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Abstract

The heart is an immensely complex living organ. Myocardium has continually been undergoing
adaptive or maladaptive response to surrounding environments, in which the significant impor-
tance of growth and remodelling (G&R) has been valued. This PhD project intends to study
mechanics modelling of myocardium towards predictive stress/strain-driven growth. Constitu-
tive laws and fibre structures in myocardium work together to determine the mechanical clues
which trigger the growth mechanically. Therefore, this project includes two parts: (1) constitu-
tive characterization of myocardium, and (2) myocardial G&R.

Constitutive laws and myofibre architectures hold the key to accurately model the biome-
chanical behaviours of the heart. In the first part of this thesis, we firstly perform an analysis
using combinations of uniaxial tension, biaxial tension and simple shear from three different
sets of myocardial experimental tissue studies to investigate the descriptive and predictive capa-
bilities of a general invariant-based model that is developed by Holzapfel and Ogden, denoted
the HO model. We aim to reduce the constitutive law using the Akaike information criterion to
maintain its mechanical integrity whilst achieve minimal computational cost. Our study shows
that single-mode tests are insufficient to determine the myocardium responses. It is also essen-
tial to consider the transmural fibre rotation within the myocardial samples. We conclude that a
competent myocardial material model can be obtained from the general HO model using Akaike
information criterion analysis and a suitable combination of tissue tests.

Secondly, we develop a neonatal porcine bi-ventricle model with three different myofibre ar-
chitectures for the left side of the heart. The most realistic one is derived from ex vivo diffusion
tensor magnetic resonance image, and the other two simplifications are based on the rule-based
methods. We show that the most realistic myofibre architecture model can achieve better cardiac
pump functions compared to those of the rule-based models under the same pre/after loads. Our
results also reveal that when the cross-fibre contraction is included, the active stress seems to
play a dual role: the sheet-normal component enhances the ventricular contraction while the
sheet component does the opposite. This study highlights the importance of including myofi-
bre dispersion in cardiac modelling if rule-based methods are used, especially in personalized
model. To further describe the detailed fibre distribution, discrete fibre dispersion method is em-
ployed to compute passive response because of its advantages in excluding compressed fibres.
An additive active stress method that includes cross-fibre active stress is proposed according to
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Chapter 0. Abstract

the generalised structure tensor method. We find that end-systolic volumes of simulated heart
models are much more sensitive to dispersion parameter than end-diastolic volumes.

G&R is the focus in the second part of this thesis. An updated reference approach is em-
ployed to track the evolution of the reference configuration during G&R, in which the nodal
positions and the fibre structure are updated at the beginning of each new growth cycle. More-
over, the homogenised constrained mixture theory is used to describe the G&R process of each
constituent within myocardium, which are the ground matrix, collagen network and myofibres.
Our models can reproduce the eccentric growth driven by fibre stretch at the diastole, concentric
growth driven by fibre stress at the systole, and heterogeneous growth after acute myocardium
infarction. Ventricular wall G&R mainly occurs in endocardium, in which the myocyte is the
primary responder for the G&R process. G&R laws of collagen fibre have significant impacts on
G&R of heart. For example, purely remodeled collagen network without new deposition causes
increasingly softer heart wall, leading to excessive heart dilation. Finally, the effects of fibre
dispersion on G&R is investigated by including fibre dispersion model in the G&R of infarction
model. Highly dispersed fibre structure in the infarcted zone significantly reduces the pump
function.

This thesis has been focusing on mathematical modelling of biomechanical behaviours of
myocardium, firstly on the nonlinear cardiac mechanics including constitutive laws and fibre
structures, and then on the G&R process of heart under different pathological conditions. These
studies support to choose suitable constitutive laws and fibre architectures in G&R model and
illustrate the underlying mechanism of mechanical triggers in G&R. It presents the potential for
understanding the mechanics of heart failure and reveal hidden roles of different constituents in
myocardium.
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Chapter 1

Introduction

The heart is an essential organ of a living body whose primary function is to generate the pressure
gradient to pump blood into all organs, which requires myocardium to operate systematically.
Heart disease is the leading killer worldwide, responsible for about 40% of all deaths each year.
The incidence of heart failure, such as induced by heart attacks, has remained persistently high
due to the maladaptive growth and remodelling (G&R). There are more heart diseases survivors
who also come with a subsequent rise in heart failures. Myocardial G&R can be broadly defined
as variations in heart geometry and function in response to an imbalanced mechanical environ-
ment. To account for these changes, mathematical models of G&R are proposed according to
continuum mechanics [10].

Stress/strain-driven G&R depends on the mechanical response and deformation of a heart
model, which is determined by constitutive laws and fibre structures together. The direct mea-
surement of in vivo ventricular wall stress has not been achieved. Hence, constitutive laws are
proposed to predict the stress-strain relationships in myocardium, such as the invariants-based
or strain-based phenomenological models and micro-structural analysis models. The classic
invariant-based constitutive law proposed by Holzapfel and Ogden [11] exhibits a strong de-
scriptive and predictive capability when fitting a set of simple shearing experimental data and
is widely used in simulating cardiac dynamics [12, 13]. To the author’s best knowledge, how-
ever, no analysis has shown whether it is sufficiently descriptive and predictive for other tissue
examinations of the myocardium. In fact, for any constitutive law, this analysis is important for
clinically useful computational simulations.

Myocardium is a type of fibre-reinforced material, and fibre rotates from endocardium to
epicardium in a helix structure. In the three-dimensional (3D) finite element (FE) model, fibre
structure plays a critical role in deforming the whole heart model. Currently, there are two
main approaches to construct fibre structure. Rule-based approach is easy to implement by
defining fibre direction according to fibre position in ventricular wall [7, 14]. Atlas mapping
approach is to map the measured realistic fibre direction from image data to corresponding
geometry [12, 15]. Recently, the concept of fibre dispersion are prevalent with the proofs of
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Chapter 1. Introduction

dispersed fibres in experiments [4, 5]. Excluding compressed fibres that do not produce stress
response is a challenging task when considering fibre dispersion around the mean fibre direction.
Lots of studies have proposed ample approaches to incorporate fibre dispersion into previous
passive constitutive laws [16–20]. However, few studies tried to quantify active tensions in
myocardium with fibre dispersion structure [21] and to explore the effects of fibre dispersion on
the cardiac pump function.

Kinematic growth theory has been widely used to elucidate G&R of fibrosis tissues [22]. It is
based on multiplicative decomposition of total deformation gradient tensor F, such as F = Fe Fg,
according to the concept of plasticity. Fg is inelastic growth deformation gradient tensor that de-
scribes changes in shape and size of the stress-free and compatible tissue. Growth leads the
tissue into a new incompatible and stress-free intermediate configuration. In subsequent step,
elastic deformation gradient tensor Fe assembles all growing and original constituents into new
compatible state, in which residual stress may be generated. However, the kinematic growth
theory is unable to directly account for the G&R of individual constituents within myocardium,
such as the turnovers or deformations of myofibres and collagen fibres that play the crucial role
in adaptive and maladaptive process of heart. Additionally, considering the important effect of
reference configuration types [23], simulations of G&R basing on fix reference configuration
may not match biological growth. The recent homogenised constrained mixture theory makes
it possible to describe individual G&R process of each constituent who has its own mechanical
constitutive law and fibre structure. However, the requirement to tracking the evolution of refer-
ence configuration is tough to be achieved in numerical computations. Identifying appropriate
growth laws for each constituent under specific pathological conditions is also an arduous chal-
lenge. Until now, the constrained mixture model were often used to study vascular G&R [24]
and barely in cardiac problems.

In summary, intentions of this thesis can be divided into two parts. Part one is to demonstrate
continuum mechanics of myocardium, including constitutive laws and fibre structures, and part
two is to explore G&R of heart under various pathological conditions. The organization for the
thesis is schemed in Fig. 1.1 and details are:

Figure 1.1: Schematic for the organization of the project

2



Chapter 1. Introduction

• Chapter 2 reviews the general background knowledge about the general structure of my-
ocardium, constitutive mechanical laws for myocardium, approaches to construct fibre
architecture and its dispersion, and G&R framework. It systemically covers the main
research topics of myocardial mechanics.

• Chapter 3 aims to reduce the constitutive law by using the Akaike information criterion
to maintain its mechanical integrity whilst achieving minimal computational cost. It also
investigates the optimal combinations of tissue tests. For example, it shows that one shear
responses plus one biaxial stretch are sufficient to describe human myocardial mechanical
properties satisfactorily.

• Chapter 4 develops a neonatal porcine bi-ventricle model with three different myofibre
architectures. The most realistic one is derived from ex vivo diffusion tensor magnetic
resonance image, and the other two simplifications are based on the rule-based method.
Results highlight the importance of including myofibre dispersion in cardiac modelling if
rule-based methods are used, especially in personalized models.

• Chapter 5 employs three types of FE models, a multi-element strip, a bi-ventricular rabbit
heart and a single LV human heart, to study the effects from different fibre dispersions that
are characterized by in-plane and out-of-plane dispersion parameters. General structure
tensor method and discrete fibre dispersion method are used to compute dispersed active
and passive stresses, respectively.

• Chapter 6 couples the homogenised constrained mixture G&R theory to the updated ref-
erence configuration framework. It studies the G&R processes under various physiologi-
cal and pathological conditions, such as aortic stenosis and mitral regurgitation. Different
biomechanical cues are considered to deepen our understanding of the onset of maladap-
tation.

• Chapter 7 investigates G&R of heart with myocardium infarction and the impact of fibre
dispersion in G&R process. Different fibre dispersion structures are integrated into the
infarcted zone and non-infarcted zones.

• Chapter 8 is the summary of this thesis and future development of G&R in heart, which
includes a constitutive model from ex vivo to in vivo, a biophysically detailed active ten-
sion model, and validations of G&R based on experimental data.
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Chapter 2

Literature Review

This PhD project includes two parts, cardiac mechanics that includes constitutive modelling
and fibre structure and G&R of myocardium that studies G&R processes of heart under various
physiological and pathological conditions. On the one hand, myocardium is a fibre-reinforced
material where constitutive laws and fibre structures are essential to elaborate its mechanical
properties. Constitutive laws describe the relations between mechanical responses and deforma-
tions of myocardium after calibration using experimental data, which may predict stress/strain
clues for myocardial remodelling induced by abnormal loading of heart. Then, acting as the
main load-bearing constituents in myocardium, myofibre and collagen fibre structures with sup-
plementary fibre dispersion play a crucial role in determining the overall mechanical responses
of a heart model and shed light on the fundamental principles of cardiac functions. On the other
hand, mechanical clues from cardiac dynamics drive G&R. Classic volumetric growth cannot
explain the individual G&R of constituents in myocardium. To overcome this limitation, the
homogenised constrained mixture theorem is developed here by coupling an updated reference
configuration framework.

Therefore, we review relative concepts and models to describe biomechanics of myocardium.
The first part is the brief illustration of myocardial structure and function, ranging from cell to
tissue. Then, based on the myocardial structure, passive and active models in cardiac biome-
chanics are respectively introduced. Subsequently, the significant importance of myofibre and
collagen fibre architectures in modelling myocardial mechanical behaviours is evaluated. The
final part briefly summarizes two primary G&R theories and the G&R of heart after MI.

2.1 Structure and function of heart

Heart is the centre of the circulatory system of a body, whose primary task is to pump blood
with oxygen and nutrients to all organs. As shown in Fig. 2.1 (a), a heart consists of four
chambers that regulate oxygen-poor or oxygen-rich blood throughout the four valves. Briefly,
the right atrium transports the oxygen-free blood, collected from the systemic circulation, into
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the right ventricle (RV) by the tricuspid valve. Then the blood is pumped into the lung through
the pulmonary valve. Simultaneously, the left atrium pours the oxygen-enriched blood from the
pulmonary circulation into the left ventricle (LV) through the mitral valve, and LV further pumps
the blood into all organs of body through the aortic valve. One heart cycle can be divided into
four phases: ventricular filling, isovolumetric contraction, ejection and isovolumetric relaxation.
For example, in LV (Fig. 2.1 (b)), at the beginning of contraction, the mitral valve closes, and
the LV pressure increases while the LV cavity volume remains constant. Once LV pressure
exceeds aortic pressure, the aortic valve opens, and ejection starts. LV volume decreases with
increasing pressure to a peak value, after which LV pressure decreases as reduction of active
tension in myocardium. The aortic valve will close when LV pressure is lower than the pressure
in the aorta, which marks end of ejection process, then the isovolumetric relaxation starts, during
which LV pressure falls quickly. When LV pressure falls below left atrium pressure, the mitral
valve will open again, and the LV begins the filling phase.

(a) (b)

Figure 2.1: (a) Simple anatomy diagram of the human heart (https://en.wikipedia.
org/wiki/Heart). (b) Pressure-Volume loop of the LV presenting the different phases in a
complete heart cycle.

The structural hierarchy of a heart is briefly depicted in Fig. 2.2. Myocardium is the main
constituent of the heart wall that has three layers: the outer thin layer (epicardium), the middle
thick layer (myocardium), and the inner thin layer (endocardium). In myocardium, myofibre
(bundles of myocytes) accounts for 70% of myocardium by volume [25] and has a lower pas-
sive stress response with increasing strain than collagen fibre that only takes 2.6%, followed by
ground matrix (27.4%). If myocardium is analogous to reinforced concrete, ground matrix is
the concrete, and myofibres and collagen fibres are two types of rebar inside. The contractile
capability of myofibre is generated by the internal contraction unit, i.e. sarcomere, which is
triggered by an electrical signal for active tension generation. Collagen fibre is the main con-
stituent to bear a tensile load, such as providing passive stress to prevent excessive expansion
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Figure 2.2: Structural hierarchy. Human heart graph from Sommer et al. [4], myofibre network
graph from Ahmad et al. [5], and collagen fibre network graph from Avazmohammadi et al. [6].
All figures are reprinted with permission.

of heart during diastole. Therefore, architectures of myofibres and collagen fibres have criti-
cal importance in the regulation of cardiac functions. This section aims to provide myocardial
microstructure details that are involved in mechanical models.

2.1.1 Structure at cellular level

Myocardium is a type of muscle tissue consisting of myofibres and collagen fibres surrounded
by ground matrix. Inside the cardiomyocytes, there are many myofibrils arranged in parallel
along their longitudinal direction. The microstructure of myofibril is constituted by the system-
atic assembly of sarcomeres that are the basic units for myocyte contraction (Fig. 2.2). The
sarcomere has a symmetric structure where thin actin filaments are parallel to thick myosin fil-
ament. Z discs at both ends are anchored to only one end of the thin filament and connect to
both ends of the thick filament by elastic protein titin. Regulated by action potential prorogation,
cross bridges on thick myosin filament can bind thin actin filament and pull both ends towards
the centre, resulting in relative sliding and generating a force that leads active contraction.

Collagen in myocardium contains two main types: thick cord-like parallel fibrils that have
high tensile strength and account for 85% of fibrillar collagen, and fine network of fibrils that
accounts for 15% [26]. Following the division of cardiac fibrillar collagen network [27], en-
domysium surrounds and interconnects individual myocytes, perimysium surrounds and con-
nects groups of myocytes, and epimysium is the connective tissue surrounding the entire mus-
cle [28]. Collagen fibres are responsible for maintaining the extracellular matrix where myocytes
can obtain mechanical support and anchors.
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The ground matrix is a mixture composed of fibroblasts, elastin, and other molecules. In
this thesis, all the remaining components in myocardium after removing myofibres and collagen
fibres are collectively referred to as the ground matrix. Maintained by fibroblasts in tissue,
it surrounds the myocytes to provide structural support and acts as the ground substance to
construct the architecture of myocardium.

2.1.2 Tissue level structure and function

Within the heart wall, the main characteristic of myofibre structure is transmural rotation from
endocardium to epicardium with a helical angle [29]. It is an idealized description due to the
fact that organizations of fibre and sheet are highly complex and various with respect to regions.
However, diffusion tensor magnetic resonance imaging (DT-MRI) makes it feasible to capture
3D myofibre directions, followed by the observations of inclination angles in various regions
[30] and the twisted laminar surfaces throughout the ventricular wall [31].

The ground matrix surrounds the myofibres and the collagen fibres, and transfers the load
throughout the myocardial wall. It is able to regulate the stiffness of myocardium by varying the
inside contents, such as increasing collagen content to stiffen myocardium. In addition, ground
matrix integrates myofibres and collagen fibres, resulting in anisotropic mechanical properties
in myocardium. For example, different stress responses along the mean fibre direction and the
cross-fibre direction in biaxial tension test [4], in which non-zero force occurs at the cross-
fibre direction may be explained by mechanical support of ground matrix or rotated fibres. In
addition, the overall composition of the ground matrix is one suspected reason [32] that leads to
myocardial elastic anisotropy varying with muscle depth [33].

Collagen fibres in myocardium are initially in crimped state [34] and cannot bear load until
they are straighten, resulting in higher strains of loaded myocardium. For instance, in the passive
tension test of myocardium, low-stress response regime is governed by the myofibres alone
before the engagement of collagen fibres, after which collagen fibres and their interactions with
myofibres determine the higher stress response. Therefore, collagen fibres play as the scaffold
to protect myofibres and ground matrix from excessive deformation.

At tissue level, the interaction of myofibre and collagen fibres was early described by a strut
structure [27,35], in which collagen fibres act as the intermediary to connect myofibres to myofi-
bres, and myofibres to capillaries perpendicularly. Later, high-precision imaging technologies,
such as scanning electron microscopy and reticulum-staining techniques, found that collagen
fibre structure is analogues to a honeycomb where weaved fibrillar sheath structure surround-
ing myofibres and capillaries [36, 37]. Currently, the sheath structure representation is widely
accepted and used for constitutive modelling. Nevertheless, myofibres and collagen fibres are
usually assumed to share the same direction, and both rotate from endocardium to epicardium
with a helix structure. Advanced image techniques demonstrate that fibres are dispersed in space
along a mean direction [4, 30]. Moreover, the dispersions of myofibres and collagen fibres may
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have deviation [5].

2.2 Constitutive models of passive myocardium

Stress or strain in myocardium has significant importance on both physiological and patholog-
ical processes, such as hypertrophy and myocardial infarction [38–40]. Constitutive models
describe the relationships between kinematics and stress of a material in general. The in vivo
kinematics of ventricular wall, i.e. its deformations, can be quantitatively measured by imaging
techniques, whilst direct measurement of in vivo wall stress has not been achieved, which are
commonly derived from constitutive functions. Thus, the choice of constitutive laws determines
the accurate prediction of myocardial stress. Over the years, many models have been proposed
to illustrate myocardial constitutive behaviours, ranging from linear elastic to hyperelastic, from
isotropic to anisotropic, and from phenomenological to micro-structurally informed constitu-
tive laws [11]. Nowadays, treating myocardium as an anisotropic, hyper-elastic material is a
prevalent practice in developing constitutive laws. For the passive behaviour of myocardium,
the constitutive function is also called strain energy function (SEF) because it is in the form of
pseudoelastic stored energy density function W .

Under external loading, one material point X in myocardium in the reference configuration
moves to a new position x = x(X, t) in the deformed configuration at time t, and the deformation
gradient tensor F = ∂x

∂X denotes the deformation of the material point. Then the Cauchy stress
caused by deformation can be computed by a SEF W through

σ = J−1 F
∂W

∂F
− pI, (2.1)

where J = det(F) = 1 enforces the incompressibility constraint, I is the identity tensor, and
p is the Lagrange multiplier. In addition, the left and right Cauchy-Green tensors (B = FFT

and C = FT F), and the Green-Lagrange strain tensor (E = (C− I)/2) are often involved in
calculating stress.

Constitutive models always assume myocardium as a continuum, and variables in W usually
are measurable in tissue level. They are divided into two categories according to their description
scales. The first category is the phenomenological model, which treats myocardium as a lumped
continuum element of its constituents, in which all variables are derived from the deformations
of the whole myocardium and do not account for structural information of its compositions.
In contrast, micro-structurally informed models are based on volume fractions, microstructures
and deformations of constituents within myocardium, generally on sub-tissue scales, such as
myofibre bundles. Both types of models for the constitutive behaviours of myocardium are
briefly summarized below.
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2.2.1 Passive tension experiments of myocardium

Parameters in constitutive laws are determined by fitting them to experimental data. The preva-
lent approach is to choose a model that best fits the existing data, which ensures the model’s
descriptive capability whilst its predictive capability in general loading condition may be not
sufficient. Schmid et al. [41, 42] proposed three metrics to evaluate the parameter estimation
process, which are goodness of fit, determinability and variability. The goodness of fit is the
ability of a model to reproduce experimental data. Determinability exhibits how sensitive ma-
terial parameters are to disturbances in the data values. Variability describes the varied range
of material parameters for a given constitutive law. However, it remains a great challenge to
determine the exact formulations of constitutive laws and estimate their parameters according to
limited experimental data.

The orthonormal basis in myocardium is composed by the mean fibre direction f0, the sheet
direction s0 along the transmural direction from endocardium to epicardium, and the sheet-
normal direction n0 defined by n0 = f0× s0, as shown in Fig. 2.3 (left). At tissue level, the mean
fibre direction can be identified by measuring fibre distributions on the top and bottom surfaces
of a specimen when using histological analysis in experiments [4,5], as shown in Fig. 2.3 (mid-
dle). Alternatively, DT-MRI can provide more detailed mean fibre direction at each local pixel
by computing the first eigenvector of the acquired diffusion tensor, whilst it is difficult to dis-
tinguish the sheet and the sheet-normal directions by the second and third eigenvectors [43–45].
The distribution of f0 derived from DT-MRI can be mapped back to the geometry reconstructed
from the same DT-MRI data. In the literature [7, 46], the sheet direction s0 is usually approxi-
mated by the transmural direction. Each material point of the myocardium can be assume as a
cube with the orthogonal f0, s0 and n0 (Fig. 2.3 (right)) when using constitutive law models.

Figure 2.3: Sketch of a LV with inside fibres (red lines) and a cubic sample cut from the ventric-
ular wall (left). The layered organization of myocytes and the collagen fibres between the sheets
referred to a right-handed orthonormal coordinate system with fibre axis f0, sheet axis s0 and
sheet-normal axis n0 in the reference configuration (middle). A cube model with orthogonal f0,
s0 and n0 represents a material point of myocardium when using constitutive laws (right).

The passive tension test of myocardium is usually performed on tissue level because the
setup and operation of experiments are more manageable than those on the cell level. Assuming
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cut specimen of myocardium as a homogenous body, these measurable variables, such as stress
and strain, can illustrate the underlying principles of the constitutive behaviour of myocardium.
Typical tests include uniaxial tension, biaxial tension, and simple shear, as shown in Fig. 2.4 and
existed studies are summarized in Table 2.1.

(a) (b) (c)

Figure 2.4: (a) Sketches of uniaxial tension tests along mean fibre direction (MFD) and cross-
fibre direction (CFD), respectively. f1 is the loading force along the MFD, and f2 is along
the CFD. L is the initial length of specimen, and λ1 and λ2 are stretch ratios. (b) A sketch
of a sample with fibres (red dash lines), which is stretched along the two orthogonal directions
(MFD and CFD) in fibre-normal plane during a biaxial test. (c) A sketch of all six possible shear
modes, f0, s0 and n0 denote the fibre, sheet and normal directions in the reference configuration,
respectively. (i j) refers to shear in the j direction within the i j plane, where i 6= j ∈ {f, s, n}.

Strong anisotropy and transmural variations of fibres (collagen fibres and myofibres) in my-
ocardium were early found in active and passive tests of the mechanical behaviour of human
myocardium [56]. Subsequent studies also report the similar conclusions. For example, the
equal-biaxial tension test was performed to investigate the influences of biaxial constraint re-
sulted by glutaraldehyde crosslinking on mechanical propitiates of bovine pericardium [50].
The anisotropic extensibility was evaluated by computing an anisotropy index according to bi-
axial stress-strain responses. Dokos et al. [55] performed six types of simple shear tests using
specimens from porcine heart. Variations of the nonlinear response of simple shear tests along
different micro-structural axes of the myocardial sample reported the orthotropic properties of
myocardium. Under the same shear amount, shear along the cross-fibre direction had higher
stress response, especially shear along the sheet direction producing the biggest shear stress,
followed by shear cross sheet direction, while shear cross sheet-normal direction experienced
the lowest shear stress. Later, Sommer et al. [4] examined the biaxial and shear properties of hu-
man myocardium, and also reported the underlying fibre structure of the ventricular wall. More
biaxial tension protocols were designed by controlling biaxial strain ratios, such as 1:1, 1:0.75
and 1:0.5, and six shear modes were also performed. Existed experimental data has showed my-
ocardium is a nonlinear, orthotropic, viscoelastic and history-dependent soft biological material
that undergoes large deformations. In addition, considering their previous work [57], matching
and comparing mechanical responses and inside fibre structures of myocardial samples reflected
the strong correlation between inside fibre structures and mechanical properties of myocardial
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Uniaxial tension test
Species Size (mm) Position Loading

Ahmad et al. [9] Porcine 15×5×3 LV, RV Stress
McEvoy et al. [47] Porcine 3×6 LV Strain
Demer et al. [48] Dog 30×30×2 LV Strain
Kakaletsis et al. [49] Sheep −×−×8 RV Strain

Biaxial tension test
Species Specimen size Position Loading

Langdon et al. [50] Calve 30×30×4.4 Pericardium Strain (1:1)
Sommer et al. [4] Human 25×25×2.3 LV Strain (1:1; 1:0.75; 1:0.5)
Ahmad et al. [9] Porcine 15×15×3 LV, RV Stress (1:1)
Demer et al. [48] Dog 30×30×2 LV Strain (1:1)
Yin et al. [51] Canine 40×40×2 LV Strain (1:0.5, 1:1, 1:2)
Choi et al. [52] Canine 40×40×− Pericardium Strain (1:1)
Hill et al. [53] Rat - RV Strain (1:1)
Vélez-Rendón et al. [54] Rat - RV Strain (1:0.5; 1:0.25; 1:1)

Simple shear test
Species Specimen size Position Types

Dokos et al. [55] Porcine 3×3×3 LV (fs),(fn),(sf),(sn),(nf),(ns)
Ahmad et al. [9] Porcine 3×3×3 LV, RV (sf),(sn)
Sommer et al. [4] Human 4×4×4 LV (fs),(fn),(sf),(sn),(nf),(ns)
Kakaletsis et al. [49] Sheep −×−×8 RV (fs),(fn),(sf),(sn),(nf),(ns)

Compression test
Species Specimen size Position Loading

McEvoy et al. [47] Porcine 3×6 LV Strain
Kakaletsis et al. [49] Sheep −×−×8 RV Strain

Table 2.1: Summary of passive experiments on myocardium, including uniaxial tension, bi-
axial tension, simple shear and confined compression. Size of specimen in a× b× c form is
length×width× thickness, and a×b form is length×diameter. (a : b) in biaxial tension denotes
loading ratios along two vertical loading orientations. (i j) in simple shear test refers to shear in
the j direction within the i j plane.

samples. Recently, Ahmad et al. [9] combined uniaxial tension, biaxial tension and simple shear
tests on neonatal porcine cardiac samples that were cut from the anterior and posterior free walls
of LV and RV. Results not only provided a baseline for describing mechanical characteristics of
immature cardiac tissue but also indicated relative changes in constitutive behaviours caused by
tissue maturation. Nevertheless, the volume compressibility in passive-excised porcine my-
ocardium was also investigated by applying both tensile and confined compression on my-
ocardial tissue [47], quantifying the compressibility by a joint experimental-computational ap-
proach. The fundamental mechanics, microstructure, and constitutive behaviour of mature RV
myocardium were studied by comprehensive mechanical tests, including uniaxial tension/com-
pression and six simple shear modes, and histology-based microstructural analysis [49], report-
ing the softer RV myocardium with inside dispersed fibre structure.
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2.2.2 Phenomenological constitutive models

The choice of phenomenological constitutive models depends on their included variables that
quantify the deformations of myocardium. Often, kinematic invariants of the right Cauchy–Green
deformation tensor C are employed in SEF W to represent the anisotropic properties of my-
ocardium. In addition, after considering the physical interpretation of kinematic invariants, a
single item in W can reflect the mechanical properties of a constituent. SEFs can also be formu-
lated using the components of the Green–Lagrange strain tensor E that are easy to be measured
or controlled in experiments. Published phenomenological SEFs are listed in Table 2.2 where
both invariant-based and strain component-based models are further subdivided into transversely
isotropic models that only have one fibre family and orthotropic models that include two or three
fibres families.

Invariant-based models

There are many constitutive laws that use strain invariant-based orthotropic or transversely
isotropic constitutive laws to characterize passive myocardial tissue. Transversely isotropic
models were first proposed to account for the anisotropic mechanics of myocardium, based on
the idealization that all types of fibres are always aligned and share the same mechanical prop-
erties, i.e. only one fibre family. Their mean fibre direction is identified as f0 in the reference
configuration, and the corresponding SEF employs the functional form W (I1, I2, I3, I4, I5), where
I1, I2, I3 account for isotropic ground matrix contributions and I4, I5 account for anisotropic fibre
contributions. These variants can be derived according to the right Cauchy-Green tensor C and
fibre direction f0, such as

I1 = tr(C), I2 =
1
2
{[tr(C)]2− tr(C2)}, I3 = det(C), (2.2)

and
I4 = f0 · (Cf0), I5 = f0 · (C2f0). (2.3)

Reduced forms W (I1, I4) are commonly used in transversely isotropic models [63–66], al-
though the important contributions of the I5 term in fitting to simple shear tests were demon-
strated in [67]. For a reduced W (I1, I4), the Cauchy stress is

σ = 2W1B+2W4f⊗ f− pI, (2.4)

where f = Ff0 is the deformed fibre and Wi =
∂W
∂ Ii

. More choices of reduced W were developed,
such as polynomial forms developed by Humphrey et al. [58], Fung-type exponential forms put
forward by Lin & Yin [1], and additive exponential terms proposed by Kerckhoffs et al. [60] and
Humphrey et al. [59].

Later, histological analysis of the microstructure of myocardium supports the existence of
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Invariant-based models: W (Ii)
Lin & Yin [1] W = a1[exp(Q)−1]

Q = a2(I1−3)2 +a3(I1−3)(I4−1)+a4(I4−1)2

Humphrey et al. [58] W = a1(
√

I4−1)2 +a2(
√

I4−1)3 +a3(I1−3)
Transverse +a4(I1−3)(

√
I4−1)+ c5(I1−3)2

isotropic Humphrey & Yin [59] W = a1{exp[a2(I1−3)]−1}
+a3{exp[a4(

√
I4−1)]−1}

Kerckhoffs et al. [60] W = a1{exp[a2(I1−3)2 +a3(I2−2I1 +3)]−1}
+a4{exp[a5(I4−1)2]−1}+a6(I3−1)2

Schmid et al. [42] W = ∑i=1,2
ai

2bi
{exp[bi(Ii−3)2]−1}

Orthotropic +∑i=f,s,n
ai

2bi
{exp[bi(I4i−1)2]−1}

Holzapfel & Ogden [11] W = a1
2b1
{exp[b1(I1−3)]−1}+ afs

2bfs
{exp(I2

8fs)−1}
+∑i=f,s

ai
2bi
{exp[bi(I4i−1)2]−1}

Strain component-based models: W (Ei j)
Guccione et al. [61] W = a1[exp(Q)−1]

Q = 2a2(Eff +Ess +Enn)+a3E2
ff

Transverse +a4(E2
nn +E2

ss +E2
sn +E2

ns)
isotropic +a5(E2

sf +E2
fs +E2

fn +E2
nf)

Yin et al. [51] W = a1[exp(a2En
11 +a3En

22)−1]
Choi et al. [52] W = a1{exp(a2E2

11)+ exp(a3E2
22)

+exp(a4E11E22)−3}
Schmid et al. [41] W = aff[exp(bffE2

ff−1)]+ass[exp(bssE2
ss−1)]

+ann[exp(bnnE2
nn−1)]

+afn{exp[bfn(
Efn+Enf

2 )2]−1}
+afs{exp[bfs(

Efs+Esf
2 )2]−1}

+asn{exp[bsn(
Esn+Ens

2 )2]−1}
Orthotropic Costa et al. [39] W = a1[exp(Q)−1]

Q = a2E2
ff +a3E2

ss +a4E2
nn +2a5E2

fsE
2
sf

+2a6E2
fnE2

nf +2a7E2
snE2

ns

Hunter et al. [62] W =
kffE2

ff
|aff−|Eff||bff

+
kfnE2

fn
|afn−|Efn||bfn

+ knnE2
nn

|ann−|Enn||bnn

+
kfsE2

fs
|afs−|Efs||bfs

+
kssE2

ss
|ass−|Ess||bss +

knsE2
ns

|ans−|Ens||bns

Table 2.2: Summary of phenomenological SEFs describing passive mechanical responses of
myocardium. Please note, strain components Ei j with i, j ∈ {f, s, n} are with respect to the
f0− s0−n0 fibre system, whilst E11 and E22 refer to the two orthogonal loading orientations in
the biaxial tension tests.

sheets, which consists of locally parallel myofibres and is interconnected by a spatial network of
collagen fibres [31,68,69]. Therefore, myocardium may be not isotropic in cross-fibre planes as
reported in the six simple shear tests [55]. To describe orthotropic properties of myocardium, or-
thonormal base is f0-s0-n0. Then, the orthotropic properties can be characterised by the material
directions, such as the SEF W including two more deformation invariants I6 and I7 to describe
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mechanical characteristics along the sheet direction

I6 = s0 · (Cs0), I7 = s0 · (C2s0). (2.5)

To reduce W forms, the attributes of myocardium aligning the sheet-normal direction may
be integrated into the ground matrix by adjusting material parameters or expression forms. In
addition, invariant I8 is defined as [11]

I8 = f0 · (Cs0) = s0 · (Cf0), (2.6)

which represents the interaction between two fibre families along fibre and sheet directions,
respectively.

A prominent reduced orthotropic SEF W (I1, I4, I6, I8) has been proposed by Holzapfel and
Ogden [11] according to the simple shear data from [55]. It has one term related to the matrix
responses, two terms related to the two fibres families along fibre (f0) and sheet (s0) directions,
and a final term for interaction between the two families of fibres

W =
a1

2b1
{exp[b1(I1−3)]−1}+ ∑

i=f,s

ai

2bi
{exp[bi(I4i−1)2]−1}+ afs

2bfs
{exp(bfs I2

8fs)−1}, (2.7)

where a1, b1, af, bf, as, bs, afs, bfs are material parameters.
The Holzapfel and Ogden (HO) model and its variation have been widely used in the cardiac

modelling community, such as the LivingHeart Project [70]. Goktepe et al. [71] developed a
general constitutive and algorithmic approach for the computational modelling of passive my-
ocardium using the HO model, which is embedded in a non-linear FE method. Wang et al. [7]
studied the fibre orientation on LV diastolic mechanics using the HO model and further extended
it to include residual stresses [72]. Gao et al. [2] implemented the HO model into an immersed
boundary framework combined with FE to study LV biomechanics both in diastole and systole.
Simplified forms of the HO model were also used by Asner et al. [73] with personalized ventric-
ular dynamics derived from in vivo data. General structural tensors accounting for collagen fibre
dispersion were introduced by Eriksson et al. [21], followed by Melnik et al. [74] recent exten-
sion, accounting for fibre dispersion in the coupling term between the fibre and sheet directions.
Inverse estimation of unknown parameters in the HO model from in vivo data was first investi-
gated by Gao et al. [13], and later by Nikou et al. [75], and by Palit et al. [76]. The HO model
has also been applied to simulate various heart diseases, such as myocardial infarction [2, 70].

No study has previously investigated the descriptive and predictive capability of HO-type
SEFs. A competent constitutive law should be able to describe as many deformation modes
(uniaxial, biaxial, simple shear, etc.) as possible in qualitative point and then from quantitative
point with acceptable errors of simulation with respect to the experimental data [77], and with
least terms. Mechanical properties of myocardium are traditionally measured by a single series
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of either uniaxial [56], biaxial tests [48], or simple shear deformations [55], despite it being
demonstrated that combined biaxial data (with different loading protocols) and simple shear
data (with various loading directions) are required to adequately capture the tissue’s direction-
dependent nonlinear response [11]. For example, Holzapfel et al. [11], and Schmid et al. [42]
both only used simple shear data of [55] to demonstrate the good descriptive capability of se-
lected constitutive laws. Only recently Sommer et al. [4] have performed both biaxial and shear
tests on similar human myocardial samples, whilst Ahmad et al. [9] reported their experiments
on neonatal porcine myocardium samples with uniaxial, biaxial and shear tests.

Fung-type models

Another widely-used approach employs strain components directly or strain invariants when
developing such constitutive laws. For instance, Guccione et al. [61] used a transverse isotropic
exponential Fung-type hyperelastic material model to characterize the equatorial region of the
canine LV, in which the SEF consists of six strain components. Based on an idealized cylindrical
coordinate system consisting of fibre (f0), cross-fibre (c0) and radial (r0) axes, it assumes the
same constitutive behaviour of myocardium aligning c0 and r0 directions and accounts for their
coupling contributions. This model has been extensively used in FE simulations because of its
highly tractable implementation.

Another simple Fung-type SEF is designed to describe biaxial behaviour of myocardium
and only includes two axial strain components [51] along fibre and cross-fibre directions, re-
spectively. This form facilitates identifying material parameters whilst limiting the predictive
capability for tissue behaviour as debated in [78]. Moreover, it did not consider the interaction
between two perpendicular directions, which played an important role in reproducing biaxial
mechanical responses of the RV myocardium [53].

Following subsequent evidence supporting the orthotropic mechanical responses along local
orthotropic material axes, Hunter et al. [62] firstly proposed the so-called pole-zero model, a
spatial orthotropic strain component-based model based on the orthogonal material base f0−
s0− n0. It contains six strain components, the strains along material axes and shears within
material planes. Corresponding eighteen parameters can be divided into three categories: the
limiting strains or poles representing physical properties of tissue, the parameters describing the
curvature of stress-strain relationships, and the parameters weighting contributions of each term
to total SEF. However, excepting equi-biaxial tension tests, it was not suitable to describe or
predict other types of deformation as mentioned in [79].

In a followed study, Costa et al. [39] extended the transversely isotropic Fung-type relation to
accounting for the orthotropy. Based on f0−s0−n0 coordinate system, it separates the attributes
along the sheet and sheet-normal directions that governs the anisotropy in the cross-fibre plane.
Moreover, the updated model includes shear stiffness between any two adjacent material planes
whilst ignoring the coupling terms between any two orthogonal directions.
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Later, to decouple the material parameters from the single exponential function in Costa et
al. [39], separated Funy-type law was proposed by Schmid et al. [41], which was in the additive
form of six exponential functions of strain components, such as a[exp(bE2

i j)− 1]. There were
also no coupling terms to account for interactive behaviours between material axes. Neverthe-
less, to exhibit strong stiffness at large stretches and avoid an infinite slope in pole-zero model,
replacing a[exp(bE2

i j)− 1] by a IntTan(bE2
i j) was also investigated, where IntTan(x) is the first

five terms of the Taylor series expansion of the indefinite integral of Tan(x) [41].

2.2.3 Micro-structurally informed models

The phenomenological models quantitatively describe myocardial constitutive behaviours whilst
failing to account for its compositional material and structural properties. Therefore, the mi-
cromechanical mechanisms are unlikely derived from these models, which involve functions
and architectures of myofibres and collagen fibres, as well as their coupling, under physiologi-
cal or pathological conditions.

Micro-structurally informed models attempt to bridge the constitutive mechanical behaviour
of myocardium and the microstructural mechanisms of myocardial constituents, using com-
positional SEFs. In idealization, myocardium is divided into a continuous ground matrix and
embedded myofibres and collagen fibres. Hence, total SEF W is usually the sum of their contri-
butions [80], such as

W = φ
gW g +φ

mW m +φ
cW c +W int, (2.8)

where W i is constitutive laws to describe mechanical characteristics of ground matrix (g), my-
ofibre (m), collagen fibres (c), and the interaction (int) between myofibre and collagen fibres.
φ i is volume fractions or mass for each constituent. Please note that no volume fraction is as-
signed for the last interaction term because of unavailable information. Thus, Avazmohammad
et al. [6, 80] assumed the W int absorbed the fraction value and were still useful to estimate the
interactive contribution to the total energy.

To estimate effective contribution for each type of fibre, one approach employs the angular
integration of each fibre’s contribution following a spatial distribution map ρ(M), where M is a
unit vector representing fibre (myofibre and collagen fibre) orientation in the reference configu-
ration. The energy function for each fibre is usually expressed by fibre stretch, such as wf(IM)

where IM = M · (CM). Hence, the total fibre strain energy is

W f =
∫
S

ρ(M)wf(IM)dS, (2.9)

where S is the surface of the unit sphere in three dimensions. For the case of collagen fibres, they
are crimped in the stress-free state and do not produce force until fully straightened. Thus, the
actual deformation contributing to energy function in an individual fibre is IM∗ = IM/λ 2

s where
λs is compression-tension switch stretch. The gradual recruitment of undulated collagen fibres
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can be accounted by a truncated function D(λs). Finally, total energy of collagen fibres can be
expressed as

W f =
∫
S

ρ(M)
∫ √IM

1
D(λ )wf(

IM

λ 2
s
)dλ dS, (2.10)

where λ is the integral variable in fibre stretch space. Some representative structural models are
summarized in Table. 2.3.

Lanir et al. [83] developed a general multi-axial theory for the constitutive relations in fibrous
connective tissues while considering micro-structures and thermodynamics. Then Horowitz et
al. [81] proposed a model that illustrated the distributions of myofibres and collage fibres, in
which collagen fibres symmetrically surround and connect adjacent myofibres. They are both
expressed in a spherical coordinate system and ascribed linear stress-strain relations.

Humphrey & Yin [82] extended their previous phenomenological transverse isotropic model
[59] to a simple structural model by treating myocardium as a layered composite from endo-
cardium to epicardium and assuming transverse isotropy in each layer with the mean fibre di-
rection. It avoids the definition for fibre distribution and consideration of gradual recruitment of
collagen fibres. Total fibre energy contributions are the integration of layered fibre energy along
ventricular wall thickness. Later, in this concept, Sacks & Chuong [84] developed a similar
constitutive relation for passive RVFW that replaces fibre energy function in each layer from
exponential form [59] to polynomial form [85].

Three orthogonal fibre-sheet-normal families fibres were considered by Hunter et al. [62]
who used the pole-zero descriptor (aE2

n/(b−En)
c) to estimate strain energy of all families fi-

bres. Each family fibre has a Gaussian distribution around its mean fibre direction in the fibrous
connective tissue. Total fibre energy is the sum of the contributions of the three families fibres
where the effect of gradual fibre recruitment is ignored.

Recently, Krishnamurthy et al. [86] proposed a multi-scale model that elaborated cross-
bridge and myofilament lattice structure and investigated the effect of fibre dispersion on my-
ocardial contractility. Sacks et al. [87] developed a rigorous full structural model (i.e. explicitly
incorporating various features of the collagen fibre architecture) for exogenously cross-linked
soft tissues, which made an extension to the collagenous structural constitutive model, meaning
the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration.
Based on Sacks’ study, Avazmohammadi et al. [6] proposed a fibre-level constitutive model
for the passive mechanical behaviour of the RVFW, which explicitly separated the mechanical
contributions of myocytes and collagen fibre ensembles whilst accounting for their mechanical
interactions. Xi et al. [25] only discussed the collagen fibre distribution with gradual recruit-
ment, whilst the energy functions of ground matrix and myofibre were in phenomenological
form. The volume fraction of each constituent is denoted before the respective term’s SEF that
only illustrates the compositional constitutive behaviours. Li et al. [88] developed a discrete ap-
proach that divides the continuous fibre space into finite elementary areas and assumes each area
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associating one uniform fibre bundle, i.e. representative fibre. It contributes to the total stress
weighted by its corresponding density distribution determined from the corresponding distribu-

General expression Reference
W = W m +W c Horowitz et al. [81]
W m =

∫ π/24
−π/24 ρm wm* dα ,

W c =
∫ π/24
−π/24

∫ 2π

0
∫ pi

0 ρc wc* Jdφdθdα

wi = aiε
i, Di(x) = 1√

2πσ i exp[− (mi−x)2

2(σ i)2 ]

wi∗ =
∫

ε i

0 Di(x)wi(x)dx, i = m,c and ε is the fibre strain
W = W g +W f Humphrey & Yin [82]
W g = a1{exp[b1(I1−3)]−1}, W f =

∫ repi
rendo wdr

w = a2{exp[b2(
√

I4−1)2]−1}
W = W f +W s +W n Hunter et al. [62]

W f =
∫ π/2
−π/2 ρ f afE2

f
(bf−Ef)

cf dθ , W s =
∫ π/2
−π/2 ρs asE2

s
(bs−Es)cs dθ ,

W n =
∫ 2π

0
∫ π/2

0 ρn anE2
n

(bn−En)cn dφdθ ,
Ei =

1
2(I4i−1) where i =f,s,n.

ρ f(θ) = 1√
2πσ f exp[− θ 2

2(σ f)2 ], ρs(θ) = 1√
2πσ s exp[− θ 2

2(σ s)2 ]

ρn(φ ,θ) = 1
2πσn1σn2 exp

[
−1

2

(
φ 2

(σn1)2 +
θ 2

(σn2)2

)]
W = φ gW g +φ mW m +φ cW c +φ cW i Avazmohammadi et al. [6]
W g =

ag
2 (I1−3),

W m = 1
H
∫ H

0
∫ π/2
−π/2 ρm (θ ,z)wm (Im)dθdz,

W c = 1
H
∫ H

0
∫ π/2
−π/2 ρc (θ ,z)wc* (Ic)dθdz,

W i = 1
H
∫ H

0
∫ π/2
−π/2

∫ π/2
−π/2 ρmρcwi* (Im, Ic)dθ mdθ cdz,

wm =
am

1
2am

2

{
exp
[
am

2 (
√

Im−1)2]−1
}

,

wc = ac

2

(√
Ic/λs−1

)2
, wc* =

∫ λub
λlb

D(λs)wc (Ic)dλs,
wi = k1

2k2
{exp

[
k2(Im + Ic/λ 2

s −2)
]
,

−
[
k2
(
Ic/λ 2

s −1
)
+1
]

exp [k2 (Im−1)]},
wi* =

∫ λub
λlb

D(λs)wi (Im, Ic)dλs,

D(λs) =
yα−1(1−y)β−1

B(α,β )(λub−λlb)
.

W = φ gW g +φ mW m +φ cW c, Xi et al. [25]
W g = a1

2 (I1−3), W m = a2{exp[a3(
√

Im−1)2]−1},
W c = a4

2
∫ 2π

0
∫

π

0
∫

εc
0 D(x) εc−x

1+2x ρ(θ ,φ)dxdφdθ ,

D(x) = 1
a5

1√
2πσc

exp
[
− (mc−x)2

2σ2
c

]
.

W = W g +W f, Li et al. [17]
W g = a1

2 (I1−3), W f = ∑
m
n=1 ρnwn,

wn =
a2
2b3
{exp[b3(Ic/λ 2

s −1)2]−1}.

Table 2.3: Summary of structurally informed models for describing passive mechanical re-
sponses of myocardium
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tion function. The energy function for each representative fibre is an invariant-based exponential
function.

2.3 Active contraction models of myocardium

Cardiac contraction is a synergistic reaction process among different components. Briefly, the
electrical signals produced by self-excitable cells in sinoatrial node make up voltage waves trav-
elling along Purkinje fibres. Varying potential in cardiac cells changes concentrations of cal-
cium, potassium, sodium, etc., which control the shortening of myocytes then resulting in con-
traction of heart. Finally, blood with rich oxygen is pumped through arteries into all tissues and
organs in body. Hence, any disorder in the above cooperation might threaten life. However, due
to the complexity of heart, especially due to the difficulties associated with in vivo experiments,
cognation to functions of heart is a difficult task.

Active contraction in myocardium is usually simulated by the cardiac electromechanics that
mainly includes three parts: action potential model based on a system of ordinary differential
equations in terms of ion concentrations, reaction-diffusion model to describe the propagation
of electrical excitation, and the continuum mechanics model to predict the deformation of my-
ocardium.

Currently, there are three common approaches to incorporate the active tension into the to-
tal mechanics of myocardium: active stress approach, active strain approach and Hill’s three-
element approach. Their respective definitions can be demonstrated by the sketch with different
arrangements of passive elements and active contractile elements, as shown in Fig. 2.5.

(a) (b) (c)

Figure 2.5: Sketch of active contraction models with different arrangements of passive elements
(spring) and active contractile elements (red box). (a) Active stress model consists of a passive
spring element in parallel with a contractile element. (b) Active strain model is composed of a
contractile element in series with a passive spring element. (c) Hill’s three-element model also
has two parallel branches, in which one branch only has a passive spring element and another
branch has a contractile element in series with a passive element. F denotes total deformation
gradient tensor and is decomposed into elastic tensor (Fe) and active strain tensor (Fa). σ t is
total Cauchy stress, σ a is active stress, and σp is passive stress.
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2.3.1 Active stress approach

The prevalent approach to account for active tension in total stress is to directly add the ac-
tive stress generated by contraction of myocardium to the passive stress, as demonstrated in
Fig. 2.5(a) where the passive spring element is parallel with the active contractile element. In
this model, both active and passive elements share the same deformation F. The additive form
of total Cauchy stress (σ t) can be expressed as

σ t = σp +σ a,

σp = J−1 F
∂Wp

∂F
,

σ a = nf Ta f̂⊗ f̂+ns Ta ŝ⊗ ŝ+nn Ta n̂⊗ n̂,

(2.11)

where passive stress σp is derived from a SEF as reviewed in the section 2.2, active stress
σ a consists of total active tension Ta, unit deformed fibre orientation vectors f̂, ŝ and n̂, and
fractions along each direction nf, ns, and nn. Ta is the active tension generated along the myofibre
direction, which can be described by a time-varying elastance model [89–91]. For instance,
nf = 1 and ns = nn = 0 indicates active stress only along myofibre direction [2, 46], and non-
zero ns and nn denote the dispersed active tension when considering fibre dispersion around the
mean fibre direction [14, 15]. In addition, some studies used non-unit deformed fibre vectors
directly such as σ a = Ta f⊗ f [91].

Easy implementation and abundant experimental data for the parameters calibration make
active stress approach popular in personalized cardiac modelling [2,21,91,92]. However, it hard
to obtain a simple expression of SEF due to the complex forms of the active tension function,
in particular when it is modelled as a set of ordinary differential equations [93–95]. Coupling
two stress tensors from different concepts also may result in the limitation on mathematical
convexity [96].

2.3.2 Active strain approach

Active strain approach is inspired by the theories of plasticity, tissue growth and morphogen-
esis. Kondaurov and Nikitin [97] firstly proposed this framework and then was developed by
Taber [98] and others [99–102]. The key is the multiplicative decomposition of the deformation
gradient tensor F = FeFa (Fig. 2.5 (b)). Fa is active strain contribution that stores no elastic
energy and is usually formulated via prescribed myocardial contraction that can be fictitiously
imagined as plastic distortion of tissue. The elastic deformation Fe, undermined by Fa, accounts
for the elastic energy and preserves the compatibility of the soft tissue. Finally, the derivation
of the original passive SEF with respect to the Fe is used to estimate total stress [101–103], in
which active and passive stresses are inseparable.
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The total Cauchy stress in this case is computed by

σ t = J−1
Fe

Fe
∂Wp(Fe)

∂Fe
, (2.12)

where Fe = FF−1
a , and Fa is usually defined in the reference configuration, such as [101]

Fa = I+ γf f0⊗ f0 + γs s0⊗ s0 + γn n0⊗n0, (2.13)

where γf, γs, and γn are contractile strains along respective axial directions. For them, a pre-
scribed time varying curve is easy to be implemented [101, 104], and more physiological and
complex approaches have been proposed to calculate those by cardiac potential from cell level
[103, 105, 106].

2.3.3 Hill’s three-element approach

The hybrid approach [105] is inspired by the classic Hill’s three-element model [107], which
combines the active stress and active strain approaches, as shown in Fig. 2.5 (c). There are two
parallel branches to denote passive and active responses, respectively. The parallel branch with
only one passive spring element accounts for all the passive response of the myocardium. The
contractile element in series with a passive element in another parallel branch characterises the
mechanics of myocardium contraction. This approach keeps the advantages in mathematical
convexity whilst separating active and passive contributions in total stress.

Same as the active stress approach, total stress is the sum of active and passive components.
Passive stress is derived from passive SEF (Wp) with respect to total deformation gradient tensor
F. The active stress tensor is calculated by derivation of additive active SEF (Wa) with respect
to Fe that is determined by Fa using the active strain approach. Thus, total Cauchy stress is
expressed as

σ t = σp +σ a,

σp = J−1 F
∂Wp

∂F
,

σ a = J−1
Fe

Fe
∂Wa(Fe)

∂Fe
,

(2.14)

where Fe = FF−1
a . Three types of active contraction models are summarized in Table 2.4.

Through reviewing the studies employing the active strain approach, different assumptions
are made to describe active strain tensor. Transversely isotropic models with the determinant of
Fa being one [101,110] cannot produce physiological ejection fraction (EF) and wall thickening
with myofibre contraction in the physiological range. However, the transversely isotropic model
with contraction only occurring along myofibre orientation [96] is able to overcome the above
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Active stress model
General expression Reference
σ a = nf Ta f̂⊗ f̂+ns Ta ŝ⊗ ŝ+nn Ta n̂⊗ n̂ Guan et al. [15]
σ a = nf Ta f̂⊗ f̂ Gao et al. [2]
σ a = Ta f⊗ f+ns Ta s⊗ s Sack et al. [91], Genet et al. [92]

σ a = Sa

(
kf

1−2kf
I+ 1−3kf

1−2kf
f̂⊗ f̂

)
Eriksson et al. [21]

Active strain model
General expression Reference
Fa = I+ γf f0⊗ f0 + γs s0⊗ s0 + γn n0⊗n0 Rossi et al. [108], Quarteroni et al. [103],

Barbarotta et al. [101], Göktepe et al. [105]
Fa = f1I+ f2

∫
ω

cos2 βAρ(a)dω Pandolfi et al. [109]
Fa = γ1f0⊗ f0 + γ2 (I− f0⊗ f0) Barbarotta et al. [101], Gjerald et al. [110],

Giantesio et al. [104]
Fa = I− γ f0⊗ f0 Ambrosi et al. [96], Cansız et al. [106]

Hill’s three-element model
General expression Reference
Wa =

1
2η(Ie

4f−1)2 Göktepe et al. [105]

Table 2.4: Summary of active contraction models. The active stress expressions listed in active
stress model, the constructions of active strain tensor are expressed in active strain model, and
the active SEF is showed in Hill’s three-element model.

limitations because it does not change elastic properties in transverse orientations. Alternatively,
the orthotropic model [108] can also capture the physiological wall thickening in cardiac systole
by defining different contraction amounts along fibre and sheet directions. It assumes the con-
traction of myofibre pushes the enlargement along sheet direction that forces rearrangement of
collagen sheet, thus increasing wall thickness. The multiplicative decomposition of deformation
gradient tensor signifies the sequential order between active distortion and elastic deformation.
In fact, however, active contraction does produce force simultaneously with elastic deformation
as exhibited in an isometric contraction experiment of muscle [111].

2.4 Fibre structure in modelling myocardium

2.4.1 Construction of fibre structure

The spatial architecture of myofibres plays a central role in electrical propagation, myocar-
dial expansion and contraction [112]. Early studies relied on fibre dissections and histological
slices [113] to determine local fibre structure. Currently, the cardiac fibres can be imaged via
DT-MRI [43] that allows a direct description of the 3D myofibre architecture. To reconstruct my-
ofibres in computational models, two different approaches have been developed. One is directly
mapping myofibres from ex/in vivo datasets to the models, i.e. reconstructing directly from
DT-MRI [91], or using atlas-based methods to warp DT-MRI data into different models [44], as
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shown in Fig. 2.6 (a). The other approach is the rule-based method (RBM), in which myofibres
rotates from endocardium to epicardium with prescribed angles concerning the circumferential
direction (Fig. 2.6 (b)), varying linearly across the wall in most of the studies [7, 114, 115].

Figure 2.6: (a) Bi-ventricular canine model is reconstructed directly from DT-MRI and inside
fibre structure (red lines) is mapped from same DT-MRI data. Then, it warps into porcine heart
by atlas-based methods, together with inside fibre structure. (b) Definition of linear rotation
from epicardium to endocardium and its application in single LV model with rotation angles
from endocardium (60◦) to epicardium (−60◦). Single LV graph is cited from Wang et al. [7]
with the permission to be reprinted.

One key step in RBM is to parameterise wall thickness (ē) in order to assign local fibre
angles, from ē = 0 at endocardial surface to ē = 1 at epicardial surface. With measured fibre
angles at endocardium θ endo and epicardium θ epi, the local fibre angle can then be assigned by
varying linearly or nonlinearly with ē. For example, the linear case, fibre angle (θ ) at thickness
ē is

θ = (1− ē)θ
endo + ēθ

epi. (2.15)

Bayer et al. [116] proposed a Laplace-Dirichlet RBM, in which the circumferential-radial-
longitudinal directions and normalized wall thickness are determined by solving a series of
Laplace equations. They demonstrated that the Laplace-Dirichlet rule-based fibre could achieve
almost identical electrical activation patterns in a whole heart model as a DT-MRI based model.
Additionally, regionally-varied RBM has been developed to take into account spatial varia-
tions [21], in which myofibre rotation angles are regionally dependent.

Three dimensional FE mechanics models of the heart have been used extensively to investi-
gate the role of myofibre architecture in cardiac function under normal and abnormal function,
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including ischaemia, ventricular pacing, myofibre disarray, and heart failure. For example, by
using a rule-based approach for myofibre reconstruction in an LV model, Wang et al. [7] found
that changes in myofibre rotation angle can dramatically affect the stress and strain distributions
during diastole. Using a bi-ventricular model, Patil et al. [117] also demonstrated that changes
in myofibre angle could significantly affect myofibre stress-strain distribution within the LV
wall in diastole. Pluijmert et al. [118] found that a change of 8◦ in myofibre orientation along
transmural direction can cause a considerable increase in cardiac pump work (17%). In a recent
study, Gil et al. [119] compared three different myofibre architectures in an electromechanics
bi-ventricular model, one was from a DT-MRI dataset [120], the other two were reconstructed
using a rule-based approach [114] with histologically measured myofibre angles [121]. Their
results showed that the model with realistic myofibre structure from DT-MRI produces func-
tional scores much closer to healthy ranges than rule-based approaches. Using the polynomial
chaos expansion method, Rodriguez-Cantano et al. [122] studied the uncertainty in myofibre
orientation and demonstrated that a realistic myofibre structure is necessary for a personalized
cardiac model, such as DT-MRI acquired myofibres.

2.4.2 Consideration of fibre dispersion

Micro-structurally informed constitutive modelling in soft tissue has attracted tremendous in-
terest in this area since its introduction in the 1970s [123]. With advanced imaging techniques,
such as DT-MRI, detailed 3D fibre distribution for the whole organ, such as the heart, can be
acquired in ex/in vivo [5,30]. Existing measurements have shown that fibres in myocardium are
dispersed in space with a predominant mean fibre direction [4,5], as the measurement in Fig. 2.7
(a) and a sketch of probability distribution in Fig. 2.7 (b). Constitutive modelling of soft tissue
with dispersed fibres has found that dispersed collagen fibres can significantly affect the overall
mechanical response of the soft tissue [20, 124].

To incorporate fibre dispersion into its constitutive law, one way is to assume a probability
density function (PDF) concerning the mean fibre direction (f0), as shown in Fig. 2.7 (c) where
the spatial disperse fibre M is determined by two polar angles Θ and Φ, such as

M(Θ,Φ) = sinΘ cosΦs0 + sinΘsinΦn0 + cosΘ f0, (2.16)

where Θ is the angle between f0 and M, and Φ is the angle between s0 and the projected vector
of M in the s0-n0 plane. Fibre dispersion is described by PDF ρ(Θ,Φ), and∫

S
ρ(Θ,Φ)dS = 1 (2.17)

where S is the surface of the unit spherical fibre dispersion domain. Four illustrative fibre dis-
persion cases are listed in Fig. 2.7 (d). Then the SEF for the tissue can be the summarization of
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(a) (b) (c)

(d)

Figure 2.7: Fibre dispersion in measurement and its definition in mathematical model. (a) Mea-
sured intensity of fiber orientations through-the-thickness from Sommer et al. [4], showing the
existence of fibre dispersion around mean fibre direction. The measurable intensity can be ex-
pressed by PDF ρ(Θ) (b), and spatial disperse fibre in mathematical model can be denoted by
two polar angles Θ and Φ (c), and its distribution is controlled by the PDF. (d) Four represen-
tative fibre dispersion distributions around the mean fibre direction (red arrow), from the left to
the right is respective isotropic dispersion, in-plane isotropic dispersion, transversely isotropic
dispersion, and general dispersion.

each fibre contribution along with other constituents.
Broadly speaking, there are two approaches for counting collagen fibre contributions: (1) the

angular integration (AI) approach [123], in which the stress from each fibre is added together,
that is

σ = J−1
∫
S

ρ(Θ,Φ)F
∂W (Θ,Φ)

∂F
dS, (2.18)

where W (Θ,Φ) is the SEF with respect to dispersed fibres, and (2) the other one is the gen-
eralised structure tensor (GST) approach, which was first proposed by Gasser et al. [20]. By
assuming a rotational symmetry for the fibre distribution around the mean fibre direction, Gasser
et al. [20] derived a κ–model based on a modified squared mean fibre stretch, that is

H =
∫
S

ρ(Θ,Φ)M⊗MdS =

 κ

κ

1−2κ

= κI+(1−3κ)f0⊗ f0, (2.19)
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where the unit first eigenvector is same as the f0 with 1−2κ ≥ κ , and the reset two unit eigen-
vectors are n0 and s0, respectively. Then total dispersed fibre stress is

σ f = 2J−1 ∂ Wf(I∗4f)

∂ I∗4f
FHFT, (2.20)

where I∗4f = κI1 +(1−3κ)I4f. Later, Holzapfel and co-workers employed this GST approach to
depicting mechanical responses of various soft tissues (arterial walls, myocardium, etc.) [19,21,
124]. Recently, Melnik [74] further extended the GST model to a coupled invariant from two
fibre families in the HO model.

2.4.3 Collagen fibre recruitment under fibre dispersion

In soft tissue mechanics, it is often considered that collagen fibres will not bear load under com-
pressed state, thus excluding compressed fibres is necessary, or the so-called tension-compression
switch [125]. Because of the wavy structure of the collagen network in the soft tissue, col-
lagen fibres are initially crimped and gradually recruited to bear the loading with increased
stretch [8, 126]. Recently, Cheng et al. [8] assessed collagen fibre recruitment in bladder tissue
using advanced bioimaging. The low resistance in the toe regime, i.e. the low stretch regime,
can be explained by the no-discernible recruitment of collagen fibres. Collagen fibre states at
different stretch regimes are briefly shown in Fig. 2.8.

A straight fibre under compression will buckle and cannot support load because of its crimped
configuration [17, 127]. This assumption is also necessary for reasons of stability as discussed
in [127]. Including recruitment into the SEF would be more physiologically relevant compared
to the simple tension-compression switch [128]. Another way to take into account the crimped
wavy collagen fibre network is to adopt a multiscale approach from the nanoscale up to the
macro-scale using homogenisation techniques as in [129].

Such exclusion is simple when fibres are not dispersed by simply zeroing out fibre stress if
compressed, but can be challenging when fibres are dispersed because a stretched domain needs
to be determined at each loading step according to its PDF. With a dispersed fibre distribution,
exclusion of compressed fibres in the AI approach is relatively simple by only adding stress con-
tribution from each stretched fibre [63, 130, 131] compared to the GST approach. For example,
Federico et al. [131] excluded compressed fibres from a planar von Mises distribution using a
Heaviside function with a value of 1 when the fibre is stretched, otherwise zero. In general, the
AI approach will require significant computational resources to consider each fibre’s contribu-
tion at each loading step for each location. On the contrary, the GST approach can be much
more computational efficient because of one evaluation of the fibre potential derivative with the
precomputed structural tensor.

In recent years, a few studies have tried to address the compressed fibre exclusion in GST.
When firstly developing the GST model, Gasser et al. [20] suggested that only include fibre

26



Chapter 2. Literature Review

Figure 2.8: Projected stacks of multiphoton images as viewed from abluminal side (images are
cited from Cheng et al. [8] with the permission to be reprinted). Top graphs showed collagen
fibre deformation from the toe, transition and high stress regimes with increasing strain, and the
bottom graph denoted corresponding progressive mechanical loading curves through different
segments.

contribution when the mean squared fibre stretch is greater than 1. However, as being discussed
extensively in the literature [125, 132], even though the mean fibre stretch is less than 1, there
is a portion of fibres being stretched depending on the deformation state, thus, the original
GST treatment will redistribute the fibre tensile stress over all the fibres. Significant different
consequence may happen if the formulation of the squared mean fibre stretched is based on the
volumetric/isochoric split as discussed in [133]. To exclude compressed fibres in GST, Melnik
et al. [132] introduced a Heaviside function into the integration of the structure tensor that only
includes the stretched fibres. In a recent study, Holzapfel and Ogden [134] modified the original
κ model [20] to have κ only depending on the stretched fibre domain, rather than the whole
PDF. They further compared this modified κ model with an AI model, and concluded that both
the GST and the AI models have equivalent predictive power for characterizing various fibre-
reinforced soft tissues. In a similar way, Li et al. [135] proposed a general fibre invariant by
integrating (I4−1)2 only over each stretched fibre.

In both the AI and GST approaches, to exclude compressed fibres under complex dynamics
will generally require a two-dimensional (2D) integration over a unit sphere at each computa-
tional location at each loading step, except for some special cases where analytical solutions
may exist. The numerical realization of this 2D integration over a unit sphere may require hun-
dreds of integrations, thus the computational demand can be very high [136]. To improve the
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computational efficiency of this 2D integration of stretched fibres in FE simulation, Li et al. [17]
developed a discrete fibre dispersion (DFD) model. Instead of integrating fibre contributions
from thousands of fibres over a unit sphere, the DFD method will firstly divide this unit sphere
into finite triangles, then each triangle in the sphere surface will associate one uniform fibre
bundle that will contribute to the total stress weighted by its corresponding density distribution
determined from the corresponding PDF. Li et al. [17] further demonstrated that the computa-
tional demand was significantly reduced for excluding compressed fibres in their DFD approach,
a speed-up of 224 times was observed in their study than using a traditional AI approach. A brief
summary of published methods that consider collagen fibre recruitment under fibre dispersion is
listed in Table 2.5.

AI approach
General expression Reference

Waniso = 1
π

∫ π/2
−π/2 w f

(
λ 2

f

)
ρ2D(θ)dθ Hill et al. [128]

w f

(
λ 2

f

)
=
∫ λ f

1 d1 (λa)w∗f

(
λ 2

f
λ 2

a

)
dλa, 1 =

∫
∞

1 d1 (λa)dλa

Abrupt commences

w∗f
(
λ 2

t
)
= η

γ

[
eγ(λ 2

t −1)−1
]
, and d1 (λa) = δ [λ −λa1]

Gradual commences

w∗f
(
λ 2

t
)
= η

2

(
λ 2

t −1
)
, and d1 (λa) =

{
ΓPDF λa ≥ λa1
0 λa < λa1

σ e = J−1 ∫ 2π

0
∫

π

0 H (In−1)F∂ W (θ ,φ)
∂ F sinφ dφdθ , Ateshian et al. [130]

and H (In−1) =
{

1 In > 1
0 In ≤ 1

W =
∫

Ω
ρ(Θ,Φ)H (I4−1)W ∗(Θ,Φ)dΩ,, Federico et al. [131]

and H (I4−1) =
{

1 I4 > 1
0 I4 ≤ 1

Ψf =
1

2π

∫∫
Ω

ρ(Θ,Φ)Ψn (Ī4(Θ,Φ))sinΘdΘdΦ Li et al. [63]
Ω = {(Θ,Φ) ∈ S | I4(Θ,Φ)> 1}

GST approach
General expression Reference
H =

∫
Ω

ρ(Θ,Φ)M⊗MdΩ, Gasser et al. [20]
I∗4f = κI1 +(1−3κ)I4f, and Waniso = Wf(I∗4f)
H =

∮
∪2 ρ (m0)χ (m0⊗m0 : C)m0⊗m0dω , Melnik et al. [132]

and χ (If) =

{
1, If = m0⊗m0 : C > 1,
0, If = m0⊗m0 : C≤ 1.

DFD approach
General expression Reference

Ψf = ∑
m
n=1 ρnΨn (I4n), and Ψn (I4n) =

{
f (I4n) if I4n ≥ 1
0 if I4n < 1 Li et al. [17]

Table 2.5: Summary of published methods that consider collagen fibre recruitment under fibre
dispersion during passive deformations.
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2.4.4 Myofibre active stress under fibre dispersion

Myofibres do not align perfectly along one direction at any location within a ventricular wall but
dispersed as reported by Ahmad et al. [5], who measured in-plane and out-of-plane myofibres
and collagen fibres dispersion using two-photon-excited fluorescence and second harmonic gen-
eration microscopy on neonatal heart samples. This also agrees with the historical experimental
findings from Lin and Yin [1], who measured around 40% cross-fibre active stress in rabbit my-
ocardium. Until now, very few studies included fibre dispersion in active contraction models for
the myocardium.

To take into account active contraction caused by dispersed myofibres, Guccione and co-
workers introduced cross-fibre active contraction in cardiac models [90, 92] based on experi-
ments by Lin and Yin [1]. Recently, Sack et al. [91] inversely determined cross-fibre contraction
ratio in a healthy porcine heart and a failing heart. It has been argued that cross-fibre active
contraction may be related to myofibre dispersion. However, no detailed studies reported this
connection. Eriksson et al. [21] incorporated myofibre dispersion in both the passive and ac-
tive mechanics in an electromechanically-coupled idealised LV model. Their model, based on
the κ–model [20], showed that large dispersion in the diseased heart could significantly affect
ventricular pump function. On the other hand, Ahmad’s study [5] demonstrated that in-plane
dispersion is different from out-of-plane dispersion, which suggests the rotational symmetry
assumption used in the κ–model may not be appropriate. Therefore, for the active stress formu-
lation, a better approach would be to use the non-symmetric dispersion model.

2.5 Growth and remodelling

Heart disease is the leading killer worldwide, responsible for about 40% of all deaths each
year [137]. The incidence of heart failure, such as after a heart attack, has remained persistently
high due to the maladaptive G&R of heart. There are more heart disease survivors, suffering
a subsequent rise in heart failure. Myocardium responds to internal or external environmental
changes, such as mechanical loading conditions, by adaptably altering its structure or function.
These adaption processes are generally referred to as G&R.

Growth indicates an increase in the number (via proliferation, hyperplasia, or migration) or
size (via hypertrophy) of cells, leading to an increase in mass. The mass density or material
properties may or may not be changed during the growth process. Remodelling demonstrates
structural changes by reorganizing existing components (for example, changing myofibre or
collagen fibre orientations) or by synthesizing new components with different structures. The
remodelling process also may or may not change the mass density, whilst it does change the
material properties such as stiffness [138].

G&R can further be classified as adaptive and maladaptive categories. The former is that
heart is still able to maintain normal cardiac functions after G&R, which is a beneficial compen-
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satory mechanism and usually occurs at an early stage of heart diseases. Maladaptive G&R due
to persistent pathological stimuli gradually makes the heart pump function into a more severe
and non-reversible diseased state. For example, when the heart is subjected to chronic overload
conditions, ventricular dysfunction occurs after initial compensatory hypertrophy failing, finally
resulting in heart failure. It means that the heart is unable to pump sufficient blood to meet
body’s need.

There are two typical types of pathological overloads: pressure overload and volume over-
load, as the sketch shown in Fig. 2.9. As for the former, common causes are aortic stenosis
or systemic hypertension, which force LV to overcome more resistance when it pumps blood
into the aorta or normalises the systemic circulation. Under normal heart rate, sufficient stroke
volume (SV) is maintained by higher LV contractile force that results higher systolic wall stress.
This high wall stress in systole has been considered to be one mechanical clue to trigger G&R
in pressure overload condition. For example, Grossman et al. [139] found the wall thickening in
the LV with increased systolic tension, usually denoted as concentric growth. In volume over-
load, LV may experience a dramatic pressure increase in diastolic filling, such as due to mitral
valve regurgitant [140]. Excessive blood in LV results further excessive stretch of myocytes as
the wall becomes thinner, which triggers myocyte slippage and elongation of myofibres, hence
stretch of fibre may be one mechanical clue to estimate eccentric G&R of LV under volume
overload.

Figure 2.9: Schematic description of G&R of heart. From the cross section view as cut from the
black dash line on heart, normal heart respectively proceeds concentric growth associated with
wall thickening in response to pressure overload and eccentric growth associated with ventricular
dilation in response to volume overload.

The current prevalent theories to elaborate G&R in soft tissue are volumetric growth the-
ory [141] and constrained mixture theory [138]. Volumetric growth theory is a phenomenolog-
ical approach that treats myocardium as a continuum mixture and does not account for G&R
processes of its constituents. In contrast, constrained mixture theory aims to explain the G&R
of individual constituents, which allows different growth laws for different constituents.
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2.5.1 The volumetric growth theory

Kinematic growth theory is commonly used to study G&R in soft tissue. Rodriguez et al. [10]
firstly proposed the volumetric growth by multiplicatively decomposing the total deformation
gradient tensor F, such as F= Fe Fg, which is originally based on the concept of plasticity. Here,
Fg is an inelastic growth tensor that describes changes in shape of a material point. Derived
Fe is an elastic tensor to quantify stress response. As shown in Fig. 2.10, F, including G&R
and external loads, converts the LV from a compatible configuration B0 to another compatible
configuration B2. After decomposition, growth tensor (Fg) leads the LV into a new incompatible
and stress-free intermediate configuration B1. Subsequently, elastic deformation gradient tensor
Fe assembles all grown and original constituents into the final compatible state B2, in which
residual stress may be generated.

Figure 2.10: Schematic description of the volumetric growth theory, in which total deformation
gradient tensor F is decomposed into Fg and Fe. Firstly, LV model grows into new incompatible
and stress-free intermediate configuration B1 by growth tensor Fg, in which myocardium grows
along myocyte (myofibre) θf and cross myocyte θs directions. Then, all tissues emerged into
new compatible LV model in B2 by elastic deformation tensor Fe.

The evolution of growth tensor is usually formulated according to the layered myofibre ar-
chitecture, such as

Fg = θff0⊗ f0 +θss0⊗ s0 +θnn0⊗n0, (2.21)

where θf, θs and θn are respective growth ratios along each principal axial orientation. θf > 1.0,
θs = θn = 1.0 is the so-called fibre growth in eccentric growth, θs > 1.0, θf = θn = 1.0 is the
so-called cross-fibre growth in concentric growth, and θf = θs = θn > 1.0 is the isotropic volume
growth. These growth ratios are determined by specific growth laws that defines the relationships
between growth ratios and stimuli cues, such as through a set of ordinary differential equations
for fibre growth driven by stretch or cross-fibre growth driven by stress [141].
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The elastic stress of the grown tissue is calculated only with respect to the elastic tensor Fe,
that is

σp = J−1
F F

∂W (F)
∂F

= J−1
Fe

Fe
∂W (Fe)

∂Fe
, (2.22)

in which J−1
F = det(F) and J−1

Fe
= det(Fe).

The volumetric growth framework was firstly applied into cardiac mechanics by Kroon et
al. [23], who used the isotropic growth tensor to study the impact of two different reference
configurations: fixed reference throughout the entire growth process and updated reference after
each growth increment. They found that the growth stimulus significantly depended on the
types of the reference configuration, therefore, choosing the reference configuration is critical to
simulate growth.

Later, Göktepe et al. [141] investigated the eccentric growth induced by serial sarcomere de-
position and the concentric growth by parallel sarcomere deposition. They provided anisotropic
growth tensors and growth multipliers were estimated by a set of ordinary differential equa-
tions. Phenomenological thresholds of fibre stretch and stress were used to trigger eccentric and
concentric growth, respectively.

Recently, Lee et al. [142] developed a framework of volumetric strain-driven finite growth to
predict reverse growth in response to fibre stretch below the threshold of a critical fibre stretch.
The model was embedded in an electromechanical model of heart [143] that included active
contraction of myocardium to exam myocardial infarction. They also adopted the framework of
updated reference in FE computation.

Kerckhoffs et al. [140] studied a more complex growth law where growth multipliers in
orthotropic growth tensors are expressed in sigmoidal functions with respect to stimulus for
fibre axial or radial growth. The model not only was able to reproduce primary physiological
responses under conditions of pressure overload and volume overload but also showed wall
thickening in pressure overload induced by a strain-based stimulus.

In contrast to existing single or biventricular models, Genet et al. [144] applied volumetric
growth to a four-chamber human heart model to explore its availability in describing or predict-
ing the patient-specific heart failure progression, which is achieved by using the Living Heart
Project developed by ABAQUS company. In addition, lumped model to briefly describe cir-
culation was attached to a time-varying elastance model, where Witzenburg and Holmes [145]
introduced growth laws from Kerckhoffs et al. [140]. The model was implemented in MAT-
LAB with high computing efficiency and was able to predict both the time course and different
patterns of G&R in pressure overload, volume overload and even post-infarction remodelling.

Recently, based on experimental data of porcine heart, Peirlinck et al. [146] coupled machine
learning and the multiscale data from a porcine heart model with volume overload. They have
claimed the approach will contribute to a new generation of multiscale growth model that can
explain the interplay of different scale contributors to heart failure.

In summary, volumetric growth theory is an elegant approach to describe G&R, with the
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advantages of simple concept and convenient computational implementation. However, there
are limitations. For example, the theory was initially applied in a stress-free configuration that
is impossible for the living tissue. The fact that added or lost mass of different constituents is
assembled into a common one compatible geometry causes stress inside the body. Additionally,
a single phenomenological evolution law of Fg cannot distinguish the different G&R patterns of
multiple constituents in soft tissue. Moreover, the constant density of tissue is always assumed
during both elastic deformation and G&R. Therefore, although the volumetric growth theory
can characterise overall G&R progression, important information such as different biological
constituents’ adaptation and response are missed.

2.5.2 Constrained mixture theory

Mixture theory

Here, we introduce the basic idea of mixture theory, involving the mass density, displacement
and stress etc. of a body and its constituents. In a homogenised concept, position x in the current
configuration Bt of a body is the comprehensive results of multiple constituents simultaneously.
In other words, each constituent shares the same current position as the body, that is

x = x̂i(Xi, t), i = 1, 2, . . . N (no sum on i), (2.23)

where Xi is the position of constituent i in the reference configuration, and N is the number of
constituents in the body. Hence, the displacement ui and velocity vi of each constituent can be
defined as

ui = x̂i−Xi, and vi =
∂ x̂i

∂ t
. (2.24)

In continuum mechanics, mass and linear momentum should keep conserved. Energy is ig-
nored here because of G&R is assumed as a nearly isothermal process and underlying metabolism
is not considered [138]. The governing equations of mass balance for constituents i (left) and
for the mixture body (right) are

∂ρ i

∂ t
+div

(
ρ

ivi)= mi, and
∂ρ

∂ t
+div(ρv) = ∑mi, (2.25)

where ρ i is the mass density of constituent i, mi is its mass production per time per volume,
conserved mass can be achieved by changing the mass density of each constituent with the
constraint ∑mi = 0. ρ and v are variables of the mixture and are defined by

ρ =
N

∑
i=1

ρ
i, and v =

1
ρ

N

∑
i=1

ρ
ivi. (2.26)
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For constituent i, governing equations of linear momentum balance requires

div
(
σ

i)+ρ
ibi +pi +mivi = ρ

iai, (2.27)

where σ i is the homogenised Cauchy stress, bi is the body force, pi is a momentum exchange
between constituents such as drag induced by solid particles moving through a fluid or fluid
moving through a porous solid, mivi is a momentum from the mass production, and ai is the
acceleration. The balances of momentum exchanges and mass productions between the con-
stituents are maintained by the constraint ∑

N
i=1
(
pi +mivi) = 0. Hence, the linear momentum

balance equation for the constrained mixture is

N

∑
i=1

div
(
σ

i)+ρ
ibi +pi +mivi =

N

∑
i=1

ρ
iai, ⇒ div(σ)+ρb = ρa, (2.28)

where the quantities of the mixture body typically can be defined as

σ =
N

∑
i=1

σ
i, b =

1
ρ

N

∑
i=1

ρ
ibi, and a =

1
ρ

N

∑
i=1

ρ
iai. (2.29)

There are more constraints relative to the deformations of body. In the sub-tissue level,
we can assume each constituent having incompressibility. In tissue level, the mixture body is
also incompressible and its volume is the sum of volumes of constituents. Identification of
appropriate constraints for G&R of constituents or mixture body will be a challenging task.

As growing and remodelling, the changes in stiffness of the tissue indicates the evolution of
microstructure, which requires updated reference configuration to derived current stresses [138].
In other words, reference configurations of constituents and mixture body evolve with G&R,
and their deformations are defined with respect to respective current configurations. In fact, the
traction of the evolved configuration of each constituent is a complicated process, particularly
when residuals stress makes the unloading body in a stressed state.

Homogenised constrained mixture theory

Constrained mixture theory was proposed by Humphrey and Rajagopal et al. [138] to explain
the deposition and degradation of individual constituents within a tissue. As shown in Fig. 2.11,
if deformation gradient tensors of the whole tissue from the reference configuration at time t = 0
to the configuration at time s and τ are F(s) and F(τ), respectively, then F(s) can be decomposed
into two parts: F(τ) that contains all growth and part of remodelling information and Fτ(s) =

F(s)F−1(τ) that describes the rest remodelling and all external loading deformations.
An important hypothesis is that a grown and remodelled constituent i in κ(τ) is treated

as the deposition from the stress-free incompatible configuration κ i
n(τ) via a pre-strain tensor
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Figure 2.11: Schematic description of homogenised constrained mixture growth theory. The
configuration before growth κ(0) is assumed to be stress-free, κ(s) is current configuration after
G&R, and κ(τ) is a intermediate configuration with time τ ∈ (0, s). Under total deformation
gradient tensor F(s), growth and part remodelling occurs from κ(0) to κ(τ) via F(τ) and the
other part remodelling and external loading occurs from κ(τ) to κ(s) via Fτ(s). A grown and
remodelled constituent i in κ(τ) is treated as the deposition in κ i

n(τ) via a pre-strain tensor
Fi

pre(τ) from fictitious incompatible stress-free intermediate configuration κ
′
(τ) to κ(τ). Then

all deposited constituents perform remodelling and loading deformations. Fi
gr(0) is the fictitious

inelastic G&R tensor for each constituent from κ(0) to κ
′
(τ), and Fi(τ)

e (s) represents its elastic
deformation tensor from κ

′
(τ) to κ(s).

Fi
pre(τ) from fictitious incompatible stress-free intermediate configuration κ

′
(τ) to κ(τ). Then,

all deposited constituents perform remodelling and loading deformations together. Therefore,
the deformation of each constituent can be demonstrated by the fictitious path κ(0)→ κ

′
(τ)→

κ(s), such as
F(s) = Fi(τ)

e (s)Fi(0)
gr (τ), (2.30)

where Fi(0)
gr (τ) denotes the inelastic G&R process from the compatible stress-free κ(0) to the

incompatible stress-free κ
′
(τ). Hence, the individual elastic deformation gradient tensor for

constituent i from κ
′
(τ) to compatible configuration at time s is

Fi(τ)
e (s) = F(s)F−1(τ)Fi

pre(τ). (2.31)

The homogenised constrained mixture model [147] aims to define an effective, temporally
homogenised elastic deformation gradient Fi

e and inelastic G&R deformation gradient Fi
gr for

every constituent during G&R process, thus, Eq. (2.30) can be rewritten as

F = Fi
eFi

rF
i
g, and Fi

gr = Fi
rF

i
g, (2.32)

35



Chapter 2. Literature Review

where F is total deformation gradient tensor of the whole mixture body, Fi
g, Fi

r, and Fi
e are

respective inelastic growth tensor, inelastic remodelling tensor, and elastic deformation tensor
of constituent i, respectively.

Constrained mixture model was often used to study vascular G&R [24] and barely in cardiac
problems. There are two categories of hybrid approaches based on constrained mixture model:
volumetric constrained mixture model and homogenised constrained mixture model. Alford et
al. [24] coupled kinematic growth theory to constrained mixture theory to model G&R of aorta.
3D FE simulations were performed by Wan et al. [148] who used pre-determined distribution
functions to calculate local homeostatic pre-stretch in a thick-walled aorta model. In the concept
of the homogenised constrained mixture, Braeu et al. [149] designed tensional homeostasis as
stimulus and constant density in studying G&R of cylindrical artery model.

2.6 Myocardium infarction

Myocardium infarction (MI) is a common heart attack disease and has high mortality worldwide,
such as the proportion of in-hospital deaths about 8.1% in UK [150]. Even though more patients
survive after MI, the incidence of post-MI heart failure continue to rise, which are caused by
maladaptive G&R of heart. MI indicates the damage of heart muscle, usually death of myocytes
in an area of the myocardium due to the decreased or stopped supply of oxygen, causing the
dysfunction of heart, as shown in Fig. 2.12. Occlusion or pathology of coronary circulation is
the primary cause of MI.

Figure 2.12: A myocardial infarction sketch from https://en.wikipedia.org/wiki/
Myocardial_infarction

The healing after acute MI involves four main phases with respect to time, acute ischemia
occurs the first minutes to hours after MI, necrotic or dying of myocardium occurs during the
first a few days, MI region becomes fibrosis after weeks or months, and final remodelling phase
of the whole heart begins after months. The remodelling of heart after MI is a comprehensive
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process regulated by mechanical, neuro-hormonal and genetic factors [151], in which the heart
may be sequentially subjected to eccentric dilation, thinning of infarct zone, hypertrophy of
healthy region, and fibrosis infarct muscle, causing the risk of heart failure or rupture.

2.6.1 Experimental measurements of MI

The G&R of collagen fibre in MI scar have gradually become a fascinating study topic. Current
imaging technologies, such as late gadolinium enhanced MRI, are able to precisely determine MI
size and location in a heart, commonly in an anterior location. MI size is negatively correlated
with cardiac contractile capability. For instance, a larger anterior MI can lead to significant LV
dilation and even heart failure. Myocytes in the MI region are degraded and replaced by grown
collagen fibres, whose remodelling structure varies with MI position [152].

Collagen fibre structure in MI region

After MI, the dead myocytes are gradually replaced by newly grown collagen fibres, resulting
in a fibrous scar. The increased content of collagen has been measured [153,154]. However, the
studies about collagen fibre structure of mean orientation in the MI region have not yet reached
a consistent conclusion, which may be associated with measurement methods, experimental
species, and observation time.

For instance, early measurement on dog LV found obliquely alighted mean collagen fibre
directions in MI scar, in which shifted angle with respect to circumferential direction was
−14.0± 3.5◦ at sub-epicardium, −12.7± 2.1◦ at sub-endocardium, and −1.4± 0.4◦ at mid-
myocardium [153]. Ultrasonic backscatter method was used to measure the transmural shift of
collagen fibre orientation in healthy and MI regions of human heart, and found rotated mean
collagen fibre orientation in the MI region (14.6± 1.5◦) is 59% bigger than that in the healthy
region (9.2±0.7◦) [155]. In the rat hearts, MI near the equator of the LV was stretched mainly
along the circumferential direction and remodelling process orientated grown collagen fibres
circumferentially, however, randomly alighted collagen occurred when MI located at the apex
where stretch of MI scar was in both the circumferential and longitudinal directions [152].

In contrast, DT-MRI for rat heart at four weeks after MI demonstrated that transmural
courses of myofibre orientation angles in the MI region were similar to those in remote healthy
zone, and newly grown collagen fibres in the MI region might maintain the original orientation
of myofibres they replaced [156].

Observed remodelling process

Remodelling process is the compensatory procedure in response to the loss of LV normal pump-
ing function from about 2-5 days after acute MI. MI zone undergoes regional dilation and thin-
ning, although MI perfusion may cause additional myocardial necrosis. The remote healthy
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region activates compensatory expansion to decrease LV diastolic pressure and increase cardiac
blood output, however, a continuous LV expansion can cause LV dysfunction. If the LV func-
tions return to normal conditions, such as enough stroke volume under healthy heart rate, by
the remodelling process, then this is so-called compensatory G&R, otherwise decompensatory
G&R [157].

For instance, in the measurements of infarct collagen and LV topography in 132 dogs with
coronary artery ligation [158], LV cavity dilation emerged in the first 7 days, and then the infarct
shrank and thinned as well as collagen deposited up to 6 weeks. During the remodelling process
after MI, the LV regional shape distortion was mainly induced by thinned infarcted segment and
collagen deposition.

Mckay et al. [159] compared LV remodelling process of 30 patients at the first acute MI and
2 weeks late by monitoring changes of geometry and haemodynamic. Their results proved that
infracted size determined the magnitude of the remodelling process, and the remodelling could
reduce LV diastolic pressure and increase cardiac blood output at the expense of a significant
enlarged LV cavity.

Remodelling process after MI reperfusion were tracked in 66 patients at baseline (1 week),
early stage (4 months), and late stage (14 months), and mean infarct size, evaluated by late
gadolinium enhanced cardiac magnetic resonance, were 25± 17 g, 17± 12 g, and 15± 11 g,
respectively [160]. This fact shows that the remodelling process is continuous and substantially
reduces infarct size at the early state.

The variations of main representative mechanical indexes appear in sequence. Loss of con-
traction of MI segment causes both systolic and diastolic dysfunction, with decreased EF, in-
creased LV end-systolic volume (ESV), end-diastolic volume (EDV) and end-diastolic pressure
(EDP). For instance, the analysis of LV EDP of 744 acute MI patients over three years after MI
reported that the mean LV EDP is 23±9 mmHg and 75% of patients’ LV EDP was higher than
15 mmHg [161]. Then, peripheral mechanisms are activated, such as adjusting the sympathetic
nervous system and circulating catecholamine, to maintain a normal arterial pressure and blood
condition, which leads to increased end-systolic pressure (ESP) and EDP with increased wall
stresses, eventually progressive dilation and thinning. If the mature MI scar fails to resist the ele-
vated wall stress, LV rupture may occur. In the MI segment, myocytes’ degradation accounts for
most wall thinning, and myocyte stretch and reduced intercellular space lead to further thinning.

2.6.2 Mathematical modelling of MI

Passive material properties of infarcted and remote healthy myocardium are usually described
by phenomenological constitutive laws, such as strain-based Fung-type SEF or invariant-based
Holzapfel-Ogden SEF [12]. Tissue in the MI region is much stiffer than that in the remote
healthy region, while the border zone is the transition zone [143]. The MI zone is usually
modelled as a pure passive soft tissue without contractility, the border zone has diminished
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contractility depending on the distance to the MI zone [46], and normal contractile capability is
in remote healthy and border regions.

Wenk et al. [162] established a treatment model for infarcted sheep LV by injecting calcium
hydroxyapatite-based tissue filler. Based on 3D ultrasound images at the end-diastole and the
end-systole, the passive parameters and maximum active tension were inversely estimated. Their
results showed that injection of filler increased the matrix stiffness in the MI region and reduced
both diastolic and systolic wall stress in the LV, especially in the MI region.

Based on MRI, Fomovsky et al. [163] used a FE model of a dog LV with a large anteroapical
MI to simulate cardiac dynamics and investigate the effect of collagen fibre orientation in the
MI zone on LV pumping function. They reported that the best stroke volume could be achieved
when the MI zone had high longitudinal stiffness and low circumferential stiffness. Their study
showed the potential for therapies to improve LV pumping functions by modifying collagen fibre
structure in the MI zone.

Recent studies [2,164] estimated the prognosis of MI according to patient-specific LV mod-
els constructed by MRI at the end-diastole and the end-systole. The stiffness of the myocardium
in the MI zone was 50 times of that in the remote healthy zone, and the active tension decreased
from the remote healthy region to zero in the MI zone.

Growth and remodelling models post-MI

The living tissue can grow or remodel in response to an altered environment, such as changes
in mass or biomechanical property. In myocardium, myofibre and collagen fibre undergo G&R
when their surrounding environments vary. Moreover, G&R of myocardium plays a critical role
in MI healing and the recovery of LV pump function post-MI. Thus, mathematical modelling
of G&R contributes to understanding the underlying mechanism of LV pump function adaption
post-MI.

Rouillard et al. [165] proposed an agent-based model for the G&R of collagen fibre in the
MI zone during the healing process. Their results showed that the level of anisotropy of colla-
gen fibre in scar could be reduced when fibroblasts aligned themselves in the orientation of the
greatest strain/stretch. Lee et al. [143] developed an integrated electromechanical-growth heart
model to predict G&R after MI, in which the growth of myocardium was modelled using the
classical volumetric growth approach. The updated reference framework was further used but
without considering the growth-induced residual stress in the cardiac G&R process, in which
growth or shrinkage depended on the elastic stretch of fibre. The coupled cardiac electrome-
chanics model to produce the potential of the entire cardiac cycle was solved by a system of
ordinary differential equations and partial differential equations. It also explained the separation
of the timescale between growth and elastic deformation. These models have shown significant
importance in understanding the G&R process after MI and assessing treatment therapies.
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Constitutive laws and fibre structures of
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Chapter 3

Constitutive law: reduction of the general
Holzapfel–Ogden model based on ex-vivo
experiments

3.1 Introduction

Cardiac diseases remain a major public health burden, especially the adverse remodelling of
cardiac function after acute myocardial infarction. Studies have demonstrated that stress/strain
in myocardium can have great effects on pathological processes such as hypertrophy, and my-
ocardial infarction [38–40]. Accurate prediction of myocardial stress relies on the choice of
constitutive laws. Determining the constitutive laws and their parameters from limited experi-
mental data, however, remains a great challenge for the cardiac modelling community.

In general, biological tissue, including myocardium, mainly consists of proteins such as
collagen, elastin and ground substance. Published in vitro/ex vivo experimental tests of the me-
chanical behaviour of human myocardium [4, 55, 56] have shown strong anisotropy and trans-
mural variations. These results showed it is a nonlinear, anisotropic (orthotropic), viscoelastic
and history-dependent soft biological material.

Over the years, a number of models have been developed to describe myocardial mechanical
properties, ranging from linear elastic to hyper-elastic, from isotropic to anisotropic, and from
phenomenological to micro-structurally-based constitutive laws [11]. Nowadays, it is a common
practice to characterize myocardium as an anisotropic, hyper-elastic material. Based on the
simple shear data from [55], Holzapfel and Ogden proposed a simplified formulation (HO2009)
derived from a more general strain-invariants based material model (the general HO model) [11].
The HO2009 model and its variation have been widely used in the cardiac modelling community
[2, 70]. However, there has been no analysis to show if it has both adequate descriptive and
predictive capabilities for other tissue tests of myocardium. Indeed, such an analysis is important
for any constitutive laws for clinically useful computational simulations.
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In this chapter, our aim is to reduce the general HO model to maintain its mechanical in-
tegrity whilst achieve minimal computational cost. A competent constitutive law should have
descriptive and predictive capabilities for different tissue tests. By competent, we mean the
model has least terms but is still able to describe and predict experimental data. We also intend
to find the optimal combination of experiments for each species of tissues that uses minimal
mechanical tests.

This chapter first considers the descriptive capabilities of the general and specific HO models
proposed in [11], using Dokos’ simple shear data of porcine myocardium [55], Sommer’s biaxial
and simple shear data of human myocardium [4], and Ahmad’s uniaxial, biaxial and simple shear
data of neonatal porcine myocardium [9]. Secondly, the Akaike information criterion (AIC)
[41,166,167] is used to analyze the goodness-of-fit of the general HO model to the experimental
data, with AIC values determined when excluding different strain invariants. Based on the AIC
analysis, reduced HO models for different experimental studies are then proposed by excluding
those strain invariants with little contribution to the overall goodness-of-fit. Finally, we use
predictive capability of the reduced HO models to find the optimal combination of experiments
for each species of tissues that uses the least mechanical tests.

We propose three different reduced HO models based on the three sets of experimental data,
and they all retain similar descriptive and predicative capability as the general HO model. Our
results show that one shear responses and one biaxial stretch can sufficiently describe the human
myocardial mechanical properties in Sommer’s experiments [4]. Our study shows that single-
state tests (i.e., simple shear or stretching only) are insufficient to determine the myocardium
responses. Finally, it is also important to consider the transmural fibre rotation within the my-
ocardial samples, that is excluding un-stretched fibres using the ‘effective fibre ratio’, which
depends on the sample size, shape, local myofibre architecture, and loading conditions. We con-
clude that a competent myocardium material model can be obtained from the general HO model
using AIC analysis and calibrated from a suitable combination of tissue tests. In particular, the
reduced HO model based on biaxial and simple shear data of human myocardium [4] shall be
used in subsequent human heart studies, which has less unknown parameters than the general
HO model, and is informed by the human myocardial experiments.

This chapter is based on the published paper Guan, D., Ahmad, F., Theobald, P., Soe, S.,

Luo, X. and Gao, H., 2019. On the AIC-based model reduction for the general Holzapfel–Ogden

myocardial constitutive law. Biomechanics and modeling in mechanobiology, 18(4), pp.1213-

1232.
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3.2 Method

3.2.1 The general HO model

To characterize the mechanical behaviours of myocardium, the general HO strain energy func-
tion proposed by Holzapfel and Ogden [11] is employed in this study, which is

Ψ =
a

2b
exp[b(I1−3)]+ ∑

i=f,s,n

ai

2bi
{exp[bi(max(I4i,1)−1)2]−1}

+ ∑
i j=fs,fn,sn

ai j

2bi j
[exp(bi jI2

8i j)−1],
(3.1)

where a,b,ai,bi,ai j,bi j are the 14 material constants, I1 = trace(FTF), representing the overall
squared stretch, I4f, I4s and I4n are squared stretches along each direction,

I4f = f0 · (FTFf0), I4s = s0 · (FTFs0), I4n = n0 · (FTFn0),

in which f0,s0,n0 are the initial fibre, sheet and normal directions. The max() in (Eq. (3.1)) will
ensure the collagen fibres can only bear the load when stretched but not in compression. I8fs,
I8fn and I8sn are invariants representing the coupling between two different directions,

I8fs = f0 · (FTFs0), I8fn = f0 · (FTFn0), I8sn = s0 · (FTFn0).

3.2.2 Selected myocardial experiments

In this study, the experimental data are taken from three ex vivo myocardial biomechanical
studies: [55] investigating porcine myocardium; [4]investigating human myocardium; and, [9]
investigating neonatal porcine myocardium. These are briefly summarized below. For details
please refer to the original papers.

• Dokos et al. [55] published shear data of passive myocardium from porcine hearts with
six different shear modes, shown in Fig. 3.1 (a) where (i j) is used to refer to shear in the
j direction within the i j plane, where i 6= j ∈ {f, s, n}. Myocardial samples were cut from
adjacent regions in the left lateral ventricular mid-wall with a size of ∼ 3×3×3 mm.

• Sommer et al. [4] performed similar six shear-mode experiments, with samples from hu-
man hearts (size: ∼ 4× 4× 4 mm), They also performed biaxial testing with different
stretch ratio (1:1, 1:0.75, 1:0.5, 0.75:1, 0.5:1) along the mean fibre direction (MFD) and
the cross-fibre direction (CFD) (Fig 3.1 (b)). MFD is the average angle of the dominant
orientation of collagen fibres on the upper and lower surfaces of each sample [57], with
CFD perpendicular to MFD. Square specimens with dimensions ∼ 25× 25× 2.3 mm
were used in biaxial tests, with tension applied along the MFD and CFD. They recorded
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the collagen fibre rotation within samples, which was 14.8± 6.9◦ per mm depth in the
transmural direction.

• Ahmad et al. [9] performed uniaxial (Fig. 3.1 (c)), biaxial and simple shear experiments
on myocardial samples from neonatal porcine left and right ventricular free walls. Sample
dimensions were ∼ 15×5×3 mm for uniaxial tests, ∼ 15×15×3 mm for biaxial tests
and∼ 3×3×3 mm for simple shear tests. Shearing was only performed in the sheet–fibre
and sheet–normal planes, whilst the MFD was determined based on the external surface
texture and not the average angle of the dominant orientation of collagen fibres as in [57].

(a) (b) (c)

(d) (e) (f)

Figure 3.1: (a) A sketch of all six possible shear modes, f0, s0 and n0 denote the fibre, sheet and
normal direction, respectively. (i j) refers to shear in the j direction within the i j plane, where
i 6= j ∈ {f, s, n}. (b) A sketch of the sample with fibres (red dash lines), which is stretched
along the two orthogonal directions (MFD and CFD) in fibre-normal plane during a biaxial test.
(c) Sketches of uniaxial tension tests along the MFD and CFD, respectively. f1 is the loading
force along the MFD, and f2 is along the CFD. L is the initial length of specimen, and λ1 and
λ2 are stretch ratios. (d) The recorded image in a biaxial tensile specimen in [9] . The four
white markers in the centre of the experimental sample in (d) are also shown in (e), in which
the solid rectangle represents the initial shape, and the deformed shape is shown using dashed
lines. (f) Transmural variation of f0 (red dash lines) and n0 (green dot lines) along the thickness
of myocardium. e1, e2, e3 in Cartesian coordinate system represent the MFD, CFD and sheet
(transmural) directions, respectively. Ai is the cross-sectional area perpendicular to ei axis.

In the following, we refer these three sets of experiments as Dokos’ data, Sommer’s data and
Ahmad’s data. Let e1, e2, e3 in Cartesian coordinate system represent the MFD, CFD and sheet
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(transmural) directions , and assume that the test sample is incompressible (det(F) = 1 where F
is deformation gradient tensor). To make use of the experiments, it is convenient to use the first
Piola–Kirchihoff (P-K) stress P, which is related to the applied force components fi j in the tests
and Cauchy stress tensor σ as

P =

P11 P12 P13

P21 P22 P23

P31 P32 P33

=


f11
A1

f12
A2

f13
A3

f21
A1

f22
A2

f23
A3

f31
A1

f32
A2

f33
A3

 , σ = PFT, (3.2)

where Ai is the cross-sectional area perpendicular to ei axis as shown in Fig. 3.1 (f).

Uniaxial tests

For uniaxial stretch experiments along MFD, we have

F =


λ1 0 0
0 1√

λ1
0

0 0 1√
λ1

 and σ11 = λ1
f1

A1
= λ1P11, (3.3)

in which λ1 is the stretch ratio, f1 is the applied force along MFD direction, and in this case f1 =

f11, σ11 is the Cauchy stress component, and A1 is the reference cross-section area perpendicular
to MFD. Similarly, for uniaxial stretch along CFD

F =


1√
λ2

0 0

0 λ2 0
0 0 1√

λ2

 and σ22 = λ2
f2

A2
= λ2P22, (3.4)

where the applied force f2 = f22. The two pairs of unloading faces are stress-free.

Biaxial tests

For the shear-free biaxial test along MFD and CFD, since A1 = A2 = A, then

F =

λ1 0 0
0 λ2 0
0 0 1

λ1 λ2

 and σ11 = λ1
f1

A
= λ1P11, σ22 = λ2

f2

A
= λ2P22. (3.5)

Again, in this case, we have f1 = f11, f2 = f22. The unloading top and bottom faces are stress-
free.
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If shear exists in the biaxial test as in Fig. 3.1 (e), γ12 6= 0andγ21 6= 0, then

F =

λ1 γ12 0
γ21 λ2 0
0 0 1

λ1 λ2−γ12 γ21

 and σ11 = λ1 P11 + γ12 P12, σ22 = λ2 P22 + γ21 P21. (3.6)

Here, we follow the similar assumption from Sommer’s biaxial study [57], in which the sum
of forces along the directions e1 and e2 are defined as

f1 = f11 + f12, and f2 = f21 + f22, (3.7)

in which f1 and f2 are the measured forces, f11, f12, f21 and f22 are unknown forces which are
the equivalent forces being imposed to the region-of-interest (red color) as shown in Fig. 3.2.
Note that for the bi-axial test, the marked region in Fig. 3.2 is assumed to deform homoge-
neously. Although conventional biaxial soft tissue tests consider shear stress to be zero [78],
given that Sommer’s experimental data is used in this chapter, thus the same assumption about
f1 and f2 is adopted here (Eq. (3.7)). We remark that future studies shall explore how to measure
shear and normal forces separately.

Figure 3.2: Schematic illustration of normal and shear forces for the marked region in a bi-axial
test sample. The stress and strain fields in the central region (the red colour) are general con-
sidered homogeneous, while the tissue outside of the region-of-interest also stretch the central
region, thus the measured force along e1 is f11+ f12 and the measured force along e2 is f21+ f22.

According to the maximum shear amounts in Ahmad’s and Sommer’s data, we further as-
sume the shear in Eq. (3.6) increases linearly with stretch, that is

γ12 = k1
λ1−1

λ max
1 −1

, and γ21 = k2
λ2−1

λ max
2 −1

, (3.8)

where k1 and k2 are the maximum values of γ12 and γ21, λ max
1 and λ max

2 are maximum stretches
along the two loading directions in the experiments.
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Finally, the relationship between the first P-K stress components and the applied forces are

f1

A
=

f11

A
+

f12

A
= P11 +P12 = (σF−T)11 +(σF−T)12,

f2

A
=

f21

A
+

f22

A
= P21 +P22 = (σF−T)21 +(σF−T)22.

(3.9)

Using Eq. (3.9), we can predict the applied forces using a chosen SEF and the prescribed
deformation gradient tensor which consists of stretches (λ1, λ2) and shears (γ12, γ21), then by
matching the predicted forces from a chosen SEF to the measured forces f1 and f2, a set of
material parameters can be obtained, see details in section 3.2.4.

Simple shear tests

For the simple shear tests, Fig. 3.1 (a), we have

(ns): F =

1 0 0
0 1 0
0 γ32 1

 (fn): F =

 1 0 0
γ21 1 0
0 0 1

 (sf): F =

1 0 γ13

0 1 0
0 0 1



(nf): F =

1 γ12 0
0 1 0
0 0 1

 (fs): F =

 1 0 0
0 1 0

γ31 0 1

 (sn): F =

1 0 0
0 1 γ23

0 0 1

 (3.10)

and in this case, the stress components are determined from

σi j = Pi j =
fi j

A
, i 6= j ∈ {1,2,3}. (3.11)

For each loading mode in Fig. 3.1 (a), the unloading faces are stress-free.

3.2.3 Effective fibre contribution

The rotation of collagen fibres from epicardium to endocardium plays a significant role in the
myocardial mechanical response. Thus, it is necessary to consider fibre rotation in tested sam-
ples when fitting constitutive laws to experimental data. We further assume collagen fibres
(along with myocytes) only lie in the f0−n0 plane. Considering a myocardial sample with lin-
early rotated fibres from θ1 to θ2 as shown in Fig. 3.1 (f), the local fibre angle related to the
MFD with a depth of h is

θ(h) =
θ2−θ1

H0
h+θ1, (3.12)

where H0 is the total thickness of the sample, and the local f0–n0–s0 system is

f0 = (cosθ ,sinθ ,0), n0 = (−sinθ ,cosθ ,0) and s0 = (0,0,1).
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Figure 3.3: Schematic illustration of the effective area (blue) when the fibre direction is θ under
uniaxial loading in the MFD test. The collagen fibres (red dot line) within the region enclosed
by the two blue dashed lines are defined as effective fibres that are stretched both sides. The
effective fibre ratio is defined by rectangle area dividing blue effective area.

Different to the 3D FE simulations, the method in this chapter is to treat a whole specimen as
a material point to reproduce the stress-train relationships in the measurements by using the SEF.
However, the above typical experiments were performed on tissue level with different loading
conditions, which involved different amounts of fibre recruitment when including fibre rotation
in the specimen. Because collagen fibres can only bear the load when stretched, to further
describe the effective fibre amount under different deformations, factors based on analysis of
deformations are coupled to the initial strain energy function (Eq. (3.1)), that is

Ψ(θ) = ψ1 +α4f(θ)ψ4 f +α4s(θ)ψ4s +α4n(θ)ψ4n +ψ8fs +ψ8fn +ψ8sn, (3.13)

in which ψi is the strain energy term associated with the invariant of Ii in Eq. (3.1). Values of
α4f(θ), α4s(θ) and α4n(θ) will depend on the experimental loading conditions and the fibre
structure of tested samples, but not for I8fs, I8fn and I8sn which are dependent on the angles be-
tween different directions. For example, in an uniaxial test along the MFD as shown in (Fig. 3.3),
only when fibres are attached to both ends (the most left and right sides), or in the shaded area in
Fig. 3.3, can they be stretched along the MFD and contribute to the stress response. If the fibres
have one or two stress-free ends (e.g. the unshaded area in Fig. 3.3), they will not be stretched
and not contribute to the stress response. α4f(θ) is defined as the ratio between the shaded blue
area and the total area of the sample as shown in Fig. 3.3, denoting the effective fibre ratio. Sim-
ilarly, collagen aligned in the CFD may contribute to the stress response depending on the size
of the sample, the fibre angle and the experimental set-up. Collagen in the sheet direction are
not stretched, which means they do not contribute to the uniaxial test; therefore, for the uniaxial
test in Fig. 3.3, the effective fibre ratios are

α4f(θ) =

{
1− L0

W0
| tan(θ)| for −θ0 < θ < θ0,

0 for others,

α4n(θ) =

{
1− L0

W0
|cot(θ)| for π

2 −θ0 < θ < π

2 or − π

2 < θ <−π

2 +θ0,

0 for others,

α4s(θ) = 0. (3.14)
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where W0 and L0 are the width and length of the tested sample in the f–n plane, and θ0 =

arctan W0
L0

. In biaxial tests, because the four sides are stretched along two directions simultane-
ously in the fibre-normal plane , thus

α4f(θ) = α4n(θ) = 1, (3.15)

and α4s(θ) = 0 because the fibre in s direction is compressed.
There are six different shear modes, fibre effective ratio will be different in every shear mode.

If assuming the fibre rotation is from −π

4 to π

4 and the specimen is a cube, then we have

(fs) : α4f(θ) =
{

1−| tan(θ)| for −π

4 < θ < π

4 α4s(θ) = α4n(θ) = 0, (3.16)

(fn) : α4f(θ) =

{
1−| tan(θ)| for 0≤ θ < π

4

0 for −π

4 < θ < 0
α4s(θ) = α4n(θ) = 0, (3.17)

(sf) : α4s(θ) =
{

1 for −π

4 ≤ θ < π

4 α4f(θ) = α4n(θ) = 0, (3.18)

(sn) : α4s(θ) =
{

1 for −π

4 ≤ θ < π

4 α4f(θ) = α4n(θ) = 0, (3.19)

(nf) : α4n(θ) =

{
0 for 0≤ θ < π

4

1−| tan(θ)| for −π

4 < θ < 0
α4f(θ) = α4s(θ) = 0, (3.20)

(ns) : α4n(θ) =
{

1−| tan(θ)| for −π

4 < θ < π

4 α4f(θ) = α4s(θ) = 0. (3.21)

The first P-K stress tensor in a myocardium layer(det(F) = 1) with a specific fibre angle θ

is
Pθ = F

∂Ψ(θ)

∂F
F−T − pF−T . (3.22)

Because the local fibres in a test sample rotate from θ1 to θ2 transmurally (as shown in Fig. 3.1
(f)), the total first P-K stress tensor for the sample is approximated as:

P =
1

θ2−θ1

∫
θ2

θ1

Pθ dθ . (3.23)

3.2.4 Parameter estimation

For Dokos et al. study, all six shear experiments are used for formulating (Eq. (3.24)). For
Sommer et al. study, we fit the SEFs using both the biaxial and simple shear tests. All three
modes of experimental data from Ahmad et al. study are combined together. Material parameters
are estimated using a non-linear least square minimization function (fmincon from MatLab,
MathWorks 2017) with upper and lower limits of the parameter values, and the involved loss
function is

L(β ) =
N

∑
n=1

[Pn,pre(β )−Pn,exp]2, (3.24)
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where β denotes the set of unknown parameters, N is the total number of data points, Pn,pre are
the model-prediction values, and Pn,exp are the experimental values. Please note P = P11 or
P = P22 in the uniaxial tests, P = P11 +P12 or P = P21 +P22 in the biaxial tests, and P = Pi j

in the simple shear tests with i 6= j ∈ {1,2,3}.
The relative and absolute difference of the area-under-the-curve between the experimental

and fitted stress-strain curves (errRelative, errAbsolute) are introduced to quantitatively describe the
goodness–of–fit,

errRelative =
∑

N
n=1 ∆λn|Pn(β )−Pexp

n |
∑

N
n=1 ∆λnPexp

n
,

errAbsolute =
N

∑
n=1

∆λn|Pi(β )−Pexp
n |,

(3.25)

in which ∆λn is the stretch increment. A value of 0 indicates a perfect fitting.

3.2.5 Reduced HO models

Some of the invariants may be excluded in the general HO model when applied to human
myocardium, whilst still achieving a good agreement with experimental data. For example,
Holzapfel and Ogden [11] reported that after dropping I4n, I8fn and I8sn from the general HO
model, they could still fit the six shear tests [55] very well; hence, they proposed an 8-parameter
HO model (HO2009),

Ψ =
a
2b

exp[b(I1−3)]+ ∑
i=f,s

ai

2bi
{exp[bi(max(I4i,1)−1)2]−1}

+
afs

2bfs
[exp(bfsI2

8fs)−1].
(3.26)

The reason for excluding I8fn and I8sn is because the two shear responses marked as (nf) and (ns)
were not distinguishable based on Dokos et al. data. There lacks, however, a study investigating
whether the general HO and HO2009 can fit all other myocardial experiments well, such as
human myocardium in [4].

Reducing the general HO model (Eq. (3.1)) is advantageous, as so many strain invariants
and material parameters prevent efficient personalized cardiac simulations. Furthermore, mul-
tiple sets of optimal material parameters from limited experimental data can lead to different
simulation results for a given boundary-value problem [168]. To derive a simplified but com-
petent SEF, the AIC analysis [169] is employed in this study to reduce the general HO model,
which is defined as

AIC = N ln [
1
N

L(β )]+2K, (3.27)

where K is the number of model parameters. AIC is typically used for model selection by
considering both the model complexity and the loss function. The best model is the one with
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the lowest AIC value. This approach has previously been used by [41] to compare five different
myocardial SEFs. Note the AIC in (Eq. (3.27)) is negative when the fitting is good. Therefore,
for any two different models and the same experimental data, the one with the more negative AIC
value suggests a better fitting. Similar AIC values represent comparable models. In this study,
we consider various reduced forms of Eq. (3.1). This allows us to drop the terms in Eq. (3.1) that
make little change in the AIC value. This way we can select the simplest SEF that fits to the test
data. To this end, we introduce the AIC ratio:

η =
AICmodel

reduced

AICmodel
general

(3.28)

where η represents the ratio of AIC values of a reduced and the general HO model for the same
experimental data. The more negative AIC, the better goodness-of-fit. The closer to 1 of η , the
more accurate approximation of the reduced HO model to the general HO model.

We aim to simplify the general HO model with a subset of strain invariants, I = {I4f, I4s,
I4n, I8fs, I8fn, I8sn}, for effectively characterizing different experimental studies. The steps for
reducing the general HO model are

• Step 1: Initialize the reduced HO model that is the same as the general HO model, and
η = 1;

• Step 2: Compute a ηi value while removing the term with one invariant Ii in the subset I
from the reduced model;

• Step 3: Repeat step2 k times (k is the length of I) when iterating through all Ii in the subset
I;

• Step 4: Compare all ηi values. If the greatest ηi is bigger than a predetermined threshold
ε , the reduced HO model is updated by dropping the term with Ii, the subset I is updated
by deleting the Ii and the computation goes to step 2. Otherwise, the computation stops.

In this study, we chose ε to be 0.95.
We further compare the modelling accuracy between the general and various reduced HO

models using a 3D FE bi-ventricular model, which is reconstructed from 3D computed tomog-
raphy (CT) data. Details of the data acquisition can be found in [9]. The 3D CT data is first
segmented using Seg3D1, then the boundary contours are exported into SolidWorks (Dassault
Systemes, MA USA) for 3D geometry reconstruction, and then meshed with ICEM (ANSYS,
Inc. PA USA). Finally, explicit Abaqus (Dassault Systemes, MA USA) is used for the FE simu-
lation. User-subroutines are implemented for different strain energy functions. Diastolic filling

1http://www.sci.utah.edu/cibc-software/seg3d.html
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in the LV (Fig. 3.4 (a)) is simulated with layered myofibre rotating from the epicardial to endo-
cardial surface (Fig. 3.4 (b)), with rotation angles measured from experimental studies using a
rule-based approach [7].

(a) (b)

Figure 3.4: (a) depicts the 3D FE bi-ventricle mesh geometry with boundary condition that
applies pressure in LV inner surface (red surface). Pressure linearly increases from 0 to 4 mmHg
in a period of 0.5s. (b) describes the myofibre distribution in the ventricle wall, which rotates
from epcardium to endocardium (60◦ to −60◦).

3.2.6 Optimal combination of experiments through predictive analysis

Likewise, we can use AIC method to determine the optimal combination of experiments using
minimum tests. For a given SEF, we firstly fit it to a subset of experimental data with Ns data
points, then use it to predict the remaining points (N−Ns). We introduce a similar AIC ratio

δ =
AICexp

subset

AICexp
all

. (3.29)

where AICexp
subset and AICext

all are computed using parameters optimised from a subset or all com-
binations of experimental data, respectively. We don’t consider cases when δ becomes negative.
Hence, δ denotes the AIC change of using different combinations of experiments for a same
model. We choose the criterion for the best combination to be the minimum group of tests
which satisfies δ ≥ 0.8. This corresponds to about 5% change of the relative error in Eq. (3.25)).
The pseudo-code for this analysis is listed in Algorithm 1.
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Algorithm 3.1 The predictive analysis for determining the optimal combination with minimal
tests

Data:
Λ: number of total tests of experimental data;
m: m combinations of the tests used for model fitting;
k: case number;
Result: δk: δ value for case k.

Initialization: k = 0
Through Λ: β

all
opt = argminβ {L(β ) = ∑

Ns
i=1 [Pi(β )−Pexp

i ]2}
and AICexp

all = N ln [ 1
N L(β all

opt)]+2K
for m=1 to Λ: do

for Λ∗ = 1 :
(

Λ

m

)
do

k = k+1;
β opt = argminβ {L(β ) = ∑

Ns
i=1 [Pi(β )−Pexp

i ]2},
AICexp

subset = N ln [ 1
N L(β opt)]+2K

δk =
AICexp

subset
AICexp

all

end
end

We considered any combinations of

1. Dokos et al. simple shear: Λ = {(fs), (fn), (sf), (sn), (nf), (ns)};

2. Sommer et al. data:
Λ = {1 : 1, 1 : 0.75, 0.75 : 1, 1 : 0.5, 0.5 : 1,(fs), (fn), (sf), (sn), (nf), (ns)};

3. Ahmad et al. data: Λ = {MFD,CFD,1 : 1(equal force), (sf), (sn)}.

3.3 Results

3.3.1 The general HO strain energy function

Fig. 3.5 (a) shows the results by fitting the general HO model to the Dokos et al. shear tests. Im-
proved agreement can be found when including the effective fibre ratio (AIC: -589.3) compared
to without (AIC: –464.7), whilst the mean relative error also decreases from 15.9% to 9.3%.
When fitting all test data from Ahmad et al. study with the effective fibre ratio, the AIC value
is reduced significantly from -338.5 to -1170.3 (shown in Figs. 3.5(b – d)), whilst the relative
errors for the uniaxial test along the MFD decrease from 36.06% to 4.25%, and from 26.76% to
6.97% for the biaxial test along the CFD.

In Ahmad et al. data, we estimate k1 = 0.18 and k2 = 0.05 using markers for the sample
angle changes (Fig. 3.1 (d,e)). In the Sommer et al.’s data [4], no information on the shear
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(a) (b)

(c) (d)

Figure 3.5: Comparison of the fitting results with and without considering fiber effective ratio
(α). (a) fitting the general HO model to Dokos’s data, (b)-(d) describe the differences in uniaxial,
biaxial and simple shear tests in Ahamd’s data.

measurements is available. However, we assume the maximum shear angles in both MFD and
CFD in Sommer et al. biaxial tests are around 6◦, i.e. k1 = k2≈ 0.1 [57,170], which is necessary
for a good fit to their experiments. As for Ahmad et al. and Sommer et al. biaxial test, the
difference of with and without shear for the same model in Fig. 3.6 indicates inclusion of the
shear component is critical when fitting biaxial experimental tests, since for fibre-reinforced
material, it is almost impossible to conduct biaxial tests without inducing shear [171].

Fig. 3.7 (a) demonstrates that both the general HO (AIC: -589.3) and HO2009 (AIC: -559.3)
models can fit Dokos et al. shear test data very well, while noticeable differences can be found
when fitting the two material models to Sommer et al. data (Figs. 3.7(b, c), where only plotting
one set (MFD:CFD=1:1) experimental data, whilst the rest four sets have similar results and are
included in Fig. 3.13. Better agreement is achieved for the general HO model (AIC: -1102.6)
than the HO2009 model (AIC: -849.5). Figs. 3.7(d, e, f) show the results when fitting the two
models to Ahmad’s data. Again, much better agreement can be found when using the general HO
model (AIC: -1170.3) compared to the HO2009 model (AIC: -423.1), in particular the HO2009
model fails to fit the shear test in (Fig. 3.7 (f)).
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(a) (b)

Figure 3.6: Comparison of the First P-K stress, including shear (red) and not including shear
(blue) using same SEF. (a) is for Sommer et al. biaxial test and a minimum shear angle of
6◦ is introduced. Below 6◦ there is no good fit, above it is not supported by Sommer et al.
experiments. (b) is for Ahmad et al. biaxial test, corresponding to Fig. 3.8 (e)

3.3.2 Reduced strain energy functions based on AIC analysis

Although the general HO model can fit the three selected experimental studies very well as
shown in Fig. 3.7, it includes seven invariants with fourteen unknown parameters, which can be
extremely challenging to obtain an unique solution when fitting to limited experimental data. A
reduced form, such as the HO2009 model, is desirable for constructing personalized models
[2, 75, 76]. However, since HO2009 is derived from fitting the Dokos et al. data only, if such a
model fails to describe other experimental data, we need to have strategies in place to derive a
better reduced model with test data available for tissues of interests.

In this work, alternative reduced SEFs are identified from the general HO model for selected
experimental studies based on the AIC analysis. Fig. 3.8 (a) reports η values when individually
excluding each invariant from the general HO model (Eq. (3.1)) and fitting to three experimental
studies. For Dokos et al. data, I4n, I8fn and I8sn have much less contribution to the agreement
compared to I4f, I4s and I8fs, because η remains more than 0.95 when dropping these terms. This
means I4n, I8fn and I8sn can be dropped from (Eq. (3.1)), and it can now be denoted as HO-D,
which actually equates to the HO2009 model (Eq. (3.26)). In other words, η is reduced by 3%
when using the HO-D model (HO2009) to replace the general HO model. Similarly, invariants
I4s, I8fn and I8sn may be excluded from the general HO model when fitting to Sommer et al.
biaxial and simple shear data. This gives us a reduced SEF for Sommer’s data (HO-S) at a 4%
of drop in η ,

Ψ =
a

2b
exp[b(I1−3)]+ ∑

i=f,n

ai

2bi
{exp[bi(max(I4i,1)−1)2]−1}

+
afs

2bfs
[exp(bfsI2

8fs)−1].
(3.30)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Comparison between descriptive ability of the general HO and the HO2009 models
for the three experimental studies. (a): Dokos’s simple shear tests; (b) and (c): Sommer’s biaxial
tension and simple shear tests; (d-f): Ahmad’s uniaxial, biaxial tension and simple shear tests.

Fig. 3.8 (c) is the fitting results of the HO-S model to various biaxial tests with different stretch
ratios, and fitting results to the shear tests in Fig. 3.8 (d). Notice, good agreement for Sommer’s
biaxial data can only be achieved when a small amount of shear is included. The reduced model
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for Ahmad et al. data in Fig. 3.8 (a), (HO-A), is similarly determined

Ψ =
a
2b

exp[b(I1−3)]+ ∑
i=f,n

ai

2bi
{exp[bi(max(I4i,1)−1)2]−1}

+ ∑
i j=fs,fn

ai j

2bi j
[exp(bi jI2

8i j)−1],
(3.31)

in which I4s, and Isn are excluded from the general HO model, and the η is only reduced by
0.015. Figs. 3.8(e - g) show the fitting results to the uniaxial stretch, biaxial stretch and simple
shear tests, respectively. Again, the HO-A model has good descriptive capability for Ahmad et
al. experiments. All estimated parameters for the HO-D (HO2009), HO-S and HO-A models
and the fitting errors with their corresponding experimental data, can be found in Tables 3.1 and
3.2.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.8: Descriptive capability of reduced HO models. (a) Change of η when dropping the
terms associated with the invariants for the different three experiments. The fitting results for
the HO-D model (b), and (c-d) the HO-S model, and (e-g) the HO-A model.
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a (kPa) b af (kPa) bf as (kPa) bs an (kPa) bn afs (kPa) bfs afn (kPa) bfn asn (kPa) bsn

Dokos et al HO-D 0.073 15.529 25.992 9.348 4.822 0.001 - - 0.178 16.740 - - -
Sommer et al HO-S 0.809 7.474 1.911 22.063 - - 0.227 34.802 0.547 5.691 - - - -
Ahmad et al HO-A 0.075 18.143 7.067 1.339 - - 2.745 4.497 1.859 4.066 3.541 8.222 - -

Table 3.1: The estimated parameters for the reduced HO models fitting to corresponding experimental studies.

Experiment Model Relative Error (%) and Absolute Error (kPa) Mean

Dokos et al
(fs) (fn) (sf) (sn) (nf) (ns)

HO-D %: 2.96 4.43 12.55 12.10 13.37 16.87 10.38
kPa: 0.12 0.14 0.14 0.11 0.08 0.10 0.12

Sommer et al

1:1 1:0.75 0.75:1 1:0.5 0.5:1 (fs) (fn) (sf) (sn) (nf) (ns)MFD CFD MFD CFD MFD CFD MFD CFD MFD CFD

HO-S %: 10.12 12.99 13.19 15.83 16.76 9.57 15.29 16.23 31.24 18.22 6.39 15.10 12.34 21.92 5.31 8.54 14.32
kPa: 0.18 0.13 0.16 0.10 0.15 0.06 0.16 0.07 0.14 0.08 0.11 0.23 0.13 0.22 0.05 0.08 0.13

Ahamd et al

Uniaxial Biaxial Simple shear
MFD CFD MFD CFD (sf) (sn)

HO-A %: 4.72 4.08 5.95 6.96 7.15 14.61 7.24
kPa: 0.02 0.01 0.04 0.04 0.001 0.005 0.02

Table 3.2: Relative and absolute errors for the reduced HO models when fitting to corresponding experimental studies.
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(a) (b) (c)

Figure 3.9: The differences of FE bi-ventricle model using the HO2009, HO-A and general
HO models for Ahmad et al. data. (a) the PV curve in diastolic filling, (b) the displacement
differences between the general HO and HO2009 models, and (c) the displacement differences
between the general HO and HO-A models.

Fig. 3.9 (a) describes the LV pressure-volume (PV) relationship from the 3D FE bi-ventricle
model using the general HO, HO2009 and HO-A models with parameters determined from Ah-
mad et al. study. Nearly identical PV relationships can be found between the general HO and
HO-A models; however, the ventricle is stiffer when using the HO2009 model even though the
parameters are determined using the same experimental data. This appears to indicate that the
HO2009 model cannot effectively characterize Ahmad et al. myocardial samples. We further
compare the displacement differences among different material models based on Ahmad et al.
data. The displacement differences between the general HO and HO-A models are nearly negli-
gible (Fig. 3.9 (c)), but large discrepancies exists for the HO2009 model (Fig. 3.9 (b)).

3.3.3 Optimal combination of experimental tests

To find the optimal combination of tissue tests, we use reduced HO models and a random initial-
ization strategy to get the average value of δ , avg(δ ), and its corresponding standard deviation,
std.

Combinations from Dokos et al. data As shown in Fig. 3.10 (a), in additional to all tests,
case 25 ((fs)+ (fn)+ (ns)), case 42 ((fs)+ (fn)+ (sf)+ (sn)), case 57 ((fs)+ (fn)+ (sf)+ (sn)+
(nf)) meet the criterion of avg(δ )≥ 0.8. Clearly, case 25 is the optimal combination.

Combinations from Sommer et al. data Fig. 3.11 (a) displays partial avg(δ ) values of
Sommer et al. AIC analysis when combining different biaxial and simple shear test data us-
ing the HO-S model, for clarity, only group 1, 2, 3, 5 and 6 are shown. The best combination
is case 20 ((1:1)+(nf)). In particular, case 562 ((1:1)+(1:0.75)+(0.75:1)+(1:0.5)+(0.5:1)) is the
combination of all biaxial data and has negative δ value, suggesting using biaxial data only
cannot predict the simple shear responses. Likewise, using simple shear tests only, case 1484
((fs)+ (fn)+ (sf)+ (sn)+ (nf)+ (ns)), is unable to predict biaxial data. Therefore, both biaxial
and simple shear test data are needed when characterizing myocardial properties. This agrees

60



Chapter 3. Constitutive law: reduction of the general Holzapfel–Ogden model based on
ex-vivo experiments

(a) (b)

Figure 3.10: δ values that are computed according to Algorithm 1, where the cases whose
average (avg) δ ≥ 0.8 are marked in red. (a) In Dokos et al. experiments, case 25 ((fs)+(fn)+(ns))
is the optimal case which has few tests while meeting the criterion, (b) shows the corresponding
fitting curves using case 25.

with the observation by Holzapfel and Ogden [11]. Figs. 3.11(c) and (d) show the stress of biax-
ial tests and simple shear tests with parameters determined from stress responses in (1:1)+(nf).

Combinations from Ahmad et al. data In Fig. 3.12, apart from all tests, none of other
combinations meet δ ≥ 0.8 in Ahmad et al. study. The fitting curves using all the tests are
already in Fig. 3.8 (e,g,f).

3.4 Discussion

This study focuses on a rational reduction of the general HO model for the myocardial tissue
responses. Three different myocardial experiments are selected, including Dokos et al. study
on porcine myocardium over a decade ago [55], Sommer et al. study on human myocardium
published several years ago [4], and the very recent experimental data from [9] on neonatal
porcine myocardium [9]. To our best knowledge, these are the most comprehensive myocar-
dial mechanical experiments. [55] is the first presenting simple shear tests to characterize the
direction-dependent myocardial mechanical property, which has driven new developments in
SEF and led to the extensive use of the HO2009 model [11]. [4] included biaxial and simple
shear tests, with both needed for characterizing an orthogonal hyperelastic material [11]. We
show, for the first time, that the general HO model is very good as describing stress responses
from different deformation types as shown in Fig. 3.7.

A number of studies have used the HO-based SEFs (mostly HO2009 model) to construct per-
sonalized biomechanical models [2, 70, 73]. The widely successful application of the HO-type
models suggests it is good for characterizing myocardial mechanical properties and provides
the natural starting-point to optimise the general HO model for specific tissue types, aiming to
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(a) (b)

(c)

Figure 3.11: In Sommer et al. experiments, Case 20 ((1:1)+(nf)) is the optimal case in (a), the
corresponding fitting curves are shown in (b) and (c).

Figure 3.12: In Ahmad et al. experiments, case ALL is the only one which satisfies the criterion.
The other cases are corresponding to certain combinations to be discussed in the text.
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(a) (b)

(c) (d)

Figure 3.13: The rest four loading protocols ((1:0.75), (0.75:1), (1:0.5) and (0.5:1)) for Sommer
et al. biaxial tests. (a) compares the First P-K stress including shear (solid lines) or not (dash
lines) as in Fig. 3.6 (a). (b) is the comparison between the general HO model and HO2009
model in Fig. 3.7 (b). (c) is fitting results using the reduced HO model (HO-S) in Fig. 3.8 (c).
(d) is the simulated results according to optimised combinations (1:1)+(nf) in Fig. 3.11 (b).

achieve the least terms and yet retaining sufficient descriptive and predictive capability. How-
ever, it has been recognized that the HO2009 model has its limitations (Fig. 3.7). This is because
their model reduction is based on Dokos et al. simple shear data only, which did not include all
responses of the myocardial tissues.

In the past several decades, efforts have been made to develop a SEF with fewest terms,
whilst accurately describing the test data and predicting the dynamics [172]. A simplified but
competent material model not only reduces computational cost, but is also easy to implement and
personalize from limited test data. In this study, the AIC analysis is employed to systematically
reduce the general HO model, whilst maintaining good descriptive and predictive capabilities.
An invariant is excluded from the general HO model if it causes only a small change in the
resultant AIC value. For instance, Fig. 3.8 (a) suggests that I4n, I8fn and I8sn could be excluded
when fitting to the Dokos et al. data, which is the same formulation as the HO2009 model. Other
approaches can also be used for model reduction and selection, such as parameter sensitivity
analysis by setting those insensitive parameters to constant values or zero [173].
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Interestingly, the reduced HO models are different for the selected experimental studies.
Presumably this is because these tests were for different species and ages, Dokos et al. [55]
used adult porcine myocardium, Ahmad et al. [9] used the neonatal porcine myocardium, and
Sommer et al. [4] worked on human myocardium. When fitting to the biaxial tests only from
Sommer et al. data, the general HO model can be simplified to a reduced form consisting of only
I1 and I4f, similar to the findings reported in [11]. This is because in the biaxial tests, collagen
fibres are only stretched in fibre-normal plane, but not in the sheet direction, thus max(I4s,1) = 1
and I8fs = 0. When fitting to the biaxial and simple shear tests together, the term with I4n needs
to be included, which is different from the reduced formulation when fitting only to Dokos et al.
data. One reason is that the shear responses along (fs) and (fn) are closer to each other in Sommer
et al. human myocardium, than in Dokos et al. porcine myocardium. This is similar to shear
responses along (sf) and (sn), and along (nf) and (ns), which suggests there may be a difference
in passive myocardial properties between human and porcine myocardium. The reduced HO
model from Ahmad et al. data needs to incorporate I8fn, which might be explained by: (1) the
asymmetric fibre structure in relation to the stretching axis; and (2) limited test data with only 2
shear responses, 2 biaxial tests and 2 uniaxial tests. There is, however, no conclusion as to the
number of tests required with different deformation types to fully characterize myocardium.

The AIC analysis can also be used to choose the best combination of experiments. As shown
in Fig. 3.10-3.12, different combinations of test data affect the prediction accuracy. Specifically,
within the shear responses (Fig. 3.10 (a)), the groups containing (fs) and (fn) always have better
predictive capability than other groups. One reason is that the shear responses along (fs) and
(fn) are much stiffer than other directions in both Dokos et al. and Sommer et al. data. For the
biaxial test, most combinations have good predictive capability, which suggests that not all the
biaxial tests in Sommer et al. data are needed to fit the general HO model or the HO-S model.
For instance, one stretching ratio with 1(MFD):0.75(CFD) from Sommer et al. biaxial tests has
good predictions for other stretching ratios. But if the stretch ratio is largely non-equal, such as
1(MFD):0.5(CFD) or 0.5(MFD):1(CFD), the prediction is poor (see Fig. 3.14), partially because
the material response with lower stretch ratios is still within the toe regime with non-stretched
collagen fibres [8, 174]. Prediction between different deformation types are poor, as shown in
Fig. 3.11 (a), using biaxial tests only (case 563) and simple shear only (case 1484). This might
be because one experiment type is inadequate to capture the non-linearity and anisotropy of
myocardium. [9] included simple shear, biaxial and uniaxial tests, which allows investigation of
uniaxial data in characterizing myocardium property. However, even with Ahmad et al. data,
the predictions of uniaxial tests using the two biaxial and simple shear tests (case 25) are poor.
As discussed in [11], biaxial tests are insufficient for characterizing a hyperelastic anisotropic
material. When using stress responses from both the simple shear and biaxial tests, the least
test data for the HO-S model with good prediction is one shear tests along (nf), together with
a biaxial test 1(MFD):1(CFD). Our results presented here suggest uniaxial tests are still needed
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for an experiment like Ahmad et al. study, whilst further studies may be needed for experiments
like Sommer et al. study using uniaxial tests.

Figure 3.14: Only using biaxial tests in Sommer et al. data, we compute δ by fitting the HO-S
model to one individual stretch ratio and predicting the remained experimental data from other
stretch ratios. Only (1:1) and (1:0.75) meet δ ≥ 0.8 whilst (1:0.5) and (0.5:1) have δ ≤ 0.4.

In general, the stiffness aligned to the collagen fibre direction is much greater than the ex-
tracellular matrix, which is considered homogeneous and isotropic. Many studies have demon-
strated the importance of excluding compressed fibres which cannot bear load [66, 134]. Here
we use a simpler approach, effective fibre ratios, to consider this effect. Because of the gradual
fibre rotation transmurally, we assume the collagen fibres will experience the same deformation
as the extracellular matrix only when both ends are stretched. A simplified FEM model based on
Fig. 3.3 is simulated under uniaxial stretch along the MFD (Fig. 3.15), showing that the stress is
much higher in the effective fibre area. The inclusion of the effective fibre ratio is also supported
by Fig. 3.5, where the goodness-of-fit for the general HO model is much better than without it.
The effective fibre ratio is a geometrical effect and depends on the sample size, loading direction
and the local collagen fibre structures. It does not affect the fit to biaxial tests since the in-plane
collagen fibres will be physically stretched at both ends, but will affect the fit to the uniaxial and
simple shear tests.

Figure 3.15: Stress distribution when fibre direction is 10◦ in uniaxial tensile along MFD as
shown in Fig. 3.3. The green area enclosed by the two dashed lines is the effective area with
higher stress while the blue area (the right bottom and left upper corners ) is the ineffective area
with much lower stress.
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This chapter also demonstrates that assuming biaxial stretch does not induce shear is not
valid for fibre reinforced material. This scenario is only possible if fibres are strictly aligned in
both stretching directions without cross-fibre effects. Both are not true in real tissue tests. The
assumption of no shear in the model leads to the poor outcome of predicting biaxial test data
from simple shear tests, even if the general HO model is used. Indeed, we show that assuming
shear-free behaviour in Sommer et al. biaxial testing produced relatively poor goodness-of-
fit for both the general HO and HO-S models; however, this is significantly improved when
including a small shear component as per biaxial tests of fibre-reinforced anisotropic material
[57, 170](Figs. 3.6 (a)). As the shear components in the biaxial tests are not reported by [4], the
maximum shear angles are assumed to be the same along the CFD and MFD, respectively, at
around 6◦. In Ahmad et al. data, the shear components in the biaxial tests are estimated, with the
results presented here (Fig. 3.6 (b)) suggesting that measuring of shear components in biaxial
testing is necessary for myocardium and, potentially, other anisotropic materials.

To determine the variability of material parameters when fitting the various HO models to
the experimental data, a random initialization strategy is used with 100 samples drawn from pre-
defined parameter ranges. Estimated parameters from different guesses are summarized in Table
3.3. In general, all estimated parameters for reduced HO models have small standard deviations
compared to the average values, and also less than the standard deviations from the general
HO model, suggesting a better determinability for reduced HO models. The large standard
deviations in the general HO model can be expected because more parameters are present. It
is also noted when fitting to Dokos et al. data that some parameters lie in the lower bounds,
such as bs in the HO-D model. This may be partially explained by the limited experimental
data, which cannot capture some directional stress responses, or due to the inter-dependence of
material parameters [13]. Since no studies exist on the quantity of experimental data required
to fully capture myocardial mechanical properties, we limit this chapter to three experimental
studies in our AIC analysis.

There are many other constitutive models exist, such as the “pole-zero” model [175], various
Fung-type models [39, 61], and the constitutive framework with minimized cross-term covari-
ance proposed by [176]. The AIC analysis can be readily applied to select different types of
material models. For instance, we can compare the HO-D model and the Feng-type Guccione’s
model [61] with Dokos et al. shear data. We find that better fitting results can be achieved using
the HO-D model, which has a much lower AIC value (-559.3) than the value from the Guc-
cione’s model (-65.8). This is because the Guccione’s model is a transversely isotropic material
model, but myocardium is known to be orthotropic.

When calculating the stress responses from the mechanical tests, homogeneous strains are
assumed in the biaxial and simple shear tests, and within the effective area of the uniaxial sam-
ples. It is widely accepted that the collagen fibres are in a highly layered architecture and
myocardial material properties are heterogeneous in nature, thus the homogeneous strain as-
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sumption in this chapter is a rough approximation. Directly using FEM simulations to fit the
material models to experiments may be needed, but FEM simulations can be computationally
intensive, with difficulty in achieving converging solutions. Whilst Schmid et al. [177] found
that the Fung-type “Costa-Law” performs almost identically to Dokos et al. data when assum-
ing homogeneous strain and using the FEM simulations, further studies are needed to compare
the accuracy between FEM simulations and the approach we use in this chapter. Last but not
least, other limitations include (1) collagen fibres are dispersed in myocardium, so an angular-
based integration with fibre distributions or the general structure tensor approach may improve
goodness-of-fit; (2) myocytes and collagen fibres are not modelled separately; (3) the cross-links
among collagen fibres at different directions are not explicitly included, though the I8 terms may
account some cross-link effects.

3.5 Conclusion

This chapter describes an AIC-based constitutive model reduction for myocardium. We make
use of three different myocardial mechanical studies, including uniaxial, biaxial and simple
shear tests. We propose three different reduced HO models based on the congressing myocardial
tissue studies, with all models retaining similar descriptive and predictive capabilities as the
general HO model. We demonstrate the importance of accounting for the shear in the biaxial
experiments, as without shear, it is not possible to describe the biaxial experiments reliably.
We further demonstrate that it is necessary to consider through thickness fibre rotations in the
sample, which is done by introducing the effective fibre ratio when fitting material models to
the uniaxial and simple shear myocardial experiments. Finally, we use the AIC analysis to
identify the best combinations of tissue tests, and our results show that the minimum one shear
responses (nf) and one biaxial test with stretch ratio 1(MFD): 1(CFD) are required to capture
human myocardial mechanical property in Sommer et al. study. The different reduced material
models for the three experimental studies indicate that the least terms required to achieve a
competent material model may depend on species, ages, and pathologies. Therefore, a combined
experimental and modelling approach is important in selecting an appropriate material model for
predictive biomechanical models in personalized medicine.
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Experiment Model Parameters
a (kPa) b af (kPa) bf as (kPa) bs an (kPa) bn afs (kPa) bfs afn (kPa) bfn asn (kPa) bsn

Dokos et al
HO-D avg 0.073 15.517 26.040 9.333 4.869 0.001 - - 0.170 16.955 - - - -

std 4.0E-3 2.3E-1 1.1E-1 4.3E-2 4.7E-2 5.6E-5 - - 5.0E-3 1.2E-1 - - - -

General HO avg 0.019 8.576 25.790 9.668 4.281 0.010 0.001 0.868 0.250 16.037 0.025 13.826 0.252 8.773
std 1.6E-2 7.7E+0 3.4E-2 1.5E-2 3.0E-2 3.8E-2 8.3E-4 6.5E-1 1.8E-2 1.8E-1 2.0E-2 5.7E+0 1.0E-1 4.7E+0

Sommer et al
HO-S avg 0.809 7.474 1.911 22.063 - - 0.227 34.802 0.547 5.691 - - - -

std 9.5E-4 4.9E-3 1.2E-3 4.8E-3 - - 1.3E-3 2.2E-2 8.8E-4 1.8E-2 - - - -

General HO avg 0.180 9.762 2.204 21.597 0.098 49.878 0.508 27.719 1.291 5.295 1.345 2.017 0.947 4.514
std 4.4E-3 7.8E-3 5.1E-3 1.3E-2 1.8E-2 2.6E-1 3.3E-3 1.7E-2 4.9E-3 2.2E-2 1.6E-2 7.2E-1 2.2E-3 5.2E-1

Ahmad et al
HO-A avg 0.075 18.143 7.067 1.339 - - 2.745 4.497 1.859 4.066 3.541 8.222 - -

std 2.0E-4 1.6E-2 6.4E-4 9.1E-4 - - 2.7E-3 6.2E-3 1.1E-3 3.4E-3 2.0E-3 7.2E-3 - -

General HO avg 0.005 0.484 7.212 1.25 2.244 13.414 3.223 3.747 1.069 8.961 3.344 11.016 0.421 5.773
std 3.5E-18 6.5E-19 9.0E-4 1.3E-3 3.0E-2 8.4E-1 4.8E-3 9.8E-3 7.7E-4 4.0E-2 2.6E-3 9.5E-3 5.5E-4 1.1E-1

Table 3.3: The average value avg and standard deviation std of optimized parameters from 100 random generated initial starts in interval (0.001,
50).
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Chapter 4

Myofibre architecture: mapping among
different geometries and its dispersion on
contraction

4.1 Introduction

Extensive research has been carried out to develop computational cardiac models to understand
mechanical behaviours of the heart [12, 39, 40]. For instance, FE method has been widely used
to model heart function physiologically or pathologically, and to develop novel therapies [12,
164, 178]. The remaining challenges are to deal with the complex geometry, myofibre structure
and material characterization of the myocardium [11, 91].

The spatial architecture of myofibres plays a central role in electrical propagation, myocar-
dial expansion and contraction [112]. Early studies relied on histological analysis [113] to de-
termine local fibre structure. Currently, DT-MRI [43] can describe fibre features by tracking
diffusive motion of water molecules in tissue [179]. The diffusion tensor at each unit space
of DT-MRI contains the diffusion signal that reflects fibre architecture. Algorithms have been
developed for assessing mean fibre orientation in each diffusion tensor, such as identifying the
primary eigenvector as the mean fibre direction [30]. More recently, models separate diffusion
tensor into isotropic and anisotropic fractions, and fibre orientation dispersion is estimated from
the anisotropic fraction [180].

To reconstruct myofibres in computational models, two different approaches have been de-
veloped. One is directly mapping myofibres from ex/in vivo datasets to the models, i.e., re-
constructing models directly from DT-MRI [91], or using atlas-based methods to warp DT-MRI
data into different models [44]. The other approach is the RBM, in which myofibres rotates
linearly from endocardium to epicardium with prescribed angles concerning the circumferential
direction in most of the studies [7, 114, 115].
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Myofibres do not align perfectly along one direction at any location within ventricular wall,
but are dispersed as reported by Ahmad et al. [5], who measured in-plane and out-of-plane my-
ofibre and collagen fibre dispersion using two-photon-excited fluorescence and second harmonic
generation microscopy on neonatal heart samples. Thus, it is necessary to take into account my-
ofibre dispersion in myocardial active stress. This also agrees with the historical experimental
findings from Lin and Yin [1], who measured around 40% cross-fibre active stress in rabbit my-
ocardium. Limited numerical studies have shown that the large myofibre dispersion in heart can
greatly affect ventricular pump function [21, 90, 92]. Furthermore, there is a lack of studies on
how different myofibre generation approaches, DT-MRI derived or RBM, affecting ventricular
pump functions. One particular question is whether the difference between DT-MRI and RBM
based models can be overcome from a proper consideration of fibre dispersion. We hypothe-
size that incorporating a non-symmetrical dispersed active tension model in an RBM generated
myofibre architecture can approximate the DT-MRI based approach when simulating the heart
pump function.

In this chapter, we develop a neonatal porcine bi-ventricle model with three different myofi-
bre architectures for the LV. The most realistic one is derived from ex vivo DT-MRI, and other
two simplifications are based on RBM: one is regionally dependent by dividing the LV into 17
segments, each with different myofibre angles, and the other is more simplified by assigning a
set of myofibre angles across the whole ventricle. Results from different myofibre architectures
are compared in terms of cardiac pump function.

We show that the model with the most realistic myofibre architecture can produce larger
cardiac output, higher EF and larger apical twist compared to those of the rule-based models
under the same pre/after-loads. Our results also reveal that when the cross-fibre contraction is
included, the active stress seems to play a dual role: its sheet-normal component enhances the
ventricular contraction while its sheet component does the opposite. We further show that by
including non-symmetric fibre dispersion using a general structural tensor, even the most sim-
plified rule-based myofibre model can achieve similar pump function as the most realistic one,
and cross-fibre contraction components can be determined from this non-symmetric dispersion
approach. Thus, our study highlights the importance of including myofibre dispersion in cardiac
modelling if RBM are used, especially in personalized models in subsequent research.

This chapter is based on the published paper Guan, D., Yao, J., Luo, X. and Gao, H., 2020.

Effect of myofibre architecture on ventricular pump function by using a neonatal porcine heart

model: from DT-MRI to RBMs. Royal Society Open Science, 7(4), p.191655.
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4.2 Method

4.2.1 Geometry and Fibre Construction

A 3D FE bi-ventricular model from [181] is used in this chapter (Fig.4.1 (a)), which is recon-
structed from a computed tomography (CT) data of a neonatal porcine heart. Details of the
data acquisition can be found in [9]. The 3D CT data is first segmented using Seg3D1, then the
boundary contours are exported into SolidWorks (Dassault Systemes, MA USA) for geometry
reconstruction, and finally meshed (Fig. 4.1 (a)) using ICEM (ANSYS, Inc. PA USA).

(a) (b) (c)

Figure 4.1: (a) The reconstructed bi-ventricle neonatal heart geometry from a 3D CT data
(263,972 linear tetrahedral elements and 50,640 nodes). Local coordinate system, f0, s0, n0
are the conventional fibre–sheet–normal system, in which f0 is the mean fibre direction, s0 is
the sheet direction in general along the transmural direction from endocardium to epicardium,
and n0 is the sheet-normal direction. c0, r0, l0 are the local circumferential-radial-longitudinal
system. (b) The reconstructed canine heart (252,713 linear tetrahedral elements and 49,460
nodes) with corresponding DT-MRI fibres. (c) Displacement vectors (u) for warping the canine
geometry to the porcine heart, coloured by the magnitude of u.

Because the myofibre structure of the neonatal porcine heart is not available, it is interpolated
from a canine heart obtained from the public dataset of Cardiovascular Research Grid2 [120].
We first reconstruct a bi-ventricular geometry for the canine heart with myofibres extracted from
the primary eigenvector of the DT-MRI tensors, as shown in Fig. 4.1 (b). Clearly, the neonatal
bi-ventricle geometry is different from the canine geometry, as shown in Fig. 4.1. Therefore,
we can not directly interpolate the measured canine myofibre structure into the neonatal bi-
ventricle model. Instead, Deformetrica3 is then employed to register the two bi-ventricular
geometries by warping a template (Cα : the canine bi-ventricle) to a target (Cβ : the neonatal
porcine heart) by minimizing a loss function that measures the distance between the template
and target. Deformetrica is an open-source package based on a large deformation diffeomorphic
metric mapping (LDDMM) framework [182, 183].

1http://www.sci.utah.edu/cibc-software/seg3d.html
2http://cvrgrid.org/data/ex-vivo
3http://www.deformetrica.org/
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To warp a template (Cα : the canine bi-ventricle) to a target (Cβ : the neonatal porcine heart),
we minimize the loss function

f (q,µ) = d(Φq,µ(Cα),Cβ )
2 +R(q,µ) (4.1)

where the first term measures the distance between the template and target, i.e. how well the
deformed template shape is close to the target shape, and the second term acts as a regularizer.
Φq,µ is a diffeomorphism mapping, which is fully parameterized by the initial control points q
and the momenta µ , the evolution equations for q and µ follow the “Hamiltonian” system. For
a shape represented by a triangulated surface with Ne linear triangles, the centres (cp)p=1,...,Ne

and the normals (np)p=1,...,Ne of all triangles can be readily calculated. The distance between the
two triangulated surfaces (Cα and Cβ ) is then given by the varifold distance [184], by ignoring
normal orientations,

d(Cα ,Cβ )
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where K(cp,cq) = exp(−|cp− cq|2/σ2) is a Gaussian kernel with width σ . Eq. (4.1) is opti-
mized with the steepest gradient decent or the L-BFGS method implemented in the Deformetrica

package with respect to µ to determine a diffeomorphism mapping Φ. Details of the LDDMM
framework can be found in [182].

After warping Cα into Cβ , the displacement fields for all nodes on the external surface of
Cα are obtained, denoting uLDDMM

Ex as shown in Fig. 4.1 (c). The displacement vectors on the
nodes lying within the ventricular wall are then interpolated by solving a Laplace system with
Dirichlet boundary conditions (Eq. 4.3) in Fenics4,∇2u = 0,

u = uLDDMM
Ex at external surface.

(4.3)

Following the finite deformation theory, the deformation gradient of warping the canine bi-
ventricle model into the porcine model is

F = ∇u+ I, (4.4)

in which I is the identity matrix. Note that F and u are associated with the canine bi-ventricle
model. Myofibre orientation in the warped canine model is

fcanine
warp =

Ffcanine
template

|Ffcanine
template|

, (4.5)

4https://fenicsproject.org/
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where fcanine
template is the unit myofibre direction from the DT-MRI canine dataset. Finally myofibres

in the porcine model f0 are assigned according to the nearest neighbours between the warped
canine and porcine geometries, such that

f0 = fporcine(xporcine) = fcanine
warp (argminy |y−xporcine|), y ∈ xcanine

warp , (4.6)

in which xprocine is a position vector in the porcine model, and xcanine
warp is the position vector in

the warped canine model. The sheet direction s0 is defined transmurally across the wall, and the
sheet-normal is n0 = f0× s0.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Myofibre rotation angle definition (a), which is the angle between f||0 and c0. f||0 (in-
plane) and f⊥0 (out-of-plane) are the projections of f0 in c0− l0 and l0− r0 planes, respectively,
(b) AHA 17 segments definition in a bullseye view and (c) in the porcine model. Three different
myofibre architectures are generated, they are (d) LDDMM derived, (e) RBM17 and (f) RBMuni.

We further generate two different myofibre structures in the left side of the bi-ventricle using
a rule-based approach [7], septum included. By projecting f0 into the c0− l0 plane to have f‖0,
we define the myofibre angle as the angle between f‖0 and c0, as shown in Fig. 4.2 (a). The
average myofibre angles in the porcine model are then summarized at endocardium (θ ave

endo) and
epicardium (θ ave

epi ) in two ways: (1) across the whole LV, and (2) at each ventricular segment
according to the AHA17 (American Heart Association) definition [185] as shown in Figs. 4.2
(b, c) based on RV insertion points. A rule-based approach is used to generate two different
myofibre structures: (1) one set of myofibre rotation angles varies linearly from endocardium
to epicardium for the whole LV; (2) for each AHA17 segment, myofibre rotates linearly based
on the average rotation angles from that segment, which means myofibre angles are different
at different segments. Note that the myofibre structure in the RV of the bi-ventricle model,
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excluding the septum, is generated by the same rule-based approach but using one set of rotation
angles due to the lack of DT-MRI data for the right side. We further assume the myofibre rotation
angles at RV are the same as the angles when averaged across the whole LV.

With these three myofibre structures generated (Figs. 4.2 (d, e, f)), we consider the following
cases:

• case LDDMM: the LV with the mapped ex-vivo DT-MRI acquired myofibre architecture
(Eq. 4.6);

• case RBM17: myofibre rotates linearly from endocardium to epicardium for each LV seg-
ment according to the average rotation angles at 17 segments, derived from case LDDMM.
Table 4.1 lists the myofibre rotation angles at each segment, including the angles for the
RV;

• case RBMuni: myofibre uniformly rotates between endocardium and epicardium in the
whole LV with one set of the average rotation angles (endocardium:40◦, epicardium:−30◦),
which are also derived from case LDDMM.

Note that case RBM17 has a heterogeneous myofibre structure in the whole LV but homogeneous
within each segment. We also have not smoothed rotation angles between segments since those
variations are within the range of local angle variations in case LDDMM as suggested in Fig.
4.4 (a). Thus, case RBM17 is a simplification of case LDDMM. Case RBMuni has the same
myofibre structure across the whole LV, a further simplification compared to case RBM17.

Section 1 2 3 4 5 6 7 8 9
Endocardium 20 40 30 40 60 40 40 60 30
Epicardium -20 -40 -40 0 -20 -20 -40 -40 -30

Section 10 11 12 13 14 15 16 17 RV
Endocardium 40 60 40 60 30 80 60 10 40
Epicardium -20 -20 -40 -40 -30 -20 -40 -10 -30

Table 4.1: Average myofibre rotation angles (o) at endocardium and epicardium according to the
AHA17 definition, and the set of angles for the RV.

4.2.2 Constitutive Model

Passive stress response

The passive behaviour of myocardium is described by a strain-invariant based function [181],
which is reduced from the model proposed by Holzapfel and Ogden [11] by fitting to an experi-
mental study of neonatal porcine myocardium [9]. The SEF consists of a deviatoric (Wdev) and
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a volumetric (Wvol) parts,

Wdev =
a
2b
{exp[b(Ī1−3)]−1}+ ∑

i=f,n

ai

2bi
{exp[bi(max(Ī4i,1)−1)2]−1}

+ ∑
i j=fs,fn

ai j

2bi j
[exp(bi j Ī2

8i j)−1],

Wvol =
1
D

(
J2−1

2
− ln(J)

)
,

(4.7)

where a,b,ai,bi,ai j,bi j are material constants and D is a multiple of the reciprocal of the bulk
modulus K, i.e., D = 2/K. J = det(F), F = J1/3F̄, and C̄ = F̄TF̄. The isochoric invariants are
defined as Ī1 = trace(C̄), Ī4f = f0 · C̄f0, Ī4n = n0 · C̄n0, Ī8fs = f0 · C̄s0, and Ī8fn = f0 · C̄n0, in
which f0,s0,n0 are the myofibre, sheet and sheet-normal directions in the reference state. In this
chapter, we assume the collagen fibres follow the layered myocyte structure. Thus, myofibres
represent both myocyte and collagen fibres. The max() in Eq. 4.7 will ensure the collagen fibres
can only bear load when in tension. The passive Cauchy stress tensor is given by

σ
p = pvolI+2J−1[W̄1 dev B̄+ W̄4f dev(f̄⊗ f̄)+ W̄4n dev(n̄⊗ n̄)

+
1
2
W̄8fs dev(f̄⊗ s̄+ s̄⊗ f̄)+

1
2
W̄8fn dev(f̄⊗ n̄+ n̄⊗ f̄)],

(4.8)

in which W̄i =
∂Wdev

∂ Īi
, i ∈ {1,4f,4n,8fs,8fn}, f̄ = F̄ f0, s̄ = F̄ s0, n̄ = F̄n0, B̄ = F̄F̄T, pvol =

∂Wvol/∂J, and dev(•) = (•)− (1/3)[(•) : I]I denotes the deviatoric operator.

Active stress

Biaxial investigations on actively contracting rabbit myocardium [1] suggest that a large por-
tion of active stress exists in cross-fibre directions. This has motivated computational efforts to
include a proportion of the active stress to the cross-fibre directions when RBM generated my-
ofibres are used [90, 178]. In this chapter, we employ the active stress approach for myocardial
active stress along myofibre, sheet and sheet-normal directions

σ
a = nf Ta f̂⊗ f̂+ns Ta ŝ⊗ ŝ+nn Ta n̂⊗ n̂, (4.9)

in which f̂ = f/|f|, ŝ = s/|s| and n̂ = n/|n|, nf, ns and nn (all positive and sum up to 1) are the
proportions of the active tension in their respective directions. Ta is the active tension generated
along the myofibre direction, which is described by a time-varying elastance model that has been
described extensively in the literature [89–91]

Ta(t, l) =
Tmax

2
Ca2

0

Ca2
0 +ECa2

50 (l)
(1− cos(ω(t, l))) (4.10)

where
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ECa50(l) =
Ca0max√

eB(l−l0)−1

ω(t, l) =


π

t
t0

for 0 6 t 6 t0
π

t−t0+tr(l)
tr

for t0 < t 6 t0 + tr
0 for t > t0 + tr

tr(l) = ml +b

l = lr
√

2Eff +1

where Tmax is the isometric tension under maximal activation, Ca0 is the peak intracellular cal-
cium concentration; m and b are constants that govern the shape of the linear relaxation duration
and sarcomere length relaxation; Eff is the Lagrange strain in the fibre direction; B is a constant
that governs the shape of the peak isometric tension-sarcomere length relation; lr is the sarcom-
ere length with the stress-free condition whilst l0 is the sarcomere length that does not produce
active stress [89]. Active parameters values [12] can be find in Table 4.2. Please note the real
active tension Ta in FE simulations is around 50 kPa during cardiac systole, which locates in the
normal range [186], and the Tmax of 135 kPa and 180 kPa are comparable to the reported values
in other studies [91, 95, 164]. Tmax represents contractility, its definition is different from active
tension in general.

t0 m b l0 B Ca0 Ca0max Tmax lr
(ms) (s µm−1) (s) (µ m) (µm−1) (µM) (µM) (kPa) (µm)

LV 150 1048.9 -1.7 1.58 4.750 4.35 4.35 180 1.85
RV 150 1048.9 -1.7 1.58 4.750 4.35 4.35 135 1.85

Table 4.2: Parameter values for the time varying elastance active tension constitutive model.

In this chapter, we assume the cross-fibre contraction in the RV is zero, i.e. nf = 1, ns = 0,
and nn = 0. This is because RV has a much thinner wall thickness, and Ahmad et al. [5] reported
the fibre dispersion in the RV is much less than in the LV (9.3◦v.s.19.2◦). We also performed
simulations for the RBMuni case, using the LV’s non-zero cross-fibre contraction for the RV.
Our results show the differences of EF are 0.7% and 4.1% for the LV and RV, respectively. Thus
assuming no cross-fibre contraction for the RV seems to be reasonable.

As for the LV (septum is included), since DT-MRI derived myofibres is naturally dispersed
in case LDDMM (Fig. 4.2), we set nf = 1, ns = 0, and nn = 0. But for the RBM cases, it is
necessary to include cross-fibre active tension, and ns and nn are calculated based on a dispersed
fibre structure tensor. This will be explained in the following section.
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Determination of nf, nn and ns using DT-MRI derived myofibres for case RBMuni

We first introduce {e1, e2, e3} to denote the axes of a Cartesian coordinate system as shown in
Fig. 4.3, and then define myofibre direction of the reference configuration to be M with a density
distribution ρ(M). M can be further characterized by two angles Θ∈ [0,π] and Φ∈ [0,2π], that
is

M(Θ,Φ) = sinΘ cosΦe1 + sinΘsinΦe2 + cosΘe3. (4.11)

Θ is the angle between e3 and M, and Φ is the angle between e1 and the projected vector of M
in the e1-e2 plane.

Figure 4.3: An unit vector M(Θ,Φ) representing a fibre direction defined by Θ and Φ with
respect to a Cartesian system e1, e2 and e3. The plane spanned by e2-e3 is in-plane whilst
out-of-plane is e1-e2. The mean myofibre direction is along e3.

We assume the dispersions in different planes are essentially independent [187], i.e.

ρ(M) = ρ(Θ, b1, Φ, b2) = ρop(Φ,b2)ρin(Θ,b1), (4.12)

in which ρop(Φ,b2) describes the out-of-plane dispersion, and ρin(Θ,b1) describes the in-plane
dispersion. Note in the ventricular model, in-plane is the plane defined by c0− l0, and out-
of-plane is the plane defined by l0 − r0. This is consistent with experimental studies when
measuring in-/out-of-plane fibre angles [4, 5]. π-periodic von Mises distribution is used for
ρin(Θ,b1) and ρop(Φ,b2) [19], such as

ρ(θ ,b) =
exp(bcos(2θ))

2G
∫

π

0 exp(bcos(x))dx
, (4.13)

in which θ is a variable representing Θ or Φ, b> 0 is the concentration parameter, G is a constant
to ensure ∫ 2π

0

∫
π

0
ρop(Φ,b2)ρin(Θ,b1)sinΘdΘdΦ = 1. (4.14)

When there is no dispersion, the structure tensor M⊗M can be directly used for constructing
I4f = C : M⊗M and active stress tensor Ta

M⊗M
I4f

. With dispersion, a GST H can be defined over
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an unit sphere [19–21],

H =
∫ 2π

0

∫
π

0
ρop(Φ,b2)ρin(Θ,b1)M⊗M sinΘdΘdΦ. (4.15)

From Figs. 4.4 (a,b), we can find that in-plane angle (Θ) varies linearly from endocardium to
epicardium for both RBM cases, but the fibres are much dispersed for case LDDMM, especially
near the endocardium and epicardium, where myofibres align more longitudinally (l0). The out-
of-plane angle (Φ) is zero for both RBM cases since RBM generated myofibres only lie in the
c0− l0 plane. However, out-of-plane dispersion can be seen in case LDDMM shown in Fig. 4.4
(b). We now determine the in/out-of-plane dispersions from the angle differences between case
LDDMM and RBMuni. Figs. 4.4 (c) and (d) show the histograms of in/out-of-plane dispersion in
the LV, both Θ and Φ centre around 0◦. The maximum likelihood method mle() from MATLAB
is used to fit ρip and ρop to the histograms of the in/out-of-plane dispersions, with b1 = 1.6153
for the in-plane dispersion, and b2 = 1.2144 for the out-of-plane dispersion.

Without loss of generality, we consider the mean fibre direction along e3, the sheet direction
along e1 and the sheet-normal direction along e2. Then the in-plane distribution is ρip(Θ−0,b1),
the out-of-plane distribution is ρop(Φ− π

2 ,b2), and

H =
∫

π

0

∫ 2π

0
ρip(Θ,b1)ρop(Φ−π/2,b2)M⊗M sinΘdΘdΦ

=

 0.086
0.268

0.646


= H11s0⊗ s0 +H22n0⊗n0 +H33f0⊗ f0.

(4.16)

Similar as the active stress expression in Eq. (4.9), the active Cauchy stress with dispersed my-
ofibres is

σ
a = Ta FĤaFT = TaH11ŝ⊗ ŝ+TaH22n̂⊗ n̂+TaH33f̂⊗ f̂, (4.17)

where a corresponding dispersed structural tensor Ĥa [21] can be introduced

Ĥa = H11I−1
4s s0⊗ s0 +H22I−1

4n n0⊗n0 +H33I−1
4f f0⊗ f0. (4.18)

Thus we have ns = H11 = 0.086, nn = H22 = 0.268, and nf = H33 = 0.646 for case RBMuni.

4.2.3 Boundary conditions and implementations

The bi-ventricular model is implemented using the nonlinear FE software ABAQUS (Dass-
sult Systemes, Johnston RI, USA). In order to simulate diastolic filling and systolic ejection,
a lumped model for the pulmonary and systemic circulation systems is attached to this bi-
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(a) (b)

(c) (d) (e)

Figure 4.4: Fibre dispersion quantified from the DT-MRI dataset. (a) shows the in-plane an-
gle Θ and (b) the out-of-plane angle Φ across the LV ventricular wall; (c) is the in-plane
dispersion distribution with fitted ρip(Θ,b1) and (d) is the out-of-plane dispersion distribution
with fitted ρop(Φ,b2); (e) a 3D surface plot defined by the vector ρ(Θ, b1, Φ, b2)f(Θ, Φ) with
ρ(Θ, b1, Φ, b2) = ρip(Θ,b1)ρop(Φ,b2). The negative angle in (a) suggests the in-plane fibre
vector lies in the fourth quadrant (+c0 and −l0), and similarly in (b) for the out-of-plane fi-
bre vector, which lies in the fourth quadrant of plane (-l0 and +r0). All values are used for
determining the in-plane and out-of-plane dispersions in (c) and (d).

ventricular model, which is realized through a combination of surface-based fluid cavities and
fluid exchanges [188] as shown in Fig. 4.5. We define the mass flow rate between two different
cavities as

ṁ = ρ ˙̄VA, (4.19)

where ρ is the blood density, A is the effective area between the two connected cavities, and ˙̄V
is the fluid flux. ṁ is further related to the pressure difference

∆pA =CV ṁ+CH ṁ|ṁ|, (4.20)

where ∆p is the pressure difference between two connected cavities, CV is viscous resistance
coefficient, and CH is hydrodynamic resistance coefficient, and CH = 0 in this chapter. This type
of boundary conditions is equivalent to a simplified two-element windkessel model. Parameters
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for the lumped circulation system are listed in Table 4.3 and scaled from [91] by taking into
account the dimensions of the neonatal porcine heart. For example, the total blood volume
is around 80 mL for a newborn piglet [189], much less than in an adult porcine (67.2±4.12
mL/kg) [190], and the valvular area in a newborn heart is about one-tenth of the area in an adult
heart [191–193], and the diameter of blood vessel is also much smaller in the newborn piglet
compared to an adult porcine [194], which suggests that under similar pressure loadings, the
vessel compliance, calculated as ∆V

∆P will be much less in a newborn porcine because of much
smaller ∆V in a newborn piglet.

Figure 4.5: Schematic of the bi-ventricular model coupled with a circulatory system. MV: mitral
valve; AV: aortic valve; RA: right atrium; TV: tricuspid valve; PV: pulmonary valve; LA: left
atrium; RA: right atrium; Ao: aorta; Sys: systemic circulation; Pul: pulmonary circulation; and
PA: pulmonary artery. Grounded spring with a stiffness (k) is tuned to provide the appropriate
PV response (i,e., compliance) for that cavity. CV is viscous resistance coefficient to describe
resistance between cavities. One-direction flow through valves is controlled by setting fluid
exchanging properties between the cavities.

Parameters for passive SEF and the maximum active tension from myocytes (Tmax) are listed
in Table 4.4.

Using Eq. (4.7), initial values for passive response of LV are from Table 3.1 of Chapter 3,
and ai (i ∈ {1,4f,4n,8fs,8fn}) are further reduced by half together with chosen Tmax to ensure
both LV and RV can achieve EF within the physiological range (EF>50%). Values of bi (i ∈
{1,4f,4n,8fs,8fn}) are kept same as in Table 3.1. RV material parameters are processed in the
same way, which are derived from experimental data of RV [9]. Note that because of missing
measured data (wall motion, ventricular pressure) for the porcine heart, rather than constructing
a personalized model [2, 91], we only aim to obtain a set of parameters with which the bi-
ventricle behaves physiologically.
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ABAQUS Windkessel equivalent
Name Value Unit Name Value Unit
CAV

V 20.0 MPa ·mm2 · s/tonne RAV 0.150 mmHg · s/ml
CMV

V 50.0 −− RMV 0.375 −−
CPV

V 55.0 −− RPV 0.412 −−
CTV

V 16.0 −− RTV 0.120 −−
CSys

V 3600.0 −− RSys 27.0 −−
CPul

V 300.0 −− RPul 2.25 −−
kAo 0.8 N/mm CAo 0.061 ml/mmHg
kPA 0.8 −− CPA 0.065 −−
kLA 0.1 −− CLA −−
kRA 0.1 −− CRA −−

Table 4.3: Parameter values for the lumped circulatory model as shown in Fig. 4.5. CV is the
viscous resistance coefficient, and k is the stiffness of the grounded spring. Corresponding values
for the equivalent Windkessel model is also listed for reference including the resistance (R) and
the compliance (C). Note that the compliances of the RA and LA are not constant but varied to
ensure constant EDP, which are not listed here.

a b af bf an bn afs bfs afn bfn
(kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

LV 0.038 18.143 3.5335 1.339 1.373 4.495 0.929 4.067 1.771 8.225
RV 0.485 7.513 2.777 1.685 0.704 9.407 0.121 15.314 1.351 17.235

Table 4.4: Parameter values for passive properties of the LV and RV myocardium.

The FE nodes on the top basal plane are constrained along the longitudinal axis but free
to move within the basal plane. The longitudinal axis is defined as the line passing the LV
basal centre and perpendicular to the basal plane. To start the simulation, linearly increased
blood pressures from 0 to end-diastolic values are first applied to the inner surfaces of the bi-
ventricular model, 8 mmHg in the LV and 4 mmHg in the RV. Typical diastolic pressures inside
the pulmonary, left atrium, aorta and right atrium are also applied to those 4 cavities (10 mmHg,
8 mmHg, 67.5 mmHg, and 4 mmHg [195]). Then the bi-ventricular model starts iso-volumetric
contraction (t=0s), followed by systolic ejection when the ventricular pressure is higher than
that of the aorta (around t=0.045s), and then the iso-volumetric relaxation. Systolic ejection
ends at 0.12s. 1 s is chosen for a whole cardiac cycle for computational convenience. In order
to ensure the EDPs in both LV and RV are same at next cardiac cycles, EDPs in both atria are
maintained constant.

4.3 Results

We first compare the heart pump function for cases LDDMM, RBM17 and RBMuni without
cross-fibre active tension. We then analyse the effect of cross-fibre active tension in case
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RBMuni. Finally we include dispersed active tension derived from DT-MRI myofibres in case
RBMuni and compared with case LDDMM.

4.3.1 No cross-fibre active tension

Fig. 4.6 (a) shows the PV loops from the three cases with no cross-fibre active tension. Although
they all have the same EDP, the LV EDV from case LDDMM (2.87ml) is slightly larger than the
other two rule-based cases (2.83ml), the relative difference is around 1.4%. The LV ESV in case
LDDMM is also the smallest (1.38ml). Interestingly, though myofibre structures in the RV for
the three cases are same, however, due to the difference in LV dynamics, the RV ESV from case
LDDMM is also the smallest (0.87ml).

Fig. 4.6 (b) shows EFs for the three cases. Again, case LDDMM achieves higher EF both at
LV (51.92%) and RV (55.47%) than the two rule-based cases. Furthermore, the LV EFs for cases
RBM17 and RBMuni are less than 50%, which are below literature reported normal range (50%
– 75%), indicating the LV pump function is suboptimal in those two cases. ESPs are within the
measured range as reported values of LV (80–90 mmHg) [196] and RV (23–30 mmHg) [197].

Fig. 4.6 (c) shows the average end-systolic stress for the entire LV along the circumferential,
radial and longitudinal directions, respectively. Although the circumferential stress from case
LDDMM is lower near endocardium and epicardium than RBM cases, it is much higher in the
midwall, with the lowest value from case RBMuni. Contrary to the circumferential stress, the
longitudinal stress is higher in case LDDMM at endocardium and epicardium, while lowest at
part of the midwall. The opposite trends of the circumferential and longitudinal stress levels in
case LDDMM may compensate each other to achieve a deeper systolic contraction than cases
RBM17 and RBMuni. The radial stress is negative for all three cases with the lowest in case
LDDMM.

Fig. 4.6 (d) is the apex twist angle within one cardiac cycle. The twist angle is defined
as the rotation of the apex with respect to the basal plane at end-diastole. The apex from case
LDDMM twists more compared to cases RBM17 and RBMuni, with a peak value of 11◦, which is
well within the reported ranges in healthy hearts (10.2±7.6◦) [198]. Therefore, a more efficient
pump function is achieved in case LDDMM compared to the RBM cases. Difference between
the two rule-based cases are subtle, only slightly improved pump function can be found in case
RBM17, compared to case RBMuni, but it has a reduced apex twist.

Figs. 4.7 (a-c) show the end-systolic myofibre stress distributions for the three cases. In case
LDDMM, higher myofibre stress (f̂ · (σ f̂)) can be found at both the endocardial and epicardial
surfaces, especially in the LV side, while its distribution is less uniform compared to the two
RBM cases. Figs. 4.7 (d-f) show the strains along myofibre at end-systole. Strain distributions
are similar in the two RBM cases, but the great difference is seen from the LDDMM case. The
less uniform distributions of stress and strain in case LDDMM may be partially explained by
much dispersed myofibre structures. The angle between the long-axis and the longitudinal axis
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(a) (b)

(c) (d)

Figure 4.6: Simulated pump functions from cases LDDMM, RBM17 and RBMuni, including (a)
PV loops of LV and RV, (b) LV and RV EFs, (c) stress distribution across the wall at end-systole,
and (d) apex twist angle.

at end-systole, defined in Figs. 4.7 (d-f), is largest in the LDDMM case (8.7◦) and lowest in
RMBuni (4.2◦), also suggesting different deformed end-systolic shapes.

4.3.2 RBMuni with cross-fibre active tension

Based on case RBMuni, five different sets of ns and nn are chosen to investigate how they affect
ventricular dynamics. These are: (1) ns = 0, nn = 0, (2) ns = 0.2, nn = 0, (3) ns = 0.4, nn = 0,
(4) ns = 0.0, nn = 0.2, (5) ns = 0.0, nn = 0.4. For all simulations nf = 1.0. Fig. 4.8 shows the
pump functions with varied ns or nn. If we only consider cross-fibre active tension along the
sheet direction, then the PV loop enclosed area is reduced as shown in Fig. 4.8 (a), suggesting
that the active tension along the sheet direction will counteract the myofibre contraction. On the
other hand, non-zero nn increases the area enclosed by the PV loop and enhances the cardiac
work. For example, with ns = 0.4, the LVEF is around 29.97%, which is much less than the case
with ns = 0 (46.08%), while with nn = 0.4, LVEF is increased by 10% as shown in Fig. 4.8 (b).
Therefore, active tension along the sheet-normal direction is beneficial to the pump function, but
contraction along the sheet direction has the opposite effect.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Myofibre stress and strain distributions at end-systole for cases LDDMM, RBM17

and RBMuni, respectively. The solid lines in (d), (e), and (f) are the long-axis which links the LV
basal centre and the LV apex, and the longitudinal axis is represented by the dash line passing
the LV basal centre and perpendicular to the basal plane.

(a) (b)

Figure 4.8: Pump functions with varied ns and nn in case RBMuni. nf = 1.0 for all simulations.
(a) PV loops of LV and RV, and (b) EFs for LV and RV.

Fig. 4.9 shows results from case RBMuni with dispersed active contraction, modelled by the
structural tensor from Eq. (4.16). In this case, case RBMuni has nearly the same LV PV loop
as case LDDMM, and the apical twist is also similar to case LDDMM (Figs. 4.9 (a, b). Only
a small difference in EDV (≈ 1.4%) is observed between the two models. On the other hand,
Fig. 4.9 (c,d) shows that the end-systolic circumferential stress is much lower compared to case
LDDMM, particularly in the midwall. The longitudinal and radial stresses are also slightly
higher in the midwall because of non-zero nn and ns.

In summary, compared to case LDDMM, case RBMuni shows a lower and more homoge-
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neous stress level but achieves a similar pump function if using a suitable general structural
tensor approach for the cross-fibre contraction.

(a) (b)

(c) (d)

Figure 4.9: Pump function comparisons between case LDDMM and case RBMuni with cross-
fibre contraction. (a) PV loops, (b) apex twist angle, (c) intramural stress across the entire LV
wall and (d) myofibre stress distribution from case RBMuni with cross-fibre contraction at end-
systole.

It is interesting to see if similar results could be obtained without any knowledge of the
patient-specific fibre field. To this end, we run extra simulations based on RBMuni using literature-
based values for nf, ns, and nn. Specifically, we consider (1) no dispersion nf = 1, ns = nn = 0,
(2) nf = 0.879, ns = 0.009, nn = 0.112 [4], and (3) nf = 0.646, ns = 0.086, nn = 0.268, de-
rived from DT-MRI in this chapter. The fibre rotation angles are also chosen from 30◦ ∼−30◦

(exRBM1), 45◦ ∼ −45◦(exRBM2), or 60◦ ∼ −60◦(exRBM3) [7]. The results are summarized
in Fig. 4.10 in terms of the LV and RV EFs. Clearly, EFs increase with fibre rotation angles,
as more myofibres align longitudinally which enhance the active contraction. Different disper-
sion parameters also affect the pump function. Compared to case LDDMM, the EFs are lower in
exRBM1 (39.37% (LV), 45.89% (RV)), and still lower in exRBM2 (47.86% (LV), 51.72% (RV)).
Only exRBM3 with DT-MRI derived dispersion parameters can achieve the similar pump func-
tions as in case LDDMM, though the myofibre rotation angles ( 60◦ ∼−60◦) are much greater
than case LDDMM (mean angles 40◦ ∼ −30◦). This would suggest that subject-specific my-
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Figure 4.10: Predicted EFs with literature-based myofibre rotation angles [7] and dispersion
parameters [4] using case RBMuni. The results are to be compared with the LDDMM case in
Fig.4.7 (b), which has the mean fibre rotation angles 40◦ ∼−30◦, and EFs of 51.92% (LV) and
55.47% (RV).

ofibre structure is necessary for cardiac mechanic modelling, as using literature-based myofibre
structures seem to underestimate the pump function.

4.3.3 Parameter sensitivity and inference study of myocardial property

A sensitivity study is performed with case LDDMM. The so-called “one-point” approach is
employed here by varying one parameter at a time and others kept same. Parameters (a, b, af,
bf, an, bn, afs, bfs, afn, bfn and Tmax) are first doubled and then halved from the values in Table 4.4
. Fig. 4.11 (a,b) shows the normalized end-diastolic and ESVs with respect to case LDDMM. It
can be found that EDV is mostly affected by a, b, af and an, while ESV is mostly affected by
Tmax. Fig. 4.11 (c) further shows the changes of EFs. Both LV and RV EFs are reduced when
doubling a, b, af, an, and vice versa. Tmax has the largest effect on LV and RV EFs, while other
parameters have little influences.

In this chapter, the EDV for the LV is (V0 + 1)mL, and (V0 + 0.6)mL for the RV with V0

being the reference volume of the LV or RV, respectively. Tmax is then determined by achieving
targeted EFs. Fig. 4.12 illustrates how the mismatch between the targeted value and the predicted
value is reduced by the passive scaling factor and Tmax during the inference procedure for the LV
as an example. Fig. 4.12 (a) is the mismatch of LV EDV with respect to the scaling factor, which
is defined as |(EDVpredict−EDVtarget)/EDVtarget|, and Fig. 4.12 (b) is the mismatch of LV EF
(|(EFpredict−EFtarget)/EFtarget|) with respect to Tmax. From Fig. 4.12, it can be seen that both the
passive scaling factor and myocardial contractility (Tmax) can be nicely determined by matching
targeted values. Note that this approach will only provide one set of possible parameters, to
uniquely infer each parameter of myocardial material property can be extremely challenging
due to various difficulties [13], i.e. limited measured data, parameter correlation, etc.
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(a) (b)

(c)

Figure 4.11: Myocardial material parameter sensitivity study, including a, b, af, bf, an, bn, afs,
bfs, afn, bfn) and the active parameter (Tmax). (a) normalized EDV and ESV values of the LV and
(b) the RV with respect to the corresponding baseline values; (c) EF values. The baseline values
of LV and RV are from the simulation with parameter values in Table 3 (the main text).

(a) (b)

Figure 4.12: Relative errors in EDV (a) and EF (b) of the LV when inferring reasonable model
parameters by matching targeted EDV (V0 +1)mL with V0 the initial value and EF 52%.
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4.4 Discussion

In this chapter, LDDMM-based Deformetrica [182] is used to warp a canine bi-ventricle to a
neonatal porcine heart, and DT-MRI measured myofibre structure is then mapped to a porcine
heart by solving a Laplace system. Base on the mapped DT-MRI measured myofibre structure,
two simplified fibres are further generated using a rule-based approach. Our results show that
under same pre-/after-loading conditions, both LV and RV have a higher pump function in the
case with LDDMM-mapped fibres compared to the rule-based cases, while case LDDMM ex-
periences higher myofibre stress and more heterogeneous stress pattern than rule-based cases.
Large differences can be expected when using literature-based fibre structures and dispersion
parameters compared to case LDDMM. Those different results highlight the necessity of use
realistic myofibre structure for personalized cardiac modelling as demonstrated in other stud-
ies [7, 118, 119, 122].

In case LDDMM, the high active fibre stresses at both epicardial and endocardial surfaces
(Fig. 4.7 (a)) can potentially enhance the long-axis shortening and also apical twist (Fig. 4.6
(d)). In fact, long-axis shortening in systole with respect to end-diastole is slightly higher in
case LDDMM (-7.3%) than other two cases (-6.8% for RBM17, -7% for RBMuni). Our results
show (Figs. 4.4 (a, b)) that DT-MRI derived myofibres do not lie in c0− l0 plane but dispersed.
Thus the active tension in case LDDMM is generated along fibres dispersed with both in-plane
and out-of-plane components. In section 4.2.2, we firstly quantify myofibre dispersion with in-
plane and out-of-plane distributions, and then introduce a structural tensor H [20,199] by fitting
to the measured in/out-of-plane dispersions. The π-period von Mises distribution is used to
describe myofibre dispersion, good agreement can be achieved as shown in Figs. 4.4 (c) and (d).
While it may not be guaranteed that the von Mises distribution can be applied to pathological
tissues, such as myocardial infarction [200].

We find that cross-fibre contraction is highest along the sheet-normal direction compared to
that of the sheet-direction, but much lower than along mean fibre direction. Furthermore, active
contraction in the sheet-normal direction can facilitate contraction, but not in sheet direction.
This is because myofibres dominantly lie in c0− l0 plane, in which f and n are defined, and
contraction along f and n causes circumferential and long-axial shortening [201], so the wall
thickens to maintain the constant wall volume if the material is incompressible. Whilst transmu-
ral contraction along s causes wall thinning, which counteracts myofibre contraction. Note that
in this chapter, the sheet direction is defined transmurally across the wall, which is consistent
with studies from [11,21,113], though some studies define it as the sheet-normal direction [91].
Unlike the myofibres which rotate from endocardium to epicardium, here the sheet direction
is assumed to align the radial direction in all cases. In other words, the sheet rotation angle
is chosen to be zero. To evaluate this assumption, we have tested three sets of sheet rotation
angles as in [7]: 30◦ ∼ −30◦, 45◦ ∼ −45◦, 60◦ ∼ −60◦, based on case RBMuni with dispersed
active tension. The results show that the sheet rotation angle has little effect on ventricular pump
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function, and the differences in EF between different sheet rotation angles are within 1%. This
agrees with observations from other groups. For example, Wang et al. [7] found that the sheet
rotation angle nearly has no influence on passive mechanics in an LV model.

We now compare our values of cross-fibre proportions (ns = 0.086, nn = 0.268, nf = 0.646)
with previous studies. Based on the experimental study by Lin and Yin [1], Guccione and co-
workers introduced cross-fibre active contraction with ns = 0.0, nn = 0.4 and nf = 1.0 [90]. In
a recent study, Sack et al. [91] inversely determined cross-fibre contraction ratios (Note that in
Sack’s work [91] they used notation ns for nn due to a different definition) in a healthy porcine
heart (nn = 0.07) and a failure heart (nn = 0.14) with nf = 1.0 and ns = 0. In our study nn (0.268)
is higher than that of Sack’s study [91]. This could be due to (1) subject variation; (2) higher
nf = 1.0 used in their study (our nf = 0.646), leading to a higher contraction along the averaged
myofibre direction so a lower nn could match the measured pump function; (3) they inversely
determined nn and Ta, which are not from measurements. In this chapter, proportions of cross-
fibre contraction are derived directly from intrinsic fibre structures, which have a clear biological
explanation. When normalized by nf, the ratio between the sheet-normal and myofibre direction
is 41%, which agrees with the ratio reported by Lin and Yin (40%) [1]. We further calculate
the dispersion parameters from a recent study on neonatal porcine heart by Ahmad et al. [5],
nf = 0.68 and nn = 0.32 with nearly negligible ns ≈ 0.0009, again very close to our values in
this chapter. We are not aware of any available experimental measurements for estimating nn

and ns in the myocardium.
Rodriguez-Cantano et al. [122] argued that RBM tends to exaggerate myofibre layered ar-

chitecture and the passive stiffness of the ventricle, while DT-MRI measured fibres may under-
estimate ventricular stiffness due to measurement noise and uncertainties. We find that when
taking into account the cross-fibre contraction in the case RBMuni, we can achieve similar sys-
tolic contraction as case LDDMM (Fig. 4.9) with less heterogeneous stress patterns. Because
of challenging of in vivo DT-MRI acquisition, rule-based myofibre structures will continue to
be used when modelling cardiac mechanics, even in personalized models. Our results suggest
by incorporating fibre dispersion using a structural tensor, RBM-based model can be a good ap-
proximation of the most realistic myofibre structure as derived from DT-MRI, and the structural
tensor may be determined either from limited in/ex vivo DT-MRI data [202] or inversely esti-
mated, while cautions need to be paid when myofibre structures are from different subjects or
species. There is a small difference (around 1.4%) in EDV in Fig. 4.9 (a), presumably because
the dispersion is not included in the passive constitutive law. Given that exclusion of com-
pressed fibres using structural tensor approach is nontrivial in the passive modelling [17,64], we
will leave the work of including dispersion in the passive model in future.

Using material parameters estimated from ex vivo measurements to describe in vivo mate-
rial behaviours is a standing challenge. Published studies have suggested passive parameters
estimated from ex vivo experiments can over-estimate the stiffness in vivo [7, 13, 92]. Hence,
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most of the studies, ours included, scaled the parameters from ex vivo data to match the in
vivo dynamics [2, 13, 91]. Here, the initial passive parameters are adopted from our previous
study [181] which were inferred from ex vivo neonatal myocardial stretching experiments [9],
then a, af, an, afs and afn are scaled to achieve the targeted EDVs. The myocardial contractility
Tmax is determined by matching the targeted EFs (> 50%) for both the LV and RV. We further
assume the passive scaling factor is same for the LV and RV. Thus only three parameters need
to be determined: the passive scaling factor, Tmax for the LV and Tmax for the RV.

The sensitivity study on the passive parameters and Tmax, and an illustration of their infer-
ences are proceeded. As mentioned previously, it is not our intention to develop a personal-
ized bi-ventricular model for this neonatal porcine heart, instead we seek to construct a general
model with physiologically-correct pump function, i.e. eject fraction > 50%. Currently, there
is no consistent way on how to adjust parameters derived from ex-vivo experiments to in vivo
models. Thus in many studies, parameters of in vivo myocardium are scaled from ex vivo ex-
periments [13, 91] in order to match in vivo measurements. The similar approach is followed in
this chapter by scaling a, af, an, afs, afn to match targeted EDVs.

The convexity of the HO type SEF requires all parameters greater than zero as suggested
in [11], which is satisfied in our approach. Because the employed passive SEF (Eq. 4.7) is in a
similar formulation as the original HO model, which indicates the convexity of Eq. 4.7 can be
ensured if all parameters are positive. The initial values for a, b, af, bf, an, bn, afs, bfs, afn and
bfn are all positive, thus the convexity will require the scaling factor greater than zero, which
is 0.5 in this chapter. However, as pointed out by Giantesio et al. [104], the polyconvexity of
the total energy function (passive and active) may not be ensured even though the passive SEF
is convex. Although we have not experienced stability issues using the active stress approach,
we must point out this approach may not be thermodynamically consistent. For generalised
thermodynamically consistent approaches, the reader is referred to [103, 104, 108].

Due to lack of DT-MRI data for the RV from the canine experiment, a rule-based approach
is used for generating fibre structure in the RV, and zero cross-fibre contraction is assumed. This
can be readily improved if measured RV fibre structure becomes available. We notice there is a
difference in the RV systolic function even though the RV model is identical in all three cases. In
particular, the RV contracts more in case LDDMM than in the two RBM cases. We think this is
due to the different LV contraction in the three cases. For instance, the end-systole angle between
the long-axis and longitudinal axis is different in each case. Palit et al.. [117] also found that
there are strong interactions between the LV and RV dynamics in diastole. This highlights the
importance of LV-RV interaction on cardiac pump function, which is why the bi-ventricle model
is used. In addition, the LDDMM framework [182] relies on geometrical features for warping
the two different geometries, a bi-ventricular model has much richer information compared to a
stand-alone LV model, in particular in the RV-LV insertion regions.

It is expected that there are differences in myofibre structure between the porcine heart and
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the canine heart, but this is difficult to assess as we don’t have measured DT-MRI fibre structure
for the porcine heart. However, despite the species difference, we find that the mapped canine
myofibre structure agrees well with other studies in terms of mean values [5, 91, 121], see Ta-
ble 4.1. For instance, Ahmad ed al [5] measured myofibre rotation angles in left ventricle free
wall (LVFW) of neonatal hearts (Anterior 51.1±3.8◦ ∼ -51.1±3.8◦, Posterior 40.2±2.9◦ ∼ -
40.2±2.9◦). Sack et al. [91] reported fibre rotation angles for a normal adult porcine heart based
on DT-MRI measurements (endocardium: 66.5±16.6◦, epicardium: −37.4±22.4◦). Myofibre
rotation angles from published experimental and numerical studies are also summarized in Ta-
ble 4.5. The mean fibre rotation angle (endocardium: 40◦, epicardium: −30◦) is measured from
the DT-MRI data and is still within the right range as the experimental studies in the Table 4.5.
The small rotation angle may be one of the reasons for the less EF in the model with the RBM
fibre structure, because the models with wider range of fibre rotation can achieve better pump
functions as shown in Fig. 4.10. The coupling effects of fibre dispersion and fibre rotation on
cardiac pump function are not further explored in this chapter.

Experimental studies Modelling studies
Epicardium Endocardium Epicardium Endocardium

Anterior LVFW [5] −51.1±3.8◦ 51.1±3.8◦ Doste et al. [203] −60.0◦ 60.0◦

Anterior RVFW [5] −70.5±6.5◦ 70.5±6.5◦ Sack et al. [204] −60.0◦ 60.0◦

Posterior LVFW [5] −40.2±2.9◦ 40.2±2.9◦ Bayer et al. [116] −50◦ 40◦

Posterior RVFW [5] −22.1±6.2◦ 22.1±6.2◦ Wang et al. [7] −60◦ 60◦

Excluding apex [91] −37.±22.44◦ 66.5±16.6◦ Gao et al. [13] −60◦ 60◦

Anterior [30] −35.7±8.6◦ 38.5±6.1◦ Barbarotta et al. [101] −60◦ 60◦

Lateral [30] −41.0±8.0◦ 29.7±6.6◦

Posterior [30] −57.0±6.2◦ 39.5±10.6◦

Table 4.5: Summary of fibre rotation angles from published experimental modelling studies.
RVFW: right ventricle free wall.

The spatial variations of the material properties have not been considered in this chapter,
and the same averaged dispersed active contraction model is applied across the whole LV for
case RBMuni. This approximation may be reasonable for healthy hearts, but questionable for
pathological cases. For example, the myocardium is known to be more heterogeneous post
myocardial infarction [200].

Finally, we would like to mention other limitations of our study. In the boundary condi-
tions we used, the basal plane of the models is constrained along the longitudinal direction,
and the rest nodes in the basal plane are free to move. This type of boundary conditions does
not represent in vivo conditions due to the lack of the pericardium and great vessels. Under in
vivo situation, with the constraints imposed by the pericardium, the apex does not move much.
Instead, the basal plane moves downward towards the apex in systole and moves upward in
diastole. In a recent study, Pfaller et al.. [205] demonstrated that simulated cardiac mechanics
could be much closer to the measured heart motion by including the pericardium influences,
which highlights the necessary of pericardial-myocardial interaction. A simplified lumped cir-
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culation model is used to provide pressure boundary conditions, which is a simplification of
pulmonary and systemic circulations. Coupling to a more realistic circulation model, such as
one-dimensional systemic models [206,207], will allow us to simulate more detailed cardiovas-
cular function in pathological situations [208]. Furthermore, we have not coupled the blood flow
inside ventricle, only applied a spatially homogeneous pressure to the endocardial surface, nor
have we considered contraction delay due to the action potential propagation [103]. Tremendous
efforts will be needed to address all those limitations, which is beyond the scope of this chapter.

4.5 Conclusion

In this chapter, we have developed a bi-ventricular porcine heart computational model from a
neonatal dataset, with mapped myofibre architecture from an ex vivo canine DT-MRI dataset us-
ing an LDDMM framework. Different approximations of myofibre architecture based on widely
used rule-based approaches are analysed in terms of cardiac pump function. Our results show
that using DT-MRI derived myofibre architecture can enhance cardiac work, achieve higher EF
and larger apical twist compared to rule-based myofibre models, even though they are all de-
rived from the same DT-MRI dataset. Our work shows that the major difference between the
LDDMM and RMB approaches is due to the fibre dispersion, which enables cross-fibre active
tensions. These are not captured by standard RBM based models. Introducing regional depen-
dent fibre structure in RBM is not sufficient to improve the model. However, when the myofibre
dispersion is taken into consideration, a simplified RBM based cardiac model can achieve sim-
ilar pump function as the LDDMM based model. We further note that in RBM based cardiac
models, the cross-fibre active tension along the sheet-normal direction can enhance active con-
traction, but the opposite is true along the sheet direction.
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Chapter 5

Fibre dispersion: its effects on cardiac
mechanics from diastole to systole

5.1 Introduction

In Chapter 4, we studied the effect of myofibre architecture on ventricular pump function by
using a neonatal porcine heart model from DT-MRI to rule-based methods, and proposed the
dispersed active stress model [15] by following the GST approach. However, fibre dispersion in
the passive response of myocardium was not considered. Furthermore, there is lack of study of
how compressed fibre exclusion could affect the ventricular passive filling and further affecting
to its pump function overall. Thus, there is a need to systematically quantify to which extent
the dispersion can affect ventricular dynamics both at diastole and systole under physiological
loadings.

Constitutive modelling of soft tissue with dispersed fibres have found that dispersed collagen
fibres can have a significant effect on the overall mechanical response of the soft tissue [20,124].
To incorporate fibre dispersion into a SEF, one way is to assume a PDF with respect to the mean
fibre direction, such as using the π-periodic von Mises distribution [20,134]. Then the total SEF
for the tissue can be the summarization of each fibre contribution along with other constituents.
Broadly speaking, there are two approaches for counting collagen fibre contributions: (1) the AI
approach [123], in which the stress from each fibre is added together; and (2) the other one is
the GST approach, which was first proposed by Gasser et al [20].

In soft tissue mechanics, it is often considered that collagen fibres will not bear load when
compressed, thus excluding compressed fibres is necessary [125]. Such exclusion is simple
when fibres are not dispersed by simply zeroing out fibre stress if compressed, but can be chal-
lenging when fibres are dispersed because a stretched domain needs to be determined at each
loading step according to its PDF. In both the AI and GST approaches, to exclude compressed
fibres under complex dynamics will generally require a 2D integration over a unit sphere at
each computational location at each loading step, except for some special cases where analytical

93



Chapter 5. Fibre dispersion: its effects on cardiac mechanics from diastole to systole

solutions may exist. The numerical realization of this 2D integration over a unit sphere may
require hundreds of integrations, thus the computational demand can be very high [136]. To
improve computational efficiency of this 2D integration of stretched fibres in FE simulation, Li
et al [17] developed a DFD model. The unit spherical surface of the fibre dispersion domain is
divided into finite elements, and the fibre bundle at the centroid of each element is chosen as
the representative fibre. If a representative fibre is stretched, then all the fibres in the element
area are assumed to contribute to the total stress, and the contribution amount is estimated by
the stretch of the representative fibre and corresponding probability density determined from the
PDF. Li et al. [17] found that DFD method could significantly reduce the computational demand
for excluding compressed fibres, for example, a speed-up of 224 times was achieved in their
study than using a traditional AI approach.

In this chapter, we have focused on mathematical modelling of fibre dispersion in myocardial
mechanics, and study how different fibre dispersions affect cardiac pump function. In order to
exclude compressed fibres for passive response, we adopt the DFD model for approximating a
continuous fibre distribution with finite fibre bundles, and then the GST approach is employed
for describing dispersed active tension. The methodological approaches are shown at first simple
test cases and gradually increasing in complexity. We first study the numerical accuracy of the
integration of fibre contributions using the DFD approach with an unit cube model, then compare
different mechanical response in an uniaxially stretched myocardial strip model with varied fibre
dispersions, which serves as a preliminary concept-proof. We finally study the cardiac pump
functions from diastole to systole in two heart models, a single LV model and a biventricle
model that are two common heart models.

Our results show that the DFD model is preferred for excluding compressed fibres because
of its high computational efficiency. Both the diastolic filling and the systolic contraction will
be affected by dispersed fibres depending on the in-plane and out-of-plane dispersion degrees,
especially in systolic contraction. The in-plane dispersion seems to affect myocardial mechanics
more than the out-of-plane dispersion. Despite different effects in the rabbit and human models
caused by the fibre dispersion, large differences in pump function exist when fibres are highly
dispersed at in-plane and out-of-plane. Our results highlight the necessity of using dispersed fi-
bre models when modelling myocardial mechanics, especially when fibres are largely dispersed
under pathological conditions, such as fibrosis.

This chapter is based on the published paper Guan, D., Zhuan, X., Holmes, W., Luo, X. and

Gao, H., 2021. Modelling of fibre dispersion and its effects on cardiac mechanics from diastole

to systole. Journal of Engineering Mathematics, 128(1), pp.1-24.
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5.2 Method

5.2.1 DT-MRI acquisition protocol

Diffusion-weighted images of a fixed rabbit heart were acquired on a 7T Bruker Pharmas-
can magnetic resonance imaging system, with a micro-imaging gradient insert (model BG-
6) and 100-A gradient amplifiers that provide linear magnetic field gradient pulses of up to
300 mT/m. The heart was contained in a 50 ml syringe (Terumo, Belgium) of inner diame-
ter 29.1 mm. The water was degassed with a slight vacuum and air bubble removed by agita-
tion. The sample syringe was placed in a 35 mm Bruker birdcage radio frequency resonator.
Using a spin-echo diffusion weighted sequence, the echo time was 27 ms, the repetition time
was 2000 ms, the diffusion gradient separation was 14 ms, and the diffusion gradient dura-
tion was 7 ms. Diffusion weigthed imaeges were acquired for 6 directions with a b-value
of 500 s/mm2, additionally one b0 image (with no diffusion gradients) was acquired. The
field-of-view was fixed to 4.5×3.1×3.1 cm3, matrix 160×110×110, with voxel dimensions of
0.282×0.282×0.282 mm3. The total scanning time acquiring one average, along six diffusion
directions, took around 47 hours. Using the DTI reconstruction software dtifit in FSL [209],
freely available at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, the 6 DWIs and
the b0 images were corrected for eddy currents, and then the metrics of the tensor, i.e. the
three eigenvalues, were computed. The radial diffusivity was then calculated by averaging of
the second and third eigenvalues.

5.2.2 Passive stress

It is a common practice to model myocardium as a hyperelastic fibre-reinforced incompressible
material as evidenced in various experimental studies [4, 5] and modelling studies [2, 91, 181].
Here, a reduced form of invariant-based SEF for incompressible soft tissue is used by only
including the contributions from the ground matrix and the fibres (both collagen and myofibres),
that is

W = Wg +Wf =
a

2b
{exp[b(I1−3)]−1}+ af

2bf
{exp[bf(max(I4f,1)−1)2]−1}, (5.1)

where a,b,af,bf are material constants, I1 = trace(C) and I4f = f0 ·Cf0 are strain invariants with
C = FTF and F the deformation gradient, f0 is the mean fibre direction in the reference state.
The max() in Eq. (5.1) is to ensure that only the stretched fibres can bear the loads. Eq. (5.1) has
been widely used for modelling collagenous tissue [63, 64] and myocardium [65, 66].

In general, fibres do not align perfectly along the mean fibre direction, but are dispersed [5].
To describe such dispersed fibres, we first introduce a spherical polar coordinate system based
on the layered fibre structure, the so-called f0− s0− n0 system, shown in Fig. 5.1 (a), thus a
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single fibre can be described in terms of the two spherical polar angles Θ and Φ in the reference
configuration as

M(Θ,Φ) = cosΘ f0 + sinΘ cosΦn0 + sinΘsinΦs0, (5.2)

within the domains of Θ and Φ defined over an unit hemisphere
S = {(Θ,Φ)|Θ ∈ [0,π/2] ,Φ ∈ [0,2π]} as shown in Fig. 5.1 (b). Since the two fibres lying in
one line are mechanically identical, thus S only needs to be defined over a unit hemisphere.

(a) (b)

Figure 5.1: (a) Surface plot of ρ(Θ, b1, Φ, b2)M(Θ,Φ) in the fibre system f0, n0 and s0 with
an unit vector M (red) representing the fibre direction defined by Θ and Φ. (b) Illustration
of a discrete triangular discretization of the unit hemisphere domain centralised with the mean
fibre direction f0 (the red arrow) with N representative fibre directions Mq (blue arrows) at the
centroid of each triangular surface.

The definition of PDF of fibre dispersion ρ(Θ, b1, Φ, b2) is same as that in section 4.2.2 of
Chapter 4, and the fibre dispersion domain is updated form the unit sphere to the unit hemisphere
by modifying the constant G in Eq. (4.13). Note large concentration parameter bi suggests less
dispersion, and vice versa. We write Wf in Eq. (5.1) as

W ∗
f =

∫
S

ρ(Θ, b1, Φ, b2)Wf(I4M(Θ,Φ))sinΘdΘdΦ, (5.3)

where I4M(Θ,Φ) = M · (CM), and Wf(I4f) =
af

2bf
{exp[bf(max(I4f,1)−1)2]−1}.

Integrating Eq. (5.3) analytically can be very challenging because of the max() function,
in other words, the exclusion of non-stretched fibres. In a recent study, Li et al [17] divided
the hemisphere space domain S into N spherical triangle elements using representative fibre
bundles for excluding non-stretched fibres, the so-called DFD approach, shown in Fig. 5.1 (b).
For detailed description of the DFD approach, please refer to [17]. In brief, the representative
fibre direction of a triangle (q) in Fig. 5.1 (b) is denoted as Mq(Θq, Φq) with Θq and Φq the
spherical coordinates of the centroid of the qth triangle, ∆Sq is the triangular area, and the fibre
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density distribution at this triangle is approximated as

ρq =
∫

∆Sq

ρ(Θ, b1, Φ, b2) sin ΘdΘdΦ, q = 1, · · · ,N, subject to
N

∑
q=1

ρq = 1, (5.4)

in which N is the number of discretized triangles for the unit hemisphere. Thus W ∗
f can be

further approximated as

W ∗
f u

N

∑
q=1

ρq Wf(I
q
4M), with Wf(I

q
4M) =

{
Wf(I

q
4M) if Iq

4M > 1
0 if Iq

4M ≤ 1
, (5.5)

where Iq
4M = Mq · (CMq).

Finally, the passive stress of myocardium with dispersed fibres is

σ
p = aexp[b(I1−3)]B+2

N

∑
q=1

ρq af (I
q∗
4M−1) exp[bf(I

q∗
4M−1)2] (mq⊗mq )︸ ︷︷ ︸

σ f

−pI, (5.6)

where B = FFT, Iq∗
4M = max(Iq

4M,1), mq = FMq, p is the hydrostatic-like pressure to ensure in-
compressibility, and I is the identity matrix. Algorithm 5.1 lists the detailed steps of numerically
calculating σ f in Eq. (5.6).

5.2.3 Active stress

To take into account dispersed active stress due to dispersed myofibres, we followed the GST
approach as in section 4.2.2 of Chapter 4 by introducing a structural tensor H, that is

H =
∫
S

ρ(Θ, b1, Φ, b2)sinΘM⊗MdΘdΦ, (5.7)

in which we assume the same ρ(Θ, b1, Φ, b2) as used in Eq. (5.3). Hence, the myocardial active
stress is

σ
a = TaH11f̂⊗ f̂+TaH22n̂⊗ n̂+TaH33ŝ⊗ ŝ. (5.8)

None zero H22 and H33 represent the cross-fibre contraction. Accordingly, the total myocardial
Cauchy stress is

σ = σ
p +σ

a. (5.9)

Note, the additive framework is employed here to model myocardial active contraction, alterna-
tive approaches exist, such as the active strain framework, please refer to [96,101,105] for more
details on the active strain framework.
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Algorithm 5.1 Excluding compressed fibres using the DFD framework for computing passive
stress from stretched fibres.

Data:
F: deformation gradient tensor
Result:
σ f: Cauchy stress resulted from stretched fibres

All computations are performed according to the f0–s0–n0 system
Divide the S into N spherical triangles using a freely-available Matlab code a

Calculate ρq =
∫

∆Sq
ρ(Θ, b1, Φ, b2) sin ΘdΘdΦ with ∑

N
q=1 ρq = 1

Initialization: σ f = 0 J = det(F) C = FTF
for q=1 to N: do

determine Θq and Φq
Mq(Θ,Φ) = cosΘ f0 + sinΘ cosΦn0 + sinΘsinΦs0
Iq
4M = Mq ·

(
CMq

)
if Iq

4M > 1 then
mq = FMq
σ f = σ f +2J−1 ρq af (I

q
4M−1) exp[bf(I

q
4M−1)2] (mq⊗mq )

else
σ f = σ f +0

end
end

awww.mathworks.com/matlabcentral/fileexchange/58453-spheretri

5.2.4 Estimation in the eigenvector space: the AI approach

In Eq. (5.5), Iq
4M is calculated directly using C and the representative fibre direction Mq, an

alternative approach to calculate I4M is to project M into the eigenvector space of C, and then
determine whether the fibre bundle Mq should be excluded or not. The eigenvector space of the
right Cauchy-Green tensor is

C = FTF = U2 = λ1v1⊗v1 +λ2v2⊗v2 +λ3v3⊗v3, (5.10)

where λi is the ith eigenvalue and vi is the corresponding ith eigenvector. We choose an order
such that λ1 ≥ λ2 ≥ λ3, then use vi to form an orthonormal right-hand basis with v3 = v1×v2.

Then a fibre vector M can be rewritten with respect to this eigenvector space (v1, v2, v3),
that is

M(θ ,φ) = cosθ v1 + sinθ cosφ v2 + sinθ sinφ v3, (5.11)

where θ , φ are polar angles in {v1, v2, v3} shown in Fig. 5.2 (a), and the squared fibre stretch is

I4M(θ ,φ) = M(θ ,φ) · (CM(θ ,φ)) = sin2
θ
(
λ2 cos2

φ +λ3 sin2
φ
)
+λ1 cos2

θ . (5.12)
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For incompressible myocardium, when F 6= I, we have

detC = λ1λ2λ3 ≡ 1 ⇒ λ1 > 1 > λ3. (5.13)

Replacing a = λ1−1, b = λ2−1, c = λ3−1, and x = sin2
θ , y = sin2

φ in Eq. (5.12), we have

I4M(θ ,φ)−1 = sin2
θ [cos2

φ (λ2−1)+ sin2
φ (λ3−1)]+

(
1− sin2

θ
)
(λ1−1)

= x[(1− y)b+ cy]+a(1− x) = (b−a)x+a− (b− c)xy > 0,
(5.14)

and it can be further simplified when b− c 6= 0, we arriveb−a
b−c +

a
b−c

1
x > y, if x > 0,

a > 0 if x = 0.
(5.15)

Note 0≤ x = sin2
θ ≤ 1 and 0≤ y = sin2

φ ≤ 1, b−a = λ2−λ1 ≤ 0 and b− c = λ2−λ3 ≥ 0.
Thus, from Eq. (5.15), we now consider the following 4 scenarios:

• 1): x = 0, a = (λ1−1)> 0 is always satisfied, see Eq. (5.13)

• 2): b ≥ 0 > c, that is λ2 ≥ 1 > λ3, the x− y curve defined in Eq. (5.15) is illustrated in
Fig. 5.2 (b). The x− y will stay above the x axis except when b = 0 in which the x− y

curve crosses the x axis at (1,0), and no crossing point with the y axis. Therefore, the
valid domain for stretched fibres Ωe is the shaded region defined in Fig. 5.2 (b) with two
sub-regions (Ωe

1 and Ωe
2), that is

Ω
e
1 =

{
y ∈
[ b

b−c ,1
]

x ∈ [0, f (y)]
, Ω

e
2 =

{
y ∈
[
0, b

b−c

]
x ∈ [0, 1]

, and Ω
e = Ω

e
1 ∪ Ω

e
2, (5.16)

where f (y) = a
(b−c)y+a−b . The corresponding polar angle domains Ω are

Ω1 =


φ ∈ [η , π−η ] ∪ [π +η , 2π−η ], with η = arcsin

√
b

b−c

θ ∈
[

0, arcsin
√

a
(b−c)sin2

φ+a−b

] ,

Ω2 =

{
φ ∈ [0, η ]∪ [π−η , π +η ]∪ [2π−η , 2π]

θ ∈
[
0, π

2

] , and Ω = Ω1 ∪ Ω2; (5.17)

• 3): 0 > b > c, the x− y curve crosses the x-axis at ( a
a−b , 0) as shown in Fig. 5.2 (c), the
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valid domain for stretched fibres is

Ω
e =

{
y ∈ [0,1]
x ∈ [0, f (y)]

, (5.18)

and the corresponding domain in terms of the polar angles is

Ω =

 φ ∈ [0,2π ]

θ ∈
[

0, arcsin
√

a
(b−c)sin2

φ+a−b

]
; (5.19)

• 4): b = c < 0, a special case of the scenario 3 by setting f (y) = a
a−c , and the domain is

Ω =

 φ ∈ [0,2π ]

θ ∈
[
0, arcsin

√
a

a−b

] ; (5.20)

(a) (b) (c)

Figure 5.2: (a) Fibre directions (M ) defined using the eigenvectors (v1, v2 and v3 ) of the right
Cauchy-Green tenor C with the two fibre angles θ and φ . (b) The stretched fibres Ωe of (x,y)
represented by the shaded area for case 2 and (c) case 3.

Alternatively, the fibre SEF per unit volume (Wf) with only stretched fibres can be re-defined
with respect to θ and φ , that is

Wf =
∫

Ω

ρ
∗(θ ,φ)Wf (I4M(θ ,φ))sinθdθdφ , (5.21)

where ρ∗(θ ,φ) = ρ(M (Θ),M (Φ)), and M is a mapping between (Θ,Φ) and (θ ,φ) using the
following identity,

[v1 v2 v3] [cosθ sinθ cosφ sinθ sinφ ]T = [f0 n0 s0] [cosΘ sinΘcosΦ sinΘsinΦ]T. (5.22)

100



Chapter 5. Fibre dispersion: its effects on cardiac mechanics from diastole to systole

Finally, the total passive stress in terms of θ and φ is

σ
p = J−1aexp[b(I1−3)]B− pI

+2J−1
∫

Ω

ρ
∗(θ ,φ)af (I4M−1)exp[bf(I4M−1)2]

(
m(θ ,φ)⊗m(θ ,φ)

)
sinθdθdφ ,

(5.23)

where m(θ ,φ) = FM(θ ,φ). Algorithm 5.2 illustrates the numerical evaluation of the dual inte-
gration in Eq. (5.23), identical to the AI approach.

Algorithm 5.2 Calculation of Cauchy fibre stress in the eigen-space of C by only counting
stretched fibres.

Data:
F: deformation gradient tensor;
Result:
σ f: Cauchy stress of collagen fibre at each Gaussian quadrature point.

Computation in the eigen-space of right Cauchy-Green tensor
eigen() is the function to compute eigenvectors and eigenvalues of a tensor;

Initialization: σ f = 0 C = FTF J = det(F);
(v1,v2,v3,λ1,λ2,λ3)=eigen(C);
Solving Eqs. 5.14∼5.19 to find out Ω, denoted as θ ∈ ( f1(φ), f2(φ)) while φ ∈ (φ1,φ2)
with discrete size ∆θ and ∆φ respectively;
for φ=φ1 to φ2: do

for θ= f1(φ) to f2(φ): do
(Θ,Φ) = (M (θ),M (φ));
ρ∗(θ ,φ) = ρ(Θ, b1, Φ, b2);
M(θ ,φ) = cosθ v1 + sinθ cosφ v2 + sinθ sinφ v3;
I4M = sin2

θ
(
λ2 cos2 φ +λ3 sin2

φ
)
+λ1 cos2 θ ;

m = FM;
σ f = σ f +2J−1ρ∗(θ ,φ)af (I4M−1)exp[bf(I4M−1)2](m⊗m)sinθ ∆θ∆φ .

end
end

An example of theoretical solution for a uniaxial tension test

Considering a single element, the mean fibre direction is along e1([1, 0, 0]), the uniaxial stretch
is also along e1. We further assume the dispersed fibres is transversely isotropic. Thus under
uniaxial stretch λ along e1, the deformation gradient tensor and right Cauchy-Green tensor are

F =


λ 0 0
0 1√

λ
0

0 0 1√
λ

⇒ C = FTF =

λ 2 0 0
0 1

λ
0

0 0 1
λ

 . (5.24)
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Therefore, the eigenvalues of C are λ1 = λ 2, λ2 = 1/λ and λ3 = λ2, and the corresponding
eigen vectors are e1, e2, and e3. The stretched fibre domain can be determined as the scenario 4
(Eq. (5.20)) in section 5.2.4, that is

Ω =

 φ ∈ [0,2π ]

θ ∈
[
0, arcsin

√
λ 2+λ

λ 2+λ+1

] . (5.25)

The fibre direction within the eigen-vector space of C can be expressed as

M(θ ,φ) = [cosθ sinθ cosφ sinθ sinφ ]T, (5.26)

then
m = FM = [λ cosθ

1√
λ

sinθ cosφ
1√
λ

sinθ sinφ ]T, (5.27)

and

m⊗m =

 λ 2 cos2 θ
√

λ cosθ sinθ cosφ
√

λ cosθ sinθ sinφ√
λ cosθ sinθ cosφ

1
λ

sin2
θ cos2 φ

1
λ

sin2
θ cosφ sinφ√

λ cosθ sinθ sinφ
1
λ

sin2
θ cosφ sinφ

1
λ

sin2
θ sin2

φ

 (5.28)

For demonstration purposes, a simple SEF of fibre contribution is assumed as

Wf = af(I4f−1)2, (5.29)

where af is material parameter. A simple transverse isotropic fibre distribution is also assumed,

ρ(θ ,φ) = ρ(θ)ρ(φ) = (C1 +C2θ)C0, (5.30)

in which C0,C1,C2 are constants. According to Eq. 15 (main text), the squared fibre stretch is

I4f(θ ,φ) = sin2
θ

(
1
λ

cos2
φ +

1
λ

sin2
φ

)
+λ

2 cos2
θ =

1
λ

sin2
θ +λ

2 cos2
θ . (5.31)

Finally, the total Cauchy fibre stress is

σ f = 4af

∫
Ω

(C1 +C2θ)C0(
1
λ

sin2
θ +λ

2 cos2
θ −1)m⊗msinθdθdφ , (5.32)
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and in components

σ
11
f =

afC0πλ

450
{240

(
3λ

3−5λ +2
)

C1 +450
(
λ

3−2λ +1
)
(C2 sin(ζ )− (C1 +C2ζ )cos(ζ ))

+25
(
3λ

3−4λ +1
)
(C2 sin(3ζ )−3(C1 +C2ζ )cos(3ζ ))

+9
(
λ

3−1
)
(C2 sin(5ζ )−5(C1 +C2ζ )cos(5ζ ))},

σ
22
f =

afC0π

900λ 2{480
(
λ

3−5λ +4
)

C1 +450
(
λ

3−6λ +5
)
[C2 sin(ζ )− (C1 +C2ζ )cos(ζ )]

+25
(
λ

3 +4λ −5
)
[C2 sin(3ζ )−3(C1 +C2ζ )cos(3ζ )]

+9
(
λ

3−1
)
[5(C1 +C2ζ )cos(5ζ )−C2 sin(5ζ )]},

σ
33
f =

afC0π

900λ 2{480
(
λ

3−5λ +4
)

C1 +450
(
λ

3−6λ +5
)
[C2 sin(ζ )− (C1 +C2ζ )cos(ζ )]

+25
(
λ

3 +4λ −5
)
[C2 sin(3ζ )−3(C1 +C2ζ )cos(3ζ )]

+9
(
λ

3−1
)
[5(C1 +C2ζ )cos(5ζ )−C2 sin(5ζ )]},

σ
12
f = 0, σ

21
f = 0, σ

13
f = 0, σ

31
f = 0, σ

23
f = 0, σ

32
f = 0.

(5.33)

in which ζ = arcsin
√

λ 2+λ

λ 2+λ+1 . Therefore, an analytical expression of fibre Cauchy stress can
be obtained for simplified fibre distribution function.

A hybrid algorithm based on algorithms 5.1 and 5.2

As has been reported by Li et al [17] and others, the dual integration in (Eq. (5.23)) can be very
computationally demanding. Since the strain invariant I4M will be same either evaluated at the
f0− s0−n0 system or the eigen-space of C, and the expression of I4M according to (Eq. (5.12))
can be readily obtained, we could replace Iq

4M(Θ,Φ) in Algorithm 5.1 with Iq
4M(θ ,φ) which is

evaluated in the eigen-space of C, thus an updated approach based on Algorithm 5.1 can be
realized (Algorithm 5.3).

In Algorithm 5.3, instead of evaluating Iq
4M(Θ,Φ) in Algorithm 5.1 in the local material

coordinate system f0–s0–n0, we evaluated Iq
4M(θ ,φ) in the eigen-space of C (Algorithm 5.2).

5.3 Results

In this section, we first studied the influences on stress distributions resulted from different fibre
dispersions in a multi-element myocardial strip (section 5.3.1) under uniaxial stretching, and
compared the DFD approach (Algorithm 5.1) with other two algorithms (5.2 & 5.3) in section
5.3.2. We then studied pump function in a dynamic bi-ventricular rabbit heart model (section
5.3.3) using the DFD approach for passive response and the GST approach for active response,
finally in a dynamic human LV model (section 5.3.4).
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Algorithm 5.3 A hybrid approach by evaluating squared fibre stretch I4M in the eigen-space of
C within Algorithm 5.1.

Data:
F: deformation gradient tensor;
Result:
σ f: Cauchy stress of collagen fibre.

Computation is in the f0− s0−n0 system
Divide the S into N spherical triangles
Calculate ρq =

∫
∆Sq

ρ(Θ, b1, Φ, b2) sin ΘdΘdΦ with ∑
N
q=1 ρq = 1

Initialization: σ f = 0 J = det(F) C = FTF
eigen() is the function to compute eigenvectors and eigenvalues of a tensor;
(v1,v2,v3,λ1,λ2,λ3)=eigen(C);
for q=1 to N: do

determine Θq and Φq;
(θq,φq) = (M (Θq),M (Φq));
Mq(θq,φq) = cosθq v1 + sinθq cosφq v2 + sinθq sinφq v3;
Iq
4M = sin2

θq
(
λ 2

2 cos2 φq +λ 2
3 sin2

φq
)
+λ 2

1 cos2 θq;
if Iq

4M > 1 then
mq = FMq;
σ f = σ f +2J−1 ρq af (I

q
4M−1) exp[bf(I

q
4M−1)2] (mq⊗mq );

else
σ f = σ f +0;

end
end

5.3.1 Uniaxial test on multi-element strip

Fig. 5.3 (a) schematically illustrates different combinations of b1 and b2 as in [210]. Different
values of N (40, 80, 160, 640) are chosen for integrating Eq. (5.4), the relative differences of
the numerical integrations compared to the analytical value (1.0) is shown in Fig. 5.5 (a). The
differences with N = 640 is almost negligible for all chosen b1 and b2. While for N = 160,
high accuracy of ∑

N
q=1 ρq can be achieved even for the combination of b1 = 8 and b2 = 8 in

which fibres are highly aligned both in-plane and out-of-plane. When N = 40, ∑
N
q=1 ρq is less

accurate whenever fibres are highly aligned either in-plane or out-of-plane, while good accuracy
can be achieved when b1 ≤ 2 and b2 ≤ 2. Therefore, in the following studies, unless explicitly
stated, N = 160 is used when either b1 = 8 or b2 = 8, otherwise N = 40 is chosen for the sake
of computational efficiency.

Fig. 5.3 (b) is the uniaxial test sample with a dimension of 15× 5× 3 mm3 as used in ex
vivo experiments [4]. The fibres lie in the e1− e2 plane and linearly rotate from −60◦ to 60◦

with respect to e1. The strip was virtually stretched along e1 by 1.2 by fixing one end. Two sets
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(a) (b)

Figure 5.3: Surface plots of ρ(Θ, b1, Φ, b2)M(Θ,Φ) for different combinations of b1 and b2
∈ {0,1,2,4,6,8} (a), and (b) a uniaxially stretched strip with linearly rotated fibres represented
by red arrows.

of passive parameters were used in this chapter, namely the rabbit and the human myocardium.
Parameter values for the rabbit myocardium were determined by fitting Eq. (5.1) to the equal-
biaxial experiments from [1] using the same optimization procedure in [181].

Equibiaxial stress-strain measured data from Lin and Yin [1] was chosen as shown in Figure
5.4, the sample size is 20×20×2 mm3 with 36◦ fibre rotation according to [1]. Passive material
parameters were estimated by formulating a non-linear least square minimization problem, and
the Matlab function fmincon (MatLab, MathWorks 2017) was used to minimize the loss function

L(β ) =
N

∑
n=1

[σ simulation
n (β )−σ

experiment
n ]2, (5.34)

where β denotes the set of unknown parameters, N is the total number of data points. The fitting
procedure is similar as in [181]. The fitting result is shown in Fig. 5.4.

Parameter values for the human myocardium were adopted from [2] inferred by matching
the measured in vivo heart dynamics. All parameter values are listed in Table 5.1. Note that
fibre dispersion was not taken into account when estimating passive parameters for both the
rabbit and human myocardium because of lack of experimental data.

Fig. 5.5 (b) shows σ11 using N = 640 under uniaxial stretching with four different fibre
dispersions, they are

• case 1: b1 = b2 = 0, the isotropic fibre distribution;

• case 2: b1 = 0,b2 = 2, the in-plane isotropic fibre distribution;
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Figure 5.4: Inference of rabbit myocardial passive property from the equibiaxial experimental
data of Lin and Yin [1]. Red circles and blue squares are measured data along the mean fibre
direction and the cross-fibre direction, respectively, and the solid lines are the final fitted result.

Parameters a (kPa) b af (kPa) bf Ta (kPa)

Rabbit 0.2678 4.5505 0.0977 5.0855 80
Human 0.224 1.6215 2.4 1.8268 145

Table 5.1: Parameters of rabbit myocardium by fitting to the experimental data in [1] and pa-
rameters for human LV model adopted from [2]. Contractility Ta was manually determined by
achieving a physiological EF within 50%∼ 75%.

• case 3: b1 = 2,b2 = 0, the transversely isotropic fibre distribution, in other words, the
rotationally symmetric distribution [20];

• case 4: b1 = b2 = 2, the general fibre distribution with both in-plane and out-of-plane
dispersion;

Significant differences can be found when using the human passive material parameters, with
the highest stress in the transversely isotropic fibre distribution, and the lowest in the planar-
isotropic distribution. Similar trend can be found for the rabbit myocardium, but with much less
differences, which could be explained by much smaller af for the rabbit myocardium (rabbit:
0.097 kPa vs human: 2.4 kPa). Figs. 5.5 (c-d) are the contours of σ11 at the maximum stretch
with different b1 and b2 for the rabbit and human myocardium, respectively. With more aligned
in-plane fibres (b1 → 8), σ11 becomes much higher suggesting stiffening along e1, the mean
fibre direction. For example, σ11 is increased by 10.6% from 3.85 Pa (b1 = b2 = 0) to 4.26 Pa
(b1 = 2,b2 = 0), followed by a 7.5% increment from b1 = 2,b2 = 0 to b1 = 8,b2 = 0. Similar
trends can be found for the human myocardium, a 62.9% increase from b1 = 0,b2 = 0 to b1 =

2,b2 = 0, and a further 21.5% increase from b1 = 2,b2 = 0 to b1 = 8,b2 = 0. On the contrary,
when b1 = 0, increasing b2 seems having little effect on σ11 as shown in Figs. 5.5 (c-d). Thus, a
transversely isotropic fibre distribution will reinforce the material stiffness along the mean fibre
direction overall, but not a planar-isotropic distribution.
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(a) (b)

(c) (d)

Figure 5.5: Relative errors of evaluating Eq. (5.4) using N = 40, N = 160 and N = 640 with
different b1 and b2 combinations (a), the relative error is calculated in relate to the analytical
value (1.0). (b) Stress-stretch responses of the uniaxial tension in four dispersion cases by us-
ing human (blue lines) and rabbit (red lines) material parameters, respectively. (c) Contours
of stresses at the maximum stretch when using rabbit material parameters and (2) the human
material parameters.

A compression experiment using human material parameters was further carried out with
the same strip up to 20% shortening along the mean fibre direction. Two dispersions were
considered here, one with b1 = b2 = 1 and the other one with b1 = b2 = 2. Fig. 5.6 shows the
resultant σ11. It can be found that the more dispersed fibre distribution leads to higher resultant
stress in magnitude compared to the case with less dispersion. This can be explained by the more
stretched dispersed fibres along the cross-fibre directions in the case with b1 = b2 = 1 compared
to the case with b1 = b2 = 2, although the mean fibre direction is under compression. Therefore,
dispersed fibres could lead to increased stiffness in compression.

5.3.2 Comparison between Algorithms

We first compared the computational efficiency between the DFD method (Algorithm 5.1) and
the AI method with the dual integration in the eigenvector system (Algorithm 5.2), and the hy-
brid DFD method (Algorithm 5.3) in a single hexahedron element as shown in Fig. 5.7 (a).
The mean fibre direction is along the e1 axis with a general fibre dispersion (b1 = b2 = 2).
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Figure 5.6: Compression tests with b1 = b2 = 1 and b1 = b2 = 2, respectively. A maximum
of 20% compression is applied along the mean fibre direction, the negative values mean the
resultant compressive stress.

Under a maximum stretch of 1.3, all algorithms converge to one identical stretch-stress re-
sponse, shown in Fig. 5.7 (b). Algorithm 5.1 with N = 160 took 21.1 seconds, followed by
Algorithm 5.3 (N = 160, 22.3 seconds), however, Algorithm 5.2 took about 75.7 seconds with
∆θ = ∆φ = 0.0982 in order to achieve the same accuracy as Algorithms 5.1 and 5.2. The much
longer computational time used by Algorithm 5.2 agrees with the findings by Li et al [17]. All
computation were performed using ABAQUS Explicit (Dasssult Systemes, Johnston RI, USA)
with user-coded subroutine for calculating myocardial stress in a Windows workstation (CPU
E5-2680 v3@2.50 GHz and 64.0 GB memory), and only one CPU was used. Therefore, Algo-
rithm 5.1 has been used in the following studies because of its high computational efficiency.

(a) (b)

Figure 5.7: A single element model with non-rotationally symmetric fibre distribution under
uniaxial stretching (a), and (b) stretch-stress responses using Algorithm 5.1 (the black line),
Algorithm 5.2 (the red cycles) and Algorithm 5.3 (the blue squares).
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5.3.3 The dynamic rabbit bi-ventricle model

A 3D bi-ventricle rabbit heart model was constructed from an ex-vivo dataset of a healthy rab-
bit heart, which was acquired using a 7 Tesla Bruker Pharmascan magnetic resonance imaging
system. The acquired volumetric image had a size of 160× 110× 110 with voxel dimensions
of 0.282×0.282×0.282 mm3. Fig. 5.8 (a) shows one processed DT-MRI image. Details of DT-
MRI acquisition protocols can be found in the supplementary material. The bi-ventricular wall
was first segmented from the ex-vivo DT-MRI data using ITK-SNAP 1 (Fig. 5.8 (a)), then the
boundary contours were exported into SolidWorks (Dassault Systemes, MA USA) for geome-
try reconstruction, and finally meshed by ICEM (ANSYS, Inc. PA USA). To take into account
varied fibre distribution at different regions, the rabbit geometry was further divided into four re-
gions: the left ventricular free-wall (LVFW), the right ventricular free-wall (RVFW), the septum
and the apex, as shown in Fig. 5.8 (b). The layered fibre architecture (Fig. 5.8 (c)) was gener-
ated using a RBM [15, 46], and the fibre rotation angles varied linearly from the epicardium to
endocardium according to the measurements from rabbit hearts in [3], and further summarized
in Table 5.2.

(a) (b) (c) (d)

Figure 5.8: The reconstructed bi-ventricle rabbit heart geometry from a DT-MRI data (296785
linear tetrahedral elements and 55957 nodes). (a) An example DT-MRI rabbit heart with delin-
eated ventricular wall enclosed by the red lines; (b) Four regions are defined for the rabbit heart
with different colors, f0, s0, n0 are the fibre–sheet–normal system, in which f0 is the mean fibre
direction, s0 is the sheet direction, in general along the transmural direction from endocardium
to epicardium, and n0 is the sheet-normal direction; (c) Rule-based fibre architecture with fi-
bre rotation angles defined in Table 5.2; (d) A schematic illustration of the bi-ventricular rabbit
model coupled with a circulatory system. MV: mitral valve, AV: aortic valve, RA: right atrium,
TV: tricuspid valve, PV: pulmonary valve, LA: left atrium, RA: right atrium, Ao: aorta, Sys:
systemic circulation, Pul: pulmonary circulation and PA: pulmonary artery. Grounded spring
with a stiffness of k is tuned to provide the appropriate PV response (i.e., compliance) for the
corresponding cavity. CV is the viscous resistance coefficient for describing resistance between
cavities. Flow through valves is realized by only allowing uni-directional fluid exchanging be-
tween two cavities.

1http://www.itksnap.org
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Regions LVFW RVFW Septum Apex

Epicardium -71.0 -78.2 -45.1 -29.6
Endocardium 59.6 28.0 51.5 69.3

Table 5.2: Fibre rotation angles at different regions of the rabbit heart adopt from [3].

The dynamic bi-ventricular rabbit model was implemented in ABAQUS Explict. In order to
simulate diastolic filling and systolic ejection, a lumped model of the pulmonary and systemic
circulation systems was attached to this bi-ventricle, which was realized through a combina-
tion of surface-based fluid cavities and fluid exchanges [188] as shown in Fig. 5.8 (d). After
preloading both ventricles with the prescribed EDPs (LV: 8 mmHg and RV: 3 mmHg) within
0.1 s, the iso-volumetric contraction starts and the ventricular pressures increase sharply, fol-
lowed by the systolic ejection at around t = 0.15 s after the valves open when the LV and RV
pressures exceed the pressure in the aorta (90 mmHg) and the pulmonary artery (10 mmHg),
respectively. The systolic ejection ends at around t = 0.3 s. We further assumed myocardium
contracts simultaneously across the whole wall immediately after end-diastole.

Lumped circulation models were attached to the rabbit heart model and the human LV model,
which were realized through a combination of surface-based cavities in ABAQUS as introduced
in section 4.2.3 of Chapter 4. Parameters for the lumped circulation model of rabbit and human
heart are listed in Table 5.3. Note, values of this rabbit model are much higher than that of the
human model because of human valves areas are much bigger than rabbit. For example, the
aortic valve area for human is around 3.7 cm2 [211], much larger than the rabbit aortic area,
which is 0.23 cm2 [212]. These settings ensure that both the human LV model and the rabbit
biventricle model can achieve physiological values of EF, SV and ESP, which are comparable to
the reported values of human heart [213] and rabbit heart [214], respectively.

Rabbit heart model Human heart model
Name Value Unit Name Value Unit
CAV

V 30.0 MPa ·mm2 · s/tonne CAV
V 1.2 MPa ·mm2 · s/tonne

CMV
V 20.0 −− CMV

V 1.2 −−
CPV

V 30.0 −− CPV
V −− −−

CTV
V 10.0 −− CTV

V −− −−
CSys

V 4500.0 −− CSys
V 92.0 −−

CPul
V 500.0 −− CPul

V −− −−
kAo 2.0 N/mm kAo 1.0 N/mm
kPA 0.8 −− kPA −− −−
kLA 0.01 −− kLA 0.1 −−
kRA 0.01 −− kRA −− −−

Table 5.3: Parameter values for the lumped circulatory model as shown in Fig. 5.8 (d) and
Fig. 5.12 (c). CV is the viscous resistance coefficient, and k is the stiffness of the grounded
spring.
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Cardiac dynamics were simulated with the four representative cases as mentioned in section
5.3.1, and an additional case with perfectly aligned fibres (case 5, without dispersion). Fig. 5.9
depicts the end-diastolic and end-systolic fibre stress distributions for the five representative
cases. Both the end-diastolic stress distributions and the deformed shapes are very similar for
all cases, but large differences can be found at end-systole. For example, nearly no contraction
for case 1 with isotropic fibre distribution (b1 = b2 = 0). Excessive longitudinal shortening
(≈ −20%) and wall thickening (≈ 120%) in case 2 with b1 = 0,b2 = 2, which has in-plane
isotropic fibre distribution. The heart contracts less in case 3 with b1 = 2,b2 = 0 compared to
the general fibre structure in case 4 with b1 = 2,b2 = 2, which behaves similarly to case 5 (no
dispersion) at end-diastole and end-systole.

Figure 5.9: Myofibre stress (σff) distributions with deformed shapes at end of diastole (top)
and end of systole (bottom) in the rabbit bi-ventricle model for case 1 (b1 = b2 = 0), case 2
(b1 = 0,b2 = 2), case 3 (b1 = 2,b2 = 0), case 4 (b1 = b2 = 2), and case 5 without fibre dispersion.

Fig. 5.10 (a) illustrates the PV loops for all cases, again, different combinations of in-plane
and out-of-plane dispersions can significantly affect the pump function of both the LV and RV.
Because of no contraction in case 1, its pressure loop degenerates to a point as indicated in
Fig. 5.10 (a). Case 2 has the highest cardiac work, that is the area enclosed by the PV loop, in
particular in the RV. Cases 4 and 5 have similar cardiac outputs with better performance than case
3. Figs. 5.10 (b, c, d) show the long-axis shortening, average myofibre stress at mid-ventricle
(σff) and the apical twist for the five cases during systole. For case 1, due to the isotropic
fibre distribution, there is little contraction in systole with the smallest long-axis shortening and
the apex twist, and nearly zero myofibre stress due to the counteraction of symmetrical fibre
distributions. While case 2 is on the other extreme, with the highest long-axis shortening (≈
−20%), the lowest myofibre stress due to the isotropic in-plane distribution, and the highest apex
twist. For cases 3, 4 and 5, the long-axis shortening, the myofibre stress and the apex twist follow
similar trends as shown in Figs. 5.10 (b, c, d). Considering the largest long-axis shortening and
the apex twist, and excessive wall thickening in case 2 compared to experimentally reported
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(a) (b)

(c) (d)

Figure 5.10: Systolic function for the five cases with different dispersed fibres in the rabbit heart
model. (a) PV loops; (b) long-axis shortening, and the long axis is defined as the line segment
between the LV basal centre and the apex (the black line in Fig. 5.9); (c) average myofibre stress
σff in the middle ventricle enclosed by the black rectangle in Fig. 5.9, and (d) the apex twist
angles.

values (around 46% in [215], 40% in [108]), it may suggest that the dynamics of case 2 can be
unphysiological, especially in systole.

Figs. 5.11 (a) and (b) show the differences of EDV of the LV and RV for different combina-
tions of b1 and b2 by comparing with case 5 without fibre dispersion. It can be found that the
differences in LV EDV and RV EDV are not significant compared to case 5, with a maximum
difference of 2% and concentrated close to the isotropic distribution (b1→ 0 and b2→ 0). How-
ever, significant differences exist for ESV of LV and RV as shown in Figs. 5.11 (c) and (d), in
particular when b1→ 0 and b2→ 0. The solid and dashed lines in Figs. 5.11 (c) and (d) indicate
the differences within the 5% range compared to case 5. The b1-b2 space within 5% range is
much narrower in the LV than RV, indicating that including fibre dispersion in the LV is nec-
essary for this rabbit model. Our results further suggest that fibre dispersion can significantly
affect both the LV and RV systolic function for this rabbit heart model, but less in the diastolic
filling. With high in-plane dispersion (small b1) and less out-of-plane dispersions (b2→ 8), both
the LV and RV can contract more, while with high in-plane and out-of-plane dispersions, both
the LV and RV pump functions are reduced significantly especially when b1 = b2 = 0, despite
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(a) (b)

(c) (d)

Figure 5.11: Relative differences of ESV and EDV values with different dispersion parameters
compared to case 5. (a) EDV differences of the rabbit LV and (b) RV, (c) ESV differences of the
rabbit LV and (d) RV, respectively.

slightly larger EDVs for both the LV and RV chambers.

5.3.4 The human LV model

A human LV model from our previous work is used here [2] to study how different fibre dis-
persions can affect the pump function in the human LV. Fig. 5.12 (a) shows the LV model with
a rule-based fibre structure as illustrated in (b) with linearly varied fibre rotation angle from
the epicardium (-60◦) to the endocardium (60◦). A similar simplified circulation system was
attached to the LV model as in the rabbit model, whereas only the aorta and the left atrium
(Fig. 5.12 (c)) were included. To simulate LV dynamics, we first preload the LV to 8 mmHg
within 0.3s, then the iso-volumetric contraction begins, followed by the systolic ejection around
at t = 0.4s when the LV pressure exceeds the aortic pressure (75 mmHg), and finally the ejec-
tion ends when the LV pressure is lower than the aortic pressure. We also assumed simultaneous
contraction in this LV model. The same five cases with varied fibre dispersions are analysed in
this section.

The end-diastolic and end-systolic fibre stress distributions for the five cases are shown in
Fig. 5.13. Myofibre stresses at end-diastole are similar across the five cases with slight difference
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(a) (b) (c)

Figure 5.12: A human LV model with 133,042 linear tetrahedral elements and 26,010 nodes (a)
and its fibre architecture (b) generated by the rule-based method with fibre rotation angles from
−60◦ at epicardium to 60◦ at endocardium. (c) A schematic illustration of the human LV model
with a circulation system, and the definitions of various symbols are same as those in Fig. 5.8
(d).

in the deformed shapes. The end-systolic shapes are largely different among the five cases.
Similar as in the rabbit model, no contraction happens in case 1, and excessive contraction
experienced by case 2. Although cases 3, 4 and 5 have similar end-systolic shapes, the stress
distribution is different in case 3 with stress concentration near the base, which may be caused
by the less long-axis shortening compared to cases 4 and 5.

Figure 5.13: Myofibre stress distributions (σ ff ) at the end of diastole (top) and at the end of
systole (bottom) for the human LV model with different combinations of b1 and b2.

Fig. 5.14 (a) further summarizes the PV loops for the five cases. For the cases either with
b1 = 0 or b2 = 0, a larger EDV can be achieved, suggesting an increased compliance in diastole
because of dispersed fibres. But those dispersed fibres seem compromising active contraction
because of the counteracting effects as in case 1 in which all fibres are equally distributed over
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the unit hemisphere, resulting no contraction at all under incompressible assumption (Fig. 5.14
(a)). Interestingly, the cardiac output from case 4 with a general fibre dispersion is slightly
larger than the non-dispersed case 5, that may be because of the larger EDV in case 4, which
leads to higher active contraction according to the ‘Frank-Starling’ law. Figs. 5.14 (b, c, d) show
the long-axial shortening, the fibre stress and the apex twist in systole, respectively. Again, an
excessive long-axis shortening can be found for b1 = 0 and b2 = 2 with a peak value of -36.8%
(case 2), nearly no shortening in case 1, and the long-axis shortening in case 4 is around 20%,
higher than cases 3 and 5. The myofibre stress at mid-ventricle is extremely low in case 1
due to the counteraction of dispersed myofibres, and followed by case 2 with in-plane isotropic
fibres. Similar trends can be found in cases 3, 4 and 5 but with different levels. Note because of
dispersed myofibres, there are cross-active tension along the sheet and sheet-normal direction,
which also affect myocardial contraction. For example, even though the myofibre stresses in
cases 2 and 3 are low, because of the in-plane myofibre distribution, large contractile stress
can be found along the sheet-normal direction, which will further contribute to contraction as
suggested in [15]. The maximum apex twist angles are similar for cases 2, 3 and 5 (around 25◦),
15◦ for case 4, and lowest in case 1 as expected. Thus for this human LV model, a fully dispersed
myofibre structure (case 1) is non-physiological because of nearly no contraction, while an in-
plane isotropic fibre structure (case 2) can lead to non-physiological dynamics in systole because
of the excessive long-axis shortening.

Fig. 5.15 is the contour plot of the relative EDV and ESV differences with varied b1 and
b2 compared to the case with non-dispersion fibres (case 5), the superimposed lines indicate
the parameter space with differences in the range of ±5%. The parameter space with > 5%
difference for EDV mainly locates near the b1 axis and b2 axis, with a maximum difference of
18% when b1 = 0 and b2 = 0. The differences in ESV are much more significant as shown in
Fig. 5.15 (b). Still, the regions near the b1 and b2 axis have reduced myocardial contraction with
much larger ESV compared to case 5. In Fig. 5.15 (b), we can also find a region enclosed by
the dashed line which has much less ESV compared to case 5, this can be explained by the large
in-plane dispersion which can enhance pump function as found in our previous study [15]. Thus
for this human LV model, when (b1,b2 ∈ [0, 2]), there is a need to incorporate fibre dispersion,
beyond that, the differences of LV EDV and ESV are in general within 5% range compared to
the case without considering fibre dispersion. In fact, the same parameter space of b1,b2 ∈ [0, 2]
can be found for the rabbit model, where the large difference (i.e. > 5% ) exists as shown in
Fig. 5.11. The measured fibre dispersion in human myocardial samples from [4] is represented
by the white dot in Fig. 5.15, which lies in the < 5% region of the EDV and ESV differences
compared to case 5.

115



Chapter 5. Fibre dispersion: its effects on cardiac mechanics from diastole to systole

(a) (b)

(c) (d)

Figure 5.14: Systolic function for the five cases in the human LV model. (a) PV loops; (b) long-
axis shortening, the long-axis is defined as the link between the LV basal centre and the apex
(the black line in Fig. 5.13); (c) average myofibre stress σff in the middle ventricle indicated by
the black rectangle in Fig. 5.13, and (d) the apex twist angles.

(a) (b)

Figure 5.15: Relative differences of EDV (a) and ESV (b) with different dispersion parameters
compared to case 5 for the human LV model. The contour lines indicate ±5% difference, and
the white dot is the measured dispersion (b1 = 4.5,b2 = 3.9) from Sommer et al [4].

5.4 Discussion

In this chapter, we have focused on how different fibre dispersions will affect myocardial me-
chanics both passively and actively. Fibre dispersion is described by a non-rotationally sym-
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metric distribution based on recent experimental studies [4, 5]. In order to exclude compressed
fibres for passive response, we adopted the DFD model developed in [17], and then the general
structural tensor [20] was employed for describing dispersed active tension as in our previous
study [15]. We first studied the numerical accuracy of the integration of fibre contributions using
the DFD approach, then studied the different mechanical response in a uniaxially stretched my-
ocardial sample with varied fibre dispersions. Two heart models were further employed in this
chapter, the rabbit bi-ventricle model and the human LV model. Cardiac dynamics from diastole
to systole were simulated with different fibre dispersions. Our results show that fibre dispersion
can have significant effects on myocardial mechanics and the pump function, which highlights
the necessity of using appropriate dispersion models when modelling myocardial mechanics,
especially when fibres are largely dispersed.

The SEF for myocardium (Eq. (5.1)) only includes two strain invariants I1 and I4 . We further
fitted this SEF to the biaxial stretching experimental data of human tissues reported by Sommer
et al [4], as shown in Fig. 5.16. The experimental is re-digitized from the Figure 9(b) in Som-
mer et al’s study. It can be found that Eq.(1) agrees well with experimental data both along
the fibre direction and the cross-fibre direction. Good agreements were achieved along the fibre
direction and the cross-fibre direction. Myocardium was further assumed to be incompressible,
a widely adopted assumption in literature [2,11,90–92]. In our human LV model, J = 1±0.008
at end-diastole and J = 1± 0.009 at end-systole, which suggests myocardial incompressibility
was achieved in our simulations, and the very small standard deviation is due to the numeri-
cal realization of the incompressible penalty. Interested readers can refer to [216] for a recent
contemporary review of constitutive modelling of myocardium.

Figure 5.16: Fitting results to an equal-biaxial tension test in Sommer et al. [4] using Eq.(1).

To model fibre dispersion, the AI approach and the GST approach have been widely used
in various soft tissue mechanics, such as arterial wall, myocardium, tendon, valvular tissue, and
skin, etc. One striking feature of collagen fibres is that they can not bear the loading when com-
pressed, thus it is necessary to exclude compressed fibres. In this chapter, we have adopted the
DFD approach developed in [17], which is a numerical approximation of the AI approach. By
discretizing an unit hemisphere into N spherical triangles, the DFD approach can then integrate
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stress contributions from stretched fibre bundles in a much faster way as demonstrated by Li et
al [17], and also in this chapter. The advantage of the DFD approach is that by replacing the
double integration in the AI approach with finite representative fibre bundles, it preserves the
straightforward compressed fibre exclusion from the AI approach.

In our previous study [15], we have determined the dispersed active tension from a DT-MRI
acquired fibre structure using the GST approach along with a rule-based fibre structure. We
found that this GST-based dispersed active stress model can well approximate the systolic func-
tion in a bi-ventricle model compared to the DT-MRI derived fibre structure, the most realistic
fibre structure. Since there is no need to exclude any myofibre during active contraction, the
GST approach is naturally convenient to take into account dispersed active tension for the sake
of computational efficiency. In this chapter, we further tested the DFD approach for the ac-
tive stress with one hexahedra element, and the total active tension is σ a = Ta ∑

N
q=1 ρq m̂q⊗ m̂q

where m̂q = mq/|mq|. Because the active tension is much higher compared to the passive stress
part at systole, a much larger N was needed compared to the value used for the passive response
during the numerical integration of the fibre contribution. We then compared the DFD-based
and GST-based active tension in the human LV model with N = 160, the ESV difference was
negligible for this two approaches, while the computational time was much longer for the DFD-
based active tension, which took 6 times longer for one cardiac cycle than the GST-based active
tension.

According to the studies from Sommer et al [4] and Ahmad et al [5], the in-plane and out-
of-plane dispersions are largely different, thus a non-rotational symmetry assumption is more
appropriate than the rotationally symmetry distribution as assumed in the κ model [21]. Further-
more, the non-rotational symmetric fibre distribution allows us to study how different degrees of
in-plane and out-of-plane dispersions can affect ventricular dynamics, for example from the fully
isotropic to the in-plane isotropic fibres, the transversely isotropic fibres, the general dispersion,
and the highly aligned fibre structures as depicted in Fig. 5.3 (a).

In the DFD approach, the dispersed fibre distribution within an hemisphere is first divided
into N triangles before excluding compressed fibres, see Fig. 5.5. In Li et al’s study [17], they
used N = 640 for the hemisphere discretization when modelling the simple shear and the uniaxial
tests. Because the computational demanding for the rabbit and human heart models can be very
high even without fibre dispersion, usually hours for one cardiac cycle, thus we first determined
the possible minimum N for integrating fibre contributions with different b1 and b2. We found
that in general N = 40 can achieve a fairly good agreement with the theoretical value if fibres
are not highly aligned (Fig. 5.5 (a)), but except for b1 = 8 or b2 = 8 in which a larger N will
be needed. A further test on the human LV model with N = 160 and N = 40 showed that the
computation time with N = 160 was almost 3.2 times longer than with N = 40, while the pump
function was nearly identical.

Fibre dispersion seems having little influence on the passive filling of the rabbit bi-ventricle,
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but not for the human heart. This agrees with the our previous work using a neonatal porcine
biventricle model [15], in which the LV and RV EDV differences were around 1.4% between
a rule-based fibre structure without dispersion and a DT-MRI fibre structure which is naturally
dispersed. The size of the neonatal porcine heart in [15] is similar to the rabbit heart in this
chapter. The possible reasons for the different impacts from fibre dispersion between the rabbit
and LV models are: (1) the much thinner wall in the rabbit heart (4 mm) compared to the human
heart (10 mm), thus the changing of mean fibre angle is more rapid in the rabbit heart than
the human heart, which may indicate that the diastolic filling in the rabbit heart could be more
sensitive to the mean fibre rotation angle; (2) different fibre structures, i.e. different fibre rotation
angles; (3) different passive material properties; (4) the much smaller size of the rabbit heart
compared to the human heart.

Because of the wavy structure of the collagen network in the soft tissue, collagen fibres are
initially crimped, and gradually recruited to bear the loading with increased stretch [8, 126].
Only recently, Cheng et al [8] assessed collagen fibre recruitment in bladder tissue using ad-
vanced bioimaging, and experimentally demonstrated that the low resistance in the toe regime,
corresponding to the low stretch regime, can be explained by the no-discernible recruitment of
collagen fibres. This will support the fundamental hypothesis in this chapter, also among others
[17, 127], that is a straight fibre under compression will buckle and not support load because of
its crimped configuration. This assumption is also necessary for reasons of stability as discussed
in [127]. Including recruitment into the SEF would be more physiologically relevant compared
to the simple tension-compression switch [128]. Another way to take into account the crimped
wavy collagen fibre network is to adopt a multiscale approach from nanoscale up to the macro-
scale using homogenisation techniques as in [129]. In this chapter, the tension-compression
switch is used because of its simple numerical implementation.

The importance of convexity of a SEF has been studied in [127] for ensuing material stability
and meaningful mechanical behaviour. Here we will briefly discuss the convexity of the SEF in
the DFD approach when only considering myocardial passive response, see Eqs. (5.1)(5.4). The
convexity of the isotropic part in Eq. (5.1) has been demonstrated in [11], thus we only discuss
the convexity of the anisotropic part (Eq. (5.4)). For each fibre bundle, ρq is constant, thus for
the local deformation tensor C, we have

∂Wf(I
q
4M)

∂C
= W

′
f (I

q
4M)Mq⊗Mq,

∂ 2Wf(I
q
4M)

∂C∂C
= W

′′
f (Iq

4M)Mq⊗Mq⊗Mq⊗Mq, (5.35)

and

W
′

f (I
q
4M) = af (I

q
4M−1) exp[bf(I

q
4M−1)2],

W
′′

f (Iq
4M) = af exp[bf(I

q
4M−1)2] [1+2bf(I

q
4M−1)2].

Because af and bf are positive parameters. When the fibre bundle (Mq) is under stretch, Iq
4M > 1
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ensures both W
′

f (I
q
4M) > 0 and W

′′
f (Iq

4M) > 0; When the fibre bundle is under compression,
by setting Iq

4M = 1 or equivalently Wf(I
q
4M) = 0, then W

′
f (I

q
4M) = W

′′
f (Iq

4M) = 0. Therefore,

∑
N
q=1 W

′
f (I

q
4M) > 0 and ∑

N
q=1 W

′′
f (Iq

4M) > 0 ensure the convexity of Eq. (5.4) . During active
contraction, the adopted active stress approach may violate the thermodynamic constraints [96],
and might further lead to no-convexity and instability issue. As discussed in other studies [96,
108], the active strain approach would be an alternative approach if thermodynamic constraints
need to be enforced. Nevertheless, we have not met instability issue in this chapter.

We further found that active contraction is sensitive to fibre dispersions for both the human
and rabbit models. For example, the isotropic fibre distribution leads to almost no contrac-
tion, while the in-plane isotropic fibre distribution results purely in-plane active stresses with
a high proportion of active tension along the sheet-normal direction, which leads to excessive
longitudinal contraction in the human model (-36.8%) than reported the normal range in human
(−16.7±2.2% [217], and−17.75±5.44% [218]). For both the LV and rabbit models, a general
dispersed fibre structure, i.e. b1 = 2 and b2 = 2 can achieve a slightly larger cardiac output than
the non-dispersed fibre structure, that is because the cross-fibre active stress can enhance the
pump function as demonstrated in our previous study [15] and other studies [1, 91].

We would like to mention limitations. First, the passive SEF only incorporates the ma-
trix and fibre contributions, but not including the terms associated with the sheet-direction and
the sheet-normal as in other studies [11, 181], that is because of lack of experimental data for
identifying all parameters and dispersed fibre measurements in those two directions. Secondly,
fibre dispersion is only considered along the fibre direction f, it is possible to include the sheet
dispersion and the sheet-normal direction as in [74], but it would make the computation very
challenging. Thirdly, a lumped circulation model is used for the ventricular models to pro-
vide physiologically accurate pressure boundary conditions. This lumped circulation model is
similar to the Windkessel model and realized by a combination of surface-based fluid cavities
and uni-directional fluid exchanges [15, 91]. Using a more realistic circulation model, such as
one-dimensional models, will allow us to systematically investigate the interactions between
ventricles and blood flow in vessels [208,219]. A further limitation is that the electrophysiology
is not modelled in this chapter, but assuming all myocytes contract simultaneously following our
previous studies [15, 46, 208] and other studies [91]. Reasons are that in healthy hearts (1) the
action propagation in the LV is much faster than the mechanical contraction, (2) an electrome-
chanical model will significantly increase the modelling complexity, such as the Purkinjie fibre
network [220], and further difficulties in parameter calibration. We refer interested readers to the
review [103] for multi-physics modelling. Last but not the least, the experimental data for the
rabbits were from different studies, and rule-based fibre structures were assumed for both heart
models. A combined experimental measurements (bi-axial and shear mechanical tests, DT-MRI
fibre acquisition, ventricular pressure measurements, in vivo dynamics imaging, etc.) with the
computational modelling from the same heart will be desirable to gain a deeper understanding
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of how different fibre structures affecting ventricular pump function.
Despite those above limitations, the present computational framework can be readily to be

extended to subject-specific multi-physics simulations [103] by including other heart cham-
bers, electrophysiology, ventricular blood flow, and perfusion within myocardium, etc. Fu-
ture studies shall also explore state-of-art assimilation methods in computational cardiology
for clinical translation [221], and fast computation using cutting-edge machine learning ap-
proaches [216, 222].

5.5 Conclusion

This chapter systematically investigates the impact of fibre dispersions on myocardial mechan-
ics both passively and actively, first on a myocardial strip, then a rabbit bi-ventricle model,
and finally a human LV model. The fibre dispersion in myocardium is characterized by a non-
rotationally symmetric distribution using a π−periodic Von Mises distribution. To exclude com-
pressed fibres, two different approaches are compared, including the DFD model and the AI
based approach within the eigen-space of the right Cauchy-Green tensor. The dispersed active
tension is derived from the general structural tensor approach. Our results show that the DFD
model is preferred for excluding compressible fibres because of high computational efficiency
as already demonstrated in the literature. Our results further suggest that both diastolic filling
and systolic contraction can be largely affected by dispersed fibres depending on the in-plane
and out-of-plane dispersion degrees, especially for systolic contraction. The in-plane dispersion
seems affecting myocardial mechanics more than the out-of-plane dispersion, an inappropriate
dispersed fibre structure will result in a non-physiological dynamics (i.e. in-plane isotropic fi-
bres). Despite different effects in the rabbit and human models caused by the fibre dispersion,
large differences in pump function exist when b1,b2 ∈ [0,2], suggesting the necessary including
fibre dispersion in cardiac models when the fibre dispersion is high, especially for pathological
myocardium, i.e. fibrosis.
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Part II

Growth and remodelling in left ventricle
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Chapter 6

Growth and remodelling: a framework
based on the constrained mixture theory

6.1 Introduction

The incidence of heart failure, such as after heart attack, has remained persistently high due to
the maladaptive G&R of heart. The myocardium responds to internal or external environmental
changes, such as mechanical loading conditions, by adaptably altering its structure and function.
These adaption processes are generally referred to as G&R. For example, when the heart is sub-
jected to chronic overload conditions, ventricular dysfunction occurs after initial compensatory
hypertrophy failing, finally resulting in heart failure.

There are two types of overload: pressure overload and volume overload. Common causes
of pressure overload are aortic stenosis or systemic hypertension, thus LV has to overcome
high resistance in order to pump blood into the aorta to normalise the systemic circulation,
leading higher systolic wall stress. Thus, high wall stress during active contraction is usually
considered as a mechanical cue to trigger G&R in pressure overload [141]. In volume overload,
increased filling volume in the LV due to mitral valve regurgitation leads to higher stretch of the
myocardium. Thus stretch of fibre has been considered to be a mechanical cue to simulate G&R
of LV under volume overload.

The kinematic growth theory has been widely used to study G&R in soft tissue. Rodriguez
et al. [10] firstly proposed the volumetric growth by the multiplicative decomposition of the to-
tal deformation gradient tensor F, such that F = Fe Fg, according to the concept of plasticity.
Fg is an inelastic growth tensor that describes changes in shape and size of a stress-free and
compatible tissue. Growth can lead the tissue into a new incompatible and stress-free interme-
diate configuration. In the subsequent step, elastic deformation gradient tensor Fe assembles all
growing and original constituents into a new compatible state, in which residual stress may be
generated.
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The kinematic growth theory is an elegant approach to describe or predict G&R, with advan-
tages of simple concept and convenient computational implementation. However, there are also
limitations. For example, the theory was initially applied in stress-free configuration that does
not exist inside the living tissue. Additionally, a single phenomenological evolution law of Fg

cannot distinguish the different G&R patterns of multiple constituents in tissue. Moreover, con-
stant tissue density is always assumed during both elastic deformation and G&R. Although the
kinematic growth theory is able to characterise overall G&R progression, important information
such as different biological constituents’ adaptation and response are missed.

To overcome these limitations, Cyron et al. [147] introduced a homogenized constrained
mixture theory to describe G&R of each constituent, in which all constituents share the same
total deformation. For constituent i, the total G&R deformation tensor Fi

gr is assumed as the
product of an inelastic remodelling deformation tensor Fi

r and an inelastic growth tensor Fi
g, and

the total deformation gradient tensor under loading is F = Fi
eFi

rFi
g [147] where Fi

e is an elastic
deformation tensor. Similar growth laws can be adapted from the kinematic growth theory to
estimate growth ratios of constituents in this hybrid model.

In this chapter, the homogenised constrained mixture approach is employed to describe in-
dividual G&R of each component in myocardium, specifically, the ground matrix, myofibres
and collagen fibres. The reference configuration before the growth of each G&R cycle is up-
dated following the framework proposed by Lee et al. [143]. Finally, the coupled G&R model
is applied to a beating human heart to study its G&R processes under various pathological con-
ditions, including pressure overload induced by aortic stenosis and volume overload induced by
mitral regurgitation. Different biomechanical cues are considered as the onset of G&R. Effects
of G&R induced residual stress are also studied. Different assumptions of G&R considerations
of collagen fibre are further discussed, including elastic or inelastic remodelling, to explore the
interplays between myofibres and collagen fibres.

Our simulation results show that general features of eccentric and concentric cardiac growths
can be captured by using individual G&Rs of myofibre, collagen fibre and the ground matrix in
this homogenised constrained mixture G&R framework. Our results also highlight the impor-
tance of G&R properties of collagen fibre. For example, elastic remodelling or excessive grow-
ing collagen fibre could act as a scaffold to limit the eccentric enlargement of LV, but not on
the concentric growth. Residual stress induced by G&R may play an important role in promot-
ing eccentric growth while preventing wall thickening, which should be included in subsequent
G&R studies.
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6.2 Methodology of updated Lagrangian constrained mixture
G&R framework

6.2.1 Homogenised constrained mixture model

In this study, we only consider three main constituents in myocardium, i.e. the ground matrix,
myofibres and collagen fibres, denoted by {g,m,c}. Following Cyron et al. [147], although
deformation of each component is quantified in its own reference configuration, all components
share the same geometrical configuration before and after deformation states during the G&R
process, i.e. sharing same total deformation mapping tensor F. Moreover, Cyron et al. [147]
defined an inelastic growth tensor Gi, an inelastic remodelling tensor Fi

ir, and a homogenised
elastic deformation tensor Fi

e for ith constituent at each G&R step, and further assumed that the
ith constituent experienced the homogenised elastic and inelastic deformations [147].

A schematic illustration of Cyron’s G&R process is shown in Fig. 6.1, which consists of two
time-scale steps: the growth step (B1 → B4) and the loading step (B4 → B5). The growth
tensor for individual constituents (Gi) firstly converts the compatible configuration B1 to the
incompatible configuration (B2), and the inelastic remodelling (Fi

ir) further remodels it to B3

that can be either compatible or incompatible. Until this step, there is no residual stress induced
from growth. Then the elastic remodelling (Fi

er) lumps all constituents to the compatible con-
figuration B4 where residual stress is presented due to the growth. Finally, external loadings are
applied to B4, leading to a further elastically deformed configuration B5.

Figure 6.1: Scheme of G&R and loading process for each constituent in one numerical cycle. B1
is the updated reference configuration. Growth tensor (Gi) firstly converts B1 to the incompati-
ble configuration B2, and inelastic remodelling (Fi

ir) further remodels the B2 to the compatible
or incompatible configuration B3, then elastic remodelling (Fi

er) merger all constituents to the
compatible state B4, finally the configuration B5 is the loading state according to external loads.

The total deformation in a homogenised constrained mixture model is denoted as

F = Fi
eFi

irG
i, i ∈ {g,m,c}. (6.1)

Note that Fi
e includes two parts: the elastic remodelling deformation Fi

er that denotes an elastic
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deformation to achieve a compatible configuration after growth without external loadings, and
the external elastic loading deformation Fi

l that describes the elastic deformation from a grown
compatible state to another deformed compatible state under external loadings. Thus, Eq. (6.1)
can be written as

F = Fi
lF

i
erF

i
irG

i = Fi
eFi

gr, i ∈ {g,m,c}, (6.2)

where the elastic part Fi
e = Fi

lF
i
er and the inelastic part Fi

gr = Fi
irG

i.

6.2.2 Updated reference configuration framework

Updated reference configuration

Reference configuration plays a crucial role in describing geometric deformation occurred in
the G&R process [23] and the constrained mixture theory requires to track the evolution of
reference configurations of individual constituents [138]. To overcome the difficulty of tracking
all historical reference configurations, an updated reference framework is developed here. As
shown in Fig. 6.2, one numerical simulation cycle includes three steps: a pre-processing step
to update reference configuration (steps 1-6), a growth step to undergo G&R under no-loadings
(step 7), and a loading step to simulate cardiac pump function from systole to diastole (steps 8-
9). The growth step in Fig. 6.1 corresponds to step 7 in Fig. 6.2, and the loading step in Fig. 6.1
is accounted by steps 8-9 in Fig. 6.2. The residually-stressed compatible configuration B4 in
Fig. 6.1 (or end of step 7 in Fig. 6.2) will be the updated reference configuration for the next
growth step. Please note there are two time scales in one numerical simulation cycle, the G&R
step occurs in weeks and the loading step occurs in seconds. Thus, one numerical simulation
cycle can also be denoted as one growth cycle in this thesis.

Please note the residual stress in this chapter is quantified by the residual deformation tensor
Fr, and the growth is described by the growth tensor G. They are the inputs for each new growth
cycle. Details for the updated reference configuration are as following, schematically shown in
Fig. 6.2, in which steps 1-6 are updated reference configuration process, step 7 is the G&R step,
and steps 8-9 denote the loading step.

1. After finishing the nth growth cycle, obtaining the unloaded compatible configuration Bn;

2. Computing the residual tensor (Fn+1
r ) and the growth tensor (Gn+1) according to mechan-

ical clues from the nth loading cycle at configuration Bn;

3. Updating nodal positions according to the no-loading compatible geometry after G&R at
nth cycle, and constructing new configuration Bn+1;

4. Updating fibre directions at new configuration Bn+1;

5. Updating growth and residual deformation tensors at new configuration Bn+1;
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Figure 6.2: Scheme to update reference configuration and proceed a numerical simulation cycle
that includes a updating reference configuration step, a growth step and a loading step.

6. Starting the new (n+1)th cardiac growth cycle;

7. Allowing heart to deform into a new static compatible geometry with Fn+1
r and Gn+1

under no external-loadings;

8. Reloading back to prescribed EDP;

9. Starting a new cardiac systole and diastole process.

Updated growth tensors

Growths along fibre (myofibre and collagen fibre) and cross-fibre directions can result in cardiac
eccentric and concentric growths, respectively. Note that cross-fibre direction is the sheet direc-
tion in this thesis, or equivalently, the transmural direction from endocardium to epicardium.

At beginning of growth (B1 in Fig. 6.1), growth tensor is designed as

Gi = ϑ
f,i fi

1⊗ fi
1 +ϑ

s,i si
1⊗ si

1 +ni
1⊗ni

1, i ∈ {g,m,c}, (6.3)

where ϑ f,i, and ϑ s,i are growth ratios respectively along the fibre and cross-fibre directions in
the current growth cycle, and they are defined relative to the fibre length in B1, and the unit
vectors fi

1, si
1 and ni

1 represent the fibre, sheet and sheet-normal directions of each constituent in
B1. Descriptions of inelastic remodelling tensors will be discussed in the next subsection.

127



Chapter 6. Growth and remodelling: a framework based on the constrained mixture theory

A possible evolution equation for stretch-driven fibre growth could take the following for-
mulation [141]

θ̇ fn+1 =
1
τ f

(
θ max,f−θ f

n+1

θ max,f−1

)γ f

(λ e−λ
crit)H (λ e−λ

crit) with λ
e =
‖F · f0‖

ϑ f
n

, (6.4)

in which τ f, γ f are constant parameters, θ max,f is the maximum growth ratio along the fibre
direction, λ crit is the critical threshold of fibre stretch, and H (·) is the Heaviside step function
that is one when the elastics stretch λ e exceeds λ crit and is zero otherwise, θ f

n+1 is the total
growth ratio from the first growth cycle (before any growth) to the current (n+ 1)th growth
cycle, ϑ f

n = θ f
n/θ f

n−1 is defined as the incremental growth ratio in the nth growth cycle, and
n+ 1, n, n− 1 represent the growth cycle numbers. Assuming the growth ratio θ f

n is known at
the end of the previous time step tn, the following finite difference approximation of the first
order time derivative is introduced as

θ̇ fn+1 =
θ f

n+1−θ f
n

∆t
, (6.5)

where ∆t denotes the growth cycle time. The Newton-Raphson method is used to solve θ f
n+1

when λ e > λ crit, such that

Rf = θ
f
n+1−θ

f
n−

1
τ f

(
θ max,f−θ f

n+1

θ max,f−1

)γ f

(λ e−λ
crit)∆t = 0,

Kf =
dRf

dθ f
n+1

= 1+
γ f

τ f

(
θ max,f−θ f

n+1

θ max,f−1

)γ f−1
(λ e−λ crit)

θ max,f−1
∆t,

(6.6)

in which the numerical iteration can be stopped when |Rf/Kf| ≤ εs, i.e. θ f
n+1−Rf/Kf u θ f

n+1.
Stress-driven cross-fibre growth [141] is estimated by

θ̇
s
n+1 =

1
τs

(
θ max,s−θ s

n+1

θ max,s−1

)γs(
tr(Jσ t)

pcrit −1
)

H (tr(Jσ t)− pcrit), (6.7)

in which τs, γs are material parameters, θ max,s is the maximum growth ratio along sheet direc-
tion, pcrit is critical threshold value for active tension generated by each myocyte, σ t is the total
Cauchy stress tensor and J = det(F). Similarly, θ s

n+1 is solved by

Rs = θ
s
n+1−θ

s
n−

1
τs

(
θ max,s−θ s

n+1

θ max,s−1

)γs(
tr(Jσ t)

pcrit −1
)

∆t = 0

Ks =
dRs

dθ s
n+1

= 1+
γs

τs

(
θ max,s−θ s

n+1

θ max,s−1

)γs−1 (tr(Jσ t)/pcrit−1)
θ max,s−1

∆t.

(6.8)
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in which numerical iteration also is stopped when |Rs/Ks| ≤ εs, i.e. θ s
n+1−Rs/Ks u θ s

n+1. My-
ofibres, collagen fibres and the ground matrix all use Eq. (6.4) and Eq. (6.7) to estimate growth
ratios with their respective parameter value settings.

Updated volume fractions

Myocardial volume equals to the summation of individual volumes of all constituents by assum-
ing they are incompressible. Hence, the total volume growth amount (Jg

n ) from the (n−1)th to
the nth growth cycle can be derived from the incremental growth ratio ϑ i

n and the corresponding
volume fraction φ i

n−1 of all constituents,

Jg
n =

Vn

Vn−1
=

∑i={g,m,c}ϑ i
nV i

n−1

Vn−1
= ∑

i={g,m,c}
ϑ

i
n
V i

n−1

Vn−1
= ∑

i={g,m,c}
φ

i
n−1ϑ

i
n, (6.9)

where Vn−1 and V i
n−1 are respective the total volume and the individual volume of constituent

i in the (n− 1)th growth cycle. And, the updated volume fraction φ i
n of each constituent after

growth is inversely computed by

φ
i
n =

V i
n

Vn
=

ϑ i
nV i

n−1

∑i={g,m,c}ϑ i
nV i

n−1
=

ϑ i
nV i

n−1/Vn−1

∑i={g,m,c}ϑ i
nV i

n−1/Vn−1
=

φ i
n−1ϑ i

n

∑i={g,m,c}φ i
n−1ϑ i

n
. (6.10)

Updated fibre direction

The total deformation tensors between any two compatible configurations can be computed
according to relative nodal displacement,

Fa→b = ∇ua→b + I, (6.11)

where Fa→b is the total deformation tensor from a compatible configuration Ba to another Bb,
and ua→b is the corresponding nodal displacements. To compute fibre rotation, for example,
rotated fibre system by total deformation gradient tensor from B1 (a = 1) to B4 (b = 4) in
Fig. 6.1 is

fn+1′
1 = F1→4fn

1, sn+1′
1 = F1→4fn

1, nn+1′
1 = F1→4fn

1, (6.12)

where fn
1, sn

1 and nn
1 are respectively fibre, sheet and sheet-normal directions at B1 (in Fig. 6.1)

in the nth growth cycle. Note that fn
1, sn

1 and nn
1 are unit orthogonal vectors at B1, but fn+1′

1 , sn+1′
1

and nn+1′
1 are not at B4. Hence, we redefine fibre system as following

fn+1
1 =

fn+1′

|fn+1′|
, nn+1

1 =
fn+1
1 × sn+1′

1

|fn+1
1 × sn+1

1 |
, sn+1

1 =
nn+1

1 × fn+1
1

|nn+1
1 × fn+1

1 |
, (6.13)
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where fn+1
1 , sn+1

1 and nn+1
1 are the updated fibre system at B1 in the (n+1)th numerical simula-

tion cycle.

6.2.3 Strain energy functions

SEFs of the three constituents are

Ψg(F) =
ag

2bg
{exp[bg(I1−3)]−1},

Ψm(F) =
am

2bm
{exp[bm(I∗4m−1)2]−1},

Ψc(F) =
ac

2bc
{exp[bc(I∗4c−1)2]−1},

(6.14)

where ag,bg,am,bm,ac,bc are material parameters, I1 = trace(Cg) with Cg = (Fg)TFg and Fg the
deformation gradient of ground matrix; I4i = fi ·Cifi is the strain invariant with Ci = (Fi)T Fi and
Fi is the deformation gradient tensor of myofibre (i = m) or collagen fibre (i = c), respectively,
and fi is the mean fibre direction in the reference configuration; I∗4i = max(I4i,1) is to ensure
only the stretched fibres can bear load passively. The total volumetric part is

Ψvol(J) =
1
D

(
J2−1

2
− ln(J)

)
, (6.15)

where D is a multiple of the Bulk Modulus K, i.e., D = 2/K, F is the total deformation tensor
and J = det(F).

In an individual growth cycle, growth tensor Gi is constant, if we further assume the inelastic
remodelling tensor Fi

ir can be defined as a constant tensor according to remodelling property of
constituent i, then the elastic passive stress in one numerical simulation cycle is the function of
elastic deformation tensor Fi

e, such as

σ
i
p = J−1

F F
∂Ψi(F)

∂F
= J−1

F F
∂ [JFi

gr
Ψi(Fi

e)]

∂F
= J−1

F JFi
gr

F(
∂Fi

e
∂F

:
∂Ψi(Fi

e)

∂Fi
e

) = J−1
Fi

e
Fi

e
∂Ψi(Fi

e)

∂Fi
e

,

(6.16)
where Fi

gr = Fi
irG

i, JFi
e
= det(Fi

e), JFi
gr
= det(Fi

gr), and inelastic Fi
gr makes ∂JFi

gr
/∂Fi

e = 0 and
∂Fi

gr/∂Fi
e = 0 (4th order). Similarly, the total volumetric stress is estimated according to the

total volume growth in the current numerical simulation cycle, that is

σvol =
∂Ψvol(J)

∂J
I =

∂Ψvol(η)

∂η
I, (6.17)

where J = det(F), and η = J/Jg
k .

Additive active stress generated by myofibre is

σ
m
a = Taf̂⊗ f̂, (6.18)
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Finally, the total stress at nth growth cycle is

σ t =

(
∑

i={g,m,c}
φ

i
nσ

i
p

)
+φ

m
n σ

m
a +

1
D
(η− 1

η
)I. (6.19)

6.2.4 Application to human in vivo heart model

A human LV model in section 5.3.4 of Chapter 5 is employed here to study G&R using the
proposed framework. Fig. 6.3 (a) shows the meshed LV geometry with a rule-based fibre struc-
ture. Fibres linearly rotate from epicardium (-60◦) to endocardium (60◦). A similar simplified
circulation system [15] is attached to the LV model, whereas only the aorta and the left atrium
(Fig. 6.3 (b)) are included.

(a) (b) (c)

Figure 6.3: (a) Meshed network of human LV model (133,042 linear tetrahedral elements and
26,010 nodes) and three element circles at base, medium and apex positions. Inside fibre dis-
tribution was constructed by the rule based method from −60◦ at epicardium to 60◦ at endo-
cardium. (b) Sketch of the human LV model with a circulation system, same as the Fig. 5.12 (c).
(c) Meshed network of simple ring model (1,925 linear hexadecimal elements and 2,772 nodes)
and fibres also rotates from endocardium (60◦) to epicardium (-60◦).

In normal condition without G&R, LV pressure is firstly preloaded to normal EDP (8 mmHg),
and mean fibre stretch at end-diastole is the criterion (λ crit in Eq. (6.4)) to determine whether to
trigger fibre growth. Then, the iso-volumetric contraction begins, followed by the systolic ejec-
tion when the LV pressure exceeds the aortic pressure (80 mmHg), and finally the ejection ends
when the LV pressure is lower than the aortic pressure. The mean maximum trace of Cauchy
stress tensor during active contraction is the threshold (pcrit in Eq. (6.7)) to trigger cross-fibre
growth.

In pathological growth conditions, we first simulate the growth cycle with no external load-
ing boundary conditions, which allows the LV to grow and remodel triggered by excessive di-
astolic fibre stretch or active tension or both. In chronic eccentric growth, we use the increased
LV cavity pressure (16 mmHg [140]) for the EDP, and no changes for active contraction same as
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the model in section 5.3.4 of Chapter 5 represent no further remodelling in active contraction.
In contrast, for the concentric growth, the passive diastole filling is the same as the model in
section 5.3.4 of Chapter 5, instead we increase the aortic valvular stenosis from normal Cv = 1.2
to pathological Cv = 50 in Eq. (4.20). In this way, the LV systolic pressure will increase signifi-
cantly to overcome the stenosis in the aortic valve.

The G&R process will stop when the sum of relative errors of loaded and unloaded LV cavity
volumes with respect to these values in the previous growth cycle is less than the threshold Rcrit,
that is

Rerror =

∣∣∣∣∣V n+1
loaded−V n

loaded
V n

loaded

∣∣∣∣∣×100%+

∣∣∣∣∣V n+1
unloaded−V n

unloaded
V n

unloaded

∣∣∣∣∣×100% < Rcrit (6.20)

where Rerror is the total absolute relative error, Vloaded is the loaded LV cavity volume and
Vunloaded is unloaded value.

A simple meshed ring model (Fig. 6.3(c)) is further used here to study the residual stress
induced by G&R. Through dividing LV wall into five layers and projecting the average stress of
each layer onto the corresponding layer on the ring model, we will study how the ring will open
under the effects of growth-induced residual stress, a virtual ‘open-angle’ experiment.

6.3 Verification of the homogenised constrained mixture model

To verify the homogenised constrained mixture G&R in this updated reference framework, a
volumetric G&R is employed in this section. The homogenised constrained mixture growth
approach is performed in section 6.3.1 with more detailed descriptions of growth tensors. The
volumetric growth approach in section 6.3.2 adopts the updated reference framework described
in section 6.2. Both approaches use the human LV model in section 6.2.4, and they share the
same boundary conditions. Residual stress is released at the beginning of the growth cycle whilst
the residual stress generated by the new growth [143] is kept in the subsequent loading step.
The initial volume fractions of three constituents are φ g = 0.274, φ m = 0.7, and φ c = 0.026.
For simplicity, we assume that all constituents do not experience any inelastic remodelling, i.e.
Fi

ir = I (i = {g,m,c}), and share the same growth tensor. Only the eccentric growth induced
by volume overload is simulated in this section. The parameters in simulations are listed in
Table 6.1.

6.3.1 Homogenised constrained mixture approach

As shown in Fig. 6.4, B1 is stress free because of relieving residual stress before growth in an
updated reference configuration. After growth, B2 turns to be incompatible state. Then, the
elastic remodelling tensor homogenise all grown constituents into new compatible state B3, in

132



Chapter 6. Growth and remodelling: a framework based on the constrained mixture theory

Passive parameters and Tmax
ag (kPa) bg am (kPa) bm ac (kPa) bc Tmax
0.205 6.404 4.236 2.3710 32.82 11.674 210

Eccentric growth
τ f γ f λ crit θ max,f εf Rcrit

1.0 1.0 1.1124 1.4 1.0E-9 1.0%
Concentric growth

τs γs pcrit θ max,s εs Rcrit

17.0 1.0 0.0586 2.0 1.0E-9 5.0%

Table 6.1: Parameters in simulations of G&R

which the residual stress is presented. The compatible geometry in this configuration will be
the initial geometry in the next growth cycle after discarding all residual stress. The mechanical
clues to determine the growth tensor are from the loaded mechanical environments in B4.

Figure 6.4: Scheme of G&R when relieving residual stress before growth at beginning of each
updated growth cycle. The configuration B1 is stress-free and grows to the new stress-free
and incompatible configuration B2, which turns to be the compatible state again B3 by elastic
remodelling, finally cardiac dynamics in the B4 is achieved by applying external loadings in the
B3.

Therefore, the total deformation gradient tensor F in a homogenised constrained mixture
model for each constituent

F = Fi
lF

i
erG

i = Fi
eGi, i ∈ {g,m,c} (6.21)

where Fi
e = Fi

lF
i
er is the total elastic deformation that contributes to the final Cauchy stress.

Myofibres and collagen fibres share same direction (f1) at begging of growth (B1), and the
growth tensor is

Gi = ϑ
f,i fi

1⊗ fi
1 + si

1⊗ si
1 +ni

1⊗ni
1, (6.22)

thus, the total elastic tensor for ith constituent is

Fi
e = F(Gi)−1, (6.23)
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and the passive stresses in cardiac dynamics are

σ
g
p = J−1

Fg
e

ag exp[bg(I1−3)]Bg
e ,

σ
m
p = 2J−1

Fm
e

am (I∗4m−1) exp[bm(I∗4m−1)2] (fm
e ⊗ fm

e ),

σ
c
p = 2J−1

Fc
e

ac (I∗4c−1) exp[bc(I∗4c−1)2] (fc
e⊗ fc

e ),

(6.24)

in which

Bg
e = Fg

eFgT
e , Cg

e = FgT
e Fg

e , I1 = trace(Cg
e), JFg

e
= det(Fg

e),

Cm
e = FmT

e Fm
e , I4m = f1 ·Cm

e f1, fm
e = Fm

e f1, JFm
e
= det(Fm

e ),

Cc
e = FcT

e Fc
e, I4c = f1 ·Cc

ef1, fc
e = Fc

ef1, JFc
e
= det(Fc

e).

(6.25)

Finally, total passive stress at nth growth cycle is

σ
p
t = ∑

i={g,m,c}
φ

i
nσ

i
p. (6.26)

6.3.2 Volumetric growth approach

In the volumetric growth approach, all constituents are treated as a mixture and use a common
total deformation gradient tensor F, total SEF is sum of three parts, the ground matrix, myofibres
and collagen fibres, with respective volume fractions, such as

Ψ= φg
ag

2bg
{exp[bg(I1−3)]−1}+φm

am

2bm
{exp[bm(I∗4f−1)2]−1}+φc

ac

2bc
{exp[bf(I∗4f−1)2]−1},

(6.27)
where I1 = trace(C), I4f = f1 ·Cf1 are strain invariants with C = FTF and F is the total deforma-
tion gradient, and f1 is the mean fibre direction in the updated reference B1 (Fig. 6.5).

Figure 6.5: Scheme of volumetric growth without residual stress at beginning of growth. The
configuration B1 is stress-free and grows to the incompatible stress-free configuration B2.
Then, it turns to be the compatible state B3 by elastic remodelling, which is finally loaded
to B4.

In Fig. 6.5, the total deformation (F) consists of growing (G), remodelling (Fer) and loading
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(Fl) deformations, thus
F = FlFerG = FeG, (6.28)

where total elastic tensor Fe = FlFer is also

Fe = FG−1, (6.29)

with

G = ϑ
f f1⊗ f1 + s1⊗ s1 +n1⊗n1. (6.30)

Hence, the total passive stress is

σ
p
t = J−1

Fe
Fe

∂ Ψ

∂ Fe

= φg J−1
Fe

ag exp[bg(I1−3)]Be +φm 2J−1
Fe

am (I∗4m−1) exp[bm(I∗4m−1)2] (fe⊗ fe )

+φc 2J−1
Fe

ac (I∗4c−1) exp[bc(I∗4f−1)2] (fe⊗ fe )

(6.31)

in which JFe = det(Fe), Be = FT
e Fe, fe = Fef1, Ce = Fe

TFe ,I1 = trace(Ce), and I4f = f1 ·Cef1.

6.3.3 Verification results

The model using the homogenised constrained mixture approach is detonated as HCON and the
abbreviation of the model using the volumetric growth approach is VMG. Both approaches use
the same growth law. They both take 15 steps to reach a stable G&R state (Rerror < 1.0%). In the
grown LV, as shown in Fig. 6.6 (a), myocardium growth mainly occurs at endocardium, larger
total myofibre growth ratio θ f at inner wall, and epicardium has smaller growth increments.
Overall, the smallest growth (θ f = 1) is at the apex and the largest (θ f = 1.4) locates in the
middle of LV, corresponding to the enlarged LV cavity with more growth in the radial direction
than the longitudinal direction. HCON and VMG have almost same grown geometric anatomies
and θ f distributions. They all present thicker and less smooth ventricular wall than the original
LV with no growth (NG).

The average total myofibre growth ratio (θ f) from the beginning of growth are depicted in
Fig. 6.6 (b), where growth slows down in the later growing stage for both models and the two
θ f lines are overlapped. There are same overlaps in corresponding average incremental growth
ratios (ϑ f) of the whole LV in each updated growth cycle (Fig. 6.6 (c)), in which ϑ f gradually
decrease with LV growing. Neither θ f increases to constant value nor ϑ f decreases to unity,
because of local growth still occurs in the model although the growth ratio almost does not
change the total volume with Rerror < 1.0%. For example, ϑ f is less than 1.005 in the final
growth cycle.
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(a)

(b) (c)

Figure 6.6: (a) Grown LV anatomical diagrams and their inside growth ratio distributions in the
final growth cycle. With respect to growth cycles, average values of total growth ratio (b) and
incremental growth ratio (c) of the whole LV.

Residual stress after growth in the final growth cycle is plotted in Fig. 6.7 (a), where cross-
sectional view is cut from the LV midsection. There are no significant differences of residual
stress distributions between HCON and VMG, and the residual stress values are around zero.
Similar results can also be found in Fig. 6.7 (b) that describes transmural mean fibre stress (S11)
at each layer from endocardium (0%) to epicardium (100%) which are also around zero region.
When mapping residual stress from Fig. 6.7 (a) to simple ring model, open angles are shown in
Fig. 6.7 (c), only achieving same 3.5◦, much less than the experiential value (13±5.3◦ [223]).

Updated reference configuration framework is successful coupled to the homogenised con-
strained mixture theorem to simulate G&R process of a heart. Almost the same results between
homogenised constrained mixture theorem and volumetric growth theorem indicate the success-
ful implementation of homogenised constrained mixture theorem in FE simulations of heart
growth.
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(a) (b)

(c)

Figure 6.7: Residuals stress is estimated at compatible geometry after growth in the final growth
cycle. (a) Distribution of fibre stress component along fibre S11 at medium of LV, (b) mean
transmural stress along wall thickness, and (c) open angle under mean residual stress in the ring
model.

6.4 Comparison of maintaining and relieving residual stress
during G&R

Considering the residual stress caused by G&R can adversely affect G&R [224], scenarios of
maintaining or relieving the growth-induced residual stress before and after growth are compared
in this section by eccentric growth under volume overload. Same as section 6.3, all constituents
do not experience inelastic remodelling. Growth tensors for the ground matrix and collagen fibre
are the same as the growth tensor for myofibres, thus at each growth cycle, we only determine
the growth tensor for myofibres using the stretch-induced growth law (Eq. (6.4)).

6.4.1 With residual stress before and after growth

To compare the effects of the residual stress before growth for each constituent at an updated
reference configuration, two fictitious incompatible stress-free configuration B0 and B−1 are
included, as shown in Fig. 6.8. Residual stress from the previous growth cycle is denoted by
residual deformation tensor Fi

r0 , hence, the compatible configuration B1 with the residual stress
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can be achieved by pushing B−1 forward using Fi
r0. Then, the G&R process can follow the

growth, remodelling and loading steps (B1→B2→B3→B4). By setting B−1 as the initial
reference, the fictitious total deformation tensor (Fi′′) for each constituent is

Fi′′ = Fi
lF

i
erG

iFi
r0 = Fi

eGiFi
r0 = FFi

r0, (6.32)

in which F is total deformation tensor from the compatible configuration B1 state to the loaded
compatible configuration B4 with F = Fi

lF
i
erGi following the homogenised constrained mixture

theory. It is difficult to extract the total elastic deformation tensor form the Eq. (6.32), because
both Fi

r0 and Fi
e are general 2nd order tensors though Gi could be diagonal.

Figure 6.8: Scheme of G&R with residual stress before and after growth. B1 is real compatible
state with residual stress and grows to incompatible state B2 that turns to be compatible B3
then is loaded to B4. Fictitious incompatible stress free configurations B−1, B0 and B5 are
included to depict equivalent fictitious G&R paths. B−1 converts to B1 by residual deformation
tensor Fi

r0. After polar decomposition of Fi
r0, intermediate B0 is from rotation of B−1 then is

stretched to B1. Growing from B0 by equivalent growth, B5 merges into B3 by equivalent
residual stress or turns to B4 by total equivalent elastic deformation.

Applying the polar decomposition, Fi
r0 = Vi

r0Ri
r0, we can transfer B−1 to B1 by a rotation

step (Ri
r0) and then a stretch step (Vi

r0) with an intermediate stress-free incompatible configura-
tion B0 right after the rotation step. Since pure rotation dose not include elastic deformation,
B0 also can be the stress-free reference configuration to compute the fictitious total deformation
tensor, that is

Fi′ = Fi
lF

i
erG

iVi
r0 = Fi

eGiVi
r0 = FVi

r0. (6.33)

Even though Eq. (6.33) cannot directly provide the total elastic deformation tensor either, B0

and B1 share the same material coordinate system because pure stretch dose not change it.
To construct the equivalent fictitious growth, remodelling and loading paths, another ficti-
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tious incompatible configuration B5 is proposed here and assumed as growing from B0 by an
equivalent growth tensor Gi′ . Hence, from the grown B5 state to the compatible state B4 is the
equivalent fictitious total elastic deformation (Fi

e′). Thus, Eq, (6.33) is rewritten as

Fi′ = Fi
e′G

i′. (6.34)

According to Eq, (6.33) and Eq, (6.34), total elastic tensor is

Fi
e′ = FVi

r0(G
i′)−1, (6.35)

which can be used for computing the Cauchy stress at B4 in Fig. 6.8,

σ
g
p = J−1

Fg
e′

ag exp[bg(I1−3)]Bg
e′,

σ
m
p = 2J−1

Fm
e′

am (I∗4m−1) exp[bm(I∗4m−1)2] (fm
e′ ⊗ fm

e′ ),

σ
c
p = 2J−1

Fc
e′

ac (I∗4c−1) exp[bc(I∗4c−1)2] (fc
e′⊗ fc

e′ ),

(6.36)

where

Bg
e′ = Fg

e′F
gT
e′ , Cg

e′ = FgT
e′ Fg

e′, I1 = trace(Cg
e′), JFg

e′
= det(Fg

e′),

Cm
e′ = FmT

e′ Fm
e′ , I4m = fm

0 ·Cm
e′ f

m
0 , fm

e′ = Fm
e′ f

m
0 , JFm

e′
= det(Fm

e′ ),

Cc
e′ = FcT

e′ Fc
e′, I4c = fc

0 ·Cc
e′f

c
0, fc

e′ = Fc
e′f

c
0, JFc

e′
= det(Fc

e′),

(6.37)

Finally, the total passive stress at the nth growth cycle is

σ
p
t = ∑

i={g,m,c}
φ

i
nσ

i
p. (6.38)

From grown B5 to compatible B3 is equivalent fictitious elastic remodelling (Fi
r′) that is

estimated by
Fi

r′ = FX Vi
r0(G

i′)−1, (6.39)

where FX is total deformation gradient tensor from B1 to B3. In updated reference scheme,
B−1 is updated to B5 and B1 is updated to B3 in the next growth cycle, followed by fictitious
residual tensor Fi

r0 is updated to Fi
r′ .

At B1 in Fig. 6.8, we assume myofibre and collagen share same direction, and fi
1, si

1 and
ni

1 are orthogonal. In fictitious B0, fi
0, si

0 and ni
0 may be not orthogonal because of the residual

stretch tensor Vi
r0. Based on fibre direction at B0, we redefine sheet and sheet-normal direction
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at B0 as following

fi
0 =

Vi−1
r0 fi

1

|Vi−1
r0 fi

1|
, si′

0 =
Vi−1

r0 si
1

|Vi−1
r0 si

1|
, ni

0 =
fi
0× si′

0

|fi
0× si′

0|
, si

0 =
ni

0× fi
0

|ni
0× fi

0|
, (6.40)

where fi
0, si

0 and ni
0 are the orthogonal fibre, sheet and sheet-normal directions at B0. Then a

diagonal growth tensor is defined as

Gi′ = ϑ
f,i′ fi

0⊗ fi
0 + si

0⊗ si
0 +ni

0⊗ni
0. (6.41)

(a) (b)

Figure 6.9: Growth increments with (a) and without (b) residual stress. Configurations B0, B1,
B2 and B5 refer from Fig. 6.8. Red squares represent stress-free state whilst residual stress in
blue squares. Fibre length in B0 is l0, stretch ratio from B0 to B1 is pf, growth ratio from B1
to B2 is ϑf and fictitious growth ratio from B0 to B5 is ϑ

′
f . When relieving residual stress from

B2 to B5, growth increment with pre-stretch induced by residual stress in (a) needs to remove
the pre-stretch by p−1

f , whilst stress free increment keeps same length in (b).

In this study, we assume that equivalent fictitious growth tensor Gi′ is estimated from the
growth tensor Gi defined at the updated reference configuration B1. Under the residual stress,
the mechanical properties of the grown increment are uncertain during the growing process,
therefore, only two special cases are discussed here: growing with and without the effect of the
residual stress. In either case, we assume there are same pure growth increments, after relieving
residual stress, along fibre between fictitious B0 and real B1 even with different fibre directions.
For example, as shown in Fig. 6.9 (a), the fibre length in B0 is l0, the stretch ratio from B0 to
B1 is pf, the growth ratio from B1 to B2 is ϑf and the fictitious growth ratio from B0 to B5 is
ϑ
′
f , thus, the fibre length in B1 is pf l0 and the growth increment is (ϑf−1)p f l0. If the growth

increment with pre-stretch induced by residual stress, to keep same stress-free increment as that
in B5, it needs to drop the pre-stretch by inverse stretch ratio p−1

f ,

(ϑf−1)pf l0 p−1
f = (ϑ

′
f −1) l0 ⇒ ϑ

′
f = ϑf. (6.42)

On the other hand, if the growth increment is stress free (Fig. 6.9 (b)), it keeps same length from
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B2 to stress free B5, thus

(ϑf−1)pf l0 = (ϑ
′
f −1) l0 ⇒ ϑ

′
f = 1+(ϑf−1)pf. (6.43)

Therefore, the fictitious equivalent growth ratio under residual stress can be written as

ϑ
′
f = ω ϑf +(1−ω)[1+ pf(ϑf−1)], ω ∈ [0, 1]. (6.44)

We used ω = 1 in this section.

6.4.2 Without residual stress before and after growth

Considering cardiac growth cycle is much longer than beat step, we assume the residual stress
before and after growth may both be eliminated. As shown in Fig. 6.10, B3 is compatible state
with the residual stress after G&R from stress-free B1. B4 is the replica of B3 after relieving
the residual stress and further serves as the updated reference configuration for the next growth
cycle. Then all constituents share same loading deformation tensor Fl to B5.

Figure 6.10: Scheme of G&R without residual stress before and after growth. Stress-free B1
grows and remodels to B3 that turns to B4 after dropping residual stress. Then, all constituents
share same external loads to B5.

Note the residual stress in B3 does not present in the loading step, thus, the total elastic
tensor in dynamics is the common Fl for all constituents. The passive stresses in the loading
step are

σ
g
p = J−1

Fg
l

ag exp[bg(I1−3)]Bg
l ,

σ
m
p = 2J−1

Fm
l

am (I∗4m−1) exp[bm(I∗4m−1)2] (fm
l ⊗ fm

l ),

σ
c
p = 2J−1

Fc
l

ac (I∗4c−1) exp[bc(I∗4c−1)2] (fc
l ⊗ fc

l ),

(6.45)

in which

Bg
l = FlFT

l , Cl = FT
l Fl, fc

4 = Flf4 = fm
4

I1 = trace(Cl), I4 = f4 ·Clf4, I∗4m = max(I4,1) = I∗4c,

JFg
l
= JFg

l
= JFg

l
= det(Fl),

(6.46)
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where f4 is myofibre and collagen fibre direction in B4 configuration. Total passive stress at nth
growth cycle is

σ
p
t = ∑

i={g,m,c}
φ

i
nσ

i
p. (6.47)

6.4.3 Comparison results

The model maintaining the residual stress takes 17 steps to reach the stable grown state (Rerror <

1.0%) whilst the model relieving the residual stress takes 15 steps. In the grown LV, as shown
in Fig. 6.11 (a), myocardium growth also mainly occurs at endocardium, larger total myofibre
growth ratio θ f around inner wall, and epicardium has smaller growth increments. Comparing
to the model relieving residual stress, the model maintaining residual stress has smaller θ f of
myofibres whilst achieving bigger LV cavity with smooth ventricular wall.

(a)

(b) (c)

Figure 6.11: (a) grown LV anatomical diagrams and their inside growth ratio distributions in the
final growth cycle. With respect to growth cycles, average values of total growth ratio (b) and
incremental growth ratio (c) of the whole LV.

The variations of average total growth ratio (θ f) and the incremental growth ratio (ϑ f) of
myofibres in the whole LV from beginning of growth are respectively depicted in Fig. 6.11 (b)
and (c), where both θ f and ϑ f of the model with residual stress are smaller at the final growth
cycle, such as θ f = 1.211 vs θ f = 1.275. In the model with residual stress, the quick decreasing
ϑ f results in a slow increase of θ f, and two more step to reach fully grown state, indicating the
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important role of residual stress in myocardial G&R.
LV wall is equally divided into five layers, and from endocardium to epicardium are denoted

by 1 ∼ 5. The average values of θ f and ϑ f at each layer are shown in Fig. 6.12. Both models
present bigger θ f and ϑ f near the LV inner wall. Differences of θ f between different layers
are bigger in the model with residual stress (Fig. 6.12 (a)), which gradually become constant
with further growth, whilst ϑ f at each layer approaches to unity with minor difference (Fig. 6.12
(b)). Incremental growth ratios at each layer become same after the ninth growth cycle in the
model without residual stress (Fig. 6.12 (d)) whose differences of θ f at each layer almost keeps
constant (Fig. 6.12 (c)).

(a) (b)

(c) (d)

Figure 6.12: With respect to growth cycles n, average total θ f and incremental ϑ f growth ratios
at each layers from endocardium (layer 1) to epicardium (layer 5) in maintaining residual stress
model (a,b) and in relieving residual stress model (c,d).

Overall, the fibre orientation in eccentric growth does not change much and fibres still keep
linear rotation along transmural direction. For example in Fig. 6.13 (a), fibres tend to circumfer-
ential direction with decreasing angles, around -2.5◦ at endocardium, in both models. However,
epicardial fibres in the model with residual stress almost keeps constant, whilst no residual stress
allows epicardial fibres to gradually decrease -7.1◦ in Fig. 6.13 (b).

Residual stress contributes to the bigger increments of LV cavity volume under both stress-
free (Fig, 6.14 (a)) and loaded (Fig, 6.14 (b)) conditions. For example, it has the biggest un-
loaded LV cavity volume growth, from 50.2 ml to 71.4 ml, while the model with relived residual
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(a) (b)

Figure 6.13: Mean fibre angles variations around endocardium (a) and epicardium (b).

stress only increases to 63.2 ml. LV cavity with normal EDP (8 mmHg) is 88.7 ml. Then,
under constant EDP 16 mmHg, the EDV gradually grows from 103.1 ml to 168.8 ml, about
63.7% increase, when maintaining residual stress in model, much bigger than that in the no
residuals stress model (30% increase). Additionally, after reaching the stable grown state, larger
enlargement of volume (97.4 ml) from unloading to loading (16 mmHg) occurs in the model
with residual stress, reflecting its softer myocardium.

(a) (b)

Figure 6.14: With respect to growth cycle, (a) unloaded LV volumes and (b) loaded LV volumes
with EDP (16 mmHg).

Residual stress after G&R in the final growth cycle is shown in Fig. 6.15 (a). Note that the
state before relieving residual stress in the model without residual stress, i.e. B3 in Fig. 6.10,
is compared here. Maintaining residual stress model exhibits negative fibre stress around endo-
cardium and positive stress around epicardium, whilst there is no significant differences in the
no residual stress model whose values are around zero. This may be the reason why the cross-
sectional rings in residual stress model is more like a circle (the left in Fig. 6.15 (a)) while the
another is like a square (the right in Fig. 6.15 (a)). Similar results can be found in Fig. 6.15 (b)
that describes transmural mean fibre stress (S11) at each layer from endocardium (0%) to epi-
cardium (100%). The S11 line of the non-residual stress model is around zero, whilst S11 of the
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(a) (b)

(c)

Figure 6.15: Residual stress is estimated at compatible geometry after growth in the final growth
cycle. (a) Distribution of fibre stress component along fibre S11 at medium of LV, (b) mean
transmural stress along wall thickness, and (c) open angle under mean residual stress in the ring
model.

residual stress model varies from negative (-0.0445 kPa) to positive (0.0294 kPa). After map-
ping residual stress from Fig. 6.15 (a) to a simple ring model, the final open angles are listed in
Fig. 6.15 (c), in which the residual stress model achieves a larger opening angle (13.3◦), closed
to experimental data 13±5.3◦ [223] with a comparison to the no residual stress model (3.6◦).

6.4.4 Discussion

Residual stress is generated by converting incompatible grown constituents into a compatible
state, i.e. the elastic remodelling process, and exhibits significant importance in G&R. Includ-
ing residual stress at the beginning of growth makes the updated reference framework more
complicated as discussed in section 6.4.1, where fictitious equivalent G&R path is developed
to adapt to the numerical computations in the explicit FE solver. The updated reference in FE
is still the compatible configuration after G&R, however, it is transformed from a fictitious in-
compatible stress-free reference by a residual deformation tensor in numerical computations of
the stress response. In addition, relieving residual stress after stable G&R is also considered in
section 6.4.2, which results in almost no difference from the cases with residual stress after sta-
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ble G&R (section 6.3.3), indicating residual stress is much smaller than the stress responses in
cardiac step. A bigger LV cavity is achieved with a smaller growth ratio when remaining resid-
ual stress accumulated by previous growth cycles, which might contribute to the remodelling
process towards enlarging the cavity and preventing ventricular wall thickening, as compared in
Fig. 6.11 (a).

Residual stress is generally assumed to lead the opening angles of a grown tissue, such as
LV or aorta, after a radial cutting, which has been used as a common approach to check a G&R
model [225]. Opening angle induced by residual stress in the heart model was achieved in [223],
which agreed well with experimental measurements. We only intend to show the residual stress
can cause a normal opening angle of the LV myocardium ring in our work. Therefore, for
convenient operation, the mean residual stress of the entire heart model from endocardium to
epicardium is mapped into the layered ring model to predict the opening angles. The simple
ring model shares the same material properties and fibre structure as LV, and the opening angle
is determined by the distribution of residual stress. For instance, residual stress component along
with fibre orientation (σ11) that changes from negative values around endocardium to positive
values around epicardium will cause the ring model to splay outward. In contrast, the opposite
distribution results in collapsing inward. Moreover, the larger residual σ11 corresponds to more
numerous opening angles. Eccentric growth with residual stress achieves opening angles similar
to experimental data (around 13◦ [223]).

6.5 Effects of different G&R properties of constituents on ec-
centric and concentric growths

6.5.1 Methods in eccentric and concentric G&R

The volume fractions of the three constituents will be updated as growing when they have dif-
ferent growth rates. In eccentric growth, the growth tensor of myofibres is

Gm = ϑ
f,m fm

1 ⊗ fm
1 + sm

1 ⊗ sm
1 +nm

1 ⊗nm
1 , (6.48)

where ϑ f,m is the growth ratio along myofibre. In contrast, for concentric growth, the growth
tensor becomes

Gm = fm
1 ⊗ fm

1 +ϑ
s,m sm

1 ⊗ sm
1 +nm

1 ⊗nm
1 , (6.49)

where ϑ s,m is the growth ratio for the cross-myofibre. We still assume no inelastic remodelling,
thus, the total elastic tensor for myofibre is Fm

e = F(Gm)−1.
Given that myofibre is the main growing component in myocardium [141], we assume that
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the ground matrix dose not grow and presents inelastic properties to elongate the same amounts
as grown myofibres with growth tensor Gg = I, and the inelastic remodelling is computed based
on ϑ f,m or ϑ s,m,

Fg
ir =

{
ϑ f,m fg

1⊗ fg
1 +

1√
ϑ f,m sg

1⊗ sg
1 +

1√
ϑ f,m ng

1⊗ng
1 eccentric growth

1√
ϑ s,m fg

1⊗ fg
1 + ϑ s,m sg

1⊗ sg
1 +

1√
ϑ s,m ng

1⊗ng
1, concentric growth

(6.50)

where det(Fg
ir) = 1 to ensure no growth in the ground matrix. The total elastic tensor turns to be

Fg
e = F(Fg

ir)
−1.

In terms of G&R of collagen fibre, three assumptions are proposed as following:

1. It does not grow (Gc = I), and its inelastic deformation remodels itself to have same length
as grown myofibre. Similar for the ground matrix, the inelastic remodelling tensor is

Fc
ir =

{
ϑ f,m fc

1⊗ fc
1 +

1√
ϑ f,m sc

1⊗ sc
1 +

1√
ϑ f,m nc

1⊗nc
1 eccentric growth

1√
ϑ s,m fc

1⊗ fc
1 + ϑ s,m sc

1⊗ sc
1 +

1√
ϑ s,m nc

1⊗nc
1, concentric growth

(6.51)

and the total elastic tensor is Fc
e = F(Fc

ir)
−1.

2. It does not grow (Gc = I), and subsequent an elastic deformation remodels itself to have
the same length as grown myofibre. Assuming no inelastic remodelling (Fc

ir = I), then the
total elastic tensor is Fc

e = F.

3. It grows simultaneously with myofibre with the same growth ratio, thus the growth tensor
is

Gc =

{
ϑ f,m fc

1⊗ fc
1 + sc

1⊗ sc
1 +nc

1⊗nc
1, eccentric growth

fc
1⊗ fc

1 +ϑ s,m sc
1⊗ sc

1 +nc
1⊗nc

1, concentric growth
(6.52)

Considering no inelastic remodelling (Fc
ir = I), the total elastic tensor is Fc

e = F(Gc)−1.

According to the results in section 6.4, including residual stress before and after growth
can achieve more physiological eccentric growth, such as the bigger growing LV cavity and
the bigger opening angle as reported in the experimental observation [223]. Therefore, the LV
model with residual stress is employed to study the effects of collagen fibre with different G&R
properties during the eccentric and concentric growth.

6.5.2 Eccentric growth results

Three hypothesised growth laws for collagen fibre properties exhibit different G&R patterns
on eccentric growth. We denote the non-growth collagen fibre with inelastic (plastic) remod-
elling as CF-NG-PR and with elastic remodelling as CF-NG-ER, and the case with collagen
fibre sharing the same growth as myofibre as CF-GAM. Note that θ f and ϑ f denote the total
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and incremental growth ratios of myofibre, respectively. Fig. 6.16 (a) compares these grown
geometries of LV in the final growth cycle. Common characteristics for all three cases are larger
growth ratios around the inner wall than the outer wall, the most growth at the midsection and the
least at apex. CF-NG-PR and CF-GAM cases both have bigger LV cavity and thinner wall than
CF-NG-ER. Consistently, CF-NG-PR has biggest average total growth ratio value (θ f = 1.24),
similar to that in CF-GAM (θ f = 1.22), and larger than that in CF-NG-ER (ϑ f = 1.08). Same
results are also shown in Fig. 6.16 (b) where CF-NG-ER case has much smaller θ f than CF-NG-
PR and CF-GAM cases. In fact, CF-NG-ER case only takes 6 step to reach stability, however,
we plot its results of 15 steps for the comparison here. Their corresponding incremental growth
ratios in each growth cycle are shown in Fig. 6.16 (c), in which ϑ f from the CF-NG-ER case
drops more quickly to one than those of CF-NG-PR and CF-GAM cases.

(a)

(b) (c)

Figure 6.16: Growth of myofibre in eccentric growth. (a) Growth ratio distribution in the final
grown heart models. With respect to growth cycle, (b) mean total growth ratio and (c) mean
incremental growth ratio.

The average total and incremental growth ratios in each layer are listed in Fig. 6.17, which
also demonstrates that the inner layer has bigger growth ratio values than outer layers. ϑ f in
all layers drops to one quickly in CF-NG-ER case while θ f stay constant across the wall. θ f in
layer 1 and layer 2 are always overlapped in the rest two cases, whilst ϑ f in layer 1 to layer 3 are
same after the 6th step. Overall, the differences of θ f and ϑ f between layers are more significant
in CF-NG-PR case than the others.

Due to no growth in the ground matrix and different assumptions for collagen fibre, volume
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Figure 6.17: In eccentric growth, average total (top) and incremental (bottom) growth ratios of
myofibre at each layers from endocardium to epicardium with respect to growth cycle (n).

(a) (b)

(c) (d)

Figure 6.18: In eccentric growth, variations of volume fractions of constituents in CF-NG-PR
case (a), in CF-NG-ER case (b), and in CF-GAM case (c). Using volume fractions (VF) in the
final growth cycle, uniaxial tension test provides stress-stretch lines for each case comparing to
no growth (NG) case.
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fraction (VF) of each constituent is updated with growth. Their respective relative variations
are shown in Fig. 6.18 (a) for CF-NG-PR case, Fig. 6.18 (b) for CF-NG-ER case, and Fig. 6.18
(c) for CF-GAM case. In CF-NG-PR case, φ m increases by 5.98%, to 0.7419, whilst φ g and
φ c both decrease by 13.95%, to respective 0.2358 and 0.0224. In contrast, elastic collagen
fibre remodelling reduces growth of myofibre with less increment (2.29%). When myofibre and
collagen fibre share the same growth ratios, both φ c and φ m increase by 5.13% and φ g decrease
to 0.2368. Variations of φ g, φ m and φ c changes mechanical response as shown in Fig. 6.18 (d),
in which volume fractions are from the final growth cycle and are used in uni-axial tension test
of a unit element with the same materials properties as the LV model. Although the differences
between stress-stretch curves are small with stretch from 1.0 to 1.2, CF-GAM case has highest
stiffness and CF-NG-PR case present the softest property, followed by the softer CF-NG-ER
case than the no growth (NG) case.

(a) (b)

(c)

Figure 6.19: In eccentric growth, residuals stress is estimated at compatible geometry after
growth in the final growth cycle. For three cases, (a) cross-sectional view of fibre stress com-
ponent along fibre S11 distribution at the medium of LV, (b) mean transmural stress along wall
thickness, and (c) opening angle under mean residual stress in the ring model.

The residual stress after growth in the final growth cycle are depicted in Fig. 6.19 (a), where
these cross-sectional views are from the midsection of LV. CF-NG-PR and CF-GAM case have
similar S11 (stress component along fibre) distribution, from negative inner value to positive
outer value, whilst CF-NG-ER case almost dose not have difference with values around zero.
Average S11 at each layer in Fig. 6.19 (b) provides similar results, and CF-NG-PR case has the
biggest negative value (-0.058 kPa) at layer 3 and changes to positive value at layer 5 (0.0097

150



Chapter 6. Growth and remodelling: a framework based on the constrained mixture theory

kPa). After mapping average residual stress of each layer to the simple ring model, the opening
angles are shown in Fig. 6.19 (c), where CF-NG-PR case has the biggest value (15.6◦), very
close to 15.2◦ in CF-GAM case and much bigger than 7.1◦ in CF-NG-ER case.

(a) (b)

(c) (d)

(e)

Figure 6.20: In eccentric growth, with respect to growth cycles, PV loops in (a) CF-NG-PR, (b)
CF-NG-ER and (c) CF-GAM cases. Black solid line is the normal case with EDP 8 mmHg, blue
dash line is the first loading step after applying volume overload with EDP 16 mmHg, red dot
line is the ending of growth, and grass thin lines are medium growth cycles. Their corresponding
EFs are in (d) and SVs in (e).

PV loops of three cases are shown in Fig. 6.20 (a-c) where they share the identical normal
PV loop and the fist PV loop after pathological volume overload. With growing, the PV loop
gradually shifts to the right, with pressure dropping in CF-NG-ER case whilst almost no change
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in the other two cases. Inelastic collagen fibre without growth allows LV to grow more efficient
with bigger unload cavity volume, 74.8 ml at the final step, closer to CF-GAM case (73.1 ml)
while much bigger than 52.3 ml of CF-NG-ER case. EDV under constant 16 mmHg also reaches
to the biggest in CF-NG-PR case with 174.0 ml, about 68.7% increase relative to beginning of
growth (103.1ml), followed by 61.1% in CF-GAM case, whilst CF-NG-ER case only increases
by 8.1%. Comparing EFs in normal case (58.17%), three cases’ EFs ( Fig. 6.20 (d)) experience
a leap to 61.33% with bigger EDV, then EFs decline to 38.96% in CF-GAM case, 38.15% in
CF-NG-PR case and 49.83% in CF-NG-ER case, respectively. In CF-NG-PR case, SV firstly
increases to 73.2 ml at the fifth cycle from the initial 63.2 ml after overload, then gradually
decreases to final 66.4 ml. Same situation occurs in CF-GAM case with a maximum SV value
68.6 ml and a final SV value of 64.3 ml. SV values have been decreasing to 56.3 ml in the
CF-NG-ER case.

6.5.3 Concentric growth results

Concentric growth under three assumptions of collagen fibre properties has also been studied in
this section. Similar as eccentric growth, the growth mainly occurs at endocardium with larger
total growth ratio values (θ s) of myofibres as shown in Fig. 6.21 (a). Overall, larger values of
θ s locate at midsection of LV whilst almost no growth around the apex. LV cavities all are all
reduced with thicken ventricular wall, from the normal 8.7 mm to 11.8 mm for the CF-NG-PR
case, to 11.6 mm for the CF-NG-ER case and to 11.5 mm for the CF-GAM case, respectively,
whilst epicardial surfaces almost do not change. The mean values of θ s of the whole LV at
the final cycle are shown in Fig. 6.21 (b) where CF-NG-ER case has the largest value of 1.39,
followed by θ s = 1.37 in CF-GAM case and θ s = 1.34 in CF-NG-PR case after reaching the
stable grown state. While their incremental growth ratio (ϑ s) values are very close (Fig. 6.21
(c)). Nevertheless, detailed variations of the average total and incremental growth ratios at
different layers form endocardium to epicardium in Fig. 6.21 (d) also suggest three cases have
very similar growth. Increments of θ s or ϑ s at the inner three layers (1-3) are about twice of
these in the outer layers (4 and 5).

In concentric growth, Fig. 6.22 (a-c) demonstrate that volume fractions of myofibre always
increase by around 8% whilst that of the ground matrix decrease by about 19% for all three case
after achieving the stable grown state. Comparing to the no growth case, only in CF-GAM case,
myocardium becomes stiffer while softer in the rest two case, as shown in Fig. 6.22 (d).

The residual stress at stable grown state is depicted in Fig. 6.23 (a). Three cases have similar
S11 distributions and much smaller cross-sectional areas than eccentric growth (Fig. 6.19 (a)).
Moreover, much larger negative inner values and positive outer values than eccentric growth
(Fig. 6.19 (b)) are shown in Fig. 6.23 (b), where average S11 at each layer varies from -0.6 kPa
at endocardium to 1 kPa in CF-NG-ER and CF-GAM cases and from -0.7 kPa to 1.4 kPa in
CF-NG-PR case. After mapping the average residual stress of each layer to the simple ring
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(a)

(b) (c)

(d)

Figure 6.21: In concentric growth, for three types of G&R of collagen fibre, (a) growth ratio
distributions in the final grown heart models. With respect to growth cycles, (b) mean total
growth ratio and (c) mean incremental growth ratio. (d) Average total (top) and incremental
(bottom) growth ratios at each layers from endocardium to epicardium with respect to growth
cycles (n).

model, the opening angles are shown in Fig. 6.23 (c). All cases exhibit excessive opening angles
over 100◦, which may be associated with the much larger residual stress value of S11. CF-NG-
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(a) (b)

(c) (d)

Figure 6.22: In concentric growth, variations of volume fractions of constituents in CF-NG-PR
case (a), in CF-NG-ER case (b), and in CF-GAM case (c). Using volume fractions (VF) in the
final growth cycle, uniaxial tension test provides stress-stretch lines for each case comparing to
no growth (NG) case.

PR case has the biggest value (118.9◦), followed by 115.9◦ in CF-NG-ER case and 116.0◦ in
CF-GAM case.

Comparing to normal case, pressure overload induced by aortic stenosis reduces the pump
function with increased peak systolic LV pressure. There are similar variations of PV loops for
three cases, shifting toward left with smaller EDV and ESV, as shown in Fig, 6.24 (a-c). The
largest ESP (248 mmHg) is in CF-NG-ER case, which also has biggest PV loop area at stable
grown state. With growing, EDV values decrease from 88.7 ml to 38.7 ml in CF-NG-PR case, to
44.4 ml in CF-NG-ER case and to 42.2 ml in CF-GAM case, whilst all ESVs are around 20 ml.
EFs of the three cases are always smaller than the EF in the normal case (58.17%). In Fig, 6.24
(d), the minimum EF (38.18%) occurs in the first loading step after the pathological pressure
overload, and EF gradually increases to peak values, such as 56.82% in CF-NG-ER case or
51.21% in CF-NG-PR case, then decrease slowly. Compared to the SV in the first loading step
after the pathological pressure overload, there are only minor increments of SV, such as about
4.8 ml in CF-NG-ER case at the fifth loading step, and then gradually decrease (Fig, 6.24 (e)).
For each case, although the EF remains around 50% during growth, the SV is much less than
normal case (51.7 ml).
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(a) (b)

(c)

Figure 6.23: In concentric growth, residuals stress is estimated at compatible geometry after
growth in the final growth cycle. For three cases, (a) cross-sectional view of fibre stress compo-
nent along fibre S11 distribution at the medium, (b) mean transmural stress along wall thickness,
and (c) opening angles under mean residual stress in the ring model.

Considering the bigger EDP always occurs in concentric growth, it is increased from normal
8 mmHg to 12 mmHg [140]. High ESP (208 mmHg) at the first loading step is also achieved by
increasing Tmax in the active tension formulation (Eq. (4.10)), then G&R begins. Based on the
CF-NG-PR case, updated PV loop is shown in (Fig, 6.24 (f)) where the final SV still decrease to
22.4 ml with EDV 41.8 ml and ESV 19.4 ml, indicating the increased EDP cannot restrain the
reduction of SV.

6.5.4 Discussion

Eccentric growth of the heart model is triggered by overstretching of fibre (mainly myofibre), the
so-called stretch-driven growth, whilst cross-fibre growth leads concentric growth that is usually
driven by stress. The constrained mixture based cardiac G&R framework provides critical infor-
mation regarding different biological constituents’ adaptations under pathological conditions.
For instance, different G&R properties of collagen fibre are studied to explore the individual
and interactive effects between myofibres and collagen fibres. In addition, the residual stress
generated by G&R is analysed here, including its contributions to G&R.

Upon slight modifications of the growth law and growth tensor, our model can also capture
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(a) (b)

(c) (d)

(e) (f)

Figure 6.24: In concentric growth, with respect to growth cycles, PV loops in (a) CF-NG-PR,
(b) CF-NG-ER and (c) CF-GAM cases. Black solid line is the normal case, blue dash line is the
fist loading step after applying pressure overload by aortic stenosis, pink dot line is the step with
maximum pressure, brown dash-dot line is the step with maximum EF and red line is ending of
growth. Their corresponding EFs are in (d) and SV in (e). (f) Updated PV loop with bigger EDP
12 mmHg in the CF-NG-PR case.

the pathological concentric growth with an accumulation of myocytes in parallel or eccentric
growth with new myocytes accumulation in series. The current model is to explore general
characteristics of eccentric or concentric growth with constrained mixture theorem under up-
date reference framework. Thus, the parameters in growth laws are not estimated by fitting
experimental data as done in [141]. The patient-specific model will be the future work. We
have presented a multi-scale model for pathological eccentric growth, which finally achieves
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increased LV cavity and reduced pump function (Fig. 6.20) as clinic measurement. Evolution of
concentric growth is determined by diagonal values of Cauchy stress tensor (tr(σ)), rather than
Mandel stress [141], because we suppose the current stress state governs the G&R of tissue.

Myofibre takes the most largest account in myocardium and is the mainly growth compo-
nents, whilst the ground matrix can be assumed to inelastic self-remodelling to surround myofi-
bre and collagen fibre. The growth ratios of collagen fibre and myofibre may be different. To
study the interplays between collagen fibres and myofibres, we assume different G&R proper-
ties of collagen fibres by adjusting its growth tensor and remodelling tensor. For instance, we
consider there is no growth in the collagen fibre with either elastic or inelastic remodelling itself
to keep up with grown myofibres. In fact, it is not clear whether this remodelling process is
inelastic or elastic or both. Remodelling potentially plays an important role when growth ratios
of constituents are different. We expect the interplays of these individual G&R processes in
myocytes and collagen have the potential to shed light on the biomechanical mechanism which
is responsible for the transition from the compensation stage (myocyte G&R mainly) to the de-
compensation stage (excessive collagen G&R), and eventually guide us to predict the onset of
heart failure.

Here we consider two extreme conditions for collagen fibre, sharing the same growth as
myofibre and no growth. When they share the same growth, their relative variations of volume
fraction are the same (Fig. 6.18 (c) and Fig. 6.22 (c)) and both increase, resulting in stiffer
myocardium. If collagen fibre does not grow and only remodels to surround myofibre, two
extreme conditions are also studied, elastic or inelastic remodelling. In the inelastic eccentric
growth scenario, collagen fibre perhaps produces less stress constraint for myofibre when all
grown tissues merging into a compatible state. Moreover, collagen fibre with reduced volume
fractions generates a smaller stress response under external loads, allowing myofibre to have
more considerable deformation and contributing to more growth amount (Fig. 6.16). In contrast,
although the myocardium becomes softer, the elastic remodelling of collagen fibre in eccentric
growth acting as a scaffold that limits the deformation of myofibre, causing growth quickly
reaching the stable grown state with a much smaller growth ratio. Less new tissue accumulating
on the endocardium generates less residual stress that results a smaller opening angle in the
simple ring model. The similar results between the two scenarios, CF-GAM and CF-NG-PR,
demonstrate that the myofibre growth plays the critical role in heart hypertrophy and residual
stress.

In concentric growth, no growth along fibre direction limits the outward expansion of LV,
resulting in ventricular thickening wall as G&R. The stable grown LV with different G&R prop-
erties of collagen fibre are similar (Fig. 6.21) in both shapes and growth ratios, indicating col-
lagen fibre plays a less critical role in concentric growth than eccentric growth. Opposite to
growth speeds in eccentric growth, the case with the elastic remodelling of collagen fibre has
the biggest mean total growth ratios, whilst collagen fibre with inelastic remodelling causes the
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smallest values in concentric growth. The reason may be that elastic stretch of collagen fibre
along the sheet direction contributes to the bigger diastolic filling volume, in which collagen fi-
bre returns to stretch along the fibre direction and compression along the sheet direction. Then,
an improved contractile capability is also achieved according to ‘Frank-Starling’ Law (Fig 6.24
(b)).

In eccentric growth, a grown heart can maintain enough SV (Fig. 6.20 (e)) although EF is
less than 50%, which can be treated as compensated growth. Excepting the scenario CF-NG-
ER, a smaller growth ratio of myofibre can also be induced by excessive growth collagen fibre
that will make myocardium stiffer and reduce the stretch of myofibre. Insufficient growth of
myofibre perhaps cannot ensure a diseased heart having enough SV for a body’s need, resulting
in decompensated growth. Therefore, the interplays of myofibre and collagen fibre may have
the potential to elaborate the biomechanical mechanism of adverse G&R of the myocardium. In
concentric growth, even though the compensated conditions occurs at the initial growth cycles
with more considerable SV, smaller and smaller LV cavity reduces SV (Fig 6.24 (e)) with growth
and leads to heart failure in the end. In addition, increased EDP in concentric growth cannot save
heart failure (Fig 6.24 (f)).

Residual stress is mainly occurs in concentric growth, i.e. cross-fibre growth driven by stress,
after comparing Fig. 6.19 (b) in eccentric growth (-0.05 kPa ∼ 0.03 kPa) and Fig. 6.23 (b) in
concentric growth (-0.8 kPa∼ 1.4 kPa). Residual stress is negative at endocardium where grown
tissues are most in compressive state, and positive at epicardium where grown tissues are most
in a stretched state. The reason why concentric growth cause higher residual stress may also be
associated with the compressive grown tissue. The epicardial surface almost does not change,
and cross-fibre growth accommodates new tissue inward as wall thickening, leading to a high-
stress state of the myocardium. On the contrary, the residual stress can be partially relieved as the
ventricular wall expanding outward with constant or thinner thickness during eccentric G&R.
Our results show that residual stress in eccentric growth results in opening angles similar to the
published experimental data (around 13◦ [223]) whilst with excessive opening angles (around
118◦) occurs in concentric growth.

Although our models can qualitatively predict the features of pathological cardiac growths
shown in these published simulation studies [23, 141, 143], the primary limitation is the lack of
validation using clinical data. The measuring cardiac pump functions (including pressures, EFs
and SVs) [140], opening angles [223] and growth speeds [146] quantitatively justify our out-
comes are in the right range of values, but more patient-specific data, such as in-vivo ventricular
wall motions and PV loops, ex-vivo histological analysis etc., are required in subsequent re-
search to validate the simulations are sufficiently realistic. Secondly, there are few assumptions
in this chapter which are used to simplify the model, for example, one pathological growth is
only driven by one cue. Pathological cardiac G&R should be a multi-factor driven process. Dif-
ferent combinations of stress/strain driven constituent G&R laws shall be tested in future studies
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against measurements at different stage of cardiac disease to identify the biomechanical driven
factors and quantify the roles of different constituents.

6.6 Conclusion

The constrained mixture theorem establishes the link between G&R of components and total
deformation of tissue, providing a simple concept to elaborate the G&R of constituents and an
efficient approach to proceed numerical simulations. In this concept, different constituents have
their G&R properties and interact during G&R. An updated reference framework is employed
to track the evolution of reference configuration. This approach offers many permissions to
modify the model during G&R process, such as updating fibre structure and SEFs. Individual
G&Rs of myofibre, collagen fibre and ground matrix under pathological conditions are taken
into account in this novel approach. Both eccentric growth and concentric growth have been
studied using strain-driven and stress-driven growth laws, respectively, and the results agree
with clinical observations. Collagen fibre after elastic remodelling or excessive growth acts
as a scaffold to limit the enlargement of LV in eccentric growth, however, elastic remodelling
of collagen fibre along the sheet direction contributes little to concentric growth. Modelling
interaction between constituents shows the potential to study adverse G&R of the myocardium.
Our results also show that residual stress contributes to LV G&R and prevents wall thickening
in eccentric growth.
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Chapter 7

Growth and remodelling in infarcted left
ventricle

7.1 Introduction

MI indicates the death of myocytes in an area of myocardium induced by insufficient supply of
oxygen, such as occlusion or pathology of coronary arteries. MI is a heart disease remaining high
mortality, 8.1% in-hospital deaths in UK [150]. Survivors from MI still have high incidences of
heart failure, which are resulted from maladaptive G&R of the heart with MI scar.

LV with a MI scar generally has diminished contractility that significantly impairs the LV
pump function, with reduced EF and increased ESV. After acute MI, LV will experience com-
pensatory remodelling as the initial response by increasing EDP and active contractility to main-
tain sufficient normal SV and blood pressures. If the pump function is maintained in the normal
physiological range and absent of excessive LV cavity enlargement and wall thinning, then the
G&R is adaptive and compensatory, for example the EDV increase is less than 20% compared
to the value at acute-MI [226]. With time, the diseased heart may enter into the maladaptive
remodelling phase with reduced EF and cardiac output, and eventually lead to heart failure.
One of the reasons for this adverse G&R is the persistent imbalanced stress/stretch in my-
ocardium [141]. As for the geometric features, the wall in the MI zone progressively becomes
thinner with G&R [158], whilst the LV cavity grows larger.

In the MI zone, myofibre is gradually replaced by collagen fibre with the same mean fibre
orientation, whilst collagen fibre structure becomes more dispersed [227]. However, a consistent
conclusion about collagen fibre structure in the MI zone has not been reached, which may be
caused by the differences in measurement methods, experimental species and observation time,
etc. For example, based on histological analysis, collagen fibre orientations varied with growth
in the MI zones of rabbit hearts [152]. Grown collagen fibres were orientated circumferentially
because of the MI scar near the equator of the LV was stretched mainly along the circumferential
direction. In contrast, collagen fibres kept same fibre structure after MI according to the DT-MRI
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analysis of the rat heart at four weeks after MI [156]. The newly grown collagen fibres in the MI
zone were along the myofibres orientations they replaced, which were similar to the myofibres
in the remote healthy zone.

In the published mathematical models, myocardium in the MI zone is much stiffer than that
in the remote healthy region, while the border zone is the transition zone [143]. Passive mate-
rial properties of the infarcted and remote healthy myocardium are usually described by phe-
nomenological constitutive laws, such as a strain-based Fung-type SEF or an invariant-based
Holzapfel-Ogden SEF [12]. The MI zone is usually modelled as a pure passive soft tissue
without contractility, the border zone has diminished contractility depending on the distance to
the MI zone [46], and normal contractile capability is in remote healthy and border regions.
However, constitution-based structural constitutive laws to describe the different roles of con-
stituents in the infarcted myocardium have not been studied in detail, especially their evolutions
with growth. Different fibre dispersion structure at the MI and non-MI zones are also needed be
considered to investigate the effects of evolving fibrosis structure.

In this chapter, we will study how the LV adapts its structure and function after MI using the
developed G&R framework, which is served as a proof-of-concept study, rather than a patient-
specific study. The MI model is based on a normal human LV with a large MI zone in the
middle section of the LV, and a border zone is included between the remote healthy region and
the MI zone. In the MI zone, all myofibres are replaced by collagen fibre, and the volume
fraction of myofibres linearly varies from zero to a normal value in the border zone. After acute-
MI, we consider both myocardial contractility and EDP will increase to compensate the loss of
contractile function in the MI zone [161], and we assume both the eccentric and concentric G&R
are activated simultaneously in the MI model. We also consider the effect of fibre dispersion on
the G&R process in this MI heart. Different fibre dispersion structures are used in the MI zone,
whilst non-MI zones remains a constant fibre dispersion structure.

Our model is able to reproduce main G&R features after the MI, such as the dilated LV cav-
ity, the thickening ventricular wall in the non-MI zones, and the wall thining in the MI zone. Our
results show that the leading growth pattern at initial G&R after MI is eccentric growth whilst
concentric growth gradually becomes the primary growth pattern at the late growth stage. More
dispersed fibre structure in the MI zone results in border zone having more complicated stress
responses and reduces the diastolic and systolic capabilities of heart. The border zone has the
most complicated stress responses and growth patterns, which need further investigations. Our
simulations including fibre dispersion in the MI zone show that more dispersed fibre structure
results in worse cardiac pump functions with G&R.
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7.2 G&R of MI model without fibre dispersion

7.2.1 Definition of the MI region

The MI model is modified from the previous human LV model in Chapter 5. As shown in
Fig. 7.1, the whole LV is divided into three zones: an infarcted zone, and the remote healthy
zone, and a border zone in-between. The volume fraction of the ground matrix (φg = 0.274) is
constant for the whole LV. In the remote healthy region, we consider φc = 0.026, and φm = 0.7.
In the MI zone, all myocytes are dead (φm = 0.0) and replaced by collagen fibre, thus, the volume
fraction of collagen fibres increases to φc = 0.726. Linear variations of φc and φm are designed
in the border zone to avoid abrupt change. Specifically, we introduce I to represent the degree
of infarction, such that I = 1 in the MI zone and I = 0 in the remote healthy region, hence,
the volume fractions of collagen fibre (φc) and myofibre (φm) in border zone can be expressed
as

φm = 0.7(1−I ), and φc = 0.7I +0.026. (7.1)

(a) (b)

Figure 7.1: LV model and its medium cross-section where MI region is denoted by the red color
and remote healthy region is in blue color. (a) Infarction degree (I ) distribution in LV where
I = 1 is the infarction zone and I = 0 is remote healthy zone. Medium border zone connects
infarcted zone and remote healthy zone with linear varying volume fractions of myofibre and
collagen fibre (b).

The implementation in ABAQUS is same as the settings in Chapter 5 (section 5.3.4), except-
ing the increased LV EDP from 8 mmHg to 23 mmHg [161] and increased contractility (increas-
ing Tmax in Eq. (4.10) from 210 kPa to 250 kPa) to maintain EF>50% in response to infarcted
myocardium.

7.2.2 Growth and remodelling patterns in MI model

After acute-MI, changes of mechanical indexes in diastole and systole trigger G&R of LV, which
could be a comprehensive result of eccentric and concentric growths. Although we discussed
different remodelling properties of collagen fibre and gorund matrix in Chapter 6 (section 6.5),
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for simplicity, in this chapter, we only study one scenario that the ground matrix and collagen
fibres do not grow but proceed inelastic self-remodelling around the growing myofibres. Hence,
in the remote healthy zone and the border zone, the growth and the inelastic remodelling tensors
of each constituent are

• the ground matrix:

Gg = I,

Fg
ir = ϑ

f,m fg
1⊗ fg

1 + ϑ
s,m sg

1⊗ sg
1 +

1
ϑ s,m ϑ f,m ng

1⊗ng
1,

(7.2)

• the myofibres:

Gm = ϑ
f,m fm

1 ⊗ fm
1 + ϑ

s,m sm
1 ⊗ sm

1 + nm
1 ⊗nm

1 ,

Fm
ir = I,

(7.3)

• the collagen fibres:

Gc = I,

Fc
ir = ϑ

f,m fc
1⊗ fc

1 + ϑ
s,m sc

1⊗ sc
1 +

1
ϑ s,m ϑ f,m nc

1⊗nc
1.

(7.4)

In the MI region, collagen fibres further remodel themselves along sheet direction to lead a
thinner wall due to the reduction of intercellular space of collagen fibres, which is denoted by a
multiplier γs,c. A simple linear function of γs,c is assumed as

γ
s,c =

{
1.0−0.05n for n≤ 6,
0.7 for n > 6,

(7.5)

where n is the growth cycle number. γs,c will result a 30% reduction of wall thickness in the
MI zone, which is the value reported by Jugdutt et al. [158]. The shrinkage is a synthetic
process of both collagen fibre and the ground matrix, which can be expressed as a negative
growth. Therefore, the negative growth tensors and inelastic remodelling tensors respective for
the ground matrix and collagen fibres are

• the collagen fibres:

Gc = fc
1⊗ fc

1 + γ
s,c sc

1⊗ sc
1 + nc

1⊗nc
1,

Fc
ir = I,

(7.6)
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• the ground matrix:

Gc = fg
1⊗ fg

1 + γ
s,c sg

1⊗ sg
1 + ng

1⊗ng
1,

Fg
ir = I.

(7.7)

7.2.3 Results

(a)

(b) (c)

(d) (e)

Figure 7.2: G&R of MI model without fibre dispersion. Comparing to the initial LV before
growth, grown geometry and distributions of total growth ratios of myofibres along fibre (θ f)
and sheet (θ s) direction are shown in (a). Cauchy stress component along fibre in (b), and
logarithm strain component along fibre in (c) at ED and ES at the final numerical cycle. Average
total (θ i) and incremental (ϑ i) growth ratios of the non-MI zone with respect to growth cycles
are plotted in (d) and (e), respectively.
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We report G&R of the MI model for ten numerical simulation cycles, corresponding to 10
weeks post-MI, and final grown geometry is shown in Fig. 7.2 (a) where distributions of total
myofibre growth ratios along fibre and sheet directions are also separately plotted. Comparing to
the normal heart, there are significant shrinkage in MI zone and thickening in non-MI zones (the
remote healthy and the border zones), in particular around the border zone. Myofibre growth
mainly locates at endocardium, and medium region has the maximum growth (θ f = 1.4) while
no growth around the apex region. However, cross-fibre growth mainly appears at the border
zone with much bigger θ s than other zones, indicating significantly higher active stress response
at the border zone due to persistent large stretch of myocytes in the border zone.

Distributions of stress component along the fibre direction (σ ff) at end diastole (ED) and
end systole (ES) are shown in Fig. 7.2 (b), where the border zone has the most complicated
stress response, higher stress at ED and lower stress at ES than other zones. According to the
logarithm strain along fibre direction (LEff) in Fig. 7.2 (c), during diastolic filling, excepting
stretched healthy zone, border zone is also in stretching state and its higher volume fraction
of collagen fibres causes stronger stress response than healthy zone. The stiffest MI zone limits
itself stretch. Active contraction results in much higher σ ff in the healthy ventricular wall, which
stretches the MI zone to produce a high equivalent passive σ ff. The smaller σ ff in border zone
may be caused by the interplay between the passive stretch and the active contraction.

The average total (θ i) and incremental (ϑ i) growth ratios of myofibres are computed from
non-MI zones, and their variations with respect to growth cycles are shown in Fig. 7.2 (d) and (e),
respectively. The total fibre growth (θ f) initially has higher increasing speed and bigger values
than cross-fibre growth (θ s), and then approaches a constant value, whilst θ s keeps increasing
(Fig. 7.2 (d)). It is consistent with the data in Fig. 7.2 (e) where the incremental fibre growth
increment ϑ f gradually approaches 1 whilst the incremental cross growth ϑ s almost reaches
stable around 1.01. The results show that the total growth at the beginning is mainly the fibre
growth which is larger than the cross-fibre growth, and later the cross-fibre growth plays the
main role.

The variations of LV pumping function during G&R is described by the progressive PV loops
shown in Fig. 7.3 (a). Comparing to the normal PV loop, in the first growth cycle (n = 1), the
increased EDP results much larger EDV (105.3 ml), and the increased active tension contributes
to higher ESP (137.2 mmHg) although ESV is larger than that in the normal condition. The
maximum ESP (143.1 mmHg) occurs at the second growth cycle with both bigger ESV and
EDV than those in the first cycle. After achieving the maximum EDV (129.0 ml) at the fourth
cycle, ESV only has minor variation from cycle n = 4 to n = 10, less than 1.9%, whilst EDV
and ESP gradually reduce to 111.5 ml and 121.5 mmHg, respectively.

Corresponding EF of LV gradually reduces from the initial 58.9% to the final 43.7% in
Fig. 7.3 (b), whilst compensatory improvement of SV is maintained during the first eight growth
cycles, bigger than the normal 51.7 ml, although its values keeps decreasing after the peak value
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(68.6 ml) at the 2nd growth cycle, as shown in Fig. 7.3 (c).
In Fig. 7.3 (d), the ventricular wall thickness of the non-MI zones gradually increases as

growing from 8.6 mm to 10.0 mm, mainly induced by the cross-fibre growth of myofibres. In
the MI zone, the shrinkage of collagen fibre is determined by negative growth during the first
six cycle, resulting in the thinner wall. However, the thinning of wall begins at the second cycle
and continues until the eighth cycle, about 12.7% reduction from the initial 9.2 mm, after which
the wall thickness remains almost constant because the MI zone neither grows nor shrinks.

(a) (b)

(c) (d)

Figure 7.3: Variations of PV loop, EF, SV and wall thickness with G&R. Comparing to the
normal PV loop, four representative loops are adopted in (a), which are the first cycle, the
second cycle having the maximum ESP, the fourth cycle having the maximum EDV, and the last
cycle. EF in (b), and SV in (c). Wall thickness in (d) covers the average thickness of the non-MI
zones and the MI zone.

Residual stress induced by G&R is remained in this MI model, and the distributions of
its component along the fibre direction orientation (σ ff) at the remote healthy, border and MI
zones are shown in Fig. 7.4 (a). It can be found that negative σ ff locates at the inner wall and
positive σ ff is at outer wall at the healthy zone, especially in cross-section of the entire healthy
zone, whilst much bigger negative σ ff in border zone, followed by positive σ ff in MI zone.
Similar results can also be found in Fig. 7.4 (b) that describes the transmural variation of σ ff

within ventricular wall at these three zones. Healthy zone maintains grown myofibre compressed
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around endocardium (negative σ ff) and stretched around epicardium (positive σ ff), however,
always negative σ ff in border zone demonstrates the most grown myofibre are in compression.
In contrast, positive residual σ ff in MI zone may be induced by shrinkage along sheet direction.

(a) (b)

Figure 7.4: Residual stresses at healthy, border, and MI zones, respectively. Three transverse
cutting positions pass through the healthy, the border, and the MI zones, respectively. (a) Cross-
sections with distribution of Cauchy tress component along fibre. (b) Average transmural resid-
ual stress distributions at the three zones.

7.2.4 Discussion

The division of different zones is based on the volume fraction of collagen fibres or myofibres in
myocardium. In this section, the fibre structure in the MI zone keeps constant for simplicity. In
fact, the unchanged fibre orientations in MI zone was reported by DT-MRI study [156], whilst
other studies have reported more circumferential or random collagen fibre direction [152], indi-
cating the necessary of patient-specific in future studies. In addition, reduced volume fraction
of myofibre indicates the reduction of active contractile capability, and replaced collagen fibres
makes heart wall stiffer [143].

This MI model is adapted from the LV model that has achieved concentric and eccentric
G&R in Chapter 6, and it incorporates the fibre growth driven by stretch and cross-fibre growth
driven by stress simultaneously in this chapter. Thus a synthetic G&R is achieved with both LV
dilation and wall thickening, similar to realistic pathological conditions. Our results (Fig. 7.3
(a)) suggest that fibre growth, i.e. eccentric growth, plays the key role in the first four growth
cycle, which may be caused by the bigger EDV induced by increased EDP, then, wall thicken-
ing induced by cross-fibre growth, i.e. concentric growth, turns to be the main characteristics
of G&R, which will reduce EDV and ESV. According to the ’Frank-Starling’ law, increased
EDV contributes stronger contractile capability, which further stimulates the cross-fibre growth,
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resulting thicker ventricular wall in non-MI zones and smaller EDV with smaller LV cavity.
The shrinkage of MI tissue can be treated as a negative growth driven by chemical clues, and

it is described by a simple and linear negative growth law with respect to the growth cycle here.
Although the negative growth law is applied to computations, the observed shrinkage occurs af-
ter the third cycle and stops after the eighth cycle. Moreover, 30% shrinkage in the definition of
negative growth in the MI zone is only achieved around 13% reduction of thickness in FE com-
putation (Fig. 7.3 (d)). This delay and reduction perhaps are caused by a mechanical interaction
between finite elements in the model. It further suggests the importance of experimental data
that helps to propose more physically-accurate growth laws or quantifies the parameters in the
current growth laws. Moreover, the shrinkage also may be the reason for high positive residual
stress in the MI zone, the incompressible properties of myocardium making collagen fibre and
the ground matrix in tension along with fibre orientation while shrinkage along sheet direction.

The border zone connects the relatively soft healthy zone and the stiff MI zone, and has
both collagen fibres and myofibres with varied volume fractions, causing the most complicated
mechanical response. For instance, the biggest cross-fibre growth occurs at the border zone
(Fig. 7.2 (a)), whilst smaller fibre stress component σ ff in the border zone at ES (Fig. 7.2 (b)).
During active contraction, the healthy zone has bigger σ ff to stretch MI zone by border zone,
in which the passive stress in collagen fibres may be interactively cancelled by active stress
generated by myofibres. In addition, the residual stress in the border zone is always negative,
indicating most grown fibres are in compression.

7.3 G&R of MI model with fibre dispersion

7.3.1 Fibre dispersion structure after MI

DT-MRI technique has been used to quantify the transmural fibre rotation within myocardium
in the MI region, which is similar to that in the remote healthy zone [156]. Moreover, smaller
fractional anisotropy occurs in fibrotic infracted region [227], reflecting higher fibre dispersion
in MI region. In the MI model, while no change in the mean fibre orientations, we use varying
fibre dispersions in the MI zone and constant fibre dispersion in the remote healthy region and
the border zone. Fibre dispersion indicates the spacial distribution of fibres around the mean
fibre direction in each material point, as discussed in Chapter 5. Considering effects of fibre
dispersion on cardiac contractility in Chapter 5, two general and representative scenarios are
respectively applied into the fibre structure in the MI zone, which are

• Scenario 1: b1 = 2.0, and b2 = 2.0 (intermediate dispersion),

• Scenario 2: b1 = 1.0, and b2 = 1.0 (highly dispersed),

while the non-infarcted zones use the normal in-plane and out-of-plane dispersion parameters
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b1 = 4.5 and b2 = 3.9 [4]. Please note b1 and b2 are parameters that control in-plane and out-
of-plane fibre dispersions, respectively, as discussed in Chapters 4 and 5.

In addition, we made two hypothesis: (a) myofibres and collagen fibres share the same fibre
dispersion distribution, and (b) the probability density distribution remains the constant around
the mean fibre direction while the mean fibre direction will change during the G&R process due
to the changed LV geometry.

Dispersed fibre direction Mq can be determined by polar angles around the mean fibre direc-
tion as demonstrated in Chapter 5 (section 5.2.2). Please note that, when keeping the residual
stress during G&R, the variation of mean fibre direction occurs from realistic configuration B1

to fictitious equivalent configurations B0 (see Fig. 6.8 at Chapter 6). The local fibre direction Mq

can be rotated from one configuration to another one following the Rodrigues’ rotation formula,
that is

M
′
q = Mq cosθ +(k×Mq)sinθ +k(k ·Mq)(1− cosθ), (7.8)

where Mq and M
′
q are disperse fibre direction before and after rotation, respectively, and k is a

unit vector describing an axis of rotation, around which f1 rotates by an angle θ according to the
right hand rule. They can be derived by mean fibre orientations before (f1) and after (f

′
1) stretch,

such as

k =
f1× f

′
1

|f1× f′1|
, and θ = arccos

(
f1 · f

′
1

|f1| |f
′
1|

)
. (7.9)

7.3.2 Numerical implementation

In computation, the total deformation gradient tensor is decomposed into the growth part and
the elasticity part, then the mechanical effect of fibre dispersion is analysed based on the elastic
tensor. According to the Chapter 6 (section 6.4.1), we conclude the expression of equivalent
elastic tensor (Fi

e′) for each constituent in fictitious reference configuration, that is

Fi
e′ = Fi′(Gi′)−1, (7.10)

where Fi′ is the fictitious equivalent total deformation gradient tensor including the stretch in-
duced by residual stress, and Gi′ is the fictitious equivalent growth tensor that is

Gi′ = ϑ
i
f fi′

1⊗ fi′
1 +ϑ

i
s si′

1⊗ si′
1 +ni′

1⊗ni′
1, (7.11)

where ϑ i
f , and ϑ i

s are growth ratios respectively along the fibre and cross-fibre directions in
the current growth cycle. According to the evolution equations for stretch-driven fibre growth
(Eq. (6.4)) and for stress-driven cross-fibre growth (Eq. (6.7)) in Chapter 6, we make minor
modifications in the concept of fibre dispersion. For instance, for the growth driven by stretch,
the total effective stretch of disperse fibres is the sum of fibre stretch multiplying corresponding
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probability value ρq, such as

θ̇ fn+1 =
1
τ f

(
θ max,f−θ f

n+1

θ max,f−1

)γ f

(λ e−λ
crit)H (λ e−λ

crit) with λ
e =

N

∑
q=1

ρq |Fi
e′M

′
q|, (7.12)

and for growth driven by stress, the trace of Cauchy stress tensor (tr(σ)) is replaced by active
tension Ta in each element,

θ̇
s
n+1 =

1
τs

(
θ max,s−θ s

n+1

θ max,s−1

)γs(
Ta

pcrit −1
)

H (Ta− pcrit). (7.13)

λ crit is the mean value of λ e at end of diastole and pcrit is the mean value of maximum Ta during
systole under normal conditions. Note that θ f or θ s describes a growth ratio for each element.

The passive response of the ground matrix without fibre dispersion is

σ
g
p = J−1

Fg
e′

ag exp[bg(I
′
1−3)]Bg

e′, (7.14)

where Bg
e′ = Fg

e′(F
g
e′)

T, Cg
e′ = (Fg

e′)
TFg

e′ , I
′
1 = trace(Cg

e′), and JFg
e′
= det(Fg

e′). In DFD approach,
the myofibres SEF for the passive response is

Ψ
m∗ u

N

∑
q=1

ρq Ψ
m(Iq′

4m), with Ψ
m(Iq′

4m) =

{
Ψm(Iq′

4m) if Iq′
4m > 1

0 if Iq′
4m ≤ 1

, (7.15)

where Iq′
4m = M

′
q ·(Cm

e′M
′
q), and Cm

e′ = (Fm
e′ )

T Fm
e′ . Then, the passive stress of dispersed myofibres

is

σ
m
p = 2J−1

Fm
e′

N

∑
q=1

ρq am (Iq′
4m−1) exp[bm(I

q′
4m−1)2] (mm′

q ⊗mm′
q )H (Iq′

4m−1), (7.16)

where JFm
e′
= det(Fm

e′ ), and mm′
q = Fm

e′M
′
q. Similarly, the collagen fibres SEF is

Ψ
c∗ u

N

∑
q=1

ρq Ψ
c(Iq′

4c), with Ψ
c(Iq′

4c) =

{
Ψc(Iq′

4c) if Iq′
4c > 1

0 if Iq′
4c ≤ 1

, (7.17)

where Iq′
4c = M

′
q · (Cc

e′Mq′), and Cc
e′ = (Fc

e′)
T Fc

e′ . Corresponding passive stress of dispersed
collagen fibres is

σ
c
p = 2J−1

Fc
e′

N

∑
q=1

ρq ac (I
q′
4c−1) exp[bc(I

q′
4c−1)2] (mc′

q ⊗mc′
q )H (Iq′

4c−1), (7.18)

where JFc
e′
= det(Fc

e′), and mc′
q = Fc

e′M
′
q.
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The dispersed myocardial active stress is developed by the GST approach demonstrated in
section 4.2.2 of Chapter 4, that is

σ
m
a = TaH11f̂m′⊗ f̂m′

+TaH22n̂m′⊗ n̂m′+TaH33ŝm′⊗ ŝm′, (7.19)

in which Ta is the total active tension along the myofibre direction (fm′
1 ), sm′

1 and nm′
1 are respec-

tive sheet and sheet-normal directions of myofibre in equivalent fictitious reference configura-
tion, then, f̂m′

= Fm
e′ f

m′
1 /|Fm

e′ f
m′
1 |, ŝm′ = Fm

e′ s
m′
1 /|Fm

e′ s
m′
1 | and n̂m′ = Fm

e′n
m′
1 /|Fm

e′n
m′
1 |. Finally, the

total Cauchy stress at the nth growth cycle is

σ t =

(
∑

i={g,m,c}
φ

i
nσ

i
p

)
+φ

m
n σ

m
a . (7.20)

7.3.3 Results

Due to numerical convergence issue in the border zone, in which the extreme complex stress/s-
train pattern causes excessive distortion of finite elements, in particular at late growth cycles.
Thus we only show the results from the first five growth cycles as preliminary results. In the
future, the border zone will be studied with a more realistic G&R model due to the complex
stress/strain patterns.

In the three cases, the non-MI zones have the identical normal fibre dispersion (b1 = 4.5,
b2 = 3.9), and MI zones have varied fibre dispersion, which are b1 = 1.0, b2 = 1.0 (case 1),
b1 = 2.0, b2 = 2.0, and b1 = 4.5, b2 = 3.9 (case 3). Their grown geometries and distributions
of total myofibre growth ratios (θ i) are plotted in Fig. 7.5 (a). All three cases have shown the
features of eccentric growth with cavity dilation (θ f > 1), features of concentric growth with
wall thickening (θ s > 1) in the remote heathy zone, and shrinkage in the MI zone. In case 1, the
cross-fibre growth (θ s) is bigger than the fibre growth (θ f) but not in cases 2 and 3. We notice
the border zone has much bigger θ s than the MI zone and the remote healthy zone, with a value
of 1.4.

In contrast, the difference of fibre growth is negligible, which are supported by the average
θ f of myofibre in the non-MI zones in Fig. 7.5 (b-d). At the final growth cycle, at the non-MI
zones, three cases have same mean fibre growth amounts θ f = 1.12 that is smaller than that of MI
model without fibre dispersion (θ f = 1.17). Case 2 and case 3 also share same mean θ s = 1.13 at
the non-MI zones, smaller than that of case 1 (θ s = 1.23), but they are all larger than θ s = 1.11
of the MI model without fibre dispersion. The comparison shows that fibre dispersion structure
may limit eccentric growth but promote concentric growth. Highly dispersed fibres in the MI
zone can cause a large cross-fibre growth ratio, whilst no more difference appears when b1 and
b2 are both bigger than 2.0. θ f and θ s at the end of the fifth simulation cycle are summarized in
Table 7.1.

Fig. 7.6 shows that case 2 and case 3 have similar fibre stress (σ ff) distributions at both ED
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(a)

(b) (c) (d)

Figure 7.5: G&R of MI model with fibre dispersion. All non-MI zones use the same dispersion
(b1 = 4.5, b2 = 3.9), and three general cases are in the MI zone, which are b1 = 1.0&b2 = 1.0,
b1 = 2.0&b2 = 2.0, and b1 = 4.5&b2 = 3.9. (a) Their distributions of total growth ratios along
fibre (θ f) direction on the top and along sheet (θ s) direction on the bottom. Average growth
ratios θ f and θ s of non-MI zones in three case1 (b), case 2 (c), and case 3 (d), respectively.

Normal No dispersion b1 = 1.0 b1 = 2.0 b1 = 4.5
b2 = 1.0 b2 = 2.0 b2 = 3.9

θ f 1.0 1.164 1.118 1.117 1.119
θ s 1.0 1.115 1.227 1.133 1.133
EF (%) 58.2 48.49 36.27 44.73 45.20
SV (ml) 51.7 61.9 26.4 40.8 41.6
EDV (ml) 89.0 127.6 72.8 91.2 92.2
ESV (ml) 37.2 65.7 46.4 50.4 50.5
EDP (mmHg) 8.0 23.0 23.0 23.0 23.0
ESP (mmHg) 118.5 134.9 96.2 112.5 113.5
Tmax (kPa) 210 250 250 250 250

Table 7.1: Summary of main indices associated with G&R and cardiac pumping function in MI
models without and with fibre dispersions at the fifth growth cycle.
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and ES in the fifth cycle, very different from case 1. The highly dispersed fibre structure in
cases 1 makes the stress response at the border zone very complicated, for example, dramatic
changes from 50 kPa to -50 kPa, which may be partially caused by the diminished contractility
towards the MI zone and different dispersions between the MI zone and the border zone. At
ES, σ ff distribution in the border zone becomes more homogenous and mean σ ff in the MI zone
becomes larger when the difference of fibre dispersions between the MI zone and the non-MI
zones reducing.

Figure 7.6: Fibre stress distributions at ED (the top) and ES (the bottom) after G&R of MI model
with three cases of fibre dispersion.

Fig. 7.7 (a) describes the residual σ ff distributions at three cross-sections in three cases,
in which case 1 experiences more significant variations of σ ff at different positions than other
two cases, such as bigger positive σ ff in the MI zone, while negative σ ff in the border zone.
Comparing to case 1, σ ff distribution is more homogenous in case 2 and case 3 with bigger
dispersion parameters b1 and b2. The average transmural σ ff distributions from endocardium to
epicardium of three cases are compared at the MI zone (Fig. 7.7 (b)), the border zone (Fig. 7.7
(c)), and the remote healthy zone (Fig. 7.7 (d)), respectively. The σ ff curves of case 2 and case
3 are not overlapped in the MI and border zones whilst are same in the remote healthy zone. In
terms of transmural distributions of σ ff in MI and border zones, case 1 and case 2 are similar in
shape and close in value, indicating that the residual stress may be associated with the different
fibre dispersion structures between the MI zone and the non-MI zones.

PV loops of three cases are listed in Fig. 7.8 (a-c). EDV, ESV and ESP of those three
case increase in the first three growth cycles, and then decrease at the fourth and fifth growth
cycles. The decreased EDV may be caused by thickening ventricular wall due to the dominated
concentric growth at later growth stage. The variations in case 1 are more significant than the
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(a)

(b) (c) (d)

Figure 7.7: (a) Comparison of residual stress between MI models with three cases of fibre
dispersion, at the healthy zone (the top), at the border zone (the medium), and at the MI zone
(the bottom). The right denotes positions of the three cross-sections. (b) Three cases’ average
transmural residual stress distributions at the three zones.

other two cases who almost have the same PV loops with growth. For instance, EDV of case
1 increases to 107.7 ml at the second cycle and then decreases to 72.8 ml at the fifth cycle, the
corresponding ESP decreases from 128.4 mmHg to 96.2 mmHg, whilst case 2 and case 3 achieve
much higher ESP 112.5 mmHg and 113.5 mmHg, respectively. Finally, the pumping function of
case 1 at the fifth cycle has a much smaller PV loop than that of case 2 or case 3.

In Fig. 7.8 (d) and (e), EF and SV in case 1 are both less than those of other two cases. For
minor dispersed case 2 and case 3, EF decrease from 58.8% to 45.2%, and SV is from 59.7 ml
to 41.7 ml, comparing to those in case 1 from 53.7% to 36.3% for EF and 54.5 ml to 26.4 ml for
SV, respectively. Their pump functions are summarized in Table 7.1.

As for ventricular wall thickness, a considerable increment in the non-MI zones and decre-
ment in the MI zone are resulted by the more dispersed fibres in the MI zone as shown in Fig. 7.8
(f). Case 1 with highest dispersed fibres causes significant wall thickening in the non-MI zones
and wall thinning in the MI zone than other two cases. Fibre dispersion also affects on the
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Variations of PV loop, EF, and SV using the MI models with fibre dispersion in the
first five cycles. (a) PV loops of case b1 = 1.0&b2 = 1.0, (b) PV loops of case b1 = 2.0&b2 =
2.0, and (c) PV loops of case b1 = 4.5&b2 = 3.9. Their EFs in (d), SVs in (e), and wall thickness
in (f).

shrinkage of the MI zone. For instance, between case 2 and case 3, the thickness curves in the
non-MI zones are overleaped whist have deviation in the MI zone.

7.3.4 Discussion

Three cases of fibre dispersion in the MI zone are studied here, while a identical normal fibre
dispersion is used in the non-MI zones. Including fibre dispersion can alter the mechanical re-
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sponse of LV, which further changes the G&R of LV, such as less fibre growth and more cross
growth (Table 7.1) comparing to the no dispersion case. Less fibre growth may be associated
with the definition of growth law where the total effective elastic stretch along mean fibre direc-
tion is the probability sum of each dispersed fibre as in the DFD approach, which may result in a
small growth ratio. The difference of PV loops between the two cases with b1 and b2 bigger than
2 is negligible, consistent with the previous results in Chapter 5, in which almost no differences
in pump function exist when b1 and b2 bigger than 2. In contrast, the GST-based active stress
model causes slightly more cross growth with worse cardiac function, such as less EF and SV
comparing to the no dispersion case.

The comprehensive G&R of the MI model is a preliminarily combination of eccentric and
concentric growths. We compute fibre growth and cross growth using two independent growth
laws in this Chapter. However, the coupling growth maybe requires a new growth law that
includes two types of growth together, which can be a future topic to study. Our results show
that eccentric growth plays the primary role during the initial growth, then concentric growth
gradually becomes the dominated characteristics, which merits further studies on the interplays
between eccentric and concentric G&R in LV post-MI. The thickening wall in our results does
not always occur in clinic MI measurements, in other words, eccentric growth perhaps remains
as the dominant feature after acute-MI. Future studies shall identify the correct growth laws for
the remote region, the border zone and the MI zone with inferred patient-specific parameters for
prediction of LV G&R post-MI. Our current model only serves a proof-of-concept study of the
application of constrained mixture G&R framework developed in Chapter 6 to the MI patients.

Dispersion of collagen fibre in the MI zone has a significant effect on residual stress at the
border zone. For instance, more dispersed collagen fibre causes more significant negative and
positive stress at the border zone, causing distorted shape. The varied stress response in the MI
zone further affects the stress response of the whole LV (Fig. 7.6). The difference of residual
stress will be accumulated during G&R and finally lead to different grown states. Even though
the whole LV with little dispersion (b1 = 4.5 and b2 = 3.9 in case 3), the results of G&R is
much different from that of no dispersion case (section 7.2.3), such as smaller SV and lower
ESP. Therefore, the effect of fibre dispersion in G&R cannot be ignored, especially in the MI
zone.

The limitations should be mentioned. Firstly, the models in this chapter shall be considered
to be a proof-of-concept study, which can qualitatively reproduce the G&R characteristics of
the LV with MI [151]. Due to the lack of validations of patient-specific experimental data, our
models manage to produce physiological outcomes that are comparable to measured values, such
as the fibre structure [156], wall thinning [158] in the MI zone and physiological index (including
EDP, ESP, etc.) [161]. Secondly, eccentric and concentric growths occur together in this chapter,
whilst their growth laws are independent. The leading growth pattern (eccentric or concentric)
at different simulation stage may be further affected by the parameter values in growth laws.
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Therefore, More clinical or measured data are required to identify the interaction between two
growth patterns and quantify the roles of myofibres and collagen fibres at different stages of MI.
Last but not the least, the limited growth cycle in these simulations with fibre dispersions may
be caused by dramatically different stress responses in different zones, in particular the complex
stress variation in the border zone.

7.4 Conclusion

G&R of MI model is achieved in this study, reproducing the main characteristics such as LV
dilation, wall thickening at the non-MI zones and shrinkage at the MI zone. Eccentric and
concentric G&R in the non-MI zones and negative growth in the MI zone occurs simultaneously.
Our results show that eccentric growth with LV dilation plays the primary role during the initial
growth of LV, then concentric growth with wall thickening turns to be the main characteristics.
The border zone has the most complicated mechanical response during diastole and systole,
and always has negative residuals stress whilst that of the MI zone is always positive. When
including the same fibre dispersion in the non-MI zones and different fibre dispersion in the MI
zone, more dispersed collagen fibre in the MI zone causes a more complicated stress response
in the border zone and reduces active and passive stress in the whole LV, finally causing worse
cardiac pumping functions. Moreover, residual stress in the MI and the border zones is more
sensitive to fibre dispersion variation in the MI zone.
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Chapter 8

Summary and future work

8.1 Summary

This thesis covers three researching topics in the biomechanics of heart, which are constitutive
law, fibre structure and G&R. It is a coherent process to conduct studies of cardiac mechanisms.
Studying G&R of heart requires the constitutive laws to determine the strain-stress response in
myocardium and the fibre structure to control deformation of the 3D FE heart model. Therefore,
this thesis includes two parts: constitutive laws and fibre structures of myocardium (Chapters
3-5) and G&R based on LV (Chapters 6&7).

Firstly, we study the classic general HO constitutive law in Chapter 3 and proposed an AIC-
based constitutive model reduction for myocardium, basing on three sets of experimental tests
that include uniaxial tension, biaxial tension and simple shear. The reduced model maintains
similar descriptive and predictive capabilities as the general HO model. Shear in biaxial tension
and fibre rotation along the thickness of samples show significant importance to fitting goodness.
We find that the effective fibre ratio is also essential when fitting data of uniaxial tension and
simple shear. Our results show that a component material model requires a combination of
different types of experimental tests.

Secondly, a bi-ventricular porcine heart is reconstructed using DT-MRI images, and inside
DT-MRI fibre structure is warped from an ex vivo canine heart using an LDDMM framework
in Chapter 4. Two simple RBM fibre structures are designed according to DT-MRI fibre struc-
ture, and then the effects of three fibre structures on cardiac pumping function are compared.
We find DT-MRI fibre structure can achieve better cardiac work, and the primary reason is its
more dispersed distribution of fibres, which enables cross-fibre active tensions. To bridge their
difference in pumping function, we propose a GST-based active tension model that includes re-
spective fractional active tensions along three orthogonal fibre directions. Finally, an RBM fibre
model with dispersed active tension achieves similar contractile capability as the model with
DT-MRI fibre structure. Moreover, cross-fibre active tension along the sheet-normal direction
can enhance active contraction, but the opposite is true along the sheet direction.

178



Chapter 8. Summary and future work

To further study the effect of fibre dispersion on both passive and active mechanical re-
sponses, different fibre dispersion cases are applied on a myocardial strip model, a rabbit bi-
ventricular model, and a human LV model in Chapter 5. To exclude compressed fibre during
passive diastole, DFD based approach is chosen because of its much higher computational effi-
ciency than the AI-based approach. GST-based active tension is also used here. Our results show
that both diastolic filling and systolic contraction can be largely affected by dispersed fibres, and
in-plane dispersion exhibits a stronger influence than out-of-plane dispersion. Comparing to the
model without fibre dispersion, more significant differences in pumping function occur when
the fibre dispersion is high, suggesting the necessary including fibre dispersion.

Based on the cardiac mechanics in the last three chapters, the second part of this project
(G&R) is explored in Chapter 6 where the constrained mixture theory is employed to investigate
different G&R characteristics of constituents in myocardium. The traction of reference configu-
rations during growth in the theory is solved using an updated reference framework, which also
allows us to update fibre structure and strain energy functions. We find residual stress plays an
important role in G&R, such as contributing to enlarge LV cavity and preventing wall thickening
in eccentric growth, and cannot be ignored, especially in concentric growth. Our model correctly
predicts the eccentric growth driven by stretch and the concentric growth driven by stress. Our
results suggest properties of collagen fibre have a significant influence on G&R, for instance,
elastic remodelling of collagen fibre works as a scaffold to prevent excessive enlargement of
LV in eccentric growth, whilst elastic remodelling along sheet direction promotes concentric
growth.

We further carry out G&R of heart with pathological MI in Chapter 7 and also include
fibre dispersion in the model. Here, we only proceed with a brief exploration and predict the
correct G&R pattern. For instance, the main features of G&R after MI, including LV dilation,
wall thickening at non-MI zones and shrinkage at MI zone, are reproduced when eccentric and
concentric G&R in non-MI zones and negative growth in MI zone are performed simultaneously.
Eccentric growth plays the leading role during the initial G&R stage, then, concentric growth
progressively becomes the primary pattern. Similar results also occur in the models with fibre
dispersion. The border zone has the most complicated mechanical response during diastole and
systole, and more dispersed collagen fibre in the MI zone makes it further complicated, resulting
in worse cardiac pumping functions.

Finally, this PhD project has been completed on time, and the initial research proposal has
been achieved. I have received training in systemic methodology to carry out academic research
and become skilled at modifying constitutive laws, reconstructing heart geometries, designing
fibre structures, coupling fibre dispersions, and implementing G&R theory to simulate patho-
logic growths. On the other hand, there are few limitations in this project, for instance, there
is limited experimental data to validate the mathematical models, in particular for structural
constitutive laws, the active stress model should be updated with more detailed biophysical in-
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formation, and G&R is only implemented to qualitatively predict pathological conditions, but
not patient-specific.

8.2 Future work

As the research progresses, we always find some exciting and meaningful reaching topics. They
are ignored in this project due to limited time, even though we have put some efforts to perform
preliminary investigations. Here, we briefly introduce three main future plans associated with
a constitutive model from ex vivo to in vivo, biophysically detailed active tension model, and
validation of G&R based on experimental data.

8.2.1 Constitutive modelling of myocardium from ex vivo to in vivo

The kinematics of soft tissue can be quantitatively measured by various experimental techniques
[4,40,55]. However, direct measurements of in vivo solid stress have not been achieved, and it is
still challenging in the case of the body. To overcome this difficulty, a common alternative way
is using constitutive models to estimate stress response, which characterize the relation between
kinematics and stress. In this respect, there is a critical need for accurate quantification of
the biomechanical micro-environment in soft tissue through mathematical modelling, which is
essentially dependent on constitutive models. Constitutive models are mathematical descriptions
that approximate the mechanical behaviours of material under specific conditions, which can
further take into account information from different scales [11]. In most soft biological tissue,
collagen is the major component of the extracellular matrix and largely determines the material
property (stiffness).

In the past several decades, many constitutive models have been proposed for myocardium
[11]. Myocardium is usually treated as an anisotropic, hyper-elastic material with layered col-
lagen network [13, 15, 181]. One of very widely used model is the HO model and its vari-
ations [11]. To account for fine structures of collagen fibres, general structural tensors were
further introduced to describe fibre dispersion by Eriksson et al. [21]. Calibrating unknown pa-
rameters in the HO model has been investigated in [181] using three different sets of ex vivo
experiment data. However, the estimated parameters in constitutive laws by fitting ex vivo ex-
perimental data are always scaled smaller to achieve enough EF or SV in 3D FE models [15,91],
indicating the gap between ex vivo and in vivo constitutive modellings. Inverse estimation of
unknown parameters in constitutive laws from in vivo data was first reported in [13] by using
MRI. We will use myocardium as an example to show how we can develop an in vivo constitu-
tive law from various ex vivo experiments and further show the applications to real patient data
by encompassing a wide range of cross-scale soft tissue mathematical models.
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8.2.2 A biophysically detailed active tension model based on Hill model

Mathematical models provide novel insights to understand mechanisms of cardiac tissues at dif-
ferent spatial scales, ranging from cells to muscles. Phenomenological approaches to model
active contraction can be divided into three categories that are active stress, active strain, and
hybrid approaches. However, active contraction does produce force simultaneously with elastic
deformation as exhibited in an isometric contraction experiment of muscle [111]. The force in
muscle rose when it was activated, and the contractile component would contract to stretch the
series elastic component [111]. In other words, the active unit contracts and pulls elastic passive
unit to produce stress, i.e. active stress, in myofibre. This fact suggests that a biophysically de-
tailed active tension model may demonstrate a more realistic active tension generation process.
Nevertheless, if assuming active force only depends on myofibre direction, no components in
the transverse plane, it is possible to replace the 3D active strain tensor with one-dimensional
stretches of interval units to avoid the interference to transverse deformation.

Myofibre is composed of myocytes whose inside unit is sarcomere to generate active tension,
moreover, spatial distributions of main functional elements in sarcomere have been demon-
strated in [228,229]. The whole sarcomere has a symmetric structure where thin actin filaments
are parallel to myosin. Z-bands at both ends are anchored to only one end of the thin filament and
connect to both ends of myosin by elastic protein titin. Myosin also connects to actin filament
by cross bridges that are controlled by active potential. In the absence of potential stimulation,
cross bridges slide freely over actin filament, and the passive response of myofibre is produced
by stretched titin. Once active contraction is activated, cross bridges bind actin filaments and
myosin in series together and contracted myosin stretches actin filament to produce the same
force. Therefore, it is feasible to separately estimate passive and active tensions, where the pas-
sive response is associated with the stretch of sarcomere in the phenomenological approach, and
active tension is evaluated by the stretch of actin filaments in a biophysically detailed approach.
As the three-element Hill’s model in [105,106], they both separate active and passive responses
into two parallel branches, in which passive stress is the synthetic response of ground matrix,
myofibre and collagen fibre in one branch, active stress is derived by active strain tensor in an-
other branch, and total stress is the sum of active and passive stresses. Physical arrangements
and lengths of main elements are demonstrated in [228] to account for the effects of sarcomere
elongation on active dynamics, which also contributes to the accurate descriptions of elements
involved in the generation process of active tension. In this concept, the main features of ac-
tive contraction, force-velocity and length-dependent relationship are correctly predicted by a
multiscale electromechanical model [230].

According to the structural analysis of principal units in sarcomeres [228–230], such as
myosin and actin filament, we present a hybrid model according to the micro and macrostructure
of myofibre, where a three-element Hill model is employed to illustrate the evolution of the stress
response. Active stress is produced by internal actin filament stretched by contracted myosin in
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series, and passive stress remains from the elongation of myofibre and collagen fibre. Moreover,
length-dependent and force-velocity relationships are considered in our active tension model.

8.2.3 Patient-specific G&R model based on experimental data

Our G&R model provides important information such as different biological constituents’ adap-
tations and responses, which are missed by the current medical technology. It also presents the
potential for integrating big data of clinical measurements into a virtual twin system for under-
standing the mechanics of heart failure and reveal the hidden roles of different constituents. This
is an essential step towards the mechanistic understanding of individual patient’s risk of heart
failure and the development of new treatments, and saving lives ultimately.

Experimental data during growth is essential for identifying appropriate growth laws under
specific pathological conditions. Measurable data can be divided into image data, mechanical
indexed data, and physiological indexed data. Based on image data, we can proceed reconstruc-
tion of geometry model by segmentation and quantification. In particular for MI growth, the
division of MI zone and non-MI zone is vital to track the variations MI tissue. Mechanical in-
dexed data are necessary to validate the computational cardiac model, such as correct kinematic
deformation with similar stress and strain as measurements. Also, it provides data to calibrate
parameters in constitutive laws. Physiological indexes data, such as pressure or other person-
alized biomarkers, contributes to designing boundary conditions for mathematical models and
performing follow-up monitoring and risk stratification.

It will be a coherent and complex process, from the first image to the final disease pre-
diction. Machine-learning and statical inference may be able to improve efficiencies, such as
deep-learning for model reconstruction and emulator for fast parameter inference. It is feasible
to construct a patient-specific model with high accuracy and efficiency in the future.
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