
 
 

 

 

 

Raad, Ali (2021) Existence and uniqueness of inductive limit Cartan 

subalgebras in inductive limit C*-algebras. PhD thesis. 
 
 

 

http://theses.gla.ac.uk/82456/ 

 

    

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 

 

 

 

 
 

Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

mailto:research-enlighten@glasgow.ac.uk


Existence and Uniqueness of Inductive Limit

Cartan Subalgebras in Inductive Limit C∗-algebras

Ali Raad

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School of Mathematics and Statistics
College of Science and Engineering

University of Glasgow

September 2021



Abstract

The main focus of this thesis is to answer the question of existence and uniqueness
of inductive limit Cartan subalgebras in certain inductive limit C∗-algebras. The
classes of inductive limit C∗-algebras considered are the unital AF, AI, and AT-
algebras. The results obtained are then generalized to certain AX-algebras.

This thesis shows that all the aforementioned classes (and AX-algebras for planar
finite connected graphs X ⊂ C) which arise from unital and injective connecting
maps contain inductive limit Cartan subalgebras. It also shows that for all these
classes except for the AF-algebras, uniqueness of the inductive limit Cartan subal-
gebras fails. We construct two non-isomorphic AI-Cartan subalgebras inside both
a non-simple and simple AI-algebra. We provide a class of simple and unital AI-
algebras for which uniqueness of AI-Cartan subalgebras fails. For the AF-algebras,
we give a K-theoretic proof of the uniqueness of the AF-Cartan subalgebras.

Additionally, this thesis generalizes a theorem by Renault which characterises Car-
tan pairs in separable C∗-algebras by twisted étale second countable groupoids. The
generalization captures all Cartan pairs, not just the separable ones.
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Chapter 1

Introduction

As in many rich fields within mathematics, the theory of C∗-algebras has its genesis
in the realm of physics. In the first half of the 20th century, quantum mechanics was
rising in popularity as a theory better capable at describing physical phenomena at
the microscopic scale, in comparison to Einstein’s relativity which only described
macroscopic phenomena of the universe. In the 1920s and 30s there was a need to
mathematically formalize the structure of quantum mechanics. In the late 1920s,
John von Neumann pursued this task and was able to define the abstract character-
istics of a Hilbert space and develop the theory of bounded and unbounded normal
operators on such spaces, which was the beginning of a rigorous mathematical for-
mulation of quantum mechanics. His work culminated in the book Mathematische
Grundlagen der Quantenmechanik which forms the mathematical basis of classical
quantum mechanics (see the Introduction of [42], together with [56] and [57]).

Together with Murray, von Neumann developed in the 1930s a theory on rings of
operators (see [53]), which formed what are today known as von Neumann algebras.
This was an abstract formalism in which an algebra of operators acting on a Hilbert
space was systematically studied, generalizing a lot of the findings of classical quan-
tum mechanics. In 1943 Gelfand and Neumark realized that these von Neumann
algebras are just an example of an abstract mathematical framework which is known
today as a C∗-algebra (see the Introduction of [42] together with [26]). On the one
hand, this formalisation was so abstract that the notion of a Hilbert space was not
included in the definitions. On the other hand, due to the GNS-construction by
Gelfand, Neumark, and Segal (see additionally [70]), the C∗-algebras still had a con-
nection with the bounded operators on Hilbert spaces that they generalized, in the
sense that every C∗-algebra can be represented as a certain subalgebra of bounded
operators on a Hilbert space (see, for instance, Theorem 4.5.6 in [35]). Gelfand and
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CHAPTER 1. INTRODUCTION 2

Neumark were able to show that the situation for commutative C∗-algebras was
even more refined. Indeed, every commutative C∗-algebra is isomorphic to the C∗-
algebra of C0 functions on some locally compact Hausdorff space (see, for instance,
Theorem 4.4.3 in [35]). For this reason the study of C∗-algebras has sometimes
been labelled as the study of non-commutative topology.

Since its inception, the theory of C∗-algebras has proved to be an extremely impor-
tant field of mathematics, not just because of its generalization and influence on
mathematical physics, but because of its fruitful interplay with many other areas of
mathematics, such as operator theory, group theory, differential topology, algebraic
topology, measure theory, ergodic theory and dynamics, to mention just a few. One
particular class of C∗-algebras that has (more recently) proved to be significant in
the theory of C∗-algebras is that of a Cartan subalgebra.

The notion of a Cartan subalgebra in the C∗-algebra setting is due to Renault (see
[64]) and built on the notion of a C∗-diagonal developed by Kumjian (see [40]), with
both attempting to be the C∗-analogue for the same notion in the von Neumann
algebra setting. Indeed in the latter case an example of a Cartan subalgebra is
the algebra of essentially bounded functions on a measure space inside the von
Neumann algebra constructed for a group acting by non-singular transformations
on the measure space (see Section 1 in [86]). This inclusion was abstracted by
Vers̆ik in [84] and studied by Feldman and Moore when they were considering the
von Neumann algebra of a measured countable equivalence relation (see [23]). The
Cartan subalgebras were maximally Abelian regular subalgebras admitting a normal
conditional expectation onto them, and contained exactly the same information as
the equivalence relation (see Section 1 in [64]). Building on this work, Cartan
subalgebras of C∗-algebras were eventually defined to be maximally Abelian C∗-
subalgebras that contain an approximate unit for the algebra in which they sit, are
regular, and admit a faithful conditional expectation onto them (see Definition 5.1
in [64]). Renault’s remarkable results in [64] characterised all Cartan subalgebras
of separable C∗-algebras: these were exactly the C0 functions on the unit space of
a twisted étale locally compact second countable topologically principal Hausdorff
groupoid, sitting inside the reduced twisted groupoid C∗-algebra (see Theorems 5.2
and 5.9 in [64]).

This characterisation brought the world of topological groupoids close to the world
of Cartan subalgebras, and led to many interesting findings. Barlak and Li in [8]
used Renault’s characterisation to find canonical types of Cartan subalgebras in
certain inductive limit C∗-algebras. Indeed the assumption is that every building
block has a Cartan subalgebra, and hence such a Cartan pair has a characterisation
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by étale twisted groupoids, and so if the connecting maps of the inductive limit are
induced by maps on the groupoid level having certain properties, then a twisted
étale groupoid is built from the building block groupoids such that its reduced
twisted groupoid C∗-algebra is the inductive limit C∗-algebra, and the C0 functions
on its unit space is the inductive limit of the Cartan subalgebras of the building
blocks. Thus in such a situation the inductive limit of the Cartan subalgebras is
a Cartan subalgebra of the inductive limit C∗-algebra (see Theorem 3.6 in [8]).
Later, in [47], Li advanced this result to determine exactly which connecting maps
could be induced by such groupoid level maps having the necessary properties to
build a twisted étale groupoid for the inductive limit. In particular he showed that
this is possible when the connecting maps are injective, map a Cartan subalgebra
of a building block into the Cartan subalgebra of the next building block, map
the normalizer set into the normalizer set, and are compatible with the faithful
conditional expectations (see Proposition 5.4 in [47]). This gives rise to a useful
tool in finding Cartan subalgebras in inductive limit C∗-algebras.

Cartan subalgebras have also been fundamental in linking several areas of mathe-
matics together, such as topological dynamics and geometric group theory. For in-
stance Li shows in [46] that Cartan subalgebras build a bridge between C∗-algebras
and topological dynamics via the notion of continuous orbit equivalence. Indeed in
a specific setting two dynamical systems are continuous orbit equivalent if and only
if their corresponding Cartan pairs (consisting of the crossed product C∗-algebra of
the dynamical system and its function subalgebra) are isomorphic. Li also shows
that there is a link between C∗-algebras and geometric group theory via the notion
of quasi-isometry. Indeed, in a specific setting two group actions on topological
spaces have quasi-isometric Cayley graphs if and only if there is an isomorphism of
certain Cartan pairs associated to the system. Because of these connections, Cartan
subalgebras have garnered lots of attention outside the purely C∗-algebraic realm.

Nonetheless, within this realm, Cartan subalgebras have not faltered to prove their
prominent role. They have, for instance, recently featured in the classification
programme for C∗-algebras. This programme, due to many hands (see for example
[21], [30], [31], [38], [59], [80]), aims to classify C∗-algebras by an invariant consisting
of K-theoretic and tracial data, and has witnessed major breakthroughs. One of
the assumptions for classifiable C∗-algebras is that they satisfy the UCT (Universal
Coefficient Theorem). It is a major open problem whether every separable nuclear
C∗-algebra satisfies the UCT. It is shown in [7], [8] and [47] that this open problem
is equivalent to an existence question for Cartan subalgebras: namely whether
every unital separable simple stably finite C∗-algebra with finite nuclear dimension
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contains a Cartan subalgebra. The UCT problem is also equivalent to whether every
unital Kirchberg algebra has a Cartan subalgebra (see the Introduction in [10]). All
this highlights the central role the question of existence of Cartan subalgebras plays
in the general theory of C∗-algebras.

A lot of work has recently been done in finding Cartan subalgebras in C∗-algebras.
Li and Renault initiated the systematic study of existence and uniqueness of Car-
tan subalgebras in C∗-algebras in [48], showing amongst other things that many
connected Lie group C∗-algebras contain Cartan subalgebras, as well as finding
distinguished Cartan subalgebras in nuclear Roe algebras. Li shows in [47] that ev-
ery classifiable simple C∗-algebra contains a Cartan subalgebra. Barlak and Raum
classify Cartan subalgebras of dimension drop algebras with coprime parameters
in [9]. White and Willett study the question of uniqueness of Cartan subalgebras
in uniform Roe algebras in [86].

The aim of this thesis is to answer certain existence and uniqueness questions for
certain canonical types of Cartan subalgebras in certain inductive limit C∗-algebras.
The Cartan subalgebras we will be interested in are those that can be realized
as inductive limits themselves of Cartan subalgebras of the building blocks. The
inductive limit C∗-algebras we will consider are AI, AT, and AX-algebras, where
X is a finite connected planar graph imbedded in C.

It was already in the work of Strătilă and Voiculescu (see [72]) that this question was
considered (even though they did not refer to it as a Cartan subalgebra). Indeed,
they construct inductive limit Cartan subalgebras in AF-algebras. Their method
is inductive; the subsequent Cartan subalgebra in an AF-building block is the C∗-
algebra generated by the Cartan subalgebra of the previous building block and
an arbitrary masa in the commutant of the previous building block. The desired
inductive limit Cartan subalgebra is then just the inductive limit of the Cartans of
the building blocks. This method cannot however be directly generalized to the case
of AI and AT-algebras. Also, they do not discuss whether these Cartan subalgebras
they obtain are unique, in the sense that any such two Cartan pairs are isomorphic
(as Cartan pairs). Even though an affirmative answer to this is a consequence of
the work of Krieger in [39], there is no systematic study of the uniqueness question
for such canonical types of inductive limit Cartan subalgebras. Inspired by all of
this, the questions we had in mind prior to the commencement of our research for
the PhD were the following:

Question 1. Does there exist inductive limit Cartan subalgebras in AI-algebras and
AT-algebras, and if so can the methods used be generalized to prove the existence
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of inductive limit Cartan subalgebras in AX-algebras, for certain topological spaces
X which would be natural generalizations of the interval and the circle?

Question 2. Can the uniqueness of the inductive limit Cartan subalgebras in AF-
algebras be proved differently, in a more structured way that lends itself to gener-
alizations? If AI and AT-algebras do have inductive limit Cartan subalgebras, are
these unique? If not, to what extent does uniqueness fail (is there a subclass of
these algebras where uniqueness is guaranteed)? Do the same results hold for the
AX-algebras?

Question 3. Does Renault’s characterisation of separable Cartan pairs via second
countable topologically principal étale twisted groupoids hold in the non-separable
case (under a weakening of the assumptions on the groupoid)?

This thesis provides complete answers to all the questions above. In Chapter 3 we
prove:

Theorem A. (See Theorem 3.2.27) Let (G,Σ) be a twisted étale locally compact ef-
fective Hausdorff groupoid. Then (C∗r (G,Σ), C0,r(G0)) is a Cartan pair. Conversely,
let (A,C) be a Cartan pair. Then there exists a twisted étale locally compact effec-
tive Hausdorff groupoid (G,Σ) and a C∗-algebra isomorphism carrying (A,C) onto
(C∗r (G,Σ), C0,r(G0)).

Theorem A affirmatively answers Question 3, and because the Cartan pair is no
longer separable, second countability of the corresponding twisted groupoid is no
longer guaranteed, and so topological principality is reduced to effectiveness. The
way we obtain Theorem A is by highlighting how most of Renault’s proofs in [64]
do not make a direct use of the second countability assumption on the groupoid,
except in a small number of cases. For these cases we show how we may obtain
similar results without such assumptions. A short discussion with Renault informed
us that the assumption of second countability was mainly placed for convenience,
without proper analysis of its requirement. A lot of the proofs in [64] make use of
separation functions on topological spaces; which are standard when the space is
second countable, as then it is paracompact and hence normal, and thus one can
make use of the standard Urysohn lemma for separation. However in the non-second
countable case one must make use of Urysohn type results for just locally compact
spaces, and these are less standard.

An important class of non-separable C∗-algebras are the uniform Roe algebras,
which are of interest as they build a link to coarse geometry (see Section 1 in [49]).
These have Cartan subalgebras (see Section 6 in [48]) which fall outside that which
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Renault’s theorem can capture. In addition, the authors of [48] obtain a distin-
guished Cartan subalgebra by using a slight modification of Renault’s theorem,
where second countability of the groupoid is weakened to σ-compactness. Of course
with Theorem A this approach is not necessary.

In Chapter 4 we prove the following theorems:

Theorem B. (See Theorem 4.2.9) Every unital AI-algebra with unital and injective
connecting maps contains an AI-Cartan subalgebra.

Theorem C. (See Theorem 4.3.18) Every unital AT-algebra with unital and injec-
tive connecting maps contains an AT-Cartan subalgebra.

Theorem D. (See Theorem 4.4.12) Every unital AX-algebra, where X is a finite
planar connected graph imbedded in C, with unital and injective connecting maps
contains an AX-Cartan subalgebra.

For a definition of an AX-Cartan subalgebra, see Definition 2.3.28. Together, these
three theorems answer Question 1. All three theorems make use of a tool by Li (see
Proposition 5.4 in [47]) which allows us to determine whether an inductive limit
of Cartan subalgebras is a Cartan subalgebra of the corresponding inductive limit
C∗-algebra, by checking whether connecting maps send a Cartan subalgebra of the
building block into the Cartan subalgebra of the subsequent building block, whether
they send normalizer set into normalizer set, and whether they are compatible
with the associated conditional expectations arising from the definition of a Cartan
subalgebra.

The way Theorem B is obtained is by realizing AI-algebras as inductive limit C∗-
algebras with standard connecting maps (for a definition of a standard map, see
Definition 2.3.39). This is due to the findings by Thomsen in [76]. Then checking
that the (diagonal) Cartan subalgebras of the AI-building blocks satisfy the prop-
erties required by Li becomes a straightforward task, because the connecting maps
are simple to understand.

The way we prove Theorem C is slightly different. Elliott’s work in [19] shows
that the maximally homogeneous *-homomorphisms are dense in the set of *-
homomorphisms between circle algebras (for a definition of maximal homogeneity,
see Definition 2.3.38). Thomsen’s work in [75] allows us to write maximally homo-
geneous connecting maps between circle algebras (without a direct sum) as unitary
conjugates of standard maps. These unitaries are functions on the unit interval that
do not necessarily agree at the endpoints. Using this, Thomsen is able to show that
given any maximally homogeneous subalgebra in a circle algebra, and a maximally
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homogeneous connecting map into another circle algebra, we may find a maximally
homogeneous subalgebra of the codomain containing the image of the maximally
homogeneous subalgebra of the domain.

We extend Thomsen’s and Elliott’s aforementioned work to direct sums of circle
algebras, which of course requires that we extend Thomsen’s definition of maximal
homogeneity to direct sums of circle algebras. We also show that the notion of
a Cartan subalgebra coincides with the notion of maximal homogeneity, in AT-
building blocks. By these generalizations we are able to show that any AT-algebra
with injective connecting maps may be realized as an AT-algebra with injective
maximally homogeneous connecting maps, which are also unitary conjugates of
standard maps. We then show how these connecting maps satisfy the requirements
of Li in order to obtain a Cartan subalgebra of the inductive limit.

For Theorem D, we generalize the methods used to prove Theorem C. In partic-
ular, we note that our result of being able to write a maximally homogeneous
*-homomorphism as one which is a unitary conjugate of a standard map is not
particular to the circle, but to any AX-building block which may be imbedded
inside an AY -building block where Y has vanishing first order C̆ech cohomology
group with coefficients in a topological group (see Definition 4.3.11). Hence our
choice of X being a graph means we may use its universal cover, which is a tree,
which has vanishing C̆ech cohomology (in analogy with how Thomsen uses R to
cover T). Then using the work in [44] we find that the maximally homogeneous
*-homomorphisms are dense in the set of *-homomorphisms between AX-building
blocks. Thus we are able to realize our AX-algebra as one whose connecting maps
are injective and maximally homogeneous. Using that maximally homogeneous
*-homomorphisms are unitary conjugates of standard maps, we show that given
a maximally homogeneous *-homomorphism between AX-building blocks, and a
maximally homogeneous subalgebra of the the domain, we can find a maximally
homogeneous subalgebra of the codomain containing the image of the maximally
homogeneous subalgebra of the domain. This extends Thomsen’s Proposition 1.8
in [75] to AX-building blocks. We also show that the notion of Cartan subalgebra in
an AX-building block also coincides with the notion of a maximally homogeneous
subalgebra. Finally we prove that the requirements of Li on connecting maps are
satisfied for our Cartan subalgebras and hence we obtain an AX-Cartan subalgebra
in our AX-algebra.

The strengths and uses of our results in Theorems B, C, and D, are many. Firstly, a
lot of the extensively studied C∗-algebras of the past are AI, or AT-algebras. This
includes for example the Bunce-Deddens algebra, the irrational rotation algebra,
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and many crossed product C∗-algebras (see, for example, [67]). Our results show
that all of these have inductive limit Cartan subalgebras.

Secondly, in the more general setting of AH-algebras (see Definition 6.0.1), Gong et
al. show in [29] that those AH-algebras with the ideal property and having torsion
free K-theory are in fact AT-algebras. Hence these have inductive limit Cartan
subalgebras.

Thirdly, the philosophy of our methods, which comprises mainly of realizing induc-
tive limit C∗-algebras via connecting maps that are easier to understand, lends its
way to generalization. Indeed, we start off with an inductive limit C∗-algebra with
arbitrary injective and unital connecting maps, and we are able to realize the same
algebra using different connecting maps. This is in stark contrast to a lot of the
current methods in which inductive limit Cartan subalgebras are found, where usu-
ally there is a set of connecting maps declared a-priori (for example Li’s exhibition
of an inductive limit Cartan subalgebra in the Jiang-Su algebra in [47]). Hence our
methods open the door to the question of which inductive limits can be realized by
connecting maps that are more amenable for the study of inductive limit Cartan
subalgebras.

Fourthly, we do not assume simplicity for our inductive limit C∗-algebras, in stark
contrast to the classification programme, where simplicity is almost always assumed.

Finally, since our methods are constructive, we produce explicit methods for ob-
taining the Cartan subalgebras of the building blocks, and hence the corresponding
étale twisted groupoids for these are easy to understand. By the methods in [8],
the groupoid corresponding to the inductive limit Cartan subalgebra can thus be
computed explicitly, and so we may obtain groupoid models for these Cartan sub-
algebras.

In Chapter 5 we explore the uniqueness of the inductive limit Cartan subalgebras
we manifest. We prove the following:

Theorem E. (See Theorem 5.1.3) Let A and B be unital AF-algebras with AF-
Cartan subalgebras C and D, respectively. Assume there exists a group isomorphism

α : (K0(A), K0(A)+, [1A]0)→ (K0(B), K0(B)+, [1B]0).

Then there exists a *-isomorphism φ : A→ B such that K0(φ) = α and φ(C) = D.

Theorem E, which is similar to Elliott’s classification theorem for AF-algebras but
where in the proof we keep track of the Cartan subalgebras, implies uniqueness
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of AF-inductive limit Cartan subalgebras. The case for the AI (and hence AT)-
algebras is different. We obtain:

Theorem F. (See Theorems 5.2.4 and 5.2.8) AI-Cartan subalgebras (and hence
AT-Cartan subalgebras) are not unique. More generally, uniqueness fails in a very
large class of simple AI-algebras.

We obtain Theorem F by studying the spectrum of the diagonal AI-Cartan sub-
algebra in an AI-algebra (where the Cartan subalgebra of every building block is
just the diagonal subalgebra). Indeed, we show that such Cartan subalgebras have
spectrum that looks like a bundle over a Cantor set (obtained from taking infinite
paths in a Brattelli type diagram which corresponds to the connecting maps of the
AI-algebra), with fibres that are inverse limits of the unit interval corresponding to
the sequence of eigenvalue functions associated with a specific path (see Chapter 5
for more details). We show that these fibres are the connected components of the
spectrum. Once we have understood the spectrum, we construct AI-algebras which
arise from two different sets of connecting maps but which admit an approximate
intertwining (see Definition 2.3.43). This implies that the AI-algebras are isomor-
phic, but in our selection of connecting maps we make choices for the eigenvalue
functions (see Definition 2.3.39) that ensure that we get a fibre in one spectrum
that is not homeomorphic to any fibre in the other spectrum. In this way we obtain
two diagonal AI-Cartan subalgebras with spectra that are not homeomorphic, and
hence the Cartan subalgebras are not isomorphic. We make use of the plethora of
constructions of inverse limits of the unit interval that appear in [34] in order to
achieve this result.

The layout of the thesis is as follows. In Chapter 2 we discuss the preliminaries
needed for the rest of the thesis. Our choice of what to include as preliminaries
is based on our judgment of what material will be required but which could also
be helpful independently for a researcher in the topic. Hence there will be some
preliminaries that are not included in this chapter but rather placed in the main
body of the thesis, whenever we deem them very specific and not widely useful for
a general mathematician working in C∗-algebras. Any preliminaries needed will be
those that we did not possess at the start of our postgraduate research. Anything
that we did possess will be assumed knowledge. It is worth noting that, in Section
2.1, we provide a self-contained complete account of the twisted étale groupoid
construction and its reduced C∗-algebra.

In Chapter 3 we prove Theorem A. Chapter 4 proves Theorems B, C, and D.
Chapter 5 proves Theorems E and F. Chapter 6 gives an outlook on the type of open
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questions that arise directly from our work, and which we will continue researching
in the future. It is worth noting that this thesis is specifically written in a style
that attempts to reflect our own journey through the research. Indeed, the choice
of order for the chapters and their sections tries to adhere as close as possible to
our personal timeline during our research. In particular, Chapter 4 proves Theorem
B, then Theorem C, then Theorem D. Of course one may have decided to present
just the proof for Theorem D as it generalizes Theorems B and C, but we chose a
different presentation. Besides reflecting the true order of how the theorems came
to be, this was done to highlight how the mathematical ideas for Theorem D are
just natural generalizations of the ideas for Theorems B and C, and thus a lot of
the proofs in Section 4.4 will refer back to proofs in Section 4.3 and add any extra
detail required, rather than being standalone proofs. Hence we intend for this thesis
to be read linearly. We would also like to emphasize that whenever there is a large
section of the thesis that follows the material of a few specific references, we will
point this out in the beginning of the relevant section rather than citing the same
references repeatedly.

Finally, it is our hope that this thesis, with its very humble addition of knowledge
to the field of operator algebras, serves to both inform and inspire any current or
upcoming researchers within the field. Mathematics is a beautiful subject, and we
are grateful to have had the opportunity to pursue it and engage with its philosophy.



Chapter 2

Preliminaries

This chapter introduces the notation and results required to understand the mate-
rial of the subsequent chapters. We assume that the reader has a general foundation
in pure mathematics (up to graduate level), and is specifically familiar with basic
functional analysis, topology, and C∗-algebra theory up to and including the ma-
terial covered in [35] and all chapters except IV and IX in [16]. These exceptions
relate to K-theory for C∗-algebras, and Brown-Douglas-Fillmore theory; the former
will be introduced at greater depth in this thesis, and the latter we do not require.

Section 2.1 in this chapter covers the preliminaries on twisted étale groupoids, their
reduced C∗-algebras, and their correspondence with Cartan pairs. This will be
fully necessary for Chapter 3, where we generalize Renault’s theorem for Cartan
subalgebras, and partly for sections of the other chapters, such as Section 4.1 and
Section 5.2. It is worth noting that, to the best of our knowledge, there is no
self-contained reference that covers this material in its entirety, as we do.

Section 2.2 in this chapter will discuss the K0 functor for unital C∗-algebras. We
will only focus on the aspects of K0 that we will require for the remaining chapters.
The material here will be prominent in Sections 4.3 and 4.4, as the K0 functor will
be important in passing from summands to direct sums, and also in Section 5.1,
where we will prove the uniqueness of the AF-Cartan subalgebras via the ordered
K0 group. Section 5.2 will also use some K-theory when discussing an invariant for
AI-algebras.

Section 2.3 will discuss the inductive limit construction, which will then be used
to discuss continuity of K0 with respect to inductive limits and the K0 group of
UHF-algebras. We will also be able to define the central theme of this thesis which
are the inductive limit Cartan subalgebras, and the various AX-algebras that we

11
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will consider. We will also briefly include some well known results for approximate
intertwinings of certain inductive limits that will be useful later when needing to
show that two inductive limit C∗-algebras are isomorphic. The material of this
section will be used critically throughout the thesis.

Section 2.4 will briefly introduce inverse limits of the unit interval, and will high-
light some results and examples that will be of particular use for us in Chapter 5.
Specifically, certain inverse limits of the unit interval will be constructed in Section
5.2 to prove non-uniqueness of the AI-Cartan subalgebras.

2.1 Cartan Subalgebras and Twisted Étale Groupoids

A groupoid is a set together with a partially defined binary operation (multipli-
cation) that generalizes the structure seen in a group. Indeed, the operation is
associative whenever it is defined, and there exists units and inverses. In the lan-
guage of category theory, a groupoid is just a small category with inverses.

Algebraically, we will see that groupoids are nothing more than disjoint unions of
Cartesian products of groups and certain equivalence relations. Hence the richness
of groupoid theory comes from adding a topology. The étale topology on groupoids
is the analogue to discrete groups in group theory. With a topology groupoids are
able to capture a plethora of mathematical structures, including group actions on
topological spaces and pseudogroups of partial homeomorphisms on a space.

In this section we will explore groupoids algebraically and then with a topology.
Then we will consider the more general twisted groupoid and how to get twisted
groupoid C∗-algebras for certain topological twisted groupoids. We will then discuss
Renault’s remarkable result which gives a correspondence between Cartan pairs and
twisted étale groupoids. This result will be generalized in Chapter 3. To the best
of our knowledge, there is no self-contained reference that covers this material in
its entirety, as we do.

A standing assumption on all topological groupoids in this thesis is that they are
Hausdorff, even if not explicitly mentioned.

2.1.1 Groupoids

This subsection will discuss the algebraic properties of groupoids, and give some ex-
amples. We will show that, algebraically, groupoids are nothing more than disjoint
unions of Cartesian products of groups with equivalence relations. We will broadly
follow the contents of Section 3.1 in [60] and Section 2.1 in [71].
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Definition 2.1.1. A groupoid is a non-empty set G, with a subset G2 ⊆ G × G of
composable pairs, equipped with a binary operation (called multiplication)

m : G2 → G

(with m(g, h) denoted by gh for all g, h ∈ G) and an involution map (called inverse)

inv : G → G

(with inv(g) denoted by g−1 for all g ∈ G) satisfying the following properties:

1. Whenever g, h, k ∈ G with (g, h) ∈ G2 and (h, k) ∈ G2, then both (gh, k) and
(g, hk) belong to G2, and (gh)k = g(hk) (written as ghk).

2. For all g ∈ G, both (g, g−1) and (g−1, g) belong to G2. Furthermore, if (g, h) ∈
G2, then g−1gh = h, and if (h, g) ∈ G2, then hgg−1 = h.

One way to think about the algebraic operations of a groupoid is to recall the
definition of a group, and realize that the difference for groupoids lies in the fact
that multiplication is not defined everywhere but rather on a specific subset of the
Cartesian product of the groupoid with itself. Then property 1 of Definition 2.1.1
is an associativity property for multiplication, and property 2 is the existence of
identities and inverses. This leads us to the following definition:

Definition 2.1.2. Given a groupoid G, we define the unit space of the groupoid,
denoted G0, as the set

{g−1g : g ∈ G} = {gg−1 : g ∈ G}.

The source map is the map s : G → G0 defined by

s(g) = g−1g ∀g ∈ G,

and the range map is the map r : G → G0 defined by

r(g) = gg−1 ∀g ∈ G.

We have the following property:

Lemma 2.1.3. Let G be a groupoid, and s and r the source and range maps,
respectively. Then (g, h) ∈ G2 if and only if s(g) = r(h).
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Proof. Assume (g, h) ∈ G2. From Definition 2.1.1 we know that (g−1, g) and (h, h−1)

belong to G2. Then

s(g) = g−1g = g−1(ghh−1) = (g−1gh)h−1 = hh−1 = r(h).

Assume s(g) = r(h), then it follows that (g, hh−1) = (g, g−1g) ∈ G2, and since
(hh−1, h) ∈ G2, it follows that (g, (hh−1)h) = (g, h) ∈ G2.

Definition 2.1.2 and Lemma 2.1.3 allows us thus to think of our groupoids graphi-
cally. Indeed, we may declare the vertices as the elements of the unit space G0, and
the directed edges between them are elements of g ∈ G, with initial vertex s(g) and
terminal vertex r(g). Multiplication of g and h is then concatenation of edges, with
the new edge labelled gh, with initial vertex s(h) and terminal vertex r(g). This is
represented in Figure 2.1.

Figure 2.1: A graphical representation of a groupoid

· · ·
h

gh

g

We can deduce more algebraic properties about our groupoid that are useful for
calculations:

Lemma 2.1.4. Let G be a groupoid, and s and r the source and range maps re-
spectively.

1. If (g, h) ∈ G2, then (h−1, g−1) ∈ G2, and (gh)−1 = h−1g−1. Furthermore,
s(gh) = s(h) and r(gh) = r(g).

2. If g ∈ G0, then g−1 = g and s(g) = r(g) = g.

Proof. 1. Note that

s(h−1) = hh−1 = r(h) = s(g) = g−1g = r(g−1),

where we have made use of Lemma 2.1.3. Hence by the same lemma, we
obtain that (h−1, g−1) ∈ G2.

We have that ((gh)−1, gh) ∈ G2 and (gh, h−1) ∈ G2. This implies that
((gh)−1, ghh−1) ∈ G2. But since ghh−1 = g, we have that ((gh)−1, g) ∈ G2
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and hence ((gh)−1, gg−1) ∈ G2. Thus

(gh)−1 = (gh)−1gg−1 = (gh)−1(ghh−1)g−1 = (gh)−1(gh)h−1g−1 = h−1g−1,

(where the first equality is due to 2 in Definition 2.1.1) and

s(gh) = (gh)−1(gh) = h−1g−1gh = h−1h = s(h),

r(gh) = (gh)(gh)−1 = ghh−1g−1 = gg−1 = r(g).

2. Let g = h−1h ∈ G0, then g−1 = h−1(h−1)−1 = h−1h = g. It is clear that
s(g) = g2 = r(g) and g2 = g.

Let us now see some examples of groupoids.

Example 2.1.5 (Groups). Let G be a group with identity element e. Then it is
a groupoid with G2 = G × G and G0 = {e}. The multiplication map is group
multiplication, and the inverse map is the group inverse map.

Example 2.1.6 (Equivalence Relations). Let X be a set and R ⊆ X × X an
equivalence relation. Then it is a groupoid with

R2 = {((x, y), (y, z)) : (x, y), (y, z) ∈ R},

R0 = {(x, x) : x ∈ X}.

Multiplication is given by (x, y)(y, z) = (x, z) for all (x, y), (y, z) ∈ R. The inverse
map is given by (x, y)−1 = (y, x) for all (x, y) ∈ R.

Example 2.1.7 (Transformation Groupoids). Let X be a set and G a group acting
on X. Let G = G×X. Then this is a groupoid with

G2 = {((g, y), (h, x)) : g, h ∈ G, x ∈ X, y = hx},

G0 = {e} ×X ∼= X.

Multiplication is given by (g, hx)(h, x) = (gh, x) and the inverse by (g, x)−1 =

(g−1, gx). Note that s((g, x)) = x and r((g, x)) = gx (where we have used the iden-
tification {e}×X with X), and hence the groupoid elements represented graphically
nicely capture the orbits via the group action.
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There are of course ways to create new groupoids from a collection of groupoids.
The following highlights this:

Lemma 2.1.8. Let G and H be groupoids. Then the set G ×H can be made into a
groupoid. Let I be an indexing set and {Gi}i∈I a collection of groupoids. Then the
disjoint union

⊔
i∈I
Gi can be made into a groupoid.

Proof. Let

(G ×H)2 = {((g1, h1), (g2, h2)) : (g1, g2) ∈ G2, (h1, h2) ∈ H2}.

Define multiplication by (g1, h1)(g2, h2) = (g1g2, h1h2) for all ((g1, h1), (g2, h2)) ∈
(G × H)2 (it is to be understood that g1g2 refers to multiplication in G and h1h2

that in H). Define the inverse by (g, h)−1 = (g−1, h−1) (where it is understood that
the inverses are taken in the respective groupoids).

Define (⊔
i∈I

Gi

)2

=
⊔
i∈I

G2
i ,

and multiplication and inverse just inherited in the canonical way from each groupoid.

Algebraically, there is not much more to say about groupoids. It turns out that
every groupoid is isomorphic (in a sense that will be made precise soon) to a disjoint
union of Cartesian products of groups with equivalence relations.

Definition 2.1.9. A map f : G → H between groupoids G and H is called a
groupoid homomorphism (or just homomorphism if the context is clear) if
(f(g1), f(g2)) ∈ H2 whenever (g1, g2) ∈ G2, and if f(g1g2) = f(g1)f(g2) for all
(g1, g2) ∈ G2.

A groupoid homomorphism f is called called a groupoid isomorphism (or just iso-
morphism if the context is clear) if it is bijective.

Theorem 2.1.10. Every groupoid G is isomorphic to a groupoid of the form⊔
i∈I

(Gi ×Ri) (2.1)

where I is a set, Gi is a group and Ri is an equivalence relation, for all i ∈ I.

Proof. Lemma 2.1.8 already tells us that (2.1) can be made into a groupoid in the
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natural way. It is obtained as follows. Let s and r be the source and range maps
for G. Define an equivalence relation on G0 by

R = {(r(g), s(g)) : g ∈ G} ⊆ G0 × G0,

(transitivity follows from Lemma 2.1.4). Let I be a set which indexes the equivalence
classes, and let these be {Xi}i∈I , which form a partition of G0. For each i ∈ I, fix
xi ∈ Xi. For each x ∈ Xi, let gx ∈ G be chosen such that r(gx) = x and s(gx) = xi.
Define

Gi = {g ∈ G : s(g) = r(g) = xi}.

Gi with the multiplication from G is a group with identity element xi. For each
i ∈ I let

Ri = Xi ×Xi,

which is the trivial equivalence relation on Xi, and thus a groupoid in the sense of
Example 2.1.6.

Now define a map α :
⊔
i∈I

(Gi ×Ri)→ G by

α(g, (x, y)) = gxgg
−1
y , for g ∈ Gi, (x, y) ∈ Ri.

It is easy to see that α is a well-defined groupoid homomorphism. Now define a
map β : G →

⊔
i∈I

(Gi ×Ri) by

β(g) = (g−1
r(g)ggs(g), (r(g), s(g))).

Again it is clear that β is a well-defined groupoid homomorphism, and in fact is an
inverse for α. The result follows.

2.1.2 Étale Groupoids

This section will introduce topological groupoids and specifically étale groupoids.
These are analogous to discrete groups in group theory. We will see some examples.
As we witnessed in Theorem 2.1.10, there is not much to say about groupoids from
just an algebraic perspective. However the theory becomes very rich when we allow
topologies on our groupoids. The content of this subsection is based broadly on
Section 3.2 in [60] and Sections 2.3 and 2.4 in [71]. However we adapt Definition
2.1 from [63] for the definition of a topological groupoid.

Definition 2.1.11. A topological groupoid is a groupoid G endowed with a topology
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that is compatible with the multiplication and inverse maps. Specifically,

m : G2 → G

is continuous (where G2 is endowed with the subspace topology of the product
topology of G × G) and

inv : G → G

is continuous.

Remark 2.1.12. We have no interest for non-Hausdorff topological groupoids in this
thesis. Therefore, whenever discussing topological groupoids anywhere in the thesis,
we will assume they are Hausdorff even if not stated.

Lemma 2.1.13. Let G be a topological groupoid. Then the range and source maps
are continuous.

Proof. These maps are formed by composition of the inverse and multiplication
maps, which are continuous by definition.

Remark 2.1.14. When discussing the unit space G0 of a groupoid topologically, we
are implicitly assuming it is endowed with the subspace topology.

Lemma 2.1.15. Let G be a topological groupoid. Then G0 is closed if and only if
G is Hausdorff.

Proof. Assume G is Hausdorff and take a net {gα}α∈A in G0 converging to g ∈ G.
Then by Lemma 2.1.4 we have that gα = s(gα) for all α ∈ A, and by Lemma 2.1.13
we obtain that g = s(g) ∈ G0.

Conversely, suppose that G0 is closed. We show that G is Hausdorff by showing
that convergent nets have unique limit points. So assume {gα}α∈A is a net in G
converging to g1 and g2 in G. Then g−1

α gα ∈ G0 converges to g−1
1 g2, and since G0 is

closed, we have that g−1
1 g2 ∈ G0 which implies that g1 = g2.

Let us revisit our previous examples but add topologies that makes them into
topological groupoids.

Example 2.1.16 (Topological Groups). Recall Example 2.1.5. If G is a topological
group then it is a topological groupoid.
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Example 2.1.17 (Topological Equivalence Relations). Recall Example 2.1.6. If X
is a Hausdorff topological space and we endow R with the subspace topology of the
product topology of X ×X, then it becomes a topological groupoid.

Example 2.1.18 (Topological Transformation Groupoids). Recall Example 2.1.7.
Let G be a Hausdorff topological group and X endowed with a Hausdorff topology
making the group action continuous. Then the transformation groupoid with the
product topology of G and X is a topological groupoid.

We wish now to define the type of topology that we will be interested in, which
is the étale topology. This makes the "group-like" parts of a topological groupoid
become discrete (in a sense that will be made precise soon). In order to define this
topology we start by defining the notion of a local homeomorphism.

Definition 2.1.19. Let f : X → Y be a map between topological spaces X and
Y . Then f is a local homeomorphism if for every x ∈ X there exists an open set U
containing x such that f(U) is open in Y and such that the restriction map

f |U : U → f(U)

is a homeomorphism.

Definition 2.1.20. A topological groupoid G is étale if the associated source and
range maps

s, r : G → G0

are local homeomorphisms.

The following useful definition is from [64]:

Definition 2.1.21. Let G be a groupoid with source and range maps s and r

respectively. Then a subset U is called an s-section (respectively an r-section) if
the restriction of s (respectively r) to U is injective. It is called a bisection if it is
both an s and r-section.

Lemma 2.1.22. If G is an étale groupoid then the source and range maps are open
maps.

Proof. Let U be an open subset of G. For every g ∈ U , there exists an open
bisection Ug such that the restriction of s to Ug is a homeomorphism onto s(Ug).
Then U =

⋃
g∈U

(U ∩ Ug) and so s(U) =
⋃
g∈U

s(U ∩ Ug) which is a union of open sets

because s is a homeomorphism on Ug for all g ∈ U . The same can be shown for the
range map r.



CHAPTER 2. PRELIMINARIES 20

Lemma 2.1.23. If G is an étale groupoid it has an open cover consisting of bisec-
tions.

Proof. Around every point in G there is a neighbourhood that is an open bisection
by the definition of being étale. The union of all such bisections covers G.

The following lemma makes precise how the étale topology is the analogue of the
discrete topology in group theory:

Lemma 2.1.24. Let G be an étale groupoid. Then G0 is open, and for every g ∈ G0,
s−1({g}) and r−1({g}) are discrete (in the subspace topology of G).

Proof. The first claim is an immediate consequence of Lemma 2.1.22. Let us now
show that for g ∈ G0, s−1({g}) is discrete. We do this by showing that every
convergent net in this fibre is eventually constant. Indeed, let A be a set such
that {hα}α∈A is a net in s−1({g}) converging to h ∈ s−1({g}). Then by Lemma
2.1.3 we have that (hα, h

−1) ∈ G2 for all α ∈ A. This implies that hαh−1 converges
to hh−1 ∈ G0, which is open, and hence there exists α0 ∈ A such that for all
α ≥ α0 we have hαh−1 ∈ G0. Now by Lemma 2.1.4 we have that for all α ≥ α0,
hαh

−1 = r(hαh
−1) = r(hα) = hαh

−1
α which implies that hα = h for all α ≥ α0. The

same argument can be performed on r−1({g}).

Let us go back to our previous examples and discuss when these are étale.

Example 2.1.25 (Étale Groups). A topological group G with identity element e
is étale if and only if it is discrete. Indeed, if it is étale then Lemma 2.1.24 tells
us that G = s−1({e}) is discrete. If G is discrete, then for every g ∈ G the map
{g} → {e} is a homeomorphism.

Example 2.1.26 (Étale Equivalence Relations). Recall Example 2.1.17. If R =

{(x, x) : x ∈ X} then it is étale as for any (x, x) ∈ R and any open set U containing
x, the restriction of the source (or range) map to (U ×U)∩R is a homeomorphism
onto U .

Example 2.1.27 (Étale Transformation Groupoids). Recall Example 2.1.18. If we
assume that the group G is discrete then G × X is étale. Indeed for any (g, x) ∈
G × X the source map maps {g} × X onto X and the range map maps {g} × X
onto {g}X := {gx : x ∈ X}, and these are homeomorphisms.

We end this section by defining types of principality a groupoid can have.
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Definition 2.1.28. Let G be a groupoid and h ∈ G0. Then we define

Gh = {g ∈ G : s(g) = h},

Gh = {g ∈ G : r(g) = h},

and the isotropy bundle

G ′ = {g ∈ G : s(g) = r(g)}.

We say the isotropy at h is Gh ∩ Gh.

The following is based on Definitions 3.4 and 3.5 in [64]:

Definition 2.1.29. A groupoid G will be called principal if G ′ = G0. If it is a
topological groupoid it will be called

• topologically principal if the elements in G0 with trivial isotropy are dense in
G0, and

• effective if int(G ′) = G0.

Example 2.1.30 (Groups). The étale group from Example 2.1.25 satisfies none of
the properties of Definition 2.1.29 if it is non-trivial, as G′ = G.

Example 2.1.31 (Equivalence Relations). Any equivalence relation groupoid R ⊆
X ×X is principal, as R′ = {(x, x) ∈ R} = R0. Hence any topological equivalence
relation is both topologically principal and effective.

Example 2.1.32 (Transformation Groupoids). Recall Example 2.1.7. Given a
point x ∈ X, its isotropy consists of all the elements (g, x) such that gx = x, in
other words the stabilizer subgroup of G with respect to x. Hence the action needs
to be free if the groupoid is to be principal. In a similar way, for a topological
transformation groupoid the action needs to be topologically free (which means
that the set of points in X with trivial stabilizer subgroups are dense in X, see
Definition 2.1 in [45]) in order for the groupoid to be topologically principal. For an
étale groupoid this will suffice to also guarantee effectiveness, as we will see below.

The following lemma is based on Proposition 3.6 in [64]:

Lemma 2.1.33. Let G be an étale groupoid. Then we have the following implica-
tions:

G is principal =⇒ G is topologically principal =⇒ G is effective.
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Proof. The first implication is trivial. As for the second, assume G is topologically
principal, and let U be an open set in G ′. We aim to show that U ⊆ G0. Since
the topology is Hausdorff we have by Lemma 2.1.15 that G0 is closed and so U \ G0

is open. Hence r(U \ G0) is open by Lemma 2.1.22. However this set belongs to
those elements in G0 whose isotropy is not trivial, and this has empty interior as
G is assumed topologically principal. Hence this set is empty and so U ⊆ G0 as
desired.

Remark 2.1.34. The implications of Lemma 2.1.33 are not reversible. Indeed, similar
to what was discussed in Example 2.1.32, there are examples of étale topologically
principal groupoids that are not principal, and by Remark 3.2.8 there are effective
étale groupoids which are not topologically principal.

2.1.3 Twisted Étale Groupoids

In this section we outline the structure of a twisted groupoid. These will be crucial
in order to understand the correspondence with Cartan subalgebras in Chapter 3.
The material presented here has its origins in Renault’s work in [63], where the
notion of twist on a groupoid was that of a T-valued continuous 2-cocycle. Later,
in [40], Kumjian generalized this to a general notion of twist on a groupoid, which
we explain in this section. There are plenty of good summaries of the construction,
for example [3], [8], [13] and [64]. Whilst we might use elements of all of these, the
treatment will broadly follow Section 5 in [71].

We now define the notion of a twisted étale groupoid. A good figure to have in
mind whilst reading the definition is Figure 2.2.

Definition 2.1.35. Let G be an étale groupoid. Then a twist Σ over G is a locally
compact Hausdorff groupoid admitting a sequence

G0 × T Σ G,i Π

where

• G0×T is a trivial group bundle with fibres T. This becomes a groupoid when
declaring the set of composable pairs to be {((g, t1), (g, t2)) : g ∈ G0, t1, t2 ∈ T}
and multiplication given by (g, t1)(g, t2) = (g, t1t2), and inverse by (g, t)−1 =

(g, t−1). The unit space is then clearly identified with G0. The topology is
then the product topology of the topologies on G0 and T,

• i and Π are continuous groupoid homomorphisms with i injective and Π sur-
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jective, both restricting to homeomorphisms on the respective unit spaces (the
unit space of Σ is identified with G0),

• Π−1(G0) = i(G0 × T),

• The image of i is central in Σ. Specifically, if we define a multiplication of Σ

by T via tσ = i(r(σ), t)σ and σt = σi(s(σ), t) for all t ∈ T and σ ∈ Σ, then
tσ = σt,

• Σ is a locally trivial G-bundle, in the sense that around every g ∈ G there
is a corresponding bisection U and a continuous section S : U → Σ with
Π ◦ S = idU and such that the map

U × T→ Π−1(U), (g, t)→ i(r(g), t)S(g)

is a homeomorphism.

One may denote a groupoid and its twist by (G,Σ) and we call this a twisted (étale)
groupoid.
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Figure 2.2: Twisted Groupoid

Σ

G0

G

G0

Π

· g
U

· S(g)

· (r(g), t)

The following lemma will allow us to view a twist over a groupoid via continuous
circle actions, which makes the groupoid look like the orbit space of the action.

Lemma 2.1.36. Let Σ be a twist over G. Then for σ1, σ2 ∈ Σ, if Π(σ1) = Π(σ2)

then there exists a unique t ∈ T such that tσ2 = σ1.

Proof. First we show that (σ1, σ
−1
2 ) ∈ Σ2. Indeed, let g = Π(σ1) = Π(σ2) and choose

an open set U as in Definition 2.1.35 that witnesses the local triviality. Let S be the
continuous section from that definition. Then it follows that σ1 = i(r(g1), t1)S(g1)

for some (g1, t1) ∈ U × T, and σ2 = i(r(g2), t2)S(g2) for some (g2, t2) ∈ U × T.
Since S is a section and Π−1(G0) = i(G0×T), acting by Π on σ1 and σ2 yields that
g1 = g2 = g. Then it is clear that σ1σ

−1
2 is defined.

By direct computation we have that σ1σ
−1
2 = i(r(g), t) for some t ∈ T. This t is

unique as i is injective. We then have σ1(tσ2)−1 = σ1σ
−1
2 i(r(σ2), t) = i(r(σ2), 1).
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Multiply on the right by tσ2 and we get σ1 = tσ2.

In Section 2.1 of [8], another way to define a twisted étale groupoid is presented
summatively. We present it here:

Definition 2.1.37. A twist Σ is a locally compact groupoid admitting a con-
tinuous free action T y Σ, such that the quotient Σ/T (which is denoted G) is
étale and Hausdorff. Furthermore, the canonical projection Π : Σ � G, σ → σ̇

should be a locally trivial principal T-bundle. For t1, t2 ∈ T and σ1, σ2 ∈ Σ we
have (t1σ1, t2σ2) ∈ Σ2 if and only if (σ1, σ2) ∈ Σ2, in which case the product is
(t1t2)(σ1σ2). The groupoid structure on G is the one induced canonically by the
canonical projection. We write (G,Σ) for the twisted étale groupoid.

Remark 2.1.38. It is clear that Definition 2.1.35 together with Lemma 2.1.36 yields
Definition 2.1.37. Indeed the action is declared the multiplication of Σ by T (which
is free and continuous). Lemma 2.1.36 allows us to identify G with Σ/T. Since the
image of i is central in Σ it becomes clear that the algebraic structures required in
Definition 2.1.37 are met.

Conversely, if we start out with Definition 2.1.37 we first note that (Σ/T)0 can be
identified with Σ0. Indeed the map r(σ) → r(σ̇) is injective since if r(σ̇1) = r(σ̇2)

then there exists t ∈ T such that tr(σ1) = r(σ2). Since squaring and taking inverse
does not change the right hand side, we have that tr(σ1) = t2r(σ1) = tr(σ1). Since
the action is free it follows that t = t2 = t and so t = 1. Hence the map r(σ)→ r(σ̇)

defines a homeomorphism Σ0 → (Σ/T)0. Thus we obtain a central extension

(Σ/T)0 × T Σ Σ/T,i Π

where i(r(σ̇), t) = tr(σ), satisfying the requirements of Definition 2.1.35. It is easy
to see that i is an injective groupoid homomorphism.

Remark 2.1.39. We will use both of the equivalent Definitions 2.1.35 and 2.1.37
when discussing twisted groupoids, and it should be clear from context which one
we are using.

The statement of the following lemma is discussed in Section 2 of [8]. Here, we
provide a proof.

Lemma 2.1.40. Let (G,Σ) be a twisted étale groupoid, and let Π be the correspond-
ing projection map. Then Π is open and closed, perfect and proper.
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Proof. For a set A ⊂ Σ, we have

Π−1(Π(A)) =
⋃
t∈T

{t}A. (2.2)

This shows that if A is open, so is the right hand side of equation (2.2) (as for t ∈ T
the map a → ta is continuous with continuous inverse defined by multiplication
by t, and hence we have a homeomorphism A → {t}A), and hence so is Π(A) (by
definition of the quotient topology). If A is closed, take a net tαaα in the right hand
side of equation (2.2), and assume this converges to σ ∈ Σ. Since T is compact,
{tα} has a convergent subnet, say {tαi}, converging to t ∈ T. Then by continuity of
multiplication and inverse, we have that t−1

αi
(tαiaαi) converges to t−1σ ∈ A. Thus σ

belongs to the right hand side of (2.2), and Π is closed. It is clear that Π is perfect
as the fibre is T.

To see that Π is proper, we use the proof of Theorem K.3 in [51]. Indeed, let K
be a compact subset of G, and g ∈ G. Let Π−1(K) be covered by the open family
U . Π−1({g}) can be covered by finitely many open sets from U . Exercise 6 in [52]
shows how there is a neighbourhood of g whose inverse image under Π is covered
by the same finitely many open sets. Since K can then be covered by finitely many
such neighbourhoods, Π−1(K) has a finite subcover.

Definition 2.1.41. When an étale groupoid G has a property P , and Σ is a twist
over G, we shall say that (G,Σ) is a twisted étale P groupoid.

Remark 2.1.42. It is clear that in under both Definition 2.1.35 and Definition 2.1.37
the base space G becomes locally compact. Indeed, as the twist is locally compact
by definition, this follows by Lemma 2.1.40.

Now let us look at some examples of twisted étale groupoids.

Example 2.1.43 (Trivial Twist). Let G be an étale locally compact groupoid and
define the product groupoid Σ = G × T as in Lemma 2.1.8. Define i : G0 × T→ Σ

by i(g, t) = (g, t), and Π : Σ → G by Π(g, t) = g. It is easy to check that (G,Σ) is
a twisted étale locally compact groupoid.

Our next class of examples stem from Renault’s original considerations in [63], where
we consider the étale groupoid G × T, but where we change the multiplication and
inversion to take into account a continuous T-valued 2-cocycle c on G. The following
definition is from [17]:
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Definition 2.1.44. A T-valued 2-cocycle on an étale groupoid G is a function

c : G2 → T

such that
c(g, s(g)) = c(r(g), g) = 1 ∀g ∈ G,

c(g, hk)c(h, k) = c(gh, k)c(g, h) whenever (g, h), (h, k) ∈ G2.

The following is Lemma 2.1 in [17]:

Lemma 2.1.45. Given a T-valued 2-cocycle c on an étale groupoid G and g ∈ G,
we have that

c(g−1, g) = c(g, g−1).

Proof. We have that

c(g, g−1)c(g−1, g) = (c(gg−1, g)c(g, g−1))c(g−1, g) = (c(g, g−1g)c(g−1, g))c(g−1, g) = 1.

Example 2.1.46 (Twisted Groupoids from 2-cocycles). Let G be an étale groupoid
and c a continuous T-valued 2-cocycle on G. Define Σc = G × T with topology
the product topology, and Σ2

c is the set of composable pairs induced canonically
from a product of two groupoids, as in Lemma 2.1.8. Endow it with the following
multiplication:

(g1, t1)(g2, t2) = (g1g2, c(g1, g2)t1t2) ∀(g1, g2) ∈ G2, t1, t2 ∈ T.

The inverse is defined by

(g, t)−1 = (g−1, c(g−1, g)t).

Lemma 2.1.45 can be used to show that the inverse map is indeed an involution,
and that s((g, t)) = (s(g), 1) and r((g, t)) = (r(g), 1) (here we are abusing notation
by using the same notation for the source and range maps in Σc as those in G).
Define

G0 × T Σc Gi Π

by i(g, t) = (g, t) and Π(g, t) = g. It is then straightforward to see that this defines
an étale twisted groupoid (G,Σc) for every continuous T-valued 2-cocycle c on G.
When c ≡ 1 we retrieve the trivial twist of Example 2.1.43.
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We conclude this section by outlining how a twist over an étale groupoid gives rise
to a certain complex line bundle that will become relevant in Section 2.1.4.

Lemma 2.1.47. Let (G,Σ) be a twisted étale groupoid. Define a relation on Σ×C
by (σ1, z1) ∼ (σ2, z2) if and only if Π(σ1) = Π(σ2) and either z1 = z2 = 0 or
|z1| = |z2| and z1

|z1|σ1 = z2
|z2|σ2. Then ∼ is an equivalence relation. Define a map

p : (Σ× C)/ ∼� G, [σ, z]→ Π(σ).

This turns (Σ× C)/ ∼ into a complex line bundle over G.

Proof. Reflexivity and symmetry of ∼ is clear. Now assume (σ1, z1) ∼ (σ2, z2) ∼
(σ3, z3). Then Π(σ1) = Π(σ2) = Π(σ3), and if z1 = z2 is 0 then it forces z3 = 0 also,
and if not then we have z1

|z1|σ1 = z2
|z2|σ2 = z3

|z3|σ3, and transitivity follows.

It is clear that the map p is well-defined. Note that there exists t ∈ T, σ ∈ Σ and
z1, z2 ∈ C \ {0} such that z1

|z1| = t z2|z2| if and only if (σ, z1) ∼ (tσ, z2). Hence given
g ∈ G, we have by Lemma 2.1.36 that p−1({g}) can be identified with a line in the
complex plane passing through the origin.

Definition 2.1.48. Let (G,Σ) be a twisted étale groupoid. Define

LΣ = (Σ× C)/ ∼

where the equivalence relation ∼ is the one from Lemma 2.1.47. LΣ is then called
the complex line bundle associated to Σ. The topology on it is the canonical one
induced by the quotient topology of the product topology on Σ×C. we denote the
quotient map by q.

Remark 2.1.49. In Section 4 in [64] Renault introduces the complex line bundle
associated to Σ as the orbit space of the circle action T y (Σ × C) given by
t(σ, z) = (tσ, tz). It is straightforward to see that this defines the same equivalence
classes as the ones defined in Lemma 2.1.47.

Remark 2.1.50. Renault notes in Section 4 of [64] that the complex line bundle
associated to Σ has the structure of a Fell bundle over G, with fibre C. We will
only use this fact sparsely and hence we will not discuss the theory of Fell bundles.

2.1.4 Twisted Groupoid C∗-algebras

This section involves the construction of the reduced twisted groupoid C∗-algebra.
This generalizes the reduced groupoid C∗-algebra construction, which we will not
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need for this thesis. The material presented here will be broadly based on the
material in Section 4 of [64], and hence it is more convenient to have Definition
2.1.37 as the base definition for twisted groupoids. In what follows we assume
(unless stated otherwise) that the twisted groupoids are étale, locally compact and
Hausdorff. Local compactness is a consequence of the twisted groupoid definitions.
Some specific statements might not need one or more of these assumptions, but for
the purpose of this thesis we are not interested in such exceptions.

Definition 2.1.51. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Let f : Σ→ C be a continuous function. We define the open support of f as as

supp′(f) = {σ̇ ∈ G : f(σ) 6= 0}.

The support of f is defined by

supp(f) = supp′(f).

Definition 2.1.52. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Define

C(G,Σ) = {f : Σ→ C : f is continuous, f(tσ) = tf(σ) ∀t ∈ T, σ ∈ Σ}.

We call the property f(tσ) = tf(σ) T-equivariance. Define

CC(G,Σ) = {f ∈ C(G,Σ), supp(f) is compact},

and
CC(G0) = {f ∈ CC(G,Σ) : supp(f) ⊂ G0}.

The following lemma highlights why T-equivariance is used, namely to be able to
identify such continuous functions with continuous sections of the complex line
bundle associated to Σ. The following is stated as Remark 5.1.10 in [71]:

Lemma 2.1.53. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
There is an isomorphism that identifies CC(G,Σ) with the compactly supported con-
tinuous sections of the complex line bundle associated to Σ.

Proof. Let us give the explicit identifications. For f in CC(G,Σ), define Sf : G → LΣ

by
Sf (σ̇) = [σ, f(σ)].
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By Remark 2.1.49, Sf is well-defined precisely because of the T-equivariance of f .
For a compactly supported supported section S : G → LΣ we let

fS(σ) = z(σ)

where z(σ) is the unique element in C which satisfies that (σ, z(σ)) is in the class
of S(σ̇). It is easy to see that z is T-equivariant and that S(fS) = S and that
f(Sf ) = f .

In order to obtain a twisted groupoid C∗-algebra, we will start by constructing a
∗-algebra structure on CC(G,Σ), and then introducing an appropriate norm. The
C∗-algebra will then be the completion of CC(G,Σ) with respect to this norm.

Definition 2.1.54. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Define (CC(G,Σ), ∗) to be the vector space CC(G,Σ) (as a subspace of C0(Σ)) en-
dowed with a multiplication map defined by

f ∗ g(σ) =
∑

τ̇∈Gs(σ)

f(στ−1)g(τ), for all f, g ∈ CC(G,Σ), σ ∈ Σ, (2.3)

and an involution defined by
f ∗(σ) = f(σ−1). (2.4)

Lemma 2.1.55. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then (CC(G,Σ), ∗) defines a *-algebra structure on CC(G,Σ).

Proof. The sum in (2.3) is well-defined as f and g are T-equivariant and the sum
is over a discrete space (by Lemma 2.1.24), and since the supports of f and g are
compact, only finitely many summands are non-zero. Clearly f ∗ g is continuous
and T-equivariant since f is. To see that f ∗ g is compactly supported, notice
that f ∗ g(σ) is non-zero if there is at least one τ̇ ∈ Gs(σ) such that f(στ−1)g(τ)

is non-zero, which implies that σ is in the image, under the multiplication map,
of (Π−1(supp(f)) × Π−1(supp(g))) ∩ Σ2, which is the image, under a continuous
function, of a compact set (Σ2 is closed as the topology is Hausdorff, see for example
the consequences of Definition 2.1 in [63], and we use the properness of Π from
Lemma 2.1.40), hence compact. So supp(f) is a closed subset of the image, under
Π, of a compact set, hence compact. Hence f ∗ g ∈ CC(G,Σ).

Likewise one can check that f ∗ ∈ CC(G,Σ), and it is a tedious but simple task to
check that the remaining algebraic axioms defining a *-algebra are satisfied.
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The strategy is to now introduce a representation of our *-algebra CC(G,Σ) on
a Hilbert space for every element g ∈ G0. The norm we will want to define on
(CC(G,Σ), ∗) will be the universal one with respect to these representations. In
order to achieve all this, we will first show that the norm of any *-representation
of (CC(G,Σ), ∗) is bounded by a certain norm known as the I-norm. This norm
behaves like a fibrewise 1-norm.

Definition 2.1.56. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
The I-norm on (CC(G,Σ), ∗) is the norm defined by

‖f‖I = max

sup
g∈G0

∑
σ̇∈Gg

|f(σ)|, sup
g∈G0

∑
σ̇∈Gg
|f(σ)|


Lemma 2.1.57. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
The I-norm on (CC(G,Σ), ∗) is a norm satisfying ‖f ∗‖I = ‖f‖I and ‖f ∗ h‖I ≤
‖f‖I‖h‖I for all f, h ∈ CC(G,Σ).

Proof. That ‖‖I is homogeneous and satisfies the triangle inequality is clear. To see
that it is real-valued, note that we can first cover G by open bisections by Lemma
2.1.23. Then for f ∈ CC(G,Σ), a finite subcollection of our open bisections cover
supp(f). Let the number of elements in this subcollection be N . It is then clear
that ‖f‖I ≤ N‖f‖∞ <∞.

It is clear that ‖f ∗‖I = ‖f‖I , and note that for any g ∈ G0, we have, for f, h ∈
CC(G,Σ) that ∑

σ̇∈Gg

|f ∗ h(σ)| =
∑
σ̇∈Gg

|
∑

τ̇∈Gs(σ)

f(στ−1)h(τ)|

≤
∑
σ̇∈Gg

 ∑
τ̇∈Gs(σ)

|f(στ−1)h(τ)|


=
∑
τ̇∈Gg

 ∑
σ̇∈Gs(τ)

|f(στ−1)|

 |h(τ)|

≤
∑
τ̇∈Gg

 ∑
ρ̇∈Gr(τ)

|f(ρ)|

 |h(τ)|

≤ ‖f‖I
∑
τ̇∈Gg

|h(τ)|

≤ ‖f‖I‖h‖I .
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The same can be done for a sum over the range fibre, and as g ∈ G0 was arbitrary,
it follows that ‖f ∗ h‖I ≤ ‖f‖I‖h‖I .

We now show that any *-algebra representation on (CC(G,Σ), ∗) is bounded by the
I-norm. In order to obtain this, we need to introduce the inductive limit topology
on CC(G,Σ).

Definition 2.1.58. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Let K be the set of all compact subsets of G. For K ∈ K, define CK(G,Σ) to be
those elements in CC(G,Σ) with compact support in K. Endow CK(G,Σ) with the
topology induced by the supremum norm.

Lemma 2.1.59. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then (CC(G,Σ), {CK(G,Σ) : K ∈ K}), with the order on K defined by inclusion, is
an inductive system (in the sense of Definition 5.1 in Chapter IV of [15]).

Proof. It is trivial to check that the properties of Definition 5.1 in Chapter IV of [15]
hold.

The following lemma is similar to Lemma 3.2.3 in [71], but we do it for the twisted
groupoid case.

Lemma 2.1.60. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then any *-representation π of (CC(G,Σ), ∗) is continuous in the inductive limit
topology when treating CC(G,Σ) as an inductive system, and satisfies

‖π(f)‖ ≤ ‖f‖I

for all f ∈ CC(G,Σ).

Proof. To check that π is continuous in the inductive limit topology, by Proposition
5.7 in Chapter IV in [15] it suffices to check that its restriction to CK(G,Σ) is
continuous, for arbitrary K ∈ K. By Lemma 2.1.23 and compactness we obtain a
finite open cover of K by bisections. Let {χi : i = 1, . . . , n} be a partition of unity
subordinate to this cover, and for f ∈ CK(G,Σ) let fi = χi · f be the map defined
by pointwise multiplication, where χi = χi ◦ Π. It is clear that fi ∈ CK(G,Σ) with

f =
n∑
i=1

fi. Then

‖π(f)‖ = ‖π(
n∑
i=1

fi)‖ ≤
n∑
i=1

‖π(fi)‖. (2.5)
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Now note that
f ∗i ∗ fi(σ) =

∑
τ̇∈Gs(σ)

fi(τσ−1)fi(τ),

which is only non-zero if there exists a τ ∈ Σ such that both τ̇ σ̇−1 and τ̇ belong to
the same bisection covering K. But since the image under the range map of these
two elements is the same, it follows that the elements are the same and hence that
σ̇ ∈ G0. Hence it is clear that

f ∗i ∗ fi(σ) = f ∗i ∗ fi(s(τ)) = |fi(τ)|2

for some τ̇ ∈ supp(fi), and so

‖f ∗i ∗ fi‖∞ = ‖fi‖2
∞.

Hence using that the restriction of π to the commutative C∗-algebra (CC(G0), ∗, ‖‖∞)

becomes a *-homomorphism, we get that

‖π(fi)‖2 = ‖π(f ∗i ∗ fi)‖ ≤ ‖f ∗i ∗ fi‖∞ = ‖fi‖2
∞.

Returning to (2.5) we get
‖π(f)‖ ≤ n‖f‖∞.

Thus π is continuous in the inductive limit topology, and hence in the I-norm
topology since for f ∈ CC(G,Σ), ‖f‖∞ ≤ ‖f‖I . The completion of (CC(G,Σ), ∗) in
the I-norm gives us a Banach *-algebra, to which π extends to become a *-algebra
homomorphism (using for example Theorem 1.5.7 in [35]). Write ρB : B → [0,∞)

for the spectral radius function on a Banach *-algebra B. Then, for f ∈ CC(G,Σ),
we get

‖π(f)‖2 = ‖π(f ∗ ∗ f)‖ = ρB(H)(π(f ∗ ∗ f)) ≤ ρ
CC(G,Σ)

I (f ∗ ∗ f) ≤ ‖f ∗ ∗ f‖I ≤ ‖f‖2
I ,

and the desired result follows.

Definition 2.1.61. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
For every g ∈ G0, define

Hg = {ξ : Σg → C : ξ(tσ) = tξ(σ) for all t ∈ T,
∑
σ̇∈Gg

|ξ(σ)|2 <∞}.
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Define

πg : (CC(G,Σ), ∗)→ B(Hg), πg(f)(ξ)(σ) =
∑
τ̇∈Gg

f(στ−1)ξ(τ). (2.6)

Definition 2.1.62. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
For σ ∈ Σ, define ξσ ∈ Hs(σ) as the element which evaluates to t at τ = tσ, and 0
otherwise. We call such elements basis elements for Hs(σ).

Lemma 2.1.63. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then for g ∈ G0, the binary operation Hg ×Hg → C defined by

〈ξ, δ〉Hg =
∑
τ̇∈Gg

ξ(τ)δ(τ)

is an inner product making Hg a Hilbert space.

Every ξ ∈ Hg can be written as

ξ =
∑
τ̇∈Gg

ξ(τ)ξτ .

Furthermore, for σ̇1, σ̇2 ∈ Gg, |〈ξσ1 , ξσ2〉Hg | = 0 if σ̇1 6= σ̇2 and 1 otherwise.

Proof. That the binary operation defined is an inner product making Hg a Hilbert
space is clear from Definition 2.1.61. By direct computation using Definition 2.1.62
it is clear that ξ =

∑
τ̇∈Gg

ξ(τ)ξτ . The last claim is also easy to check.

Lemma 2.1.64. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
For every g ∈ G0, πg defines a *-representation of (CC(G,Σ), ∗) on Hg.

Proof. For f ∈ CC(G,Σ), and ξ ∈ Hg, it is clear that πg(f)(ξ) is T-equivariant
(as f is). The sum in (2.6) is well-defined as f and ξ are T-equivariant and f is
compactly supported, meaning only finitely many summands are non-zero. Note
that if f is supported on an open bisection, and ρ̇ ∈ Gg, we have, for σ ∈ Σg, that

πg(f)(ξρ)(σ) = f(σρ−1),

and hence ∑
σ̇∈Gg

|πg(f)(ξρ)(σ)|2
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collapses to a single summand bounded by ‖f‖2
∞. Hence πg(f)(ξ) belongs to Hg

when f is supported in an open bisection, and ξ is a basis element. Now for arbitrary
ξ ∈ Hg we have by Lemma 2.1.63 that

πg(f)(ξ) =
∑
τ̇∈Gg

ξ(τ)πg(f)(ξτ ).

By using the fact that f is supported on a bisection one can check directly that
{πg(f)(ξτ ) : τ̇ ∈ Gg} forms a set of orthogonal elements in Hg. Hence∑
σ̇∈Gg

|πg(f)(ξ)(σ)|2 = 〈πg(f)(ξ), πg(f)(ξ)〉 =
∑
τ̇∈Gg

|ξ(τ)|2‖πg(f)(ξτ )‖2
2 ≤ ‖f‖2

∞‖ξ‖2
2.

(2.7)
From this one can see that πg(f)(ξ) belongs to Hg for arbitrary ξ ∈ Hg and f

supported on a bisection. A partition of unity argument then shows that this
holds for any f ∈ CC(G,Σ), and from (2.7) one can conclude that πg(f) belongs to
B(Hg). It is then a tedious but straightforward task to verify that πg is a morphism
of *-algebras, and hence πg is a *-representation of (CC(G,Σ), ∗) on Hg.

Definition 2.1.65. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then its reduced twisted groupoid C∗-algebra C∗r (G,Σ) is the completion of the *-
algebra (CC(G,Σ), ∗) in the norm

‖f‖r = sup
g∈G0
‖πg(f)‖.

Remark 2.1.66. It is precisely Lemma 2.1.60 that allows us to conclude that ‖‖r
is real-valued. The triangle inequality and homogeneity properties follow because
they are upheld for the operator norm. This norm satisfies the C∗-condition because
the operator norm does. Hence C∗r (G,Σ) is indeed a C∗-algebra.

Example 2.1.67. Using the constructions in Section 1 of Chapter II in [63], we may
consider a continuous T-valued 2-cocycle c defining a multiplication and involution
on CC(G), where G is an étale locally compact Hausdorff groupoid. Specifically,
multiplication is given by

f ∗ g(x) =
∑
y∈Gx

f(xy−1)g(y)c(xy−1, y) for all f, g ∈ CC(G), x ∈ G, (2.8)

and the involution by

f ∗(x) = f(x−1)c(x, x−1) for all f ∈ CC(G), x ∈ G. (2.9)
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In a similar way as what we have done in this section, Renault constructs a C∗-
algebra C∗r (G, c). Recalling Example 2.1.46, we may get a twisted groupoid (Σc,G).
It can be verified, as is stated in [17], that C∗r (Σc,G) ∼= C∗r (G, c). When c ≡ 1, Σc is
the trivial twist, then (2.8) and (2.9) show that C∗r (G × T,G) ∼= C∗r (G), where the
latter is the well-known reduced groupoid C∗-algebra (as constructed in Chapter 3
of [60]).

We will conclude this section by showing that the elements of C∗r (G,Σ) can be iden-
tified with T-equivariant C0 maps Σ → C. Under this identification, the elements
of C∗r (G,Σ) satisfy the same multiplication and involution formulas as (2.3) and
(2.4).

Definition 2.1.68. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Define C0(G,Σ) as the set of T-equivariant C0 maps Σ→ T. Define C0(G0) as the
elements of C0(G,Σ) with open support in G0.

Definition 2.1.69. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Define a map

j : C∗r (G,Σ)→ C0(G,Σ)

by
j(f)(σ) = 〈πs(σ)(f)(ξs(σ)), ξσ〉.

Here we are abusing notation by writing πs(σ) as the extension of πs(σ) to C∗r (G,Σ)

The following lemma is based on the ideas in Proposition 3.3.3 in [71].

Lemma 2.1.70. The map j in Definition 2.1.69 is a well-defined injective linear
map and norm decreasing when C0(G,Σ) is equipped with the supremum norm. On
the dense subalgebra CC(G,Σ) j reduces to the identity map.

Proof. For f ∈ C∗r (G,Σ), πs(σ)(f) ∈ B(Hs(σ)) and so the inner product is taken on
two elements of Hs(σ). So indeed j(f) is a map from Σ to C. It is linear as πs(σ)

is. Note that ξtσ = tξσ so indeed j(f) is T-equivariant. Using the Cauchy-Schwarz
inequality and Lemma 2.1.63 we can see that

‖j(f)‖∞ ≤ sup
σ∈Σ
‖πs(σ)(f)‖ ≤ ‖f‖r.

For f ∈ CC(G,Σ) it is clear that j(f)(σ) = f(σ) (as here we can use Definition
2.1.61). Hence j is continuous as a map from the dense subalgebra CC(G,Σ) into
the C∗-algebra (C0(Σ), ‖‖∞). Hence j maps C∗r (G,Σ) into C0(G,Σ). Finally, if
f ∈ C∗r (G,Σ) is non-zero, then there exists g ∈ G0 such that ‖πg(f)‖ 6= 0. By
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Lemma 2.1.63 there must exist α, β ∈ Σg such that

〈πg(f)(ξα), ξβ〉 6= 0.

The operator Uα : Hs(α) → Hr(α) defined by ξγ → ξγα−1 is unitary and hence we get

j(f)(βα−1) = 〈πr(α)(f)(ξr(α)), ξβα−1〉 = 〈U∗απr(α)(f)Uα(ξα), ξβ〉 = 〈πs(α)(f)(ξα), ξβ〉 6= 0.

Hence j(f) 6= 0 and so j is injective.

Definition 2.1.71. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Let j be the map from Definition 2.1.69. Define a multiplication and involution on
j(C∗r (G,Σ)) ⊂ C0(G,Σ) by

j(f) ∗ j(g)(σ) =
∑

τ̇∈Gs(σ)

j(f)(στ−1)j(g)(τ), (2.10)

j(f)∗(σ) = j(f)(σ−1).

Lemma 2.1.72. The multiplication and involution operations in j(C∗r (G,Σ)) as
given in Definition 2.1.71 are well-defined, and in particular we have that

j(f ∗ g) = j(f) ∗ j(g)

and
j(f ∗) = j(f)∗.

If we equip j(C∗r (G,Σ)) with this multiplication and involution, and with norm

‖j(f)‖r = ‖f‖r,

the map
j : C∗r (G,Σ)→ j(C∗r (G,Σ))

becomes a C∗-algebra isomorphism. There is an Abelian C∗-subalgebra C0,r(G0) ⊂
C∗r (G,Σ) such that j maps C0,r(G0) isometrically and *-isomorphically onto the C∗-
algebra C0(G0) (equipped with pointwise multiplication and the supremum norm).

Proof. Let f, g ∈ C∗r (G,Σ) and σ ∈ Σ. The summation index in (2.10) is well-
defined as j(f) and j(g) are T-equivariant. Assume fn → f and gn → g in ‖‖r,
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with fn, gn ∈ CC(G,Σ) for all n ∈ N. Note that

|j(f ∗ g)(σ)− j(fn ∗ gn)(σ)| ≤ ‖j(f ∗ g − fn ∗ gn)‖∞ ≤ ‖f ∗ g − fn ∗ gn‖r → 0,

where the last inequality is due to Lemma 2.1.70. Hence j(fn∗gn)(σ)→ j(f ∗g)(σ).
Now

j(fn ∗ gn)(σ) = fn ∗ gn(σ) =
∑

τ̇∈Gs(σ)

fn(στ−1)gn(τ) (2.11)

by Lemma 2.1.70. For any h ∈ CC(G,Σ) we may use Lemma 2.1.63 together with
the definition of j in Definition 2.1.69 and that j(h) = h to see that, by Parseval’s
identity, we obtain ∑

τ̇∈Gs(σ)

|h(τ)|2 ≤ ‖h‖2
r. (2.12)

Hence by considering the functions fn(σinv(·)) and gn the sum in (2.11) is an
l2(Gs(σ)) inner product of these two functions and since (2.12) shows that r-norm
convergence is stronger than l2 convergence the sum in (2.11) converges to∑

τ̇∈Gs(σ)

j(f)(στ−1)j(g)(τ).

Hence
j(f ∗ g)(σ) =

∑
τ̇∈Gs(σ)

j(f)(στ−1)j(g)(τ) = j(f) ∗ j(g)(σ).

This shows that multiplication is well defined and that j is a multiplicative map.
In similar ways, although it is even easier, one can show that

j(f ∗) = j(f)∗.

Hence, together with the properties seen in Lemma 2.1.70, j is a C∗-algebra iso-
morphism onto its image (equipped with the induced norm ‖‖r).

Finally, let h ∈ CC(G0). We show that ‖j(h)‖r = ‖j(h)‖∞. Indeed, for g ∈ G0, we
have by calculation that

‖πg(h)(ξg)‖2
2 = |h(g)|2

(as h is supported in G0) and so it follows that

‖h‖∞ ≤ sup
g∈G0
‖πg(h)‖ ≤ ‖h‖r ≤ ‖h‖I = ‖h‖∞,

where we have used Lemma 2.1.60 and the fact that on CC(G0) the I-norm coincides
with the supremum norm. Notice that the multiplication in C∗r (G,Σ) reduces to
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pointwise multiplication on CC(G0), and involution reduces to conjugation. Hence
the map j is an isometric *-algebra isomorphism from CC(G0) as a normed *-
subalgebra of C∗r (G) onto Cc(G0) as a normed *-subalgebra of C0(G0) with pointwise
multiplication and the supremum norm. Let C0,r(G0) be the ‖‖r-closure of CC(G0)

in C∗r (G,Σ), then by extension j maps the Abelian C∗-algebra C0,r(G0) onto C0(G0).

Remark 2.1.73. Lemma 2.1.72 is telling us that C∗r (G,Σ) is isomorphic to a C∗-
algebra that is a subset of C0(G,Σ), and under the same isomorphism the C∗-
subalgebra C0,r(G0) is identified with the C∗-algebra C0(G0). On this subalgebra
the twist is trivial and this allows us retrieve the usual pointwise multiplication and
supremum norm. Hence the multiplication on the identified C∗-algebra in C0(G,Σ)

is of the form given in Definition 2.1.71 because of the existence of the twist. Hence
the "untwisted" version of this multiplication is just the pointwise multiplication.
This suggests that a non-trivial topological twist is algebraically captured by a twist
in the multiplication.

2.1.5 Cartan Subalgebras and Renault’s Theorem

In this section we define Cartan subalgebras of C∗-algebras and provide some ex-
amples. Then we state, without proof, Renault’s main result in [64]. The proofs
will be discussed in further detail when we generalize this result in Chapter 3.

We begin with the definition of a conditional expectation, based on Definition 1.3
in [65]:

Definition 2.1.74. Let A be a C∗-algebra, and B a C∗-subalgebra. Then a condi-
tional expectation P : A → B is an onto positive projection satisfying P (b1ab2) =

b1P (a)b2 for all a ∈ A and b1, b2 ∈ B.

The following is Definition 5.1 in [64]:

Definition 2.1.75. Let A be a C∗-algebra. A C∗-subalgebra C ⊂ A is called a
Cartan subalgebra if

• C contains an approximate unit for A,

• C is a maximally Abelian C∗-subalgebra of A (a masa),

• C is regular in A, meaning that the set of normalizers

NA(C) = {n ∈ A : n∗Cn ⊆ C, nCn∗ ⊆ C}
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generate A as a C∗-algebra, and,

• there exists a faithful conditional expectation

P : A� C.

In such a situation, we say that (A,C) is a Cartan pair.

Remark 2.1.76. The definition of a Cartan subalgebra is slightly weaker than its
counterpart defined by Kumjian in [40]. There it is assumed that the subalgebra
also satisfies the unique extension property for pure states. In such a case the
Cartan subalgebra is called a C∗-diagonal.

Example 2.1.77. Let A be a commutative C∗-algebra. Then it has a unique
Cartan subalgebra, namely A.

Example 2.1.78. Let A = Mn(C), the C∗-algebra of n by n matrices with entries
in C. Then C = Dn(C), the C∗-subalgebra consisting of all the diagonal matrices, is
a Cartan subalgebra. Indeed, Dn(C) contains the unit, and is a masa as any Abelian
subalgebra of Mn(C) is at most n-dimensional (as a vector space) and Dn(C) is n-
dimensional. The standard matrix units are normalizers, and they generate Mn(C)

as a C∗-algebra. The conditional expectation is the projection onto the diagonal.

Any other Cartan subalgebra of A is isomorphic to C via an automorphism of A
(indeed map the mutually orthogonal basis elements to those of C, which extends
to an automorphism of A).

Example 2.1.79. Let A be a finite dimensional C∗-algebra, then it is a direct sum
of matrix algebras. The diagonal subalgebra (as in Example 2.1.78 but for direct
sums) is a Cartan subalgebra.

Example 2.1.80. Let A = On, the Cuntz algebra generated by n isometries. Let C
be the C∗-subalgebra generated by the range projections of these isometries. Then
C is a Cartan subalgebra. The discussion of this is given in Section 6.3 in [64].

Example 2.1.81. The following example can be found in Section 2 in [45]. For a
discrete countable group G acting on a second countable locally compact Hausdorff
spaceX by homeomorphisms, we may form the étale transformation groupoidG×X
as in Example 2.1.27. We may also form the reduced crossed product C∗-algebra
C0(X)×α,rG where α denotes the group action (see Chapter 8 in [16]). There is an
isomorphism C∗r (G×X) ∼= C0(X)×α,r G. Corollary 2.3 in [45], or Example 2.1.32
in this thesis, shows that the group action is topologically free if and only if G×X
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is a topologically principal groupoid. In this situation, Theorem 2.1.82 below tells
us that C0(X) is a Cartan subalgebra of C0(X)×α,r G.

Renault’s result in [64] characterises Cartan subalgebras of separable C∗-algebras as
being the C0 functions on the unit space of a certain twisted groupoid. Specifically,
Renault proves:

Theorem 2.1.82. Let (G,Σ) be a twisted étale locally compact second countable
topologically principal Hausdorff groupoid. Then (C∗r (G,Σ), C0,r(G0)) is a Cartan
pair.

Conversely, let (A,C) be a Cartan pair where A is a separable C∗-algebra. Then
there exists a twisted étale locally compact second countable topologically principal
Hausdorff groupoid (G,Σ) and a C∗-algebra isomorphism carrying A onto C∗r (G,Σ)

and C onto C0,r(G0).

We will generalize Theorem 2.1.82 in Chapter 3 to non-second countable groupoids
and non-separable C∗-algebras. This will have the effect of weakening the topolog-
ical principality of the groupoid to effectiveness.

2.2 Elementary K-Theory for Unital C∗-algebras

In this section we will explore some of the fundamentals ofK-theory for C∗-algebras.
K-theory is a functor which attaches to a C∗-algebra an Abelian group. It has
appeared as a main tool in the classification programme for C∗-algebras; indeed
many classes of C∗-algebras can be classified by K-theory and tracial data (see for
example [21], [30], [31], [38], [59] and [80]).

Our discussion here will only introduce the aspects of K-theory that we will need
later and hence be far from a complete account. We will mainly focus on the basics
of the K0 functor on unital C∗-algebras. The contents of this material will be based
on Chapters 1 to 5 in [43]. For a more complete account, as well as a discussion for
non-unital C∗-algebras as well as that of the K1 functor, the reader may consult
the rest of the chapters in [43], as well as [11] or [85].

We start with a definition of the Grothendieck group induced from an Abelian
semigroup. This is a generalization of the construction that obtains the integers
from the natural numbers. Indeed, the integers can be viewed as the equivalence
classes of the formal differences of natural numbers, with two differences a− b and
c− d being identified if a+ d = c+ b.

Definition 2.2.1. Let (S,+) be an Abelian semigroup. Define an equivalence
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relation ∼ on S ×S by (s1, s2) ∼ (r1, r2) if and only if there exists z ∈ S such that

s1 + r2 + z = r1 + s2 + z.

Denote the equivalence class of (s, r) ∈ S × S by < s, r > . Let

G(S) = (S × S)/ ∼ .

Define an operation + on G(S) by

< s1, r1 > + < s2, r2 >=< s1 + s2, r1 + r2 >

(where we are abusing notation by using the same + for S as for G(S)).

Lemma 2.2.2. The operation + on G(S) is well-defined and turns G(S) into an
Abelian group.

Proof. If (s1, r1) ∼ (a1, b1) and (s2, r2) ∼ (a2, b2) then there is z1, z2 ∈ S such that

s1 + b1 + z1 = a1 + r1 + z1, s2 + b2 + z2 = a2 + r2 + z2.

Adding the equations yields

(s1 + s2) + (b1 + b2) + (z1 + z2) = (a1 + a2) + (r1 + r2) + (z1 + z2),

which implies that

(s1 + s2, r1 + r2) ∼ (a1 + a2, b1 + b2).

Hence + is well-defined. It is clear that G(S) is Abelian because S is, that the
identity element is < s, s > for s ∈ S, and that − < s, r >=< r, s >. Hence G(S)

is an Abelian group.

Definition 2.2.3. For an Abelian semigroup S, G(S) is called the Grothendieck
group of S. For an arbitrary r ∈ S, the map

γS : S → G(S), s→< s+ r, r >

is called the Grothendieck map. We say that S has the cancellation property if
whenever s, r, z ∈ S such that s+ z = r + z then s = r.

Lemma 2.2.4. The Grothendieck map is well-defined and additive. It is injective
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if and only if S has the cancellation property,

Proof. For any s, r1, r2 ∈ S we have that (s + r1, r1) ∼ (s + r2, r2) hence γS is
well-defined. It is additive because for ant s1, s2, r ∈ S we have that

γS(s1 +s2) =< s1 +s2 +r+r, r+r >=< s1 +r, r > + < s2 +r, r >= γS(s1)+γS(s2).

Note that if γS is injective and s + z = r + z for s, r, z ∈ S, then γS(s) = γS(r)

by additivity of γS and so s = r. If S satisfies the cancellation property then if
γS(s) = γS(r) it follows that there is some z ∈ S such that s+ z = r+ z and so by
cancellation s = r.

Lemma 2.2.5. Let S be an Abelian semigroup. Then

G(S) = {γS(s)− γS(r) : s, r ∈ S}.

Proof. Note that

< s, r >=< s+ (r + s), r + (r + s) >=< s+ r, r > + < s, s+ r >= γS(s)− γS(r).

Lemma 2.2.6. The Grothendieck construction is functorial. In other words, if f :

S → T is a semigroup homomorphism then there is a unique group homomorphism
G(f) such that the following diagram commutes:

S T

G(S) G(T )

γS

f

γT

G(f)

(2.13)

Proof. By Lemma 2.2.5, we may define

G(f)(γS(s)− γS(r)) = γT (f(s))− γT (f(r)).

It is easy to see that this is well-defined, and Lemma 2.2.4 shows that G(f) is a
group homomorphism, and by construction (2.13) commutes. Uniqueness follows
by commutativity of (2.13) and Lemma 2.2.5.

Lemma 2.2.7. The Grothendieck construction is universal. In other words, if S is
an Abelian semigroup, H an Abelian group and γ : S → H is an additive map, then
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there exists a unique group homomorphism f : G(S) → H making the following
diagram commute:

S H

G(S)

γ

γS f (2.14)

Proof. By Lemma 2.2.5 define

f(γS(s)− γS(r)) = γ(s)− γ(r). (2.15)

It is easy to check that f is well-defined, and additivity of γ yields that f is a group
homomorphism. Commutativity of (2.14) follows by construction. Uniqueness
follows by Lemma 2.2.5 and commutativity of (2.14).

Proposition 2.2.8. Let (G,+) be a group and S ⊂ G a semigroup under the same
operation +. Then G(S) is isomorphic to the group H =< S >= {s− r : s, r ∈ S}
generated by S.

Proof. We may take γ in Lemma 2.2.7 to be inclusion into G, obtaining a group
homomorphism f : G(S) → G. By (2.15) we see that the image of f is H. Note
that if f(γS(s) − γS(r)) = s − r = 0 then s = r and γS(s) − γS(r) = 0, so f is
injective.

Example 2.2.9. The Grothendieck group of (N,+) is isomorphic to (Z,+) by
Proposition 2.2.8.

Example 2.2.10. The Grothendieck group of (N∪{∞},+) is {0}. Indeed we have
that for every a, b ∈ N ∪ {∞}, (a, b) ∼ (∞,∞).

The idea now is to construct from a unital C∗-algebra A a certain semigroup, and
the K0 group of A will then be the Grothendieck group of this semigroup.

Definition 2.2.11. Let A be a unital C∗-algebra. For n ∈ N, define Mn(A) as the
set of n by n matrices with entries in A. GiveMn(A) a vector space structure by the
usual pointwise addition and scalar multiplication. Define the multiplication and
the involution in the usual way as done for Mn(C). For a faithful representation π
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of A on H, define a representation πn of Mn(A) on Hn by

πn



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann




ξ1

ξ2

...
ξn

 =


π(a11)ξ1 + π(a12)ξ2 + · · ·+ π(a1n)ξn

π(a21)ξ1 + π(a22)ξ2 + . . .+ π(a2n)ξn
...

π(an1)ξ1 + π(an2)ξ2 + . . .+ π(ann)ξn

 .

The C∗-norm on Mn(A) is defined via its representation, making Mn(A) into a
C∗-algebra. We write Mm,n(A) for the set of m by n matrices with entries in A.
The involution here acts by transposition and entry-wise involution, with image in
Mn,m(A).

Remark 2.2.12. Any faithful representation induces the same norm, and we have

max
ij
{‖aij‖} ≤ ‖(aij)ij‖ ≤

∑
i,j

‖aij‖.

Definition 2.2.13. For A a unital C∗-algebra and n ∈ N, define

Pn(A) = {p ∈Mn(A) : p is a projection}.

Define
P∞(A) =

⋃
n∈N

Pn(A).

Definition 2.2.14. For A a unital C∗-algebra, we say that p and q in Pn(A) are
Murray-von Neumann equivalent, written p ∼ q, if there is a v ∈ Mn(A) such
that p = v∗v and q = vv∗. We extend this to P∞(A) as follows: for p ∈ Pn(A)

and q ∈ Pm(A), we say that p and q are Murray-von Neumann equivalent, written
p ∼0 q, if there is a v ∈Mm,n(A) such that p = v∗v and q = vv∗.

Example 2.2.15. Let A = C and consider p, q ∈ Pn(C). Note that p and q

are Murray-von Neumann equivalent if and only if they are the range and source
projections of some partial isometry inMn(C), which is equivalent to dim(p(Cn)) =

dim(q(Cn)), which is equivalent to tr(p) = tr(q). Hence the Murray-von Neumann
equivalent projections are exactly those which have the same trace.

Example 2.2.16. Let A = B(H) for some infinite-dimensional Hilbert space H.
Then Mn(A) ∼= B(Hn) which is again the bounded operators on some infinite
dimensional Hilbert space, so we may just assume without loss of generality that p
and q are projections in A. Then they are again Murray-von Neumann equivalent
if and only if dim(p(H)) = dim(q(H)).
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Example 2.2.17. Let A = C(X) for a compact Hausdorff space X. Then a
necessary condition for p and q in Pn(C(X)) to be Murray-von Neumann equivalent
is that they have the same trace at every evaluation. However this condition may
not be sufficient as it may not be possible to obtain a global isometry witnessing
the equivalence from pointwise ones.

For instance, the map

p : T→M2(C), t→

(
1
2

1
2
t

1
2
t 1

2

)

belongs to P2(C(T)) and evaluates to a one-dimensional projection at every t ∈ T.
So does the map

q : T→M2(C), t→

(
1 0

0 0

)
.

However p and q are not Murray-von Neumann equivalent.

The following lemma highlights the properties of ∼0:

Lemma 2.2.18. Let A be a unital C∗-algebra. Let p, p1, q, q1 ∈ P∞(A). Then:

1. ∼0 is an equivalence relation on P∞(A).

2. p ∼0 p⊕ 0n for all n ∈ N.

3. If p ∼0 p1 and q ∼0 q1 then p⊕ q ∼0 p1 ⊕ q1.

4. p⊕ q ∼0 q ⊕ p.

5. If p, q ∈ Pn(A) with pq = 0 then p+ q is a projection and p⊕ q ∼0 p+ q.

Proof.

1. Reflexivity and symmetry are clear. For transitivity, assume v is a partial
isometry inducing the equivalence between p and q and w is a partial isometry
inducing the equivalence between q and r, then wv induces the equivalence
between p and r.

2. Assume p ∈ Pm(A). Then the partial isometry

(
p

0

)
∈ Mm+n,m(A) induces

the required equivalence.

3. If v induces the first equivalence, and w the second, then diag(v, w) is the
desired partial isometry.



CHAPTER 2. PRELIMINARIES 47

4. Assume p ∈ Pn(A) and q ∈ Pm(A), then the desired partial isometry is

v =

(
0m,n q

p 0n,m

)
∈Mn+m(A).

5. If pq = 0 then (qp)∗ = pq = 0 so qp = 0 and so p + q is clearly a projection.
The desired partial isometry is

v =

(
p

q

)
∈M2n,n(A).

Lemma 2.2.18 allows us to define the following:

Definition 2.2.19. Let A be a unital C∗-algebra. Define

D(A) = P∞(A)/ ∼0 .

Denote the equivalence classes by [·]D. Define an addition operation + on D(A) by

[p]D + [q]D = [p⊕ q]D.

Lemma 2.2.20. For a unital C∗-algebra A we have that (D(A),+) is an Abelian
semigroup.

Proof. This follows from Lemma 2.2.18.

We are now in a position to define the K0 group of a unital C∗-algebra A. It is the
Grothendieck group of D(A).

Definition 2.2.21. Let A be a unital C∗-algebra. Define

K0(A) = G(D(A))

and denote, for p ∈ P∞(A),
[p]0 = γD(A)([p]D).

Remark 2.2.22. It is clear that if p and q in P∞(A) are Murray-von Neumann equiv-
alent, then [p]D = [q]D and so [p]0 = [q]0. However, the converse might not hold,
so two elements that agree in K0 might not be Murray-von Neumann equivalent,
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as the Grothendieck map might not be injective (equivalently, by Lemma 2.2.4,
D(A) might not have the cancellation property). However, p and q will be stably
equivalent, defined below.

Definition 2.2.23. Let A be a unital C∗-algebra. We say p and q in P∞(A) are
stably equivalent, written p ∼s q, if there is an r ∈ P∞(A) such that p⊕ r ∼0 q⊕ r.

Lemma 2.2.24. Let A be a unital C∗-algebra. The for p, q ∈ P∞(A) we have that

[p]0 = [q]0 ⇐⇒ p ∼s q.

Proof. If [p]0 = [q]0 then by the definition of the Grothendieck map there is some
r ∈ P∞(A) such that [p]D+[r]D = [q]D+[r]D which implies by definition of addition
in D(A) that p⊕ r ∼0 q ⊕ r and hence p ∼s q.

If p ∼s q then p ⊕ r ∼0 q ⊕ r for some r ∈ P∞(A) and hence [p ⊕ r]0 = [q ⊕ r]0.
However note that

[p⊕r]0 = γD(A)([p⊕r]D(A)) = γD(A)([p]D+[r]D) = γD(A)([p]D)+γD(A)([r]D) = [p]0+[r]0.

Hence
[p]0 + [r]0 = [q]0 + [r]0

and as these elements belong to a group we have [p]0 = [q]0.

Remark 2.2.25. It is clear from Lemma 2.2.24 that we may have defined the K0

group of a unital C∗-algebra A as follows. We could have started with the notion
of stable equivalence of projections, which is weaker than Murray-von Neumann
equivalence, and defined a sum on the equivalence classes as the equivalence class
of the direct sum. The group generated by such elements is then the K0 group. So
K0 identifies projections which are Murray-von Neumann equivalent up to taking
a direct sum with a projection.

Definition 2.2.26. Let A be a unital C∗-algebra. The we say that A has the
cancellation property if we have, for p, q ∈ P∞(A), that

[p]0 = [q]0 ⇐⇒ p ∼0 q.

We now describe the standard picture for K0.
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Proposition 2.2.27. Let A be a unital C∗-algebra. Then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)} = {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N}. (2.16)

Further we have that

1. [p]0 + [q]0 = [p⊕ q]0.

2. The identity element is [0A]0.

3. If p, q ∈ Pn(A) are mutually orthogonal then [p+ q]0 = [p]0 + [q]0.

Proof. The first equality in (2.16) holds by Lemma 2.2.5. For the second equality,
let [p]0− [q]0 ∈ K0(A) for some p ∈ Pn(A) and q ∈ Pm(A). Let l ∈ N bigger than n
and m, and put p1 = p⊕ 0l−n and q1 = q ⊕ 0l−m. Then by Lemma 2.2.18 we have
that p ∼0 p1 and q ∼0 q1 and hence [p]0 = [p1]0 and [q]0 = [q1]0, and this yields the
second equality.

1. This was shown in the proof of Lemma 2.2.24.

2. We have that [p]0 + [0A]0 = [p⊕ 0A]0 = [p]0 where the last equality is due to
Lemma 2.2.18.

3. By Lemma 2.2.18, p+ q ∼0 p⊕ q and hence the result follows by 1.

We now discuss the notion of homotopy between projections and homotopy equiva-
lence between C∗-algebras. As we will not use this often later on we will not devote
time to develop the theory or provide proofs.

Definition 2.2.28. Let A be a unital C∗-algebra and p, q ∈ Pn(A). We say p and
q are homotopic, written p ∼h q, if there exists a continuous path between them
inside Pn(A). We say p and q are unitarily equivalent, written p ∼u q, if there exists
a unitary u ∈Mn(A) such that p = u∗qu.

Let B be a unital C∗-algebra. We say that two ∗-homomorphisms φ, ψ : A → B

are homotopic, written φ ∼h ψ, if there is a path of ∗-homomorphisms A → B,
[0, 1] 3 t→ φt, starting at φ and ending at ψ (so φ0 = φ, φ1 = ψ) and such that the
map t → φt(a) is continuous for each a ∈ A. We say that A and B are homotopy
equivalent if there exists *-homomorphisms φ : A → B and ψ : B → A such that
ψ ◦ φ ∼h idA and φ ◦ ψ ∼h idB.
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Remark 2.2.29. We have the implications

∼h =⇒ ∼u =⇒ ∼ . (2.17)

For the proof, see Proposition 2.2.7 in [43]. It follows from this that if p, q ∈ Pn(A)

and p ∼h q then [p]0 = [q]0. The reverse implications to (2.17) are true but in
matrix amplifications, see Proposition 2.2.8 in [43].

It turns out that the properties 1 and 2 in Proposition 2.2.27, as well as being
invariant under homotopies as in Remark 2.2.29 characterise [·]0 universally. What
this means is the following:

Lemma 2.2.30. Let A be a unital C∗-algebra, G an Abelian group and ν : P∞(A)→
G a map satisfying

1. ν(p⊕ q) = ν(p) + ν(q) for all p, q ∈ P∞(A),

2. ν(0A) = 0G, and,

3. if p, q ∈ Pn(A) are homotopic, then ν(p) = ν(q).

Then ν factors uniquely through K0(A), meaning there is a unique group homomor-
phism f : K0(A)→ G such that the following diagram commutes

P∞(A) G

K0(A)

[·]0

ν

f (2.18)

Proof. If we show there is an additive map γ : D(A)→ G, then by Lemma 2.2.7 γ
would factor uniquely through K0(A). Define

γ[p]D = ν(p).

To see that this is well-defined, note that if p ∼0 q and p ∈ Pn(A), q ∈ Pm(A) say,
then let l ∈ N be bigger than m and n, and put p1 = p ⊕ 0l−n and q1 = q ⊕ 0l−m.
We have p1 ∼ q1 by Lemma 2.2.18 . Now by Proposition 2.2.8 in [43] we have that
p1 ⊕ 03l ∼h q1 ⊕ 03l. Hence

ν(p) = ν(p) + (4l − n)ν(0A) = ν(p1 ⊕ 03l) = ν(q1 ⊕ 03l) = ν(q).

Additivity of γ is clear, and hence we obtain a unique group homomorphism f :
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K0(A)→ G such that the following diagram commutes:

D(A) G

K0(A)

γD(A)

γ

f

The addition of the map P∞(A)→ D(A), p→ [p]D yields (2.18).

Lemma 2.2.30 allows us to define how K0 acts on arrows:

Definition 2.2.31. Let φ : A → B be a *-homomorphism between two unital
C∗-algebras A and B. Define:

K0(φ) : K0(A)→ K0(B), [p]0 → [φ(p)]0, (2.19)

where we are abusing notation by letting φ also denote the canonical *-homomorphism
Mn(A)→Mn(B) induced by φ, for p ∈ Pn(A).

Remark 2.2.32. Definition 2.2.31 is well-defined by Lemma 2.2.30. Indeed, φ induces
a map P∞(A)→ P∞(B) in the canonical way, and hence the composition ν = [·]0◦φ
is a map P∞(A)→ K0(B) satisfying the conditions of Lemma 2.2.30, and so factors
uniquely through K0(A) as in (2.18). This unique group homomorphism we call
K0(φ).

Let us now prove functoriality of K0:

Proposition 2.2.33. Let A, B and C be unital C∗-algebras and 0A,B denote the
*-homomorphism A → B sending every element to 0B. Let id denote the identity
homomorphism. We have that

1. K0(idA) = idK0(A).

2. If φ : A → B and ψ : B → C are *-homomorphisms then K0(ψ ◦ φ) =

K0(ψ) ◦K0(φ).

3. K0({0}) = {0}.

4. K0(0A,B) = 0K0(A),K0(B).

Proof.

1. By (2.19), we have that for p ∈ Pn(A), K0(idA)([p]0) = [p]0 and this also holds
for differences of elements in K0(A). Hence by (2.16) the result follows.
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2. For p ∈ Pn(A) we have that K0(ψ ◦ φ)([p]0) = [ψ ◦ φ(p)]0 = K0(ψ)([φ(p)]0) =

K0(ψ) ◦K0(φ)([p]0). This also holds for differences of such elements in K0(A)

and so the result follows by (2.16).

3. We have P∞({0}) = {0} and so D({0}) = {0}, hence K0({0}) = G({0}) =

{0}.

4. The map 0A,B is the composition A → {0} → B and the result follows from
3.

Let us now show that the K0 functor is homotopy invariant:

Proposition 2.2.34. Let A and B be unital C∗-algebras. If φ, ψ : A → B are
*-homomorphisms which are homotopic, then K0(φ) = K0(ψ). If A and B are
homotopy equivalent, then K0(A) is isomorphic to K0(B).

Proof. For t ∈ [0, 1], let φt : A→ B be the path of *-homomorphisms from φ0 = φ to
φ1 = ψ. For p ∈ Pn(A), the continuity of t→ φt(p) implies φ(p) ∼h ψ(p) implying
K0(φ)([p]0) = K0(ψ)([p]0). This also applies for differences of such elements so by
(2.16) we have K0(φ) = K0(ψ).

Now if φ1 : A→ B and ψ1 : B → A are *-homomorphisms witnessing the homotopy
equivalence ofA andB, then by the first part of this proof we have thatK0(ψ1◦φ1) =

K0(idA) and K0(φ1 ◦ψ1) = K0(idB). By functoriality of K0 this implies that K0(A)

and K0(B) are isomorphic and the isomorphism is K0(φ1) with inverse K0(ψ1).

We will not focus on K-theory for non-unital C∗-algebras in this thesis, as we will
not work with non-unital C∗-algebras. For the interested reader, the definition of
K0 for non-unital C∗-algebras can be found, for instance, in Chapter 4 of [43]. The
definition gives the same K-theory as the unital definition when the C∗-algebra is
unital. Functoriality of K0 works in the same way as the unital case. The analysis
of the K0 functor in the non-unital case allows us to obtain that the K0 functor is
half-exact and split-exact, which works whether the C∗-algebras are unital or not.

Proposition 2.2.35. Let
0→ I → A→ B → 0

be a short exact sequence of C∗-algebras. Then the K0 functor induces an exact
sequence

K0(I)→ K0(A)→ K0(B).
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Let
0→ I → A� B → 0

be a split-exact sequence of C∗-algebras, then the K0 functor induces a split-exact
sequence

0→ K0(I)→ K0(A) � K0(B)→ 0.

Corollary 2.2.36. Let A and B be unital C∗-algebras. Then

K0(A⊕B) ∼= K0(A)⊕K0(B).

Proof. We have a commutative diagram

0 K0(A) K0(A)⊕K0(B) K0(B) 0

0 K0(A) K0(A⊕B) K0(B) 0

f

id

g

K0(ιA)⊕K0(ιB) id

K0(ιA) K0(πB)

(2.20)

where f(hA) = (hA, 0) and g(hA, hB) = hB for hA ∈ K0(A), hB ∈ K0(B), where
ιA(a) = (a, 0), ιB(b) = (0, b), and πB(a, b) = b, for a ∈ A, b ∈ B. The map
K0(ιA)⊕K0(ιB) is defined by sending (hA, hB) to K0(ιA)(hA) +K0(ιB)(hB).

The upper sequence of (2.20) is exact by direct computation, and the lower one by
split-exactness (and Proposition 2.2.35) of

0 A A⊕B B 0.
ιA

πB

ιB

This implies that the middle vertical arrow K0(ιA)⊕K0(ιB) in (2.20) is an isomor-
phism.

Another useful result is the stability of K0:

Proposition 2.2.37. Let A be a unital C∗-algebra. Let n ∈ N. Then the injective
map

λn : A→Mn(A), a→ a⊕ 0n−1,

induces an isomorphism in K-theory

K0(λn) : K0(A)→ K0(Mn(A)).

Proof. For p ∈ Pk(Mn(A)) consider the canonical map µk : Mk(Mn(A))→Mkn(A).
Let µ be the extension of this map to P∞(Mn(A)). Then ν = []0◦µ : P∞(Mn(A))→
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K0(A) satisfies the properties of Proposition 2.2.30, and hence factors uniquely
through K0(Mn(A)). So we obtain a group homomorphism fn : K0(Mn(A)) →
K0(A), which one can check is the inverse of K0(λn) by noting that

λn ◦ µ(p) ∼0 p for p ∈ Pk(Mn(A))

and
µ ◦ λn(p) ∼0 p for p ∈ Pk(A).

Note that we are writing λn for the *-homomorphism induced by λn on matrix
amplifications.

Now we wish to describe an order on K0(A) that will become useful when we
consider the K0 group of a UHF-algebra.

Definition 2.2.38. For an Abelian group G, we will call a non-empty subset G+ ⊆
G an order on G if it satisfies:

1. G+ +G+ ⊆ G+,

2. G = G+ −G+, and

3. G+ ∩ (−G+) = {0}.

In this situation, we say that the pair (G,G+) is an ordered Abelian group.

Definition 2.2.39. Let A be a unital C∗-algebra. Define

K0(A)+ = {[p]0 : p ∈ P∞(A)}.

We now define the notion of stable finiteness for unital C∗-algebras, which will help
yield that K0(A)+ is an order on K0(A).

Definition 2.2.40. A projection p in a unital C∗-algebra A is called infinite if it is
Murray-von Neumann equivalent to a proper subprojection. Otherwise, it is called
finite.

A unital C∗-algebra A is called infinite if 1A is infinite, otherwise it is called finite.
A is called stably finite if Mn(A) is finite for all n ∈ N.

Proposition 2.2.41. Let A be a stably finite unital C∗-algebra, then
(K0(A), K0(A)+) is an ordered Abelian group.

Proof. We have from (2.16) that K0(A)+ − K0(A)+ = K0(A). It is clear that
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K0(A)+ + K0(A)+ ⊆ K0(A)+. Now assume [p]0 = −[q]0 ∈ K0(A)+ ∩ (−K0(A)+).

Then [p ⊕ q]0 = 0 implying that there exists a projection r ∈ P∞(A) such that
p⊕ q⊕ r ∼0 r, by Lemma 2.2.24. Assuming p⊕ q⊕ r ∈ Pk(A), it is easy to see that
there exists mutually orthogonal projections p1, q1, r1 ∈ Pk(A) with p ∼0 p1, q ∼0

q1, r ∼0 r1. We then have, by Lemma 2.2.18, that p1 + q1 + r1 ∼ r1, and so by
stable finiteness, it must be that p1 + q1 + r1 = r1, and hence that p1 = q1 = 0.
This implies that p = q = 0 and thus K0(A)+ ∩ (−K0(A)+) = {0}.

Definition 2.2.42. Let (G,G+) be an ordered Abelian group. For g, h ∈ G, we
write g ≤ h if and only if h− g ∈ G+.

Definition 2.2.43. For an Abelian group G we say u ∈ G is an order unit if for
every g ∈ G there exists n ∈ N such that

−nu ≤ g ≤ nu.

Lemma 2.2.44. Let A be a unital C∗-algebra. Then [1A]0 is an order unit in
K0(A).

Proof. Every g ∈ K0(A) is of the form [p]0 − [q]0 for some p, q ∈ Pn(A), by (2.16).
Hence we have 1Mn(A) − p and 1Mn(A) − q belong to Pn(A). Thus we can write

−n[1A]0 = −[1Mn(A)]0 = −[q]0 − [1Mn(A) − q]0 ≤ −[q]0 ≤ g

and
g ≤ [p]0 ≤ [p]0 + [1Mn(A) − p]0 = n[1A]0.

Definition 2.2.45. Let (G,G+) and (H,H+) be ordered Abelian groups. A group
homomorphism f : G→ H is called positive if f(G+) ⊆ H+, and an order isomor-
phism if f is a group isomorphism with f(G+) = H+. If G has a unique order unit
u and H has a unique order unit v then we say that f is order unit preserving if
f(u) = v. We say that the triple (G,G+, u) is isomorphic to (H,H+, v) if there is
an order unit preserving order isomorphism f : G→ H.

Proposition 2.2.46. Let A be a unital C∗-algebra. Then (K0(A), K0(A)+, [1A]0)

is an isomorphism invariant for A.

Proof. Assume there exists a unital C∗-algebra B and an isomorphism φ : A → B

(necessarily unital). By functoriality, we have that K0(φ) : K0(A) → K0(B) is a
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group isomorphism. For p ∈ P∞(A), it is clear that K0(φ)([p]0) = [φ(p)]0 ∈ K0(B)+

and hence K0(φ)(K0(A)+) ⊆ K0(B)+. Likewise K0(φ)−1(K0(B)+) ⊆ K0(A)+. Thus
K0(φ) maps K0(A)+ onto K0(B)+. It is clear that it maps [1A]0 to [1B]0.

We conclude this section with some examples.

Example 2.2.47 (C). We consider the C∗-algebra C. As we saw in Example 2.2.15,
if p, q ∈ P∞(A), then p ∼0 q if and only if p and q have the same trace. So the map

[p]D → tr(p)

is a well-defined semigroup isomorphism D(C)→ N∪{0}. Hence the Grothendieck
groups are isomorphic and so we obtain a group isomorphism

K0(C)
tr−→ Z.

It is clear that C has the cancellation property. It is also clear that C is stably
finite and

(K0(C), K0(C)+, [1C]0) ∼= (Z,N ∪ {0}, 1).

Example 2.2.48 (Mn(C)). We consider the C∗-algebra Mn(C) for n ∈ N. Note
that by stability of K0 as in Proposition 2.2.37, we already know that K0(Mn(C)) ∼=
K0(C) ∼= Z. However the isomorphism given in Proposition 2.2.37 is not order
unit preserving. It is clear that Mn(C) is stably finite and satisfies cancellation,
essentially for the same reasons as for C. Hence by considering traces as in Example
2.2.47, we obtain that

(K0(Mn(C)), K0(Mn(C))+, [1Mn(C)]0) ∼= (Z,N ∪ {0}, n).

Example 2.2.49 (Finite Dimensional C∗-algebra). We consider a finite dimen-

sional C∗-algebra A =
N⊕
i=1

Mni(C). By Corollary 2.2.36 we obtain that K0(A) ∼=
N⊕
i=1

K0(Mni(C)) ∼= ZN . As in Example 2.2.48 we have that A satisfies the cancella-

tion property, is stably finite, and

(K0(A), K0(A)+, [1A]0) ∼= (ZN , (N ∪ {0})N , (n1, . . . , nN)).

Example 2.2.50 (B(H)). Let H be an infinite dimensional Hilbert space, and
consider the C∗-algebra A = B(H). As in Example 2.2.16, we have that projections
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in P∞(A) are equivalent in ∼0 if and only if the dimension of their ranges agree. It is
easy to see thus that the map sending [p]D to dim(p(H)) is a well-defined semigroup
isomorphism D(A)→ S where S is a semigroup consisting of all cardinal numbers
less than or equal to dim(H). The Grothendieck group of any such semigroup is
{0} and so K0(A) = {0}.

Example 2.2.51. Let us study the K-theory of C(X) for certain compact Haus-
dorff spaces X. Assume X is connected, then for fixed x ∈ X, the map sending [p]D

to tr(p(x)) is a well-defined surjective semigroup morphism D(C(X)) → N ∪ {0}.
The map is independent of the choice of element x as the map X → Z given by
x→ tr(p(x)) is continuous and hence constant as X is connected. This implies that
we get a surjective group homomorphism K0(C(X))

trx−→ Z.

If X is contractible then there is a point x0 ∈ X and a continuous map h : [0, 1]×
X → X such that h(0, x) = x and h(1, x) = x0 for all x ∈ X. Then we may
define a *-homomorphism φ : C(X)→ C by φ(f) = f(x0) and a *-homomorphism
ψ : C → C(X) by z → z · 1 where 1 is the element of C(X) defined by 1(x) = 1

for all x ∈ X. Note that ψ ◦ φ ∼h idC(X). Indeed, define φt(f)(x) = f(h(t, x)) for
t ∈ [0, 1], and note that φ0 = idC(X) and φ1 = f(x0) · 1, and t→ φt(f) is continuous
for every f ∈ C(X). Clearly φ ◦ ψ = idC.

Hence by homotopy invariance of K0, as in Proposition 2.2.34, we have that
K0(C(X)) ∼= K0(C) ∼= Z. In particular we have a commutative diagram

K0(C(X))

K0(C) Z

K0(φ) trx

tr

(2.21)

As the vertical and horizontal arrows are isomorphisms, the former by Proposition
2.2.34 and the latter by Example 2.2.47, then trx is a group isomorphism.

2.3 Inductive Limit C∗-algebras

In this section we introduce inductive limit C∗-algebras and focus on certain topics
that will be useful for us later in the thesis. We begin by a general introduction to
inductive limit C∗-algebras. The material relevant to this can be found in sections
6.1 and 6.2 of [43].
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Definition 2.3.1. Assume An is a C∗-algebra for each n ∈ N. Define∏
n∈N

An = {functions a : N→ ∪n∈NAn : a(n) ∈ An, sup
n∈N
‖a(n)‖An <∞}.

Elements of
∏
n∈N

An will also be written as (an). Define

J = {a ∈
∏
n∈N

An : a(n) 6= 0 for only finitely many n ∈ N}.

Lemma 2.3.2. We have that
∏
n∈N

An with norm ‖a‖ = sup
n∈N
‖a(n)‖An and product,

addition, scalar product and involution defined pointwise, is a C∗-algebra. J is a
two-sided ideal of

∏
n∈N

An.

Proof. That ‖·‖ is a norm is clear, and so is the fact that
∏
n∈N

An is a *-algebra and

that the norm satisfies the C∗-equation. What is left to check is that
∏
n∈N

An is a

Banach *-algebra.

To this end, let {am}m∈N be a Cauchy sequence in
∏
n∈N

An. Then for fixed n ∈ N,

we have that {am(n)}m∈N is Cauchy in An and hence converges to some element
an ∈ An. Define a = (an) and it is straightforward to check that am → a in ‖·‖
with a ∈

∏
n∈N

An. That J is a two-sided ideal is clear.

Definition 2.3.3. Assume An is a C∗-algebra for each n ∈ N. Define∑
n∈N

An = J ‖·‖.

Denote the quotient map
∏
n∈N

An → (
∏
n∈N

An)/(
∑
n∈N

An) by π.

Lemma 2.3.4. In the situation of Definition 2.3.3 we have that

‖π((an))‖ = lim sup
n→∞

‖an‖An ,

and (an) belongs to
∑
n∈N

An if and only if lim
n→∞
‖an‖ = 0.

Proof. By density of J in
∑
n∈N

An we have that π((an)) = inf{‖(an) − b‖ : b ∈ J }.

Now for fixed b = (bn) ∈ J we have that

‖(an)− (bn)‖ ≥ lim sup
n→∞

‖an − bn‖An = lim sup
n→∞

‖an‖An .
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Hence ‖π((an))‖ ≥ lim sup
n→∞

‖an‖An . For k ∈ N, let bk = (bkn)n∈N be the element in J

where bkn = an for 1 ≤ n ≤ k, and 0 for n > k. Then

‖π((an))‖ ≤ inf
k∈N
‖(an)− bk‖ = inf

k∈N
sup
n>k
‖an‖An = lim sup

n→∞
‖an‖An .

The last claim of the lemma follows easily.

We will now describe the structure of an inductive limit C∗-algebra.

Definition 2.3.5. An inductive system of C∗-algebras is a sequence of C∗-algebras
{An}n∈N (called building blocks) and *-homomorphisms {φn}n∈N (called connecting
maps) where φn : An → An+1. This is also written as

A1
φ1−→ A2

φ2−→ A3
φ3−→ · · ·

Define, for n > m, φn,m = φn ◦ φn−1 ◦ φn−2 ◦ · · · ◦ φm.

Definition 2.3.6. Given an inductive system of building blocks {An}n∈N and con-
necting maps {φn}n∈N, its corresponding inductive limit C∗-algebra is a system
(A, {µn}n∈N) where A is a C∗-algebra and each µn : An → A is a *-homomorphism,
satisfying:

1. For each n ∈ N we have a commutative diagram

An An+1

A

µn

φn

µn+1

2. If (B, {λn}n∈N) is another system where B is a C∗-algebra and λn : An → B

are *-homomorphisms satisfying, for each n ∈ N, λn+1 ◦ φn = λn, then there
exists a unique *-homomorphism φ : A→ B such that the following diagram
commutes for every n ∈ N:

An

A B

µn λn

φ

In this situation, we may write the inductive limit as lim−→(An, φn).

Remark 2.3.7. The definitions of an inductive system and corresponding inductive
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limit are more generally done for arbitrary categories. Rather than C∗-algebras we
have the objects of that category, and rather than ∗-homomorphisms, we have the
arrows of that category. The definitions are the same. We will use these definitions
for the category of Abelian groups and ordered Abelian groups in Subsection 2.3.1.

Lemma 2.3.8. If an inductive system of C∗-algebra building blocks and connecting
maps has an inductive limit, then it is unique (up to isomorphism).

Proof. This follows directly from 2 in Definition 2.3.6, by switching the roles of µn
and λn.

Remark 2.3.9. In view of Lemma 2.3.8, we may speak of the inductive limit, when
it exists.

The next proposition shows that every inductive system of C∗-algebras and con-
necting maps has an inductive limit.

Proposition 2.3.10. Every inductive system of building blocks {An}n∈N and con-
necting maps {φn}n∈N has an inductive limit (A, {µn}n∈N). We also have that:

1. A =
∞⋃
n=1

µn(An),

2. ‖µn(a)‖ = lim
m→∞

‖φm,n(a)‖Am for every n ∈ N and a ∈ An,

3. ker(µn) = {a ∈ An : lim
m→∞

‖φm,n(a)‖Am = 0},

4. if (B, {λn}n) and φ are as in 2 of Definition 2.3.6, then ker(µn) ⊆ ker(λn)

for all n ∈ N. φ is injective if and only if ker(λn) ⊆ ker(µn) for all n ∈ N. φ

is surjective if and only if B =
∞⋃
n=1

λn(An).

Proof. For a ∈ An define

νn(a) = (φm,n(a))∞m=1 ∈
∏
i∈N

Ai,

where φm,n(a) is defined to be 0 if m < n and a if m = n. It is clear that νn is a
*-homomorphism. Define

µn = π ◦ νn : An → (
∏
i∈N

Ai)/(
∑
i∈N

Ai).

Notice that for a ∈ An,

µn(a)− µn+1 ◦ φn(a) = π(νn(a)− νn+1 ◦ φn(a)) = π((δm,na)∞m=1) = 0
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where δm,n is 0 if m 6= n and 1 when m = n. Hence µn = µn+1 ◦ φn. Thus we have
an increasing sequence of C∗-algebras {µn(An)}n∈N and so we may declare A to be
the C∗-algebra

A =
∞⋃
n=1

µn(An).

We have seen that {A, {µn}n∈N} is a system satisfying 1 in Definition 2.3.6. We
have constructed A in such a way as to satisfy 1 in the statement of this proposition.
Claim 2 is easy to check using Lemma 2.3.4 as

‖µn(a)‖ = ‖π ◦ νn(a)‖ = lim sup
m→∞

‖φm,n(a)‖Am = lim
m→∞

‖φm,n(a)‖Am ,

where the last equality holds as the sequence {‖φm,n(a)‖m∈N} is eventually decreas-
ing. Claim 3 follows directly from claim 2.

By the first isomorphism theorem the *-homomorphism λn factors uniquely through
µn(An) (as ker(µn) ⊆ ker(λn)), so there exists a unique *-homomorphism λ′n :

µn(An) → B such that λ′n ◦ µn = λn. As {µn(An)}n∈N is increasing, uniqueness
gives that the extension of λ′n to λ′n+1 is unique. Hence we can extend this to a

*-homomorphism λ′ :
∞⋃
n=1

µn(An) → B. λ′ is contractive as each λ′n is, and hence

continuity allows us to extend to a *-homomorphism φ : A → B. φ satisfies that
φ ◦ µn = λ′n ◦ µn = λn and is unique by the uniqueness of the restrictions. This
gives 2 in Definition 2.3.6.

For the claims in 4 in this proposition, note that φ is injective if and only if it is an
isometry, if and only if each λ′n is an isometry, if and only if ker(µn) = ker(λn). The

image of φ is
∞⋃
n=1

λn(An) and hence φ is surjective if and only if B =
∞⋃
n=1

λn(An).

Corollary 2.3.11. Let {An}n∈N and {φn}n∈N be an inductive system where the
building blocks are unital and the connecting maps are injective and unital. Then
the inductive limit C∗-algebra (A, {µn}n∈N) is unital, with unital and injective maps
µn for every n ∈ N.

Proof. Define 1A = µ1(1A1). Note that for any n ∈ N we have that µn(1An) =

µn(φn,1(1A1)) = µ1(1A1) = 1A. Now for a ∈ A we have by 1 in Proposition 2.3.10
that there is a sequence {an}n∈N with an ∈ An such that a = lim

n→∞
µn(an). Then

1Aa = lim
n→∞

µn(1An)µn(an) = lim
n→∞

µn(an) = a.

Likewise a1A = a. Hence A is unital. By using 2 in Proposition 2.3.10 we see that
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µn is isometric, hence injective, for each n ∈ N.

Corollary 2.3.12. Let {An}n∈N and {φn}n∈N be an inductive system of C∗-algebra
building blocks and connecting maps. Then any subsystem {Ani}i∈N and {φni+1,ni}i∈N
gives rise to the same inductive limit C∗-algebra as the original system.

Proof. This is easily seen by 1 in Proposition 2.3.10.

We will see a large class of examples of inductive limit C∗-algebras when we look
at AX-algebras for compact Hausdorff spaces X in Chapter 4.

2.3.1 Continuity of K0

In this subsection we wish to prove the continuity of the K0 functor on inductive
limit C∗-algebras. What this means is that the K0 group of an inductive limit C∗-
algebra is the inductive limit (in the category of Abelian groups) of the K0 groups
of the building blocks. The material of this subsection is based on Sections 6.2 and
6.3 of [43].

The following proposition is of the same spirit as Proposition 2.3.10, but we do it
in the category of Abelian groups (with arrows group homomorphisms). The proof
is easier than its counterpart in Proposition 2.3.10.

Proposition 2.3.13. Every inductive system of Abelian groups {Gn}n∈N and group
homomorphisms {fn}n∈N has an inductive limit (G, {αn}n∈N). We also have:

1. G =
∞⋃
n=1

αn(Gn),

2. ker(αn) =
∞⋃

m=n+1

ker(fm,n) for every n ∈ N,

3. if (H, {γn}n∈N) and f : G → H are as in 2 in Definition 2.3.6 (but in the
category of Abelian groups) then we have that f is injective if and only if

ker(αn) = ker(γn) and f is surjective if and only if H =
∞⋃
n=1

γn(Gn).

Corollary 2.3.14. Let {Gn}n∈N and {fn}n∈N be an inductive system in the category
of ordered Abelian groups (so the connecting maps are positive), and let the inductive
limit be (G, {αn}n∈N) in the category of Abelian groups. Set

G+ =
∞⋃
n=1

αn(G+
n ).
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Then ((G,G+), {αn}n∈N) is the inductive limit of our inductive system in the cate-
gory of ordered Abelian groups.

Proof. This is a straightforward task of checking definitions, aided by the claims of
Proposition 2.3.13.

Remark 2.3.15. In the same vein as Corollaries 2.3.11 and 2.3.12 we have that if
the connecting maps are injective group homomorphisms then the maps αn are also
for each n ∈ N, and also any inductive subsystem gives rise to the same inductive
limit as the original system.

In order to prove the continuity of K0, we need the following lemma:

Lemma 2.3.16. Let A be a unital C∗-algebra. If a ∈ A is self-adjoint with ‖a −
a2‖ = δ < 1

4
then there exists a projection p ∈ A with ‖a− p‖ ≤ 2δ.

Proof. Using the spectral mapping theorem we may deduce that

sp(a) ⊆ [−2δ, 2δ] ∪ [1− 2δ, 1 + 2δ].

Hence we may define a continuous function f that is 0 on [−2δ, 2δ] and 1 on [1 −
2δ, 1 + 2δ]. Let p = f(a) which is a projection by the continuous function calculus.
Note that |t− f(t)| ≤ 2δ for all t ∈ sp(a), hence ‖a− p‖ ≤ 2δ.

We now state and prove continuity of K0. Note however that claim 3 in Proposition
2.3.17 needs the tools of K-theory for non-unital C∗-algebras, so we will omit the
proof. It can be found in Theorem 6.3.2 of [43].

Proposition 2.3.17. Let {An}n∈N and {φn}n∈N be an inductive system consisting of
unital C∗-algebras and connecting maps. Denote its inductive limit by (A, {µn}n∈N).

Let (G, {αn}n∈N) be the inductive limit (in the category of Abelian groups) of the in-
ductive system consisting of groups {K0(An)}n∈N and connecting maps {K0(φn)}n∈N.
Then there is a unique group isomorphism f : G → K0(A) making the following
diagram commute for every n ∈ N:

K0(An)

G K0(A)

αn K0(µn)

f

(2.22)

Furthermore we have that
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1. K0(A) =
∞⋃
n=1

K0(µn)(K0(An)),

2. K0(A)+ =
∞⋃
n=1

K0(µn)(K0(An)+), and

3. ker(K0(µn)) =
∞⋃

m=n+1

ker(K0(φm,n)) for every n ∈ N.

Proof. That claim 3 holds is shown in (iii) of Theorem 6.3.2 in [43]; it requires the
definition of K0 for non-unital C∗-algebras which we will not generally need. It is
clear that claim 2 implies claim 1, so we will prove claim 2.

Let p ∈ Pk(A). It is clear that (Mk(A), {µn}n∈N) is the inductive limit of the
system with building blocks {Mk(An)}n∈N and connecting maps {φn}n∈N (where
we abuse notation by using the same notation for the induced maps on the matrix
amplifications). From this, and 1 in Proposition 2.3.10, it follows that there exists
N ∈ N and an element ak,N ∈ Mk(AN) such that ‖µN(ak,N) − p‖ < 1

10
. Define the

self-adjoint element bk,N =
ak,N+a∗k,N

2
and note that ‖µN(bk,N)−p‖ < 1

10
. This means

that sp(µN(bk,N)) ⊆ [− 1
10
, 1

10
]∪[ 9

10
, 11

10
] (see, for example, Lemma 2.2.3 in [43]). From

this it follows that

‖µN(bk,N)2−µN(bk,N)‖ = ‖µN(b2
k,N−bk,N)‖ = max{|t−t2| : t ∈ sp(µN(bk,N))} ≤ 9

100
.

From claim 2 in Proposition 2.3.10 it follows that there is M > N with

‖φM,N(b2
k,N − bk,N)‖ < 1

4
.

By Lemma 2.3.16 it follows that there exists a projection q ∈Mk(AM) such that

‖q − φM,N(bk,N)‖ < 1

2
.

Now use the triangle inequality to write

‖µM(q)− p‖ ≤ ‖µM(q)− µM(φM,N(bk,N))‖+ ‖µM(φM,N(bk,N))− p‖ < 1

2
+

1

10
< 1.

Hence µM(q) is homotopic to p (see for example Proposition 2.2.4 in [43]), and
hence Murray-von Neumann equivalent to it also. Thus [p]0 = K0(µM)([q]0) and 2
follows.

Now use 2 in Definition 2.3.6 to obtain that there exists a unique group homomor-
phism f : G → K0(A) making (2.22) commute. Claim 1 forces f to be surjective,
and by 1 in Proposition 2.3.13, if f(g) = 0 for some g ∈ G, then g = αn(γ) for
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some n ∈ N and γ ∈ K0(An), and hence by commutativity of (2.22), we have that
K0(µn)(γ) = 0, which implies by claim 3 that there is m > n with K0(φm,n)(γ) = 0,
and hence

g = αn(γ) = αm ◦K0(φm,n)(γ) = 0.

Hence f is injective and thus an isomorphism.

Corollary 2.3.18. In the situation of Proposition 2.3.17, if we additionally as-
sume that (K0(An), K0(An)+) is an ordered Abelian group for each n ∈ N, and
((G,G+), {αn}n∈N) is its inductive limit in the category of ordered Abelian groups,
then the isomorphism f is an order isomorphism.

Proof. We have by Proposition 2.3.13 that G+ =
∞⋃
n=1

αn(K0(An)+), and hence by

(2.22) and 2 in Proposition 2.3.17 we have that

f(G+) = K0(A)+.

2.3.2 The K0 Group of a UHF-algebra

In this subsection we discuss the K0 group of a UHF-algebra. This can be calcu-
lated using the supernatural number associated to the algebra. We will use this
information when we explore the question of uniqueness of inductive limit Cartan
subalgebras in AI-algebras in Chapter 5. The material presented here is based on
Section 7.4 in [43].

Definition 2.3.19. A UHF-algebra (uniformly hyperfinite) is an inductive limit
C∗-algebra of an inductive system with building blocks of the form {Mni(C)}i∈N
and unital connecting maps {φi} where for each i ∈ N, ni|ni+1.

Definition 2.3.20. A supernatural number is a sequence n = {ni}i∈N where each
ni ∈ {0, 1, . . . ,∞}. Let p1, p2, . . . be the sequence of prime numbers listed in in-
creasing order. We may represent the supernatural number n symbolically as the

formal product
∞∏
i=1

pnii . Every natural number n can be treated as a supernatural

number using the prime factorisation of n. The product of two supernatural num-
bers m = {mi}i∈N and n = {ni}i∈N is the supernatural number mn = {mi +ni}i∈N.

Definition 2.3.21. To a supernatural number n = {ni}i∈N we associate a subset
of Q, Q(n), defined as consisting of all rational numbers x

y
where x ∈ Z and y is of
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the form
∞∏
i=1

pmii where each mi ≤ ni and all but finitely many mi’s are 0.

Lemma 2.3.22. Let n = {ni}i∈N be a supernatural number. Then we have the
following.

1. (Q(n),+) is a subgroup of the additive group (Q,+), containing 1.

2. Every subgroup of (Q,+) which contains 1 is of the form Q(m) for some
supernatural number m.

3. For supernatural numbers m and n we have an isomorphism (Q(m), 1) ∼=
(Q(n), 1) if and only if n = m.

4. For supernatural numbers m and n we have an isomorphism Q(m) ∼= Q(n) if
and only if there are natural numbers k1, k2 such that k1m = k2n.

Proof.

1. That Q(n) contains one is clear as the allowable denominators of the fractions
in Q(n) include 1. The allowable numerators include 0 so 0 ∈ Q(n). If
x
y
∈ Q(n), then −x

y
∈ Q(n) is the inverse of x

y
, and if additionally z

w
∈ Q(n),

then the addition of x
y
and z

w
is a fraction whose denominator is of the form

∞∏
i=1

paii where each paii either appears as a factor of y or w. This implies
x
y

+ z
w
∈ Q(n).

2. Let G be a subgroup of (Q,+) that contains 1. Define, for each i ∈ N,

mi = sup{k ∈ N ∪ {0} :
1

pki
∈ G} ∈ {0, 1, . . . ,∞}. (2.23)

Let m = {mi}i∈N be a supernatural number. We claim that Q(m) = G.
Assume t = x

y
∈ Q(m) with x and y relatively prime. Write y = ps11 p

s2
2 . . . psKK .

It follows that s1 ≤ m1, . . . , sK ≤ mK . This implies that 1
p
s1
1
, . . . , 1

p
sK
K

∈ G.

Let yj = y

p
sj
j

for j = 1, 2, . . . , K. Then the yj’s are mutually relatively prime,

and so by Bezout’s identity there exists integers d1, . . . , dK such that

1 = d1y1 + . . . dKyK .

Hence

t =
x

y
=
x(d1y1 + . . . dKyK)

y
= xd1

1

ps11

+ . . . xdK
1

psKK
∈ G.



CHAPTER 2. PRELIMINARIES 67

Now assume t = x
y
∈ G, with y written as above. Then as x and y are

relatively prime, there are integers a and b such that 1 = ax+ by. Then

1

p
sj
j

=
yj
y

=
yj(ax+ by)

y
= yj(at+ b) ∈ G.

Thus sj ≤ mj for all j = 1, . . . , K and so t ∈ Q(m).

3. If n = m the isomorphism is just the identity map. Now assume we have an
isomorphism f : Q(m)→ Q(n) mapping 1 to 1. This condition forces f to be
the identity map, and hence Q(m) = Q(n). From the proof of 2, using (2.23),
we may retrieve n from Q(n) uniquely and so n = m.

4. If f : Q(m) → Q(n) is an isomorphism then (modulo replacing f with −f
if necessary) we have that f(1) is a positive fraction. Hence there exists
positive integers k1, k2 such that f(k1) = k2. So we have a composition of
isomorphisms

Q(k1m)
·k1−→ Q(m)

f−→ Q(n)
·(k2)−1

−−−−→ Q(k2n)

mapping 1 to 1, and hence by 3, k1m = k2n.

Conversely, if k1m = k2n for some natural numbers k1, k2, then we have the
following composition of isomorphisms:

Q(m)
·(k1)−1

−−−−→ Q(k1m)
id−→ Q(k2n)

·(k2)−−→ Q(n).

We now state the final result of this subsection, which tells us what the K0 group
of a UHF-algebra is.

Proposition 2.3.23. Let (A, {µi}i∈N) be a UHF-algebra whose building blocks are
{Mni(C)}i∈N, and whose unital connecting maps are {φi}i∈N. For each i, we have

ni =
∞∏
j=1

p
ni,j
j for elements ni,j ∈ N ∪ {0}. We define the supernatural number asso-

ciated to A by m = {mj}j∈N where

mj = sup
i∈N
{ni,j}.

Then
Q(m) =

⋃
i∈N

n−1
i Z (2.24)
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and
(K0(A), [1A]0) ∼= (Q(m), 1).

The supernatural number associated to A is unique.

Proof. Let t = x
y
∈ Q(m), with x and y relatively prime and y = ps11 . . . psKK . Then

sj ≤ mj for j = 1, 2, . . . , K. Then as {ni,j}∞i=1 is increasing because ni|ni+1, we
can find an i ∈ N such that sj ≤ ni,j for j = 1, 2, . . . , K. So y divides ni and so
t ∈ n−1

i Z. Conversely, because n
−1
i ∈ Q(m) for all i ∈ N by the fact that ni,j ≤ mj

for all i ∈ N, it follows that
⋃
i∈N

n−1
i Z ⊆ Q(m).

Let τi be the normalized trace on Mni(C), in other words τi = 1
ni

tr. By Exam-
ple 2.2.48 we have that K0(τi) : K0(Mni(C)) → n−1

i Z is an isomorphism. Let
(G, {αi}i∈N) be the inductive limit of the inductive sequence with building blocks
{K0(Mni(C))}i∈N and connecting maps {K0(φi)}i∈N. Then we have a commutative
diagram for each i ∈ N:

K0(Mni(C))

K0(A) G Q(m)

K0(µi)
αi

K0(τi)

f−1 g

(2.25)

The left hand commutative triangle in (2.25) is the commutative diagram (2.22) in
Proposition 2.3.17. The existence of a group homomorphism g making the right
hand triangle commute in (2.25) is due to the universal property for inductive limits
(as in 2 in Definition 2.3.6) seeing that we have thatK0(τi+1)◦K0(φi) = K0(τi) for all
i ∈ N. The fact that K0(τi) is an isomorphism, together with 1 in Proposition 2.3.13
allows us to conclude that g is an isomorphism. Hence we have an isomorphism
K0(A) → Q(m). The commutativity of (2.25) can be used to show that this
isomorphism maps [1A]0 to 1.

For the final claim of the proposition, if A′ is another UHF-algebra isomorphic to A
with associated supernatural number m′, then the K0 groups agree by Proposition
2.2.46 and thus we have an isomorphism (Q(m), 1) ∼= (Q(m′), 1), and so 3 in Lemma
2.3.22 gives that m = m′.

2.3.3 Inductive Limit Cartan Subalgebras and AX-algebras

In this subsection we define the main mathematical structure that is of interest
to us in this thesis, namely that of an inductive limit Cartan subalgebra in an
inductive limit C∗-algebra. We also define what existence and uniqueness means
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for such a structure. These definitions are, to the best of our knowledge, original.
We will also define a class of inductive limit C∗-algebras, namely the AX-algebras,
which will be class of C∗-algebras we wish to discover the existence and uniqueness
of inductive limit Cartan subalgebras for. We will highlight some properties that
these AX-algebras have that will be useful for us later. Unless otherwise stated,
the definitions and results written in this subsection were written down without
consultation from a reference, although it is highly probable they are to be found
in many references.

Definition 2.3.24. Let c be a class consisting of C∗-algebras. Then a c-inductive
limit C∗-algebra is a C∗-algebra A arising as an inductive limit C∗-algebra formed
by building blocks {An}n∈N belonging to c, and connecting maps {φn}n∈N. A c-
inductive limit Cartan subalgebra C of a c-inductive limit C∗-algebra A is a Cartan
subalgebra C ⊆ A where A arises as a c-inductive limit C∗-algebra of building
blocks {An}n∈N and connecting maps {φn}n∈N, and C arises as an inductive limit
C∗-algebra of building blocks {Cn}n∈N and the same connecting maps {φn}n∈N,
where each (An, Cn) is a Cartan pair. In such a situation, we may call (A,C) a
c-inductive limit Cartan pair. If c is the class consisting of any C∗-algebra we drop
the c prefix.

Definition 2.3.25. We say that a c-inductive limit C∗-algebra A has a unique c-
inductive limit Cartan subalgebra C if for every other c-inductive limit Cartan pair
(B,D) with B ∼= A there is an isomorphism of Cartan pairs (A,C) ∼= (B,D).

Remark 2.3.26. The reasons we want to restrict our attention to inductive limit
C∗-algebras and Cartan subalgebras whose building blocks belong to a specified
class, rather than arbitrary building blocks, are many. Firstly, if one does not
restrict to a certain class of allowable building blocks, then every C∗-algebra A

with a Cartan subalgebra C is an inductive limit C∗-algebra with an inductive
limit Cartan subalgebra, since we may just take the constant sequence {A}n∈N for
building blocks and the identity map sequence {id}n∈N as connecting maps, and for
the inductive limit Cartan subalgebra the constant sequences {C}n∈N and {id}n∈N.
This would not be useful in the pursuit of building Cartan subalgebras out of specific
building blocks.

Secondly, for the purpose of studying the uniqueness of a method which constructs
Cartan subalgebras in specific inductive limit C∗-algebras, one would need to con-
sider only those Cartan subalgebras which arise from similar building blocks as the
C∗-algebra in question. For example, the CAR-algebra (see Chapter III in [16])
has a Cartan subalgebra built as an inductive limit of the diagonals of the building
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blocks (see Example 2.3.29 below), but it also has a Cartan subalgebra that is not
an inductive limit of Cartan subalgebras of finite dimensional C∗-algebras (this is
seen by Blackadar’s constructions in [12]). Hence it is fruitless to talk about unique-
ness of Cartan subalgebras when allowing arbitrary building blocks, as then Cartan
subalgebras of AF-algebras would not be unique (up to Cartan pair isomorphism).
However, as we shall see in Chapter 5, the Cartan subalgebras of AF-algebras which
are inductive limits of subalgebras in finite dimensional building blocks are unique.
Thus, specifying the building blocks allowable is the right approach.

Definition 2.3.27. Let cF be the class of finite dimensional C∗-algebras, in other
words finite direct sums of full matrix algebras, which we will also call AF-building

blocks. Let cI be the class of C∗-algebras of the form
N⊕
j=1

C([0, 1]) ⊗Mnj for some

N, nj ∈ N, which we will also call AI-building blocks. Let cT be the class of C∗-

algebras of the form
N⊕
j=1

C(T) ⊗Mnj for some N, nj ∈ N, which we will also call

AT-building blocks. More generally, for a compact Hausdorff space X, let cX be the

class of C∗-algebras of the form
N⊕
j=1

C(X)⊗Mnj for some N, nj ∈ N, which we will

also call AX-building blocks. Note that when only a single summand is present, we
will sometimes refer to it as an X-algebra (and interval-algebra for the AI case,
circle-algebra for the AT case).

Now we define AF, AI, AT and more generally AX-algebras. A thorough discussion
of the AF, AI, and AT-algebras can be found in [67].

Definition 2.3.28. An AF-algebra is a cF -inductive limit C∗-algebra. An AI-
algebra is a cI-inductive limit C∗-algebra. An AT-algebra is a cT-inductive limit
C∗-algebra. More generally, for a compact Hausdorff space X, an AX-algebra is
a cX-inductive limit C∗-algebra. By an AX-Cartan subalgebra we shall mean a
cX-inductive limit Cartan subalgebra of an AX-algebra (with analogous definitions
for AF, AI, and AT-Cartan subalgebras).

Example 2.3.29. Every unital AF-algebra has an AF-Cartan subalgebra. The
construction is due to Voiculescu and Strătilă in Chapter 1 of [72]. Indeed, if the AF-
algebra is the inductive limit lim−→(An, φn) where each An is a finite dimensional C∗-
algebra, and each φn a unital injective connecting map, then let C1 be any Cartan
subalgebra of A1 (for example, take the diagonal subalgebra), and inductively define
the Cartan subalgebra

Cn+1 = C∗(φn(Cn), Dn+1)

where Dn+1 is an arbitrary masa in φ(An)′ ∩ An+1. The details showing that this
indeed defines a Cartan subalgebra for every n ∈ N are in Chapter 1 of [72]. The
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desired AF-inductive limit Cartan subalgebra is then lim−→(Cn, φn). Whether AF-
Cartan subalgebras are unique in AF-algebras will be answered in Chapter 5.

Definition 2.3.30. For X a compact Hausdorff space, we shall refer to an AX-
Cartan subalgebra of an AX-algebra that arises as an inductive limit of the diagonal
subalgebras of the AX-building blocks as a diagonal Cartan subalgebra.

Definition 2.3.31. Let A ∈ cX for a compact Hausdorff space X. Let ij denote
the canonical inclusion of the jth summand of A into A, and let Πi be the canonical
projection onto the ith summand. Given a *-homomorphism φ : A → B where

A =
N⊕
j=1

Aj, B =
M⊕
i=1

Bi ∈ cX , we define

φij = Πi ◦ φ ◦ ij : Aj → Bi, φi = Πi ◦ φ : A→ Bi.

Lemma 2.3.32. Let X be a compact connected Hausdorff space. Let A,B ∈ cX

with A =
N⊕
j=1

C(X) ⊗Mnj , B =
M⊕
i=1

C(X) ⊗Mmi, and let φ : A → B be a unital

*-homomorphism. Let {ejpq} denote the system of standard matrix units for
N⊕
j=1

Mnj ,

and {f iuv} the one for
M⊕
i=1

Mmi.

For j ∈ {1, 2, . . . , N} and i ∈ {1, 2, . . . ,M}, and for arbitrary x ∈ X and q ∈
{1, 2, . . . , nj} set

kij = tr(φi(1⊗ ejqq)(x)).

Then kij is independent of the choice of x or q, and we have

N∑
j=1

njkij = mi, (2.26)

M∑
i=1

N∑
j=1

njkij =
M∑
i=1

mi. (2.27)

Proof. For any q1, q2 ∈ {1, 2, . . . , nj} we have that the projection 1⊗ejq1q1 is Murray-
von Neumann equivalent to the projection 1⊗ ejq2q2 . Hence it follows that the set

{φi(1⊗ ejqq)(x) : 1 ≤ q ≤ nj}

is a set of mutually orthogonal Murray von-Neumann equivalent projections inMmi ,
hence each having the same trace kij(x) (by Example 2.2.15). As x → tr(φi(1 ⊗
ejqq)(x)) is continuous into Z, and X is connected, this map is constant, and so we
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may talk of kij, independent of x or q.

Now note that by the fact that φ is unital we have that

mi = tr(φi(1A)(x)) = tr

(
N∑
j=1

nj∑
q=1

φi(1⊗ ejqq)(x)

)
=

N∑
j=1

nj∑
q=1

kij =
N∑
j=1

njkij, (2.28)

yielding (2.26). This directly yields (2.27).

Definition 2.3.33. In the situation of Lemma 2.3.32, we will call the set {kij : 1 ≤
j ≤ N, 1 ≤ i ≤M} an index system with respect to φ, or just an index system when
the context is clear.

Lemma 2.3.34. In the situation of Lemma 2.3.32, let {kij : 1 ≤ j ≤ N, 1 ≤ i ≤M}
be the index system. For j ∈ {1, . . . , N}, i ∈ {1, . . . ,M} and p, q ∈ {1, . . . , nj},
define

σi,j−1 =

j−1∑
z=1

nzkiz,

and

cijpq =

kij∑
ρ=1

f iσi,j−1+p+(ρ−1)nj ,σi,j−1+q+(ρ−1)nj
. (2.29)

Then the elements {cijpq} have the property of matrix units, meaning that

ci1j1p1q1
ci2j2p2q2

= 0 if i1 6= i2, or j1 6= j2, or q1 6= p2, and equals ci1j1p1q2
otherwise, (2.30)

and
(cijpq)

∗ = cijqp. (2.31)

Proof. First note that

σi,j−1 + p+ (ρ− 1)nj ≤ σi,j−1 + nj + (kij − 1)nj = σi,j ≤ mi,

where the last inequality holds by (2.26). Hence (2.29) is well-defined.

From (2.29) it is clear that if i1 is not i2 then the product in (2.30) is 0. Note that if
j1 < j2 then σi,j1−1 +q1 +(ρ−1)nj1 6= σi,j2−1 +p2 +(ω−1)nj2 for all ρ ∈ {1, . . . , kij1},
ω ∈ {1, . . . , kij2} and any q1 ∈ {1, . . . , nj1}, p2 ∈ {1, . . . , nj2}. Indeed we have

σi,j1−1 +q1 +(ρ−1)nj1 ≤ σi,j1−1 +kij1nj1 = σi,j1 ≤ σi,j2−1 < σi,j2−1 +p2 +(ω−1)nj2 .

Hence if j1 6= j2 then by (2.29) the product in (2.30) is 0. So assume i1 = i2 and
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j1 = j2 in (2.30). It is then clear that unless q1 = p2 the product in (2.30) is 0, and
otherwise is ci1j1p1q2

. That (2.31) holds is clear.

Definition 2.3.35. We will call {cijpq}, as in Lemma 2.3.34, a system of matrix units

with respect to the index system. We will let cjpq =
M∑
i=1

cijpq

Remark 2.3.36. A good way to think about the index system is to recall the situa-
tion for AF-algebras. Indeed, for such algebras we have connecting maps between
finite dimensional C∗-algebras, in other words finite direct sums of full matrix al-
gebras with entries in C. Up to unitary equivalence the connecting map maps the
summands of the domain block-diagonally into the summands of the codomain,
each with a certain multiplicity. The index system element kij is thus our higher-
dimensional analogue of the multiplicity of imbedding the jth summand of the
domain into the ith summand of the codomain, and our system of matrix units
with respect to this index system is a natural reordering of how this imbedding
takes place, analogous to the aforementioned imbeddings between finite dimensional
building blocks.

Lemma 2.3.37. In the situation of Lemma 2.3.32 we have that for every x ∈ X
there exists a unitary Vi(x) ∈ Mmi that conjugates Πi(c

ij
pq) to φi(1 ⊗ ejpq)(x) for all

j ∈ {1, 2, . . . , N}, and p, q ∈ {1, 2, . . . , nj}, where {cijpq} is the system of matrix

units with respect to the index system. The unitary V (x) =
M⊕
i=1

Vi(x) in
M⊕
i=1

Mmi

conjugates cjpq to φ(1⊗ ejpq)(x) for all j ∈ {1, 2, . . . , N}, p, q ∈ {1, 2, . . . , nj}.

Proof. Fix x ∈ X. Let i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N}. Let vij1 be the par-
tial isometry in Mmi that witnesses the Murray-von Neumann equivalence between
Πi(c

ij
11) and φi(1⊗ej11)(x) (both these elements have the same trace kij and hence are

indeed Murray-von Neumann equivalent by Example 2.2.15). For p ∈ {1, 2, . . . , nj}
set

vijp = φi(1⊗ ejp1)(x)vij1 Πi(c
ij
1p) ∈Mmi .

Using Lemma 2.3.34 one obtains that

(vijp )∗vijp = Πi(c
ij
pp), and vijp (vijp )∗ = φi(1⊗ ejpp)(x).

Set

Vi(x) =
N∑
j=1

nj∑
p=1

vijp .

One can use the fact that φ is unital together with (2.26) to see that Vi(x) is a
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unitary in Mmi . Then it is straightforward to compute that

Vi(x)Πi(c
ij
pq)Vi(x)∗ = φi(1⊗ ejpq)(x)

The last statement of the lemma follows easily.

The following definitions for maximal homogeneity are inspired by Definitions 1.1
and 1.4 in [75], however we extend them to direct sums:

Definition 2.3.38. Let A =
N⊕
j=1

C(X)⊗Mnj ∈ cX , for a compact Hausdorff space

X. A C∗-subalgebra C ⊂ A will be called maximally homogeneous if it is Abelian,
contains the center of A, and satisfies

dim(C(x)) =
N∑
j=1

nj,

(vector space dimension) for all x ∈ X.

Given B =
M⊕
i=1

C(X) ⊗Mmi ∈ cX , a unital *-homomorphism φ : A → B will be

called maximally homogeneous if

dim(φ(A)(x)) =
M∑
i=1

N∑
j=1

n2
jkij,

(vector space dimension) for all x ∈ X. Here {kij} is the index system with respect
to φ.

There is a particular class of *-homomorphisms between AX-algebra building blocks
that we are interested in. The definition is inspired by [76].

Definition 2.3.39. Let A =
N⊕
j=1

C(X)⊗Mnj ∈ cX , B =
M⊕
i=1

C(Y )⊗Mmi ∈ cY , where

X and Y are compact Hausdorff spaces. A unital *-homomorphism φ : A→ B will
be called a standard map (or sometimes a standard connecting map, or a standard
*-homomorphism) if there exists continuous functions

gijs : Y → X where i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, s ∈ {1, . . . , kij},

(here the {kij} is the index system with respect to φ) such that if f = (f1, . . . , fN) ∈
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A, φi takes the form

φi(f) = diag(f1(gi11 ), f1(gi12 ), . . . , f1(gi1ki1), f2(gi21 ), . . . , f2(gi2ki2), . . . , fN(giNkiN )),

(2.32)
up to permutation of these diagonal entries. The continuous functions {gijs } will be
called eigenvalue functions.

Example 2.3.40 (AF-building blocks). Unital *-homomorphisms between finite
dimensional C∗-algebras are unitary conjugates of standard maps, with eigenvalue
functions having domain and codomain a singleton.

Lemma 2.3.41. In the situation of Definition 2.3.39, if for each y ∈ Y and j ∈
{1, . . . , N}, we have that the elements of the set

{gijs (y) : 1 ≤ i ≤M, 1 ≤ s ≤ kij}

are distinct, then φ is maximally homogeneous.

Proof. Evaluating (2.32) at y we see that by varying f we generate a C∗-subalgebra

of Mmi of dimension
N∑
j=1

n2
jkij. This holds if we take direct sums as the eigenvalue

functions for a fixed j are distinct across the index i as well. Hence the dimension

of the image of φ at the point y is
M∑
i=1

N∑
j=1

n2
jkij, as desired.

2.3.4 Approximate Intertwining

It will be useful for us in Chapter 4 to express AX-algebras, for certain connected
compact Hausdorff spaces X, as an inductive limit with connecting maps taking a
specific form. In this section we study a tool that allows us to view two inductive
limit C∗-algebras as the same (up to isomorphism). This turns out to hold when
there is an approximate intertwining of the building blocks. These should, for the
sake of our purposes, be finitely generated. This tool will then allow us to treat
AX-algebras as having connecting maps that are more useful for us. The methods
we present here can be found summatively in [78], but the original work was done
by Elliott in [19].

Throughout this subsection, fix the following setup. Assume (A, {µn}n∈N) arises as
the inductive limit of the sequence

A1
φ1−→ A2

φ2−→ · · · , (2.33)
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and assume (B, {ρn}n∈N) is the inductive limit of the sequence

B1
ψ1−→ B2

ψ2−→ · · · , (2.34)

where the building block An is generated as a C∗-algebra by Fn ⊆ An, and the
building block Bn is generated as a C∗-algebra by Gn ⊆ Bn, for all n ∈ N.

Lemma 2.3.42. Assume {N(n)}n∈N and {M(n)}n∈N are strictly increasing sub-
sequences in N. Let {δn}n∈N be a sequence in [0,∞) that is summable. For every
n ∈ N let αn : AN(n) → BM(n) be a *-homomorphism satisfying

‖ψM(n+1),M(n) ◦ αn ◦ φN(n),N(k)(x)− αN(n+1) ◦ φN(n+1),N(k)(x)‖ < δn, (2.35)

for all k ≤ n and x ∈ FN(k). Then the sequence

{ρN(n) ◦ αn ◦ φN(n),k(a)}n∈N (2.36)

converges in B for all k ∈ N and a ∈ Ak. Furthermore there exists a *-homomorphism
α : A→ B satisfying

α(µk(a)) = lim
n→∞

ρN(n) ◦ αn ◦ φN(n),k(a) (2.37)

for all k ∈ N and a ∈ Ak.

Proof. Condition (2.35) implies that the sequence (2.36) is Cauchy for elements
a ∈ Fk. Indeed, consider the diagram

AN(k) AN(k+1) AN(k+2) · · ·

BN(k) BN(k+1) BN(k+2) · · ·

φN(k+1),N(k)

αk

φN(k+2),N(k+1)

αk+1

φN(k+3),N(k+2)

αk+2

ψN(k+1),N(k) ψN(k+2),N(k+1) ψN(k+3),N(k+2)

Then starting with φN(k),k(a) ∈ AN(k) for a ∈ Fk, if we go a certain large number of
steps R to the right, then down, and across; it will be norm close to going R−1 steps
to the right, down, one step to the right, then across; and how close the difference
is is determined by (2.35). Similarly, the latter path is close to going R − 2 steps
to the right, down, one step to the right, then across. By the triangle inequality
we may then bound the difference of going some large R1 to the right, down and
then across with going some large R2 to the right, down and then across. As long
as R1, R2 are greater than a fixed R, (2.35) ensures we may get a difference smaller
than a predefined ε. Hence (2.36) is a Cauchy sequence for a ∈ Fk and so converges
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in B. As Fk generates Ak this holds for a ∈ Ak as well.

Define α′k : Ak → B by α′k(a) = lim
n→∞

ρN(n) ◦αn ◦φN(n),k(a), and since α′k+1 ◦φk = α′k
it follows by 2 in Definition 2.3.6 that there is a unique *-homomorphism α : A→ B

satisfying (2.37).

Definition 2.3.43. By an approximate intertwining of the sequences (2.33) and
(2.34), we mean that there exists increasing subsequences {N(n)}n∈N and {M(n)}n∈N
of N and *-homomorphisms

αn : AN(n) → BM(n), βn : BM(n) → AN(n+1)

satisfying
‖βn ◦ αn(x)− φN(n+1),N(n)(x)‖ < 2−n

for all x ∈
n⋃
k=1

φN(n),N(k)(FN(k)) or x ∈
n−1⋃
k=1

βn−1 ◦ ψM(n−1),M(k)(GM(k)), and,

‖αn+1 ◦ βn(x)− ψM(n+1),M(n)(x)‖ < 2−n

for all x ∈
n⋃
k=1

ψM(n),M(k)(GM(k)) or x ∈
n⋃
k=1

αn ◦ φN(n),N(k)(FN(k)).

One may represent an approximate intertwining using the following diagram:

AN(1) AN(2) AN(3) · · ·

2−1 2−2 2−3

2−1 2−2 2−3

BM(1) BM(2) BM(3) · · ·

α1

φN(2),N(1)

α2

φN(3),N(2)

α3

φN(4),N(3)

β1

ψM(2),M(1) ψM(3),M(2)

β2

ψM(4),M(3)

β3

(2.38)

Proposition 2.3.44. If the sequences (2.33) and (2.34) are approximately inter-
twined then the C∗-algebras A and B are *-isomorphic.

Proof. Consider (2.38). Starting at some element x ∈ FN(k), consider the difference
between going R steps to the right, down, then one step to the right versus going
R+ 1 steps to the right then down. This is equivalent to starting at φN(k+R),N(k)(x)

and considering the difference between going to the right and down versus down
and to the right. Using the triangle inequality it is easy to see that the norm of
this difference will be bounded by some appropriate negative power of 2. Hence
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the conditions of Lemma 2.3.42 are met and we get *-homomorphisms A→ B and
B → A. Using (2.37) it is easy to see that these *-homomorphisms are inverse to
each other.

Definition 2.3.45. Let A and B be C∗-algebras with B unital. Let u ∈ B be a
unitary. The map Ad(u) : B → B is defined by Ad(u)(b) = ubu∗ for all b ∈ B. We
say that the *-homomorphisms φ, ψ : A → B are unitarily equivalent, written as
φ ∼u ψ, if there is a unitary u ∈ B such that ψ = Ad(u) ◦ φ. We say that φ and
ψ are approximately unitarily equivalent, written φ ∼au ψ if there is a sequence of
unitaries {un}n∈N in B such that ψ = lim

n→∞
Ad(un) ◦ φ pointwise in norm.

Proposition 2.3.46. Assume that the building blocks of (2.34) are the same as
those of (2.33), and that all the building blocks are unital, with unital connecting
maps. Assume further that all of them are finitely generated (so the sets Fn = Gn

defined are all finite.) If φn ∼au ψn for all n ∈ N then A ∼= B.

Proof. It suffices, by Proposition 2.3.44 to check that the sequences are approxi-
mately intertwined. Define α1 : A1 → A1 as the identity map id. Since F1 is finite
there is a unitary v1 ∈ A2 such that ‖φ1(x) − v1ψ1(x)v∗1‖ < 2−1 for all x ∈ F1 (for
every x ∈ F1 there is a unx giving the desired norm difference in the sequence of uni-
taries which witness the approximate unitary equivalence of the maps, and since F1

is finite we can just take the maximum such nx). Define β1 = Ad(v1)◦ψ1 : A1 → A2.
Define α2 = Ad(v∗1) : A2 → A2. We get an approximately intertwined square

A1 A2

2−1

2−1

A1 A2

id

φ1

Ad(v∗1)
Ad(v1)◦ψ1

ψ1

We may continue this process inductively. Indeed, assume we have approximately
intertwined squares up to the nth stage, with some map αn = Ad(W ) : An → An

defined. We may let vn ∈ An+1 be a unitary satisfying ‖φn(x) − Ad(vn)ψn(x)‖ <
2−(n−1) for all x in the appropriate finite set as in Definition 2.3.43 (we may do
this precisely because these sets are finite). Define βn = Ad(vn) ◦ ψn ◦ Ad(W ∗)

and αn+1 = Ad(ψn(W )v∗n) : An+1 → An+1, and we get the next approximately
intertwined square.
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2.4 Inverse Limits of the Unit Interval

In this section we explore the basics of inverse limits of the unit interval, which we
will need in Chapter 5. Unless otherwise stated, the material here will be based on
elements of Chapter 1 in [34].

Definition 2.4.1. Let I = [0, 1], the unit interval. Equip I∞ with the product
topology. Let {fn}n∈N be a sequence of continuous functions I → I. Then the
inverse limit of I with respect to the maps {fn}n∈N is the set

lim←−([0, 1], fn) = {(xn) ∈ I∞ : fn(xn+1) = xn}. (2.39)

For each m ∈ N there is a map πm : lim←−([0, 1], fn)→ [0, 1] given by sending (xn) to
xm. The topology on lim←−([0, 1], fn) is the coarsest topology making πn continuous
for every n ∈ N (in other words, the initial topology with respect to the πn’s). For
n > m we define fm,n = fm ◦fm+1 ◦ . . .◦fn, and for every n ∈ N we define fn,n = id.

Remark 2.4.2. In general, one can define inverse limits for topological spaces (see
pages 134-135 in [50]). One has a sequence of spaces {Xn}n∈N (or more generally
a family indexed by an ordered relation) and continuous maps fn : Xn+1 → Xn.

Then one considers the product
∞∏
n=1

Xn with the product topology. The inverse

limit lim←−(Xn, fn) is then defined similarly to (2.39), but consists rather of elements

in
∞∏
n=1

Xn. Similarly it is topologized via the initial topology with respect to all the

projection maps. If the spaces have algebraic structure (group, groupoid, vector
space et cetera) then one requires the arrows to be the ones appropriate for that
category (group homomorphism, groupoid homomorphism, linear map et cetera).

Remark 2.4.3. Note that the topology we give the inverse limit in Definition 2.4.1 is
exactly the subspace topology of the product topology on I∞. Indeed, the subspace
topology is the initial topology with respect to the inclusion lim←−([0, 1], fn) ↪→ I∞,
and the product topology on I∞ is the initial topology with respect to the canonical
projections I∞ → I. The composition of the inclusion followed by the canonical
projections yield the projections πn.

Then, using the universal property for initial topologies (see [25]) we can conclude
that we have a homeomorphism (lim←−([0, 1], fn), τ1)

id−→ (lim←−([0, 1], fn), τ2) where τ1 is
the initial topology with respect to the projections πn and τ2 is the initial topology
with respect to inclusion into I∞ (the subspace topology).

Definition 2.4.4. A topological space is called a continuum if it is a non-empty
compact connected space.
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We now state an important proposition regarding inverse limits of the unit interval,
namely that they are Hausdorff continua:

Proposition 2.4.5. Let {fn}n∈N be a sequence of continuous functions I → I.
Then lim←−([0, 1], fn) is a Hausdorff continuum.

Proof. Form ∈ N, let Zm ⊂ I∞ consist of those elements (xn) such that for all i ≤ m

we have fi(xi+1) = xi. Then Zm+1 ⊆ Zm for all m ∈ N and lim←−([0, 1], fn) =
∞⋂
m=1

Zm.

Fix m ∈ N, then note that Zm is non-empty, compact and connected.

Indeed, it is non-empty as for any x ∈ I we have

(f1,m(x), f2,m(x), . . . , fm(x), x, x, . . .) ∈ Zm.

By Tychonoff’s theorem, I∞ is compact and so to check that Zm is compact it
suffices to check that it is closed, or that I∞\Zm is open. Pick a point (xn) ∈ I∞\Zm
and note that there exists i ≤ m such that fi(xi+1) 6= xi. Let U1 and U2 be disjoint
open sets in [0, 1] separating fi(xi+1) and xi respectively. Let U3 be an open set
in [0, 1] containing xi+1 such that fi(U3) ⊆ U1. The set of all elements (yn) of I∞

which satisfy that yi+1 ∈ U3 and yi ∈ U2 is an open set (in the product topology)
containing (xn) and disjoint from Zm. Hence I∞ \ Zm is open.

To see that Zm is connected note that it is the image of the continuous map I∞ →
I∞ given by sending (xn) to (yn) where yn = xn for n > m and yi = fi,m(xm+1) for
i ≤ m. The image under a continuous map of a connected space is connected (see
4.22 in [68]), and since I∞ is connected (see Theorem 253 in [34]) so is Zm.

That lim←−([0, 1], fn) is Hausdorff is trivial to check. Since lim←−([0, 1], fn) =
∞⋂
m=1

Zm,

Remark 2.4.3 implies that the subspace topology induced by this intersection (as
a subspace of I∞) is the topology for our inverse limit, and so since each Zm is a
continuum we have that lim←−([0, 1], fn) is a continuum by Theorem 269 in [34].

Definition 2.4.6. A separating point of a connected space X is a point p ∈ X

such that X \ {p} is not connected. A continuum X will be called an arc if it
has only two points which are not separating points. A continuum X will be
called decomposable if it is the union of two proper subcontinua. Otherwise it is
indecomposable. A continuum X is called degenerate if it is a singleton, in which
case it is indecomposable.

Remark 2.4.7. It is stated on page 5 in [34] that the definition of an arc is equivalent
to that of being homeomorphic to [0, 1]. The proof is referred to [5] or [6].



CHAPTER 2. PRELIMINARIES 81

We will now give some examples of inverse limits of the unit interval, some of which
will be useful for us in Chapter 5.

Example 2.4.8 (Degenerate continuum). Consider the constant sequence {fn}n∈N
where each fn = 1, where 1 represents the constant map I → I sending x→ 1.

Figure 2.3: Map giving rise to a degenerate inverse limit.

Clearly lim←−([0, 1], fn) = {(1, 1, 1, . . .)}.

Example 2.4.9 (Arc). Let f : I → I be the identity function, f(x) = x for all
x ∈ [0, 1]. Set fn = f for all n ∈ N.

Figure 2.4: Map giving rise to an arc.

Then it is easy to see that lim←−([0, 1], fn) = {(x, x, x, . . .) : x ∈ [0, 1]} ∼= [0, 1].

Example 2.4.10 (Indecomposable Continuum). Let f : I → I be the function
defined by

f(x) =

2x, if 0 ≤ x ≤ 1
2

2(1− x), if 1
2
≤ x ≤ 1

.

Set fn = f for all n ∈ N.
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Figure 2.5: Map giving rise to an indecomposable continuum.

Then lim←−([0, 1], fn) is indecomposable. Indeed, assume for a contradiction that
lim←−([0, 1], fn) = Y ∪ Z with Y and Z proper subcontinua. If πm(Y ) = I for all
m ∈ N then it follows that lim←−([0, 1], fn) = Y (see Theorem 10 in [34]). The
same argument holds for Z. Hence there are natural numbers m1,m2 such that
πm1(Y ) 6= I and πm2(Z) 6= I. Hence, as f is surjective, it follows that there is
n ∈ N such that πn(Y ) 6= I 6= πn(Z).

If 0 ∈ πn+1(Y ) then it cannot be that 1
2
∈ πn+1(Y ) also as then πn(Y ) = I. Hence 1

cannot belong to πn+1(Y ) as this space is connected which would force 1
2
∈ πn+1(Y ).

Hence if neither 1
2
nor 1 belong to πn+1(Y ), they must belong to πn+1(Z) which

again is a contradiction as this would force πn(Z) = I. Hence it must be that
0 ∈ πn+1(Z), which by the same line of argument, leads to a contradiction.

The argument presented in Example 2.4.10 can be easily generalized to the following
proposition:

Proposition 2.4.11. Let f : I → I such that there exists x < y < z in I with
either f(x) = f(z) = 0 and f(y) = 1 or f(x) = f(z) = 1 and f(y) = 0. Set fn = f

for all n ∈ N. Then lim←−([0, 1], fn) is an indecomposable continuum.



Chapter 3

Generalizing Renault’s Theorem for
Cartan Subalgebras

The aim of this chapter is to generalize Renault’s main result in [64], which is
stated as Theorem 2.1.82 in this thesis. This generalization will remove the second
countability and separability conditions seen in Theorem 2.1.82, and will thus just
look at effective groupoids rather than topologically principal ones. A short discus-
sion with Jean Renault informed us that the assumption of second countability was
mainly placed for convenience, without proper analysis of its requirement. A lot
of the proofs in [64] make use of separation functions on topological spaces; which
are standard when the space is second countable, as then it is paracompact and
hence normal, and thus one can make use of the standard Urysohn lemma for sep-
aration. However in the non-second countable case one must make use of Urysohn
type results for just locally compact spaces, and these are less standard.

The structure of this chapter will be to go through Renault’s proofs in [64] and
discuss them whilst highlighting how we may remove the second countability and
separability assumptions. In Section 3.1 we show how a twisted étale effective
(weaker than topologically principal) groupoid gives rise to a Cartan pair. This
is a matter of going through Renault’s proofs in [64] but without the topological
principality and second countablity assumptions. The results can be obtained by
separation results that work just as well for locally compact Hausdorff spaces (which
are not necessarily second countable). In Section 3.2 we give the reverse procedure,
namely how to obtain a twisted étale effective groupoid from a Cartan pair (which is
not necessarily separable). In such a setting it follows that second countability and
hence topological principality of the groupoid is no longer guaranteed as the C∗-
algebra is not necessarily separable. In Section 3.3 we show that the two procedures,
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namely going from a twisted étale effective groupoid to a Cartan pair and vice
versa, are, up to isomorphism, inverse to each other. This shows that the twisted
groupoid which corresponds to a Cartan pair is unique and given by the Weyl
twisted groupoid. Although the proofs of this section are based on the proofs
in [64], our proofs have significantly more detail, and we try to spell out many
of the claims in Renault’s proofs that are at times not given justification. The
preliminaries required for this chapter can all be found in Section 2.1 of this thesis.

The content of this chapter exists in a denser version in a preprint by this author,
see [61]. Throughout this section, we are using the identification of C∗r (G,Σ) and
C0,r(G0) with C∗-algebras living inside the set C0(G,Σ), as in Remark 2.1.73.

We obtained the main result of this chapter in 2018, however it has been obtained
recently, and independently, by the authors of [41] (see Subsection 7.2 in their
paper). Their result is a consequence of a more general theory of non-commutative
Cartan subalgebras.

3.1 From Twisted Étale Groupoids to Cartan Pairs

We begin with some useful lemmas. Lemma 3.1.2 will be particularly useful as
it provides the necessary separation results used by Renault in [64] but without
having to allude to second countability.

Lemma 3.1.1. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Let f ∈ C∗r (G,Σ), h ∈ C0,r(G0). Then, for σ ∈ Σ, we have that

f ∗ h(σ) = f(σ)h(s(σ)), h ∗ f(σ) = h(r(σ))f(σ).

Proof. This follows easily from Definition 2.1.71,

Lemma 3.1.2. Let X be a locally compact Hausdorff space. Then

1. Given a compact subset K of X and an open U such that K ⊂ U ⊂ X, there
exists b ∈ C0(X) with b ≡ 1 on K, and 0 outside U .

2. Given a closed subset C ⊂ X and a point x ∈ X disjoint from C, there exists
b ∈ C0(X) where b(x) = 1 and b|C ≡ 0.

3. Given an open set U ⊂ X containing a point x there exists an open set V
containing x such that V is a compact subset of U .
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Proof. Claim 1 is Urysohn’s lemma for locally compact Hausdorff spaces (see [69],
2.12). Since locally compact Hausdorff spaces are regular, we may use 1 to directly
get 2.

Let us prove 3. By local compactness, there is an open set O containing x and
a compact set K containing O. Let D = K ∩ UC , which is a closed subset of a
compact set, hence compact. By regularity, we may find disjoint open sets OD

containing D and Ox containing x. Let V = Ox ∩ O which is open and contains
x, and note that V ⊂ V ⊂ O ⊂ K, hence V is compact. Now note also that
V ⊂ Ox ⊂ OC

D ⊂ DC = KC ∪ U . Since V ⊂ K it follows V ⊂ U .

Renault considers in Section 4 in [64] a twisted étale locally compact second count-
able Hausdorff groupoid (G,Σ) and states that C0,r(G0) contains an approximate
unit for C∗r (G,Σ), without proof. This is clear as second countable locally compact
spaces are σ-compact and hence we can exhaust G0 by an increasing sequence of

compact sets
∞⋃
n=1

Kn. Then Lemma 3.1.2 allows us to define an approximate unit

{ηn}n∈N where ηn is identically 1 on Kn.

We now wish to obtain an approximate unit without assuming second countability.

Lemma 3.1.3. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then C0,r(G0) contains an approximate unit for C∗r (G,Σ).

Proof. By Lemma 2.1.72 (C0,r(G0), ‖‖∞) is a C∗-algebra. Hence it has an ap-
proximate unit (ηα)α∈A for some indexing set A. Let f ∈ CC(G,Σ). Then K =

r(supp(f)) is compact. From Lemma 3.1.2 we have that there exists h ∈ C0,r(G0)

with h ≡ 1 on K. Then

0← ‖ηαh− h‖∞ ≥ ‖(ηαh− h)|K‖∞.

Hence ηα → 1 uniformly on K.

For y ∈ G0, define
Sα(y) =

∑
τ̇∈Gy

|ηαf − f |(τ). (3.1)

Note that by Lemma 3.1.1 |ηαf − f |(τ) is 0 if τ̇ /∈ supp(f) and converges to 0
otherwise. Hence, as for fixed y ∈ G0 the sum (3.1) is finite, we have that Sα → 0

pointwise. Note also that for each α ∈ A, Sα is continuous (see the discussion about
the family of Haar measures on locally compact Hausdorff groupoids in Section 4
in [64]), with support in the compact set s(supp(f)). Now because (ηα)α∈A is an
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approximate unit in a C∗-algebra, we have, for α ≤ β and σ ∈ Σ, that

|ηαf − f |(σ) = |ηα(r(σ))f(σ)− f(σ)| = |ηα(r(σ))− 1||f(σ)| ≥

|ηβ(r(σ))− 1||f(σ)| = |ηβ(r(σ))f(σ)− f(σ)| = |ηβf − f |(σ).
(3.2)

Hence Sα(y) ≥ Sβ(y). Hence the Sα’s form a net of pointwise monotonically de-
creasing continuous maps with compact support, converging pointwise to 0. By the
generalized Dini’s Theorem (see [81], Corollary 7) we have that Sα → 0 uniformly.

The same argument holds if we consider fηα rather than ηαf (we just switch the
range map r to the source map s), and if we consider (ηαf − f)∗ in the summands
(as the ηα’s are positive). Hence we get that the net (ηα)α∈A is an approximate unit
for CC(G,Σ) with respect to the I-norm, and hence with respect to the r-norm, by
Lemma 2.1.60. By density of CC(G,Σ) inside C∗r (G,Σ), we obtain the result.

In Theorem 4.2 in [64], Renault proves that if (G,Σ) is a twisted étale locally
compact Hausdorff groupoid, then an element f of C∗r (G,Σ) commutes with all
elements in C0,r(G0) if and only if supp′(f) is contained in G ′. One concludes
from this that C0,r(G0) is a masa if and only if G is effective. With the additional
assumption that G is second countable, Renault obtains via Proposition 3.6 in [64],
that C0,r(G0) is a masa if and only if G is topologically principal. For completeness,
we present Renault’s proof but without the second countability assumption:

Lemma 3.1.4. Let (G,Σ) be a twisted étale locally compact effective Hausdorff
groupoid. Then C0,r(G0) is a masa in C∗r (G,Σ).

Proof. Assume that f ∈ C∗r (G,Σ) commutes with all elements h ∈ C0,r(G0). This
implies, by Lemma 3.1.1, that for σ ∈ Σ

f(σ)h(s(σ)) = h(r(σ))f(σ)

for all h ∈ C0,r(G0). Since Lemma 3.1.2 implies that C0,r(G0) separates points, it
follows that supp′(f) ⊂ G ′. Since G is effective, it follows that supp′(f) ⊂ G0 and
so f ∈ C0,r(G0).

Proposition 4.3 in [64] asserts the existence of a unique faithful conditional expec-
tation P : C∗r (G,Σ)→ C0,r(G0) defined by restriction, when (G,Σ) is a twisted étale
locally compact second countable Hausdorff groupoid. That this is a faithful condi-
tional expectation can be checked directly by definitions, but uniqueness is justified
by Renault by the fact that the groupoid is second countable and topologically prin-
cipal. Renault makes use of the fact that elements in CC(G0) separate closed subsets
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from disjoint points. Of course with the space assumed second countable and locally
compact, it is regular hence paracompact hence normal, and so Urysohn’s lemma
for normal spaces applies. Of course, we have now justified such separations with-
out second countability in Lemma 3.1.2, and so for completeness repeat Renault’s
proof in [64] but without second countability:

Lemma 3.1.5. Let (G,Σ) be a twisted étale locally compact (effective) Hausdorff
groupoid. Then

P : C∗r (G,Σ)→ C0,r(G0), f → f |G0

is a (unique) faithful conditional expectation.

Proof. By Lemmas 2.1.15 and 2.1.24 we have that G0 is clopen and so P is well-
defined. That it is a projection is clear, and Lemma 3.1.1 shows that P (fh) = P (f)h

and P (hf) = hP (f) for all f ∈ C∗r (G,Σ) and h ∈ C0,r(G0). Note that

P (f ∗ ∗ f)(σ) =
∑

τ̇∈Gs(σ)

|f |2(τ)

which shows that P is positive and faithful. Hence it is a faithful conditional
expectation.

To show uniqueness when G is effective, assume there exists another conditional
expectation

Q : C∗r (G,Σ)→ C0,r(G0).

It suffices to show that Q agrees with P on CC(G,Σ). Take f ∈ CC(G,Σ) with
compact support K ⊂ G. By Lemma 2.1.23 we can cover K by finitely many open
bisections (say n of them) and assume one of them is G0 whilst the others do not

meet G0 (possible as G0 is closed). Let f =
n∑
i=1

fi via a partition of unity with

respect to this open cover, with f1 supported in G0. Then P (f) = f1 = Q(f1), We
show that Q(fi) = 0 for all 1 < i ≤ n, which yields Q(f) = f1 = P (f).

So let g ∈ CC(G,Σ) with compact support K ⊂ G, inside an open bisection S not
meeting G0. Note that if x ∈ G0, x /∈ s(K), then there exists by Lemma 3.1.2 an
h ∈ C0,r(G0) with h(x) = 1 and vanishing on s(K). Then

Q(g)(x) = Q(g)(x)h(x) = Q(gh)(x) = 0

as gh = 0. Hence if x ∈ G0 such that Q(g)(x) 6= 0, it must be that x ∈ s(K),
and so by continuity there must exist U ⊂ s(S) such that Q(g) is non-zero on U .
Since S is a bisection, the map αS : s(S) → r(S) defined by sending s−1s to ss−1
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is a homeomorphism, and since G is effective and S does not meet G0, the map αS
cannot be the identity on U . So there exists x1 ∈ U , x2 ∈ r(S) with x1 6= x2 and
such that αS(x1) = x2. Use Lemma 3.1.2 to choose an h ∈ C0,r(G0) with h(x1) = 1,
h(x2) = 0. Then

Q(g)(x1) = h(x1)Q(g)(x1) = Q(hg)(x1) = Q(g(h ◦ αS))(x1) = Q(g)(x1)h(x2) = 0,

a contradiction as Q(g) is non-zero on U . Hence Q(g) = 0 as desired.

Finally, it remains to check that C0,r(G0) is regular in C∗r (G,Σ). Proposition 4.8 and
Corollary 4.9 in [64] contain a proof of this, which we present below for completeness.
Indeed, Renault shows that if an element of C∗r (G,Σ) has open support a bisection,
then it a normalizer element. The proof of this does not allude to second countability
or effectivity.

Lemma 3.1.6. Let (G,Σ) be a twisted étale locally compact Hausdorff groupoid.
Then if an element of C∗r (G,Σ) has open support a bisection, it is a normalizer
element. Consequently, C0,r(G0) is regular in C∗r (G,Σ).

Proof. Let f ∈ C∗r (G,Σ) with S = supp′(f) a bisection. Let h ∈ C0,r(G0) and note
that for σ ∈ Σ

f ∗ ∗ h ∗ f(σ) =
∑

τ̇∈Gs(σ)

f(τσ−1)h(r(τ))f(τ),

which is non-zero if there is some τ̇ ∈ Gs(σ)∩S with ˙τσ−1 ∈ S. Since r(τσ−1) = r(τ)

it follows σ̇ ∈ G0. Hence f ∗ ∗h∗f ∈ C0,r(G0). The same can be shown for f ∗h∗f ∗.

Elements in CC(G,Σ) have compact support that can be covered by finitely many
open bisections by Lemma 2.1.23, and hence by using a partition of unity it follows
that elements in CC(G,Σ) are finite sums of elements in the normalizer set. Hence
the normalizer set generates C∗r (G,Σ) as a C∗-algebra.

Theorem 3.1.7. Let (G,Σ) be a twisted étale locally compact effective Hausdorff
groupoid. Then (C∗r (G,Σ), C0,r(G0)) is a Cartan pair.

Proof. The definition of being a Cartan subalgebra (see Definition 2.1.75) is satisfied
due to Lemmas 3.1.3, 3.1.4, 3.1.5 and 3.1.6.

With this we have obtained the first half of Renault’s theorem (see Theorem 2.1.82)
but without the second countability assumption. We now show that the second half
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of Renault’s theorem can be obtained without the separability assumption on the
C∗-algebra.

3.2 From Cartan Pairs to Twisted Étale Groupoids

We start with a discussion of the pseudogroup of partial homeomorphisms on a
topological space X, how it gives rise to an étale groupoid of germs, and how such
a procedure is reversible, as in Section 3 in [64]. We adapt the definition of a
pseudogroup given in Section 3 in [64]:

Definition 3.2.1. Let X be a topological space. A partial homeomorphism φ on X
is a homeomorphism φ : dom(φ)→ ran(φ) for some open sets dom(φ) and ran(φ) in
X. A pseudogroup on X is a non-empty family g of partial homeomorphisms on X,
stable under composition and inverse and containing the identity homeomorphism.
The ample pseudogroup of g, denoted [g], is the set of all partial homeomorphisms
on X which belong locally to g.

Definition 3.2.2. Let g be a pseudogroup on a topological space X. Its corre-
sponding groupoid of germs is the set

G = {(x, φ, y) ∈ X × g×X : φ(y) = x}/ ∼

where the equivalence relation ∼ is given by (x1, φ, y1) ∼ (x2, ψ, y2) if and only if
y1 = y2 and x1 = x2 and there is an open neighbourhood U around y1 such that
φ|U = ψ|U . We denote an element of G by [x, φ, y]. Define

G2 = {([z, ψ, y], [y, φ, x]) ∈ G × G},

and
G0 = {[x, id, x] ∈ G}.

We define a multiplication map G2 → G by ([z, ψ, y], [y, φ, x]) → [z, ψ ◦ φ, x] and
an involution map G → G by [y, φ, x] → [x, φ−1, y]. We define a topology on G by
declaring the basic open sets as

U(V, φ, U) = {[y, φ, x] ∈ G : y ∈ V, x ∈ U}

for open sets U and V in X. With this topology it is clear that

G0 ∼= X.



CHAPTER 3. GENERALIZING RENAULT’S THEOREM 90

Lemma 3.2.3. Let g be a pseudogroup on a (locally compact) Hausdorff space X.
Then the corresponding groupoid of germs G is a (locally compact) étale groupoid.

Proof. That G is a groupoid is clear. To see that it is étale, let [y, φ, x] ∈ G. Then
U(ran(φ), φ, dom(φ)) is an open neighbourhood of [y, φ, x]. The source map maps
this open set to the open set U(dom(φ), id|dom(φ), dom(φ)) ⊂ G0. It is clear that the
source map is a continuous bijection with continuous inverse between these open
sets, hence s is a local homeomorphism. The same can be shown for the range map
r.

Now assuming X is locally compact, let g ∈ G. Let V be any open set around g.
Choose an open bisection U around g on which s restricts to a local homeomorphism
and let W = U ∩ V . Consider s(W ) as a locally compact subspace of X (with the
subspace topology, see Corollary 29.3 in [52]). Then let K ⊂ s(W ) be a compact
neighbourhood around s(g), and using that s : W → s(W ) is a homeomorphism we
obtain a compact neighbourhood around g contained in W , and hence in V . Hence
we have shown that for any open set around g there is a compact neighbourhood
around g contained in the open set, which is equivalent to local compactness for
Hausdorff spaces.

What we have just described is the procedure

g a pseudogroup on X =⇒ G an étale groupoid with unit space X. (3.3)

Now we wish to describe the reverse procedure.

Definition 3.2.4. Let G be an étale groupoid. Let S denote its open bisections
(Lemma 2.1.23 tells us that G can be covered by elements of S). Equip S with
multiplication and inverse given by

ST = {st : (s, t) ∈ G2 ∩ (S × T )}, S−1 = {s−1 : s ∈ S}, for all S, T ∈ S.

Define a map
α : S → α(S), α(S) = αS

where
αS : s(S)→ r(S), s−1s→ ss−1.

Lemma 3.2.5. Let G be an étale groupoid. Then S is an inverse semigroup, and
for each S ∈ S, αS is a partial homeomorphism s(S) → r(S). The set α(S) (with
the addition of the empty homeomorphism) is a pseudogroup on G0.
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Proof. The inverse semigroup conditions are trivially checked. For S ∈ S it is clear
that αS is surjective. Since S is a bisection, injectivity follows. Continuity of the
map and its inverse is clear as the map factors through S via the continuous maps
s|−1
S and r|S as S is an open bisection. Lemma 2.1.22 tells us that the domain

and range are open sets. Hence αS is a partial homeomorphism on G0. Note that
αG0 = id|G0 , α−1

S = αS−1 , and if T ∈ S with TT−1 ∩S−1S 6= ∅, then αS ◦αT = αST .
Hence α(S) is a pseudogroup on G0.

Lemma 3.2.5 yields the procedure

G an étale groupoid with unit space X =⇒ g a pseudogroup on X. (3.4)

Propositions 3.1 and 3.2 in [64] tell us what happens if one does procedure (3.3) fol-
lowed by procedure (3.4), and vice-versa, if one starts with procedure (3.4) followed
by procedure (3.3). In the former case, one retrieves the ample pseudogroup of the
original pseudogroup. In the latter case, one retrieves the original étale groupoid
modulo the interior of its isotropy. The following lemma makes this precise:

Lemma 3.2.6. Let X be a Hausdorff space and g a pseudogroup on X. Apply
procedure (3.3) to obtain an étale groupoid G, and let S be the inverse semigroup of
open bisections of G. Then the corresponding map α : S → α(S) is an isomorphism
where α(S) = [g].

Let G be an étale groupoid and apply procedure (3.4) to get a pseudogroup g. Then
apply procedure (3.3) and let H be the étale groupoid of germs obtained through this
procedure. Then we have a short exact sequence

0→ int(G ′)→ G → H → 0. (3.5)

Proof. Consider the first claim of the lemma. For S ∈ S then we may write S =⋃
i

U(Ui, φi, Vi) for partial homeomorphisms φi ∈ g. Then note that φ = αS must

be in [g]. If φ ∈ [g] then set S = U(X,φ,X), which can be treated as an open
subset of G because both g and [g] define the same groupoid of germs due to the
equivalence relation that defines the groupoid of germs. Clearly S belongs to S.
These two procedures are inverses of each other.

Now consider the second claim of the lemma. Define a map f : G → H by sending
σ ∈ G to [r(σ), αS, s(σ)] for some open bisection S containing σ. This is well-defined
as any other bisection containing σ gives the same output by the definition of the
equivalence relation on the groupoid of germs. It is clear that f is a surjective
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continuous groupoid homomorphism. If f(σ) ∈ H0, then it follows that αS restricts
to the identity on an open neighbourhood around s(σ), which means S ⊂ G ′. Hence
σ ∈ int(G ′).

Corollary 3.2.7. Every étale groupoid of germs is effective.

Proof. If G is an étale groupoid of germs, then procedure (3.4) followed by (3.3)
yields that G ∼= H in (3.5), and hence int(G ′) = G0.

Remark 3.2.8. If g is the pseudogroup of all partial homeomorphisms on R, then
the corresponding groupoid of germs in not topologically principal, as there always
exists homeomorphisms of open intervals onto themselves that only fix one prespec-
ified point (and hence are not the identity on any open neighbourhood of the fixed
point), and so no point of the unit space has trivial isotropy. However, by Corollary
3.2.7 the groupoid of germs is effective.

We aim now to show how a Cartan pair gives rise to a twisted étale groupoid which
will be the candidate for the second half of Theorem 2.1.82. The construction can
be found in [64]. Renault assumes that the ambient C∗-algebra is separable, but
the effect of this, as we show below, is only to end up with a second countable
topologically principal groupoid. We will not assume separability.

Let (A,C) be a Cartan pair. Then C ∼= C0(X) for a locally compact Hausdorff
space X. For n ∈ NA(C) we have that n∗n and nn∗ belong to C, and hence we
define:

Definition 3.2.9. For n ∈ NA(C), define

dom(n) = {x ∈ X : n∗n(x) > 0}, ran(n) = {x ∈ X : nn∗(x) > 0}.

Renault states in Proposition 4.7 in [64] the following useful lemma, whose proof
can also be found in 1.6 in [40]:

Lemma 3.2.10. Let (A,C) be a Cartan pair, then for every n ∈ NA(C) there
exists a unique homeomorphism αn : dom(n)→ ran(n) such that for all c ∈ C and
x ∈ dom(n) we have

n∗cn(x) = c(αn(x))n∗n(x). (3.6)

Proof. Consider the unique polar decomposition of n as u|n| where u is a partial
isometry and |n| = (n∗n)

1
2 , in the enveloping von Neumann algebra A∗∗ (see I.8.1
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in [16]). The partial isomorphism of C which maps c → u∗cu gives rise to the
partial homeomorphism αn.

We note down some more useful properties of this construction. The following is
Lemma 4.10 in [64]:

Lemma 3.2.11. Let (A,C) be a Cartan pair. Then αc = iddom(c) for all c ∈ C,
and α−1

n = αn∗, αm ◦ αn = αmn for all m,n ∈ NA(C).

Proof. For c ∈ C the identity αc = iddom(c) follows directly from (3.6). Let m,n ∈
NA(C). Then mn ∈ NA(C) and (3.6) gives, for any c ∈ C and x ∈ dom(mn)

(mn)∗c(mn)(x) = c(αmn(x))(mn)∗(mn)(x) = c(αmn(x))(m∗m(αn(x))n∗n(x)),

whilst also

(mn)∗c(mn)(x) = n∗((m∗cm))n(x) = (m∗cm)(αn(x))n∗n(x) =

c(αm ◦ αn(x))m∗m(αn(x))n∗n(x).

Hence we have the equality

c(αmn(x))(m∗m(αn(x))n∗n(x)) = c(αm ◦ αn(x))m∗m(αn(x))n∗n(x). (3.7)

Note that the above is well-defined since if x ∈ dom(mn) then n∗(m∗m)n(x) > 0

and so writing n = u|n| as in the proof of Lemma 3.2.10 one obtains that n∗n(x) > 0

and so x ∈ dom(n). Note that if m∗m(αn(x)) = 0 then (mn)∗(mn)(x) = 0 by (3.6),
which is impossible as x ∈ dom(mn). Hence αn(x) ∈ dom(m). Dividing both sides
in (3.7) by m∗m(αn(x))n∗n(x) yields

c(αmn(x)) = c(αm ◦ αn(x)).

Since C separates X by Lemma 3.1.2, we obtain αmn = αm ◦ αn. Using this with
the property that αc = iddom(c) for c ∈ C one can analyse αn∗n and αnn∗ to obtain
α−1
n = αn∗ .

Definition 3.2.12. Let (A,C) be a Cartan pair. Define

g(C) = {αn : n ∈ NA(C)},

and let
α : NA(C)→ g(C)



CHAPTER 3. GENERALIZING RENAULT’S THEOREM 94

be the map that sends n→ αn.

Remark 3.2.13. One should compare Definition 3.2.12 with Definition 3.2.4. Up
to possibly needing to add the identity homeomorphism, Lemma 3.2.11 shows that
g(C) is a pseudogroup in the sense of Definition 3.2.1. The addition of the identity
homeomorphism does not affect the groupoid of germs formed from g(C) as in
Definition 3.2.2. Hence the following definition has justifiable terminology:

Definition 3.2.14. We shall call g(C) from Definition 3.2.12 the Weyl pseudogroup
of (A,C). We call the groupoid of germs it gives rise to the Weyl groupoid of (A,C),
denoted by G(C).

Before defining the twist, we need the following useful lemma, which is Proposition
4.12 in [64]:

Lemma 3.2.15. Let (A,C) be a Cartan pair. Then ker(α) = C.

Proof. It is clear that C ⊂ ker(α). Now assume we have an n ∈ NA(C) such
that αn restricts to the identity on dom(n). From (3.6) we get that for all c ∈ C,
n∗cn = cn∗n on dom(n). This formula also holds outside dom(n) as for c positive
we have n∗cn ≤ ‖c‖n∗n and n∗n is 0 outside dom(n). Hence n∗cn = cn∗n for all
c ∈ C. Note that this implies (nc − cn)∗(nc − cn) = 0 for all c ∈ C and so n
commutes with C, hence n ∈ C.

We can now define a twist, Σ(C) over G(C), and the twisted étale groupoid
(G(C),Σ(C)) will be the candidate which gives rise to the second statement of
Theorem 2.1.82 (where we do not assume separability of A).

Definition 3.2.16. Let (A,C) be a Cartan pair. Define

Σ(C) = {[x, n, y] : y ∈ dom(n), αn(y) = x}

where the [] denotes equivalence classes of the relation that identifies (x, n, y) with
(x′, n′, y′) if and only if y = y′ and there exists c, c′ ∈ C with c(y), c′(y) > 0 and
nc = n′c′ (of course, by Lemma 3.2.11, this also implies x = x′). We equip Σ(C)

with a groupoid of germs structure as in Definition 3.2.2, where we have products
[x, n, y][y,m, z] = [x, nm, z] and inverses [x, n, y]−1 = [y, n∗, x]. Define a map

Π : Σ(C)→ G(C), Π([x, n, y]) = [x, αn, y],

and define
B = {[x, c, x] : c ∈ C, c(x) 6= 0} ⊂ Σ(C),
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and identify it with X × T via the map

[x, c, x]→
(
x,

c(x)

|c(x)|

)
.

The topology on Σ(C) is defined as follows: for n ∈ NA(C), let S be the bisection
in G(C) defined by

S = U(ran(n), αn, dom(n)).

We call S the open support of n. Then define the bijection

fn : dom(n)× T→ Σ(C)|S, (x, t)→ [αn(x), tn, x].

The topology on Σ(C)|S is then the topology induced via fn. Hence we can cover
Σ(C) by a collection of open sets which we declare a base for the topology.

We now show that the statements of Definition 3.2.16 are well-defined and that
Σ(C) in fact defines a twist over G(C). The following is based on Proposition 4.14
and Lemma 4.16 in [64]. Renault’s proofs can be adapted without the need to refer
to separability of A.

Lemma 3.2.17. Let (A,C) be a Cartan pair. Then Σ(C) is a twist over G(C).

Proof. Recall the definition of a twist from Definition 2.1.35. We need to check that
all the statements of this definition are satisfied. Lemma 3.2.3 tells us that G(C) is
a (locally compact) étale groupoid. That Σ(C) is a groupoid is trivial to check, and
that it is locally compact and Hausdorff is clear as its topology is locally induced
by the topology of dom(n)× T, which is locally compact and Hausdorff as X (and
T) are.

The identification of X×T (which is given the groupoid structure as in the first bul-
let point of Definition 2.1.35) with B is clearly a surjective groupoid homomorphism.
To prove injectivity note that if c1, c2 ∈ C and x ∈ X with c1(x) 6= 0 6= c2(x), and
such that c1(x)

|c1(x)| = c2(x)
|c2(x)| , then there exists t ∈ T such that tc1(x), tc2(x) > 0. Since

c1(tc2) = c2(tc1) we get that [x, c1, x] = [x, c2, x]. This yields injectivity. We thus ob-
tain via this identification an injective groupoid homomorphism i : X×T ↪→ Σ(C).
It is clear that the map Π is a surjective map, and that it is a homomorphism
follows from Lemma 3.2.11.

Now we check that i(X ×T) = Π−1(G(C)0). Indeed, It is clear from Lemma 3.2.11
that i(X × T) ⊂ Π−1(G(C)0). Now assume σ = [x, n, y] ∈ Σ(C) satisfies that
there is an open set U around y such that αn is the identity when restricted to U .
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Hence x = y, and note that by Lemma 3.1.2 we can find a compact set K with
y ∈ K ⊂ U and a c ∈ C with c identically 1 on K and vanishing outside U . Define
m = nc. Then αm is trivial and so by Lemma 3.2.15 we obtain that m ∈ C with
[y,m, y] = [y, n, y], hence σ ∈ i(X × T).

Now let us check that the image of i is central in Σ(C). Let t ∈ T and [x, n, y] ∈
Σ(C). Then i((r([x, n, y]), t))[x, n, y] = [x, cn, y] for some c ∈ C with c(x)

|c(x)| = t, and
[x, n, y]i(s([x, n, y]), t) = [x, nd, y] for some d ∈ C with d(y)

|d(y)| = t. Choose an open
set U around y, contained in dom(n) such that d is non-zero on U and c is non-zero
on αn(U). Use Lemma 3.1.2 to find a compactly supported function χ with support
in U, with χ(y) = 1. Define g ∈ C by declaring it c(αn(u))

d(u)
χ(u) for u ∈ U and 0

outside U. Then g(y) > 0. We claim that cnχ = ndg. For this it suffices to show
that (cnχ−ndg)∗(cnχ−ndg) = 0. This can be checked directly using (3.6) and the
definition of g. Hence it follows that [x, cn, y] = [x, nd, y] as desired.

Now we verify all the required topological properties. First note that the trivial-
izations obtained via the maps fn are compatible. Indeed, if m gives rise to the
same open support as n, then Lemma 3.2.15 implies that mn∗ ∈ C which implies
that (nm∗)(mn∗) = (mn∗)(nm∗). Multiplying on the right by n and noticing that
m∗n is non-zero on dom(n) we obtain n(m∗mn∗n) = m(n∗nm∗n) so there exists
c1, c2 ∈ C which are non-vanishing on dom(n) such that

nc1 = mc2. (3.8)

To check compatibility, we need to show that if t1, t2 ∈ T then the transition
function tnm : dom(n) → T satisfying fn(x, t1) = fm(x, t2) = fm(x, tnm(x)t1)

is a homeomorphism. The first equality yields the existence of d1, d2 ∈ C with
d1(x), d2(x) > 0 satisfying t1nd1 = t2md2. Hence t1nc1d1 = t2mc1d2. Using (3.8)
we get that t1mc2d1 = t2mc1d2. Thus m(t1c2d1 − t2c1d2) = mD = 0 (where
D = t1c2d1 − t2c1d2 ∈ C). Hence (mD)∗(mD)(x) = |D(x)|2m∗m(x) = 0 which
implies D(x) = 0. Hence

t1c2(x)d1(x) = t2c1(x)d2(x)

which implies that

tnm(x) =
c2(x)d1(x)

c1(x)d2(x)
.

Noting that
d1(x)

d2(x)
=

∣∣∣∣d1(x)

d2(x)

∣∣∣∣ =
|c1(x)|
|c2(x)|
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we obtain
tnm(x) =

c2(x)|c1(x)|
c1(x)|c2(x)|

.

Since c1 and c2 are continuous functions that are non-vanishing on dom(n) it is
clear that tnm is a homeomorphism. Hence the trivializations are compatible.

We now proceed to verify that for n ∈ NA(C), fn is indeed a bijection. For injec-
tivity, note that if [αn(x), t1n, x] = [αn(x), t2n, x], then there must be c1, c2 ∈ C,
positive at x, such that t1nc1 = t2nc2. Multiplying on the right by n∗ and evalu-
ating at αn(x) via (3.6), one obtains that t1

t2
is positive, implying that t1 = t2. For

surjectivity, assume there is an m ∈ NA(C) such that on an open set U contain-
ing x ∈ dom(n), αm and αn agree. We aim to show there exists a t ∈ T such that
[αn(x), tn, x] = [αn(x),m, x]. Let V = αn(U) = αm(U), and use Lemma 3.1.2 to find
a positive compactly supported function χ with support in U ⊂ dom(n)∩ dom(m),
and χ(x) = 1. Define c1(u) = χ(u)

nn∗(αn(u))
for all u ∈ U , and 0 outside of U . Define

c2(u) = χ(u)
mm∗(αm(u))

for all u ∈ U , and 0 outside of U . Note that c1, c2 ∈ C with
c1(x), c2(x) > 0. One can check that this implies

nc1n
∗ = mc2m

∗, (3.9)

as (3.6) shows that (3.9) holds on V , and outside ran(n) we have that 0 ≤ nc1n
∗ ≤

‖c1‖nn∗ = 0 (and a similar conclusion for mc2m
∗) and so (3.9) holds everywhere.

Multiplying (3.9) by n on the right yields

nc1n
∗n = mc2m

∗n.

Note that there is a t ∈ T such that tm∗n(x) > 0 (that g(x) = m∗n(x) 6= 0

can be checked using (3.6) on g∗(x)g(x)). Let g1 = c1n
∗n, g2 = tc2m

∗n, we have
that g1(x), g2(x) > 0 and tng1 = mg2. Hence [αn(x), tn, x] = [αn(x),m, x] as
desired. Hence fn is bijective. The definition of the topology on Σ(C)|S makes fn
a homeomorphism.

The topology defined on Σ(C) makes Σ(C) a locally trivial G(C)-bundle. Indeed
around [x, αn, y] ∈ G(C) we choose the bisection U = U(ran(n), αn, dom(n)) and
the continuous section defined by S([w, αn, z]) = fn(z, 1) where z ∈ dom(n). This
clearly witnesses the local triviality condition.

Finally it is a tedious but straightforward task to show that i and Π are continuous
and restrict to homeomorphisms on the respective unit spaces. Hence Σ(C) is a
twist over G(C).
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Remark 3.2.18. We can also view the twist in light of Definition 2.1.37. The T-
action is then obtained by the definition of multiplication by T given in Definition
2.1.35, which in our case specifically becomes

t[x, n, y] = [x, tn, y].

Definition 3.2.19. Let (A,C) be a Cartan pair. We will call (G(C),Σ(C)) the
Weyl twisted groupoid associated to (A,C).

The next step is obtain an isomorphism between the Cartan pair (A,C) and the
pair (C∗r (G(C),Σ(C)), C0,r(G(C)0)). The steps towards this are presented in Section
5 in [64]. We will repeat these steps summatively for completeness. The standing
assumption in [64] is that A is separable. However the proofs can be obtained
without this assumption, and any function separation properties will be obtained
via Lemma 3.1.2.

Lemma 3.2.20. Let (A,C) be a Cartan pair and P the associated faithful condi-
tional expectation. If n ∈ NA(C) satisfies that αn is non-trivial on a neighbourhood
of y ∈ dom(n), then P (n)(y) = 0.

Proof. There is a net yα converging to y such that αn(yα) 6= yα. For a fixed α,
one can obtain c1, c2 ∈ C with the properties that c2n = nc1 and c1(yα) = 1 whilst
c2(yα) = 0. Indeed, use Lemma 3.1.2 to find a c ∈ C with compact support in
ran(n) satisfying c(αn(yα))n∗n(yα) = 1 and c(yα) = 0. Then set c1 = (c ◦ αn)n∗n

and c2 = nn∗c and use (3.6) to verify the aforementioned claims.

Then we may write

P (n)(yα) = P (n)(yα)c1(yα) = P (nc1)(yα) = P (c2n)(yα) = 0.

By continuity of P (n) we have P (n)(y) = 0.

We now show how to think of elements in A as T-equivariant continuous maps on
Σ(C).

Definition 3.2.21. Let (A,C) be a Cartan pair and P the associated faithful
conditional expectation. For every a ∈ A define ψ(a) = â to be the map on Σ(C)

defined by

â([x, n, y]) =
P (n∗a)(y)√
n∗n(y)

. (3.10)
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Lemma 3.2.22. The map ψ in Definition 3.2.21 is a well-defined, injective, linear
map which sends a ∈ A to a T-equivariant continuous function on Σ(C).

Furthermore, for c ∈ C, ψ(c) is zero off G(C)0, and on x ∈ G(C)0 it takes value
c(x). For n ∈ NA(C), the open support of ψ(n) is exactly U(ran(n), αn, dom(n)).

Proof. Linearity and T-equivariance is clear as P is linear. Replacing n in (3.10) by
nc for any c ∈ C with c(y) > 0 does not change the output, hence ψ is well-defined.
Continuity of â can be checked on the trivialization Σ(C)|S where S is the open
support of n. This then follows from continuity of the map y → P (n∗a)(y)√

n∗n(y)
on dom(n).

For injectivity, assume â = 0, then it follows that P (n∗a) is 0 on dom(n), hence
on its closure as well by continuity. For z ∈ X outside this closure, Lemma 3.1.2
allows us to find a c ∈ C which is 1 on z and 0 on the closure of dom(n), and hence
nc = 0. Then P (n∗a)(z) = c∗(z)P (n∗a)(z) = P ((nc)∗a)(z) = 0, hence P (n∗a) = 0.

Regularity of the normalizer set implies P (a∗a) = 0 and faithfulness of P implies
a = 0.

Note that if [x, αn, y] is not a unit, then the germ at y of αn is non-trivial and
hence by Lemma 3.2.20 ĉ[x, n, y] = 0 (the remark after Definition 1.3 in [65] tells
us that P (n∗) = P (n)∗). The unit space G(C)0 can be identified with the unit
space Σ(C)0 whose elements are of the form [x, d, x] for x ∈ X and d(x)

|d(x)| = 1 (see
Definition 3.2.16). Hence it is easy to see that for c ∈ C we have ĉ[x, d, x] = c(x). If
n̂[x,m, y] 6= 0 then P (m∗n)(y) 6= 0 and so by Lemma 3.2.20 αn and αm must agree
on an open neighbourhood around y and so [x, αm, y] ∈ U(ran(n), αn, dom(n)). On
the other hand n̂[x, n, y] > 0 for y ∈ dom(n) and so the open support of n̂ is exactly
U(ran(n), αn, dom(n)).

Lemma 3.2.23. The Weyl groupoid G(C) of a Cartan pair (A,C) is Hausdorff.

Proof. Consider σ1 = [x1, n1, y1], σ2 = [x2, n2, y2] ∈ Σ(C) such that σ̇1 6= σ̇2. If
y1 6= y2 let a = n1c where c ∈ C satisfies c(y1) 6= 0 and c(y2) = 0. Then â(σ1) 6= 0

and â(σ2) = 0. If y1 = y2 then by Lemma 3.2.20 it follows that P (n∗2n1)(y1) = 0 and
so n̂1(σ2) = 0. However n̂1(σ1) 6= 0. The result follows by continuity of elements in
Ψ(A).

Definition 3.2.24. Let (A,C) be a Cartan pair. Define NA,c(C) as the subset of
NA(C) consisting of those elements n such that n̂ has compact support. Let Ac be
the linear span of NA,c(C). Let Cc = C ∩ Ac.
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Lemma 3.2.25. Let (A,C) be a Cartan pair. Then NA,c(C) is dense in NA(C)

and Ac is dense in A. The map ψ is a *-algebra isomorphism which maps Ac
onto Cc(G(C),Σ(C)) (where the codomain is endowed with the multiplication and
involution structure given in Definition 2.1.54) and Cc onto Cc(G(C)0).

Proof. Let {cα}α∈A be a net in C which is an approximate unit for A. Assume
n ∈ NA(C) and that n = lim

α
ncα. We can find compactly supported bα ∈ C

such that n = lim
α
nbα as Cc(X) is dense in C0(X) (this follows from the Stone-

Weierstrass theorem, see Theorem A.1.3 in [36]). We now show that nbα ∈ NA,c(C).
Let K = supp(bα) be compact, and note that by Lemma 3.2.22 we have that the
open support of nbα is the open bisection S = U(αnbα(V ), αnbα , V ) where V ⊂ K is
open (here we have used the fact that αnbα = αn ◦ αbα). We need to show that S is
a compact set. First note that

S is compact ⇐⇒ Π−1(S) is compact ⇐⇒ Π−1(S) is compact.

The first equivalence follows from Lemma 2.1.40. The second equivalence follows
by equality of the gives sets. Indeed it is clear that that Π−1(S) ⊆ Π−1(S). The
reverse inclusion is slightly more technical. Let σ ∈ Π−1(S). Then there is a net
{sβ} is S with sβ → Π(σ). Using the local triviality condition in the definition
of a twisted groupoid we find an open bisection U around Π(σ) and a continuous
section γ : U → Σ(C). We may assume that the net {sβ} lives in U . Then declaring
τβ = γ(sβ) ∈ Π−1(S) we obtain that τβ → γ(Π(σ)) and so by Lemma 2.1.36 there
exists t ∈ T such that tτβ → σ. Hence σ ∈ Π−1(S). Thus to check S is compact it
suffices to check that Π−1(S) is compact and hence, by the definition of the topology
on Σ(C) which has a trivialization Σ(C)|S (see Definition 3.2.16) it suffices to check
that V ×T is relatively compact, and this is clear as the closure lies in the compact
set K × T. Hence nbα ∈ NA,c(C). This gives density of NA,c(C) in NA(C), and by
regularity the density of Ac in A.

We already saw in Lemma 3.2.22 that ψ is linear and injective. Let us see that it
maps Ac onto Cc(G(C),Σ(C)). It suffices to pick an f ∈ Cc(G(C),Σ(C)) supported
in an open bisection U(ran(n), αn, dom(n)) for some n ∈ NA(C), as for general
compact supports we can use a partition of unity argument which reduces to this
case. Lemma 3.2.22 tells us that n̂ is non-zero on this open bisection, and hence
we can find an h ∈ Cc(G(C)0) such that f = n̂ ∗ h (to see this use Lemma 3.1.1).
Lemma 3.2.22 shows that ψ maps Cc onto Cc(G(C)0) and so there exists a c ∈ Cc
such that f = n̂ ∗ ĉ = ψ(nc) (the last equality can be checked directly using the
definition of multiplication and Lemma 3.1.1). The element nc ∈ NA,c(C).
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By linearity of ψ it suffices to check the *-algebra homomorphism properties on
elements in NA(C). And it suffices, by Lemma 3.2.22, to check that the relevant
evaluations hold true on the open supports induced by such elements in NA(C).
This is a straightforward but tedious task, and the explicit calculations can be
found in Lemma 5.8 in [64].

We are now in a position to replace the second statement of Theorem 2.1.82 but
without the separability assumption. The proof is given in Theorem 5.9 in [64], but
there separability of A gives rise to second countability of the groupoid and hence
its topological principality by Proposition 3.6 in [64] (locally compact Hausdorff
spaces have the Baire property required by the proposition).

Theorem 3.2.26. Let (A,C) be a Cartan pair. Then there exists a twisted étale
locally compact effective Hausdorff groupoid (G,Σ) and a C∗-algebra isomorphism
carrying (A,C) onto (C∗r (G,Σ), C0,r(G0)).

Proof. Let (G,Σ) = (G(C),Σ(C)). That this is a twisted groupoid is by Lemma
3.2.17. That it is étale and locally compact is by Lemma 3.2.3. That it is ef-
fective is by Corollary 3.2.7. That it is Hausdorff is by Lemma 3.2.23. Hence
(C∗r (G,Σ), C0,r(G0)) is a Cartan pair by Theorem 3.1.7 with associated conditional
expectation P̂ .

Note that the restriction of ψ to C is isometric by Lemma 3.2.22 (the norms on C
and C0,r(G(C)0) are the supremum norms). We will now show that the restriction
of ψ to Ac is also isometric by using the fact that the conditional expectation P

associated to (A,C) is faithful and completely positive (see the first section of [58]
for the latter claim), and thus Stinespring’s theorem may be used to write, for
a ∈ Ac,

‖a‖ = sup{‖P (b∗a∗ab)‖
1
2∞ : b ∈ Ac, P (b∗b) ≤ 1}.

For such an a, â belongs to C∗r (G(C),Σ(C)) by Remark 2.1.73, and so in an analo-
gous way we also have that

‖â‖r = sup{‖P̂ (f ∗â∗âf)‖
1
2∞ : f ∈ Cc(G(C),Σ(C)), P̂ (f ∗f) ≤ 1}

= sup{‖P̂ (b̂∗â∗âb̂)‖
1
2∞ : b̂ ∈ Cc(G(C),Σ(C)), P̂ (b̂∗b̂) ≤ 1}

= sup{‖P̂ (b̂∗a∗ab)‖
1
2∞ : b̂ ∈ Cc(G(C),Σ(C)), P̂ (b̂∗b̂) ≤ 1}.

(3.11)

Note that a simple calculation using Lemma 3.2.22 shows that

P̂ ◦ ψ = ψ ◦ P
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and hence ‖P̂ (b̂∗a∗ab)‖∞ = ‖ ̂P (b∗a∗ab)‖∞ = ‖P (b∗a∗ab)‖∞ where the last equality
is due to the fact that the restriction of ψ to C is isometric. Thus

‖â‖r = ‖a‖,

and hence ψ : Ac → Cc(G(C),Σ(C)) is isometric and hence continuous, and so
by extension via continuity we obtain that ψ extends to a C∗-algebra isomorphism
carrying (A,C) onto (C∗r (G,Σ), C0,r(G0)).

For convenience, we state Theorems 3.1.7 and 3.2.26 as one theorem, which is
Theorem A from the Introduction:

Theorem 3.2.27. Let (G,Σ) be a twisted étale locally compact effective Hausdorff
groupoid. Then (C∗r (G,Σ), C0,r(G0)) is a Cartan pair.

Conversely, let (A,C) be a Cartan pair. Then there exists a twisted étale locally
compact effective Hausdorff groupoid (G,Σ) and a C∗-algebra isomorphism carrying
(A,C) onto (C∗r (G,Σ), C0,r(G0)).

For a complete account, we will state what is Proposition 5.11 in [64]. The proof is
identical as that in [64] without needing to assume separability of the C∗-algebra:

Proposition 3.2.28. Let (A,C) be a Cartan pair. Then C has the unique extension
property for pure states if and only if the Weyl groupoid G(C) is principal.

3.3 Uniqueness of the Twisted Groupoid Associ-

ated to a Cartan Pair

In this section we prove that the procedure of going from a twisted groupoid to
a Cartan pair and vice-versa as in Sections 3.1 and 3.2 are, up to isomorphism,
inverses of each other. The proofs can be found in Section 4 in [64]. They do not
require any second countability assumptions on the groupoid.

The second statement of Theorem 3.2.27 already shows that the procedure of going
from a Cartan pair to the Weyl twisted groupoid and from that to a Cartan pair
(using the first statement of Theorem 3.2.27) gives an isomorphic Cartan pair. We
now show that if we start with a twisted étale locally compact effective Hausdorff
groupoid (G,Σ) and obtain the Cartan pair (A,C) as in the first statement of
Theorem 3.2.27, then there is an isomorphism of (G,Σ) to the Weyl twisted groupoid
associated to (A,C).
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We start with what is Proposition 4.8 and 4.13 in [64] but we do not argue using
topological principality nor second countability. Note that a crucial use of second
countability is made by Renault in the proof of Proposition 4.13 in [64]. Indeed it
claims the existence of a function in C0(X) whose support is exactly a pregiven open
set. Locally compact Hausdorff spaces are regular, and regular second countable
spaces are metrizable, and hence one can take the function which measures the
distance from a point in the open set to the complement of the set.

However, for our purposes, the following statement suffices:

Lemma 3.3.1. Let (G,Σ) be a twisted étale locally compact effective Hausdorff
groupoid. Let (A,C) = (C∗r (G,Σ), C0,r(G0)). Let LΣ be the complex line bundle
associated to Σ. Then

NA(C) = {n ∈ A : supp′(n) is a bisection} (3.12)

and
αn = αsupp′(n) ∀ n ∈ NA(C). (3.13)

Furthermore we have that the groupoid of germs induced by α(NA(C)) (recall Def-
inition 3.2.12) and the groupoid of germs induced by α(S) (recall Definition 3.2.4)
are isomorphic to G.

Proof. Lemma 3.1.6 already shows us that the elements of A whose open support
is a bisection are normalizer elements. Furthermore, in the proof of that lemma,
we had that if n ∈ A with S = supp′(n) a bisection and c ∈ C then

n∗ ∗ c ∗ n(σ) = n(τσ−1)c(r(τ))n(τ),

for some τ̇ ∈ Gs(σ) ∩ S with ˙τσ−1 ∈ S. Since r(τσ−1) = r(τ) it follows that σ̇ ∈ G0,
and τ̇ ∈ Sσ̇. Hence

n∗ ∗ c ∗ n(σ) = n∗n(σ)c ◦ r(S{σ}) = n∗n(σ)c ◦ αS(σ),

where αS is the map from Definition 3.2.4. Comparing this with (3.6) yields αn =

αS.

Now let us show that the open support of a normalizer is a bisection. Let n ∈
NA(C). Let S = supp′(n). Fix x ∈ dom(n). Using (3.6) we may write, for all
c ∈ C,

c(αn(x)) =
∑
τ̇∈Gx

|n(τ)|2

n∗n(x)
c(r(τ)).
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The spectrum of C is the pure state space on C and so the pure state α̂n(x) is a
convex linear combination of the pure states r̂(τ) where τ̇ ranges over the source
fibre of x. Hence if r(τ) 6= αn(x) then n(τ) = 0.

Set T = {g ∈ G : s(g) ∈ dom(n), r(g) = αn(s(g))}. We have S ⊂ T . Hence
SS−1 ⊂ TT−1 and it can easily be checked that TT−1 ⊂ G ′. Since SS−1 is open,
effectivity implies SS−1 ⊂ G0. Likewise one can show S−1S ⊂ G0. Hence S is a
bisection. This yields (3.12) and (3.13).

Let us prove the final claim. If n ∈ NA(C) then S = supp′(n) is an open bisection
with αn = αS. In order to prove the claim we need to show that if S is an open
bisection then there is an n ∈ NA(C) with supp′(n) = S. In fact it suffices to show
this for an open set contained in S as the groupoid of germs induced by α(S) where
S is the set of all open bisections is the same as that induced by α(S ′) where S ′ is
a refinement of S. Theorem 12 in the Appendix of [24] ensures that we have a non-
vanishing continuous section for LΣ on a neighbourhood T of g ∈ S, contained in
S (LΣ has the structure of a Banach bundle over the locally compact space G, with
fibre C; see Remark 2.1.50). Proposition 1.1 in [54] characterises trivializable line
bundles as those that admit a non-vanishing section. Hence LΣ|T is trivializable.
We may use Lemma 3.1.2 to say that there exists a c ∈ C with compact support
inside s(T ). Hence U = supp′(c) is an open set inside s(T ), and by the fact that
s : T → s(T ) is a homeomorphism we can pull U back to an open bisection V ⊂ T .
Restricting attention to V we have that LΣ|V is trivializable.

Let u : V → LΣ be a non-vanishing section, and without loss of generality assume
‖u(g)‖ = 1 for all g ∈ V . Define n : G → LΣ by n(g) = u(g)c(s(g)) if g ∈ V ,
and 0 otherwise. There exists a net {hα}α∈A in CC(U) converging uniformly to
c. Now using the identifications of Lemma 2.1.53 we have that uhα ∈ CC(G,Σ)

converges uniformly to n. Hence it converges in the I-norm as this coincides with
the supremum norm on C0(G0), and hence in the C∗-algebra norm ‖‖r. Hence n ∈ A
with supp′(n) = V , and hence by (3.12) n ∈ NA(C).

Thus we have that the groupoid of germs induced by α(NA(C)) and the groupoid
of germs induced by α(S) are the same, and by Lemma 3.2.6, isomorphic to G as
this groupoid is effective.

We are now in a position to state the main result of this section:

Theorem 3.3.2. Let (G,Σ) be a twisted étale locally compact effective Hausdorff
groupoid. Let (A,C) = (C∗r (G,Σ), C0,r(G0)). Then we have a homeomorphism of
extensions
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B Σ(C) G(C)

G0 × T Σ G

(3.14)

Proof. The left vertical arrow was defined in Definition 3.2.16, and shown to be a
homeomorphism in the proof of Lemma 3.2.17. The right vertical arrow is defined
using the map in the proof of Lemma 3.2.6 (the map specified in the proof is the
inverse of the right vertical arrow). Indeed, by definition G(C) is the groupoid of
germs induced by the pseudogroup α(NA(C)), and so by Lemma 3.3.1 is the same
as the groupoid of germs induced by α(S), and so is the groupoid H that appears
in (3.5). Since G is effective the arrow is an isomorphism. Specifically it maps
[x, αn, y] to σ̇ where σ̇ is chosen in supp′(n) with s(σ) = y, r(σ) = x (the existence
and well-definedness of σ is due to Lemma 3.3.1). It can be checked easily that the
map is a homeomorphism.

We define a map Σ(C) → Σ by [x, n, y] → n(σ)
|n(σ)|σ, where σ ∈ Σ chosen so that

σ̇ ∈ supp′(n) with s(σ̇) = y and r(σ̇) = x. The inverse Σ → Σ(C) is defined
by sending σ →

[
x, n(σ)
|n(σ)|n, y

]
where n ∈ NA(C) chosen so that n(σ) 6= 0, and

y = s(σ̇), x = r(σ̇). It is a tedious but straightforward task to check that these
maps are well-defined groupoid homomorphisms, and are inverses to one another.
That these maps are continuous can be checked by restricting to the topology on
Σ(C)|S and using the map fn as in Definition 3.2.16. That (3.14) is commutative is
clear using the definitions of all the arrows. The upper extension has been defined
in Definition 3.2.16, and the lower extension is defined in Definition 2.1.35.

Corollary 3.3.3. Let (A,C) be a Cartan pair. Then the twisted groupoid that exists
by Theorem 3.2.26 is unique up to isomorphism.

Proof. This follows from Theorem 3.3.2: the twisted groupoid is isomorphic to the
Weyl twisted groupoid.



Chapter 4

Existence of Inductive Limit Cartan
Subalgebras in Inductive Limit
C∗-algebras

In this chapter we prove that AI and AT-algebras have AI and AT-Cartan subal-
gebras, respectively. Using the tools that we will develop in this chapter we will
generalize these findings to prove that AX-algebras have AX-Cartan subalgebras,
whenever X is a finite connected planar graph imbedded in C (which generalizes
the point, interval, and circle).

We have already seen in Example 2.3.29 that AF-algebras have AF-Cartan sub-
algebras. However, as we shall see, it is significantly more difficult to prove the
existence of AI and AT-Cartan subalgebras as compared to their AF counterpart.
The main reason for this is that the connecting maps for AI and AT-algebras are
not as straightforward as their AF counterpart, as they are not simply unitary
conjugates of block diagonal imbeddings.

The main strategy in this chapter is the following. We wish to realize AI, AT,
or more generally AX-algebras with X as described above, as inductive limit C∗-
algebras with connecting maps that are unitarily equivalent to standard maps (recall
Definition 2.3.39). The way we shall achieve this is due to techniques developed
by Thomsen, particularly in [75] and [76]. Once we have this, our aim is then to
use a practical tool developed by Li in [47] which reduces the question of whether
an inductive limit Cartan subalgebra exists to the level of building blocks and
connecting maps. We will describe this tool in Section 4.1 below.

For AI-algebras we will be able to realize the connecting maps as unitary conjugates

106



CHAPTER 4. ON EXISTENCE 107

of standard maps. Because the unitaries will be shown to belong to AI-building
blocks we may ignore them as far as the inductive limit is concerned (effectively due
to Proposition 2.3.46), making the situation rather straightforward. This however
will not be possible for AT-building blocks as the unitaries conjugating the standard
maps will still belong to AI-building blocks.

To surpass this issue, we will use the notion of maximal homogeneity, following
Thomsen’s work in [76], which is effectively based on Elliott’s investigations in [19],
and we will show that this notion coincides with the notion of Cartan subalgebra.
Thomsen manages to show that connecting maps between full matrix algebras with
entries in C(T) are able to carry a maximally homogeneous subalgebra into a unique
one which he constructs in the codomain. We will generalize this result and Elliott’s
techniques to direct sums of full matrix algebras with entries in C(T).

Finally, we will pinpoint the main topological properties that the interval or circle
enjoy that allow us to construct the inductive limit Cartan subalgebras. With
this understanding we will be able to generalize our results to finding AX-Cartan
subalgebras, with X as above satisfying the topological properties required.

As we discussed in the Introduction, the layout of this chapter is purposely set to
reflect the true timeline in which the results were conceived. Rather than presenting
the proof for existence of AX-Cartan subalgebras directly, which would automati-
cally encapsulate the result for AI and AT-Cartan subalgebras, we will rather prove
the latter results first in order to highlight how the ideas generalize. We believe
that this is more useful from a research perspective, as well as being faithful to the
true timeline of our research. The preliminaries for this chapter are Sections 2.1,
2.2 and Subsections 2.3.3 and 2.3.4 from Section 2.3, as well as Chapter 3.

4.1 A Practical Criterion for Existence of Inductive

Limit Cartan Subalgebras

We will describe in this section a practical tool due to Li in [47], which is based on
work with Barlak in [8], that allows us to determine whether inductive limit Cartan
subalgebras exist in certain inductive limit C∗-algebras. The criterion is simply to
check whether the (injective) connecting maps carry a Cartan subalgebra of the
building block into a Cartan subalgebra of the next building block, whether they
carry normalizer set into normalizer set and whether they are compatible with the
conditional expectation. If these conditions are satisfied for every connecting map
then there will exist an inductive limit Cartan subalgebra.
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The setup is as follows. Let (A, {µn}n∈N) be the inductive limit C∗-algebra corre-
sponding to the sequence of building blocks {An}n∈N and injective connecting maps
{φn}n∈N. Assume that for every n ∈ N we have a Cartan subalgebra Cn ⊂ An. Then
by Theorem 3.2.27 the Cartan pair (An, Cn) corresponds to a Weyl twisted groupoid
(Gn,Σn). Assume further that there exists twisted étale locally compact effective
Hausdorff groupoids (Hn, Tn) and twisted groupoid homomorphisms

(in, ιn) : (Hn, Tn)→ (Gn+1,Σn+1), (ṗn, pn) : (Hn, Tn)→ (Gn,Σn),

such that in is an imbedding with open image, ṗn is surjective, proper and fibrewise
bijective (this means that ṗn restricted as a map from the source fibre of a point
y ∈ H0

n to the source fibre of ṗn(y) ∈ G0
n is a bijection). We will write Xn for G0

n

and Yn for H0
n. These assumptions on the groupoid homomorphisms allow us to

conclude, by Lemmas 3.2 and 3.4 in [8], that the map

Cc(Hn, Tn)→ Cc(Gn+1,Σn+1), f → 1ι(Tn) · f

extends to an isometric *-homomorphism

(ιn)∗ : C∗r (Hn, Tn)→ C∗r (Gn+1,Σn+1)

and that the map
Cc(Gn,Σn)→ Cc(Hn, Tn), f → f ◦ pn

extends to an isometric *-homomorphism

(pn)∗ : C∗r (Gn,Σn)→ C∗r (Hn, Tn).

Assume further that
φn = (in)∗ ◦ (pn)∗.

Under all these assumptions, define, for every n ∈ N,

Σn,0 = Σn, Σn,m+1 = p−1
n+m(Σn,m) for m = 0, 1, 2, . . . ,

Gn,0 = Gn, Gn,m+1 = ˙p−1
n+m(Gn,m) for m = 0, 1, 2, . . . ,

Σn = lim←−(Σn,m, pn+m), Gn = lim←−(Gn,m, ˙pn+m).

Note that these inverse limits are being defined in the category of topological
groupoids, see Remark 2.4.2. In this situation, we get the following result (which
is Theorem 3.6 in [8]):
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Proposition 4.1.1.

1. (Gn,Σn) is a twisted groupoid for every n ∈ N,

2. the maps (in, ιn) induce twisted groupoid homomorphisms

(in, ιn) : (Gn,Σn)→ (Gn+1,Σn+1)

where in is an imbedding with open image, and we have that

G = lim−→(Gn, in), Σ = lim−→(Σn, ιn)

gives rise to a twisted étale groupoid (G,Σ), such that,

3. (A,C) = (lim−→(An, φn), lim−→(Cn, φn)) is a Cartan pair whose Weyl twisted groupoid
is given by (G,Σ).

If Gn is principal for all n ∈ N, then G is principal.

This setup together with Proposition 4.1.1 can be captured visually by the following
diagram:

(Gn,Σn) (Gn,1,Σn,1) (Gn,2,Σn,2) (Gn,3,Σn,3) · · · (Gn,Σn)

(Gn+1,Σn+1) (Gn+1,1,Σn+1,1) (Gn+1,2,Σn+1,2) · · · (Gn+1,Σn+1)

(Gn+2,Σn+2) (Gn+2,1,Σn+2,1) · · · (Gn+2,Σn+2)

(Gn+3,Σn+3) · · · (Gn+3,Σn+3)

. . .
...

(G,Σ)

(4.1)

What we require now is to figure out what properties an arbitrary prespecified
collection of injective connecting maps {φn}n∈N should have in order to be able to
write them as φn = (in)∗ ◦ (pn)∗ as in the above setup, and hence conclude that
we get an inductive limit Cartan subalgebra. Proposition 5.4 in [47] answers this
question:

Proposition 4.1.2. Let (A,C) and (Â, Ĉ) be Cartan pairs with corresponding faith-
ful conditional expectations P and P̂ , respectively. Let their corresponding Weyl
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twisted groupoids be (G,Σ) and (Ĝ, Σ̂) respectively. Assume we have an injective
*-homomorphism φ : A→ Â. Then the following are equivalent:

1. φ(C) ⊆ Ĉ, φ(NA(C)) ⊆ NÂ(Ĉ), and P̂ ◦ φ = φ ◦ P .

2. There exists a twisted groupoid (H,T ) and twisted groupoid homomorphisms
(i, ι) : (H,T ) → (Ĝ, Σ̂), (ṗ, p) : (H,T ) → (G,Σ) such that i is an imbedding
with open image, ṗ is surjective, proper and fibrewise bijective, and such that
φ = i∗ ◦ p∗.

Remark 4.1.3. The proof of Proposition 4.1.2 is rather technical, however we will
require some parts of the constructions in it for Chapter 5. The following list
highlights these essential items, but for a full account, one can refer to the proof
given in [47].

• In the proof of the implication 1 =⇒ 2 one needs to construct an intermediate
Cartan pair (Ă, C̆) whose corresponding Weyl twisted groupoid will be the
one declared (H,T ). C̆ is declared as the ideal of Ĉ generated by φ(C). Note
that in the case that φ is unital we have C̆ = Ĉ. Ă is declared as C∗(φ(A), C̆).
It is shown that (Ă, C̆) is a Cartan pair.

• By noting that NĂ(C̆) ⊆ NÂ(Ĉ) the proof defines the pair of maps (i, ι) by

i([x, αn, y]) = [x, αn, y], ι([x, n, y]) = [x, n, y] for all x, y ∈ H0, n ∈ NĂ(C̆),

and shows they satisfy the required properties. Then by showing that

T =
⋃

φ(n)∈φ(NA(C))

{[αφ(n)(x), φ(n), x] : x ∈ dom(φ(n))}

the pair of maps (ṗ, p) is defined by

ṗ([x, αφ(n), y]) = [φ∗(x), αn, φ
∗(y)], p([x, φ(n), y]) = [φ∗(x), n, φ∗(y)]

for x, y ∈ H0, n ∈ NA(C), and where φ∗ is dual to the map C → C̆, c→ φ(c).
The standing assumption on φ being injective is to ensure that the dual map
is surjective hence so is ṗ. The other properties required are then verified.

• It is shown that there exists a commutative diagram

A Ă Â

C∗r (G,Σ) C∗r (H,T ) C∗r (Ĝ, Σ̂)

∼=

φ

∼=

⊆

∼=

p∗ ι∗
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where the isomorphisms are the ones given by Theorem 3.2.27.

Remark 4.1.4. It is easy to see from (4.1) that if for every n ∈ N we have that
in(H0

n) = G0
n+1, it will follow that all the injection arrows in (4.1) become identities

when the diagram is restricted to just unit spaces, and hence G0 is homeomorphic
to lim←−(G0

n, ṗn). This is also noted in Remark 5.6 in [47].

Putting (4.1), Proposition 4.1.2, Remark 4.1.3 and Remark 4.1.4 together, we obtain
the following summative result, which is also Theorem 1.10 in [47]:

Proposition 4.1.5. Let (A, {µn}n∈N) be the inductive limit C∗-algebra correspond-
ing to the sequence of building blocks {An}n∈N and injective connecting maps {φn}n∈N.
Assume for every n ∈ N that (An, Cn) is a Cartan pair whose corresponding condi-
tional expectation is Pn, and whose corresponding Weyl twist is (Gn,Σn). Assume
that

φn(Cn) ⊆ Cn+1, φ(NAn(Cn)) ⊆ NAn+1(Cn+1), Pn+1 ◦φn = φn ◦Pn, for all n ∈ N.

Then (A,C) = (lim−→(An, φn), lim−→(Cn, φn)) is a Cartan pair, whose corresponding
Weyl groupoid is obtained as (G,Σ) in (4.1). If we further assume that the corre-
sponding maps in : Hn → Gn+1, as discussed above, map unit space to unit space,
then the spectrum of the inductive limit Cartan subalgebra C is lim←−(G0

n, ṗn).

4.2 Existence of AI-Cartan Subalgebras

In this section we prove the existence of AI-Cartan subalgebras in unital AI-algebras.
The idea will be to realize every AI-algebra as one whose connecting maps are of
a standard form (see Definition 2.3.39). This can be achieved due to the results
in [76]. Then we wish to use Proposition 4.1.5 to obtain the existence of inductive
limit Cartan subalgebras. In what follows we consider a unital AI-algebra A =

lim−→(An, φn), with unital and injective connecting maps φn, and building blocks
An ∈ cI (recall Definition 2.3.27).

Lemma 4.2.1. Let F =
N⊕
j=1

Mnj be a finite dimensional C∗-algebra. Let B ⊂ F

be a Cartan subalgebra. Then there exists a system of matrix units {ejpq : j ∈
{1, . . . , N}, p, q ∈ {1, . . . , nj}} for F such that B = span{ejpp : j ∈ {1, . . . , N}, p ∈
{1, . . . , nj}}.

Proof. The maximal dimension of the span of a set of minimal orthogonal projec-

tions in B must be
N∑
j=1

nj, for if it was less we may find a new projection that is
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orthogonal to all of them, but by B being a masa it means this one belongs to B,

which would be a contradiction. It cannot be more than
N∑
j=1

nj as then we would

have that F contains more than
N∑
j=1

nj non-zero orthogonal projections, which is

false.

Hence we may label a maximal set of minimal orthogonal projections of B as P j
q

for j = 1, . . . , N and q = 1, . . . , nj. These span B. They each have trace one

(otherwise their sum will be a projection in F of trace greater than
N∑
j=1

nj which

is impossible), and hence for every j ∈ {1, . . . , N} we have that P j
q1

is Murray-von
Neumann equivalent to P j

q2
for all q1, q2 ∈ {1, . . . , nj} (see Example 2.2.47). Write

ej1q for the partial isometry which witnesses the equivalence between P j
q and P j

1 , for
q = 1, . . . , nj. The define ejpq = (ej1p)

∗ej1q and this yields the desired result.

Definition 4.2.2. In the situation of Lemma 4.2.1 we will write the matrix units
more concisely as {ejpq}, and they will be called matrix units with respect to the
Cartan subalgebra.

Remark 4.2.3. We will sometimes express elements in
N⊕
j=1

C[0, 1]⊗Mnj as
∑
f jpq⊗ejpq

without specifying the index of summation. We will also identify
N⊕
j=1

C[0, 1]⊗Mnj in

the canonical way with C([0, 1],
N⊕
j=1

Mnj). Sometimes we will use this identification

without comment.

Lemma 4.2.4. Suppose F is a finite dimensional C∗-algebra and A = C[0, 1]⊗F ∈
cI . Let B be a Cartan subalgebra of F . Then C := C[0, 1]⊗B is a Cartan subalgebra
of A.

Proof. That C is unital and commutative is obvious. In fact it is a masa. Indeed,
let {ejpq} be a basis for F with respect to B. Assume a =

∑
f jpq⊗ejpq ∈ A commutes

with all of C. Write a = ad + ao where ad is diagonal (with respect to the matrix
units {ejpq}) and ao is off-diagonal. It is clear that ao = a− ad also commutes with
all of C. If ao is non-zero then there exists j0 and p0 such that p = 1⊗ej0p0p0 satisfies
aop 6= 0. But p = p2 belongs to C and so 0 6= aop = pao = paop = 0, a contradiction.
Hence ao = 0 and a belongs to C.

Next we check that C is regular. Since {f ⊗ n : f ∈ C[0, 1], n ∈ NF (B)} generates
A as a C∗-algebra, and is a subset of NA(C), the condition follows.
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Finally, we need the existence of a faithful conditional expectation from A onto C.
Let P : F → B be the unique faithful conditional expectation given by projection
onto the diagonal (with respect to {ejpq}) (see also page 6 of [72]). By [82], a
projection A→ C of norm 1 is a conditional expectation. Note that id⊗P : A→ C

is a projection. Note that if x =
∑
fs ⊗ ys ∈ A has norm at most one, we obtain,

‖id⊗ P (x)‖ = ‖
∑
s

fs ⊗ P (ys)‖ = sup
t∈[0,1]

‖
∑
s

fs(t)P (ys)‖ = sup
t∈[0,1]

‖P (
∑
s

fs(t)ys)‖ ≤

‖x‖ ≤ 1.

Here we have used the canonical identification of C[0, 1]⊗F with C([0, 1], F ). Hence
‖id⊗ P‖ = 1.

Let us check that id ⊗ P is faithful. Let x =
∑
f jpq ⊗ ejpq ∈ A. Then x∗x =∑

f jpq1f
j
pq2
⊗ ejq1q2 . Hence id⊗ P (x∗x) =

∑
|f jpq|2 ⊗ ejqq. If this is 0 then f jpq = 0 for

all j ∈ {1, . . . , N}, p, q ∈ {1, . . . , nj}. Hence x = 0.

Lemma 4.2.5. Let A = C[0, 1] ⊗ F and C = C[0, 1] ⊗ B be as in Lemma 4.2.4,
with matrix units {ejpq} with respect to B. Then NA(C) consists of those elements
n in A satisfying that n(t) has at most one non-zero entry in any row or column
(with respect to the matrix units {ejpq}), for all t ∈ [0, 1].

Proof. Let n =
∑
f jpq ⊗ ejpq have the stated property. Let x = f ⊗ eSII and assume

n∗xn is non-zero. This means that there are q1, . . . , qR and fSIq1⊗e
S
Iq1
, . . . , gSIqR⊗e

S
IqR

appearing as summands of n. Hence

n∗xn =
R∑

k,l=1

fSIqkff
S
Iql
⊗ eSqkql .

The property assumed about n means that fSIqkf
S
Iql

= 0 if k 6= l (as this holds
pointwise). Hence we see that n∗xn is diagonal with respect to the system {ejpq}.
Hence n∗Cn ⊆ C. Similarly we can show nCn∗ ⊆ C.

Conversely, let n =
∑
f jpq ⊗ ejpq ∈ NA(C). Whenever there exists a j and a p

and q1 6= q2 such that f jpq1 ⊗ e
j
pq1

and f jpq2 ⊗ e
j
pq2

appear as summands of n, then
n∗(1⊗ ejpp)n contains the summand f jpq1f jpq2 ⊗ e

j
q1q2

. But since it is supposed to be
diagonal, we have f jpq1f jpq2 = 0. A similar argument holds when the column index is
fixed rather than the row index. This implies that n has the required property.

The contents of the following lemma can be found in [76].
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Lemma 4.2.6. Let A =
N⊕
j=1

C[0, 1] ⊗Mnj , B =
M⊕
i=1

C[0, 1] ⊗Mmi , and φ : A → B

a unital *-homomorphism. Then there exists a standard map ψ : A→ B such that
φ ∼au ψ.

Proof. Let {ejpq} be a system of standard matrix units for
N⊕
j=1

Mnj . Let {kij} be

the index system with respect to φ. Let wij = φi(ι ⊗ ej11) ∈ Πi(B), where ι ∈
C[0, 1] is the map defined by ι(t) = t. Consider the spectrum of wij(t) (in φi(1 ⊗
ej11)(t)Mmiφi(1 ⊗ e

j
11)(t)) to be written as {gij1 (t), . . . , gijkij(t)} for t ∈ [0, 1], where

we have ordered gij1 ≤ . . . ≤ gijkij . Example 3.1.6 in Chapter 1 of [67] tells us that
the eigenvalue functions gijs : [0, 1] → [0, 1] are continuous for s = 1, 2, . . . , kij.
Denote the set {gij1 (t), . . . , gijkij(t)} obtained as above from the map φ and the given
procedure by φ̂ij(t). Now define ψ : A → B to be a standard map defined as
in (2.32), with eigenvalue functions {gijs : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, s ∈
{1, . . . , kij}}.

Theorem 3.1(a) in [76] tells us that two unital *-homomorphisms φ1, φ2 : A → B

are approximately unitarily equivalent if and only if when performing the above
procedure we end up with (φ̂1)ij(t) = (φ̂2)ij(t) for all i and j and t ∈ [0, 1]. Hence
it follows by construction that φ̂ij(t) = ψ̂ij(t) and so φ ∼au ψ.

Remark 4.2.7. We will see in the later sections, when we consider AX-building
blocks (particularly in Lemma 4.4.6), that the conclusion of Lemma 4.2.6 above
can be strengthened to unitary equivalence rather than approximate unitary equiv-
alence. However, for our current purposes, the statement of Lemma 4.2.6 suffices
as it is.

Lemma 4.2.8. Let A = lim−→(An, φn) be a unital AI-algebra with unital and injective
connecting maps. Then there exists unital and injective standard maps ψn : An →
An+1 such that A ∼= lim−→(An, ψn).

Proof. By Lemma 4.2.6, we construct the ψn’s satisfying φn ∼au ψn. Because each
φn is injective, the approximate unitary equivalence implies the same for ψn. Not-
ing that AI-building blocks are finitely generated as C∗-algebras, the isomorphism
follows from Proposition 2.3.46.

We are now in a position to prove the main theorem of this section, which is Theorem
B in the Introduction:
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Theorem 4.2.9. Every unital AI-algebra A = lim−→(An, φn) with unital and injective
connecting maps contains an AI-Cartan subalgebra.

Proof. By Lemma 4.2.8 we may assume our connecting maps are injective standard
maps of the form (2.32). We have that An = C([0, 1])⊗ Fn for a finite dimensional
C∗-algebra Fn. Let Dn ⊂ Fn be the canonical diagonal subalgebra, which is a
Cartan subalgebra. By Lemma 4.2.4, Cn := C([0, 1]) ⊗Dn is a Cartan subalgebra
of An. It is clear that φn(Cn) ⊂ Cn+1, as φ is a standard map. Lemma 4.2.5 allows
us to see that φn(NAn(Cn)) ⊂ NAn+1(Cn+1). If Pn : An � Cn is the conditional
expectation given by projection onto the diagonal as in the proof of Lemma 4.2.4,
it is clear that φn ◦ Pn = Pn+1 ◦ φn. Then by Proposition 4.1.5 we have that
C := lim−→(Cn, φn) is an AI-Cartan subalgebra of A.

Remark 4.2.10. The AI-Cartan subalgebras constructed above are in fact
C∗-diagonals (they satisfy the unique extension property for pure states). See Re-
mark 4.4.13 for the details.

4.3 Existence of AT-Cartan Subalgebras

In this section we prove the existence of AT-Cartan subalgebras in unital AT-
algebras. The idea will be as follows. Building on Elliott’s work in [19] (which was
done only for full matrix algebras over C(T)) we show that arbitrary unital connect-
ing maps between AT-building blocks are sufficiently close (on finite sets) to max-
imally homogeneous *-homomorphisms. We also show that if the connecting map
is additionally assumed injective we can get a sufficiently close injective maximally
homogeneous connecting map. Using an intertwining argument we may thus real-
ize our AT-algebras as those arising through maximally homogeneous connecting
maps. Then, extending Thomsen’s work in [75] (which was done only for full matrix
algebras over C(T)) we will realize maximally homogeneous *-homomorphisms be-
tween AT-building blocks as those that are unitarily equivalent to standard maps.
However, this type of diagonalization only works when we treat an AT-building
block as a subalgebra of an AI-building block in the natural way, where functions
agree at the endpoints. Hence the unitary witnessing the diagonalization will be
over the unit interval. Then building further on Thomsen’s work in [75] we will
obtain that any maximally homogeneous subalgebra of an AT-building block has
image (under the maximally homogeneous connecting map) contained in a unique
maximally homogeneous subalgebra of the codomain AT-building block. In order
for such results to become useful, we will prove that the notion of being a Cartan
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subalgebra coincides exactly with the notion of being a maximally homogeneous
subalgebra in the class cT.

Definition 4.3.1. If A =
N⊕
j=1

C(T)⊗Mnj is an AT-building block, it can be iden-

tified with the C∗-subalgebra of
N⊕
j=1

C([0, 1]) ⊗Mnj where functions agree at the

endpoints. For f ∈ A we write f[0,1] for this identification. Of course, [0, 1] may be
replaced by any closed interval. A may also be identified with the bounded one-

periodic functions of
N⊕
j=1

Cb(R)⊗Mnj . For f ∈ A we write fR for this identification.

We start with the following lemma, which is an easy generalization of Lemma 1.2
in [75], with essentially the same proof:

Lemma 4.3.2. Given A =
N⊕
j=1

C(T)⊗Mnj an AT-building block, and a maximally

homogeneous subalgebra C ⊂ A, there exists a system of matrix units

{Rejpq ∈ Cb(R,
N⊕
j=1

Mnj)}

and permutations σj ∈ Σnj , j = 1, 2, . . . , N such that

Re
j
pp(t) = Re

j
σj(p)σj(p)

(t+ 1) ∀t ∈ R, p ∈ {1, . . . , nj},

and

C ={f ∈ C(T,
N⊕
j=1

Mnj) : fR(t) ∈ span{Rejpp(t), j = 1, . . . , N ;

p = p(j) = 1, . . . , nj},∀t ∈ R}.

Furthermore, there exists a system of matrix units

{[0,1]e
j
pq ∈ C([0, 1],

N⊕
j=1

Mnj)}

such that

[0,1]e
j
pq(0) = [0,1]e

j
σj(p)σj(q)

(1)
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for some permutations σj ∈ Σnj and

C ={f ∈ C(T,
N⊕
j=1

Mnj) : f[0,1](t) ∈ span{[0,1]e
j
pp(t), j = 1, . . . , N ;

p = p(j) = 1, . . . , nj},∀t ∈ [0, 1]}.

Proof. We have that Πj(C) ⊂ C(T) ⊗Mnj is maximally homogeneous. Hence for
Πj(C) the result follows directly by the proof of Lemma 1.2 in [75]. Once it is true
for Πj(C) it is true for C.

Definition 4.3.3. We call a system of matrix units as in Lemma 4.3.2 a system of
matrix units with respect to the maximally homogeneous subalgebra.

Lemma 4.3.4. Given A as in Lemma 4.3.2, C ⊂ A is maximally homogeneous if
and only if it is a Cartan subalgebra of A.

Proof. Assume C ⊂ A is maximally homogeneous. As C contains the center of
A it contains the unit. Since Πj(C) is maximally homogeneous in C(T) ⊗Mnj , it
is maximally Abelian there (see Section 1 in [75]). Hence C must be maximally
Abelian in A.

For regularity, take f ∈ A, and an open subset U of T that is not all of T, and let
χU be any element in A supported inside U . Let p ∈ T \ U . We may identify A

with the subalgebra of C([0, 1],
N⊕
j=1

Mnj), where g on the circle is mapped to g[0,1]

on the unit interval with g[0,1](0) = g[0,1](1) = g(p). Note that for every t ∈ [0, 1]

there are scalars λjpq(t) such that

f[0,1](t) =
∑

λjpq(t)[0,1]e
j
pq(t), (4.2)

where the matrix units {[0,1]e
j
pq} are chosen as in Lemma 4.3.2. Note that the

choice of functions λjpq : [0, 1] → C, t → λjpq(t) satisfying (4.2) is unique. Note
that the function λjpq [0,1]e

j
pq is continuous, seen by considering the continuous func-

tion ([0,1]e
j
pp)f[0,1]([0,1]e

j
qq) and using (4.2). Hence the function (χU)[0,1]λ

j
pq([0,1]e

j
pq)

is continuous on [0, 1], and vanishes at the endpoints, hence it corresponds to an
element n of A. Using Lemma 4.3.2 we can see that for all c ∈ C, (n∗cn)[0,1] and
(ncn∗)[0,1], when evaluated at a point t ∈ [0, 1], belong to the span of {[0,1]e

j
pp(t)}.

Hence n ∈ NA(C). Thus it follows that χUf is a sum of normalizer elements. Since
T can be covered by proper open subsets, we may find a partition of unity with
respect to such a cover, and hence f can be written as a sum of things of the form
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considered above, namely χUf . Thus f is a sum of normalizer elements. Thus C is
regular in A.

Finally, we define P : A→ C by

P (f)[0,1] =
N∑
j=1

nj∑
p=1

[0,1]e
j
ppf[0,1][0,1]e

j
pp. (4.3)

That this is well defined (in other words that the image belongs to C) follows from
Lemma 4.3.2. It is easy to see that P is linear, and that it is a projection follows
from the description of C given in Lemma 4.3.2. Note that

sup
t∈[0,1]

‖P (f)[0,1](t)‖ = sup
t∈[0,1]

‖Pt(f[0,1](t))‖ ≤ ‖f[0,1]‖∞,

where we have used the existence of the faithful conditional expectation Pt, which
maps a matrix to its diagonal with respect to the system of matrix units {ejpq(t)}.
Hence P has norm 1. It follows by [82] that P is a conditional expectation. If
P (f ∗f)[0,1] = 0 then P (f ∗f)[0,1](t) = Pt(f

∗
[0,1]f[0,1](t)) = 0 for all t ∈ [0, 1], and by

faithfulness of Pt we have that f[0,1](t) = 0 for all t ∈ [0, 1] and hence f = 0. So P
is faithful. Hence C is a Cartan subalgebra of A.

For the converse statement, assume C ⊂ A is a Cartan subalgebra. It is easy to see
that Cj = Πj(C) ⊂ C(T) ⊗Mnj is also a Cartan subalgebra. Since circle-algebras
are continuous trace C∗-algebras (see for example Example 5.18 in [62]) it follows
from Proposition 6.1 in [64] that Cj has the unique extension property for pure
states. It then follows from Section 1 in [75] that Cj is maximally homogeneous,
which implies this is true for C.

The construction of the conditional expectation in the proof of Lemma 4.3.4 is
unique, in the following sense:

Lemma 4.3.5. Assume A =
N⊕
j=1

C(T) ⊗Mnj is an AT-building block, and C ⊂ A

a maximally homogeneous subalgebra, having the description

C = {f ∈ A : fI(t) ∈ span{pr(t) : 1 ≤ r ≤M} ∀t ∈ I} (4.4)

where

• in the case I = [0, 1], and A is identified with the subalgebra A[0,1] of
N⊕
j=1

C[0, 1]⊗

Mnj consisting of those elements agreeing at the endpoints, we assume that
the pr’s belong to A[0,1] and that there is a permutation σ ∈ ΣM such that
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pr(0) = pσ(r)(1), and,

• in the case I = R, and A is identified with the subalgebra AR of
N⊕
j=1

Cb(R)⊗Mnj

consisting of one-periodic elements, we assume that the pr’s belong to AR and
that there is a permutation σ ∈ ΣM such that pr(t) = pσ(r)(t+ 1).

Then the faithful conditional expectation P : A → C corresponding to the Cartan
pair (A,C) is unique and given by

P (f)I(t) =
M∑
r=1

pr(t)fI(t)pr(t). (4.5)

In particular P is a linear projection of norm one.

Proof. By Theorem 3.2.27 the Cartan pair (A,C) corresponds to a twisted étale
effective groupoid, and Lemma 3.1.5 tells us that the conditional expectation is
unique. Hence by uniqueness, it suffices to show that (4.5) defines a faithful condi-
tional expectation.

Assume that I = [0, 1] (the case I = R is similar). Then P is well-defined because
pr(0) = pσ(r)(1) meaning P (f)I(0) = P (f)I(1). That P is linear is clear. The
description of C in (4.4) shows that if f ∈ C then P (f) = f , and so P is a
projection onto C. Note that since C is maximally homogeneous, it must be that

M =
N∑
j=1

nj and so for t ∈ [0, 1] the set {pr(t)} forms a basis for a Cartan subalgebra

D of
N⊕
j=1

Mnj . Hence P (f)I(t) = Pt(fI(t)) where Pt is the unique faithful conditional

expectation
N⊕
j=1

Mnj → D given by projection onto the basis. As in the proof of

Lemma 4.3.4 it follows that P has norm one and is faithful, since this is satisfied
by Pt for every t ∈ [0, 1]. Hence by [82] P is a faithful conditional expectation.

The following proposition highlights why the term maximally appears in the defi-
nition of a maximally homogeneous *-homomorphism (recall Definition 2.3.38).

Proposition 4.3.6. Suppose we have a unital *-homomorphism φ : A → B, with

A =
N⊕
j=1

C(T)⊗Mnj , B =
M⊕
i=1

C(T)⊗Mmi. Then for any t ∈ T fixed, we have that

dim(φ(A)(t)) ≤
M∑
i=1

N∑
j=1

n2
jkij,
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where {kij} is the index system.

Proof. Let {ejpq} be the system of standard matrix units for
N⊕
j=1

Mnj . Fix t ∈ T and

define
F j
pq = {φ(f ⊗ ejpq)(t) : f ∈ C(T)},

which is a vector subspace of
M⊕
i=1

Mmi . Note that

φ(A)(t) =
N∑
j=1

nj∑
p,q=1

F j
pq,

where the right hand side is viewed as a sum of vector subspaces. Hence

dim(φ(A)(t)) ≤
N∑
j=1

nj∑
p,q=1

dim(F j
pq).

Fix j ∈ {1, . . . , N} and note that since φ(f ⊗ ejpq)(t) = φ(f ⊗ 1j)(t)φ(1⊗ ejpq)(t), we
have that dim(F j

pq) ≤ dim({φ(f ⊗ 1j)(t) : f ∈ C(T)}). Let {cijpq} be the system of
matrix units with respect to the index system, and V the unitary in Lemma 2.3.37.

Let p = φ(1⊗ 1j)(t), q = V ∗pV =
nj∑
p=1

cjpp, and compute

{φ(f ⊗ 1j)(t) : f ∈ C(T)} ⊆ C∗({φ(1⊗ ejpq)(t) : 1 ≤ p, q ≤ nj})′ ∩ p(
M⊕
i=1

Mmi)p

= C∗({Ad(V )cjpq : 1 ≤ p, q ≤ nj})′ ∩ p(
M⊕
i=1

Mmi)p

⊆ Ad(V )[C∗({cjpq : 1 ≤ p, q ≤ nj})′ ∩ q(
M⊕
i=1

Mmi)q]

∼=
M⊕
i=1

Mkij .

(4.6)

Since {φ(f ⊗ 1j)(t) : f ∈ C(T)} is Abelian we have by (4.6) that its dimension is

at most
M∑
i=1

kij. Hence

dim(φ(A)(t)) ≤
N∑
j=1

nj∑
p,q=1

dim(F j
pq) ≤

N∑
j=1

nj∑
p,q=1

M∑
i=1

kij =
N∑
j=1

n2
j

M∑
i=1

kij =
M∑
i=1

N∑
j=1

n2
jkij
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as desired.

Lemma 4.3.7. A unital *-homomorphism φ : C(T) ⊗ Mn → C(T) ⊗ Mm that
satisfies that it sends the canonical unitary generator u ⊗ 1n ∈ C(T) ⊗ Mn to
a unitary in C(T) ⊗Mm with m

n
distinct eigenvalues at each evaluation (each of

multiplicity n) will be maximally homogeneous.

Proof. Let t ∈ T be fixed, and as in the proof of Proposition 4.3.6, we have that

dim(φ(C(T)⊗Mn)(t)) = dim(
n∑

p,q=1

Fpq).

Let {x1, . . . , xR} be a basis for {φ(f ⊗ 1)(t) : f ∈ C(T)} (as a vector space).
We claim that {xµφ(1 ⊗ epq)(t) : µ ∈ {1, . . . , R}, p, q ∈ {1, . . . , n}} is a basis for
n∑

p,q=1

Fpq. That the set is spanning is clear, and to show linear independence assume∑
µ,p,q

λµpqxµφ(1 ⊗ epq)(t) = 0. Let s, p, q ∈ {1, . . . , n} be arbitrary, and multiply

the sum on the left by φ(1 ⊗ esp)(t) and on the right by φ(1 ⊗ eqs)(t) to get that∑
µ

λµpqxµφ(1 ⊗ ess)(t) = 0. Since φ is assumed unital, by taking a sum over s one

gets that
∑
µ

λµpqxµ = 0. This implies that λµpq = 0 for all µ ∈ {1, . . . , R}, and, since

p and q were arbitrary, for all p, q ∈ {1, . . . , n}. Thus dim(φ(C(T)⊗Mn)(t)) = Rn2.

We now show that R = m
n
. Note that since normal elements are unitarily diag-

onalizable, there is a unitary V ∈ Mm such that φ(u ⊗ 1n)(t) = Ad(V )(

m
n∑
d=1

ωdpd)

where the ωd’s are the distinct circle valued eigenvalues ensured by the assump-
tion, and the pd’s are the corresponding mutually orthogonal diagonal projec-
tions. Let qd = Ad(V )pd and note that for any Laurent polynomial P we have

φ(P (u)⊗ 1n)(t) =

m
n∑
d=1

P (ωd)qd. Since u⊗ 1n is a generator for C(T), it follows that

dim({φ(f ⊗ 1)(t) : f ∈ C(T)}) = m
n
, and this completes the proof.

Remark 4.3.8. The same result applies in Lemma 4.3.7 with T replaced with a
compact Hausdorff space X imbedded in C, where the unitary u replaced by the
generator ιX , x→ x.

Lemma 4.3.9. Let A = C(T) ⊗Mn and p ∈ A a projection with trace k at any
(hence all) evaluations t ∈ T, then pAp is isomorphic to C(T)⊗Mk, via conjugation
by a partial isometry whose initial projection is p and range projection is 1k ∈ A.

Proof. First we note that if p ∼ q via a partial isometry v in A, then pAp→ qAq,
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pap → vpapv∗ = vav∗ is a *-isomorphism. Now we show that p ∼ 1k, where
1k ∈ A can be chosen to be any standard diagonal projection with k non-zero
entries. By considering K-theory, we have by Exercise 11.2 in [43] that the map
trx in Example 2.2.51 is injective, and so we have [p]0 = [1k]0. Since C(T) has
stable rank one (meaning that the invertible elements of C(T) are dense in C(T)),
and having stable rank one is closed under matrix amplifications (see page 2 in [2])
it follows that A has stable rank one. This implies that A has the cancellation
property (see [83]) and so p ∼ 1k. Since 1kA1k ∼= C(T)⊗Mk, the result follows.

The following lemma is a generalization, to direct sums, of Theorem 4.4 in [19]:

Lemma 4.3.10. Let φ : A → B, with A =
N⊕
j=1

C(T) ⊗Mnj , B =
M⊕
i=1

C(T) ⊗Mmi,

be a unital *-homomorphism with index system {kij}. Let F ⊂ A be a finite set
and ε > 0. Then there exists a unital maximally homogeneous *-homomorphism
φ′ : A→ B such that ‖φ(a)− φ′(a)‖ < ε for all a ∈ F .

Proof. Let j ∈ {1, . . . , N} and i ∈ {1, . . . ,M}. Let Gj ⊂ C(T) ⊗Mnj be a finite
set to be determined, and δj > 0 to be determined. Consider ρij : C(T) ⊗Mnj →
C(T)⊗Mnjkij given as the composition

C(T)⊗Mnj

φij−−→ φi(1⊗ 1j)(C(T)⊗Mmi )φi(1⊗ 1j)
Ad(vij)−−−−−→ 1njkij (C(T)⊗Mmi )1njkij

gij−−→ C(T)⊗Mnjkij ,

where φij acts as φij but has the corner φi(1 ⊗ 1j)(C(T) ⊗Mmi)φi(1 ⊗ 1j) as its
codomain, Ad(vij) is the isomorphism from Lemma 4.3.9 induced via conjugation by
vij, and gij canonically identifies the corner with a full matrix algebra by removing
some zeroes. Clearly ρij is a unital *-homomorphism.

Now Theorem 4.4 in [19] tells us that there exists a unital *-homomorphism

χij : C(T)⊗Mnj → C(T)⊗Mnjkij

such that
‖χij(a)− ρij(a)‖ < δj (4.7)

for all a ∈ Gj. Furthermore, χij sends the canonical unitary generator to a unitary
with kij distinct eigenvalues at every evaluation. By Lemma 4.3.7, χij is maximally
homogeneous, and so

dim(χij(C(T)⊗Mnj)(t)) = n2
jkij
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for all t ∈ T. It is clear that

dim(g−1
ij (χij(C(T)⊗Mnj))(t)) = dim(χij(C(T)⊗Mnj)(t)) = n2

jkij

as well. Now note that conjugation by v∗ij(t) induces a vector space isomorphism

g−1
ij (χij(C(T)⊗Mnj))(t)→ v∗ijg

−1
ij (χij(C(T)⊗Mnj))vij(t)

and hence it follows that Ad(vij)
−1(g−1

ij (χij(C(T) ⊗Mnj))) has dimension n2
jkij at

every t ∈ T. Then we have

‖Ad(vij)
−1g−1

ij χij(a)− Ad(vij)
−1g−1

ij ρij(a)‖ = ‖Ad(vij)
−1g−1

ij χij(a)− φij(a)‖ < δj

for all a ∈ Gj, where we consider the image as being inside C(T)⊗Mmi . We let

hij := Ad(vij)
−1g−1

ij χij.

Define

Hi : A→ C(T)⊗Mmi , (a1, . . . , aN)→ hi1(a1) + . . .+ hiN(aN).

This is a unital *-homomorphism as the summands are mutually orthogonal. Let
G = G1 × . . .×GN . Then, for a = (a1, . . . , aN) ∈ G we have

‖Hi(a)−
N∑
j=1

φij(aj)‖ = ‖Hi(a)− φi(a)‖ <
N∑
j=1

δj = δ.

We have dim(Hi(A)(t)) =
N∑
j=1

n2
jkij. Define

φ′ =
M⊕
i=1

Hi : A→ B, (4.8)

a unital *-homomorphism. It is clear that dim(φ′(A)(t)) =
M∑
i=1

N∑
j=1

n2
jkij, hence φ′

is maximally homogeneous, and by choosing δ = ε and G containing F , we obtain
that ‖φ′(a)− φ(a)‖ < ε for all a ∈ F .

For the next result, we need to consider the C̆ech cohomology group with coefficients
in a topological group. The following definition is from 3.5 in [37].
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Definition 4.3.11. Let G be a topological group, and X a topological space. A
G-cocycle consists of an open cover {Ui} of X together with continuous maps gji :

Uj ∩ Ui → G such that gkj(x)gji(x) = gki(x) for all x ∈ Uk ∩ Uj ∩ Ui. In such a
situation we write that (Ui, gji) is a G-cocycle. Denote by U(X,G) the set of all
such G-cocycles.

Two G-cocycles (Ui, gji) and (Vr, hsr) are equivalent, written (Ui, gji) ∼ (Vr, hsr), if
and only if there exists continuous mas f ri : Vr ∩ Ui → G such that
f sj (x)gji(x)f ri (x)−1 = hsr(x) for all x ∈ Vs ∩ Vr ∩ Uj ∩ Ui. We define

H1(X,G) = U(X,G)/ ∼ .

Remark 4.3.12. It is shown in 3.5 in [37] that ∼ is an equivalence relation so that the
definition of H1(X,G) is well-defined. H1(X,G) is in one-to-one correspondence
with the set of isomorphism classes of principal G-bundles over X (see [4]).

Lemma 4.3.13. If G is a topological group, and X is a contractible paracompact
space, then H1(X,G) = 0.

Proof. By the remark on page 222 in [55], any principal G-bundle over a contractible
paracompact space is trivial. And so the result follows by Remark 4.3.12.

The following lemma is a generalization, to direct sums, of Theorem 3 in [79], but
the proof is essentially the same:

Lemma 4.3.14. Let φ : A → B, with A =
N⊕
j=1

C(T) ⊗Mnj , B =
M⊕
i=1

C(T) ⊗Mmi,

be a unital maximally homogeneous *-homomorphism. Then there exists a unitary

U = (U1, U2, . . . , UM) ∈
M⊕
i=1

C([0, 1])⊗Mmi and a set of eigenvalue functions

{gijs : [0, 1]→ T : 1 ≤ i ≤M ; 1 ≤ j ≤ N ; 1 ≤ s = s(i, j) ≤ kij},

where {kij} is the index system, such that

φi((a1, . . . , aN))[0,1](t) =

Ui(t)diag(a1 ◦ gi11 , a1 ◦ gi12 , . . . , a1 ◦ gi1ki1 , a2 ◦ gi21 , . . . , a2 ◦ gi2ki2 , . . . , aN ◦ g
iN
kiN

)(t)Ui(t)
∗,

(4.9)

for all i ∈ {1, . . . ,M}, (a1, . . . , aN) ∈ A and t ∈ [0, 1]. In other words, φ is unitarily
equivalent to a standard map with eigenvalue functions {gijs }.
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Proof. Fix t0 ∈ [0, 1] and use Lemma 2.3.37 to find a unitary V ∈
M⊕
i=1

Mmi such

that V φ(1 ⊗ ejpq)(t0)V ∗ = cjpq, where the cijpq’s are the matrix units with respect
to the index system (here, and in the rest of the proof, we will skip writing out
the identification of φ(a) with φ(a)[0,1], for the sake of brevity). We will consider

V ∈
M⊕
i=1

(C([0, 1])⊗Mmi) by declaring it constant with value V . Hence by continuity

it follows that there exists a neighbourhood T0 around t0 such that we have

sup{‖V (t)φ(1⊗ ejpq)(t)V (t)∗ − cjpq‖ : 1 ≤ j ≤ N, 1 ≤ p, q,≤ nj} <
1

2
(4.10)

for all t ∈ T0. Let g ∈ C([0, 1], [0, 2]) defined by being non-negative, vanishing on a
neighbourhood close to 0, and being 1

x
for 1

2
≤ x ≤ 1.

Now define, for 1 ≤ j ≤ N , and t ∈ [0, 1],

Xj(t) = cj11V (t)φ(1⊗ ej11)(t)V (t)∗cj11.

It is clear that Xj(t) is a positive element of norm less than one. Hence we may
define

W (t) =
N∑
j=1

nj∑
p=1

cjp1(g(Xj(t)))
1
2V (t)φ(1⊗ ej1p)(t)V (t)∗, t ∈ [0, 1].

It is clear that W is continuous. On T0 it is in fact a unitary. Indeed, for t ∈ T0,
we have

W (t)W (t)∗ =

N∑
j=1

nj∑
p=1

cjp1(g(Xj(t)))
1
2V (t)φ(1⊗ ej11)(t)V (t)∗(g(Xj(t)))

1
2 cj1p =

N∑
j=1

nj∑
p=1

cjp1Xj(t)g(Xj(t))c
j
1p,

where we have used (2.30) and (2.31) and where we obtain the last equality by
noting that cjp1 = cjp1c

j
11 and cj1p = cj11c

j
1p, and that cj11 commutes with Xj(t). Now

we aim to show that
Xj(t)g(Xj(t)) = cj11 for t ∈ T0, (4.11)

from which it will follow that W (t)W (t)∗ = 1 (and hence also that W (t)∗W (t) = 1)
for all t ∈ T0.

To this end, we make use of the proof of Lemma 1.8 in [27]. Indeed, let Yj(t) =
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V (t)φ(1⊗ej11)(t)V (t)∗ and consider the commutative C∗-algebra generated by 1, cj11

and Xj(t). Let ρ be any pure state on this C∗-algebra (hence multiplicative), and so
ρ(cj11) ∈ {0, 1}. If ρ(cj11) = 0 then as 0 ≤ cj11Yj(t)c

j
11 ≤ cj11, we have ρ(cj11Yj(t)c

j
11) =

ρ(Xj(t)) = 0. Thus ρ(Xj(t)g(Xj(t))) = 0 = ρ(cj11). If ρ(cj11) = 1 then as 0 ≤ cj11 −
cj11Yj(t)c

j
11 has norm smaller than 1

2
by (4.10), we get ρ(cj11Yj(t)c

j
11) = ρ(Xj(t)) ∈

[1
2
, 1]. Hence ρ(Xj(t)g(Xj(t))) = ρ(Xj(t))g(ρ(Xj(t)) = 1 = ρ(cj11). Since ρ was

arbitrary, it follows that Xj(t)g(Xj(t)) = cj11, as desired.

Note also that for all t ∈ T0, one can use (4.11) to see that

W (t)V (t)φ(1⊗ ejpq)(t)V (t)∗W (t)∗ = cjpq.

Repeating this argument around other points, we manage to find a finite open cover

{Tk} of [0, 1] and continuous maps Wk : Tk → U(
M⊕
i=1

Mmi) such that

Wk(t)φ(1⊗ ejpq)(t)Wk(t)
∗ = cjpq, ∀t ∈ Tk.

Note that WkW
∗
s (t) commutes with every cjpq for all t ∈ Tk ∩ Ts. Let W denote the

unitary group of {cjpq}′∩
M⊕
i=1

Mmi
∼=

M⊕
i=1

N⊕
j=1

Mkij , where {kij} is the index system with

respect to φ. Hence (Tk,WkW
∗
s ) defines an element in H1([0, 1],W). Since [0, 1] is

contractible and paracompact it follows from Lemma 4.3.13 that H1([0, 1],W) = 0.
Hence (Tk,WkW

∗
s ) is equivalent to (Tk, 1) and so as in Definition 4.3.11 we find

continuous maps Vk : Tk →W such that WiW
∗
j = Vi

∗
Vj on Ti ∩ Tj.

Define S = (S1, . . . , SM) ∈ C([0, 1],U(
M⊕
i=1

Mmi) by S(t) = VkWk(t) for t ∈ Tk. Note

that
Sφ(1⊗ ejpq)S∗(t) = cjpq

for all t ∈ [0, 1], from which it follows that for all i ∈ {1, . . . ,M},

Siφi(1⊗ ejpq)S∗i (t) = Πi(c
ij
pq).

It is easy to see that Sφ(C(T) ⊗ 1)S∗(t) ∈ {cjpq}′ ∩
M⊕
i=1

Mmi for all t ∈ [0, 1]. Fix i

and j and let

p = Siφi(1⊗ 1j)S
∗
i (t) =

nj∑
p=1

Πi(c
ij
pp)
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and note that we get

Siφi(C(T)⊗ 1j)S
∗
i (t) = (Siφi(1⊗ 1j)S

∗
i )Siφi(C(T)⊗ 1j)S

∗
i (Siφi(1⊗ 1j)S

∗
i )(t) ∈

p[{Πi(c
ij′

pq ) : 1 ≤ j′ ≤ N, 1 ≤ p, q ≤ nj′}′ ∩Mmi ]p
∼= Mkij .

(4.12)

Since Siφi(C(T) ⊗ 1j)S
∗
i (t) is an Abelian subalgebra, (4.12) yields that its vector

space dimension is at most kij. Note that as vector spaces,

dim(Si(t)(φi(C(T)⊗ 1)(t))S∗i (t)) = dim(φi(C(T)⊗ 1)(t))

=
N∑
j=1

dim(φi(C(T)⊗ 1j)(t)) =
N∑
j=1

dij(t) ≤
N∑
j=1

kij,
(4.13)

where we have let
dij(t) = dim(φi(C(T)⊗ 1j)(t)) ≤ kij.

The first equality is because vector space dimension is invariant under isomorphisms,
the second equality is because the summands are mutually orthogonal, and the last
inequality is due to the arguments we made above. We show that dij is independent
of t exactly because φ is maximally homogeneous.

To this end note that φi(A)(t) =
∑
j,p,q

φi(C(T) ⊗ 1j)(t)φi(1 ⊗ ejpq)(t), as a sum of

vector spaces. Exactly as in the proof of Lemma 4.3.7 one can show that

dim(φi(A)(t)) =
N∑
j=1

dij(t)n
2
j .

Since φ(A)(t) ⊆
M⊕
i=1

φi(A)(t), we have that

M∑
i=1

N∑
j=1

kijn
2
j ≤

M∑
i=1

N∑
j=1

dij(t)n
2
j ≤

M∑
i=1

N∑
j=1

kijn
2
j .

This implies that dij(t) = kij, independent of t. Hence (4.13) implies that

dim(Si(t)(φi(C(T)⊗ 1)(t))S∗i (t))

is constant across t ∈ [0, 1]. Now consider the following commutative diagram:
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Sφ(C(T)⊗ 1)S∗
⊕
i

C([0, 1])⊗ ({Πi(c
ij
p,q) : j, p, q}′ ∩Mmi)

Siφi(C(T)⊗ 1)S∗i C([0, 1])⊗ ({Πi(c
ij
p,q) : j, p, q}′ ∩Mmi)

θ(Siφi(C(T)⊗ 1)S∗i )
⊕
j

C([0, 1])⊗Mkij

Πj(θ(Siφi(C(T)⊗ 1)S∗i )) C([0, 1])⊗Mkij

Πi Πi

θ θ

Πj Πj

(4.14)

where θ is the canonical identification of the two algebras. It is clear that all the
maps commute with evaluation at t. It is also clear that θ preserves vector space
dimension of the evaluation. Let bij(t) be the dimension of

Πj(θ(Siφi(C(T)⊗ 1)S∗i ))(t).

Since the algebra is Abelian we have from the inclusion in the last row of (4.14)
that bij(t) ≤ kij and that

dim(θ(Siφi(C(T)⊗ 1)S∗i )(t)) =
∑
j

kij ≤
∑
j

bij(t) ≤
∑
j

kij. (4.15)

The first equality in (4.15) follows from (4.13). Hence bij is independent of t and
so Lemma 2 in [79] applies and we may diagonalize the Abelian subalgebra in the
last row of (4.14) via a unitary. By pulling this up to the first row it follows that
we may diagonalize Sφ(C(T) ⊗ 1)S∗ via a unitary T in

⊕
i

C([0, 1]) ⊗ ({Πi(c
ij
p,q) :

j, p, q}′ ∩Mmi). Let
R = TS

so that Rφ(C(T)⊗ 1)R∗(t) is a diagonal algebra that commutes with {cjpq : j, p, q},
and hence by an identification is a subalgebra of the diagonal of

⊕
i,jMkij . Hence

we may find diagonal mutually orthogonal subprojections of the identity projection,
{pijs : 1 ≤ j ≤ N ; 1 ≤ i ≤ M ; 1 ≤ s ≤ kij}, such that Rφ(C(T) ⊗ 1)R∗(t) ⊂
span{pijs }. Therefore we may find continuous functions gijs : [0, 1] → T such that
Rφ(f ⊗ 1)R∗(t)pijs = f(gijs (t))pijs . Let U = R∗ and the proof is complete.

Remark 4.3.15. We may replace C(T) with C(X) in A, C(Y ) in B for X, Y compact
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Hausdorff spaces and the same proof will work assuming that the *-homomorphism
is maximally homogeneous and that H1(Y, U(r)) = H1(Y, Sr) = 0 for all r ∈ N (in
order to use Lemma 2 in [79]). In particular the latter requirement holds when Y
is contractible and paracompact by Lemma 4.3.13.

Lemma 4.3.16. Let φ : A → B, with A =
N⊕
j=1

C(T) ⊗Mnj , B =
M⊕
i=1

C(T) ⊗Mmi,

be a unital injective *-homomorphism. Let F ⊂ A be a finite set containing u⊗ 1j

for all j ∈ {1, . . . , N}, where u is the canonical generator of C(T). Let ε > 0. Then
there exists a unital injective maximally homogeneous *-homomorphism χ : A→ B

such that ‖φ(a)− χ(a)‖ < ε for all a ∈ F .

Proof. The situation of this lemma is similar to that of Lemma 4.3.10, except we
consider an injective *-homomorphism and the finite set containing the generator
of the center. Recall the maps Hi, hij = Ad(vij)

−1 ◦ g−1
ij ◦χij and ρij from the proof

of Lemma 4.3.10, and use that lemma to obtain a unital maximally homogeneous
*-homomorphism φ′ (which by Lemma 4.3.14 takes the form of (4.9)) that is within
a tolerance δ > 0 to φ on elements of F . We will without comment identify elements

φ′(a) for a ∈ A with φ′(a)[0,1] as elements of
M⊕
i=1

C[0, 1]⊗Mmi .

Fix j ∈ {1, . . . , N}. By (4.9) it is easy to see that

sp M⊕
i=1

Mmi

(φ′(u⊗ 1j)(t)) = {gijs (t) : 1 ≤ i ≤M ; 1 ≤ s ≤ kij} ∪ {0}.

Hence it follows that

spB(φ′(u⊗ 1j)) \ {0} =
⋃
i,s

gi,js ([0, 1]). (4.16)

Denote
Z = φ′(u⊗ 1j) (4.17)

and uj = Πj(u ⊗ 1j) ∈ C(T) ⊗Mnj , and recall from the construction of φ′ as in
(4.8) in the proof Lemma 4.3.10 that

Z =
M⊕
i=1

hij(uj) =
M⊕
i=1

Ad(vij)
−1g−1

ij χij(uj).

Let

L =
M⊕
i=1

φi(1⊗ 1j)(C(T)⊗Mmi)φi(1⊗ 1j),
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and note that Z ∈ L. It is not hard to see that

spB(Z) \ {0} = spL(Z). (4.18)

Indeed, that the right hand side is included in the left is trivial. That the left hand
side is included in the right can be seen by noting that

1L =
⊕
i

Ad(vij)
−1g−1

ij χij(Πj(1⊗ 1j)) = φ′(1⊗ 1j)

and then showing that for any i, s and t0 we have that Z − gi,js (t0)1L fails to be
invertible in L, by using (4.9). The claim then follows by (4.16).

We have a *-isomorphism

L→
⊕
i

C(T)⊗Mnjkij , (b1, . . . , bM)→ (g1j ◦Ad(v1j)(b1), . . . , gMj ◦Ad(vMj)(bM)).

(4.19)
We may think of

⊕
i

C(T) ⊗Mnjkij as sitting inside a full matrix algebra C(T) ⊗

M∑
i
njkij . Letting

W =
⊕
i

χij(uj)

inside this full matrix algebra, we obtain from the isomorphism (4.19)

spC(T)⊗M∑
i
njkij

(W ) = spL(Z). (4.20)

Let
Y =

⊕
i

ρij(uj)

inside the full matrix algebra. From (4.7) in Lemma 4.3.10 we have that

‖W − Y ‖ < δ. (4.21)

As φ is injective it follows that so is
⊕
i

ρij and hence

spC(T)⊗M∑
i
njkij

(Y ) = T. (4.22)
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Using (4.20) followed by (4.18) followed by (4.17) and (4.16) we obtain that

spC(T)⊗M∑
i
njkij

(W ) =
M⋃
i=1

kij⋃
s(i)=1

gijs ([0, 1]). (4.23)

If this is not all of T then T \ spC(T)⊗M∑
i
njkij

(W ) is an open non-empty subset of T

and so may be decomposed into disjoint open arcs on the circle. Consider such an
open arc and let λ be its midpoint, λL its left endpoint and λR its right endpoint
(where left is the counter-clockwise direction). By (4.22) there must exist tλ ∈ [0, 1]

such that λ ∈ spM∑
i
njkij

(Y (tλ)). Since by (4.21) ‖W (tλ)−Y (tλ)‖ < δ, for any ε1 > 0

we can choose δ sufficiently small such that there exists µ ∈ spM∑
i
njkij

(W (tλ)) with

|µ − λ| < ε1. This implies that this open arc has arclength that can be arbitrarily
small by predefining a sufficiently small δ.

Now since λR ∈ spC(T)⊗M∑
i
njkij

(W ) there exists a Tλ ∈ [0, 1], an iλ ∈ {1, . . . ,M}

and sλ ∈ {1, . . . , kiλj} such that giλjsλ (Tλ) = λR. By using the fact that the gijs ’s are
continuous, this together with (4.23) tells us that there is at most

∑
i

kij disjoint

open arcs that make up T \ spC(T)⊗M∑
i
njkij

(W ). Order these arcs counter-clockwise

as I1, . . . , IK , the arclengths of which are arbitrarily small using a sufficiently small
predefined δ > 0. Let λp be the midpoint of Ip and λpL and λpR denote the left
and right endpoints, respectively, for p = 1, . . . , K. Assume gipjsp (Tp) = λpR for some
Tp ∈ [0, 1], some ip ∈ {1, . . . ,M} and sp ∈ {1, . . . , kipj}.

Now either gipjsp [0, 1] = {λpR} or there exists T p 6= Tp such that gipjsp (T p) is the
rightmost point achieved by the image of gipjsp between the arcs Ip and I(p−1) mod K .
In the first case define f

ipj
sp (t) = g

ipj
sp (t) exp(iρ(ip, j, sp)(t)) for t ∈ [0, 1], where

ρ(ip, j, sp) : [0, 1] → [0, 2π] is a continuous function that is 0 at the endpoints and
reaches a maximal value the arclength of Ip, at a unique point in [0, 1]. If we are in
the second case with Tp 6= 0, 1 then choose an open interval Up of Tp that does not
meet T p, 0, or 1 and let ρ(ip, j, sp) : [0, 1] → [0, 2π] a continuous function that is 0
outside Up, and reaches a maximal value the arclength of Ip only at Tp, and then
define f ipjsp analogously. If in this case Tp is 0 or 1, then again choose a small open
interval Up that does not meet T p. We may choose this interval small enough such
that on it our continuous function g

ipj
sp takes circle values arbitrarily close to λpR.

In terms of a real valued argument we may assume our continuous function takes
values between arg(λpR) and arg(λpR) − µ for µ small. Without loss of generality
assume Tp = 0 and Up = [0, t1). Let Vp = [t2, t3] ⊂ Up be a closed interval that does
not meet the endpoints of Up, and such that the argument of the image of gipjsp |Vp
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is strictly contained in [arg(λpR) − µ, arg(λpR)]. Let V ′p = [t4, t5] ⊂ Vp that does not
meet the endpoints of Vp. By the extreme value theorem there is a point in P ∈ V ′p
where the maximal argument of our continuous function over V ′p is achieved, call
this θ̂.

Let l1 be the straight line connecting (t2, 0) and (P, arg(λpL) − θ̂), and l2 be the
straight line connecting (P, arg(λpL)− θ̂) and (t3, 0). Define h : [0, 1]→ [0, arg(λpL)−
θ̂] to be 0 outside [t2, t3], min(l1(t), arg(λpL)− gipjsp (t)) for t ∈ [t2, P ], and
min(l2(t), arg(λpL) − gipjsp (t)) for t ∈ [P, t3]. It is clear that h is continuous. Define
w : [0, 1] → [0, 1] to be 0 outside [t2, t3], and h

arg(λpL)−θ̂ otherwise. Let ρ(ip, j, sp) be
defined by being 0 outside [t2, t3], and hw otherwise. Note that by construction
ρ(ip, j, sp) is 0 at the endpoints, is non-negative and bounded above by arg(λpL)− θ̂,
achieving this maximal value only at P . This implies that the corresponding per-
turbation f ipjsp = g

ipj
sp exp(iρ(ip, j, sp)) never crosses the left of λpL, and only achieves

this value at a unique point P .

For (i, s) not covered by these two cases just let f ijs = gijs . What we have achieved
so far is to construct a new set of eigenvalue functions {f ijs }i,s with the following
properties:

1.
M⋃
i=1

kij⋃
s(i)=1

f ijs ([0, 1]) = T,

2. the f ijs ’s are counter-clockwise perturbations of our original eigenvalue func-
tions which never cross beyond the left endpoint of the open arc they cover,

3. the f ijs ’s have the same endpoint data as our original eigenvalue functions,

4. the f ijs ’s which arise from a perturbation and which take value the left end-
point of an open arc do so at a unique point in (0, 1), and,

5. each f ijs can be made as close as we like to gijs by choosing δ and µ sufficiently
small in the construction.

We now repeat the construction for all j ∈ {1, . . . , N} to obtain the eigenvalue
functions {f ijs }i,j,s. Define χ : A → B exactly as in (4.9) but with these new
eigenvalue functions f ijs replacing our old ones. This map is well-defined by property
3. It is injective by property 1. We have that ‖φ′(a)− χ(a)‖ is as small as we like
for all a ∈ F by property 5 (this is achievable only because F is finite). Using
the triangle inequality we can get the desired closeness in norm of the difference
φ(a)− χ(a) for a ∈ F .

It remains to show that χ is maximally homogeneous. For this suffices to ensure
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that for every fixed j the f ijs ’s are pointwise distinct. Note that because φ′ is
maximally homogeneous, the gijs ’s would have to be pointwise distinct (over i and
s). Given g

ipj
sp with g

ipj
sp (Tp) = λpR as in the above constructions, there can be no

point in time t∗ ∈ [0, 1] where some other gijs satisfies that gijs (t∗) is left of gipjsp (t∗)

and within the same range as gipjsp , as by continuity this would mean they must
agree at some other point in time, which is not the case. Hence by properties 2 and
4 f ipjsp will never pointwise agree with another f ijs , except perhaps at a unique time
T ∈ (0, 1), where the value is λpL. We may further assume that near T , f ijs is one
of our original unperturbed continuous maps. This can be assumed because our
perturbations only happen close to the right endpoint of an arc and not close to
the left endpoint of another arc. Hence on a small neighbourhood near T we may
assume f ijs does not meet any other continuous map pointwise. It is now an easy
task to ensure that f ijs achieves the left endpoint of an arc at a slightly different
time than T .

Lemma 4.3.17. Every unital AT-algebra A = lim−→
n

(An, φn) with unital and injective

connecting maps φn is isomorphic to lim−→
n

(An, φ
′
n) with unital and injective maximally

homogeneous connecting maps φ′n of the form (4.9).

Proof. By Lemma 4.3.16 each φn is close (on a predefined finite set) to an injec-
tive and unital maximally homogeneous map φ′n, which takes the form (4.9) by
Lemma 4.3.14. Because of this, we can get an approximate intertwining between
the sequences

A1
φ1−→ A2

φ2−→ · · ·

and
A1

φ′1−→ A2

φ′2−→ · · · .

The result follows by Proposition 2.3.44.

We now have the necessary ingredients to prove the main theorem of this section,
which is the existence of AT-Cartan subalgebras in AT-algebras. This is Theorem
C in the Introduction.

Theorem 4.3.18. Every unital AT-algebra A = lim−→
n

(An, φn) with unital and injec-

tive connecting maps contains an AT-Cartan subalgebra.

Proof. By Lemma 4.3.17 we may assume that the injective and unital connecting
maps are maximally homogeneous and of the form (4.9). Fix n ∈ N and let C ⊂ An
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be a Cartan subalgebra. Assume

An =
N⊕
j=1

C(T)⊗Mnj , An+1 =
M⊕
i=1

C(T)⊗Mmi ,

and denote the connecting map between them by φ. Let {kij} be the index system
with respect to φ. Consider the composition

C(T)⊗Mnj

φij−→ φi(1⊗ 1j)(C(T)⊗Mmi)φi(1⊗ 1j)
µ−→ C(T)⊗Mnjkij

where φij is as in the proof of Lemma 4.3.10, and µ is the *-isomorphism given by
the composition of gij and Ad(vij) as in that lemma. As in that lemma, let this
composition be ρij. As we have seen, µ preserves dimension at evaluations and so
it follows that dim(ρij(C(T) ⊗Mnj)(t)) = dim(φij(C(T) ⊗Mnj)(t)) for all t ∈ T.
Since the eigenvalue functions {gijs } appearing in (4.9) are pointwise distinct (over
i and s), it is easy to check that this dimension is n2

jkij, and so ρij is maximally
homogeneous.

Let Cj be the restriction of C onto the jth summand, which is also a Cartan sub-
algebra and so maximally homogeneous in C(T) ⊗Mnj by Lemma 4.3.4. Since C

contains the center it follows that C =
N⊕
j=1

Cj. By Proposition 1.8 in [75] it follows

that we may find a maximally homogeneous Abelian subalgebra Eij ⊂ C(T)⊗Mnjkij

such that
Eij = C∗(ρij(Cj), C(T)⊗ 1njkij).

Let

Dij = µ−1(Eij) = C∗(φij(Cj), Z(φi(1⊗ 1j)(C(T)⊗Mmi)φi(1⊗ 1j))), (4.24)

which is maximally homogeneous, with

dim(Dij(t)) = dim(Eij(t)) = njkij

for all t ∈ T. Define

Di =
N∑
j=1

Dij
∼=

N⊕
j=1

Dij

viewed as a subalgebra inside C(T)⊗Mmi . It is clear that Di is Abelian, with

dim(Di(t)) =
N∑
j=1

njkij = mi,
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using (2.28).

Note that Di contains the center of C(T)⊗Mmi . Indeed, it is clear that if j1 6= j2

then φi(1⊗ 1j1)(f ⊗ 1)φi(1⊗ 1j2) = 0, as f ⊗ 1 is central. From this it follows that

f ⊗ 1 =
N∑
j=1

φi(1⊗ 1j)(f ⊗ 1)φi(1⊗ 1j). It is clear that φi(1⊗ 1j)(f ⊗ 1)φi(1⊗ 1j)

belongs to the center of φi(1⊗ 1j)(C(T)⊗Mmi)φi(1⊗ 1j). Hence Di is maximally
homogeneous.

It is clear that φi(f1, . . . , fN) =
N∑
j=1

φij(fj) and so by (4.24) φi maps C into Di.

Finally let

D =
M⊕
i=1

Di

which is an Abelian maximally homogeneous C∗-subalgebra of An+1 containing the
center, and hence is a Cartan subalgebra by Lemma 4.3.4. It is clear that φ maps
C into D.

Now we check that if n = (n1, . . . , nN) ∈ NAn(C) then φ(n) ∈ NAn+1(D). It is
clear from (4.24) that φij(nj) is a normalizer in Dij, and from the definition of Di

it follows that φi(n) =
∑
j

φij(nj) is a normalizer for Di. Hence φ(n) is a normalizer

of D.

Now we check that if Pn is the faithful conditional expectation An → C, and Pn+1

is the one An+1 → D, then we have

φ ◦ Pn = Pn+1 ◦ φ. (4.25)

Define, for j ∈ {1, . . . , N},

P j
n = Πj ◦ Pn ◦ ij : Aj → Cj,

and similarly, for i ∈ {1, . . . ,M},

P i
n+1 = Πi ◦ Pn+1 ◦ ii : Bi → Di.

It is easy to see that P j
n is a linear projection of norm one, since Pn is by Lemma

4.3.5, and similarly for P i
n+1. Hence by [82] these define the unique faithful condi-

tional expectations Aj → Cj and Bi → Di, respectively. Note that since

Πj1(Pn(ij(aj))) = Πj1(Pn((1⊗1j)ij(aj)(1⊗1j))) = Πj1((1⊗1j)Pn(ij(aj))(1⊗1j)) = 0

(4.26)
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if j1 6= j, it follows that

N⊕
j=1

P j
n(a1, . . . , aN) =

∑
j

Pn(ij(aj)) = Pn(a1, . . . , aN)

for all (a, . . . , aN) ∈ A. The same argument holds for Pn+1, so we get

Pn =
N⊕
j=1

P j
n, Pn+1 =

M⊕
i=1

P i
n+1. (4.27)

Note that in order to get (4.25) it suffices to check that for all i ∈ {1, . . . ,M},
φi ◦ Pn = πi ◦ Pn+1 ◦ φ = P i

n+1 ◦ φi, where the last equality is due to (4.27).
To show this, it suffices to show that for all j ∈ {1, . . . , N} we have that for
fj ∈ C(T) ⊗ Mnj , φi ◦ Pn(ij(fj)) = P i

n+1 ◦ φij(fj). Due to (4.26) we may write
this equality as φij(P j

n(fj)) = P i
n+1(φij(fj)). Composition with the isomorphism µ

yields

µ(φij(P
j
n(fj))) = ρij(P

j
n(fj)) = µ(P i

n+1(φij(fj))) = µ(P i
n+1(µ−1(µ(φij(fj))))) =

P (ρij(fj))

where P = µ ◦ P i
n+1 ◦ µ−1. Note that P is a norm one linear map because P i

n+1 is,
and it is a projection (onto Eij) because of (4.24). Hence by [82] it is the (unique)
conditional expectation C(T) ⊗Mnjkij → Eij. Thus we have reduced the problem
of showing that (4.25) holds to showing

ρij(P
j
n(fj)) = P (ρij(fj)) (4.28)

for all i and j.

Note that if we choose, by Lemma 4.3.2, a system of matrix units {Repq} with respect
to the maximally homogeneous subalgebra Cj, then we know by (4.5) in Lemma
4.3.5 that the conditional expectation P j

n is given by projection onto the diagonal
with respect to this system of matrix units. Also, the existence of Eij was obtained
by Proposition 1.8 in [75], and there the projections which describe Eij (as in (4.5))
are given by mutually orthogonal projections labelled P(i,j,k). Hence by Lemma
4.3.5 P must be given by projection onto the space spanned by the P(i,j,k)’s. It is
now a tedious but straightforward task to use these descriptions of the conditional
expectations, together with the form (4.9) for the maximally homogeneous map
ρij, as well as the definition of P(i,j,k) given in the proof of Proposition 1.8 in [75],
to verify that (4.28) holds. Alternatively, a full proof is included for more general
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spaces in Lemma 4.4.11 where (4.38) is shown.

Hence what we have shown is that for n ∈ N and Cn ⊂ An a Cartan subal-
gebra, there is a Cartan subalgebra Cn+1 ⊂ An+1 such that φn(Cn) ⊆ Cn+1,
φn(NAn(Cn)) ⊆ NAn+1(Cn+1), and φn ◦ Pn = Pn+1 ◦ φn, where the connecting maps
φn are injective, unital, and maximally homogeneous of the form (4.9). Hence by
Proposition 4.1.5, we have that lim−→(Cn, φn) is a Cartan subalgebra of A.

Many important C∗-algebras are AI or AT-algebras, and hence we have found
inductive limit Cartan subalgebras for them:

Corollary 4.3.19. The irrational rotation algebra and the Bunce-Deddens algebra
have an inductive limit Cartan subalgebra.

Proof. These can all be realized as unital AT-algebras with unital and injective
connecting maps (for the irrational rotation algebra see Theorem 4 in [22] and
Theorem 4.3 in [19], for the Bunce-Deddens algebra see Example 3.2.11 in [67]),
and so the result follows by Theorem 4.3.18.

An AH-algebra is an inductive limit C∗-algebraA = lim−→(An, φn) where each building
block An is a direct sum of corners of matrix algebras (so each building block is
direct sum of summands which have the form p(C(X)⊗Mn)p for some projection
p ∈ C(X)⊗Mn, and where X is some compact metric space). Hence AH-algebras
generalize AX-algebras. A is said to have bounded dimension if the supremum of
the topological dimensions across all the compact Hausdorff spaces X appearing in
all the summands is finite. A is said to have the ideal property if every closed two-
sided ideal of A is generated by the projections in the ideal, as a closed two-sided
ideal (see Definition 6.0.1 and [29] for more details.) We have the following:

Corollary 4.3.20. Every unital AH-algebra with unital and injective connecting
maps, and with bounded dimension, the ideal property, and torsion-free K-theory,
has an inductive limit Cartan subalgebra.

Proof. Such AH-algebras are AT-algebras by [29]. Hence the result follows by
Theorem 4.3.18.

4.4 Existence of AX-Cartan Subalgebras

In this section, we generalize the results of the previous sections, and consider AX-
algebras where X will denote a planar connected finite graph imbedded in C. We
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may without loss of generality assume each edge has length 1, every edge is not a
loop, and that there is at most one edge between any two vertices. This generalizes
the previous cases as the unit interval [0, 1] corresponds to the graph with two
vertices and a single edge, and the circle T corresponds to the triangle with three
vertices and three edges.

Associated to X is its universal covering graph, which is a tree denoted by T . It
is obtained by starting at a vertex v in X and taking a non-backtracking walk
(v, v1, v2, . . . , vK) on X. Such walks are the vertices of the universal covering graph,
and two such vertices are connected by an edge if one is a one-step extension of the
other (for details, see Section 6 in [1]). We have a canonical projection p : T → X.

We will also associate with X an onto path l : [0, 1] � X. If A =
N⊕
j=1

C(X)⊗Mnj is

an AX-building block, it can be identified with the C∗-subalgebra of
N⊕
j=1

C([0, 1])⊗

Mnj where functions agree on the fibres of the path map l. For f ∈ A we write f[0,1]

for its identification, defined by f[0,1](t) = f(l(t)). A may also be identified with the

C∗-subalgebra of
N⊕
j=1

Cb(T ) ⊗Mnj consisting of those functions that agree on the

fibres of p. For f ∈ A we write fT for its identification, defined by fT (t) = f(p(t)).
We will usually mention which identification we are using, but if context is clear,
this may be omitted.

The reason such identifications are useful, is because [0, 1] and T are contractible
and paracompact, and so by Lemma 4.3.13 have vanishing C̆ech cohomology. This
will allow us to directly generalize a lot of the results of the previous section, for
example Lemma 4.3.14, where we patch up unitaries locally to get a global unitary
that conjugates the standard map.

A lot of the results in this section are direct generalizations of the results of Section
4.3, with an identical proof that works by just replacing T with X. When this is
the case we will not provide a proof for the result. This section should be read
after having a good understanding of the proofs in Section 4.3. We begin with a
generalization to Lemma 4.3.2, which allows us to find specific systems of matrix
units with respect to maximally homogeneous subalgebras.

Lemma 4.4.1. Let C be a maximally homogeneous subalgebra of A =
N⊕
j=1

C(X)⊗

Mnj . There exists a system of matrix units {T ejpq} with T ejpq ∈
N⊕
j=1

Cb(T ) ⊗Mnj

such that
C = {f ∈ A : fT (t) ∈ span{T ejpp(t)} ∀t ∈ T }. (4.29)
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Given x ∈ X, and t1, t2 ∈ p−1({x}) then there exists permutations σj ∈ Σnj ,
j = 1, . . . , N , such that T ejpp(t1) = T e

j
σj(p)σj(p)

(t2) for all p ∈ {1, 2, . . . , nj}.

Proof. If the result holds true on the summands it holds true for the direct sum.
So we assume C is maximally homogeneous in C(X) ⊗ Mn. Treating this as a
C∗-subalgebra of Cb(T ) ⊗Mn, we can use Lemma 2 in [79] to diagonalize C via a
unitary v. Letting fpq be constants with value the standard matrix units in Mn, we
let T epq = v∗fpqv. The first statement of the lemma becomes clear.

For second statement, maximal homogeneity of C implies

span{T epp(t1) : 1 ≤ p ≤ n} = CT (t1) = CT (t2) = span{T epp(t2) : 1 ≤ p ≤ n}.

Hence for any p, the projection T epp(t1) is a linear combination of elements of the
form T eqq(t2). The coefficients in the combination must all be 1. Since the {epp(t1)}
are orthogonal, it follows by the pigeonhole principle that the linear combination
only has one element, and so there exists a permutation σ such that T epp(t1) =

T eσ(p)σ(p)(t2). The result follows.

Remark 4.4.2. The same result holds when using the space [0, 1] for identification
rather than T , where we use the fibres of l instead of those of p. Whenever we want
to use this space instead, we will write [0,1]e

j
pq rather than T ejpq.

Now we obtain a generalization to Lemma 4.3.4, where a lot of the ideas in the
proof have a similar flavour.

Lemma 4.4.3. C is maximally homogeneous in A =
N⊕
j=1

C(X) ⊗Mnj if and only

if it is a Cartan subalgebra of A.

Proof. Assume C is maximally homogeneous. Then Cj = πj(C) is maximally ho-
mogeneous in C(X)⊗Mnj . Lemma 1.4 and the remarks after Definition 1.3 in [74]
imply that Cj is has the unique extension property for pure states, and admits a
unique conditional expectation onto it from C(X) ⊗Mnj . Because Cj is Abelian
and has the unique extension property, Section 1 in [14] implies that Cj is an ideal
of a masa in C(X)⊗Mnj . Since Cj is unital it must be a masa itself. Using Lemma
4.4.1 we may find matrix units {T ejpq} for Cb(T )⊗Mnj such that Cj is of the form
(4.29). Then the map

P (f)T (t) =

nj∑
p=1

T e
j
pp(t)fT (t)T e

j
pp(t)
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defines a norm one faithful linear projection (exactly as in the proof of Lemma 4.3.5,
where one considers the map pointwise), and hence by [82] is the desired faithful
conditional expectation. (Of course, one may analogously consider the identification
over the space [0, 1] using the path l rather than T ).

To show Cj is regular, let U be a small open subset of X (either a small interval of
an edge in X or a small contractible neighbourhood around a vertex of X) which
is not all of X. Let χU ∈ C(X) supported in U . We may write

p−1(U) =
⊔
i

Vi ⊂ T

where p : Vi → U is a homeomorphism.

Let f ∈ C(X)⊗Mnj . Note that there are functions λjpq : T → C such that

fT (t) =
∑
p,q

λjpq(t)T e
j
pq(t) ∀t ∈ T .

Because {T ejpq(t)} is a system of matrix units in Mnj the functions λjpq are unique.
Since (T e

j
pp)fT (T e

j
qq) is continuous, so is λjpqT ejpq. Define functions

f jpq : T →Mnj ,

for p, q ∈ {1, . . . , nj} by taking value

λjpq(p1(t))T e
j
pq(p1(t)) for t ∈

⊔
i

Vi, 0 otherwise,

where for t ∈ Vi, p1(t) is its unique image in V1 factoring through the homeomor-
phism Vi → U . Then

(χU)T f
j
pq : T →Mnj

is a continuous map, satisfying that if p(t1) = p(t2) ∈ X then (χU)T f
j
pq(t1) =

(χU)T f
j
pq(t2). Hence (χU)T f

j
pq corresponds to an element gjpq in C(X)⊗Mnj .

Note that if c ∈ Cj then cT (t) ∈ span{T ejpp(t)} by Lemma 4.4.1, and note thus that

(gjpq)T (t)∗cT (t)(gjpq)T (t) ∈ span{T ejpp(t)}

by Lemma 4.4.1. Likewise

(gjpq)T (t)cT (t)(gjpq)T (t)∗ ∈ span{T ejpp(t)}.
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Hence gjpq ∈ NC(X)⊗Mnj
(Cj). It can be checked that

χUf =
∑
p,q

gjpq

and hence χUf is a sum of normalizer elements. By using a partition of unity
argument, we can therefore conclude that f is a sum of normalizer elements. Hence
Cj is regular in C(X) ⊗Mnj . So Cj is a Cartan subalgebra. Thus C is a Cartan
subalgebra of A.

For the converse, assume C is a Cartan subalgebra of A, meaning Cj is a Cartan
subalgebra of C(X)⊗Mnj . By Example 5.18 in [62] this is a continuous trace C∗-
algebra and so we obtain by Proposition 6.1 in [64] that Cj has the unique extension
property, and so by Lemma 1.4 in [74], Cj is maximally homogeneous. Hence C is
maximally homogeneous.

The following lemma is a generalization of Lemma 4.3.9. It highlights the need of
some of the assumptions we have put on our graph, namely that it is finite and
connected.

Lemma 4.4.4. Let A = C(X) ⊗Mn and p ∈ A a projection with trace k at any
(hence all) x ∈ X, then pAp is isomorphic to C(X) ⊗Mk, via conjugation by a
partial isometry whose initial projection is p and range projection is 1k ∈ A.

Proof. As in the proof of Lemma 4.3.9, we need to show that p ∼ 1k. Since
Mn(C(X)) has stable rank one (see [73]), it follows that it has the cancellation
property (see [83]). So it suffices to show that [p]0 = [1k]0 in the K0 group. Our
graph X is homotopy equivalent to a topological rose Y (see Example 0.7 in [33]).
Hence C(X) is homotopy equivalent to C(Y ) and hence we may by Proposition
2.2.34 assume, for the purposes of understanding K0(C(X)), that X is a rose.

Thus X can be decomposed as a disjoint union of a single point {pt} and some
open intervals I1, . . . , IS. Note that we have a split exact sequence

0 C0(
S⋃
s=1

Is) C(X) C({pt}) 0

Hence by Proposition 2.2.35 we get a split exact sequence

0 0 K0(C(X)) Z 0
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where K0(C0(
S⋃
s=1

Is)) = 0 can be computed using K0 for non-unital C∗-algebras

(see Chapter 4 in [43]), and where K0(C({pt})) ∼= K0(C) ∼= Z was seen in Example
2.2.47. Thus K0(C(X)) ∼= Z. We obtain a commutative diagram

K0(C(X)) Z

Z

trx

g

where trx appeared in Example 2.2.51. Since trx is surjective, so is g and hence
g must be a group isomorphism. Hence trx is a group isomorphism (in particular
injective), and so [p]0 = [1k]0 as desired.

Now we aim to get a result similar to that in Lemma 4.3.10, showing that the maxi-
mally homogeneous *-homomorphisms are dense in the set of *-homomorphisms be-
tween AX-building blocks. In that lemma, we made use of an important fact, which
was presented as Lemma 4.3.7, where it was enough to find a *-homomorphism that
maps the canonical generator of the center of C(T) to a unitary with enough dis-
tinct eigenvalues at every point. The existence of such a map was established by
Elliott in Theorem 4.4 in [19]. Since the space we consider now is not T, we make
use Theorem 2.1.6 and Corollary 2.1.8 in [44] instead.

Lemma 4.4.5. Let φ : A → B, with A =
N⊕
j=1

C(X) ⊗Mnj , B =
M⊕
i=1

C(X) ⊗Mmi,

be a unital *-homomorphism with corresponding index system {kij}. Let F ⊂ A

be a finite set containing the canonical generator of C(X), and ε > 0. Then there
exists a unital maximally homogeneous *-homomorphism φ′ : A → B such that
‖φ(a)− φ′(a)‖ < ε for all a ∈ F .

Proof. The proof follows in the same way as in the proof of Lemma 4.3.10. Indeed,
use Lemma 4.4.4 to obtain a unital *-homomorphism

ρij : C(X)⊗Mnj → C(X)⊗Mkijnj .

The existence of a *-homomorphism

χij : C(X)⊗Mnj → C(X)⊗Mkijnj

which is close to ρij on finite sets (which contain the the canonical generator of the
center) and sends this generator to an element with kij distinct eigenvalues at every
point is justified by Theorem 2.1.6 and Corollary 2.1.8 in [44]. Remark 4.3.8 then
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implies that χij is maximally homogeneous. The rest of the proof follows identically
as the proof of Lemma 4.3.10 with T replaced by X.

We now obtain the generalization to Lemma 4.3.14, which gives the form of maxi-
mally homogeneous *-homomorphisms as those that are unitary conjugates to stan-
dard maps. The main tool in that lemma was to treat the codomain as being
identified with a subalgebra of an AI-building block, because of the property that
H1([0, 1], G) = 0 for every topological group G. We can do the same here, by
treating the codomain as either a subalgebra of an AI-building block (via the path
l : [0, 1] → X) or those building blocks with underlying space the tree T (via the
projection p : T → X). Of course these have vanishing C̆ech cohomology as well.
See Remark 4.3.15 for the details.

Lemma 4.4.6. Let φ : A → B, with A =
N⊕
j=1

C(X) ⊗Mnj , B =
M⊕
i=1

C(X) ⊗Mmi,

be a unital maximally homogeneous *-homomorphism. Then there exists a unitary

U = (U1, . . . , UM) ∈
M⊕
i=1

C([0, 1]) ⊗ Mmi and a set of continuous functions {gijs :

[0, 1]→ X : 1 ≤ i ≤ M ; 1 ≤ j ≤ N ; 1 ≤ s = s(i, j) ≤ kij} (where {kij} is the index
system with respect to φ) such that

φi((a1, . . . , aN ))[0,1](t) =

Ui(t)diag(a1 ◦ gi11 , a1 ◦ gi12 , . . . , a1 ◦ gi1ki1 , a2 ◦ gi21 , . . . , a2 ◦ gi2ki2 , . . . , aN ◦ g
iN
kiN

)(t)Ui(t)
∗,

(4.30)

for all t ∈ [0, 1].

We now obtain the generalization to Lemma 4.3.16.

Lemma 4.4.7. If in the situation of Lemma 4.4.5 we additionally assume that φ
is injective, then there exists an injective unital maximally homogeneous
*-homomorphism χ : A→ B which is of the same general form as (4.30), and such
that ‖φ(x)− χ(x)‖ < ε for all x ∈ F , which is a finite set containing the canonical
generator of C(X).

Proof. The first bit of the proof follows that of Lemma 4.3.16, but except for T we
have X, and rather than the unitary u we consider ιX . As in the proof, we obtain
that X \ spC(X)⊗M∑

i
njkij

(W ) can be decomposed into open disjoint sets (rather than

arcs), where spC(X)⊗M∑
i
njkij

(W ) =
M⋃
i=1

kij⋃
s(i)=1

gijs ([0, 1]). Again we conclude, by similar

arguments as those used in the proof of Lemma 4.3.16, that these disjoint open sets
in X have diameter that can be made arbitrarily small if we choose δ sufficiently
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small in the beginning. Also, we may argue that the number of these disjoint open
sets must be finite. Indeed, if they were infinite, there must be an edge in X which
contains infinitely many such disjoint open sets in its interior (as X is finite). But
then the contradiction is similar to that in the proof of Lemma 4.3.16, namely that
there are only finitely many eigenvalue functions and hence these are not enough
to take all the values at the endpoints of these open sets.

We will now, as in Lemma 4.3.16, perturb the gijs ’s in the correct way to achieve

that
M⋃
i=1

kij⋃
s(i)=1

gijs ([0, 1]) = X. Consider a fixed edge E in X. We may without loss of

generality assume that E = [0, 1]. Consider that U1, . . . , Up are disjoint open sets
of our collection appearing in the interior of E, from left to right. Hence they are
open intervals. Let g be some gi0js0 and t0 some point in [0, 1] such that g(t0) is the
right endpoint of U1. We localise on a sufficiently small neighbourhood around t0
and on this neighbourhood stretch g leftwards continuously so that it covers U1, as
we did in the proof of Lemma 4.3.16. By that proof this can be done in a way for
all the open sets such that the perturbed maps do not affect their range near the
left endpoint of an open set to their right (if such a range exists), and that all the
endpoint data is preserved, and that the perturbed maps do not coincide pointwise.

What remains is to show we can cover an open set around a vertex in X, with
connecting edges E1, . . . , El say. Consider E1, and assume this is [0, 1] with 1 being
the vertex. We can assume U is an open set around 1 not covered by the gijs ’s. We
find some h = gi1js1 and a point t1 such that h(t1) takes the value the left endpoint of
U . Again we localize on a neighbourhood around t1, and perturb h to the right to
cover U . We do this for all the edges connecting to the vertex, and there is sufficient
choice of the points at which the perturbed functions take value the vertex as to
not coincide, as the graph is finite.

Theorem 4.4.8. Every unital AX-algebra A = lim−→
n

(An, φn) with unital and injec-

tive connecting maps φn is isomorphic to lim−→
n

(An, φ
′
n) with unital injective maximally

homogeneous connecting maps φ′n of the form (4.30).

Proof. By Lemma 4.4.7 each φn is close (on a predefined finite set) to an injec-
tive and unital maximally homogeneous map φ′n, which takes the form (4.30) by
Lemma 4.4.6. Because of this, we can get an approximate intertwining between the
sequences

A1
φ1−→ A2

φ2−→ · · ·
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and
A1

φ′1−→ A2

φ′2−→ · · · .

The result follows by Proposition 2.3.44.

The following Lemma is an important generalization of Proposition 1.8 (i) in [75],
which will be the main ingredient in obtaining existence of AX-Cartan subalgebras.

Lemma 4.4.9. Let A = C(X) ⊗Mn, and B = C(X) ⊗Mm. Assume φ : A → B

is a unital maximally homogeneous *-homomorphism. Let C be a maximally homo-
geneous subalgebra of A. Then there exists a maximally homogeneous subalgebra D
of B such that φ(C) ⊂ D.

Proof. We may assume φ takes the form (4.30). Relabel the eigenvalue functions
as g1, . . . , gm

n
. By maximal homogeneity, these must be pointwise distinct. Using

the form (4.30) we can write

φ(f)[0,1] = U(

m
n∑
s=1

f ◦ gs ⊗ qs)U∗ (4.31)

where qs : [0, 1] → Mm
n
is a constant projection with value the canonical minimal

projection whose sth diagonal entry is 1, in Mm
n
. Note that using the universal

covering graph T over X, we get by Proposition 1.30 in [33] and the remarks
following it (this is what is known as the path lifting property for covering spaces)
that the gs’s lift to Gs’s:

X T

[0, 1]

p

gs
Gs

By Lemma 4.4.1 we find a system of matrix units {T epq : p, q ∈ {1, 2, . . . , n}} with
respect to C. Define

Pp,s = U(T epp ◦Gs ⊗ qs)U∗,

p = 1, . . . , n; s = 1, . . . , m
n
, which are mutually orthogonal projections in C[0, 1] ⊗

Mm which sum to one. Let

D = {g ∈ B : g[0,1](t) ∈ span{Pp,s(t)} ∀t ∈ [0, 1]}. (4.32)

Note that D is well-defined. Indeed, if ta, tb ∈ [0, 1] satisfy l(ta) = x = l(tb), then
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we have that
φ(f)[0,1](ta) = φ(f)[0,1](tb) ∀f ∈ A. (4.33)

Hence taking f = ιX in (4.33), where ιX is the canonical generator of the center,
and considering the spectrum (which is invariant under an inner automorphism),
we get that

{g1(ta), . . . , gm
n

(ta)} = {g1(tb), . . . , gm
n

(tb)},

and since the elements of these sets are all distinct (by maximal homogeneity of φ),
we have that there exists a permutation µ ∈ Σm

n
such that

gs(ta) = gµ(s)(tb) (4.34)

for all s = 1, . . . , m
n
. Hence p(Gs(ta)) = p(Gµ(s)(tb)) for all s. By Lemma 4.4.1,

there exists a permutation σs ∈ Σn for s = 1, . . . , m
n
such that for all p ∈ {1, . . . , n}

we have

T epp(Gs(ta)) = T eσs(p)σs(p)(Gµ(s)(tb)).

We may deduce two things from (4.33) and (4.34). Firstly, by choosing f ∈ A such
that f is 1 at gs0(ta) and 0 at all the other (distinct) eigenvalues, we obtain from
(4.31) that

U(ta)(

m
n∑
s=1

f(gs(ta))⊗ qs(ta))U(ta)
∗ = U(ta)(1⊗ qs0(ta))U(ta)

∗

= U(tb)(

m
n∑
s=1

f(gs(tb))⊗ qs(tb))U(tb)
∗

= U(tb)(1⊗ qµ(s0)(tb))U(tb)
∗.

Hence
U(ta)(1⊗ qs0(ta))U(ta)

∗ = U(tb)(1⊗ qµ(s0)(tb))U(tb)
∗.

Secondly, by choosing f ∈ A with constant value C ∈ Mn then again using (4.31)
we have that

U(ta)(

m
n∑
s=1

f(gs(ta))⊗ qs(ta))U(ta)
∗ = U(ta)(C ⊗ 1)U(ta)

∗

= U(tb)(

m
n∑
s=1

f(gs(tb))⊗ qs(tb))U(tb)
∗

= U(tb)(C ⊗ 1)U(tb)
∗.
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Hence
U(ta)(C ⊗ 1)U(ta)

∗ = U(tb)(C ⊗ 1)U(tb)
∗.

From this we obtain

Pp,s(ta) = U(ta)(T epp(Gs(ta))⊗ qs(ta))U(ta)
∗

= U(ta)(T epp(Gs(ta))⊗ 1)U(ta)
∗U(ta)(1⊗ qs(ta))U(ta)

∗

= U(tb)(T epp(Gs(ta))⊗ 1)U(tb)
∗U(tb)(1⊗ qµ(s)(tb))U(tb)

∗

= U(tb)(T eσs(p)σs(p)(Gµ(s)(tb))⊗ 1)(1⊗ qµ(s)(tb))U(tb)
∗

= Pσs(p),µ(s)(tb).

Note that if Pσs(p),µ(s)(t) = Pσs1 (p1),µ(s1)(t) then s = s1 and so p = p1. Hence
(p, s)→ (σs(p), µ(s)) is bijective and so

span{Pp,s(ta) : p ∈ {1, . . . , n}, s ∈ {1, . . . , m
n
}} =

span{Pp,s(tb) : p ∈ {1, . . . , n}, s ∈ {1, . . . , m
n
}}

and so D is well-defined.

Let us show that φ(C) ⊂ D. For f ∈ C, use Lemma 4.4.1 and (4.31) to write

φ(f)[0,1](t) = U(t)(

m
n∑
s=1

fT (Gs(t))⊗ qs(t))U(t)∗

= U(t)(

m
n∑
s=1

(
n∑
p=1

λspT epp(Gs(t)))⊗ qs(t))U(t)∗

∈ span{Pp,s(t)},

where the λsp’s are some scalars (Lemma 4.4.1). By definition of D we indeed have
φ(C) ⊂ D.

Finally let us show that D is maximally homogeneous. Fix p ∈ {1, . . . , n}, s ∈
{1, . . . , m

n
}, and t ∈ [0, 1]. Note that there exists a central element h ∈ C such

that h(gs(t)) = 1, whilst h(gs(t)) = 0 if s 6= s. Since C(gs(t)) = span{T ejj(Gs(t)) :

j ∈ {1, . . . , n}} by maximal homogeneity of C, we can find an h1 ∈ C such that
h1(gs(t)) = T epp(Gs(t)). Note then that from (4.31) it follows that

φ(hh1)[0,1](t) = Pp,s(t), (4.35)

which implies that dim(D(x)) is m for every x ∈ X. Since, for f ∈ C(X), we have
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that D 3
∑
p,s

f[0,1]Pp,s = f[0,1], it follows that D contains the center. Hence D is

maximally homogeneous.

Lemma 4.4.10. In the situation of Lemma 4.4.9 (and its proof), we have that

φ(NA(C)) ⊆ NB(D).

Proof. Let n ∈ NA(C). For d ∈ D, and t ∈ [0, 1], we have that d[0,1](t) =∑
s,p

λp,sPp,s(t) =
∑
s,p

λp,sφ(hs,p)[0,1](t) for some scalars λs,p’s and elements hs,p ∈ C

(this is by the description of D in (4.32) and the calculation (4.35)). From this it
follows that

(φ(n)dφ(n)∗)[0,1](t) = φ(n)[0,1](t)(
∑
s,p

λs,pφ(hs,p)[0,1](t))φ(n)[0,1](t)
∗

=
∑
s,p

λs,pφ(nhs,pn
∗)[0,1](t)

=
∑
p,s

λp,s(ds,p)[0,1](t)

∈ span{Pp,s(t)},

where we have used that φ(C) ⊆ D. Hence φ(n)dφ(n)∗ ∈ D, and by a similar
argument φ(n)∗dφ(n) ∈ D.

Lemma 4.4.11. In the situation of Lemma 4.4.9 (and its proof), let P : A → C

be the faithful conditional expectation corresponding to the Cartan pair (A,C), and
P : B → D be the faithful conditional expectation corresponding to the Cartan pair
(B,D). Then these are given by

P (f)T (t) =
N∑
p=1

T epp(t)fT (t)T epp(t) ∀t ∈ T (4.36)

and

P (g)[0,1](t) =

m
n∑
s=1

n∑
p=1

Pp,s(t)g[0,1](t)Pp,s(t) ∀t ∈ [0, 1], (4.37)

respectively, and satisfy
φ ◦ P = P ◦ φ. (4.38)

Proof. That (4.36) and (4.37) define unique faithful conditional expectations is an
easy generalization of Lemma 4.3.5 where one can check that these maps are norm
one faithful linear projections.
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Let us show (4.38). We have, for f ∈ A, and t ∈ [0, 1],

P (φ(f))[0,1](t) =
∑
s,p

Pp,s(t)φ(f)[0,1](t)Pp,s(t)

=
∑
s,p

(U(t)(T epp(Gs(t))⊗ qs(t))U(t)∗)(U(t)(
∑
s

f(gs(t))⊗ qs(t))U(t)∗)

(U(t)(T epp(Gs(t))⊗ qs(t))U(t)∗)

= U(t)(
∑
s,p

T epp(Gs(t))f(gs(t))T epp(Gs(t))⊗ qs(t))U(t)∗

= U(t)(
∑
s,p

T epp(fT )T epp(Gs(t))⊗ qs(t))U(t)∗

= U(t)(
∑
s

(P (f)T (Gs(t)))⊗ qs(t))U(t)∗

= U(t)(
∑
s

(P (f)(gs(t)))⊗ qs(t))U(t)∗

= φ(P (f))[0,1](t),

and the result follows.

We may now state the main result of this section, which gives the existence of
AX-Cartan subalgebras. This is Theorem D in the Introduction.

Theorem 4.4.12. Every unital AX-algebra A = lim−→
n

(An, φn) with unital and injec-

tive connecting maps, and where X is a finite planar connected graph imbedded in
C, contains an AX-Cartan subalgebra.

Proof. This is is many ways similar to the proof of Theorem 4.3.18, but instead of
T we have X. Hence we will only state the main steps, and the details and notation
used can be found in the proof of Theorem 4.3.18.

First, by Theorem 4.4.8 we may assume that the connecting maps are unital, max-

imally homogeneous and injective, of the form (4.30). For An =
N⊕
j=1

C(X) ⊗Mnj ,

and An+1 =
M⊕
i=1

C(X) ⊗ Mmi , with Cartan subalgebra C ⊂ An, we consider the

maximally homogeneous map

ρij : C(X)⊗Mnj → C(X)⊗Mnjkij

where {kij} is the index system with respect to φ, and Cj = Πj(C) ⊂ C(X)⊗Mnj

is a Cartan subalgebra (hence maximally homogeneous). By Lemma 4.4.9 we find
a maximally homogeneous subalgebra Eij in C(X)⊗Mnjkij containing ρij(Cj). We
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pull this back, via µ−1, to a maximally homogeneous subalgebra Dij in φi(1 ⊗
1j)(C(X) ⊗Mmi)φi(1 ⊗ 1j), which contains φij(Cj) and the center of the algebra,
and we let Di be the sum of Dij over j. Then we let D be the direct sum of the
Di’s. As in the proof of Theorem 4.3.18, D is a maximally homogeneous subalgebra
(hence a Cartan subalgebra) of An+1 with φ(C) ⊆ D.

Lemmas 4.4.10 and 4.4.11 can then be applied in order to conclude, as we do in the
proof of Theorem 4.3.18, that φ maps the normalizer set into the normalizer set,
and that it is compatible with the conditional expectations. By Proposition 4.1.5
we then get that lim−→(Cn, φn) is a Cartan subalgebra in A.

Remark 4.4.13. The AX-Cartan subalgebras that we have shown the existence of
for Theorem 4.4.12 are in fact C∗-diagonals. Indeed, the AX-building blocks are
continuous trace C∗-algebras by Example 5.18 in [62], and hence by Proposition 6.1
in [64] their Cartan subalgebras have the unique extension property and hence are
C∗-diagonals by definition. The result follows by Theorem 1.10 in [47].



Chapter 5

Uniqueness of Inductive Limit
Cartan Subalgebras in Inductive
Limit C∗-algebras

In Chapter 4 we explored the existence of inductive limit Cartan subalgebras in
inductive limit C∗-algebras. Specifically, we showed that all unital AX-algebras
with unital and injective connecting maps, where X is any finite connected planar
graph imbeddable in C, contains an AX-Cartan subalgebra. It is interesting to
now explore whether such Cartan subalgebras are unique (in the sense of Definition
2.3.25).

We will show that AF-Cartan subalgebras are indeed unique, whilst uniqueness
fails for AI-algebras, and since all AI-algebras are AT-algebras (see Corollary 3.2.17
in [67]), uniqueness fails for AT-algebras. For the AF case, we will prove a result
similar to Elliott’s classification theorem for AF-algebras (see [20]) but which incor-
porates Cartan subalgebras into the picture. Indeed we will show that two unital
AF-algebras with AF-Cartan subalgebras have isomorphic ordered K0 groups if
and only if the AF-algebras are isomorphic, and that isomorphism can be chosen to
map one of the Cartan subalgebras to another, whilst still inducing the isomorphism
on the level of K0. Note that a consequence of Krieger’s dimension range concept
developed in [39] is the uniqueness of AF-Cartan subalgebras (see 6.2 in [64]). How-
ever, our proof is an independent original proof that uses only the dimension group
developed by Elliott (see Chapter 7 in [43]).

The situation for AI-algebras is different. We will prove non-uniqueness by con-
structing two diagonal Cartan subalgebras with non-homeomorphic spectra in a

151
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specific (non-simple) AI-algebra. The way we shall do this is through Proposition
4.1.5, where in Section 4.1 we highlighted how the spectrum of the inductive limit
Cartan subalgebra is the inverse limit of the unit spaces of the groupoids corre-
sponding to the Cartan subalgebras of every building block.

Since the AI-algebra constructed is not simple, we will explore uniqueness in the
class of simple AI-algebras. We will show that uniqueness fails here also, by con-
structing diagonal Cartan subalgebras with non-homeomorphic spectra inside a
simple AI-algebra. Finally, we prove a general result which shows that uniqueness
of AI-Cartan subalgebras fails for a large (possibly total) class of simple AI-algebras.
Here we will involve Elliott’s invariant for unital AI-algebras which includes K0 and
its pairing with the simplex of tracial states (see [18]). The preliminaries required
for this chapter involve more or less all the previous chapters in this thesis.

5.1 Uniqueness of AF-Cartan Subalgebras

In Example 2.3.29 we saw that AF-algebras have AF-Cartan subalgebras, due to
the constructions by Strătilă and Voiculescu in [72]. We now show that these are
unique. The proofs in this section build on the proofs in Section 7.3 in [43], by
including Cartan subalgebras in the picture.

Lemma 5.1.1. Let A =
N⊕
j=1

Mnj and B =
M⊕
i=1

Mmi be finite dimensional C∗-algebras

with Cartan subalgebras C and D respectively. Assume there exists an order unit
preserving positive group homomorphism α : K0(A) → K0(B). Then there ex-
ists a unital *-homomorphism φ : A → B such that K0(φ) = α, φ(C) ⊆ D and
φ(NA(C)) ⊆ NB(D).

Proof. By Lemma 7.3.2 (i) in [43] there exists a unital *-homomorphism φ : A→ B

with K0(φ) = α. Let {ejpq} and {hiuv} be systems of matrix units for A and B with
respect to the Cartan subalgebras C and D, respectively (recall Lemma 4.2.1). Let
{kij} be the index system with respect to φ. Consider φij : Mnj → Mmi , which
is a *-homomorphism (that is not necessarily unital). Since {φij(Πj(e

j
pp)) : 1 ≤

p ≤ nj} is a set of mutually orthogonal projections in Mmi , each with trace kij,

and
N∑
j=1

njkij = mi, we may decompose {Πi(h
i
uu) : 1 ≤ u ≤ mi} into disjoint sets

H i1, H i2, . . . , H iN where each H ij has size njkij. Each H ij can then be decomposed
into nj disjoint sets H ij

1 , . . . , H
ij
nj

of size kij each. Let f ijpp ∈ Πi(D) be the sum of
the elements of H ij

p , with trace kij. Hence φi(ejpp) has the same trace as f ijpp and so
by Example 2.2.47 [φi(e

j
pp)]0 = [f ijpp]0.
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Since
f ij11 ∼ f ij22 ∼ · · · ∼ f ijnj ,

we may apply Lemma 7.1.2 in [43] to obtain a system of matrix units

{f ijpq : p, q ∈ {1, . . . , nj}}

in Mmi . This can be extended to a set of matrix units

{f ijpq : j ∈ {1, . . . , N}, p, q ∈ {1, . . . , nj}}

in Mmi . In fact we can be a bit more specific. If

H ij
p = Πi({hiu1u1 , . . . , h

i
ukijukij

}), u1 ≤ u2 ≤ . . . ≤ ukij , (5.1)

the sum of whose elements is f ijpp, and

H ij
q = Πi({hiv1v1 , . . . , h

i
vkij vkij

}), v1 ≤ v2 ≤ . . . ≤ vkij , (5.2)

the sum of whose elements is f ijqq, we define

f ijpq =

kij∑
s=1

Πi(h
i
usvs). (5.3)

Because we have fixed an order in (5.1) and (5.2), we indeed get a well-defined
system of matrix units {f ijpq}, with

f ij1p1q1f
ij2
p2q2

= 0 unless j1 = j2, q1 = p2 in which case we get f ij1p1q2 .

Define

φ : A→ B by φ(ejpq) =
M⊕
i=1

f ijpq,

and extend it linearly to A. It is clear that φ is a unital *-homomorphism with
φ(C) ⊆ D. In the same vein as Lemma 4.2.5, the elements of NA(C) are those
that have at most one non-zero entry in any row or column with respect to {ejpq},
and the elements of NB(D) are those that have at most one non-zero entry in
any row or column with respect to {hiuv}. Hence it follows by using (5.3) that
φ(NA(C)) ⊆ NB(D). Now note that

K0(φ)([ej11]0) =
M∑
i=1

[f ij11]0 =
M∑
i=1

[φij(e
j
11)]0 = [φ(ej11)]0 = K0(φ)([ej11]0) = α([ej11]0)
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and since the set {[ej11]0 : 1 ≤ j ≤ N} generates K0(A), it follows that K0(φ) = α

as desired.

Lemma 5.1.2. Let A and B be finite dimensional C∗-algebras with Cartan subal-
gebras C and D respectively. Assume φ, ψ : A → B are unital *-homomorphisms
which map C into D, NA(C) into NA(D), and such that K0(φ) = K0(ψ). Then
there exists U ∈ U(B) ∩NB(D) such that ψ = Ad(U) ◦ φ.

Proof. Let {ejpq} and {hiuv} be systems of matrix units for A and B with respect
to the Cartan subalgebras C and D, respectively. It is easy to see that the as-
sumption K0(φ) = K0(ψ) implies that K0(φij) = K0(ψij) for i ∈ {1, . . . ,M} and
j ∈ {1, . . . , N}. Hence the traces of φij(Πj(e

j
pp)) and ψij(Πi(e

j
pp)) are the same for

all p ∈ {1, . . . , nj}. Now we may use Lemma 2.3.37 to obtain that there exists a
unitary U in B such that

Uφ(ejpq)U
∗ = ψ(ejpq),

from which it follows that
ψ = Ad(U) ◦ φ.

In fact we can be a bit more specific. The way U is constructed in the proof of
Lemma 2.3.37 is by first finding a partial isometry, vij1 which witnesses the Murray-
von Neumann equivalence between ψi(ej11) and φi(ej11). Since by assumption these
initial and range projections belong to D, they are each a sum of elements of the
form

ψi(e
j
11) =

kij∑
s=1

Πi(h
i
usus), φi(e

j
11) =

kij∑
s=1

Πi(h
i
vsvs).

Hence we can be particular with our choice of vij1 by declaring it

vij1 =

kij∑
s=1

Πi(h
i
vsus).

Similarly to Lemma 4.2.5 it follows that vij1 belongs to NBi(Di). Then vijp is con-
structed as ψi(ejp1)vij1 φi(e

j
1p) and so also belongs to NBi(Di) by the assumption of

the lemma. From this Ui is then constructed as
∑
j,p

vijp and U as
M⊕
i=1

Ui.

To see that U is in the normalizer, let hiuu ∈ D. Note that because φ is unital
and maps C into D there must exists some j ∈ {1, . . . , N} and p ∈ {1, . . . , nj}
such that hiuu appears as a summand of φ(ejpp). One can check that Πi(Uh

i
uuU

∗) =

vijp Πi(h
i
uu)(v

ij
p )∗ and hence belongs to Di. Hence UDU∗ ⊆ D. A similar argument
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done by replacing φ with ψ shows that U∗DU ⊆ D. Hence U ∈ NB(D).

We are now in a position to prove what is Theorem E in the Introduction.

Theorem 5.1.3. Let A and B be unital AF-algebras with AF-Cartan subalgebras
C and D, respectively. Assume there exists an isomorphism

α : (K0(A), K0(A)+, [1A]0)→ (K0(B), K0(B)+, [1B]0).

Then there exists a *-isomorphism φ : A→ B such that K0(φ) = α and φ(C) = D.

Proof. We will assume A, B, C and D all arise as inductive limits as follows re-
spectively:

B0 A1 A2 . . . A,
φ0 φ1 φ2

µn

B0 B1 B2 . . . B,
ψ0 ψ1 ψ2

ρn

C0 C1 C2 . . . C,
φ0 φ1 φ2

µn

D0 D1 D2 . . . D.
ψ0 ψ1 ψ2

ρn

We may assume, using Exercise 6.7 in [43], that all the φn’s, ψn’s, µn’s and ρn’s are
injective and unital *-homomorphisms, for n = 1, 2, . . .. Here B0 = C0 = D0 = C,
φ0(λ) = λ1A1 , ψ0(λ) = λ1B1 , µ0(λ) = λ1A and ρ0(λ) = λ1B. Of course all the
building blocks here are finite dimensional C∗-algebras. If φn : An → An+1 is a con-
necting map, then by Lemma 3.2.1 in [16] φn is unitarily equivalent to the map given
by block diagonal imbeddings, and so by Proposition 2.3.46 we may without loss of
generality assume all our connecting maps are block diagonal imbeddings. Hence in
the same vein as Lemma 4.2.5 we may assume that φn(NAn(Cn)) ⊆ NAn+1(Cn+1).
The same holds for the connecting maps ψn.

We have the following commutative diagram with positive and order unit preserving
group homomorphisms:
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K0(B0) K0(B)

K0(A1)

K0(ρ0)

K0(φ0) α◦K0(µ1)

From Lemma 7.3.3 in [43] we obtain that there exists m1 ∈ N and a positive order
unit preserving group homomorphism α1 such that we have a commutative diagram:

K0(B0) K0(Bm1) K0(B)

K0(A1)

K0(ρ0)

K0(ψm10)

K0(φ0)

K0(ρm1 )

α1
α◦K0(µ1)

Next, consider the following commutative diagram with positive and order unit
preserving homomorphisms:

K0(A1) K0(A)

K0(Bm1)

K0(µ1)

α1 α−1◦K0(ρm1 )

There exists n1 ∈ N and a positive order unit preserving group homomorphism β1

making the following diagram commute:

K0(A1) K0(An1) K0(A)

K0(Bm1)

K0(µ1)

K0(φn11)

α1

K0(µn1 )

β1
α−1◦K0(ρm1 )



CHAPTER 5. ON UNIQUENESS 157

Repeating, we obtain a commutative intertwining:

K0(Bm1) K0(Bm2) . . . . . . K0(B)

K0(An1) K0(An2) . . . K0(A)

K0(ψm2m1 )

β1

β2α2

K0(φn2n1 )

α

where all homomorphisms are positive and order unit preserving. Since inductive
limits do not change if one takes a subsequence of the original building blocks, we
may relabel to assume

K0(B1) K0(B2) . . . . . . K0(B)

K0(A1) K0(A2) . . . K0(A)

K0(ψ1)

β1

β2α1

K0(φ1)

α

(5.4)

By applying Lemma 5.1.1 and Lemma 5.1.2, we lift (5.4) to a commutative inter-
twining

B1 B2 . . . . . . B

A1 A2 . . . A

Ad(V2)ψ1

g1

g2f1

Ad(U2)φ1

Φ (5.5)

where all the diagonal *-homomorphisms in (5.5) are unital, map Cartan subal-
gebra into Cartan subalgebra, normalizer set into normalizer set, and induce the
corresponding K0 group homomorphisms in (5.4), and where all the unitaries {Un}
and {Vn} for n = 2, 3, . . . satisfy Un ∈ NAn(Cn) and Vn ∈ NBn(Dn). We also have
an induced *-isomorphism Φ between the induced inductive limits (see for example,
Exercise 6.8 in [43]).

We extend (5.5) to a commutative diagram
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B1 B2 B3 . . . . . . B

B1 B2 B3 . . . . . . B

A1 A2 A3 . . . A

A1 A2 A3 . . . A

ψ1 ψ2

id

Ad(V2)ψ1

g1

Ad(V ∗2 )

Ad(V3)ψ2

g2

Ad(ψ2(V ∗2 ))Ad(V ∗3 )

g3

F

f1

Ad(U2)φ1

f2

Ad(U3)φ2

Φ

id

φ1 φ2

Ad(U2) Ad(U3)Ad(φ2(U2)) G

(5.6)

where we have induced *-isomorphisms F and G. Define

φ = F ◦ Φ ◦G.

We need to check K0(φ) = α and φ(C) = D. Note that K0(φ) and α agree
on K0(µn)(K0(An)) by the commutativity of (5.4) and (5.6). Since K0(A) =⋃
n

K0(µn)(K0(An)) by Proposition 2.3.17, we obtain K0(φ) = α. Note that from

the commutativity of (5.6) it follows that φ maps µn(Cn) into ρn+1(Dn+1) ⊆ D.
Hence φ maps C into D by Proposition 2.3.10, but as it is a *-isomorphism, it
follows that φ(C) ⊆ D is a masa in B, and so it follows that φ(C) = D.

Corollary 5.1.4. Unital AF-algebras have unique AF-Cartan subalgebras.

Proof. If (A,C) and (B,D) are cF -inductive limit Cartan pairs with A ∼= B, then
the ordered K0 group of A is isomorphic to the ordered K0 group of B, and so we
may find by Theorem 5.1.3 an isomorphism (A,C) ∼= (B,D), which gives uniqueness
by Definition 2.3.25.

5.2 Non-Uniqueness of AI-Cartan Subalgebras

In this section we show that AI-Cartan subalgebras are not unique. First, we
will construct two non-isomorphic diagonal Cartan subalgebras inside a non-simple
AI-algebra. In order to do this we will describe the spectrum of an AI-Cartan
subalgebra by making use of Proposition 4.1.5 following the discussion in Section
4.1. Using our description we will create two diagonal Cartan subalgebras with
non-homeomorphic spectra.

Then, we will construct two non-isomorphic diagonal Cartan subalgebras inside a
simple AI-algebra. Inspired by this, we will state a very general class of simple
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AI-algebras for which uniqueness of AI-Cartan subalgebras fails.

5.2.1 Non-Uniqueness in a Non-Simple AI-Algebra

Let A =
N⊕
j=1

C[0, 1]⊗Mnj
∼= C([0, 1],

N⊕
j=1

Mnj) be an AI-building block. Let C be the

diagonal Cartan subalgebra of A, of the form C =
N⊕
j=1

C[0, 1] ⊗ Dnj , where Dnj is

the diagonal of Mnj . Let {ejpq} be the system of standard matrix units for
N⊕
j=1

Mnj .

Let X = Spec(C) ∼= [0, 1] × {xjp : 1 ≤ j ≤ N, 1 ≤ p ≤ nj}, with topology the
product topology of the standard topology on [0, 1] and the discrete topology on a

finite set. The identification of f =
N∑
j=1

(
nj∑
p=1

f jpp ⊗ ejpp) ∈ C with C(X) is given by

f(t, xjp) = f jpp(t).

Let n =
N∑
j=1

(
nj∑
p=1

njpq ⊗ ejpq) ∈ NA(C). Recall that

dom(n) = {(t, xjq) ∈ X : n∗n(t, xjq) > 0}.

Note that
n∗n =

∑
j,p,q1,q2

njpq1n
j
pq2
⊗ ejq1q2 =

∑
j,p,q

|njpq|2 ⊗ ejqq

where the last equality follows because n∗n ∈ C and hence must be diagonal. Hence

n∗n(t, xjq) =

nj∑
p=1

|njpq(t)|2. (5.7)

By Lemma 4.2.5 at most one summand appearing in (5.7) must be non-zero. Hence
n∗n(t, xjq) > 0 if and only if there exists (exactly one) non-zero summand in (5.7)
and hence we can describe

dom(n) = {(t, xjq) ∈ X : n(t) has a non-zero entry in its jth summand, qth column}.

By similar calculations we can describe

ran(n) = {(t, xjp) ∈ X : n(t) has a non-zero entry in its jth summand, pth row}.

Using Lemma 3.2.10 there is a unique homeomorphism αn : dom(n) → ran(n),
satisfying (3.6). From (3.6) it can be calculated that if (t, xjq) ∈ dom(n), meaning
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there is a unique p ∈ {1, . . . , nj} such that njpq(t) is non-zero, then

αn(t, xjq) = (t, xjp).

The Weyl groupoid is then

G(C) = {[(t, xjp), αn, (t, xjq)] : n ∈ NA(C), njpq(t) 6= 0}. (5.8)

It is clear that G(C)0 ∼= X.

Now consider an AI-building block Â =
M⊕
i=1

C[0, 1] ⊗Mmi , and an injective unital

standard map φ : A → Â, with corresponding index system {kij} and eigenvalue
functions

{gijs : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, s ∈ {1, . . . , kij}},

(recall Definition 2.3.39). Let {f iuv} be the system of standard matrix units in
M⊕
i=1

Mmi , and let Ĉ =
M⊕
i=1

C[0, 1] ⊗ Dmi (where Dmi is the diagonal subalgebra of

Mmi) be the diagonal Cartan subalgebra of Â. It is clear that

φ(C) ⊆ Ĉ, φ(NA(C)) ⊆ NÂ(Ĉ), P̂ ◦ φ = φ ◦ P,

where P is the unique faithful conditional expectation associated to the Cartan
pair (A,C), and given by projection onto the diagonal, and P̂ is the unique faithful
conditional expectation associated to the Cartan pair (Â, Ĉ), and given by projec-
tion onto the diagonal. In order to determine the map φ on the groupoid level, in
the sense of Proposition 4.1.2, we follow the steps of the proof outlined in Remark
4.1.3.

We commence by constructing the intermediate Cartan pair (Ă, C̆) with corre-
sponding twisted groupoid (H,T ) (for our purposes, we will just need H and not
the twist). We have that C̆ = Ĉ, as φ is unital. Now Ă = C∗(φ(A), Ĉ) which is
easily seen to be the C∗-subalgebra of Â which looks like, in the ith summand,

Πi(Ă) =
N⊕
j=1

(

kij⊕
s=1

C[0, 1]⊗Mnj).

Hence we consider a basis for
M⊕
i=1

(
N⊕
j=1

(
kij⊕
s=1

Mnj)) ⊂
M⊕
i=1

Mmi of the form

{f i,j,spq : 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ s ≤ kij, 1 ≤ p, q ≤ nj} ⊆ {f iuv}.
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Note that, similar to how we obtain the Weyl groupoid G(C) in (5.8), we obtain

G(Ĉ) = {[(t, yiu), αn, (t, yiv)] : n ∈ NÂ(Ĉ), niuv(t) 6= 0},

and
H = {[(t, zi,j,sp ), αn, (t, z

i,j,s
q )] : n ∈ NĂ(C̆), ni,j,spq (t) 6= 0},

where
Spec(Ĉ) = Spec(C̆) ∼= [0, 1]× {yiu} = [0, 1]× {zi,j,sp },

1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ s = s(i, j) ≤ kij, 1 ≤ p = p(j), q = q(j) ≤ nj.

It is then clear that the inclusion map i : H ↪→ G(Ĉ) maps H0 onto G(Ĉ)0.

Now consider the map C → C̆ given by f → φ(f). Explicitly, if f =
∑
j,p

f jpp ⊗ ejpp,

then
φ(f) =

∑
i,j,s,p

f jpp ◦ gijs ⊗ f i,j,sp .

Hence, for t ∈ [0, 1],

φ(f)(t, zi,j,sp ) = f jpp(g
ij
s (t)) = f(gijs (t), xjp).

So the dual map φ∗ : Spec(C̆)→ Spec(C) is given by

φ∗(t, zi,j,sp ) = (gijs (t), xjp).

Hence the surjective map ṗ : H � G(C) satisfies

ṗ((t, zi,j,sp )) = (gijs (t), xjp). (5.9)

Now assume that we are given a unital AI-algebra A = lim−→(An, φn) with unital and
injective connecting maps. By Lemma 4.2.8 we may assume that the connecting
maps are standard maps. To A we can associate a diagram BA, analogous to

the Brattelli diagrams of AF-algebras, as follows. Let An =
N⊕
j=1

C[0, 1] ⊗ Mnj ,

An+1 =
N⊕
i=1

C[0, 1]⊗Mmi , and {kij} be the index system with respect to φn. Since

φn is a standard map we may assume it has corresponding eigenvalue functions
{gijs : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, s ∈ {1, . . . , kij}}. Let Cn and Cn+1 be the
diagonal (Cartan) subalgebras of An and An+1 respectively. By the constructions
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above we may assume

Spec(Cn) ∼= [0, 1]× {xjp : j ∈ {1, . . . , N}, p ∈ {1, . . . , nj}}

and

Spec(Cn+1) ∼=[0, 1]× {zi,j,sp : i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, s ∈ {1, . . . , kij},

p ∈ {1, . . . , nj}}.

By what we have shown we may assume the surjective groupoid homomorphism ṗn

satisfies
ṗn((t, zi,j,sp )) = (gijs (t), xjp). (5.10)

The nth level of BA will have
N∑
j=1

nj nodes, which we will label by elements of {xjp}.

The (n+1)th level of BA will have
M∑
i=1

N∑
j=1

njkij nodes, labelled by elements of {zi,j,sp }

and the arrows from the nth level nodes to the (n + 1)th level nodes will be those
going from xjp to zi,j,sp . The set of right-infinite paths on BA starting from the first
level will be denoted by XA, and for a path x = (x1, x2, . . .) ∈ XA, we associate an
inverse limit

Ix = lim←−([0, 1], gx) (5.11)

where gx = {g1, g2, . . .} is determined uniquely via (5.10). Let C = lim−→(Cn, φn) be
the diagonal Cartan subalgebra of A, with spectrum G0. By Proposition 4.1.5 we
have G0

= lim←−(Spec(Cn), ṗn). In this setup we have:

Theorem 5.2.1. There is a homeomorphism

h : G0 →
⊔
x∈XA

Ix, ((t1, x1), (t2, x2), . . .)→ ((t1, t2, . . .), x),

where the topology C on the codomain is induced by the inverse limit topology on G0

via the bijection h.

Proof. We need to check that h is a well-defined bijection. For an element
((t1, x1), (t2, x2), . . .) ∈ G0, it follows from (5.10) that x = (x1, x2, . . .) defines an
element of XA, and it follows also from (5.10) and (5.11) that (t1, t2, . . .) ∈ Ix. It is
clear that h is is bijective.

Consider the topology F on
⊔

x∈XA
Ix given by declaring the open sets to be of the
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form
⊔

y∈Y⊆XA
Uy, where Uy ⊆ Iy is open (in the usual inverse limit topology, which

is just the subspace topology of the product topology). That F is a topology can
be observed by noting that

(
⊔

y∈Y⊆XA

Uy) ∪ (
⊔

z∈Z⊆XA

Vz) =
⊔

x∈Y ∪Z⊆XA

Wx,

where

Wx = Ux if x ∈ Y \ Z, Vx if x ∈ Z \ Y, Ux ∪ Vx if x ∈ Y ∩ Z,

and
(
⊔

y∈Y⊆XA

Uy) ∩ (
⊔

z∈Z⊆XA

Vz) =
⊔

x∈Y ∩Z⊆XA

Ux ∩ Vx.

Lemma 5.2.2. The topology F is finer than C.

Proof. Every open set in C is a union of sets of the form

h(G0 ∩ ((U1 × {∗})× (U2 × {∗})× . . .× ([0, 1]× {∗})× ([0, 1]× {∗})× . . .)),

where each {∗} is some singleton edge. By definition of h, this belongs to F .

Lemma 5.2.3. The set {Ix : x ∈ XA} is the set of C-connected components of⊔
x∈XA

Ix. In addition, each Ix is C-compact.

Proof. Every Ix is compact and connected in the inverse limit topology by Propo-
sition 2.4.5. Hence this is also true in F . Since F is finer than C, this also holds
in C. Now assume, for a contradiction, that there is an x ∈ XA for which Ix is not
a C-connected component. Since for all y ∈ XA we have that Iy is C-connected, it
must be that Ix is contained in a connected component

⊔
z∈Z⊆XA

Iz. But for u, v ∈ Z,

if u 6= v then ∃n ∈ N such that un 6= vn and so the C-open sets

h(G0 ∩ (([0, 1]×{u1})× ([0, 1]×{u2})× . . .× ([0, 1]×{un})× ([0, 1]×Dn+1)× . . .))

and

h(G0 ∩ (([0, 1]×{v1})× ([0, 1]×{v2})× . . .× ([0, 1]×{vn})× ([0, 1]×Dn+1)× . . .))

(where the Dn’s are some finite discrete sets) are disjoint, meeting and covering
Iu
⊔
Iv. This is a contradiction and so Ix is a C-connected component.
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We are now in the position to state our first non-uniqueness result for AI-Cartan
subalgebras.

Theorem 5.2.4. There is a pair of unital non-simple AI-algebras A and B with
unital and injective connecting maps, which are isomorphic, and AI-Cartan subal-
gebras C ⊂ A and D ⊂ B, which are not isomorphic. In particular, AI-Cartan
subalgebras are not unique.

Proof. Let A = lim−→(An, φn) be the unital AI-algebra given by AI-building blocks
An = C([0, 1])⊗M2n , and connecting maps φn(a) = diag(a ◦ f1, a ◦ f2), where the
eigenvalue functions f1, f2 : [0, 1]→ [0, 1] (independent of n) are given by

f1(t) =

2t, if 0 ≤ t ≤ 1
2

1, if 1
2
≤ t ≤ 1

, f2(t) =

1, if 0 ≤ t ≤ 1
2

2(1− t), if 1
2
≤ t ≤ 1

.

Figure 5.1: Eigenvalue functions f1 (blue) and f2 (red).

Since f1 (and f2) is surjective, it follows that φn is an injective *-homomorphism
for each n ∈ N. It is clear that φn is unital.

Now let B = lim−→(Bn, ψn) be the unital AI-algebra with Bn = An and with ψn(b) =

diag(b ◦ g1, b ◦ g2); where the eigenvalue functions g1, g2; [0, 1]→ [0, 1] are given by

g1(t) = 1, g2(t) =

2t, if 0 ≤ t ≤ 1
2

2(1− t), if 1
2
≤ t ≤ 1

.
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Figure 5.2: Eigenvalue functions g1 (blue) and g2 (red).

Since g2 is surjective, it follows that ψn is an injective *-homomorphism for each
n ∈ N. It is clear that ψn is unital.

Note that by choosing a non-zero a ∈ An with the property a(0) = a(1) = 0, then
property (iii) in Proposition 3.1.2 in [67] fails for the AI-algebra B for the choice
x = 0, and hence B is not simple.

Since the eigenvalue functions satisfy {f1(t), f2(t)} = {g1(t), g2(t)} for every t ∈
[0, 1], Theorem 3.1 in [75] implies that φn ∼au ψn for all n ∈ N. By Proposition
2.3.46 it follows that A ∼= B. Hence A is not simple also.

Now let C andD be the diagonal Cartan subalgebras of A and B respectively, where
each building block is the diagonal subalgebra. Consider the path in XB given by
the one whose corresponding sequence of eigenvalue functions is (g1, g1, g1, . . .). Let
this path be y

0
∈ XB. Clearly Iy

0
is a singleton, and so by Lemma 5.2.3 and

Theorem 5.2.1, the spectrum of D contains a singleton as a connected component.

On the other hand, considering any path z0 in XA, which will correspond to a
sequence of eigenvalue functions {hn}n∈N where each hn ∈ {f1, f2}, note that if
t ∈ {0, 1} and n ∈ N, then there exists a unique s ∈ {0, 1} such that hn(s) = t.
Hence Iz0 contains more than one point and so by Lemma 5.2.3 and Theorem
5.2.1, the connected components of the spectrum of C are not singletons. Thus the
spectrum of C is not homeomorphic to the spectrum of D, and thus C � D.

5.2.2 Non-Uniqueness in a Simple AI-Algebra

We saw in Subsection 5.2.1 that uniqueness of AI-Cartan subalgebras fails, and the
example we considered was a non-simple AI-algebra. In this subsection we give an
example of a simple AI-algebra, which is a Goodearl algebra (see [32]) in which we
can exhibit two non-isomorphic AI-Cartan subalgebras. Specifically, we have:
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Theorem 5.2.5. There is a pair of unital simple AI-algebras A and B with unital
and injective connecting maps, which are isomorphic, and AI-Cartan subalgebras
C ⊂ A and D ⊂ B, which are not isomorphic.

Proof. Let {εn}n∈N be a sequence of decreasing reals between 0 and 1
4
, εn → 0.

Choose a sequence of positive integers {kn}n∈N such that kn divides kn+1 for all
n ∈ N, and such that qn = kn+1

kn
> 1

εn
+1. Let us consider A as the unital AI-algebra

(which is a Goodearl algebra) constructed as

C[0, 1]⊗Mk1

φ1−→ C[0, 1]⊗Mk2

φ2−→ · · ·

where φn is defined by

a→ diag(a ◦ δxn,1 , . . . , a ◦ δxn,qn−1 , a)

where the points {xn,i}qn−1
i=1 are chosen as follows. Divide [0, 1] into qn − 1 equally

spaced subintervals (note that each subinterval will have width at most εn), and let
xn,i be the leftmost point of the ith subinterval.

Set Fn = {xn,i : 1 ≤ i ≤ qn − 1} ⊂ [0, 1]. It is clear that
∞⋃
k=n

Fk is dense in [0, 1] for

all n ∈ N, and so we have that A is simple by Example 3.1.7 in [67]. The connecting
maps are injective because the eigenvalue functions together see all of [0,1] (due to
the last term in the diagonal with the identity eigenvalue function).

Now consider another AI-algebra B′ written in same way as A but where we perturb
δxn,i to the map gn,i which is defined as follows, for 1 ≤ i ≤ qn − 1:

gn,i(t) =



δxn,i(t) for 0 ≤ t ≤ i−1
2(qn−1)

, 1− i−1
2(qn−1)

≤ t ≤ 1,

2t for i−1
2(qn−1)

≤ t ≤ i
2(qn−1)

,

2− 2t for 1− i
2(qn−1)

≤ t ≤ 1− i−1
2(qn−1)

,

δxn,i+1
(t)for i

2(qn−1)
≤ t ≤ 1− i

2(qn−1)
.

It is clear that ‖δxn,i − gn,i‖∞ < εn for all 1 ≤ i ≤ qn − 1. Let ψ′n be the connecting
map between C[0, 1]⊗Mkn and C[0, 1]⊗Mkn+1 in B′, defined by

a→ diag(a ◦ gn,1, . . . , a ◦ gn,qn−1, a).

By a choice in the beginning of εn’s sufficiently small, we get an approximate inter-
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twining of the sequences

C[0, 1]⊗Mk1

φ1−→ C[0, 1]⊗Mk2

φ2−→ · · ·

and
C[0, 1]⊗Mk1

ψ′1−→ C[0, 1]⊗Mk2

ψ′2−→ · · ·

Hence by Proposition 2.3.44 we have that B′ ∼= A, and hence B′ is also simple.

Now consider the unital AI-algebra B with inductive system given by

C[0, 1]⊗Mk1

ψ1−→ C[0, 1]⊗Mk2

ψ2−→ · · ·

where
ψn(a) = diag(a ◦ δxn,2 , . . . , a ◦ δxn,qn−1 , a ◦ g, a)

where g is the tent map defined in Example 2.4.10. It is easy to see that for every
t ∈ [0, 1] we have

{gn,1(t), gn,2(t), . . . , gn,qn−1(t), t} = {δxn,2(t), δxn,3(t), . . . , δxn,qn−1(t), g(t), t}.

Hence the set of eigenvalues defining ψ′n and ψn agree pointwise and so by Theorem
3.1 in [75] we have that ψ′n ∼au ψn. Hence by Proposition 2.3.46 it follows that
B ∼= B′ and so B is a simple unital AI-algebra with unital and injective connecting
maps satisfying B ∼= A.

Let C and D be the diagonal Cartan subalgebras of A and B respectively. Let XA

andXB be the corresponding set of infinite paths constructed in Subsection 5.2.1. A
path inXA will correspond to a sequence of eigenvalue functions that either contains
finitely many delta functions or infinitely many. In the first case the inverse limit
corresponds to the sequence of eigenvalue functions (ι, ι, ι, . . .) where ι(t) = t (as
this will be the tail of the sequence with finitely many delta functions), which gives
an inverse limit homeomorphic to an arc, by Example 2.4.9. In the second case
the inverse limit will be a singleton. Hence by Lemma 5.2.3 and Theorem 5.2.1
we obtain that the spectrum of C contains either arcs or singletons as connected
components.

However, for D, if we take the path in XB corresponding to the sequence of eigen-
value functions (g, g, g, . . .) then by Example 2.4.10 the corresponding inverse limit
is a non-degenerate indecomposable continuum. Hence by Lemma 5.2.3 and Theo-
rem 5.2.1 we obtain that the spectrum of D contains an indecomposable continuum
as a connected component. Hence the spectrum of D is not homeomorphic to the
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spectrum of C and thus C � D.

5.2.3 Non-Uniqueness in a General Class of Simple AI-algebras

In this subsection we show that uniqueness of AI-Cartan subalgebras fails in a very
general class of simple AI-algebras.

Definition 5.2.6. Let A denote the class of simple and unital AI-algebras A =

lim−→
i

(C[0, 1] ⊗Mni , φi) with unital and injective (standard) connecting maps, such

that the connected components of the spectrum of the diagonal Cartan subalgebra
of A do not exhaust all inverse limits of the unit interval up to homeomorphism.

Lemma 5.2.7. If A = lim−→
i

(C[0, 1]⊗Mni , φi) ∈ A then the sequence {ni}i∈N contains

a strictly increasing subsequence.

Proof. Assume for a contradiction that the sequence stabilizes. We may assume
then that A = lim−→

n

(C[0, 1]⊗MN , φn) for a fixed N ∈ N. Let µn denote the injection

C[0, 1] ⊗ MN ↪→ A. Since φn is in standard form, we can write φn(a) = a ◦ gn
for some surjective eigenvalue function gn : [0, 1] � [0, 1] (surjectivity follows by
injectivity of the connecting map).

Let I1 = {f ∈ C[0, 1] ⊗MN : f(0) = 0}, which is a proper ideal of C[0, 1] ⊗MN .
There exists t1 such that g1(t1) = 0. Let I2 = {f ∈ C[0, 1] ⊗MN : f(t1) = 0}.
Repeat this process choosing t2 such that g2(t2) = t1 and I3 = {f ∈ C[0, 1]⊗MN :

f(t2) = 0} and so on. All the In’s are proper ideals and φn(In) ⊆ In+1. Define

I =
∞⋃
n=1

µn(In).

Then I is an ideal in A. It is non-zero because each µn is injective, and it is not all
of A, because µ1(h), where h is the constant matrix with each entry value 1

2
, is not

close to any element in µn(In) for all n ∈ N. Hence I is a proper ideal which is a
contradiction to simplicity.

We are now in a position to prove Theorem F from the Introduction.

Theorem 5.2.8. Uniqueness of AI-Cartan subalgebras fails for all AI-algebras in
the class A.

Proof. Let A = lim−→
i

(C[0, 1] ⊗ Mni , φi) ∈ A. By Lemma 5.2.7 and an induction

argument on the strictly increasing subsequence, we may assume that ni > 2i, and
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that ki := ni+1

ni
> 2i. We have that there is an inverse limit of unit intervals

T = lim←−([0, 1], hi)

which is not C-homeomorphic to any Ix for all x ∈ XA, where
⊔

x∈XA
Ix is the

spectrum of the diagonal Cartan subalgebra of A, as in Theorem 5.2.1. Let the
set of eigenvalue functions corresponding to the standard homomorphism φi be
Fi = {gi1, . . . , giki}. Replace any one of the functions by hi. Replace two more func-
tions by the functions g(t) = t

2
and h(t) = t+1

2
, and keep whatever functions have

not been replaced the same. Call this new set of functions Gi = {wi1, . . . , wiki}.

Let B = lim−→
i

(C[0, 1]⊗Mni , ψi) where the ψi’s are the standard homomorphisms with

associated eigenvalue functions the elements of Gi. The existence of the eigenvalue
functions g and h ensure injectivity of the connecting maps (as the union of these
functions’ images is [0, 1]), and Lemma 1.2 in [77] ensures (by using the functions
g and h) that we get simplicity of B.

We have the following commutative diagram:

K0(C[0, 1]⊗Mn1) K0(C[0, 1]⊗Mn2) · · ·

K0(A)

K0(Mn1) K0(Mn2) · · ·

Q(m)

K0(Mn1) K0(Mn2) · · ·

K0(B)

K0(C[0, 1]⊗Mn1) K0(C[0, 1]⊗Mn2) · · ·

K0(φ1)

K0(χ1)

K0(φ2)

K0(χ2)
K0(µi)

γ1
K0(α1) K0(α2)

K0(µi◦χi)

K0(τi)

K0(β1) K0(β2)

K0(τi)

K0(ρi◦χi)

γ2

K0(ψ1)

K0(χ1)

K0(ψ2)

K0(χ2)
K0(ρi)

In the diagram, µi : C[0, 1]⊗Mni → A and ρi : C[0, 1]⊗Mni → B are the canonical
injections of the building blocks into the respective inductive limits, χi is the map
given by evaluation at 0, χi : Mni → C[0, 1] ⊗Mni is the map sending a to the
continuous function with constant value a, and up to K0, these are isomorphisms
and inverses of each other.
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Indeed, for s ∈ [0, 1] the *-homomorphism φs : C[0, 1]⊗Mni → C[0, 1]⊗Mni given
by φs(f)(t) = f(st) defines a homotopy between χi ◦ χi and idC[0,1]⊗Mni

. It is clear
that χi ◦χi = idMni

. Hence by Proposition 2.2.34 it follows that up to K0 these are
inverses of each other.

The αi’s and βi’s are the induced maps that make the diagram commutative. Q(m)

is the subgroup of Q associated to the supernatural number m corresponding to
the inductive limit of the matrix algebras Mni ’s, as in Proposition 2.3.23, and the
τni ’s are the normalized matrix traces. The isomorphisms γ1 and γ2 are the ones
induced in (2.25) in the proof of Proposition 2.3.23 (where they are what is g ◦ f−1

in (2.25)). Hence we get an isomorphism

φ0 := γ−1
2 ◦ γ1 : K0(A)→ K0(B).

The diagram shows that

φ0(K0(µi)([p]0 − [q]0)) = [ρi(p)]0 − [ρi(q)]0,

and by Proposition 2.3.17 this is enough to determine the isomorphism.

Now we determine an affine isomorphism φT : TB → TA, where TA (TB) is the
simplex of tracial states on A (B). Note that the conditions of Lemma 4.1 in [77]
are satisfied. Indeed, if Pn is the center-valued trace appearing in that lemma, then
Pi ◦ φi − Pi ◦ ψi has a factor 1

ni+1
< 2−(i+1) appearing (as Pn is normalized), and so

the sum
∞∑
i=1

‖Pi ◦φi−Pi ◦ψi‖ is finite. Hence by Lemma 4.1 in [77] there is an affine

isomorphism φT : TB → TA satisfying, for all i ∈ N, τ ∈ TB, and a ∈ C[0, 1]⊗Mni ,

φT (τ)(µi(a)) = norm− limj→∞τ(ρj(φj,i(a))).

Now note that for g = K0(µi)([p]0 − [q]0) ∈ K0(A) and τ ∈ TB we have that

〈φ0(g), τ〉 = τ(ρi(p))− τ(ρi(q))

(where the definition of 〈·, ·〉 is given in Definition 1.1.10 in [43]). On the other
hand, we have that

〈g, φT (τ)〉 = norm− limj→∞τ(ρj(φj,i(p)))− norm− limj→∞τ(ρj(φj,i(q))). (5.12)

Now note that we may choose the p and q in the definition of g to be diagonals
with entries either constant map 0 or constant map 1, as the trace of the projection
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determines the element in K0(Ai)
+. Since φj,i and ψj,i are standard maps, they

would agree on such projections and so we may replace φj,i in (5.12) by ψj,i. Hence
(5.12) simplifies to τ(ρi)(p)− τ(ρi)(q) and so we have

〈φ0(g), τ〉 = 〈g, φT (τ)〉.

By Theorem 2 in [18], we have that

A ∼= B.

By Lemma 5.2.3 and Theorem 5.2.1, we have that the diagonal Cartan subalgebra
of B has in its spectrum a connected component homeomorphic to T , whereas T
is not homeomorphic to any connected component of the spectrum of the diagonal
Cartan subalgebra of A. Hence these Cartan subalgebras have non-homeomorphic
spectra and thus are not isomorphic. Therefore uniqueness fails.

Remark 5.2.9. There are endless examples of AI-algebras belonging to A of Def-
inition 5.2.6. In fact it is not immediately clear whether any simple and unital
AI-algebra does not belong to the class A. Such an algebra would have a diagonal
Cartan subalgebra whose spectrum contains connected components covering every
possible inverse limit of the unit interval, up to homeomorphism.



Chapter 6

Outlook

The research we have conducted and the statements we have proved open up further
questions which arise naturally. The first question is with regards to existence of
AX-Cartan subalgebras, but for more general topological spaces X. Indeed the
motivation comes from the remarkable reduction theorem, due to Gong, Jiang, Li
and Pasnicu in [28], regarding AH-algebras with the ideal property and bounded
dimension growth.

Definition 6.0.1. An AH-algebra is an inductive limit C∗-algebra A = lim−→(An, φn)

where each building block is of the form

An =

N(n)⊕
j=1

Pn,j(C(Xn,j)⊗Mnj)Pn,j

where theXn,j’s are compact metric spaces and the Pn,j’s are projections in C(Xn,j)⊗
Mnj . A is said to have the ideal property if every closed two-sided ideal of A is gen-
erated as a closed two-sided ideal by its projections. A is said to have bounded
dimension if the supremum of the dimension across all topological spaces Xn,j ap-
pearing in all summands is finite.

The authors of [28] prove:

Theorem 6.0.2. Let A be an AH-algebra with the ideal property and bounded di-
mension. Then A is isomorphic to the AH-algebra B = lim−→(Bm, ψm) where each
building block is of the form

Bm =

N(m)⊕
i=1

Qm,i(C(Ym,i)⊗Mmi)Qm,i
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where each Ym,i is one of: {pt}, [0, 1], T, S2, TII,k or TIII,k (where TII,k is a finite
connected simplicial complex with H1(TII,k) = 0, H2(TII,k) = Z/kZ, and where
TIII,k is a finite connected simplicial complex with H1(TIII,k) = 0, H2(TIII,k) =

0, H3(TIII,k) = Z/kZ).

A natural first question that follows from this reduction theorem is the following:

Question. What can be said about *-homomorphisms C(X) ⊗Mn → C(X) ⊗Mm

where X is one of the spaces TII,k, TIII,k or S2 (as we have already covered the
cases when X is {pt}, [0, 1] and T). Specifically, are maximally homogeneous maps
dense in such connecting maps? Can we obtain a similar result as that in Lemma
4.4.9? If this is the case, can this also be generalized to direct sums and if so can
we get existence of AX-Cartan subalgebras when X is one of TII,k, TIII,k or S2?
If so, can this be extended to corners of the building blocks, and thus by Theorem
6.0.2 can we get existence of AH-Cartan subalgebras in AH-algebras?

There are a lot of hindrances in our current methods when it comes to the above
question. For example, when one wants to pass from one summand to direct sums
one relied on Lemma 4.4.4 which needed that C(X) had stable rank one. This will
not hold for the higher dimensional simplicial complexes. Another hindrance is how
to approximate an injective connecting map by an injective maximally homogeneous
one. We made use of the fact that X was imbedded in C which will not be the
case for the higher dimensional simplicial complexes. From this it seems that novel
methods must be created in order to answer the question above.

There are many questions that relate directly to the uniqueness results we obtained
in Chapter 5. One particular question is:

Question. Does the class A that appears in Theorem 5.2.8 contain all simple and
unital AI-algebras with unital and injective connecting maps? In other words, does
there exist such an AI-algebra whose diagonal Cartan subalgebra has spectrum with
connected components exhausting all inverse limits of the unit interval, up to home-
omorphism?

An affirmative answer to the first question (equivalently a negative answer to the
second question) would lead to the result that in any unital simple AI-algebra one
may find a pair of non-isomorphic AI-Cartan subalgebras. Note that when studying
uniqueness we focused on the diagonal Cartan subalgebra obtained by choosing the
diagonal subalgebra as our Cartan subalgebra in every AI-building block. Of course,
a natural question arising out of this is the following:

Question. Is there a good description of the spectrum for an arbitrary AI-Cartan
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subalgebra? Using Barlak and Li’s work in [8], and which was described in Section
4.1, is there a good description of the étale twisted groupoids corresponding to AI-
Cartan subalgebras (with injective and unital connecting maps) in general? What
about AT-Cartan subalgebras?

Our assessment is that it should be rather straightforward to analyse the twisted
groupoids that correspond to arbitrary Cartan subalgebras of AI-building blocks.
This is because we can make use of a result similar to Lemma 4.3.2 but for AI-
building blocks (which will mean there will be no permutations needed to glue the
endpoints as was necessary for the circle case). These can then be used to analyse
the connecting maps at the groupoid level. Thus by following the constructions
presented in Section 4.1 one would expect to be able to obtain groupoid models for
the AI-Cartan subalgebras. Of course, the circle case is expected to be trickier as
the matrix units of Lemma 4.3.2 have to be glued in the right way at the endpoints
which will make the groupoid analysis much more technical.

Another question that arises from our research, and which was brought to our
attention by Xin Li, relates to Proposition 4.1.5:

Question. Does the condition on the connecting maps mapping normalizer set into
normalizer set, and being compatible with the conditional expectations, as in Propo-
sition 4.1.5, follow directly from the condition that the connecting map should map
a Cartan subalgebra into a Cartan subalgebra, for the class of AI and AT-algebras?
In which classes of inductive limit C∗-algebras does this hold?

In fact it is not too difficult to check that if the connecting maps for AF-algebras map
a Cartan subalgebra into a Cartan subalgebra, then the other conditions about the
normalizer sets and conditional expectations follow automatically. If the answer to
the above question is affirmative then our proofs in Chapter 4, which show that the
relevant connecting maps take normalizer set into normalizer set and are compatible
with the conditional expectations, would not be necessary and so greatly simplify
the work. We assess that the answer to the question is most likely affirmative, as
the analysis can be performed pointwise, and for AF-building blocks this is true.

Departing slightly from the scope of our research, an interesting question, which
was brought to our attention by Hannes Thiel, relates to finding inductive limit
Cartan subalgebras in inductive limits of Robert’s building blocks. Indeed, in [66],
Robert classifies C∗-algebras that are stably isomorphic to inductive limits of one-
dimensional noncommutative CW complexes that have vanishing K1 group. The
invariant is the Cuntz semigroup which generalizes K-theory. A relevant question
is the following:
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Question. Can one, using Cartan subalgebras of Robert’s building blocks, find an
inductive limit Cartan subalgebra of the inductive limit of Robert’s building blocks?

An affirmative answer to this would generalize the AI results, as these are examples
of this setup, but would also give new examples not covered in our methods, such
as the Jiang-Su algebra. We aim to work on the questions above in the near future.
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