queue, rather 

than the absolute length of the queue. It is the need to define the maximum acceptable 

waiting time which is one of the primary purposes of applying queueing theory to the 

ScotSTAR systems. So, when considering the number of queueing places within the 

system, it is the relationship between queue length and queueing time which decides the 

point at which the queue length becomes unacceptable. At this point, the patient will be 

reneged from the respective ScotSTAR system and transferred by another means - using 

the local hospital staff for example – which then depletes their resources. Clearly, avoiding 

this situation is in both the patient’s and the remote healthcare facility’s interests. 

 

1.8.5.   Applicable (retrievable) population  

   SPRS operates a fully national service: effectively retrieving patients from any hospital 

in Scotland, with the exception of the national children’s hospitals in Glasgow and 

Edinburgh. While the teams may be requested to undertake a return to base hospital 

transfer or a quaternary transfer to an ultra-specialist unit - Great Ormond Street Hospital 

for example – children in these hospitals, generally do not need retrieved. Thus, the 

population applicable to each of these services could be considered as the national 

population of under 16s, minus the current number of inpatients in the major children’s 

hospitals - although this is considered negligible in comparison to the total. Although 

EMRS operates over a smaller geographical area, its operational remit covers all the 

population over the age of 16 for secondary retrievals and the entire population from birth 

within its geographical bounds (sometimes outside) for primary missions. For all teams, 

therefore, the absolute size of the population served is several orders of magnitude larger 

than the number of servers. 
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   However, it should be considered that there may be an underlying phenomenon of a 

“retrievable population”. It has been stated in the analysis for each service that the 

applicable population (N) is equal to the entire population of a given geographical area and 

thus can be considered as infinite, relative to the number of servers. But it may be the case 

that, particularly for the case of secondary retrieval, the number of people who are actually 

likely to be retrieved is much smaller. People in good health and without a chronic disease 

are unlikely to develop a sudden critical illness requiring the input of a ScotSTAR critical 

care team. People in this category do still become unwell: trauma, myocardial infarction, or 

severe infection (e.g. pneumonia, meningitis) being potential pathologies – but these are 

generally rare and random events which can be considered in an almost purely stochastic 

manner. By contrast, people in the covered geographical areas with significant chronic 

disease e.g. COPD or cardiovascular disease, could be considered to be at higher than 

population baseline risk of being retrieved by a ScotSTAR team when their pre-existing 

medical condition deteriorates. When considering therefore the number of patients who are 

“likely to be retrieved” then they are likely to come from one of two sub-groups:  

a) a large population at background low random risk of developing a sudden, 

spontaneous critical illness or; 

b) a relatively small population with a higher probability of retrieval because of 

their underlying chronic disease or in-patient status. 

The former group does, effectively represent the whole population as although the 

probability of retrieval may be very low, it will be impossible to predict who will be 

affected, when or where. The latter group, however, may not exhibit the same probabilities. 

When someone who is considered at high risk of retrieval due to a pre-existing condition is 

retrieved, then there is “one less person” who can become unwell in the immediate future 

from this sub-group and the “retrievable population” decreases by one. Hence, it can 

therefore be seen how the latter group may not display the “memoryless” property of the 

former. 

   Further investigation would be necessary to establish the exact prevalence of each of 

these two groups and may involve the matching of two separate queueing theory models 

reflecting the different circumstances described above, to establish which best matches the 

end output data. 

. 
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1.8.6.   Queueing discipline  

   All the ScotSTAR teams operate a first-in-first out (FIFO) queueing system from a data 

analysis standpoint. On the rare occasion that two missions arrive in such a short time-

frame as to require prioritisation then this is done on an ad-hoc basis and the missions will 

be entered sequentially into the database, in the order in which they are completed. There 

is no pre-determined predictor as to which mission is prioritised and so, for the purposes, 

of discerning which is undertaken first, they are interchangeable. Thus, regardless of such 

circumstances occurring or not, the missions will always appear to be undertaken as a first-

in-first-out queue discipline both as they appear on the database and operationally. The 

impact of such solutions to simultaneous retrieval requests is considered to be negligible 

and the rare occasion of an ad-hoc prioritisation of one mission over another is therefore 

ignored in the analysis. 

 

1.8.7.  Formulaic results  

     The SPRS queueing system is the only studied system with a published formulaic 

solution for its native queue type (M/G/1). For the M/G/1 queue, the Pollaczek-Khinchin 

formulae provide for the calculation of the waiting time in the queue (Wq) and the length of 

queue (Lq). EMRS has two independent mission types (primary and secondary retrievals) 

and therefore two arrivals processes. Although individually these could be considered to be 

Markovian arrivals (after correction for time dependency), when combined they describe a 

hyper-exponential distribution. Published queueing theory does not provide for formulaic 

analysis of hyper-exponential inter-arrival distributions.  

      The EMRS system, natively, is a G/G/2 system, as the primary mission inter-arrival 

time distribution differs significantly from an exponential distribution. As a variant of 

G/G/k, a formulaic calculation is possible via Whitt’s methods (Whitt, 2000). However, 

this is simply too complex for use by non-mathematicians. Even in its corrected form, 

EMRS only simplifies as far as an M/G/2 system. The formulaic use of this system 

assumes the time-transform preserves the components of queueing theory sufficiently to 

generate valid results after its application to the data. This is an unproven methodology, so 

could be a target for future research. However, whether the EMRS system is defined as 

M/G/2 or G/G/2 is somewhat moot. The formulaic results for M/G/2 are still too complex 
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for use by a clinician and several of the published results are only valid for certain, specific 

contexts.  

   The single biggest challenge facing the calculation of formulaic results for ScotSTAR is 

the significant heterogeneity in arrivals rate – with which standard queueing theory copes 

poorly. Therefore, even if EMRS is described as M/G/2 then the validity of any result 

would still be questionable given the number of included assumptions and approximations. 

Indeed, this extends to all the studied ScotSTAR systems as all display a non-stationary 

arrivals process. Any results subsequently obtained from a formulaic analysis reliant on 

stationary arrivals may not be valid. 

   Based upon all of this, it was decided that the only ScotSTAR system which could be 

acceptably approximated by published queueing theory was the SPRS system, with an 

M/G/1 queue. However, this may still display inaccuracy as the time-varying demand for 

the service cannot be accounted for using the Pollaczek-Khinchin formula. The formulaic 

approach has achieved the description of the average waiting time in the queue (Wq) for 

the SPRS system. While this is a useful initial descriptor of system performance, it remains 

to be seen if this is an adequate operational descriptor for such a complex and vital service 

or if another measure, one not formulaically defined, is required. 
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1.9.  Conclusions  

   All the ScotSTAR systems demonstrated that their major components: inter-arrival times, 

service times, servers, system capacity, population and queueing discipline can be 

described by established queueing theory. A potentially novel process for correcting the 

time dependency has been described which is able to convert the non-exponential 

distribution of the inter-arrival times caused by time-dependent probability of activation 

into a pure exponential distribution. This transform is able to preserve the Markov property 

of random inter-arrival times and maintain consistency of the ScotSTAR systems with 

established queueing theory. Indeed, it is with remarkable accuracy that the exponential 

distribution describes some of the inter-arrival time distribution, and the gamma 

distribution describes mission durations (service times). Clearly, this indicates the 

applicability of queueing theory, as an overall concept, to the ScotSTAR services. 

   This approach allowed the analysis of one service – the Scottish Paediatric Retrieval 

Service (SPRS) to be undertaken formulaically using the Pollaczek-Khinchin equations. 

However, as with all formulaic queueing theory, this is unable to adapt to a non-stationary, 

time-dependent Poisson arrivals process. This may under-estimate the potential impact of 

peak time demand for the services on team non-availability and waiting time. Additionally, 

it provides only an average value for the waiting time which does not convey sufficient 

information on system performance. This will be further explored later in this thesis. 

   There is no usable formulaic solution for the Emergency Medical Retrieval Service 

(EMRS) which is able to accommodate the complexities of the service without significant 

approximations likely to invalidate any results obtained.  

   Clearly, the overall concept of queueing theory is applicable to ScotSTAR and can 

describe the systems with surprising accuracy. However, the intended objectives and 

analysis cannot be achieved using classical, formulaic methods in queueing theory.  

   An alternative approach to producing results for these questions which are unanswerable 

through conventional queueing theory must be sought. Such an approach will need to 

account for the time-varying demand for services, non-Markovian inter-arrival and service 

times, and multiple servers. The simulation of ScotSTAR operations using a de novo 

developed model of the SPRS and EMRS systems will be explored in Part 2 to establish if 

this is an appropriate method to overcome the limitations which preclude effective analysis 

of the systems using the solutions explored in Part 1. 
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2.1.  Introduction  

   Having established in Part 1 that only the SPRS system was amenable to achieving 

formulaic results, albeit with potential limitations due to the time-dependent Poisson 

arrivals process, an alternative analysis methodology was sought. A number of the papers 

reviewed in the Part 1 literature review had gone on to apply queueing theory to the real-

world system via simulation. It was therefore considered that a computer simulation, 

performed upon a suitable queueing theory derived model of the SPRS and EMRS 

systems, would have the best potential for replicating the real-world. From this, it may be 

possible to derive the queueing theory parameters which will describe the performance of 

the ScotSTAR systems, as per the overall research objectives. 

 

2.1.1.  Introduction to simulation types 

   Simulation, with regard to queueing theory, fundamentally follows one of three general 

methodologies, namely: 

- Discrete Event Simulation (DES) 

- Agent-Based Modelling / Simulation (ABM) 

- System Dynamics Simulation (SD) 

 

2.1.1.1.  Discrete Event Simulation (DES)  

   Discrete Event Simulation (DES), in this context, comprises a process model, upon 

which a computer simulation maps the parameters of an individual patient journey at a 

number of points in the process. The model “steps” from one specific event to the next (the 

“discrete events”) based on the parameters provided for inter-arrival time, mission duration 

etc.  

   For example: within a given 24 hr period, a mission duration of 6h, entering into the 

simulation of a single server at 1200h will change server utilization from 0 to 1, and step 

forward to the next time point, 1800h. A server utilization of 1 will be registered during 

that time, returning to zero at 1800h. The simulation would then step forward again to the 

end of the simulation at midnight. Each of these actions is a “Discrete Event”. Subsequent 

analysis of this would then reveal a utilization of one for 6 hours (1200h – 1800h) and zero 

for 18 hours (0000h – 1200h & 1800h – 2400h): producing an overall utilization of 25%. 
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This same process can be extended to include queues, multiple servers and can include 

different mission priorities: with each new arrival to the system (a new discrete event) 

being used to update its overall state. 

   DES is particularly suited to this project because of its focus on queues, servers and 

producing measures of utilization and waiting times. Also, as the ScotSTAR systems are 

most frequently in an empty state, the ability of DES to produce discrete values for each 

individual entity which transits the system allows a time distribution to be generated for 

waiting time as more entities are generated. This is particularly useful for ScotSTAR as the 

normally empty state of the system will skew any analysis which relies on a simple mean 

and a more robust statistical descriptor is required. Furthermore, by describing the systems 

in terms of probability distributions, DES would appear to be a “good fit” for the stochastic 

processes in ScotSTAR. 

 

2.1.1.2.  Agent Based Modelling (ABM) 

   Agent Based Modelling (ABM) concerns the interaction of an “individual” (the patient) 

within an “environment” (the ScotSTAR system). It relies upon pre-determined rules by 

which the individuals interact with each other and the environment, producing information 

on the system operation in the process.  

   The concept of pre-defined rules initially appears at odds with the discussion around 

stochastic systems. However, as explored during Part 1, the ScotSTAR systems effectively 

operate with a number of rules (see EMRS example: section 1.7.2.1.). For example, 

primary missions may be baulked if the waiting time is excessive, whereas secondary 

missions are not. Similarly, mission durations are conditional upon the mission type, with 

secondary missions having a longer duration than primary missions. 

   Therefore, it could be considered that ABM does, in fact, provide an excellent 

approximation of the real-world system, with components such as baulking from a busy 

system or the distribution from which the mission duration is sampled being chosen 

according to a rule based on mission type. Pre-loading the model with an interpretation of 

such information would seem, logically, to represent the real-world situation. If this could 

also be undertaken in a probabilistic fashion, rather than defining absolute rules, then ABM 

has the potential to very accurately replicate the stochastic nature of the ScotSTAR 

systems.  
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2.1.1.3.   System Dynamics (SD) Modelling  

   System Dynamics is the study of the “flow” of entities around the system. In the 

ScotSTAR case, this would be the flow of patients from one time point in their journey to 

another based on service time, capacity and available routing. SD allows complex analysis 

of systems with feedback loops, and inter-dependent arrival and service rates. 

Fundamentally, it focusses on the concepts of stock (patients) and flow (their movement 

around the system). 

   While the concepts of feedback loops and flow could be useful with regard to ScotSTAR, 

the small number of servers could frequently reduce the feedback to that of a binary, on-off 

system which simply gates the flow of patients to a given server. Although this could 

generate the required performance information it would appear to add unnecessary 

complexity, while at the same time wasting the capabilities of SD by reducing the system 

to simple binary servers. 

   Perhaps most significantly, SD will produce a deterministic result for waiting time, based 

on overall flow rate through the system – which will be based on an averaged or smoothed 

arrival process and may not accurately represent the extremes of waiting time expected to 

coincide with the peak activation times. In particular, the performance metrics generated 

from an SD model could be skewed when the average includes the normally empty state of 

the system, producing a mean waiting time which is neither operationally useful or valid. 

   Finally, the flow through the real-world system is, essentially, one-way and very rarely 

deviates from this. Each of these considerations simplifies the complex ScotSTAR 

operation, probabilistically, into relatively simple, series processes. As a result, the 

feedback mechanisms inherent to SD add complexity and the potential for error without, it 

would seem, any analytical superiority in terms of deriving operationally relevant 

information. 

 

  



Part 2 | Chapter 1 Introduction 114 

 
 

2.1.1.4.  Suitability of simulation methodologies for ScotSTAR  

   SD clearly has a role in modelling complex systems and although this would be 

considered a complex system, the uni-directional flow in the system, the binary availability 

of a small number of servers and the need to derive stochastic information from the end 

results would appear to make DES or ABM more suitable methodologies for ScotSTAR.  

   For other, similar, systems which do have a strong feedback relationship – exit block 

preventing Emergency Department flow to hospital inpatient wards for example, SD-based 

analysis would appear to be useful. 

   Based on the analysis undertaken in Part 1, it is likely that ScotSTAR will be best 

modelled by a hybrid DES and ABM model. Such a model would, ideally, maintain the 

stochastic properties associated with the random arrivals and gamma-distributed service 

times while introducing rules which define the appropriate inter-arrival time and service 

time sampling distributions according to the mission type.
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2.2.  Literature Review for Part 2 

   The previous literature review in Part 1 had also examined the systems of emergency 

departments and intensive care units. These applications were considered analogous to 

ScotSTAR with regard to the application of queueing theory, particularly in terms of 

arrival patterns. However, when it comes to modelling the systems, these systems cease to 

be fully analogous to ScotSTAR. EDs and ICUs generally have a substantially larger 

number of servers (beds) compared to ScotSTAR, as well as triage mechanisms and an 

ability to manage patients in other settings if no servers are available. For example, in the 

case of there being no intensive care beds, a patient could be managed in the ED 

resuscitation room. Although this delays their arrival physically on the intensive care unit, 

it does not delay their access to critical care. 

  In conducting the literature review with regard to simulation of pre-hospital and retrieval 

medical services, it was therefore decided that the literature search needed to be primarily 

confined to the pre-hospital and retrieval domain. 

Again, it was accepted that the search, in order not to miss applicable papers would need to 

be extensive, followed by significant manual screening.  

 

2.2.1.  Literature search 

   A literature search was undertaken using the Web of Science, PubMed and EMBASE 

databases according to the search algorithms shown overleaf (Figure 2.1). English 

language papers were searched for title, abstract and keywords using the string: 

[discrete* OR DES OR D.E.S* OR agent* OR ABM OR A.B.M*] 

AND simulat* 

AND [ambulance* OR pre-hospital OR prehospital OR retrieval] 

This search was considered to include the required terms and applications, while being 

tolerant of spelling differences, including regional variation. Given its scope beyond 

healthcare research, “AND health*” was included in the Web of Science search to better 

focus the results. 

   1146 papers were returned in the initial literature search. 136 duplicates were 

electronically removed. The initial manual screening relatively easily allowed the removal 



Part 2 | Chapter 2 Literature Review 117 

 
 

of a large number of papers on the grounds of either non-healthcare or non-emergency 

healthcare applications. 

  38 results were assessed for eligibility. Exclusions were made on the grounds of 

predominantly hospital-focussed applications (e.g. re-direction of ambulances), not relating 

to direct patient care (e.g. ambulance call centres) and pre-hospital emergency medicine 

not in a generalisable application (e.g. mass casualty management). Despite multiple 

attempts, including an attempt to contact the authors, one full-text article was unobtainable. 

   At the conclusion of this, 9 papers were included in the Part 2 literature review. These 

are summarised in Table 2.1. Several papers reviewed in Part 1 are also reviewed in Part 2. 

These papers had initially described the applicable queueing theory (used in Part 1) before 

then going on to describe its use in a simulation of the respective system (as will be 

reviewed in Part 2). 
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Fig. 2.1: Part 2 literature search methodology demonstrating results from each database and exclusions 

during screening and eligibility assessment (PRISMA-type). 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Web of Science 

 

Fields:  

Title, Abstract, Keywords 

 

Terms: 

[discrete* OR DES OR 

D.E.S* OR agent* OR ABM 

OR A.B.M*] 

AND simulat* 

AND [ambulance* OR pre-

hospital OR prehospital OR 

retrieval] 

AND health* 

 

437 results 

PubMed 

 

Fields:  

Title, Abstract, Keywords 

 

Terms: 

[discrete* OR DES OR 

D.E.S* OR agent* OR ABM 

OR A.B.M*] 

AND simulat* 

AND [ambulance* OR pre-

hospital OR prehospital OR 

retrieval] 

 

70 results 

EMBASE 

 

Fields:  

Title, Abstract, Keywords 

 

Terms: 

[discrete* OR DES OR 

D.E.S* OR agent* OR ABM 

OR A.B.M*] 

AND simulat* 

AND [ambulance* OR pre-

hospital OR prehospital OR 

retrieval] 

 

228 results 

Total: 1146 results 

Duplicate results (n = 136) 

Not relevant application. 

Includes: non-healthcare, non-

emergency healthcare. 

(n = 972) 

Predominantly hospital application 

e.g. ambulance re-direction 

 (n = 6) 

Non-equivalnent pre-hospital 

application e.g. mass casualty 

(n = 7) 

Not direct patient application. 

e.g ambulance control centre, 

healthcare strategy. 

(n = 15) 

Full-text unobtainable (n = 1) 

9 results included in literature review 

Screened: 1010 results 

Reviewed for eligibility: 38 results 
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Table 2.1: Summary table of reviewed papers. 
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2.2.2.  Reviewed papers 

   The applications of simulation to pre-hospital care services in the studied literature were 

based solely on discrete event simulation (DES). All studies involved non-physician, 

primary response ambulance services. The majority of studies were based in urban 

locations with correspondingly short travel times. No studies were found which relate DES 

to a national-scale, physician-led pre-hospital care service. 

The most relevant paper to this project was Clark et al. (Clark et al., 1994). They used a 

discrete event simulation to identify the optimal location for an air-ambulance helicopter 

for the rural trauma system in Maine, USA. The primary objective in this paper was to 

identify the optimal location for the helicopter base so as to minimise the time required to 

deliver its paramedic team, with their higher-level clinical care abilities to the scene of a 

severely injured patient. They also noted the importance of transferring a patient to a site of 

definitive care and that the return-to-base time needed to be considered in the process. 

They also identified the varying incidence of trauma by time of day, describing how this 

generates a non-homogeneous Poisson process. Methodologically, the authors describe the 

use of a standard “thinning” algorithm to generate non-stationary Poisson arrivals to the 

process (Ross, 2013). Using geospatial data of locations of major trauma, a number of 

locations were then tested using discrete event simulation to predict the number of 

missions which could be completed, minimize the mean time to scene and compare the 

times to transfer the patient to the trauma centre. The simulation does not appear to take 

into account the potential of additional retrieval requests or the waiting time for the service 

when it is otherwise busy. Clearly also, this is a hypothetical situation which, although 

bounded by a finite number of real-world base locations, does not have a suitable real-

world control to demonstrate the accuracy of the model in replicating a real-world system. 

This paper, now over 25 years old, displays perhaps the closest application relevance to 

ScotSTAR EMRS with a pre-hospital trauma response helicopter. Additionally, the authors 

have highlighted the importance of time-to-patient and time-to-definitive care and have 

used simulation rather than empirical mathematical analysis to accurately replicate a non-

stationary Poisson process. However, its basis in a predominantly hypothetical 

environment and without a process to establish accuracy with a real-world system means 

methodological development is required in order to meet the demands of analysing the 

ScotSTAR system. 
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   Bogle et al. (Bogle et al., 2017) used a DES model to evaluate the transfer of stroke 

patients to a specialist stroke centre as opposed to their local hospital. This paper was 

particularly focussed on decision-making and decision support relating to clinical outcome 

rather than the utilization of the transport service itself. The specific details of the model 

building, arrivals process, service times and subsequent accuracy of describing the real-

world are not discussed. However, the transfer of a patient to a defined centre rather than 

simply the nearest hospital has relevance to the ScotSTAR systems, arguably more-so for 

EMRS primary missions in the context of the evolving Scottish Trauma Network. 

A number of studies considered DES models in order to reduce ambulance response times: 

   Wu and Hwang (Wu and Hwang, 2009) demonstrated the use of a DES simulation for 

allocating ambulances to minimise response times in Tainan City, Taiwan. They identified 

a non-homogeneous Poisson arrivals process and generated a uniform inter-arrival time 

during a short time period. The model was compared to the real-world by using a t-test 

comparing the real mean to simulated mean response times of the systems, in which the 

authors found no significant differences during any of the time periods studied. The 

authors state that the model did account for differing on-scene times but this is not 

described in the paper. The results showed the effect of the number of servers on a defined 

performance standard (90% of calls responded to within 9 minutes). 

  The first paper by Lam et al. (Lam et al., 2014) demonstrated the use of a DES model 

with time-varying demand for ambulances in Singapore. The paper examined the effects of 

three different policies on the availability and response time of ambulances. In particular, it 

examined the 90th percentile of response time rather than the average value. The paper 

demonstrated that a substantial improvement in system performance could be achieved 

with changes to ambulance allocation and dispatch policy. The improvement was 

equivalent to adding 10 ambulances to the system. Although it is stated in the paper that it 

was validated by comparison to historical data, further information on the methodology of 

this was not provided. 

   The second paper by Lam et al. (Lam et al., 2015) again used a DES model to maximize 

the number of calls which could be achieved within an 11-minute national ambulance 

response time target. This was done by allocating ambulances to particular locations 

according to the geospatial probability of an emergency call.  
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   Nogueira et al. (Nogueira et al., 2016) also used a geospatial DES model in order to 

optimally position ambulances to minimize travel times in Belo Horizonte city, Brazil. The 

authors demonstrated time-varying demand for the ambulance service, although this was 

averaged across a number of hours in 4 discrete time periods. Similarly to Lam et al. 

previously (Lam et al., 2014), the authors demonstrated that optimization of the resources 

in the system, by strategically placing ambulance bases could improve the system 

performance without requiring additional resources. This paper compares an optimized 

system process to a discrete event simulation of the real-world. However, it is unclear as to 

whether this model was validated with regard to its ability to replicate the real-world first. 

   The third reviewed paper by Lam et al. (Lam et al., 2017) aimed to minimize the overall 

ambulance response time by dynamically re-allocating ambulances during the course of a 

shift in order to provide coverage to the areas with the maximum number of ambulance 

calls. In particular, this paper validated the DES model by comparing its output to 

historical real-world data, including response time and utilization. This paper also 

demonstrated time-varying demand for ambulance calls, but simplified its inclusion in the 

DES model by splitting the day into 4-hour segments considered to represent homogeneous 

demand. 

  A similar study was undertaken by Enayati et al. (Enayati et al., 2018). This paper studied 

the application of a DES-based dynamic re-allocation model on the workload of 

ambulances and the proportion of calls responded to within a 10-minute time period. The 

model used a time-varying Poisson arrivals process, but used exponentially-distributed 

service times with a mean duration of 65-minutes. 

  In their study of the ambulance system in Cape Town, South Africa, Stein et al. (Stein et 

al., 2015) used two separate simulation models to decide an optimal solution for reducing 

the response time for the highest priority calls. The authors state that non-transport primary 

response vehicles (which can deliver clinicians to a patient, but cannot transport a patient) 

can be staffed by either a paramedic or occasionally a doctor and only respond to major 

incidents (somewhat analogous to EMRS). However, this specific group were not the 

target for optimization in this study. The authors also state that the model was verified 

against a random sample of real-world data and that the error was sufficiently small that 

the model could be considered as a true representation of the real-world system. The 

authors also made two important conclusions applicable to ScotSTAR: firstly, that the 

simple addition of resources to the system in order to meet a performance specification was 
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unfeasible and secondly, that the relative sparsity of primary response vehicles lengthened 

their average response time for missions. 

   The majority of studies reviewed urban ambulance services with multiple servers and 

focussed on reducing the time to patient. This is relevant to the ScotSTAR EMRS primary 

missions, in which time-to-patient is a major factor. However, ScotSTAR must operate 

from a fixed geographical location (a helicopter base) because of the need to respond by 

both air and road. The helicopter cannot be dynamically re-deployed to an arbitrary 

location. Furthermore, ScotSTAR has a national transfer remit and simply measuring the 

response time to patients is inappropriate as the flight times to some of the more remote 

areas in the network are deterministic and there is very little which can be done to affect 

them. Similarly, given the differences in distance involved, it is difficult to define a “catch 

all” value for response time. Even if the target value were set considerably longer than for 

urban ambulances, the suitability of a 2-hour time-to-patient would be very context 

dependent. Attending a critically unwell patient in the Victoria Hospital, Rothesay, Isle of 

Bute - approximately 21 nautical miles from the base by helicopter - then a 2-hour time-to-

patient would be considered poor performance. By contrast, attending a patient in the 

Gilbert Bain Hospital, Lerwick, Shetland – approximately 260 miles from base by fixed 

wing aircraft, followed by a 25-mile road journey – within 2 hours would be considered 

good performance. 

  Additionally, there is an obvious difference between an ambulance service with tens of 

available ambulances and the ScotSTAR services, with a maximum of two servers 

available. The redundancy within an urban ambulance service which allows cross-cover 

from a free vehicle for one which is busy is simply not an option in the ScotSTAR system 

and so the optimization strategies described in the above studies do not apply. Instead, the 

performance of ScotSTAR must be linked to either team non-availability (due to 

simultaneous retrieval requests) or to waiting time for the mission to commence. 

 

2.2.3.  Applications of simulation in wider healthcare 

   In background reading, outside the literature review, an example of DES applied in the 

wider healthcare setting was the study by Day et al (Day et al., 2013). This study was 

conducted in an emergency department and is perhaps the most applicable study to 

ScotSTAR from the wider healthcare domain. In this paper, the authors discuss the use of 
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DES modelling to replicate the real-world processes of an emergency department and 

simulate changes in the number of healthcare providers (servers). This study used DES to 

predict the pre- and post-intervention values for mean length of stay (LOS) and percentage 

of 6-hour lengths of stay. The paper therefore has some clear relevance to this project’s 

overall aims of defining performance descriptors for the system. Most importantly in this 

paper, the authors verified the model performance against the real-world in calculating 

both mean length of stay and percentage of patients spending more than six hours in the 

department. By the authors’ reference to the percentage LOS greater than 6 hours, it can be 

inferred that as well as generating a simple mean, the overall distribution of LOS times can 

be accurately predicted by the DES model. Although the specific nature of the DES model 

components is unknown, it is based on real-world patient encounters and is therefore likely 

to exhibit a time-dependent Poisson process in keeping with other emergency departments. 

This paper demonstrates the ability of DES to accurately re-create a real-world system and 

in particular, its ability to generate useful system performance metrics, not only a simple 

mean value. In this context it is used in an emergency department with approximately 

20,000 patient attendances per annum. There are 14 available patient beds in the ED and it 

is staffed by 4 physicians – who spread their service times between the patients in the 

department. This clearly illustrates the numerical difference when comparing such systems 

to ScotSTAR. It also illustrates the operational difference, with ScotSTAR having one 

server which spends 100% of the service time with the patient. These factors render these 

applications significantly different to ScotSTAR with respect to a designed model, even in 

the context of this, the most relevant of the hospital applications. 

    

2.2.4.  Application of simulation to ScotSTAR  

   It is clear that all the proposed simulation methodologies: DES, ABM and SD have 

applicability, and are effective, in modelling healthcare systems. In the pre-hospital 

domain, the majority of reviewed applications pertain to urban ambulance services with a 

large number of servers and in which the primary objective is reducing the response time 

to the patient. Each of these studies has a significant limitation in the transfer of 

methodology to ScotSTAR, including: application only in a hypothetical environment, or 

not being validated against the real-world. Furthermore, none of the reviewed papers 

pertained to the operation of a physician-led or critical-care PHaRM service. 
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   An overall objective of this project is to develop an understanding of the performance 

limits of the ScotSTAR teams. To achieve this, any simulation will need to create a 

representation of the systems under conditions which differ significantly from the current 

number of patients served. It is therefore essential that the underlying distributions for 

inter-arrival time and mission durations are proven to be accurate replications of the real-

world if the assumption of validity is to be made when vastly different numbers of 

missions are simulated. This means that when models are constructed for the ScotSTAR 

teams, that they must be able to manage multiple arrivals processes, time-dependent 

arrivals and non-Markovian service times if they are to accurately replicate the real-world 

in simulation. It is likely that a successful model will be a hybrid ABM-DES model.  

   In a hybrid ABM-DES model, patients would enter the ScotSTAR system and transit it 

according to a pre-defined set of rules in an ABM fashion. After these rules are applied, an 

application of DES could define the time of entry to service, service duration and time of 

departure from the system. In doing so, this could also generate the relevant probability 

distributions for measures such as waiting time and allow operationally useful information 

to be derived. 

   This thesis therefore has the potential to contribute significantly to the knowledge in this 

domain by being the first application of simulation to a national, physician-led, pre-

hospital and retrieval medical service. It may also be able to enhance existing knowledge 

in demonstrating the accuracy of a DES-type model in replicating multiple real-world 

parameters by simulating a challenging operational healthcare system. 
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2.3.  Aims 

1. This analysis aimed to establish if a hybrid discrete event simulation / agent-based 

modelling simulation of the ScotSTAR SPRS and EMRS systems could accurately 

recreate the real-world systems with regard to following parameters: 

- Total number of missions and distribution 

- Probability of activation by time of day  

- Inter-arrival time distribution 

- Mission duration and distribution 

- Server utilization 

when simulated in two separate time periods with differing simulation methodologies: 

- Retrospective simulation: replicating calendar years 2013 – 2014 

- Contemporaneous simulation: replicating calendar year 2015. 
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2.4.  Methods 

 

2.4.1.  Methods – modelling and simulation 

2.4.1.1.  General 

1. A computer model of the SPRS system (appendix A) and the EMRS system (appendix 

B) were built using the Simulink discrete event simulation program of the MATLAB 

software suite. 

2. Each model contained components to generate: 

 - Primary or secondary retrievals (as applicable). 

 - Activation probability variable by time of day. 

 - An FIFO queue. 

 - The requisite number of servers. 

 - Server behaviour with regard to allocation order. 

 - Mission duration according to mission type. 

 

3. The Simulink model was run through a period of 1461 seconds, with the design of the 

model such that one Simulink second equalled one real-world day (2016 being a leap-

year). The simulation was started at a real-world equivalent of 00:00:00 on 01/01/2013 and 

ended after 1461 days at 00:00:00 on 01/01/2017. 
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2.4.1.2.  Mission generation 

1. From the real-world data, the number of missions undertaken per calendar month were 

counted and used to generate a time-series with a time-varying arrival rate (λ), averaged 

over each calendar month. 

2. Using the simulation time as the lookup datetime value, the current λ value was 

interpolated from the month-by-month time-series values. 

3. This λ-value was used as a primer for the minimized inter-arrival time distribution 

within the exclusion sampling process to define the time-varying mission arrivals 

(section 2.4.1.3). For entity generation, this process generated a time-varying, 

minimized, exponential inter-arrival time distribution.  

4. From this minimized distribution, an entity inter-generation time was randomly selected. 

5. After the inter-generation time had elapsed, another entity (patient / mission) was 

generated using the same methodology. The datetime of each mission creation was 

recorded. 
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2.4.1.3.  Exclusion Sampling 

The SPRS missions are used as an example. 

   As demonstrated in Part 1 of this thesis, the probability of activation by time of day is not 

uniform. The time-transform method described in section 1.5.3 is not compatible with the 

Simulink program which can only introduce a delay into the activation time because of its 

unidirectional simulation time, it is unable to move missions earlier in the simulation. 

Additionally, the “thinning” algorithm for generating a non-homogeneous Poisson process 

(Ross, 2013, p. 85) as used by Clark et al. (Clark et al., 1994) generates pre-determined 

mission arrival times, whereas Simulink relies on the description of an inter-generation 

time. Additionally, the generation of arrival times by thinning is challenging with regard to 

the time-dependency of demand which varies in both the short term (activation time of 

day) and longer-term (number of missions per month). 

   An alternative method was therefore carried out as below. Fundamentally, the principles 

of this are very similar to the thinning algorithm: firstly inter-arrival times are generated 

from an exponential distribution based upon the maximum arrival rate, then the times are 

modified to reflect the actual arrival rate at the current simulation time. In the ScotSTAR 

model, these are split into two separate modelling processes. This methodology 

mathematically simplifies the application of this in the context of short-term and longer-

term variation in demand, as well as its technical implementation within the limits of the 

Simulink software’s capability. 
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1. The maximum normalized (area under plot = 1) probability of activation (0900h – 

1000h, Fig 2.2) for SPRS missions (Pmax) was 0.073. Multiplying this across 24 hours 

creates a multiplier of 1.74 with which to transform the real-world arrival rate (λR).  

 

Fig. 2.2: Histogram of relative probability of activation (area under plot = 1) by time of day (1- hour bins) 

for SPRS missions in calendar years 2013 – 2016. Plot demonstrates mode probability of activation 

in 0900h – 1000h time period and diurnal variation in probability of activation by time of day. 

(Duplicated from Fig. 1.14). 
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2. Using a real-world arrival rate (λR) of 20 missions per month (0.67 missions per day) as 

an example, multiplication by 1.74 generates a maximized arrival rate (λmax) of 35 

missions per month (1.17 missions per day). 

3. The real exponential inter-arrival time distribution: 

𝜇𝑅 =   
1

𝜆𝑅
 =  

1

0.67
= 1.50    (29) 

 

is thus converted to a minimized inter-arrival time exponential distribution (Fig. 2.3): 

𝜇𝑚𝑖𝑛 =  
1

𝜆𝑚𝑎𝑥
=  

1

1.17
= 0.86   (30) 

 

 

Fig. 2.3: Comparison of PDFs of example baseline calculated inter-arrival exponential distribution with 

baseline inter-arrival time μR = 1.50 (blue line) and minimized inter-arrival exponential distribution 

μmin = 0.86 (red line).  
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4. Simulink then generates missions (entities) with an exponentially-distributed inter-

generation time with μ = μmin = 0.86. In Simulink, this is achieved by modifying an 

exponential distribution with μ = 1.  (Fig. 2.4) 

Fig. 2.4: Screen capture of Simulink blocks demonstrating integration of Pmax, number of missions per month 

(λ) and inter-generation time blocks. (Note the initial creation of an exponential distribution with μ 

= 1). 
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5. At this stage, no account has been made of time-varying demand. Therefore, a uniform 

probability of activation, with all time periods demonstrating the same value, equal to 

Pmax is created as time tends to infinity. (Fig. 2.5). 

 

Fig. 2.5: Histogram of probability of activation by time of day in arbitrary uniform distribution generated at 

maximum probability of activation in any learning data bin (values of all bins = Pmax = 0.073, area 

under plot = 1.74). 
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6. Referencing again the time-varying probability of activation, each hourly period’s 

proportional value (Phr) of the maximum (Pmax = 0.073) was calculated. (Fig 2.6). The y-

axis values can be contrasted with those in Fig. 2.2. 

 

 

Fig. 2.6: Histogram of probability of SPRS mission activation by hour of day as proportion of maximum 

value (0.073) or: relative probability of activation. 
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7. The time of day from the simulated mission (entity) generation time (equivalent to 

activation datetime) was used as a lookup value for the proportional hourly probability of 

activation by time of day (Phr). The corresponding Phr value was read by a Simulink block. 

As an example, with reference to Fig. 2.6, a mission occurring in the 0000h – 0100h time 

period demonstrates Phr = 0.47. 

8. Each generated mission (entity) was subjected to a single Bernoulli trial (n = 1) with 

probability of success = Phr (as generated in the previous step). Trials returning a value of 1 

allowed the entity to continue within the system. Trials returning a value of 0 resulted in 

the entity being rejected (Fig. 2.7). 

 

Fig. 2.7: Screen capture of MATLAB Simulink program demonstrating blocks to read outcome of Bernoulli 

trial as rejection attribute and route to sink or allow to continue in the model. 
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9. Applying the Bernoulli trial to every entity generated thus excludes a time-varying 

proportion of missions (varying as Phr) from the otherwise uniform probability of 

activation (equal to Pmax). The result is a time-varying probability of activation by time of 

day (Fig. 2.8). 

 

Fig. 2.8: Histogram showing missions excluded (red shaded areas) from uniform maximum probability (Pmax) 

distribution in order to generate final time-varying demand histogram (black bars). 

 

 

10. Missions (entities) retained within the system were deemed to be activated missions for 

the corresponding ScotSTAR team. The time at which missions which were retained after 

the Bernoulli trial were generated by the simulation (entity generation time) thus became 

the mission activation time. Subsequent analysis of inter-arrival time therefore calculates 

the time between the generation of successive retained missions. 
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2.4.1.4.  Entity attributes 

1. The mission type (primary or secondary) and mission duration were applied as attributes 

to the mission entity within the Simulink program. This defined the nature of a generated 

mission / patient’s interaction with the system and formed the agent-based-modelling 

(ABM) component of the simulation. 

 

2.4.1.5.  Mission duration allocation 

Missions which were retained by the system were assigned a mission duration. It was 

recognized as a potential risk that the mission duration could differ between the learning 

and testing distributions. A hold-out validation process, described below, was therefore 

used to maximize the generalizability of mission duration distribution. A summary figure 

is included (Fig. 2.9) 

1. For each simulation period (see analysis, section 2.4.2). The mission durations were 

separated in a standard 70:30, learning and testing split. 

2. Within the learning dataset, one thousand training data sub-sets were made, each 

sampling 70% of the data without replacement. 

3. To each training data sub-set, a gamma distribution was fitted using the MATLAB 

distribution fitting function. 

4. Each gamma distribution was then tested in a 5-fold hold-out validation process. Thus, 

each gamma distribution was tested against five 20% hold-out sub-sets of the learning 

dataset. 
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Fig. 2.9: Illustrative summary of data split, showing testing dataset, learning dataset and hold-out validation 

sample sub-sets. 

 

 

5. Each of the five hold-out sub-sets were tested against the Cumulative Density Function 

(CDF) of one gamma distribution using a one-sample Kolmogorov-Smirnov test. The K-S 

test statistic comparing the hold-out data to the gamma distribution was recorded as a 

goodness-of-fit value for each fold. Five K-S statistic values were therefore generated for 

each gamma distribution. This was repeated for all one thousand gamma distributions 

generated in step 3. 

5. The most generalisable gamma distribution was selected by minimization of the root 

mean squared (RMS) values of the five K-S test statistic values recorded in each 5-fold 

hold-out validation step. As a perfect fit will generate a K-S test statistic value of zero, this 

is equivalent to the Root Mean Squared Error (RMSE) of the K-S test statistic values. 

6. The selected distribution was used to randomly generate corresponding mission 

durations for the missions retained in the system (i.e. those missions not rejected by 

exclusion sampling). 

  

 

 

 
ScotSTAR complete dataset 

(for simulation period) 

Learning  

dataset 

Testing 

dataset 

Hold-out validation samples (x5) 
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2.4.1.6.  Running of Simulation 

1. All simulations were performed on a desktop computer (baseboard: X79-UP4: Gigabyte 

Technology Company, New Taipei City, Taiwan) with a water-cooled, 3.70GHz quad-core 

processor (Core i7-4820K: Intel Corporation, Santa Clara, California, USA) and 16GB 

DDR3 RAM (Corsair Vengeance: Corsair Gaming Incorporated, Fremont, California, 

USA). 

2. Patients (entities) retained by the system (i.e. not rejected by exclusion sampling) were 

run through a discrete event simulation model corresponding to the appropriate queue and 

server structure of the corresponding ScotSTAR system (appendices A & B). 

3. Each generated patient proceeded through the system according to the mission type and 

generated mission duration (ABM format). 

4. The progress of each patient through the system was recorded at discrete time 

checkpoints corresponding to arrival time (entry to the queue), commencement of service 

(departure from the queue) and completion of service (departure from the system) in a DES 

format. 

5. The waiting time, queue length and server utilization were read directly from the model 

at each discrete time step in the simulation. 

6. After 1461 simulated days (equivalent to 00:00:00 01/01/2013 to 00:00:00 01/01/2017) 

the simulation was terminated and reset. 

7. A total of one-thousand iterations of each (SPRS and EMRS) simulation were 

performed.  
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2.4.2.  Parameter analysis 

1. For analysis, the simulation output was divided into three time periods: 

    Retrospective simulation period:  - 00:00:00 01/01/2013 to 00:00:00 01/01/2015  

- All data during this period was analysed and made available to the model, even if in 

the future to the model’s current simulated time 

 

    Contemporaneous simulation period: - 00:00:00 01/01/2015 to 00:00:00 01/01/2016 

- Only real mission data retrospective to the model’s current simulated time was 

available to the model, thereby assessing its ability to generate the current state of the 

system. 

 

    Prospective simulation period:  - 00:00:00 01/01/2016 to 00:00:00 01/01/2017 

- No real-world mission data would be made available to the model during this period, 

it was forced to rely on the projected mission numbers, mission durations etc. with 

the intention of assessing the model’s ability to prospectively predict the future daily 

state of the system. 

- This simulation period required the use of multiple predictive models to generate the 

predicted future values for monthly number of missions, mission durations etc. The 

analysis and fitting of this was deemed to be outside the scope of this thesis and the 

output of this simulation period is not included in any of the subsequent analyses.  

- This has no effect on the findings of this thesis, and it is intended that the output of 

the prospective simulation period will instead form components for future 

publication. 

 

2. For each simulation period, the activation time, queue entry and exit time, service entry 

and exit time were recorded for every patient retained within the system (not rejected by 

the exclusion sampling process). 

3. From these times, the number of missions, activation time of day, inter-arrival times, 

waiting time, mission duration and server utilization were calculated. 
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2.4.2.1.  Comparison to real-world. 

1. The calculated parameter values were compared to their real-world equivalents to 

establish the validity of the model in replicating the real-world. Discrete event simulation 

across multiple iterations requires an additional step of processing to resolve the stochastic 

nature of the simulation which generates different values for each parameter in each 

simulation iteration. 

 

2.4.2.2.  Total number of missions comparison 

1. The total number of missions generated in each iteration were counted at the end of each 

simulation iteration and plotted as a box-plot. 

2. The median value of these totals (iterative median) was compared to the real-world 

number of missions in the same time period for accuracy (as 1 – error rate), and statistical 

significance using the Mann-Whitney U-test. 

 

2.4.2.3.  Distribution of missions through simulation period comparison 

1. The cumulative total of missions by date was counted for each simulation iteration and 

plotted. The iterative median value was plotted for each date. The 2.5th and 97.5th values of 

the daily total were plotted as a 95% prediction interval. 

2. The real-world daily total number of missions was counted and plotted on the same 

chart. 

3. The daily cumulative totals were compared using the 95% prediction interval, and by 

comparing the ECDFs using Kolmogorov-Smirnov testing. 

 

2.4.2.4.  Activation time of day comparison 

1. The activation time of day was extracted from the simulation activation times and 

plotted as a normalized (area under plot = 1) probability histogram. 

2. The simulated activation time of day histogram bin values (1-hour bins) were compared 

to the real-world missions in the testing dataset activation times histograms. The median 

accuracy was recorded (as 1 – error rate). 
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3. The distribution of simulated mission activations across the 24-hour period was 

compared to the real-world by comparison of the ECDFs with Kolmogorov-Smirnov 

testing. 

 

2.4.2.5.  Inter-arrival time distribution comparison 

1. The difference in arrival time between sequential simulated activated missions (i.e. 

sequential missions not rejected by exclusion sampling) was calculated as the inter-arrival 

time. 

2. The simulated inter-arrival times and real-world test dataset inter-arrival times were 

plotted as a probability density histograms with 1-hour bins. 

3. Exponential distributions were fitted to the simulated missions’ inter-arrival times and to 

the testing sample of the real-world inter-arrival times. 

4. The exponential distributions were compared using the respective μ-values and 

confidence intervals. 

5. The simulated inter-arrival times and the real-world testing sample inter-arrival times 

were compared using ECDFs and Kolmogorov-Smirnov testing. 

 

2.4.2.6.  Mission duration comparison 

1. The difference between a patient commencing service and finishing service was 

calculated as the mission duration. 

2. For each simulation iteration, the median mission duration was calculated. At the 

conclusion of all iterations, the median value of each iteration’s median mission duration 

was calculated as the overall model iterative median. 

3. The iterative median value was compared to the real-world median value for accuracy 

(as 1 – error rate), and statistical significance using the Mann-Whitney U-test. 

4. All simulated mission durations across all iterations and the real-world test dataset 

mission durations were plotted as probability density histograms with 30-minute bins. 

5. Gamma distributions were fitted to all simulated mission durations and to the testing 

sample of real-world mission durations. 
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6. The fitted gamma distributions were compared by κ and θ parameter values. 

7. All simulated mission durations and the testing sample of real-world mission durations 

were compared using ECDFs and Kolmogorov-Smirnov testing. 

 

2.4.2.7.  Server utilization comparison 

1. The total hours of work undertaken by a ScotSTAR team in each simulation iteration, 

and in the complete real-world dataset were calculated as the sum of all mission durations. 

2. The total hours of work in each iteration, and in the real-world, were divided by the total 

server time available for each simulation period. A utilization quotient was therefore 

generated. 

3. The utilization quotients from each simulation iteration were plotted using boxplots for 

comparison to the real-world values. 

4. The iterative median utilization and the real-world utilization were compared for 

accuracy (as 1 – error rate), and for statistical significance using the Mann-Whitney U-test. 

 

2.4.3.  Summation 

1. After the individual comparison of all model components to the real-world as outlined 

above, an overall qualitative assessment of the effectiveness of the model in replicating 

the real-world was made.
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2.5.  Results of simulation of SPRS operations 

   This analysis section will assess the accuracy of the SPRS system model in replicating 

real-world queueing theory components to ultimately validate the overall similarity 

between the model and the real-world system. 

   The SPRS system, as derived in Part 1 of the thesis (section 1.7) receives Markovian 

arrivals to a single queue feeding a single server with gamma-distributed (general) service 

times. In Kendall’s notation, it was described as: 

M/G/1 

   The single server and single queue are analogous to a “corner shop” queue, as illustrated 

in Fig. 2.10. 

 

Fig. 2.10: Diagrammatic representation of SPRS showing single arrivals process, single queue and single 

server. 

 

    

   The analysis of this model will compare several queueing theory components to their 

real-world equivalents: 

- Number of missions undertaken (including cumulative number and pattern). 

- Activation time of day. 

- Inter-arrival time. 

- Mission duration. 

- Server Utilization. 
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The analysis of the SPRS system will be undertaken in two simulation periods:  

Retrospective simulation: comprising calendar years 2013-2014. This model is 

provided with the most information in this project, spanning the whole of the 2-year 

period – even if this is “future” to the current simulation point. Its purpose is to 

prime the subsequent models, provide demonstration of equivalence between the 

model and real-world, and to ensure non-mutilation of the learning data. 

Contemporaneous simulation: comprising calendar year 2015. This model is provided 

with the priming data from the retrospective simulation and then receives new 

information for the 2015 calendar year up to the current simulation point. No future 

information is available. The purpose of this simulation is primarily to demonstrate 

the ability of the model to replicate the immediate, current, state of the real-world 

SPRS system. 

Further information on particular aspects of each simulation period will be discussed in 

more detail in the relevant chapters. 

   Overall, one thousand iterations of the SPRS simulation were performed in a single 

simulation run, representing the calendar years 2013 – 2016. The median simulation time 

was 2.53 seconds, and the simulation was completed in a total of 1h 17m. 
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2.5.1.  Retrospective simulation of SPRS operations 

   In this section, the performance of the SPRS model for each of the stated parameters is 

considered in a two-year simulation period comprising the calendar years 2013 and 2014. 

   With regard to the SPRS simulation, “retrospective” refers to the simulation being 

provided with a complete dataset from the entire simulation period with which to generate 

mission data. This creates the paradox where a model can receive information about the 

current state of the system based on future data. For example, mission durations for 

missions in January 2013 are selected from a distribution which also includes data from 

December 2014. 

   Clearly this is impossible in the real-world and the only way that this simulation can be 

truly valid is for the results to be compared at the end of the two-year simulation period, 

when the simulation model has reached the time point at which all the data would be 

available to it. When this is done, the simulation output and analysis will generate 

descriptive statistics representative of the entire two-year period, but not any specific point 

therein. 

The purpose of this simulation is therefore three-fold: 

- Firstly, it aims to demonstrate that the model does not mutilate the data during 

analysis and is able to replicate the real-world even after the data has been de-

constructed and re-constructed within the model. 

- Secondly, it primes the model with a working data set prior to the 

contemporaneous time-period, in which the data provided to the model is 

produced (section 2.5.2). 

- Thirdly, and most importantly, it aims to demonstrate that the relationships 

between the real-world processes and the model processes are valid. As shown 

in the methodology, the model has very carefully been designed around the 

underlying distributions, as described by queueing theory, not the empirical 

distributions of the real-world data. In doing so, the model is effectively 

creating de novo data which is then being compared to the real-world. The 

model is not, as is sometimes the case with DES, simply re-sampling the real-

world data. The assumption of validity in the model replicating not only the 

real-world values but the real-world relationships between system components, 

is critical for the overall objectives of this project. If the results of any derived 
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(as opposed to measured or observed) descriptive values calculated in this 

thesis are to be considered valid, then it must be inferred that the underlying 

mathematical relationship between the system components is valid. Therefore, 

if it can be proven that the model, with these mathematical relationships coded 

into its operation, is able to replicate the real-world accurately, then it implies 

that the real-world systems must also follow the same mathematical 

relationships. Validity is thus also implied for any descriptive performance 

values which rely upon the mathematical relationship between system 

components in their derivation. 

   It should be noted that because of the different time period used, the results in this 

retrospective simulation (calendar years 2013 and 2014) will differ from the equivalent 

results in Part 1 (calculated over calendar years 2013 – 2016). It is, however, expected that 

the overall distributions will be similar. 

 

 

2.5.1.1.  Retrospective simulation of SPRS mission count  

   As demonstrated in section 1 (section 1.7.1.8), the queueing system applicable to SPRS 

is of the M/G/1 type. All arrivals to the system are expected to follow the Markovian (M) 

pattern – that of an exponentially distributed inter-arrival time, reflective of an underlying 

Poisson process (albeit time-varying). 

   The ability of the model to correctly generate the stated Markovian arrival pattern is 

firstly dependent on its ability to correctly represent the underlying Poisson process. In this 

analysis section, the ability of the simulation to output the correct number of missions with 

respect to time (i.e. replication of the underlying Poisson process) will be analysed for the 

SPRS model. 
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a) Total number of SPRS missions 

   In the retrospective period, the model simulated an iterative median of 477 missions 

(95% prediction interval 448 – 517, mean = 479 missions), compared to 486 real-world 

missions during the same time period (iterative median = 98.1% accurate). The total 

number of missions generated was not significantly different to the real-world data on 

Mann-Whitney U testing (p = 0.68). (Fig 2.11). 

 

 

Fig. 2.11: Boxplot of simulated total SPRS mission counts by iteration (median = 477, IQR: 466 – 489), with 

mean = 479 (black diamond), real-world value (486 missions) marked (black line). Difference not 

significant (Mann-Whitney U-test p = 0.68). Retrospective simulation period – calendar years 

2013-2014. 
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b) Cumulative daily SPRS mission total 

   The cumulative daily number of missions in the real-world was closely matched by the 

iterative median (Fig 2.12). The cumulative daily number of real-world missions remained 

within the 95% prediction intervals from the simulation through the whole retrospective 

time period. This demonstrates that the model median was able to accurately replicate the 

mission numbers at any point in the two-year period, not only a correct final value as 

above. 

 

 

Fig. 2.12: Cumulative SPRS mission count by day demonstrating: simulation iterative median (solid red line) 

and 95% prediction intervals of simulation (dashed red lines). The real-world cumulative count 

(black line) is contained within the bounds set by the 95% prediction intervals for the entire time 

period. Retrospective simulation period: calendar years 2013 – 2014. 
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c) Empirical Cumulative Distribution Function (ECDF) of number of SPRS missions 

by date 

   Comparison of the ECDFs demonstrated the simulation output to appear closely aligned 

with the real-world data (Fig 2.13). The distributions were not statistically significant on 

Kolmogorov-Smirnov testing (p = 0.88). This demonstrates that the model is generating 

the correct pattern of monthly mission numbers versus time, as well as the correct number 

of missions, as above. Thus, the model would be expected to respond appropriately in 

adapting the seasonal demand pattern to a change in overall mission numbers. 

 

 

Fig. 2.13: Comparison of ECDFs of cumulative daily mission count by date for: simulation iterative median 

(red line) and real-world (black line). Kolmogorov-Smirnov test p = 0.88. Retrospective 

simulation period: calendar years 2013 – 2014. 
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d) Summary: SPRS number of missions, retrospective simulation 

   When provided with the entirety of the dataset for the studied time period, the SPRS 

model was able to replicate the real-world with respect to total number of missions, 

cumulative daily number of missions and distribution of missions through the studied time 

period. It is therefore considered that the arrival rate (λ) of missions is accurate and that 

this should confer an accurate μ-value (as 1/λ) for the base exponential inter-arrival 

distribution. 
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2.5.1.2.   Retrospective simulation of SPRS activation by time of 

day  

   The overall accuracy of the long-term SPRS mission arrival rate (λ) has been 

demonstrated. However, as was demonstrated in Part 1 (section 1.7.1.2), SPRS demand 

varies through the course of the day. This section will analyse the ability of the model to 

replicate the time-varying arrivals of the single (emergency) mission type undertaken by 

SPRS, by using the exclusion sampling method described in section 2.4.1.3. 

a) Probability of SPRS activation by time of day 

   In the retrospective simulation period, activation times of day were grossly similar to the 

real-world test data. The simulated missions peak time of activation (Fig. 2.14) was 1100h-

1200h compared to 0800h-0900h in the real-world test dataset (Fig 2.15). Both datasets 

demonstrated a sharp increase in the number of missions around 0800h, with lowest 

demand through the night. The median accuracy of the prediction by hour of day was 

73.3%. 

 

Fig. 2.14: Normalized probability histogram (area under plot = 1) of simulated mission activations by hour 

of day. Mode at 1100h – 1200h period. Retrospective simulation period: calendar years 2013 – 

2014. 
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Fig. 2.15: Normalized probability histogram (area under plot = 1) of real-world mission activations by hour 

of day. Mode in 0800h – 0900h period. Retrospective simulation period: calendar years 2013 – 

2014.  
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b) Empirical Cumulative Distribution Function (ECDF) of SPRS activations by time 

of day 

   The simulation activation time of day ECDF appeared to closely approximate the real-

world testing data, including an inflection point in the 0700h-0800h period (Fig. 2.16). The 

simulated activation times were not significantly different to the real-world testing data 

distribution on Kolmogorov-Smirnov testing (p = 0.51).  

 

 

Fig. 2.16: ECDFs of SPRS mission activations by time of day for simulation output (red line) and real-world 

test dataset (black line). Kolmogorov-Smirnov test p = 0.51. Retrospective simulation period: 

calendar years 2013 – 2014. 
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c) Summary: SPRS activations by time of day, retrospective simulation 

   This section demonstrates that, when provided with the entirety of the dataset for the 

simulation period, the SPRS model is able to generate missions with the same time-varying 

demand as the real-world. Furthermore, it clearly validates the exclusion-sampling 

methodology in converting the simulation from entities generated by a uniform Poisson 

process into a time-dependent Poisson process during the simulation. 
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2.5.1.3.  Retrospective simulation of SPRS inter-arrival times  

  The two components analysed so far are combined when the mission arrival rate (λ) is 

modified by the time-varying demand for the SPRS team in a time-dependent Poisson 

process. The expected result of this is a distribution similar to that demonstrated in section 

1.7.1.2, where SPRS missions were shown to be generally exponentially distributed with a 

mild multi-modal component, reflective of the time between peak probability of activation 

on subsequent days. 

   To accurately reflect the real-world, the model must also generate both the same overall 

exponential distribution and the associated multi-modal component. This will be critical to 

the future accurate assessment of waiting time, and the probability of simultaneous 

retrieval requests – these being more likely to occur at the times of day when demand is 

highest. 

   In this analysis section, the ability of the SPRS model to accurately replicate the real-

world inter-arrival time distribution will be assessed. 
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a) Probability (PDF) of inter-arrival time by hour, SPRS missions 

   In the retrospective simulation period, the simulation output demonstrated inter-arrival 

times distributed similarly to the real-world testing data. Both sets of data demonstrated an 

approximately exponential distribution (Fig. 2.17 & 2.18). The real-world testing data are a 

relatively small sub-set (comprising 144 data points) of the real-world data, compared to 

the inter-arrival times from the complete simulation output (comprising 481,020 data 

points). As a result, the simulation data is much higher resolution and the multi-modal 

component, although subtle, is clearly visible. The multi-modal component is not as clear 

in the real-world data, particularly when compared to the distribution demonstrated in Part 

1, Fig. 1.13.  

 

 

Fig. 2.17: Probability density histogram of simulated SPRS mission inter-arrival times with one-hour bins. 

Fitted exponential distribution μ = 1.52 (red line). Retrospective simulation period: calendar 

years 2013 – 2014. 
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Fig. 2.18: Probability density histogram of real-world mission inter-arrival times with one-hour bins. Fitted 

exponential distribution μ = 1.50 (red line). Retrospective simulation period: calendar years 2013 

– 2014. 
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b) Fitted exponential distributions, SPRS missions 

   Comparison of the fitted exponential distributions showed them to be closely 

approximated (Fig. 2.19): simulation data μ = 1.52 (95% CI: 1.51-1.52), real-world test 

data μ = 1.50 (95% CI: 1.37 – 1.64). The wider confidence interval of the real-world data 

reflects its greater variation. Given that the simulation output μ-value is contained within 

the 95% confidence interval of the real-world test data μ, the fitted distributions are not 

considered significantly different. 

 

 

Fig. 2.19: Fitted exponential probability distribution functions of mission inter-arrival times by hours for 

SPRS simulated missions (red line), μ = 1.52 (95% CI: 1.51-1.52) and real-world test dataset 

(black line) μ = 1.50 (95% CI: 1.37 – 1.64). Retrospective simulation period: calendar years 2013 

– 2014. 
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c) Empirical Cumulative Distribution Function (ECDF) of SPRS missions’ inter-

arrival time by hour 

   Direct comparison of the simulated data and real-world testing data demonstrated similar 

ECDFs (Fig. 2.20) which were not significantly different on Kolmogorov-Smirnov testing 

(p = 0.45). This demonstrated that the model was able to accurately replicate the true real-

world inter-arrival time distributions. 

 

 

Fig. 2.20: ECDFs of SPRS mission inter-arrival times by hours for simulation output (red line) and real-

world testing dataset missions (black line). Kolmogorov-Smirnov test p = 0.45. Retrospective 

simulation period: calendar years 2013 – 2014. 
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d) Summary: SPRS inter-arrival times, retrospective simulation 

   This section demonstrates that, when provided with the entirety of the dataset for the 

simulation period, the SPRS model is able to generate missions with the same inter-arrival 

distribution as the real-world. This accuracy includes both the overall exponential 

distribution and the subtle multi-modal component of the inter-arrival times, the latter 

assessed by comparison of the ECDFs.  

  Methodologically, this validates both the use of an exponentially-distributed inter-arrival 

time base and its subsequent modification using the exclusion-sampling methodology.  
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2.5.1.4.  Retrospective simulation of SPRS mission durations  

   Analysis of the mission durations now shifts focus from arrivals to the server: the SPRS 

team itself.  

   Having accurately established the number of arrivals to the system, the accurate 

replication of mission durations is critical to the subsequent calculation of service 

utilization. This is an important step in the accurate calculation of simultaneous retrievals 

and waiting time which will be addressed later in this thesis. 

   With the model having accurately replicated the number of real-world missions in the 

retrospective simulation period (section 2.5.1.1), the real-world server utilization could 

now be replicated by the model from an accurate mean mission duration alone. However, 

the accuracy of subsequent – arguably more useful – performance parameters would be 

reduced by use of a simple mean duration. For example, the calculation of simultaneous 

retrieval rates, or the waiting time for retrieval, would have to be assumed to follow the 

normal distribution if the mean mission duration was used. It is known from section 1.7.1.3 

that the SPRS mission durations are not normally distributed, instead being gamma 

distributed. 

   In this analysis section, the ability of the model to accurately replicate the true real-world 

mission durations. and distribution, for the SPRS team will be assessed. 
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a) Median mission duration 

     In the retrospective simulation period, the model generated a median mission duration 

of 6h 25m (95% CI: 6h 00m – 6h 44m, mean duration = 6h 25m), compared to a real-

world median of 6h 23m (model accuracy = 99.5%). The medians were not significantly 

different on Mann-Whitney U testing (p = 0.52). (Fig. 2.21). 

 

 

Fig. 2.21: Boxplot of SPRS retrospective mission durations for simulated missions (red boxplot: median = 6h 

25m, IQR: 6h 18m – 6h 31m), with simulation mean = 6h 25m, (black diamond), and real-world 

median duration (6h 23m) marked (black line). Medians not significantly different (Mann-Whitney 

U-test p = 0.52). Retrospective simulation period: calendar years 2013 – 2014.  
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b) Probability (PDF) of SPRS mission durations by elapsed time 

   Both the simulation output data and the real-world test data demonstrated an overall 

gamma distribution. The simulated data much more closely approximated the gamma 

distribution than the real-world data, being generated directly from the distribution – as 

opposed to the real-world data merely having the distribution fitted to it. 

   The fitted gamma distributions appeared similar. Simulated missions were gamma 

distributed with parameter values κ = 4.28 (95% CI: 4.27 – 4.30) and θ = 0.07 (95% CI: 

0.07 – 0.07). Real-world test data were gamma distributed with parameter values κ = 3.78 

(95%CI: 2.76 – 5.19) and θ = 0.08 (95% CI: 0.06 – 0.11). Both parameter values of the 

simulation distribution were contained within the confidence intervals of their respective 

real-world parameters, indicating the distributions are not significantly different (Fig. 

2.24). 

 

 

Fig. 2.22: Probability density histogram of SPRS simulated mission durations with 30-minute bins and fitted 

gamma distribution: parameter values κ = 4.28 and θ = 0.07.  Retrospective simulation period: 

calendar years 2013 – 2014. 

 



Part 2 | Chapter 5 Results: SPRS simulation 168 

 
 

Fig. 2.23: Probability density histogram of SPRS real-world test dataset mission durations with 30-minute 

bins and fitted gamma distribution: parameter κ = 3.78 and θ = 0.08.  Retrospective simulation 

period: calendar years 2013 – 2014. 
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Fig. 2.24: Comparison of fitted SPRS mission duration gamma-distribution PDFs for SPRS simulated 

missions (red line), parameter values κ = 4.28 (95% CI: 4.27 – 4.30) and θ = 0.07 (95% CI: 0.07 

– 0.07)  and real-world test dataset missions (black line), parameter values κ = 3.78 (95%CI: 2.76 

– 5.19) and θ = 0.08 (95% CI: 0.06 – 0.11). Retrospective simulation period: calendar years 2013 

– 2014.   
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c) Empirical Cumulative Distribution Function (ECDF) of SPRS mission durations 

by elapsed time 

   Comparison of the simulated and real-world test data in the retrospective simulation 

period demonstrated a similar ECDF. The difference was not significant on Kolmogorov-

Smirnov testing (p = 0.61). 

 

 

Fig. 2.25: ECDFs of SPRS mission durations by hours for simulation output (red line) and real-world test 

dataset missions (black line). Kolmogorov-Smirnov test p = 0.61. Retrospective simulation period: 

calendar years 2013 – 2014.  

 

 

 

  



Part 2 | Chapter 5 Results: SPRS simulation 171 

 
 

d) Summary: SPRS mission durations, retrospective simulation period 

   The combination of non-significant differences in closely approximated medians and the 

non-significant Kolmogorov-Smirnov test results for both fitted gamma distributions and 

ECDFs all strongly suggest that the model was able to accurately replicate the real-world 

mission durations when provided with the complete dataset for the retrospective simulation 

period. 

 

 

2.5.1.5 Retrospective simulation of SPRS server utilization  

   Combining two properties - number of missions and mission durations - leads to the first 

derived value and first system performance parameter: server utilization. 

   To accurately reflect the real world, the model must combine two successfully simulated 

components to generate the server utilization value – which must also be proven to be 

correct with respect to its real-world equivalent. 

   This is an important step in the future derivation of further system performance 

parameters as it will provide important evidence for the assumption that the derived 

performance values (e.g. Wq) calculated from the model are valid. If the model can 

accurately replicate utilization as a derived value, it would suggest that both the model and 

real-world processes which generate these system performance values exhibit the same 

mathematical relationships.  

   In this analysis section, the ability of the model to accurately replicate the server 

utilization of the SPRS team will be assessed.  
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a) SPRS server utilization quotient 

   During the retrospective simulation period, the model generated a median server 

utilization of 19.1% (mean 19.1%), compared to a 16.7% utilization in the real-world test 

data (model accuracy = 85.6%). The difference between these values approached, but did 

not reach, significance on Mann-Whitney U testing (p = 0.08) and an absolute difference of 

2.4% utilization was considered operationally acceptable (Fig 2.26). 

 

 

Fig. 2.26: Boxplot of SPRS simulation server utilization quotients per iteration (iterative median = 0.191, 

IQR: 0.186 – 0.195), with simulation iterative mean = 0.191 (black diamond). Real-world 

utilization = 0.167 (black line). Simulation median not significantly different to real-world value 

(Mann-Whitney U-test p = 0.08). Retrospective simulation period: calendar years 2013 – 2014. 
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b) Summary: SPRS server utilization, retrospective simulation 

   It was considered that the SPRS model had accurately replicated the real-world server 

utilization. This was considered in the context of a 2.4% absolute error which generated an 

overall model accuracy of 85.6% and a non-significant Mann-Whitney U-test result. This 

was reinforced by the earlier analyses demonstrating successful replication of both the total 

number of missions and the mission duration distributions – the two contributors to server 

utilization. 
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2.5.1.6.  Summary of SPRS retrospective simulation results  

   The SPRS model is considered to have accurately replicated all the real-world 

components studied during the retrospective simulation period. This included the 

calculation of a derived value, server utilization. 

   The results lend validity to the assumption of mathematical similarity between the 

components of the model and the corresponding real-world processes. It is therefore 

considered that subsequent derived system performance values (e.g. Waiting time in the 

queue, Wq) will also be valid in their representation of the real-world during the 

retrospective simulation period. 

  



Part 2 | Chapter 5 Results: SPRS simulation 175 

 
 

2.5.2.  Contemporaneous simulation of SPRS operations  

   In this section, the performance of the SPRS M/G/1 model will be assessed using the 

same parameters for a one-year simulation period comprising the calendar year 2015. 

   In contrast to the previous section, the model will now be assessed in a 

“contemporaneous” format. The model, after priming using the data from the retrospective 

time period, was only provided with information available prior to the current simulated 

time. In this format, the simulation output at any point is its representation of the current 

(contemporaneous) state of the system. 

  For example, an inter-arrival time distribution produced on the 1st July would contain 

information from 1st January to 1st July, but not 2nd July to 31st December (all of which 

would have been available if the simulation was again run according to the retrospective 

format). 

  However, the ability to repeatedly test all the mission distributions was not available 

during this project due to a combination of my relative coding inexperience and a lack of 

suitable computing power to undertake such analysis in a reasonable period of time 

(including a number of Simulink blocks which did not support hardware acceleration 

through parallel processing). As a result, three parameters are not able to be described in a 

true, day-by-day, contemporaneous format: 

Activation time of day distribution: 

   The probability of activation by time of day is not described by a specific 

distribution or median value. The probability of activation by time of day is therefore 

described for the entire simulation period, not daily. 

Inter-arrival time distribution: 

   Despite the relatively high specification of the computer used for running the 

simulation, re-fitting of the inter-arrival time distribution and comparing to the real-

world at the end of every day, across one thousand simulation iterations resulted in 

an unacceptably long simulation time, to the point of simulation failure. Given that 

some period of time is required to sample enough missions to generate a suitable 

distribution, the inter-arrival time distribution is described for the entire simulation 

period, not daily. However, the inter-arrival distribution μ-vale can be calculated (as 

1/λ) from the mission arrival rate (λ) which is simulated and compared daily through 
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the cumulative number of missions. A suitable surrogate marker is therefore 

considered to be present. 

Mission duration distribution: 

Again, despite the seemingly adequate specification of the computer used for 

simulation, re-fitting of the mission duration distribution and comparing to the real-

world at the end of every simulated day resulted in an unacceptably long simulation 

time, again to the point of simulation failure. However, the iterative median 

mission duration could be generated on a daily basis and this is reported 

contemporaneously. Only the overall distribution is not analysed. 

   The purposes of this simulation are fundamentally similar to the retrospective simulation 

except that this analysis will aim to demonstrate that the model is capable of describing the 

immediate, current state of the SPRS system, effectively in real-time, at any point during 

the simulation period. 
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2.5.2.1.  Contemporaneous simulation of SPRS mission count  

a) Cumulative daily SPRS mission total 

   The daily cumulative number of real-world missions remained within the 95% prediction 

intervals for the simulation through the whole contemporaneous simulation period (Fig. 

2.27). This demonstrates that the model median value was able to accurately replicate the 

mission numbers at any point in the two-year period. 

 

 

Fig. 2.27: Cumulative daily mission count by day demonstrating: SPRS simulation iterative median (solid 

red line) and 95% prediction intervals of the simulation (dashed red lines). The real-world 

cumulative count (black line) is contained within the 95% prediction intervals for the entire 

simulation period. Contemporaneous simulation period: calendar year 2015. 
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b) Total number of SPRS missions 

   At the end of the contemporaneous simulation period, the model simulated an iterative 

median of 281 missions (95% Prediction Interval 245 – 314, mean = 279), compared to 

287 real-world missions during the same time period (iterative median = 97.9% accurate). 

The total number of missions generated was not significantly different to the real-world on 

Mann-Whitney U-testing (p = 0.72). (Fig. 2.28). 

 

 

Fig. 2.28: Boxplot of simulated total mission count (median = 281, IQR: 267 – 291), with simulation mean 

(279 missions) marked (black diamond) and real-world value (287 missions) marked (black line). 

Difference not significant (Mann-Whitney U-test p = 0.72). Contemporaneous simulation period – 

calendar year 2015. 
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c) Empirical Cumulative Distribution Function (ECDF) of number of SPRS missions 

by date 

   The ECDF of the daily cumulative number of missions in the real-world was closely 

matched by the iterative median ECDF (Fig. 2.29). The ECDFs were not significantly 

different to Kolmogorov-Smirnov testing (K-S test p = 0.95). 

 

Fig. 2.29: ECDF of cumulative daily mission count by date for: SPRS simulation iterative median (red line) 

and real-world (black line). Kolmogorov-Smirnov test p = 0.95. Contemporaneous simulation 

period: calendar year 2015. 

 

 

d) Summary: SPRS mission count, contemporaneous simulation 

   The SPRS model has accurately replicated the daily number of missions, the total 

number of missions and the temporal distribution of missions in the contemporaneous 

simulation period. It is therefore considered that the SPRS model was able to accurately 

replicate the current, contemporaneous total of real-world SPRS missions. 
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2.5.2.2   Contemporaneous simulation of SPRS activation times of 

day  

   As discussed earlier, in the contemporaneous simulation, there was no straightforward 

metric by which a progressive daily measurement of the model accuracy could be 

undertaken. This analysis assesses the model’s ability to generate an accurate overall 

activation time of day distribution at the conclusion of the simulation period. This will be 

explored further in the discussion. 

a) Probability of SPRS activation by time of day 

   In the contemporaneous simulation period, activation times of day were grossly similar 

in distribution to the real-world. The peak time of simulated activation was the 1100h – 

1200h period (Fig. 2.30) compared to two equal peaks at 1300h – 1400h and 1500h – 

1600h for the real-world testing data (Fig. 2.31). The median model accuracy by hour of 

day was 60.9%. 

 

Fig. 2.30: Normalized probability histogram (area under plot =1) of simulated mission activations by hour of 

day. Mode in 1100h – 1200h period. Contemporaneous simulation period: calendar year 2015.  
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Fig. 2.31: Normalized probability histogram (area under plot =1) of real-world test dataset mission 

activations by hour of day. Modes in 1300h – 1400h and 1500h – 1600h periods. 

Contemporaneous simulation period: calendar year 2015. 
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b) Empirical Cumulative Distribution Function (ECDF) of SPRS activations by time 

of day 

   The simulation activation time of day ECDF did not demonstrate as close correlation to 

the real-world ECDF (Fig. 2.32) as in the retrospective time period (see Fig. 2.16). The 

difference approached significance on Kolmogorov-Smirnov testing (K-S test p = 0.07). 

However, the overall distribution of the data does appear to be a reasonable approximation 

of the real world and is not likely to demonstrate an operationally significant difference – 

particularly when the smaller amount of information provided to the contemporaneous 

model is taken into consideration. 

 

 

Fig. 2.32: ECDF of mission activations by time of day for SPRS simulated missions (red line) and real-world 

test dataset missions (black line). Kolmogorov-Smirnov test p = 0.07. Contemporaneous 

simulation period: calendar year 2015. 
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c) Summary: SPRS activations by time of day, contemporaneous simulation 

   The analysis demonstrated an overall similar appearance between the simulated mission 

activation times of day and the real-world testing data histograms. The model accuracy was 

relatively low (60.9%) however, given its sensitivity, the non-significant K-S test result 

was strongly reassuring. 

   As the distributions could not be compared on a daily basis, the comparison has been 

made over the entire one year simulation period, but retaining the contemporaneous 

simulation methodology. It is therefore considered that the model was able to accurately 

replicate the current, contemporaneous real-world activation time of day distribution at the 

end of the 2015 calendar year, based on a one-year sampling window. 
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2.5.2.3.  Contemporaneous simulation of SPRS inter-arrival times  

   Similarly to the real-world activation times, repeated fitting of distributions to the 

existing data in order to progressively describe an inter-arrival time distribution was too 

computationally demanding to permit full investigation in the available time. This analysis 

also therefore considers the inter-arrival time distribution through the complete 

contemporaneous simulation period. 

 

a) Probability (PDF) of inter-arrival time by hour, SPRS missions 

   In the contemporaneous simulation period, the model generated an exponential mission 

inter-arrival time distribution (see Fig. 2.33) with a fitted exponential distribution μ = 1.30 

(95% CI: 1.30-1.31). 

   The histogram was grossly similar to the real-world testing data (Fig. 2.34) which 

demonstrated a fitted exponential distribution μ = 1.26 (95% CI: 1.13 – 1.42). The much 

smaller dataset of the real-world data in this time period clearly degrades its quality. The 

real-world testing data does, however, appear to maintain an overall exponential 

distribution. 

   The simulation μ-value falls within the 95% confidence interval of the real-world data so 

the two distributions are not considered significantly different (Fig. 2.35). 
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Fig. 2.33: Probability density histogram of simulated mission inter-arrival times with one-hour bins. Fitted 

exponential distribution with μ = 1.30 (red line). Contemporaneous simulation period: calendar 

year 2015. 
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Fig. 2.34: Probability density histogram of real-world test dataset mission inter-arrival times with one-hour 

bins. Fitted exponential distribution with μ = 1.26 (red line). Contemporaneous simulation period: 

calendar year 2015. 
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Fig. 2.35: Fitted exponential probability distribution functions of mission inter-arrival times by hours for 

SPRS simulated missions (red line), μ = 1.30 (95% CI: 1.30-1.31) and real-world test dataset 

(black line) μ = 1.26 (95% CI: 1.13 – 1.42). Contemporaneous simulation period: calendar year 

2015. 
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b) Empirical Cumulative Distribution Function (ECDF) of inter-arrival time by hour, 

SPRS missions 

  On direct comparison of the data, the ECDFs of the simulated and real-world testing data 

appeared to relatively closely approximate (Fig 2.36). However, on Kolmogorov-Smirnov 

testing, the difference between the data were at the limit of non-significance (K-S test p = 

0.05).  

 

 

Fig. 2.36: ECDFs of mission inter-arrival times by hours for SPRS simulation output (red line) and real-

world (black line). Kolmogorov-Smirnov test p = 0.05. Contemporaneous simulation period: 

calendar year 2015. 
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d) Summary: SPRS inter-arrival times, contemporaneous simulation 

   The analysis demonstrated an overall similar appearance between the simulated mission 

inter-arrival times and the real-world testing data histograms, with no significant difference 

demonstrated to the fitted exponential distributions or the ECDFs. Although, the difference 

between the ECDFs was at the limit of non-significance.  

   As the distributions could not be compared on a daily basis, the comparison has been 

made over the entire one-year simulation period, but retaining the contemporaneous 

simulation methodology. It is therefore considered that the model was able to accurately 

replicate the current, contemporaneous real-world inter-arrival time at the end of the 2015 

calendar year based on a one-year sampling window. 
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2.5.2.4.   Contemporaneous simulation of SPRS mission durations  

   Again, similarly to the inter-arrival times and activation times of day, the mission 

durations distribution was only able to be calculated in respect of the entire simulation 

period due to the computational requirements. The median mission duration is therefore 

used as the daily, contemporaneous descriptor. 

 

a) Progressive values of SPRS median mission duration by date 

   In the contemporaneous simulation period, the simulation output median mission 

duration, after some initial volatility, remained relatively steady throughout the simulation 

period, demonstrating a maximum of 6h 26m in May, then falling gradually to a final value 

of 6h 21m (Fig. 2.37).  

   After initial volatility, the real-world test dataset median mission duration remained 

relatively steady with a minimum of 3h 27m at the end of June. After this, the real-world 

median rose in sequential steps to a final value of 4h 57m (Fig. 2.37). The real-world test 

dataset median duration was outside the 95% prediction interval of the simulation 

throughout the studied time period, other than a brief period during January. This coincides 

with the most volatility in the real-world calculation and any assumption of similarity is 

likely to represent a type 2 error. 
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Fig. 2.37: Median SPRS mission durations by day, comparing simulation iterative median (solid red line) 

and 95% prediction intervals (dashed red lines) to the real-world test dataset median duration 

(black line). Contemporaneous simulation period: calendar year 2015. 
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b) Median mission durations: final values 

   At the conclusion of the contemporaneous simulation period, the simulation output 

demonstrated an iterative median of current median mission duration of 6h 21m (95% 

Prediction Interval: 6h 00m – 6h 36m, mean = 6h 34m), compared to a real-world testing 

data median mission duration of 4h 57m (model accuracy = 71.7%) (Fig. 2.38). The 

medians were significantly different on Mann-Whitney U-testing (p < 0.001). 

 

 

Fig. 2.38: Boxplot of final value of median mission duration by iteration at conclusion of contemporaneous 

simulation period (median = 6h 21m, IQR 6h 15m – 6h 34m), with iterative mean = 6h 34m (black 

diamond) and real-world testing data median = 4h 57m (black line). Iterative median and real-

world testing data median mission durations are significantly different (Mann-Whitney U-test p < 

0.001). Contemporaneous simulation period: calendar year 2015. 
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 c) Probability of SPRS mission durations by elapsed time: end of 2015 calendar year 

  The data from the simulation and the real-world test dataset demonstrated an 

approximately gamma distribution. Again, this was more closely approximated by the 

simulation data (Fig. 2.39 & Fig. 2.40). 

   While the fitted distributions for each dataset appeared grossly similar (Fig 2.41), the 

simulated mission durations gamma distribution demonstrated parameter values κ = 4.33 

(95% CI: 4.31 – 4.35) and θ = 0.07 (95% CI: 0.07 – 0.07), while the real-world testing data 

mission durations gamma distribution demonstrated parameter values κ = 2.35 (95% CI: 

2.01 – 2.75) and θ = 0.08 (95% CI: 0.07 – 0.10). Given that the simulation κ-value lies 

outside the 95% confidence interval for the real-world κ-value, the distributions must be 

considered significantly different. 

 

 

Fig. 2.39: Probability density histogram of SPRS simulated mission durations with 30-minute bins and fitted 

gamma distribution: parameter values κ = 4.33 (95% CI: 4.31 – 4.35) and θ = 0.07 (95% CI: 0.07 

– 0.07). Contemporaneous simulation period: calendar year 2015. 
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Fig. 2.40: Probability density histogram of SPRS real-world test dataset mission durations with 30-minute 

bins and fitted gamma distribution: parameter κ = 2.35 (95% CI: 2.01 – 2.75) and θ = 0.08 (95% 

CI: 0.07 – 0.10). Contemporaneous simulation period: calendar year 2015. 
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Fig. 2.41: Comparison of fitted SPRS mission duration gamma-distribution PDFs for SPRS simulated 

missions (red line), parameter κ = 4.33 (95% CI: 4.31 – 4.35) and θ = 0.07 (95% CI: 0.07 – 0.07) 

and real-world test dataset missions (black line), parameter values κ = 2.35 (95% CI: 2.01 – 2.75) 

and θ = 0.08 (95% CI: 0.07 – 0.10). Contemporaneous simulation period: calendar year 2015. 
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c) Empirical Cumulative Distribution Function (ECDF) of SPRS mission durations 

by elapsed time: end of 2015 calendar year 

   Direct comparison of all the simulated mission durations to the real-world data 

demonstrated a grossly similar distribution (Fig. 2.42). But, unsurprisingly, given the 

significant differences in median mission duration and fitted gamma distributions, the 

mission durations generated by the simulation were significantly different to those in the 

real world on Kolmogorov-Smirnov testing (K-S test p = < 0.001). 

 

 

Fig. 2.42: ECDFs of SPRS mission durations by hours for simulation output (red line) and real-world test 

dataset missions (black line). Kolmogorov-Smirnov test p < 0.001. Contemporaneous simulation 

period: calendar year 2015. 
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d) Summary: SPRS mission durations, contemporaneous simulation period 

   The daily progressive real-world testing data median mission duration was outside the 

95% prediction interval of the simulation output for almost the entirety of the simulation 

period (see Fig. 2.37), with the duration values at the end of the 2015 calendar year also 

being significantly different. Furthermore, the fitted gamma distributions were 

significantly different, as were the overall mission duration ECDFs. 

   It is therefore considered that the SPRS model was unable to accurately replicate the 

contemporaneous mission durations of the real-world system at any point in the 2015 

calendar year.  
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2.5.2.5.  Contemporaneous simulation of SPRS server utilization  

a) Progressive server utilization value 

   The simulation server utilization demonstrated a brief period of initial volatility before 

settling to a generally steady value through the whole simulation period. The minimum 

value occurred in February with a utilization of 21.7%, a stable maximum of 22.5% was 

reached in June and utilization then fell slightly to the final value of 22.2%.  

   The real-world data was initially volatile but demonstrated a relatively stable maximum 

of 23.1% utilization during February, falling rapidly to a minimum utilization of 15.3% at 

the end of March, before rising gradually through the rest of the year to a final value of 

19.2%. 

   The simulation generally over-estimated the real-world utilization through the simulation 

period. The period in January and February in which the real-world values were within the 

95% prediction intervals is clearly transient and not representative of an accurate model. 

 

Fig. 2.43: SPRS server utilization by day comparing simulation iterative median (solid red line) and 95% 

prediction intervals (dashed red lines) to the real-world test dataset utilization (black line). 

Contemporaneous simulation period: calendar year 2015. 
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b) Server utilization quotient: end of 2015 calendar year 

   At the conclusion of the contemporaneous simulation period, the model generated a 

contemporaneous iterative median server utilization of 22.2% (mean = 22.2%), compared 

to a real-world utilization of 19.1% in the same time period (model accuracy = 83.8%). 

The difference was not significantly different to the real-world on Mann-Whitney U-

testing (p = 0.08). 

 

 

Fig. 2.44: Boxplot of SPRS simulation server utilization quotients per iteration (iterative median = 22.2%, 

IQR: 21.3% - 23.2%), with simulation iterative mean = 22.2% (black diamond). Real world 

utilization = 19.1% (black line). Values not significantly different (Mann-Whitney U-test p = 

0.08). Contemporaneous simulation period: calendar year 2015. 
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c) Summary: SPRS server utilization, contemporaneous simulation 

   The daily progressive real-world SPRS server utilization lay outside the 95% prediction 

interval of the model for the majority of the contemporaneous simulation period. It is 

therefore considered that the model could not accurately replicate the contemporaneous 

utilization of the real-world system at all times through the 2015 calendar year. 

   At the conclusion of the 2015 calendar year, the median simulation output of server 

utilization had an accuracy of 83.8% and was not significantly different to the real world. 

The model over-estimated the real-world utilization which is likely to result in derived 

values reflecting poorer performance than is true in the real-world (a “worst-case 

scenario”) which still is able to provide useful performance information. It is therefore 

considered that the model potentially could generate an operationally acceptable 

replication of the contemporaneous real-world server utilization based on a one-year 

sampling window at the end of the 2015 calendar year.  



Part 2 | Chapter 5 Results: SPRS simulation 201 

 
 

2.5.2.6.  Contemporaneous simulation of SPRS team - summary  

   The model was able to accurately replicate the current, contemporaneous real-world state 

of the SPRS system at any time during the 2015 calendar year with regard to the number of 

missions and arrival rate (λ).  

   The model was able to accurately replicate the current, contemporaneous distribution of 

activation time of day and inter-arrival time at the end of the 2015 calendar year, based on 

a one-year sampling window.  

   The model was able to able to replicate the current, contemporaneous value of server 

utilization at the end of the 2015 calendar year, based on a one-year sampling window to 

an operationally useful standard. However, the model failed to replicate the progressive 

contemporaneous value of the server utilization at all times through the simulation period. 

   The model did not replicate the real-world mission durations, either as final median value 

or by progressive value at all points in the 2015 calendar year. 
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2.5.3.  Summary of results from simulations of SPRS 

operations 

   The simulation of the SPRS missions successfully replicated all components of the 

system in the retrospective simulation period when the simulation was provided with the 

full data for the entire simulation period (Table 2.2). The model can be considered to be an 

accurate representation of the real-world SPRS system under retrospective simulation 

conditions, demonstrating a mean component accuracy of 91.0%. In this capacity, it is able 

to provide a general overview of the system representative of the entire studied time 

period. In doing so, it has demonstrated the validity of the assumed mathematical 

relationships between the real-world components. 

   The contemporaneous simulation was able to partially replicate the current, 

contemporaneous state of the real-world (Table 2.3). The mean component accuracy for 

the contemporaneous simulation was 82.2%. For server utilization it was able to replicate 

the real-world only equivocally with a final utilization value, representing a one-year 

sampling window. Given that this was an over-estimate then there may still be some utility 

in subsequent derived values because the real-world performance could be expected to be 

better than the model’s prediction. The model did not, however, accurately replicate the 

real-world mission durations at any point during the contemporaneous simulation.  
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Table 2.2: Summary of SPRS retrospective simulation results: 

Parameter Model value 
Real-world 

value 
Accuracy 

Statistical 

similarity 

Operational 

similarity 

Number of SPRS missions 477 486 98.1% Yes Yes 

Activation time of day - - 73.3% Yes Yes 

Inter-arrival times  μ = 1.52 μ = 1.50 98.7% Yes Yes 

Mission durations 6h 25m 6h 23 99.5% Yes Yes 

Server utilization 19.1% 16.7% 85.6% Yes Yes 
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Table 2.3: Summary of SPRS contemporaneous simulation results: 

Parameter 
Model 

value 

Real-world 

value 
Accuracy 

Statistical 

similarity 

Operational 

similarity 

Number of SPRS missions 281 287 97.9% Yes Yes 

Activation time of day - - 60.9% Yes Yes 

Inter-arrival times μ = 1.30 μ = 1.26 96.8% Yes Yes 

Mission durations 6h 21m 4h 57m 71.7% No No 

Server utilization 22.2% 19.1% 83.8% Yes No 
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2.6.  Results of simulation of EMRS operations 

   This analysis section will assess the accuracy of the EMRS system model in replicating 

the real-world queueing theory components, aiming to ultimately validate the overall 

similarity between the model and the real-world system. 

      The EMRS system, as derived in Part 1 of the thesis (section 1.7.3) receives Markovian 

arrivals (from two independent Poisson processes corresponding to primary and secondary 

missions) to a single queue feeding two homogeneous servers with gamma-distributed 

(general) service times. In Kendall’s notation, this would be described by: 

M/G/2 

   The single queue and two servers are analogous to a “post office” queue, as illustrated in 

Fig 2.45. 

 

Fig. 2.45: Diagrammatic representation of EMRS dual arrivals processes, single queue and two 

homogeneous servers. Missions arriving at the head of the queue are preferentially passed to the 

Duty 1 server (bold arrow). 

 

 

   A nuance of EMRS operations is that a mission arriving at the head of the queue will 

always be passed to the Duty One team in the first instance. If Duty One are busy, the 

mission will be passed to Duty Two. If both teams are busy, the mission will queue for the 

first available team (regardless of which). Queuing theory considers this nuance to be 

immaterial, but it is still included in the EMRS model to preserve fidelity. 

   As discussed previously, there is a practical limit on the waiting time in the queue and it 

is likely that primary missions waiting more than 20 minutes for the availability of a team 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
FIFO 

Queue 

   
FIFO 

Queue 

SPRS 

Team Arrivals Departure 
SPRS 

Team 

Primary mission 

arrivals 

SPRS 

Team 

Secondary mission 

arrivals 

Departure Duty One 

Team 

Duty Two 

Team 
Departure 



Part 2 | Chapter 6 Results: EMRS simulation 207 

 
 

will be reneged from the system. As these missions never appear to exist to EMRS, then 

they are not included in the EMRS data. As the model relies upon the EMRS data, and 

therefore only recognises missions actually undertaken by the servers, it is not appropriate 

to include reneging of primary missions in the Simulink model without data to support it. 

   The analysis of this model will, as with SPRS, compare several queueing theory 

components to their real-world equivalents: 

   For EMRS secondary and primary missions: 

- Overall number of missions (including cumulative number and pattern). 

- Activation time of day. 

- Inter-arrival time. 

- Mission duration. 

   For the whole EMRS system, as well as for individual duty one and duty two teams: 

- Server utilization. 

 

As previously, the EMRS system will also be undertaken in two simulation periods: 

Retrospective simulation: comprising calendar years 2013-2014. This model is 

provided with the most information and creates a generalised description of the 

model and system over the entire two-year time period. 

Contemporaneous simulation: comprising calendar year 2015. This model is provided 

with priming data from the retrospective simulation and then receives new 

information for the 2015 calendar year up to the current simulation point only, 

thereby describing the contemporaneous state of the model and system (where 

able). It has the same limitations with regard to demonstrating distributions for 

inter-arrival times, activation times of day and mission durations as the SPRS 

simulation (see section 2.5.2). 

   Further information on particular aspects of each simulation period will be discussed in 

more detail in the relevant chapters. 

   Overall, one thousand iterations of the EMRS simulation were performed in a single 

simulation run, representing the calendar years 2013 – 2016. The median simulation time 

was 14.85 seconds and the simulation was completed in a total of 5h 19m. 
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   The principal purpose of EMRS is to provide equity of access to healthcare through 

secondary transfer of patients in remote and rural healthcare facilities requiring critical 

care. Note that, as a result, secondary missions are given precedence within each EMRS 

analysis section. 
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2.6.1  Retrospective simulation of EMRS operations 

   In this section, the performance of the EMRS model for each of the state parameters is 

considered in a two-year simulation period comprising the calendar years 2013 and 2014. 

In the retrospective simulation period, the EMRS model is provided with the full dataset 

comprising the entire simulation period of calendar years 2013 and 2014 upon which to 

generate the required parameters. As a result, the model output will be a representation of 

the general system state over the entire time period. 

  As with the SPRS retrospective analysis, the purpose of this simulation is to:  

1. Demonstrate that the model does not mutilate the data. 

2. Prime the model with a working dataset prior to a reduction in the available data for 

the contemporaneous simulation period. 

3. Demonstrate the validity of the mathematical relationships between individual 

components of the real-world system by showing that the same mathematical 

relationships within the model produce the same data values as are generated in the 

real-world. 

  Again, it should be noted that the analysis time period is different to that of the EMRS 

analyses in Part 1 (section 1.7.2) and the values are therefore expected to be different. The 

overall distributions are expected to remain similar, however. 

 

 

2.6.1.1  Retrospective simulation of EMRS mission count  

   Each of the primary and secondary mission profiles for EMRS individually have been 

shown to follow a Markovian arrival pattern. Being able to replicate the correct number of 

missions undertaken by EMRS is an important basic descriptor of the system operations, 

and the first step in generating an accurate inter-arrival time distribution for missions. 

   In this section, the ability of the simulation to create the correct number of mission 

activations will be analysed for the EMRS model. As the two mission types occur 

independently of each other, they will be analysed separately. 
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a) Total number of EMRS missions 

Secondary missions 

   In the retrospective period, the EMRS model simulated an iterative median of 567 

secondary missions (95% Prediction Interval: 520 – 597, mean = 566) compared to 573 

real-world secondary missions during the same period (secondary mission iterative median 

= 99.0% accurate) (Fig 2.46). The total number of secondary missions was not statistically 

significantly different to the real-world on Mann-Whitney U testing (p = 0.67).  

 

 

Fig. 2.46: Boxplot of simulated total EMRS secondary missions count by iteration (median = 567, IQR: 549 – 

579), with mean = 566 (black diamond) and real-world value (573 missions) marked (black line). 

Difference not significant (Mann-Whitney U-test p = 0.67). Retrospective simulation period – 

calendar years 2013 – 2014. 
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Primary missions 

 In the same simulation, the model generated an iterative median of 907 primary missions 

(95% Prediction Interval: 856 – 992) compared to 912 real-world primary missions during 

the same time period (primary mission model = 99.5% accurate) (Fig 2.47). The total 

number of primary missions generated was not statistically significantly different to the 

real-world on Mann-Whitney U testing. (p = 0.79). 

 

 

Fig. 2.47: Boxplot of simulated total EMRS primary missions count by iteration (median = 907, IQR: 887 – 

928), with mean = 908 (black diamond) and real-world value (912 missions) marked (black line). 

Difference not significant (Mann-Whitney U-test p = 0.79). Retrospective simulation period – 

calendar years 2013 – 2014. 
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b) Cumulative daily EMRS mission total 

   The cumulative daily number of missions in the real-world were closely matched by their 

respective iterative median for both primary and secondary missions (Fig. 2.48 & Fig. 

2.49). The median cumulative number of missions remained within the 95% prediction 

intervals for both components of the simulation throughout the entire retrospective analysis 

period. This was particularly relevant for the primary missions where the seasonal 

variation is visible as the cyclical variation in gradient of each line. 

 

 

Fig. 2.48: Cumulative EMRS secondary mission count by day demonstrating: simulation iterative median 

(solid red line) and 95% prediction intervals of simulation (dashed red lines). The real-world 

cumulative count (black line) is contained within the bounds set by the 95% prediction intervals for 

the entire time-period. Retrospective simulation period: calendar years 2013 – 2014.  
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Fig. 2.49: Cumulative EMRS primary mission count by day demonstrating: simulation iterative median (solid 

red line) and 95% prediction intervals of simulation (dashed red lines). The real-world cumulative 

count (black line) is contained within the bounds set by the 95% prediction intervals for the entire 

time-period. Retrospective simulation period: calendar years 2013 – 2014.  
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c) Empirical Cumulative Distribution Function (ECDF) of number of EMRS missions 

by date 

   The distribution of missions by date were compared between the simulation output and 

the real-world using ECDFs. 

Secondary missions 

   The EMRS secondary missions simulation ECDF closely approximated its real-world 

equivalent (Fig. 2.50). The challenge of seasonal variation is not present within the 

secondary missions data. The ECDFs were not significantly different to Kolmogorov-

Smirnov testing (p = 0.99). 

 

 

Fig. 2.50: ECDF of cumulative daily EMRS secondary mission count showing: simulation iterative median 

(red line) and real-world (black line). Kolmogorov-Smirnov test p = 0.99. Retrospective 

simulation period: calendar years 2013 – 2014.  
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Primary missions 

   The primary missions simulation ECDF also appeared to closely match the real-world 

ECDF (Fig. 2.51), including the seasonal variation through the time period. The ECDFs 

were not significantly different on Kolmogorov-Smirnov testing (p = 0.98).  

 

Fig. 2.51: ECDF of cumulative daily EMRS primary mission count showing: simulation iterative median (red 

line) and real-world (black line). Kolmogorov-Smirnov test p = 0.97. Retrospective simulation 

period: calendar years 2013 – 2014.  

 

 

d) Summary: EMRS number of missions, retrospective simulation 

   When provided with the entirety of the dataset for the studied time period, the EMRS 

model was able to replicate the real-world for both secondary retrieval and primary pre-

hospital missions with respect to total number of missions, cumulative daily number of 

missions and distribution of missions through the studied time period. It is therefore 

considered that the arrival rate (λ) of missions is accurate and that this should confer an 

accurate μ-value (as 1/λ) for the base exponential inter-arrival distribution. 
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2.6.1.2.  Retrospective simulation of  EMRS activation times of day  

   The overall validity of the λ value for the EMRS Poisson distribution has been 

demonstrated by correctly producing the real-world number of missions both in total and 

by month. However, as with the other services, it is generally known that demand for the 

service varies through the course of the day. It will be critical to the future calculation of 

system performance parameters such as simultaneous retrievals that the time of arrivals is 

also calculated. This is particularly the case for the EMRS primary mission demand 

because this service is only provided (with exceptions for major incidents or specific 

clinician requests) in the 0800h – 1800h time period. Almost all the missions must 

therefore be generated in the same 0800h – 1800h period if any meaningful deductions are 

to be made concerning the performance of the system. It is expected that compression of 

missions into this short time period will have an effect on the number of simultaneous 

retrieval requests. 

   In this analysis section, the ability of the model to replicate the time-varying demand for 

each mission type will be assessed. Each of the mission types are independent and so are 

analysed separately against the corresponding real-world testing dataset. 
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a) Probability of EMRS activation by time of day 

Secondary missions 

   In the retrospective simulation period, activation times of day for secondary missions 

(Fig. 2.52) were grossly similar in distribution to the real world (Fig. 2.53). Activations 

peaked in the 1000h-1100h period, compared to 1300h-1400h in the real-world. Both 

simulation output and real-world data demonstrated an overall peak around late morning 

and midday, with a gradual reduction in demand through the rest of the day, and lowest 

demand in the overnight period. The median model accuracy was 77.9% 

 

 

Fig. 2.52: Normalized probability histogram (area under plot = 1) of simulated EMRS secondary mission 

activations by hour of day. Mode in 1000h – 1100h period. Retrospective simulation period: 

calendar years 2013 – 2014.      
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Fig. 2.53: Normalized probability histogram (area under plot = 1) of real-world test dataset EMRS 

secondary mission activations by hour of day. Mode in 1300h – 1400h period. Retrospective 

simulation period: calendar years 2013 – 2014. 
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Primary missions 

   The maximum probability of simulated primary mission activations occurred in two 

peaks at 1200h-1300h and 1500h-1600h (Fig. 2.54), compared to 1300h-1400h in the real-

world testing data (Fig 2.55). The missions demonstrated a clear increase in activations 

correlating with the commencement of the service provision period and a clear decrease 

following the cessation of services at 1800h. The morning commencement of demand did 

start slightly earlier in the simulation output, corresponding with the 0700h-0800h period, 

as opposed to the 0800h-0900h period for the real-world data. The median accuracy of the 

prediction by hour of the day was 84.2%. 

 

 

Fig. 2.54: Normalized probability histogram (area under plot = 1) of simulated EMRS primary mission 

activations by hour of day. Mode in 1300h – 1400h period. Retrospective simulation period: 

calendar years 2013 – 2014.   
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Fig. 2.55: Normalized probability histogram (area under plot = 1) of real-world test dataset EMRS primary 

mission activations by hour of day. Mode in 1400h – 1500h period. Retrospective simulation 

period: calendar years 2013 – 2014. 
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b) Empirical Cumulative Distribution Function (ECDF) of EMRS activations by time 

of day 

Secondary missions 

   Simulated EMRS secondary missions demonstrated a curve which approximated the 

real-world testing dataset (Fig. 2.56). The earlier peak of secondary missions demonstrated 

by the simulation output is evident in the somewhat higher proportion of simulation 

missions in the 0800h-1400h period. The difference between these ECDFs was at the limit 

of non-significance on Kolmogorov-Smirnov testing (p = 0.05). 

 

 

Fig. 2.56: ECDFs of EMRS secondary mission activations by time of day for simulation output (red line) and 

real-world test dataset (black line). Kolmogorov-Smirnov test p = 0.05. Retrospective simulation 

period: calendar years 2013 – 2014. 
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Primary missions 

  The 0800-1800 hours of operation for EMRS primary missions are clearly visible, 

although the earlier inflection point of the simulation missions causes the proportion of 

primary missions by hour to run consistently higher than the real-world missions. This 

perhaps reflects the finding of a statistically significant difference on Kolmogorov-

Smirnov testing (p < 0.001). However, given the approximation of the curves and the 

similarity of the histograms for primary missions, this K-S test result alone would not 

confer an operationally significant difference. 

 

 

Fig. 2.57: ECDFs of EMRS primary mission activations by time of day for simulation output (red line) and 

real-world test dataset (black line). Kolmogorov-Smirnov test p < 0.001. Retrospective simulation 

period: calendar years 2013 – 2014.     
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c) Summary: EMRS activations by time of day, retrospective simulation 

   This analysis would suggest that the model was able to accurately replicate the real-

world activation time of day for both primary and secondary EMRS missions in the 

retrospective simulation period. One K-S test result, that of the EMRS primary mission 

activations, is statistically significant but the difference is not considered operationally 

significant. The K-S test result may be related to the limitations of applying the test to a 

relatively large dataset, but with only a small effective range of values which contribute to 

the ECDF. 

  



Part 2 | Chapter 6 Results: EMRS simulation 224 

 
 

2.6.1.3.  Retrospective simulation of  EMRS inter-arrival times  

   The combination of the EMRS components so far analysed are combined when the inter-

arrival rate (λ) is modified by the time-varying demand for the service into a time-

dependent Poisson process. Whereas a uniform Poisson process would generate purely 

exponentially-distributed inter-arrival times, the time-dependent Poisson process is 

expected to generate an overall exponential distribution of the inter-arrival times with a 

multi-modal component, as demonstrated in section 1.6.3. 

This section assesses the ability of the model to accurately replicate the inter-arrival times 

of each mission type to the EMRS system. These independent components will be analysed 

separately and compare simulation output to a testing dataset of the real-world data. 

 

a) Probability (PDF) of inter-arrival time by hour, EMRS missions 

Secondary missions 

   In the retrospective simulation period, the simulated EMRS secondary missions (Fig. 

2.58) and real-world testing dataset secondary missions (Fig. 2.59) displayed inter-arrival 

times with an overall approximately exponential distribution). Secondary missions exhibit 

a subtle multi-modal inter-arrival time distribution, consistent with a time-dependent 

Poisson process. This can be seen more clearly in the simulation output data. 

   Comparison of the fitted exponential distributions demonstrated a close approximation 

between the simulation and real-world testing data (Fig. 2.60). Simulated EMRS secondary 

missions demonstrated an exponential distribution μ = 1.28 (95% CI: 1.28-1.29), compared 

to a real-world testing data μ = 1.24 (95% CI: 1.15 – 1.35). As the simulation μ-value was 

contained within the confidence intervals of the real-world data, they would not be 

considered significantly different. Comparing the μ-values, model accuracy was 96.7% 
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Fig. 2.58: Probability density histogram of simulated EMRS secondary mission inter-arrival times with one-

hour bins. Fitted exponential distribution μ = 1.28 (red line). Retrospective simulation period: 

calendar years 2013 – 2014. 
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Fig. 2.59: Probability density histogram of real-world test dataset EMRS secondary mission inter-arrival 

times with one-hour bins. Fitted exponential distribution μ = 1.24 (black line). Retrospective 

simulation period: calendar years 2013 – 2014. 
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Fig. 2.60: Comparison of fitted exponential probability distribution functions of EMRS secondary mission 

inter-arrival times by hour for: simulated missions (red line), μ = 1.28 (95% CI: 1.28-1.29)  and 

real-world test dataset missions (black line), data μ = 1.24 (95% CI: 1.15 – 1.35). Retrospective 

simulation period: calendar years 2013 – 2014.  
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Primary missions 

   EMRS operates a primary mission service between 0800-1800 resulting in strongly time-

varying demand which generates a clear multi-modal inter-arrival time distribution (Fig 

2.61). The simulation output generated an inter-arrival time histogram which appeared 

generally similar to the real-world (Fig. 2.62). 

  The fitted exponential distributions for simulated EMRS primary missions appeared to 

closely approximate the real-world fitted distribution (Fig 2.63). The simulation 

distribution parameter value μ = 0.80 (95% CI: 0.80 – 0.80) was equal to the real-world 

test data fitted distribution μ = 0.80 (95% CI: 0.75 – 0.85). By comparison of the μ values, 

the model accuracy was 100%. 

 

 

Fig. 2.61: Probability density histogram of simulated EMRS primary mission inter-arrival times with one-hour 

bins. Fitted exponential distribution μ = 0.80 (red line). Retrospective simulation period: calendar 

years 2013 – 2014.       
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Fig. 2.62: Probability density histogram of real-world test dataset EMRS primary mission inter-arrival times 

with one-hour bins. Fitted exponential distribution μ = 0.80 (black line). Retrospective simulation 

period: calendar years 2013 – 2014. 

.  
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Fig. 2.63: Comparison of fitted exponential probability distribution functions of EMRS primary mission inter-

arrival times by hour for: simulated missions (red line), μ = 0.80 (95% CI: 0.80 – 0.80) and real-

world test dataset missions (black line), μ = 0.80 (95% CI: 0.80 – 0.80). Retrospective simulation 

period: calendar years 2013 – 2014.  

 

  



Part 2 | Chapter 6 Results: EMRS simulation 231 

 
 

c) Empirical Cumulative Distribution Function (ECDF) of EMRS missions inter-

arrival time by hour 

Secondary Missions 

   Direct comparison of the simulated and real-world secondary missions data demonstrated 

visually similar curves (Fig. 2.64). This was reflected in a non-significant Kolmogorov-

Smirnov test result (p = 0.86). When interpreted with the associated similarity of the ECDF 

curves, the difference would also not be operationally significant. 

 

 

Fig. 2.64: ECDFs of EMRS secondary mission inter-arrival times by hours for simulation output (red line) 

and real-world testing dataset missions (black line). Kolmogorov-Smirnov test p = 0.86. 

Retrospective simulation period: calendar years 2013 – 2014. 
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Primary missions 

   On direct comparison of the simulated EMRS primary missions and real-world testing 

data ECDFs, the curves appeared grossly similar. In particular, the multi-modal 

distribution of the inter-arrival times generated can be seen in both ECDFs and this 

component did appear to be well-replicated by the simulation (Fig. 2.65). Despite this, on 

Kolmogorov-Smirnov testing, the distributions were found to be significantly different (p 

= 0.03). It is considered unlikely that this difference was operationally significant, 

however. 

 

 

 

Fig. 2.65: ECDFs of EMRS primary mission raw inter-arrival times by hours for simulation output (red line) 

and real-world testing dataset missions (black line). Kolmogorov-Smirnov test p = 0.03. 

Retrospective simulation period: calendar years 2013 – 2014.    
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   When the correction for time-dependency as described in Part 1 (section 1.6.3) was 

applied to the data, the multi-modal appearance of the raw inter-arrival time histograms 

was corrected to approximate an exponential distribution (Fig. 2.66 & Fig. 2.67) with 

simulated missions μ = 0.77 (95% CI: 0.77 – 0.77) and real-world testing dataset missions 

μ = 0.81 (95% CI: 0.72 – 0.91). Interestingly, comparison of the time-dependency 

corrected ECDFs (Fig. 2.68) with the Kolmogorov-Smirnov test then yielded a non-

significant result (p = 0.31). 

 

 

Fig. 2.66: Probability density histogram of simulated EMRS primary missions inter-arrival times with one-

hour bins: after correction for time-dependency. Fitted exponential distribution μ = 0.77 (red 

line). Retrospective simulation period: calendar years 2013 – 2014. 
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Fig. 2.67: Probability density histogram of real-world test dataset EMRS primary mission inter-arrival times 

with one-hour bins: after correction for time-dependency. Fitted exponential distribution μ = 0.81 

(black line). Retrospective simulation period: calendar years 2013 – 2014. 
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Fig. 2.68: ECDFs of EMRS primary mission inter-arrival times after correction for time dependency, by 

hours for simulation output (red line) and real-world testing dataset missions (black line). 

Kolmogorov-Smirnov test p = 0.31. Retrospective simulation period: calendar years 2013 – 2014. 
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d) Summary: EMRS inter-arrival times, retrospective simulation 

   For secondary missions, all analysed components: histograms, fitted distributions and 

ECDFs appeared closely approximated and, where applicable, demonstrated statistically 

and operationally non-significant differences. 

   Primary missions also demonstrated closely-approximating histograms and fitted 

exponential distributions which were not significantly different between the simulation and 

the real-world. Although the ECDFs demonstrated a statistically significant K-S test result, 

the overall approximation of the ECDFs was considered to be very close, with the 

exponential and multi-modal properties of the histogram which ultimately generates the 

ECDF being particularly well replicated. As such, the difference between the primary 

mission ECDFs was considered not to be operationally significant. 

   Overall, in the retrospective simulation period, when the full dataset was available to the 

EMRS model, the model was able to replicate the real-world inter-arrival distributions to 

an operationally acceptable standard. 
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2.6.1.4.  Retrospective simulation of EMRS mission durations  

   Following the methodology as with SPRS, analysis of the mission durations will assess 

the ability of the model to replicate the real-world server performance, in addition to the 

arrivals process to the system. 

   The two EMRS teams are co-located and both undertake missions in exactly the same 

operational fashion. The EMRS teams are therefore considered homogeneous for the 

purposes of calculation of mission durations (service time). The duration distribution is 

calculated for each mission type, but because of server homogeneity, there is no 

requirement to assess separately for individual teams. 

   In this analysis section, the ability of the model to replicate the real-world mission 

duration distribution for the EMRS system will be assessed. 
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a) Median mission durations 

Secondary missions 

   In the retrospective simulation period, the simulation generated a median mission 

duration of 7h 20m (95% PI: 7h 1m – 7h 37m, mean duration = 7h 19m), compared to a 

real-world median duration of 7h 12m (model accuracy = 98.1%) (Fig 2.69). The medians 

were not significantly different on Mann-Whitney U-testing (p = 0.30). 

 

 

Fig. 2.69: Boxplot of simulated EMRS secondary mission durations across all iterations (median = 7h 20m, 

IQR: 7h 13m – 7h 25m), with mean = 7h 19m (black diamond) and real-world median (7h 12m) 

marked (black line). Medians not significantly different to real-world (Mann-Whitney U-test p = 

0.30). Retrospective simulation period: calendar years 2013 – 2014. 
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Primary missions 

   In the retrospective simulation period, the simulation generated primary missions with a  

median mission duration of 2h 51m (95% PI: 2h 46m – 2h 57m, mean duration = 2h 51m) 

compared to a real-world testing dataset median of 2h 15m (model accuracy = 72.3%) (Fig. 

2.70). The 36-minute absolute difference in medians was significantly different on Mann-

Whitney U-testing (p < 0.001). It is likely that this constitutes an operationally significant 

difference. 

 

 

Fig. 2.70: Boxplot of simulated EMRS primary mission median durations across all iterations (median = 2h 

51m, IQR: 2h 49m – 2h 53m), with simulation mean = 2h 51m (black diamond), real-world 

median (2h 15m, solid black line). Median significantly different to real-world (Mann-Whitney U-

test p = < 0.001). Retrospective simulation period: calendar years 2013 – 2014. 
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b) Mission duration distributions 

Secondary missions 

   Simulated EMRS secondary mission durations were gamma distributed (Fig. 2.71) with 

parameter values κ = 6.61 (95% CI: 6.58 – 6.63) and θ = 0.05 (95% CI: 0.05 – 0.05). By 

comparison, the real-world data (Fig. 2.72) demonstrated κ = 6.39 (95% CI: 5.70 – 7.15) 

and θ = 0.05 (95% CI: 0.04 – 0.06). Given that the simulated values lie within the 95% 

confidence intervals of the real-world data, the distributions can be considered not 

significantly different and the fitted gamma distribution for simulated missions appeared to 

match its real-world equivalent closely (Fig. 2.73). 

 

 

Fig. 2.71: Probability density histogram of simulated EMRS secondary mission durations with 30-minute 

bins. Fitted gamma distribution (red line) parameter values: κ = 6.61 and θ = 0.05. Retrospective 

simulation period: calendar years 2013 – 2014. 
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Fig. 2.72: Probability density histogram of real-world test dataset EMRS secondary mission durations with 

30-minute bins. Fitted gamma distribution (black line) parameter values: κ = 6.39 and θ = 0.05. 

Retrospective simulation period: calendar years 2013 – 2014. 
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Fig. 2.73: Comparison of fitted EMRS secondary mission durations gamma-distribution PDFs for simulated 

missions (red line), parameter values κ = 6.61 (95% CI: 6.58 – 6.63) and θ = 0.05 (95% CI: 0.05 

– 0.05).  Real-world test dataset missions (black line), parameter values κ = 6.39 (95% CI: 5.70 – 

7.15) and θ = 0.05 (95% CI: 0.04 – 0.06). Retrospective simulation period: calendar years 2013 – 

2014. 
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Primary missions 

   The fitted gamma distributions for EMRS primary missions appeared broadly similar 

between the simulation data (Fig. 2.74) and the real-world testing dataset durations (Fig. 

2.75). Simulated missions were gamma distributed with parameter values κ = 6.64 (95% 

CI: 6.62 – 6.66) and θ = 0.02 (95% CI: 0.02 – 0.02). By comparison, the real-world data 

demonstrated κ = 5.24 (95% CI: 4.71 – 5.83) and θ = 0.02 (95% CI: 0.02 – 0.02). Given 

that the simulation parameter value for κ lies outside the 95% confidence interval for the 

real-world distribution, the overall mission duration distributions are significantly different 

(Fig. 2.76). 

 

 

Fig. 2.74: Probability density histogram of simulated EMRS primary mission durations with 30-minute bins. 

Fitted gamma distribution (red line) parameter values: κ = 6.64 and θ = 0.02. Retrospective 

simulation period: calendar years 2013 – 2014. 

  

  



Part 2 | Chapter 6 Results: EMRS simulation 244 

 
 

Fig. 2.75: Probability density histogram of real-world test dataset EMRS primary mission durations with 30-

minute bins. Fitted gamma distribution (black line) parameter values: κ = 5.24 and θ = 0.02. 

Retrospective simulation period: calendar years 2013 – 2014. 
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Fig. 2.76: Comparison of fitted EMRS primary mission durations gamma-distribution PDFs for simulated 

missions (red line), parameter values κ = 6.64 (95% CI: 6.62 – 6.66) and θ = 0.02 (95% CI: 0.02 

– 0.02). Real-world test dataset missions (black line), parameter values κ = 5.24 (95% CI: 4.71 – 

5.83) and θ = 0.02 (95% CI: 0.02 – 0.02). Retrospective simulation period: calendar years 2013 – 

2014. 
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c) Empirical Cumulative Distribution Function (ECDF) of EMRS mission durations 

by elapsed time 

Secondary missions 

   Direct comparison of the ECDFs of simulated EMRS secondary mission durations and 

real-world testing data mission durations demonstrated them to be very closely aligned 

(Fig. 2.77). This was confirmed by a non-significant difference on Kolmogorov-Smirnov 

testing (p = 0.84). 

 

 

Fig. 2.77: ECDFs of EMRS secondary mission durations by hours for simulation output (red line) and real-

world test dataset missions (black line). Kolmogorov-Smirnov test p = 0.84. Retrospective 

simulation period: calendar years 2013 – 2014. 
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Primary missions 

   Direct comparison of the mission duration ECDFs between the simulated EMRS primary 

missions and the real-world testing data demonstrated a broadly similar appearance (Fig. 

2.78), but a statistically significant difference to Kolmogorov-Smirnov testing (K-S Test p 

< 0.001). 

 

 

Fig. 2.78: ECDFs of EMRS primary mission durations by hours for simulation output (red line) and real-

world test dataset missions (black line). Kolmogorov-Smirnov test p < 0.001. Retrospective 

simulation period: calendar years 2013 – 2014. 
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d) Summary: EMRS mission durations, retrospective simulation period 

   The EMRS model has accurately replicated the real-world secondary mission durations, 

demonstrating close approximations of the median mission durations and no significant 

difference in either fitted gamma distributions or ECDFs.  

   The model’s replication of the real-world primary missions is, however, sub-optimal. 

The accuracy of the simulated median was 72.3% with an absolute difference of 36 

minutes to the real-world testing data median it is likely, but not certain, to be 

operationally significant. The difference between the medians, fitted gamma distributions 

and ECDFs were, however, all statistically significant.  
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2.6.1.5. Retrospective simulation of EMRS server utilization  

   Both EMRS duty teams undertake primary and secondary missions, which are distributed 

on a first-in-first-out (FIFO) queue basis to the Duty One team. If they are unavailable, the 

mission is passed to the Duty Two team. Server utilization is therefore split by team, not by 

primary / secondary mission type. Consideration of the utilization by individual team will 

assist in establishing if the distribution of missions is correct between each of the two 

teams. 

 

a) EMRS server utilization quotient – whole service 

   During the retrospective simulation period, the model generated an iterative median total 

EMRS server utilization of 19.4% (95% PI:18.2% - 20.3%, mean = 19.4%), compared to a 

real-world value of 19.6% utilization (model accuracy: 99.0%) (Fig. 2.79). Commensurate 

with this, Mann-Whitney U-testing did not find the 0.2% difference to be statistically 

significant (p = 0.77), nor would this be considered operationally significant, given the 

model’s accuracy.  
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Fig. 2.79: Boxplot of simulation total EMRS iterative server utilization quotients (median = 19.4%, IQR: 

19.1% - 19.8%), with simulation mean = 19.4% (black diamond) and real-world value (19.6%) 

marked (black line). Median not significantly different to real-world value (Mann-Whitney U-test 

p = 0.77). Retrospective simulation period: calendar years 2013-2014. 
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b) EMRS server utilization quotient – Duty One team 

   When the utilization was examined by individual team, the simulation generated a 

median server utilization of 27.9% (95% PI: 26.3% – 29.2%, mean = 27.2%) for the Duty 

One team, compared to a 31.8% utilization in the real-world testing data (model accuracy = 

87.5%) (Fig. 2.80). The difference between these values approached significance on Mann-

Whitney U testing (p = 0.09). Therefore, the model under-estimated the utilization of the 

Duty One team, but not by a statistically significant margin. Whether the 3.9% absolute 

error is operationally significant is unknown. 

 

 

Fig. 2.80: Boxplot of simulation EMRS duty 1 team iterative server utilization quotients (median = 27.9%, 

IQR: 27.4% – 28.2%), with simulation mean = 27.2% (black diamond) and real-world value 

(31.8%) marked (black line). Median not significantly different to real-world value (Mann-

Whitney U-test p = 0.09). Retrospective simulation period: calendar years 2013-2014. 
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c) EMRS server utilization quotient – Duty Two team 

   In the same simulation period, the model generated a median server utilization for the 

Duty 2 team of 11.2% (95% PI: 9.8% - 12.1%, mean = 11.1%) compared to a real-world 

utilization of 7.4% (model accuracy = 48.6%) (Fig. 2.81). The difference between these 

values also approached significance with a Mann-Whitney U test p = 0.08. Given the 

smaller utilization value, the 3.7% difference between the model and real-world would 

have to be considered operationally significant for the Duty 2 team. 

 

 

Fig. 2.81: Boxplot of simulation EMRS duty 2 team iterative server utilization quotients (median = 11.2%, 

IQR: 10.7% - 11.5%), with simulation mean = 11.1% (black diamond), and real-world value 

(7.4%) marked (black line). Median not significantly different to real-world value (Mann-Whitney 

U-test p = 0.08). Retrospective simulation period: calendar years 2013-2014. 
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d) Summary: EMRS server utilization, retrospective simulation 

   Based on this analysis, it is considered that the model had correctly replicated the real-

world total EMRS server utilization.  

   On balance of all the factors contributing to the analysis of individual server utilization, it 

appears that the model under-estimated the utilization of the Duty One team, while over-

estimating the utilization of the Duty Two team. It is likely this has been because of the 

allocation of an excess of missions to the Duty One team by the model. The reason for this 

is unclear but will be further explored in the Part 2 discussion section. Given that that, at 

this stage, the parameters investigated with regard to system performance do not rely on 

individual team utilizations, this will not be analysed further in this thesis. 
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2.6.1.6  Summary of EMRS retrospective simulation results  

   The EMRS model is considered to have accurately replicated the real-world with regard 

to all the secondary mission components studied during the retrospective simulation 

period.  

   The model has also accurately replicated the real-world primary mission components 

with the exception of mission durations. 

   However, the model has accurately replicated the real-world value of a derived variable: 

total server utilization. As a derived variable, the server utilization is a product of two other 

variables – in this case number of missions and mission durations. The server utilization 

has therefore incorporated the primary mission duration estimation, with its associated 

difference to the real-world. As this does not appear to have translated into a significant 

difference in server utilization, it is likely that there is some resilience within the system to 

absorb errors in the magnitude of 36 minutes for median primary mission duration. As a 

result of this, it is considered that the model, overall, replicated the real-world to an 

operationally acceptable standard. 

  The model has generated an acceptable replication of the real-world and, in particular, has 

derived an accurate server utilization value. These results lend validity to the assumption of 

mathematical similarity between the components of the model and the corresponding real-

world processes. It is therefore considered that subsequent derived system performance 

values (e.g. Waiting time in the queue, Wq) will also be valid. Any derived performance 

values can therefore be expected to provide an operationally acceptable overall 

representation of the real-world system during the 2013 – 2014 calendar years. 
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2.6.2.  Contemporaneous simulation of EMRS operations  

   In this section, the performance of the EMRS M/G/2 model will be assessed using the 

same parameters for a one-year simulation period comprising the calendar year 2015. 

   The model will be run in a “contemporaneous” format, primed with data from the 

retrospective simulation period, and receiving new data only up to the current simulation 

time. The output of the simulation at any point in time should be a contemporaneous 

representation of the real-world system state. 

   The purpose of this analysis is to establish if the model is capable of describing the 

immediate, current state of the SPRS system, effectively in real-time, at any point during 

the simulation period. 

   As with the SPRS contemporaneous simulation, the distributions of activation time of 

day, inter-arrival time and mission duration were unable to be calculated on a daily basis 

due to a lack of computing power. These distributions are therefore compared based on the 

whole 2015 calendar year as the sampling period (see section 2.5.2 for further details). 
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2.6.2.1.  Contemporaneous simulation of EMRS mission count  

a) Progressive daily EMRS mission total 

   The daily cumulative number of missions were closely matched between the real-world 

and the simulation iterative median for both mission types. The real-world cumulative 

value remained within the 95% prediction intervals for both primary and secondary 

missions throughout the entire simulated time period (Fig. 2.82).  

 

 

Fig. 2.82: Cumulative EMRS secondary mission count by day demonstrating: simulation iterative median 

(solid red line) and 95% prediction intervals of simulation (dashed red lines). The real-world 

cumulative count (black line) is contained within the bounds set by the 95% prediction intervals 

for the entire time period. Contemporaneous simulation period: calendar year 2015. 

  



Part 2 | Chapter 6 Results: EMRS simulation 257 

 
 

Fig. 2.83: Cumulative EMRS primary mission count by day demonstrating: simulation iterative median (solid 

red line) and 95% prediction intervals of simulation (dashed red lines). The real-world cumulative 

count (black line) is contained within the bounds set by the 95% prediction intervals for the entire 

time period. Contemporaneous simulation period: calendar year 2015. 
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b) Total number of EMRS missions 

Secondary missions:    

   In the contemporaneous period, the model generated an iterative median of 240 EMRS 

secondary missions (95% Prediction Interval: 213 – 276m, mean = 242) compared to 239 

real-world primary missions during the same time period (iterative median = 99.6% 

accurate) (Fig. 2.84). The median total number of secondary missions was not statistically 

significantly different to the real-world (Mann-Whitney U test p = 0.77) 

 

 

Fig. 2.84: Boxplot of simulated total EMRS secondary missions count by iteration (median = 240, IQR: 233 

– 249), with mean = 242 (black diamond) and real-world value (239 missions) marked (black 

line). Difference not significant (Mann-Whitney U-test p = 0.77). Contemporaneous simulation 

period: calendar year 2015. 

 

 

    

  



Part 2 | Chapter 6 Results: EMRS simulation 259 

 
 

Primary missions:    

   During the same period, the model simulated an iterative median of 470 primary EMRS 

missions (95% Prediction Interval: 424 – 513, mean = 478) compared to 466 real-world 

primary missions during the same time period (iterative median = 99.1% accurate) (Fig. 

2.85). The median total number of primary missions generated was not significantly 

different to the real-world (Mann-Whitney U test p = 0.84). 

 

 

Fig. 2.85: Boxplot of simulated total EMRS primary missions count by iteration (median = 470, IQR: 457 – 

486), with mean = 478 (black diamond) and real-world value (466 missions) marked (black line). 

Difference not significant (Mann-Whitney U-test p = 0.84). Contemporaneous simulation period: 

calendar year 2015. 
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c) Empirical Cumulative Distribution Function (ECDF) of number of EMRS missions 

by date 

Secondary missions:    

  Comparison of the simulation output and real-world ECDFs for EMRS secondary 

missions demonstrated a close approximation of the curves (Fig. 2.86), which were not 

significantly different on Kolmogorov-Smirnov testing (p = 0.97). 

 

 

Fig. 2.86: ECDF of cumulative daily EMRS secondary mission count showing: simulation iterative median 

(red line) and real-world (black line). Kolmogorov-Smirnov test p = 0.97. Contemporaneous 

simulation period: calendar year 2015. 
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Primary missions: 

   Primary missions generated by the simulation also approximated the real-world ECDF 

(Fig. 2.87) and were not significantly different on Kolmogorov-Smirnov testing (p = 0.97). 

Of note, the simulation has accurately replicated the seasonal variation of primary missions, 

with time-varying gradient corresponding to the higher arrival rate in the summer months. 

 

 

Fig. 2.87: ECDF of cumulative daily EMRS primary mission count showing: simulation iterative median (red 

line) and real-world (black line). Kolmogorov-Smirnov test p = 0.97. Contemporaneous 

simulation period: calendar year 2015. 

 

 

d) Summary: EMRS mission count, contemporaneous simulation 

   The model was able to produce an accurate contemporaneous replication of the number 

of real-world missions at any point during the simulation period. It also successfully 

replicated the total number of missions and the overall mission distribution through the 

year.  
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2.6.2.2   Contemporaneous EMRS activation times of day  

   There is no progressive measure by which to compare the simulated and real-world 

activation times. This analysis is therefore reflective of the entire contemporaneous 

simulation period. 

 

a) Probability of EMRS activation by time of day 

Secondary missions 

   Simulated secondary missions displayed a peak probability of activation in the 1000h – 

1100h period (Fig. 2.88), compared to 1100h – 1200h in the real-world testing dataset 

missions (Fig. 2.89). There was an overall similarity of the pattern but, as expected, with 

variability in the real-world histogram. The median model accuracy by hour was 71.7%. 

 

Fig. 2.88: Normalized probability histogram (area under plot = 1) of simulated EMRS secondary mission 

activations by hour of day. Mode in 1000h – 1100h period. Contemporaneous simulation period: 

calendar year 2015. 
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Fig. 2.89: Normalized probability histogram (area under plot = 1) of real-world test dataset EMRS 

secondary mission activations by hour of day. Mode in 1100h – 1200h period. Contemporaneous 

simulation period: calendar year 2015.  
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Primary missions 

   During the contemporaneous simulation period, the model generated primary missions 

(Fig. 2.90) in a distribution which did not display as obvious a peak in activations as the 

real-world testing data (median model accuracy by hour = 78.0%). Simulated primary 

mission activations were maximal in the 1300h – 1400h time period, the same as real-

world testing dataset (Fig. 2.91).  

 

 

Fig. 2.90: Normalized probability histogram (area under plot = 1) of simulated EMRS primary mission 

activations by hour of day. Mode in 1300h – 1400h period. Contemporaneous simulation period: 

calendar year 2015. 
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Fig. 2.91: Normalized probability histogram (area under plot = 1) of real-world test dataset EMRS primary 

mission activations by hour of day. Mode in 1400h – 1500h period. Contemporaneous simulation 

period: calendar year 2015. 
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b) Empirical Cumulative Distribution Function (ECDF) of EMRS activations by time 

of day 

Secondary missions 

   The ECDFs of the contemporaneously simulated and real-world test dataset EMRS 

secondary missions were similar in appearance, including the inflection point in the 0700h 

– 0800h period (Fig. 2.92). The relatively low number of secondary missions in the 

contemporaneous real-world testing dataset contributed a more irregular appearance to the 

real-world ECDF. The ECDFs were not significantly different on Kolmogorov-Smirnov 

testing (p = 0.42). 

 

 

Fig. 2.92: ECDFs of EMRS secondary mission activations by time of day for simulation output (red line) and 

real-world test dataset (black line). Kolmogorov-Smirnov test p = 0.42. Contemporaneous 

simulation period: calendar year 2015. 
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Primary missions 

   Comparison of the ECDFs for EMRS primary mission activation times in the 

contemporaneous simulated period demonstrated outwardly similar curves (Fig. 2.93), with 

a strong sigmoid-shape reflecting the hours of operation for the primary missions. 

However, despite the outward similarity, the ECDFs were significantly different on 

Kolmogorov-Smirnov testing (p < 0.001). This principally appears to have been accounted 

for by the simulated missions starting earlier than in the real-world testing dataset. It is 

unlikely, however, that this difference would be operationally significant given the overall 

similarity of the curves. 

 

 

Fig. 2.93: ECDFs of EMRS primary mission activations by time of day for simulation output (red line) and 

real-world test dataset (black line). Kolmogorov-Smirnov test p < 0.001. Contemporaneous 

simulation period: calendar year 2015.  
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c) Summary: EMRS activations by time of day, contemporaneous simulation 

   The contemporaneous EMRS simulation is considered to have accurately replicated the 

real-world activation times of day with regard to secondary missions. 

   The simulation’s performance in replicating the real-world primary missions is 

operationally acceptable. It has adequately replicated the working hours of the EMRS 

primary missions service, albeit with a somewhat different histogram appearance, and a 

correspondingly lower accuracy measure. The primary missions ECDFs appeared visually 

very similar and are considered unlikely to be operationally different, although they were 

statistically different. 
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2.6.2.3.  Contemporaneous simulation of EMRS inter-arrival times  

   Similarly to the activation time of day distribution, a suitable progressive measure of 

inter-arrival time distribution was not available. There was inadequate computational 

power to repeatedly fit and compare exponential distributions throughout the simulation 

period. Simpler measures such as measuring the mean or median inter-arrival time 

effectively duplicates the results of contemporaneously simulating the total number of 

missions.  The inter-arrival time distribution is therefore also calculated based on the entire 

contemporaneous simulation period dataset. 

 

a) Probability (PDF) of inter-arrival time by hour, EMRS missions 

Secondary missions    

   Secondary missions in the contemporaneous simulation period demonstrated a strongly 

exponential distribution of inter-arrival times (Fig 2.94) with evidence of multi-modality 

within. Neither the overall distribution nor multi-modality was as clearly demonstrated in 

the real-world testing data (Fig 2.95). The relative sparsity of data points in the real-world 

testing dataset would appear to contribute somewhat to the histogram appearance. Despite 

this, the fitted exponential distributions were not significantly different: real-world μ = 

1.38 (95% CI: 1.21 – 1.57) compared to a simulation μ = 1.50 (95% CI: 1.50 – 1.51) (Fig. 

2.96). 
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Fig. 2.94: Probability density histogram of simulated EMRS secondary mission inter-arrival times with one-

hour bins. Fitted exponential distribution μ = 1.38 (red line). Contemporaneous simulation 

period: calendar year 2015. 
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Fig. 2.95: Probability density histogram of real-world test dataset EMRS secondary mission inter-arrival 

times with one-hour bins. Fitted exponential distribution μ = 1.50 (black line). Contemporaneous 

simulation period: calendar year 2015. 
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Fig. 2.96: Comparison of fitted exponential probability distribution functions of EMRS secondary mission 

inter-arrival times by hour for: simulated missions (red line), μ = 1.50 (95% CI: 1.50 – 1.51) and 

real-world test dataset missions (black line), μ = 1.38 (95% CI: 1.21 – 1.57). Contemporaneous 

simulation period: calendar year 2015. 
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Primary missions    

   Simulated primary missions again demonstrated a strongly multi-modal distribution 

during the contemporaneous simulation time period (Fig.2.97) in keeping with the real-

world’s cyclical time-varying demand (Fig 2.98). The simulated data fitted inter-arrival μ = 

0.77 (95% CI: 0.77 – 0.77) was closely approximated to the real-world fitted μ = 0.76 

(95% CI: 0.70 – 0.84) (Fig. 2.99). 

 

 

Fig. 2.97: Probability density histogram of simulated EMRS primary mission inter-arrival times with one-

hour bins. Fitted exponential distribution μ = 0.77 (red line). Contemporaneous simulation 

period: calendar year 2015. 
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Fig. 2.98: Probability density histogram of real-world test dataset EMRS primary mission inter-arrival times 

with one-hour bins. Fitted exponential distribution μ = 0.76 (black line). Contemporaneous 

simulation period: calendar year 2015. 
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Fig. 2.99: Comparison of fitted exponential probability distribution functions of EMRS primary mission 

inter-arrival times by hour for: simulated missions (red line), μ = 0.77 (95% CI: 0.77 – 0.77) and 

real-world test dataset missions (black line), μ = 0.76 (95% CI: 0.70 – 0.84). Contemporaneous 

simulation period: calendar year 2015. 
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b) Empirical Cumulative Distribution Function (ECDF) of inter-arrival time by hour 

Secondary missions: 

   Direct comparison between the real-world and simulated data ECDFs showed curves 

which demonstrated an overall similar appearance (Fig 2.100), albeit with more variation 

in the smaller dataset of the real-world data. The ECDFs were not significantly different to 

Kolmogorov-Smirnov testing (p = 0.37). 

 

 

Fig. 2.100: ECDFs of EMRS secondary mission inter-arrival times by hours for simulation output (red line) 

and real-world testing dataset missions (black line). Kolmogorov-Smirnov test p = 0.86. 

Contemporaneous simulation period: calendar year 2015. 
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Primary missions: 

   Comparison of the primary missions raw simulated inter-arrival times to the real-world 

testing data ECDFs showed curves which appeared to grossly approximate (Fig 2.101), and 

demonstrated the cyclical time-varying demand of the system. The ECDFs were 

significantly different on Kolmogorov-Smirnov testing (p = 0.03) but given the overall 

similarity of the ECDFs, this may not be an operationally significant difference.  

 

 

Fig. 2.101: ECDFs of EMRS primary mission inter-arrival times by hours for simulation output (red line) 

and real-world testing dataset missions (black line). Kolmogorov-Smirnov test p = 0.03. 

Contemporaneous simulation period: calendar year 2015. 
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d) Summary: EMRS inter-arrival times, contemporaneous simulation 

   In the contemporaneous simulation period, the model has accurately replicated the inter-

arrival time distribution for the EMRS secondary missions. 

   The model generated a histogram for primary mission inter-arrival times which appeared 

to show a very good approximation of the real-world, associated with an ECDF which also 

produced an outwardly similar appearance, despite the findings of the ECDFs being 

significantly different. On balance, it is considered that the model did adequately replicate 

the real-world primary mission inter-arrival times adequately for operational purposes. 

   As the distributions could not be compared on a daily basis, the comparison has been 

made over the entire one-year simulation period, whilst retaining the contemporaneous 

simulation methodology. It is therefore considered that the model was able to accurately 

replicate the current, contemporaneous real-world inter-arrival time distribution based on a 

one-year sampling window corresponding with the 2015 calendar year. 

 

 

 

2.6.2.4.  Contemporaneous simulation of EMRS mission durations  

   This analysis section demonstrates the ability of the model to contemporaneously 

replicate the real-world EMRS mission durations. The median mission duration is used as 

the principal measure of the model accuracy, progressively through the simulation period. 

The overall simulation output is then analysed at the end of the 2015 calendar year. 
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a) Progressive values of EMRS median mission duration 

Secondary missions 

   The simulated median mission duration, after exhibiting initial volatility demonstrated a 

stable maximum of 7h 27m during March, falling to a stable minimum of 7h 16m in 

October before rising slightly to a final value of 7h 19m. The 95% prediction intervals 

narrowed progressively in keeping with the increasing available data. After also displaying 

initial volatility, the real-world testing data demonstrated a stable maximum of 7h 30m at 

the end of April. The median value appeared closely approximated by the real-world for 

the majority of the year until the real-world value began to diverge at the beginning of 

September, reaching a minimum value of 6h 55m in November. Despite the change in the 

real-world median value, which was not tracked by the model, it was contained within the 

95% prediction interval of the simulation output throughout the entire time period (Fig. 

2.102) 

 

Fig. 2.102: Median EMRS secondary mission durations by day, comparing progressive simulation median 

(solid red line) and 95% prediction intervals (dashed red lines) to the real-world test dataset 

median duration (black line). Contemporaneous simulation period: calendar year 2015. 
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Primary missions 

   In the contemporaneous simulation period, the median primary mission duration 

generated by the model remained relatively steady throughout the simulation period, 

including relatively little initial volatility. The stable maximum simulation median value 

was 2h 59m in January and fell to a stable minimum of 2h 49m during March. The value 

remained almost constant through the remainder of the simulation to the final value of 2h 

52m. The median value of the simulated missions also remained relatively steady. After a 

brief period of volatility, the real-world testing data median mission duration demonstrated 

a transient maximum of 2h 28m in June, falling to a stable minimum of 2h 10m before 

climbing to a final value of 2h 14m. The real-world median was outside the 95% prediction 

interval for all but a brief period at the start of the simulation period (Fig. 2.103). It is, 

however considered that any similarity deduced from these initial values is likely to be a 

type 2 error. 

 

Fig. 2.103: Median EMRS primary mission durations by day, comparing progressive simulation median 

(solid red line) and 95% prediction intervals (dashed red lines) to the real-world test dataset 

median duration (black line). Contemporaneous simulation period: calendar year 2015. 
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b) Durations of all simulated EMRS missions 

Secondary missions 

   At the conclusion of the contemporaneous time period, the simulation had generated a 

final median secondary mission duration of 7h 19m (95% PI: 6h 53m – 7h 41m, mean = 7h 

19m), compared to a real-world testing dataset mission duration of 6h 56m (model 

accuracy = 94.5%) (Fig. 2.104). The median was not significantly different to the real-

world value on Mann-Whitney U testing (p = 0.90). 

 

 

Fig. 2.104: Boxplot of simulated EMRS secondary mission durations (median = 7h 19m, IQR: 7h 10m – 7h 

28m), with simulation mean = 7h 19m (black diamond), and real-world value (2h 14m) marked 

(black line). Medians not significantly different (Mann-Whitney U-test p = 0.90). 

Contemporaneous simulation period: calendar year 2015. 
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Primary missions 

   At the conclusion of the contemporaneous simulation period, the simulation output had 

generated a final median primary mission duration of 2h 52m (95% PI: 2h 41m – 3h 00m, 

mean = 2h 52m), compared to a real-world testing dataset mission duration of 2h 14m 

(model accuracy = 71.7%) (Fig. 2.105). The simulation and real-world medians were 

significantly different to Mann-Whitney U-testing (p < 0.0001). This result is similar to 

that obtained in the retrospective simulation period and its operational significance is 

uncertain. 

 

 

Fig. 2.105: Boxplot of simulated EMRS primary mission durations (median = 2h 52m, IQR: 2h 49m – 2h 

55m), with simulation mean = 2h 52m (black diamond), and real-world value (2h 14m) marked 

(black line). Medians significantly different (Mann-Whitney U-test p < 0.0001). Contemporaneous 

simulation period: calendar year 2015. 
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c) Probability (PDF) of EMRS mission durations by elapsed time, with fitted gamma 

distributions 

Secondary Missions: 

   Simulated EMRS secondary mission durations demonstrated an overall gamma 

distribution (Fig. 2.106). The relatively small number of data points in the real-world 

EMRS secondary missions testing dataset is reflected in the variability of the histogram but 

which also followed a generally gamma distribution (Fig. 2.107). Simulated mission 

durations displayed parameter values κ = 6.76 (95% CI: 6.72 – 6.80) and θ = 0.05 (95% 

CI: 0.05 – 0.05). Real-world missions during the same period demonstrated κ = 7.62 (95% 

CI 6.39 – 9.18) and θ = 0.04 (95% CI: 0.03 – 0.05). The simulated values for both κ and θ 

lie within the 95% CI of the real-world data and the two distributions are therefore not 

significantly different (Fig. 2.108).  

 

 

Fig. 2.106: Probability density histogram of simulated EMRS secondary mission durations with 30-minute 

bins. Fitted gamma distribution (red line) parameter values: κ = 6.76 and θ = 0.05. 

Contemporaneous simulation period: calendar year 2015. 
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Fig. 2.107: Probability density histogram of real-world test dataset EMRS secondary mission durations with 

30-minute bins. Fitted gamma distribution (black line) parameter values: κ = 7.62 and θ = 0.04. 

Contemporaneous simulation period: calendar year 2015. 

 

 

 

  



Part 2 | Chapter 6 Results: EMRS simulation 285 

 
 

Fig. 2.108: Comparison of fitted EMRS secondary mission durations gamma-distribution PDFs for simulated 

missions (red line), parameter values κ = 6.76 (95% CI: 6.72 – 6.80) and θ = 0.05 (95% CI: 0.05 – 

0.05). Real-world test dataset missions (black line), parameter κ = 7.62 (95% CI 6.39 – 9.18) and 

θ = 0.04 (95% CI: 0.03 – 0.05). Contemporaneous simulation period: calendar year 2015. 
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Primary Missions: 

   Both the simulated (Fig. 2.109) and real-world testing dataset (Fig. 2.110) EMRS 

primary missions demonstrated overall gamma-distributed mission durations. Given that 

the medians appeared significantly different, with a relatively low value for model 

accuracy, it was unsurprising that the fitted gamma distributions also appeared to be 

significantly different with regard to their κ parameter values. 

   The simulated EMRS primary missions demonstrated a gamma distribution with 

parameter values κ = 6.74 (95% CI: 6.71 – 6.77) and θ = 0.02 (95% CI: 0.02 – 0.02). The 

simulated value κ value did not lie within the confidence interval of the corresponding real-

world gamma distribution with parameter values κ = 4.87 (95% CI: 4.20 – 5.65), θ = 0.02 

(95% CI: 0.02-0.03) (Fig. 2.111). 

 

 

Fig. 2.109: Probability density histogram of simulated EMRS primary mission durations with 30-minute bins. 

Fitted gamma distribution (red line) parameter values: κ = 6.74 and θ = 0.02. Contemporaneous 

simulation period: calendar year 2015. 
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Fig. 2.110: Probability density histogram of real-world test dataset EMRS primary mission durations with 30-

minute bins. Fitted gamma distribution (black line) parameter values: κ = 4.87 and θ = 0.02. 

Contemporaneous simulation period: calendar year 2015. 
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Fig. 2.111: Comparison of fitted EMRS primary mission durations gamma-distribution PDFs for simulated 

missions (red line), parameter values κ = 6.74 (95% CI: 6.71 – 6.77) and θ = 0.02 (95% CI: 0.02 – 

0.02). Real-world test dataset missions (black line), parameter κ = 4.87 (95% CI: 4.20 – 5.65), θ = 

0.02 (95% CI: 0.02-0.03). Contemporaneous simulation period: calendar year 2015. 
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d) Empirical Cumulative Distribution Function (ECDF) of EMRS mission durations 

by elapsed time 

Secondary Missions 

   In keeping with the findings of similarity in progressive median, end-value median and 

gamma distributions, direct comparison of the ECDFs for EMRS secondary missions 

demonstrated a close approximation of the simulation output and the real-world testing 

data (Fig. 2.112). The ECDFs were not significantly different on Kolmogorov-Smirnov 

testing (p = 0.34). 

 

 

Fig. 2.112: ECDFs of EMRS secondary mission durations by hours for simulation output (red line) and real-

world test dataset missions (black line). Kolmogorov-Smirnov test p = 0.34. Contemporaneous 

simulation period: calendar year 2015. 
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Primary Missions 

   In contrast to the secondary missions, but again in keeping with the previous analyses, 

the ECDFs of mission durations demonstrated grossly similar, but not well-approximated 

curves between the simulation output and the real-world testing data (Fig. 2.113). The 

ECDFs were significantly different on two-sample Kolmogorov-Smirnov testing (p < 

0.001). 

   However, it was noted that comparing the simulation output ECDF to the real-world 

testing data gamma distribution CDF (Fig. 2.114), that the difference ceased to be 

statistically significant (one-sample Kolmogorov-Smirnov p = 0.22). 

 

 

Fig. 2.113: ECDFs of EMRS primary mission durations by hours for simulation output (red line) and real-

world test dataset missions (black line). Two-sample Kolmogorov-Smirnov test p < 0.001 

Contemporaneous simulation period: calendar year 2015. 
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Fig. 2.114: Comparison of EMRS primary mission durations by hours demonstrating: ECDF of simulation 

output (red line) and CDF of real-world test data duration fitted gamma distribution (black line). 

One-sample Kolmogorov-Smirnov test p = 0.22. Contemporaneous simulation period: calendar 

year 2015. 

 

 

 

e) Summary: EMRS mission durations, contemporaneous simulation period 

   The EMRS model was able to accurately replicate the contemporaneous state of the real-

world with regard to secondary mission durations at any point in the 2015 calendar year. 

   The EMRS model generated multiple parameters which were statistically significantly 

different to the real-world with regard to primary mission durations. The model was not 

able to progressively replicate the current real-world system state with regard to primary 

mission durations. Its ability to contemporaneously represent the system at the end of the 

2015 calendar year, with a one-year sampling window is equivocal. 
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2.6.2.5.  Contemporaneous simulation of EMRS server utilization 

   This analysis section demonstrates the ability of the model to contemporaneously 

replicate the real-world EMRS server utilization. The iterative median server utilization is 

used as the primary measure of the model accuracy, progressively through the simulation 

period. The overall simulation output is then analysed for the entire simulation period. 

Utilization is a derived value, being a factor of both the mission durations and the number 

of missions. 

 

a) Progressive value of total EMRS server utilization quotient 

  The EMRS total server utilization demonstrated some initial volatility and an initial value 

of 28.8% utilization which rapidly decreased during the first month of the simulation to a 

stable maximum of 18.4% in February, then falling gradually to a stable minimum of 

17.8% utilization in August before a minimal rise to a final value of 17.9% (Fig. 2.115).  

   The real-world demonstrated considerably more variation of the utilization value than the 

simulation. After initial volatility, the real-world utilization reaches a minimum of 13.6% 

during February, then stabilises at approximately 15.5% utilization. Through May, June 

and July the real-world utilization increased (perhaps correlating with increased primary 

mission activity) to remain stable at approximately 17.5% utilization. A stable peak of 

18.0% utilization was reached in October, before the real-world utilization reduced again 

to the final value of 17.1%. 

   The real-world value was contained within the simulation 95% prediction intervals for a 

short period during January, and then from mid-June until the end of the simulation. This 

would suggest that an appropriate sampling window over which utilization could be 

contemporaneously reported would be approximately 6 months. 
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Fig. 2.115: Median total EMRS server utilization by day, comparing simulation iterative median (solid red 

line) and 95% prediction intervals (dashed red lines) to the real-world test dataset median 

duration (black line). Final values not significantly different (Mann-Whitney U-test p = 0.19). 

Contemporaneous simulation period: calendar year 2015. 
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b) EMRS server utilization quotient: end of 2015 calendar year 

   At the end of the 2015 calendar year, the EMRS simulation had generated a current 

iterative median total server utilization of 17.9% (95% PI: 16.6% - 19.9%, mean = 18.0%), 

compared to a real-world utilization of 17.1% in the same time period (model accuracy = 

95.3%) (Fig. 2.116). The difference was not significantly different on Mann-Whitney U-

testing (p = 0.19), nor would the 0.8% absolute difference be considered operationally 

significant. 

 

 

Fig. 2.116: Boxplot of simulation total EMRS iterative server utilization quotients (median = 17.9%, IQR: 

17.5% - 18.4%), simulation mean = 18.0% (black diamond) and real-world value (17.1%) marked 

(black line). Median not significantly different to real-world value (Mann-Whitney U-test p = 

0.19). Contemporaneous simulation period: calendar year 2015. 
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c) Summary: EMRS server utilization, contemporaneous simulation 

   The contemporaneous simulation of EMRS server utilization demonstrated some success 

by accurately replicating the current server utilization quotient from June onwards and 

demonstrating a small, non-significant difference in the final utilization value. 

  The model has therefore accurately replicate the current, contemporaneous real-world 

server utilization quotient at any time in the second-half of the 2015 calendar year, based 

on a 6-month sampling window. 

   The relative utilization of each server (Duty One and Duty Two teams) within the EMRS 

system is not required for the ongoing queueing-theory based analysis of the system and 

has not been undertaken for the contemporaneous simulation period. 
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2.6.2.6 Contemporaneous simulation of EMRS team –  summary 

   The EMRS model was able, in contemporaneous simulation, to accurately replicate the 

current real-world state of the EMRS system at any time during the 2015 calendar year 

with regard to number of missions and arrival rate (λ). 

   The model was able to replicate the derived value of server utilization progressively 

through the second half of the year, using a minimum of a 6-month sampling window. The 

model was able to accurately replicate the overall server utilization at the conclusion of the 

simulation period. 

   The model was able to accurately replicate the current, contemporaneous median value 

of secondary mission durations at all times through the simulation period. It was not able to 

accurately replicate the primary mission durations either progressively or as a final 

iterative median value. The main impact of this would be on server utilization, which the 

model was able to accurately replicate, demonstrating some computational resilience for 

errors in derived component values.  

   In summary, the model would perhaps best be described as able to indicate, rather than 

accurately replicate, the contemporaneous state of the EMRS system. Despite this, it is 

considered that the model is able to still provide operationally useful information on the 

current state of the EMRS system. Relatively small further developments would likely 

produce a substantial increase in model performance. 

  



Part 2 | Chapter 6 Results: EMRS simulation 297 

 
 

2.6.3  Summary of results from simulations of EMRS 

operations 

   The simulation of the EMRS missions successfully replicated all components of the real-

world system to an operationally acceptable level in the retrospective simulation period 

when the simulation was provided with the full data for the entire simulation period (Table 

2.4). The model can therefore be considered an accurate representation of the real-world 

EMRS system under retrospective simulation conditions, demonstrating a mean component 

accuracy of 91.9%. In this capacity, it is able to provide a general overview of the system, 

representative of the entire studied time period. In doing so, it has demonstrated the 

validity of the assumed mathematical relationships between the real-world EMRS 

components. 

   The contemporaneous simulation was able to partially replicate the current, 

contemporaneous state of the real-world. The mean component accuracy for the 

contemporaneous simulation was 89.0% although there was a notable difference between 

the relatively high accuracy of the secondary mission components and the lower accuracy 

of primary mission parameters (Table 2.5). For server utilization, the model was able to 

replicate the real-world in real-time during the second half of 2015, when provided with a 

preceding 6-month sampling window. It is therefore expected that the model could also 

provide further contemporaneous derived values (e.g. Waiting time in queue, Wq) over the 

same time-period, with the same sampling window. 
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Table 2.4: Summary of EMRS retrospective simulation results: 

Parameter 
Model 

value 

Real-world 

value 
Accuracy 

Statistical 

similarity 

Operational 

similarity 

Number of secondary missions 567 573 99.0% Yes Yes 

Number of primary missions 907 912 99.5% Yes Yes 

Activation time of day – 

secondary missions 
- - 77.9% Yes Yes 

Activation time of day -  

primary missions 
- - 84.2% No Yes 

Inter-arrival times: secondary 

missions 
μ = 1.28 μ = 1.24 96.7% Yes Yes 

Inter-arrival times: primary 

missions 
μ = 0.80 μ = 0.80 100% No Yes 

Mission durations: secondary 

missions 
7h 20m 7h 12m 98.1% Yes Yes 

Mission durations: primary 

missions 
2h 51m 2h 15m 72.3% No Yes 

Server utilization: whole 

service 
19.4% 19.6% 99.0% Yes Yes 
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Table 2.5: Summary of EMRS contemporaneous simulation results: 

Parameter 
Model 

value 

Real-world 

value 
Accuracy 

Statistical 

similarity 

Operational 

similarity 

Number of secondary missions 240 239 99.6% Yes Yes 

Number of primary missions 470 466 99.1% Yes Yes 

Activation time of day – 

secondary missions 
- - 71.7% Yes Yes 

Activation time of day -  

primary missions 
- - 78.0% No Yes 

Inter-arrival times: secondary 

missions 
μ = 1.38 μ = 1.50 92.0% Yes Yes 

Inter-arrival times: primary 

missions 
μ = 0.77 μ = 0.76 98.7% No Yes 

Mission durations: secondary 

missions 
7h 19m 6h 56m 94.5% Yes Yes 

Mission durations: primary 

missions 
2h 52m 2h 14m 71.7% No No 

Server utilization: whole 

service 
17.9% 17.1% 95.3% Yes Yes 
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2.7  Discussion of modelling and simulation of 

ScotSTAR systems  

 

2.7.1  Simulation methodology   

  The simulation of the designed ScotSTAR model appears to have operated, as intended, 

using a hybrid discrete event simulation (DES) and agent-based modelling (ABM) process. 

The model was initialized using the ABM components to independently generate primary 

missions, secondary missions and define mission durations according to a set of stochastic, 

statistical rules. These rules were defined for each parameter by a probability distribution 

calculated from a real-world learning dataset, comprising 70% of the data in that time 

period (the other 30% being used for testing of the simulation output). By defining the 

rules according to specific system descriptors (e.g. number of missions per month) which 

are easily calculated in the real-world, the model provides a clear and simple link to the 

real-world data. This also means that the model can be rapidly adapted to any changes in 

the real-world, while still maintaining the underlying distributions which link the model to 

its base queueing theory. 

  The ABM-developed rules then dictated the subsequent passage of the entity through the 

discrete event simulation component of the ScotSTAR simulation. At the point of arrival in 

the queue, the models proceeded to each subsequent time checkpoint (departure from 

queue / entry into service, completion of service / departure from system) in a sequential 

manner, with the simulation “stepping” to each of these discrete events. Every defined step 

of every mission therefore was associated with a discrete time value which could then be 

recorded and the inter-arrival times, service times and (in Part 3) waiting times calculated. 

Because the ABM rules which govern the movement of entities through this part of the 

model are pre-defined, it also makes the model easily adaptable to future changes in the 

system, simply by adding or removing rules, and how the DES interprets them. 

   This approach had been chosen for its ability to preserve the distributions within the data 

rather than creating an over-simplification. Because DES permits the recording of the time 

steps of every mission, it is a straightforward task to describe a probability distribution of 

the time between each step. Correspondingly, the majority of the results described have 

been presented in a form which includes a probability distribution, so this intention has 

clearly been realized within the model. This is considered a very important step in 

preparing a model which is capable of generating useful performance data for the real-
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world system. By preserving the data distributions, the model is best equipped to correctly 

interpret some of the nuances of the real-world operations (e.g. time of peak probability of 

activation) to ensure that performance data is not degraded by inappropriate averaging or 

smoothing. 

   As a whole, it is considered that models have been generated for each of the ScotSTAR 

SPRS and EMRS systems which effectively combine ABM and DES. The model therefore 

preserves the stochastic nature of the real-world, accurately reflects the real-world 

processes and produces an output which is interpretable in an operationally useful format. 

 

2.7.2  Simulated number of missions   

   The model was able to accurately replicate the number of missions for both ScotSTAR 

teams in both simulation types. In particular, in the contemporaneous simulation period, 

the model was able to closely align the cumulative number of missions with the real-world 

values, indicating that the model was able to replicate the current number of missions at 

any point in the simulation process. The comparison of the ECDFs demonstrated that, 

additionally, the model had successfully recreated the correct pattern of missions across 

each of the simulated periods. Although the model was provided with all data up to the 

point of simulation, it does demonstrate that each model was agile enough to respond to 

variations in demand such that the model did not at any point deviate significantly from the 

real-world. 

   The success in generating the total number of missions and mission distribution also 

partially validates the use of the exclusion sampling methodology (section 2.4.1.3). The 

model was designed to significantly over-generate missions (up to 174% of the real-world 

value) in order to permit the time-varying demand generation process within the model to 

exclude the excess missions down to the correct demand by time of day. Achieving an 

accurate total number of missions suggests that this exclusion sampling process has at least 

excluded the right number of missions, although it does not prove the correct distribution. 

     The calculation of the number of missions is the component in which the model has 

performed best. Given its success in this regard, this component could be a target for the 

future development of a prospective predictor of service demand if a suitable forecasting 

model could be found. One limitation of forecasting using this model was the lack of 

feedback provided within the model. Although it did not affect the analysis undertaken in 

this project, if the model was wrong at any point in the contemporaneous prediction of the 
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current number of missions, the root cause of the error could not be corrected; it was 

simply provided with the correct value at the next time step and the model run again. As a 

result, there was the potential for the model to repeatedly generate a small error. If applied 

prospectively, unless feedback was used to fine-tune the model, a small error could 

multiply if a forecast further into the future was made. 

 

2.7.3  Activation time of day  

   Activation time of day was generated, as described in methodology (section 2.4.1.3), by 

an exclusion sampling technique. I would consider this to be one of the strongest 

components of this project as, based on the literature review, exclusion sampling is not 

mentioned in regard to accurately generating time-varying demand and this potentially 

represents a significant contribution to the field. 

   Having established that arrivals to the system were a time-dependent Poisson system 

then the inter-arrival times would, reciprocally, be a time-dependent exponential 

distribution (with time-varying μ). Therefore, the generation of time-varying demand was 

initially attempted by simply changing the inter-generation time exponential distribution μ-

parameter within the Simulink entity generation module. However, as this changes the 

inter-arrival time to the next generated entity, a lag is introduced in the rate change. Given 

the relatively low frequency of arrivals to the ScotSTAR systems, this lag could be quite 

prolonged. This method, although relatively accurately replicating the time-variance of 

demand, did so with an obvious phase-shift which generated a different time-varying 

pattern to the real-world.  

   As stated in the introduction, the Simulink model only caters for a unidirectional time 

component and the method used in Part 1 (section 1.6.3) of using a time transform to 

correct the arrival times of missions “earlier” or “later” could not be applied. Additionally, 

because the primary mechanism for generating entities in Simulink comes from the inter-

generation time, the standard “thinning” algorithm could not be used to simply generate a 

sequence of activation times. During the course of general reading around simulation, the 

concept of exclusion sampling was identified and integrated into the project.  

   The exclusion sampling methodology did appear from first principles to be a good fit for 

the time-dependent Poisson process. Being able to generate inter-arrival times based on an 

underlying exponential distribution was a pragmatic reversal of the process used in Part 1 
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to remove time-dependency from the Poisson-process and demonstrate an otherwise 

exponentially-distributed inter-arrival time distribution. Then, by over-generating missions 

to this exponential distribution and excluding a given number of missions generated in any 

hour, the final inter-arrival distribution was maintained. Thus, by maintaining a fixed μ 

over-sampling value and excluding a proportion per hour, the model was able to rapidly 

adapt to hourly changes in demand – in contrast to the initial varying-μ approach.  

   The exclusion itself also managed to preserve the essence of a stochastic system. The 

exclusion process was effected by conducting a Bernoulli trial upon each generated entity 

to decide if it would be included in or rejected from the system. A probability of success 

was known, but the absolute outcome of any given trial could not be certain: preserving the 

independency of individual generated missions while creating time-dependency in demand.  

   The resulting missions were generated in an hourly pattern which generally appeared to 

be a good approximation of the real-world. All the histograms appeared similar as did the 

ECDFs. Despite this, however, the EMRS primary missions demonstrated a significant 

difference between the real-world test dataset and the simulated activation times of day on 

Kolmogorov-Smirnov testing. Given the similarity of the histograms and ECDFs, it was 

appropriate to consider the difference to not be operationally significant. There may have 

been some benefit in confining the application of the K-S test to only the EMRS hours of 

operation to limit the confounding effect of even a small number of activations outside the 

operating hours on the K-S test result. The limitations of the K-S test will be discussed 

further in relation to inter-arrival time distributions. 

   This was the first of the analyses to use split learning and testing datasets. This was done 

in the interest of statistical validity. One drawback to this was that, particularly in the 

contemporaneous simulation period, the number of missions in the real-world testing 

dataset could be relatively small. This had the potential for the testing dataset to exhibit a 

different distribution to the learning dataset, upon which the model is based, simply by 

sampling error (in effect, a type-1 error). As the activation time of day did not have a 

distribution fitted to it, a prospective mechanism to mitigate this risk could not be 

implemented and an alternative may need to be considered. 
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2.7.4  Inter-arrival times   

   The model was able to generate inter-arrival times which generally appeared to fit the 

real-world. This also seemed to be a strong component of the model as it clearly generated 

a multi-modal inter-arrival time distribution for ScotSTAR missions and for EMRS 

primary missions in particular (section 2.5.2.3). This suggests that the exclusion sampling 

method is effective in generating a multi-modal inter-arrival distribution. No mention of a 

similar application or finding is made in the reviewed literature. This may therefore be a 

novel illustration of this inter-arrival distribution within healthcare and particularly for a 

pre-hospital care system. 

   The overall accuracy of the distribution, and overall similarity of the ECDFs of the inter-

arrival distributions suggests that the difference between the simulation and the real-world 

was not operationally significant. However, it was disappointing to discover that the 

EMRS primary mission inter-arrival times, which appeared to have been successfully 

replicated in both histograms and ECDFs, were significantly different on Kolmogorov-

Smirnov testing. Both demonstrated a K-S test p-value less than 0.001. As the difference 

between the distributions did not appear operationally significant, it was considered that 

this finding may be a limitation of the Kolmogorov-Smirnov test, with a resulting type-one 

error (falsely rejecting the null hypothesis that the data are from the same distribution). 

   The results of the EMRS primary mission tests may suggest that the Kolmogorov-

Smirnov test, though robust, is too sensitive for this application. The test itself may 

therefore deem the model to be statistically different to the real-world despite it actually 

being accurate enough to confer operational usefulness. This is perhaps due to the K-S 

test’s use of a maximum difference between the two ECDFs. For “steep” ECDFs such as 

the EMRS primary missions, a relatively small absolute difference in the inter-arrival times 

can confer a large maximum difference in the ECDF curves, even when the overall ECDFs 

are well approximated. It is also a recognized limitation of the Kolmogorov-Smirnov test 

that with a large enough dataset, the K-S test will detect statistical significance in 

arbitrarily small differences. Simulating approximately 900 primary missions in the 

retrospective simulation over 1000 iterations generated approximately 900,000 inter-arrival 

times. It is conceivable that this is a large enough dataset for the Kolmogorov-Smirnov test 

to find statistical significance in an arbitrarily small difference from the real-world data. 

   It would certainly be of benefit to use a statistical test which did not have such 

limitations, as this would have the potential to either confirm or refute the above 
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considerations of the Kolmogorov-Smirnov test. Currently, it is recognized that the 

conclusion of an operationally non-significant difference may be a type two error and that 

the model has truly failed to replicate the real-world. Cramer von-Mises testing could 

possibly be more appropriate in considering more broadly the similarity of distribution 

ECDFs. Alternatively, there may be a simpler method of applying the Kolmogorov-

Smirnov test: such as truncating the ECDFs to only reflect the hours of operation of EMRS 

primary missions, or correcting for the time-dependent component before applying the K-S 

test. Correcting for time-dependency was shown in section 2.6.1.4 (Fig. 2.68) to generate a 

statistically non-significant K-S test p-value (p = 0.31) for EMRS primary missions.  

   Clearly there is opportunity within this section for further refinement and development. 

However, the successful generation of a multi-modal inter-arrival time distribution has 

provided validation for the exclusion sampling methodology and appears to be a novel 

analysis within pre-hospital care. 

  

2.7.5  Mission Durations   

   Mission durations were arguably the most challenging component to accurately model. 

Based on the findings of Part 1, the missions were modelled as being gamma distributed. 

However, it can be seen that while the missions were well approximated by the gamma 

distribution in Part 1 of the thesis (sections 1.7.1.3 & 1.7.2.3), it is apparent that this 

similarity is much more variable in the Part 2 analyses (e.g. EMRS secondary mission 

durations, Fig. 2.107) because of the smaller datasets involved. It is recognized, therefore, 

that there may be some contributing components which cause deviation from the generated 

pure gamma distribution. 

  Nonetheless, it was decided that the preferred method would be for the mission duration 

distribution to be generated by the model as a gamma distribution. This method, rather than 

using an empirical distribution, would better preserve fidelity with the underlying queueing 

theory, providing greater validity to the assumption of a consistent (but undefined) 

mathematical relationship between components of the real-world. By contrast, the use of 

an empirical distribution would have been likely to most closely approximate the real-

world in the Part 1 analysis (section 1.7.2.3 for example) when the analysis was applied to 

the entire dataset. However, this assumes that a 4-year sample of missions is a 

representative sample of all possible mission durations (i.e. the “population”). With this 
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project being the first application of such a modelling process to a PHaRM system, it was 

considered that the 4-year period could not be assumed as being representative of the entire 

mission duration “population”. As a result, it was decided that the gamma distribution 

should be used in order to preserve generalisability of the simulated mission durations. 

   Part 1 had demonstrated the overall gamma distribution when all missions in a 4-year 

period were analysed. Although intended to improve validity, splitting the data in Part 2 

into learning and testing datasets did present other challenges. When the already smaller 

datasets in Part 2 (comprising 1 or 2 years of data versus 4 years in Part 1), the resulting 

testing dataset is relatively small. As a result, the potential for the mission durations 

between the learning dataset, on which the model is programmed - and the testing dataset, 

with which the model is compared, is potentially significant purely as a result of sampling 

error. 

   In order to minimize this risk, it was necessary to fit a gamma distribution which was as 

generalisable as possible to any possible combination of learning and testing data. This 

needed to be achieved in a statistically robust fashion which was attempted using a two-

stage technique (section 2.4.1.3). Firstly, a large number of gamma distributions were 

generated using random samples of the learning dataset and then compared using a 5-fold 

holdout validation methodology. Minimization of the square of the Kolmogorov-Smirnov 

statistic was then used as a variant of the sum of squared estimate of errors (SSE). This 

appeared in the fitting and model selection stage to generate a very generalisable model. 

However, despite this, the EMRS primary mission durations in the contemporaneous 

simulation period still differed significantly from the real-world data. Interestingly 

however, the simulation data were not significantly different to the real-world distribution. 

(see Fig. 2.114). This perhaps suggests that the real-world testing dataset did not follow the 

gamma distribution as closely as predicted. This could have also been the result of a 

sampling bias, and other than splitting the missions into primary and secondary missions, 

no stratification was undertaken in the data split to preserve fidelity to the random nature 

of the real-world data. 

   It was noted that there was a difference between the fitted gamma distributions of the 

learning dataset and the testing dataset (Fig 2.117), with there being no inclusion of either 

parameter value in the 95% confidence intervals of the other distribution. It could therefore 

be argued that if the model accurately replicated the learning dataset then it was always 

going to be different to the testing dataset. However, regardless of the difference in 
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distributions, direct comparison of the contemporaneous simulation learning and testing 

ECDFs did not demonstrate a significant difference on Kolmogorov-Smirnov testing (p = 

0.14). This perhaps also lends weight to the argument of the real-world data not being truly 

gamma distributed, or at least not at the given sample size. Sampling bias is therefore not 

solely the cause of the difference – but it may be a contributor when the previously 

discussed limitations of the Kolmogorov-Smirnov test are also considered (section 2.7.4). 

 

 

Fig. 2.117: Comparison of fitted mission duration gamma distribution PDFs for contemporaneous 

simulation learning dataset (blue line): κ = 5.24 (95% CI: 4.71 – 5.83), θ = 0.02 (95% CI: 0.02 – 

0.02) and testing dataset (black line): κ = 3.57 (95% CI: 3.04 – 4.19), θ = 0.03 (95% CI: 0.03 – 

0.04).  Contemporaneous simulation period: calendar year 2015. 
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  In defining the true mission duration distribution, although the use of a gamma 

distribution is considered logically appropriate for the first application to ScotSTAR, it 

may over-simplify the true distribution. For example, as a concept, aeromedical missions 

could be considered as: an outbound flight, time on scene and a return flight. For any given 

single patient location, each of these components will have their own time distribution: 

whether deterministic (as a normal distribution), gamma or exponentially distributed. The 

mission duration distribution to any one rural healthcare site will be the sum of these 

individual components. When this is expanded to a national clinical network, the 

contributors to the overall distribution become more complex, as the overall mission 

duration distribution is generated from the sum of each individual served location’s 

mission distributions. However, clearly, the flight time from Glasgow Airport to Dunoon 

(approximately 18 nautical miles) will be less than the flight time from Glasgow Airport to 

Barra (approximately 120 nautical miles). Therefore, Barra missions would be expected to 

confer a much longer average mission duration than Dunoon missions. As a result, the 

overall service’s mission duration distribution is reflective of both the individual location 

mission durations, but also the proportion of missions which serve each individual remote 

hospital site.  

   This description could outwardly define the mission durations as a phase-type 

distribution, but the ScotSTAR system did not fully meet the definition for this because it 

cannot be assumed that individual sub-components of the mission duration experience 

exponentially-distributed durations themselves. Therefore, the mission distributions in this 

project could perhaps be better described as being suitably approximated by the gamma 

distribution. This provides some explanation of the significant difference between the 

simulation output data and the real-world data.  

   Furthermore, although the contemporaneous mission duration distribution was updated 

daily, it was still primed with data from the retrospective simulation period (20% of data, 

equivalent to one hold-out validation sample). However, given the retrospective period is 

twice as long as the contemporaneous simulation, numerically, this 20% of retrospective 

data is equivalent to 40% of the contemporaneous data. It may simply be the case that the 

model is too “tied” to the priming data and is simply not agile enough to adapt to changes 

in the real-world system. 

   Clearly, as future work, a mechanism to better approximate the mission durations is 

required. A possible refinement of this will be discussed later in this section. 
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2.7.6  Utilization   

   Utilization was generally well replicated in time periods where the two determinants; 

number of missions and mission duration, could be accurately matched to the real-world 

data. However, given that there were two contributing values, any potential error in either 

of them could be multiplied and so this calculation was perhaps particularly sensitive to 

deviation from the real-world systems.  

   One peculiarity noted in the EMRS system was that of the overall utilization being 

accurate, but the distribution of workload between the Duty One and Duty Two teams 

being incorrect. The EMRS system operates on a “Duty One before Duty Two” allocation. 

Patients arriving to the system will be allocated to Duty One in the first instance. If they 

are busy, the mission will pass to Duty Two. If Duty Two are also busy, the mission will 

wait on the first available team, regardless of which, who will undertake the mission. This 

operational component was able to be included in the model, and it was considered that 

such allocation, even in the real-world, was straightforward, rule-based and not subject to 

individual variation. However, clearly there is an aspect of this process which is not 

correctly replicated in the model. It may simply be a factor of the model over-estimating 

the mission durations, in particular the primary mission durations, as the majority of these 

missions are undertaken by the Duty One team. As a result, the Duty One team will have 

longer periods of non-availability when engaged on a primary mission during which time a 

long-duration secondary retrieval request could be made, and the Duty Two team activated. 

The Duty One team would then finish their relatively short duration primary mission. 

Therefore, the Duty One utilization remains relatively low due to the distribution being 

skewed toward shorter mission duration, and the Duty Two utilization is artificially 

increased by an inappropriately large number of long-duration secondary retrievals being 

passed to them in the model. A future improvement may be to also consider if the teams 

receive the correct ratio of primary to secondary missions. With a two-server system, 

however, the effect of this perturbation on the overall analysis will be negligible as the 

subsequent queueing theory applications are concerned only with the overall server 

utilization within the model – which was demonstrated as being correct. 

   In the contemporaneous EMRS utilization simulation, the real-world value was noted to 

lie at a stable value outside the simulation prediction intervals until approximately the end 

of May to mid-June (Fig. 2.115), before an increase in the real-world utilization brought it 

back within the prediction intervals. This may correlate with the increased volume of pre-
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hospital missions which occur during the summer months – and which may therefore 

contribute to an increase in server utilization. Being primed with the retrospective data, the 

simulation model was perhaps not sensitive enough to reflect this and a more agile model 

could be investigated in future. 

   Of note, the overall utilization value for EMRS appears to be preserved despite the 

finding of significantly different mission durations for primary missions. However, given 

their substantially longer durations, secondary missions contribute more to the utilization 

than primary missions, despite there being numerically more of the latter. There is perhaps 

some resilience therefore in the analysis which allows the preservation of useful values 

such as utilization, even in the context of imperfect simulation of their components. 

 

2.7.7  Refinements and future studies  

   Two main challenges were identified in the analysis. Firstly, although appearing 

relatively straightforward to generate, and producing an appropriate histogram and ECDF, 

the inter-arrival time distribution for EMRS primary missions did not accurately replicate 

the real-world on Kolmogorov-Smirnov testing. Further investigation is required, including 

through the intended peer-review, to establish if this is a limitation of the dataset, the 

analysis method (the Kolmogorov-Smirnov test in particular), the fitted distribution or 

indeed the model’s mission generation process itself. In the first instance, replication of the 

same methodology with the additional 5 years of additional ScotSTAR data which can now 

be included would be warranted. 

  Beyond this, the major component which is likely to benefit from methodological 

improvement is mission duration. As discussed above (section 2.7.5) and with reference to 

the EMRS primary mission duration distributions (Fig. 2.75 and Fig 2.110) in particular, 

the mission durations are perhaps actually a mixture or phase-type distribution which is 

merely approximated by the gamma distribution, as opposed to being truly gamma 

distributed. However, it is considered a strength of this project that the model did not 

merely replicate mission durations from an arbitrary empirical distribution, but generated 

them de-novo from a fitted gamma distribution. It has also been discussed that the mission 

durations are actually comprised of a number of sub-components, each likely to express a 

unique distribution. Some of these mission components are predictable, the differing, 

deterministic flight times to different locations is an obvious example. If the number of 
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missions to a given location can be modelled, then the contribution of travel time to the 

overall mission duration could be estimated. 

   Given the time constraints of the project and the limitations of my coding and modelling 

skills in this as a first major research undertaking, the programming of a model which was 

able to include the geographical distribution of missions was unrealistic, as was a machine-

learning approach to defining the mission duration distribution. However, with the 

experience gained through this project with respect to data analysis, computer 

programming and statistics – I would argue that these are challenges I could now approach. 

This could improve the accuracy of the mission durations, and of the contemporaneous 

analysis in particular - improving the model’s ability to convey the current state of the 

ScotSTAR system.
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2.8   Conclusions  

   In Part 2, it has been demonstrated that the SPRS model, of an M/G/1 queueing system 

and the EMRS model, of an M/G/2 queueing system, were able to accurately replicate the 

majority of real-world components to an operationally acceptable standard. 

  The statistical power which is bestowed by the very large number of data points generated 

by the model does have the potential to find statistical significance in small absolute data 

differences. As this is, fundamentally, a pilot project, operational similarity was therefore 

given precedence over statistically significant differences. 

   The accuracy and effectiveness of any model is sensitive to the size of the dataset and, to 

some degree, to the availability of all the data for a given time period, as shown by the 

better accuracy of the models in the retrospective simulation period. The models of both 

systems were able to provide an operationally acceptable representation of their real-world 

ScotSTAR equivalents during the retrospective period. It is therefore better at reflecting 

the overall performance of the system through a given time period than it is at representing 

the current, contemporaneous state of the system. 

    Although the models were not able to fully replicate the real-world contemporaneously, 

they generally erred on the side of over-estimating: initially mission durations, and by 

association, server utilization. As a result, it is considered that these values still retain some 

utility as they, and any parameters derived from them, will also be considered likely to 

over-estimate their real-world equivalent – providing a potential “worst case scenario” of 

the ScotSTAR systems performance. This must be undertaken with appropriate regard for 

the applications in which the models have been shown to be valid. The SPRS model is able 

to demonstrate a derived contemporaneous value at the end of the 2015 calendar year with 

a one-year sampling window. The EMRS model is able to generate contemporaneous 

values in the second half of the 2015 calendar year with a six-month sampling window. 

   As the models were built with strict reference to the underlying queueing theory, their 

ability to replicate the real-world from this foundation lends validity to the understanding 

that the real-world exhibits the same mathematical relationships as exist within the 

computer model. As a result, where it is appropriate to derive system performance values 

from the model, then they are considered likely to be accurate derivations of the same 

values in the real-world system.
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3.1.  Introduction  

 

3.1.1.  Deriving system descriptors from validated 

ScotSTAR models 

   Overall, Part 2 demonstrated that the models of the ScotSTAR systems were able to 

accurately replicate their real-world equivalent parameters. Some limitations to this 

process were identified: the time-period over which a contemporaneous replication of the 

system can be achieved or the propensity of the model to over-estimate mission durations 

for example.  

   All the values generated by the model so far are directly measurable in the real-world and 

so their replication by the model could appear to be of academic interest, but limited 

operational importance. However, by replicating these values, the model has successfully 

demonstrated that, where one existed, the queueing-theory-based relationships between the 

real-world components must be the same as those linking the model components. For 

example, the overall inter-arrival time distribution mathematically links the exponentially-

distributed arrivals with time-varying probability of activation. 

   Server utilization is another value which is derived from the mathematical relationship 

between two components: the number of missions and the mission durations. It is perhaps 

the single most important result in Part 2 because it is derived from two fully definable 

real-world values and specifically assesses the model’s ability to generate an accurate 

derived value. In fact, server utilization is the only derived value which it is possible, 

because of the limitations of the ScotSTAR dataset, to directly compare between the model 

and the real world (the SPRS waiting time in queue and length of queue are partially 

comparable, as will be explored later in Part 3). So, by showing the accuracy of the 

simulation derived value in replicating its real-world equivalent, the result lends validity to 

the assumption of the model and real-world being mathematically congruent. From this, 

the validity of other derived values which cannot be directly measured in the real-world is 

implied. The parameters in Part 2 were chosen because they were directly measurable in 

the real-world. 

   As well as being arguably the most important aspect of the model for validation 

purposes, measurement of utilization is the first component which begins to bridge the 
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divide between theory and operational utility. As was discussed in the introduction to Part 

1, increasing utilization (primarily through increasing the number of patients transferred by 

the ScotSTAR teams) within a fixed ScotSTAR budget confers a decreased per-patient cost 

within the system. However, this would not be a desirable result if it were to significantly 

increase the waiting time for critically ill patients who are in need of urgent medical 

retrieval, with the attendant risk of a poor clinical outcome. So, until the limits of all the 

performance components are defined, these parameters are simply general information 

about the system, not operational performance indicators. 

   One particular challenge of the ScotSTAR systems, and the data used therein – is that it 

is difficult to generate specific performance descriptors which relate to the balance 

between utilization and waiting time. As an example, the databases all record the time at 

which the mission actually commences, but not all record the time at which the initial 

telephone call was received. This, therefore, has the potential to incorrectly show that, on 

all occasions, the start time of the mission is coincident with the requirement for retrieval – 

when this is not always the case. For example, if the team had been engaged on another 

transfer at the time the call was received, the second mission would be recorded as 

commencing at some point after the conclusion of the first, as the team become available to 

undertake the mission. This effectively results in the waiting time being recorded as zero, 

even though the patient may have been waiting for some time for the team to complete the 

original mission. Even those missions for which the time of the initial call is recorded may 

have the potential for bias as a number of calls are managed with advice initially, before it 

becomes apparent if the patient will actually need to be retrieved. In this circumstance, the 

waiting time could appear to be in the order of several hours despite an empty system.  

   Until such time as there is a reliable, accurate mechanism for recording the time at which 

the decision to retrieve (the “go” decision) is actually being made, there will be no reliable 

way to measure this in the real-world. However, given that Part 2 of this thesis 

demonstrated how a computer model is able to accurately replicate a real-world system, 

then the simulation can potentially generate these values instead. This relies on the 

assumption of the real-world and the model exhibiting the same mathematical relationship, 

to which validity is given by the results in Part 2. Generating such parameters from the 

model would allow the systems to begin to address a number of questions pertaining to 

service demand, capacity and waiting times. 
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   Therefore, Part 3 of this thesis addresses the use of the models which were validated in 

Part 2 to generate useful performance metrics for the real-world and to define the 

relationship of those metrics to identifiable real-world descriptors (e.g. utilization, number 

of missions). 

 

3.1.2.  Unsuitability of standard queueing theory 

parameters 

  To transition from simple service information to performance specifications, it is 

necessary to describe the specification limits for the system. Conventional queueing theory 

describes the performance of a queue by two main parameters: the average length of the 

queue (Lq) and the average waiting time in the queue (Wq). The waiting time in the queue 

has much more relevance to ScotSTAR, almost irrespective of the queue length. However, 

while these are standard descriptors in queueing theory, they are primarily designed for 

systems that exhibit the properties of stationary arrivals and ρ less than 1, such that the 

queue reaches a steady state described by Lq and Wq. As was previously discussed in 

section 1.8.1, it is arguable to what degree ScotSTAR exhibits this property. Even then, 

given that most of the systems generally operate with an empty queue, it would be 

expected that calculation of Lq would result in a value less than one. This is both difficult 

to interpret and is of questionable operational value, conveying little information beyond 

that which is already known. In fact, the average number in the queue, or indeed the actual 

number in the queue at any given point are of minimal clinical significance; the waiting 

time is a much more useful metric.  

   In classical queueing theory applications, the number of customers in the queue conveys 

either an un-met need or is considered to relate to the probability of customers baulking 

due to the length of the queue. Both of these translate to a loss of business in the systems to 

which queueing theory normally pertains. In ScotSTAR, the patient never actually sees the 

length of the queue and their experience of the system is purely based upon the waiting 

time. Therefore, a large Lq does not of itself indicate poor system performance or a high 

probability of a patient being baulked from the system other than by its intrinsic 

relationship to Wq. Thus, many of the business considerations which are reflected in 

measurement of Lq are simply not applicable to the ScotSTAR systems. Instead, it is the 

waiting time in the queue which determines the likelihood of a patient being baulked or 
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reneging from the system. In classical queueing theory, this is described by the average 

waiting time in the queue (Wq). Simply how many patients are in the queue does not matter 

provided the waiting time can be kept sufficiently short, although clearly in any real-world 

system these two values are not wholly separable. 

   In clinical terms, Wq provides a more useful measure of clinical systems than Lq because 

clinical decisions are considered much more with respect to time - either in the context of 

time taken to respond to an emergency, or the time-frame by which a patient can be 

transferred to a major hospital centre or intensive care unit. Of itself, Wq does provide 

somewhat of a useful indicator given its focus on the time domain. However, it describes 

the mean length of time in the queue which, for the ScotSTAR system has two major 

limitations: 

1. All systems demonstrated a utilization of less than 50%. Therefore, the majority 

of arriving patients would be expected to experience a zero-time wait for service 

(by the “PASTA” property). So, the waiting time distribution would be expected 

to have a median of zero. Since waiting time cannot be negative, this would imply 

the waiting time distribution to be significantly non-normal and therefore not 

accurately described by the mean. 

2. The mean value of waiting time in the queue, Wq is not particularly useful in the 

context of deriving a clinical performance standard. While it superficially 

describes “patients who require retrieval by ScotSTAR wait, on average, n hours”, 

it conveys relatively little about the expected time-frame for any individual patient 

and has the potential to describe the actual waiting time poorly given its expected 

non-normal distribution.  

   Therefore, in the context of ScotSTAR striving to produce a high-reliability system 

which provides equity of healthcare across Scotland, and its support of remote and rural 

practitioners in contributing to that aim, a much more robust performance indicator is 

required. Using the median waiting time addresses some of the limitations of the non-

normal distribution but would be expected to have a value of zero when the PASTA 

property is applied to a utilization considerably less than 50%. The median waiting time 

has the benefit of being translatable to the real-world in the sense that 50% of patients will 

experience a zero-time wait for service. However, the waiting time of the remaining 50% 
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of patients is undefined – with the potential that a significant proportion of these patients 

could experience an unacceptable waiting time.  

   In the context of ScotSTAR retrievals, it is therefore considered that the most appropriate 

descriptor of the system could be the 95th percentile of the waiting time (Wq
95). This would 

be useful as it describes a meaningful value of the length of time patients and their 

supporting rural clinicians could expect, 19 times out of 20, their retrieval mission to be 

underway.  

 

3.1.3.  Calculation of descriptive values 

   As was discussed in earlier parts of this thesis, the formulaic results of standard queueing 

theory (where they can even be calculated) are not considered to provide accurate 

representations of the system, because of the non-stationary arrivals process, manifested as 

time-varying demand for the ScotSTAR teams. Furthermore, the published formulaic 

analyses provide only for the calculation of Lq and Wq. As discussed above, these values 

are not useful descriptors of the ScotSTAR system. The values of Lq and Wq are difficult to 

interpret for a queueing system in which the queue length is most commonly zero, and the 

information which it provides to service users is limited because of the anticipated non-

normal distribution of waiting times and the varying waiting time through the day. It is 

therefore only through simulation, discrete event simulation in particular, that more useful 

descriptors of service performance can actually be calculated. Because, in Part 2, a DES 

model has been used, a full distribution of absolute waiting times is generated and 

calculation of the 95th percentile is now computationally straightforward. 

 

3.1.4.  Performance frontiers 

   As has been discussed through this thesis, a major purpose of the system has been to 

define the effective capacity of the system. While it is understood in the real-world that 

maximising service utilization is clearly at odds with minimizing response time, the actual 

relationship between the two is unclear. It is generally perceived that the ScotSTAR 

systems are under-utilized in this regard: and that there is some capacity within the system 

to increase the number of missions undertaken without significantly compromising 
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response times. As a result, there is a persistent drive to increase the number of missions 

performed by the service. The addition of a new hospital site to the referring centres will 

produce an additional number of missions which correlates with the size of the hospital and 

the population it serves. The ability for the service to absorb this addition is clearly 

dependent on its proximity to a performance frontier: and it may reach a point at which the 

service can accept an additional referring location of a certain size, but not larger. 

Therefore, defining the performance frontiers is integral to the ability to accurately plan for 

the future of the ScotSTAR services both with regard to availability of services for 

patients, but also for service efficiency for the taxpayer. 

   Although it is generally considered that the system does have excess capacity, given that 

the performance frontiers are, as yet, undefined, the possibility must be considered that the 

service has already reached a performance frontier. In this circumstance, patients may be 

waiting an unduly long time for retrieval to be undertaken and steps should be taken to off-

load the system: by the provision of additional resources, increasing mission efficiency or, 

as a last resort, reducing the number of patients served. 

 

3.1.5.  Establishing system specifications 

   Ideally, the required mission parameters would be guided by an evidence base founded in 

patient outcomes. However, with regard to parameters such as waiting time, it is likely that 

such evidence is at least a decade away. A long data collection period would be required to 

generate sufficient power to demonstrate any difference in the overall low mortality of 

secondary inter-hospital transfer patients in Scotland with the relatively small sub-group 

transferred by ScotSTAR. 

   However, for all the reasons discussed earlier, there still needs to be some effort to define 

the, currently unknown, distance between the present system state and the performance 

frontiers. It is considered that a combination of expert opinion and the mathematical 

analysis used within this system will make some inroads into addressing this problem in 

the absence of an evidence-based solution. 
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3.1.6.  Defining new performance specifications 

   Combining my own clinical experience and the opinions of multiple expert clinicians 

from across the ScotSTAR services, an initial consensus was formed on appropriate 

performance specifications. These performance characteristics would be used to describe 

ScotSTAR and define the limits of its performance in a more applicable and interpretable 

way than with standard queueing theory. 

The consensus was formed around three defining parameters: 

1. Simultaneous retrieval proportion 

   It was considered that simultaneous retrieval proportion – the proportion of mission 

requests arriving while a team is already engaged on another mission – would be one 

appropriate marker of service performance. It was perceived that a high simultaneous 

retrieval probability - i.e. a large proportion of missions experiencing a non-zero wait 

time was potentially indicative of an un-met need. Also, as the mission demand is 

time-dependent, it is expected that the maximum probability of simultaneous 

retrieval will coincide with the maximum probability of activation. It is considered 

that because of this, the actual simultaneous retrieval proportion will be greater than 

would be expected by applying the PASTA property to server utilization. As 

discussed earlier in relation to Lq, this is not of itself an unacceptable problem for the 

patient if the waiting time remains sufficiently low. However, simultaneous mission 

requests can present a significant problem for the ScotSTAR teams who could be 

required to give clinical and logistical advice while involved in the care of a critically 

unwell patient and in a remote location. A high number of “back-to-back” missions 

is also very fatiguing for the clinical team, with the attendant risk of clinical error. 

 

2. Waiting Time 

  With respect to the patient experience of the ScotSTAR system, arguably the most 

important criterion is waiting time. There is no current evidence base to indicate the 

relationship between absolute waiting time for secondary retrieval and patient 

outcomes. However, it would be considered that earlier access to critical care results 

in earlier correction of pathological physiological derangements and logically leads 

to improved patient outcomes. Conversely, it is also recognized that critical care 
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interventions can confer a high clinical risk and a period of active resuscitation, 

stabilisation and optimization of the patient’s physiology is an important preparatory 

step before the initiation of advanced critical care. In certain cases, aggressive 

resuscitation may even be successful in avoiding the need for ongoing critical care 

altogether. A number of these resuscitative measures can be implemented without the 

need for the critical care team to be in direct attendance on the patient and therefore 

some degree of delay before the team attends can be appropriate, whilst also taking 

travel time to remote healthcare facilities into account. 

  Contrasting this is the pre-hospital (primary) retrieval missions of EMRS for which 

the target population is patients with life-threatening, time-critical injuries. The 

purpose of team attendance in these missions is to minimize time to life-saving 

intervention. Although, again, there are a number of important interventions (e.g. 

extricating a trapped patient from a vehicle) which can occur prior to the arrival of 

the EMRS Trauma Team, the time period in which this needs to occur is very much 

shorter than in the secondary retrieval missions. EMRS does not operate a separate 

service for primary pre-hospital missions, they are referred and responded to with the 

same priority as secondary missions. The overall waiting time for retrieval must 

therefore also consider the specific effect on the team’s immediate availability to 

respond to primary pre-hospital missions. 

 

3. System stability 

   It was also discussed that the service should operate, as far as possible in a “stable” 

state for demand and waiting time. This is based upon the exponential relationships 

between Lq, Wq, the number of simultaneous retrieval requests (N.B. not 

simultaneous retrieval proportion) and the number of missions undertaken (as traffic 

intensity / utilization). Even without applying queueing theory, it is a recognized 

phenomenon in emergency healthcare settings that increasing demand will eventually 

reach a point at which the system “decompensates”. This coincides with the 

transition from low-rate to high-rate dynamics in the exponential relationship 

between utilization and Lq or Wq. 

   It was therefore considered that the ScotSTAR systems would be “stable” when the 

service operated within the area described by the exponential relationship with a 
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gradient less than one. On this area of the curve, a unit increase in the independent 

variable (e.g. number of missions undertaken) would result in a less-than-unit 

increase in the dependent variable (e.g. number of simultaneous retrievals). As the 

demand for the service increases, by virtue of the exponential relationship, then a 

transition will occur after which a unit increase in the number of missions will 

introduce a greater-than-unit increase in the number of simultaneous retrieval 

requests (high-rate dynamics). At this point, the simulation would be considered to 

be operating in an unstable condition, with the potential to experience an 

exponentially worsening system performance with even a small further increase in 

the number of missions undertaken. 

   Ideally, the stability of the system would also be assessed with respect to the same 

parameters of simultaneous retrieval proportion and waiting time, Wq
95 in particular. 

However, unless the independent and dependent variables are measured in equivalent 

units, then the gradient can exceed one at an entirely arbitrary relational point – and 

the resulting information is not meaningful. The ability to define such potentially 

complex mathematical relationships was deemed outside the scope of this thesis. 

 

4. Missed primary missions 

   Primary missions not attended by EMRS because of team non-availability will 

result in a patient potentially experiencing a delay to their life-saving intervention. 

There is now published evidence that links involvement of a pre-hospital critical care 

team with improved patient outcomes (Maddock et al., 2020). Therefore, clearly, it is 

in patients’ interests to minimize the number of instances in which a pre-hospital 

critical care team is unavailable through being engaged in a mission. However, as 

discussed previously (see section 2.6), EMRS missions which are reneged because of 

a lack of an available team are effectively invisible to the EMRS system. As a result, 

the true number of these missed primary missions is unknown, with the potential for 

each to have a sub-optimal patient outcome. 

   The construction of the EMRS model does, however, have the potential to 

facilitate, to some degree, such an analysis. A component can be added to the model 

which will renege primary missions subjected to a waiting time greater than a 

prescribed value. The current data, derived from the number of missions undertaken 
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(not referred) would be the baseline so the absolute number of missed primary 

missions would remain unknown, but the excess number of missed primary missions 

in relation to increasing the number of referred primary missions could then be 

calculated by the model. 

 

3.1.7.  The Pareto limit 

   The utilization of the ScotSTAR EMRS system could be considered as being made up of 

two “commodities” – primary and secondary missions. Primary missions are generally of 

shorter duration than secondary missions - therefore for a given utilization, the service will 

effectively be able to “trade” a given number of secondary missions for a larger number of 

primary missions. The maximum number of each mission type would be defined by a 

frontier up to which the specified number could be undertaken without breaching a 

performance specification. This would be analogous to the industrial concept of the 

production-possibility frontier (also referred to as a Pareto limit) in trading production of 

one item against another. An understanding of the relationship of the Pareto limit between 

primary and secondary missions is essential for EMRS – if the service is to be able to 

accurately describe its remaining capacity for further work. Without consideration of the 

relationship between different mission types, then expansion of services would risk either 

inefficiency or overload if a simple, single, value of additional missions was applied to the 

wrong mission type. Defining the production-possibility frontier for the ScotSTAR 

services will also be essential to ensure that future capacity for additional work can be 

accurately informed – whether lowering the threshold for primary activations to generate 

more pre-hospital missions, or taking on a new referring site with the expectation of a 

smaller increase in the number of secondary retrievals. 

 

3.1.8.  Possible simulation methodologies 

   Two methodological strategies were considered to answer the question of system 

performance under varying conditions. Firstly, it had been considered that if a specific 

intervention or system change could be identified then it could simply be incorporated into 

the simulation undertaken in Part 2. Then, by running the simulation in otherwise exactly 

the same fashion, the system performance under the new conditions would be output. 
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However, while this would be considered accurate for the simulated circumstances, it 

would not describe the relationship between the dependent and independent parameters. 

This would make it difficult to ascertain the operational value of such an intervention, or if 

further improvement could be achieved with only a little extra service resource. It also 

required the description of a specific change to the system, but without knowledge of what 

the potential effects of any such changes might be. This method would also be relatively 

heavy in computational resource – requiring a full simulation run to accurately account for 

even relatively small changes in the number of missions for example. This would preclude 

its effective use as a real-world reference for anything more than a few specific 

circumstances. 

   The alternate strategy would be to extend the Monte-Carlo approach used in Part 2 to 

generate a number of mission profiles across a much wider range of mission numbers. 

Although for any given mission number this would potentially reduce the accuracy of that 

value by only producing a few iterations of any one system state, it would potentially 

compensate for this by describing the overall relationship between parameters (e.g. 

utilization and Wq). By describing the relationship in general terms, it would also mitigate 

any potential inaccuracy generated by any given single data point if a suitable regression 

model could be fitted between multiple data points. This would be very much less 

computationally intensive – and would provide a much more useful real-world resource 

which could be relatively easily interpreted to gain an overall understanding of the effects 

of changes to the system. 

   Allowing for the limitations of both methodologies, it was concluded that the extended 

Monte-Carlo approach, which should have the ability to describe the relationships between 

number of missions (i.e. utilization) and a given specification parameter (e.g. Wq
95) would 

be optimal. The first stated method of iteratively simulating a specific number of missions 

could then, potentially, be used for further refinement of the result, if required. 

 

3.1.9  Application of extended Monte Carlo simulation 

   It was considered that defining the relationship between the measured parameters and the 

tangible real-world descriptors could be achieved using the same models as Part 2. 

Although the simulations run in Part 2 were undertaken using a Monte-Carlo approach, the 

intention was to spread the number of missions across a range of values which were 
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possible as the result of natural (Poisson) variation in the real world. The introduced 

variation in the simulations for Part 3 would substantially extend the range of that variation 

to include numbers of missions which are unobservable in the real-world and would 

therefore not have been generated within the Part 2 Monte-Carlo simulation. It was 

considered that this extended Monte-Carlo simulation would require to generate some 

values which were vastly, even impossibly, smaller or larger than the real-world and Part 2 

simulated values in order to effectively demonstrate the relationship between the studied 

variables.



 

 

 

 

Part 3  Chapter 2 

Aims 
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3.2  Aims 

    

Part 3 of this thesis aims to: 

1. Derive from the ScotSTAR team models critical system performance values which are 

not able to be calculated from real-world data.  

Specifically: 

  - Average length of queue (Lq) 

  - Average waiting time in queue (Wq) 

  - 95th percentile of waiting time in queue (Wq
95) 

  - Proportion of simultaneous retrievals 

 

2. Establish the current system performance with respect to the performance limits of: 

  - Wq
95 less than 1 hour (secondary missions) 

  - Proportion of simultaneous retrievals less than 10% 

  - Wq
95 less than 15 minutes (primary missions, where applicable) 

  - Proportion of baulked / reneged (missed) primary missions less than 10% 

(where applicable)



 

 

 

 

Part 3  Chapter 3  

Methods 
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3.3.  Methods 

 

3.3.1  Derived performance descriptors     

   Using the models that were developed and tested in Part 2 of this thesis, the discrete 

event simulation output was interrogated to generate: 

 

3.3.1.1 Average length of queue (Lq) 

1. The times of queue entry and service entry were read from the entity attributes. 

2. From this, the number of entities (patients) in the queue at any point could be 

ascertained and was plotted against time. 

3. The area under the curve was divided by the simulation time to calculate the average 

length of the queue. 

 

3.3.1.2 Waiting times in queue (Wq and Wq
95) 

1. The times of queue entry and service entry were read from the entity attributes. 

2. The difference between these times was the time spent in the queue for that entity 

(patient). 

3. The sum of the generated entities (patients) queueing times in each iteration was divided 

by the number of entities to calculate the average queueing time (Wq). 

4. The 95th percentile value of the waiting time from all entities generated within each 

iteration was calculated (Wq
95). 
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3.3.1.3 Simultaneous retrievals 

1. The times of entity generation and service entry were read from each entity’s 

attributes. 

2. The difference between these times was the time spent in the queue for that entity 

(patient), as above. 

3. The number of entities (patients) experiencing a non-zero waiting time was counted, 

this generated the number of simultaneous retrievals in that iteration. 

4. The number of simultaneous retrievals was divided by the total number of entities 

(patients) generated in order to calculate the simultaneous retrieval proportion. 

 

3.3.2.  Unobservable phenomena  

1. The models developed for Part 2 of this thesis were re-run in an extended Monte-Carlo 

format. Additionally, the EMRS system model was revised to include a component to 

renege primary missions experiencing a greater than 20-minute waiting time in the 

queue (further explained in section 3.7.2). 

 

Fig. 3.1: Screen capture of Simulink model demonstrating addition of time-out component for primary 

missions and sink for timed-out missions (“TO”) in the queue. 
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2. The number of missions generated by the model was varied by dividing the Simulink 

entity inter-generation time by a randomly generated value from a uniform distribution, 

in the range 0.01 – 5 for primary missions, and 0.01 – 10 for secondary missions. The 

same multiplier value was retained for any one given iteration. 

3. From each simulation iteration, the Wq
95 for each mission type and simultaneous 

retrieval values for each mission type were calculated as above. 

4. Each of the performance descriptors (Wq
95, simultaneous retrieval proportion, proportion 

of missed primary missions) were plotted against the number of missions undertaken in 

the simulation iteration. This was a two-dimensional plot for SPRS and a three-

dimensional plot for EMRS (plotted against both mission types). 

5. A reference line was fitted to the two-dimensional data and a contour plot (using an 

initial 3-D surface fit) was fitted to the three-dimensional data. 

6. The location on the graph of the applicable performance limit was established. 

7. The current state of the system was compared to the defined performance limits as in 

sections 3.5 and section 3.7.



 

 

 

 

Part 3  Chapter 4 

Results: 

Derived performance descriptors from 

the SPRS simulation 
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3.4  Results of derived performance descriptors 

from the SPRS simulation  

   All of the results in this section are generated on the assumption that the model and the 

real-world behave in the same mathematical fashion. Although this cannot be explicitly 

proven, the findings of model components being able to accurately replicate the 

corresponding real-world values and distributions would suggest that such an assumption 

is indeed valid. The system performance descriptors calculated herein are therefore 

considered to be a true representation of the real-world. 

   There are no direct equivalents of the parameters in this part of the thesis that can be 

measured in the real-world. The ScotSTAR dataset simply does not record data at suitable 

time checkpoints for these real-world values to be directly measured. Two SPRS 

parameters have a formulaic result which can be used to add gross validity, but as 

previously discussed, these are subject to limitations when applied to the non-stationary 

Poisson processes of the ScotSTAR systems. Where available, however, such formulaic 

results are used for illustration. 

   The derived values are those of standard queueing theory, with additional parameters 

pertinent to the ScotSTAR operations.  

Specifically, the parameters described from standard queueing theory are: 

- Mean length of queue (Lq) 

- Mean waiting time in queue (Wq) 

And those developed for this thesis as being specifically relevant to ScotSTAR operations: 

- 95th percentile of waiting time in queue (Wq
95) 

- Simultaneous retrieval proportion 
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3.4.1.  SPRS retrospective simulation period  

      In the SPRS retrospective simulation period, Part 2, section 2.5.1, it was demonstrated 

that the Simulink model could accurately replicate the real-world. It is therefore considered 

appropriate to derive from the model the values of system descriptors which are not 

measurable in the real-world system.  

   The information in this section is directly derived from the same model and simulation 

used in Part 2 of this thesis. It is therefore, as in Part 2, based on the information available 

through the entire simulation period: both past and future to any given point of the 

simulation. This will generate a value for each of the derived performance parameters 

representative of the entire retrospective simulation period: calendar years 2013 and 2014. 
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3.4.1.1.  Mean length of queue (Lq) 

   In the retrospective simulation period, the model generated SPRS missions which 

demonstrated an iterative median value for mean length of queue (Lq) of 0.032 (95% PI: 

0.022 – 0.049, mean = 0.032) (Fig. 3.2). 

   This low value carries little operational significance as the average length of the queue 

does not contribute greatly to the understanding of the operation of the system, other than 

its relationship to simultaneous retrieval requests - which are explicitly calculated later. 

Also, as the value is much less than 1, it is difficult to interpret in any operationally 

meaningful context other than indicating that the majority of the time, the SPRS queue is 

empty. 

   There is no directly equivalent real-world value for comparison. However, given that the 

SPRS system is deemed to be, grossly, of the M/G/1 type queue, then the determination of 

Lq provides a valuable opportunity to further evaluate the validity of the relationship to the 

real world by calculating the same value formulaically. Although, clearly, the applicability 

of this relationship will be limited by the time-varying property of Poisson arrivals to the 

system and by the imperfect gamma distribution of the real-world mission durations (as 

demonstrated in Part 2, section 2.5.1.5), neither of which the formulaic calculation is 

designed to accommodate. 

   The mean arrival rate (λ), variance of the service time (σ2
s (as κθ2) from the parameter 

values of the gamma distribution of the real-world test data, (see section 2.5.1.5(b)) and the 

server utilization (ρ) of the SPRS system in the retrospective period have all been 

calculated in Part 2 of this thesis. These values can be used to calculate the average length 

of the queue (Lq) using one of the Pollaczek-Khinchin formulae, as in Part 1 (see section 

1.7.4.2): 

 

𝐿𝑞 =  
𝜌2+ 𝜆2𝜎𝑠

2

2(1−𝜌)
       (31) 
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So, referencing the real-world values calculated in Part 2: 

 λ  = 0.67   (486 missions / 730 days) 

 σ2
s = 0.02   (28.8 minutes) 

 ρ =  0.17   (17% utilization) 

Therefore: 

𝐿𝑞 =  
 0.172+ 0.672∗0.02

2(1−0.17)
     (32) 

 

𝐿𝑞 =  
0.038

2∗0.83
       (33) 

 

𝐿𝑞 =  0.023        (34) 

 

   The Pollaczek-Khinchin (P-K) result for mean length of queue (Lq) is grossly 

comparable to the calculated value obtained directly from the Simulink model (above). The 

P-K result lies within the 95% prediction interval (0.022 – 0.049) of the simulation output 

and is not significantly different to the simulation output on Mann-Whitney U testing (p = 

0.09).  

   The difference between the results is also in keeping with the findings in Part 2 section 

2.5.1.6 where the simulation mildly over-estimated the server utilization which would, in 

itself, result in an increase in the average length of the queue: increased server utilization 

increasing the probability of an arriving mission having to wait. The difference in the value 

could also be representative of the variation present within the time-dependent Poisson 

process which has, as discussed in Part 1, met the property of steady state by ρ < 1, but not 

by uniform probability of activation by time of day. This results in a higher probability of 

arrival at the same time as a higher probability of a busy server – contributing further to the 

expectation of a non-uniform queue length, variable by time of day. 

   Accounting for all these aspects, it is considered that the P-K formulaic result is in 

keeping with the calculated simulation output result. This finding adds validity to the 

assumption of mathematical similarity between the processes of the simulation and the 
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real-world as the two values, derived by two entirely different mechanisms and from two 

different datasets, are consistent and complimentary. 

 

 

Fig. 3.2: Boxplot of simulation iterative median of mean length of queue (Lq) values (median = 0.032, IQR: 

0.028 – 0.036), with simulation iterative mean = 0.032 (black diamond) and Pollaczek-Khinchin 

formula calculated result = 0.023  (black line). ). Iterative median not significantly different to 

Pollaczek-Khinchin result (Mann-Whitney U-test p = 0.09). Retrospective simulation period: 

calendar years 2013-2014. 
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3.4.1.2.  Waiting time in queue – mean waiting time (Wq) 

   Wq provides a somewhat more practical metric which can be interpreted by both 

referring clinicians and the general public, and which has a tangible real-world meaning: 

i.e. “on average, a patient would expect to wait n hours to be retrieved by SPRS”. 

However, given that it is a mean value, it is not very informative on an individual patient 

basis – therefore the 95th percentile of waiting time in the queue (Wq 
95) will be analysed 

later. 

  During the retrospective simulation period, the iterative median of mean waiting time in 

the queue (Wq) was 1h 12m (95% PI: 0h 52m – 1h 56m, mean = 1h 14m) (Fig. 3.3). 

However, the median value for each iteration is generated from a significantly skewed 

distribution in which the number of patients in the queue is mostly zero, with a 

corresponding zero-time wait for an arriving patient, but with some patients who have a 

relatively prolonged wait. Although it is a standard queueing theory parameter, and 

somewhat descriptive of the “average” patient experience, Wq does not adequately account 

for the non-normal distribution or convey enough information about the system 

performance for a specific patient to be particularly useful in a day-to-day operational 

context. 

   Although, again, there is no real-world equivalent value for comparison, the M/G/1 

queueing system of SPRS offers a further opportunity to validate the relationship between 

the real-world and model output. This uses the formulaic calculation of Wq using another 

of the Pollaczek-Khinchin formulae (see Part 1, section 1.7.4.2):  

 

𝑊𝑞 =  
(

𝜌2

𝜆
+ 𝜆𝜎𝑠

2)

2(1 −𝜌)
     (35) 
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Again, referencing the real-world values generated for the retrospective simulation period 

in Part 2 (section 2.5.1.5) of the thesis: 

 λ  = 0.67     (486 missions / 730 days) 

 σ2
s = κθ2 = 3.13 * 0.082    

= 0.02 days   (variance = 28.8 minutes) 

 ρ =  0.17     (17% utilization) 

 

Therefore: 

𝑊𝑞 =  
(

0.172

0.67
+ 0.67∗0.02)

2(1 −0.17)
    (36) 

 

𝑊𝑞 =  
0.057

1.66
      (37) 

 

𝑊𝑞 =  0.034 days = 49 minutes        

 

   This value is smaller than the simulation-derived value (Fig. 3.3), but is a plausible value 

when the consideration of non-uniform probability of activation – with the most likely 

activation time also being the most likely time for the server to be busy – generating a 

time-varying Wq through the day is applied. The formulaic calculated Wq was at the limit 

of statistical non-significance for its difference to the simulation output on Mann-Whitney 

U testing (p = 0.05), but the formulaic value does lie outside the 95% prediction interval 

for the model, suggesting that the difference is operationally significant. This is likely due 

to the limitations of the formulaic result not accounting for either time-dependent Poisson 

arrivals or imperfectly gamma-distributed service times. 
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Fig. 3.3: Boxplot of simulation iterative mean waiting time in queue (Wq) values (median = 1h 12m, IQR: 1h 

5m – 1h 22m), with simulation iterative mean = 1h 14m (black diamond) and Pollaczek-Khinchin 

formula calculated result = 49m (black line). Iterative median not significantly different to 

Pollaczek-Khinchin result (Mann-Whitney U-test p = 0.05). Retrospective simulation period: 

calendar years 2013-2014. 
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3.4.1.3.  Waiting time in queue – 95th percentile of waiting time (Wq
95) 

   As discussed earlier, the 95th percentile of waiting time (Wq
95) was considered to be a 

more useful performance metric than Wq. By using the 95th percentile of waiting time, the 

time in which 95% of patients will be retrieved is described. Although clearly still 

stochastic, Wq
95 is much more useful as a service descriptor which is relevant to patients 

and rural clinicians: as it describes the time by which they as an individual (the value being 

applicable to 19 out of 20 patients) can expect their transfer to be underway. 

   In the case of the SPRS simulation output, the model generated an iterative median 95th 

percentile of waiting time of 8h 8m (95% PI: 6h 1m – 12h 27m, mean = 8h 13m) (Fig. 

3.4). This was a somewhat surprising result, given that the overall utilization of the SPRS 

system appeared to be relatively low. Examination of the Wq
95 ECDF (Fig. 3.5) 

demonstrated a markedly skewed distribution, in which Wq
95 became non-zero only above 

the 83rd percentile. The ECDF therefore shows that 83% of patients will encounter a zero-

time wait for retrieval on entering the system but that the waiting time escalates in a 

relatively rapid, linear fashion above this. This is a further illustration of the time-

dependent Poisson process which results in a higher probability of patients encountering a 

busy system than utilization alone would imply. Thus, when a patient does have to wait, 

their waiting time is more likely to be prolonged. 

   There is no real-world equivalent value or formulaic approximation for comparison. 
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Fig. 3.4: Boxplot of simulation iterative 95th percentile of waiting time in queue (Wq
95) values (median = 8h 

8m, IQR: 7h 12m – 9h 1m), with simulation iterative mean = 8h 13m (black diamond). Retrospective 

simulation period: calendar years 2013-2014. 
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Fig. 3.5: ECDF of waiting time in queue (Wq) demonstrating zero waiting time to 83rd percentile. 

Retrospective simulation period: calendar years 2013-2014.  
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3.4.1.4.  Simultaneous retrievals 

   The nature of the data collected by the ScotSTAR teams at the time of this project does 

not allow the capture of simultaneous retrievals, as the time at which the retrieval is 

required is not reliably captured; only the time at which the retrieval is commenced is 

recorded. There may be some time between the two, and the true number of simultaneous 

retrievals could be under-estimated if the recorded data creates the appearance from the 

commencement time that one retrieval immediately followed another, whereas the retrieval 

may have actually been required while the first mission was ongoing. Despite this, the 

simultaneous retrieval rate is an important service descriptor to calculate because it implies 

an un-met need for patients requiring retrieval.  

   A high simultaneous retrieval rate may, in fact, be acceptable in the context of a suitably 

low Wq
95. However, as has been demonstrated above, the Wq

95 for SPRS is considerable 

and analysis of the simultaneous retrieval rate may provide an indication as to whether an 

increase in the number of SPRS teams could facilitate a reduction in Wq
95.  

   In this section, the model output during the retrospective simulation was analysed to 

establish the number of simultaneous retrievals and convert this into a proportion of 

missions affected. By nature of the Poisson Arrivals See Time Averages (PASTA) 

property of Markov queueing systems, it would be expected that the probability of an 

arriving mission encountering a non-zero wait time was equal to the server utilization – in 

this case approximately 17% (Part 2, section 2.5.1.6). However, this relationship to 

utilization is reliant on a uniform, pure-Poisson arrival process. It is known that the Poisson 

arrival process for SPRS is time-dependent and that activations, and therefore utilization, 

are higher at certain times of day (see Part 1, section 1.7.1.2). This generates the situation 

in which any given arrival is more likely to find the server occupied than would be 

predicted by utilization with respect to the PASTA property. It is therefore important to the 

accuracy of the information provided as a system descriptor that this anticipated difference 

is accounted for - this necessitates the use of simulation output, rather than simply quoting 

the easily calculated real-world utilization value. 
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   The output data from the simulation were analysed to count the number of simultaneous 

retrievals. A simultaneous retrieval was recorded when a generated mission encountered a 

non-zero wait for service at the SPRS server. 

Number of simultaneous retrievals: 

   During the retrospective simulation period, the SPRS simulation generated an iterative 

median of 105 simultaneous retrievals (95% PI: 76 – 130, mean = 103) (Fig. 3.6).  

 

Fig. 3.6: Boxplot of number of simultaneous retrievals (non-zero wait time) by iteration (median = 105, IQR: 

93 - 112), with simulation iterative mean = 103 (black diamond). Retrospective simulation period: 

calendar years 2013 -2014. 
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Proportion of simultaneous retrievals: 

   When the number of simultaneous retrievals was divided by the iteration’s total number 

of generated missions, an iterative median simultaneous retrieval proportion of 21.8% 

(95% PI: 16.5% - 25.7%, mean = 21.4%) was generated (Fig. 3.7). This value is 

commensurate with the waiting time distribution, both producing a zero-time wait for 

approximately 80% of patients. The value was, as expected, greater than the simultaneous 

retrieval proportion calculated from the server utilization value (19.1%) although the two 

values were not significantly different on Mann-Whitney U-testing (p = 0.28). 

 

 

Fig. 3.7: Boxplot of simultaneous retrieval proportion (non-zero wait time) by iteration (median = 21.8%, 

IQR: 16.5% - 23.3%), with simulation iterative mean = 21.4% (black diamond). Expected value = 

utilization = 19.1% (black line), from SPRS simulation based on PASTA property. Iterative median 

not significantly different to expected value (Mann-Whitney U-test p = 0.28). Retrospective 

simulation period: calendar years 2013-2014. 
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3.4.2.  SPRS contemporaneous simulation period  

   In keeping with the previous analysis in Part 2, the contemporaneous simulation period 

will now be analysed, using the same model as Part 2, and the same methodology – in 

which the model only receives information up to the current simulation point, it has no 

“look-forward” capability. This is important to the project as it shows the ability of the 

model to describe the immediate, current performance of the system instead of a general 

description of performance through a time period as was demonstrated by the retrospective 

simulation. 

   Part 2, section 2.5.2.6 demonstrated that the SPRS model was unable to generate a daily 

contemporaneous derived value which was comparable to the real-world. It did 

demonstrate, however, that the model could correctly replicate the current utilization value 

at the end of the 2015 calendar year, with a one-year data sampling window. Reflective of 

this, the following derived SPRS results in the contemporaneous simulation period are also 

reported as representing the current state at the conclusion of the simulation period, with a 

one-year data sampling window corresponding to the 2015 calendar year. 
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3.4.2.1.  Mean length of queue (Lq) 

  In the contemporaneous simulation period, SPRS missions demonstrated an iterative 

median value for the current mean length of queue (Lq) at the end of the 2015 calendar 

year, with a one-year data sampling window, of 0.042 (95% Prediction Interval: 0.026 – 

0.072, mean = 0.045) (Fig. 3.8). 

   Although there is no directly measurable real-world equivalent value, an approximation 

of Lq using the P-K formula was again performed with reference to the real-world testing 

dataset values calculated in Part 2, section 2.5.2.5: 

 λ  = 0.79     (287 missions / 365 days) 

σ2
s = κθ2 = 2.35 * 0.082    

= 0.015   (variance = 21.7 minutes) 

 ρ =  0.22      (22% utilization) 

 

𝐿𝑞 =  
𝜌2+ 𝜆2𝜎𝑠

2

2(1−𝜌)
     (38) 

 

𝐿𝑞 =  0.037 

 

   The formulaic result of Lq = 0.037 (97.4% of simulated value) was not significantly 

different to the simulation result on Mann-Whitney U-testing (p = 0.37). 
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Fig. 3.8: Boxplot of simulation iterative mean length of queue (Lq) values (median = 0.042, IQR: 0.037 – 

0.051), with simulation iterative mean = 0.045 (black diamond) and Pollaczek-Khinchin formula 

calculated result = 0.037 (black line). Iterative median not significantly different to Pollaczek-

Khinchin result (Mann-Whitney U-test p = 0.37). Contemporaneous simulation period: calendar 

year 2015. 
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3.4.2.2.  Waiting time in queue – mean waiting time (Wq). 

   In the contemporaneous simulation period, SPRS missions demonstrated a current 

iterative median value for mean waiting time in the queue of 1h 26m (95% PI: 0h 57m – 2h 

29m , mean = 1h 28m) at the end of the 2015 calendar year, using a one-year data sampling 

window (Fig. 3.9). 

   Again, there is no real-world equivalent value for comparison but using the same 

calculated real-world values as the contemporaneous Lq analysis (section 3.4.2.1), the 

approximated value of Wq by P-K formula was 1h 7m (78.8% of simulated value): 

𝑊𝑞 =  
(

𝜌2

𝜆
+ 𝜆𝜎𝑠

2)

2(1 −𝜌)
     (39) 

𝑊𝑞 =  0.045 𝑑𝑎𝑦𝑠 = 1ℎ 7𝑚 

 

   As is expected because the P-K calculation does not account for time-dependency in the 

Poisson process, the formulaic result is lower (77.9% of simulation value) than the value 

generated by simulation but was within the 95% prediction interval of the simulation. The 

value was not significantly different to the simulation iterative median value for mean 

waiting time in queue on Mann-Whitney U testing (p = 0.16). It is uncertain as to whether 

the 19-minute absolute difference is operationally significant. 
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Fig. 3.9: Boxplot of simulation iterative mean waiting time in queue (Wq) values (median = 1h 26m, IQR: 1h 

16m – 1h 39m), with simulation iterative mean = 1h 28m (black diamond) and Pollaczek-Khinchin 

formula calculated result = 1h 7m (black line). Iterative median not significantly different to 

Pollaczek-Khinchin result (Mann-Whitney U-test p = 0.16). Contemporaneous simulation period:  

calendar year 2015. 
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3.4.2.3.  Waiting time in queue – 95th percentile of waiting time (Wq
95) 

   To provide a useful, contemporaneous value of the retrieval waiting time at the end of 

the 2015 calendar year with sufficient reliability to apply to almost any patient, the 95th 

percentile of waiting time was again analysed. 

   At the conclusion of the contemporaneous simulation period, the iterative median 95th 

percentile of waiting time was 8h 52m (95% PI: 6h 4m – 14h 25m, mean = 9h 11m) (Fig. 

3.10). There is no real-world equivalent value or formulaic approximation for comparison. 

   The median values for each percentile of waiting time in the contemporaneous 

simulation period were calculated and plotted as an ECDF (Fig. 3.11). This again 

confirmed the presence of a skewed distribution, the iterative median waiting time 

becoming non-zero above the 70th percentile. This indicates that 70% of referred patients 

would encounter an empty system with zero wait time. The waiting time increased rapidly 

above the 70th percentile. 

 

Fig. 3.10: Boxplot of simulation iterative 95th percentile of waiting time in queue (Wq
95) values (median = 8h 

52m, IQR: 6h 4m – 10h 11m), with simulation iterative mean = 9h 11m (black diamond). 

Contemporaneous simulation period: calendar year 2015. 
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Fig. 3.11: ECDF of waiting time in queue (Wq) demonstrating zero waiting time to 70th percentile. 

Contemporaneous simulation period: calendar year 2015.  
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3.4.2.4.  Simultaneous retrievals 

   In the contemporaneous simulation period, the simulation demonstrated a current 

iterative median of 70 simultaneous retrievals (95% PI: 50 – 93, mean = 70) at the end of 

the 2015 calendar year, with a one-year data sampling window (Fig. 3.12). When the 

number of simultaneous retrievals were divided by the iteration’s total number of 

generated missions, a current iterative median simultaneous retrieval proportion of 24.5% 

(95% PI: 19.2% - 30.9%, mean = 24.7%) was generated, based on a one-year sampling 

window (Fig. 3.13).  

   There is no directly measurable real-world equivalent value, but the expected 

simultaneous retrieval value can be approximated by server utilization due to the PASTA 

property. The simulation simultaneous retrieval proportion exceeds, as expected, the 

contemporaneous period simulated SPRS server utilization of 22.2% (see section 2.5.2.6). 

   The simultaneous retrieval rate is supported by the Wq distribution, in which 70% of 

patients demonstrated a zero-time wait, allowing for differing calculation methodologies. 

 

Fig. 3.12: Boxplot of number of simultaneous retrievals (non-zero wait time) by iteration (median = 70, IQR: 

61 – 77), with simulation iterative mean = 70 (black diamond). Contemporaneous simulation 

period: calendar year 2015. 
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Fig. 3.13: Boxplot of simultaneous retrieval proportion (non-zero wait time) by iteration (median = 24.5%, 

IQR: 23.3% - 26.7%), with simulation iterative mean = 24.7% (black diamond). Expected value = 

utilization = 22.2% (black line), from SPRS simulation based on PASTA property. Iterative 

median not significantly different to expected value (Mann-Whitney U-test p = 0.29). 

Contemporaneous simulation period: calendar year 2015. 
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3.4.3.  Summary of SPRS derived system descriptors 

results  

   The SPRS model has generated the standard queueing theory descriptors of Lq and Wq by 

simulation rather than by formulaic calculation. This has generated plausible, but larger 

values for each of the studied parameters than those for which a real-world formulaic 

solution exists. This reinforces the principle of formulaic queueing theory being only 

applicable to systems in which there is a stationary arrivals process, which SPRS does not 

demonstrate. The magnitude of the difference is relatively small, and it may therefore be 

the case that the formulaic results provide an adequate approximation of the real-world 

values for the SPRS system. Such formulaic results, however, do not adequately describe 

the system for the patients and users of the SPRS service and there is no formulaic answer 

which describes the 95th percentile of waiting time (Wq
95). This inadequate description of 

the system primarily stems from the skewed distribution of waiting times, which generate a 

substantial difference between the standard queueing theory descriptor of Wq, and the Wq
95 

value – the latter providing a much better indication to patients of the service which they, 

as an individual, can expect to receive. 

  Summary tables of the simulation output are provided for reference overleaf (Table 3.1 & 

Table 3.2) 
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Table 3.1: SPRS derived performance descriptors. Retrospective simulation period: calendar years 2013 – 

2014. 

Parameter 
Derived value by simulation 

(95% Prediction Interval) 

Lq 
0.032 

(0.022 – 0.049) 

Wq 
1h 12m 

(0h 52m – 1h 56m) 

Wq
95 

8h 8m 

(6h 1m – 12h 27m) 

Simultaneous Retrieval  

Proportion 

21.8% 

(16.5% - 25.7%) 

 

 

 

Table 3.2: SPRS derived performance descriptors. Instantaneous value at conclusion of the contemporaneous 

simulation period: calendar year 2015. 

Parameter 
Derived value by simulation 

(95% Prediction Interval) 

Lq 
0.042 

(0.026 – 0.072) 

Wq 
1h 26m 

(0h 57m – 2h 29m) 

Wq
95 

8h 52m 

(6h 4m – 14h 25m) 

Simultaneous Retrieval  

Proportion 

24.5% 

(19.2% - 30.9%) 

 



 

 

 

 

Part 3  Chapter 5  

Results: 

Simulating SPRS performance 

frontiers through  

unobservable phenomena  

 

  



Part 3 | Chapter 5 Results: SPRS Performance Limits 362 

 
 

3.5.  Results of simulating SPRS performance 

frontiers through unobservable phenomena  

      The results from the preceding section have shown that the Wq
95 and simultaneous 

retrieval proportions of the SPRS system lie above the respective specification limits of 1 

hour and 10% (see Table 3.1 and Table 3.2). Therefore, the model and, by inference, the 

real-world system simply never experience a low enough utilization to generate a Wq
95 less 

than 1 hour or a simultaneous retrieval probability less than 10%. The yearly number of 

missions which correspond to these performance limits are therefore unobservable in the 

real-world. Accordingly, the values are not generated within a simulation specifically 

designed to replicate the real-world. 

  Therefore, to simulate unobservable real-world phenomena, the SPRS model developed 

in Part 2 was run in an extended Monte-Carlo format to generate a wide number of mission 

totals per year. This allowed the model to simulate yearly mission totals which would not 

be experienced in the real-world system or the original SPRS simulations. 

   This allowed the demonstration of the mathematical relationships between observed real-

world values for the SPRS system and the important system performance descriptors which 

have been discussed. In particular, this simulation methodology gives the opportunity to 

correlate the expected, but unproven, relationships extrapolated from simpler aspects of 

queueing theory (e.g. exponential relationship between utilization and Wq) in the complex 

SPRS system with its time-dependent Poisson arrivals process in particular. 

    

  



Part 3 | Chapter 5 Results: SPRS Performance Limits 363 

 
 

   Having reviewed the system descriptors obtained as derived values from the simulation 

(section 3.4), it was considered that the SPRS team was likely operating beyond a 

performance frontier due to over-capacity. It was therefore considered most relevant to 

approach the analysis of the SPRS operational system with regard to three operational 

questions: 

1. What is the difference between the current state of the SPRS system and that 

required for a target simultaneous retrieval rate < 10%? 

2. What is the difference between the current state of the SPRS system and that 

required for a target Wq
95 less than 1 hour? 

3. What would be the effect on waiting time for retrieval of adding a second team 

to the system? 
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3.5.1  SPRS extended Monte-Carlo simulation output  

   One-thousand iterations of the SPRS extended Monte-Carlo simulation were performed 

in a single simulation run. The median iteration time was 6.6 seconds, with a total 

simulation time of 2h 36m. 

   The original simulation run, which was designed to replicate the real-world, generated 

missions with a long-term Poisson (λ) value in the range 250 – 314 missions per year. The 

extended SPRS Monte-Carlo simulation was specifically designed to generate λ values 

substantially outside of this range and did so, generating long-term Poisson λ-values in the 

range of 17 - 1494 missions per year. 

 

 

Fig. 3.14: Cumulative number of missions by date generated by the original SPRS simulation (as used in 

sections 2.5 and 3.4) to replicate the real-world. Each iteration is plotted by a different colour for 

emphasis. The relatively narrow band of mission numbers is shown, with all the surrounding 

empty plot being daily cumulative mission totals which are, effectively, unobservable in the real-

world. 
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Fig. 3.15: Cumulative number of missions by date generated by the SPRS extended Monte-Carlo simulation. 

Each iteration is a different colour for emphasis. The black triangle approximately indicates the 

output block from the original SPRS simulation, as Fig. 3.14. The output from all iterations which 

lie outside this triangle are the simulated cumulative daily mission totals which were unobservable 

in the real-world. 
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3.5.2.   Waiting time in queue – 95th percentile of waiting 

time (Wq
95)   (Specification limit: 1 hour) 

   Although no relationship involving Wq
95 is described by standard queueing theory, it is 

generally accepted that waiting time increases exponentially with increasing utilization. 

This was not the case with the extended Monte-Carlo simulation output Wq
95 values. 

Analysis of the simulation data demonstrated that the relationship between total number of 

missions and 95th percentile of waiting time (Wq
95) was complex, requiring the use of a 

polynomial model to generate an acceptable approximation, but did not appear to follow an 

exponential relationship at the studied values. 

   Consulting the fitted reference curve at the value corresponding to a yearly λ of 257 

missions, the Monte-Carlo simulation predicted a Wq
95 of 9h 15m. This compared 

favourably with the simulation output calculated value for Wq
95 in the contemporaneous 

simulation period (section 3.4.2.3) in which 257 simulated missions had a calculated Wq
95 

of 8h 52m. There was a threshold at approximately 50 missions per year below which the 

95th percentile of waiting time was consistently zero.  
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Fig. 3.16: 95th percentile of waiting time (Wq
95) by number of SPRS missions undertaken per year (red), with 

fitted smoothing spline (solid blue line), 95% prediction intervals (dashed blue lines) and 

indication of single-point value derived from SPRS contemporaneous simulation output as section 

3.4 (black cross). 
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Target: Wq
95 < 1 hour 

 By reference to the fitted polynomial model, a Wq
95 less than one hour could only be 

achieved with an SPRS missions yearly λ of approximately 61 missions per year (95% PI: 

41 – 101). It is therefore considered, in similarity to the simultaneous retrieval result, 

highly unlikely that the current system would be able to achieve a 95th percentile of waiting 

time less than 1 hour as this would require the system to perform only approximately one-

quarter of its current workload. 

 

 

Fig. 3.17: 95th percentile of waiting time (Wq
95) by number of SPRS missions undertaken per year (red) with 

fitted reference polynomial (solid blue line) and 95% prediction intervals. Indication of single-

point value derived from section 3.4 (black cross). Target Wq
95 = 60 minutes (red line) with point 

estimate value = 61 missions (solid black line) and associated range of mission number yearly λ 

values shown (black dashed lines). 
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3.5.3. Simultaneous retrievals  

(Specification limit: 10% proportion) 

a) Number of simultaneous retrievals 

   From each iteration of the SPRS extended Monte-Carlo simulation, the total number of 

missions generated in the iteration was plotted against the number of simultaneous 

retrievals (i.e. the number of arriving patients experiencing a non-zero wait). 

   The simulation output demonstrated that the relationship between number of missions 

and number of simultaneous retrievals appeared generally exponential, in keeping with 

established queueing theory (Fig. 3.18). A reference curve was fitted describing the 

relationship between number of missions and number of simultaneous retrievals. As there 

can be no simultaneous retrievals when there are no missions, the line was forced through 

the origin.  

   Using the fitted reference curve, the extended Monte-Carlo simulation output for a yearly 

λ = 257 missions (equivalent to SPRS missions in the 2015 calendar year) was predicted to 

generate 62 simultaneous retrievals (Fig. 3.19). The derived value from the original 

simulation (section 3.4.2.4) predicted 70 simultaneous retrievals in the 2015 calendar year. 
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Fig. 3.18: Number of simultaneous retrievals by number of SPRS missions undertaken (red), with fitted 

polynomial curve (blue). Demonstrating overall relationship commensurate with exponential 

distribution expected in queueing theory. 
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Fig. 3.19: Number of simultaneous retrievals by number of SPRS missions undertaken (red), with fitted 

polynomial curve (blue), showing 95% prediction intervals (blue dotted lines) and indication of 

single-point value derived from section 3.4.2.4: 257 SPRS missions per year, 70 simultaneous 

retrieval requests (black cross). Plot as Fig. 3.18 zoomed for clarity pertaining to SPRS current 

demand. 
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b) Proportion of simultaneous retrievals 

   When the number of simultaneous retrievals was divided by the total number of missions 

in that iteration, a simultaneous retrieval proportion (as a percentage) was generated. This 

simultaneous retrieval proportion demonstrated an approximately linear increase with an 

increasing number of missions (Fig. 3.20). A reference line was fitted to the data. Again, as 

zero missions must confer a simultaneous retrieval proportion of zero, the line was forced 

though the origin. 

   Using the reference line, 257 missions per year (equivalent to SPRS missions in the 2015 

calendar year) was predicted to generate a simultaneous retrieval proportion of 24.2%. The 

derived value from the original simulation (section 4.2.4) predicted a 24.5% simultaneous 

retrieval proportion in the 2015 calendar year. 

 

Fig. 3.20: Simultaneous retrieval proportion by number of SPRS missions undertaken (red), with fitted linear 

regression model (solid blue line). Indicative single-point value derived from section 3.4.2.4: 257 

missions = 24.5% simultaneous retrieval proportion (black cross) compared to regression line 

predicted value = 24.2%. 
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c) Proportion of simultaneous retrievals (Target < 10%) 

 From the above-generated reference line, the required yearly λ to generate a simultaneous 

retrieval proportion of 10% or less was calculated from the point at which the fitted 

reference line crossed the 10% simultaneous retrieval threshold. 

   Based on this, a simultaneous retrieval proportion ≤ 10% would only be achievable with 

an SPRS missions yearly λ of approximately 104 missions (95% PI: 70 – 142). This would 

suggest that the current system would face significant challenges in achieving a target of ≤ 

10% simultaneous retrievals – requiring to undertake less than half the current number of 

missions. 

 

 

Fig. 3.21: Simultaneous retrieval proportion by number of SPRS missions undertaken (red), with fitted linear 

regression model (solid blue line), 95% prediction intervals (dashed blue lines). Indicative single-

point value derived from section 3.4.2.4: 257 missions = 24.5% simultaneous retrieval proportion 

(black cross). Mission number to achieve 10% simultaneous retrieval rate indicated (red dashed 

line) with 95% prediction intervals (black dashed lines). 
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3.5.4.  Addition of a second SPRS team  

  Where the arrival rate (λ) and service rate (μ) are unchanged, increasing the number of 

SPRS servers (c) to two would have the effect of halving the SPRS system traffic intensity, 

by the relationship: 

𝜌 =  
𝜆

𝑐 𝜇
      (40) 

The extended Monte-Carlo simulation output was therefore interrogated with regard to 

traffic intensity (ρ) rather than raw number of missions versus 95th percentile of waiting 

time (Wq
95). 

   Assuming that the mission duration distribution does not change, ρ varies as the number 

of missions. The relationship of ρ to Wq
95 is therefore outwardly similar to that between the 

number of missions and Wq
95.  The extended Monte-Carlo simulation generated a 

predicted Wq
95 of 9h 8m from a traffic intensity of 19.3%. This compared favourably with 

the results from section 3.4.2.3 where, in the contemporaneous simulation period, a Wq
95 of 

8h 52m was calculated from a simulated traffic intensity of 19.3% (Fig. 3.22). 

   Adding a second team to the system has the effect of halving the overall utilization of the 

server from 19.3% to 9.7%. Interpolation from the reference curve suggests that this would 

produce a reduction in the 95th percentile of waiting time from 9h 8m to 4h 9m (50.8% 

reduction) (Fig. 3.23). Although this would not reach the target threshold of the 95th 

percentile of waiting time < 60 minutes, it would bring the Wq
95 value towards the top of 

the steepest part of the line, potentially allowing a synergistic improvement if a further 

utilization-reducing intervention (e.g. faster team deployment to reduce mission durations) 

could be implemented. This should be contrasted with the probability of simultaneous 

retrieval in a multi-server system as shown for EMRS in section 3.6.1.4 and further 

explored in the discussion (section 3.8.2.4).  
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Fig. 3.22: Monte-Carlo simulation output of 95th percentile of waiting time (Wq
95)  by traffic intensity for 

SPRS team (red points), with fitted polynomial reference line (blue line) and indication of single-

point value derived from contemporaneous simulation (257 missions) ρ = 0.193, Wq
95 = 8h 52m 

(black cross). 
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Fig. 3.23: 95th percentile of waiting time (Wq
95) by SPRS team utilization (red points), with fitted polynomial 

reference line (blue line) and indication of  smoothing spline and single-point indication of single-

point value derived from contemporaneous simulation (257 missions) ρ = 0.193, Wq
95 = 8h 52m 

(black cross). Effect of adding additional SPRS team (halving of offered load) of new Wq
95 = 4h 

29m (dashed black lines). 

  

  



Part 3 | Chapter 5 Results: SPRS Performance Limits 377 

 
 

3.5.5  Summary – SPRS performance specifications  

   In this analysis, the SPRS system has been demonstrated to have Lq and Wq values which 

are compatible with the real-world formulaic values for the same parameters. This lends 

validity to the results of the purely simulation-derived critical system performance 

descriptors of Wq
95 and simultaneous retrieval proportions. In which case, these results 

demonstrate that the SPRS system currently operates with substantial challenges in respect 

of both Wq
95 and simultaneous retrieval proportion. 

   Wq
95 demonstrates that patients can only be reliably informed that their retrieval is likely 

to commence in 7h 42m or less. In the context of a critically unwell patient in a remote 

healthcare facility, this may be considered an unacceptably long timeframe by the referring 

clinicians. The simultaneous retrieval proportion aligned with this finding, demonstrating 

that 20 – 25% of patients will be referred to a non-empty system, potentially incurring a 

significant wait. Both of these results indicate that the paediatric service is operating 

beyond the proposed performance limits of Wq
95 less than one hour and simultaneous 

retrieval proportion less than 10%. 

   Furthermore, when the relationships demonstrated by analysis of unobservable real-

world phenomena are also considered, it is apparent that there are no easy solutions for the 

SPRS system. The Monte-Carlo simulation demonstrated that an unachievable reduction in 

the number of missions undertaken would need to be performed to bring either the Wq
95 

below the target of 1 hour or the simultaneous retrieval proportion under the 10% target. 

The most promising change simulated was that of adding a second SPRS team. This would 

marginally better than halve (49.5%) the Wq
95 value; but it would have the potential to act 

synergistically with any other interventions which reduce the SPRS server utilization. 

   The relationship of the current SPRS performance to the specification limits is 

summarised overleaf (Table 3.3). 
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Table 3.3: Current SPRS performance relative to specification limits.  

Specification 

Current real- 

world value 

(2015 calendar year) 

Proportion of 

Target 

Required change in 

utilization to meet target. 

Simultaneous retrieval 

proportion < 10% 
22.6% 226% 

Reduce by 

153 missions 

per year 

Wq
95 < 1-hour 8h 52m 887% 

Reduce by 

196 missions 

per year 
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3.6  Results of derived performance descriptors 

from the EMRS simulation  

   Following from the EMRS section in Part 2 of this thesis, in which the ability of the 

model to accurately reflect the real-world in the retrospective and contemporaneous 

simulation periods were established, the analysis will now progress towards establishing 

useful descriptive system performance parameters derived from the EMRS model. 

   All the results in this section assume that the model and the real-world behave 

comparably. In contrast to the SPRS analysis, there is no formulaic result for the M/G/2 

system with non-homogeneous Poisson arrivals which describes EMRS. And no 

comparative real-world values are available due to the limitations of the ScotSTAR 

datasets. The validity of the EMRS results is therefore inferred from the similarity of the 

model and real-world results described in Part 2. Some additional validity is gained by 

extension of the results of the SPRS system, the EMRS model being an increased-

complexity evolution of the SPRS model. 

   As previously, the analysis will define for the EMRS system a number of standard 

queueing theory parameters: 

- Mean length of queue (Lq) 

- Mean waiting time in queue (Wq) 

And those developed specifically for this project as being specifically relevant to 

ScotSTAR operations: 

- 95th percentile of waiting time in queue (Wq
95) 

- Simultaneous retrieval proportion 

 

   Missions arriving to the system are strictly allocated to the Duty One team in the first 

instance. The servers are otherwise homogeneous and there is otherwise no difference 

between the teams with respect to service time distributions or type of missions served. 
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3.6.1.  Retrospective simulation period  

   In the EMRS retrospective simulation period (Part 2, section 2.6.1), it was demonstrated 

that the model could accurately replicate the real-world. It is therefore considered 

appropriate to derive from the model the values of system descriptors which are not 

measurable in the real-world system.  

   The information in this section is directly derived from the same Simulink model and 

simulation used in the EMRS retrospective analysis in Part 2. It is therefore, as in Part 2, 

based on information available to the model throughout the simulation period: both past 

and future to any given simulated time instance. This will generate a value for each of the 

derived performance parameters representative of the entire retrospective simulation 

period: calendar years 2013 and 2014. 
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3.6.1.1.  Mean length of queue (Lq) 

   In the retrospective simulation period, EMRS missions demonstrated an iterative median 

value for mean length of queue (Lq) of 0.012 (95% PI: 0.010 – 0.016, mean = 0.013) (Fig. 

3.24) 

   Lq is demonstrated as a standard queueing theory parameter. Given its value is 

considerably less than one it indicates that, the majority of the time, the EMRS queue is 

empty. Lq does have a relationship to the number of simultaneous retrieval requests and to 

the waiting time, but as both of these will be explicitly calculated then Lq, in itself, does not 

currently convey any useful operational significance. 

 

 

Fig. 3.24: Boxplot of simulation iterative mean length of EMRS queue (Lq) values (median = 0.012, IQR: 

0.011 – 0.014), with iterative mean = 0.013 (black diamond). Retrospective simulation period: 

calendar years 2013 – 2014. 
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3.6.1.2.  Waiting time in queue – mean waiting time (Wq) 

   During the retrospective simulation period, the iterative median of mean waiting time in 

the queue was 4 minutes (95% PI: 2 minutes – 7 minutes, mean = 4 minutes) (Fig. 3.25). 

   As can be inferred from the very small value of Lq calculated previously, the majority of 

arriving missions would be expected to encounter an empty queue. Therefore, the Wq value 

must be generated from a skewed distribution in which the majority of waiting times are 

zero, with a significant number of patients then experiencing a long waiting time in order 

to generate a higher mean value.  As a result, simply using the average waiting time (Wq), 

although it is a standard queueing theory parameter, provides little operationally relevant 

information about the EMRS system. 

 

Fig. 3.25: Boxplot of simulation iterative mean waiting time in queue (Wq) values (median = 4 minutes, IQR: 

4 minutes – 5 minutes), with iterative mean = 4 minutes (black diamond). Retrospective simulation 

period: calendar years 2013 – 2014. 
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3.6.1.3.  Waiting time in queue – 95th percentile of waiting time (Wq
95) 

   The EMRS system was also considered to be more usefully described by the 95th 

percentile of waiting time (Wq
95). This would be a service descriptor which is relevant to 

patients: with it being the longest time for which 19 out of 20 patients will have to wait for 

a retrieval mission to be commenced. 

  The iterative median value 95th percentile of waiting time still included zero (95% PI: 0 

minutes – 7 minutes, mean = 1 minute) (Fig. 3.26), it is not until approximately the 96th 

percentile of waiting time before a non-zero value is reached (Fig. 3.27). At the 97.5th 

percentile, the iterative median Wq
97.5 = 42 minutes (95% PI: 0h 13m – 1h 35m, mean = 45 

minutes) (Fig. 3.28). 

 

 

Fig. 3.26: Boxplot of simulation iterative 95th percentile of  waiting time in queue (Wq
95) values (median = 

zero minutes, IQR: zero minutes – zero minutes), with iterative mean = 1 minute (black diamond). 

Retrospective simulation period: calendar years 2013 – 2014. 
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Fig. 3.27: ECDF for iterative median 95th percentile of waiting time in queue (Wq
95). Retrospective 

simulation period: calendar years 2013-2014. 
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Fig. 3.28: Boxplot of simulation iterations 97.5th percentile of waiting time in queue (Wq
97.5) values (median 

= 42 minutes, IQR: 0h 29m – 1h 1m), with iterative mean = 45 minutes (black diamond). 

Retrospective simulation period: calendar years 2013 – 2014. 
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3.6.1.4.  Simultaneous retrievals 

   As with the previous simultaneous retrieval analyses; at the time of the project, the 

ScotSTAR dataset does not allow the capture of the true number of simultaneous retrievals 

in the EMRS system. Therefore, the only mechanism by which this useful performance 

parameter can be studied is by derivation from the simulation output. 

Number of simultaneous retrievals: 

   Firstly, the simulation output data were analysed to count the number of simultaneous 

retrievals: defined as a non-zero wait for service in the EMRS queue. For this analysis, a 

differentiation between primary and secondary missions was not made, but this will be 

discussed later.  

   During the retrospective simulation period, the EMRS system generated an iterative 

median of 21 simultaneous retrievals (95% PI: 14 – 27, mean = 21) (Fig. 3.29). 

 

Fig. 3.29: Boxplot of number of simultaneous retrievals (non-zero wait time) by iteration (median = 21, IQR: 

19 – 23), with iterative mean = 21 (black diamond). Retrospective simulation period: calendar 

years 2013 – 2014.  
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Proportion of simultaneous retrievals: 

   When the number of simultaneous retrievals were divided by the respective iteration’s 

mission total, an iterative median simultaneous retrieval proportion of 4.4% (95% PI: 3.2% 

- 5.4%, mean = 4.4%) was generated (Fig. 3.30). 

   In the single-server uniform-arrival Poisson process, the probability of simultaneous 

retrieval is equal to the server utilization quotient, by virtue of the PASTA property of 

Poisson systems. However, in the two-server system, simultaneous retrieval requires both 

servers to be busy at the same time. In the context of the uniform, homogeneous server 

system this would describe the relationship of simultaneous retrievals to server utilization 

and number of servers (n) as: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠 =  𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛 

  If the EMRS system was simplified to uniform arrivals and homogeneous servers with 

total utilization = 19.4% (as Part 2, Section 2.6.1.6), then the expected simultaneous 

retrieval rate would be expected as 0.1942 = 3.7%. This calculated value is 84.1% of the 

simulated value but is not significantly different on Mann-Whitney U-testing (p = 0.20). 
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Fig. 3.30: Boxplot of simultaneous retrieval (non-zero wait time) proportion by iteration (median = 4.4%, 

IQR: 4.1% - 4.8%), with iterative mean = 4.4% (black diamond) and expected value based on 

utilizationn = 3.7% (black line).  Retrospective simulation period: calendar years 2013 – 2014. 
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3.6.2.  EMRS contemporaneous simulation period  

   Having demonstrated the model output as an average value over the whole of the 

retrospective simulation period, the model was run as a contemporaneous simulation to 

establish the immediate, current performance of the system. The same model as Part 2, and 

the same methodology were used – in which the model only receives information up to the 

current simulation point. 

   Part 2, section 2.5.2.6 demonstrated that the EMRS model was able to generate a daily 

contemporaneous derived value which replicated the real-world equivalent during the 

second half of the calendar year, using a six-month data sampling window. Reflective of 

this, the following derived EMRS results in the contemporaneous simulation period are 

only considered valid in the second half of the calendar year, and in respect of the final 

value representing the entire one-year period. 

   For each of the following descriptors, the model was firstly primed with the final value 

data from the retrospective simulation period, before then being interrogated at the end of 

each contemporaneous simulated day and the corresponding performance value plotted. 

This shows the progression of the given performance metric through the simulation period. 

This progression is calculated from the start of the contemporaneous simulation period to 

the current simulated day, thereby generating a progressively lengthening window which 

ultimately contains one year of data – as opposed to a shorter, fixed, rolling average 

computation. This was done to gain insight into a suitable timeframe over which to 

calculate a rolling value and to observe a reduction in volatility of the data as the sample 

size increased. 

Note again that, in contrast to SPRS, there are no measurable or formulaic real-world 

results which can be used to validate the output of the simulation, with the partial 

exception of simultaneous retrieval proportion. The real-world application is assumed, with 

validity inferred from the results of the EMRS analysis in Part 2 and by the expansion of 

the successful SPRS model. 
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3.6.2.1.  Mean length of queue (Lq) 

Progressive Lq Value 

   In keeping with the demonstrated contemporaneous simulation model validity in Part 2, 

(see section 2.5.2.6), Lq performance value is described during the second half of the 2015 

calendar year with a minimum 6-months data sampling window. For overall clarity and 

simplicity the progressive Lq value for the entire 2015 calendar year is shown, however it 

can only be considered validated from July onwards. 

  The Lq value was relatively stable from a starting value in July of 0.0071. The value 

reached a peak of 0.0073 in October before following a generally downward trend to the 

final, minimum value of 0.0070 (Fig 3.31). 

 

Fig. 3.31: Progression of the iterative median (red line) and 95% prediction interval (red dashed lines) 

values of queue length (Lq) for the contemporaneous simulation period – calendar year 2015. The 

results are considered valid from July onwards (black line).
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Final Contemporaneous Lq Value 

   At the conclusion of the contemporaneous simulation period, the EMRS simulation 

demonstrated an iterative median value for mean length of queue (Lq) = 0.007 (95% PI: 

0.005 – 0.010, mean = 0.007) (Fig. 3.32). 

   There is no real-world or equivalent formulaic value for comparison. 

 

 

Fig. 3.32: Boxplot of mean length of queue (Lq) by iteration at the conclusion of the contemporaneous 

simulation period (median = 0.007, IQR: 0.006 – 0.008), mean = 0.007 (black diamond). 

Contemporaneous simulation period: calendar year 2015. 
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3.6.2.2.  Waiting time in queue – mean waiting time (Wq). 

Final Progressive Wq Value 

   As with Lq, the Wq progressive values are considered to be valid in the second half of 

2015, with a minimum 6-month data sampling window. Again, for overall clarity and 

simplicity the progressive Wq value for the entire 2015 calendar year is shown, however it 

can only be considered valid from July onwards. 

   Thus, the model demonstrated a value of approximately 3 minutes for the entire valid 

simulation period (Fig. 3.33) 

 

 

Fig. 3.33: Progression of the iterative median (red line) and 95% prediction interval (blue dashed lines) 

values of mean waiting time in queue (Wq
95). The results are considered valid from July onwards 

(black line). Contemporaneous simulation period: calendar year 2015. 
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Final Contemporaneous Wq Value 

   The iterative median value of the current mean waiting time in the queue at the end of the 

2015 calendar year was 3 minutes (95% PI: 2 minutes – 5 minutes, mean = 3 minutes) (Fig 

3.34). 

      There is no real-world or equivalent formulaic value for comparison. 

 

 

Fig. 3.34: Boxplot of simulation iterative mean waiting time in queue (Wq) values (median = 3 minutes, IQR: 

3 minutes – 4 minutes), with iterative mean = 3 minutes (black diamond). Contemporaneous 

simulation period: calendar year 2015. 
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3.6.2.3.  Waiting time in queue – 95th percentile of waiting time (Wq
95) 

Progressive Wq
95 Value 

   The progressive Wq
95 values are considered to be valid in the second half of 2015, with a 

minimum 6-month data sampling window. Again, for overall clarity and simplicity the 

progressive Wq
95 value for the entire 2015 calendar year is shown, however it can only be 

considered valid from July onwards. 

   The iterative median value for Wq
95 throughout the whole validated 6-months for the 

simulation output was zero. Through all of this time-period, the value of the upper bound 

of the 95% prediction interval was 42 minutes or lower. It can therefore be reported with 

confidence that the Wq
95 for EMRS missions was less than the 1-hour target at all times 

through the second half of the 2015 calendar year (Fig. 3.35). 

   Although not validated, the progressive Wq values prior to June 2015 do illustrate some 

of the challenges in contemporaneously describing the system state. The Wq
95 value 

remains at zero with the exception of a one-week period in January when the iterative 

median value of Wq
95 reached a maximum of approximately 5 minutes. However, in 

January, the maximum value of the upper-bound of the 95% prediction intervals exceeds 5 

hours. Although this is likely to represent volatility in the data, it is not until April when 

the upper value of the 95% prediction interval decreases below the 1-hour level. This 

would suggest that in the context of a rolling value that, even if the output could be 

validated over a shorter time period, that the sampling time would need to be at least 3 

months if the availability of a team at a Wq
95 less than 1 hour (focussed on secondary 

missions) is to be reliably reported. 
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Fig. 3.35: Progression of the iterative median (red line) and 95% prediction interval (red dashed lines) 

values of 95th percentile of waiting time in queue (Wq
95). The results are considered valid from July 

onwards (black line). Contemporaneous simulation period: calendar year 2015.   
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Final Wq
95 Value 

   At the end of the 2015 calendar year, the contemporaneous Wq
95 iterative median value 

was zero minutes (95% PI: zero minutes – 4 minutes, mean = 16 seconds) (Fig. 3.36).  

   Examination of the ECDF of the waiting times (Fig. 3.7) demonstrated that the waiting 

time did not become non-zero until above the 96th percentile. This explains the zero values 

for each of the median, upper and lower quartiles – with the few non-zero values showing 

as outliers on the box-plot. 

   The 97.5th percentile of waiting time demonstrated an iterative median = 22 min (95% 

PI: 0h 1m – 1h 35m, mean = 30 minutes) (Fig. 3.38). 

 

 

Fig. 3.36: Boxplot of simulation iterations 95th percentile of waiting time in queue (Wq
95) values (median = 

zero minutes, IQR: zero minutes – zero minutes), with iterative mean = 16 seconds (black 

diamond). Contemporaneous simulation period: calendar year 2015. 
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Fig. 3.37: ECDF of iterative median values for simulated percentiles of waiting time in queue (Wq
95). 

Contemporaneous simulation period: calendar year 2015 
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Fig. 3.38: Boxplot of simulation iterations 97.5th percentile of waiting time in queue (Wq
97.5) values (median 

= 22 minutes, IQR: 10 minutes – 42 minutes), with iterative mean = 30 minutes (black diamond). 

Contemporaneous simulation period: calendar year 2015. 
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3.6.2.4.  Simultaneous retrievals 

Progressive simultaneous retrieval proportion    

   The progressive simultaneous retrieval proportion values are considered to be valid in the 

second half of 2015, with a minimum 6-month data sampling window. Again, for overall 

clarity and simplicity the progressive simultaneous retrieval value for the entire 2015 

calendar year is shown, however it can only be considered valid from July onwards. 

   Within the period of validity, the iterative median simultaneous retrieval rate climbed 

from an initial value of 3.7% in July to a maximum of 3.9% in September, before falling 

slightly to the final value of 3.8% (Fig 3.39). 

 

Fig. 3.39: Progression of the iterative median (red line) and 95% prediction interval (red dashed lines) 

values for proportion of simultaneous retrievals. The results are considered valid from July 

onwards (black line). Contemporaneous simulation period: calendar year 2015. 
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Final number of simultaneous retrieval requests    

   At the conclusion of the contemporaneous simulation period, the iterative median total of 

simultaneous retrieval requests in the whole 2015 calendar year was 15 (95% PI: 8 – 25, 

mean = 16) (Fig. 3.40). 

 

 

Fig. 3.40: Boxplot of number of EMRS simultaneous retrievals (non-zero wait time) by iteration (median = 

15, IQR: 12 - 19), with iterative mean = 16 (black diamond). Contemporaneous simulation period: 

calendar year 2015. 
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Final simultaneous retrieval proportion    

   At the conclusion of the contemporaneous simulation period, the iterative median 

proportion of simultaneous retrievals was 3.8% (95% PI: 2.7% - 5.0%, mean = 3.8%) (Fig. 

3.41). 

   Calculated from the server utilization of 2 servers (n = 2) by utilizationn (as in the 

retrospective period, section 3.6.1.4), the expected simultaneous retrieval proportion would 

be 2.9%.  This was not significantly different to the simulation output on Mann-Whitney U 

testing (p = 0.20) but may be approaching operational significance at only 76.3% of the 

simulation value. This does suggest that the result generated by the simulation is plausible 

but the difference may be representative of the calculated value not accounting for a time-

varying arrival rate. 

 

 

Fig. 3.41: Boxplot of proportion of simultaneous retrieval requests (non-zero wait time) by iteration (median 

= 3.8%, IQR: 3.4% - 4.2%), with iterative mean = 3.8% (black diamond). Contemporaneous 

simulation period: calendar year 2015. Expected value 3.2% (black line). 
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3.6.3.  Summary of EMRS derived system descriptors 

results  

   The EMRS model has generated the standard queueing theory descriptors of Lq and Wq 

by simulation rather than by formulaic calcluation. There is no equivalent real-world or 

calculable value which can be used to assess the plausibility of the Lq and Wq results but 

by inference from the simpler SPRS model, they appear to be appropriate values. EMRS 

demonstrates a much lower utilization quotient than SPRS, by virtue of its two servers, 

despite a higher overall number of missions. This is reflected in the EMRS results which 

show the system to be performing well within the stated specifications. These results 

would suggest that capacity remains within the EMRS system to undertake additional work 

– which will be explored in the next section. 

  Summary tables of the simulation output values are provided for reference overleaf 

(Table 3.4 and Table 3.5) 
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Table 3.4: EMRS derived performance descriptors. Retrospective simulation period: calendar years 2013 – 

2014. 

Parameter 
Derived value by simulation 

(95% Prediction Interval) 

Lq 
0.012 

(0.010 – 0.016) 

Wq 
4 minutes 

(2 minutes – 7 minutes) 

Wq
95 

0 minutes 

(0 minutes – 7 minutes) 

Simultaneous Retrieval  

Proportion 

4.4% 

(3.2% - 5.4%) 

 

 

 

Table 3.5: EMRS derived performance descriptors. Instantaneous value at conclusion of the 

contemporaneous simulation period: calendar year 2015. 

Parameter 
Final derived value by simulation 

(95% Prediction Interval) 

Lq 
0.007 

(0.005 – 0.010) 

Wq 
3 minutes 

(2 minutes – 5 minutes) 

Wq
95 

0 minutes 

(0 minutes – 4 minutes) 

Simultaneous Retrieval  

Proportion 

3.8% 

(2.7% - 5.0%) 
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3.7.  Simulation of EMRS performance limits 

through unobservable phenomena  

   In this section, the EMRS simulation model was run in an extended Monte-Carlo format, 

with the total number of missions undertaken being deliberately varied to include values 

not seen in the real-world system. 

   Having reviewed the results obtained as derived values from the simulation (above) and 

their relationships to the real-world system, it was considered likely that the EMRS system 

exhibited some spare capacity to undertake additional missions - both primary and 

secondary. However, the number of missions which could be undertaken without 

degrading system performance is not known. Therefore, the performance frontier with 

respect to number of missions at which system performance could deteriorate needs to be 

defined. 

   In keeping with the previous analyses, the expert consensus of the ScotSTAR clinicians 

suggested that the number of simultaneous retrievals - where another mission is requested 

when there is no available team - should remain below 10%. The consensus suggested that 

1 hour was a reasonable expectation for a secondary retrieval to start. It also suggested that 

15 minutes would be an acceptable wait for a team to commence a time-critical primary 

missions – longer than this would risk adding delay in the time to life-saving intervention 

or would otherwise unnecessarily prolong the patient journey. Each of these were set as the 

respective targets for the primary and secondary missions’ 95th percentile of waiting time 

(Wq
95). 

   During the course of this analysis, it became apparent that another unobservable 

phenomenon: baulked or reneged primary missions, would be a factor to be considered in 

the system. Discussion with the clinicians operating the dedicated trauma tasking desk 

suggested that a number of primary missions which should have required team attendance 

were simply not tasked to a team, because no team was available. It was considered that 

the realistic absolute maximum for which a primary mission would be able to be held 

awaiting an EMRS team was approximately 20 minutes before it had to be allowed to 

proceed to its conclusion without team involvement. As a result, as the average waiting 

time approached 20 minutes, it was likely that an increasing number of missions would be 

reneged from the EMRS system to be treated and transported by the local ambulance crews 
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alone. It was therefore considered that this had potential to cause an under-estimation of 

the number of EMRS primary missions as the waiting time increased, and also to skew the 

waiting time distribution. As a result, it was decided that the number of missed (baulked / 

reneged) primary missions would need to be implemented as a performance indicator for 

the EMRS system. 

   Therefore, the EMRS model was used in an extended Monte-Carlo simulation to 

establish operational performance frontiers for the system with regard to 3 separate 

questions: 

1. How many additional missions could EMRS undertake before the 95th percentile of 

waiting time (Wq
95) reaches the specification (from clinical consensus) limits of: 

a. 1 hour for secondary missions? 

b. 15 minutes for primary missions? 

 

2. How many additional missions (secondary and primary) could EMRS undertake 

before the overall simultaneous retrieval proportion exceeds 10%? 

 

3. What is the current state of the EMRS system with regarding the number of missed 

(baulked / reneged) primary missions and does this indicate a potential performance 

frontier?  
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3.7.1.  EMRS extended Monte-Carlo simulation output  

   One thousand iterations of the simulation were undertaken in a single simulation run. 

During each run, the number of primary missions and the number of secondary missions 

were independently varied in a Monte-Carlo fashion by altering the exponentially 

distributed μ-value of mission inter-arrival times. The median iteration time was 42 

seconds with a total simulation time of 11h 28m. 

  The original simulation run, used in all EMRS model analyses preceding this, was 

designed to replicate the real-world as closely as possible. These simulations generated 

missions with a long-term λ value of 486 primary pre-hospital missions (Poisson 

distribution 95th percentile range: 443 – 529) and 280 secondary missions (Poisson 

distribution 95th percentile range: 238 – 302) per year. The extended EMRS Monte-Carlo 

simulation was specifically designed to generate long-term number of mission λ values 

substantially outside this range and did so: generating a range of 8 – 2399 primary 

missions per year and 2 – 2733 secondary missions per year. 
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Fig. 3.42: Comparison of the combinations of number of primary and number of secondary missions per year 

generated by the EMRS extended Monte-Carlo simulation (red points, secondary missions:2 – 

2733, primary missions range: 8 - 2399), compared to the original EMRS simulation used in part 

2 (black points, 95% Poisson confidence intervals for primary missions: 238 – 302, secondary 

missions:443 – 529). 
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3.7.2.   Revision of EMRS model 

   In the initial extended Monte-Carlo simulations using the same EMRS model as all the 

preceding analyses, the simultaneous retrieval proportion and Wq
95 values demonstrated 

relationships to the mission numbers which did not correlate with the findings in the 

derived values section (section 3.6). This led to a revision of the EMRS model, as 

explained below. 

 

3.7.2.1.  Simultaneous retrievals 

   At the end of each simulation iteration, the number of simultaneous retrievals (the 

number of arriving patients experiencing a non-zero wait) was plotted three-dimensionally 

with the corresponding number of primary and secondary missions generated. An 

interpolated reference surface was fitted to the points for illustration and further 

calculations (Fig. 3.43). 

   It can be seen that the three-dimensional chart approximately demonstrates the 

exponential distribution between increasing mission numbers and number of simultaneous 

retrievals but this relationship is more clearly illustrated on the slice of the three-

dimensional chart (Fig. 3.44) plotting the number of Simultaneous Retrievals (z-axis) 

along a plane defined by x = y (i.e. number of primary missions per year = number of 

secondary missions per year) (Fig. 3.45). The overall relationship between increasing 

number of missions and number of simultaneous retrievals demonstrated an approximately 

exponential relationship as would be expected with standard queueing theory and the plot 

appears outwardly appropriate. 

   However, it can also be seen on the three-dimensional chart that there is a clustering of 

points along a line at the highest edge of the plane. This corresponds to the highest rate of 

mission arrivals such that the system is quickly saturated and the number of simultaneous 

retrievals equals the total number of missions generated, minus only the first two missions 

which experience zero wait due to the empty servers at that time. 
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Fig. 3.43: 3-dimensional plot of extended Monte-Carlo simulation output for number of simultaneous 

retrievals by number of primary and secondary missions, with linearly-interpolated surface. 
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Fig. 3.44: 3-dimensional plot of extended Monte-Carlo simulation output for number of simultaneous 

retrievals by number of primary and secondary missions, with linearly-interpolated surface. Plane 

x = y (primary missions = secondary missions) along which the surface was sliced to demonstrate 

the exponential relationship in Fig. 3.45 is shown (blue plane). 
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Fig. 3.45: Slice through 3-dimensional plot of extended Monte-Carlo simulation output on plane x = y (as 

shown in Fig. 3.44) for number of simultaneous retrievals, demonstrating exponential relationship 

of number of simultaneous retrievals to yearly number of missions. 
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   By dividing the number of simultaneous retrievals by the total number of missions from 

the same iteration, the proportion of simultaneous retrievals was calculated. Again, this 

was plotted three-dimensionally with the corresponding number of primary and secondary 

missions from the same iteration. A simple linearly-interpolated surface was fitted to the 

points for illustration and reference.    

   Once again, the plot demonstrates a clustering of missions approaching the 1.0 

simultaneous retrieval probability. In the context of simultaneous retrieval rate, this is a 

more tangible natural limit of the system, as the simultaneous retrieval probability is equal 

to the probability of queueing, which cannot exceed one. When the three-dimensional 

surface is plotted on a slice along the plane x = y (Fig. 3.46), the overall relationship 

between increasing number of missions and simultaneous retrieval proportion 

demonstrated an approximately linear increase (Fig. 3.47). This relationship would also be 

expected in queueing theory by the PASTA property, with the proportion of simultaneous 

retrievals varying as a factor of server utilization. 

Fig. 3.46: 3-dimensional plot of extended Monte-Carlo simulation output for proportion of simultaneous 

retrievals by number of primary and secondary missions, with linearly-interpolated surface. Plane 

x = y (primary missions = secondary missions) along which the surface was sliced to demonstrate 

the exponential relationship in Fig. 3.47 is shown (blue plane). 
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Fig. 3.47: Slice through 3-dimensional plot (Fig. 3.46) of extended Monte-Carlo simulation output on plane x 

= y for proportion of simultaneous retrievals, demonstrating linear relationship of proportion of 

simultaneous retrievals to yearly number of missions. 
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  From the interpolated surface, a contour plot demonstrating the proportion of 

simultaneous retrievals with regard to mission numbers was generated. Initially, plotting 

the 2015 real-world values of 240 secondary missions and 466 primary missions 

demonstrated a predicted simultaneous retrieval proportion of 11.2% (Fig. 3.48). This was 

substantially different to the 3.8% simultaneous retrieval rate derived from the EMRS 

contemporaneous simulation in section 3.6.2.4. The reasons for this will be discussed 

following the review of the initial Wq
95 findings. 

 

 

Fig. 3.48: Contour plot generated from 3-dimensional plot in Fig. 3.46 demonstrating proportion of 

simultaneous retrievals by number of primary and secondary missions (red contours) with EMRS 

real-world values for 2015 calendar year plotted: 240 secondary missions, 466 primary missions, 

11.2% simultaneous retrieval proportion (black cross). Plot zoomed for clarity. N.B. No reneging 

of primary missions by model. 
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3.7.2.2.  95th percentile of waiting time (Wq
95) – all missions. 

   Similarly to the simultaneous retrievals, the number of missions of each type were 

plotted three-dimensionally with the 95th percentile of waiting time for all missions in the 

iteration, from which a contour plot generated (Fig. 3.49). 

   The initial simulations demonstrated that the expected Wq
95 for all EMRS missions based 

on the 2015 mission numbers was 1h 27m. This was clearly at odds to the earlier 

calculations in which the waiting time did not become non-zero until above the 95th 

percentile (see section 3.6.2.3). This model was, however, able to demonstrate the expected 

exponential relationship between the number of missions undertaken and Wq
95 by again 

slicing the fitted surface with vertical plane along the line x = y (Fig. 3.44). 

 

 

Fig. 3.49: Contour plot of extended Monte-Carlo simulation output of 95th percentile of waiting time in hours 

(Wq
95) for all mission types (red contours), by number of Primary and Secondary mission per year, 

with EMRS real-world mission counts for 2015 calendar year plotted (black cross, 240 secondary 

missions, 466 primary missions) at 1.45 hours (1h 27m). No reneging of primary missions by 

model. 
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Fig. 3.50: Slice through corresponding surface of contour plot in Fig. 3.42 on plane x = y for Wq
95, 

demonstrating generally exponential relationship of Wq
95 to number of missions per year. 
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3.7.2.3.  Assessment of non-similarity, and subsequent model changes 

   Investigating this apparent error, it was realised that at larger numbers of missions, 

unobservable in the real-world, the model was queueing primary missions in particular for 

long periods of time when both servers were busy – this is the group who are never 

actually seen by EMRS in the real-world as they would have been treated and transferred 

by local ambulance teams before EMRS could arrive on-scene. When the model’s long 

queueing time for these missions was interpolated across the wider range of missions in the 

extended Monte-Carlo simulation, it resulted in a long waiting time at even the equivalent 

values to the real-world. In the extended Monte-Carlo simulation, the base EMRS model 

had therefore violated a fundamental principle in that it had ceased to behave the same way 

(either practically or mathematically) as the real-world system.  

   It was perceived by the Trauma Desk clinicians that realistically, team non-availability 

exceeding 20 minutes would likely result in a missed (baulked / reneged) primary mission. 

The initial EMRS model would, however, allow such missions to queue indefinitely for a 

team. The Simulink model was therefore revised to renege primary missions which were 

generated and entered into the queue but experienced a waiting time for service greater 

than 20 minutes. This “time out” function is represented diagrammatically in Fig.3.51, with 

the relevant Simulink blocks illustrated in Fig. 3.52. As will be shown in the following 

sections, this appears to have been effective in creating a model which behaves more in 

keeping with the real-world.  

   It is possible that a similar effect would be experienced with secondary missions at a 

much longer Wq, but it was considered that the this was likely to occur sufficiently 

infrequently as to have a negligible effect.  
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Fig. 3.51: Diagrammatic representation of EMRS queueing system, including reneging of primary missions 

in queue when waiting time reaches 20 minutes. 

 

 

Fig. 3.52: Screen capture of Simulink blocks demonstrating allocation of time-out to primary missions and 

sink for reneged entities (as Fig. 3.1). 

 

 

  The revised model was then also run for one-thousand iterations with the modification to 

renege primary missions with an absolute waiting time (Wq) greater than 20 minutes in 

place. This simulation demonstrated a median iteration time of 49.2 seconds. The 

simulation was completed in 14h 21m. All subsequent results are generated from this 

model. 
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3.7.3.   95th Percentile of waiting time (Wq
95)  

– revised EMRS model 

3.7.3.1.   All missions Wq
95 

   Using the redesigned model which took into account reneged primaries, the Wq
95 for all 

missions decreased to 1m23s (Fig. 3.53). This is still a larger value than the simulation-

derived iterative median value of Wq
95 = zero in the EMRS contemporaneous simulation 

(section 3.6.2.3) but did lie within the 95% prediction interval of the earlier model (0 

minutes – 4 minutes). It was therefore considered that the model now demonstrated an 

operationally acceptable replication of the real-world when a greater number of primary 

missions were demanded.  

 

Fig. 3.53: Contour plot of extended Monte-Carlo simulation output of 95th percentile of waiting time in 

minutes (Wq
95) for all mission types (red contours), and limit of zero waiting time (black contour) 

by number of Primary and Secondary missions per year, with EMRS real-world mission counts for 

2015 calendar year plotted (black cross). Model designed to renege primary missions with waiting 

time greater than 20 minutes. 
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3.7.3.2  Wq
95 – secondary missions   (Specification limit: 1 hour) 

   From each iteration of the simulation performed on the revised EMRS model, the 

secondary missions were separated as a sub-group and their specific waiting times were 

calculated separately to those of the primary missions. 

   The 95th percentile of waiting time (Wq
95) in the secondary missions sub-group was 

plotted three-dimensionally against the number of primary and secondary missions. A 

linear-interpolated surface was fitted and a contour plot generated from it (Fig. 3.54). 

   Based on this, the number of EMRS missions in 2015 would be expected to produce a 

Wq
95 of 45 minutes for secondary missions. This is less than the specified performance 

limit for secondary missions Wq
95 of 1 hour. 

  Using the fitted reference surface, the EMRS system could undertake an additional 23 

secondary missions (a total of 263 versus 240 per year in 2015) or an additional 26 primary 

missions (a total of 492 per year versus the 466 in 2015) before the Pareto limit for 

secondary missions Wq
95 = 1 hour was reached. 

   This result demonstrates that the EMRS secondary missions are closer to the 

performance frontier of a Wq
95 less than 1 hour than was perhaps realised within the 

service. Any intention to increase the number of secondary missions undertaken by EMRS 

will need a concomitant strategy to mitigate the risk of an increase in Wq
95 for secondary 

missions to over 1 hour.  
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Fig. 3.54: Contour plot of extended Monte-Carlo simulation output of 95th percentile of waiting time (Wq
95) 

for secondary missions (red contours), by number of Primary and Secondary mission per year, 

with EMRS real-world mission counts for 2015 calendar year plotted (black cross). Proposed 

performance frontier at Wq
95 = 60 minutes is highlighted (black contour). N.B. Model designed to 

renege primary missions with waiting time greater than 20 minutes. 
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3.7.3.3.   Wq
95 – primary missions   (Specification limit: 15 minutes) 

   From each iteration of the extended Monte-Carlo simulation using the revised EMRS 

model, the primary missions were analysed as a sub-group. 

   The 95th percentile of waiting time (Wq
95) for the primary missions sub-group was 

plotted three-dimensionally against the number of primary and secondary missions. A 

linear-interpolated surface was fitted and a contour plot generated from it (Fig. 3.55). This 

demonstrated that the 2015 yearly values of EMRS missions (240 secondary missions, 466 

primary missions) would produce an expected Wq
95 for primary missions of zero minutes. 

This is in keeping with the earlier findings (see section 3.6.2.3) in which the waiting time 

for all missions only became non-zero above the 96th percentile. 

   However, from this analysis, it was discovered that the performance frontier at 15 

minutes could not be established, and the Pareto limit for the corresponding number of 

primary and secondary missions could not be defined. This was the result of the reneged 

primary missions which created a skewed distribution in the data. If an immutable absolute 

limit of 20 minutes was set for reneging primary missions then as the number of primary 

missions tended to a suitably large value, both Wq and Wq
95 would asymptotically 

converge towards 20 minutes. No primary mission could experience a waiting time greater 

than 20 minutes because it would simply be reneged from the queue. In the studied 

situation, this would appear to describe the case where missions either experience a very 

short waiting time (as conferred by the current Wq
95 = zero) or they experience such a long 

waiting time that they are reneged. As a result, the 95th percentile of Wq appears to never 

reach 15 minutes. 
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Fig. 3.55: Contour plot of extended Monte-Carlo simulation output of 95th percentile of waiting time (Wq
95) 

for primary missions (red contours), by number of Primary and Secondary mission per year, with 

EMRS real-world mission counts for 2015 calendar year plotted (black cross). Threshold of non-

zero Wq
95 is illustrated (black contour). N.B. Model designed to renege primary missions with 

waiting time greater than 20 minutes and therefore the 15 and 20-minute contours are undefined. 
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3.7.4.   Simultaneous retrievals   (Specification limit: 10%) 

a) Simulation output from revised EMRS model    

   At the end of each simulation iteration using the revised EMRS model, the number of 

simultaneous retrievals (the number of arriving patients experiencing a non-zero wait) was 

divided by the total number of missions generated in that iteration to generate the 

simultaneous retrieval proportion. This was plotted three-dimensionally with the 

corresponding number of primary and secondary missions generated. An interpolated 

reference surface was fitted to the points for illustration and further calculations (Fig. 

3.56). 

   The effect of reneging primary missions with a waiting time greater than 20 minutes was 

demonstrated by a plot which showed a noticeably different relationship between primary 

missions undertaken, secondary missions undertaken and proportion of simultaneous 

retrievals (compared to Fig. 3.46). The 3D plot is clearly truncated and the contour chart 

demonstrates a limit of observability beyond which the servers never actually see the given 

number of primary missions because they are reneged from the queue due to excessive 

waiting time (Fig. 3.56). 
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   Fig. 3.56: 3-dimensional plot of Monte-Carlo simulation output for proportion of simultaneous retrievals 

by number of primary and secondary missions, with linearly-interpolated surface. Revised 

EMRS model with primary missions reneged at waiting times ≥ 20 minutes. 

 

    

  



Part 3 | Chapter 7  Results: EMRS Performance Specifications 428 

 
 

   Using this interpolated surface as a reference, a contour plot was generated. This 

demonstrated that a yearly λ of 240 secondary missions and 466 primary missions 

(corresponding to the 2015 calendar year) generated a predicted simultaneous retrieval 

probability of 3.9% (Fig. 3.57). This compared much more favourably with the value of 

3.8% derived from the EMRS contemporaneous simulation (section 3.6.2.4.). The 

similarity of the result generated by the revised EMRS model to that derived from the 

original EMRS contemporaneous simulation suggests that the revisions to the model were 

appropriate and that reneged primary missions are more significant than previously 

thought. Particularly with regard to the number that occur, their contribution to reducing 

the total number of retrievals undertaken and correspondingly reducing the proportion of 

simultaneous retrievals. 

  The increasing number of reneged primary missions as utilization increases contributes to 

a paradox where, under certain conditions, increasing the number of primary missions 

appears to reduce the proportion of simultaneous retrievals. An example of this can be seen 

in the lower-right corner of the chart with greater than approximately 1800 secondary 

retrievals (see Fig. 3.57). However, this is reflective of the majority of generated primary 

missions being reneged. When translated to the real world in the context of team non-

activation to the scene of severely injured patients, this is clearly not promoting equity of 

access to critical care. Therefore, it is imperative that an accurate reflection of the system 

also includes an assessment of the number of these missed (baulked / reneged) primary 

missions. A specific performance marker relating to the number of missed primary 

missions is therefore required. This was added, as stated in the introduction to section 3.7 

and will be analysed later in this chapter. 
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Fig. 3.57: Contour plot generated from 3-dimensional plot in Fig 3.56 demonstrating proportion of 

simultaneous retrievals by number of primary and secondary missions (red contours) with EMRS 

real-world values (secondary missions = 240, primary missions = 466, 3.9% simultaneous 

retrieval proportion) for 2015 calendar year plotted (black cross). Horizon of observability from 

reneged primary missions is illustrated (black line). 
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b) Proportion of simultaneous retrievals (Target < 10%)    

Focussing on defining the specified 10% simultaneous retrieval limit, the updated model 

designed to renege primary missions waiting greater than 20 minutes was used. From this, 

the required yearly λ to generate a simultaneous retrieval proportion of 10% was calculated 

using the 10% contour of the surface fitted to the data (Fig. 3.58). Based on this, the 

simultaneous retrieval proportion would reach 10% according to a Pareto limit generated 

from the undernoted relationship between primary and secondary missions.  

   Based on this analysis: as of 2015, EMRS would be able to undertake an additional 747 

primary missions (a total of 1213 missions per year versus the current 466) or 263 

secondary missions (a total of 503 missions per year versus the current 240) before 

reaching the calculated Pareto performance frontier. The difference between the number of 

additional available primary missions compared to secondary missions reflects the greater 

server utilization of secondary missions (mainly through longer mission durations) as 

described by the gradient, below.  

   The Pareto limit of 10% simultaneous retrieval proportion demonstrates a y-axis 

intercept of 1567 primary missions (zero secondary missions) and an x-axis intercept of 

487 secondary missions (zero primary missions). The line is curved, but the centre section 

of the line has an approximate gradient of -2.08. This indicates that the ratio of primary 

missions to secondary missions for any given utilization is approximately 2:1, again 

reflective of the longer mission durations of secondary missions, such that they contribute 

twice as much to server busyness and therefore to simultaneous retrievals than primary 

missions. The respective number of primary and secondary missions at which a 10% 

simultaneous retrieval proportion will be reached can be described approximately by the 

relationship: 

1567 = 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + (2.08 ∗ 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠) 
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Fig. 3.58: Contour plot generated from 3-dimensional plot in Fig 3.56, zoomed to demonstrate simultaneous 

retrieval contour values ≤ 12%. Proportion of simultaneous retrievals by number of primary and 

secondary missions is shown (red contours) with EMRS real-world values for 2015 calendar year 

plotted (black cross: 240 secondary missions, 466 primary missions) and Pareto limit at 10% 

simultaneous retrieval proportion (black contour). 
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3.7.5.  Missed primary missions  

   In the real-world EMRS system there is not a process for identifying the primary 

missions that would have been tasked to an EMRS team, were one available, but are 

instead baulked (never enter the queue) or reneged (enter the queue but then leave prior to 

being served) because of team non-availability. These “missed” primary missions are 

effectively invisible to the EMRS system currently and so their potential impact cannot be 

directly measured. The revised EMRS model, which reneges primary missions with a 

waiting time greater than 20 minutes, has the potential to contribute greatly to the 

understanding of the limitations of the service if an accurate number of real-world missed 

primary missions (indicative of an unmet need) can be inferred. 

   Using the revised EMRS model, the number of missed primary missions in each iteration 

was counted and divided by the total number of primary missions (the number of 

secondary missions was excluded) in that iteration to generate a proportion of missed 

primary missions. This was plotted three-dimensionally (Fig. 3.59) against the respective 

number of primary and secondary missions from that iteration, and a contour plot was 

again generated (Fig. 3.60). 

   The EMRS system, based on 2015 real-world data (240 secondary missions, 466 primary 

missions per year), would be expected to generate a missed primary missions rate of 9.3% 

- i.e. for approximately every 11 primary missions undertaken by EMRS, one would have 

been missed because of team non-availability. This would never have been visible to the 

EMRS system in the real-world. 

   Arbitrarily defining the specification limit for missed primaries as 10% in line with 

overall simultaneous retrievals (section 3.7.4) demonstrates that the EMRS system could 

undertake an additional 27 secondary missions on average per year (a Poisson λ value of 

267 versus the current 240) or an additional 35 primary missions on average per year (a 

Poisson λ value of 501 versus current 466). 

   Note that this value is calculated differently to, and therefore gives a different result to 

the calculation of the real-world simultaneous retrieval proportion for all missions (3.8%, 

section 3.6.3), as explained above. Additionally, this figure is representative of both 

baulked missions (never join the queue) and reneged missions (join the queue but then 

leave) due to excessive waiting times, potentially accounting for its higher value. Both of 
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these effects are invisible to the current ScotSTAR EMRS system so there is no way to 

validate this result against any component of the real-world. It is therefore considered that 

derivation of the missed primary missions rate from the extended Monte-Carlo simulation 

represents a limit of current knowledge. Further information therefore cannot be gained 

without significant further study of this parameter. 

 

 

Fig. 3.59: 3-dimensional plot as raw output from MATLAB extended EMRS Monte-Carlo simulation 

demonstrating relationship between primary mission count, secondary mission count and 

proportion of missed primary missions. 
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Fig. 3.60: Contour plot (converted from 3-dimensional plot) demonstrating relationship between primary 

mission count, secondary mission count and proportion of missed primary missions. The defined 

performance limit of 10% missed primary missions is marked (black contour). The real-world 

values corresponding to the 2015 calendar year (240 secondary missions, 466 primary missions) 

is shown (black cross). 
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3.7.6.  EMRS Summary  

   In this analysis, the EMRS system has been demonstrated to have Lq and Wq values 

which are plausible with regard to their real-world equivalents. 

   The simulation-derived critical performance descriptors of Wq
95 and simultaneous 

retrieval proportions are reassuringly low in the EMRS system. At the end of the 2015 

calendar year, the Wq
95 value for all missions was zero. This confers that, for 95% of all 

patients, when required, a retrieval mission can be reliably expected to be underway 

immediately. This is also reflected in the low overall simultaneous retrieval probability of 

3.8%. 

   The simultaneous retrieval and Wq
95 results suggest that there is some capacity within the 

system to undertake additional primary or secondary missions. This should also inspire 

some confidence in the system’s resilience and potential for growth. It may additionally 

result in some drive to increase the EMRS service utilization, reducing the per-patient cost 

of the service. However, the unobservable phenomena simulation has very usefully 

demonstrated that this must be undertaken with caution. 

   Section 3.7.3.2 has demonstrated that the EMRS system is operating close to a 

performance frontier with regards to waiting time for secondary missions. Based on the 

missions in the 2015 calendar year, the Wq
95 for secondary missions is approximately 45 

minutes (75% of limit value) and the service can only undertake an additional 23 missions 

per year (long-term Poisson λ value) before the Wq
95 for secondary missions will exceed 

one hour – this would be approximately equivalent to the service taking on one additional 

West-sector referring centre. However, this is reliant upon the baulking or reneging of 

primary missions to achieve the target and theoretically accounts for 1 in 11 primary 

missions currently – 93% of the limit value if this specification was also set at 10%. 

Because primary missions with a waiting time greater than 20 minutes will be reneged, the 

specification limit of 15 minutes Wq
95 for primary missions will, effectively, never be 

reached. For the system in its current state, this is therefore not an appropriate performance 

parameter. 

   At the Pareto limit of 246 secondary missions and 482 primary missions for a secondary 

mission Wq
95 lying on the specification limit of one hour: the Wq

95 for primary missions 

would be predicted as zero minutes (0% of limit value) and the simultaneous retrieval 
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proportion would increase to 4.2% (42% of limit value). The proportion of missed 

primaries would rise to 9.7% (97% of limit value). 

   Although the proportion of missed primary missions is closest to the limit value, it is 

Wq
95 for secondary missions which displays the lowest capacity to increase the number of 

missions undertaken. Therefore, Wq
95 for secondary missions is the extant limiting 

parameter for the EMRS system. As the service’s principal role is secondary retrieval to 

provide equity of healthcare across remote and rural Scotland, care must be taken to ensure 

that any additional workload does not majorly increase the secondary mission Wq
95 as this 

would degrade the service’s ability to perform its fundamental function. 

   The relationship of the current EMRS performance to the specification limits is 

summarised below (Table 3.6). 

 

 

Table 3.6: Current EMRS performance relative to specification limits.  

Specification 

Current real- 

world value 

(2015 calendar year) 

Proportion 

of target 
Remaining capacity 

Simultaneous retrieval 

proportion < 10% 
2.9% 29% 

263 secondary missions 

or 

503 primary missions 

Wq
95 < 1-hour for 

secondary missions 
45 minutes 75% 

23 secondary missions 

or 

26 primary missions 

Wq
95 < 15-minutes for 

primary missions 
0 minutes 0% N/A 

Proportion of primary 

missions missed < 10% 
9.3% 93% 

27 secondary missions 

or 

35 primary missions 
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3.8.  Discussion 

 

3.8.1.  Derived performance descriptors  

3.8.1.1.  Assumption of validity 

   Clearly the analysis presented in Part 3 is dependent upon the real-world behaviour of the 

system matching that of the model. An assumption is made that the relationship between 

the individual model parameters (inter-arrival time, activation time of day, mission 

duration etc.) and the derived parameters (utilization, Wq
95, Simultaneous Retrieval Rate) 

hold true between the real-world and simulations. The assumption which follows is that the 

parameters derived from the model will therefore also be accurate. However, the degree of 

accuracy in such a relationship cannot actually be demonstrated in the current ScotSTAR 

datasets as a result of the recorded real-world mission time checkpoints not being reflective 

of these parameters and the intrinsic, unconscious, processes which clinicians use to 

manage patient flow through the system. It should be possible in the future for the mission 

checkpoints to be adjusted so that the derived parameters can be compared to their 

measured real-world equivalents. 

 

3.8.1.2.  Contemporaneous values 

   In the EMRS contemporaneous simulation period, the model was used only in the second 

half of 2015 due to its demonstrated validity, contemporaneously replicating the real-world 

only within that time period. The progressive, daily representation of both the real-world 

and model values are based upon a time-period up to the current simulation point. The 

simulation output is therefore based on a progressively lengthening data sampling window, 

commencing on the 01/01/2015 and continuing to the current simulation time-point. This is 

reflected in the narrowing prediction intervals as the model gathers more data (see Fig. 

3.35 as an example). For each of the contemporaneous, progressive measures, the model 

was primed with the corresponding value from the retrospective simulation period. Along 

with other refinements in the model to improve the overall accuracy of the model in the 

contemporaneous simulation period, an understanding of a suitable data sampling window 

must also be gained. Clearly, where a parameter relies upon a distribution (e.g. Wq
95 relies 
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on the distribution of waiting times), then a sufficiently large sample must be obtained by 

which to prevent a sampling error (of a type-2 nature). As the number of missions (and 

therefore data points) is essentially a function of time, then a suitable sampling time must 

elapse. Some insight has been gained into this with regard to Wq
95 where it was 

demonstrated that the confidence intervals only narrowed sufficiently to reliably report a 

Wq
95 of less than one hour after a sampling period of approximately 4 months (Fig. 3.35). 

This should be contrasted with the earlier analysis (e.g. Part 2, section 2.6.2.1) in which the 

absolute value of the number of missions could be calculated on a daily basis. Some 

parameters are therefore much closer to real-time than others, even in the contemporaneous 

simulation. How close to real-time a value can be generated is therefore dependent on the 

length of the sampling window. Minimizing the duration of the sampling window to 

generate an “as near to real-time as possible” performance value must be balanced against 

having enough data to make the result reliable. As an important concept in managing data 

quality for describing the overall state of the ScotSTAR systems, this is considered a likely 

objective for future investigation. 

 

3.8.1.3.  Mean length of queue (Lq) and mean waiting time (Wq) 

   The Lq and Wq values were the first descriptive parameters to be derived purely from the 

ScotSTAR team models. For SPRS this was another opportunity to provide some 

validation of the model by comparing the simulation output to the expected formulaic Lq 

and Wq values from the Pollaczek-Khinchin formulae. Each of the values for Lq and Wq 

appeared plausible with regard to the respective P-K formula although the model did 

consistently produce values for these parameters which exceeded the expected value based 

on the P-K calculation. This is likely a factor of the non-stationary Poisson arrivals process 

generating non-normally distributed waiting times. 

   There was no formulaic value available for EMRS and so the simulation output values 

can only be assumed to be accurate, based on the extrapolation of the model complexity 

from SPRS, and the preceding demonstration of its similarity to the real-world. 
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3.8.1.4.  95th percentile of waiting time (Wq
95) 

   When the analysis was extended to the 95th percentile of waiting time (Wq
95), the marked 

difference from the Wq values was clearly illustrated. For the SPRS contemporaneous 

simulation, the Wq of 1h 26m was associated with a Wq
95 of 8h 52m. Clearly, the long tail 

of the waiting time distribution is not adequately represented by a simple description using 

the Wq alone. This is an important consideration as it firstly justifies the use of Wq
95 as an 

alternative system measure. Additionally, it illustrates the challenges of accurately 

describing the system for the purposes of its users. Describing the system by an “average 

wait of 1h 26m” could result in the service not meeting expectations when 5% of the 

patients will in fact wait nearly 9 hours. 

   Of note, in the unobservable phenomena simulation, the relationship between increasing 

number of missions (effectively, utilization when the mission duration distribution is 

similar) and Wq
95 for SPRS missions demonstrated a polynomial, not exponential 

relationship. As an extension of Wq, it would be expected that Wq
95 would follow an 

exponential relationship, as described by standard queueing theory. The reason for the 

difference is not known but is likely to relate to a combination of the non-stationary 

arrivals process and the non-normal distribution of waiting times. Although, it is also 

possible that the model has simply not simulated missions over a wide enough range to 

fully generate the Wq
95 distribution. 

 

3.8.1.5.  Simultaneous retrievals 

   For both SPRS and EMRS results, the proportion of simultaneous retrievals results 

appeared plausible with regard to the calculated result based on each team’s respective 

utilization value. As explained, for a pure Poisson distribution, with a uniform probability 

of activation across an entire 24-hour period (representative of a stationary arrivals 

process), the number of simultaneous retrieval requests should be equal to the utilization of 

the team.  

   This is the PASTA (Poisson Arrivals See Time Averages) property of a Poisson arrival 

system. The PASTA property is relatively straightforward to understand from first 

principles, with the utilization of the system being the proportion of time in which a team 

is busy (e.g. in a 24-hour period). Using a 25% utilization as an example, a team would 
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therefore work 6 hours in any 24-hour period. Missions arriving during the 6-hour server-

busy period will require to queue (therefore being a simultaneous retrieval request). If the 

probability of arrival is uniform through the 24-hour period, then the number of missions 

arriving in any 6-hour period will be 25% of the total. Thus, the proportion of simultaneous 

retrievals for a one-server system equals the server utilization. 

   However, as has been discussed throughout this thesis, the ScotSTAR systems do not 

demonstrate a uniform probability of activation, they are a time-dependent Poisson 

process. The probability of activation for SPRS reaches a peak at approximately 0900h – 

1000h (see Part 1, Fig. 1.14) – this is therefore both the time at which the server is most 

likely to be busy, and the time at which a further referral is likely to arrive, requiring it to 

queue. As these two probabilities converge, they would be expected to produce a 

simultaneous retrieval proportion which exceeds that calculated as equal to utilization. This 

has been demonstrated to be true in each of the ScotSTAR models. Although the difference 

from the expected value has perhaps been relatively small (approximately 2% for the SPRS 

system) and not statistically significant, it has been a consistent feature that the simulation 

has exceeded the expected simultaneous retrieval proportion calculated by utilization 

alone. This would strongly support the idea that the PASTA property does not hold fully 

true for time-varying Poisson arrivals processes.  

   However, as the magnitude of the difference is relatively small and not statistically 

significant, it could still be stated that the overall simultaneous retrieval proportion can be 

approximated by the server utilization value. Within the scope of this thesis, a specific 

point at which this difference becomes operationally significant has not been defined. For 

the EMRS contemporaneous simulation period, the calculated value was 76.3% of the 

simulated value, which is strongly considered to be approaching operational significance. 

A future study could relatively easily, through simulation, relate varying levels of arrival 

time-dependency and total number of missions to the difference between the calculated 

(from utilization) and observed (from the model) simultaneous retrieval proportion. This 

would help establish the limits of formulaic queueing theory in providing an acceptable 

approximation of a real-world system, even outside the defined application of a stationary 

Poisson arrivals process.  Ultimately, this could also be compared to the real world if a 

suitable dataset becomes available. 
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3.8.1.6  Current considerations 

   As has been discussed on multiple occasions through this thesis, the ScotSTAR dataset 

does not currently provide for the calculation of the Lq, Wq, Wq
95 and simultaneous 

retrieval proportions. This is due to limitations of the ScotSTAR data in which the time a 

retrieval is required (as either secondary or primary missions) cannot be recorded, it is 

only the time at which the retrieval commences (the activation time) which is recorded. 

Therefore, the time delay between the team being required and the retrieval mission being 

underway is not known - hence the need to derive these values from the validated model. 

As a result of the challenges in data analysis identified in this thesis, changes have been 

made within the ScotSTAR database so that it is capable of supplying data suitable for the 

purpose of measuring the performance values. This is aided by the use of independent 

databases for the Trauma Desk (tasking primary missions) and the Specialist Services Desk 

(tasking secondary missions) which now record the time of calls arriving into the system, 

even when there is not a serving team available. The natural argument which follows 

therefore is whether the availability of such data now makes the analysis undertaken in this 

thesis redundant. The new data could allow the direct calculation of Wq
95, simultaneous 

retrieval proportion etc. values for the real-world system. It would therefore negate the 

future need for these values to be derived from the model. But, to establish the historical 

values in order to assess system progression over time, the analysis undertaken here would 

still be required as the historical data will still lack the required detail. Additionally, even 

with the stated values directly calculated from a suitable real-world dataset, these would 

still only fall within the realms of the “observable” phenomena.  

   In order to establish the frontiers of performance, the model would still be required in 

order to demonstrate the performance of the system under conditions which are 

unobservable in the real-world. In this setting, the additional data would instead most 

usefully provide further opportunity for model validation. If Lq, Wq, Wq
95 and 

simultaneous retrieval proportions could now have real-world values and distributions 

which could be directly compared to the model (as in Part 2) then its validity for simulating 

these values under unobservable conditions could be inferred. 
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3.8.2  Unobservable phenomena 

3.8.2.1  Validity and applicability of the model 

   The analysis of unobservable phenomena was an important component of this thesis 

because it is the single component of the thesis which cannot be fully replaced by 

improvements in data quality in the real-world system and yet is the component that is 

most critical to the understanding of the limitations of the current system.  

   Even in the context of SPRS, which has been proven by direct derivation from the model 

to be operating above its target performance frontier, the model is required to demonstrate 

how much the system must be offloaded to achieve the required performance standard. For 

EMRS, it would still be required to demonstrate that the performance frontier lies just 

outside the window of observability in the real-world and that the system operates perhaps 

closer than expected to this limit. 

   The operational validity of the unobservable components model is wholly reliant on the 

mathematical relationships between the individual components being the same for both the 

model and the real-world. As long as the performance frontiers lie outside the observable 

conditions of the real-world, then it will always be the case that the model is used on the 

assumption of validity – it can never be expressly proven. Future iterations of the 

ScotSTAR model with, hopefully, the associated improvement in data quality conferred by 

the improved dataset may allow the validation step to be moved closer to the unobservable 

phenomena process if the validation can then include the values which were only able to be 

derived in this thesis (Lq, Wq, Wq
95 and simultaneous retrieval proportion). 

 

3.8.2.2.  95th percentile of waiting time 

   When the model was revised to renege primary missions waiting more than 20 minutes, a 

performance frontier for a Wq
95 less than 15 minutes could no longer be established within 

the model. As stated, this was considered to be caused by arriving missions either 

experiencing a very short waiting time due, predominantly, to encountering an empty 

system – or missions encountering a busy system, in which case they would experience a 

long waiting time related to the remaining service time for the preceding missions. When 

this was applied to the revised EMRS model, the result would have been a relatively binary 

outcome: a short waiting time contributing to a low primary missions value of Wq
95 or 
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being reneged, with no effect on Wq
95. Thus, the distribution is skewed in favour of the 

missions which are not reneged, with a correspondingly short Wq
95. This could perhaps be 

addressed in a future version of the model by measuring the waiting time for all missions, 

including those reneged for excessive waiting time. In which case, a more complete 

distribution of waiting times could be described, but which would obviously be truncated 

at 20 minutes. Again, this was not undertaken because it did not reflect the real-world 

available data. However, it is apparent that Wq
95 alone is not a suitable indicator, in the 

current system, of EMRS pre-hospital performance. The reneged missions are currently 

invisible to the system and will also prevent the real-world Wq
95 ever reaching 15 minutes, 

except in the context of an excessive number of missed missions. Clearly, a large number 

of missed primary missions has the potential for detriment to patient outcomes and is 

perhaps the strongest indicator of an un-met service need. 

 

3.8.2.3.   Simultaneous retrievals 

   There was some contrast between the systems with regard to the proportion of 

simultaneous retrievals. SPRS is operating substantially beyond the specification limit, 

whereas EMRS is operating considerably under its limit. It was interesting, however, that 

the simultaneous retrieval proportion did not appear to be the major performance frontier 

for either service. Instead, Wq
95 was the frontier which would be reached with the smallest 

increase in the number of missions. It had generally been perceived by the clinicians in 

ScotSTAR that a significant increase in waiting time would only occur alongside an 

equivalent rise in the proportion of simultaneous retrievals. 

   Also of note is the substantial margin which EMRS has for increasing the number of 

missions undertaken before the simultaneous retrieval proportion becomes a consideration. 

The number of missions available before simultaneous retrievals reach 10% is an order of 

magnitude greater than that which will see the service reaching the limit for Wq
95 or missed 

primary missions. This is likely to be reflective of the two servers within the EMRS 

system, and the relatively short duration of the EMRS primary missions.  

   This finding demonstrates that the services are not perhaps impacted by simultaneous 

retrievals as much as first thought. When this is considered, it perhaps explains why the 

addition of a second SPRS team, which substantially reduces the number of simultaneous 

retrievals, does not generate as large an improvement on waiting time. 
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3.8.2.4.   Changes to SPRS service 

   Part 3 of this thesis demonstrated that the SPRS system appears to operate some distance 

beyond the defined specification limits. To bring the system within the limits would 

require the number of missions to be reduced by an unachievable figure. This finding came 

as somewhat of a surprise to the ScotSTAR clinicians. It was generally perceived that the 

SPRS system was under some pressure, but not to the extent that the waiting time was 

considered to be excessive. This may be explained in the percentiles of waiting time: 

where most missions experience immediate activation when referred, and the relatively 

low number of SPRS missions, such that the average time period between successive long-

wait missions is sufficiently long that it is not perceived as a regular occurrence. There was 

also not the belief that a long wait conferred a compromise of patient care – perhaps 

reflective of the often more advanced healthcare locations which refer for SPRS transfer 

than for EMRS. It may therefore be the case that the acceptable waiting time for SPRS is 

longer than the 1-hour Wq
95 stated in this thesis, as this specification was generated by 

expert consensus from the ScotSTAR clinicians and is not evidence-based. Nonetheless, by 

being able to define a value for waiting time for SPRS for the first time, this thesis has 

provoked useful discussion about what is an acceptable waiting time for paediatric 

retrieval. As it has been shown, simply adding another server does not appear to provide 

the solution and alternative strategies may need to be considered. The consideration of a 

two-priority system, reflecting the differing needs of patients in major hospitals versus 

those in remote healthcare facilities may be one possible option. 

   Additionally, contrast should be made between the simultaneous retrieval rate, calculated 

for n servers as utilizationn (as for EMRS in section 3.6.1.4) which would be expected to 

result in a reduction of the simultaneous retrieval probability from approximately 16.7% 

(real-world value, retrospective simulation period, as section 2.5.1.5) to approximately 

2.8%. Contrasting this to the value of Wq
95 by offered load (ρ) after the addition of a 

second server, it appears that further analysis is required to fully explore the disparity 

whereby adding a second server seemingly has a profound effect on the simultaneous 

retrieval probability, but not Wq
95. This is an example of a real-world system change which 

would require a new model built and simulation run. As suggested in section 3.1.8, this 

output was not within the overall aims of this thesis and so not been further pursued - but is 

likely to be a target for future research. 
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3.8.2.5.   Missed primary missions   

   The necessity of mathematical similarity is demonstrated within this model by the effect 

of the missed primary missions on the unobservable phenomena simulation. Because the 

original model was based on the ScotSTAR data, which records the missions actually 

undertaken by the team, then it intrinsically only measures missions which have not been 

baulked or reneged. Although it was a generally held understanding that primary missions 

waiting more than twenty minutes for a team would be reneged, this could not be proven 

because such missions are effectively invisible to the ScotSTAR dataset. As a result, no 

provision for such a qualifier was made in the original EMRS model. However, when the 

model then simulated a larger number of missions, corresponding to those outside the 

current observability window and interpolated the results, it demonstrated a much longer 

than expected waiting time compared to the real-world. It was apparent with the increasing 

number of missions that this was being accounted for by an excessive waiting time for 

non-reneged primary missions. When a modifier was added to reject primary missions that 

waited more than 20 minutes in the queue, a value much more in keeping with the 

expected real-world value was demonstrated. 

   This raises the question of whether the modifier to renege primary missions should have 

been used in the original EMRS model used in Part 2. It was considered that the problem in 

Part 3 was that the increased number of missions generated by the extended Monte-Carlo 

simulation changed the behaviour of the base model such that it no longer replicated the 

real-world. Although, clearly in the real-world the same relationship exists, the number of 

missions currently undertaken by EMRS is not enough for missed primaries to be a 

significant factor. When it was also then factored in that the real-world data did not 

account for baulked or reneged primary missions, it became clear that it would in fact be 

inappropriate to re-run the original EMRS analysis with primary missions being reneged. 

As the dataset represents all the missions undertaken by ScotSTAR and (as perceived by 

ScotSTAR) all the missions offered to ScotSTAR, then exclusion of any of them would 

represent an error by the model. However, it indicates that this is clearly a component that 

is not factored into real-world operations, but which has the potential to have a significant 

impact on patients or the system if not adequately accounted for.  

  The result would suggest that the system currently must, and arguably should, baulk or 

renege primary missions when a team are unable to respond timeously to ensure that 

patients in the pre-hospital arena receive their potentially life-saving intervention in a 
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timely fashion and in a hospital if necessary. This does, however, risk creating a situation 

in which the waiting time (the Wq
95 in particular) is only representative for patients who 

are actually attended by EMRS and is not generalizable to all patients at the moment of 

injury. 

   Clearly, further investigation to more precisely define this relationship, particularly if 

supported by an updated ScotSTAR dataset which is able to directly measure these 

contributing factors by recording the real-world incidence of missed primary missions, 

would be operationally useful.
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3.9  Conclusions 

  The simulation models of the SPRS and EMRS systems have been demonstrated as 

capable of producing standard queueing theory parameters of Lq and Wq which are either 

not calculable or, because of non-stationary arrivals, not valid from standard queueing 

theory formulae. However, the potential risks of using Wq in particular, as it does not 

adequately describe the waiting time to allow any real degree of applicability to an 

individual real-world patient is illustrated in the difference between the SPRS Wq and Wq
95 

values. 

   Based on the resultant values, it can be concluded that the SPRS system is operating 

outside the proposed performance limits for both Wq
95 and simultaneous retrieval 

proportion. EMRS, conversely, is safely within the proposed specification limits for both 

Wq
95 and simultaneous retrieval proportions. 

   The SPRS and EMRS models can then be used in an extended Monte-Carlo simulation 

for the purposes of establishing the relationship between the current system state and the 

frontiers of performance for the stated specification limits. The extended simulation has 

proven that the overall relationship between service utilization and waiting time is 

exponential, which is commensurate with published queueing theory and continues to 

support the use of such methodology in the analysis of the ScotSTAR systems. However, it 

did demonstrate that at the number of missions generally undertaken by the ScotSTAR 

teams, and for SPRS in particular, that the relationship is not exponential. This is likely 

related to some operational nuances, but particularly to the time-dependent probability of 

activations. This again confirms simulation, rather than formulaic analysis, as the optimal 

strategy for the ScotSTAR systems. 

   This thesis has demonstrated that the SPRS system is unlikely to be able to meet the 

specifications set out without extensive changes to the service, and calls into question the 

applicability of the stated specifications for the service given the overall perception that 

SPRS is providing a good service. The extended simulation has demonstrated that EMRS 

is operating within the service specifications, albeit with a smaller available margin to 

increase the number of missions undertaken than was perceived within the service. The 

simulation also demonstrated that for the ScotSTAR services, the likely limiting 

performance aspect will be Wq
95 for inter-hospital transfer missions. 
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   The simulations have also demonstrated that the model must adequately account for all 

behaviours within the system, even those which are not accounted for in the dataset – such 

as EMRS primary missions being baulked or reneged if they experience an excessive 

waiting time. While the magnitude of this effect was sufficiently small as to not affect the 

results derived from the model in replication of the real-world, it became significant when 

the model was used to simulate conditions which were unobservable in the real-world. 

Caution must therefore be used when using, or interpreting results from, a DES model of a 

real-world system when performance outside the observable conditions is being simulated. 

Clearly, this thesis has shown that even with only mild deviations from the real-world 

operation in terms of the model, that the accuracy can be significantly compromised. This 

lends a particular note of caution to the analysis of healthcare systems by using proprietary 

“black box” discrete event simulation software, where inadequate knowledge of the 

internal mathematical model could render the output very unreliable.
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Summary  

   Part 1 of this thesis defined the SPRS and EMRS systems according to standard 

queueing theory descriptions. The time dependency of the arrivals process was shown 

along with a methodology to correct for it, allowing the demonstration of exponentially-

distributed inter-arrival times for each individual mission type within the ScotSTAR 

system. The mission durations for each studied mission type were demonstrated as being 

gamma distributed, with different median durations for SPRS missions, EMRS secondary 

and EMRS primary missions. The remaining applicable components of queueing theory for 

the purposes of describing Kendall’s notation were explored with regard to space within 

the system, queueing discipline and the applicable population. Possible formulaic means to 

describe the ScotSTAR systems were examined but a number of limitations were identified 

which would adversely affect the applicability of such calculations or render them 

unusable altogether. The main limitation in the applicability of formulaic queueing theory 

was the requirement to have a stationary arrivals process, which had been explicitly proven 

as not being the case with the ScotSTAR teams. 

 

   Part 2 explored whether simulation could address the shortcomings of formulaic 

queuing theory. Computer models of the SPRS and EMRS systems were designed and one 

thousand iterations of the simulation were run to establish their accuracy in replicating the 

real-world. The models demonstrated an ability to accurately replicate the real-world 

through a period of retrospective simulation, and to partially replicate the real-world in 

contemporaneous simulation. This included the derived value of server utilization which 

required the model to combine two other calculated components correctly. The model’s 

overall success lent validity to the assumption of similar mathematical relationships 

between the components of the model and the real-world system. By inference, when the 

model was used to derive values which cannot (due to limitations within the ScotSTAR 

dataset) be calculated directly in the real-world system then these may be assumed to be 

valid also. 

 

   Part 3 used the validated models of the ScotSTAR systems to calculate the standard 

queueing theory parameters of Lq and Wq using simulation. In addition to these, the 
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descriptors of Wq
95 and simultaneous retrieval proportion were considered to be more 

relevant to the patients and service users, as well as being more operationally applicable 

than Lq and Wq. An extended Monte-Carlo simulation was then used to generate limits for 

the number of missions each service could undertake before the service performance 

deteriorated with respect to Wq
95, simultaneous retrievals and (for EMRS) missed primary 

missions. 

 

Review of  thes i s  

   As each part has developed and refined the applied components of queueing theory, 

modelling and simulations, this thesis has demonstrated the applicability of queueing 

theory as one possible mechanism for analysing a pre-hospital and retrieval medical 

system. Central to its overall effectiveness in describing, modelling, and informing on the 

performance of the ScotSTAR service are three major themes which unite this thesis: 

fidelity to the real-world system, fidelity to the mathematical relationships and real-world 

operational applicability. 

 

Fidelity to the Real-World System 

   Care has been taken to maintain a demonstrable fidelity with the real-world system so as 

to accurately describe the intricacies of ScotSTAR operations rather than apply 

assumptions or simplifications in order to “make the system fit” with established queueing 

theory.  

   Several reviewed papers which applied base queueing theory to PHaRM systems 

simplified the time-varying arrivals process by performing the analysis at times in which 

there was relatively constant demand (steady-state arrivals). Bell & Allen (Bell & Allen, 

1969) generalised this to any “steady-state” arrival period; Noguiera et al. (Nogueira et al., 

2016) used 6-hourly averages; Wu et al. (Wu et al., 2009), 4-hourly averages; while Wiler 

et al. (Wiler et al., 2013) used two discrete 2-hour periods corresponding to moderate and 

high arrival rates. By so confining their analyses to steady-state periods, each created 

analyses which could use standard queueing theory but whose validity is reliant upon the 

assumption of the true real-world system – a non-homogeneous, continuously variable 

time-dependent Poisson arrivals process – behaving in the same way as a discrete 
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homogeneous Poisson arrival period, or a sequential collection thereof. This thesis did not 

make that assumption and instead sought to fully define the non-homogeneous, time-

dependent Poisson arrivals process; allowing for the practical constraint of one-hourly 

sampling periods due to the relatively limited number of data points. However, the model 

interpolated values between successive points to produce a continuously-varying demand 

profile. This is particularly applicable to the EMRS primary mission arrivals, where the 

“in-hours” operation of the system creates a very strongly non-homogeneous demand 

profile. Likely because of this, EMRS primary missions demonstrated a significantly non-

exponential (i.e. non-Markovian) inter-arrival time distribution (section 1.7.2.2). This 

contrasts with the EMRS secondary missions (section 1.7.2.2) and the SPRS missions 

(section 1.7.1.2) which, although overtly demonstrating a time-dependent Poisson arrivals 

process, demonstrated inter-arrival time distributions which were not significantly different 

to the exponential distribution on Kolmogorov-Smirnov testing. This would suggest that 

there is a threshold of time-variability in the number of mission activations below which 

the time between arrivals can be approximated by the exponential distribution. 

   Where the inter-arrival distributions did not differ significantly from exponential, 

formulaic queuing theory (which assumes Markovian arrivals) may still be able to provide 

some results which describe the real-world system. However, after simulation of the SPRS 

service with a model specifically designed to replicate the time-varying arrivals rate in Part 

2 (sections 2.5.1.2 & 2.5.2.2), it was then shown in Part 3 (sections 3.4.1 & 3.4.2) that 

formulaic queueing theory appeared to under-estimate the Lq and Wq values. It could 

perhaps be expected that this effect would also increase with increasing time-variability of 

arrivals to the system until a threshold is reached at which the formulaic result and the 

simulation result differ significantly. Although this threshold was not reached in this thesis 

for the SPRS system (the only system for which formulaic queueing theory could be 

applied), it is nonetheless considered that fidelity to the real-world, with preservation of the 

time-dependent Poisson arrivals processes characteristic of ScotSTAR, has generated 

results which are more likely to be representative of the real-world system, particularly 

with regard to performance at times of peak demand. 

   Knowing that the difference between the formulaic and simulation results exists for the 

SPRS system, and with the expectation that the difference will increase with increasing 

time-variability in demand, it is considered that this will have the biggest effect on the 

EMRS primary missions analysis. As these missions demonstrated a significantly non-
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exponential inter-arrival time in Part 1, which the model in Part 2 aimed to preserve, then 

the acceptance of validity in the operational description of the ScotSTAR services from the 

Part 3 requires considerably fewer assumptions than in the above-noted studies which 

generate generalized system descriptions based on arrivals within a chosen homogeneous 

arrival-rate period. 

   Beyond the arrivals process alone, this thesis demonstrated the service times for 

ScotSTAR teams to be approximated by the gamma distribution (i.e. general service times) 

rather than the exponential distribution (Markov service times). This aligns with the 

findings of Singer and Donoso (Singer and Donoso, 2008) but differs to the other two 

reviewed ambulance service focussed papers (Bell & Allen, 1969. Scott et al., 1978) in 

which Markovian service times were considered. If argued therefore that EMRS, because 

of the significantly non-exponential distribution of primary mission inter-arrival times, 

represents a G/G/2 (rather than correcting to an M/G/2) system then this thesis can be 

considered to be unique in its description of the studied system, when compared to the 

reviewed literature (as summarised in Tables 1.1 and 1.2). 

   A final aspect of this fidelity to the real-world system was acutely demonstrated in Part 3 

with the consideration of missed primary missions. In the initial model, which did not 

renege primary missions with an excessive queueing time, running the extended Monte-

Carlo simulation to assess the system’s performance under unobservable phenomena 

produced results which were implausible and would not have been reflective of real-world 

operations, even considering the unobservability of such events. In the real-world: in the 

absence of an imminently available EMRS pre-hospital care team, a patient would not 

remain at the scene for longer than necessary pending EMRS arrival; instead, they would 

simply be transported to hospital to receive the required specialist life-saving intervention. 

Although it is not operationally defined, nor indeed measurable in the real-world, this facet 

of real-world operations generates a practical upper limit on the waiting time for pre-

hospital (primary mission) patients before they, effectively, renege from the EMRS queue. 

Even though this was, by definition, unobservable within the EMRS data, it still had to be 

factored into the model to maintain fidelity to the real-world system’s operations during 

the extended Monte-Carlo simulation. 

 

  



Epilogue  Review of Thesis 456 

 
 

Fidelity to Mathematical Relationships (and their limitations) 

   The second theme which unites the components of this thesis is fidelity to the underlying 

mathematical relationships, based on queueing theory.  

   Bridging from fidelity to the real-world system (above), it was demonstrated in Part 1 

that standard queueing theory did not provide formulaic results for parameters applicable 

to the EMRS system in particular. This was achieved by demonstrating a clear difference 

between the distributions which describe the ScotSTAR services, and the mathematical 

conditions which had to be met in order to obtain formulaic queueing theory results. In Part 

1, the specific distributions pertaining to inter-arrival times (predominantly exponential / 

Markov) and the mission duration distribution (Gamma) were described. By describing 

these underlying distributions in some detail, and by careful consideration of the additive 

effects of two separate arrivals processes (primary and secondary mission types) to one 

service (EMRS), it was made clear that even if the significant mathematical challenge in 

deriving formulaic values for the system parameters could be overcome (section 1.7.4.3), 

the validity of the results would still be questionable because the arrivals process could not, 

logically, be reduced to purely Markovian. This finding therefore necessitated, and 

justified, the use of simulation as an analysis strategy. 

   When the model was built for simulation in Part 2, again, this was done with care taken 

to preserve the mathematical relationships of the modular components to those described 

by standard queueing theory. Predominantly, this was done by ensuring that the constituent 

data were randomly selected from the corresponding distributions – with time-dependence 

generated in a methodologically robust fashion which preserved stochasticity, rather than 

simply being empirically sampled from the real-world data as could easily have been done 

for a basic DES model. 

   As proof of the real-world conformance of the mathematical relationships, this thesis 

actively sought to prove the similarity between the simulation output and the 

corresponding real-world values. Where it has been shown in Part 2 that the output of the 

simulation is indeed able to accurately replicate the real-world then, as the model has been 

built specifically to preserve the mathematical relationships which connect the inter-arrival 

time distributions and mission durations to then derive server utilization, it is very likely 

that the real-world also operates with the same relationship (based on a non-significant 

difference between the results - e.g. section 2.6.1.5). At face value, this may appear to be 
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an academic point, and it is not strictly necessary for the discrete event simulation of the 

current system state. However, when considered in the context of the extended Monte-

Carlo simulation undertaken in Part 3 – which established the performance frontiers of the 

ScotSTAR system – it is a critical methodological step. Using inter-arrival times as an 

example: by maintaining an underlying exponential inter-arrival distribution which is then 

modified to generate time dependency (section 2.4.1.3), the number of missions generated 

can be varied, while still maintaining both stochasticity and time-dependency, simply by 

altering the exponential inter-arrival distribution µ-value. Had this instead been undertaken 

using an empirically sampled distribution then varying the number of missions could only 

be increased by sampling with replacement. Given the relatively low number of missions 

in certain datasets (e.g. SPRS mission durations in 2015 calendar year, n = 290), and the 

proportion of discrete values within them, then the risk of generating an inter-arrival time 

or activation time of day distribution which is different to the real-world due to sample 

duplication could be considerable. 

   Illustrating the context-specific application of formulaic queuing theory outlined above, 

SPRS was demonstrated to have, in the real-world, an exponentially distributed inter-

arrival time (which was then modified for time-dependency) and a gamma-distributed 

service time for the single SPRS team - an M/G/1 queueing system (section 1.7.1.8). By so 

describing these distributions, the mathematical criteria for use of the Pollaczek-Khinchin 

formula to derive Lq and Wq for SPRS (sections 3.4.1 & 3.4.2) were fulfilled and its result 

could be considered potentially valid. However, because the simulation used a model 

which also generated the same distributions and used the same mathematical relationships, 

then the formulaic and simulation results could be directly, and validly, compared. Such 

comparison suggested, firstly, that the simulation output value was itself valid and, 

secondly, that the Pollaczek-Khinchin formula would under-estimate the Wq and Lq values 

for systems which experience time-dependent arrival rates. 
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Real-world Operational Applicability. 

   Fidelity to the real-world system structure and the fidelity to the underlying mathematical 

relationships has laid the foundations for the thesis results to be numerically valid. This 

was proven in Part 2 where the simulation output was shown to accurately reflect 

comparable real-world system values, strongly suggesting that the simulation output values 

were indeed numerically accurate. When the accuracy of these results was reinforced by 

valid mathematical methodology (as described in the preceding section), it was considered 

that, in Part 3, the derived values of Lq and Wq would also accurately represent the 

corresponding real-world values. 

  Having successfully derived standard queueing theory descriptors of Lq and Wq through 

simulation in this first application of queueing theory to a pre-hospital and retrieval 

medical system, it may have been academically acceptable thereto conclude this thesis. 

However, it was a stated aim to achieve operationally useful descriptions of the system and 

an effective transition needed to be facilitated from the mathematical, theoretical domain 

into results which were of practical value to service operation, development and, 

ultimately, patients. It was considered that Lq and Wq did not provide the requisite utility in 

this regard (section 3.1.2). As a value, Lq was considered to be largely irrelevant to the 

ScotSTAR operations and, although more relevant, Wq was considered to describe the 

waiting time distribution inadequately to provide any use to service users. A descriptor 

which better met these requirements: the 95th percentile of waiting time (Wq
95) was 

therefore calculated. 

   The importance of a clinically useful waiting time descriptor is illustrated in the SPRS 

results. The ECDF of waiting time for SPRS (Fig. 3.5) demonstrates that 83% of patients 

will actually experience no queue (i.e. arrive to an empty system) and therefore zero 

waiting time. However, there are substantial practical differences between: the 83% of 

patients experiencing no queue, the SPRS average waiting time (Wq = 1h 12m, Fig. 3.3) 

and the 95th percentile of waiting time (8h 8m, Fig. 3.4). While Lq, Wq and Wq
95 are all 

valid descriptors of service performance, only Wq
95 provides a truly useful service measure 

for patients and rural clinicians. In the SPRS context, the Wq
95 value confers a non-

negligible probability that any given patient may wait more than 8 hours for availability of 

a critical care team.  
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   Given the premise of calculating a Wq
95 value is that it increases operational 

applicability, a waiting time distribution which only really applies to 17% of patients 

(those experiencing a non-zero wait), may be argued as conferring questionable operational 

relevance. More so, when it is also considered that a proportion of these patients will be 

fully established in a critical care setting within a major hospital, it may be further argued 

that the proportion of patients for whom the waiting time is likely to be clinically 

significant is even less. However, in the case of a remote GP delivering care to a critically 

unwell child in the critical-care-limited environment of a rural healthcare facility - then 

even if this waiting time applies to only a few such patients, the potential impact that 

delayed access to critical care may have on their end outcome clearly becomes clinically 

very significant. In the context of ScotSTAR’s principal objective being to facilitate equity 

of access to critical care across Scotland, particularly for remote and rural communities, it 

becomes clear that a long waiting time will most significantly clinically affect patients in 

these isolated healthcare settings. This illustrates that even when a non-zero wait only 

clinically applies to less than 17% of patients, it remains highly applicable to ScotSTAR’s 

operational clinical practice. 

  The ability to usefully describe the current state of the system in relevant terms confers 

one aspect of operational applicability. However, beyond this is the need to quantify how 

many patients can be effectively served given the current number of ScotSTAR teams. 

Describing the current system state in isolation would only produce a binary indication of 

there either being capacity remaining, or not. Any future service development would likely 

involve the addition, or subtraction, of a greater-than-unitary number of missions from the 

long-term Poisson average value (e.g. addition of a further rural general hospital could be 

expected to produce approximately 25 additional missions per year for EMRS). Therefore, 

full assessment of the remaining service capacity should not simply consider if any 

capacity remains, but also if this is sufficient to absorb the number of missions which a 

practical service change would produce. Reciprocally, it could also indicate specifically the 

number of missions which would need to be offloaded from the service to meet a given 

performance target. Thus, the extended Monte-Carlo simulation was a necessary addition 

to define the system performance limits and produce an analysis which could truly be 

considered operationally relevant in the real-world. 
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L imitat ions  and St rengths  

L imi ta t i on s  

Internal Validity and Historical Data 

   The major limitation to current internal validity comes from the data in this thesis now 

being somewhat historical - with the most recent data points being over 5 years old as of 

April 2021. A number of changes to the service have occurred over this time and there is 

therefore a strong possibility that the analyses in this thesis (for EMRS in particular, as 

outlined below) no longer accurately describe the ScotSTAR systems’ current states. This 

reflects both the time taken to perform research with such a wide scope, and the time taken 

to write the thesis alongside my clinical work, still affected at the time of submission by 

the ongoing COVID-19 pandemic. My initial research role with ScotSTAR was undertaken 

from August 2014 – August 2018, at which time the data collection and analysis concerned 

a much more timely representation of the system. 

  Since the time periods studied in this thesis, there have been multiple significant 

operational changes within EMRS in particular. EMRS has extended its hours of operation 

from 0700h – 2300h, now maintains a specialist trauma clinician in the ambulance control 

centre 24 hours per day, and operates three duty clinical teams (rather than two duty teams 

operation considered in this thesis) in a 24-hour period. Notwithstanding the structural 

changes to the model which are required to reflect the operations of three clinical teams, it 

is expected that these changes will have resulted in a change to the number of simultaneous 

retrievals, number of missed primary missions, waiting time value, and the activation time 

of day profile. For these reasons, it is probable that the results of this thesis do not describe 

the current state of the EMRS system in particular.  

   An initial intent of the project was to also test and develop a prospective simulation 

model and assess its ability to demonstrate the future state of the ScotSTAR systems. This 

would potentially have addressed some of the shortcomings in the use of historical data – 

but it became clear that this would not be achievable within the scope of the thesis. Even 

though this was not undertaken, the model did demonstrate some ability within the 

contemporaneous simulation to adapt in a sufficiently-near-real-time fashion to accurately 

replicate the real-world. Clearly, the model is better able to do this in some areas (e.g. 

number of EMRS missions, section 2.6.2.1) than in others (e.g. median SPRS mission 
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duration: section 2.5.2.4). Despite this, there is certainly some relevance in including 

historical data in building a robust, stable model - as some mission parameters may not 

change significantly, despite the major structural changes within the service. For example, 

increased hours of operation for EMRS primary missions would be expected to result in 

more activations but, assuming that the clinical cases which the teams attend are similar, 

the mission duration distribution could reasonably be expected to follow a similar 

distribution to that described in this thesis (section 1.7.2.3). 

   All of the data analysis undertaken within the thesis, and in particular the operation of the 

simulation model has been programmed using MATLAB scripts, rather than being 

undertaken as stand-alone statistical analyses. Data from the ScotSTAR databases only 

requires initial basic manual data cleaning to identify mis-labelled data before being 

imported – thereafter all processing is accomplished through the MATLAB scripts. 

Undeniably, the process of learning how to code in MATLAB added to the duration of my 

research and added time between the initial data collection and the production of the end 

results. However, this time investment is considered to have been worthwhile as any future 

analysis of the entire, up-to-date, ScotSTAR system (after the relatively minor task of 

implementing any structural changes to the Simulink model) fundamentally now only 

requires a new data export. This would be most applicable to the SPRS service which has 

not undergone the same structural changes as EMRS - meaning that the SPRS model used 

in this thesis remains a valid structural representation of the real-world SPRS service to 

this day. 

   As services which are committed to improving clinical care, it is likely that there will be 

further changes as the ScotSTAR system evolves. For example, as clinical experience in 

the Ambulance Control Centre increases, accuracy of major trauma triage may improve - 

with a resulting increased specificity in activation of the EMRS Trauma Teams. This 

should, however, be contrasted with the imminent initiation of the Scottish Trauma 

Network (Scottish Trauma Network, 2020) which is deliberately designed with over-triage 

in order to increase the sensitivity of the system for detecting major trauma and initiating 

advanced critical care interventions. It is very difficult to account for the effects of these 

interventions prospectively, particularly when combined. Even more fundamentally, the 

definition of what major trauma requires the attendance of a physician-led pre-hospital 

critical care team remains an open question in PHaRM research – and a question which has 

clinical, operational and geographical context-specific answers for individual patients.  
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   All of these challenges indicate the need for a model which is not simply able to 

didactically analyse the empirical data it is presented with. Instead, an effective model 

must be agile enough to maintain contemporaneous validity through its responses to 

moderate changes in the system yet retain enough stability for its output to be considered 

reliable.  

 

External Validity 

   This thesis has studied queueing theory as applied to the specific operations of two 

ScotSTAR teams which operate in very specific roles and within a very specific 

geographical area. Such operations may differ from other pre-hospital care services in the 

UK, Europe, and the rest of the world. In particular, EMRS’ pre-hospital, primary missions 

are predominantly focussed on the management of major trauma. This differs somewhat to 

services in continental Europe particularly - where physician-staffed air ambulances are 

embedded components of the routine ambulance service response to a number of medical 

conditions (Association of Air Ambulances, 2020; Kruger et al., 2013; Pittet et al., 2014). 

  In Part 3 (section 3.7.2.3), it was highlighted that in order for the results to be considered 

internally valid, the simulation model must accurately replicate the real-world in both 

structure and behaviour. Naturally, this creates a model which is unique to the operational 

intricacies of each studied service (e.g. Duty 1 always activated before Duty 2 for EMRS). 

Reflecting this, the Simulink models which were built and validated for this project (as 

illustrated in Appendices 1 - 3) are not, in themselves, able to be simply copied to another 

service unless it is, coincidentally, operationally identical. Perhaps paradoxically, the 

results of Part 3 - which are stated as being the most operationally useful findings for the 

real-world ScotSTAR teams - are the conclusion of such an individualised process for the 

studied teams as to render the results useful only to the studied teams. A number of the 

concepts described in Part 3 - the exponential relationship between EMRS utilization and 

Wq
95 (Fig. 3.50) for example - would be expected to generalize to other services and could 

provide useful insight into the potential for service deterioration at high utilization values. 

However, the specific utilization values at which a given Wq
95 or simultaneous retrieval 

proportion occur are considered specific to the studied ScotSTAR SPRS and EMRS teams. 
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S t reng ths  

   Reciprocally to the argument that operational usefulness for ScotSTAR comes at the 

expense of generalisability (as above), it is base queueing theory - the component which 

was considered to carry limited internal operational usefulness (section 1.8.7) - which is 

likely to be the most generalisable outside ScotSTAR.     

   This dichotomy in generalisability is bridged by the model design and simulation 

methodology used within the thesis. In the thesis, models have been created which, 

although not immediately generalisable, are easily adaptable and should maintain their 

validity when altered to represent a different system because of their modular construction 

(Appendices 1 - 3). Some of this is an intrinsic capability of the Simulink program, and 

some relates to the mathematical processes and simulation methodology undertaken, but all 

combine to produce a model from which the simulation output is directly compared to the 

equivalent real-world parameters (in Part 2) and which derives subsequent results (in Part 

3) with methodological transparency for the end-user. This transparency should allow the 

end-user to independently verify the validity and accuracy of any service model based on 

the ScotSTAR model, and mitigate some of the risks of a “black box” analysis (in which 

the user simply inputs data and then receives a result, all computation having been 

undertaken within a metaphorical “black box” into which the user cannot see) which may 

be present in proprietary discrete event simulation software. 
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Impl icat ions:  Research  and C l in ica l  

Research  Imp l i ca t i on s  

   The wider research scope of a thesis compared to a peer-reviewed paper allowed me to 

explore a number of aspects of queueing theory, modelling and simulation in a pathfinder 

approach. The predominant purpose of this thesis has been to examine the usefulness of 

queueing theory, with derived models and simulations, in the first application to a 

specialist pre-hospital and retrieval medical service. The design of the study therefore 

solely considers the ability of these queueing theory-based components to replicate and 

derive useful information about the real-world. From this basis, this thesis simply set out to 

establish if queueing theory was an appropriate methodology; not if it was the best 

methodology for describing the ScotSTAR systems. This statement alone should clearly 

precipitate future consideration in conducting very similar research focussed on an 

alternative methodology: System Dynamics for example. 

   The purpose of the thesis being to assess the suitability of queueing theory alone in 

describing the ScotSTAR system was reflected in the searched literature. The literature 

review suggested that queueing theory could be an appropriate analytical technique for 

ScotSTAR as a number of analogous healthcare systems all described its application. 

However, the number of reviewed papers overall is relatively small, reflecting the 

relatively infrequent application of queueing theory in this domain despite it having 

demonstrably been used for over fifty years (Bell et al. 1969). What is noticeable however 

is that the literature search has returned papers which almost exclusively indicate a positive 

application of queueing theory in the respective settings. This was not selection bias on my 

part, but instead indicates a lack of negative results in the published literature describing 

when queueing theory is not an appropriate analysis methodology. It is therefore likely that 

some degree of publication bias exists within the domain of queueing theory in acute 

healthcare as it seems logically improbable that queuing theory is universally accurate in 

describing the systems to which it is applied. Given that the design of this thesis was 

focussed solely on the application of queueing theory, and has also demonstrated its utility, 

there is some risk that it will contribute bias in favour of queueing theory. This could 

perhaps be considered an “indirect” or “unintended” publication bias as the result would 

still have carried the same academic merit had its findings been negative - they merely 

happen, in this case, to be positive. 
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   Not all the findings in this thesis have been positive, however. The contemporaneous 

simulation of mission durations (sections 2.5.2.4 & 2.6.2.4) was unable to fully replicate 

the real world, it was highlighted in an earlier discussion regarding the potential for sub-

groups within the data (section 1.8.2). As a result, I have suggested that gamma 

distributions may not be the correct distribution for mission durations in this domain and 

this should caution future researchers in the application of a gamma distribution to describe 

pre-hospital and retrieval mission durations. When this is added to the suggested non-

suitability of Lq and Wq, then it may be argued that, in fact, queueing theory is not the 

optimal mechanism by which to measure the performance of the ScotSTAR systems. 

However, firstly, this does not necessarily imply that queueing theory is an inappropriate 

analysis tool. In fact, as stated in the opening chapters of Part 1 (section 1.3) there are a 

number of aspects, particularly with respect to queueing theory’s ability to resolve 

stochastic processes, which provide clear support for its use in the ScotSTAR setting. This 

is reinforced by its use in multiple healthcare settings including ambulance services (e.g. 

Bell et al., 1969. Scott et al., 1978. Singer & Donoso, 2008.), emergency departments (e.g. 

Mayhew & Smith, 2008. Fitzgerald et al., 2017.) and intensive care units (e.g. Goldwasser 

et al., 2016. McManus et al., 2004.) - all of which will demonstrate a zero-time wait for 

service in their un-saturated server state and all of which are considered to be partially 

representative of referrals to ScotSTAR through the stochastic onset of either critical injury 

resulting in pre-hospital medical response or critical illness requiring transfer in the 

retrieval medicine domain. 

   As previously stated, this research was not designed to find the best method for 

describing the ScotSTAR system performance, instead aiming to investigate if queueing 

theory specifically could provide a useful description. I consider that it has been successful 

in this objective as it has, for the first time, demonstrated the application of queueing 

theory to a pre-hospital and retrieval medical system, and has extended standard queueing 

theory descriptors to more usefully describe ScotSTAR operations. 
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C l in i ca l  Imp l i ca t i on s  

   The predominant clinical implication of this thesis is describing the need to exercise 

caution in any expansion of the services as they are either considered close to the limit of 

the stated specification limits or are, in the case of SPRS, operating beyond them. 

 

SPRS 

In keeping with the findings of Stein et al. (Stein et al., 2015), simply increasing the 

number of servers in the SPRS system will not result in the system falling within the 

prescribed specification limits and it can therefore be considered that other changes will 

need to be considered if the target specification is to be achieved.  

   This thesis has demonstrated the SPRS service to have a Wq
95 of 8h 8m in the 

retrospective simulation (section 3.4.1.3). This was a somewhat unexpected result which 

illustrated a difference between the perceptions of the ScotSTAR clinicians and the system 

performance, given that the clinicians considered that a Wq
95 less than one hour was a 

realistic performance target. Although not obtained through a formal Delphi (see 

Niederberger and Spranger, 2020) or similar process, the views obtained on a target 

waiting time were nonetheless considered to be representative of the expert body which 

comprises the ScotSTAR clinicians. As discussed in section 3.8.2.4, there is no implication 

either from within the organization or externally that patients retrieved by SPRS 

experience a poor outcome related to delayed access to critical care. From this, it could be 

inferred that 8h 8m is an acceptable Wq
95 value for SPRS but, given the lack of evidence to 

support this finding, the logical argument remains that a long Wq
95 does not confer equity 

of access to critical care as this wait would not be acceptable for a patient within a major 

mainland hospital. SPRS must therefore give consideration to the clinical ramifications of 

this result. Firstly, this pertains to the question of whether this Wq
95 value is operationally 

acceptable. 

Thus: 

- If the Wq
95 value is considered clinically acceptable, then: 

o Availability of telephone consultations or support for the managing clinicians 

may be an appropriate action by which to monitor clinical progression and 

maintain situational awareness during the relatively long waiting time. 
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o Further evidence to support the argument of the waiting time being acceptable 

should be actively sought. An acceptable Wq
95 for SPRS secondary missions 

was estimated at one hour based on the expert opinions of the ScotSTAR 

clinicians. By implication, the Wq
95 value of more than 8 hours is not an 

acceptable waiting time; yet, it is not perceived from day-to-day that the 

waiting time is either operationally or clinically unacceptable. Clearly, 

therefore, further research relating to the relationship between Wq
95 and clinical 

outcome is required to resolve this apparent discrepancy. 

- If the Wq
95 for team availability is considered unacceptable then strategies to reduce 

this may be required, including: 

o As has been discussed earlier in the epilogue (see “Real-World Operational 

Applicability”), this may also need to focus on the different requirements 

between patients in a major hospital compared to those in a remote or rural 

healthcare setting. An operating model which prioritises remote and rural 

facilities may address the potential clinical significance of a long Wq
95 for 

patients in these locations.  

o There may also be the option to consider “elective” transfers of patients from 

major hospitals at times of low probability of emergency transfers, similarly to 

the processes already used by the Scottish Neonatal Transport Service (SNTS). 

 

EMRS 

   Considering the EMRS results, the simulation output would indicate that caution must be 

exercised in any expansion of the service with regard to the number of missed primary 

missions. Although the result confers an increasing number of patients attended; this must 

be balanced against the increasing proportion (Fig. 3.59) of missed primary missions which 

reflects an increasing inequity of care, most pertinent to the critically injured patients who 

do not receive the benefits of a pre-hospital critical care team.  

   This thesis also demonstrates the clinical utility of models to investigate situations which 

are unobservable in the real world. Although in this context it involves unobservable 

phenomena in the delivery of an operational medical service, the same principles could be 

applied to a clinical or physiological model where it can be described with sufficient 
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accuracy as to replicate the real-world and by a sufficiently robust mathematical 

relationship as to remain valid beyond the frontiers of real-world observability. 

  Perhaps one of the most significant clinical implications of this research lies outside the 

PHaRM domain altogether - in the hospital Emergency Department. This thesis has 

examined the application of alternate queue descriptors and the utility of the 95th percentile 

of waiting time (Wq
95) in particular. This percentile aligns exactly with the current UK “4-

hour target” for Emergency Department treatment. The “4-hour target” dictates that, at the 

time of writing, 95% of patients who attend a UK emergency department – either in 

Scotland (Health and Social Care Directorate, 2015) or England (Department of Health and 

Social Care & Public Health England, 2021) - should have their treatment completed and 

leave the department, either by being discharged from the ED or admitted to an inpatient 

bed, within 4 hours of arrival. Effectively meeting this target will, by definition, result in a 

Wq
95 for the emergency department of less than four hours. This value is perhaps more 

useful than the standard Wq value which, although somewhat descriptive of the ED process 

is, in similarity to the ScotSTAR analysis, unlikely to adequately describe the full waiting 

time distribution adequately for the purpose of relating it to the 4-hour target. By 

comparing the calculated Wq
95 value to the target value of 4 hours then a useful measure of 

the current ED process capability may be generated and be deliverable as a real-world 

interpretable performance metric for patients. 

   The data used in this thesis is primary data from the ScotSTAR electronic retrieval 

databases which archive the medical records of all patients attended by a ScotSTAR team. 

However, these electronic records are transcribed from (not scanned copies of) the paper 

notes completed contemporaneously during the retrieval missions. There is therefore no 

software error checking (e.g. for missing values) at the point of recording (on the paper 

notes) and there always remains the potential for transcription error at the point of 

subsequent electronic entry. The accuracy of any model therefore has the potential to be 

degraded by the quality of data provided to it from the electronic retrieval records and care 

must be taken to ensure data quality is maintained. ScotSTAR is now actively engaged in 

the procurement of a fully electronic medical record entry system which will permit the use 

of software error checking and simplify a number of recording processes at the time of 

contemporaneous medical record-keeping and should confer an associated improvement in 

data quality. Indeed, as was discussed in section 3.1.1, the ScotSTAR dataset is, to some 

degree, incomplete with regard to the ability to verify the extended components of 
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queueing theory because ScotSTAR simply does not collect the required data to calculate 

the Wq and Lq directly. This thesis’ findings have driven a change in the ScotSTAR dataset 

such that similar research in the future should be able to directly compare the model output 

to the expected queueing theory parameters. 
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Future Research  and Development  

   This thesis covers a relatively wide application of queueing theory, modelling and 

simulation. Clinically useful operational information was successfully generated, however 

there are clearly opportunities for more detailed research on specific, individual 

components within the thesis as well as future expansion of the research as a whole. 

Suggested further research falls under four major headings: 

1. Mathematical and Base Queueing Theory 

    Undertaking a thesis which is entirely my own work created a limit on the 

complexity of the base queuing theory commensurate with my own mathematical 

ability. The opportunity in future to work collaboratively with an academic 

mathematician could provide an opportunity to use this real-world application to make 

significant contributions to base queueing theory – particularly with regard to: 

- Management of the non-homogeneous / time-dependent Poisson arrivals process 

and correction of multi-modal inter-arrival times. In particular, comparing the 

results of Pollaczek-Khinchin formulae for stationary versus non-stationary arrivals 

processes using the respective simulation findings. 

- Mathematically describing the waiting time CDF and explaining the difference 

between the expected exponential relationship of Wq
95 to utilization for EMRS 

(Fig. 3.50), compared to the non-exponential relationship of Wq
95 to utilization for 

SPRS (Fig. 3.16). 

2. Modelling, Simulation, and Performance Data 

   A number of challenges and possible refinements to the models and simulations 

have been discussed within this thesis. All are possible targets for future research, with 

the most pertinent being: 

- Updating the models to reflect the current system and repeating the analysis to 

describe the current state of the ScotSTAR system, accounting for the time elapsed 

and structural changes to the system since the results of this thesis. 

- Validating against a more extensive dataset like the current iteration of the 

ScotSTAR dataset which, as a result of the arguments presented in this thesis, now 

provides for the ability to directly measure the values of Lq, Wq and Wq
95. 
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- Refinement of the mission duration distributions, in particular. This may potentially 

include additional factors such as mission location in order to better define the 

specific sub-distributions (section 1.8.2). This may be a target for more advanced 

analysis methods including machine learning. 

- Developing models which are able to more accurately describe the 

contemporaneous states of the ScotSTAR systems – potentially leading to models 

which can prospectively predict the future state of the systems. 

- Use of an alternate simulation methodology e.g. System Dynamics. Ultimately, this 

should lead to the ability to compare and deduce the optimal strategy for describing 

ScotSTAR, or similar PHaRM systems. 

 

3. Clinical Utility 

   While there is undoubtedly academic merit in undertaking specific research on 

components within this thesis, furthering the research as a whole with a view to driving 

forward clinical utility of the output should remain a high priority. Possible 

mechanisms to support this include: 

- Undertaking a more formalised process of specification and target setting using an 

established Delphi process or similar. 

- Using the model to simulate different team configurations, triage methodologies 

and operational pathways in order to optimise system performance, capacity, and 

team availability. 

- In an extensive, long-term project: relating the waiting time, simultaneous retrieval 

proportion and missed primary mission proportion to patient outcomes. This is 

likely to require an extensive data linkage project to correlate the ScotSTAR 

performance descriptors to clinical outcome indicators (e.g. ICU admissions / 

length of stay, Injury Severity Score (Baker et al., 1974)) over a significant time 

period to generate an adequately powered study and manage confounding factors. 

 

 

4. Operationalizing Output 

As a final development, it must be considered essential to operationalize the output of 

this research. This is partially underway at the time of writing in that the mission 
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duration distributions and the contemporaneous mission count are used to define the 

service utilization and respective workloads for EMRS primary and secondary missions 

as general service information. As the specification requirements are developed further, 

and the model is able to more accurately reflect the contemporaneous performance of 

the ScotSTAR systems, it is intended that more of the descriptive parameters (e.g. 

Wq
95) will be reported as measures of system performance in the operational setting. 
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Fina l  Conc lus ions  

   From this thesis, the following conclusions can be drawn with regard to the Scottish 

Paediatric Retrieval Service (SPRS) and Emergency Medical Retrieval Service (EMRS), as 

systems of the Scottish Ambulance Service (SAS) ScotSTAR division: 

   When a time-transform based around the Box-Cox methodology is applied to correct for 

the time-dependent Poisson process of arrivals to the SPRS and EMRS systems, standard 

queueing theory can provide an accurate description of the main components of the system,  

including the inter-arrival time distribution and service times. Kendall’s notation therefore 

describes the SPRS and EMRS systems as M/G/1 and M/G/2 queues, respectively. 

   A hybrid ABM-DES computer model based around queueing theory principles, modified 

to replicate a non-stationary arrival process by using an exclusion-sampling methodology 

can be designed which is able to simulate the real-world to an operationally acceptable 

value in a retrospective time period. The model can partially replicate the immediate, 

current real-world state of each system in a contemporaneous methodology. This is subject 

to a suitable data sampling window which has a currently demonstrated minimum duration 

of 6 months. It is expected, however, that improvements in the model and analysis 

processes will reduce the data sampling window and increase model accuracy. 

   Performance descriptors which are not measurable in the real-world system and which 

cannot be calculated by formulaic means can be derived from the model and are deemed 

valid by the demonstration of the model’s accuracy in replicating measurable real-world 

values. Where formulaic results exist, their accuracy in describing the real-world systems 

is diminished by the non-stationary arrivals process to the ScotSTAR systems. 

Furthermore, the classical queueing theory descriptive parameters (Lq and Wq) do not 

adequately describe the performance of the ScotSTAR systems such as to be operationally 

useful. 

   This thesis has generated new performance descriptors for the ScotSTAR systems which 

are more applicable to the patients and service users than the standard descriptors used in 

queueing theory. For these new metrics, performance specifications that define the 

maximum number of missions which can be undertaken while still demonstrating 

acceptable performance can be derived using an extended Monte-Carlo simulation. 
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    From the results, it can be concluded that the ScotSTAR SPRS system operates 

significantly beyond a performance frontier for both Wq
95 and simultaneous retrievals. In 

the current operational climate, the SPRS service is highly unlikely to meet the intended 

performance targets of Wq
95 less than 1 hour or a simultaneous retrieval proportion less 

than 10%. The addition of a second SPRS team would go some way to meeting these 

performance specifications but would clearly involve a significant cost. Even if a second 

team could be implemented, additional measures to reduce total utilization of the SPRS 

service will still be required to achieve the stated targets. There may, however, be 

alternative working strategies for SPRS which are more effective at reducing waiting time. 

  It can be concluded that EMRS operates with a relatively small margin by which the 

number of missions can be increased in order to reduce the per-patient cost of the system. 

Increasing the number of EMRS missions is likely to encounter a foremost performance 

frontier corresponding to a Wq
95 of 1 hour for secondary missions, with simultaneous 

retrieval proportion being less of a constraint. On the understanding that primary missions 

which have to wait more than 20 minutes for a team response are reneged from the system, 

a Wq
95 of less than 15 minutes is in fact not an appropriate specification for primary pre-

hospital response performance and the proportion of missed primary missions is more 

likely to produce an operationally useful metric in this domain.  

   This thesis describes the first applications of queueing theory, discrete event and agent-

based simulation, and the derivation of performance descriptors, to a physician-led pre-

hospital care and retrieval system. It also describes the first use of an extended Monte-

Carlo simulation to produce system performance specifications for a patient transport 

service. All of this has been undertaken using a bespoke, non-proprietary, transparent 

model - in which each component has been statistically tested for real-world validity and 

its operation tightly controlled to reflect the operational nuances of the modelled system. 

   Changes have already been made to the real-world ScotSTAR system as a result of the 

findings of this thesis, particularly with regard to data collection, system performance 

reporting and quality control. There are clearly opportunities for further research into the 

application of queueing theory to ScotSTAR which have the potential to make a significant 

contribution to the field of queueing theory and its application to healthcare systems. Most 

importantly, there is the opportunity for this research to directly drive future development 

of the ScotSTAR services: reducing time to life-saving interventions, increasing equity of 

access to critical care, and ultimately improving outcomes for patients across Scotland. 
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Appendix 1: Screen capture demonstrating SPRS simulation model. 
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Appendix 3: Screen capture demonstrating original EMRS simulation model. 
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Appendix 3: Screen capture demonstrating revised EMRS simulation model. 
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Glossary  

Baulk - Queueing theory term to describe customers / patients who 

do not enter the queue due to inadequate space, length of 

queue or non-availability of servers. Contrast with “renege”, 

below. 

Endotracheal Intubation - Advanced care intervention which involves placing a 

“breathing tube” (endotracheal tube) directly into the 

patient’s trachea under direct vision, in the anaesthetised 

patient (occasionally, without anaesthetic to unresponsive 

patients during cardiac arrest resuscitation) for the purposes 

of bypassing the upper airway and larynx, maintaining a 

patent, secure airway and providing a conduit for mechanical 

ventilation. 

Fixed-wing - Generic term referring to an aeroplane or similar aircraft, as 

opposed to helicopter. In the aeromedical transport context, 

usually refers to a multi-engine turboprop or turbofan-

powered aeroplane e.g. Beechcraft King-Air series. 

Physician - Technically, describes a doctor who has undertaken training 

in a medical (e.g. cardiology) as opposed to surgical (e.g. 

orthopaedics) specialty. However, the term is often used 

synonymously with doctor in the pre-hospital context. 

Renege - Queueing theory term to describe customers / patients who 

leave / are ejected from the system after entering the queue, 

but before receiving service due to inadequate space, length 

of queue or non-availability of service. Contrast with 

“baulk”, above. 

Resuscitative Thoracotomy - Major resuscitative surgical procedure to manage cardiac 

tamponade, cardiac wounds or major intra-thoracic 

haemorrhage. Generally reserved for patients in cardiac 

arrest, or peri-arrest due to penetrating trauma. Involves 

surgical incision from axilla to axilla, followed by opening of 

the inter-costal muscles and cutting through the sternum – 

allowing the patient’s thoracic cage to be lifted up and access 

gained to the thoracic organs. 

Rotary-wing - Generic term referring to a helicopter or similar aircraft. In 

the aeromedical transport context, almost exclusively refers 

to a turbine-powered helicopter e.g. Airbus Helicopters 

H145. 

RSI  - Rapid Sequence Induction (of anaesthesia). 

 Classically, this refers to a specific procedure involving the 

administration of thiopental and suxamethonium along with 



Glossary  482 

 
 

cricoid pressure (Sellick manoeuvre) to quickly effect 

endotracheal intubation for the purposes of emergency 

surgery with minimum risk of de-oxygenation or aspiration 

for the patient. In more modern usage, it is considered 

synonymous with rapid induction of emergency anaesthesia – 

a catch-all term which encompasses a variety of drugs and 

techniques to induce anaesthesia for the purposes of 

mechanical ventilation, emergency surgery or other major 

intervention, also while minimizing risk to the patient. 

Triage - (French, lit: “sort”)  the process of establishing priority of 

treatment of patients according to severity of illness or injury. 
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