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Abstract

Background: Stroke survivors are at high risk of experiencing cognitive
problems, which can severely compromise independence in daily activities,
social participation, and quality of life. With limited evidence to support current
interventions, finding ways to improve cognitive function is recognised as a
priority for research relating to life after stroke. Prognosis research may
contribute to this endeavour by informing the development and implementation
of preventive and therapeutic strategies - from describing the natural history of
post-stroke cognitive change, through identifying its relevant predictors and
developing methods of estimating individual outcome probability, to supporting

the application of stratified medicine.

Prognosis research into post-stroke cognition is still developing, with little
evidence regarding some of its more fundamental questions. These relate to the
relevance of: i) potentially modifiable factors, ii) differential effects of risk
factors, depending on paths of influence and co-occurrence, and iii) population
heterogeneity in the trajectory of post-stroke cognitive change. Through
focusing on these three topics, the purpose of this thesis is to improve our
understanding of the cognitive change that occurs following stroke and its

associations with individual characteristics.

Methods: Firstly, to gain a better insight into current advances in prognosis
research in post-stroke cognition, | performed a systematic review of prognostic
rules for predicting cognitive impairment and delirium following stroke. |
considered these findings in specifying the aims and design of my subsequent,

observational studies.

| conducted two cross-sectional investigations in a sample of stroke survivors
from the UK Biobank. Through a series of regression analyses, | assessed the
associations of performance on four cognitive tasks with two groups of predictors
of particular interest: 1) self-reported physical activity and sedentary behaviour,

and 2) proxies of social engagement.

Using data from consecutive patients admitted to a hyper-acute stroke unit, |

then investigated the influence of cardiovascular risk factors on acute post-



stroke cognitive performance. In a moderated mediation analysis, | tested the
assumptions that the effects of these factors are partially mediated by stroke

severity and prior dementia, and may be dependent on comorbidity.

In my final, longitudinal study, based on the Assessing Post-Stroke Psychology
Longitudinal Evaluation (APPLE) dataset, | conducted a latent class growth
analysis to identify and describe differential trajectories of cognitive change,
occurring over one year following stroke. Through subsequent regression

analyses, | then explored factors that predicted trajectory class membership.

Findings: Through a systematic review of the literature, | identified seven
prognostic rules predicting post-stroke cognitive impairment (including
dementia) and four predicting post-stroke delirium. The most commonly
incorporated predictors were: demographics, imaging findings, stroke type, and
symptom severity. Among seven studies that assessed in the original sample how
well a prognostic rule discriminated between participants who developed the
outcome of interest and those who did not, performance was reported as being
good to excellent. Only one rule had been validated in an independent dataset,

showing fair discriminatory power.

In the first of two UK Biobank studies, | found relatively consistent, although
weak associations for two types of sedentary behaviour, where the daily
duration of watching TV was associated with poorer cognitive performance,
while duration of computer use was associated with better performance. Some
effects remained significant after adjusting for demographic, health-related,
and lifestyle factors. Physical activity, however, was not independently
associated with performance on any of the considered tasks. In the second
study, reported loneliness was the only proxy of social engagement to be
associated with most cognitive tasks, consistently predicting poorer

performance.

Findings from my analysis of data from a hyper-acute stroke unit setting

supported the mediatory role of stroke severity and prior cognitive impairment
in the effects of specific cardiovascular risk factors on acute cognition. Poorer
cognitive performance was associated with atrial fibrillation through increased

stroke severity, and with previous stroke through an increased risk of prevalent



dementia. Conversely, through an association with reduced stroke severity,
better performance seemed predicted by vascular disease (in the presence of
hypertension and absence of diabetes) and by previous transient ischaemic
attack.

In the APPLE dataset, | identified four distinct trajectories of cognitive change:
i) with high early cognitive function, improving over following weeks and
thereafter declining; ii) with some early cognitive deficits, followed by
improvement in function and then relative stability; iii) with comparatively poor
initial function, which after a stage of steeper improvement continued to
improve at a slower rate; and iv) with severe cognitive deficits, followed by
improvement at a near-constant rate. Overall, participants representing the two
trajectories with greatest initial cognitive deficits were characterised by older
age, lower education, higher prevalence of pre-stroke cognitive impairment, and

greater stroke severity.

Conclusions: In summary, my findings speak to the complex nature of cognitive
change following stroke and its associations with individual characteristics. This
is apparent on more than one level. What can be considered a single variable,
such as sedentary behaviour, may be multifaceted. Entailing distinct properties,
particular variable components are likely to have differential effects on post-
stroke cognitive function. The effects of specific factors may moreover differ
depending on the path of influence and the constellation of coexisting variables.
Finally, post-stroke cognitive change is a heterogenous process, both on a

between- and within-individual level.

These observations suggest that it is important to consider how, in what form,
under what conditions, and for whom, a possibly causal factor can affect post-
stroke cognitive outcome. A lack of evidence-based assumptions regarding these
aspects to inform the development of a statistical model may lead to
misidentification of relevant associations. This is in turn likely to have
implications at the stage of intervention development and implementation,
limiting application. Recognising and at least partly accounting for the
complexities | observed in my series of studies could contribute to bridging a gap
between the potential and actual impact of prognosis research on improving

cognitive function following stroke.
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Chapter 1  Introduction

In this chapter, | present concepts that are fundamental to my thesis, with a
focus on cognition and stroke. After describing cognitive disorders in terms of
their clinical features, and their prevalence and impact following stroke, | give
special consideration to the topic of assessing cognitive function in healthcare
and research settings. | regard this issue as a cornerstone of investigations into
post-stroke cognition, including those within the area of prognosis research,

which will be the theme of my next chapter.
1.1 Cognitive change

Cognition is central to how we perceive, understand, and interact with the
world, and as such - central to our being. It encompasses many functions, from
processing and interpretation of sensory stimuli, through remembering events
and information, to use of language and complex operations on abstract
concepts, such as in mathematical problem-solving or forming of philosophical
doctrines. An obvious reflection is that it takes time for the full scope of
cognitive abilities to become attainable for us, and so perhaps it is most
intuitive to associate the term “cognitive change” with the dynamic
development that occurs in childhood. Cognition, however, changes throughout

the entire lifespan.

Some abilities, involving knowledge and skills acquired and consolidated through
experience, education, and cultural influences (e.g. vocabulary, or familiarity
with historical or geographical facts) may continue to improve into old age (1-3).
Other abilities, relating to processing and learning of new information, and
applying reasoning and problem-solving skills in a relatively unfamiliar context,
begin to decline from the age of around 30 (1-3). This is recognised as an

inherent part of “healthy aging”.

However, in some cases, either due to the type of functions that deteriorate, or
the speed and extent of decline, change is indicative of a cognitive disorder,
that is, a deficit in cognition that goes beyond what is attributable to the normal

aging process. These problems are recognised as mild cognitive impairment or a
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mild neurocognitive disorder (as referred to in the 5% edition of the Diagnostic
and Statistical Manual of Mental Disorders [DSM-5]) where they do not preclude
an individual from living independently, although the performance of some
activities is slower and more effortful than it was previously, entails more
errors, and requires use of compensatory strategies (4-7). Conversely, in its
severe form, cognitive impairment compels the individual to rely on the help of
others to manage the requirements of daily life. This is a key aspect of dementia

or, as termed more broadly, a major neurocognitive disorder (6, 8).

With influences present at every stage of life, multiple variables are associated
with cognitive decline and acquired cognitive impairment, including: genes,
socioeconomic background, education, occupation, environmental exposures,
social engagement, lifestyle choices, and health-related conditions (9-11).
Among the latter, stroke - of which there are over 80 million prevalent cases
worldwide (12) - has been consistently demonstrated as a major contributing

factor, at least doubling the risk of developing dementia (13).

1.2 Stroke

The World Health Organisation (WHO) and National Institute for Health and Care
Excellence (NICE) traditionally define stroke as a clinical syndrome of vascular
origin, characterised by sudden onset of rapidly developing signs of a focal or
global disturbance of cerebral function, lasting at least 24 hours or leading to
death (14, 15). Episodes where neurological dysfunction is suspected to be
caused by ischaemia, yet symptoms resolve within 24 hours and there is no
evidence of acute infarction, are identified as a transient ischaemic attack (TIA)
(15).

In recent years, however, these classic definitions of stroke and TIA have been
increasingly recognised as outdated and of limited usefulness in a clinical setting
(16, 17). A statement from the American Heart Association and American Stroke
Association highlighted the importance of accounting for advances in science and
technology for defining stroke and its diagnosis (16). Neuroimaging was discussed
as a valuable source of objective evidence of central nervous system infarction,

needed to supplement findings from clinical observation. Specifically, use of
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neuroimaging can help to: i) characterise a lesion (its location, size, shape, and
extent); ii) differentiate between an ischaemic (resulting from the obstruction
of an artery) and a haemorrhagic (a focal collection of blood from the rupture of
a vessel) stroke; iii) identify a silent brain infarct, where there is no history of
acute neurological dysfunction attributable to a lesion; iv) differentiate between
a stroke and a stroke mimic (e.g. brain tumour, migraine); and v) differentiate

between a stroke and a TIA.

The role of neuroimaging in fulfilling the latter objective has become
particularly emphasised through increasing controversy over applying a time-
based criterion alone to differentiate between stroke and TIA. As studies have
indicated that permanent infarction occurs in around one third of patients with
symptoms lasting under 24 hours, it is argued that failing to recognise the
limitations of this traditional rule of thumb may have led to misdiagnoses and
thus inappropriate treatment (16, 18). In the context of cognition, it is moreover
relevant that there is some evidence to suggest an association between TIA and
longer-term cognitive problems (19, 20). With this in mind, while | focus on
stroke, many of the concepts | discuss in this chapter are also relevant to cases
of TIA.

1.3 Cognitive disorders following stroke

1.3.1 Syndromes, prevalence, and impact

The neurological damage caused by stroke, as well as the medical complications
that may follow, entail a risk that is rarely considered in relation to the general
home-dwelling population - that of delirium. One in four stroke survivors are
likely to be affected by this condition during the first days post-ictus. Delirium is
characterised by disturbed attention and cognitive function, with a sudden onset
and fluctuating course (21). Although generally considered a transient state, the
effects of delirium are not always reversible, with potential severe implications
in terms of length of hospital stay, disability, subsequent cognitive decline, and
mortality (22). Delirium can be particularly difficult to recognise following
stroke, due to the likely co-occurrence of pre-existing and/or acute cognitive

impairment.
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Estimates suggest that around 10% of individuals have dementia prior to index
stroke, while within just the six months that follow, another 10% are likely to
develop new dementia (23). At least three times as many stroke survivors are
indicated to have mild global cognitive impairment, deficits in single cognitive
domains, or subjective cognitive complaints (24-27). Indeed, a number of studies
suggest that the majority of the stroke population will be affected by some form
of short-term or persisting cognitive problems (25, 26), with potentially severe,
adverse implications for individual outcomes. These include reduced functional
gains from rehabilitation, inability to return to work, limited social
participation, dependency in activities of daily living, increased risk of mood

disorders, and poor quality of life (28-32).

In addition to personal losses, post-stroke cognitive difficulties may affect the
well-being of family members and increase caregiver burden (33-35). There are
further ramifications at a societal level, with the presence of cognitive disorders
associated with increased healthcare costs, stemming from longer initial
hospitalisation, greater risk of later readmission and institutionalisation, and

increased use of outpatient and home-based support (36).

1.3.2 Improving cognitive function following stroke

Given this high prevalence and extensive, detrimental impact of cognitive
disorders, it seems unsurprising that in relation to life after stroke, finding ways
to improve cognitive function has been determined as a number one research
priority, in consensus by stroke survivors, caregivers, and health professionals
(37). To date, there is limited evidence to support current interventions (38).
One of the main postulated approaches involves use of strategies found to
contribute to favourable stroke outcomes in general, including: treatments in
the stroke unit to prevent acute complications, early rehabilitation, and
pharmacological and lifestyle interventions for reducing the burden of

cardiovascular risk factors and preventing recurrent stroke (39).

Importantly, however, findings regarding the impact of such strategies on
improving cognitive outcomes, specifically, seem thus far inconclusive. For
example, while some studies have reported favourable effects for thrombolytic

therapy, active blood pressure lowering, and lipid lowering, others indicated
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neutral results (40-46). Moreover, two randomised controlled trials
demonstrated no benefit of multicomponent interventions to reduce
cardiovascular risk burden for the improvement of post-stroke cognition; one
involved pharmacological strategies and lifestyle modifications, the other - only
non-pharmacological strategies, although this included encouraging compliance

with prescribed medication (47, 48).

Similarly, there are uncertainties regarding the effectiveness of interventions
that directly target post-stroke cognitive function through use of restorative and
compensatory strategies, i.e. cognitive rehabilitation. The authors of a recent
systematic review and meta-analysis made an encouraging finding that such
approaches had a small (across 7 controlled studies) to moderate (across 13 pre-
post studies) positive effect on post-stroke cognition (49). At the same time,
however, all included studies were rated as being of low quality and high risk of
bias. Further, there was no evidence to indicate whether the observed effects
were long-lasting, with only three studies including a follow-up assessment, the

latest conducted one month after completing the tested strategy.

In view of the above, there is a need to continue developing and/or tailoring
interventions to improve cognitive function following stroke. Such endeavours
involve a multi-stage process, from understanding the distinct features and
natural history of post-stroke cognitive problems, through identifying their
determinants and opportunities for modifying their course or manifestation, to
testing and eventually implementing person-tailored interventions in routine
clinical practice. There is one component that is essential to success at any

stage - the ability to accurately detect a post-stroke cognitive disorder.

Assessing cognitive function following stroke is in itself a challenging task.
Before | refer to issues around the selection, feasibility, and applicability of
assessment approaches, it seems important to consider a more fundamental

challenge - defining vascular cognitive syndromes for the purpose of diagnosis.
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1.3.3 Challenges to diagnosing neurocognitive disorders

following stroke

Traditionally, endorsed definitions of dementia primarily encapsulated features
of Alzheimer’s disease, treating impairment in memory and continuing decline in
cognitive function as core criteria for diagnosis (50). However, cognitive
disorders of vascular origin are often characterised by deficits in attention,
speed of information processing, and executive function, and do not necessarily
progress over time (51, 52).The recognition of this gap in the conceptual
approach to diagnosis has prompted much debate over developing and
implementing definitions of “vascular cognitive impairment” and “vascular
dementia” for both clinical and research use, with controversies regarding

diagnosis, classification, and terminology present to this day (50, 53, 54).

Overall, proposed criteria focus on the presence of a relationship between
cognitive deficits and cerebrovascular disease, evidenced by focal neurological
signs on examination (e.g. hemiparesis, dysarthria) and/or neuroimaging findings
(presence of infarcts, lacunes, and white matter lesions) (55-57). A degree of
uncertainty is inherent - pure vascular dementia is considered rare in an older
adult population, with brain lesions of vascular origin possibly contributing to or
merely co-occurring with the effects of ongoing neurodegenerative processes
(38, 58). While there have been attempts to validate suggested diagnostic
criteria for vascular cognitive disorders (59-61), consensus recommendations are
still lacking, and a definite diagnosis can only be reached through including

findings from post-mortem investigations (58).

In relation to stroke, these challenges in the application of diagnostic labels
have led some experts in the field to adopt a more pragmatic approach to
defining subsequent cognitive disorders. Specifically, the term “post-stroke
dementia” has been proposed for any dementia that develops following stroke,
without imposing specific criteria regarding the underlying neuropathological
process(es) (38). Within this framework, post-stroke dementia constitutes a sub-
type of: vascular cognitive impairment, vascular dementia, and post-stroke
cognitive impairment. In view of the practical advantages, when referring to

post-stroke cognitive disorders throughout my thesis, | apply a similar approach -
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assuming a temporal relation between stroke and cognitive change, while
recognising that the former does not necessarily act as the predominant causal

factor.

1.3.4 Assessment of post-stroke cognitive function

1.34.1 Identifying cognitive disorders in a clinical context

Early screening for cognitive deficits is recommended in all stroke survivors,
although currently there is no consensus regarding an optimal approach to
assessment (62). While the specific content of screening measures varies, they
are generally designed to be brief and require relatively little training for
correct administration (63). Typically, at least a few different cognitive
functions are assessed, such as language, attention, or learning memory.
However, rather than performance on individual tasks, it is the sum score that is
of particular focus, serving as an indicator of global cognitive status. Deciding on
the most appropriate screening tool from the many that are currently available

will, at least in part, depend on the circumstances and setting.

In the first hours and days following stroke, attending to a patient’s medical
needs is likely to be prioritised over an assessment of cognitive function (62).
Nonetheless, in interest of the former, it is necessary to recognise delirium to
initiate appropriate interventions as early as possible (64, 65). Validated
measures such as the 4 A’s Test (4AT) (66, 67) and the Confusion Assessment
Method for the Intensive Care Unit (CAM-ICU) (68) combine relatively good
accuracy with high feasibility in the stroke context, taking under five minutes to
complete, and being suitable for patients with motor, visual, and speech

impairments (69).

In addition, some insight into a patient’s cognitive state in the hyperacute phase
can be gained through initial neurological examinations. Despite not
representing cognitive screening tools per se, the Glasgow Coma Scale (GCS)
(70), National Institutes of Health Stroke Scale (NIHSS) (71, 72) or Canadian
Neurological Scale (CNS) (73) all include items relevant to cognitive function

(e.g. orientation, speech comprehension and production).
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Once a patient is medically stable, a more comprehensive assessment can be
considered, although feasibility is likely to remain a key concern (62). On one
side, there is the issue of limited resources in terms of time, space, staffing and
funds. On the other, there are factors relevant to the patient’s condition, such
as becoming easily fatigued, experiencing distress, or being unable to complete
certain cognitive tasks due to acquired deficits (e.g. drawing a clock with upper

limb weakness, or object naming with a severe visual deficit) (74).

The latter is an important issue even in relation to some of the most widely used
screening tools for identifying cognitive impairment (75), such as the Mini-Mental
State Examination (MMSE) (76) or the Montreal Cognitive Assessment (MoCA)
(77). As these measures were not specifically designed for use in a stroke
setting, it is important to interpret findings with caution, and potentially
consider adjusting the originally determined cut-off values, so that chosen tools
are more “fit for purpose” (78, 79). However, deciding on optimal cut-offs is in
itself a considerable challenge, due to a common trade-off between two key test

properties - sensitivity and specificity (80).

Sensitivity refers to the proportion of individuals who have a certain condition
that are correctly identified as having it (81, 82). Specificity relates to the
proportion of individuals who while not having the condition are correctly
classified as not having it (81, 82). Regardless of which test property is favoured,
some negative consequences are to be anticipated. Poorer sensitivity entails a
higher probability of genuine cognitive disorders being missed, and thus some
individuals not receiving the follow-up and support they need; poorer specificity
may lead to more individuals experiencing unnecessary distress and stigma due
to an erroneous indication of an impairment, as well as misallocation of

healthcare resources.

Given the limitations of cognitive screening tools, the implications of
misidentifying the presence vs. absence of cognitive disorders, and the dynamic
process of post-stroke recovery, in a clinical context, findings from early, brief
testing are not recognised as definitive or fulfilling a diagnostic purpose (83).
Rather, they may serve to monitor for potential change in function, and inform
initial care plan decisions, particularly regarding whether a more detailed

cognitive assessment, involving use of a comprehensive neuropsychological test
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battery, is recommended (83, 84). Such assessments are considerably longer,
and require specialist training to conduct and interpret, entailing increased test
burden for stroke survivors and health system costs. For these reasons,
comprehensive neuropsychological assessments are offered to only selected

individuals, with suspected cognitive problems (62, 75).

Neuropsychological test batteries, comprising of multiple tasks, are designed to
determine the presence and severity of deficits in specific cognitive functions,
relative to population normative data (83, 85). This provides a more in-depth
understanding of an individual’s unique cognitive profile, which may involve
either single domain (e.g. within executive function) or multidomain (e.g. within
learning memory and executive function) impairment. Findings from such an
assessment can serve an important role in tailoring rehabilitation interventions

according to individual needs (83).

Although comprehensive neurological assessments are recognised as the gold
standard for identifying and characterising cognitive deficits following stroke
(62, 75), they are not the only source of information that needs to be considered
for a clinical diagnosis of a mild or major neurocognitive disorder. As indicated
in the DSM-5 criteria (6), other key aspects include a subjective concern of the
individual or informant over a decline in cognitive function from previous status,
and the effect of cognitive deficits on performing daily activities (8). It is
important to note that these criteria are not stroke-specific, which can entail
certain challenges. Specifically, it may be difficult to discern the impact of
cognitive problems on day-to-day functioning and independence, as following
stroke they are often accompanied by physical impairments, constituting

another plausible cause of disability (38).

1.3.4.2 Identifying cognitive disorders in research

Reflecting clinical practice guidelines, current research recommendations
advocate for all stroke trials to include an assessment of cognitive outcomes
(86). This is suggested to involve a two-step procedure: i) an informant-based
assessment to ensure study groups are well-matched in terms of pre-stroke
cognitive status, and ii) a neuropsychological assessment, conducted between

three to six months post-stroke. Regarding the latter, it has been proposed that
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at a minimum the assessment should comprise a screening measure for global
cognitive impairment (such as the MoCA) and additional brief tasks targeting

attention and executive function (86).

However, across the whole landscape of research around post-stroke cognition,
there is much variability in assessment methods, suggesting that the choice of
approach is likely guided by individual study aims, the setting, and potential
challenges and limitations (87). Providing a feasible solution, a screening tool
will often be the only measure used to discriminate between individuals with
and without a post-stroke cognitive disorder (87, 88). Similarly, to at least
partially reduce the resource burden associated with large multicentre follow-up
studies, investigators may opt to conduct remote assessments (e.g. over the
telephone or online), or even retrospectively derive data regarding presence of
cognitive disorders from medical records. Further, in some studies the use of
objective assessment methods will be replaced by self-report or informant-based

questionnaires to determine cognitive outcomes (26).

While in many cases a given assessment approach is simply viewed as a means to
an end (the latter being the detection of a post-stroke cognitive disorder), in
some research it is the method itself that is of primary interest. An example is
provided by studies that investigate the accuracy of cognitive tests developed
for use in the general population when applied specifically to stroke (69, 79).
Other studies may focus on the development and performance of novel and/or
stroke-specific methods. In recent years, this has not only involved investigations
into direct assessments of cognitive function (e.g. 89, 90), but also the use of
biomarkers, including metabolic, genetic, inflammatory and neuropathological
factors (38, 91-93).

Such studies, determining how well a measure can discriminate between
individuals with and without a certain condition as compared to a reference
standard, represent diagnostic research (94). This is one of two areas falling
under the broader scope of prediction research, at the centre of which is
estimating the probability of something presently unknown (95). The second
area - prognosis research - is the focus of my next chapter, as a topic that is of

key relevance to this thesis.
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1.4 Summary

Stroke significantly increases the risk of cognitive problems, which may have a
profound impact on affected individuals, their families, and health and social
care structures. To date, there is limited evidence in support of specific
interventions to improve post-stroke cognitive function in the longer-term.
Accurate detection of cognitive problems is an essential component of
investigations that could eventually lead to the development and

implementation of effective therapeutic strategies.

There are, however, many challenges to assessing cognitive function following
stroke, including limited resources and a consequent need for their
prioritisation, difficulties experienced by stroke survivors in participating in
assessments due to acquired impairments, and limited applicability of endorsed
cognitive measures developed for use in the general population. Diagnostic
studies contribute to the development of more appropriate and accurate
methods for identifying post-stroke cognitive disorders, including tests that
accommodate common deficits (e.g. visual impairments, hemi-spatial neglect,

or aphasia), as well as the use of novel biomarkers.
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Chapter 2 Prognosis research: objectives,
components, and advances in the area of post-

stroke cognition

Having described concepts that are fundamental to my thesis as relating to
cognitive function and stroke, | proceed to describing the context within which |
address issues of interest - that of prognosis research. In this chapter, | firstly
provide an overview of the types of investigations that prognosis research
encompasses, with emphasis on their specific aims and relevant methodological
approaches. | then present findings from prognosis studies focusing on post-
stroke cognitive outcomes, concluding with a reflection on current advances in

this area of research.

2.1 What is prognosis research?

While diagnostic studies focus on conditions that are already present, but not
yet detected, prognosis studies focus on the development of future outcomes
(95). This sets a unique purpose for prognosis research - to address this risk of an
unfavourable outcome so that future health can be improved (96). As outlined
within the PROGnosis RESearch Strategy (PROGRESS) (96), the types of
investigations that contribute to achieving this goal can be divided into four
themes: i) fundamental prognosis research, ii) prognostic factor research (also
referred to as predictor finding research), iii) prognostic model research, and iv)
stratified medicine research. Evidence collected under earlier themes serves to

inform investigations under subsequent ones.

2.2 Fundamental prognosis research

This first theme in prognosis research describes the natural history and clinical
course of a health condition (97). Its aim is to estimate the “baseline risk” for a
particular outcome in a specific population, which typically involves an
observational approach (98). Studies within this theme allow to answer such
questions as: “On average in the UK, what is the risk of death within five years
of heart failure?” or “How likely is the development of delirium among acute

stroke unit inpatients?”. Fundamental prognosis research also provides grounds
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for comparing baseline risks across different clinical contexts (96), for example,
to determine whether five-year mortality rates following heart failure differ
between hospitals, countries or across decades. Such findings may provide
important insights into how specific health policies and aspects of local routine
care shape patient outcomes, and aid in identifying potential targets for system

improvement.

2.3 Prognostic factor research

Clinical contexts constitute only one of many types of variables that can be
associated with the development of a future health-related outcome. Identifying
these variables is the focus of the second theme - prognostic factor research
(99). Different approaches can be applied to investigate this topic, with the
chosen method likely to impact on how much confidence can be placed in the
findings obtained. Evidence from studies estimating the correlation between a
single presumed prognostic factor (candidate predictor) and an outcome of
interest, with both assessed at the same point in time (cross-sectional design), is
considered suitable only for hypothesis-generating purposes (97). This is due to

the significant limitations such an approach entails.

Firstly, the nature of the association between two variables can change over
time. For example, evidence suggests that in late life high blood pressure is
associated with a reduced risk of dementia (100). Recognising this relationship
would not, however, be applicable to estimating risk of future dementia in mid-
life, as here the association is reversed - high blood pressure increases the risk

of poor future cognitive outcome (100).

Secondly, in a univariable analysis, the effects of other variables are
unaccounted for, which can lead to spurious findings, and thus erroneous
conclusions regarding studied associations. This issue is illustrated by a
commonly observed relationship between female sex and unfavourable health
outcomes. In some cases, the estimated association reflects a genuine
phenomenon, driven by biological or socio-cultural mechanisms, such as the
finding that obese women are at greater risk of heart failure than obese men

(101). However, such associations may also be driven by age - as women on
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average live longer than men (102), the oldest participants in a study sample are

more likely to be female.

For the above reasons, research evidence regarding prognostic factors is
considered more reliable where it stems from multivariable analyses of
longitudinal data (103). This requires conducting observations on at least two
different timepoints, where information regarding the outcome is preferably
collected later than data on multiple candidate predictors. The latter are
simultaneously included in an analysis, allowing to quantify their independent
associations with the outcome, that is, the direction and strength of their
relationship when the influence of other, potentially relevant factors is

controlled for.

It is important to note that while similarities exist, such an investigation is not
equivalent to aetiological research. The latter aims to explain the cause of an
outcome, while the purpose of prognosis research is solely to predict it; as such,
there is no need to determine whether observed associations are causal or non-
causal (103, 104). Nonetheless, identifying causal factors is also recognised as
being of particular value in the context of prognosis research. One reason is that
causal factors may serve as targets for intervention, assuming that it is possible
to improve the outcome through their modification. Where the variable is non-
modifiable, e.g. as generally is the case for genetic factors, it may still be highly
relevant to predicting differential treatment responses - a property of key

interest in the area of stratified medicine (105).

Moreover, where the relationship between a factor and outcome is causal, based
on biological (or other) pathways, it is more likely to be consistently present
across different populations, entailing enhanced generalisability of research
findings (106). While the latter is of concern in any study, specifically for
prognostic model research, generalisability is a quality that essentially

determines its value (107).
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2.4 Prognostic model research

Prognostic model research involves three phases: model development, external
validation with potential updating, and investigation of the impact of
implementing a prognostic model in clinical practice (106). Conceptually, this
multi-stage process is not intended to be finite - it is argued that model
validation and updating should be ongoing, ensuring applicability throughout
varying contexts and changing times. This notion, combined with a need for
relatively large sample sizes from different settings, and longitudinal study
designs, entails that prognostic model research is time-consuming and resource-
intensive. As such, it seems unsurprising that, in many cases, research work
relating to a prognostic model does not extend past its initial development
(106).

2.4.1 Model development

In prognostic model development studies, variables identified as associated with
an outcome through prognostic factor research are combined to estimate the
probability for an individual to develop that outcome (103, 106). It is noteworthy
that a prognostic model may be identical to a multivariable model used for the
exploration of candidate predictors. Moreover, both types of investigations -
relevant to prognostic factors and prognostic models - are often conducted in a
single study. Consequently, it may be difficult to distinguish between the two

prognosis research themes.

A key difference lies in the focus of a study (97). In prognostic factor research,
of particular interest is quantifying the relationship between individual variables
and a future outcome. In prognostic model research, the focus is on identifying a
set of factors, which collectively can accurately estimate the likelihood of the
future outcome. The final result of such work can be referred to as a clinical or
risk prediction model, or a prognostic rule, index or score (106). It may be

presented directly in the form of a multiple regression equation:

Ln[p/(1-p)] = a + B1X1 + B2Xz2 + B3X3 + BaX4...
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This formula applies to logistic regression, used for binary outcomes, where Ln is
a natural log, p - the estimated probability of the future outcome, a - the
intercept, Bn - the estimated coefficient that reflects the association between a

predictor and the outcome, and Xx - the value of the predictor.

Alternatively, based on the specified equation, researchers may aim to develop
a simplified, more user-friendly tool. This will often involve rounding up
estimated predictor coefficients to integers to produce a risk score, where
points are assigned according to the presence/value of included risk factors and
then summed. The total score can then be related to pre-determined cut-offs,

indicating the associated level of risk for an unfavourable outcome.

An example of such an approach is illustrated by ASTRAL - a risk score developed
for the prediction of an unfavourable functional outcome (functional
dependency) following acute stroke (108). The incorporated predictors and
scoring system are presented in Table 2-1. As reported by the authors, example
scores of 23, 31, and 38 correspond to a 20%, 50% and 80% likelihood of an

unfavourable outcome, respectively.

Table 2-1 ASTRAL variables and scoring system.

Variable Level/category Score
Acute glucose <3.7 or >7.3 mmol/L 1
Age Per every 5 years 1
Any stroke-related visual field defect Yes 2
Level of consciousness Decreased 3
Symptom onset to treatment time >3 hours 2
Stroke severity as per NIHSS Per every point 1

The same publication also demonstrated another approach to framing a
prognostic rule - through use of a graphical representation. Here, this involved a
display of multiple, coloured charts. Different charts applied to different
combinations of risk factors, while each colour corresponded to a different
probability of the future outcome (e.g. light blue: 30 to 39%, dark red - 80 to
89%).
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24.1.1 Assessment of prognostic model performance

The process of prognostic model development should also involve an assessment
of the model’s performance (106). Although some indication is provided by the
amount of variance in the outcome explained by the chosen set of predictors, it
is also essential to estimate model discrimination and calibration (109).
Discrimination relates to the ability of a prognostic model to distinguish between
individuals who develop the outcome and those who do not (110). The primary
method for assessing this property is the concordance statistic (C-statistic),
which for binary outcomes corresponds to the area under the receiver operating
characteristic curve (AUROC) (109, 111). Possible values range from 0.50,
indicating a discriminatory ability equivalent to chance, to 1.00, indicating

perfect discrimination (112).

Calibration refers to the level of agreement between observed and predicted
outcome probabilities (113). It is preferably assessed through inspection of
calibration plots (113). The results of the Hosmer-Lemeshow test (114) may also
be reported to complement graphical evaluation, yet as a stand-alone measure
it is considered inappropriate (despite often being used in this capacity) (111).
The test has been recognised to have limited power to detect poor calibration, is
oversensitive in large samples, and cannot inform about the direction of

miscalibration (107)

The assessment of discrimination and calibration is a key component of model
validation, which at the stage of development is either apparent or internal
(106, 115). In apparent validation, performance is evaluated directly in the
dataset that was used for model development. Findings suggesting low
prognostic ability immediately indicate potential issues in the derivation
process. At the same time, encouraging results are considered as insufficient
evidence of a model’s prognostic value. This is because obtained performance
estimates are likely to be overoptimistic, as the coefficients reflecting

predictor-outcome associations were optimised for that specific data (109, 116).

Methods applied for internal validation are intended to at least partially correct
for this issue. One technique - split-sample - involves dividing the initial study

sample into separate development and validation cohorts (117). This approach,
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however, is criticized for the loss in statistical power it inherently entails.
Therefore, current recommendations advise employing data re-use techniques,
one of which is an extension of the split-sample method - cross-validation (109).
In this case, the sample is randomly divided into a number of equal-sized groups
(the number being specified by the researcher) and one group serves as a
validation set, while all remaining groups are involved in model development
(117). The process is repeated multiple times until every group served as a
validation set once. Model performance is estimated as an average across all
repetitions. For example, a 10-fold cross validation involves 10 repetitions,
where for each one a different group, constituting 10% of the overall sample,
will be used for validation, and the remaining 9 groups, constituting 90% of the

sample, will be used for model development.

A second data re-use technique, currently recognised as the most efficient
approach to internal validation, is bootstrap resampling (117). Bootstrapping
mimics the process of generating a sample from an underlying population.
Random samples are drawn with replacement from the initial study cohort,
generating bootstrap samples of the same size. Some study participants may not
be included in a specific bootstrap sample at all, while others may reappear in a
generated dataset multiple times. In Table 2-2, | presented a basic example of
what bootstrap samples may look like, using a single variable (height) for ten

participants.

Table 2-2 lllustration of four bootstrap samples drawn with replacement from the
height of ten participants.

Sample (N = 10) Participant height (cm)

Original 162, 183, 177, 172, 155, 164, 171, 161, 188, 158
Bootstrap 1 183, 155, 164, 171, 188, 158, 155, 183, 158, 171
Bootstrap 2 162, 177, 172, 155, 171, 177, 177, 162, 155, 172
Bootstrap 3 172, 164, 161, 188, 158, 162, 155, 183, 161, 164
Bootstrap 4 183, 155, 155, 183, 171, 171, 188, 155, 172, 183

The prognostic model is developed in the bootstrap samples and then validated
in the original dataset (118). The decrease in model performance between the

bootstrap and the original samples provides an estimate of optimism -



43

subtracting it from the apparent performance indicates what predictive ability
can be expected from the model in future cohorts. However, it is only through
external validation that the latter can be truly determined.

2.4.2 External validation

Before describing this stage in prognostic model research, it is important to note
that some researchers distinguish a form of performance evaluation that in
terms of stringency is recognised as intermediate between internal and external
validation (119, 120). This is temporal validation, where the model is tested in a
new sample of participants, recruited at a later period from the same setting
(e.g. hospital site) as the development sample. Despite including different
individuals, the case-mix is plausibly similar to the original cohort, as the
validation sample is still drawn from the same underlying population. As follows,
there will remain doubts as to how well the model will perform in a different

context.

Quantifying the latter is the goal of external validation, which allows to verify
the generalisability of a prognostic model (120, 121). The extent of any
conclusions will depend on the form of external validation. A common approach,
referred to as geographical validation, essentially involves applying the model to
a sample from a different location (122). This in itself encompasses a range of
options, from testing at a different centre within the same region, to applying
the model in a sample from a different country (or continent), entailing effects

of cultural, ethnic and health system dissimilarities.

Another approach, termed methodologic validation, allows to determine
whether prognostic accuracy is maintained despite using different methods of
collecting data and inconsistencies in operationalisation of variables (121). Any
challenges in this regard are particularly likely to be exposed when the model is
tested by different, independent investigators, with some factors plausibly more
robust to variability in assessment than others. For example, while hardly any
inconsistencies can be expected in the measurement of age, concluding on
whether a participant has hypertension may differ depending on whether one
relies on a diagnosis present in existing medical records, prescription of

antihypertensive medication, or acute measures of blood pressure.
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External validation can further focus on differences regarding population
characteristics (121). These can pertain to the prevalence of risk factors, as well
as attributes of the condition that constitutes the outcome - its incidence,
degrees of severity across the sample, or its clinical course. Finally, the
generalisability of a prognostic model can be evaluated in relation to differences
in follow-up duration, that is, the length of the interval between a specific
baseline event (e.g. having a stroke or receiving a cancer diagnosis) and

outcome assessment (121).

It is important to note that while these distinctions provide a useful framework
for describing and understanding the multiple aspects of prognostic model
generalisability, it is likely that an external validation will differ from the model
development study on more than one account. For example, if a prognostic
model is developed in a sample of hospital inpatients admitted with myocardial
infarction in Scotland, subsequent validation in a similar population in China
(i.e. with the same diagnosis, recruited from a comparable clinical setting)
would likely entail more than just geographical diversity, but also variability in
prevalence of risk factors, their measurement, and the clinical course of the

condition (e.g. due to differences in routine clinical care).

2.4.3 Prognostic model updating

If on external validation the performance of a prognostic model is found to be
unsatisfactory, it may be potentially improved through use of an updating
method. This can simply involve model recalibration. In cases where a decline in
prognostic accuracy is attributed to a difference in the incidence of an outcome
as compared to the development sample, the average predicted probability can
be adjusted to align with the currently observed event rate (equivalent to
updating the intercept) (123, 124). Where it appears that estimated predictor
coefficients in the original model were overfitted, these can also be adjusted -
by a single adjustment factor, assuming that the relative effects of predictors
are similar, but the absolute effect sizes ought to be either larger or smaller
(equivalent to updating the intercept and slope) (123, 124). To clarify,
overfitting is a common issue, where maximising adherence of a developed

model to the unique characteristics of a used dataset leads to increased model
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complexity, overoptimistic initial performance estimates, and limited

applicability to new samples (125).

If recalibration alone is insufficient to achieve an expected level of prognostic
performance in a new sample, investigators may consider replacing or adding
model predictors. The decision-making process can be guided by different
rationales. One involves promoting methodologic generalisability, by substituting
variables associated with high inter-rater variability with ones that can be
measured more reliably (106). Another is based on a previously mentioned
argument, favouring the inclusion of prognostic factors with a causal relationship
with the outcome, and thus that are more likely to show consistent associations

across different contexts.

Thirdly, the development and increasing availability of hew techniques may lead
to identifying novel prognostic factors for addition to existing models, or can
provide a more accurate measurement of variables that had been previously
considered, for example, as in the case of rating white matter changes based on
magnetic resonance brain imaging as compared to computed tomography (126).
It is also this rationale that seems to strongly justify the abovementioned

recommendation for prognostic models to be continuously updated.

2.4.4 Prognostic model impact

Studies in this area aim to determine whether the implementation of a
prognostic model leads to better outcomes than are achieved through routine
clinical practice (127). Such investigations focus on improvements in individual
outcomes or the cost-effectiveness of care, where change is attributable to the
influence of prognostic model use on clinical decision-making (106). This is

preferably assessed in randomised controlled trials (128).

A fundamental understanding in prognostic model impact research is that even
for a model with excellent prognostic ability to be of benefit, it must first lead
to a change in clinician behaviour (127). One important issue in this context
relates to feasibility. Collecting predictor information may be recognised as too
costly or time consuming in a routine care setting, or unacceptable to the target

population (e.g. due to the invasiveness of a procedure), while the whole
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process of estimating individual outcome risk may be viewed as too complex or
confusing. Other concerns may be over practicing “cookbook medicine”, with
prognostic rules considered too generic, and their use undermining a
comprehensive, individual approach to patient needs (128, 129). Clinicians may
moreover doubt the tools validity and accuracy, and assume that clinical

judgement is overall superior (128).

2.5 Stratified medicine research

2.5.1 What is stratified medicine?

From both research and clinical perspectives, people tend to be grouped on the
basis of sharing a few particular traits that are of importance in a specific
context, e.g. women who are pregnant, children with asthma, or older adults
with arthritis. However, in relation to many other characteristics, including
individual risk factor profiles, there may be much heterogeneity within a
conceptualised group. This can entail variability in the clinical course of a
condition, the likelihood of particular future outcomes, and individual treatment
response. Taking this into consideration is the cornerstone of stratified
medicine, which aims to maximise the beneficial impact of healthcare through
targeting interventions according to the clinical characteristics of specific

patient subgroups (105).

At a basic level, stratifying the use of treatments may be guided by an
individual’s absolute risk for an unfavourable outcome (105). When the relative
effect of an intervention is found to be similar across all patients, the absolute
reduction in the probability for the unfavourable outcome will be greatest for
those who were initially at highest risk. For example, if a treatment is
associated with a relative risk reduction in stroke incidence by one third (33%),
for a person whose baseline risk of having a stroke was estimated at 60%, this
will translate to an absolute risk reduction of 20%, while for a person with an
initial risk at 15% - to an absolute risk reduction of around 5% (130). In cases
where an intervention is costly or entails nonnegligible side effects, it may be

offered only to those who are likely to benefit the most.
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A second approach involves stratifying treatment based on the presence of a
factor (or factors) that may influence the effect it has (105). This can relate to
both potential benefits of an intervention, as well any harms. For example,
there is strong evidence supporting use of oral anticoagulation in patients with
atrial fibrillation to prevent embolic stroke, however, use of anticoagulants also
predisposes to bleeding (131). While for many individuals the protective benefits
will outweigh the risks, for those with a high baseline probability of bleeding,
such as in cases of high alcohol consumption or liver disease, the danger of

major haemorrhage may tip the scales in the opposite direction (132).

2.5.2 The role of prognosis research in stratified medicine

Prognosis research contributes to stratified medicine on multiple levels (105).
Firstly, it may inform prioritisation of topics for investigation, for example, by
indicating high heterogeneity in the clinical course and prognosis for a certain
condition (as in systemic lupus erythematosus (133)), or significant
interindividual differences in the metabolism of a particular drug (134).
Secondly, prognosis research is relevant to both abovementioned approaches to
treatment stratification: on one hand, building the necessary evidence base to
accurately estimate the baseline risk of an unfavourable outcome, and on the
other, leading to identification of prognostic factors that can predict differential

treatment response.

Regarding the latter, in some cases decisions regarding the appropriateness of a
specific treatment may be guided by the presence of one particular factor. An
example of such a scenario is often illustrated by the discovery that trastuzumab
significantly improves disease-free and overall survival in women with breast
cancer who have a positive human epidermal growth factor receptor 2 (HER-2)
gene status (135, 136). At the same time, compared to women with a negative
HER-2 status, they benefit less from other, standard cancer treatments, and

have a poorer baseline prognosis (without use of trastuzumab).

In other cases, therapeutic decision-making may be aided by use of validated
prognostic rules, involving an assessment of multiple factors. Returning to the
above example on atrial fibrillation management, as a first step, current

recommendations suggest that patients are assessed for their risk of stroke
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based on the CHA;DS;VASc score (131, 137, 138). Where the risk is very low,
anticoagulation treatment may be withheld to avoid unnecessary exposure to
adverse effects of medication, as well as incurring healthcare expenses. Where
the risk is considerable, the next step is to assess the probability of bleeding
using the HAS-BLED score (139). Patients at high risk of both stroke and bleeding
are candidates for an alternative, invasive intervention, involving closure of the

percutaneous left atrial appendage (140).

Finally, prognostic research may assess the impact of newly introduced
approaches to treatment stratification. Similarly as in the context of prognostic
model impact studies, such investigations can focus on: clinician adherence and
changes to behaviour, including barriers and facilitators to implementing a
specific approach; the influence on patient outcomes, including both beneficial

and adverse effects; and cost-effectiveness.

2.6 Prognosis research into post-stroke cognitive
outcomes

Although this may not have been evident from my formulation of the topic, I
included some examples of research in this area in Chapter 1. The studies |
referenced can be classed as pertaining to the theme of fundamental prognosis
research, leading to such observations as: “one in four stroke survivors are at
risk of developing delirium in an acute setting” (21) or “one in ten individuals

are likely to develop new dementia within one year of stroke onset” (23).

The second statement, relating to post-stroke dementia, is derived from a highly
influential publication (cited nearly 1500 times) that is also of particular
relevance to the second prognosis research theme - identification of prognostic
factors. This is a systematic review and meta-analysis from 2009 by Pendlebury
and Rothwell, who reviewed 73 papers, involving a total of 7511 stroke survivors
(23).

2.6.1 Predictors of post-stroke cognitive impairment

Alongside determining the incidence of both pre- and post-stroke dementia, the
authors of the review quantified pooled effects for multiple risk factors, both

pre-dating the stroke, as well as specific to it. Among relevant demographics
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were older age, female sex, low educational attainment, and being of either
black or Hispanic ethnic origin. In relation to prior health-related conditions, the
authors determined associations with diabetes mellitus, atrial fibrillation,
previous stroke, disability, prior cognitive decline, and neurological changes
identified through imaging - leukoaraiosis (white matter abnormalities) and

cerebral atrophy.

Regarding features of the index stroke, the risk of developing dementia was
reported to increase with greater severity, greater infarct volume, left
hemisphere lesions, and haemorrhages (as compared to ischaemic strokes). The
review further indicated the relevance of acute symptoms and complications,
including: aphasia, incontinence, seizures, confusion, hypotension, and hypoxic
ischaemic episodes. Finally, individuals who either had multiple infarcts or a

recurrent stroke were approximately 2.5 more likely to develop dementia.

In comparison, two recent reviews of prognostic factors for post-stroke cognitive
impairment presented a narrower focus, mainly relating to novel biomarkers
(141, 142). Reflecting a narrative approach, one publication specifically
examined the evidence for inflammatory (e.g. C-reactive protein, interleukin 6
and 10), metabolic (e.g. homocysteine, retinoic acid), growth factor (e.g. brain-
derived neurotrophic factor, insulin-like growth factor), oxidative damage (e.g.
8-hydroxydeoxyguanosine, malondialdehyde), and genetic biomarkers (e.g.
cystatin C, calpain-10) (141). In their conclusions, the authors highlighted that
accounting for these factors can improve the accuracy of outcome prognosis. At
the same time, they suggested that to this end, combining information on
multiple biomarkers may be necessary, and that present findings require further

support from large-scale clinical trials.

Interestingly, the authors of the other, in this case systematic review (including
66 papers), concluded that there was no convincing evidence to indicate the
prognostic value of genetic or biochemical markers, with considerable
inconsistencies in results across selected studies (142). Their findings did,
however, support the relevance of cerebral atrophy to the prognosis of post-
stroke cognitive function, as previously reported by Pendlebury and Rothwell
(23).
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2.6.2 Predictors of post-stroke delirium

Research findings suggest that there is some overlap between prognostic factors
for delirium and those identified as relevant to cognitive impairment following
stroke, despite considerable differences in nature and clinical course of the two
types of disorders. This perhaps seems unsurprising, given that both arise from a
background of neuropathophysiology and are interrelated, although the nature
of this relationship remains poorly understood (143). As identified in a recent
scoping review of 25 publications (144), examples of shared predictors for post-
stroke delirium and dementia that were reported across multiple studies
included: older age, atrial fibrillation, previous stroke, prior cognitive decline,
leukoaraiosis, cerebral atrophy, and left hemisphere and haemorrhagic index

strokes.

Other risk factors seemed specific to delirium, although in some cases it is
difficult to discern whether this reflects a genuine lack of associations with post-
stroke cognitive impairment, or whether these variables have been rarely
considered as candidate predictors for the latter. These factors included:
metabolic disturbances (e.g. abnormal levels of sodium, glucose, urea nitrogen,
and capillary oxygen saturation), high total number of medications,
anticholinergic medications, and acute deficits and complications, namely,

dysphagia, visuospatial neglect, and chest and urinary tract infections.

2.6.3 Reflection on the current stage of research

Reviews such as the ones | describe above (for other examples see: (39, 145-
147)) seem now invaluable for researchers and clinicians with an interest in
prognostic factors for post-stroke cognitive outcomes. Of course, as in any
research area, combining findings from multiple studies provides a higher level
of evidence (148, 149). However, in addition to this argument, an attempt to
draw conclusions on an individual basis from the full scope of existing

publications on this topic could quickly become overwhelming.

In contrast, studies on post-stroke cognition within the next prognosis theme -
relating to prognostic models - appear much less evident in the current research

landscape. A 2017 review described three prognostic rules for prediction of post-
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stroke cognitive impairment, two of which specifically focused on development
of dementia (150). However, in keeping with the narrative nature of the
publication, there was no explicit mention of how the existing literature was
searched, or why these particular development studies were selected. Moreover,
post-stroke delirium was not within the scope of the review. As follows, the
stage of progress in prognostic model research for post-stroke cognitive disorders

seems at present unclear. | address this gap in the following chapter.

2.7 Summary

The ultimate purpose of prognosis research is to improve future health
outcomes. Contributing to achieving this goal is a wide scope of investigations,
representing four main themes: fundamental prognosis research, prognostic
factor research, prognostic model research, and stratified medicine research.
Many studies on post-stroke cognition have been conducted within the first two
of these themes, providing insight into the natural history of cognitive change,
the baseline risks of developing cognitive disorders, and factors that are
associated with the latter. Currently, much less evident are examples of
research pertaining to the third theme, for which the first objective is to
combine information on multiple prognostic factors to quantify individual

prognosis.
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Chapter 3  Prognostic rules for predicting
cognitive outcome following stroke:

A systematic review

As | presented across the two previous chapters, to date, many studies have
been conducted on post-stroke cognition within the first two prognosis research
themes, as distinguished in PROGRESS - fundamental prognosis and prognostic
factor research. The purpose of this chapter is to gain a better insight into
current advances within the subsequent theme, relating to prognostic model
research. To this end, | conducted a systematic review of prognostic rules for
predicting cognitive impairment and delirium following stroke. My findings made
an important contribution to informing the aims and design of subsequent
studies, included as part of this thesis. This chapter is an adaptation of my
published work (151).

3.1 Introduction

Increasing global prevalence and immense personal and societal costs of
acquired cognitive disorders have led policymakers, researchers, and clinicians
to prioritise identification of individuals at high risk. As a result, many
prognostic rules for predicting cognitive impairment and decline have been
developed in the general population, with a recent systematic review on this
topic having identified 61 (152). The authors found the following predictors to
be included across several rules: age, sex, education, physical activity, alcohol
intake, body mass index (BMI), diabetes, systolic blood pressure, cholesterol
levels, cardiovascular disease, depression, apolipoprotein E gene (APOE) status,

and baseline performance on cognitive tasks.

Nearly half as many (27) prognostic rules have also been reported for prediction
of delirium in older adult inpatients (aged over 60) (153). Across models that had
been externally validated, the most frequently incorporated predictors were:
age, pre-existing cognitive impairment, sensory impairment, functional

disability, and severity of the acute illness.
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Considering the predictors listed above, it seems that many of these variables
are likely to remain relevant to the development of cognitive disorders following
stroke. Nonetheless, there are strong arguments for creating dedicated
prognostic rules for use in this clinical population. These include: different
prevalence rates of common risk/protective factors; the importance of unique
predictors, specific to the index stroke and consequent treatment; and practical
considerations relevant to the acute setting, where some data may be difficult
to collect (e.g. where involving an extensive assessment of function), while
other information becomes easily accessible (e.g. through conducting routine
blood tests). Results from a recent study provide further support for this notion
(154). Specifically, the authors found that applied in a sample of nearly 1300
stroke survivors, the discriminatory power of three externally validated
prognostic rules developed for use in the general population was poor
(C-statistic ranging from 0.53 to 0.66).

Through scoping the literature, | concluded that there appeared to be no
published systematic review addressing tools for individual cognitive outcome
prognosis following stroke. To fill this gap, assisted by other researchers, |
identified, described, and appraised existing prognostic rules for predicting post-
stroke cognitive impairment and delirium (152). In assessing rule performance
and utility, | considered the development process, and any external validation

and impact studies.

3.2 Methods

This review is based on a pre-registered protocol, available on the PROSPERO
International Prospective Register of Systematic Reviews (registration number:
CRD42020170428). In its design, conduct and reporting, | followed the Checklist
for critical Appraisal and data extraction for systematic Reviews of prediction
Modelling Studies (CHARMS) (155) and Preferred Reporting for Systematic Review
and Meta-Analyses (PRISMA) guidelines (156). The completed PRISMA checklist is
presented in Appendix 1. Together with another researcher (KM), trained and
experienced in conducting systematic reviews, we independently completed all
aspects of study selection, data extraction and critical appraisal. We discussed
and resolved disagreements through consensus. Where an agreement could not

be reached, we consulted a third, senior researcher (TQ).



54

3.2.1 Search strategy

We searched four electronic databases from inception to November 13, 2019:
MEDLINE (via OVID), EMBASE (via OVID), PsycINFO (via EBSCO), and CINAHL (via
EBSCO). | developed the search strategy (presented in full in Appendix 2) in
consultation with a Cochrane Information Specialist, based on validated search
filters (157-160). For all databases, the search involved terms relevant to stroke,
cognition and prognosis, combined with the Boolean operator AND. | applied
limits to retrieve only human studies published in English. To complement the
database search, we additionally screened reference lists of relevant reviews.
Based on publications identified through both procedures, we conducted

backward and forward citation searches, the latter using Google Scholar.

3.2.2 Study selection

We screened titles and abstracts using the Rayyan Qatar Computing Research
Institute online application (161). We applied intentionally broad inclusion
criteria, aiming to identify publications reporting on the development, validation
or impact assessment of prognostic rules for any global post-stroke cognitive

outcome.

We included full papers, published in peer-reviewed journals. Eligible
development studies recruited adult participants with a clinical diagnosis of
ischaemic or haemorrhagic stroke. In relation to design, we included prospective
cohort, retrospective cohort and case-control studies. Studies that self-
identified as cross-sectional were eligible if predictor data related to an earlier
time-point than the outcome, e.g. with information on input variables extracted
from medical records. Randomised control trials were considered for inclusion if
a prognostic model had been developed in the control arm or the effect of the
intervention was accounted for. Regarding outcomes, we included studies
applying one or more of the following assessment methods: (i) validated brief
screening tools; (ii) neuropsychological batteries; (iii) expert individual or

consensus diagnosis, using recognised medical classification criteria.

We excluded studies involving survivors of subarachnoid haemorrhage, due to

differing pathophysiology, clinical course, and risk of unfavourable outcomes.
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Further, we excluded case studies, as these could not fulfil data and analysis
requirements for derivation of prognostic models. We considered rules designed
to predict outcome in one specific cognitive domain (e.g. language or spatial
attention) to be beyond the scope of this review. We applied no limits based on
study setting, follow-up duration, or type of incorporated predictors. In the final
stage, we excluded publications that did not provide a method for estimating
individual outcome probability (e.g. using a mathematical formula, graphical

tool or online calculator).

In relation to validation and impact studies, we applied only two inclusion
criteria. Firstly, we required the availability of a published paper describing the
development of the considered prognostic rule. Secondly, the study sample
needed to be comparable to the derivation cohort (i.e. a population of adult

stroke survivors).

3.2.3 Data extraction

We used a pre-specified, piloted proforma to extract data from selected
prognostic rule development studies, including information on: study setting,
development sample characteristics, predictor and outcome variables, methods
of model derivation and validation, and measures of prediction rule
performance. The latter was also of primary interest in relation to external
validation studies. Where relevant information had not been reported, yet may
have been assumed to be easily available (e.g. regarding study setting), we

contacted the study authors, requesting additional details.

For recording prognostic rule validation strategies, we distinguished four levels
(as | described in sections 2.4.1.1 and 2.4.2 of Chapter 2), listed in order of

increasing stringency (119):

1. apparent validation - predictive ability is assessed directly in the

derivation cohort;

2. internal validation - the initial dataset is split or data re-use techniques
are applied, such as cross-validation or bootstrapping, to quantify

overfitting and adjust for optimism in estimates of model performance;
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3. temporal validation - performance is evaluated in a sample of participants
recruited subsequently from the same centre(s), independently of the

original data;

4. external validation - predictive ability is assessed in new and independent
data, collected from an appropriate participant population in a different

centre, sometimes also by different investigators.

Among measures of performance, we prioritised estimates of discrimination and
calibration, as properties that are necessary (although not sufficient) to ensure
practical value of prognostic tools (109). To aid interpretation of reported
estimates of discriminatory power as reflected by AUROC values, we applied the
following rule of thumb: <0.51 - of no value/equivalent to chance; 0.51 to 0.69 -
poor; 0.70 to 0.79 - fair; 0.80 to 0.89 - good; 0.90 to 0.99 - excellent; 1.00 -
perfect (162).

In cases where assessment of discrimination and/or calibration was not
reported, we sought information on any alternative measures of prognostic rule
performance. This particularly involved classification measures, such as:

sensitivity, specificity, positive predictive value and negative predictive value.

3.2.4 Quality assessment

We assessed risk of bias for each included study using the Prediction model Risk
of Bias Assessment Tool (PROBAST) (95). The tool comprises four domains:
participants, predictors, outcome and analysis. Domains are appraised
separately and then considered jointly to make an overall judgement. Overall
risk of bias is concluded to be high if rated as high for at least one domain.
PROBAST additionally incorporates an assessment of study applicability - three
domains (with the exclusion of analysis) are judged based on their relevance to
the population and settings targeted by the review. | had previously described
some of the key considerations involved in assessing quality of prognostic studies
in a focused review of rules for predicting post-stroke functional outcomes
(163).
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3.3 Results

Following deduplication, we initially screened 16,828 titles and abstracts (Figure
3-1). From publications considered in full-text review, we included 10 studies.
We identified no additional papers through backward or forward citation
searching. All relevant studies presented the development of a prognostic rule
(two alternative rules in one case), with only one including a report on an
external validation. As follows, we found no independent external validation
publications, or studies quantifying the impact of using a prognostic rule in

practice.

In total, 3143 participants from seven different Asian and European countries
were involved in the development of identified prognostic rules. On average, the
rules consisted of five input variables (range: 3 - 7). Predicted post-stroke
outcomes included any form of global cognitive impairment, dementia and

delirium. For all studies, we rated the overall risk of bias to be high.

Due to differences in clinical course, considered risk factors, and in turn -
related modelling challenges - | have described prognostic rules for cognitive
impairment and delirium separately. Features of identified studies are
summarised in Table 3-1, while Table 3-2 presents characteristics of participant
samples. Table 3-3 includes information on properties of the 11 prognostic rules,
with Table 3-4 providing a general overview of types of incorporated predictors.
Table 3-5 presents risk of bias ratings, using a “traffic light” colour code.

Completed PROBAST forms for each study are provided in Appendix 3.
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3.3.1 Prognostic rules for cognitive impairment
3.3.1.1 Overview

Seven studies addressed the probability of developing post-stroke cognitive
impairment (164-170), including one aiming to predict a favourable outcome (no
cognitive impairment) (169), and two specifically focusing on risk of dementia
(168, 170). The CHANGE (164) score was developed to overcome limitations of
an earlier prognostic rule - SIGNAL; (167) - and was derived using the same
dataset. Both rules were intended for use in cases of non-disabling stroke
(modified Rankin Scale [mRS] score < 2) (171). The nomogram created by Gong
et al. (166) was the only tool aiming to predict cognitive impairment following

intracranial haemorrhage, exclusively.

Six prediction models were derived based on logistic regression analysis, while
one study applied a Chi-square Automatic Interaction Detection (CHAID)
algorithm (170). On average, the identified prognostic rules included five
variables (range: 3 - 7), pertaining to: demographics (in five rules), imaging
findings (in five), symptom severity (in three), stroke type (in two), baseline
function (in 2), and medical history (in two). Among the five studies that
estimated discrimination, the reported AUROC in apparent validation ranged
from 0.81 (169) to 0.91 (166). CHANGE (164) was the only prognostic rule to be
externally validated, using data from a cohort of Chinese participants with
ischaemic stroke (derivation cohort was from Singapore). Here, discriminatory
power was found to be fair (0.75), compared to good (0.82) in apparent

validation, although estimated 95% confidence intervals (Cls) overlapped.

Three studies provided a graphical assessment of calibration. For both CHANGE
(164) and SIGNAL; (167), the fit between observed and predicted probabilities of
cognitive impairment seemed close, with a more pronounced mismatch for the
highest score values. Importantly, however, calibration of SIGNAL; (167) had
only been assessed in the derivation cohort. Gong et al. (166) concluded their
nomogram had good calibration in the development dataset, with best fit
evident for lowest and highest scores. However, the already visible differences
between observed and predicted probabilities for middle-range scores became

strongly apparent upon internal validation. For lower middle-range nomogram
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values, the probability of cognitive impairment was underestimated, while for

higher middle-range values - considerably overestimated.

3.3.1.2 Risk of bias and applicability

For each study, we rated the risk of bias to be high in the domain of analysis.
Two reasons were applicable to all cases: inappropriate handling of missing data
(participants with missing data excluded/no explicit mention of approach), and
not accounting for data complexities (use of analysis methods that do not allow
for inclusion of censored participants). Two studies did not estimate
discriminatory power (168, 170), while calibration was not assessed
appropriately (165) or at all (168-170) in four studies. Assessment of rule
performance was limited to apparent validation in two studies (165, 168), while

no validation procedure was reported by Salihovic et al. (170).

Given the broad review question, applicability was overall of low concern, with
one exception in the domain of predictors. Munsch et al. (169) obtained
information on one of the input variables - stroke location - based on the
outcome, using lesion symptom mapping, rather than prior to outcome

assessment.

3.3.2 Prognostic rules for delirium
3.3.21 Overview

Three studies aimed to predict risk of post-stroke delirium (172-174), producing
four prognostic rules - in a pilot attempt (recognizing sample size limitations),
Kostalova et al. (172) presented two alternatives. All prognostic models were
developed based on logistic regression analysis. On average, the prediction rules
included five variables (range: 4 - 7), pertaining to: demographics (in all rules),
imaging findings (in two), symptom severity (in two), stroke type (in three),
baseline function (in one), acute medical complications (in two), and laboratory
markers (in two) (Table 3-3 and Table 3-4). The latter two variable categories
were unique to prognostic rules for delirium, not being included among

predictors of cognitive impairment.
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On account of the fluctuating course of delirium, in all studies the outcome was
assessed on multiple occasions. Kostalova et al. (172) and Kotfis et al. (173)
conducted assessments daily for up to eight and six days, respectively, including
the day of hospital admission. Oldenbeuving et al. (174) screened for delirium on

two separate days within a seven-day period from admission.

Out of the two studies that assessed discrimination in apparent validation,
Oldenbeuving et al. (174) reported the higher estimate - AUROC = 0.84,
compared to 0.80 and 0.73 reported by Kotfis et al. (173), for outcome
measured at an earlier and later time-point, respectively. Oldenbeuving et al.
(174) had also applied the most stringent form of validation - temporal -
reporting an AUROC of 0.83.

3.3.2.2 Risk of bias and applicability

For all studies, we rated the risk of bias to be high in domains of outcome and
analysis. Regarding the former, common concerns related to lack of blinding to
predictors, or even use of predictor knowledge to inform outcome assessment. In
terms of analysis, we judged the risk of bias to be high due to insufficient
sample size, inappropriate handling of missing data and/or data complexities,
and no evaluation of rule calibration. Assessment of discrimination was omitted
from the study by Kostalova et al. (172), while Kotfis et al. (173) applied no

method to adjust for optimism in estimating the performance of DELIAS.

We rated applicability to be of high concern in studies by Kostalova et al. (172)
and Oldenbeuving et al. (174), due to risk of overlap in timing of predictor and
outcome assessments. Based on reported information, we were not able to
ascertain whether a similar issue applied to the study by Kotfis et al. (173),

therefore in this case we considered applicability to be unclear.
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Recruitment Follow-up
Study Country Setting period Design duration Stroke type Exclusion criteria of note
Prognostic rules for cognitive impairment
Discharge mRS > 2; pre-stroke
Chander et cognitive impairment; neurologic
) Tertiary outpatient Jan 2008 Retrospective 3to6 ) o o
al., 2017; Singapore o Ischaemic or psychiatric comorbidities;
stroke clinic to Dec 2012 cohort months
CHANGE impairment impeding cognitive
assessment
) ) Major mental illness; pre-existing
Ding et al., ) Neurology department June 2017 Prospective 6 to 12 ) o ) ) )
China Ischaemic dementia; impairment impeding
2019 of university hospital to May 2018 cohort months .
cognitive assessment
Gong et al., . Hospital rehabilitation Jan 2016 Retrospective 3to6 Supratentorial Pre-existing dementia; previous
ina
2019 department to Oct 2018 cohort months haemorrhage stroke
Discharge mRS > 2; pre-stroke
cognitive impairment; neurologic
Kandiah et al., Tertiary outpatient Jan 2008 Retrospective 3tob6
Singapore Ischaemic or psychiatric comorbidities;
2016; SIGNAL, stroke clinic to Dec 2012 cohort months ) ) ) ) o
impairment impeding cognitive
assessment
Severe medical comorbidity; pre-
Lin et al., ) Neurology department Nov 1995 Prospective ) o o
Taiwan L ) 3 months Ischaemic existing dementia with nonvascular
2003 of university hospital to Oct 1999 cohort

aetiology
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Recruitment Follow-up
Study Country Setting period Design duration Stroke type Exclusion criteria of note
Prognostic rules for cognitive impairment
History of cerebral infarct with
Munsch et al., Neurology department Jun 2012 Prospective Supratentorial functional deficit; pre-existing
France o ) 3 months ) ) o
2016 of university hospital to Feb 2015 cohort ischaemia psychiatric disorders other than
depression; pre-existing dementia
) Neurology department ) Pre-existing cognitive impairment,
Salihovic et Bosnia and ) Sep 2011 Prospective Ischaemic ) )
) at a university clinical 12 months ] recurrent stroke, aphasia impeding
al., 2018 Herzegovina to Aug 2012 cohort and haemorrhagic .
centre cognitive assessment
Prognostic rules for delirium
History of head trauma,
Kostalova et Czech Stroke unit of Jan 2009 Prospective Ischaemic and )
i . i 7 days . neurosurgery or psychosis; RASS <-3
al., 2012 Republic university hospital to Mar 2010 cohort haemorrhagic )
(deep sedation, unarousable)
Neurology department
Kotfis et al., Jun 2015 Prospective
Poland of district general 5 days Ischaemic Haematology disorders
2019; DELIAS to Mar 2018 cohort
hospital
Oldenbeuving Stroke units of two 1-year Prospective Ischaemic Severe intellectual disability; severe
Netherlands Up to 7 days
et al., 2014 general hospitals period cohort and haemorrhagic language barrier

mRS indicates modified Rankin Scale; RASS, Richmond Agitation-Sedation Scale.
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Study

Model development

sample, N

Age, years, mean (SD)

Women, N (%) NIHSS Score, median (IQR)

Participants with

outcome, N (%)

Prognostic rules for cognitive impairment

Chander et al.,
2017; CHANGE

Ding et al., 2019

Gong et al., 2019

Kandiah et al., 2016;
SIGNAL,

Lin et al., 2003

Munsch et al., 2016

Salihovic et al., 2018

209

145

92

209

283

198

275

61.7 (12.5)

No cognitive disorder group:
Mdn = 61, IQR: 48.5 - 69.0;
cognitive disorder group:
Mdn = 64, IQR: 60.0 - 73.0

57.3 (12.2)

61.7 (12.5)

64.4 (8.4)

No cognitive disorder group:
Mdn = 60; range: 29 - 84;
cognitive disorder group:
Mdn = 69, range: 34 - 95

Females: 66.3 (2.0);
Males: 65.1 (1.5)

67 (32.1%) Not reported

No cognitive disorder group:
3.0 (1.0 - 5.0); cognitive
disorder group: 4.0 (2.0 - 7.0)

42 (29.0%)

28 (30.4%) Not reported

67 (32.1%) Not reported

95 (33.6%) M=3.6,SD = 3.1

No cognitive disorder group:
3.0, range: 1.0 - 10.0;
cognitive disorder group: 4.0,
range: 1.0 - 25.0

77 (35.8%)/215**

Score of 0 - 7: N = 163 (59.3%);
score of 8 - 14: N = 89 (32.4%);
score > 14: N = 23 (8.4%)

103 (37.5%)

78 (37.3%)

77 (53.1%)

69 (54.3%)/127*

78 (37.3%)

26 (9.2%)

77 (38.9%)

190 (69.1%)
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Model development

Study sample, N Age, years, mean (SD)

Women, N (%)

NIHSS Score, median (IQR)

Participants with

outcome, N (%)

Prognostic rules for delirium

Kostalova et al.,

No cognitive disorder group:

9.0, 5t - 95% percentile range:

o 100 73.5 (11.5) 47 (47.0%) 4.0 - 17.0; cognitive disorder 43 (43.0%)
group: 11.0, 5™ - 95t percentile
range: 5.0 - 16.0
No cognitive disorder group: 8.0
Kotfis et al., 2019; - .
DELIAS 1001 Mdn = 71.0, IQR: 64.0 - 82.0 478 (47.8%) (4.0 - 14.0); cognitive disorder 172 (17.2%)
group: 18.0 (12.0 - 21.5)
Oldenbeuving et al.,
527 72.0, range: 29.0 - 96.0 239 (45.4%) 5.0, range: 0.0 - 36.0 62 (11.8%)

2014

*Combined development and validation cohorts.

**Sample before excluding subjects with no outcome data.

IQR indicates interquartile range; M, mean; Mdn, median; NIHSS, National Institutes of Health Stroke Scale; SD, standard deviation.
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Study

Predictors

Outcome

Assessment

Validation, strategy and
corresponding AUROC (95% Cl)

Prognostic rules for cognitive impairment

Chander et al.,
2017; CHANGE

Ding et al., 2019

Gong et al., 2019

Kandiah et al.,
2016; SIGNAL,

Lin et al., 2003

Age, education, acute nonlacunar cortical
infarcts, chronic lacunes, white matter

hyperintensities, global cortical atrophy

Age, education, acute nonlacunar infarcts,

periventricular hyperintensity, diabetes

mellitus

Intraventricular hemorrhage, GCS score,

bleeding volume

Age, education, acute nonlacunar cortical
infarcts, chronic lacunes, white matter

hyperintensities, global cortical atrophy,

intracranial stenosis

Age, occupation, previous stroke, vascular

territory of infarction, NIHSS score, MMSE

score, FIM motor score

Cognitive

impairment

Cognitive

impairment

Cognitive

impairment

Cognitive

impairment

Dementia

Structured clinical interview and
MMSE, MoCA if further confirmation

required

MMSE, MoCA, neuropsychological
battery, assessment based on CDR
and DSM-4 criteria

MMSE

Structured clinical interview and
MMSE, MoCA if further confirmation

required

Consensus diagnosis based on CDR
CERAD, neuropsychological battery,
and criteria of Alzheimer’s Disease
and Related Disorders Association,
ICD-10NA, NINDS, and NINDS-AIREN

Apparent: 0.82 (0.76, 0.88);
temporal: 0.78 (0.71, 0.85);
external: 0.75 (0.71, 0.79)

Apparent: 0.88 (0.83, 0.94)

Apparent: 0.91; internal with data
splitting based on recruitment

period: 0.92 (Cls not reported)

Apparent: 0.83 (0.77, 0.88);
temporal: 0.78 (0.70, 0.85)

Apparent: 93.4% of participants
correctly classified according

to outcome



67

Table 3-3 Characteristics of included prognostic rules. Continued

Validation, strategy and

Study Predictors Outcome Assessment corresponding AUROC (95% Cl)

Prognostic rules for cognitive impairment

Apparent: 0.81 (0.75, 0.87); internal

Age, infarct volume, NIHSS score, stroke Good cognitive with 10-fold cross validation and

Munsch et al., location expressed as number of eloquent outcome _— 1000 bootstrap replications: 0.77
2016 voxels from voxel-based lesion-symptom (no cognitive (0.69, 0.84); internal with data
mapping maps impairment) splitting based on recruitment

period: 0.78 (0.70, 0.85)

Salihovic et al., ] ) Diagnosis using clinical exams and
Complex figure test score, narrative ) ] )
2018 ) Vascular dementia  neuropsychological testing, based on Not assessed
memory score, numerical memory score
DSM-4 and ICD-10

Prognostic rules for delirium

Age, intracerebral haemorrhage, lesion ) ) Internal with 2-fold cross-validation;
Kostalova et al., o Consensus diagnosis based on DSM-4 » )
volume, gamma-glutamyl transferase, Delirium o correctly classified 69.0% of subjects
2012; Rule 1 criteria, CAM-ICU
bilirubin with delirium and 84.2% without
Internal with 2-fold cross-validation;
Kostalova et al., Age, intracerebral haemorrhage, lesion o Consensus diagnosis based on DSM-4 o )
Delirium o correctly classified 65.1% of subjects
2012; Rule 2 volume, SOFA-Max criteria, CAM-ICU

with delirium and 80.7% without
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Table 3-3 Characteristics of included prognostic rules. Continued

Validation, strategy and

Study Predictors Outcome Assessment corresponding AUROC (95% Cl)

Prognostic rules for delirium

Early-onset
Age, NIHSS score, hemianopia, aphasia, Apparent, for early onset delirium:
Kotfis et al., 2019; delirium (up to 24 CAM-ICU and investigator assessment
neutrophil to lymphocyte ratio,

o o 0.80; for delirium up to 5 days: 0.73
DELIAS ) ) hours), delirium up based on DSM-5 criteria
leukocytes, c-reactive protein (Cls not reported)
to 5 days
Oldenbeuving et Apparent: 0.84 (0.80, 0.89);
L 2014 Age, stroke subtype, NIHSS score, infection Delirium CAM
al.,

temporal: 0.83 (0.77, 0.90)

AUROC, area under the receiver operating characteristic; CAM(ICU), Confusion Assessment Method (for the Intensive Care Unit); CDR, Clinical Dementia Rating Scale;
CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; Cl, confidence interval; DSM, Diagnostic and Statistical Manual of Mental Disorders; FIM, Functional
Independence Measure; GCS, Glasgow Coma Scale; ICD-10NA, International Classification of Diseases, tenth revision: Neurological Adaptation; MMSE, Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; NIHSS, National Institutes of Health Stroke Scale; NINDS(AIREN), National Institute of Neurological Disorders and
Stroke (Association Internationale pour la Recherche et I’Enseignement en Neurosciences); SOFA-Max: Sequential Organ Failure Assessment, maximum score.
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Medical Symptom Imaging Acute medical Laboratory Baseline
Study Demographics history severity Stroke type findings complications markers function
Prognostic rules for cognitive impairment
Chander et al., 2017; CHANGE v v
Ding et al., 2019 v v v
Gong et al., 2019 v v v
Kandiah et al., 2016; SIGNAL, v v
Lin et al., 2003 v v v v v
Munsch et al., 2016 v v v
Salihovic et al., 2018 v
Prognostic rules for delirium
Kostalova et al., 2012; Rule 1 v v v v
Kostalova et al., 2012; Rule 2 v v v v
Kotfis et al., 2019; DELIAS v v v v
Oldenbeuving et al., 2014 v v v v




Table 3-5 Risk of bias rating for included studies.

Study

Participants

Predictors

Outcome

Analysis

Overall

rating

Prognostic rules for cognitive impairment

Chander et al.,
2017; CHANGE

Ding et al.,
2019

Gong et al.,
2019

Kandiah et al.,
2016; SIGNAL,

Lin et al., 2003

Munsch et al.,
2016

Salihovic et al.,
2018

Prognostic rules for delirium

Kostalova et
al., 2012

Kotfis et al.,
2019; DELIAS

Oldenbeuving
et al., 2014

Green indicates low risk of bias; amber - unclear risk of bias, red - high risk of bias.
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3.4 Discussion

We identified 11 prognostic rules for prediction of post-stroke cognitive
outcomes, three of which had been published just within a year before the
literature search date. However, we found no independent external validation
studies, or reports on assessing implementation of prognostic rules in practice.
Research into prognosis of post-stroke cognitive outcomes is an expanding area,
but still at its early stages, with a primary focus on development of novel

strategies, rather than validation or application.

3.4.1 Clinical implications

Based on our findings, | cannot indicate preferred prognostic rules for prediction
of either post-stroke delirium or longer-term cognitive outcome. All included
studies had strengths and limitations. The highest discriminatory power in
apparent validation was reported by Gong et al., whose study was also the only
one to be rated as having low risk of bias in as many as three out of four
domains. However, both development and validation cohorts were small, and

graphical assessment revealed considerable rule miscalibration.

Chander et al. (CHANGE) and Oldenbeuving et al. applied the most stringent
validation strategies out of studies predicting post-stroke cognitive impairment
and delirium, respectively. Both publications, moreover, had the advantage of
producing clear scoring systems, allowing easy estimation of individual
prognosis. Conversely, the same two studies had the highest number of domains
rated as high risk of bias (three out of four). Although it is important to highlight
that CHANGE was the only externally validated prognostic rule, it is nonetheless
arguable whether the tool’s reported fair discriminatory power would be

considered sufficient to merit implementation in clinical practice.

A fundamental challenge is that without external validation studies, the
generalisability of developed prognostic rules cannot be assessed, or their
predictive accuracy directly compared against one another. Further, to choose
an optimal prognostic rule, it is also essential to consider the target population
and setting. Many tools may not be applicable in an unselected stroke

population, for example, where development cohorts exclusively comprised
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survivors of ischaemic stroke (164, 165, 167-169, 173), intracranial haemorrhage
(166), or non-disabling stroke (164, 167).

Generalisability may also be compromised if a prognostic rule relies on predictor
information that is not routinely available in all healthcare systems. An example
is incorporation of scores based on MRI scans, which may not be attainable in
resource-poor settings. Apart from considerations relevant from clinician
perspective, it is also necessary to account for concerns raised by stroke
survivors and their families, determining at the individual level whether the
process of estimating future cognitive outcomes and its consequences is
acceptable (175).

3.4.2 Research challenges

The processes of data extraction and quality assessment have highlighted some
of the many challenges inherent to prognostic research. Collecting longitudinal
data from large study samples is associated with high resource requirements and
a prolonged delay from project inception to producing first research outputs. As
such, it is not surprising that many investigators opt for use of existing datasets.
The practical advantages of this approach, however, often come at a cost of
obtaining relevant data. For example, given that Chander et al. (164) reported
NIHSS scores for the external validation cohort, but not for the development
cohort, it seems this information was not available for the latter. Consequently,
despite existing evidence on the importance of this variable, stroke severity
could not have been considered as a predictor for inclusion in SIGNAL; (167) or
CHANGE (164).

An additional trade-off occurs with use of records from routine care registries. In
this case, access to data from large clinical populations, unaffected by
participation bias, is coupled with quality concerns. The encompassed
individual-level information is not collected for research purposes, and therefore
it cannot be expected that variables are measured consistently, in adherence to

standardised protocols, such as used in research studies (176, 177).

A number of challenges are also specific to research into stroke and cognition.

Participant deaths, high rates of losses to follow-up, and incomplete assessments
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due to stroke-related impairments (74) can all contribute to missing data and
biased study samples, where healthier individuals are overrepresented.
Moreover, there is no consensus method of diagnosing post-stroke cognitive
disorders (178). Adhering to medical classification criteria offers the most
holistic approach to assessing cognitive function, with information from multiple
sources being considered, however it also introduces incorporation bias. For
example, a diagnosis of delirium according to DSM-5 criteria (6), requires
obtaining evidence of a potential cause, such as infection. In other words,
knowledge of predictor status is used to inform outcome assessment.
Consequently, the strength of the association between the two can be
overestimated, in turn leading to optimistic estimates of prognostic rule

performance.

The latter may also result from recruiting participants who experienced
cognitive disorders prior to index stroke (116). The included studies that aimed
to predict cognitive impairment had indeed avoided this issue through applied
exclusion criteria. However, this selection process leads to obtaining a study
sample that is not representative of a real-world stroke population. Given the
overlap between risk factors for stroke and age-related cognitive decline, it is
not surprising that the prevalence of pre-stroke dementia is estimated to be
around twice as high (10%) as in the general population (20, 23), with even more
stroke survivors likely to have experienced milder forms of pre-stroke cognitive

impairment.

Many of the described pitfalls seem impossible to avoid. However, through our
risk of bias assessment, we also identified methodological problems that could
have been at least partially ameliorated. For example, the most common
approach we observed to model development involved use of logistic regression
in a complete-case analysis. The consequent exclusion of participants could have
been avoided through applying data imputation techniques and conducting a

time-to-event analysis, retaining those with incomplete follow-up (116).

Another recurring problem relates to relying on significance in univariable
analysis for selection of input variables, which may lead to omission of important
predictors (179). For this task, use of a nonstatistical strategy is recommended,

where predictors are chosen based on previous evidence, and in view of
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feasibility and measurement reliability. Recognition of such amendable
limitations, and application of the comprehensive, rigorous and explicit guidance
presented within the recently published PROBAST tool, can help raise standards

in design, conduct and reporting of future prognostic studies.

3.4.3 Strengths and limitations

To my knowledge, this is the first systematic review to focus on prognostic rules
for prediction of post-stroke cognitive outcome. The opportunity to use the
relatively novel PROBAST tool posed an important advantage to completing this
work. Lack of a consensus approach to risk of bias assessment has limited
previous reviews in the area of prognostic research (180). A further strength
relates to tailoring the search strategy, and applying broad inclusion criteria, so

as to promote comprehensiveness.

However, due to limited resources, we only retrieved studies published in
English. Moreover, requiring that publications provide a method to estimate the
individual probability of cognitive outcomes, we would have excluded studies
relying on more complex prediction techniques, such as machine learning.
However, this was deliberate to ensure usefulness of my review to clinicians and
researchers, through focusing on methods which allow immediate application,

provided predictor information is readily available.

3.4.4 Future directions and specific thesis aims

This systematic review of prognostic rules (including development procedures
and content) has complemented the literature review presented in the
Introduction and allowed me to identify areas of research that so far seem to
have received little attention. Firstly, modifiable risk and protective factors,
e.g. pertaining to lifestyle, are rarely considered among predictors of post-
stroke cognitive outcome. Their relevance to cognition has been evidenced by
prognostic model studies in the general population (152), and it seems
implausible that such associations would cease to be important following stroke.
In addition to the possibility of explaining some of the variability in post-stroke
cognitive function, the importance in identifying modifiable predictors lies in

representing an opportunity to reduce the risk of an unfavourable outcome.
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The second topic that seems under-researched, relates to circumstances in
which particular variables influence post-stroke cognitive outcome. As evident,
for example, in cases of multimorbidity, relevant factors can appear in
combination rather than isolation. Patterns of co-occurrence may determine how
cognition is ultimately affected. Moreover, individual characteristics may be
relevant to post-stroke cognition in different ways. For example, some variables
may primarily contribute to pre-stroke cognitive decline, with others affecting

clinical features of the index stroke, or the longer-term recovery process.

The latter point ties into a third issue - accounting for changes over time. As
discussed in the Introduction, evidence suggests that cognitive function can
fluctuate even in the chronic phase after stroke. With outcomes measured at a
single time-point, as done in reviewed prognostic studies, it is not possible to
determine whether individual cognitive status is following a stable, improving or
declining trajectory. Individuals recognised as “cognitively intact” may still be
experiencing meaningful deterioration in cognitive function, and therefore, in
the longer-term, be at greater risk of developing dementia than those

“cognitively impaired”, but stable or improving.

In the following thesis chapters, | will address these three issues, with an
overarching aim to improve our understanding of the cognitive change that
occurs following stroke and its associations with individual characteristics.
Findings from conducted studies may not only contribute to increased accuracy
of future prognostic models, but also inform strategies to prevent unfavourable

outcome and improve cognitive function.

3.5 Summary

Prognostic model research relevant to post-stroke cognitive outcomes is at a
relatively early stage. From 11 identified prognostic rules (7 predicting cognitive
impairment and 4 delirium) only one had been externally validated, and none
had been assessed in terms of impact. Limited evidence regarding performance
and generalisability, coupled with a high risk of bias in all model development
studies, hinders recommending use of specific prognostic rules in clinical
practice. Nonetheless, findings from the reviewed studies have important

implications for future research, including subsequent projects in my thesis.
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Chapter 4 Potentially modifiable predictors of
post-stroke cognition: Are physical activity,
sedentary behaviour, and social engagement

relevant?

Through my review of the existing literature, | identified three themes relevant
to prognosis research on post-stroke cognition that so far seem under-
investigated. In this chapter, | address the first one - the relevance of
potentially modifiable factors to cognitive function following stroke. Using data
from a large, population-based general-purpose cohort, the UK Biobank, |
conducted two separate studies in a subsample of participants with a history of
stroke and TIA. In the first study, | focused on habitual physical activity and
sedentary behaviour, and in the second - on different aspects of social

engagement.

After defining key terms, | introduce proposed theories and evidence in support
of an association between these factors and cognitive function, some of which
point to the possible causal nature of these relationships. | then present a shared
Methods section, following which | report and discuss the results of each study
separately. Finally, | draw general conclusions from both investigations,
considering the implications of my findings to the development of novel
interventions for improving cognitive outcomes, as well as the applicability of

such data resources as the UK Biobank for future prognostic stroke research.

4.1 Introduction

In prognosis research, if the sole priority was to create highly accurate
prognostic tools, predictors would only be regarded for the strength of their
independent association with an outcome. Yet, arguably, there is another crucial
task to consider - understanding which of these predictors can be modified in
order to improve the outcome (99). In relation to cognitive impairment and
decline, two such factors - physical activity patterns and social engagement -

were first targeted decades ago (e.g. see 181, 182).
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Since then, research interest in physical activity as a modifiable determinant of
cognitive function from childhood to older age has increased exponentially,
resulting in a considerable body of supportive evidence (183, 184). In contrast,
although many studies have successfully demonstrated an association between
social engagement and cognition (185, 186), the presence of a causal
relationship is still largely debated (187). Nonetheless, concepts of healthy
cognitive aging have incorporated social engagement as one of their key

components (188, 189).

4.1.1 Definitions

Physical activity is defined as “any bodily movement produced by skeletal
muscles that results in energy expenditure” (190, page 126). Based on oxygen
consumption, physical activity can be categorised according to three levels of
intensity: light (e.g. walking, washing dishes); moderate, characterised by an
increased heart rate, breathing harder, and feeling warmer than normal (e.g.
mowing the lawn, dancing); and vigorous, associated with sweating and

breathing hard and fast (e.g. running, carrying heavy loads) (191).

In addition to assessing one’s physical activity as an essential component of a
healthy lifestyle, the importance of considering sedentary behaviour as an
independent factor has been increasingly recognised (192). The term ‘sedentary
behaviour’ encompasses waking-time activities that require low levels of energy
expenditure, and are performed while sitting, reclining or lying down. In the
context of cognition, it is also relevant to note a novel distinction being made
between mentally active sedentary behaviours (e.g. doing a crossword puzzle)

and mentally passive ones (e.g. watching TV) (193).

In comparison to the above, social engagement appears to be a concept more
difficult to define, with apparent inconsistencies in operationalisation and
measurement across studies. However, three domains of interest are typically
distinguished (194): social networks, relating to structure, composition and
content of an individual’s interpersonal ties (195-197); social support, relating to
the level of emotional and instrumental resources available to an individual
(198, 199); and social participation, relating to involvement in activities with a

social component (200, 201). Another important distinction is made between
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objective measures of social engagement (e.g. how often do you meet with

friends) and subjective measures (e.g. feeling lonely) (202, 203).

4.1.2 Routes to affecting cognition

There are many putative pathways through which physical activity, sedentary
behaviour and social engagement may influence cognitive functioning. One
perspective focuses on indirect effects, driven by impacts on general health and

wellbeing.

Regarding the relationship between physical activity and health, research has
provided a particularly rich evidence base for the formers benefits, including:
reduced blood pressure and risk of blood clot formation, enhanced insulin
sensitivity and glucose tolerance, and improvements in body composition
(increase in lean mass and reduction in fat), blood distribution, and plasma lipid
and lipoprotein profile (204). As follows, physical activity is associated with a
reduced likelihood of developing cardiovascular diseases, which are risk factors

for cognitive impairment and decline.

Across multiple observational and experimental studies, findings regarding
specific effects of sedentary behaviour on physiology appear overall less
consistent (205); although a number of reports have indicated that prolonged
sitting results in detrimental changes to insulin sensitivity, glucose tolerance and
plasma triglyceride levels (206). Evidence moreover suggests that sedentary
behaviour is associated with an increased risk of fatal and non-fatal

cardiovascular diseases and events (207).

In addition, activity patterns may affect cognitive functioning through impact on
mental health. Specifically, sedentary behaviour has been associated with
depression and depressive symptoms (205), while physical activity has been
found to favourably influence mood. The latter relates to both enhancing
positive affect, as well as ameliorating depression, and reducing anxiety and
stress (208).

Changes in stress levels have also been proposed as the primary pathway through

which health is affected by factors reflecting social engagement (209).
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Perceived, involuntary social isolation is hypothesised to evoke a physiological
stress response, which as a chronic state may lead to dysregulation of the
endocrine, immune, and cardiovascular systems (210-212). Consequently, this
experience is associated with increased blood pressure and heart rate, chronic
inflammation, poor sleep quality, slower wound healing and greater
susceptibility to infection (213-217). These cumulative processes have been
described as causing overall accelerated aging, which also involves
neurodegeneration, mostly attributed to elevated levels of glucocorticoids (209,
211, 218). In addition, stress is considered to trigger unhealthy behaviours, such
as excessive alcohol consumption (219), smoking (220) and disordered eating
(221, 222).

Conversely, social support has been associated with improved outcomes
following health and life-threating events, such as transport accidents (223),
heart failure (224), and surgery (225, 226). These observations are attributed to
social support acting as a buffer against stress, induced by the event, as well as

enhancing adherence to medical advice (e.g. taking prescription medication).

Alongside effects obtained by modifying health and wellbeing, there is potential
for activity patterns and social engagement to influence neural structure and
function in a more direct manner. One concept that simultaneously accounts for
the contribution of both types of factors to brain health is embedded in a line of
animal model studies on the impact of an enriched environment (188). Such an
environment, of which opportunity for physical activity and social interaction
are key constituents, provides complex stimulation for its inhabitants. Living in
these conditions is argued to enhance neuronal plasticity on molecular, cellular
and structural levels, and thus benefit cognitive functioning (227). In this
context, social isolation and excess of mentally passive sedentary behaviours is
considered equivalent to functioning in an impoverished environment, associated

with cognitive decline (228).

4.1.3 Physical activity, sedentary behaviour, social engagement,
and cognition in the context of stroke

There is a clear application for the described concepts to the context of stroke -

a highly stressful, potentially life-threatening event, typically associated with
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prevalent cardiometabolic comorbidities. Adding to this notion are proposed
further dual-path effects of environmental enrichment, specific to neurological
and cognitive recovery following brain damage. The first hypothesised route,
beginnings of which reach childhood, is through enhancing cognitive reserve, in
turn reducing the manifestation of neuropathology and supporting functional
compensation (229). The second route involves enhancement of multiple,
beneficial physiological processes in the acute and subacute stroke phases,
including: synaptogenesis, axonal sprouting, axonal and dendritic remodelling,

neurogenesis, and angiogenesis (230).

In relation to physical activity itself, there are also some indications that its role
in modifying cognitive outcomes could begin even prior to index stroke. In a
study on mice, the authors reported that engaging in voluntary exercise for four
weeks preceding experimental traumatic brain injury resulted in increased
activation of anti-apoptotic and anti-inflammatory pathways, and improved
recovery of cognitive function (231). In humans, on the other hand, an
association has been observed between physical activity prior to stroke and
alleviated stroke severity - an important determinant of cognitive function
(232).

Although currently there seem to be no findings supporting a direct link between
improved post-stroke cognition and pre-stroke physical activity, there is high
quality evidence indicating a favourable effect of post-stroke physical activity.
In a meta-analysis of 14 randomised controlled trials (N = 736), the authors
concluded that structured physical activity training had a positive overall impact
on post-stroke cognitive performance, with a small to moderate mean effect size
(233). Cognitive gains were largest for programmes that combined aerobic and
strength training, and were apparent even where the intervention was
introduced in the chronic phase of stroke. When domain-specific performance
was considered, improvement was reported for attention and processing speed,
while no significant effects were observed for executive function or working

memory.

These results may appear conclusive, however the topic of physical activity and
post-stroke cognition is not yet exhausted. Alongside reported methodological

limitations of studies included in the review, it is noteworthy that structured



81

training does not cover the whole spectrum of physical activities that people can
engage in. This is important, as despite interventions being tailored to
accommodate post-stroke motor deficits, it is likely that many stroke survivors
would find objective and subjective barriers to engaging in such programmes
(234, 235); particularly, as it is plausible that those who agreed to participate
and completed the interventions, were more active, health-orientated

individuals.

As follows, there is still a need to improve our understanding of how typical,
day-to-day physical activity, encompassing chores and leisure activities alongside
intentional exercise, is associated with post-stroke cognition. An apparent link
could provide grounds for implementing less demanding interventions, more
acceptable and sustainable in the long term for a wider population of stroke
survivors. Considering physical activity and sedentary behaviour in conjunction,
a clinically meaningful change could be sought even just by breaking up
prolonged sitting time with brief bouts of light-intensity indoor walking (236,
237).

This notion seems of particular relevance given that stroke survivors are
reported to spend significantly more time sitting than their peers (10.9
hours/day vs 8.2 hours/day) (238). However, to date, little is known about the
effects of interrupting sedentary behaviour on post-stroke outcomes, beyond one
study demonstrating a decrease in systolic blood pressure (239). As such, it is the
cumulative evidence, pieced together from studies involving animal models and
non-stroke populations (240), that is the main indicator of a possible detrimental

effect of sedentary behaviour on cognitive function following stroke.

Similarly, more research is needed to describe the relationship between social
life and post-stroke cognition - one that is likely complex, with social isolation
recognised as a risk factor for stroke (241), and stroke contributing to social
isolation (242-244). At present, it seems that only one study (N = 272) has
addressed this topic directly (245). The authors found that baseline social ties
and emotional support were independent predictors of better performance on a
cognitive summary score at six months, while emotional support was further
associated with greater improvement from baseline to follow-up. When

individual tasks were considered, social ties predicted immediate and delayed
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recall, while emotional support was associated with immediate recall only. Yet
no significant relationships were found for tasks assessing attention, language

and executive function, nor for performance on the MMSE.

Complementing these observations are reports of stroke survivors showing
progressive functional improvement with high levels of social support, while
(ultimately) experiencing functional deterioration with low support (246-248).
Although cognition was not assessed in these studies, if an association exists
between social engagement and post-stroke functional recovery, one with

cognitive recovery also seems plausible.

4.1.4 The present studies

| conducted two observational studies to investigate the associations of post-
stroke cognitive performance with: physical activity and sedentary behaviour
(Study A), and social engagement (Study B). | made three assumptions regarding
Study A: i) the effects of physical activity and sedentary behaviour are
independent from one another (to a degree), and therefore both should be
accounted for; ii) the effects of physical activity and sedentary behaviour may
depend on their type; while also iii) the accumulated time spent being physically

active and sedentary may be relevant to cognitive performance.

In relation to Study B, | assumed that both objective and subjective aspects of
social engagement are relevant to post-stroke cognitive function, and their
effects might differ. Further, based on the described studies in stroke
populations, | hypothesised that associations for all predictors of interest are
likely to depend on what cognitive function is being assessed. | aimed to ensure
that plausible confounders were accounted for, recognising that many variables
may be simultaneously relevant to: a) activity patterns and cognition, and b)

social engagement and cognition.

4.2 Methods

| used anonymised, individual participant level data held in the UK Biobank. The
UK Biobank project is overseen by the National Health Service (NHS) National
Research Ethics Service (approval letter dated 17t June 2011, Ref 11/NW/0382)
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and has received ethical approval from the Community Health Index Advisory
Group (approved 7t December 2006, application no. 06-007). | conducted this
research under application no. 17689. In reporting the two studies, | followed
the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines (249). Study B, relating to social engagement, has been
published (250). | edited and expanded the content of my paper for the purpose
of this thesis chapter.

4.2.1 Study setting and participants

The UK Biobank includes data from over 502,500 participants. Baseline
assessments took place between 2006 and 2010, across 22 centres in the United
Kingdom. During the study visit, participants answered questions regarding
sociodemographic, health, mood and lifestyle factors, completed cognitive
tasks, and had a range of physical measurements taken. A more detailed

description of the UK Biobank has been provided previously (251).

| focused on baseline data from participants who self-reported a history of
stroke or TIA (data field 20002). | included cases of TIA on account of similar
prevalence of risk factors for cognitive decline as in stroke populations (252),
and evidence of longer-term cognitive sequalae (253). As per UK Biobank
assessment procedures, information on medical conditions was obtained during a
two-stage process. Firstly, through a touch-screen questionnaire, participants
were asked whether they had a history of one or more illnesses, including
stroke. Responses were subsequently confirmed during a verbal interview with a
trained nurse. In cases where the participant was uncertain of the type of
condition they had had, they were asked to describe the illness, so that the
nurse could assist in defining it. If the interview revealed an erroneous

indication of a medical condition, the initial response was amended.

To identify eligible study participants, | considered four items in the repository
under the cerebrovascular disease category: “stroke” (code 1081), “ischaemic
stroke” (code 1583), “brain haemorrhage” (code 1491), and “transient ischaemic
attack” (code 1082). To ensure a consistent approach throughout my thesis,

unlike in the published version of Study B (250), | did not include cases of
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subarachnoid haemorrhage. | further excluded participants who reported the

occurrence of stroke or TIA before the age of 18.

4.2.2 Measures
4.2.2.1 Predictors of interest in study A

| included three self-reported measures of physical activity and three of
sedentary behaviour, relating to duration on a typical day. This included:
walking, moderate physical activity, vigorous physical activity, driving, computer
use (excluding work-related use), and watching TV. Participants were requested
to estimate an average time if the duration of activities differed considerably
throughout the week. Variables relating to physical activity were recorded in
minutes, while sedentary behaviours were recorded in hours. At the stage of
data collection, answers indicating either negative values (<0) or duration
exceeding 24 hours (1440 minutes) were rejected. By summing time spent on the
three activities from each category, | additionally derived variables representing
total daily physical activity and total daily sedentary behaviour duration. For

both variables, | excluded cases where the sum exceeded 24 hours.

4.2.2.2 Predictors of interest in study B

| selected six variables reflecting both objective and subjective aspects of social
engagement: frequency of family and/or friend visits (made and received),
satisfaction with family relationships, satisfaction with friendships, frequency of
opportunities to confide in someone, loneliness, and participation in social
activities. | grouped responses relating to frequency of interactions into four
categories: never, once every few months to once a month, one to four times a
week, and daily or almost daily. | dichotomised satisfaction with relationships to
“satisfied” and “not satisfied”. Similarly, | dichotomised experience of loneliness
into “lonely” and “not lonely”. Regarding participation in social activities, |
distinguished seven categories: reporting no engagement in social activities,
attending a sports club or gym, going to a pub or a social club, participation in a
religious group, attending an adult education class, other group activity, and

engagement in multiple group activities.
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4.2.2.3 Measures of cognitive performance

| chose four baseline cognitive tasks as outcome measures for both studies A and
B. This included: reaction time, verbal-numerical reasoning (referred to as
“Fluid Intelligence” in the UK Biobank), visual memory (referred to as “Pairs
Matching”) and prospective memory. Reasoning and prospective memory tasks
had been added to the assessment procedure at a later stage of recruitment,

and therefore were completed by fewer participants (254).

The reaction time task (data field 20023) included 12 rounds (4 training rounds,
8 trials) of card-matching, based on the game “Snap”. Participants were
presented with two cards at a time and asked to press a button as quickly as
possible if they were identical. Performance on the task was measured as the
average response time across eight trial rounds in milliseconds. Times under 50
milliseconds and over 2000 milliseconds were considered invalid, and thus

excluded from the dataset.

The verbal-numerical reasoning task (data field 20016) involved answering 13
multiple choice logic/reasoning-type questions, within a 2-minute time limit.
Performance was measured as the unweighted sum of correctly answered

questions, with a maximum of 13 points.

In the visual memory task (data field 399) participants were presented with a set
of matching pairs of cards and requested to memorise their positions. The cards
were then turned over, and the subjects asked to select matching pairs in as few
attempts as possible. The task included rounds with three and six pairs of cards,
with performance measured as the number of errors in each round. In order to
avoid a ceiling effect, for my analyses | only used results from the six-pair round,

as it was more likely for participants to make an error.

For the prospective memory task (data field 20018), an initial instruction was
given early in the cognitive assessment section. Participants were informed that
at a later stage they will be shown four coloured shapes and asked to touch a
blue square. Instead, however, they are to touch an orange circle. Originally,
performance was grouped into three categories: incorrect response/task

skipped, correct on first attempt, correct on second attempt. However, for the



86

purpose of my analyses, | dichotomised the outcome according to whether

participants correctly responded on their first attempt or not.

All cognitive tasks were completed using a touchscreen. Additional information
on cognitive testing in the UK Biobank can be found in the online Data Showcase
under the “Cognitive function” category (category ID: 100026). Previous
publications have described cognitive data from the repository with more detail,

including information on test reliability and validity (255-258).

4224 Covariates

Based on previous research, | identified factors simultaneously associated with
physical activity, social engagement and cognition, which could act as
confounders (i.e. lead to observing spurious associations between factors of
interest and the outcomes). Firstly, | considered demographics: age (as a
continuous variable, in years), sex, educational attainment, and the Townsend
deprivation index score. | dichotomised education based on whether participants
reported attainment of a college or university degree. The Townsend deprivation
index is a measure of material deprivation based on rates of unemployment, car
and home ownership, and household overcrowding in a given population (259).
Each participant was assigned a deprivation index score at recruitment, based on
a preceding national census. Negative values indicate relative affluence, while

positive values indicate material deprivation.

Secondly, | included factors related to general health status and functioning:
self-reported walking pace (three categories: brisk, steady/average, or slow),
activity-limiting disability (dichotomised into present or absent), subjective
health rating (four categories: excellent, good, fair, or poor), and BMI (entered
into the analysis as a continuous variable). Disability was determined based on
responses to a question on employment status (data field 6142). In answer to
this questionnaire item, participants were able to select multiple response
options, one of which was “unable to work because of sickness or disability”.

| considered an activity-limiting disability to be present if this response was
selected either on its own or in conjunction with another option, for example,

“retired” or “unemployed”.
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| additionally considered the presence of specific conditions that have been
associated with vascular dementia and poorer cognitive outcomes in stroke
populations (260-262): hypertension, diabetes and atrial fibrillation. In relation
to mental health, | assumed a relevant association of physical activity patterns,
social engagement and cognition with depression (263-265). | identified
participants with a history of depressive episodes applying a method used in a
previous UK Biobank-based study, combining responses that jointly indicated
experiencing a period of feeling down, depressed, disinterested or

unenthusiastic for at least two weeks, and seeking professional help (266).

The third category of covariates included lifestyle factors: frequency of alcohol
intake (never/special occasions only, one to three times a month, one to four
times a week, and daily/almost daily), and smoking (never, previous or current).
These were treated as ordinal variables. Finally, | included two factors relating
to the index cerebrovascular event: type (stroke or TIA), and time elapsed
between the most recent stroke/TIA and baseline assessment, as a continuous

variable measured in years.

4.2.3 Statistical analysis
4.2.3.1 Procedures

Following data inspection, | noted a positive skew for the following variables:
walking, moderate physical activity, vigorous physical activity, driving, computer
use, and total daily physical activity (six variables of interest in Study B); as well
as for reaction time and visual memory data (outcomes in both studies). | used a
natural log transformation to correct for this. For all variables apart from
reaction time, | preceded the transformations by adding a constant (one) to all
task results, to accommodate for possible values of zero. | performed the data
transformations using the International Business Machines Corporation (IBM)

Statistical Package for the Social Sciences (SPSS), version 24.

In both studies, | conducted a series of regression models to investigate
associations between predictors of interest and performance on cognitive tasks.
| used linear regression for three outcomes - reaction time, verbal-numerical

reasoning and visual memory, and logistic regression for prospective memory.
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The types of models that | developed are described below, separately for Studies

A and B. | performed all analyses in Stata, version 14.2 (StataCorp LLC).

Due to a high proportion of missing data for some of the considered predictor
and outcome measures (even reaching 2/3), | determined that data imputation
would not be appropriate (267), and applied a complete-case analysis approach
instead. Therefore, sample sizes varied by model and cognitive task. In studies
based on large samples, such as included in the UK Biobank, statistically
significant results can be obtained for even trivial effects (268). To account for
this, as well as for multiple testing, | adopted a relatively strict approach,
adjusting the traditionally recognised significance threshold according to the
number of predictors in the most complex model (20 variables). Specifically, |
set the threshold to 0.003 (0.05/20).

4.2.3.2 Study A models

| developed two groups of models in Study A. The first group accounted for the
types of physical activity and sedentary behaviour that were reported. There
were three models where the three types of physical activity were entered
together, and three models where the three types of sedentary behaviour were
entered together. In both cases, the first of these three models was unadjusted,
incorporating only predictors of interest. The second was a partially adjusted
model, where | included demographics (age, sex, education, and deprivation).
The third model was fully adjusted, where | additionally accounted for health-,
lifestyle- and stroke-related factors (walking pace, disability, subjective health
rating, BMI, hypertension, diabetes, atrial fibrillation, depression, alcohol
intake, smoking status, type of index cerebrovascular event, and time elapsed
between the event and baseline assessment). Finally, | developed a fourth type
of model, labelled “complete”, combining all types of physical activity and

sedentary behaviour, and all potential covariates.

In the second group, | used total daily physical activity and total daily sedentary
duration as predictors of interest. Here, | also developed four types of models,
equivalent to the ones described above for the first group. In both model groups,
| conducted separate unadjusted, partially adjusted, fully adjusted and

complete models for each of the four cognitive tasks.
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4.2.3.3 Study B models

The development of models in Study B reflected that of Study A. | created
separate unadjusted, partially adjusted and fully adjusted models for each
individual proxy of social engagement. | then incorporated all proxies into a
single, complete model, adjusting for all considered covariates. | conducted

every type of model for each of the cognitive tasks.

4234 Presentation of results

| aimed to present my results in a manner that is both informative and intuitive.
For analyses based on linear regression, | reported unstandardised coefficients
(betas) to clearly indicate changes in values of the outcome measures. For

logistic regression analyses, | reported odds ratios (OR).

| recognised that interpretation of coefficients is not straightforward where
studied variables were log-transformed. In such cases, | provided examples to
represent the strength of the reported associations. Underlying calculations
were based on: i) percent change in the outcome for every one-unit change in
the predictor, where only the outcome was log-transformed, ii) unit change in
the outcome for every 1% change in the predictor, where only the predictor was
log-transformed, iii) percent change in the outcome for every 1% change in the
predictor, where both the predictor and outcome were log-transformed (269).
For complete models, | additionally presented the results graphically. However
here, for linear regression analyses, | used standardised coefficients to allow

visual comparisons across different predictors of interest.

4.3 Results and discussion

| identified 8391 participants with a self-reported history of stroke or TIA. Table
4-1 presents descriptive statistics for variables relevant to both studies: baseline
characteristics of the participant sample, incorporated in conducted analyses as
covariates, and measures of cognitive performance, constituting study

outcomes.



Table 4-1 Baseline characteristics of study sample and descriptive statistics
for performance on cognitive tasks.

Variables

Demographics

Age, years
Mean (SD) 61.1 (6.6)
Sex
Female 3508/8391 (41.8%)

Degree-level education

1772/8190 (21.6%)

Missing data 201
Townsend deprivation score (higher: more deprived)

Mean (SD) -0.5 (3.5)

Missing data 10

Health-related factors

Walking pace

Brisk 1724/8104 (21.3%)
Steady/average 4002/8104 (49.4%)
Slow 2378/8104 (29.3%)
Missing data 287

Disability 1488/8347 (17.8%)
Missing data 44

Subjective health rating

Excellent 339/8288 (4.1%)
Good 3192/8288 (38.5%)
Fair 3171/8288 (38.3%)
Poor 1586/8288 (19.1%)
Missing data 103

BMI
Mean (SD) 28.9 (5.2)
Missing data 129

Comorbidities
Hypertension
Diabetes
Atrial fibrillation

4811/8391 (57.3%)
1187/8391 (14.2%)
253/8391 (3.0%)

History of depressive episodes

Missing data

644/5566 (11.6%)
2825
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Table 4-1 Baseline characteristics of study sample and descriptive statistics

for performance on cognitive tasks. Continued

Variables

Lifestyle factors

Alcohol intake frequency

Never/special occasions only

Monthly

Weekly
Daily/almost daily
Missing data

2473/8364 (29.6%)
900/8364 (10.7%)
3384/8364 (40.5%)
1607/8364 (19.2%)
27

Smoking status
Never
Previous
Current

Missing data

3502/8316 (42.1%)
3533/8316 (42.5%)
1.281/8316 (15.4%)
75

Stroke-related factors

Type of cerebrovascular event

Stroke
TIA

6773/8391 (80.7%)
1618/8391 (19.3%)

Time from stroke/TIA to baseline assessment, years

Mean (SD)
Missing data

7.3 (7.0)
622

Cognitive task performance

Reaction time, milliseconds

Mean (SD) 613.5 (151.7)
Missing data 193
Verbal-numerical reasoning, points (range 0 to 13)
Mean (SD) 5.3 (2.1)
Missing data 5761
Visual memory, errors
Mean (SD) 4.6 (3.7)
Missing data 74

Prospective memory

Correct response on first attempt

Missing data

1855/2839 (65.3%)
5552

BMI indicates body mass index; SD, standard deviation; TIA, transient ischaemic attack.
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4.3.1 Study A results

Descriptive statistics for predictors of interest in Study A, relating to self-
reported duration of physical activities and sedentary behaviours on a typical
day, are presented in Table 4-2. Across all conducted models, sample sizes
ranged from 1571 to 7927 participants. Given multiple analyses, producing a high
volume of results, | have focused on describing only key findings. Associations for

all variables of interest are included in Appendix 4, Supplemental Tables 1 to 8.

4.3.1.1 Predictors of reaction time in Study A

In unadjusted models, faster reaction times were associated with longer
reported daily duration of: walking (beta = -0.011, 99.7% Cl: -0.019 to -0.003),
vigorous physical activity (beta = -0.006, 99.7% Cl: -0.012 to -0.001), driving
(beta = -0.032, 99.7% Cl: -0.047 to -0.017), and computer use (beta = -0.035,
99.7% Cl: -0.048 to -0.023), as well as total physical activity (beta = -0.012,
99.7% Cl: -0.018 to -0.005). Time spent watching TV was the only factor
associated with slower reaction times (beta = 0.008, 99.7% Cl: 0.005 to 0.012).

After adjusting for demographics, vigorous physical activity was no longer a
predictor of reaction time, while associations remained similar for: walking
(beta = -0.011, 99.7% Cl: -0.019 to -0.003), driving (beta = -0.020, 99.7% ClI:
-0.035 to -0.005), computer use (beta = -0.028, 99.7% Cl: -0.040 to -0.015),
watching TV (beta = 0.006, 99.7% Cl: 0.002 to 0.009), and total physical activity
duration (beta = -0.011, 99.7% Cl: -0.018 to -0.005).

In fully adjusted models, additionally accounting for health-, lifestyle- and
stroke-related factors, computer use was the only significant predictor of task
performance (beta = -0.023, 99.7% Cl: -0.039 to -0.008). To illustrate the
magnitude of this association, with every 50.0% increase in computer use
duration, reaction time decreased by 0.9%. In the complete model (Figure 4-1),
simultaneously including all types of activities/behaviours and covariates, the
results were similar - only computer use showed a weak, significant association
with reaction time (beta = -0.024, 99.7% Cl: -0.042 to -0.006). Across all
models, | found no associations between task performance and either moderate

physical activity or total sedentary time (Figure 4-5 A presents complete model).



Table 4-2 Descriptive statistics for self-reported duration of physical activities
and sedentary behaviours, performed during a typical day.

Variables

Physical activities (minutes on a typical day)

Walking
Mean (SD) 54.7 (72.9)
Median (IQR) 30.0 (40.0)
Missing data 1469
Moderate activity
Mean (SD) 54.4 (76.2)
Median (IQR) 30.0 (50.0)
Missing data 1540
Vigorous activity
Mean (SD) 19.5 (39.0)
Median (IQR) 0.0 (30.0)
Missing data 1232

Total active time (minutes on a typical day)

Mean (SD) 130.5 (142.3)
Median (IQR) 90.0 (125)
Missing data 2545
Sedentary behaviours (hours on a typical day)

Driving
Mean (SD) 0.7 (1.1)
Median (IQR) 0.0 (1.0)
Missing data 238

Computer use
Mean (SD) 1.0 (1.5)
Median (IQR) 0.0 (2.0)
Missing data 205

Watching TV
Mean (SD) 3.6 (2.2)
Median (IQR) 3.0 (3.0)
Missing data 164

Total sedentary time (hours on typical day)

Mean (SD) 5.2 (2.8)
Median (IQR) 5 (4)
Missing data 465

IQR indicates interquartile range; SD, standard deviation.
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4.3.1.2 Predictors of verbal-numerical reasoning in Study A

In unadjusted models, better verbal-numerical reasoning task performance was
associated with longer daily computer use (beta = 0.546, 99.7% Cl: 0.342

to 0.749), while worse performance was associated with watching TV (beta =
-0.191, 99.7% Cl: -0.248 to -0.133) and total duration of sedentary behaviour
(beta = -0.068, 99.7% Cl: -0.113 to -0.022). Although reduced in magnitude,
these associations remained significant after adjusting for demographics: beta =
0.396, 99.7% Cl: 0.192 to 0.599, for computer use; beta = -0.133, 99.7% Cl:
-0.191 to -0.075, for watching TV; and beta = -0.048, 99.7% Cl: -0.092

to -0.003, for total sedentary time.

In fully adjusted models, computer use and watching TV were the only
behaviours that predicted task performance. On average, for every 50% increase
in computer use duration, the task score increased by 0.1 of a point (beta =
0.336, 99.7% ClI: 0.108 to 0.564), while the score decreased by a similar amount
with every 1-hour increase in watching TV (beta = -0.100, 99.7% CI: -0.169

to -0.032). Associations were comparable in the complete model (Figure 4-2):
beta = 0.275, 99.7% CI: 0.018 to 0.533, for computer use; and beta = -0.116,
99.7% Cl: -0.194 to -0.038, for watching TV.

Regarding total sedentary behaviour duration, after adjusting for all covariates,
the initial association with verbal-numerical reasoning task scores was no longer
significant. However, in the complete model (Figure 4-5 B), additionally including
total physical activity duration among predictors, the association approached
the adopted significance threshold (beta = -0.056, 99.7% Cl: -0.115 to 0.003, p =
0.005), suggesting that with an increase in time spent sedentary throughout an
average day, task performance may have marginally worsened. Across all
conducted models, physical activity did not predict task scores - neither when

considering particular types of activities nor total daily active time.

4.3.1.3 Predictors of visual memory in Study A

In unadjusted models, | found associations between the number of errors in the
visual memory task and moderate physical activity duration and total physical
activity duration, nearing the significance threshold (p = 0.003 and p = 0.004,

respectively). In both cases, longer activity duration was weakly associated with
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more errors: beta = 0.019, 99.7% Cl: 0.000 to 0.037, for moderate physical
activity; and beta = 0.020, 99.7% Cl: -0.001 to 0.040, for total activity.

After adjusting for demographics, my only finding was a trend for an association
between task performance and watching TV, where more TV time predicted less
errors (beta = -0.011, 99.7% Cl: -0.022 to <0.001, p = 0.004). In the fully
adjusted and complete models (Figure 4-3 and Figure 4-5 C), there were no
significant associations between predictors of interest and visual memory task

performance.

4.3.1.4 Predictors of prospective memory in Study A

In unadjusted models, | observed that a correct response on first attempt in the
prospective memory task was more likely with longer daily computer use (OR =
1.316, 99.7% Cl: 1.066 to 1.625), and less likely with more time spent watching
TV (OR = 0.908, 99.7% Cl: 0.857 to 0.962). Associations with task performance
remained similar after adjusting for demographics: OR = 1.251, 99.7% CI: 1.005
to 1.557, for computer use; and OR = 0.939, 99.7% Cl: 0.884 to 0.996, for
watching TV. However, none of the sedentary behaviours, nor their total
duration, predicted the likelihood of a correct response in the fully adjusted and
complete models (Figure 4-4 and Figure 4-5 D). Physical activity, considered both
in terms of distinct types and total duration, was not associated with task

performance in any of the models | conducted.
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Log reaction time

Walking —@
Moderate physical activity —@—
Vigorous physical activity —o—
Driving —@
*
Computer use —o—
Watching TV H@— o )
Association with Association with
__better performance worse performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

Figure 4-1 Associations of log reaction time with daily duration of physical activity
and sedentary behaviour according to type in a complete model, with 99.7% CI.

Notes: Apart from watching TV, reported duration for predictors was log-transformed;
*p < 0.003.

Verbal-numerical reasoning score

Walking —&—
Moderate physical activity —&—
Vigorous physical activity —@—
Driving —@—
*
Computer use —@—
. *
Watching TV o )
Association with Association with
~_ worse performance better performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

Figure 4-2 Associations of verbal-numerical reasoning task scores with daily
duration of physical activity and sedentary behaviour according to typein a
complete model, with 99.7% CI.

Notes: Apart from watching TV, reported duration for predictors was log-transformed;
*p < 0.003.
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Log errors in the visual memory task

Walking ——
Moderate physical activity H—@—
Vigorous physical activity —@—
Driving —@—
Computer use —@—
Watching TV L . —o—
Association with Association with
B better performance worse performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

Figure 4-3 Associations of log errors in the visual memory task scores with daily
duration of physical activity and sedentary behaviour according to type in a
complete model, with 99.7% CI.

Notes: Apart from watching TV, reported duration for predictors was log-transformed.

Correct response on the prospective memory task

Walking — e
Moderate physical activity ——
Vigorous physical activity —@T—
Driving = @
Computer use = @
Watching TV —@——
Association with Association with
_worse performance better performance
0.4 0.6 0.8 1 1.2 1.4 1.6
0Odds ratios

Figure 4-4 Associations of a correct response on the prospective memory task with
daily duration of physical activity and sedentary behaviour according to typein a
complete model, with 99.7% CI.

Notes: Apart from watching TV, reported duration for predictors was log-transformed.
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A Log reaction time

Total daily physical
activity duration

Total daily sedentary

behaviour duration Association with Association with
__ better performance worse performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

B Verbal-numerical reasoning score
Total daily physical
activity duration &
Total daily sedentary —e—
behaviour duration Association with Association with
__ worse performance better performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

C Log errors in the visual memory task

Total daily physical
activity duration

Total daily sedentary

behaviour duration Association with Association with
_ better performance worse performance
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Standardised coefficients

D Correct response on the prospective memory task
Total daily physical
activity duration ®
Total dajly sedentgry —@—
behaVlOUF durat]on Association with Association with
__ worse performance better performance
0.4 0.6 0.8 1 1.2 1.4 1.6
0Odds ratios

Figure 4-5 Associations of log reaction time (A), verbal-numerical reasoning scores
(B), log errors in the visual memory task (C), and a correct response on the
prospective memory task (D) with log of total daily physical activity duration and
total daily sedentary behaviour duration in complete models, with 99.7% CI.
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4.3.2 Study A discussion

In this cross-sectional study in a sample of stroke survivors from the UK Biobank,
| found few significant task-specific associations between cognitive performance
and measures of physical activity and sedentary behaviour, all of which were
very weak. The most consistently demonstrated effects were for computer use
and watching TV. Some of the findings seem to oppose expectations arising from
previous research, including a similar study conducted in the whole UK Biobank

population (270).

In that study, with a main focus on sedentary behaviour, the authors reported an
inverse association between driving time and cognitive performance across all
considered tasks, which my results did not reflect. A plausible explanation
relates to the characteristics of my participant sample. Following stroke, many
people discontinue driving due to motor, perceptual and/or cognitive deficits, or
even low confidence (271-273). As follows, participants who reported regular
driving in my study may also be individuals who on average experienced less

severe post-stroke impairments, including less affected cognition.

Regarding the remaining two types of sedentary behaviour, conclusions from our
studies generally seem to align. | found that watching TV was modestly
associated with worse performance on reaction time, prospective memory and
verbal-numerical reasoning tasks. Yet, only in case of the latter the effect
remained significant after adjusting for all covariates. There are two potential
explanation for this: i) in part, sedentary behaviour detrimentally affects
cognition through impairing health overall, ii) people in poor health/feeling
unwell tend to spend more time sedentary. Thus, once health-related factors

are controlled for, some association may no longer be apparent.

Research on sedentary behaviour and its effects has long focused on watching TV
as a central activity of interest. Many studies have demonstrated the negative
impact of extensive TV viewing on health outcomes, with evidence also
expanding for a deleterious association with cognition and mood (274-277).
These findings may have encouraged the supposition that all forms of sedentary
behaviour are uniformly detrimental across outcomes. However, this may not be

necessarily the case, as demonstrated for the unselected UK Biobank population
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and here, where computer use was associated with better cognitive performance

in most conducted models (none relating to visual memory).

My results are in line with conclusions from a different area of research, focusing
on behaviours that help preserve cognitive function in older age. Multiple
reports suggest a protective effect of engaging in mentally stimulating activities,
many of which are performed while being sedentary (e.g. playing cards, doing
puzzles, reading books, sewing) (278-280). Moreover, in research on sedentary
behaviour, a recent overview of systematic reviews indicated that a favourable
association of computer and internet use with cognitive function in older adults

was one of the key and novel findings (205).

However, in the current state of knowledge, it is important to interpret these
observations with caution. There is some evidence from randomised controlled
trials in healthy older adults to support a causal relationship between computer
training and improved cognitive performance; yet, in a meta-analysis the overall
effect size was small, while associations were found to differ depending on the
form of intervention (281). Namely, unsupervised home-based training was

concluded to be ineffective.

It therefore seems that at least in part the positive association between
computer use and cognition could be attributed to individuals with a higher level
of cognitive function being more likely to engage in this activity. In the case of
my study, it is also possible that participants who used a computer more
frequently had greater ease in completing cognitive tasks on a touchscreen - an
advantage that would not have been present if the assessment were paper-

based.

In view of the above arguments and discussed evidence, it is perhaps the
findings on physical activity that are more surprising here, with hardly any
support for the well-documented positive effect on cognitive performance. The
only such observation related to faster reaction times being associated with
longer duration of daily walking, vigorous activity and total physical activity.
These effects seem consistent with conclusions from the previously described
meta-analysis, where participation in structured physical activity training

increased processing speed (233).
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However, in my study, none of the associations remained significant after
adjusting for all covariates. It is therefore plausible that the effects of physical
activity were driven by more active participants being in better health, which in
turn translated to faster processing speed. This interpretation would not yet
account for the null results across other cognitive tasks, or the even more
unexpected finding that moderate and total daily physical activity were weakly

associated with more errors in the unadjusted model for visual memory.

One explanation that aligns with these collective observations relates to
occupation, particularly in light of physical activity being reported for a whole,
typical day, and not just regarding leisure time. Previous studies have found that
in contrast to jobs characterised by high intellectual demands, and human
interaction and communication, occupations based on physical activity are
associated with poorer cognitive function (282-285). This effect appears to be
independent of education and deprivation, and so sociodemographic factors
included in my adjusted models would not have controlled for it. As follows, it is
possible that the opposing effects of occupational and leisure time physical

activity jointly manifested as a neutral association with cognitive performance.

Another important consideration relates to use of self-reported measures. Being
prone to recall and social desirability bias, it is difficult to ascertain how closely
they reflected actual energy expenditure, particularly as studies comparing
subjectively and objectively assessed physical activity indicate correlations

differing not only in strength, but also in direction (286).

Lastly, the association between physical activity and poorer visual memory
performance brings attention to the fact that all findings for this task diverged
from the overall pattern of results. This may be due to the test’s specific
properties. Studies describing the UK Biobank cognitive assessment found that
the visual memory task had: poor test-retest reliability; compared to other
tasks, had one of the weakest associations with a general cognitive ability score;
and after adjusting for age, only a weak association with a validated reference
test (257, 258).
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4.3.2.1 Clinical implications

As noted above, although | observed relatively consistent associations with
cognitive performance for computer use and watching TV, these effects were
very weak. Thus, if considered in isolation, my results are insufficient to
conclude that the average daily duration of these behaviours is linked to
clinically meaningful differences in cognitive function. However, cumulatively
interpreting the available evidence, it seems that reducing mentally passive
sedentary behaviour by replacing it with mentally active behaviour and some
form of physical activity is plausibly of therapeutic value and can be
recommended (279, 287, 288).

In relation to breaking-up sedentary time, it seems that at least some gains can
be expected in terms of physical health and mood (205, 289), which are in turn
associated with cognitive function. As a group, stroke survivors also seem to be
among the more likely to benefit from such a change to habits, as the positive
effects of interrupting prolonged periods of sitting with light-intensity physical

activity are found to be more pronounced in physically inactive individuals (236).

Moreover, as a potential intervention, introducing mentally and physically active
behaviours to break up mentally passive sedentary time is worth considering in
view of its practical advantages. Strategies based on this approach could be
easily tailored to suit individual likes and interests, functional status, and living
conditions, and subsequently be implemented by stroke survivors without the

need for professional supervision, purchasing specialist equipment or travel.

Many of the presented arguments in favour of breaking-up sedentary behaviour
have also been advocated by investigators involved in the RECREATE study
(REduCing sedentaRy bEhaviour After sTrokE ) (290). Insights gained from this
project, beginning from systematic reviews and ending on a multicentre cluster
randomised controlled trial, may indeed find a place in future stroke-specific
clinical guidelines. Presently, however, there is no indication that assessed
outcomes will encompass cognitive function (291), and so it seems that the need
for studies addressing the role of sedentary behaviour in shaping post-stroke

cognitive outcomes has not yet been met.
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4.3.2.2 Research implications

Results of the analyses partially supported my initial assumptions, which may
have a direct application to future research. Firstly, it seems that sedentary
behaviour is associated with cognitive performance independently of physical
activity. As follows, both categories of activity patterns should be accounted for
in prediction model studies, and both can be considered as potential targets for

intervention.

Secondly, distinguishing between different types of sedentary behaviour is a
valid approach, particularly regarding whether their nature is mentally passive
or active, as this could entail opposing effects on cognition. However,
implementing this notion into research practice can present a considerable
challenge, as behaviours plausibly exist on a continuum, and accurately
classifying some of them will require a high level of detail. For example, social
media can be accessed to participate in discussion forums or to watch short
videos for entertainment purposes. Arguably, the former is more cognitively
stimulating than the latter, yet both behaviours would fall under the broad

category of mobile device use.

Fortunately, in the same review where the distinction between the two types of
sedentary behaviour was first proposed, an assessment framework was also
presented (193). The authors suggested considering sedentary behaviour across
three different contexts - occupation, leisure and transport - and provided
mentally active and passive examples relevant to each. Conceptually, this novel
approach seems highly useful in the context of identifying modifiable predictors
of cognitive function, although its feasibility, validity and reliability are yet to

be determined in future studies.

4.3.2.3 Limitations

One of the main limitations of my study was the aforementioned use of self-
reported measures for key predictors of interest, which introduces concerns
around estimate accuracy. Ideally, physical activity would be assessed using an
accelerometer, however, for the UK Biobank such data was not collected until
seven years after recruitment had begun and involved only a fifth of the sample

(292). A similar issue relates to identifying eligible participants for my study.
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Compared to an objective source (e.g. hospital records), relying on self-reported
history of stroke or TIA may increase the risk of both missing relevant cases, as
well as including false positives. In a systematic review of the accuracy of
participant self-report of stroke, the latter problem was indicated as being of
particular concern for large prospective studies, such as the UK Biobank, where
healthy individuals are overrepresented, and stroke prevalence is likely to be
low (293). At the same time, however, based on national stroke prevalence data
and allowing for the “healthy cohort effect”, the authors of the review
estimated that the true prevalence of stroke in the UK Biobank is plausibly under
2%. This aligns with the 1.4% stroke prevalence recorded for the cohort based on

self-report.

Due to sample characteristics, there are also potential concerns around
generalisability, as with many UK Biobank-based studies. Participants in my
study were on average younger, had a higher education and a lower comorbidity
burden than an unselected stroke population (for comparison see 294). Yet, both
inactivity and cognitive problems are likely to be more prevalent in a ‘real
world’ group of stroke survivors, and the associations observed here may be

exacerbated in a dedicated stroke cohort.

A further, related limitation is that | did not have access to data regarding
stroke-related factors, recognised as predictors of cognitive outcome, including:
stroke type, acute symptoms, acute physiology and, most importantly, stroke
severity (23). | attempted to partially adjust for the latter by including disability
among model covariates, serving as a proxy for post-stroke functional deficits
(295). In hindsight, as discussed previously, | also acknowledge the relevance of
controlling for occupation type. However, given the coding of this variable, an
intention to include it in the analyses would have introduced a high level of

additional complexity to my study.

In view of characterising the relationship between activity patterns and post-
stroke cognitive function, it is moreover important to note that | had not
comprehensively addressed the issue of time elapsed between index stroke or
TIA and baseline assessment. While | controlled for this factor in the fully
adjusted and complete models, | did not determine whether it moderated the

associations between physical activity, sedentary behaviour and cognitive
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outcomes. ldentifying in what period following stroke activity patterns are
particularly relevant to cognitive performance may significantly contribute to

planning interventions based on modifying habitual behaviour.

Another, crucial limitation to understanding the nature of studied relationships
stems from the cross-sectional design of my study, precluding causal inference.
Although repeat assessments for the UK Biobank were conducted between 2012
and 2013 (approximately 20300 participants), data on variables of interest were
available for only a small percentage of my study sample (e.g. 290 stroke
survivors completed the verbal-numerical reasoning task at follow-up). As these
attrition rates may have introduced considerable bias, it did not seem feasible

to conduct a longitudinal analysis.

Even with the adopted approach, the extent of missing data was a pronounced
issue in my study, affecting even 2/3 of participants for some of the variables.
This was, however, for the most part due to certain baseline assessment tasks
and questions added at later stages of UK Biobank recruitment. Thus, | assumed
that most of these data were likely missing completely at random, i.e. that
there were no systematic differences between the missing values and the

observed values (296).

Finally, use of the UK Biobank repository entailed relying on results of bespoke
cognitive tasks as measures of cognitive performance, designed to allow brief
assessment on a large scale, without the need for examiner supervision. This
approach, although having practical advantages, poses a considerable challenge
to comparing the developed tests with standard cognitive measures, routinely
administered in research and clinical practice. It also introduces some

uncertainty regarding what cognitive functions are engaged in task completion.

4324 Strengths

Alongside inherent limitations, use of the UK Biobank resource presented
important advantages. | had access to data from a relatively large sample of
stroke survivors - several times larger than most dedicated stroke cohorts.

Further, the wealth of available variables made it possible to control for many
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key factors simultaneously relevant to physical activity, sedentary behaviour and

cognitive function.

It was also the variety of collected information that allowed me to adopt a
relatively novel approach to considering effects of activity patterns - accounting
for both physical activity and sedentary behaviour, and distinguishing between
their different types. To my knowledge, this is the first study to address these
aspects of routine behaviour in relation to cognitive function among stroke
survivors, who as a group are at greater risk of both inactivity and cognitive

impairment.

4325 Future directions

The relationship of post-stroke cognition with habitual physical activity and
sedentary behaviour appears far from unravelled, considering: the scarcity of
existing evidence on this specific topic; the limitations of the present study; and
the complexity of associations, with multiple potential paths of influence,
originating even prior to index stroke (232). As follows, there is a need for
bespoke cohort studies in stroke populations, combining objective measures of
physical activity and sedentary behaviour with self-report to classify types of the
latter, and employing sensitive and widely recognised cognitive assessment
tools. These studies will also need to account for a number of sociodemographic,

health and lifestyle-related factors.

Regarding approaches to analysis, additional insights might be gained by
accounting for mediation effects. Specifically, it could be determined how much
of the overall effect of physical activity and sedentary behaviour on post-stroke
cognition is explained by associations with physical health (e.g. insulin
resistance or risk of recurrent stroke) and mood; and whether there is evidence

for a more direct impact of activity patterns on neurological function.

A better understanding of the considered associations could in turn inform the
design of future interventions. Here, it will be essential to maintain a balance
between the potential to produce clinically meaningful cognitive gains and

feasibility. The efficacy of any intervention will be of little value if in the long

term it cannot be embedded in everyday lives of predominantly older



107

individuals, many of whom experience functional disability, comorbidity, fatigue

and apathy.

Developing such studies as | suggest will undoubtedly require considerable
resources, and consequently, funding constitutes a key issue. One route that
could increase the likelihood of securing financial support could lead through
broadening the scope of this research. As outlined at the beginning of the
chapter, physical activity and sedentary behaviour affect health and well-being
in many ways. If alongside cognition multiple other outcomes were to be
assessed (e.g. mortality, non-fatal adverse events, functional independence,
depression or fatigue), this could expand the range of organisations willing to
fund projects on post-stroke physical activity and sedentary behaviour,
particularly, as so far RECREATE appears as a single large-scale trial in this

specific research landscape.
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4.3.3 Study B results

The distribution among categories of the six considered social engagement
proxies is presented in Table 4-3. Across all models | conducted for Study B,
sample sizes ranged from 1873 to 8266 participants. Similarly as for Study A, in
this chapter | summarised key findings from my analyses, while complete results

are included in Appendix 5, Supplemental Tables 9 to 12.

4331 Reaction time

In unadjusted models, faster reaction times were associated with monthly (beta
= -0.052, 99.7% Cl: -0.095 to -0.009) and weekly (beta = -0.046, 99.7% Cl:
-0.086 to -0.006) family/friend visits as compared to no visits, and participation
in sports as compared to no reported social activities (beta = -0.031, 99.7% Cl:
-0.058 to -0.003). Slower reaction times were associated with loneliness (beta =
0.024, 99.7% Cl: 0.008 to 0.041) and participation in religious group activity
(beta = 0.055, 99.7% CI: 0.026 to 0.085).

After adjusting for demographics, associations with weekly family/friend visits

(beta = -0.043, 99.7% Cl: -0.083 to -0.003), loneliness (beta = 0.020, 99.7% Cl:
0.003 to 0.037), and religious group activity remained significant (beta = 0.048,
99.7% Cl: 0.019 to 0.077). In addition, faster reaction times were predicted by

satisfaction with family relationships (beta = -0.051, 99.7% CI: -0.095

to -0.007).

In fully adjusted models, | found only two proxies of social engagement to be
significant predictors of task performance. Monthly family/friend visits were
associated with 6.5% faster reaction times (beta = -0.063, 99.7% Cl: -0.119

to -0.007), while religious group activity - with 4.8% slower times (beta = 0.047,
99.7% Cl: 0.011 to 0.084). However, in the complete model (Figure 4-6), |
observed no significant associations between any proxies of social engagement
and reaction time. Satisfaction with friendships and frequency of opportunities
to confide in someone were the only variables that did not predict task

performance in any of the models.
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Table 4-3 Distribution among categories of social engagement proxies for study
sample.

Variables

Family/friend visits
Never
Every few months/monthly
Weekly
Daily/almost daily
Missing data

284/8232 (3.4%)
1441/8232 (17.5%)
5241/8232 (63.7%)
1266/8232 (15.4%)
159

Family satisfaction
Satisfied
Missing data

2576/2818 (91.4%)
5573

Friendship satisfaction

Satisfied 2687/2804 (95.8%)
Missing data 5587

Loneliness
Lonely 2060/8212 (25.1%)
Missing data 179

Opportunities to confide in someone
Never
Every few months/monthly
Weekly
Daily/almost daily
Missing data

1638/8022 (20.4%)
955/8022 (11.9%)
1487/8022 (18.6%)
3942/8022 (49.1%)
369

Social activities
None
Sports club/gym
Pub/social club
Religious group
Adult education class
Other group activities
Multiple group activities

Missing data

2880/8333 (34.6%)
694/8333 (8.3%)
1418/8333 (17.0%)
602/8333 (7.2%)
151/8333 (1.8%)
809/8333 (9.7%)
1779/8333 (21.4%)
58
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4.3.3.2 Verbal-numerical reasoning

In unadjusted models, | found that better verbal-numerical reasoning task scores
were associated with engagement in multiple social activities (beta = 0.530,
99.7% Cl: 0.200 to 0.861), while worse scores were associated with reported
loneliness (beta = -0.654, 99.7% Cl: -0.938 to -0.370). In partially and fully
adjusted models, loneliness remained as the only significant predictor of task
performance, associated with an approximately 0.4-point decrease in scores
(beta = -0.417, 99.7% Cl: -0.697 to -0.136, and beta = -0.412, 99.7% Cl: -0.750
to -0.074, respectively).

However, having combined all proxies of social engagement in the complete
model (Figure 4-7), the association with loneliness was no longer significant,
although close to the set threshold (beta = -0.345, 99.7% Cl: -0.704 to 0.013, p =
0.004). Across all models, | observed no significant associations between verbal -
numerical reasoning scores and family/friend visits, satisfaction with

relationships, and frequency of opportunities to confide in someone.

4.3.3.3 Visual memory

Across all models, none of the studied proxies of social engagement significantly
predicted the number of errors in the visual memory task. Figure 4-8 presents

associations with variables of interest in the complete model.

4.3.34 Prospective memory

Across all models including individual proxies of social engagement, my results
indicated that loneliness was the only significant predictor of performance on
the prospective memory task. With reported loneliness, odds of a correct
response on first attempt were lower by 30.5% (OR = 0.695, 99.7% Cl: 0.532

to 0.907) in the unadjusted model, lower by 28.0% (OR = 0.720, 99.7% Cl: 0.543
to 0.955) in the partially adjusted model, and lower by 33.9% (OR = 0.661, 99.7%
Cl: 0.461 to 0.947) in the fully adjusted model. However, in the complete model

(Figure 4-9), the association with loneliness was no longer significant.
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Log reaction time

Monthly family/friend visits vs no visits F @
Weekly family/friend visits vs no visits b
Daily family/friend visits vs no visits b | 4

Satisfied with family life vs not satisfied

Satisfied with friendships vs not satisfied b L
Lonely vs not lonely ——
Monthly confiding vs never ——
Weekly confiding vs never ——

Daily confiding vs never
Social activity: sports vs none

Social activity: pub/club vs none

Social activity: religious group vs none b @
Social activity: education class vs none b L
Social activity: other vs none ——
Social activity: multiple vs none Association with +——@—— Association with
_ better performance worse performance;

-1 -0.75 -0.5 -025 O 0.25 0.5 0.75 1

Standardised coefficients

Figure 4-6 Associations of log reaction time with proxies of social engagement in a
complete model, with 99.7% CI.

Verbal-numerical reasoning score

Monthly family/friend visits vs no visits b @
Weekly family/friend visits vs no visits @
Daily family/friend visits vs no visits L
Satisfied with family life vs not satisfied 00—
Satisfied with friendships vs not satisfied @
Lonely vs not lonely —&—
Monthly confiding vs never ——
Weekly confiding vs never —eT—
Daily confiding vs never
Social activity: sports vs none i«
Social activity: pub/club vs none ——
Social activity: religious group vs none ——
Social activity: education class vs none b L
Social activity: other vs none ———
Social activity: multiple vs none Association with Association with
~_ worse performance better performance >

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Standardised coefficients

Figure 4-7 Associations of verbal-numerical reasoning task scores with proxies of
social engagement in a complete model, with 99.7% CI.
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Log errors in the visual memory task

Monthly family/friend visits vs no visits b J
Weekly family/friend visits vs no visits F @

Daily family/friend visits vs no visits b L
Satisfied with family life vs not satisfied 00—
Satisfied with friendships vs not satisfied F @

Lonely vs not lonely —&—

Monthly confiding vs never
Weekly confiding vs never

Daily confiding vs never

Social activity: sports vs none —er—
Social activity: pub/club vs none ——
Social activity: religious group vs none —T—
Social activity: education class vs none b @
Social activity: other vs none ——
Social activity: multiple vs none Association with ——@—— Association with
< better performance worse performance >

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Standardised coefficients

Figure 4-8 Associations of log errors in the visual memory task with proxies of
social engagement in a complete model, with 99.7% CI.

Correct response on the prospective memory task

Monthly family/friend visits vs no visits b }
Weekly family/friend visits vs no visits
Daily family/friend visits vs no visits F @
Satisfied with family life vs not satisfied 00—
Satisfied with friendships vs not satisfied b @
Lonely vs not lonely —@—
Monthly confiding vs never —e—
Weekly confiding vs never F @
Daily confiding vs never b @
Social activity: sports vs none ——
Social activity: pub/club vs none —@——1
Social activity: religious group vs none b |
Social activity: education class vs none @
Social activity: other vs none F @
Social activity: multiple vs none >—1—< Association with
better performance >
0.2 1 1.8 2.6 3.4 4.2

Odds ratios

Figure 4-9 Associations of a correct response on the prospective memory task with
proxies of social engagement in a complete model, with 99.7% CI.
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4.3.4 Study B discussion

Based on cumulative findings from studies involving animal models, non-stroke
populations and stroke survivors, | hypothesised that proxies of social
engagement would predict post-stroke cognitive performance. My findings
partially supported this assumption, indicating relatively modest task-specific
associations for some predictors of interest, not all of which remained significant
after adjusting for covariates. The experience of loneliness was the only proxy of
social engagement to be associated with most tasks, consistently predicting

poorer performance.

Many studies have reported an association between loneliness and health-related
outcomes, independent even of objective measures of social engagement (297-
300). Similar findings have been reported in relation to cognitive function (301).
Longitudinal studies in the general older adult population indicated that
loneliness is associated with an increased risk of incident dementia and cognitive

decline, and an increased rate of the latter (302, 303).

Considering loneliness in a broader sense, as a subjective measure of social
engagement, it also seems relevant that perceived social support has been
previously identified as a predictor of better performance on word recall and a
measure of executive function (304). The cognitive abilities required for
completion of these tasks were plausibly similar as for the prospective memory
and verbal-numerical reasoning tests here, performance on which was inversely

associated with loneliness.

Finding that a subjective measure of social engagement predicted performance
on a memory-based task is also the one similarity between my results and those
obtained in a previous study investigating cognitive outcomes among stroke
survivors, described in the Introduction (245). Beyond that, a comparison of
observations is rendered difficult by the difference in chosen social engagement
proxies and cognitive tasks. Despite this, there is one conclusion that may be
particularly relevant to my findings. The authors reported that social ties and
emotional support were positively associated with a cognitive summary score,
yet when individual tasks were considered, only performance on one of seven

(word recall) was predicted by social factors.
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In view of this, it seems possible that | would have found significant associations
for more proxies of social engagement or observed greater effect sizes if | had
used a global measure of cognitive function. Considering my results on a task-
specific level, it is also noteworthy that none of my predictors of interest were
associated with visual memory in any of the models. This is consistent with
findings in Study A, where the emerging pattern of results appeared to diverge

for this particular task, indicating a possible source in psychometric properties.

Regarding reaction time, evidence on its predictors seems to be overall
inconclusive, with some studies supporting my findings (305, 306), and others -
not (304, 307). Perhaps most surprising is the observed association between
religious activity and slower reaction times, with a number of existing reports
suggesting a positive relationship between religious engagement and cognition
(308). An accurate interpretation of this discrepancy seems however to exceed
the scope of my analysis, with potentially multiple factors contributing to the
obtained results (309), e.g. relating to used measures of cognitive performance
and religious involvement, uncontrolled relevant variables, and residual

confounding from included covariates.

In addition to unexpected associations, what seems interesting is that the
findings did not support certain expected ones. Specifically, in adjusted models,
participation in social activities did not predict better performance on any of the
cognitive tasks, despite favourable associations being relatively well-
documented at least for sports and adult education (310-314). Regarding the
former, the only finding related to faster reaction times in an unadjusted model
(consistently with results of Study A), which may reflect that the effect was
driven by younger and healthier participants engaging in sports. Thus, once
these factors were controlled for, the association was no longer significant.
Moreover, the “sports” category would not account for non-occupational
physical activities that could be more commonly engaged in by this population,
such as gardening or walking. In relation to adult education, on the other hand,
it may be relevant that very few stroke survivors reported participation in such

an activity (under 2%).

There are also several other explanations to consider, which apply to my findings

more broadly. Firstly, many assumptions arise from studies in the general
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population, and not all may be directly transferable to the context of stroke.
Some proxies of social engagement could also be specifically associated with
cognitive change over time, which given the cross-sectional nature of my data, |
was unable to investigate. The complexity of associations between social
engagement and cognition may further exceed the limits of regression analysis,
with some variables potentially mediating the effects of others (298, 315).
Moreover, my finding that no proxies of social engagement significantly
predicted cognitive performance when combined into one, complete model, may

indicate model overfitting.

4.34.1 Clinical implications

From a person-centred perspective, a particularly concerning finding was that a
quarter of my sample experienced loneliness. Taking into account the risk of
participation bias, as well as a recent report of national survey data (316), this is
likely an underestimation of true prevalence in an unselected stroke population.
Although a negative impact on cognition requires further confirmation, it seems
clear that loneliness is a common problem that can severely compromise an
individual’s well-being. In recognition of this, in 2018 a United Kingdom
government press release announced a planned £20 million investment to help

socially isolated and lonely people (317).

Evidence from studies conducted in the general adult population suggest that
interventions for alleviating feelings of loneliness may indeed be successful (318,
319), yet plausibly there are unique aspects to the experience of loneliness in
stroke, as well as particular considerations regarding intervention delivery (e.g.
overcoming communication difficulties). One research team has indicated plans
to trial an intervention - LISTEN (Loneliness Intervention using Story Theory to
Enhance Nursing-sensitive outcomes) - with stroke survivors, however, result of
this study seem so far unpublished (320, 321).

Until bespoke interventions for diminishing loneliness following stroke are
available, potential avenues of support may be sought within existing resources.
A first step would be to identify stroke survivors who experience loneliness -
asking even just a single question, which could be done at any point of contact

with health services. If flagged as an important issue to the individual, at its
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basic level, provision of help could simply involve informing about local
befriending services and peer support groups, as contact with people who have

similar experiences seems to be of particular merit (322, 323).

4.34.2 Research implications

The value of including loneliness as a candidate predictor in prognostic models
seems so far to have gone unrecognised; while my findings, combined with the
reviewed literature, suggest this factor could indeed contribute to explaining
variance in post-stroke outcomes, independently of demographics, health status,
lifestyle factors and depression. There are also practical advantages worth
considering. Loneliness is a variable that can be easily assessed and despite
being subjective, or perhaps because of it, its meaning seems relatively

unambiguous.

In comparison, interpreting what objective proxies of social engagement truly
represent can be more challenging. Regarding frequency of family/friend visits,
unlike those monthly and weekly, | found that daily visits did not predict faster
reaction times compared to having no visits in any of the models. In part, this
could be due to receiving frequent visits as a result of an individual’s greater
need for external assistance with activities of daily living. In turn, more frequent
visits may reflect less/no support within the household and/or greater functional

and cognitive difficulties.

These findings further prompt the notion that more is not always better, as
social interactions can also be negative. Opposite to the proposed stress-
buffering role of social support, negative social interaction can itself be a source
of stress, including e.g. experiences of hostility, discouragement, shaming,
deceit or violation of boundaries; and has been linked to an increased risk of
disease (324, 325). Moreover, in the specific context of post-stroke recovery,
even support can have its negative aspects, as extending to overprotectiveness,
it may limit opportunities for stroke survivors to engage in certain activities
(326-328). These combined arguments indicate the importance of applying
measures that account for the nature of social interactions, in addition to their
frequency (e.g. how often do you do something enjoyable with a

relative/friend?).
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434.3 Limitations

Many of the limitations discussed for Study A also apply here: employing a cross-
sectional design, identification of eligible participants based on self-reported
medical history, concerns regarding representativeness of the study sample, high
volume of missing data, use of bespoke measures of cognitive function, and
inability to control for certain relevant variables (particularly stroke-related
factors). A further limitation, unique to this study, relates to a lack of
information on basic features of the participants’ social networks, specifically,
their marital status and number of people they live with. Unfortunately, access

to these variables was not covered under the current UK Biobank application.

4.3.4.4 Strengths

My study is one of the few to focus on proxies of social engagement as predictors
of post-stroke cognitive performance. Similarly as in the case of Study A,
important strengths lie in the relatively large sample size and opportunity to
control for multiple variables, plausibly associated with both social engagement
and cognitive performance. Regarding the latter, history of depression
constituted a key covariate, accounting for which allowed to demonstrate that
the effect of some aspects of poor social integration likely extend beyond a
deleterious association with mood. A further strength relates to investigating
different types of social engagement proxies, representing both ends of the

objective-subjective continuum.

4345 Future directions

The associations between post-stroke cognition and social engagement are
undoubtedly complex, likely involving bidirectional effects. Our understanding of
them can be improved through longitudinal studies that not only assess the key
predictors and outcome of interest, but also factors that may explain the
mechanisms underlying these associations, such as differences in physiological
stress markers or likelihood of engaging in behaviours that impact health.
However, it is interventional studies that are ultimately needed to demonstrate
whether improving aspects of social engagement translates to improved post-

stroke cognitive outcome.
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As discussed above, the transferability of interventions that were developed in
the general population to this context may be poor. Thus, before the stage of
bespoke intervention development and implementation is reached, it is
important to identify what factors contribute to limited social engagement
following stroke and which of these stroke survivors find important to address
(as some may result from personal preference). This in turn emphasizes the need
for qualitative studies. The few available publications on this topic seem to
prove how informative such insights can be, having identified issues around: loss
of shared activities with friends, being unable to contribute to one’s
environment, communication barriers, embarrassment around disabilities, and
lack of access to transportation (322, 329, 330).

4.4 Summary

Physical activity, sedentary behaviour and social engagement have so far not
been in the focus of prognostic research in stroke. It is unknown whether the
accuracy of existing prediction models for post-stroke cognitive outcomes would
meaningfully improve after adding such predictors, particularly given their close
link to demographics and health-related factors, which are already commonly
incorporated. Regardless, the value of continuing research in this direction
seems to predominantly lie in identifying novel targets for intervention.
Modifying aspects of habitual activity patterns and social engagement could
potentially be achieved through means feasible and acceptable to stroke

survivors, and improve more outcomes following stroke than just cognition.

Although | conducted two independent studies, this was not in support of an
outlook that these factors of interest should be addressed separately. On the
contrary, there is evidence indicating that targeting them simultaneously could
be of particular benefit. A systematic review of studies in stroke populations
concluded that social support is an important motivator for engaging in physical
activity (234); while in the general population, findings suggest a bidirectional
relationship, where loneliness may reduce the probability of being physically

active, and physical activity decreases feelings of loneliness (331).

Regarding which specific aspects of physical activity, sedentary behaviour and

social engagement are important to target, my most consistent observations
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indicated that cognitive performance was positively associated with computer
use (a mentally active sedentary behaviour), and negatively associated with
watching TV (a mentally passive behaviour) and experiencing loneliness.
However, given multiple study limitations, these results should be viewed as
hypothesis-generating rather than definitive. Unfortunately, until bespoke
studies addressing these topics are conducted, future research is likely to face

similar challenges.

Large population-based general-purpose cohort studies have many key strengths.
However, when focusing on a particular condition (such as stroke, here), the
available sample size considerably decreases and information specific to that
condition is often lacking, and thus cannot be accounted for. Conversely,
datasets from clinical sources are likely to include such information and also
offer greater certainty regarding sample representativeness. Yet, apart from
data on commonly recognised risk factors, such as smoking and alcohol intake,
little or no insight is provided regarding individuals’ everyday life activities and

experiences.

Fortunately, this does not imply that existing clinical datasets have no
application to investigating potentially modifiable predictors of post-stroke
cognition. Given that: i) at least part of the effect of lifestyle factors and life
experiences on cognitive impairment and decline is driven by detrimental
changes to health, and ii) some diseases can be alleviated or even reversed; one
avenue for using clinical data to its best advantage may be through determining

the associations between post-stroke cognition and comorbid conditions.
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Chapter 5 Cardiovascular risk factors as
predictors of acute post-stroke cognitive function:

Are there two sides to this story?

In the previous chapter, | presented two studies investigating the relevance of
potentially modifiable factors to cognitive function following stroke, with a
specific focus on habitual physical activity, sedentary behaviour, and social
engagement. In the section on Routes to affecting cognition that formed part of
my introduction, | indicated that the impact of these factors is considered as at
least partially driven by modifying cardiovascular risk burden (particularly in
relation to physical activity patterns). Interestingly, however, findings from
observational studies and trials of interventions to alleviate cardiovascular
diseases are not consistent in supporting a link between variation in such risk

factors and post-stroke cognitive outcomes.

In this chapter, | argue that (to some extent) neutral results could be due to the
complexity of these associations, which may involve differing paths of influence
and interactions between comorbid conditions. To test my assumptions, |
developed a moderated mediation model, using data from a hyper-acute stroke
unit setting. This chapter is an adaptation of my published work (332), with

edited and expanded Methods, Results and Discussion sections.

5.1 Introduction

Many studies have investigated the effects of prevalent cardiovascular risk
factors on post-stroke cognition (23, 25, 333). This interest seems unsurprising
given the high comorbidity burden among stroke survivors, encompassing
conditions recognised as predictors of age-related cognitive decline and
dementia, such as: diabetes mellitus, hypertension, coronary and peripheral
vascular disease, atrial fibrillation, and previous stroke (334-337). Interestingly,
despite a strong premise to assume the relevance of cardiovascular risk factors
to post-stroke cognition, only two of eleven prognostic rules described in

Chapter 3 included a predictor of this type. In part, this could be due to actual
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evidence on the associations between comorbid conditions and post-stroke

cognitive function appearing inconclusive or conflicting (e.g. see 23, 145).

One possible explanation for the inconsistency of observations relates to the
complexity of this relationship. Cardiovascular conditions often pre-date
incident stroke and so it seems plausible that to some degree post-stroke
cognitive impairment is a manifestation of precursory vascular
neurodegenerative processes (338, 339). However, the effect of cardiovascular
risk factors on post-stroke cognition is likely not only driven by gradual
neurodegeneration. Certain conditions are associated with stroke severity, which

is in turn a major determinant of cognitive outcome.

Intuitively, it seems that the presence of cardiovascular diseases should be
consistently detrimental across outcomes. Indeed, this seems to be the case for
atrial fibrillation, which is associated with both higher incidence of dementia
and the most severe ischaemic stroke subtype - cardioembolic infarction (17,
340, 341). However, the effects of other cardiovascular risk factors on cognitive
function may be more equivocal, particularly where the pathophysiological
processes they contribute to trigger endogenous adaptive mechanisms. For
example, transient ischaemia has been reported to induce a state of “ischaemic
tolerance” or “preconditioning® that temporarily protects tissue from
subsequent, persistent ischaemia (342). Evidence from observational studies
suggests that this phenomenon, which is consistently demonstrated in animal
models, may also occur in clinical practice. In cases of stroke, prodromal TIA has
been associated with less severe symptoms, smaller infarct volumes, and better

functional outcomes (343-345).

A similar example relates to vascular disease. Its most common forms involve
build-up of atherosclerotic plaque, leading to narrowing of vessels and thus
reduction of blood flow (346). Although this is a progressive pathological
process, it may support the advantageous development of collateral circulation.
In the event of arterial occlusion, robust collaterals sustain perfusion, helping to
maintain nutritive tissue needs (347, 348). Following stroke specifically,
efficient collateral circulation has been associated with favourable clinical
outcomes, including an improved response to thrombolytic and recanalisation
therapy (349, 350).
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To add further complexity, manifestation of the described putative protective
mechanisms may be affected by comorbidity. Observations from clinical and
preclinical models suggest that both hypertension and diabetes may impair the
development of collaterals (346, 351-355), while diabetes also precludes
ischaemic tolerance (356, 357). These findings, therefore, highlight that

cardiovascular risk factors may not only co-occur but also interact.

In this context, it seems that the traditional approach to data analysis, involving
use of multivariable regression models, may have been insufficient to capture
the true nature of associations between cardiovascular diseases and post-stroke
cognition. In its basic form, the method can only identify those factors directly
associated with an outcome, while remaining factors are held constant. As such,
it does not allow us to explore the potential for multiple routes of predictor
impact, nor the interaction between co-occurring diseases. It is therefore
possible that neutral results, reported from some of the previous studies, stem

from the duality or conditionality of considered effects.

In my study, | aimed to investigate how cardiovascular risk factors can affect
cognitive function in the acute phase after stroke, through influence on stroke

severity and prior cognitive impairment. | specifically hypothesised that:

e previous TIA and vascular disease may have differential effects on acute
post-stroke cognitive function depending on the path of influence,
possibly predicting poorer performance through an increased risk of
prevalent dementia, while predicting better performance through an

association with reduced stroke severity;

¢ a favourable effect of vascular disease on stroke severity, and in turn on
acute cognitive performance, may be conditional on the absence of

hypertension and diabetes;

e a favourable effect of previous TIA on stroke severity, and in turn on
acute cognitive performance, may be conditional on the absence of

diabetes.
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5.2 Methods

The dataset used for my analyses is part of a larger research database. The West
of Scotland Research Ethics Committee approved the primary project on the 4th
of February 2016 (16/WS/0001). As data collection was embedded in routine
clinical care, and patient information was fully anonymised prior to archiving,
obtaining written informed consent from participants was not required. | based
the design and conduct of the present study on recommendations from recent
works, summarising theoretical and practical approaches to development of

mediation and moderation models with an emphasis on best practice (358, 359).

5.2.1 Study setting and participants

Participants were consecutive patients admitted to the hyper-acute stroke unit
of Glasgow Royal Infirmary. The unit provides high dependency level clinical
care, accepting all cases of suspected stroke and TIA, regardless of preadmission
physical and cognitive function. Collection of anonymised data took place in four
waves: May 2016 to February 2017, April to June 2017, October to December
2017, and July to August 2018. For the purposes of this study, | excluded
patients for whom a diagnosis of stroke or TIA had been ruled out by the clinical

team.

5.2.2 Data collection

Together with four other trained researchers, we used medical records and data
collected by the clinical team during acute admission to extract information on
basic demographics, pre-existing medical conditions, and findings from
neurological examinations. We additionally acquired cognitive data through
directly administering a cognitive screening test, which | describe in detail in

a subsequent section.

5221 Predictors

Based on indications from previous research, | included cardiovascular risk
factors with a plausible association with post-stroke cognitive function: vascular
disease (peripheral and coronary), atrial fibrillation, hypertension, diabetes
mellitus, previous stroke, and previous TIA. The clinical process in the stroke

service is for these data to be confirmed from at least two sources, and includes
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information from both primary and secondary care records. | coded all risk
factors as either present or absent. | additionally accounted for basic

demographics of sex and age, the latter treated as a continuous variable (years).

5222 Mediators

The first mediator | included in the model was stroke severity, assessed using
the NIHSS (71, 72). Where a specific NIHSS score had not been documented by
the clinical team, the researcher responsible for data collection would
retrospectively derive a score based on findings from acute neurological
examinations, described in patient notes (360). As per emergency department
triage policy, examination is performed immediately upon hospital admission
and then confirmed in the hyper-acute stroke unit, noting any changes in initial
signs (resolution or progression). For inclusion in the analysis, | categorised
NIHSS into four groups: no stroke signs (score of 0), minor stroke (score of 1 to
4), moderate stroke (score of 5 to 15), and severe stroke (score of 16 to 42)
(361).

The second mediator was a formal diagnosis of dementia prior to incident stroke
or TIA. This information was obtained from primary or secondary care medical
records, including reports from mental health services. In the United Kingdom,
dementia is diagnosed by specialist (secondary) care providers, based on the

International Classification of Diseases (ICD) criteria (362).

5.2.2.3 Cognitive performance

Our research team assessed cognitive performance within a week of stroke or
TIA, using a test battery of 13 items, comprising Hodkinson’s Abbreviated Mental
Test (AMT-10) (363, 364) and a short-form version of the MoCA (77). The
following tasks were included: stating one’s age, current time to the nearest
hour, date, place, recognition of two people, date of birth, year World War |
began, name of current Prime Minister, months of the year listed in a backwards
order, five-word recall, clock draw, recent news item, and verbal fluency (words
beginning with “f”). Clock draw was the only task to be scored out of 3 points
(face, number, hands), with remaining items assigned a single point, summing up

to a maximum total of 15.
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For the purpose of this study, | considered outcome data to be missing under
three conditions: (i) the patient refused to participate; (ii) the patient was
discharged prior to assessment; (iii) the assessment was initiated but could not
be completed due to external circumstances, e.g. to avoid disruption to work
carried out by the clinical team. If a patient was unable to complete a particular
task due to an existing impairment (e.g. aphasia or limb weakness), | assigned a

score of zero for that item, including it in the sum score (365).

In cases where the severity of the patient’s condition (e.g. altered level of
consciousness, agitation) precluded from attempting the assessment altogether,

| entered a total score of -1. This approach, where an untestable status is
assigned the lowest possible score, mimics the scoring system applied in delirium
screening (66, 67). It allowed me to minimise missing data and avoid exclusion of
participants with the most severe presentation. For inclusion in the analysis, |
divided cognitive scores of all participants into quintiles, creating the following
groups: (i) scores from -1 to 2, (ii) scores from 3 to 8, (iii) scores from 9 to 11,

(iv) scores of 12 and 13, and (v) scores of 14 and 15.

5.2.3 Statistical analysis

| developed a first stage dual moderated mediation model for prediction of
cognitive performance, with two parallel mediators - stroke severity and
previous diagnosis of dementia (Figure 5-1). Although it was possible to model a
number of different moderation effects, | focused on three interactions most
consistently demonstrated by existing evidence (346, 351-357). Namely, |
hypothesised that mediation of the effect of vascular disease and previous TIA
on the outcome through stroke severity may be moderated by the presence of

diabetes (in both cases) and hypertension (for vascular disease only).

Given that mediation analyses assume causal relationships, | aimed to build a
model the structure of which would reflect the actual temporal order of
occurrences. This order was definite for paths mediated by stroke severity (with
cardiovascular risk factors present before the index stroke/TIA, and the
cognitive assessment taking place after) and appeared plausible for paths
mediated by dementia, with evidence suggesting that cardiovascular diseases

would have likely developed in earlier stages of life.
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Figure 5-1 Conceptual diagram of the proposed dual moderated mediation model
with two parallel mediators for acute cognitive performance.

| analysed the data within a path analysis framework, using structural equation
modelling (SEM) software, Mplus version 8.3 (366). As the outcome of interest
was an ordinal variable, | estimated associations with predictors and mediators
based on a probit regression, using a robust weighted least squares mean and
variance-adjusted estimator (WLSMV). Missing data were handled as per software
default, that is, cases with missing data on predictors were removed from the
analysis, while missing outcome and mediator data were estimated as a function

of the observed predictors (367).

The moderated mediation analysis involved regressing cognitive performance on
both mediators and the eight predictors, while regressing each mediator on the
eight predictors. In line with my hypothesis, | also regressed stroke severity on
three interaction terms (TIA x diabetes mellitus, vascular disease x diabetes
mellitus, vascular disease x hypertension). As | based decisions regarding

inclusion of variables in the analysis on research evidence, in order to avoid
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model overfitting, | intended to retain all predictors and both mediators,
regardless of path significance. However, in order to achieve a more
parsimonious model, | planned to remove nonsignificant interaction terms (368).
| used estimates obtained through the regression analysis to calculate indirect

effects, applying a product of coefficients approach (359, 369).

For significant interaction terms, | quantified the indices of partial mediated
moderation. Using the more complex case of vascular disease as an example,
this entailed estimating how much the mediated effect of this factor on
cognitive performance changed depending on the following: firstly, the presence
or absence of diabetes mellitus, assuming absence of hypertension (held fixed,
as all other predictors); secondly, the presence or absence of hypertension,
assuming absence of diabetes mellitus (370). | then probed the partial
moderated mediation effects to establish for what specific combination of
factors (four options based on presence vs absence of diabetes and
hypertension) vascular disease had a significant conditional indirect effect on
cognitive performance. Based on the same principles, | planned to apply a
simplified version of this procedure to estimate the conditional indirect effect of

TIA, depending on the presence or absence of diabetes.

| determined the significance of individual paths and indirect effects through
constructing bias-corrected bootstrap confidence intervals, based on drawing
1000 bootstrap samples. This method is recommended as one that does not
assume normal sampling distribution and offers greater precision for calculating
confidence intervals compared to alternatives (371, 372). There are currently no
consensus guidelines regarding sample size requirements in SEM. However,
previous simulation studies applying bootstrapping have determined that to
detect small mediation and moderated mediation effects (estimate = 0.14) with

80% power, a sample of nearly 500 participants is required (373, 374).

To provide information on the magnitude of mediated effects, | calculated the
proportion-mediated effect size - a ratio of the specific indirect effect to the
total effect of a predictor (375). This is considered an intuitive measure and is
easily extrapolated from a simple to a multi-mediator model (358). Expecting
that the direct and indirect effects of a single predictor may be of opposite

signs, | planned to use absolute coefficient values (376).
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5.2.4 Additional analyses

Recognising the potential bias from assumptions about missing data, | repeated
the described procedures in a sensitivity analysis, using a more conservative
approach. Namely, | excluded participants who due to an existing impairment

did not complete particular tasks within the cognitive assessment.

Further, to examine how use of different analysis strategies may impact
findings, | additionally conducted a basic multivariable regression, as commonly
employed in previous studies. Specifically, | entered stroke severity and prior
dementia into the model alongside all other predictors, thus regressing cognitive

performance on a total of 10 variables (Figure 5-2).

Age

Sex

Previous
stroke

Previous TIA

Cognitive
Atrial | performance
fibrillation

Vascular
disease

Diabetes
mellitus

Hypertension

Stroke
severity

Prior
dementia

Figure 5-2 Conceptual diagram of a basic multivariable regression model with acute
cognitive performance regressed on 10 predictors.
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A total of 703 patients were screened during the study recruitment waves. From

this sample, 109 were given a final diagnosis other than stroke or TIA, leaving

594 participants fulfilling my inclusion criteria. Table 5-1 presents characteristics

of the study sample. A correlation matrix for variables incorporated in the model

is provided in Appendix 6. As seven patients had missing data on predictor

variables, 587 participants were included in the final analysis.

Table 5-1 Characteristics of study sample.

Variables

Age (years)
Range
Median (IQR)
Missing

26 to 100
72.0 (21.0)
2

Sex (female)
N (%)
Missing

269 (45.3%)
0

Previous stroke

N (%)

136 (22.9%)

Missing 0
Previous TIA

N (%) 40 (6.7%)

Missing 0

Atrial fibrillation
N (%)

Missing

108 (18.2%)

5

Diabetes mellitus
N (%)

Missing

124 (20.9%)

5



Table 5-1 Baseline characteristics of study sample. Continued

Variables

Hypertension
N (%) 316 (53.2%)
Missing 5

Vascular disease

N (%)

149 (25.1%)

Missing 5

Prior dementia
N (%) 57 (9.6%)
Missing 0

Stroke severity (NIHSS score, range: 0 - 42)
Range for sample 0 to 31
Median (IQR) 3.0(1-5)

Categories

No stroke signs, N (%)

Mild, N (%)

Moderate, N (%)

93 (16.1%)
321 (55.4%)
128 (22.1%)

Severe, N (%) 37 (6.4%)
Missing 15
Cognitive test score (range: 0 - 15)
Range for testable participants 0to 15
Median for testable participants (IQR) 11.0 (8 - 13)
Untestable participants, N (%) 101 (17.0%)
Missing 22

130

IQR indicates interquartile range; NIHSS, National Institutes of Health Stroke Scale; TIA, transient

ischaemic attack.
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5.3.1 Final model structure and properties

As described in the Methods section, the initial model included three interaction
terms. However, preliminary results indicated that the interaction term of TIA
and diabetes mellitus was not significantly associated with stroke severity (p =
0.560) and, therefore, | removed it from the model. Subsequent findings
suggested a trend for the remaining two interaction terms, between vascular
disease and diabetes mellitus (p = 0.057) and vascular disease and hypertension
(p = 0.056), and so | opted to retain them. Consequently, the final model
differed from that presented in Figure 5-1 in only one aspect, namely, | did not
consider diabetes as a moderator for the effect of TIA on stroke severity (Figure
5-3).
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severity
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\
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Previous

stroke N

Previous TIA f———
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Vascular | —

disease

Diabetes
mellitus

Prior
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Hypertension

Figure 5-3 Conceptual diagram of the final moderated mediation model with two
parallel mediators for acute cognitive performance.

For this model, the chi-square statistic indicated no significant discrepancy
between the observed and model-estimated covariance matrices: X2= 6.580,

p = 0.254. Additional recommended fit indices confirmed good model fit: Root
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Mean Square Error of Approximation (RMSEA) = 0.023, Comparative Fit Index
(CF1) = 0.995, and Standardised Root Mean Square Residual (SRMR) = 0.030 (377).

Overall, my model explained RZ = 62.10% of variance in cognitive test scores.

5.3.2 Associations between predictors and mediators

More severe strokes were associated with age and atrial fibrillation, while

severity decreased with a history of previous TIA (Table 5-2). The observed

associations with interactions terms, just above the threshold of statistical

significance, suggested opposing effects of vascular disease, depending on the

presence of diabetes mellitus and hypertension. Co-occurring with the former, it

appeared potentially associated with greater stroke severity, while co-occurring

with the latter - with less severe presentation. Predictors of prior dementia

included age and previous stroke. | also observed a trend for an association

between dementia and history of vascular disease (p = 0.054).

Table 5-2 Direct associations between predictors and stroke severity, dementia
and cognitive performance.

Unstandardised coefficients (95% bias-corrected Cl)

Stroke severity

Prior dementia

Cognitive performance

Age

Sex (female)
Previous stroke
Previous TIA
Atrial fibrillation
Diabetes
Hypertension
Vascular disease

Vascular disease

x diabetes

Vascular disease

x hypertension

0.012 (0.004, 0.019)*
-0.031 (-0.210, 0.180)

0.008 (-0.217, 0.222)

-0.512 (-0.934, 0.147)*

0.355 (0.075, 0.609)*
-0.025 (-0.274, 0.209)
0.076 (-0.146, 0.301)

0.002 (-0.405, 0.374)

0.466 (-0.031, 0.924)

-0.486 (-0.971, 0.016)

0.059 (0.039, 0.078)*

-0.098 (-0.458, 0.248)

0.538 (0.176, 0.932)*

-0.342 (-3.886, 0.279)

0.145 (-0.270, 0.554)

-0.028 (-0.636, 0.535)

-0.133 (-0.571, 0.377)

0.611 (-0.051, 1.246)

0.003 (-0.016, 0.027)

-0.264 (-0.588, 0.046)

0.230 (-0.129, 0.649)

-0.141 (-2.136, 0.510)
-0.092 (-0.464, 0.279)
-0.041 (-0.604, 0.508)

-0.065 (-0.502, 0.364)

0.390 (-0.178, 1.127)

*Significant at p < 0.05

Cl indicates confidence interval; TIA, transient ischaemic attack.
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5.3.3 Direct effects on cognitive performance

The results indicated that both mediators were associated with acute post-
stroke cognitive performance: coefficient = -0.748, 95% bias-corrected Cl: -0.963
to -0.572 for stroke severity; coefficient = -0.720, 95% bias-corrected Cl: -1.096
to -0.444 for dementia. However, | observed no significant direct effects of

included predictors on cognitive performance.

5.3.4 Indirect effects on cognitive performance
5.34.1 Effects mediated through stroke severity

| found that age had a negative specific indirect effect on cognitive performance
(Table 5-3), with 16.36% of the absolute overall effect of age on cognition
mediated by stroke severity. Poorer cognitive outcome was also indirectly
associated with a history of atrial fibrillation, with a proportion-mediated effect
size of 57.45%. Conversely, | observed improved cognitive performance through a
specific indirect effect of previous TIA, which constituted 49.68% of the absolute

overall effect.

The indices of partial mediated moderation suggested a trend for both estimated
conditional indirect effects of vascular disease on cognition through stroke
severity (p = 0.077 for both diabetes mellitus and hypertension). Through
probing, | found that vascular disease produced a significant positive effect on
performance under only one condition - where there was a history

of hypertension without diabetes mellitus (estimate = 0.362, 95% bias-corrected
Cl: 0.032 to 0.675; p = 0.024). The proportion-mediated effect size was 30.37%.

5.3.4.2 Effects mediated through prior dementia

In relation to the second mediator, dementia, | observed that previous stroke
had a negative specific indirect effect on cognition, constituting 62.12% of the
absolute overall effect. Despite the noted trend for an association between
dementia and vascular disease, the specific indirect effect of this risk factor on
cognitive performance did not reach statistical significance (p = 0.089). Age,
therefore, was the only predictor to exert a significant negative indirect effect
on cognition through both mediators. Compared to stroke severity, dementia

conveyed a considerably larger portion of its overall absolute effect - 78.18%.
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Table 5-3 Indirect associations between predictors and cognitive performance.

Unstandardised coefficients (95% bias-corrected Cl)

Effects mediated Effects mediated

through stroke severity through prior dementia
Age -0.009 (-0.015, -0.003)* -0.043 (-0.069, -0.024)*
Sex (female) 0.023 (-0.145, 0.172) 0.071 (-0.186, 0.349)
Previous stroke -0.006 (-0.175, 0.168) -0.387 (-0.753, -0.130)*
Previous TIA 0.383 (0.083, 0.745)* 0.247 (-0.218, 2.152)
Atrial fibrillation -0.266 (-0.493, -0.052)* -0.105 (-0.479, 0.202)
Diabetes 0.019 (-0.161, 0.207) 0.020 (-0.398, 0.516)
Hypertension -0.057 (-0.244, 0.109) 0.096 (-0.278, 0.476)
Vascular disease -0.002 (-0.297, 0.322) -0.440 (-0.981, 0.064)

Vascular disease
-0.349 (-0.748, 0.030)
x diabetes

Vascular disease
) 0.363 (-0.032 - 0.759)
x hypertension

*Significant at p < 0.05

Cl indicates confidence interval; TIA, transient ischaemic attack.
5.3.5 Results of additional analyses

For the sensitivity analysis, | excluded 38 participants who due to existing
impairments were not able to complete particular cognitive tasks. Estimates of
direct and indirect effects are presented in Appendix 7, Supplemental Tables 13
and 14. Overall, the findings were similar to those obtained through the main
analysis, with differences specifically relating to associations with dementia.
Namely, | found a reversed pattern for dementia predictors, where here the
association with vascular disease was statistically significant and with previous
stroke - at trend level (p = 0.056). Moreover, the indirect effect of previous

stroke on cognition did not reach statistical significance (p = 0.080).

Results of the alternative, basic regression model resembled the direct
associations | observed for the moderated mediation analysis, although here
three variables were significantly associated with poorer cognitive performance.
These included: stroke severity (estimate = -0.753, 95% bias-corrected Cl: -0.875
to -0.626; p < 0.001), dementia (estimate = -0.995, 95% bias-corrected Cl: -1.321
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to -0.685; p < 0.001) and age (estimate = -0.028, 95% bias-corrected Cl: -0.037
to -0.021; p < 0.001). The model explained R2 = 45.10% of variance in cognitive

performance.

5.4 Discussion

The results of my study provide evidence for the role of stroke severity and prior
cognitive impairment in mediating the effects of specific cardiovascular risk
factors on acute cognition. Some of my findings were in line with previously
reported associations and seem intuitively correct. Poorer cognitive performance
was associated with: atrial fibrillation through increased stroke severity;
previous stroke through increased risk of prevalent dementia; and with age
through both mediators. Importantly, however, | also obtained results which
contradict the concept that comorbidities have consistently adverse effects on
outcome. Specifically, | found that previous TIA and vascular disease -
considered risk factors for cognitive impairment - may be related to better acute

cognitive performance through alleviating stroke severity.

At the same time, not all findings supported my hypotheses. Perhaps most
interestingly, | observed that the likely positive effect of vascular diseases on
cognition was conditional on the simultaneous absence of diabetes and history of
hypertension. | assumed that the latter would be detrimental, with previous
studies showing that high acute blood pressure, a state often seen in patients
with chronic hypertension (378), is associated with poorer prognosis after stroke
(379).

It seems, therefore, that the relationship between hypertension and post-stroke
outcomes may be indeed more complex than previously suggested, as
demonstrated in a recent clinical study (380). The authors found that in cases of
major stroke reperfusion, acute high blood pressure was associated with better
collateral flow and thus decreased infarct growth and better clinical outcomes,
while the opposite was observed for patients without reperfusion. Yet, in
relation to my results, it is important to note that the indices of partial
mediated moderation did not reach statistical significance, and so | cannot
conclude that there is indeed a difference in the effect of vascular disease on

cognition between patients with and without diabetes and hypertension.
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5.4.1 Clinical implications

As concluded in Chapter 3, at present none of the existing prognostic rules for
post-stroke cognitive impairment can be recommended for clinical use.
Nonetheless, the conducted model development studies provide important
insight into what factors are most relevant to post-stroke cognitive function. My
findings add to this knowledge, highlighting the need to account for comorbidity
and the potential for risk factors not only to co-occur, but also interact.
Although further confirmation is necessary, it seems plausible that for patients
with a history of TIA and vascular disease with hypertension, the risk of cognitive
impairment could be underestimated. Such individuals are more likely to present
with less severe strokes, while still being prone to the progressive

neurodegenerative effects of these conditions, demonstrated in previous studies.

5.4.2 Research implications

The findings indicate that the prevalent use of basic multivariable regression
models to determine predictors of post-stroke cognitive function may be overly
reductionist. Results of the additional analysis showed that if | were to rely on
the same approach, | would not have observed any significant associations
between cardiovascular risk factors and acute cognitive performance. Taking
into account that effects may differ in direction depending on the path of
influence is an important consideration for future studies. The aims would be to
improve outcome prognosis and investigate the detrimental role of comorbidity,

or the benefits of endogenous adaptive mechanisms and disease management.

5.4.3 Strengths and limitations

The study sample was representative of a real-world stroke population. My
method of scoring and coding performance on the cognitive screen allowed to
avoid exclusion of patients with the most severe impairments, thus reducing risk
of bias. At the same time, | conducted a sensitivity analysis in a subgroup of
participants with complete cognitive data to reflect a more conservative
approach. Further, in the conduct of this research, | strove to adhere to current

best practice guidelines for mediation and moderated mediation analysis.
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The data collection protocol, however, was not specifically designed for this
work and, in turn, not all relevant information was accessible. This was the case
for education - an important covariate to consider, given associations with both
cognitive performance and cardiovascular risk factor prevalence and outcomes
(381). There was also limited data describing participant index stroke. While | as
was able to include stroke severity as an essential component of my model, |
could not account for other plausibly relevant features, such as infarct location,

volume, or the stroke mechanism (e.g. cardioembolic or small vessel occlusion).

Further, although the idea for the study was inspired by concepts around
endogenous adaptations, processes underlying analysed associations cannot be
investigated without accounting for additional variables, for example, the extent
of cerebral collateral development, or time elapsed between previous TIA and
subsequent stroke. However, even with information regarding the latter, it
would be very difficult to assess in an observational study whether ischaemic
preconditioning indeed occurs (382). While a number of publications have
reported that TIA reduces the impact of subsequent ischaemia (as | described in
the Introduction to this Chapter), some have found no such association, or even
observed a trend toward greater disability following strokes preceded by TIA
(382-384). Individual heterogeneity among stroke survivors, and the specific
aetiology of cerebral infarction, are likely to influence the apparent relationship

between prior TIA and short and long-term post-stroke outcomes (385).

In view of the above, it is important to also consider alternative explanations for
the effects of TIA and vascular disease on alleviating stroke severity, which |
observed in my study. The role of treatment, which | was not able to control for,
seems of particular relevance here. Specifically, research findings suggest that
aspirin, routinely administered following TIA, reduces the severity of early
subsequent stroke (386), while statins, prescribed in cases of vascular disease,

enhance collateral circulation (387, 388).

Further study limitations relate to a retrospective assessment of risk factors
from medical case records, as it is possible that relevant conditions had not been
noted or even diagnosed. Of particular concern is correct identification of prior
TIA cases. Low public awareness of TIA symptoms and significance (253), coupled

with a transient nature, may result in omitting to seek professional help, and so
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having no record of the event. Multiple factors may have also contributed to
underdiagnosis of dementia, which according to research evidence is a common
issue (389); while milder forms of cognitive impairment prior to incident stroke
were not captured through data collection at all. Dichotomisation based on a
formal diagnosis of dementia imposes an assumption that people are either
cognitively intact or have a severe form of cognitive impairment, which does not

reflect the true, gradual nature of cognitive deterioration.

Finally, the focus and thus conclusions of this study are restricted to acute
cognitive outcome. In this context, it is important to note that longitudinal
studies have demonstrated considerable individual changes in cognitive status
between the acute and chronic stages following stroke (29, 390, 391).
Nonetheless, early post-stroke cognitive impairment has been shown to be a
predictor of future outcomes, both cognitive and functional (392). Moreover, in
healthcare settings, for many stroke survivors, the only opportunity to undergo a

cognitive screen may be during hospital admission.

5.4.4 Future directions

Ideas and the motivation for future research on this topic largely stem from the
study limitations discussed above. A better understanding of the associations
between cardiovascular diseases and post-stroke cognition could be achieved by
accounting for variables relevant to the presence of pathology-driven protective
adaptations and treatment effects. Capturing milder forms of prior cognitive
impairment, on the other hand, could render more precise estimates for the

strength of mediated effects, which here could have been underestimated.

Further, it seems important to explore how the role of comorbidity in shaping
cognitive outcomes may differ across time. It is possible that some factors, for
which | found no evidence of an unconditional, independent effect on acute
cognition (e.g. diabetes), are more relevant to longer-term outcome. Similarly,
observed associations might vary depending on whether cognitive function is
considered at a single timepoint or in terms of changes in status over time. It is

these issues that will be the focus of my final study.
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5.5 Summary

In this study, | found that the effects of specific cardiovascular risk factors on
acute post-stroke cognitive function are partially mediated through stroke
severity and prior dementia. Not all of these effects were detrimental. Vascular
disease, conditional on the presence of hypertension and absence of diabetes,
and previous TIA seemed associated with better cognitive performance through
reduced stroke severity. My observations highlight the complexity of associations
between cardiovascular risk factors and post-stroke cognition. In this context,
basic multivariable regression models may be overly reductionist, leading to the

misidentification of important, potentially casual relationships.
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Chapter 6 The Assessing Post-stroke
Psychology Longitudinal Evaluation (APPLE)

study: Design, participants, and data collection

In light of limitations affecting my two previous studies, | have mentioned the
important advantages the availability of a bespoke stroke cohort, with
longitudinal cognitive follow-up, could have to progressing prognosis research on
post-stroke cognitive change. The next three chapters of my thesis are founded
in my opportunity to contribute to developing such a resource - the Assessing
Post-stroke Psychology Longitudinal Evaluation (APPLE) dataset. From recruiting
participants and conducting assessments, to quality control of documents
received from multiple, external research sites, to resolving queries generated
by an independent clinical statistics service - work on APPLE constituted the
single greatest task during my PhD studentship. Before reporting on my use of
this dataset to address my specific thesis aims, | give an overview of the APPLE
project, with a particular focus on inclusion criteria, the consent process, and

participant assessments.

6.1 Key features

APPLE was a multicentre, prospective cohort study, developed with an
overarching aim to improve our assessment and understanding of the short and
longer-term neuropsychological consequences of stroke. Specifically, by
following participating stroke survivors from the acute or subacute phase for an

18-month period, the project sought to:

1. assess the prevalence of mood and cognitive disorders prior to index

stroke;

2. assess the accuracy and utility of brief cognitive tests and questionnaires

addressing mood and subjective experiences post-stroke;

3. describe change in post-stroke cognitive function and mood over time.
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APPLE was embedded within the NHS, with Ethics Committee and local Research
& Development department approvals for all involved hospital sites (Research
Ethics Committee number: 16/55/0105). The project was funded by a joint grant
from the Stroke Association and Chief Scientist Office of Scotland (funding
reference: PPA 2015/01_CSO). The study protocol was registered on Research

Registry (www.researchregistry.com; ID: researchregistry1018).

6.2 Participants and setting

Study participants were recruited from acute stroke units and outpatient stroke
clinics of 11 hospital sites across the UK, including: the Glasgow Royal Infirmary
(NHS Greater Glasgow & Clyde [NHS GGC]), Queen Elizabeth University Hospital
(NHS GGC), Royal Alexandra Hospital (NHS GGC), University Hospital Monklands
(NHS Lanarkshire), University Hospital Hairmyres (NHS Lanarkshire), Forth Valley
Royal Hospital (NHS Forth Valley), Queen Margaret Hospital (NHS Fife), Perth
Royal Infirmary (NHS Tayside), Aberdeen Royal Infirmary (NHS Grampian),
Morriston Hospital (NHS Wales), and Charing Cross Hospital (Imperial College
Healthcare NHS Trust). Participating sites admitted all adult cases of suspected

stroke or TIA, regardless of premorbid physical and cognitive function.

Recruitment for APPLE took place between November 2016 and February 2019,
involving both stroke survivors and informants. The Glasgow Royal Infirmary was
the only site to be open throughout the whole recruitment period, with other
sites opened at later stages. The last site to initiate recruitment was Charing

Cross Hospital, beginning in January 2019.

Stroke participant selection criteria were intentionally broad, allowing to
include any person over the age of 18 with a clinical diagnosis of stroke or TIA,
provided they could converse in English prior to the event, they were not
prisoners, and the responsible clinical team had no objection to their
participation in the study. Stroke and TIA were defined as a focal, neurological
event of presumed vascular cause, with the diagnosis made by a stroke
specialist. All potential participants were also assessed for capacity to provide

informed consent.

Patients who were eligible and willing to consider taking part in the study were

given a Participant Information Sheet (PIS). After at least 24 hours, they would


http://www.researchregistry.com/
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be revisited by a member of the research team to discuss the study further, with
an opportunity to ask questions and, if wishing to participate, would then sign a
consent form. In addition to the core study, patients had the option to consent
to future linkage of their data to clinical, electronic databases, and to provide

blood and urine samples for biobanking (for NHS GGC sites only).

In cases where an eligible patient did not have the capacity to provide informed,
written consent, consent was sought from a suitable proxy (a close relative or
welfare guardian), while still involving the patient in the decision-making
process as much as possible. Although the research team aimed to recruit
patients within a week of their index stroke/TIA, following a protocol

amendment, no specific cut-off timepoint was applied.

As well as direct assessments of stroke survivors, the APPLE study also involved
collecting collateral information from suitable informants. Potential informants
were indicated by patients, with an understanding that the former should know
them and aspects of their day-to-day life well (e.g. spouse, child or carer).
Similarly as in the case of patients, potential informants were given an
appropriate PIS version, and if wishing to participate in APPLE - would sign a
consent form on a separate occasion. According to the study protocol,
recruitment of an informant for a patient was not conditional on the latter’s
participation in the study. In instances where an informant alone was consented,
no data were collected through direct assessment of the patient, nor from the

patient’s medical records.

6.3 Assessments

The APPLE study involved 5 assessment timepoints - baseline, 1 month, 6
months, 12 months, and 18 months following recruitment. After the baseline
assessment, subsequent follow-ups were scheduled within a two-week time
window, either side of the initially intended completion date. For all visits,
attendance was optional, meaning that participants could choose to skip any of

the planned follow-ups, without withdrawing from the study overall.

Investigators from all sites received relevant instructional materials and training
(face-to-face or remote, depending on the site location) for use of assessment

measures. Baseline and 1-month assessments were conducted by research team
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members from the site to which the stroke participant had been admitted. With
the exclusion of participants from NHS Grampian and some from NHS Fife, later
follow-up assessments (at 6, 12 and 18-months) were performed by our Glasgow

team, including myself and three other researchers.

The assessment location was determined based on participant preferences. In
the first instance, we would generally propose meeting at the local hospital site,
where the assessment would take place in a private office. For this option, the
stroke participant could make use of an arranged taxi service, and travel
accompanied by the informant or another chosen person. In cases where travel
did not suit the participant, following a risk assessment by the research team,

we offered to arrange a home visit.

For the 6, 12 and 18-month follow-ups, a third alternative was to conduct the
assessment over the telephone. This option was the only one available where a
face-to-face follow-up was precluded by extensive travel distance. Towards the
end of the APPLE study, with only 18-month follow-ups outstanding, conducting
all assessments over the telephone became a necessity due to the COVID-19

pandemic.

All five stroke participant assessments involved a combination of cognitive tests
and questionnaires regarding daily functioning, mood, and subjective
experiences, while in the case of informants - only completion of questionnaires
applied. The assessments were designed with an aim to ensure a thorough
investigation of all aspects relevant to the study, while at the same time not
overburdening participants. With the assumption that stroke participants’
tolerance to length of assessments will improve alongside a gradual recovery
after the acute phase of stroke, the baseline visit was made shortest, with the
number of test and questionnaire items increasing over consecutive follow-ups

until the 12-month assessment (the 18-month being identical).

6.3.1 Assessment materials

In relation to cognitive function, all stroke participant assessments incorporated
a test very similar to the outcome measure described in Chapter 5 - a
combination of items from the AMT-10 (364) and a short-form MoCA (77). The
version used for the APPLE study differed by including one additional item
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(counting down from 20), and in terms of scoring. Specifically, the question
regarding date was scored out of three points instead of one (a separate point
for each: day of the month, month and year), and the question regarding place
was scored out of two points instead of one (one point for the exact location,
e.g. name of hospital, street name and number of participant’s home, and one
for the name of the city). Consequently, the maximum total score for the test
was 19 points. In the following text, | refer to this measure as the AMT-plus.

Table 6-1 presents the test items and scoring system.

Table 6-1 Items and scoring for the AMT-Plus.

Item Scoring
1. Age 1
2. Current time 1
3. Date: day, month, year 3
4. Place: location, city 2
5. Two-person recognition 1
6. Date of birth 1
7. Year World War | (or Il) began 1
8. Current Prime Minister 1
9. Countdown from 20 1
10. Five-word delayed recall 1*
11. Clock draw: face, numbers, hands 3
12. Current news item 1
13. Months of the year in a reverse order 1
14. Verbal fluency (words beginning with “F”) 1

Sum: 19

*A point was assigned for the correct recall of at least four words.

To account for differences between assessments in inclusion of other measures,
below | briefly describe the content of each assessment according to timepoint
and version. A complete list of measures incorporated into each face-to-face

assessment is presented in Table 6-2.
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Table 6-2 Measures included in full-length and short stroke participant assessments.

Assessments
Full-length versions Short versions
Baseline 1-month 6-month 12/18-month 6-month 12/18-month
Objective measures of cognition

Abbreviated Mental Test - plus (AMT-plus) v v v v v v
Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) (68) v v
Oxford Cognitive Screen (OCS) (89) v
Montreal Cognitive Assessment (MoCA) (77) v v
Animal Naming Test (393) v v
Controlled Oral Word Association Task (COWAT) (394) v v
Letter-Digit Substitution Test (LDST) (395) v v
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Word List v v
Memory Task, recall and recognition (396)
Trail Making Test Parts A and B (397-399) v v
CERAD Modified Boston Naming Test (396, 400) v

Modified Rey-Osterrieth Complex Figure Test (401-403), copy and recall v
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Full-length versions

Short versions

Baseline

1-month

6-month

12/18-month

6-month

12/18-month

Measures of function and activity

Modified Rankin Scale (mRS) (171)

Barthel Index of Activities of Daily Living (404)
Lawton Extended Activities of Daily Living
“Frail Non-Disabled” (FiND) Instrument (405)
Brief Fatigue Inventory (BFI) (406)

Brief Physical Activity Assessment (407)

Stroke Impact Scale Short Form (SF-SIS) (408)

SN S XN

X N X X X

AN N NN

Measures of mood and subjective experience

The Depression Intensity Scale Circles (DISCs) (409)

Patient Health Questionnaire - 2 (PHQ-2) (410)

Generalised Anxiety Disorder Scale 2-item (GAD-2) (411)

PHQ - Somatic, Anxiety and Depressive Symptom Scales (PHQ-SADS) (412-415)
Centre for Epidemiologic Studies Depression Scale Revised (CESD-R) (416)
EuroQol - 5 Dimension (EQ-5D) (417)

Medical Outcomes Study Social Support Survey (MOS-SSS), 4-item (418)

Patient Reported Evaluation of Cognitive Status (PRECiS) (419)

AN N NI N

<
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6.3.1.1 Full-length stroke participant assessments

For the baseline visit, alongside AMT-plus the only other measure assessing for
incident cognitive disorder was the CAM-ICU - a screening test for delirium (68).
Included questionnaires, on the other hand, addressed the participants’ pre-
stroke state, encompassing brief measures of functional independence, frailty,
anxiety and depression. At baseline, we additionally collected data on patient
demographics, medical history, findings from acute clinical examinations,
including stroke-related features, and laboratory test results. Appendix 8
presents the case report form (CRF) that we used to record most of this

information.

Stroke subtype was defined using the Oxfordshire Community Stroke Project
(OCSP) classification (420), based on a diagnosis made by the leading stroke
physician. Stroke severity was determined based on the NIHSS (72); where the
assessment had not been conducted by a clinician and recorded in the patient
notes, the NIHSS was scored by an adequately trained member of the research

team.

Unlike the baseline and all subsequent assessments, the 1-month visit included
the Oxford Cognitive Screen (OCS; https://www.ocs-test.org/) as an additional
measure of cognitive function (89). The OCS is a domain-specific tool, developed
particularly to screen for cognitive impairment following stroke. As such, it was
designed to be “aphasia and neglect-friendly”, with an option to use a multiple-
choice question format, and with test stimuli centred on a page. Domains
assessed by the OCS include: language, attention, numerical skills, memory and
praxis. In relation to questionnaires, measures included at 1 month referred to
the participants’ post-stroke condition, as was the case for all subsequent
follow-ups. Compared to baseline, there were fewer scales related to activities
of daily living, while additionally included were a measure of fatigue and a more

comprehensive mood questionnaire.

At the 6-month follow-up, the OCS was replaced by a set of widely-used and
validated domain-specific tasks, selected based on the National Institute for
Neurological Disorders and Stroke (NINDS) and Canadian Stroke Network (CSN)
recommendations for the assessment of vascular cognitive impairment (85).

These task pertained to: semantic and phonemic verbal fluency, processing
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speed, learning memory and executive functioning. Regarding questionnaires,
the addressed aspects of the participants’ condition and daily life were similar
as for both the baseline and 1-month assessments, although in some instances
different scales were used. Moreover, a quality of life measure was included.
Further additions were made in the 12 and 18-month assessments, incorporating:
word-retrieval and visuospatial ability and visuospatial memory tasks, as well as
a stroke-specific measure of disability and health-related quality of life, and a
questionnaire on the subjective experience of cognitive impairment and its

impact.

6.3.1.2 Short versions of stroke participant assessments

Short versions were available as an alternative to 6, 12 and 18-month full-length
assessments. They were administered at the request of the participant or at the
researcher’s discretion, in consideration of the participant’s best interest, e.g.
where completion of test and questionnaire items was associated with
significant difficulty for the participant due to aphasia, fatigue, or poor general
health. As presented in Table 6-2, short assessments included only a subset of
measures used in the equivalent full-length version, while additionally
comprising the MoCA. Tasks that overlapped between the AMT-plus and MoCA
(e.g. clock draw, letter fluency) were assessed only once per visit, with an

identical score recorded for both tests.

6.3.1.3 Telephone versions of stroke participant assessments

As described above, telephone versions were available as an alternative to 6, 12
and 18-month face-to-face visits. While the set of incorporated measures of
function and mood matched that of the short versions, important adjustments
were made for the assessment of cognition, with some AMT-plus items being
omitted, and the inclusion of the modified Telephone Interview for Cognitive
Status (TICS-M) (421, 422). In comparison to face-to-face follow-ups, the
telephone assessments excluded the two-person recognition, clock draw, and
five-word recall tasks, with the two former having no equivalent, and the latter

being substituted by recall of a different, ten-word list.
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6.3.1.4 Relevant amendments to stroke participant assessments

During preparation and design of my Biobank studies (Chapter 4), | proposed
including measures of physical activity and social support as factors with
plausible, yet understudied associations with post-stroke cognitive function.
Wanting to avoid any significant increase in participant burden, after
consultation with my Supervisor, we selected very brief scales. The
questionnaires were added to the baseline, 12 and 18-month assessments for all

versions in February 2018.

The included Brief Physical Activity Assessment is a two-item self-report
measure, designed for use with adults in a primary healthcare setting (407).
Through asking about the frequency of engaging in moderate and vigorous
physical activity during a usual week, the tool’s objective is to identify
individuals who are insufficiently active in view of current recommendations. For
assessment of social support, we used an abbreviated, 4-item version of The
Medical Outcomes Study Social Support Survey (MOS-SSS) (418). The
questionnaire addresses how often four types of social support are available to
an individual, including: tangible support (material aid or assistance), positive
social interaction (doing fun, enjoyable things with someone), emotional-
informational support (emotional support and guidance or advice), and

affectionate support (expression of love and affection).

6.3.1.5 Informant assessments

In many ways, informant assessments reflected those of the stroke participants.
Administered at all timepoints apart from the 1-month follow-up, they could be
posted, completed over the telephone, or face-to-face during the scheduled
stroke participant visit. The assessments incorporated measures regarding
changes in the stroke survivor’s cognitive function, their functional status in
view of activities of daily living, neuropsychiatric symptoms, mood, and quality
of life. Questionnaires included in the baseline assessment referred to pre-stroke
condition. Subsequent follow-ups additionally included one measure with
questions about the informant, assessing caregiver burden. A full list of
measures included at each informant assessment timepoint is presented in Table
6-3.
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Table 6-3 Measures included in informant assessments.

Assessments

Baseline 6-month  12/18-month

Questionnaire on Cognitive Decline in the Elderly
(IQCODE) Short Form (423)

v v

Aging and Dementia-8 (AD8) (424)
Modified Rankin Scale (mRS) (171)
Barthel Index of Activities of Daily Living (404)

Lawton Extended Activities of Daily Living

AN N N N
< X X X
AN N N NN

“Frail Non-Disabled” (FiND) Instrument (405)

Stroke Aphasic Depression Questionnaire for patients
in hospital, 10-item (SADQ-H 10) (425)

AN
AN

Geriatric Depression Scale, 15 item (GDS-15) (426) v
EuroQol - 5 Dimension (EQ-5D) (417) v

Neuropsychiatric Inventory Questionnaire (NPI-Q) (427)

VR N NN

The Zarit Burden Interview (428) v

6.4 Study dropout

We recorded four reasons for study dropout: withdrawal of consent, loss to
follow-up, death and “other”, with the latter cause being specified by the
researcher. Participant withdrawal mirrored the consent process. Specifically,
participants who withdrew consent for future contact and follow-ups could (if
applicable) additionally withdraw consent for data storage, linkage and access to
medical records, and for storage of their samples in the biobank. The “other”
option was typically selected in situations where we were unable to directly
contact a participant, yet were aware of their current circumstances and felt
that arranging future follow-ups would be inappropriate, e.g. end of life care
situations. The same four dropout reasons were distinguished for informants. As
a rule, if a participant dropped out of the study, we would withdraw their
informant from APPLE as well. Such cases would be recorded as “other”, with

the exact cause documented.
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6.5 Data processing

All CRFs were collated at the Academic Section of Geriatric Medicine in the
Glasgow Royal Infirmary. Our team cross-checked CRFs completed by researchers
from other sites and prepared all participant documents for transferral to the
Robertson Centre for Biostatistics. The Centre, which designed the CRFs, was
responsible for raising queries in case of suspected errors, data entry, and
creating bespoke datasets, tailored to the requirements of our individual

studies.

6.6 Recruitment outcome and follow-up completion

A total of 354 stroke participants and 151 informants were consented to APPLE,
the majority being recruited from the Glasgow Royal Infirmary. The contribution

of each site to stroke participant recruitment is presented in Figure 6-1.

Queen Elizabeth Royal Alexandra

University Hospital Hospital
R 7%
R

University Hospital
Monklands
13%

Glasgow Royal
Infirmary
42%
\ University Hospital
Hairmyres

1%

\Forth Valley Royal

Hospital
1%

\ Queen Margaret

Hospital
16%
Charing Cross
Hospital Perth Royal
3% Infirmary
2%
Morriston Hospital Aberdeen Royal

1% Infirmary
8%

Figure 6-1 Percentage of stroke participants recruited to the APPLE study by each
of 11 involved hospital sites.

Notes: NHS GGC sites are represented in green, NHS Lanarkshire in orange, NHS Forth Valley
in yellow, NHS Fife in red, NHS Tayside in purple, NHS Grampian in blue, NHS Wales in black,
and Imperial College Healthcare NHS Trust in grey.
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6.6.1 Baseline study sample representativeness

| had access to patient screening logs from two participating sites - the Glasgow
Royal Infirmary and the Royal Alexandra Hospital - to provide at least a partial
indication of study sample representativeness. According to these records,
during the period from November 2016 to February 2019, 352 patients were
assessed for study eligibility at the Glasgow Royal Infirmary, of whom 149 (43%)
consented to take part in APPLE (Figure 6-2). At the Royal Alexandra Hospital,
open for recruitment between May 2018 and February 2019, 197 patients were
assessed for eligibility, of whom 24 (12%) consented to study participation
(Figure 6-3).

Total N assessed for eligibility = 352 Uncertain/non-

stroke diagnosis,
N =60 (17%

e

Refused,
N = 85 (25%)

Non-Englis
speaker,
N=3(1%)

Patient Considered
dischagred before-/ inappropriate to
could be approach/patient

approached, too unwell,

N=3(1%) N = 44 (13%)

Figure 6-2 Patient screening and enrolment for the Glasgow Royal Infirmary.
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Total N assessed for eligibility = 197 Uncertain/non-

stroke diagnosis,
N = 67 (34%)

T

Refused,
N =45 (23%)

to consent with
no suitable proxy, -~
N =26 (13%)

Patient Considered
dischagred before inappropriate to
could be approach/patient

approached, too unwell,

N =9 (5%) N =26 (13%)

Figure 6-3 Patient screening and enrolment for the Royal Alexandra Hospital.

Table 6-4 includes selected characteristics of the APPLE baseline study sample.
To allow further insight regarding participant representativeness, | present this
information alongside data reported from the Sentinel Stroke National Audit
Programme (SSNAP) (429), for the period between April 2017 and March 2018
(294). The clinical audit collects a minimum dataset for stroke patients admitted
to every acute hospital in England, Wales, and Northern Ireland. Annually,
information from approximately 85000 patients is submitted to the audit,
representing over 90% of all stroke hospital admissions in the NHS (429). For the
comparison of patient characteristics, it is important to note that SSNAP does

not encompass cases of TIA.



Table 6-4 Characteristics of the APPLE baseline study sample presented for
comparison with a national case mix of stroke patients, admitted to hospital

between April 2017 and March 2018, as reported by the Sentinel Stroke National
Audit Programme (SSNAP).

APPLE cohort (N = 354)

SSNAP cohort (N = 83436)

Age (years)
Median (IQR)
Missing

Sex
Female, N (%)
Missing

Diabetes, N (%)
Missing

Hypertension, N (%)
Missing

Heart failure, N (%)
Missing

Atrial fibrillation, N (%)
Missing

Previous stroke/TIA, N (%)
Missing

Pre-stroke mRS
0, N (%)
1, N (%)
2, N (%)
3, N (%)
4, N (%)
5, N (%)

Missing

NIHSS score (stroke severity)

Median (IQR)
Categories
0, N (%)
1-4, N (%)
5-15, N (%)
16 - 20, N (%)
21 - 42, N (%)
Missing

71.0 (59.8 - 79.3)
0

157 (44.4%)
0

86 (24.3%)
0

191 (54.1)
1

27 (7.6%)
0

57 (16.1%)
0

87 (24.6%)
0

177 (50.4%)
56 (16.0%)
61 (17.4%)
52 (14.8%)
(1.4%)
(0.0%)

3

2
5
0

2(1-4)

84 (23.9%)
183 (52.0%)
75 (21.3%)
6 (1.7%)
4 (1.1%)
2

77.0 (67.0 - 85.0)
0

40764 (48.9%)
0

17860

—_

21.4%)

o

45312 (54.3%)

o ~

4310 (5.2%)

o —~

16050 (19.2%)
0
21602 (25.9%)
0

44328 (53.1%)
13264 (15.9%)
8992 (10.8%)
10058 (12.1%)
5248 (6.3%)
1546 (1.9%)
0

5(2-11)

5288 (6.8%)
32624 (41.9%)
27428 (35.2%)
5633 (7.2%)
6925 (8.9%)
5538

IQR indicates interquartile range; mRS, modified Rankin Scale; NIHSS, National Institutes of
Health Stroke Scale; TIA, transient ischaemic attack.
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6.6.2 Follow-up completion

Focusing on participation rates at individual assessment timepoints, 269 (76.0%)
stroke survivors took part in the 1-month follow-up, 220 (62.1%) in the 6-month
follow-up, 185 (52.3%) in the 12-month follow-up, and 171 (48.3%) in the 18-
month follow-up. We recorded that 158 stroke participants formally dropped out
of the study, including 75 who withdrew consent (either directly or by proxy), 50
lost to follow-up, 24 who died, and 9 for whom the reason for dropout was
“other” - in all cases related to a significant decline in health and/or end of life

care.

6.7 Summary

APPLE was a multicentre, prospective cohort study, designed with an overall aim
to improve our understanding of the neuropsychological sequalae of stroke. It
involved a longitudinal 18-month follow-up of stroke survivors and their
informants, with a focus on assessing cognition, mood, subjective experiences,
and daily functioning. The work | conducted on APPLE constituted a central part
of my doctoral training. Over the next two chapters, | describe how | used the
data we collected to address the third of APPLE‘s work packages - describing

change in post-stroke cognitive function.
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Chapter 7 Trajectories of post-stroke cognitive
change following stroke: A pilot study using the
APPLE dataset. Part I: Rationale and methods

In the previous chapter, | described the design and assessment methods of a
prospective inception cohort, involving longitudinal cognitive follow-up - the
APPLE project. In this chapter, | present how | used the APPLE dataset to model
the natural history of cognitive change following stroke. | devoted a separate
part of my thesis to the methods of this study to allow a comprehensive and
precise account of the extensive decision-making process that led to the final
results. The methodological considerations | describe are important to the
immediate interpretation of the study findings and, moreover, may serve to

inform the design of future longitudinal research into post-stroke cognition.

7.1 Introduction

A common procedure employed in research aiming to identify predictors of post-
stroke cognitive function relies on average-based estimates of associations
between a factor of interest and a cognitive outcome, assessed at one specific
timepoint. The uptake of this strategy was also evident across the prognostic
model development studies | described in my systematic review (Chapter 3). The
core characteristic of this approach is that it is “variable-centred”, as the focus
is on the relationships among variables (430). Alongside practical advantages and
relative ease in interpretation of results, there is, however, an important
limitation to this popular strategy when applied to post-stroke cognition - it does

not reflect the heterogeneity in the process of cognitive change.

Clinical observations and research findings suggest a dynamic and varied pattern
of cognitive change following stroke. Although many stroke survivors will
experience an initial period of cognitive recovery, only some will continue to
improve in the longer-term, while for others this process will reach a plateau or
even shift towards a declining trend (431-434). This suggests heterogeneity at
both a between- and within-individual level. Regarding the former, even where
at a specific timepoint the same outcome has been apparently achieved by two

individuals, the path to it may have differed.
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For example, as illustrated in Figure 7-1, a person may be diagnosed with
cognitive impairment one year after a stroke either as a result of declining from
a previous state of having no cognitive impairment (Person A), or following a
significant but incomplete recovery from severe initial deficits (Person B).
Despite being categorised into the same outcome group, arguably individuals
representing these different patterns of change are also likely to differ in terms
of characteristics relevant to post-stroke cognitive function, and possibly in how

their condition will progress.

cognitive impairment

—8—Person A

Person B

Cognitive screenng test score

0 2 4 6 8 10 12
Time (months)

Figure 7-1 Hypothetical trajectories of cognitive change for two individuals classed
as having cognitive impairment 12 months following stroke.

Concurrently, on a within-individual level, cognitive change is unlikely to follow
a constant trajectory over time, with potential for variability in rate and, in
some cases, even shift in direction. Indeed, observations from longitudinal
follow-up studies in stroke cohorts indicated that for some participants the
cognitive status identified (impaired or intact) switched up to two times within a
three-year period (435, 436). In a similar study, the authors even reported
instances of reversion from a vascular dementia diagnosis to milder forms of
impairment, and for one person - to unimpaired cognition (391). These
observations illustrate what additional insights can be gained through

investigating individual trajectories of cognitive change.
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However, despite the advantages of the approach used in these studies, it still
does not allow to capture the full complexity of the subject matter. As a
consequence of defining the outcome as binary (cognitive impairment vs no
cognitive impairment) (435, 436), any changes that do not result in crossing a
diagnostic threshold are missed. A second, partially connected issue relates to
applying a priori simplifications to classifying participants based on cognitive
change. This was reflected in basing the decision about categorisation solely on
change over two chosen timepoints (391, 435, 436). As a result, two individuals
may be grouped together, for example, as “improvers”, despite presenting
meaningful differences in severity of initial cognitive impairment, level of
residual difficulties at follow-up, or rate and specific pattern of change in

between those timepoints (Figure 7-2).

cognitive impairment

Cognitive screenng test score

0 2 4 6 8 10 12

Time (months)

Figure 7-2 Hypothetical trajectories of cognitive change following stroke for two
individuals classed as “improvers” (change in status from impaired to intact
cognition) through a comparison of baseline and 12-month cognitive test scores.

Such challenges, present in many areas of research focusing on processes and
change in condition over time, have contributed to increasing interest in
integrating variable-centred analyses with a person-centred approach (430). This
goal can be achieved through use of novel analytical strategies, for example
latent growth modelling techniques, such as growth mixture modelling (GMM)
(437, 438) and latent class growth analysis (LCGA) (439). Based on recognition of

a population’s heterogeneity, these methods are applied to identify distinct,
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homogenous subpopulations (classes) within it. This allows interindividual
differences in intraindividual change over time to be captured (440). In addition
to visualising the unique features of distinguished trajectory shapes, it is then
also possible to determine what factors are uniquely associated with exhibiting a

particular pattern of change.

The aim of this study was to explore the application of a latent growth modelling
approach to identify meaningful trajectories of post-stroke cognitive change in
the APPLE dataset. At present, data entry, cleaning, and quality control are still
ongoing, with information we had collected at the 18-months assessments not
yet released by the clinical trials unit (the Robertson Centre for Biostatics) for
APPLE. Therefore, the results of the following analyses, involving data from
baseline to the 12-month follow-up, will serve to inform the design and choice of
specific statistical solutions for a subsequent, full-scale study, utilising

information from all five APPLE assessment timepoints.

7.2 Methods

The conduct of the present study compromised of four main sections: i) a factor
analysis to derive a latent cognitive variable based on raw cognitive scores, to
serve as the outcome; ii) the selection and implementation of an approach for
handling missing outcome data; iii) the application of a latent growth modelling
technique to identify distinct trajectories of cognitive change over time; and iv)
the investigation of predictors of trajectory class membership. Below | provide a
detailed description of the rationale and steps involved in each study section,
with special consideration to Guidelines for Reporting on Latent Trajectory
Studies (GRoLTS) (441). | begin by presenting my choice of a latent growth
modelling technique - although this issue specifically pertains to a later stage of
my study, it was a primary decision, affecting methodological considerations

from the outset.

7.2.1 Choice of modelling approach

Given the pilot nature of the study, | chose to perform a LCGA. This approach is
recommended as a first step prior to attempting the more complex GMM (440).
Through utilising SEM techniques, the goal of both methods is to identify

trajectory-based classes within a sample, where individuals within one class are



160

most similar to one another, while at the same time being most different from
individuals in all other classes (442). However, the difference is that LCGA
entails an assumption that growth trajectories (here, counterintuitively
signifying any pattern, not only an increasing function) are homogenous within a

class, while GMM allows to account for within-class variation.

The greater flexibility offered by GMM comes at a cost of increased
computational demand, more frequent convergence issues (i.e. inability to
generate an admissible model solution), and need of greater statistical power.
Nonetheless, this approach may result in a more accurate reflection of real-
world patterns of change where within-class heterogeneity exists, which in most
contexts cannot be ruled out. Therefore, | intend to test the use of GMM in the
full-scale study, for which the inclusion of an additional assessment timepoint

would translate to an increase in power.

7.2.2 Participants

The study sample comprised APPLE participants. | applied no selection criteria
based on individual characteristics. However, | considered that to develop an
accurate model using LCGA it is key that assessment timepoints are similar
across participants, relative to an objective, study-independent starting point
(443). Given the design of APPLE, described in the previous chapter, a particular
concern was that, relative to index stroke, the baseline assessment of some

participants would be closer in time to the 1-month assessment of the majority.

Conversely, introducing strict selection criteria based on recruitment time could
have led to increased sample bias, as plausibly informing stroke survivors and
their relatives about APPLE may have been delayed where the patient was very
unwell in the acute phase. Therefore, | decided to apply a cut-off for inclusion
of baseline data collected four weeks post-stroke or less. As a result, | included
343 stroke participants in the present study, equivalent to 96.9% of the original
APPLE sample.

As indicated in Chapter 5, there are no consensus guidelines regarding sample
size requirements for statistical approaches based on SEM. Multiple factors
affect this issue, including the study design, number of parameters to be

estimated, distribution of variables, missing data, and effect sizes of tested
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associations (444). However, based on previous research, it seems that for a
dataset including four assessment timepoints, a sample of 200 participants is

sufficient for generating unbiased model estimates using LCGA (443, 445, 446).

The appropriateness of the sample size for investigating predictors of class
membership was a separate issue, which could not be addressed before
determining the number of distinct trajectories. Overall, in view of the
exploratory objective of this research, | decided to attempt all planned
analyses, regardless of the associated statistical power. However, where
appropriate, | would introduce adjustments to compensate for sample size

limitations.

7.2.3 Cognitive data

| used the AMT-plus as a measure of cognitive outcome. Although scores from
the neuropsychological battery used in APPLE would have offered greater insight
into the participants’ cognitive function, the AMT-plus was the only test
repeated across all face-to-face assessments, satisfying an essential requirement
for LCGA. Moreover, as described in Chapter 6, most of original AMT-plus items
(14 of 19) were included in the telephone versions of 6, 12, and 18-month
assessments. Here, the lack of data on unincluded items could have been
plausibly assumed as missing completely at random (no systematic differences
between missing and observed values) or missing at random (where any
systematic differences can be explained by observed data, e.g. if a telephone
assessment was opted for due to the participant’s functional status) (296).
Therefore, | considered that in this case the use of an imputation procedure

would be appropriate.

This was one of two main arguments for computing factor scores rather than
using AMT-plus sum scores for the LCGA. A factor score can be estimated for a
participant with missing values on specific test items based on observations
available in the dataset. The second argument related to weighting of items. For
sum scores, items are assigned equal weight, that is, they are assumed to
contribute an equal amount of information to the measured construct (447).
However, from a clinical perspective, this seems to be unlikely for the AMT-plus.
For example, not knowing the city one is in or the current month is likely more

indicative of a cognitive disorder than not knowing the exact date (448).
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| describe the process of obtaining factor scores to represent cognitive function
in the section below. The dataset | used contained information on all 19 AMT-
plus items, coded as separate, binary variables (correct vs incorrect). | included
every assessment type - full-length, short and telephone versions. Similarly as in
my study described in Chapter 5, in cases where a participant could not respond
to a test item due to an existing impairment (e.g. aphasia or limb weakness), |

assigned a score of 0 for that item.

7.2.4 Transforming raw cognitive scores into the outcome
variable: a factor analysis approach

7.24.1 Factor analysis procedure

An inspection of relationships between the 19 cognitive test items revealed
extremely high correlations (above 0.9) and instances where no participant
presented a specific combination of responses for a pair of variables. For
example, at the 1-month assessment, there were no cases where providing an
incorrect date of birth cooccurred with correct responses regarding age, time,
date, or place. Consequently, it was not possible to produce factor scores based

on a model simultaneously including all items.

Aiming to find a solution that retained as much information as possible, |
followed the iterative process described below. After each step (with the
exclusion of the first one), | verified whether an admissible model solution could

be found, or whether further adjustments were necessary.

1. Combining all items from the clock draw task, creating a new, four-level
item (range: 0 to 3).
2. Combining items that could be justifiably grouped together based on both

high intercorrelations and clinical interpretation:

a) Eight items used in the assessment of consciousness (e.g. GCS and
NIHSS) and/or relevant to orientation - age, date of birth, time, date,

month, year, place and city (range: 0 to 8);

b) Two items relevant to assessing attention - counting down from 20 and

listing months of the year backwards (range: 0 to 2).
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3. Collapsing orientation and attention scores to create binary items, with

cut-offs based on sample distributions;

a) For orientation - one assigned for sum scores of seven and eight, zero
for scores below seven; as a result, across the four assessment timepoints,
the percentage of participants who were assigned a point ranged from
81.8% to 90.9%;

b) For attention - one assigned for a sum score of two, zero for scores
below two; the percentage of participants who were assigned a point
ranged from 77.7% to 84.9%.

4. Removing item on recognition of two people.

5. Removing item on naming current prime minister.

The last two steps were necessary as the high correlations between these items
and the orientation item, pertaining to at least one assessment timepoint,
precluded from their simultaneous inclusion in a single model. Consequently, the
final model structure incorporated seven items: orientation, attention, recent

news item, five-word recall, year WWI began, clock draw, and verbal fluency.

7.2.4.2 Assessing properties of the derived cognitive latent variable

As all test items (indicators) were categorical, | used a robust weighted least
squares estimator (WLSMV). With this estimator, missing data are handled based
on a pairwise present analysis, where all available observations are used to
estimate correlations between each pair of items (367). | assessed model fit
based on the chi-square statistic (good fit indicated by non-significance), Root
Mean Square Error of Approximation (RMSEA; good fit: < 0.06), Comparative Fit
Index (CFI; good fit: > 0.95), and Tucker-Lewis Index (TLI; good fit: > 0.95).

Given the longitudinal nature of the data, it was further necessary to examine
measurement invariance. This is to ensure that the relationship between test
items and the latent construct that underlies them (here, cognitive function)
remains unchanged across timepoints or, in other words, that the meaning of the
investigated construct is the same for each assessment occasion (449, 450).
Without satisfying this condition, changes in factor scores over time cannot be

reliably attributed to actual changes in the construct.
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For categorical indicators, assessing measurement invariance involves comparing
a configural model to a scalar model (366). For the configural model, | specified
the same latent factor structure (involving the same seven items) for each
timepoint, while allowing for loadings and thresholds of indicators to be freely
estimated. For the scalar model, | constrained loadings and thresholds to be
equal for corresponding items across timepoints. Invariance is considered to be
achieved if the chi-square statistic for the scalar model is not significantly worse
than for the configural model, relative to the change in degrees of freedom. |
conducted the factor analysis using Mplus version 8.3. The code | developed for

both models is presented in Appendix 9.

7.2.4.3 Factor analysis results

For the configural model, including seven cognitive test items, considered
indices suggested good model fit: X2=325.91, p = 0.16; RMSEA = 0.02; CFI =
0.99; TLI = 0.99. After applying additional equality constraints for the scalar
model, model fit did not significantly deteriorate (chi-square difference: 8.5,
degrees of freedom: 15, p = 0.90), indicating that measurement invariance had
been achieved. Table 7-1 presents estimated factor loadings in a descending

order, while Table 7-2 includes descriptive statistics for computed factor scores.

Table 7-1 Unstandardised loadings for the cognitive function latent construct.

Item Unstandardised loading
Attention 1.01
Orientation 1.00
News item 0.74
Word recall 0.65
Clock draw 0.60
Verbal fluency 0.55
World War | 0.47

Table 7-2 Descriptive statistics for estimated factor scores across assessment
timepoints.

Baseline 1-month 6-month 12-month
Range -2.55t01.60 -2.36t01.92 -2.03to1.54 -1.39t01.34
Mean (SD) -0.08 (0.78) 0.22 (0.84) 0.25 (0.64) 0.40 (0.47)
Missing 2 81 128 162

SD indicates standard deviation.
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7.2.5 Missing outcome data due to study dropout
7.25.1 Considering strategies for handling missing outcome data

For the purpose of this study, | defined “dropout” as any case, where once an
assessment had been missed, no subsequent follow-up was completed. This
included instances of participants repeatedly requesting to skip visits, without

formally withdrawing from the study.

In latent growth modelling research, the most popular approach to handling
missing data due to dropout is full information maximum likelihood estimation
(FIML) (441). This method involves parameter estimation using all the data that
are available, without imputing specific missing values (451, 452). A key
advantage of applying FIML is that each participant, regardless of whether they
completed the study, is assigned to a latent class. However, unbiased estimates
can only be produced where data are missing completely at random or at

random.

Missingness at random tends to be assumed on the basis that lack of follow-up
data for a participant is conditional on outcome information collected at
previous, completed assessment(s) (441). However, it is becoming increasingly
recognised that at least for certain outcomes and populations, this assumption is
unlikely to hold (453-455). Dropout may indeed relate to deterioration from

previous status, which would not be accurately reflected using FIML.

This concern seems highly relevant to investigating post-stroke outcomes. It
seems that what has the greatest possibility of being captured in participant
data, is the initial improvement in function, typically seen in the acute and
subacute phase of stroke. If after that stage it is mainly stroke survivors with
better and/or improving cognitive function who remain in the study, estimated
trajectories may present an overoptimistic view of post-stroke cognitive change
over time, as compared to patterns occurring within a real-world, unselected

stroke population.

There is no direct method to test whether data are missing at random or not.
However, comparing characteristics of participants who remained in a study to

those who dropped out may clarify whether the latter were indeed at greater
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risk of outcome deterioration. The results of such a comparison may also depend
on the reason for dropout (456). In view of this, | utilised available APPLE
records to distinguish between cases lost to follow-up due to death or end of life

care, and cases lost for other reasons.

| compared the three participant groups (study completers and two groups with
lost to follow-up) based on factors considered as relevant to cognitive decline.
Regarding demographics, | accounted for age, sex, and education (in years). For
health-related factors, | included: BMI (kg/m?), medical conditions (diabetes
mellitus, vascular disease, heart failure, atrial fibrillation, previous stroke or
TIA, renal disease, prior cognitive impairment, history of mood disorders, and
history of substance abuse, including alcohol and illicit drug use), pre-stroke
functional dependency as indicated by a mRS score of above two (171), and
lifestyle factors (smoking status and self-reported physical activity). In terms of
pre-stroke status, | additionally considered the subjective level of received
social support (based on the MOS-SSS questionnaire). Finally, accounting for
acute presentation, | included stroke severity as measured by the NIHSS (71, 72),
and baseline cognitive function (both raw AMT-plus sum scores and factor

scores).

To test for potential differences, | used chi-squared and Fisher’s exact tests for
categorical variables, and the Mann-Whitney U test for continuous ones. | noted
whether group differences were significant at p < 0.05, as well as after
accounting for multiple comparisons, using the Holm-Bonferroni technique
(Holm, 1979). Results indicating that dropout was associated with risk factors for
cognitive decline would support complementing a latent trajectory analysis using
FIML with an alternative approach to handling missing data, to reflect poorer

outcome in lost cases.

Given the pilot nature of this study, | intended to adapt a computationally
nondemanding method, described in a publication on trajectories of functional
limitations in later life (453). There, for participants who died during the study
follow-up, the authors assigned (with random noise) functional limitations
greater by one standard deviation (1 SD) from the timepoint-specific sample

mean, for every missed assessment until death.
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For the APPLE sample, | assumed it was likely for both dropout groups to appear
at higher risk of cognitive decline, however, with the difference from study-
completers being greater for participants who died/were in terminal care. If my
assumption were confirmed, | planned to assign a cognitive function score lower
by 2 SD from the timepoint-specific sample mean for dropout due to

death/terminal care, and lower by 1 SD for dropout due to other reasons.

7.25.2 Results of group comparisons according to dropout status

Descriptive statistics for the total study sample and participant groups
distinguished based on study dropout are presented in Table 7-3. Results of the
univariable analyses indicated that both dropout groups differed from
participants who completed APPLE assessments, even after adjusting for
multiple comparisons. However, there was little overlap between groups

regarding variables to which these differences applied to.

Summarising results significant at least at p < 0.05, participants who dropped
out due to death or end of life care were on average older than study-
completers, were more frequently diagnosed with heart failure, atrial
fibrillation and previous stroke/TIA, less physically active, and less likely to be
functionally independent. Although the latter also applied to the group with
dropout due to other reasons, remaining differences included a higher
proportion of female participants, lower average education, more cases of prior
cognitive impairment and mood disorders, and poorer baseline cognitive

function.



Table 7-3 Descriptive statistics for study sample and group comparison by dropout status.

Total sample

Group comparison by dropout status

Dropout due to

Dropout due to other

(N = 343) Study-completers death/terminal care reasons
(N = 199) (N = 25) (N = 119)
Age (years), Mean (SD) 69.2 (12.8) 68.1 (12.8) 77.0 (8.2)* 69.5 (13.2)
Missing 0 0 0 0
Sex

Female, N (%)

Education (years), Mean (SD)
Missing

BMI
<18.5 (underweight), N (%)
18.5 to 24.9 (normal), N (%)
25.0 to 29.9 (overweight), N (%)
>30 (obese), N (%)

Smoking status
Never, N (%)
Former, N (%)

Current, N (%)
History of substance abuse, N (%)

Diabetes, N (%)

153/343 (44.6%)

12.0 (3.4)
29

9/335 (2.7%)
106/335 (31.6%)
120/335 (35.8%)
100/335 (29.9%)

127/341 (37.2%)
140/341 (41.1%)
74/341 (21.7%)

37/341 (10.9%)

85/343 (24.8%)

76/199 (38.2%)

12.5 (3.7)
12

2/197 (1.0%)
62/197 (31.5%)
71/197 (36.0%)
62/197 (31.5%)

75/199 (37.7%)
88/199 (44.2%)
36/199 (18.1%)

20/198 (10.1%)

46/199 (23.1%)

9/25 (36.0%)

12.0 (2.0)
1

1/25 (4.0%)

8/25 (32.0%)
10/25 (40.0%)
6/25 (24.0%)

10/24 (41.7%)
10/24 (41.7%)
4/24 (16.6%)

1/25 (4.0%)

8/25 (32.0%)

68/119 (57.1%)*

11.3 (2.8)**
16

6/113 (5.3%)

36/113 (31.9%)
39/113 (34.5%)
32/113 (28.3%)

42/118 (35.6%)
42/118 (35.6%)
34/118 (28.8%)

16/118 (13.6%)

31/119 (26.1%)



Table 7-3 Descriptive statistics for study sample and group comparison by dropout status. Continued

Total sample
(N =343)

Group comparison by dropout status

Study-completers

(N = 199)

Dropout due to

death/terminal care

(N = 25)

Dropout due to other

reasons
(N =119)

Hypertension, N (%)
Vascular disease, N (%)
Heart failure, N (%)
Atrial fibrillation, N (%)
Previous stroke/TIA, N (%)
Renal disease, N (%)
Prior cognitive impairment, N (%)
History of mood disorders, N (%)
Pre-stroke mRS
Dependency (mRS > 2), N (%)
Physical activity (range: 0 to 8)
Mean (SD)
Missing
Social support (range: 4 to 20)
Mean (SD)
Missing

183/342 (53.5%)
98/343 (28.6%)
26/343 (7.6%)
56/343 (16.3%)
85/343 (24.8%)
41/343 (12.0%)
26/343 (7.6%)
91/343 (26.5%)

56/340 (16.5%)

2.3 (2.6)
178

17.2 (3.8)
178

102/199 (51.3%)
56/199 (28.1%)
9/199 (4.5%)
25/199 (12.6%)
41/199 (20.6%)
23/199 (11.6%)
10/199 (5.0%)
44/199 (22.1%)

23/197 (11.7%)

2.7 (2.8)
102

17.8 (2.9)
102

14/25 (56.0%)
11/25 (44.0%)
7/25 (28.0%)**
9/25 (36.0%)**
12/25 (48.0%)**
6/25 (24.0%)
1/25 (4.0%)
8/25 (32.0%)

9/25 (36.0%)*

0.8 (1.1)*
13

15.1 (5.1)

67/118 (56.8%)
31/119 (26.1%)
10/119 (8.4%)
22/119 (18.5%)
32/119 (26.9%)
12/119 (10.1%)
15/119 (12.6%)*
39/119 (32.8%)*

24/118 (20.3%)*

2.1(2.3)
63

16.5 (4.5)
63

169
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Table 7-3 Descriptive statistics for study sample and group comparison by dropout status. Continued

Group comparison by dropout status

Total sample Dropout due to Dropout due to other
(N =343) Study-completers death/terminal care reasons
(N =199) (N = 25) (N=119)
Stroke severity (NIHSS; range: 0 to 42)
Mean (SD) 3.3 (4.3) 2.9 (3.9) 3.6 (3.4) 3.9 (5.0)
Missing 2 1 0 1
Categories
No stroke signs, N (%) 82/341 (24.0%) 53/198 (26.8%) 4/25 (16.0%) 25/118 (21.2%)
Mild, N (%) 179/341 (52.5%) 106/198 (53.5%) 13/25 (52.0%) 60/118 (50.8%)
Moderate, N (%) 70/341 (20.5%) 35/198 (17.7%) 8/25 (32.0%) 27/118 (22.9%)
Severe, N (%) 10/341 (2.9%) 4/198 (2.0%) 0/25 (0.0%) 6/118 (5.1%)
Baseline cognition
Sum score (range: 0 - 19), Mean (SD) 15.0 (3.6) 15.6 (3.2) 14.6 (3.5) 14.2 (4.1)*
Missing 14 6 0 8
Factor score, Mean (SD) -0.1 (0.8) 0.1 (0.7) -0.2 (0.8) -0.3 (0.8)**
Missing 2 1 0 1

Note: Univariable comparisons were made between the two dropout groups and the group of study-completers.
*significant at p < 0.05; **significant after applying Holm-Bonferroni correction for multiple comparisons
BMI indicates body mass index; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; SD, standard deviation; TIA, transient ischaemic attack.
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7.25.3 Finalising the approach for handling missingness

| had initially considered assigning a lower cognitive score for drop out due to
death (or end of life care) compared to drop out due to other reasons. However,
based on my findings, an assumption that one dropout group was at greater risk
of cognitive decline than the other seemed arbitrary. Moreover, it was possible
that not all participants had been correctly classified according to dropout
status. Particularly, where participants withdrew consent or were lost to follow-
up at earlier timepoints, deaths occurring later during the study period may not
have been recorded. For these reasons, | decided to substitute missing outcome
values to represent a similar level of cognitive function for both groups. Initially,
this was around two standard deviations below the sample mean (-2 SD) for a
specific assessment timepoint. To reduce the artificiality of a dataset generated
in this way, | added a component of random gaussian noise. Consequently,
participants with missing outcome data due to dropout would be randomly
assigned a score from approximately -2.5 SD to -1.5 SD, with most values being

close to -2 SD, and fewest at either extreme.

However, an attempt to apply this method proved that for many participants
who dropped out, it would fail to reflect a realistic decline in cognitive function.
This was due to the relatively high variability in cognitive function factor scores.
As such, value substitution for participants with high cognitive function, as
measured at previous, completed assessments, would indicate a drastic decline,
while for participants with poor cognitive function - an improvement. | therefore
opted to divide the participants according to baseline factor scores, forming
three groups: with scores within +1 SD (N = 232), with scores below -1 SD (N =
55), and with scores above 1 SD (N = 56). | then generated values to use for
substitution based on the timepoint-specific mean of the group the subject had

been assigned to.

A final consideration was which missed assessment values should be substituted.
From a clinical perspective, it seemed that replacing values for each timepoint
from dropout to either death or the end of follow-up would lead to implausible
patterns of cognitive change over time. This was partially due to decreasing
dispersion of values across time, meaning that with each timepoint, a
subtraction of around -2 SD resulted in a smaller difference from the group

mean. To illustrate the implications of this with an example, if a participant
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withdrew from the study after baseline, and every subsequent missing outcome
value were substituted, their cognitive function would be found to decline at 1-
month as compared to baseline, reaching its lowest point, after which it would

consistently improve.

At the same time, given the exploratory nature of this study, it seemed
uncertain what patterns post-stroke cognitive change would be likely to follow,
and whether more than one pattern occurred. | therefore decided to apply an
approach where missing value substitution could not dictate the whole shape of
a participant’s trajectory, yet rather would steer it towards a direction
indicating cognitive decline. Specifically, for participants who according to
APPLE records were still alive at the 12-month assessment, | only substituted
missing values for this last follow-up, while for participants who died within the
duration of the study - | substituted the missing value for the timepoint at which
their death had been noted. All remaining missingness was handled based on
FIML.

7.2.6 Main analyses

The main analyses comprised of modelling trajectory classes of cognitive change
over time and identifying predictors of class membership. | carried out this part
of my research applying a standard three-step method, as specified in the
GRoLTS publication (441):

1. | determined the number of latent trajectory classes without potential

predictors of class membership;

2. | saved the most likely class membership for each participant as a new

variable, adding it to the original dataset;

3. linvestigated predictors of class membership in separate analyses,

involving logistic regression and mediation models.



173

7.26.1 Identification of latent trajectory classes

In this key part of the study, | firstly gave special consideration to differences in
timing of assessments across participants. Despite excluding subjects who were
recruited to APPLE more than four weeks following stroke, there was still non-
negligible variability in when participants completed study visits. This seemed
particularly relevant for early assessment, occurring over a period when changes

in cognitive function would likely be most dynamic.

For example, the average length of time from index stroke to baseline
assessment was approximately one week, and ranged from one to twenty-eight
days, with a standard deviation of five days. For the 1-month follow-up, the
interval from stroke onset ranged from 24 to 69 days (M = 41, SD = 8). If
unaccounted for, individual differences in assessment timepoints are likely to
lead to misestimation of model parameters, and may hinder successful model
convergence (443). Therefore, | conducted a time-unstructured analysis, where
individual assessment timepoints are recorded for each participant and included

as variables in the model (here, an additional four variables) (457).

A second central issue related to the functional form of trajectories, capturing
cognitive change over time. In studies using LCGA, the most commonly
implemented approaches are polynomial functions - linear (straight line),
quadratic (one curve), cubic (two curves), and incorporating more curves. The
type of growth function that can be modelled is influenced by the number of
assessment timepoints (444). With four timepoints, it was possible to specify
either a linear or quadratic pattern of change. In selecting the optimal solution,
| followed a similar approach as for deciding on the final number of latent

trajectory classes.

| investigated models including from one to six trajectories, assuming that a
higher number would pose a challenge in view of the available sample size. In
line with current recommendations, | compared the models on multiple aspects.
Firstly, | assessed model fit indices: the Akaike information criterion (AIC) (458),
the Bayesian information criterion (BIC) (459), and the sample size-adjusted BIC
(SSA-BIC) (460). For these statistics, a lower value indicates better model fit. |
then considered classification accuracy. Entropy is a summary measure

reflecting how well classes are separated from one another, and the confidence
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with which participants are assigned to a specific class (441, 461, 462).
Estimates range from 0.00 to 1.00; values approaching 1.00 are preferred, with a
widely applied acceptability threshold of 0.80 (463). Classification accuracy is
also estimated for individual classes, according to model-based (posterior)
probabilities (440). | presented this measure as a percentage, where values
approaching 100% are favoured. It is important to note that for every participant
a probability is estimated for belonging to each identified class - the class with

the highest probability is the one the person will be assigned to.

Another aspect relevant to model comparison includes the number of individuals
assigned to a particular latent trajectory class. Generally, solutions where less
than 1% of the study sample represents any given class are rejected in favour of
a model with fewer trajectories (440). A similar approach is taken where
identified trajectories highly resemble one another in shape, and any
distinguishing features are difficult to identify. This also relates to the final

assessment component, focusing on clinical plausibility and interpretation.

An example of a Mplus code | developed for a three-class solution is provided in
Appendix 10. An important feature of the code is the specified number of
random sets of starting values and the number of final optimisations (two values
for STARTS), i.e. iterations based on maximum likelihood parameter estimation,
which | increased from default settings (specifically, from STARTS = 10 2 to
STARTS = 100 10) (464). This allowed for a more thorough investigation of
multiple solutions, and in turn increased the probability of obtaining an optimal
one rather than a solution based on local maxima. Ideally, the iteration is to
result from successful convergence on the global maximum solution (440). Once |
selected the most favourable model from considered alternatives, | verified this
condition by testing whether the parameter estimates would be replicated for
the two best obtained loglikelihood values (440, 444).

7.2.6.2 Prediction of class membership

This part of the study involved a logistic regression analysis, with latent
trajectory class membership constituting the outcome. As follows, the type of
developed model - binary or multinomial - depended on the number of classes in
the final solution. The predictors | considered largely overlapped with the

variables | had used for comparing groups based on study completion (dropout)
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status. For this analysis, however, | did not include a global measure of pre-
stroke functional independence, as reflected by the mRS score, assuming that
this construct would be jointly captured by the many variables relevant to
medical history. Moreover, | did not investigate associations with measures of
physical activity and social support due to the very high proportion of missing
values, exceeding what is considered appropriate for imputation (267). Instead, |
conducted a separate analysis with these variables in a subsample of

participants, described in detail in the next section.

There were also differences in how | coded particular variables of interest, as
alongside retaining maximum information, | aimed to accommodate modelling
challenges, related to value distributions diverging far from normal (e.g. zero-
inflated) and the presence of outliers. Specifically, for this analysis, |
categorised education into four groups, in accordance with the UK schooling
system: category 1 - under 11 years, which is below the current compulsory
minimum for full-time education; category 2 - 11 years, reflecting compulsory
duration at a General Certificates of Secondary Education (GCSE) level; category
3 - 12 and 13 years, reflecting education at Advanced Levels (A-Levels); and

category 4 - above 13 years, reflecting progressing into higher education.

Further, for stroke severity as measured by the NIHSS score, | applied the
categorisation presented in Table 7-3, distinguishing: no stroke signs (score

of 0), minor stroke (score of 1 to 4), moderate (score of 5 to 15), and severe
(score of 16 to 42) (361). Conversely, instead of implementing the clinically
recognised cut-off values for BMI, | included this factor in the model as a
centred, continuous variable. This was to allow more accurate modelling of a
potentially non-linear relationship, with evidence suggesting that, in older age,
poorer cognitive function may be associated with both low and very high BMI
values (465-467). As follows, alongside a linear term, | included a quadratic term
for BMI in the analysis (BMI?).

After selecting and coding predictors for inclusion in the model, | conducted a
missing value analysis, using IBM SPSS Statistics 27. | found that missing values
constituted 0.8% of all values in the dataset, and related to six variables
(education, BMI, history of substance abuse, smoking status, and stroke

severity). A graphical inspection of the pattern of missingness indicated that the
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data were likely missing completely at random. It is generally considered that in
cases such as this - completely random missingness, affecting below 5% of
datapoints - missing values can be ignored (267), and a complete-case analysis
approach applied. However, in this study, this would have led to the exclusion of
40 participants, and thus a substantial loss of statistical power. | therefore
decided to employ a multiple imputation procedure, using Bayesian analysis in
Mplus (468, 469).

Multiple imputation is recommended as a method that accounts for uncertainty
about the right value to impute, producing unbiased parameter estimates in a
variety of missing data situations (470). A missing value is not substituted with a
single value, but instead is replaced by a set of plausible values, representing a
distribution of possibilities (471). Consequently, multiple datasets are generated
for use in subsequent analyses, the results of which are combined for inference.

For all analyses predicting class membership, | generated ten imputed datasets.

7.2.7 Additional analyses

7.2.7.1 Physical activity and social support as predictors of class
membership

| included these two predictors in a multivariable analysis involving a subsample
of study participants, who completed the relevant questionnaires at baseline.
Given the relatively small sample size, | decided to limit the covariates to
factors that seemed most essential to account for, including age, sex, education,
and stroke severity. | intended to also add any variables found significant in the
main logistic regression. Further, assuming that many health-related factors
would likely be omitted, for this analysis | decided to account for pre-stroke mRS
(as an ordinal variable with five categories). Given far from normal distributions,
| categorised scores from measures of physical activity and social support based

on tertiles.

7.2.7.2 Mediation analyses

An additional aim of this study was to verify whether the effects of
cardiovascular risk factors described in Chapter 5 would be reproduced after
redefining the outcome from “acute post-stroke cognitive function” to “pattern

of longer-term cognitive change”. For this purpose, | intended to replicate the
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previously developed moderated-mediation model as accurately as possible to

predict class membership.

Overall, | performed all relevant statistical procedures as outlined for the
previous study, with the exception of using multiple imputed datasets. As a
consequence of the latter, computing bias-corrected bootstrap confidence
intervals was not possible. Another important limitation was that, for APPLE,
data regarding previous stroke and previous TIA had been recorded as a single
variable, and therefore | could not test the individual associations of these

factors with the outcome.

In summary, the structure of the investigated model would be as follows: i)
latent trajectory class membership regressed on two mediators - stroke severity
and prior cognitive impairment, and seven predictors - age, sex, diabetes,
hypertension, vascular disease, atrial fibrillation, and previous stroke/TIA; ii)
stroke severity regressed on the seven predictors and two interaction terms -
between vascular disease and hypertension, and vascular disease and diabetes;

iii) prior cognitive impairment regressed on the seven predictors.

Following this replication analysis, | also sought to expand the developed model.
Of particular interest was inclusion of education as a predictor, the effect of
which | could not account for in the previous study. Moreover, | planned to
introduce any additional variables that were significantly associated with latent
trajectory class membership in the main logistic regression analysis. Finally, with
the model being redefined, | intended to remove potentially nonsignificant
interaction terms for the prediction of stroke severity, to achieve a more

parsimonious solution (368).

7.3 Summary

In this chapter, | presented the methods | had applied to explore heterogeneity
in the natural history of cognitive change following stroke in the APPLE dataset.
The core component of this study is the LCGA that allows to identify distinct
trajectory classes within a studied population. In preparation for this stage of
analysis, |: i) conducted a factor analysis to derive a latent cognitive variable
based on participants’ AMT-plus scores, verifying that measurement invariance

had been achieved; and ii) implemented two alternative approaches for handling
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missing outcome data due to dropout - based on FIML alone, and coupling FIML

with selective substitution of missing values.

The end of this chapter on study methods does not mark the conclusion of a
decision chain regarding approaches to analysing the APPLE data. Similarly as for
the procedures | described above, selecting an optimal latent class model
involves an iterative process. Its result in turn informs the specific choice of
strategies in a subsequent part of the study, investigating predictors of latent
class membership. Findings from these two linked investigation components are

the focus of my next chapter.
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Chapter 8 Trajectories of post-stroke cognitive
change following stroke: A pilot study using the
APPLE dataset. Part Il: Results and discussion.

In the first section of this chapter, | present the results of the main and
additional analyses | conducted in the APPLE dataset. As | described in Part I,
this included specifying an optimal growth model based on LCGA, using a latent
cognitive factor as the outcome variable, followed by identifying predictors of
distinguished trajectory classes. In the second section, | discuss the clinical and
research implications of recognising heterogeneity within a stroke population,
with special consideration to how cognitive outcomes are understood and
captured. Further, based on my experience of applying LCGA in the context of

post-stroke cognition, | make recommendations for future research.

8.1 Results

8.1.1 Model selection and description of identified trajectories
8.1.1.1 Default FIML approach for handling missing outcome data

Individual trajectories of cognitive change over time are presented in Appendix
11. | initially developed linear growth models with one to six latent classes,
using the default FIML approach. Table 8-1 presents characteristics relevant to
optimal model selection. As a next step, | assessed the alternative quadratic
growth models. The one and two-class models had poorer fit indices compared
to equivalent linear growth models (BIC of 3558.7 and 3287.1, respectively),
with the two-class model also presenting lower entropy (0.75). For models with
three or more classes, meaningful estimates could not be obtained for all
parameters (model nonidentification). Therefore, | narrowed my selection
process to three linear growth models with the most favourable characteristics -
with three, four and six classes. | excluded the five-class model as model fit
indices were only modestly better than for the four-class alternative and,

overall, out of all models classification accuracy was poorest.



180

At this stage, | predominantly focused on the types of distinguished trajectories,
discussing the possible clinical interpretation of alternative model solutions with
physicians specialising in stroke. Compared to the three-class model (Figure 8-1),
the four-class model (Figure 8-2) allowed to distinguish a unique trajectory shape
- latent Class 4. Unlike for the three remaining classes, in this case change over
time appeared relatively constant, without a steeper period of improvement
between baseline and the 1-month follow-up. In the six-class model (Figure 8-3),
however, no additional, unique trajectory type was identified, with little
difference in trajectory shape between Classes 1 and 2, and Classes 4 and 5.
Moreover, there were relatively few participants representing Classes 1 and 6
(under 20 cases). On this basis, | selected the four-class model as the most
optimal solution. Following replication of the best loglikelihood values, |

concluded that local maxima had been successfully avoided.

Table 8-1 Linear growth model comparison for models developed using default
FIML approach.

Proportion of Classification
Model AIC BIC SSA-BIC  Entropy
sample per class accuracy
1 class 1980.7 2003.7 1984.7
2 classes 1590.4 1624.9 1596.4 0.80 59.2%, 40.8% 93.9%, 95.0%
23.3%, 53.1%, 94.7%, 91.5%,
3 classes 1335.8 1381.8 1343.8 0.85
23.6%, 92.2%
24.2%, 43.4%, 93.6%, 93.2%,
4 classes 1202.7 1260.2 1212.7 0.87
25.1%, 7.3% 90.4%, 91.5%
12.8%, 20.4%, 85.1%, 86.4%,
5 classes 1138.4 1207.5 1150.4 0.84 22.4%, 37.0%, 93.1%, 87.6%,
7.3% 92.8%
5.5%, 21.3%, 96.3%, 91.3%,
6 classes 1091.4 1172.0 1105.4 0.86 32.7%, 20.4%, 89.0%, 86.5%,

15.2%, 5.0%

90.2%, 97.1%

AIC indicates Akaike information criterion (AIC); BIC, Bayesian information criterion; SSA-BIC,
sample size-adjusted Bayesian information criterion.
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Figure 8-1 Trajectories of post-stroke cognitive change for a three-class model
based on observed means, estimated using a default FIML approach.
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Figure 8-2 Trajectories of post-stroke cognitive change for a four-class model
based on observed means, estimated using a default FIML approach.
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Figure 8-3 Trajectories of post-stroke cognitive change for a six-class model based
on observed means, estimated using a default FIML approach.
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8.1.1.2 FIML with selective substitution for handling missing outcome

data

Given little support for a quadratic solution, | only developed linear growth
models using the alternative approach to handling missing outcome data,
combining FIML with selective substitution of missing values due to study
dropout. Based on model characteristics presented in Table 8-2, the three, four,
and five-class options seemed most favourable, where here it was the 6-class

model for which classification accuracy was poorest.

Graphical examination indicated that the types of identified trajectories were
very similar for both approaches to handling missing data. As previously,
compared to the three-class model (Figure 8-4), the four-class model (Figure
8-5) led to the detection of a unique trajectory shape. For the five-class model
(Figure 8-6), on the other hand, | found that despite different intercepts, the
key features of trajectory shape were difficult to distinguish between Classes 1
and 2. Therefore, once again, the four-class model appeared to represent an

optimal solution, which - as | verified - was not based on local maxima.

Table 8-2 Linear growth model comparison for models developed using a combined
approach to handling missing outcome data.

Proportion of Classification
Model AIC BIC SSA-BIC  Entropy
sample per class accuracy
1 class 2343.6 2366.6 2347.6
2 classes 1871.0 1905.6 1877.0 0.78 41.7%, 58.3% 93.0%, 93.3%
53.1%, 18.9%, 91.2%, 92.7%,
3 classes 1573.5 1619.5 1581.5 0.85
28.0% 94.9%
25.9%, 42.9%, 91.5%, 92.4%,
4 classes 1443.4 1500.9 1453.4 0.88
8.2%, 23.0% 94.9%, 95.5%
22.7%, 7.9%, 92.5%, 93.7%,
5 classes 1372.6 1441.7 1384.6 0.88 23.9%, 39.7%, 90.7%, 92.4%,
5.8% 95.3%
15.5%, 5.8%, 85.0%, 94.3%,
6 classes 1334.4 1415.0 1348.3 0.85 20.4%, 34.4%, 92.0%, 89.0%,

5.8%, 18.1%

94.2%, 81.4%

AIC indicates Akaike information criterion (AIC); BIC, Bayesian information criterion; SSA-BIC,
sample size-adjusted Bayesian information criterion.
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Figure 8-4 Trajectories of post-stroke cognitive change for a three-class model based on
observed means, estimated using a combined approach.
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Figure 8-5 Trajectories of post-stroke cognitive change for a four-class model based on
observed means, estimated using a combined approach.
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Figure 8-6 Trajectories of post-stroke cognitive change for a five-class model based on
observed means, estimated using a combined approach.
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8.1.1.3 Comparison of results from alternative approaches to handling
missing outcome data

Table 8-3 presents the estimated intercept and slope for each class for both
approaches to handling missing outcome data. Depending on the sign, a
significant slope indicates either an overall improvement or decline in cognitive
function. However, it is important to note that this estimate represents an
average across all timepoints, and as such, cannot fully reflect a trajectory
shape where change is not relatively constant. This was particularly relevant in
case of Class 1, where the direction of slope changed. In view of this, in my
description of identified trajectories, | considered both estimated parameters
and graphical representations, assuming that real values were likely to lie at an
intermediate point between results obtained using the two different approaches

to handling missing outcome data.

Table 8-3 Estimated class characteristics for four-class models by approach to
handling missing outcome data.

Default FIML approach Combined approach

Class 1
Intercept 1.021 1.016
Slope -0.002* -0.004
Class 2
Intercept 0.097 0.151
Slope 0.006* <0.001
Class 3
Intercept -0.730 -0.665
Slope 0.011* 0.007*
Class 4
Intercept -1.657 -1.613
Slope 0.017* 0.010*

*significant at p < 0.05
FIML indicates full information maximum likelihood.

As follows, | concluded that Class 1 was characterised by high cognitive function
soon after stroke, which improved over following weeks, and thereafter
declined. Class 2 presented with some cognitive problems soon after stroke,
followed by a period of improvement, after which cognitive function remained
relatively stable. Class 3 was characterised by comparatively poor initial
cognitive function, which after a stage of steeper improvement, continued to

improve at a slower rate. Class 4 experienced severe cognitive impairment soon
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after stroke, which was followed by improvement in cognitive function at a

relatively constant rate.

Although in my interpretation of the selected four-class solution | considered
results from both models, only one model could be chosen for assigning final
class membership. For this purpose, | selected the model | developed by
combining FIML with selective substitution of missing outcome values. This
decision was guided by two considerations. Firstly, using the default approach,
from the 6-month timepoint trajectories of all classes showed a positive change
- slower decline for Class 1 and greater improvement for the three remaining
classes (see Figure 8-2). From a clinical perspective, it seemed implausible that
this reflected a real change in cognitive function and, as follows, it could be
suspected that this effect resulted from increased sample bias after participants
with poorer cognition (relative to their assigned class) dropped out of the study.

Secondly, for the default approach, classification accuracy was slightly poorer.

8.1.2 Prediction of class membership

Descriptive statistics for predictors of interest by assigned latent class
membership are provided in Table 8-4. | presented the variables to reflect how
they were entered in the analyses (as binary, categorical or continuous), with
the exception of BMI, which while remaining continuous, | centred for inclusion
in developed models. To facilitate conveying of results, | designated the
trajectory classes based on the represented overall, relative level of cognitive
function and unique trajectory features: Class 1 - high - declining, Class 2 - mid-
high - stable, Class 3 - mid-low - slowing improvement, Class 4 - low - constant

improvement.
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Table 8-4 Descriptive statistics for predictors of interest by class membership.

High - Mid-high - Mid-low - Low -
- slowing constant
declining stable . .
improvement  improvement
(N=79) (N = 147) (N = 89) (N = 28)
Age, Mean (SD) 66.2 (11.5) 68.2 (13.5) 71.6 (12.9) 75.6 (9.3)
Missing 0 0 0 0
Sex
Female, N (%) 30/79 (38.0%)  66/147 (44.9%) 43/89 (48.3%)  14/28 (50.0%)
Education
<11 years 10/74 (13.5%)  46/136 (33.8%) 40/82 (48.8%)  11/22 (50.0%)
11 years 11/74 (14.9%)  39/136 (28.7%) 30/82 (36.6%) 8/22 (36.4%)
12-13 years 23/74 (29.1%)  30/136 (22.1%) 6/82 (7.3%) 3/22 (13.6%)
>13 years 30/74 (40.5%)  21/136 (15.4%) 6/82 (7.3%) 0/22 (0.0%)
BMI, Mean (SD) 29.1 (6.4) 28.3 (5.4) 26.5 (6.1) 26.6 (5.2)
Missing 1 4 2 1

Smoking status

Never, N (%)

Former, N (%)

Current, N (%)
History of substance
abuse, N (%)
Diabetes, N (%)
Hypertension, N (%)
Vascular disease, N (%)
Heart failure, N (%)
Atrial fibrillation, N (%)
Previous stroke/TIA,
N (%)
Renal disease, N (%)
Prior cognitive
impairment, N (%)
History of mood
disorder, N (%)
Physical activity

15t tertile, N (%)

2" tertile, N (%)

31 tertile, N (%)
Social support

15t tertile, N (%)

2" tertile, N (%)

3 tertile, N (%)
Stroke severity (NIHSS)

No stroke signs, N (%)

Mild, N (%)

Moderate, N (%)

Severe, N (%)

37/79 (46.8%)
28/79 (35.4%)
14/79 (17.7%)

8/79 (10.1%)

20/79 (25.3%)
41/79 (51.9%)
19/79 (24.1%)
5/79 (6.3%)
9/79 (11.4%)

(
(
(
(

13/79 (16.5%)
7/79 (8.9%)

2/79 (2.5%)

19/79 (24.1%)

12/38 (31.6%)
14/38 (36.8%)
12/38 (31.6%)

10/38 (26.3%)
9/38 (23.7%)
19/38 (50.0%)

23/79 (29.1%)

47/79 (59.5%)
9/79 (11.4%)
0/79 (0.0%)

49/146 (33.6%)
65/146 (44.5%)
32/146 (21.9%)

20/145 (13.8%)

35/147 (23.8%)
78/147 (53.1%)
45/147 (30.6%)
10/137 (6.8%)
24/147 (16.3%)

37/147 (25.2%)
16/147 (10.9%)

4/147 (2.7%)

39/147 (26.5%)

28/79 (35.4%)
28/79 (35.4%)
23/79 (29.2%)

27/79 (34.2%)
21/79 (26.6%)
31/79 (39.2%)

40/145 (27.6%)
76/145 (52.4%)
(

(

29/145
0/145 (0.0%)

20.0%)

31/89 (34.8%)
37/89 (41.6%)
21/89 (23.6%)

7/89 (7.9%)

21/89 (23.6%)
48/89 (53.9%)
21/89 (23.6%)
7/89 (7.9%)
16/89 (18.0%)

23/89 (25.8%)
12/89 (13.5%)

9/89 (10.1%)

25/89 (28.1%)

16/39 (41.0%)
13/39 (33.3%)
10/39 (25.7%)

13/39 (33.3%)
7/39 (18.0%)
19/39 (48.7%)

19/89 (21.3%)
46/89 (51.7%)
21/89 (23.6%)

3/89 (3.4%)

10/27 (37.0%)
10/27 )37.0%)
7/27 (26.0%)

2/28 (7.1%)

9/28 (32.1%)
16/27 (59.3%)
13/28 (46.4%)
4/28 (14.3%)
7/28 (25.0%)

12/28 (42.9%)
6/28 (21.4%)

11/28 (39.3%)

8/28 (28.6%)

5/9 (55.6%)
1/9 (11.1%)
3/9 (33.3%)

6/9 (66.7%)
0/9 (0.0%)
3/9 (33.3%)

0/28 (0.0%)
10/28 (35.7%)
11/28 (39.3%)
7/28 (25.0%)

BMI indicates body mass index; SD, standard deviation; TIA, transient ischaemic attack.
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8.1.2.1 Results of multinomial logistic regression analysis

The results of this analysis, central to the prognostic objective of this study, are
presented in Table 8-5. | chose the mid-high - stable class as an initial point of
reference for all remaining latent trajectory classes, as one that: included most
participants, had an intermediate intercept estimate, showed relatively limited
change in cognitive function over time, and appeared closest to the post-stroke
recovery pattern traditionally described in existing literature - initial

(spontaneous) improvement, followed by a plateau period (472-474).

Compared to this class, | found that representing the high - declining trajectory
was nearly two times more likely by moving up one category of education, which
constituted the only significant finding for this comparison. Conversely, with
moving up one education category, the likelihood of representing the mid-low -
slowing improvement class decreased by over a third. Compared to the mid-high
stable class, participants here were also 3.5 times less likely to have a history of
substance abuse, while being nearly 5 times more likely to have a history of

cognitive impairment.

Further, associations with BMI suggested a possible non-linear relationship,
where the likelihood of being in the mid-low - slowing improvement class
decreased with rising BMI until approximately a value of 34.5 (obesity), after
which it began to increase. In other words, participants in this class were more
likely to have both relatively low and very high BMI, while high-mid-range values
were associated with the mid-high stable class. | moreover observed a trend

(p = 0.056), suggesting that as stroke increased in severity from one category to
the next, participants were around 50% more likely to represent the mid-low -

slowing improvement trajectory.

For the third comparison with the mid-high - stable class as a reference, the
likelihood of representing the low - constant improvement trajectory increased
nearly by one-tenth with every one-year increase in age, increased 27 times with
a history of prior cognitive impairment, and 12 times with moving up a category
of stroke severity. | also noted a trend (p = 0.055), indicating that participants
were around two times less likely to belong to this class with the overall poorest

level of cognitive function as education increased by one category.



Table 8-5 Results of multinomial logistic regression analysis identifying predictors of latent trajectory class membership.
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Mid-high - stable?

vs. high - declining

Mid-high - stable? vs.

mid-low - slowing
improvement

Mid-high - stable?
vs. low - constant

improvement

High - declining® vs.
mid-low - slowing

improvement

High - declining? vs.

low - constant
improvement

Mid-low - slowing
improvement? vs. low -
constant improvement

Age

Sex

Education

BMI

BMI2

Smoking status

History of
substance abuse

Diabetes
Hypertension
Vascular disease
Heart failure
Atrial fibrillation

Previous stroke/TIA

Renal disease

Prior cognitive
impairment

History of mood
disorder

Stroke severity

0.99 (0.96, 1.02)
1.02 (0.53, 1.98)
1.90 (1.38, 2.61)*
0.99 (0.93, 1.06)
1.00 (1.00, 1.01)
0.75 (0.45, 1.23)

1.05 (0.34, 3.22)

1.31 (0.64, 2.69)
0.98 (0.53, 1.80)
0.92 (0.45, 1.88)
1.51 (0.41, 5.53)
1.00 (0.39, 2.61)
0.58 (0.26, 1.29)
0.92 (0.28, 2.98)

1.07 (0.20, 5.89)

1.01 (0.46, 2.24)

0.75 (0.48, 1.16)

1.01 (0.98, 1.04)
1.32 (0.71, 2.42)

0.64 (0.46, 0.88)**

0.92 (0.87, 0.98)*
1.01 (1.00, 1.01)*
1.15 (0.76, 1.74)

0.28 (0.10, 0.79)*

1.02 (0.49, 2.10)
1.10 (0.60, 2.02)
0.62 (0.29, 1.32)
1.27 (0.37, 4.34)
0.90 (0.42, 1.93)
0.95 (0.46, 1.96)
1.13 (0.47, 2.74)

4.85 (1.24, 18.92)*

1.21 (0.62, 2.38)

1.51 (0.99, 2.31)

1.08 (1.01, 1.15)*
1.53 (0.51, 4.61)
0.47 (0.22, 1.02)
0.98 (0.86, 1.11)
0.99 (0.98, 1.01)
1.26 (0.61, 2.59)

0.30 (0.04, 2.54)

1.32 (0.37, 4.68)
1.13 (0.41, 3.14)
1.00 (0.30, 3.41)
1.83 (0.34, 9.87)
0.43 (0.10, 1.90)
1.83 (0.64, 5.23)
1.05 (0.32, 3.45)

26.8 (5.39, 133.02)**

0.53 (0.10, 2.67)

11.94 (4.64, 30.7)**

1.02 (0.99, 1.05)
1.29 (0.59, 2.81)

0.34 (0.23, 0.50)*

0.93 (0.87, 1.00)*
1.00 (1.00, 1.01)
1.54 (0.89, 2.66)

0.27 (0.07, 0.96)*

0.78 (0.34, 1.77)
1.12 (0.55, 2.31)
0.68 (0.27, 1.68)
0.84 (0.18, 3.97)
0.90 (0.31, 2.56)
1.63 (0.63, 4.22)
1.24 (0.32, 4.82)

4.51 (0.79, 25.85)

1.20 (0.51, 2.84)

2.02 (1.21, 3.38)*

1.09 (1.02, 1.16)**
1.50 (0.45, 5.03)

0.25 (0.11, 0.56)**

0.99 (0.87, 1.12)
0.99 (0.98, 1.01)
1.69 (0.74, 3.83)

0.28 (0.03, 2.80)

1.00 (0.26, 3.86)
1.16 (0.39, 3.47)
1.09 (0.29, 4.16)
1.22 (0.19, 7.83)
0.42 (0.08, 2.23)
3.16 (0.95, 10.50)
1.14 (0.23, 5.62)
24.94 (3.53,
176.05)*

0.52 (0.09, 2.98)

15.96 (5.99, 42.5)**

1.06 (1.00, 1.13)*
1.16 (0.40, 3.43)
0.74 (0.34, 1.60)
1.06 (0.93, 1.20)
0.99 (0.97, 1.00)
1.10 (0.54, 2.23)

1.06 (0.13, 8.75)

1.29 (0.37, 4.51)
1.03 (0.38, 2.80)
1.62 (0.49, 5.36)
1.44 (0.27, 7.67)
0.47 (0.11, 2.04)
1.93 (0.69. 5.41)
0.93 (0.28, 3.05)

5.53 (1.35, 22.71)*

0.43 (0.09, 2.10)

7.90 (3.07, 20.35)**

areference class; *significant at p < 0.05; **significant at p < 0.01

BMI indicates body mass index; TIA, transient ischaemic attack.
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With the high - declining class as a reference, findings were in most part similar.
Representing the mid-low - slowing improvement class was approximately three
times less likely for both education higher by one category and a history of
substance abuse. | also observed an association where for every 1 unit increase
in BMI, the likelihood for cognitive change to follow this trajectory decreased by
7%. At the same time, belonging to the mid-low - slowing improvement class was

two times more likely for every one-category increase in stroke severity.

On comparing the high -declining to the low - constant improvement class, |
observed that representing the latter trajectory was more likely by nearly one-
tenth with every one-year increase in age, 25 times more likely with a history of
cognitive impairment, and 16 times with moving up a category of stroke
severity. Conversely, moving up one category of education was associated with
being four times less likely to belong to the low - constant improvement class. |
moreover observed a trend (p = 0.061), suggesting the participants in this class
were approximately three times more likely to have had a previous stroke or
TIA.

In the final comparison, with the mid-low - slowing improvement class serving as
a reference, | found that the likelihood of representing the low - constant
improvement trajectory increased 0.06 times with every one-year increase in
age, 5.5 times with a history of cognitive impairment, and nearly 8 times with a

one-category increase in stroke severity.

8.1.3 Results of additional analyses

8.1.3.1 Associations of latent class membership with physical activity
and social support

This analysis involved a subsample of 165 participants with data on self-reported
physical activity and social support, including: 38 participants in the high -
declining class, 79 in the mid-high - stable class, 39 in the mid-low - slowing
improvement class, and 9 in the low - constant improvement class. Considering
results of the main analysis alongside my initial assumptions, | accounted for the
following predictors: age, sex, education, BMI (linear and quadratic term), pre-
stroke mRS, history of substance abuse, previous stroke/TIA, prior cognitive

impairment, and stroke severity.
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However, even with a limited number of variables, | recognised that low
statistical power would present a major issue for this analysis. To at least
partially ameliorate this limitation, | decided to combine the two higher-
function classes and the two lower-function classes. In addition to relative
similarity in the overall level of cognitive function, this seemed justified by the
observed pattern of change, with the lower-function classes presenting
continuing improvement, unlike the other two class. Consequently, for this part

of the study | conducted a binary logistic regression.

| found no association between measures of physical activity and social support
and assignment to a lower-function class (OR = 1.02, 95% Cl: 0.73 to 1.42; and
OR =1.02, 95% Cl: 0.76 to 1.36, respectively). Among significant predictors were
only education (OR = 0.66, 95% Cl: 0.52 to 0.85) and stroke severity (OR = 1.48,
95% Cl:1.05 to 2.09).

8.1.3.2 Mediation analyses

Similarly as described above, in view of low statistical power, | used a binary
outcome, differentiating between the two higher-function latent classes and two
lower-function classes. The first analysis was aimed at replicating the moderated
mediation model described in Chapter 5. Here, however, obtained estimates
suggested poor model fit. Following modification recommendations, which can
be requested as part of the software output, | therefore included an additional
path, with stroke severity regressed on prior cognitive impairment. The resulting
mean fit index estimates suggested very good model fit: CFl = 1.00, TLI = 1.23,
RMSEA < 0.01, SRMR = 0.03.

For class membership, | found a direct association only with the two mediators:
stroke severity (coefficient = 0.218, 95% Cl: 0.001 to 0.435) and prior cognitive
impairment (coefficient = 0.580, 95% Cl: 0.241 to 0.918). In relation to mediator
predictors, stroke severity was inversely associated with age (coefficient =
-0.019, 95% Cl: -0.036 to -0.002), and positively associated with atrial
fibrillation (coefficient = 0.515, 95% Cl: 0.129 to 0.902) and prior cognitive
impairment (coefficient = 0.354, 95% Cl: 0.143 to 0.566). Prior cognitive
impairment was significantly predicted only by age (coefficient = 0.036, 95% Cl:
0.006 to 0.066). Although, there also appeared to be a trend for an association
with diabetes (coefficient = 0.601, 95% CI: -0.091 to 1.293, p = 0.089).
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In view of the observed direct associations, as a next step, | tested plausible
indirect effects. Of these, only two were significant. Representing a lower-
function class was associated with prior cognitive impairment through greater
stroke severity (coefficient = 0.077, 95% Cl: 0.013 to 0.142); and with age,
through increased likelihood of prior cognitive impairment (coefficient = 0.021,
95% Cl: 0.001 to 0.041). | further found a trend for two additional indirect
effects, where age decreased the likelihood of belonging to a lower-function
class through reduced stroke severity (coefficient = -0.004, 95% Cl: -0.009 to
0.001, p = 0.086), while atrial fibrillation increased this likelihood through
greater stroke severity (coefficient = 0.112, 95% Cl: -0.016 to 0.241, p = 0.087).

In the second analysis, | additionally included education, BMI, and history of
substance abuse among predictors. To develop a final model, | removed
insignificant interaction terms one by one in order of descending p-value, which
here also related to a quadratic term for BMI. However, removing the latter as a
predictor of class membership resulted in a deterioration of model fit, and
therefore | retained this term. Fit indices for the resulting final model,
presented in Figure 8-7, indicated very good model fit: CFl = 1.00, TLI = 1.20,
RMSEA < 0.01, SRMR = 0.02.
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Figure 8-7 Conceptual diagram of the final mediation model with two parallel mediators for prediction of latent trajectory class membership.
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Direct associations between predictors, mediators and class membership are

presented in Table 8-6. As in the previous analysis, representing a lower-function

class was more likely with greater stroke severity and prior cognitive

impairment. This likelihood decreased, however, with education and history of

substance abuse. | further observed a trend for an inverse association between

BMI and lower cognitive function (p = 0.054). Although, if the estimate for the

quadratic term of BMI indeed represented a true effect (p = 0.113), this would

indicate a change in the direction of the association for very high BMI values -

the likelihood of belonging to a lower-function class would start to increase from

a BMI of approximately 36.5.

The effects of predictors on mediators mostly replicated findings from the

previous analysis. Reduced stroke severity was associated with age, while

greater severity - with atrial fibrillation and prior cognitive impairment. The

latter was significantly associated with age only, although | also observed a

trend for an association with history of substance abuse (p = 0.082).

Table 8-6 Direct associations between predictors of interest and stroke severity,
prior cognitive impairment, and class membership; comparing combined two
higher-function classes (reference) with two lower-function classes.

Unstandardised coefficients (95% Cl)

Stroke severity

Prior cognitive
impairment

Class membership

Stroke severity

Prior cognitive
impairment

Age
Sex
Education

BMI
BMI?

History of
substance abuse

Diabetes
Hypertension
Vascular disease
Atrial fibrillation

Previous
stroke/TIA

0.330 (0.120, 0.506)**

-0.021 (-0.042, -0.001)*

-0.125 (-0.427, 0.176)
0.068 (-0.086, 0.222)
-0.023 (-0.057, 0.011)

0.077 (-0.450, 0.605)

0.143 (-0.250, 0.535)
0.100 (-0.219, 0.420)
-0.179 (-0.527, 170)

0.571 (0.187, 0.955)*

0.187 (-0.171, 0.544)

0.048 (0.006, 0.090)*

-0.132 (-0.668, 0.404)
-0.094 (-0.393, 0.205)

0.009 (-0.058, 0.075)

0.859 (-0.110, 1.828)

0.426 (-0.167, 1.019)

-0.090 (-0.715, 0.535)

0.381 (-0.176, 0.938)

-0.590 (-1.371, 0.192)

0.140 (-0.380, 0.659)

0.264 (0.047, 0.482)*
0.594 (0.295, 0.893)**

-0.013 (-0.042, 0.016)
0.223 (-0.224, 0.669)

-0.404 (-0.642, -0.204)**

-0.052 (-0.104, 0.001)
0.003 (-0.001, 0.006)

-1.162 (-2.030, -0.294)**

-0.200 (-0.705, 0.305)
0.109 (-0.367, 0.585)
-0.345 (-0.824, 0.134)
0.221 (-0.391, 0.833)

0.080 (-0.392, 0.552)

*significant at p < 0.05; significant at p < 0.01

BMI indicates body mass index; Cl, confidence interval; TIA, transient ischaemic attack.
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Regarding indirect effects, | found that representing a lower-function class was
significantly associated with atrial fibrillation and prior cognitive impairment
through greater stroke severity (coefficient = 0.151, 95% Cl: 0.005 to 0.297; and
coefficient = 0.087, 95% Cl: 0.023 to 0.151, respectively), as well as with age
through increased risk of prior cognitive impairment. There was also some
indication for possible opposing effects of age through stroke severity. As age
was associated with reduced stroke severity, it in turn appeared to decrease the
likelihood of belonging to a lower-function class (coefficient = -0.006, 95% ClI:
-0.012 to 0.001, p = 0.073). At the same time, age was associated with an
increased risk of prior cognitive impairment, in turn linked to greater stroke
severity, and ultimately - with lower cognitive function (coefficient = 0.004, 95%
Cl: 0.000 to 0.009, p = 0.079). Finally, I noted a potential indirect effect of
history of substance abuse on lower-function class membership through an
increased risk of prior cognitive impairment (coefficient = 0.510, 95% Cl: -0.080
to 1.100, p = 0.090).

8.2 Discussion

Findings from my study confirm existing concepts. Following stroke, most
individuals experience an initial period of cognitive improvement, after which
function may either continue to improve, remain relatively stable or decline.
However, with improvement associated with overall more severe impairment,
and decline with high cognitive function, an interpretation of what constitutes

‘good’ post-stroke cognitive outcome remains uncertain.

Based on the APPLE dataset, | identified four distinct trajectory classes for post-
stroke cognitive change over a one-year period. Key distinguishing features of
trajectory shape related to the intercepts and direction of change following the
1-month assessment. Although regarding the latter, it is relevant to note that
the uniqueness of the mid-high - stable class was rather due to the relative lack
of change. The low - constant improvement class can also be set apart on
account of a feature indicated in its designation - having the only trajectory
representing nearly linear growth. This may be due to an initially slower
recovery rate, which has been previously associated with particularly severe
acute post-stroke impairment (475-477). Considering how trajectories related to

one another, it is moreover important to highlight that none crossed over, that
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is, the order of classes according to level of cognitive performance prevailed

throughout the duration of follow-up.

Through investigating what factors characterised the identified trajectory
classes, | obtained some unexpected results. Firstly, higher overall cognitive
function, as represented by the first two trajectory classes, was associated with
a history of substance abuse. This is in contrast to an extensive body of evidence
indicating that alcohol and drug abuse increase the risk of neuropathology and
cognitive deficits, with some detrimental effects likely to persist even after
prolonged abstinence (478-481). Interestingly, results of the mediation analysis
provided some support for such an association - | observed a trend, where
history of substance abuse appeared to increase the risk of prior cognitive
impairment. In view of this, it seems plausible that substance abuse was
identified as a distinctive profile feature of participants with overall higher
cognitive function not on the basis of a causal relationship, but rather due to

covariation.

On one hand, substance abuse may have been one of the crucial predisposing
factors for stroke among individuals who were comparatively young and had low
comorbidity burden, and thus in some ways were less likely to present with
cognitive impairment at this stage (482). On the other, substance abuse is
associated with even several times higher mortality rates compared to the age-
matched general population (483, 484). Recognising death as a competing risk
for cognitive impairment may explain why fewer participants with a history of
substance abuse represented the two lower-function trajectory classes,
characterised by older age, higher prevalence of most diseases, and more severe

strokes.

Another controversial finding relates to the potential duality of the indirect
effect of age, increasing the likelihood of belonging to a lower-function class
through increased risk of prior cognitive impairment, while decreasing this
likelihood through reduced stroke severity. What was more, it seemed that age
could also indirectly contribute to increased stroke severity through its effect on
prior cognitive impairment. Given limitations of the analysis, and the discussed

associations appearing as trends, these findings should be interpreted with
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caution. Nonetheless, it seems worth considering why age could be associated

with reduced stroke severity.

One interpretation of this effect, which | mentioned above in the context of
alcohol abuse, relates to the presence of survival bias. Older people may be
more likely to die following a severe stroke, and therefore as a group will be
underrepresented in research such as this (485). As an alternative explanation,
studies suggest that stroke at a younger age is associated with a greater risk of
developing space occupying oedema, including malignant middle cerebral artery
infarction, which is associated with severe presentation and increased fatality
(486, 487). Older people are less susceptible to this condition, argued to be due
to more advanced cerebral atrophy, which affords potential compensatory space

within the intracranial cavity.

This phenomenon adds to other examples described in Chapter 5, indicating that
in specific circumstances pathological processes can lead to more favourable
outcomes. In this study, however, | did not observe a significant effect of
vascular disease on reduced stroke severity (either conditional or unconditional),
while an association with previous TIA alone could not be assessed. It is yet
possible that, to some extent, the observed effect of age on stroke severity
captured the cumulative influence of endogenous adaptive mechanisms,

potentially developing with age-related progression of cardiovascular diseases.

The conclusions from Chapter 5 also allowed me to anticipate the overall lack of
direct effects of cardiovascular risk factors on cognitive trajectories in the
present analyses. One exception was a trend for participants with the poorest
overall level of cognitive function to be more likely to have had a previous
stroke or TIA as compared to the high - declining class. This is in line with
existing research evidence, similarly as the observed associations between
representing one of the two lower-function classes and older age, lower
education, greater stroke severity, prior cognitive impairment, and both lower
and very high BMI values (23, 145, 465, 467).

What is, however, puzzling, is that these factors would also typically be
associated with cognitive decline, whereas the two classes characterised by

them showed improvement over time. Conversely, it was the class with the
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highest education and lowest prevalence of clinical risk factors (with the
exception of history of alcohol abuse) that showed a decline in cognitive

function after the 1-month assessment.

One explanation for this may be that trajectories of post-stroke cognitive change
are influenced by two co-occurring processes, exerting opposing effects. The
first involves ongoing neurodegeneration, while the second entails recovery from
stroke-induced damage. For participants who had less severe strokes and were
relatively unaffected by acute cognitive impairment, the scope for longer-term
recovery would have been limited. This in turn could have allowed for a more
pronounced effect of a neurodegenerative process, resulting from pre-existing
risk factors that predisposed to stroke, as well as neuropathological sequala of
the stroke itself. Given the comparatively overall high level of cognitive function
of participants who represented this trajectory, it seems that this process was
captured at an early stage, or at least the manifestation of it was. The latter
could have been delayed through the impact of cognitive reserve (488),

presumably associated with the high level of education characterising this class.

The opposite would apply to participants with overall poor cognitive function,
for whom the trajectory slope appeared to predominantly reflect recovery.
Nonetheless, the impact of neurodegeneration seems also apparent in this case,
particularly on account of the intercept. Although poor initial cognitive function
could in part be accounted for by on average greater stroke severity, findings
based on medical history suggest that prior cognitive impairment was also a key

contributing factor here.

In understanding the meaning of distinct trajectory shapes, it seems moreover
important to emphasise that the present study offers only a “snapshot” of
cognitive changes occurring over a lifespan. Trajectory class membership is
plausibly to some degree fluid and dependent on the point in time at which an
individual is observed. To illustrate this argument, it is possible that with age
and the consequent accumulation of health-related risk factors, a person who
once represented the mid-high - stable class will experience a subsequent

stroke, initiating change along a low - constant improvement trajectory.
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8.2.1 Clinical implications

A similar message can be emphasised as in Chapter 5 - for some stroke survivors,
the risk of cognitive decline and potential future impairment may be easily
underestimated. Based on my findings, this concern particularly relates to
individuals representing a high - declining trajectory of cognitive change.
Compared to other stroke survivors, this group’s profile seems to be
characterised by younger age, higher education, fewer comorbidities, a less
severe index stroke, and high acute cognition. As follows, they can
understandably be assumed to make a very good recovery and maintain high
cognitive function. However, even where gradual decline does not amount to a
diagnosis of cognitive impairment, it can be experienced by the individual as a

severe loss, compromising quality of life.

Although in line with current clinical guidelines (489), all stroke survivors are to
be supported in management of cardiovascular risk factors, there remains a key
issue of whether anything more can be done to promote cognitive resilience and
improvement. In this context, recognising distinct subpopulations among stroke

survivors and understanding their characteristics may be an important step

towards tailoring effective interventions to best suit individual profiles.

8.2.2 Research implications

Insights from this study encourage a revaluation of the currently dominant
approach to how post-stroke cognitive outcome is defined and measured. Unlike,
for example, recurrent stroke or death, cognitive function is not inherently
binary, nor does it constitute a single event. Yet, in many studies in this area of
research, it is treated as such. This does not imply that categorising individuals
at a specific point in time following stroke into cognitively intact and cognitively
impaired lacks real-world meaning or implications, or that this approach will not
allow identification of relevant determinants of cognitive status. It is, however,

undeniably leading to a loss of important information.

In a clinical context, the aim of prediction research is to identify individuals at
risk of an unfavourable outcome so that risk can be addressed - either in the

present, or in the future, for example, once an intervention can be implemented
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in routine practice following successful trials (96). However, with a binary
outcome assessed at one timepoint, the risk of cognitive decline cannot be
recognised, and thus addressed in those whose deficits have not yet reached the
threshold for diagnosis of cognitive impairment. Similarly, it will not be possible
to identify, and thus attempt to influence factors that differentiate between
stroke survivors who partially recover from severe cognitive impairment and

those who either maintain the same poor level of function or even deteriorate.

Regardless of design, one adjustment that can be easily introduced to many
studies is use of a continuous cognitive outcome. Understandably, both
researchers and clinicians may consider interpretation of findings in relation to a
formal diagnosis, such as mild cognitive impairment and dementia, more
intuitive and useful. This, however, does not preclude from conducting an
additional analysis with a continuous cognitive score for comparison of results,

to verify whether any relevant effects have been missed.

Another option worth considering, although entailing a higher level of
complexity, is latent class analysis, where unlike in this study, subpopulations
are distinguished based on co-occurrence of certain individual characteristics
(demographics, medical conditions, lifestyle factors) (490). This allows to
determine distinct profiles within a heterogenous population, such as that of
stroke survivors, which can then be introduced in a model to predict cognitive
outcome. Yet preferably, where resources permit, future research into post-
stroke cognitive outcomes should focus on longitudinal study designs with

multiple assessment timepoints.

In this context, it is important to discuss one of the key challenges of
longitudinal research - handling of missing outcome data due to dropout.
Similarly as reported by other researchers (e.g., 168, 491, 492), on comparing
participants who remained in the study to those who dropped out, | found that
the latter presented more risk factors for cognitive decline. As follows, it seems
that this type of missingness is likely not to be random. Such comparisons are,
however, rarely conducted and most studies adopt a complete-case analysis
approach. As individuals with more severe difficulties are likely to be

underrepresented, this can lead to biased estimates.
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Once missing data appear, there is no ideal method for handling this issue,
although some techniques are considered more favourable than others (493).
With this in mind, it is recommended to test more than one approach, using
different assumptions about missingness, and compare the obtained results (i.e.
conduct a sensitivity analysis). Observations from this comparison can then be
considered for the interpretation of findings and overall study conclusions,
offering a more realistic view of the investigated effects themselves, or at least

the likely degree of bias that should be taken into account.

8.2.3 Strengths and limitations

The broad inclusion criteria for recruitment into APPLE, as well as the option to
obtain consent through proxy, constituted key prerequisites for the participant
sample to be representative of a real-world stroke case-mix. | aimed to preserve
this advantage in the present study, by excluding very few (N = 11) participants
from conducted analyses. However, unlike in research utilising data from routine
care registries, participation bias could not have been avoided. The extent of

this bias is difficult to assess.

As | described in Chapter 6, patient screening logs were available for only 2 of 11
participating hospital sites, indicating a considerable disparity in enrolment
rates (43% for the Glasgow Royal Infirmary vs 12% for the Royal Alexandra
Hospital). The differences in characteristics between the APPLE and SSNAP
cohorts (as can be seen in Table 6-4) are also difficult to interpret, as the latter
did not include patients with a diagnosis of TIA. Nonetheless, it seems that the

APPLE sample underrepresents survivors of severe stroke.

In all decisions related to the study design and statistical analyses, | aimed to
follow current recommendations as outlined in GRoLTS (441), PROBAST (95) and
relevant materials on SEM (494, 495). Even so, the strengths of chosen strategies
were frequently accompanied by certain drawbacks. Conducting factor analysis
to obtain a latent variable representing cognitive function allowed me to handle
missing data from telephone assessments, account for differing contributions of

test items, and verify measurement invariance throughout follow-up.
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At the same time, however, to ensure success of the procedure, | applied a
data-driven approach for exclusion and collapsing of specific AMT-plus questions.
The need for such adjustments suggests a certain level of redundancy across test
items, and reminds that there is no evidence regarding the psychometric
properties of this particular cognitive screening tool (a hybrid between the AMT-
10 and a short-form MoCA). Moreover, the meaning of the individual factor
scores that | derived is only relative. As such, estimates of cognitive function
cannot be directly translated to scores from standardised assessment measures,

including thresholds for diagnosis of cognitive impairment.

On a similar note, through accounting for differences in assessment timepoints
across participants, | increased the probability of successful model convergence
and good model fit (443). Unfortunately, not all preferred software output
features were available for more complex models such as the one developed.
This specifically relates to plotting estimated factor score means against
observed means for identified trajectories. Figures included in the Results
section only present observed means. Adding estimated means is recommended
to aid the selection of an optimal solution from considered alternatives,
differing in terms of number of classes and type of growth function, and for

assessing overall model fit (441).

Further, | accounted for the possibility of non-random missingness in outcome
data - an issue frequently ignored in studies involving use of LCGA. To attenuate
potential bias, | initially planned to apply a method that had been tested in a
previous study (453). However, emerging challenges seemed to justify
introducing modifications, ultimately resulting in the use of a somewhat
experimental approach. Nonetheless, compared to results of the default analysis
using FIML alone, from a clinical perspective the adjusted trajectory shapes

seemed more plausible, while the overall effect on the final model was limited.

Regarding additional analyses, the study sample was too small to provide
sufficient power for an outcome dividing participants into four classes. While the
solution to combine subgroups may have increased the likelihood of detecting
significant effects, it also led to a loss of information, relevant to the uniqueness
of each class. To some extent, this could have contributed to the observed lack

of association between trajectory membership and measures of physical activity
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and social support. Plausibly, there were also other relevant limitations,
including reliance on self-report for the assessment of physical activity, and for
both variables - the briefness of chosen questionnaires. Although ensuring
minimal participant burden, the restricted number of incorporated items may
have been insufficient to reflect interindividual variability in measured

constructs.

| also experienced challenges to replicating the final model from Chapter 5. At
the variable level, the effects of previous stroke and TIA could not be separated.
At the path level, ensuring good model fit required specifying prior cognitive
impairment as a predictor for stroke severity. As a result, it is difficult to
interpret any differences in findings across the two studies. Nonetheless, the
relevance of including a path from prior cognitive impairment to stroke severity
is in itself an important finding, and is supported by previous research,

indicating more severe strokes in patients with dementia (496, 497).

8.2.4 Future directions

As indicated in the Introduction, an immediate next step will be to repeat this
analysis with inclusion of data from the 18-month assessment timepoint. This
will provide an opportunity to further develop conducted procedures. Perhaps
the most important planned modification relates to specifying a different type of
growth function. With the exception of the low - constant improvement class,
graphical representations clearly indicated that for the remaining three
trajectories a single linear function could not capture observed differences in
rate and/or direction of change over time. Availability of five assessment
timepoints will allow to apply what seems to be a more suitable solution -
modelling of piecewise trajectories (444). This involves breaking growth into
specific segments. For the APPLE dataset, a better fitting model could likely be
achieved through specifying one linear function for the period from baseline to

the 1-month assessment, and another for the remaining duration of follow-up.

Increasing model complexity may also be advantageous in relation to three
further study aspects. Firstly, | will additionally specify a model based on GMM,
to enable accounting for potential within-class heterogeneity. Secondly, | will

explore the use of more advanced techniques to handling missing outcome data,
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allowing for explicit modelling of dropout (454). Thirdly, for variables of interest
that were reassessed during follow-up (alongside cognitive performance), | will
consider effects at different stages of trajectory progression rather than

exclusively at baseline.

This final aspect seems of particular interest in view of identifying potential
targets for intervention and, here specifically, will offer an opportunity to
readdress the role of physical activity and social support (notwithstanding
limitations discussed above). Two publications point to the latter as an indeed
promising focus of investigation, as over a six-month period following stroke,
high social support was associated with a considerable increase in functional
improvement (246, 247). In one of the studies (246), the authors also found that
after an initial period of recovery, participants with the lowest level of social
support were likely to show a decline in functional status, beginning at around
two months post-stroke. Moreover, compared to survivors of severe and

moderate stroke, those with mild stroke were at highest risk of low support.

These findings appear particularly relevant in view of how trajectory shape
changed after the 1-month assessment for APPLE participants in the two higher-
function classes. On a broader perspective, they also point to another potential
explanation for why overall better post-stroke cognitive function could be
coupled with a less favourable pattern of change, that is, differences in
treatment, available services, opportunities, and experiences across stroke

survivors, depending on their initial presentation.

Having conducted repeated literature searches for the purpose of my thesis, |
have not yet found a publication describing the use of latent growth modelling
techniques for identifying trajectories of post-stroke cognitive change. This adds
further merit to expanding this field of research by repeating similar studies in
different datasets. Preferably, these will involve larger sample sizes and more
assessment timepoints, and will offer a broad scope of investigation for
modifiable determinants of outcome, the targeting of which could promote

cognitive improvement and long-term preservation of high cognitive function.
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8.3 Summary

This study represents a pioneer attempt to capture post-stroke cognitive changes
using a latent growth modelling technique. My results speak to the heterogeneity
of the investigated process. This was reflected in the identification of four
cognitive trajectories, with distinct features regarding the initial severity of
deficits, and the rate and pattern of changes occurring over a one-year period.
In the wider context of my thesis, this research reinforces earlier conclusions
regarding the complexity of the cognitive sequalae of stroke and their
associations with individual characteristics. As | discuss in my final chapter,
underestimating this complexity may create a gap between the potential and

actual impact of prognosis research on improving post-stroke cognitive function.
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Chapter 9 Discussion

Improving cognitive function is a priority objective for individuals affected by
stroke (37). Prognosis research has the potential to play an important role in
achieving this goal, through informing the development and implementation of
appropriate interventions (96). The first pivotal steps involve gaining a better
understanding of the cognitive changes that occur following stroke, and the
factors that are associated with their course. In recent years, much research has
been conducted to this end, with attention now turning towards applying the
obtained findings to allow accurate prognosis of post-stroke cognitive outcome

at an individual level, based on selected characteristics.

Through examining the existing literature with a focus on post-stroke cognitive
function, | identified three under-investigated topics, where further evidence
could meaningfully contribute to the foundations for this next stage of research.
This included assessing the relevance of: i) potentially modifiable factors, ii)
differential effects of risk factors, depending on paths of influence and co-
occurrence, and iii) interindividual differences in intraindividual cognitive

change over time.

9.1 Relevance of potentially modifiable factors

The unique value of identifying modifiable factors lies in their potential to serve
as targets for intervention. In addressing this topic, | focused on two domains of
everyday life that have received much research interest as prognostic (and
possibly causal) factors for cognitive function in the general population -
physical activity patterns and social engagement. In relation to the former, the
associations that | observed most consistently related to the daily duration of
two types of sedentary behaviour, where computer use had a positive effect on
cognitive performance, and the opposite was indicated for watching TV. At the
same time, | found very little evidence to support the anticipated relationship
between increased physical activity and better cognitive function. As discussed
in Chapter 4, based on these findings | reached two main conclusions: 1) it is
possible for sedentary behaviour to be associated with post-stroke cognitive

function independently of physical activity, and 2) sedentary behaviour may
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have opposing effects on cognitive function depending on whether it is mentally

passive or active.

In relation to social engagement, from a number of measures representing both
ends on the objective-subjective continuum, | found that cognitive task
performance was most consistently associated with loneliness. Importantly,
feeling lonely was reported by one in four stroke survivors in the study sample -
a concerning observation given the distressing nature of the experience itself, as
well as previous evidence suggesting its detrimental relationship with not just
cognition (301-303), but also many other individual outcomes, such as
depression, diminished immunity, cardiovascular disease, and mortality (297,
298, 300, 498).

For the interpretation of my results from both studies, it is important to note
that the associations | observed between cognitive performance and predictors
of interest overall were weak, and there was some heterogeneity in findings
across different tasks. Moreover, as discussed in sections 4.3.2.3 and 4.3.4.3,
both studies had considerable methodological limitations, many of which related
to use of data from a general-purpose cohort (UK Biobank). One, involving the
use of suboptimal measures of physical activity and social support, also posed an
issue in the APPLE study. Here, this specifically related to the briefness of both
chosen questionnaires, and for the assessment of physical activity - reliance on
self-report. Coupled with a relatively small sample size, this may explain my
neutral results, where neither of these factors predicted the course of post-

stroke cognitive change over a one-year period.

In view of this, my findings from the UK Biobank analyses on the associations
between habitual physical activity, sedentary behaviour, and social engagement
on post-stroke cognitive function cannot be considered as definitive. However,
they provide grounds for instigating further focussed studies in this area.
Investigating the impact of breaking up mentally passive sedentary behaviour
with cognitive and light-intensity physical activity seems of particular interest,
as a more feasible and sustainable alternative strategy to structured, supervised
exercise sessions for stroke survivors with greater activity limitations and
participation restrictions. Promoting social support, on the other hand, may be

considered as an additional interventional component, having the potential to
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improve adherence to treatment programmes (499-501), alongside a possible,

more direct effect on cognitive function.

9.2 Differential effects of risk factors

The potential for risk modification was also a key consideration that motivated
me to focus on the cognitive consequences of cardiovascular diseases. While
there is a strong premise to assume their relevance to post-stroke cognitive
function, existing evidence on this topic appeared inconclusive or conflicting
(23, 145). | recognised that this may be due to the complex nature of these
associations, with some effects on cognition preceding index stroke, interactions
between diseases, and multiple paths of influence (direct and indirect). In
relation to the latter, | further assumed that the effects of cardiovascular risk
factors may not be unequivocally detrimental, as pathological processes can
trigger endogenous adaptive mechanisms; for example the theory around TIA
inducing ischaemic tolerance (343), and large vessel cerebrovascular disease
leading to the development of collateral circulation (347, 348). This inspired me
to develop a model, allowing me to test the indirect effects of cardiovascular
risk factors on acute post-stroke cognitive function, as mediated through stroke
severity and a history of dementia, and to assess moderation effects due to

comorbidity.

As | describe in Chapter 5, my results indicated that poorer cognitive
performance was associated with: atrial fibrillation through increased stroke
severity, previous stroke through an increased risk of prevalent dementia, as
well as age through both mediators. Importantly, my findings also supported the
hypothesis that some indirect effects of cardiovascular risk factors may be
favourable. Specifically, vascular disease in the presence of hypertension and
absence of diabetes, as well as previous TIA seemed to be associated with better

acute cognitive performance through reduced stroke severity.

| conducted a similar analysis in the APPLE dataset, which | described in
Chapters 7 and 8, using an alternative outcome - the pattern of post-stroke
cognitive change over one year, dichotomised to reflect an overall higher and
overall lower level of cognitive function. In addition to confirming the relevance

of stroke severity and prior cognitive impairment, the main comparable finding
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related to an indirect association between atrial fibrillation and lower overall
cognitive function, through increased stroke severity. Conversely, one of my
most unique observations concerned the possible opposing effects of age -
associated with higher cognitive function through reduced stroke severity, and
with lower function through an increased risk of prior cognitive impairment. To
add further complexity, prior cognitive impairment was in turn linked to greater

stroke severity.

The differences in findings across the two studies are difficult to account for, as
| was unable to precisely replicate the first model in the APPLE dataset. This was
only one of many challenges associated with conducting these analyses and the
interpretation of results. Another significant limitation related to uncertainty in
the measurement of variables of interest, particularly regarding pre-stroke
cognitive function. Similar to most predictors, coding of this factor relied on the
presence of information in medical records, while evidence suggests that
underdiagnosis and/or under-recording of cognitive impairment, even in its

severe form, is a common issue (389).

Moreover, | did not have access to data relevant to verifying my initial
assumptions, regarding the possible impact of previous TIA and vascular disease
on alleviating stroke severity, and thus better acute cognitive performance.
While | developed my hypotheses based on an assumed role of endogenous
protective adaptations, treatment effects (e.g. from prescribed medication)

provide a highly plausible alternative explanation for my findings (386, 387).

Overall, the results of my analyses still leave much uncertainty. Nonetheless,
they are not without research implications. My findings suggest that commonly
applied basic multivariable models constitute an overly reductionist approach to
investigating the associations between cardiovascular diseases and post-stroke
cognitive function. Consequently, the importance of the former may be easily
underestimated. This conclusion is also likely to apply to assessing the relevance
of lifestyle factors, as their effect on cognition is plausibly (at least in part)

exerted through modifying cardiovascular risk.

In view of this, | would recommend future application of moderated mediation

analyses for studying the associations between modifiable factors and post-
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stroke cognitive function, considering multiple putative paths of influence and
interaction effects. To gain a better understanding of the mechanisms that
underly investigated relationships, it moreover seems necessary to account for
neuroimaging evidence of structural, metabolic, and/or functional brain
abnormalities. Inclusion of such variables in statistical models as mediators could
contribute to explaining how modifiable factors affect post-stroke cognition

through their impact on progression of neuropathological processes.

My findings regarding the complexity of between-predictor and predictor-
outcome relationships may also have clinical implications. Assuming observed
associations reflected true effects, stroke survivors with a history of TIA and
vascular disease with hypertension could be considered as having a relatively low
risk of future post-stroke cognitive disorders on account of less severe index
strokes. However, the presence of these conditions is likely associated with
progressive neurological damage, occurring long-term. The conclusion that for
specific subgroups of stroke survivors the actual risk of cognitive deterioration

may be underappreciated was also implied by my findings from the APPLE study.

9.3 Trajectories of post-stroke cognitive change

As | emphasised in Chapter 2 in the section on stratified medicine, while sharing
certain characteristics, clinically defined populations are in many ways
heterogeneous. This can manifest in variability in the clinical course of a
condition or - expanding this notion beyond the context of disease - in the
change that occurs in individual status over time. In relation to cognitive
function following stroke, it is moreover apparent that in addition to differences
between individuals, there is also heterogeneity in the pattern of change on a
within-individual level. Latent growth modelling techniques were developed to
capture these aspects - the interindividual differences in intraindividual change
over time (440). Yet, it appears they have not been previously employed to

investigate the topic of post-stroke cognition.

Through applying LCGA in the APPLE dataset, | identified four distinct trajectory
classes reflecting cognitive change during the first year following stroke: i) a
high - declining class, with high cognitive function soon after stroke, improving

over following weeks, and thereafter declining; ii) a mid-high - stable class, with
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some cognitive problems soon after stroke, followed by a period of
improvement, after which cognitive function remained relatively stable; iii) a
mid-low - slowing improvement class, with comparatively poor initial cognitive
function, which after a stage of steeper improvement, continued to improve at a
slower rate; and iv) a low - constant improvement class, with severe cognitive
impairment soon after stroke, followed by improvement in cognitive function at
a relatively constant rate. During the follow-up period, the order of classes
according to level of cognitive performance prevailed, meaning that at no point
did a class with poorer initial cognitive function exceed in performance a class
with higher initial function. In general, study participants representing the two
classes with lower overall cognitive function were characterised by older age,

lower education, greater stroke severity, and pre-stroke cognitive impairment.

Given the pilot nature of this research, similar analyses need to firstly be
conducted in the full APPLE dataset (including an 18-month assessment),
followed by testing in independent participant samples, before confidence in my
findings will seem justifiable. Nonetheless, | consider that the particular merit
of this study does not lie in closing, but rather opening questions. These apply to
some of the basic, widespread assumptions made in prognosis research into post-
stroke cognition: Is the absence of diagnosed cognitive impairment at a specific
point in time equivalent to a good outcome? Is prognostic accuracy achievable
assuming direct, unconditional predictor-outcome associations? How applicable
are average estimates to any individual, given such heterogeneity within a
stroke population? These questions, together with my initial conclusions from
reviewing the existing literature, and findings from my earlier studies, evoked

reflections on the role and direction of development for this area of research.

9.4 Appraisal of prognosis research into post-stroke
cognition: a pause before deciding on future
directions

Viewing my thesis as a whole, it may seem that the existing research work |
described across the first three chapters called for a different direction of
investigations. In accordance with the PROGRESS framework (96), which was the
focus of Chapter 2, | inferred that prognosis research into post-stroke cognition

has presently reached the beginning of the third theme, related to the
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development of prognostic models. Conversely, the three topics | chose to
address in my studies can be classed as pertaining to the two preceding themes
of fundamental prognosis research and prognostic factor research. This gives rise

to an unavoidable question: why look back instead of moving forward?

The reason for this was that | considered the next obvious steps - external
validation and potential updating of existing prognostic rules - premature, with

two crucial issues remaining open to debate:
1. is accurate prognosis of individual post-stroke cognitive outcomes viable?

2. is the ability to predict individual post-stroke cognitive outcomes

valuable?

As | found, the results of my studies only added fuel to these uncertainties,

particularly in relation to viability.

9.4.1 Examining the viability of individual outcome prognosis
94.1.1 Post-stroke cognitive impairment

As | described in Chapter 3, to date only one prognostic rule for predicting post-
stroke cognitive impairment has been externally validated - the CHANGE score
(164). It presented only fair discriminatory power (AUROC of 0.75), despite the
prediction being relatively short-term, with the outcome assessed between
three to six months post-stroke. While this is the result of only one study, and
comparable data are unavailable for other identified prognostic rules, this
observation is not singular in suggesting limited potential for such tools to have
good accuracy (AUROC of at least 0.80). Further support is gained from a
systematic review of 61 prognostic models for predicting dementia in the
general population, where good performance in an independent dataset was

rarely reported (152), followed by several deductive arguments.

One issue has been repeatedly emphasised across all my studies - the nature of
the matter is extremely complex. Cognitive function is shaped by multiple
interlinked experiences and exposures, with influences present throughout the

entire lifespan (502). Even when just focusing on selected prognostic factors,
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appearing most relevant to post-stroke cognition either based on temporal
proximity or putative underlying causal mechanisms, modelling their effects is a
challenging task. As | demonstrated, this relates to the possibility of differential
associations for a given predictor with post-stroke cognition, stemming from
varying paths of influence, between-variable interactions, and the heterogeneity

of the population.

In stark contrast to this complexity, is the relative simplicity of prognostic rules.
Indeed, maximising simplicity is an intentionally sought property in the design of
prognostic rules to ensure feasibility of use. Arguably, for the purpose of
outcome prognosis, where the effect of a variable is indirect, conditional, or
non-universal, it can be recognised as having poor prognostic value, and thus to
not merit attention. This approach does not seem unreasonable, given that there
are alternative predictors, such as age, stroke severity, and cerebral atrophy,

which have a strong, consistently proven association with post-stroke cognition.

Nonetheless, to some extent, relativity of effects will also apply to such factors,
and while ignoring this issue will not negate their prognostic utility, it may
diminish it. For example, it is worth considering whether performance of the
CHANGE score could be improved by incorporating interaction effects between
some of the predictors it already includes, namely, between education and both
white matter hyperintensities and global cortical atrophy. Indeed, many studies
in the field of cognitive reserve have indicated that education attenuates the

effects of neuropathological changes on cognitive function (503, 504)

Alongside a reductionist approach to modelling the effects of predictors,
perhaps the greatest commonly applied simplification relates to capturing the
outcome, with post-stroke cognition forced to fit the dimensions of a single,
binary event. Importantly, however, estimating that an individual is at low risk
of post-stroke cognitive impairment at a specific point in time gives no
assurance that they are at low risk of cognitive decline. Findings from my latent
class growth analysis support the notion of such duality, indicating declining
performance in individuals with fewest cognitive deficits, who at the same time
were younger, more educated, had fewer comorbidities, and had less severe
index strokes than participants representing classes with overall lower, albeit

improving function.
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Overlooking the direction of cognitive change over time is also likely to entail a
certain short-sightedness of predictions. Despite decline in cognitive function, a
prognostic rule may correctly predict that according to standard criteria an
individual will be classed as cognitively intact at six months; but will this still

apply at one year if changes continue along the same trajectory?

94.1.2 Post-stroke delirium

The above concerns seem of lesser relevance to prognosis of delirium in acute
stroke. Intrinsically, the aim of a prognostic rule in this context is to predict an
outcome typically occurring within a matter of days. The sudden onset and
transient nature of delirium is also more akin to the concept of a single event.
For similar reasons, there is merit in prioritising factors that are affecting the
individual in the acute phase of stroke, such as existing comorbidities, sensory

impairments, infection, or dehydration, rather than life-course influences.

Nonetheless, external validations of prognostic rules for predicting delirium in
older adult inpatients indicate that in most cases performance is also only fair
(153). This seems to remind us that as in relation to mild cognitive impairment
and dementia, the development, progression and determining factors of delirium
are not yet fully understood. Whether accurate prognosis of individual outcomes

is possible without such an understanding is debatable.

9.4.2 Examining the value of individual outcome prognosis

The issues of viability and value of applying prognostic rules to predict individual
post-stroke cognitive outcome are intertwined. At a minimum, produced
estimates can only be considered of value if they are better than chance.
Conversely, even excellent discrimination and calibration cannot ensure that an
estimated risk is worth knowing. Assuming that satisfactory prognostic accuracy
is achievable, below | consider the potential importance and implications of

applying prognostic rules from individual, research, and policy perspectives.
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9421 A clinical and personal perspective

Individual prognosis of post-stroke cognitive impairment

A qualitative study investigating the views of stroke survivors, carers and
clinicians on use of prognostic tools for predicting post-stroke dementia in
routine practice highlighted a shared, paramount concern (175): is knowledge of
the risk worth the entailed psychological burden, given there is currently no
established treatment to change the outcome? Familiarity with the seven
existing prognostic rules addressing post-stroke cognitive impairment seems to

only reinforce a sense of inevitability.

As | presented in the Results section of Chapter 3, nearly all the considered
predictors were non-modifiable. Moreover, they relied on information collected
around the time of index stroke. This is naturally understandable, and even
ideal, in view of an intention to apply a prognostic rule in the acute phase.
However, confidence in such predictions would also imply that regardless of
what an individual does after a stroke (e.g. close adherence to prescribed
medications or lifestyle changes), this will not have a meaningful impact on their
risk of cognitive impairment. From this perspective, contentiously, it seems we

should hope that existing rules would not perform well in external validation.

Appropriate initiation of preventive interventions, however, is not the only aim
of estimating the individual probability of an unfavourable outcome. In the same
qualitative study (175), participants expressed that awareness of the risk of
dementia could help in planning for the future and finding useful coping
strategies. This view does not yet seem to explicitly support the use of

prognostic tools, at least in their present form.

Two of the existing rules aimed to predict cognitive impairment up to one year
following stroke, while the five remaining ones focused on the outcome
occurring after three to six months. Given this relatively short time span, it is
questionable whether a prognostic rule is indeed useful in alerting a stroke
survivor and/or carer to the prospect of severe cognitive difficulties, and the
consequent need for preparation. Plausibly, many of the deficits informing the

diagnosis of dementia, e.g. at 6 months, would have already been present in the
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acute phase of stroke. Assuming these impairments were recognised through
routine cognitive screening or personal observations, practical adjustments to
daily lives of the stroke survivor and their family/carers could have been made
regardless of the prognosis.

Another issue relates to whether it is ever truly appropriate to assume that
deterioration of cognitive function is of no concern to a stroke survivor, even if
the risk estimated by a prognostic rule is low. A recent study reported that one
year following a severe stroke, the risk of dementia is a staggering 50 times
higher than in the age and sex-matched population (20). In this context,
however, it is particularly noteworthy that the incidence of dementia was found
to be comparatively 3.5 times higher just after TIA, increasing to approximately
6 times for minor stroke (NIHSS score < 3). Further supporting this argument are
my findings regarding trajectories of cognitive change, presented in Chapter 8.
Improvement was coupled with relatively poor cognitive function, while high
function - with decline. As such, it is questionable whether representing any
subgroup constitutes a satisfying outcome, with the answer likely depending on

individual point of view.

Individual prognosis of post-stroke delirium

As in the case of viability, the evaluation of prognostic rules for predicting
delirium takes a somewhat different course. On one hand, there are
recommended interventions for delirium (64). On the other, recognition of this
condition in the context of stroke can often be difficult (147, 505). Identifying
high risk individuals could encourage closer and more frequent monitoring of
behaviour and cognitive function, reducing the likelihood of delirium being
missed, and thus remaining untreated. Yet, perhaps even more importantly, risk

awareness could contribute to delirium prevention.

A Cochrane review (506) concluded there was strong evidence supporting multi-
component interventions to prevent delirium in general, geriatric, and surgical
ward settings. While the specific content of considered interventions varied,
some elements were shared across multiple studies, including: provision of
individualised care, reorientation (repeatedly informing a patient about the

environment/circumstances they are in), avoidance of sensory deprivation,
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maintaining appropriate nutrition and hydration, mobilisation, and promoting
sleep hygiene. Since the publication of the review, one study (N = 108) has
further tested a multi-component intervention specifically in an acute stroke

setting, indicating a reduction in the incidence rate of delirium by 16.7% (507).

However, despite the possibility of preventing or treating post-stroke delirium,
there still seems to be insufficient justification for estimating the individual risk
of its development in clinical practice. Looking at the intervention components
listed above, it can be argued that all acute stroke patients should be entitled to
such care; particularly, as the absolute risk of delirium in this group is high,

being at approximately 25% (21).

9.4.2.2 A research perspective

The value of applying prognostic rules in a research context is typically indicated
in relation to clinical trials. Due to heterogeneity within a clinical population,
the average benefit of a tested intervention reported for a study sample may in
many cases be a poor representation of the likely treatment effect in a
particular individual (508). Exploring differences in treatment effects by
employing conventional subgroup analysis, where participants are repeatedly
categorised based on one variable at a time (e.g. sex or history of hypertension),
is recognised as having significant limitations (509). Specifically, an increased
risk of false positive findings due to multiple testing is coupled with a reduced
ability to detect real heterogeneity in treatment effects (510). The latter results
from any single variable likely having only a small influence on treatment effect,
as well as from possible similarities across analysed subgroups regarding many

other pertinent characteristics.

By simultaneously accounting for multiple factors, prognostic rules overcome
these limitations. Importantly, the single property they capture - the risk of an
unfavourable outcome - is considered highly relevant to explaining variation in
treatment effect (509). As | described in Chapter 2 in the section on stratified
medicine, where the relative effect of a treatment is found to be similar across
individuals, those with the highest initial risk of an unfavourable outcome will
experience the greatest absolute benefit. This is a key consideration for clinical

decision-making. Given that most interventions are associated with some
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adverse effects, for a person whose probability of an unfavourable outcome is
low, the estimated benefit from the treatment may be too low to outweigh the

potential risks.

The relevance of the individual risk of a future outcome to treatment effect is
recognised as practically universal (509). As follows, prognostic rules for
predicting cognitive disorders may indeed contribute to clinical trials of
interventions targeting cognitive function following stroke. The extent of their
application, however, may depend on intervention content. Arguably, the
potential impact of some treatments may by limited by the presence of factors
that contribute to the overall increased probability of a future cognitive
disorder, thus disrupting the expected association between a higher risk and
greater absolute benefit. To illustrate this point, | describe an example based on
prevention - currently considered a priority approach to reducing the high global
burden of dementia (511, 512).

Similarly as in the case of delirium, recognition of the multifactorial aetiology of
dementia has encouraged the development of multi-component interventions for
risk reduction (512, 513). Focusing on such aspects as physical activity, diet,
control of cardiovascular risk factors, and cognitive training, these interventions
heavily rely on self-management, with study participants required to individually
implement changes in their everyday life (514-517). Following stroke, however,
individuals with initial cognitive problems may experience challenges to fully
participating in interventions based on self-management (518, 519). As follows,
despite likely being at greater risk of future dementia, they may benefit from
such strategies less than stroke survivors for whom there are no cognitive

barriers to implementing and maintaining lifestyle recommendations.

Recognising that there are distinct subpopulations among stroke survivors,
further draws attention to the possibility of having to address differing
intervention aims. Reflecting on the trajectories of cognitive change that |
identified in Chapter 8, for individuals with overall high cognitive function, in
the sub-acute stage of stroke it could be a priority to maintain the current level
of performance and avoid cognitive decline. For individuals representing an

overall low cognitive function trajectory, however, it seems it would be
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important to focus on improving performance. Whether one type of intervention

could address both aims with equal success is open to question.

9.4.2.3 A healthcare policy perspective

An increasing burden of cognitive disorders has major implications for health and
social services (520, 521). The current prioritisation of prevention for strategic
policy-making has been coupled with a desire to identify high-risk individuals for
targeting interventions (511, 512, 522). Interestingly, in “From evidence into
action: opportunities to protect and improve the nation’s health” released in
2014 by Public Health England, one of the stated aims in relation to dementia
prevention was to develop a personalised risk assessment calculator for
incorporation into the NHS Health Check (523). However, a rationale for this

decision had not been described.

In general, health policies aimed at dementia prevention focus on improving
public and professional awareness of the disorder, and promoting behaviours
that can lead to the reduction of modifiable risk factors, such as physical
activity, a healthy diet, smoking cessation, and limited alcohol consumption
(511). Importantly, such recommendations appear to be universally beneficial,
and to entail a low risk of adverse effects. Moreover, the relative risk of
cognitive impairment and decline for stroke survivors is already high compared
to the general population. Therefore, a similar question arises as for
implementation of multicomponent interventions for preventing delirium - why
should such strategies be targeted only at a specific subgroup of stroke

survivors, who are at highest risk of dementia?

This is not to say that prognosis research has not and will not be crucial to the
development of effective healthcare policies for the prevention of post-stroke
cognitive disorders. Based on indications from the PROGRESS series, key
contributions may include (96, 99): i) estimating average prognosis to model the
population burden of cognitive disorders and associated service requirements, ii)
comparisons of different healthcare systems to inform how variation in standard
care influences cognitive outcomes, iii) identifying modifiable risk factors to
target in preventive, policy-level interventions, and iv) assessing the impact of

such interventions.
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9.5 Conclusions

To date, there is no specific, recommended intervention to improve cognitive
function following stroke. A seemingly clear path through which prognosis
research may contribute to changing this reality involves identifying modifiable
prognostic factors, causally associated with post-stroke cognition, to serve as
treatment targets. In this context, findings from my UK Biobank studies provided
preliminary evidence to support further investigation of three factors - mentally
passive sedentary behaviour and loneliness as associated with poorer cognitive
function, and mentally active sedentary behaviour as associated with better

function.

These observations already highlight one important challenge to understanding
predictor-outcome relationships - what could be considered a single variable,
such as the level of habitual physical activity or social engagement, may have a
number of different components, each characterised by distinct properties.
Without recognising their unique relevance, true and important associations

could be easily missed, misrepresented or misinterpreted.

It is yet perhaps the next step that seems to be the hardest based on previous
research endeavours - translating findings from observational studies (as the
ones | conducted) to successful interventions, improving individual outcomes in a
clinically meaningful way. The results of my subsequent studies seem to provide
insight on why this gap is so difficult to bridge, as well as suggestions for how

this issue could be addressed.

Firstly, it is important to consider how and when a potentially causal factor can
affect post-stroke cognitive outcome. As | found through my moderated
mediation analyses, a lack of evidence-based assumptions regarding these
aspects to inform the development of a statistical model may also lead to
misidentification of relevant associations. This shortcoming is then likely to have
implications at the stage of intervention design, with accurate answers to “how”

and “when” crucial to ensuring applicability of a considered approach.

For example, there has been much controversy regarding active blood pressure

lowering in acute stroke, with studies reporting mixed results on the impact of
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this strategy on early and long-term outcomes (including, e.g. neurological
deterioration, death, and dependency) (524, 525). Findings from a recent study,
which | described in Chapter 5, indicated a possible explanation for such
inconsistencies - the impact of blood pressure on clinical outcomes is highly
dependent on reperfusion (380). With a favourable effect of higher blood
pressure in patients with reperfusion, and the opposite observed for patients
without it, the authors suggested that active blood-pressure lowering should not

be considered prior to reperfusion treatment.

Secondly, stroke survivors constitute a heterogenous population, which can
manifest in differential patterns of cognitive change over time, and varying
relevance of specific prognostic factors. This observation undermines the
possibility of developing an effective one-size-fits-all intervention. While risk-
stratification based on prognostic rule estimates may account for some of the
variation in treatment effects, it seems that a more holistic and in-depth
understanding of individual profiles may be necessary to appropriately tailor
future interventions (526). In addition to factors that | addressed in my thesis,
neuroimaging findings may play an important role in gaining this understanding,
allowing to account for interindividual differences in the extent of
neuropathological changes, their type, including whether they are reversible

(e.g. metabolic abnormalities) or irreversible, and their manifestation.

In summary, | believe that in the present context of prognosis research in post-
stroke cognition, fundamental and prognostic factor investigations still have a
priority role to play in advancing the search for ways to improve individual
outcomes. For contributions to be meaningful, however, it seems important to
reconsider our approach to capturing cognitive changes following stroke and
their associations with individual characteristics. Overlooking information that
speaks to the complexity of the subject matter can significantly limit the real-
world application of research findings. It is then, when the practical advantages

of conceptual simplifications come at too high a cost.
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Appendix 1: Chapter 3, PRISMA checklist

Section/topic

#

Checklist item
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Reported on

applicable, included in the meta-analysis).

page #

TITLE

Title 1 Identify the report as a systematic review, meta-analysis, or both. 52

ABSTRACT

Structured summary 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility N/A
criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions
and implications of key findings; systematic review registration number.

INTRODUCTION

Rationale Describe the rationale for the review in the context of what is already known. 52, 53

Objectives 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, 53
comparisons, outcomes, and study design (PICOS).

METHODS

Protocol and registration 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, 53
provide registration information including registration number.

Eligibility criteria 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 54, 55
considered, language, publication status) used as criteria for eligibility, giving rationale.

Information sources 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify | 54
additional studies) in the search and date last searched.

Search 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be | 218-224
repeated. (Appendix 2)

Study selection 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 54, 55
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Reported on

Section/topic # Checklist item page #

METHODS

Data collection process 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 53, 55; RP
processes for obtaining and confirming data from investigators.

Data items 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and | 55, 56
simplifications made.

Risk of bias in individual 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was | 56

studies done at the study or outcome level), and how this information is to be used in any data synthesis.

Summary measures 13 | State the principal summary measures (e.g., risk ratio, difference in means). 56

Synthesis of results 14 | Describe the methods of handling data and combining results of studies, if done, including measures of N/A
consistency (e.g., 1?) for each meta-analysis.

Risk of bias across studies | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective | N/A
reporting within studies).

Additional analyses 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, N/A
indicating which were pre-specified.

RESULTS

Study selection 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 57, 58
exclusions at each stage, ideally with a flow diagram.

Study characteristics 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 59-69
period) and provide the citations.

Risk of bias within studies | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 60, 61, 70

Results of individual 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 66-68

studies intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Synthesis of results 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. N/A
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Reported on

Section/topic # Checklist item page #

RESULTS

Risk of bias across studies | 22 | Present results of any assessment of risk of bias across studies (see Iltem 15). N/A

Additional analysis 23 1Gei:]/e results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item N/A

)

DISCUSSION

Summary of evidence 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their 71-74
relevance to key groups (e.g., healthcare providers, users, and policy makers).

Limitations 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete 72-74
retrieval of identified research, reporting bias).

Conclusions 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future 74,75
research.

FUNDING

Funding 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders N/A

for the systematic review.

RP indicates Review Protocol (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020170428).

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA
Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097
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Appendix 2: Chapter 3, search strategy

Medline (via OVID) search strategy

1.

cerebrovascular disorders/ OR exp basal ganglia cerebrovascular disease/
OR exp brain ischemia/ OR exp intracranial arterial diseases/ OR exp
“intracranial embolism and thrombosis”/ OR exp intracranial
hemorrhages/ OR stroke/ OR exp brain infarction/ OR vasospasm,
intracranial/

(stroke OR post?stroke OR cerebrovasc$ OR brain vasc$ OR cerebral vasc$
OR cva$ OR apoplex$ OR SAH).ti,ab.

((brain$ OR cerebr$ OR cerebell$ OR intracran$ OR intracerebral) adj5
(isch?emi$ OR infarct$ OR thrombo$ OR emboli$ OR occlus$)).ti,ab.
((brainS OR cerebr$ OR cerebell$ OR intracerebral OR intracranial OR
subarachnoid) adj5 (h?emorrhage$S OR h?ematoma$ OR bleed$)).ti,ab.
((transi$ adj3 isch?em$ adj3 attackS) OR TIAS1).ti,ab.
1OR20R30R40R5

((validat$ OR predictS OR prognos$ OR rule$S) adj3 (outcome$ OR riskS OR
model$)).ti,ab.

(prognosS$ AND (method$ OR history OR variable$ OR criteria OR scor$ OR
characteristic$ OR finding$ OR factor$ OR model$)).ti,ab.

((history OR variable$ OR criteria OR scor$ OR characteristic$ OR finding$
OR factor$) adj3 (predict$ OR model$ OR decision$ OR identif$ OR
prognos$)).ti,ab.

10. (decision$ adj3 (model$ OR clinical$)).ti,ab.

11. (stratification OR discriminat$ OR calibration).ti,ab.

12.ROC curve/

13. (c-statistic OR c statistic OR area under the curve OR AUC).ti,ab.
14. (indices OR algorithm OR multivariable).ti,ab.

15.70R8 OR9OR 10 0R 11 OR 12 OR 13 OR 14

16.exp dementia/

17.delirium/

18. delirium, dementia, amnestic, cognitive disorders/

19. exp cognition disorders/

20.exp cognition/

21.memory/
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22.dementS.ti,ab.

23. (Alzheimer$ OR AD).ti,ab.

24.deliriS$.ti,ab.

25. ((cognit$ OR memory OR mental OR brain) adj3 (func$ OR perform$ OR
abilit$ OR declin$ OR reduc$ OR impair$ OR disorder$ OR fail$ OR losS OR
deficitS OR stop$ OR progress$S OR improve$)).ti,ab.

26. mental performS.ti,ab.

27. (memory adj3 (complain$ or declin$ or function$)).ti,ab.

28.16 OR 17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27

29.6 AND 15 AND 28

Embase (via OVID) search strategy

1. cerebrovascular disease/ OR exp basal ganglion hemorrhage/ OR exp brain
hematoma/ OR exp brain hemorrhage/ OR exp brain infarction/ OR exp
brain ischemia/ OR cerebral artery disease/ OR exp cerebrovascular
accident/ OR exp occlusive cerebrovascular disease/ OR vertebrobasilar
insufficiency/ OR stroke/ OR stroke patient/ OR stroke unit/

2. (stroke OR post?stroke OR cerebrovasc$ OR brain vascS OR cerebral vasc$
OR cva$ OR apoplex$ OR SAH).ti,ab.

3. ((brain$ OR cerebr$ OR cerebell$ OR intracran$ OR intracerebral) adj5
(isch?emi$ OR infarct$ OR thrombo$ OR emboli$ OR occlus$)).ti,ab.

4. ((brain$ OR cerebr$ OR cerebell$ OR intracerebral OR intracranial OR
subarachnoid) adj5 (h?emorrhage$ OR h?ematoma$ OR bleed$)).ti,ab.

5. ((transi$ adj3 isch?em$ adj3 attackS) OR TIAS1).ti,ab.

6. TOR2O0R30R40R5

7. ((validatS OR predict$ OR prognos$ OR rule$) adj3 (outcome$ OR risk$ OR
model$)).ti,ab.

8. (prognosS AND (method$ OR history OR variable$ OR criteria OR scor$ OR
characteristicS OR finding$ OR factor$ OR model$)).ti,ab.

9. ((history OR variable$ OR criteria OR scor$ OR characteristic$ OR finding$
OR factor$) adj3 (predict$ OR model$ OR decision$ OR identif$ OR
prognos$)).ti,ab.

10. (decision$ adj3 (model$ OR clinical$)).ti,ab.

11. (stratification OR discriminat$ OR calibration).ti,ab.

12.receiver operating characteristic/
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13. (c-statistic OR c statistic OR area under the curve OR AUC).ti,ab.

14. (indices OR algorithm OR multivariable).ti,ab.

15.7 OR8 OR9 OR100OR 11 OR 12 OR 13 OR 14

16.exp dementia/

17.delirium/

18. exp cognitive defect/

19. exp cognition/

20.memory/

21.dement§S.ti,ab.

22. (Alzheimer$ OR AD).ti,ab.

23.deliriS.ti,ab.

24. ((cognit$S OR memory OR mental OR brain) adj3 (func$ OR perform$ OR
abilit$S OR declin$ OR reduc$ OR impair$ OR disorder$ OR fail$ OR losS OR
deficitS OR stop$ OR progressS OR improve$)).ti,ab.

25. mental performS.ti,ab.

26. (memory adj3 (complain$ or declin$ or function$)).ti,ab.

27.16 OR 17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26

28.6 AND 15 AND 27

PsycINFO (via EBSCO) search strategy

S1 DE "Cerebrovascular Disorders” OR DE "Cerebral Arteriosclerosis” OR DE
"Cerebral Hemorrhage" OR DE "Cerebral Ischemia” OR DE "Cerebrovascular

Accidents” OR DE "Subarachnoid Hemorrhage™

S2 TI (stroke OR post#stroke OR cerebrovasc* OR "brain vasc** OR "cerebral
vasc*" OR cva* OR apoplexy OR SAH) OR AB (stroke OR post#stroke OR
cerebrovasc* OR "brain vasc*" OR "cerebral vasc*" OR cva* OR apoplexy OR
SAH)

S3 Tl ((brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral) N5
(isch#emi$ OR infarct* OR thrombo* OR emboli* OR occlus*)) OR AB
((brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral) N5

(isch#emi$ OR infarct* OR thrombo* OR emboli* OR occlus*))

S4 TI ((brain* OR cerebr* OR cerebell* OR intracerebral OR intracranial OR
subarachnoid) N5 (h#emorrhage* OR h#ematoma* OR bleed*)) OR AB
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((brain* OR cerebr* OR cerebell* OR intracerebral OR intracranial OR

subarachnoid) N5 (h#emorrhage* OR h#ematoma* OR bleed*))

S5 TI ((transi* N3 isch#em* N3 attack*) OR TIA) OR AB ((transi* N3 isch#em* N3
attack®) OR TIA)

S6 S1 OR S2 OR S3 OR 5S4 OR S5

S7 Tl ((validat* OR predict* OR prognos* OR rule*) N3 (outcome* OR risk* OR
model*)) OR AB ((validat* OR predict* OR prognos* OR rule*) N3 (outcome*
OR risk* OR model*))

S8 Tl (prognos* AND (method* OR history OR variable* OR criteria OR scor* OR
characteristic* OR finding* OR factor* OR model*)) OR AB (prognos* AND
(method* OR history OR variable* OR criteria OR scor* OR characteristic*
OR finding* OR factor* OR model*))

S9 TI ((history OR variable* OR criteria OR scor* OR characteristic* OR finding*
OR factor*) N3 (predict* OR model* OR decision* OR identif* OR prognos*))
OR AB ((history OR variable* OR criteria OR scor* OR characteristic* OR
finding* OR factor*) N3 (predict* OR model* OR decision* OR identif* OR
prognos®))

S10 TI (decision* N3 (model* OR clinical*)) OR AB (decision* N3 (model* OR

clinical*))

S11 TI (stratification OR discriminat* OR calibration) OR AB (stratification OR

discriminat® OR calibration)

S12 Tl ("c-statistic” OR "c statistic” OR "area under the curve” OR AUC) OR AB
("c-statistic” OR "c statistic” OR "area under the curve” OR AUC)

S13 Tl (indices OR algorithm OR multivariable) OR AB (indices OR algorithm

OR multivariable)
S14 S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13

S15 DE "Dementia” OR DE "Presenile Dementia” OR DE "Pseudodementia” OR
DE "Semantic Dementia” OR DE "Senile Dementia” OR DE "Vascular

Dementia”

S16 DE "Neurocognitive Disorders” OR DE "Delirium” OR DE "Memory Disorders”
OR DE "Cognitive Impairment”

S17 DE "Memory” OR DE "Memory Decay”
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S18 DE "Cognition”

S19 Tl dement* OR AB dement*
S20 Tl (alzheimer* OR AD) OR AB (alzheimer* OR AD)
S21 Tl deliri* OR AB deliri*

S22 Tl (((cognit* OR memory OR mental OR brain) N3 (func* OR perform* OR
ability* OR declin* OR reduc* OR impair* OR disorder* OR fail* OR los* OR
deficit* OR stop* OR progress* OR improve*))) OR AB (((cognit* OR
memory OR mental OR brain) N3 (func* OR perform* OR ability* OR
declin* OR reduc* OR impair* OR disorder* OR fail* OR los* OR deficit* OR
stop® OR progress* OR improve®)))

S23 Tl "mental perform** OR AB "mental perform*"

S24 TI ((memory N3 (complain* or declin* or function*))) OR AB ((memory N3

(complain® or declin* or function*)))
$25 515 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR 24

526 56 AND 514 AND 525
CINAHL (via EBSCO) search strategy

S1 (MH "Cerebrovascular Disorders”) OR (MH "Basal Ganglia Cerebrovascular
Disease+") OR (MH "Cerebral Ischemia+") OR (MH "Intracranial Arterial
Diseases+") OR (MH “Intracranial Embolism and Thrombosis+”) OR (MH
“Intracranial Hemorrhage+") OR (MH “Stroke+) OR (MH “Cerebral

Vasospasm”)

S2 TI (stroke OR post#stroke OR cerebrovasc* OR "brain vasc** OR "cerebral
vasc*" OR cva* OR apoplexy OR SAH) OR AB (stroke OR post#stroke OR
cerebrovasc* OR "brain vasc*" OR "cerebral vasc*" OR cva* OR apoplexy OR
SAH)

S3 Tl ((brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral) N5
(isch#emi$ OR infarct* OR thrombo* OR emboli* OR occlus*)) OR AB
((brain* OR cerebr* OR cerebell* OR intracran* OR intracerebral) N5

(isch#emi$ OR infarct* OR thrombo* OR emboli* OR occlus*))

S4 TI ((brain* OR cerebr* OR cerebell* OR intracerebral OR intracranial OR
subarachnoid) N5 (h#emorrhage* OR h#ematoma* OR bleed*)) OR AB
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((brain* OR cerebr* OR cerebell* OR intracerebral OR intracranial OR

subarachnoid) N5 (h#emorrhage* OR h#ematoma* OR bleed*))

S5 TI ((transi* N3 isch#em* N3 attack*) OR TIA) OR AB ((transi* N3 isch#em* N3
attack®) OR TIA)

S6 S1 OR S2 OR S3 OR 5S4 OR S5

S7 Tl ((validat* OR predict* OR prognos* OR rule*) N3 (outcome* OR risk* OR
model*)) OR AB ((validat* OR predict* OR prognos* OR rule*) N3 (outcome*
OR risk* OR model*))

S8 Tl (prognos* AND (method* OR history OR variable* OR criteria OR scor* OR
characteristic* OR finding* OR factor* OR model*)) OR AB (prognos* AND
(method* OR history OR variable* OR criteria OR scor* OR characteristic*
OR finding* OR factor* OR model*))

S9 TI ((history OR variable* OR criteria OR scor* OR characteristic* OR finding*
OR factor*) N3 (predict* OR model* OR decision* OR identif* OR prognos*))
OR AB ((history OR variable* OR criteria OR scor* OR characteristic* OR
finding* OR factor*) N3 (predict* OR model* OR decision* OR identif* OR

prognos®))

S10 TI (decision* N3 (model* OR clinical*)) OR AB (decision* N3 (model* OR

clinical*))

S11 TI (stratification OR discriminat* OR calibration) OR AB (stratification OR

discriminat® OR calibration)
S12 (MH “ROC Curve”)

S13 TI (("c-statistic” OR "c statistic” OR "area under the curve” OR AUC)) OR
AB (("c-statistic” OR "c statistic” OR "area under the curve” OR AUC))

S14 Tl (indices OR algorithm OR multivariable) OR AB (indices OR algorithm

OR multivariable)
S15S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14
S16 (MH "Dementia+")
S17 (MH "Delirium”)
S18 (MH “Delirium, Dementia, Amnestic, Cognitive Disorders”)

S19 (MH “Cognition Disorders+”)
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S20 (MH “Cognition”)
S21 (MH “Memory”) OR (MH “Memory Disorders”)
S22 Tl dement* OR AB dement*
S23 Tl (alzheimer* OR AD) OR AB (alzheimer* OR AD)
524 Tl deliri* OR AB deliri*

S25 Tl (((cognit* OR memory OR mental OR brain) N3 (func* OR perform* OR
ability* OR declin* OR reduc* OR impair* OR disorder* OR fail* OR los* OR
deficit* OR stop* OR progress* OR improve*))) OR AB (((cognit* OR
memory OR mental OR brain) N3 (func* OR perform* OR ability* OR
declin* OR reduc* OR impair* OR disorder* OR fail* OR los* OR deficit* OR
stop® OR progress* OR improve®)))

S26 Tl "mental perform** OR AB "mental perform*"

S27 Tl ((memory N3 (complain® or declin* or function*))) OR AB ((memory N3

(complain® or declin* or function*)))

528 S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25
OR S26 OR S27

529 S6 AND S15 AND S28
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Appendix 3: Chapter 3, completed PROBAST forms
for included studies

First part of PROBAST form, applicable to all included

studies

(Prediction model study Risk Of Bias Assessment Tool)

Published in Annals of Internal Medicine (freely available):
1. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction

Model Studies
2. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction
Model Studies: Explanation and Elaboration

What does PROBAST assess?

PROBAST assesses both the risk of bias and concerns regarding applicability of
a study that evaluates (develops, validates or updates) a multivariable
diagnostic or prognostic prediction model. It is designed to assess primary
studies included in a systematic review.

Bias occurs if systematic flaws or limitations in the design, conduct or analysis
of a primary study distort the results. For the purpose of prediction modelling
studies, we have defined risk of bias to occur when shortcomings in the study
design, conduct or analysis lead to systematically distorted estimates of a
model’s predictive performance or to an inadequate model to address the
research question. Model predictive performance is typically evaluated using
calibration, discrimination and sometimes classification measures, and these
are likely inaccurately estimated in studies with high risk of bias. Applicability
refers to the extent to which the prediction model from the primary study
matches your systematic review question, for example in terms of the
participants, predictors or outcome of interest.

A primary study may include the development and/or validation or update of
more than one prediction model. A PROBAST assessment should be completed
for each distinct model that is developed, validated or updated (extended) for
making individualised predictions. Where a publication assesses multiple
prediction models, only complete a PROBAST assessment for those models that
meet the inclusion criteria for your systematic review. Please note that
subsequent use of the term “model” includes derivatives of models, such as
simplified risk scores, nomograms, or recalibrations of models.

PROBAST is not designed for all multivariable diagnostic or prognostic studies.
For example, studies using multivariable models to identify predictors
associated with an outcome but not attempting to develop a model for making
individualised predictions are not covered by PROBAST.



https://annals.org/aim/fullarticle/2719961/probast-tool-assess-risk-bias-applicability-prediction-model-studies
https://annals.org/aim/fullarticle/2719961/probast-tool-assess-risk-bias-applicability-prediction-model-studies
https://annals.org/aim/fullarticle/2719962/probast-tool-assess-risk-bias-applicability-prediction-model-studies-explanation
https://annals.org/aim/fullarticle/2719962/probast-tool-assess-risk-bias-applicability-prediction-model-studies-explanation

PROBAST includes four steps.
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Step

Task

When to complete

1

Specify your systematic
review question(s)

Once per systematic review

2 Classify the type of Once for each model of interest in each
prediction model evaluation | publication being assessed, for each
relevant outcome
3 Assess risk of bias and Once for each development and
applicability validation of each distinct prediction
model in a publication
4 Overall judgment Once for each development and

validation of each distinct prediction
model in a publication

If this is your first time using PROBAST, we strongly recommend reading the
detailed explanation and elaboration (E&E, see link above) paper and to check
the examples on www.probast.org

Step 1: Specify your systematic review question

State your systematic review question to facilitate the assessment of the
applicability of the evaluated models to your question. The following table
should be completed once per systematic review.

criteria and setting:

Criteria Specify your systematic review question

Intended use of Prognosis of cognitive outcome following stroke
model:

Participants Adults with ischaemic stroke, haemorrhagic stroke, or
including selection TIA

Predictors (used in
prediction
modelling), including
types of predictors
(e.g. history, clinical
examination,
biochemical markers,
imaging tests), time
of measurement,
specific measurement
issues (e.g., any
requirements/
prohibitions for
specialized
equipment):

Demographics, medical history, lifestyle factors,
clinical examination, biochemical markers, imaging
data. All predictors should be collected or refer to a
point in time preceding the occurrence of the
cognitive outcome.

Outcome to be
predicted:

Any cognitive outcome, including cognitive change,
cognitive impairment, delirium, dementia, and
cognitive recovery.
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Second part of PROBAST form, completed individually

for each included study

Chander et al., 2017; CHANGE score

Step 2: Classify the type of prediction model evaluation

used.

Use the following table to classify the evaluation as model development,
model validation or model update, or combination. Different signalling
questions apply for different types of prediction model evaluation. If the
evaluation does not fit one of these classifications then PROBAST should not be

Classify the evaluation based on its aim

Type of PROBAST Tick as Definition for type of

prediction boxes to appropriate | prediction model study

study complete

Development | Development | X Prediction model

only development without external
validation. These studies may
include internal validation
methods, such as
bootstrapping and cross-
validation techniques.

Development | Development | v Prediction model

and validation | and validation development combined with
external validation in other
participants in the same
article.

Validation Validation X External validation of existing

only (previously developed) model

in other participants.

This table should be completed once for each publication being assessed and
for each relevant outcome in your review.

Publication Chander, R. J. et al.; Development and validation of

reference a risk score (CHANGE) for cognitive impairment after
ischemic stroke; 2017

Models of CHANGE score based on demographics and imaging variables

interest

Outcome of Post-stroke cognitive impairment

interest

Step 3: Assess risk of bias and applicability

PROBAST is structured as four key domains. Each domain is judged for risk of
bias (low, high or unclear) and includes signalling questions to help make
judgements. Signalling questions are rated as yes (Y), probably yes (PY),
probably no (PN), no (N) or no information (NI). All signalling questions are
phrased so that “yes” indicates absence of bias. Any signalling question rated
as “no” or “probably no” flags the potential for bias; you will need to use your




234

judgement to determine whether the domain should be rated as “high”, “low”
or “unclear” risk of bias. The guidance document contains further instructions
and examples on rating signalling questions and risk of bias for each domain.
The first three domains are also rated for concerns regarding applicability
(low/ high/ unclear) to your review question defined above.

Complete all domains separately for each evaluation of a distinct model.
Shaded boxes indicate where signalling questions do not apply and should not
be answered.

DOMAIN 1: Participants

A. Risk of Bias

Describe the sources of data and criteria for participant selection:

Development:

Retrospective cohort

Participants: diagnosis of ischaemic stroke; exclusion criteria: Discharge mRS
>2; Subjects with pre-stroke cognitive impairment, neurological or psychiatric
comorbidities, presented outside of the window period, or were unable to
undergo cognitive assessments due to severe communication or visual
disturbances as a result of the stroke, were excluded. Subjects with
significant depression, screened via the 9-point Patient Health Questionnaire
(PHQ-9) were also excluded.

Patients who were assessed by the clinical teams as being at risk for
developing PSCI were scheduled for outpatient follow-up within 3-6 months
after incident stroke.

Validation:

Retrospective cohort (STRIDE study); participants: inclusion criteria were:
Chinese ethnicity, fluency in Cantonese, ability to participate in cognitive
assessments, and provision of signed informed consent. Exclusion criteria for
this study were: severe language impairment precluding cognitive assessment,
presence of terminal illness, clinically significant psychiatric comorbidity, or
known history of dementia before the index stroke. Severe language
impairment was defined as a score of 3 points (i.e., mute) in the language
score of the National Institute of Health Stroke Scale (NIHSS). All patients
with stroke/TIA were invited to return for a neuropsychological assessment at
3 to 6 months after the index event.

Dev | Val

1.1Were appropriate data sources used, e.g. cohort, RCT or nested | PY |PY
case-control study data?

1.2Were all inclusions and exclusions of participants appropriate? | N Y
Risk of bias introduced by selection of RISK: H L
participants (low/ high/

unclear)

Rationale of bias rating:

Development:

It seems that all data for the study was collected at a single time-point, using
admission records, which indicates that some predictors were not recorded
for the purpose of research but routine clinical care - it is difficult to
determine the quality of the data. However, medical records are overall
considered a reliable source of information on general health-related
variables. This is also not a factor that would necessarily overestimate the
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performance of the model/lead to overoptimistic results. Moreover, routine
clinical data is what would most likely be used if the model were applied in
practice.

Exclusion criteria may have led to a non-representative patient sample, as
stroke is likely to lead to disability (particularly as many patients may have
had prior disability) and impairments impeding cognitive assessments,
however, authors have stated that they wanted to focus on non-disabling
strokes; excluding participants with depression may have lead to
overestimation of prognostic accuracy, as it might be particularly difficult to
distinguish between symptoms of depression and cognitive impairment,
leading to an increase of false positives. High risk of bias due to enrolment
being based on the clinical team’s decision about who is at highest risk of
PSCI, with no indication of how this decision was reached.

Validation:

As above, there are potential issues related to admission data not being
recorded for research purposes, however this does not likely introduce a high
risk of bias. This study was overall more inclusive, if exclusion criteria mainly
applied where cognitive assessment would not be appropriate or possible, or
where findings could be contributed to other significant medical conditions.

B. Applicability

Describe included participants, setting and dates:

Development:

Participants with non-disabling stroke who were found by the clinical team to
be at risk of developing PSCI, recruitment from a tertiary centre in Singapore
from Jan 2008 to Dec 2012

Validation:
Participant selection criteria as described above, recruitment from acute
stroke unit in Hong Kong from Jan 2009 and Dec 2010

Concern that the included participants and CONCERN: L L
setting do not match the review question (low/ high/
unclear)

Rationale of applicability rating:

Development:

Sample may not be representative due to narrowing to patients assessed as
likely to develop PSCI and selection criteria excluding disabled and depressed
participants, with both disability and depression being relatively common in
stroke populations; also potential cultural, geographical and healthcare
differences, most obvious issue related to education - in western countries
education <6 years would be an uncommon occurrence. However, the only
criterium regarding participants was being an adult, diagnosed with stroke, so
study population matches review question.

Validation:

Included participants match the review question, although potential cultural,
geographical and healthcare differences, most obvious issue related to
education - in western countries education <6 years would be an uncommon
occurrence
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DOMAIN 2: Predictors

A. Risk of Bias

List and describe predictors included in the final model, e.g. definition and
timing of assessment:

Predictors: Chronic lacunes, white matter hyperintensities, age, non-lacunar
acute cortical infarcts, global cortical atrophy, education.

Development: demographic, clinical and risk factor data were obtained from
admission records, clinical MR images obtained at the time of stroke
appraised by neurologist and neuroradiologist, and visually rated by blinded
raters.

Validation: demographic and clinical data collected during acute
hospitalisation, MRI performed within first week of admission, appraised by 3
trained neurologists

Dev | Val

2.1Were predictors defined and assessed in a similar way for all | Y Y
participants?

2.2Were predictor assessments made without knowledge of | PY | NI
outcome data?

2.3Are all predictors available at the time the model is intended | Y Y
to be used?

Risk of bias introduced by predictors or their RISK: L L
assessment (low/ high/
unclear)

Rationale of bias rating:

In development study, MR image raters were blinded and trained specialists,
no information regarding blinding when assessing demographics, however
these predictors do not involve subjective judgement.

In validation study, MR images were appraised by trained specialists; blinding
was not explicitly stated, however predictors were assessed prior to outcome.

B. Applicability

Concern that the definition, assessment or CONCERN: L L
timing of predictors in the model do not match (low/ high/
the review question unclear)

Rationale of applicability rating:

There are potential issues with access to MRI, trained specialists using the
assessment tools and subjectivity in rating MR images. However, everything
matches review question and the setting for use was not specifically defined,
e.g. these methods would still be highly applicable to research settings




237

DOMAIN 3: Outcome

A. Risk of Bias

Describe the outcome, how it was defined and determined, and the time
interval between predictor assessment and outcome determination:

Development:

“Cognitive status was assessed by clinical team via structured clinical
interview and the Mini-Mental State Examination (MMSE). If further
confirmation was required, the Singaporean version of the Montreal Cognitive
Assessment (MoCA) was conducted. Subjects were classified as having PSCI if
they had an MRI-confirmed infarct, met criteria for vascular cognitive
impairment, and had MMSE < 25 or MoCA < 22. Remaining subjects were
classified as having no cognitive impairment (NCI).”

Validation:

“All patients with stroke/TIA were invited to return for a neuropsychological
assessment at 3 to 6 months after the index event. Trained psychologists
administered the Clinical Dementia Rating (CDR), Cantonese Mini-Mental State
Examination (MMSE), and Hong Kong version of the Montreal Cognitive
Assessment to evaluate patients’ cognitive functions while blinded to
neuroimaging findings. The Chinese Geriatric Depression Scale was used to
assess the extent of depressive symptoms. When grading using the CDR, care
was taken particularly to grade only those impairments that were attributed
to cognitive symptoms, not to motor/mood disturbances. Patients suspected
of having dementia as defined by a CDR rating of 1 point or more at
screening, and their caregivers, were invited for a detailed clinical
assessment by neurologists specialized in dementia (V.C.T.M. and L.A.), who
then confirmed a diagnosis of dementia according to the Diagnostic and
Statistical Manual of Mental Disorders, fourth edition. During this clinical
assessment, the neurologists also inquired about patients’ cognitive function
before the index event to exclude patients with dementia before the index
event.”

Dev | Val
3.1Was the outcome determined appropriately? Y Y
3.2Was a pre-specified or standard outcome definition used? PY Y
3.3Were predictors excluded from the outcome definition? PN Y
3.4Was the outcome defined and determined in a similar way for N N?
all participants?
3.5Was the outcome determined without knowledge of predictor | PN Y
information?
3.6Was the time interval between predictor assessment and Y Y
outcome determination appropriate?
Risk of bias introduced by the outcome or RISK: H L
its determination (low/ high/
unclear)

Rationale of bias rating:

Development:

3.1 MMSE is considered to not have sufficient sensitivity to capture MCl in
stroke populations, however it is nonetheless a standard, accepted, widely-
used measure of cognition, 3.2 Not clear how criteria for VCI were applied
(were definite, probable and possible all treated the same?), 3.3 Imaging
variables (potentially predictors) are used to assess VCI, 3.4 some participants
were additionally assessed with the MoCA without an objective indication of
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who needed to be (seems to be based on subjective call), also there was a
relatively big difference in assessment times (between 3 to 6 months) 3.5
given the diagnosing of VCI, it appears likely that assessors had some
knowledge of imaging results.

Validation:

Seems that all participants were assessed using the same 3 standard
measures, although not quite clear (possibly MoCA and MMSE were not always
used in combination) and once again there was a relatively big difference in
assessment times - 3 to 6 months (but does this go under 3.4 or 3.6?), CDR
criteria are pre-specified and clear compared to what criteria might have
been applied to diagnose VCI and also do not require knowledge of imaging
findings, assessors were blinded to the latter.

B. Applicability

At what time point was the outcome determined:
Between 3 to 6 months

If a composite outcome was used, describe the relative
frequency/distribution of each contributing outcome:

N/A

Concern that the outcome, its definition, CONCERN: L L
timing or determination do not match the (low/ high/

review question unclear)

Rationale of applicability rating:

The time interval was appropriate to capture PSCI and the review question did
not impose and specific time restrictions regarding outcome assessment.

The review focuses on any cognitive outcome assessed using a recognised
measure, and therefore the chosen outcome matches the review question.

DOMAIN 4: Analysis

Risk of Bias

Describe numbers of participants, number of candidate predictors, outcome
events and events per candidate predictor:

Development: 209 participants, 26 candidate predictors (intracranial stenosis
was not mentioned in the table, but was in the text), 78 events, 3.0 events
per predictor

Validation: 693 participants, 352 with PSCI

Describe how the model was developed (for example in regards to modelling
technique (e.g. survival or logistic modelling), predictor selection, and risk
group definition):

Logistic regression

Variables were deemed eligible for inclusion in the initial stage of model
building if they were: 1) statistically significant at the univariate level after
operationalization, 2) found in the literature to be relevant, and 3) were
deemed by the study team that the variables were common enough to be
available to exist