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 Overview 

 Atlantic salmon aquaculture worldwide and in 
Scotland 

In 1950, the world population was estimated to be around 2.6 billion people, a 

figure that doubled by the 1990s and is estimated to increase further to 9.7 billion 

in 2050 and 11.2 billion by 2100 (United Nations 2019). Even though the Earth's 

population growth is predicted to plateau sometime in the next 100 years, 

producing enough food to feed 9 to 11 billion people poses an enormous global 

challenge. Aquaculture has the potential to contribute to the solution, as fish is 

an accessible and affordable source of nutrients, proteins, and energy. It was 

estimated that per capita fish consumption has almost doubled from 10 kilograms 

in the 1960s to over 19 kilograms in 2012 (FAO 2018). This increase in the demand 

for fish protein has put wild fish stocks under pressure (Froehlich et al. 2018). The 

aquaculture sector may have the capacity to alleviate this pressure and currently 

produces almost 50% of all fish for human consumption with expansion to 62% 

predicted by 2030 (Moffitt and Cajas-Cano 2014).  

Commercial salmon farming started in the late 1960s in Norway, where the first 

sea cages were successfully used to raise salmon to market size (Liu et al. 2011). 

Large scale commercial operation launched in the 1980s (Bjorndal et al. 2000). 

Since then, salmon aquaculture has spread to Scotland, Ireland, the Faroe Islands, 

Canada, the USA (North Eastern seaboard), Chile and Australia (Tasmania coast 

only) and to a smaller extent in New Zealand, Spain and France (Moroney et al. 

2015). Over a 25 year period (from 1982 to 2010) salmonid aquaculture  production 

has expanded over ten-fold, with circa 2.5 million tonnes of Atlantic salmon 

production per year (Figure 1-1) (Food and Agriculture Organization 2016).  
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Figure 1-1 Aquaculture production of salmonids in tonnes 1950-2010 (adapted from Food 
and Agriculture Organization, 2016). 
 

Salmon is currently the largest food export in value in Scotland (The Scottish 

Government 2019). 203,881 tonnes of salmon were produced in 2019 in Scotland, 

with the aim to increase this number to 350,000 tonnes per year by 2030 (Munro 

2019). In 2018 there were 121 active Atlantic salmon farms on the Northern and 

Western Scottish coast, and over the last 10 years employment within Scottish 

salmon aquaculture increased by 52% (Figure 1-2). To support the salmon 

aquaculture sector, the Scottish government has developed a strategy to double 

the economic contribution of the Scottish aquaculture sector from £1.8 billion in 

2016 to £3.6 billion by 2030 (Scotland food and drink 2016).  
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Figure 1-2 Number of staff employed in the production of salmon during 2009-2018 in 
Scotland (adapted from Munro, 2019).  

 

 Atlantic Salmon  

 Atlantic salmon life cycle 

The life cycle of Salmo salar involves seven major stages: egg, alevin, fry, parr, 

smolt, post-smolt, and adult salmon (Figure 1-3). The majority of wild Atlantic 

salmon are iteroparous, anadromous fish that migrate between freshwater and 

marine habitats at different stages in their life cycle: egg, alevin, fry and parr life 

stages occur in freshwater, and the main feeding and growth phases (smolt and 

adult stages) occur in a marine water environment. These maturing smolts usually 

spend one or more winters in the ocean to grow to the adult phase before 

returning to the freshwater for spawning (Thorstad et al. 2011). Some Atlantic 

salmon repeat this migration and spawning pattern several times, however the 

majority spawn only once or twice per lifecycle (Bordeleau et al. 2020). 

Furthermore, some Atlantic salmon, especially in Canada and Russia, complete 

their entire lifecycle in freshwater only (Carr et al. 2005, Ozerov et al. 2010, 

Hutchings et al. 2019).  

While initial salmon life stages (from egg to parr) take from two to five years in 

the wild, Atlantic salmon raised for aquaculture sector require only 8 to 16 months 

to reach smolt phase and then are transferred to sea cages for around two years 
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to reach harvestable size (FAO 2012). The weight of Norwegian farmed smolt has 

more than doubled from 20-50 g in 1985 to 70-120 g in 2000, and more recently, 

the land-based phase has been lengthened even further to produce post-smolts of 

up to 1,000 g before release in sea-water to reduce the exposure to sea lice 

(Bergheim et al. 2009, Bjørndal and Tusvik 2020).  

 

Figure 1-3 The life cycle of the Atlantic salmon (Salmo Salar) (Atlantic Salmon Federation ©). 
Figure illustrates the major life stages of the Atlantic salmon, including eggs, eyed eggs, alevin, fry, 
parr, smolt, adult and spawning.  

  

 Gastrointestinal tract of salmon 

Due to a wide variety of habitats and foods that fish consume (ranging from 

bottom‐living seaweeds and plankton organisms to actively swimming animals) fish 

have a wide array of gut morphology (Horn and Gawlicka 2001). Fish stomachs can 

be classified into four general configurations: a straight stomach with enlarged 

lumen (e.g. Esox lucius), Y-shaped stomach (e.g. Anguilla anguilla), the absence 

of stomach (e.g. Cyprinus carpio) and U-shaped sack-like stomach with enlarged 

lumen, such as is found in Atlantic salmon, receiving food via the oesophagus 

(Smith 1980). Together with the oesophagus, the stomach makes 42% of the length 

of the entire gastrointestinal tract in Salmo salar (Lkka et al. 2013). As illustrated 

in Figure 1-4, the Atlantic salmon gastrointestinal tract can be divided into several 

functionally and morphologically distinct segments. The acidic stomach is 

responsible for initial unspecific digestion of incoming food by secretion of 

hydrochloric acid and endopeptidase pepsin from gastric mucosa glands in the 
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stomach lining (Krogdahl, Sundby, et al. 2015). In Salmo salar, the stomach is 

connected to the pyloric caecum (absent in fish which lack stomach), which 

consists of multiple longitudinally arranged blind-ended finger-like projections in 

a net‐like pattern that increase the mucosal surface area for digestive and 

absorptive capacity (Krogdahl, Sundby, et al. 2015). The surface area-increasing 

structures have proven to be important in enzymatic breakdown by secreting 

digestive enzymes (such as proteases (e.g. trypsinogen), glucosidases (e.g. α-

amylase) and lipases (e.g. bile salt-dependent lipase)) (Sahlmann et al. 2015) and 

to utilize the counter-current multiplication in generating osmoregulatory 

mechanisms for absorption of glucose, amino acids, dipeptides and medium chain 

fatty acids (Buddington and Diamond 1986, 1987, Bakke-McKellep et al. 2000, 

Denstadli et al. 2004). The pyloric caecum accounts for around 70% of the total 

nutrient absorption in Salmo salar (Veillette et al. 2005). The gastrointestinal 

tract ends with mid and distal intestines that further digest and absorb nutrients 

with the help of brush boarder membrane bound and cytosolic digestive enzymes, 

such as alkaline phosphatase (ALP) and leucine aminopeptidase (LAP) (Refstie et 

al. 2006, Krogdahl, Sundby, et al. 2015).    

 

Figure 1-4 Gastrointestinal track of Atlantic Salmon. Figure illustrates a schematic drawing of 
the salmon gastrointestinal tract with the oesophagus (1), cardiac stomach (2), pyloric caeca (3), 
mid intestine (4), and distal intestine (5).  

 

 Gastrointestinal microbiota of Atlantic salmon 

Animal guts contain dense, extremely complex, and dynamic microbial 

communities that are not just a collection of the passenger microorganisms, but 



Chapter 1 Overview  6 

can include organisms with active roles in driving immunity and physiology of 

vertebrates (McFall-Ngai et al. 2013, Murdoch and Rawls 2019). The 

gastrointestinal microbiota is defined as the community of microorganisms that 

reside within the gut of the host, which include bacterial communities, archeae, 

viruses and eukaryotes, such as yeast (Walter et al. 2011). However, in this thesis 

we focus on only microbial communities residing in the gut. These microorganisms 

exhibit a lower density (104-109 colony forming units), compared to 

homoeothermic animals (1013-1014 colony forming units) (Egerton et al. 2018).  

Significant research effort has been mobilised in recent years to explore the role 

of the intestinal microbiome in host biology. Innumerable studies in vertebrates 

suggest a role for gut microbes in host development, physiology and health (Yu et 

al. 2012, Suzuki 2017, Sharpton 2018). However, most of these findings are derived 

from studies performed on mammals - in particular, rodents - with few derived 

from studies performed on teleosts, leading to limited evidence of functional 

capacity of fish gut microbiomes (Llewellyn et al. 2014b, Ringø et al. 2016a). 

Recent studies indicate the microbiome of Atlantic salmon plays a possible role in 

nutrition and immunity (Llewellyn et al. 2016). 

 Microbiome in nutrition 

Several reviews have pointed out that the microbiome of teleosts plays a crucial 

role in fish nutritional harvest. It was shown that microbial communities inside the 

gastrointestinal tract of fish produce a wide range of different enzymes (such as 

carbohydrases, phosphatases, esterases, lipases and peptidases, cellulase, lipase 

and proteases) which could contribute to feed digestion (Ray et al. 2012). These 

enzyme-producing bacteria were found in the guts of four brackish water teleost 

species (Scatophagus argus, Terapon jarbua, Mystus gulio, and Etroplus 

suratensis) as well as in the Atlantic salmon gut (Askarian et al. 2012, Das et al. 

2014).  

It was also suggested that anaerobic bacteria living inside the fish gut could have 

a role in feed digestion and absorption of nutrients, by supplying the host fish with 

volatile fatty acids that are an end-product of anaerobic fermentation involved in 

nourishing enterocytes (Ramirez and Dixon 2003, Clements 2011, Tran et al. 2020). 

These volatile fatty acids were found in the intestines of common carp (Cyprinus 
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carpio), shad (Dorosoma cepedianum) and largemouth bass (Micropterus 

salmoides), as well as Atlantic salmon (salmon farmed in Irish waters) (Smith et 

al. 1996, Fogarty et al. 2019).  

Finally, the microbiota was shown to be able to synthesise vitamins and amino 

acids in the gut of aquatic vertebrates which otherwise would not be available to 

the host (Balcázar, Blas, et al. 2006, Nayak 2010). For instance, it was found that 

microorganisms within different freshwater fish can produce vitamin B12 (Sugita 

et al. 2017). However, a knowledge gap exists between determining the 

composition of the microbiome and understanding its function, partially due to 

the complex and variable ecology of teleost gastrointestinal tracts and unknown 

bacterial taxa (Nayak 2010).  

 Microbiome in immunity 

It is known that the vertebrate gut microbiota plays an important role in the 

immunity of the host (Raulo et al. 2018). This role is especially vital in fish, as 

they are in constant contact with a wide variety of microorganisms, including 

pathogenic, and opportunistic bacteria which may colonize the gut, and thus, a 

strong immune system is critical (Ellis 2001). Thus, a robust gut microbiome in fish 

may be important to prevent invader colonization and maintain gut health 

(Balcázar, Decamp, et al. 2006, Zheng et al. 2020).  

The role of the microbiome in immunity is particularly important during initial 

microbiome colonization at the early stages of teleost development. It was found 

that the colonizing microorganisms in the gut can modulate gene expression to 

create a favourable environment for themselves and avoid invasion by other 

pathogenic and opportunistic bacteria coming into the ecosystem later in the 

hosts’ life (Balcázar, Blas, et al. 2006). This idea was supported by a study in 

which the effect of colonization by components of the microbiota in gnotobiotic 

zebrafish (Danio rerio) was studied (Rawls et al. 2004). This study suggested that 

the expression of some of the zebrafish genes are bacteria-specific (the genes 

expressions are induced by unknown factors produced by the specific gut 

bacteria). Finally, it was found that Lactobacillus inside the gut of various fish 

(and naturally found in Salmo salar gut) are able to stimulate the immune response 

and in this way protect the host against diseases (Llewellyn et al. 2016, He et al. 
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2017). However, existing knowledge about the microbiome’s role in immunity has 

many gaps, due to the complex interactions between the immune system, 

environment, and the gut microbiome; thus, a more thorough understanding of 

microbial-host-environmental interactions are required (Perry et al. 2020).  

 Manipulating teleost gut microbiome 

As described in section 1.2.3, while present knowledge of gut microbiota in fish is 

still limited, it is known that microbiota may affect enzyme production (Ray et al. 

2012), nutrient digestion and utilization (Semova et al. 2012, Falcinelli et al. 

2015), and contribute to immune status (Ringø et al. 2016b). In vertebrates 

microbial communities and processes can be modulated by consumption of 

different foods, dietary ingredients (prebiotics and probiotics) and drugs, 

including, of course, antimicrobials (Jernberg et al. 2010, Grootaert et al. 2011, 

Versalovic 2013). 

 Diet 

Due to the carnivorous nature of the Atlantic salmon, wild pelagic fish stocks are 

used as a marine protein source to feed farmed salmon. However, over the years, 

wild fish stocks have been depleted in marine ecosystems, making feeding farmed 

salmon on these ingredients unsustainable and cost-ineffective (Worm et al. 

2006). The high demand of farmed salmon for marine ingredients underpins the 

negative environmental consequences of the industry worldwide. To address this 

issue farmed salmon feed composition has changed considerably during a 

relatively short history of intensive salmon farming in Norway, reducing the ratio 

of the marine origin components within salmon feed from around 90% in 1990 to 

30% in 2013 (Ytrestøyl et al. 2015a). It was found that dietary changes do modify 

fish gut microbial community composition and activity, and, there have been 

several studies investigating the influence of alternative protein sources on the 

salmon microbiome (Ingerslev, Strube, et al. 2014).  

Previously solvent-extracted soybean meal (SBM) was an attractive protein source 

used in Atlantic salmon aquaculture sector due to its' high protein content, 

desirable amino acids profile, and low cost (Booman et al. 2018). However, it was 

found that SBM diet does not only induce changes in the microbial population 
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within the gut of Atlantic salmon, but also alter intestinal health by affecting feed 

digestibility and intestinal immunity (Nayak 2010, Green et al. 2013, Booman et 

al. 2018). This SBM effect could be explained by the fact that the SBM diet contains 

antinutritional factors (factors that reduce the availability of nutrients) that alter 

the microbiome, lipid digestion, absorption and induce enteritis in Atlantic salmon 

(Refstie et al. 2005, Gu et al. 2014, Krogdahl, Gajardo, et al. 2015, Booman et al. 

2018). Current alternative plant-based materials to SBM include soybean protein 

concentrate, wheat and wheat gluten, along with corn, faba beans, sunflower 

meal, pea protein concentrate, and other vegetable proteins, as well as feeds 

containing novel protein sources; e.g. from insects (Aas et al. 2019).  

Similarly to marine sources being used as a protein source, for many years fish oils 

were the predominating lipid source for farmed salmon. However, even though a 

reduction has been seen in wild fish stocks use as a protein source, their use as a 

lipid source has drastically increased from 16% in 1988 to 81% in 2002 (Tacon et 

al. 2006). Thus, there is an increasing demand for sustainable alternative lipid 

sources to reduce the use of fish oil. One of the candidates is vegetable oils that 

are produced at a higher and cheaper rate than fish oils (Tacon et al. 2006). 

However, in Atlantic salmon, vegetable oils are known to alter not only gut 

microbiome composition but gastrointestinal morphology and lipid absorption as 

well (Ringø et al. 2002, Moldal et al. 2014, Hansen, Kortner, Denstadli, et al. 

2020). Furthermore, n-3 fatty acids are essential for salmon and are not present 

in plant oil; thus, supplementation of these fatty acids is required for optimal 

growth in plant-based feeds (Rosenlund et al. 2016). It is worth noting that 

recently microalgae, which are rich in n-3 fatty acids, have been used as an 

effective replacement of fish oil in salmon feeds (Norambuena et al. 2015, Gong 

et al. 2020). 

 Probiotics 

Probiotics are the live microbial strains that are incorporated into feed as dietary 

supplements and are thought to suppress the growth of pathogenic bacteria and 

improve gut health by producing antimicrobial compounds, although there is a 

considerable lack of scientific understanding of their mode of action in many cases 

(Dunne et al. 2001, Spinler et al. 2008, Scott et al. 2015). Whether guided by a 

clear evidence base or not, the use of probiotics has nonetheless become a popular 
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tool to support disease resilience to exert beneficial effects on fish health. Many 

of the probiotics used in Atlantic salmon farming are lactic acid bacteria that are 

thought to maintain gut health by producing lactic acid used as a food source for 

short-chain fatty acid (SCFAs)-producing bacteria (Gatesoupe 2007, Ringø et al. 

2018). As discussed above these SCFAs contribute to hosts’ health maintenance, 

such as butyrate that has anti-inflammatory effects and is used as an energy 

source by the gut epithelial cells (Louis et al. 2014). It was shown that feeding 

Atlantic salmon with probiotic Lactobacillus, modulated the composition and 

interaction of the microbial communities within the gut and increased the 

bacterial diversity in the intestinal mucus of the fish (Gupta et al. 2019). Similar 

results were demonstrated in Atlantic salmon transitioning from freshwater to 

seawater by supplementing their diet with probiotic Pediococcus acidilactici 

MA18/5M which affected not only the composition of the gut microbiome but also 

modulated antiviral response (Jaramillo-Torres et al. 2019). However, the full 

potential of probiotics, appropriate modes of treatment (oral, or in the water), 

doses, and the characterization of mechanisms of action of individual probiotic 

organisms, need to be explored in more detail (Quigley and Shanahan 2014, 

Jahangiri and Esteban 2018, Talwar et al. 2018, Butt and Volkoff 2019).  

 Prebiotics 

Prebiotics are defined as food ingredients that are metabolised by host microbiota 

and used to induce the proliferation and activity of gut bacteria to improve the 

hosts’ health (Hill et al. 2014). As discussed above, substituting a fish meal with 

feeds containing alternative protein sources do affect gut microbiome and health; 

thus prebiotics are usually used in combination with the alternative feeds to 

mitigate unwanted symptoms by acting in a protective manner on the gut 

epithelium (Ringø, Olsen, et al. 2010).  Modulation of the intestinal environment 

can, in turn, shape the gut microbiota composition (Grisdale-Helland et al. 2008, 

Dimitroglou et al. 2011). For instance, it was found that inclusion of the prebiotic 

lecithin in Atlantic salmon diet supports lactic acid-producing bacteria 

(Pratoomyot et al. 2010). However, the same as with probiotics, while there are 

various prebiotics available commercially, the scientific understanding of mode of 

action is lagging behind (Martinez et al. 2015). 
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 Antimicrobial compounds 

Antimicrobial compounds are the pharmaceutical substances used to kill or inhibit 

the growth of microorganisms and include antibiotics, antivirals, antifungals, and 

antiprotozoals (Henriksson et al. 2018). In the past decade, antimicrobial 

compounds were increasingly used in agriculture and aquaculture to prevent and 

treat diseases as well as promoting animal growth (Van Boeckel et al. 2015). 

However, growing evidence indicates that these substances are linked to the 

increase in antimicrobial resistance in many farming sectors that does not only 

weaken the treatments against unwanted pathogens within the sector but also 

increase the risk of transferring antimicrobial resistance to humans (Henriksson et 

al. 2018). Due to this reason, over the years the usage of the antimicrobial 

compounds in Atlantic salmon farming in the Northern hemisphere has decreased. 

However, in Chile, the usage of these substances keeps increasing (Figure 1-5) 

(Henriksson et al. 2018). This extended and high use of the antibiotics florfenicol 

and oxytetracycline in Chilean salmon farms selects multiresistant bacteria in the 

Salmo salar guts (Higuera-Llantén et al. 2018).  

 

Figure 1-5 Antibiotic use in Atlantic salmon farming in the five top producing countries 
(Henriksson et al. 2018). Antibiotics in grams per ton in five top Atlantic salmon producing countries 
are shown from 1985 to 2015. Norway values represented in blue, Chile in red, Ireland in yellow, 
Canada in orange and UK in green.  

 

 Modelling the GI tract using synthetic gut models 

To study the impact of the gut microbial diversity and composition on the digestion 

of food or drugs, in vivo animal and human trials are standard approaches due to 
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their practicality and physiological relevance (Franklin and Ericsson 2017, King et 

al. 2019). However, such in vivo work has several disadvantages: ethical 

constraints (Ma et al. 2018); lack of easy access to the gut contents (in non-

terminal and ethical way) (Sousa et al. 2008); and the restriction to only faecal 

samples that cannot provide information on the dynamic microbial communities 

and processes in different regions of the gut. Thus, in vitro gut model systems can 

be chosen as an alternative or complementary approach to in vivo studies. Despite 

not fully replicating the physiological host environment, they are still considered 

an excellent tool to mimic microbial activity and composition in different 

compartments in the gut (Pearce et al. 2018). This section will review the progress 

of current in vitro gut models, their advantages and disadvantages, and different 

methods that can be used to study the processes happening in the synthetic gut 

models.  

 Progress of synthetic gut models 

 Batch-type simulators 

In vitro digestion models are commonly employed to examine the structural 

changes, digestibility, and release of dietary elements under simulated 

gastrointestinal conditions (Hur et al. 2011). One of the first examples of in vitro 

enzymatic digestion models was developed in 1995 by five European laboratories 

and aimed to analyse human colonic fermentation of different dietary sources, 

including cellulose, sugar beet and soybean fibres, maize bran and pectin (Barry 

et al. 1995). The in vitro model developed by Barry et al. (1995) are the most 

common and the most straightforward simulators to study the fermentative 

activity in the vertebrate colon. This single compartment fermentation model, 

also known as a batch-type simulator, is a closed anaerobic system replicating 

only a single gastrointestinal tract compartment (Figure 1- 6 A). These types of 

simulators are typically used to study the response of different substrates or their 

doses on the physiology and biodiversity of the defined single or mixed intestinal 

microorganisms (including faeces) and vice versa.  For instance, the batch-type 

simulator was successfully applied to simulate human colonic microbiota by 

seeding the reactor with faecal samples to evaluate probiotics (Takagi et al. 

2016). DNA-based molecular quantitative and qualitative techniques are used to 

evaluate the impact of different substrate compositions on the composition of 
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microbial communities. The effects of different substrates on the metabolic 

activity of gut microbes are often analysed by measuring the formation of various 

microbial metabolites, such as methane or short-chain fatty acids.  

The major advantages of the batch-type simulators are that they are inexpensive 

to operate, easy to set-up, and allow a rapid turnaround and throughput of 

samples, making them a useful tool for the analysis of a wide variety of different 

substrates or faecal samples (Macfarlane and Macfarlane 2007). However, batch-

type simulators are limited by characteristic substrate depletion as well as the 

accumulation of fermentation by-products over time that may alter or inhibit the 

metabolic processes of the organisms that produce them. Such limitations 

influence the internal reactor conditions, leading to the inability to maintain 

steady-state conditions, limiting their use to short-term testing.   

 Chemostat-type simulators 

To eliminate problems associated with batch-type simulators, open systems, 

commonly referred to as single-stage chemostats, can be used. Although similar 

to batch-type simulators, single-stage chemostats are characterised by the 

possibility to further control environmental parameters by supplying fresh growth 

medium as well as removing waste (Figure 1- 6 B). These properties make 

chemostats more suitable for the prolonged maintenance of the steady-state 

conditions while replicating the environmental conditions characteristic of the 

selected gut compartment (Freter et al. 1983).  

Dynamic multistage-fermentation models can be used to simulate the 

fermentative/metabolic activity of multiple gut compartments. The most common 

type of multistage-fermentation models is typically referred to as the Reading 

model. It is based on a design developed by Gibson et al. in 1988 to study human 

gut bacteria (Gibson et al. 1988). The original model consisted of three 

interconnected vessels having different operating volumes and pH, thereby 

allowing a more accurate simulation of the physiological conditions of different 

human gut compartments. An advanced derivative of the three-stage 

fermentation model is the Simulator of the Human Intestinal Microbial Ecosystem 

(SHIME) developed by Van de Wiele and colleagues at the University of Ghent (van 

de Wiele et al. 2015) (Figure 1- 6 C). The SHIME in vitro model aims to simulate 
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the human digestion system and provides information about the digestion of food 

and related changes in the human gut microbiota for a period ranging from 2 to 3 

weeks. The SHIME model consists of five reactors (the first two simulating stomach 

and the small intestine and the last three mimicking three colon compartments). 

The growth media present in the vessels replicating the stomach and small 

intestine is enriched with pancreatic enzymes and bile allowing for a further 

degree of accuracy in simulating the physicochemical conditions of these 

compartments as well as allowing the system to operate for more extended 

periods of time when compared to a batch model. However, this type of system 

lacks characteristic host functions, such as immunomodulatory and 

neuroendocrine responses.  

 Gut models incorporating the mucosal compartment 

Several recent studies have shown that a portion of the gut microorganisms adhere 

and colonize the mucosal layer lining different gut compartments. This distinct 

community has been termed mucosa‐associated microbial community (MAMC) 

(Zoetendal et al. 2002, Macfarlane 2008). The MAMC are protected from 

disturbances in the lumen, such as the washout resulting from the peristaltic 

activity, leading to prolonged and stable colonization of certain tracts. 

Furthermore, the MAMC layer can act as ‘shield’ against pathogens, activating 

mucosal immune responses and physically blocking colonization of potentially 

harmful bacteria (Canny and McCormick 2008). The incorporation of the mucosal 

compartment in synthetic gut models represents a fundamental element needed 

for a more accurate simulation of gastrointestinal systems. In 2012, Van den 

Abbeele et al. incorporated the mucosal environment into the SHIME system, 

establishing the mucosal‐SHIME (M‐SHIME) allowing a portion of the microbiota 

present in the vessels to adhere to a gut mucus layer (Van den Abbeele et al. 

2012). Incorporation of the mucosal environment to the model allowed the 

colonization and expansion of the microorganisms that are able to adhere to the 

mucous, such as Lactobacillus mucosae that contains a mucus binding domain 

(Nishiyama et al. 2016). M-SHIME also demonstrated that different bacteria 

colonize the luminal and mucosal environments, resulting in less than 60% 

similarity between those two environments, but similar within the luminal 

environment (≈90% similarity). The results provided by M-SHIME indicate the 

importance of the addition of mucus to the in vitro system to enhance the 
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simulated three-dimensional complexity and achieve broader bacterial diversity 

seen in in vivo environment.  

 Microfluidics-based in vitro models 

One of the most recent advances in in vitro gut model systems was developed in 

2012 and involved the development of a microfluidic approach termed gut-on-a-

chip (Kim et al. 2012). This system comprises of a transparent, hollow-channelled 

microfluid device that is lined with intestinal cells and subjected to peristaltic 

motion. Even though this system is more complex, less established and less 

recognized, it offers the capacity to analyse the response of the core 

microorganisms of the intestinal tract to pathogenic and immune cells by adding 

live pathogenic microbes and immune cells (Kim et al. 2016). The system also 

allows the incorporation of other types of host cells, such as vascular and 

lymphatic endothelium or immune components, to replicate organ-level 

interaction in the lumen-capillary interface. The gut-on-a-chip system can 

therefore be leveraged to analyse the interconnection between the microbiome, 

human intestinal cells, and human immune components in vitro.  

A similar microfluid-based in vitro system was developed in 2016 by Shah et al. 

and called HuMiX (Figure 1- 6 D). This system allows co-culturing of the human gut 

cells and microbial cells under conditions and processes mimicking gastrointestinal 

human-microbiome interface (Shah et al. 2016). The HuMiX system consists of 

three layers: a top layer containing a supply chamber, where nutrients flow 

continuously, a middle layer containing human gut cells and a bottom layer 

containing growing bacteria. This system allows the analysis of the interaction 

between host gut cells and the gut microbiome, including the impact of how 

different bacterial strains affect the metabolism of intestinal epithelial cells.  

Recently a teleost gut-on-chip model was developed that reconstructs the 

intestinal barrier of the rainbow trout (Oncorhynchus mykiss) in an artificial 

microenvironment (Drieschner et al. 2019). This system includes a micro-well 

plate-based microfluid bioreactor that contains a culture of two intestinal cell 

lines from rainbow trout and electrodes used to sense the response of those cells 

to experimental conditions (for example, in vivo-like fluid share stress conditions 

- representing the stress caused by nutrients progressing throughout the gut 
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lumen). However, this system currently does not involve microbial communities 

isolated from the fish’s gut.   

 Models allowing absorption 

Arguably the most sophisticated synthetic gut model was developed by The 

Netherlands Organisation for Applied Scientific Research, known as TNO, more 

than 18 years ago referred to as the TNO computer-controlled, dynamic in vitro 

gastro-Intestinal Model of the colon, or TIM-2 (Minekus et al. 1999) (Figure 1- 6 E). 

TIM-2 offers the ability to reproduce the digestion of monogastric animals or 

humans in specific age ranges (from new-born to elderly) under physiological or 

diseased conditions (Roussel et al. 2016). This model has been successfully applied 

in many different fields, such as nutritional studies (aim to evaluate the 

digestibility of food) and pharmaceutical applications (analysing food-drug 

interaction and drug release, solubility and bioavailability and availability) 

(Blanquet-Diot et al. 2009, 2012, Déat et al. 2009, Shani-Levi et al. 2017).  

The TIM-2 system has several advantages over other synthetic gut models 

discussed in previous sections. First, it consists of four connected glass jackets 

with silicon membranes inside that can be moved by applying pressure, leading to 

the peristaltic movement simulation. This type of movement causes the mixing of 

the luminal content through the entire system, unlike other systems that mix only 

by stirring. Secondly, TIM-2 is the only synthetic gut system that contains a dialysis 

system, which helps to maintain a physiological concentration of metabolites and 

prevents inhibition of the microbial growth by microbial metabolite accumulates 

(Lefebvre et al. 2015). Finally, TIM-2 is computer-controlled, making it highly 

reproducible and easier to regulate temperature and pH to mimic the 

environmental conditions in the proximal colon. However, the major drawbacks 

of this system include the ability to mimic only the proximal colon (stomach and 

three parts of the small intestine) and lack of mucus, epithelial or immune cells 

(Lefebvre et al. 2015).  
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Figure 1- 6 Various types of in vitro simulators Figure summarises various types of bioreactor 
systems: A Batch-type simulator; B Single-stage chemostat-type simulator; C Simulator of the 
Human Intestinal Microbial Ecosystem (SHIME) (van de Wiele et al. 2015); D Microfluids-based in 
vitro system HuMix, where (a) assembled HuMiX platform; (b) exploded view of the HuMiX 
platform; (c) annotated schematic illustration of the key features in the HuMiX platform (Shah et al. 
2016); E Dynamic in vitro gastro-intestinal model of the colon TIM-2 where (a) peristaltic 
compartments containing faecal matter; (b) pH electrode; (c) alkali pump; (d) dialysis liquid circuit 
with hollow fibre membrane; (e) level sensor; (f) N2 gas inlet; (g) sampling port; (h) gas outlet; (i) 
‘ileal efflux’ container; (j) temperature sensor (Venema 2015) 

 

 Synthetic gut models as research tools to gut biology  

Building models, both theoretical and practical, is a crucial step in understanding 

how a system operates and what the principal drivers of the system are (Godfrey-

Smith 2006). In vitro gut systems can be used as a tool to study microbial 

communities in a controllable environment for mechanistic and molecular 

profiling without host cofounders. More advanced fermenters can be inoculated 

with microorganisms from different gut compartments to accurately replicate the 

microbial flora, such as in the SHIME model, allowing standardization of the 

system. Thus, these models provide results with high reproducibility and the 

ability to monitor microbiome composition not only in the lower intestine (van de 

Wiele et al. 2015). In order to improve the accuracy of the representation of the 

microbiome composition and lower variation between samples, tightly controlled 

sample handling and storage can be built into descriptive study design. 
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Furthermore, in vitro models enable collection of individual time-series data from 

multiple compartments to explore shifts in communities over time, identify 

interactions between microbial communities, and detect period signals (Coenen 

et al. 2020).  

It is now well established that the gastrointestinal microbiome has an impact on 

animal physiology, both in health and disease (Kostic et al. 2013). For example, 

in humans, numerous links have been observed between different diseases or 

syndromes and altered gut microbiomes, thus understanding how the gut 

microbiome can be manipulated is an important task that can aid in the 

development of new treatments for some conditions (de Vos and De Vos 2012). 

The microbiota can be manipulated by different types of agents, including 

prebiotics, probiotics, faecal transplants, drugs, feed, and others. In vitro systems 

allow samples to be collected before the simulation of infection, disease, or the 

addition of a disturbing agent, allowing evaluation of a control (zero time point) 

before any perturbation of the system. Furthermore, these systems allow the 

study of different dosages of pathogens, toxic or radioactive compounds that 

might be toxic to animals, or introducing foreign bacteria that have unpredictable 

effects on gut microbiome composition without ethical constraints (Costa and 

Ahluwalia 2019).  

Gut models can also be used to study different gut microbiome interactions. 

Firstly, as it was mentioned above, in vitro gut models allow easy access to 

samples that can be later analysed by fluorescent in situ hybridization. This 

experimental setup can highlight the interactions between different gut microbes, 

for instance, which microorganisms produce biofilms (Crowther et al. 2016).  To 

analyse the host-microbiome interaction in real-time (as they communicate with 

each other), the HuMiX system can be used (Shah et al. 2016). This type of 

approach can help to study how some microorganisms, such as Salmonella, can 

survive and interact with host gut cells. Furthermore, the analysis of host-

microbiome interaction can demonstrate how engineered commensal bacteria can 

be used to stimulate the intestinal cells to function as glucose-responsive insulin-

producing beta cells (Duan et al. 2008). Moreover, it is known that the gut 

microbiome is responsible for several vital metabolic functions, such as 

fermentation of non-digestible substrates, production of vitamins, short-chain 

fatty acids and amino acids, and bile acid biotransformation (Putignani et al. 
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2015). Finally, host eukaryotic organisms have likely co-evolved with gut 

microbiota, leading to symbiosis between them (Backhed 2005). This symbiotic 

relationship has a beneficial effect on the gut epithelium by helping to maintain 

the physiological homeostasis of the intestinal mucosa (Holmes et al. 2011). Thus, 

understanding the metabolic output of the microorganisms in the gut can provide 

insight into the relationship between the host and gut microbiome. This can be 

achieved by performing a metabolomics analysis of the samples from bioreactor 

systems containing only gut microorganisms.   

However, the lack of repeatability and reproducibility remain a major problem of 

current artificial gut models and are frequently criticised (Payne et al. 2012a). To 

overcome these problems, several steps have been taken. Firstly, stable and 

highly reproducible communities have to be developed to get similar results each 

run (Payne et al. 2012a). Secondly, to achieve within-run reproducibility, 

technical repeats must be run, and to achieve between-run repeatability the 

inoculum from the same donor has to be used. It was suggested that to achieve 

better biological repeatability the samples from different hosts should be pooled 

together, however, later this idea was rejected over concerns regarding inter-

microbial interaction that could favour the growth of specific microorganisms, 

leading to unrepresentative host-microbiota (Rajilic-Stojanovic et al. 2010). 

Furthermore, the consecutive testing of all error sources (e.g. medium 

preparation) have to be performed to assure that microbial community 

composition is not affected by these factors while shifting from in vivo to in vitro 

systems. Lastly, it is important to measure the inter-individual differences by 

using alternative biological replicates to ensure that the differences or similarities 

between different samples are sufficient enough to allow conclusions to be made.   

 Techniques used while working with in vitro gut 
systems 

 Monitoring microbial composition  

 Phenotype-based culture-dependent methods 

The main experimental goal of artificial gut models is to monitor how microbial 

community composition changes when exposed to different environmental inputs 

and biochemical stimuli (Verhoeckx et al. 2015a). Phenotype-based culture-
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dependent approaches were used for tracking microbial diversity change in faecal 

or intestinal samples to different experimental conditions prior to the advent of 

tractable molecular technologies (Hiergeist et al. 2015). Commonly, faecal or 

intestinal samples at different time points or from different conditions were 

plated on selective (e.g. MacConkey agar, Phenylethyl alcohol) and non-selective 

(e.g. Peptone-yeast extra-glucose, Plate count agar) media, and then bacteria 

were classified according to the selective growth on plates containing different 

growth media (Finegold et al. 1974, Lagier et al. 2012). After isolation, the 

microbial community change in different microbial isolates was analysed by 

different phenotypic tests, such as fatty acid methyl ester (FAME) analysis that 

allows comparing different samples by producing a fatty acid profile (Wall et al. 

2009). However, 40-90% of microorganisms cannot be isolated under laboratory 

conditions as culture-dependent methods cannot replicate the in vivo intestinal 

conditions, such as biochemical interactions between host cells and bacteria, and 

among the microbes themselves (Zoetendal et al. 2004, Nocker and Camper 2009).  

 Molecular methods 

Although phenotype-based culture dependent-methods are useful approaches to 

study in-depth physiology of the isolated microorganisms, these type of methods 

are time-consuming and not reliable to distinguish microorganisms to species and 

strain level (Gong and Yang 2012). This problem was overcome by introducing 

molecular (novel) approaches that allow accurate identification of species of 

unknown isolate by sequence analysis of small subunit ribosomal ribonucleic acid 

ribosomal RNA (SSU rRNA). The method to analyse these sequences was first 

developed by Woese et al. (1987), which help to identify, classify, and establish 

an evolutionary relationship between different organisms. This was followed by 

the establishment of databases containing SSU rRNA sequences, such as GenBank 

and the ribosomal database project (Benson et al. 2014). By having these tools, 

new methods to analyse and quantify the microorganisms in the gut were 

developed.  

 PCR and associated techniques 

Most molecular methods rely on amplification of target sequence (such as 16s rRNA 

amplicon) by using the polymerase chain reaction (PCR) to assess the occurrence 
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of particular taxa (by detecting presence or absence of the PCR product), or 

distinguish different taxa by analysing PCR product size (Gamper and Leuchtmann 

2007, Rodrigues-Luiz et al. 2017). PCR alone cannot be reliably used to quantify 

the DNA present in the bulk sample as the only way in which it is possible to 

quantify the results is by measuring band intensity on the agarose gel that can 

only give semi-quantitative results. Thus, traditional PCR has advanced from 

detecting the end-product of the reaction to the ability to measure the kinetics 

of the reaction during the exponential phase of PCR, allowing to quantify the 

amount of DNA present in the sample. This type of approach, known as 

quantitative PCR (qPCR), requires primers that can target all bacterial phyla (to 

quantify total bacterial load) or specific taxon level (to quantify the presence of 

the specific group of microorganisms). Thus, by using these specific primers, it is 

possible to simultaneously detect and quantify the minor populations of bacteria 

within a large population (Postollec et al., 2011). The qPCR approach combined 

with next-generation sequencing was successfully applied to detect and quantify 

the composition of the microbiota in different gut sections of piglets with different 

diarrhoeic status to the phyla and taxonomically related subgroups level 

(Hermann-Bank et al. 2013). The qPCR approach offers a quick, quantitative, and 

sensitive approach to analyse gut microbial communities, however, it suffers from 

various limitations, which are described at the end of this section.  

Fingerprinting is the technique which at the initial steps relies on amplification of 

the 16S gene by PCR and provides quick profiling of the diverse microbial 

community by visualising how many variants of a gene are present (assuming that 

each gene variant represents a different taxon in a microbial community). After 

the initial PCR, the products are then separated on polyacrylamide gel by applying 

temperature (TGGE) or chemical gradient (DGGE), leading to the separation of 

the sequences according to their thermal or chemical stability. The resulting 16S 

bands can then be eluted and analysed further by sequencing to identify which 

microorganism each band represents. Fingerprinting techniques include two major 

types: denaturing gradient gel electrophoresis (DGGE: used to analyse the quality 

of intestinal microbiota and monitor the progression of bacterial communities over 

time) and temperature gradient gel electrophoresis (TGGE: used to detect the 

most predominant bacterial flora) (Zoetendal et al. 1998, Favier et al. 2002). 

DGGE was successfully applied to analyse the microbial communities in a variety 
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of different samples, including human and animal intestines (Satokari et al. 2001, 

Kim et al. 2007). DGGE  was used to examine the microbial diversity and evaluate 

the stability of the microbial communities in the in vitro gut model SHIME 

(Possemiers et al. 2004). The main advantages of this technique include the 

capability to semi-quantitatively monitor the bacterial populations (provide the 

information on the range of different bacterial strains and their relativity), 

conduct the rapid analysis of the samples, and ability to reuse samples for further 

analysis.  

However, all PCR based techniques suffer from amplification bias (differences in 

the amplification efficiency of templates) and primer mismatch (Polz and 

Cavanaugh 1998, Acinas et al. 2005, Ruiz-Villalba et al. 2017). Furthermore, as it 

requires specific primers for each group of microorganisms or targets, it can only 

identify and quantify the known bacterial species or target sequence. Finally, 

general bacterial primers cannot identify all the components of the microbiome, 

such as viruses, archaea, and eukaryotes, thus requiring further analysis with 

specific primers targeting these microorganisms.  

 Flow cytometry 

Monitoring changes in bacterial community composition in complex microbiota by 

using molecular techniques based on the amplification of DNA can prove tedious, 

time-consuming, and expensive. To overcome this problem, flow cytometry (FC) 

can be used. FC is a rapid technique allowing the qualitative and quantitative 

study of mixed populations of cells (Buranda et al. 2011, Mulroney et al. 2017). 

The technique can distinguish and count cell types in suspension based on the 

difference in light scattering or fluorescence emission properties resulting from 

variances in cell size and membrane granularity (De Roy et al. 2012). The 

technique’s resolution to distinguish cell types is enhanced with the use of dyes 

or monoclonal antibodies binding cellular features such as surface-bound 

(membrane) or intracellular molecules and nuclear antigens thereby providing 

multiple distinguishing signals or traits (Adan et al. 2017). 

Even though FC was initially employed in the study of eukaryotic cell populations 

and used in applications such as cell proliferation and cell cycle stage analysis, it 

was gradually adapted to the study of prokaryotic cells (Darzynkiewicz et al. 2011, 
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Wlodkowic and Darzynkiewicz 2011). It is now routinely used to determine the 

total cell counts, perform size measurements, determine nucleic acid content, 

establish cell viability and activity, and to detect specific bacterial groups or 

species (Hammes and Egli 2010). For example, De Roy et al. compared FC and 

DGGE to detect changes in microbial community composition of drinking water 

caused by changing environmental factors concluding that FC is a faster and more 

accurate approach to determine and monitor changes in microbial community 

fingerprints (De Roy et al. 2012). Notably, a fluorescence in situ hybridization-

flow cytometry (FISH/FC)-based method was developed using traditional 

oligonucleotide probes targeting 16S rRNAs of type I and type II methanotrophs 

labelled with fluorescein or Alexa Fluor to detect and conduct enrichment 

experiments on type I and type II methanotroph populations from a natural 

sediment sample collected on the shore of Lake Washington (Kalyuzhnaya et al. 

2006) – thus merging two approaches: specific DNA oligomer labelling and 

individual cell-based counting from microbes.  

The automated (online) FC systems are also successfully used to analyse microbial 

community fingerprints in bioreactors. The simultaneous generation and 

interpretation of microbial community structure data can be used to detect early 

signs of contamination, or the growth of pro-biotic constituents. Furthermore, 

automated online FC systems are currently used in industrial settings requiring 

multiple successive fermentation processes, where a final product needs to meet 

specific quality standards, where fermenting microorganisms are responsible for 

the development of characteristic organoleptic properties of a product and to 

detect the presence of pathogenic or spoilage microorganisms (Caplice and 

Fitzgerald 1999, Sohier et al. 2014). For instance, in the dairy industry FC is 

employed to evaluate the quality of lactic acid bacteria starter cultures, raw 

materials, and the different stages of production processes, to monitor the 

fermentation processes and perform quality control during the production of beer, 

wine and drinking water as well as wastewater treatment (Ruszczynska et al. 

2007, Manti et al. 2008, Guzzon and Larcher 2015, Liu et al. 2016, Zhao et al. 

2017).  

Flow cytometry is characterised by short analysis times, high accuracy, no need 

for DNA extraction and amplification and the availability of a wide range of 

differential dyes and labelling strategies (Vives-Rego et al. 2000, De Roy et al. 
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2012). Although automated FC setups capable of measuring 14 parameters 

simultaneously are currently available, data analysis remains challenging 

especially when trying to follow population composition shifts in complex 

microbial communities or subpopulations in turbid cultures varying in viability, 

activity, and physiological state (Hammes and Egli 2010, Wilkerson 2012). The 

increasing future applicability of FC to complex fermenter setups is highly 

dependent on the development of statistically robust and reliable automated 

algorithms for FC data analysis.  

  Biomarkers of microbial activity  

The simplest and the most broadly used way to study microbial activity is by 

measuring gas production by microorganisms in the gut. For instance, this 

approach was applied in the in vitro batch-type system in which horse faecal 

inoculate was supplemented with different live yeast additives (Elghandour et al. 

2016). In this study, the total fermentation gas, methane, and carbon dioxide 

produced was used as an indicator for the fermentative activity in the faecal 

samples. Another tool used to study microbial activity is the measurement of 

enzymes, such as β-glycosidase (involved in the hydrolysis of plant polyphenol 

glycosides), β-glucuronidase (responsible for cleavage of glucuronidated hepatic 

dietary metabolites), and various polysaccharide-degrading enzymes that are 

involved in the metabolism of different dietary and endogenous compounds (Cole 

et al. 1985). The major problem with both approaches is that they only focus on 

the overall microbial activity rather than analysing the contribution of the 

individual bacterial types. To overcome this limitation, a more modern molecular 

method, qPCR, can be used; this approach utilises gene-specific primers that can 

be used to target and quantify the microorganism capable to performing specific 

activities in the gut, such as butyrate production (Louis et al. 2010). However, this 

technique has some limitations; for example amplification biases, experimental 

variability, and variable primer specificity (Smith and Osborn 2009).  

Other more recent tools for analysis of microbial activity involve the ‘-omics’ 

approaches. Metagenomics, metaproteomics and metabolomics are some of the 

new meta-omics approaches used to study the modulation of the gut microbiota 

in vivo. However, advances in in vitro gut models allow the use of these types of 

approaches to study microbiota in artificial guts as well. The use of metagenomics 
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to get insights into the microbial and genetic composition of the host gut 

microbiota allows a more accurate replication of the host microbiome in in vitro 

systems, and the ability to track the microbial community changes due to the 

different treatments (Malla et al. 2019). However, even though this type of 

approach allows the ability to identify the coding capacity of the microbiota and 

the community structure, it does not allow the identification of the microbial 

functionality. This problem can be overcome by using several different techniques 

in both in vivo and in vitro systems: metatranscriptomics (allows identification of 

microbial functionality changes in gene expression), metaproteomics (allows 

identification of the “function” information by studying the proteins produced by 

different bacteria) and metabolomics (allows identification of the metabolites of 

interest) (Vernocchi et al. 2016, Petriz and Franco 2017). Combining these 

different approaches in in vitro gut models can make them very useful testbeds 

for investigation of the effects of environmental factors, such as diet and drugs, 

on the gut microbiota in a controlled setting in a host. 

 SalmoSim – an in vitro gut system for Atlantic salmon 

While the aquaculture industry is expanding rapidly, our understanding of the 

factors that contribute to fish performance (such as optimal health and growth) is 

still very limited. Traditionally the impact of different food compositions of fish 

growth and performance are assessed using in vivo feed trials as a standard 

approach (Moldal et al. 2014, Ytrestøyl et al. 2015b, Egerton et al. 2020). These 

trials involve the use of thousands of fish, often fed suboptimal and untested 

formulations that can significantly impact fish welfare (Johansen et al. 2006, 

Weihe et al. 2018). Furthermore, frequent terminal sampling from the test cages 

leads to significant handling and associated stress (Humphrey 2007, Fast et al. 

2008). In addition to ethical concerns around feed trials, cost and availability are 

a major barrier to bringing new feeds to market. While there are over 3000 salmon 

farms in Northern Europe, there are only c.10 marine test sites for trialling new 

ingredients (Clarke and Bostock 2011, Boyd et al. 2020).  

In vitro gut model systems can be deployed as an alternative to feed trials, or a 

pre-screening tool to improve their efficiency and ethical propriety (Payne et al. 

2012b, Kim et al. 2016). We have developed a synthetic, continuous salmon gut 

microbial fermentation system, called SalmoSim, simulating salmon gut 
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compartments representing the generalized marine lifecycle stage. The SalmoSim 

project aims to provide an in vitro platform to study the link between the gut 

microbiota and digestion in Atlantic salmon. Once the system is fully set up and 

running it can be used for many different applications, such as testing how food 

affects gut bacteria, predict how feed additives help with feed digestion, or used 

as a test bed for drug delivery.  

The SalmoSim system can also deliver on all the “Three Rs” principles; to reduce 

harm to animals by replacing, reducing and refining animal studies (Russell and 

Burch 1959). SalmoSim can help with animal study Reduction by pe-screening 

different feed formulations or drug concentrations in SalmoSim prior to in vivo 

trials in order to minimise the number of experimental groups required in real 

salmon feed trials. SalmoSim can also help with animal study Refinement by 

conducting long term time course experiments by using samples only from a few 

fish rather than killing a lot of them at different time points. Finally, SalmoSim 

can help with relative Replacement of animal studies when testing different feeds 

and drugs, and it can also help with absolute Replacement when testing feed batch 

consistency (how each batch will affect fish). Finally, by using the SalmoSim 

system new diets absolutely replacing fish meal can be developed, leading to more 

a sustainable aquaculture sector, and fewer fish killed. 

 Thesis outline 

The work conducted in this thesis acts as a precursor to the development and 

design of the artificial salmon gut system SalmoSim. The work aims to define and 

determine the key parameters required to accurately simulate physiochemical 

conditions of the Atlantic salmon gut to sustain gut microbial communities within 

the artificial environment, build the system, and develop methods to analyse data 

generated from SalmoSim runs. Further, the work aims to address some 

fundamental questions relating to the system, such as identify the variability 

between the runs, and validate the system against an in vivo feed trial. Finally, 

the system aims to be used to test an existing pre-biotic used in aquaculture 

setting to analyse its effects on the microbial communities within SalmoSim. All 

these aims are addressed in the following Chapters of the thesis: 
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 Chapter 2 Developing and trialling the SalmoSim system to 
analyse microbial population dynamics. 

The literature reveals the key physiochemical parameters within the Atlantic 

salmon gut. The Method Development section lays out the range of operational 

parameters selected for simulation of the Atlantic salmon in an in vitro simulator, 

and the reasoning behind the selections. This chapter also describes the 

preliminary SalmoSim replicate study performed, in which two SalmoSim runs, 

both inoculated with the same starting inocula, were performed side by side. This 

type of experiment allows testing of the variability (experimental error) of the 

experimental runs caused by the system itself and to determine the ‘burn-in’ 

period to enable microbial communities to acclimatise to the simulator 

environment. Furthermore, this preliminary run acted as a useful pilot to identify 

future pitfalls and improvements allowing the improvement of SalmoSim runs for 

future chapters.  

 Chapter 3 SalmoSim: the development of a three-
compartment in vitro simulator of the Atlantic Salmon GI 
tract and associated microbial communities 

Prior to deploying an in vitro gut microbiome simulator to perform biological 

experiments, it should first be validated against a parallel in vivo experiment, to 

establish the degree to which the results from the experimental protocol within 

the artificial gut are generalisable to the in vivo situation. Thus, this chapter 

describes the study performed to validate the system against an in vivo feed trial 

with the aim to see if bacterial community response to the change in feed within 

in vitro system is similar to the in vivo study.  

 Chapter 4 Deploying an in vitro gut model to assay the 
impact of a mannan-oligosaccharide prebiotic, Bio-Mos®, 
on the Atlantic salmon (Salmo salar) gut microbiome. 

Mannose-oligosaccharide (MOS) pre-biotics are widely deployed in animal 

agriculture as immunomodulators as well as to enhance growth and gut health. 

Their mode of action is thought to be mediated through their impact on host 

microbial communities and the associated metabolism. This chapter presents a 

study in which Bio-Mos, a commercially available MOS pre-biotic, is assessed for 

potential use as a prebiotic growth promotor in salmonid aquaculture, using a 
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modified version of an established Atlantic salmon in vitro gut model, SalmoSim, 

and evaluates its impact on the host microbial communities.  

 

 Chapter 5 Contributions, Discussion and Conclusion 

Main results and contributions in this thesis are summarised and are discussed in 

this chapter. Future work is proposed that might build upon the results conducted 

in this thesis. These future perspectives include adapting SalmoSim system for 

other fish species, introducing digestibility to the SalmoSim system, and applying 

the developed system to understand microbial resistance transfer.  
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 Developing and trialling the SalmoSim 
system: architecture and parameters to analyse 
microbial population dynamics. 

 Introduction 

 Importance of the gut microbiome 

Animal guts contain dense, complex, and dynamic microbial communities that may 

not be merely a collection of passenger microorganisms, but rather active players 

in vertebrate immunity and physiology (McFall-Ngai et al. 2013, Murdoch and 

Rawls 2019). Microbes play many roles in the host's gut, including digestion and 

absorption of nutrients, energy harvest from non-digestible dietary components, 

the maintenance of intestinal homeostasis and preventing the propagation of 

pathogenic microbes by competing with them (Maslowski and MacKay 2011, Yu et 

al. 2012). It is also the case that microbial communities and processes can be 

modulated by consumption of different foods, dietary ingredients (prebiotics and 

probiotics) and drugs (Jernberg et al. 2010, Grootaert et al. 2011, Versalovic 

2013).  

The gut microbiota in fish has been shown to play a key role in health (van Kessel 

et al. 2011) and is dependent on fish species (Sullam et al. 2012, Li et al. 2014, 

Givens et al. 2015), life cycle stage (Giatsis et al. 2014, Ingerslev, von Gersdorff 

Jørgensen, et al. 2014, Zarkasi et al. 2014, 2016) and diet (Navarrete et al. 2013, 

Wong et al. 2013, Ingerslev, von Gersdorff Jørgensen, et al. 2014). It is believed 

that environmental sources have a much higher effect on aquatic vertebrate 

microbiomes compared to terrestrial vertebrates as aquatic vertebrates are in 

constant contact with the water (Austin 2006, Ringø, Løvmo, et al. 2010). 

However, a knowledge gap exists between determining the composition of the 

microbiome and understanding its function due to complex and variable ecology 

of teleost gastrointestinal tracts and unknown bacterial taxa, as well as complex 

interactions between the host, environment, and the gut microbiome (Nayak 

2010, Perry et al. 2020). 
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 SalmoSim – tool to study salmon microbiome 

The aquaculture industry in Scotland is dominated by production of Atlantic 

salmon, which has increasing significance both in terms of economics and food 

sustainability. The continuing decline in wild Atlantic salmon stocks has resulted 

in a rising demand for farmed fish as well as constant increase in fish consumption 

worldwide (Costello et al. 2020). However, the expansion of the Salmonid 

aquaculture industry is unsustainable due to two reasons: the reliance on over-

exploited wild fish stocks as the protein and lipid food source, andimpaired 

Salmonid gut health on alternative plant-based feed that is associated altering the 

microbiome (Krogdahl et al. 2003, Ytrestøyl et al. 2015a, Hemre et al. 2016). 

Thus, given that the fish microbiome is believed to play a pivotal role in regulating 

host immune system, health status and physiology (Nayak 2010, Romero et al. 

2014, Egerton et al. 2018, Xiong et al. 2019) as well as an altered fish gut 

microbiota being associated with diseases (Tran et al. 2018, Wang et al. 2018, 

Rosado et al. 2019), the analysis of various feeds and feed additives on gut 

microbial communities is becoming more common (Bozzi et al. 2021).  

To study the impact of the gut microbial diversity and composition on the digestion 

of the food or feed additives in vivo animal trials are usually performed. As 

described in Chapter 1 (Section 1.4.2) in vitro gut model systems offer an 

appealing alternative tool to mimic microbial activity and composition in different 

compartments in the gut without ethical constraints (Payne et al. 2012a, 

Verhoeckx et al. 2015b, Costa and Ahluwalia 2019). The advancement in 

technology of in vitro gut system simulators allows the study of complex gut 

microbial community composition and functionality in a simplified context, 

allowing well-controlled and repeatable conditions for the evaluation of microbial 

community response to various experimental treatments (Costa and Ahluwalia 

2019). One of the important factors to consider while designing these systems is 

inter-individual variation in gut microbial communities. These variations are 

widely observed in human studies, which demonstrate more between-person 

variation than within-person variation, with adults having an average unique 

microbial signature that is largely stable over time (Costello et al. 2009, Stearns 

et al. 2011, Human Microbiome Project Consortium 2012, Huttenhower et al. 

2012, Rajilić-Stojanović et al. 2013). This is also true in Atlantic salmon – our 
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previous work clearly shows high levels of interindividual variability in farmed 

(Heys et al. 2020a) and wild (Llewellyn et al. 2016) fish. It was reported, for 

example, that a single Lactobacillales OTU represented 96% of the microbiome of 

one individual Atlantic salmon which compared to a mean of only 3.5% relative 

abundance in the other fish from the same shoal in an aquaculture setting 

(Schmidt et al. 2016). Accounting for inter-individual variability is a key feature 

of any study that attempts to distinguish signal from noise in microbiome studies 

and adequate biological replication is vital in any experiment. This important 

consideration is overlooked by many well-established gut microbiome systems, 

such as the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), which 

uses inoculums from only one donor (Van Den Abbeele et al. 2010).  

 Requirements to sustain the gut microbial communities in 
an in vitro system 

A bioreactor is a vessel in which an optimum external environment (such as 

dissolved oxygen concentration, pH, temperature, mixing) is provided and 

controlled for a biological reaction or change to take place (Wang and Zhong 

2007). The in vitro reproduction of an accurate Atlantic salmon gastrointestinal 

microbiota is highly dependent on the physicochemical parameters that 

characterise the physiology of the three gut compartments to be simulated: the 

stomach, the pyloric caeca and the midgut (approximately 20 cm from the vent, 

which is suggested to be an analogue to the mammalian colon (Ng et al. 2005)). 

The choice of inoculum and the composition of growth media also represent key 

parameters in determining the development of a representative microbiota.  

 Physiochemical conditions 

Temperature is an important factor in determining and shaping the composition 

and function of animal gut microbiomes (Sepulveda and Moeller 2020). The farmed 

salmon characterised and sampled for the study described in this chapter were 

collected from the MOWI aquaculture facility in Loch Linnhe. This Loch displays a 

relatively stable seasonal cycle with temperatures reaching a maximum of 14.5oC 

in summer and dropping to a minimum of 6.6oC in the autumn after a high flow 

event (Rabe and Hindson 2017). MOWI also provided the water temperature charts 

containing data for the aquaculture pens in Loch Linnhe where the salmon were 
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collected. The water temperature during the period in which the salmon were 

culled (August) had a daily fluctuation of 12-14oC (Figure 2-1). Although teleost 

fish are considered poikilotherms, to understand whether the internal 

temperature of the stomach, pyloric caeca and midgut could be affected by 

microbial fermentation, the measurements of the internal temperature of the real 

salmon needs to be conducted.  

Another important factor to consider while building an artificial gut system is pH 

as choosing the right pH for each of the bioreactors will not only provide a 

condition resembling the natural environment within the salmon gut, but also help 

to expose feed to the stomach’s acidity and optimal environment for enzymatic 

activity (Beasley et al. 2015). Thus, measurements of the pH within different gut 

compartments needs to be conducted.  

It is believed that the aerobic and facultative anaerobic microorganisms in the fish 

intestine are more abundant than obligate anaerobes (Nayak 2010, Navarrete et 

al. 2012, Llewellyn et al. 2014a). Thus, the measurements of dissolved oxygen 

concentration (mg/L) inside of each gut compartments needs to be performed to 

ensure that the established dissolved oxygen conditions within each simulated gut 

compartment are adequate to sustain microbial communities.  
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Figure 2-1 Water Temperature of Aquaculture Pens in Loch Linnhe Measured by MOWI. 
Figure summarises daily water temperatures in the aquaculture pens where the salmon were 
collected from 01/07/2016 to 09/05/2017 provided by MOWI. The temperature measurements were 
taken almost every day. 

 

 Media composition  

The choice of media composition is a key factor in determining the resulting 

biodiversity, relative abundance, and population dynamics of the microbiota in 

the individual SalmoSim compartments. To avoid dehydration, salmon drink 

continuously in sea water, which they will swallow alongside their food bolus 

(Talbot et al. 1992). As such it is reasonable to assume that seawater and feed 

pellets should constitute the bulk of the media composition.  
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It is known that commensal microorganisms inhabiting fish guts can be split into 

two groups based on their attachment to the intestinal mucosa:  autochthonous 

(attached to the intestinal mucosa) and  allochthonous (do not adhere to the 

intestinal mucosa) (Llewellyn et al. 2014a, Givens et al. 2015, Gajardo et al. 2016, 

2017a). The autochthonous microorganisms can, directly and indirectly, shape the 

teleost immune system (Chi et al. 2014, Mladineo et al. 2016). Autochthonous 

microorganisms were also shown to respond differently to changes in diet when 

compared to the allochthonous group, with mucosa-associated intestinal 

microbiota showing higher resilience to variations in the diet composition (Li et 

al. 2021). Furthermore, in the M-SHIME model of the human gut microbiome, 

mucin-enriched K1 media nodules were used as a surface to enable biofilm 

formation by the autochthonous microorganisms in the bioreactor (Van den 

Abbeele et al. 2012). Based on this knowledge, the mucins and surface for biofilm 

formation should be added to the system to ensure the retention of autochthonous 

microorganisms. 

 Bile acid supplementation 

The primary function of bile acids (produced by the liver) in vertebrates is the 

solubilisation of dietary fats in the intestine, especially by phosphatidylcholine 

(predominant phospholipid present in bile at high concentration) that plays a 

pivotal role in the digestion of fats (Hofmann et al. 2010, Hansen, Kortner, 

Krasnov, et al. 2020). However, they also have additional functions that include 

cholesterol homeostasis, antimicrobial effects and endocrine signalling (Houten et 

al. 2006, Hofmann and Hagey 2008). Furthermore, insufficient dietary bile salt 

choline has been shown to lead to lipid malabsorption syndrome in the Atlantic 

salmon gut, which is characterised by a pale and foamy appearance of the 

enterocytes of the pyloric caeca as a result of lipid accumulation (Hansen, 

Kortner, Krasnov, et al. 2020). The research indicates a bile acid-gut microbiome 

axis, in which the host and microbiome appear to regulate bile acid pool size, 

which if reduced, is associated with bacterial overgrowth and inflammation, thus 

making bile an important part of the gut environment for microbiome formation 

(Ridlon et al. 2014). For instance, it was found that low levels of bile acid entering 

the intestine are linked to the bacterial dysbiosis observed in cirrhosis, suggesting 

that bile acids affect the structure of the microbiota in the human gut (Kakiyama 
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et al. 2013). Considering the importance of the bile salts, it should be added to 

the system simulating Atlantic salmon gut.  

 Flow rate 

The final important parameter required to decide upon for the SalmoSim system 

setup is the flow rate in between the reactors, as it determines how fast the 

bacteria are transferred from one reactor vessel (representing a gut 

compartment) to the other. It is known that temperature is a key parameter in 

determining the gut evacuation time (the time needed to remove the feed from 

the stomach and gut completely), whichin adult salmon is at least 5-7 days long if 

fish are grown at 4oC. This time is two times longer than fish grown at 13oC 

(Waagbø et al. 2017). Thus, depending on the gut temperature of the Atlantic 

salmon, the flow rate can be calculated.  

 Aims and objectives 

As covered in the previous section, an in vitro system, designed to study gut 

microbial communities, needs well-controlled and repeatable conditions, in order 

to sustain the microbial communities added to it. Motivated by this, the main aim 

of this chapter was to measure the physiochemical conditions (temperatures, pH, 

dissolved oxygen) within the real salmon gut compartments. As a preliminary test 

of the system, we also performed a trial SalmoSim run to assess the impacts of 

selected conditions and aims to explore three different objectives. Firstly, this 

study aims to identify differences between different replicate runs within 

SalmoSim system. Prior to accounting for inter-individual variation between 

microbiome samples in an experimental design (e.g. Chapters 3&4), the system 

needs to be set up and the potential for technical variation within the SalmoSim 

system must be addressed.  Stochastic colonisation patterns in early life are 

thought to be an important driver of microbial community assembly in vertebrates 

(e.g. Furman et al., 2020; Martínez et al., 2018). Similarly, community assembly 

in SalmoSim may follow different routes despite a largely identical founding 

population, if, for example, nutritional niches are colonised in a different order 

between replicates (Pereira and Berry 2017). As such, this replicate run 

experiment aims to indicate if the SalmoSim system generates results which are 

robust, or noisy (Naegle et al. 2015). Secondly, this study aims to inspect bacterial 
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dynamics within SalmoSim system over time with respect to inoculum: Prior to 

deploying an in vitro gut microbiome simulator to test the effect of experimental 

procedure on the microbial communities within the simulator, steady-state 

microbial communities need to be established to ensure that results due to 

experimental treatments are not confounded with bacterial adaptation to an in 

vitro environment (Possemiers et al. 2004). Thus, this trial replicate run 

experiment aims to determine the time it takes for bacterial communities to reach 

steady-state conditions in our in vitro gut model. Finally, Firstly, this study aims 

to identify differences or similarities between different microbial communities 

inhabiting the different gut compartments simulated in SalmoSim: Previous 

attempts to map compositional differences between the microbial communities 

of salmon gut compartments indicate significant divergences (Gajardo et al. 

2017b, Heys et al. 2020b). Thus, we aim to identify if any of these differences are 

observed within the SalmoSim system.  

 SalmoSim method development 

 Measuring physiochemical conditions in real salmon 

To determine the physiochemical conditions (temperature, dissolved oxygen, pH) 

within three different gut compartments (stomach, pyloric caecum, and mid gut), 

five starved farmed adult Atlantic salmon from the MOWI aquaculture facility in 

Loch Linnhe were fished out and euthanized. Average temperature measurements 

were taken over two minutes (in 20 second intervals) in all of the fish (n=5 for 

stomach, n=3 for pyloric caeca, and n=3 for mid gut compartments – n=3 rather 

than n=5 was used for the latter two due to probe breakage). The pH was 

measured using a semi-solid pH probe in corresponding gut compartments (n=5 

fish per gut compartment). Finally, average measurements of dissolved oxygen 

concentration (mg/L) inside of each gut compartment (n=3 fish per gut 

compartment – n=3 rather than n=5 was used due to probe breakage) was 

performed using a FireSting monitor and probe (PyroScience, Aechen, Germany) 

over two minutes (in 20 second intervals) in all the fish. 
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 Performing trial replicate runs 

In order to test running conditions in practice, three identical trial replicate 

reactor runs were planned to be performed, however due to system malfunction 

only two runs were completed successfully. Materials constraints at the 

Environmental Microbiology Laboratory, School of Engineering, necessitates that 

replicates within this three-compartment had to be undertaken in series. As such, 

two identical back-to-back SalmoSim runs were performed, using the inoculum 

sampled from a single adult Atlantic salmon from marine cages at an aquaculture 

farm site at Corran Ferry, near Fort William, Scotland, in autumn 2017.  The 

SalmoSim system was fully cleaned up, autoclaved, and reassembled in-between 

runs.  

 Media preparation 

SalmoSim feed media was prepared by adding the following into a 2 litre Duran 

bottle; 35 g/L of Instant Ocean® Sea Salt (Loch Linnie salinity 35 ppt as reported 

by Rabe and Hindson, 2017), 10 g/L of the Fish meal feed (Table 3-1) used in MOWI 

feed trial in Averøy, Norway, ground using a coffee grinder (150W Andrew James 

Electric Coffee Grinder) and 2 L of deionised water. Furthermore, 1 g/L freeze-

dried mucous was added, which was collected by squeezing from the pyloric 

caecum compartments of multiple adult starved Atlantic salmon at the marine 

cages at an aquaculture farm site at Corran Ferry (different individuals from 

SalmoSim inoculum). This mucous was processed in a vacuum freeze-drier 

overnight to produce a powdery mixture (contains mucous, pancreatic secretions, 

mucous, bile, blood, epithelial cells, bacteria, etc.) that was stored at -20oC. This 

media was then autoclaved, followed by sieving of the bulky flocculates, and 

finally subjected to a second round of autoclaving. Once the feed bottle had 

cooled, the feed bottle cap was exchanged inside the laminar cabinet to keep 

feed media sterile.  

 SalmoSim system preparation 

Three Applikon MiniBio 500 reactors were filled with four cubes (dimension: 1 cm 

x 1 cm x 1 cm made from aquarium sponge filters (Liannmarketing Aquarium 

Biochemical Cotton Filter Foam Fish Tank Sponge)) used as a surface for biofilm 
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formation. The Bioreactors were then assembled by attaching appropriate tubing 

and probes (pH (8 mm classic pH sensor), temperature (Pt-100 sensor), and 

dissolved oxygen (8 mm classic polarographic DO2 sensor)), and autoclaved. 

Autoclaving was followed by attaching reactor vessels to the stands and MyControl 

system, connecting feed, acid and base bottles, and filling the reactors with 400 

ml of prepared feed media. The SalmoSim reactors were connected in series 

running anaerobically, representing three Atlantic salmon gut compartments: 

stomach, pyloric caeca, and mid gut (Figure 2-2). Once the system was set up, it 

was left to run for about 24 hours to adjust the temperature, pH, and oxygen 

concentration (all physiochemical conditions were adjusted to represent values 

measured in real salmon in section 2.2.1) without the feed transfer.  
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Figure 2-2 SalmoSim system set up using Applikon MiniBio 500. Figure illustrates: A 
schematic representation of SalmoSim; B photograph of constructed SalmoSim system with labels. 

 

 SalmoSim inoculation 

A single adult starved farmed Atlantic salmon (3 to 5 kg) from a marine cage at an 

aquaculture farm site at Corran Ferry, near Fort William, Scotland, in autumn 2017 

was dissected using aseptic technique aerobically, and samples of gut content 

from three different gut compartments (stomach, pyloric caecum, mid-intestine) 

were opened, scraped, and collected into 15 ml falcon tubes containing 15% 

glycerol, following long term storage in a -80oC freezer. The SalmoSim system was 
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inoculated using a 1 ml homogenate of the scrapings of the corresponding 

individual compartments, suspended in 1 ml of 35 g/L Instant Ocean® Sea Salt 

solution.  

 Initial pre-growth 

To establish the inoculum for the different trial replicate reactor runs, the 

microbial communities within inoculum from real salmon were pre-grown inside 

the SalmoSim system for four days without any media transfer (to increase the 

quantity/concentration of bacterial populations, prevent sampling bias, and 

reduce the likelihood of ‘washout’). After this period, three 50 ml falcon tubes 

for each reactor vessel (nine tubes in total), were filled with 30 ml of the contents 

from each bioreactor and centrifuged for 10 minutes at 5000 rpm. Centrifugation 

was followed by the removal of the supernatant from each falcon tube, snap 

freeze of the pellet in liquid nitrogen for 5 minutes, and long-term storage in a -

80oC freezer.  

 Trial replicate runs   

Each technical replicate the experiment was inoculated with the 30 ml pre-grown 

inocula (described in section 2.2.2.4) and run continuously for a 20-day period. 

During this experiment the reactor vessels were maintained at the temperature 

determined in section 2.2.1, controlled using an electrical cooling jacket via 

bioreactor wall; dissolved oxygen content was kept at the concentration 

determined in section 2.2.1 via a 20-minute daily purge with nitrogen gas, and pH 

was kept stable in each bioreactor by the addition of 0.01 M NaOH and 0.01 M HCl 

(specific for each bioreactor representing different gut compartments, as 

determined in section 2.2.1). Temperature, dissolved oxygen, and pH were all 

continuously monitored using Applikon probes and the bioreactor content was 

mixed constantly at 300 rpm using marine type impellers. The transfer rate of 

slurry in between reactor vessels during the experiment was 238 ml per day. 

Finally, every day 0.5 ml of filtered bile and 1 ml of autoclaved 5% mucous solution 

were added into the reactor, simulating pyloric caecum compartment (different 

batches of bile and mucous were used for different runs).  
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 Sampling for DNA-based analyses 

Samples from initial inoculums (before pre-growth) were collected to provide the 

baseline: one sample per gut compartment. Once the SalmoSim main experiment 

was started, sampling from each bioreactor vessel was performed every second 

day throughout the 20-day run period (10 samplings in total). The SalmoSim 

samplings were achieved by collecting 30 ml of the bioreactor contents (less than 

10% of the total bioreactor volume - the maximum volume of sampling without 

disturbing microbial community structure (Obom et al. 2013)) into 50 ml falcon 

tubes, centrifuging them for 10 minutes at 5000 rpm speed, and freezing the 

pellets in a -20oC freezer.  

 Measuring bacterial population dynamics 

 Genomic DNA extraction 

Pellets of all samples, stored in -20oC after each sampling point were defrosted 

on ice and combined with 1/4" Ceramic Sphere and Lysing Matrix A Bulk (Garnet), 

and vortexed for 10 minutes (including the initial inoculums). Later, the protocol 

in the "QIAamp® DNA Stool Handbook June 2012" was followed from step 4 

(Qiagen, UK), finishing in DNA elution in 200 µl of the elution buffer. 

 NGS library preparation  

The diluted DNA samples were amplified by PCR with 27F and 338R primers 

targeted at the V1 region of the 16S rRNA gene for 20 cycles at 55oC annealing 

temperature (McGovern et al. 2018) in triplicates to correct to PCR bias (Polz and 

Cavanaugh 1998). After the triplicate reactions were pooled into one, their 

concentration was measured by using Qubit® (Life Technologies, 2015), and all of 

them were diluted to 5 ng/µl by using microbial-free water. After, barcoding PCR 

was performed at 60oC annealing temperature for eight cycles. The DNA clean-up 

followed this using magnetic beads according to the "Agencourt AMPure XP PCR 

Purification" protocol (Beckman Coulter, 2016). The cleaned-up DNA was eluted 

in 40 µl of the elution buffer and then quantified by using Qubit® (Life 

Technologies, 2015). All the PCR products were diluted to 10 nM concentration, 

pooled together, and sent for HiSeq 2500 sequencing carried out by Novogene 

(Beijing, China) . 
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 Analysis of NGS data using bioinformatics 

NGS data was analysed as described in Chapter 3 (Kazlauskaite et al. 2020). In 

short, two alpha diversity metrics, effective microbial richness and effective 

Shannon diversity, were calculated by using Rhea pipeline (Lagkouvardos et al. 

2017a) and visualised by using microbiomeSeq package based on phyloseq package 

(McMurdie and Holmes 2013, Ssekagiri et al. 2017). 

Principle Coordinates Analysis (PCoA) was performed by using microbiomeSeq 

package based on phyloseq package (Love et al. 2017, Ssekagiri et al. 2017) with 

Bray-Curtis dissimilarity measures calculated by using the vegdist() function from 

the vegan v2.4-2 package (Oksanen et al. 2013). Microbial composition (25 most 

common genera) amongst different SalmoSim runs and compartments over 

replicate experiments were determined using the phyloseq package and plotted 

in bar plots using the ggplot2 package.  

These datasets were then used to compute ecological distances (a measure of 

distance between OTUs based on different dimensions determined by the method 

) by using Bray-Curtis (based on abundance or read count data) and Jaccards 

(based on presence/absence of OTUs between samples) methods using the 

vegdist() function from the vegan v2.4-2 package (Oksanen et al. 2013), and 

phylogenetical distances were computed for each dataset using the GUniFrac() 

function (generalised UniFrac) from the Rhea package at  0% (unweighted), 50% 

(balanced) and 100% (weighted) weights within the phylogenetic tree (weight 

identifies the level of abundance of each OTU taken into account) (Lagkouvardos 

et al. 2017a). Finally, a permutational multivariate analysis of variance 

(PERMANOVA) using calculated ecological and phylogenetic distances was 

performed to determine if the separation of selected groups is significant as a 

whole and in pairs (Anderson 2001). 

 Results 

 Physiochemical conditions within the real salmon gut 

The results suggested that the internal temperature of all measured gut 

compartments (stomach, pyloric caeca, and midgut) in the real adult salmon was 
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approximately 12oC (Figure 2-3), and dissolved oxygen inside all gut compartments 

was anaerobic (dissolved oxygen concentration less than 0.05 mg/L) (Figure 2-4). 

The measured pH in each gut compartment is summarised in Figure 2-5, which 

indicates that the stomach had an acidic environment (pH 4.0), the mid intestine 

had a slightly basic environment (pH 7.6) whereas the pyloric caecum 

compartment displayed a neutral pH (pH 7.0). 

 

Figure 2-3 Measured Temperature of separate gut compartments within real Atlantic salmon. 
Figure summarises the measured temperatures of the distinct gut compartments: stomach (n=5), 
pyloric caeca (n=3), and midgut (n=3). The average temperature measurements were taken over 
two minutes every 20 seconds in all of the fish.  
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Figure 2-4 Measured Dissolved Oxygen of separate gut compartments within real Atlantic 
salmon. Figure summarises the measured dissolved oxygen of the distinct gut compartments. The 
average dissolved oxygen for all gut compartments was measured in three fish. The dissolved 
oxygen measurements were taken over two minutes (in 20 second intervals) in all the fish. 

 

 



Chapter 2 Developing and trialling the SalmoSim system: architecture and 
parameters to analyse microbial population dynamics.

  45 
Figure 2-5 Measured pH of separate gut compartments within real Atlantic salmon. Figure 
summarises the measured pH of the distinct gut compartments in 5 different fish.  

 

 Differences between replicate runs within the SalmoSim 
system 

A PCoA plot (Figure 2-6) visualising bacterial communities within different gut 

compartments (stomach, pyloric caeca, and midgut) and samples (replicate runs 

and inoculums) indicates that the major driver for microbial differences is the 

SalmoSim gut compartment (stomach being the most dissimilar from the other gut 

compartments) and not the replicate run (indicating similar bacterial composition 

patterns within the same SalmoSim gut compartment). This was visually confirmed 

by the taxa plot in Figure 2-7, whichshows that inter-gut compartment differences 

are more visually observable than between the two replicate runs. However, the 

alpha diversity metrics indicated that the second replicate run (run 2) showed a 

visually higher number of OTUs and bacterial diversity compared to the first 

replicate run (run 1) in all three different SalmoSim compartments (Figure 2-8). 

Furthermore, over the experimental run, both alpha diversity metrics increase in 

the pyloric caecum compartment within both runs, however, a decrease in these 

metrics is seen in the mid gut compartment within run 1, and no change within 

run 2. Finally, within the stomach compartment the effective richness increases 

in both runs over the course of the experiment (more gradual increase in run 1), 

while the effective Shannon diversity increases in run 1 and decreases in run 2. 

Finally, Table 2-1 indicates that when using the full dataset (data from days 2-20) 

in total 254 OTUs were shared between both runs. These OTUs account for >99.9% 

of the total reads in both runs. Furthermore, Table 2-1 also indicates that when 

using the data from only the last three time points (days 16-20 – once communities 

had over 2 weeks to adapt to the SalmoSim system), 128 OTUs were found to be 

shared between both runs, which account for >99% of the total reads in both runs. 

These results suggest that any differences between the runs are driven by rare 

OTUs accounting for less than 1% of total reads in both SalmoSim replicate runs.  
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Figure 2-6 PCoA plot visualising bacterial communities within different gut compartments 
(stomach, pyloric caeca, and midgut) and samples (replicate runs and inoculums). Figure 
visualises principal-coordinate analysis (PCoA) plot for Bray-Curtis dissimilarity measures for 
different samples (different shapes: Inoculum, replicate runs 1 and 2) and different SalmoSim gut 
compartments (different colours: S: stomach (red), PC: pyloric caeca (green), MG: midgut (blue)).  
Dim 1 is principal coordinate 1 and Dim 2 is principle coordinate 2.  
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Figure 2-7 Microbial composition (25 most common genus) amongst different SalmoSim 
runs and compartments over replicate experiments. Figure visualises microbial composition 
within 3 different SalmoSim and real salmon (Inoculum) compartments over time in 2 different 
replicate runs. The different sample types are represented by the labels on the x-axis: MG – 
midgut, PC – pyloric caeca and S – stomach. Labels in green represent initial inoculum from the 
real salmon, labels in red and blue - samples from replicate runs 1 and 2, respectively.   
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Figure 2-8 Calculated alpha-diversity metrics within SalmoSim system over time in different 
gut compartments and SalmoSim replicate runs. The figure represents different alpha diversity 
outputs at different sampling time points (days) from SalmoSim system at different SalmoSim gut 
compartments (stomach (S) – blue, pyloric caecum (PC) – green, mid gut (MG) – red) and different 
replicate SalmoSim runs (circle/solid line – first SalmoSim run, triangle/dashed line – second 
SalmoSim run). Time point 0 represents microbial community composition within initial SalmoSim 
inoculum from the real salmon, time points 2-20 identifies samples from SalmoSim system during 
replicate experiment. A represents effective richness (number of OTUs), and B represents effective 
Shannon diversity. 

 

Table 2-1 Shared number of OTUs and their corresponding proportion of total reads between 
two SalmoSim replicate runs in all time points and final time points alone. Table compares 
number of samples, OTUs, reads for each SalmoSim replicate run, as well as number of shared 
OTUs and their reads within each SalmoSim replicate run within two datasets: full dataset 
(containing all sampling time points: days 2-20) and final timepoints dataset (containing data 
from time points 16-20). It also summarises what percentage of a given group of samples' total 
reads came from the shared OTUs (OTUs present in both runs). 

 Full dataset 
Final timepoints 

dataset 

Run 1 Run 2 Run 1 Run 2 

Number of 
OTUs 

370 342 232 179 

Number of 
reads 

3,348,092 1,586,200 998,581 221,938 

Number of 
shared OTUs 

254 254 128 128 

Shared reads 3,346,090 1,584,990 992422 220891 

% shared 
reads 

99.94% 99.92% 99.38% 99.53% 
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 Bacterial dynamics within the SalmoSim system over time 

Figure 2-9 indicates that effective richness (number of OTUs) and effective 

Shannon diversity remained largely static throughout each replicate run regardless 

of gut compartment, with no observed visual pattern. However, Figure 2-9 

indicates that in the majority of cases (apart from Effective Shannon diversity in 

stomach compartment) the effective richness and Shannon diversity dropped after 

inoculum introduction (time point 0) to the SalmoSim system. This was visually 

confirmed by taxa plots in Figure 2-7 that identifies loss of taxa from inoculum to 

SalmoSim system, such as Mycoplasma in the pyloric caeca and mid gut 

compartments. 

. 

 

Figure 2-9 Calculated alpha-diversity metrics in different SalmoSim compartments over 
time. A represents effective richness (number of OTUs), and B represents effective Shannon 
diversity. S: stomach (blue), PC: pyloric caeca (green), MG: midgut (red). Time point 0 represents 
microbial community composition within the initial SalmoSim inoculum from the real salmon, time 
points 2-20 identify samples from the SalmoSim system during replicate experiments. A represents 
effective richness (number of OTUs), and B represents effective Shannon diversity. 

  

 

 

 Comparison between different SalmoSim compartments 

 
Figure 2-8 indicates that in both SalmoSim replicate runs the effective richness 

and effect Shannon diversity was higher within the stomach compartment 



Chapter 2 Developing and trialling the SalmoSim system: architecture and 
parameters to analyse microbial population dynamics.

  50 
compared to pyloric caeca and mid gut compartments, especially at the later time 

points. Figure 2-7 also indicates that in both runs the pyloric caecum and mid gut 

compartments were dominated by Serratia, but the stomach compartment in the 

first and second SalmoSim replicate runs were dominated by Paenibacillus and 

Vagococcus genera, respectively. Beta diversity analysis using both ecological and 

phylogenetic distances identified statistically significant differences between all 

three SalmoSim compartments using the full dataset (Table 2-2). However, once 

the final dataset (containing only stable time points: once bacterial communities 

had over two weeks to adapt and grow within the SalmoSim system) was used for 

the analysis, the difference between pyloric caeca and midgut compartments 

were not statistically different in both ecological and phylogenetic terms, but the 

statistical difference between stomach and the rest of gut compartments 

remained (Table 2-2).  

Table 2-2 Beta diversity comparisons of microbial composition between different SalmoSim 
compartment. The table summarises different beta-diversity analysis outputs calculated by 
using different distances: phylogenetic (unweighted (0%), balanced (50%) and weighted (100%) 
UniFrac) and ecological (Bray-Curtis and Jaccard’s), between different SalmoSim compartments. 
The analysis was performed for 2 different datasets: Full that contained all the data collected, 
and Final – containing data only from last time points 16, 18 and 20. A permutational 
multivariate analysis of variance (PERMANOVA) by using phylogenetic and ecological distances 
was performed to determine if the separation of selected groups is significant as a whole and in 
pairs. Numbers represent p-values, with p-values <0.05 identifying statistically significant 
differences between compared groups. 

Test Dataset S vs PC 
S vs 
MG 

PC vs 
MG 

UniFrac 

unweighted 
(0%) 

Full 0.001 0.001 0.001 

Final 0.012 0.002 0.086 

balanced 
(50%) 

Full 0.001 0.001 0.001 

Final 0.006 0.001 0.219 

weighted 
(100%) 

Full 0.001 0.001 0.002 

Final 0.003 0.002 0.611 

Bray-Curtis 
Full 0.001 0.001 0.038 

Final 0.003 0.003 0.605 

Jaccard's 
Full 0.001 0.001 0.007 

Final 0.003 0.001 0.363 

 

 Discussion 

 Physiochemical conditions within real salmon gut 

The temperature within each of the real salmon gut compartments was 

determined to be around 12oC, which can be explained by the fact that teleost 
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fish are poikilotherms, thus their temperature is determined by the surrounding 

environment temperature, which in Loch Linnhe was around 12-14oC during the 

period in which samples were taken, as summarised in Figure 2-1 (Sigholt and 

Finstad 1990, Rabe and Hindson 2017). Thus, the SalmoSim system should be 

operated at 12oC.  

In the real salmon the stomach was found to have an acidic environment (pH 4.0), 

the mid intestine was found to have a slightly basic environment (pH 7.6) whereas 

the pyloric caecum compartment displayed a neutral pH (pH 7.0), which 

corresponds to previously described values (Bravo et al. 2018). Thus, the 

corresponding SalmoSim gut compartments should be kept at the determined pH 

values by the addition of acid and base.  

Finally, we identified that the environment inside all gut compartments is 

anaerobic (dissolved oxygen concentration less than 0.05 mg/L). Based on these 

data, the entire SalmoSim system was kept anaerobic by daily 20-minute flushing 

of the headspace of the respective compartments with N2 gas mixture and tracking 

dissolved oxygen levels within bioreactors to make sure that oxygen levels do not 

rise.  

 Differences between different replicate runs are driven by 
rare OTUs 

While statistical analysis could not be performed on the current experiment due 

to insufficient replication as a result of a failure during one of the planned 

triplicate runs, visual analysis of the results indicates some differences between 

the two replicate runs. However, the major drivers of differences are rare OTUs, 

which comprise less than 1% of total reads in both runs. One of the sources of 

these OTUs may be due to the variability in sampling times. Even though sampling 

was performed every two days during both runs, they were sometimes performed 

at different times of the day, and it is known that at the initial days of a bioreactor 

run, bacterial dynamics fluctuate not only daily, but hourly as well (Silverman et 

al. 2018). Furthermore, during each sampling, most of the bacteria captured are 

planktonic with just a few biofilms collected randomly, meaning that during each 

sampling round different bacterial populations might be captured due to spatial 
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heterogeneity of microorganism sampling, especially during early biofilm 

formation (Christensen et al. 2018). Finally, the added bile and mucous were 

collected in batches from several different fish, meaning that their origin (fish 

from which they came) was different during both runs in this study. These 

variabilities between runs are not uncommon, for instance while using the same 

pool of biological replicates to inoculate several runs of the in vitro Chicken Gut 

Model, microbiomes still show variability between runs (Card et al. 2017). These 

limitations can be overcome by adapting SalmoSim protocols (such as producing a 

pool of bile and mucous, and sampling at the same time of the day), taking run as 

a random effect during statistical analysis, or running duplicate experiments in 

parallel at the same time, such as the TWIN-SHIME version of the SHIME system 

(García-Villalba et al. 2017).  

 Bacterial dynamics within the SalmoSim system over time 
with respect to inoculum 

In the findings from the simulator of the human intestinal microbial ecosystem 

(SHIME) in which it was found that it takes around 2 weeks (14 days) for bacterial 

communities to stabilise and around 3 weeks to reach functional stability 

(Possemiers et al. 2004). This means that in order for SalmoSim to have stable 

microbial communities the system has to run for at least 2 weeks prior to any 

experimental variables being changed. However, due to insufficient replication, 

the statistical confirmation of this observation is absent in this study, with only 

visual observation of largely static alpha diversity metrics measurements 

throughout the replicate runs regardless of gut compartment, with no observed 

visual pattern.  

We also visually determined that in the majority of cases (apart from Effective 

Shannon diversity in the stomach compartment) the effective richness and 

Shannon diversity dropped after inoculum introduction to the SalmoSim system. 

Our taxa plots confirm this, identifying a loss of some taxa when comparing inocula 

to the SalmoSim system, such as Mycoplasma in the pyloric caeca and mid gut 

compartments. This could be explained by the fact that inocula from real salmon 

were collected under aerobic conditions, while the fish intestine is abundant in 

microorganisms that are facultative anaerobes, such as Mycoplasma (Holben et al. 
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2002, Nayak 2010, Navarrete et al. 2012, Llewellyn et al. 2014a). Furthermore, 

while glycerol was used in this study to store initial inocula as cryoprotectant to 

preserve cell viability following  defrosting (Hubálek 2003, Waite et al. 2013), it 

has been shown that once bacterial samples stored in glycerol are thawed, the 

stored bacteria rapidly use the glycerol as a source of energy, modifying their 

community structure (Prates et al. 2010). Moreover, in another study it was shown 

that once the rumen digesta from cows was exposed to glycerol, the microbial 

adaptation was immediate; increasing n-butyrate proportions at the expense of 

acetate (Rémond et al. 1993). Thus, even though storing microbial samples in 

glycerol preserves the diversity of bacterial communities, this method is 

considered inadequate for fermentation studies (Prates et al. 2010). To overcome 

these limitations, inoculum samples should be collected and processed under 

anaerobic conditions and a snap freezing method in liquid nitrogen should be used 

as an alternative before long term storage at -80oC, as this method has been shown 

to contribute towards a maximum recovery of cells after defrosting (Dan et al. 

1989). 

 Microbial communities differ between stomach and other 
compartments of the SalmoSim system  

Our previous microbiome study found that microbial composition within stomach 

and mid gut compartments of farmed Atlantic salmon were not statistically 

different, while the pyloric caecum composition was statistically different due to 

higher enrichment in the Mycoplasma genus compared to other gut compartments 

(Heys et al. 2020b). However, in this study we found that while the pyloric caecum 

and mid gut compartments are not statistically different, the microbial 

composition of the stomach compartment is significantly different from both the 

pyloric caecum and mid gut. This could be explained by the fact that 

physiochemical conditions within the stomach are vastly different from conditions 

in the pyloric caecum and mid gut compartments (pH within the stomach is 4, 

pyloric caecum and mid gut are 7 and 7.6, respectively). While some bacteria, 

such as Bacteroides, can grow over a wide range of pH values (Duncan et al. 2009), 

thus being able to grow in different gut compartments, others, such as some 

species of Veillonella and Streptococcus, are inhibited by low pH (Bradshaw and 

Marsh 1998). Furthermore, the differences in pH determine the distribution of 
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major bacterial fermentation end product production, such as butyrogenic 

reactions, which occur at pH 5.5 (Walker et al. 2005), propionate-production, 

which usually occurs at around pH 7 (Belenguer et al. 2007), and acetogenic 

reactions, which occur at a wide range of pH depending on the microbial species 

producing them (Belenguer et al. 2007). Thus, these differences in pH 

requirements for bacterial growth and fermentation lead to differences in 

microbial composition within the stomach compartment compared to the pyloric 

caecum and mid gut compartments in SalmoSim.  

 Summary 

In this methodological development chapter, via experimentation, literature 

review, and data from industry partners, physiochemical conditions in the 

SalmoSim system were estimated and established, including temperature, pH, 

dissolved oxygen, flow rates and more. Furthermore, crude extract preparations 

are described. This chapter lays the foundation for experimentation in SalmoSim 

described in the remainder of the thesis. We also describe a preliminary SalmoSim 

replicate run study in which two identical SalmoSim replicate runs were 

performed. Unfortunately, statistical analysis could not be performed on the 

current experiment due to insufficient replication as a result of a failure during 

one of the triplicate runs. We assayed the variability (experimental error) 

between two identical twenty-day experimental runs of the system via the next 

generation sequence profiling of the 16S rRNA gene. Our results suggest visual 

differences between the SalmoSim system replicate runs using alpha diversity 

metrics. However, shared OTU analysis indicated that these differences were 

driven by rare OTUs, which comprise less than 1% of the total reads in both runs. 

The results indicated that microbial communities remained largely static 

throughout each replicate run regardless of gut compartment, with no observed 

visual pattern over time based on visual alpha diversity analysis. Furthermore, this 

study identified a visual difference between the initial inoculum and SalmoSim 

system, in particular, the loss of the Mycoplasma genus in pyloric caecum and mid 

gut compartments. Finally, our results suggest that the microbial composition 

within the stomach compartment is statistically different from the other two 

compartments.  
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This preliminary run acted as a useful pilot to identify future pitfalls and 

improvements allowing the improvement of SalmoSim runs for future chapters. In 

order to improve the replicability between different replicate runs, the SalmoSim 

protocols need to be adapted (such as producing a pool of bile and mucous, and 

sampling at the same time of the day), as well as, taking run as a random effect 

during statistical analysis, or running duplicate experiments in parallel at the same 

time. In order to prevent the loss of taxa from founding inoculum to SalmoSim, 

the initial inoculum samples from real salmon should be collected and processed 

under anaerobic conditions and a snap freezing method in liquid nitrogen should 

be utilised instead of addition of glycerol before long term storage at -80oC. 

Overall, although limited in scope, our data suggests that SalmoSim can achieve a 

robust level of accuracy in technical replication, especially if the improvements 

identified during our trial runs are incorporated. 
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 Abstract 

 Background 

Atlantic salmon are a fish species of major economic importance. Innovative 

strategies are being sought to improve salmon feeds and feed additives to enhance 

fish performance, welfare, and the environmental sustainability of the 

aquaculture industry. There is still a lack of knowledge surrounding the 

importance and functionality of the salmon gut microbiome in fish nutrition.  In 

vitro gut model systems might prove a valuable tool to study the effect of feed, 

and additives, on the host’s microbial communities. Several in vitro gut models 

targeted at monogastric vertebrates are now in operation. Here, we report the 

development of an Atlantic salmon gut model, SalmoSim, to simulate three gut 

compartments (stomach, pyloric caecum, and midgut) and associated microbial 

communities.  

 Results 

The gut model was established in a series of linked bioreactors seeded with 

biological material derived from farmed adult marine phase salmon. We first 

aimed to achieve a stable microbiome composition representative of founding 

microbial communities derived from Atlantic salmon. Then, in biological 

triplicate, the response of the in vitro system to two distinct dietary formulations 

(fish meal and fish meal free) was compared to a parallel in vivo trial over forty 

days. Metabarcoding based 16S rDNA sequencing, qPCR, ammoniacal nitrogen and 
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volatile fatty acid measurements were undertaken to survey the microbial 

community dynamics and function. SalmoSim microbiomes were indistinguishable 

(p=0.230) from their founding inocula at 20 days and the most abundant genera 

(e.g. Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim 

(OTUs accounting for 98% of all reads shared with founding communities). Real 

salmon and SalmoSim responded similarly to the introduction of novel feed, with 

majority of the taxa (96% Salmon, 97% SalmoSim) unaffected, while a subset of 

taxa (e.g. a small fraction of Psychrobacter) were differentially affected across 

both systems. Consistent with a low impact of the novel feed on microbial 

fermentative activity, volatile fatty acids profiles were not significantly different 

in SalmoSim pre- and post-feed switch. 

 Conclusion 

By establishing stable and representative salmon gut communities, this study 

represents an important step in the development of an in vitro gut system as a 

tool for the improvement of salmon nutrition and welfare. This system aims to be 

utilised as a pre-screening tool for new feed ingredients and additives, as well as 

being used to study antimicrobial resistance and transfer, and fundamental 

ecological processes that underpin microbiome dynamics and assembly. 

 Introduction 

In the last 50 years, per capita fish consumption has almost doubled from 10 

kilograms in the 1960s to over 19 kilograms in 2012 (FAO 2018). This increase in 

the demand for fish protein has put wild fish stocks under pressure. The 

aquaculture sector now accounts for almost 50% of all fish for human consumption 

and is anticipated to provide 62% by 2030 (Moffitt and Cajas-Cano 2014). The 

Atlantic salmon (Salmo salar) is the leading farmed marine finfish and, in 

economic terms, the ninth most important aquaculture fish species farmed 

globally (FAO 2018). Atlantic salmon are carnivores and wild pelagic fish stocks 

from reduction fisheries are an important protein source (fish meal (FM)), as well 

as the principal lipid source (fish oil FO), exploited to feed farmed salmon. 

Reduction fisheries negatively impact the marine ecosystem, and feeding farmed 

salmon on FM/FO ingredients is unsustainable as well as expensive (Worm et al. 
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2006, Cashion et al. 2017). To address these issues, farmed salmon feed 

composition has changed considerably during the relatively short history of 

intensive salmon farming, for example in Norway, reducing the ratio of the marine 

origin components within salmon feed from around 90% in 1990 to 30% in 2013 

(Ytrestøyl et al. 2015a). However, there is evidence that non-marine dietary 

ingredients can result in poor fish growth, altered gut health alongside a modified 

fish gut microbial community composition and activity (Ingerslev, Strube, et al. 

2014, Gajardo et al. 2017a, Beheshti Foroutani et al. 2018). For instance, Atlantic 

salmon feed supplementation with dietary soybean protein concentrate can 

induce intestinal disorder (Green et al. 2013). Concomitant alterations in gut 

microbiota can result in the undesirable fermentation of various feed components 

(Green et al. 2013, Michl et al. 2019). In view of all this, considerable interest lies 

around the development of novel ingredients that have comparable performance 

to marine ingredient-based feeds in terms of their impact of the host and its 

associated microbes. 

To study the impact of novel feed ingredients on gut microbial communities (e.g. 

Gajardo et al., 2017), as well as the supplements (e.g. pre-biotics, pro-biotics) 

tailored to modify microbial community diversity and function (e.g. Gupta et al., 

2019), in vivo trials are widely deployed in salmonid aquaculture. Although 

physiologically relevant, in vivo trials have several scientific, ethical, and 

practical disadvantages. In salmonids, for example, gut sampling is terminal, 

preventing the generation of time series data from individual animals/microbial 

communities. Furthermore, microbial impacts on feed ingredients cannot be 

subtractively isolated from host enzymatic/cellular activity. From an ethical 

perspective, in vitro models offer the opportunity to reduce harm via replacement 

of in vivo models (Payne et al. 2012a). Practically, in vivo, testing of novel feed 

ingredients is both time consuming and costly. A reliable in vitro model could offer 

advantages in this respect. To the best of our knowledge, there is only one other 

gut system in place simulating a generalised teleost gut, (‘fish-gut-on-chip’ 

(Drieschner et al. 2019)) The ‘fish-gut-on-chip’ system exploits microfluidic 

technology and is based on the reconstruction of the rainbow trout's intestinal 

barrier by culturing only intestinal cell lines in an artificial microenvironment and 

currently does not involve microbial communities isolated from the fish's gut.  
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Prior to deploying an in vitro gut microbiome simulator to perform biological 

experiments, several criteria must be met. Firstly, steady-state microbial 

communities need to be established prior to the experimental procedure to ensure 

that results due to experimental treatments are not confounded with bacterial 

adaptation to the in vitro environment (Possemiers et al. 2004). Secondly, 

physicochemical conditions within the artificial gut simulator and the gut of the 

target species should be similar. Thirdly, the bacterial communities need to be 

gut compartment-specific and representative of (if not identical to) the in vivo 

situation (Van Den Abbeele et al. 2010). Finally, the in vitro gut simulator should 

be validated against a parallel in vivo experiment, to establish the degree to which 

the results from the experimental protocol within the artificial gut are 

generalisable to the in vivo situation (Molly et al. 1994). Towards this end, several 

molecular techniques can then be deployed to analyse microbial populations 

within the gut. Multiplex quantitative PCR (qPCR) coupled with taxon-specific 

primers can rapidly detect and quantify the bacterial consortia within a large 

population (Postollec et al. 2011). Whilst shotgun metagenomics and amplicon 

sequencing approaches can provide a detailed taxonomic assessment of the 

microbial composition of the gut, they may be less useful for day-to-day 

monitoring of specific taxa (Malla et al. 2019).  

In view of the above criteria, the aim of the current study is to develop a 

synthetic, continuous salmon gut microbial fermentation simulator, 

representative of generalised marine lifecycle stages of the Atlantic salmon. 

Salmonids are gastric fish (Aas et al. 2017), with their guts characterised by a 

clearly defined stomach followed by a pylorus with attached blind vesicles called 

pyloric caeca, as well as a relatively short and non-convoluted posterior (mid and 

distal) intestine leading to the anus (Lkka et al. 2013). Our experimental gut 

system simulates the stomach, the pyloric caeca, and the midgut regions of the 

gastrointestinal tract of farmed Atlantic salmon. In this context, we first aimed to 

establish a stable gut community, representative of the salmon gut communities 

used to found it. Secondly, we validated the system as a potential means of testing 

the impact of feeds on salmon gut microbial communities by comparing the 

performance and response of the in vitro simulator during a feed trial with parallel 

in vivo modulation of the gut microbial community in a cohort of marine phase 

Atlantic salmon.    
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 Methods 

 Experimental set-up and sample collection in an 
aquaculture setting  

The Atlantic salmon (Salmo salar) in vivo feed trial was performed by MOWI ASA 

at their research site in Averøy, Norway. Prior to commencement of the feed trial, 

salmon were fed on a fish meal diet (FMD) until they reached circa 750 grams in 

mass. Fish were separated into 5x5 meter marine pens (150 randomly distributed 

fish per pen) in 4x4 modular design. Four pens were randomly assigned to each of 

the trial diets. This study focused on eight pens housing fish fed on FMD and fish 

meal free diet (FMF) (Table 3-1, Figure 3-1D). The feed trial was conducted over 

five months (November 2017 - March 2018). For in vivo samples recovered from 

actual salmon, three randomly selected fish were collected at the end of the feed 

trial for two different feeds (N=3 fish/feed: Fish 1, 2, and 3 for FMD and Fish 4, 5, 

and 6 for FMF) and sacrificed by MOWI employees (Figure 3-1E). After, 1 cm in 

length samples from three salmon gut compartments were collected (stomach 

(N=3/feed), pyloric caeca (N=3/feed) and mid gut (N=3/feed) (approximately 20 

cm from the vent)), placed into 1.5 ml cryovials and kept on ice before long term 

storage in -80oC conditions. For in vitro initial inoculum samples (the founding 

community for SalmoSim runs), a further three fish fed on FMD were sacrificed 

(Fish 7, 8 and 9) and 5 cm in length samples from three distinct gut compartments 

were collected (Stomach (N=3), pyloric caecum (N=3) and midgut (N=3)), 

transferred to 15 ml Falcon tubes and kept on ice before long term storage in -

80oC conditions (Figure 3-1E). Details of samples collected from farmed Atlantic 

salmon have been described previously (Heys et al. 2020b).  
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Table 3-1 Fish meal and Fish meal free diets composition. Table summarises Fish meal and 
Fish meal free diets composition in percentage of the feed.    

Ingredient (% of the 

feed) 
Fish meal Fish meal free 

Fish meal 17.5 0 

Soya protein concentrate 12 27.8 

Corn gluten 7 7.35 

Wheat gluten 10 14.34 

Sunflower expeller 3.41 0 

Wheat 4.81 11.22 

Beans dehulled 10 0 

Fish oil 15.68 16.99 

Rapeseed oil 11.78 11.79 

Linseed oil 3.05 3.2 

Mannooligosaccharide 0.4 0.4 

Astaxanthin 0.04 0.04 

Crystalline amino acids 1.35 1.99 

Mineral premixes 1.83 2.66 

Vitamin premixes 0.6 0.73 

Macronutrients (% of 

the feed) 
Fish meal Fish meal free 

Moisture 5.9 6.13 

Crude Protein 39.1 40.1 

Crude Fat 33.4 33.3 

Ash 5.47 4.2 

Starch 9.4 11 

Crude Fibre 2 2.7 
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Figure 3-1 Salmon gut in vitro simulator. Schematic encompasses the artificial gut model 
system set-up, in vivo and in vitro feed trial set up. 1A is a schematic representation of SalmoSim 
system with transfer rate of 238 ml per day for each bioreactor; 1B SalmoSim feed trial design; 1C 
SalmoSim sampling time points, which include definition of stable time points (days 16, 18, and 20 
for Fish meal (once bacterial communities had time to adapt to SalmoSim system), and days 36, 
38, and 40 for Fish meal free diet (once bacterial communities had time to adapt to change in 
feed); 1D in vivo feed trial design. FMD – Fish meal diet and FMF – Fish meal free diet; 1E real 
salmon sacrificed for non-inoculum and inoculum samples (9 fish in total).  
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 Establishment of stable, representative gut communities in 
SalmoSim and subsequent feed trial. 

 Physicochemical conditions within Atlantic salmon gastrointestinal 
tract and microbiome sampling 

Physicochemical conditions (temperature, pH, dissolved oxygen) were directly 

measured in adult Atlantic salmon from a MOWI salmon farm in Loch Linnhe, 

Scotland (Figure A3-1A-C). Bacterial inoculums were prepared for the in vitro trial 

from the different gut compartments sampled from individual fish (three 

biological replicates, three gut compartments per fish – stomach, pyloric caecum, 

and midgut) collected at the start of the in vivo feed trial in Averøy, Norway. Prior 

to SalmoSim inoculation, inoculums that were stored in 15 ml falcon tubes in -

80oC freezer were dissolved in 1 ml of autoclaved 35 g/L Instant Ocean® Sea Salt 

solution. Distinct individual fish collected in Averøy formed the founder 

community for each distinct replicate of the in vitro trial (i.e., a true biological 

replicate (Figure 3-1)).  

 In vitro system ‘feed’ preparation 

In vitro system feed media was prepared by combining the following for a total of 

2 litres: 35 g/L of Instant Ocean® Sea Salt, 10 g/L of the FMD or FMF used in the 

MOWI feed trial (Table 3-1: the concentration of feed added was optimized to run 

through the system without clogging the narrow tubing), 1 g/L freeze-dried 

mucous collected from the pyloric caecum of Scottish marine phase Atlantic 

salmon and 2 litres of deionised water. This feed was then autoclave-sterilised, 

followed by sieving of the bulky flocculate, and finally subjected to the second 

round of autoclaving.  

 In vitro system preparation 

Three 500 ml Applikon Mini Bioreactors (one for each gut compartment: stomach, 

pyloric caecum, and mid gut) were filled with four 1 cm3 cubes made from sterile 

aquarium sponge filters used as a surface for biofilm formation, assembled by 

attaching appropriate tubing and probes (redox, temperature, and dissolved 

oxygen, Figure 3-1A), and autoclaved. Bioreactor preparation was followed by 

attachment of reactor vessels to the Applikon electronic control module, 
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connection of feed and acid and base bottles (0.01 M hydrochloric acid and 0.01 

M sodium hydroxide solutions filtered through 0.22 µm polyethersulfone 

membrane filter unit (Millipore, USA)). Nitrogen gas was periodically bubbled 

through each vessel to maintain anaerobic conditions and dissolved oxygen 

continually monitored. The bioreactors were then allowed to fill with 400 ml of 

feed media. Once the system was set up, media transfer, gas flow and acid/base 

addition occurred for 24 hours in sterile conditions (without microorganisms 

present in the system) in order to stabilise the temperature, pH, and oxygen 

concentration with respect to levels measured from adult salmon. 

 Initial pre-growth period during in vitro trial 

In order to allow bacterial communities to proliferate in the in vitro environment 

without washing through the system, the microbial populations within the 

inoculum from real salmon were pre-grown inside the SalmoSim system for four 

days. During this phase, the system was filled with FMD media preparation and 

inoculum, and no media transfer occurred.  

 Performing feed trial within SalmoSim system 

After the initial pre-growth period, each validation experiment was run for 20 days 

while supplying SalmoSim system with FMD. After 20 days, SalmoSim was run for 

20 additional days while supplying FMF food. During the full 44-day experiment (4-

day pre-growth period, 20-day system fed on FMD, and 20-day system fed on FMF) 

physiochemical conditions within three SalmoSim gut compartments were kept 

similar to the values measured in real salmon: temperature inside the reactor 

vessels were maintained at 12oC, dissolved oxygen contents were kept at 0% by 

daily flushing with N2 gas for 20 minutes, and pH was kept stable in each bioreactor 

by the addition of 0.01 M NaOH and 0.01 M HCl (stomach pH 4.0, pyloric caecum 

pH 7.0, and mid intestine pH 7.6). During this experiment (apart from the pre-

growth period) the transfer rate of slurry between reactor vessels was 238 ml per 

day as described in vivo (Aas et al. 2017, Waagbø et al. 2017). Finally, 1 ml of 

filtered salmon bile and 0.5 ml of sterile 5% mucous solution (both collected from 

Scottish marine phase Atlantic salmon) were added daily to the reactor simulating 

the pyloric caecum compartment. The schematic representation of SalmoSim 
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system is visualised in Figure 3-1A and full feed trial within SalmoSim is visually 

summarised in Figure 3-1B and C.  

Sampling was performed in several steps. First, samples from initial inoculums 

were collected for each gut compartment. Once SalmoSim main experiment 

started, the sampling from each bioreactor vessel was performed every second 

day throughout the 40-day run period (20 samplings in total). The SalmoSim 

samplings entailed collecting 30 ml of the bioreactor contents (less than 10% of 

the total bioreactor volume - the maximum volume of sampling without disturbing 

microbial community structure) into 50 ml falcon tubes, centrifuging them for 10 

minutes at 5000 rpm speed, and freezing the pellets at -20oC for storage. The 

pellets were frozen to perform DNA extraction all together with the same kit (to 

prevent batch effect) and supernatant was used for VFA analysis.  

 Measuring nitrogen metabolism within the SalmoSim system 

At each sampling point, the protein concentration in each chamber of the system 

was measured using Thermo Scientific™ Pierce™ BCA Protein Assay Kit (Thermo 

Fisher Scientific, USA) and the ammonia concentration using Sigma-Aldrich® 

Ammonia Assay Kit (Sigma-Aldrich, USA) to assay the bacterial community activity. 

Both methods were performed according to manufacturer protocol by using The 

Jenway 6305 UV/Visible Spectrophotometer (Jenway, USA). The same samples 

were used for both of these analyses immediately after sampling (no freezing or 

intermediate steps required).  

 Measuring Volatile Fatty Acid (VFA) production in SalmoSim 

The last two time points for each diet were selected from the SalmoSim system 

(for all three gut compartments) for VFA analysis:  18 and 20 for FMD; and time 

points 38 and 40 for FMF, respectively, to ensure that the bacterial communities 

had enough time to adapt to SalmoSim system (for FMD time points) and the feed 

change (for FMF time points). During runs, 1 ml of supernatant from SalmoSim 

bioreactors was frozen in -80C which, was then used for VFA extraction. The 

protocol involved combining 1ml of supernatant with 400 µl of sterile Phosphate-

buffered saline (PBS) solution (Sigma Aldrich, USA) and vortexing the mixture for 

1 minute. The sample was then centrifuged at 16,000 g for 30 minutes, followed 
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by two rounds of supernatant removal, before centrifuging at 16,000 g for 30 

minutes. Finally, the supernatant was then filtered through 0.2 µm Costar SpinX 

centrifuge tube filters (Corning, USA) at 15,000 g for 2 minutes until clear. The 

extracted VFAs were sent for gas chromatographic analysis at MS-Omics 

(Denmark). In order to determine if the VFA concentrations were statistically 

different between SalmoSim fed on FMD and FMF diets, measured VFA values 

dataset were subjected to statistical analysis using linear mixed effect models 

(See Supplementary methods 2). Results are shown in Figure A3-9.  

 In vivo phenotypic fish performance fed on two different feeds 

Phenotypic performance data (fish length, weight, gutted weight, carcass yield, 

gonad, and liver weights) was collected and provided at the end of the in vivo 

feed experiment by MOWI. The differences between each feed group (n=32 fish 

per feed) for each phenotype were visualised and statistical analysis was applied 

(independent two-sample t-test) to identify statistically significant differences 

between the two feed groups.  

 Measuring bacterial population dynamics in SalmoSim 

 Genomic DNA extraction 

The DNA extraction protocol followed was previously described by (Heys et al. 

2020b). In short, samples were subjected to a bead-beating step for 60 seconds 

by combining samples with MP Biomedicals™ 1/4" ceramic sphere (Thermo Fisher 

Scientific, USA) and Lysing Matrix A Bulk (MP Biomedicals, USA). Later, DNA was 

extracted by using the QIAamp® DNA Stool kit (Qiagen, Valencia, CA, USA) 

according to the manufacturer’s protocol (Claassen et al. 2013).  

 NGS library preparation and sequencing  

In the first instance, microbial population dynamics in SalmoSim were measured 

in near real-time using a set of qPCR primers including published and custom 

sequences to enable the stability of the system to be monitored (See 

supplementary Methods 1 and data Figure A3-4). Subsequently 16S rRNA 

sequencing was deployed to provide a fuller picture community dynamics. The 

commonly used 16S ribosomal hypervariable region 4 primers were shown to cross-
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amplify Salmo salar 12S ribosomal gene sequences (Werner et al. 2012, Heys et 

al. 2020b) and hence were not used in this study. Rather, amplification of the 16S 

V1 hypervariable region was adopted as an alternate approach (Gajardo et al. 

2016). Amplification of 16S V1 hypervariable region from diluted DNA samples was 

achieved using redundant tagged barcode 27F and 338R at final concentration of 

1 pM of each primer. Primer sequences are summarised in Table A3-2. First-round 

PCR was performed in triplicate on each sample and reaction conditions were 95°C 

for ten minutes, followed by 25 cycles at 95°C for 30 seconds, 55°C for 30 seconds 

and 72°C for 30 seconds, followed by a final elongation step of 72°C for 10 

minutes. After the triplicate reactions were pulled together into one, their 

concentration was measured using a Qubit® fluorometer (Thermo Fisher 

Scientific, USA), and all of them were diluted to 5 ng/µl using Microbial DNA-Free 

Water (Qiagen, Valencia, CA, USA). The second-round PCR, which enabled the 

addition of the external multiplex identifiers (barcodes), involved only six cycles 

with otherwise identical reaction conditions to the first. The detailed composition 

of second-round PCR primers is summarised in Table A3-3. This was followed by 

the DNA clean-up using Agencourt AMPure XP beads (Beckman Coulter, USA) 

according to the manufacturers' protocol. The cleaned DNA was then gel-purified 

by using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA) and then 

quantified by using Qubit® (Thermo Fisher Scientific, USA). All the PCR products 

were pulled together at 10 nM concentration and sent for sequencing using HiSeq 

2500. 

 Bioinformatic analysis of 16S rRNA gene amplicon sequencing data 

Sequence analysis was performed with our bioinformatic pipeline as described 

previously with slight modifications (Heys et al. 2020b). First, quality filtering and 

trimming (>Q30 quality score) was performed on all the reads of the 16S rRNA V1 

hypervariable region using Sickle version V1.2 software (Joshi and Fass 2011). 

Second, read error correction was performed using the BayesHammer module 

within SPAdes V2.5.0 software to obtain high-quality assemblies (Nikolenko et al. 

2013). Third, paired-end reads were merged (overlap length 50bp) using PANDAseq 

v2.11 software with simple_bayesian read merging algorithm (Masella et al. 2012, 

Schirmer et al. 2016). After overlapping, paired end reads merged reads were 

dereplicated, sorted, and filtered chimaeras  using GOLD SILVA reference dataset 
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(Mukherjee et al. 2019) and singletons were removed by using VSEARCH version 

2.3.4 tool (Rognes et al. 2016). Merged pair-end filtered reads were clustered in 

operational taxonomic units (OTUs) using VSEARCH software at 97% identity 

followed by a decontamination step by mapping OTUs against the host (Salmo 

salar) reference genome (available on NCBI) DNA using bwa aligner implemented 

in DeconSeq v0.4.3 tool (Schmieder and Edwards 2011). Taxonomic assignment of 

OTUs was achieved using the Naïve Bayesian Classifier  (Pedregosa et al. 2011) 

implemented in the QIIME 2 platform using SILVA 132 database (Quast et al. 2013, 

Bolyen et al. 2019). Phylogenetic trees of OTUs were generated using FastTree  

software after using MAFFT for multiple sequence alignment (Katoh and Standley 

2013). The resultant OTU table was converted to a biological observation matrix 

(BIOM) format for the post-OTUs statistical analysis (Douglas et al. 2019). 

 Post-OTUs statistical analysis: diversity metrics and community 
structure and composition analysis  

All statistical analysis of the OTU table was performed by using R v 4.0.1 and 

RStudio v 1.3.959 (Rstudio Team 2019). Alpha diversity analysis was performed 

using Rhea pipeline (Lagkouvardos et al. 2017b), supplemented by microbiomeSeq 

(Ssekagiri et al. 2017), and PhyloSeq  (McMurdie and Holmes 2013) for ANOVA and 

visualisation steps. Two alpha diversity metrics were calculated: microbial 

richness (estimated number of observed OTUs) and Shannon diversity (an estimate 

of balance of the community using effective Shannon index (Jost 2006, 2007)). 

Before calculating effective microbial richness, proportional filtering was 

performed at a relative abundance of 0.25% in each community to minimise the 

inflation in microbial richness caused by the very low abundant OTUs. Afterwards, 

a one-way ANOVA of diversity between groups was calculated with the p-value 

threshold for significance (p-value <0.05) represented using boxplots.  

To investigate the effect of time on the bacterial community stability, beta 

diversity analysis was performed using different phylogenetical distances metrics 

to assay phylogenetic similarities between samples (weighted, generalised, and 

unweighted UniFrac). To compare communities isolated from various sources 

(SalmoSim, inoculum, and real salmon), only samples fed on FMD were included 

as initial inoculum were collected from fish fed on FMD alone. Furthermore, only 

SalmoSim samples from the last 3 time points fed on FMD were selected as they 
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are considered stable time points (once bacterial communities had over two weeks 

to adapt and grow within SalmoSim system). In short, the resulting dataset 

contained: real salmon samples fed on FMD, all inoculum samples and stable 

SalmoSim time points fed on FMD (days 16, 18, and 20). This dataset was then 

subdivided into several smaller datasets that included OTUs, shared by various 

percentage of samples (60%, 50%, 40% and 30% of samples), with the aim of 

minimising the impact of rare OTUs (low prevalence) on comparisons and only 

focusing on prevalent OTUs between samples (see details in Table A3-4).  

To analyse the response of microbes to the diet change (see Table 3-1 for feed 

formulation) in real salmon and SalmoSim, in addition to the full dataset (in vivo 

and in vitro samples); three different full dataset subsets were used to perform 

beta diversity analysis: samples from the in vivo study, all samples from SalmoSim 

(all data points), and samples only from SalmoSim once it had achieved stability 

(the last 3 time points fed on FMD (days: 16, 18, and 20) and FMF (days 36, 38, 

and 40). These datasets were used to compute ecological (Bray-Curtis and 

Jaccard) and phylogenetic (unweighted, weighted, and generalised UniFrac) 

distances with vegdist function from the vegan v2.4-2 package and GUniFrac 

function (generalised UniFrac) from the Rhea package (Oksanen et al. 2013, 

Lagkouvardos et al. 2017b). Both ecological and phylogenetical distances were 

then visualised in two dimensions by Multi-Dimensional Scaling (MDS) and non-

metric MDS (NMDS) (Anderson 2001). Finally, a permutational multivariate analysis 

of variance (PERMANOVA) by using both calculated distances was performed using 

the adonis function to determine if the separation of selected groups was 

significant as a whole and in pairs (Anderson 2001). The full beta-diversity 

workflow is summarised in Supplementary Methods 3. 

To provide an overall visualisation of microbial composition across all samples, a 

principal Coordinates Analysis (PCoA) was performed using the microbiomeSeq 

(Ssekagiri et al. 2017) package based on phyloseq package (Love et al. 2017) with 

Bray-Curtis dissimilarity measures calculated and visualised for four different 

subset-datasets: the full dataset (real salmon, inoculum, and all SalmoSim 

samples), and, three different subsets each containing only one of the three 

biological replicate samples from SalmoSim (Fish 1, 2, or 3), along with all real 

salmon and inoculum samples. 
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Differential abundance was calculated by using microbiomeSeq based on DESeq2 

package (Love et al. 2017, Ssekagiri et al. 2017). BIOM generated OTU table was 

used as an input to calculate differentially abundant OTUs between selected 

groups based on the Negative Binomial (Gamma-Poisson) distribution. 

 Results 

 Stabilisation of representative microbial communities within 
the SalmoSim system 

Effective richness (Figure 3-2A) indicates that within the stomach and midgut 

compartments the initial inoculum contained the highest number of OTUs 

compared to later sampling time points from the SalmoSim system: in the stomach 

compartment, effective richness was statistically different between time point 0 

(initial inoculum derived from salmon guts) and time points 18, 30, 36 and 38, and 

within midgut compartment number of OTUs within initial inoculum (time point 

0) was statistically different from time points 2, 4, 6, 16, 34, 36, 38, and 40. 

However, within the pyloric caeca compartment, only one-time point (time point 

34) had a significantly different number of OTUs from initial inoculum (time point 

0).   

Our results reveal that within the stomach compartment over time (including 

initial inoculum), the effective Shannon diversity was stable with a downwards 

but non-significant trend over the course of the experiment (Figure 3-2B). A 

similar downwards trend was observed in the pyloric caecum, with significant 

differences between later time points, but no significant differences were noticed 

between the inoculum and SalmoSim. Within the midgut compartment Shannon 

diversity was statistically lower than the inoculum (time point 0) over most time 

points (sampling days 2-40).  

Taken together, diversity and richness metrics suggest some loss of microbial taxa 

as a result of transfer of salmon gut communities into SalmoSim in the pyloric 

caecum and midgut, but not in the stomach. Subsequently, richness and evenness 

were then stable over the time course of the experiment in stomach and mid gut 

compartments (some instabilities seen only between initial inoculum and later 
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time points), whilst much more instability within alpha diversity metrics were 

detected in the pyloric caecum compartment.  

To assess the compositional stability of the system, comparisons over time were 

undertaken with reference to pairwise beta-diversity metrics. Significant 

differences in composition between time points represent instability in the 

system. Figure 3-3 visually summarises between time point comparison of beta-

diversity metrics within the SalmoSim system across all replicates using 

generalised UniFrac (visual representations of the results using unweighted and 

weighted UniFrac are summarised in Figure A3-3). Irrespective of the metric used, 

microbial community composition appeared to stabilise in all gut compartments 

by approximately 20 days, with little-observed impact of introducing the different 

feed at day 20. This trend was supported by our qPCR data, suggesting increasing 

stability over the course of the 40-day experiment (Figure A3-4). Prevailing 

stability was also observed when each biological replicate’s individual gut 

compartment was examined separately (stomach, pyloric caecum, and mid gut) 

(Figure A3-5). Importantly, stabilisation over twenty days was a feature of two 

previous pilot runs of the system using unrelated marine salmon gut communities 

(Figure A3-6). 
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Figure 3-2 Calculated alpha-diversity metrics within SalmoSim system over time. The figure 
represents different alpha diversity outputs at different sampling time points (days) from SalmoSim 
system. Time point 0 represents microbial community composition within initial SalmoSim inoculum 
from the real salmon, time points 2-20 identifies samples from SalmoSim system fed on Fish meal 
diet, and time points 22-40 identifies samples from SalmoSim system fed on Fish meal free diet. 
The dotted vertical line between days 0-20 represents average alpha diversity values measured in 
real salmon fed on Fish meal diet and dotted vertical line between days 22-40 represents average 
alpha diversity values measured in real salmon fed on Fish meal free diet. Finally, the horizontal 
dashed lined represent average effective richness (A) and effective Shannon diversity (B) in real 
salmon individual gut compartments fed on different diets (n=3 fish/feed and gut compartment) and 
shaded region around the horizontal dashed line represents the standard deviation of the values 
measured within real salmon samples fed on the different diets. A visually represents effective 
richness (number of OTUs) and B represents effective Shannon diversity. The lines above bar plots 
represent statistically significant differences between different time points. The stars flag the levels 
of significance: one star (*) for p-values between 0.05 and 0.01, two stars (**) for p-values between 
0.01 and 0.001, and three stars (***) for p-values below 0.001. 
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Figure 3-3 Stability within SalmoSim system calculated by using generalised UniFrac values 
for pairwise beta diversity analysis. The figure represents microbial stability within the SalmoSim 
system (data from all gut compartments combined) as the pairwise beta diversity comparison 
between different sampling time points (days), calculated by using generalised (50%) UniFrac as a 
distance measure. A small p-value indicates that the two time points are statistically different, and 
p>0.05 indicates that two time points are not statistically different. The colour key illustrates the p-
value: red end of spectrum denoting low p values (distinct compositions between time points) and 
dark green indicating high p values (similar compositions between timepoints). 

 

 Microbial identity and diversity compared between 
SalmoSim and salmon. 

To compare microbial identity and microbiome composition between salmon and 

SalmoSim sample sizes were first balanced by examining a reduced dataset that 

contained: real salmon samples (three fish individuals used to inoculate and three 

others, all fed FMD) and stable SalmoSim time points fed on FMD (days 16, 18, and 

20). Alpha diversity comparisons between inoculum, real salmon and SalmoSim 

are shown in Figure 3-2.  

Compositional comparisons between different sample types (inoculum salmon, 

three other individuals and SalmoSim) were made using several pairwise beta-

diversity metrics (phylogenetic (unweighted, generalised, and weighted UniFrac 

and ecological distances (Bray Curtis and Jaccard)) (Table 3-2). Ecological metrics 

could not distinguish between SalmoSim (days 16, 18, and 20) from the individual 

fish used to inoculate the system, suggesting that microbiome composition was 

very similar between salmon and SalmoSim (Table 3-2). In contrast, metrics that 
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incorporate phylogenetic differences between taxa (i.e., Unifrac) did identify 

significant differences, indicating that there is variability between the inoculum 

and SalmoSim, but the taxa involved are closely related.  To explore the impact 

of rare OTUs when accounting for observed differences between sample types, 

the dataset was partitioned and analysed. Partitioned datasets indicated that 

progressive removal of rare OTUs increased the compositional similarity between 

SalmoSim and the fish gut communities used to inoculate the system (Table 3-2). 

Inoculum samples (18 samples) generated 388 OTUs and SalmoSim stable samples 

(54 samples in total: SalmoSim time points fed on FMD (days 16, 18, and 20) and 

SalmoSim time points fed on FMF (days 36, 38, and 40)) generated 508 OTUs. 291 

OTUs were present in both sample types. Importantly, the shared 291 OTUs 

accounted for >97% of total reads in inoculum samples and >98% in stable 

SalmoSim samples (Table 3-2), again suggesting that the majority of abundant 

microbes in real salmon were maintained in the SalmoSim system. 

Between real salmon that were not the direct source of inocula and SalmoSim, 

and between salmon used as inocula and other individual salmon, however, 

statistically significant differences were found in using all metrics regardless of 

inclusion of rare OTUs. These observations are consistent with inter-individual 

variation - SalmoSim and inoculum samples originated from the same individuals, 

while other salmon samples were, by necessity, collected from different 

individuals during the in vivo trial. Furthermore, while the number of OTUs 

between salmon not used to inoculate (192 OTUs) and inoculum salmon samples 

(388 OTUs) are different (Table 3-2), these non-inoculum salmon share 131 OTUs 

out of 192 OTUs with inoculums and these 131 OTUs account for around 98% of the 

total reads. Thus, extra OTUs found only in inoculum salmon and not in others are 

relatively rare in abundance terms. Differences in OTU numbers and composition 

is not unexpected as a slightly larger amount of inoculum sample were collected 

(5 cm of intestine length vs 1 cm for other salmon). 

Table 3-2 Beta diversity comparisons of microbial composition between different samples 
(real salmon, inoculum and SalmoSim). The table summarises different beta-diversity analysis 
outputs calculated by using different distances: phylogenetic (unweighted, balanced and 
weighted UniFrac) and ecological (Bray-Curtis and Jaccard’s), between different samples (data 
from all gut compartments combined): real salmon (Salmon), SalmoSim inoculum from the real 
salmon (Inoculum), and SalmoSim (only stable time points: 16, 18, and 20 fed on Fish meal diet, 
and 36, 38 and 40 fed on Fish meal free diet). A permutational multivariate analysis of variance 
(PERMANOVA) by using phylogenetic and ecological distances was performed to determine if the 



Chapter 3 SalmoSim: the development of a three-compartment in vitro simulator 
of the Atlantic Salmon GI tract and associated microbial communities

  75 
separation of selected groups is significant as a whole and in pairs. Numbers represent p-values, 
with p-values <0.05 identifying statistically significant differences between compared groups. 
The comparisons are shown for 3 different datasets: All (completed data set containing all the 
OTUs sequenced: 978 OTUs in total), Subset (containing OTUs that appear only in more than 3 
samples and contribute to 99.9% of abundance within each sample: 374 OTUs in total), and core 
OTUs (containing OTUs that appear in 60% (6 OTUs in total), 50% (13 OTUs in total), 40% (34 
OTUs in total) and 30% (65 OTUs in total) of the samples). The stars flag the levels of 
significance: one star (*) for p-values between 0.05 and 0.01, two stars (**) for p-values between 
0.01 and 0.001, and three stars (***) for p-values below 0.001. Finally, the bottom of the table 
compares number of samples, OTUs, reads for each sample group, as well as number of shared 
OTUs and their reads within each sample within compared groups. It also summarises what 
percentage of a given group of samples' total reads came from the shared OTUs. The SalmoSim 
samples used for this test consist of stable SalmoSim time points: days 16, 18, and 20 (Fish meal 
diet – once bacterial communities adapted to the SalmoSim environment), and days 36, 38, and 
40 (Fish meal free diet – once bacterial communities adapted to feed change). For non-inoculum 
real salmon all samples were included (fed on both Fish meal and Fish meal free diets), and for 
inoculum real salmon all samples were included (fed on Fish meal diet).   
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All 0.001 *** 0.002 ** 0.002 ** 

Subset 0.001 *** 0.002 ** 0.001 *** 
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Subset 0.001 *** 0.001 *** 0.273 

Core OTUs 

60% 0.009 ** 0.004 ** 0.079 

50% 0.001 *** 0.008 ** 0.394 

40% 0.001 *** 0.002 ** 0.327 

30% 0.001 *** 0.001 *** 0.388 
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All 0.001 *** 0.001 *** 0.147 

Subset 0.001 *** 0.001 *** 0.161 

Core OTUs 

60% 0.002 ** 0.003 ** 0.073 

50% 0.001 *** 0.002 ** 0.386 

40% 0.001 *** 0.002 ** 0.22 

30% 0.001 *** 0.001 *** 0.254 
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Number of samples 18 54 18 9 54 9 

Number of OTUs 192 508 192 388 508 388 

Number of shared OTUs 139 139 131 131 291 291 

Number of reads 78,400 1,004,494 78,400 192,429 1,004,494 192,429 

Shared OTU reads 77,123 707,199 76,963 134,984 989,884 187,569 

% shared OTU reads 98.37% 70.40% 98.17% 70.15% 98.55% 97.47% 

 

 Effect of changing diet on the microbiome of real salmon (in 
vivo) and SalmoSim (in vitro). 

The impact of diet on the abundance of individual taxa: In response to the 

change of diet, the relative abundances of individual taxa in salmon vs SalmoSim 

also revealed some differences, as well as multiple similarities in response of the 

two systems (Figure 3-4). In this respect, the abundance of the vast majority of 

OTUs (SalmoSim – 97%; Salmon – 95%; Figure 3-4C) were unaffected by the change 

in feed; these included 161 OTUs shared by SalmoSim and the real salmon assayed. 

For OTUs whose individual abundance was impacted by feed across the two 

systems, only a single common OTU changed in the same way in both Salmon and 

SalmoSim (Figure 3-4A). qPCR-based estimates of taxon abundance variation in 
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response to diet (Table A3-5), and corresponding data for the same taxa from 16S 

OTU profiles (Figure 3-4D) show several similarities and differences between 

SalmoSim and real salmon. Again, however, the overall pattern is that of limited 

change in both in vivo and in vitro systems in response to the change in diet. 

Invariance observed in the microbiome in response to feed were reflected in 

estimates of physical attributes of fish in response to the change in feed 

formulation. As such, no statistically significant differences in various phenotypic 

measurements (fish length, weight, gutted weight, carcass yield, gonad, and liver 

weights) were noted in salmon fed on the two different diets used in the 

experiment (see Figure A3-8). Invariance was also observed in VFA production 

data, in which no significant differences were observed in SalmoSim between the 

FMD and FMF diets (see Figure A3-9). 

 

Figure 3-4 Differential abundance of OTUs within the real salmon and SalmoSim samples 
fed on Fish meal and Fish meal free diets A: Venn diagram representing number of OTUs that 
were upregulated in both SalmoSim and real Salmon samples once the feed was switched, B: 
Venn diagram representing number of OTUs that were downregulated in both sample after the feed 
change, C: Venn diagram representing number of OTUs that did not change (relative abundance 
did not change) within SalmoSim and real salmon samples despite feed switch, D: table 
summarising number of OTUs that increased/decreased after feed change in real salmon and 
SalmoSim samples within different bacterial groups (the same that were analysed by using qPCR 
approach). Red colour indicates values that are 0, transitioning to greener colours representing 
higher values.  

 

Microbial composition in SalmoSim and real salmon fed different feeds: Most 

gut compartments for real salmon, SalmoSim, and the salmon used to inoculate 
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SalmoSim were abundant in Pseudomonas, Psychrobacter, and Staphylococcus 

genera, suggesting that genera present in the marine phase salmon are generally 

maintained in SalmoSim (Figure 3-5), with these three genera accounting for 42%, 

39%, and 34% of all OTUs in non-inocula salmon, inoculum salmon, and SalmoSim 

samples, respectively. In terms of change in alpha diversity, the only statistically 

significant difference in response to the switch in feed was observed in the pyloric 

caeca compartment within SalmoSim based on the Shannon diversity metric 

(Figure A3-6), where a slight decrease alongside the FMF occurred. Otherwise, the 

change in feed formulation did not impact alpha diversity in any gut compartment, 

either in real salmon, or in SalmoSim. Furthermore, no differences were indicated 

between real salmon and SalmoSim within each gut compartment (Figure A3-7). 

To provide an overview of microbial composition and variation in the experiment, 

a PCoA (Principal coordinates Analysis) based on Bray-Curtis distance was 

performed and plotted (Figure 3-6A-D). Biological replicate (the fish providing the 

founding inoculum of each SalmoSim run) appears to be a major driver of 

community composition in the experiment (Figure 3-6A). Taxonomic composition 

represented in stacked bar plots in Figure 3-5 also supports this observation. Once 

individual SalmoSim runs (biological replicates) are visualised separately, changes 

to microbial communities in response to the feed become apparent (Figure 3-6B-

D). Statistical comparisons based on PERMANOVA show there is an effect of feed 

on microbial composition in both salmon and SalmoSim (Table 3-3), however, 

based on OTU differential abundance data (above) the effect seems to be small 

(Figure 3-4). Samples from real salmon fed on the different diets also diverge from 

one and other (supported by Table 3-3, Figure 3-5), however, not necessarily along 

the same axes as each SalmoSim replicate. This divergence is potentially 

indicative of an effect of the biological replicate (i.e., inter-individual variation). 

Consistent with Figure 3-5, inoculum for the respective SalmoSim replicates 

cluster among SalmoSim samples for the FMD in each case.  
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Figure 3-5 Microbial composition (25 most common genus + others) amongst sample types 
and feeds. A: microbial composition within stomach compartment, B: microbial composition within 
pyloric caeca compartment, and C: microbial composition within midgut compartment. The different 
sample types are represented by the labels on the x-axis: Real FMD (real salmon fed on Fish meal: 
Fish 1, 2, and 3), Real FMF (real salmon fed on Fish meal free diet: Fish 4, 5, and 6), SalmoSim 
Fish 7-9 (SalmoSim biological replicate runs 1-3). Labels in blue represent samples fed on Fish 
meal diet and in red samples fed on Fish meal free diet. For SalmoSim only stable time points for 
each feed were selected: time points 16-20 for Fish meal diet, and time points 36-40 for Fish meal 
free diet.  
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Figure 3-6 PCoA analysis for various samples fed on different feeds. Figure visualises four 
principal-coordinate analysis (PCoA) plots for Bray-Curtis dissimilarity measures for different 
samples (Inoculum, real salmon and SalmoSim), different sampling time points from SalmoSim 
system, different biological replicates, and different feeds. A represents all sequenced data 
together (all real salmon, inoculum and all 3 biological SalmoSim runs) in which different colours 
represent different samples (real salmon, inoculum and 3 different SalmoSim biological replicates) 
and different shapes represent different feeds; while B-D (subsets of Figure 6A) represent 
sequenced data together for real salmon, inoculum and different biological replicates of SalmoSim 
(B: Fish 1, C: Fish 2, D: Fish 3). In figures B-D different colours represent different samples 
(inoculum, real salmon, and different sampling points of SalmoSim), different shapes represent 
samples fed on two different feeds, and samples fed on same feeds were circled manually in 
dotted circles.  Dim 1 is principal coordinate 1, and Dim 2 is principle coordinate 2. 
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Table 3-3 Beta diversity analysis for various samples fed on different feeds. Table summarises 
different beta-diversity analysis outputs calculated by using different distances: phylogenetic 
(unweighted, balanced, and weighted UniFrac) and ecological (Bray-Curtis and Jaccard’s), 
between samples fed on Fish meal or Fish meal free diets. Numbers represent p-values, with p-
values <0.05 identifying statistically significant differences between compared groups. The 
comparisons are shown for three different subset-datasets: Salmon (containing sequenced 
samples from real salmon), All SalmoSim (containing all samples from SalmoSim system 
excluding inoculum), and Stable SalmoSim (containing samples only from stable time points: 
16, 18 and 20 fed on Fish meal (once bacterial communities adapted to SalmoSim system), and 
36, 38 and 40 fed on Fish meal free diet (once bacterial communities adapted to feed change). 
The stars flag the levels of significance: one star (*) for p-values between 0.05 and 0.01, two 
stars (**) for p-values between 0.01 and 0.001, and three stars (***) for p-values below 0.001. 

 

  
Fish meal vs Fish meal free diets 

Salmon SalmoSim Stable SalmoSim 

UniFrac 

Unweighted (0%) 0.001 *** 0.002 ** 0.062 

Generalised (50%) 0.001 *** 0.001 *** 0.251 

Weighted (100%) 0.016 * 0.011 * 0.288 

Bray-Curtis 0.008 ** 0.001 *** 0.126 

Jaccards 0.01 ** 0.001 *** 0.053 

Number of differentially 
abundant OTUs 

18 32 28 

 

 Discussion 

Our findings suggest a loss of microbial taxa diversity and richness as a result of 

transferring initial inoculums from real salmon into the SalmoSim system in the 

pyloric caeca and mid gut compartments. Several lines of evidence from our core 

OTU analysis suggest that low prevalence (rare) OTUs make up most of the taxa 

lost, and progressive removal of rare OTUs increased the compositional similarity 

between inoculum and SalmoSim samples using both phylogenetic and ecological 

distances. Furthermore, shared OTUs between inoculum salmon and SalmoSim 

samples accounted for around 97% and 98% of total reads respectively, and as such 

the microbiota in the model are highly representative of those from the fish that 

founded them. A general trend was observed, in which all gut compartments 

became increasingly stable throughout the 40-day experiment, with little-

observed impact of introducing the different feed at day 20. Comparison of non-

inoculum salmon and SalmoSim samples at the microbial level showed significant 

differences using both ecological and phylogenetic metrics as well as a different 

number of OTUs (SalmoSim 508 OTUs and real salmon samples 192 OTUs). These 

differences may be explained by the fact that samples used for non-inoculum 

salmon and SalmoSim originated from different individuals, whereas initial 

inoculum and SalmoSim samples for a given run originated from the same fish. 



Chapter 3 SalmoSim: the development of a three-compartment in vitro simulator 
of the Atlantic Salmon GI tract and associated microbial communities

  82 
Furthermore, the non-inoculum salmon and inoculum samples were derived 

slightly differently - with a longer section of the gut sampled for the inoculum 

samples, which could explain the higher diversity of bacteria (number of OTUs) 

which in turn can affect beta diversity output. However, despite this, shared OTUs 

between non-inoculum salmon and inoculum samples accounted for around 98% of 

total reads generated in non-inoculum real salmon and around 70% within 

inoculum real salmon samples. Correspondingly, we observed that the biological 

replicate (the founding inoculum of each SalmoSim run that originated from 

different individuals) was the major driver of community composition in the 

experiment. Once the individual runs were separated, phylogenetic and ecological 

distances suggested that changing feed was a statistically significant driver of 

community composition in both real salmon and SalmoSim. However, the vast 

majority of OTUs remained unchanged by the switch in feed in both systems and 

no changes were noticeable in the bacterial activity (VFA production) within the 

system after the introduction of the plant-based feed, nor in phenotypic 

performance of Atlantic salmon fed on two different feeds (fish length, weight, 

gutted weight, carcass yield, gonad, and liver weights) in the in vivo trial.  

Many of the microbes we detected, and cultured, from the salmon gut microbiome 

have been reported previously in this species. For example, gram-negative 

Pseudomonas and Psychrobacter, the most abundant genera we observed, are 

among the core bacterial taxa known to reside within the real salmon gut  

(Navarrete et al. 2009, Gajardo et al. 2016, Webster et al. 2018). Staphylococcus 

genera have also been reported widely in fresh-water and marine farmed salmon 

(Dehler et al. 2017). SalmoSim was able to maintain these species in culture 

throughout the experimental run, and although some diversity was lost, no 

statistical differences could be detected between the composition of SalmoSim 

and that of the fish gut communities used to found the different biological 

replicates via ecological metrics. Notable by their scarcity were Mycoplasma 

OTUs, which occurred at relatively low abundance in both the in vivo and in vitro 

systems in this study. Mycoplasma OTUs were recovered from most SalmoSim gut 

compartments at low abundances (see Table A3-5), suggesting that these 

fastidious microbes can survive in the bioreactors. Our group and several others 

have widely reported Mycoplasma species from marine and freshwater stage of 

wild and farmed Atlantic salmon (higher abundance in farmed salmon), where 
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many proliferate intracellularly in the gut epithelial lining (Holben et al. 2002, 

Llewellyn et al. 2014b, Cheaib et al. 2020, Heys et al. 2020b). Establishing 

whether Mycoplasma can actively proliferate in SalmoSim would require the use 

of founding communities rich in these organisms in a future experiment. One 

means of achieving this could be by using mock communities to better understand 

the temporal development of the observed microbial compositions from inocula 

to SalmoSim community (Amos et al. 2020). 

We identified that a change in feed resulted in an overall shift in microbial 

community structure in both real salmon and SalmoSim system, as has been found 

to be the case in many previous studies (Gajardo et al. 2017a, Michl et al. 2017, 

Egerton et al. 2020), but the vast majority of OTUs within both real salmon and 

SalmoSim were not affected by the feed change. The direction of this shift, and 

the microbial taxa involved, were not equivalent in SalmoSim and real salmon, 

although no overall trend was observed at higher taxonomic levels in either 

system. Importantly, it is also the case that the vast majority of OTUs within both 

real salmon and SalmoSim were not affected by the switch in feed. Furthermore, 

it was found that change in feed did not affect VFA production in the SalmoSim 

system. As such, it is not clear whether any relevant functional shifts occurred in 

the microbiome of SalmoSim or real salmon as a result of the treatment. 

Furthermore, we did not identify any phenotypic changes (fish length, weight, 

gutted weight, carcass yield, gonad, and liver weights) within in vivo trial of 

Atlantic salmon fed on two different feeds. This lack of change is not unexpected, 

considering the plant-based feed was developed to have similar macronutrient 

composition to a Fish meal-based feed. One difference is a slightly higher crude 

fibre (fermentable substrate) proportion in Fish meal free diet, which could 

explain higher microbial diversity in in vivo samples fed on plant-based feed 

(Gajardo et al. 2017b).  

The use of in vitro systems to study and model the microbial communities of 

monogastric vertebrates is becoming increasingly widespread, with systems 

simulating: Sus scrofa (pig) (Tanner et al. 2014), Gallus gallus (chicken) (Card et 

al. 2017), Canis lupus (dog) (Duysburgh et al. 2020) and other vertebrate guts. 

Using in vitro gut simulators is also a widely accepted approach to study the human 

gut microbiome (Déat et al. 2009, Van Den Abbeele et al. 2010, Kim et al. 2016). 
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One of the most established systems is the Simulator of the Human Intestinal 

Microbial Ecosystem (SHIME) that mimics the entire gastrointestinal tract 

incorporating the stomach, small intestine and different colon regions (Molly et 

al. 1994). This system was used to study the effects of many different dietary 

additives on human microbiome (Sánchez-Patán et al. 2015, Giuliani et al. 2016). 

The value of in vitro simulators in providing genuine insights is limited only by the 

research question and the corresponding level of sophistication required. The host 

component of the system, for example, is often poorly modelled, although cell 

lines, artificial mucosae and digestion / absorbance systems can be included, 

which can provide specific physiological and metabolic insights (Déat et al. 2009, 

Van den Abbeele et al. 2012). For instance, the growth medium in vessels 

representing stomach and small intestine of SHIME system is enriched with 

pancreatic enzymes and bile, while a further upgrade of SHIME incorporates the 

mucosal environment allowing a portion of the microbiota present in the vessels 

to adhere to a gut mucus layer (Van Den Abbeele et al. 2010, Van den Abbeele et 

al. 2012). Furthermore, more sophisticated in vitro gut models, such as TIM-2 (the 

TNO computer-controlled, dynamic in vitro gastro-Intestinal Model of the colon), 

incorporates a dialysis system, which helps to maintain a physiological 

concentration of metabolites and prevents inhibition of the microbial growth by 

microbial metabolite accumulates (Minekus et al. 1999, Lefebvre et al. 2015). 

Finally, microfluid-based in vitro systems, such as HuMiX, allow co-culturing of 

the host gut cells and microbial cells under conditions and processes mimicking 

gastrointestinal host-microbiome interface (Shah et al. 2016). 

As we found, inter-individual variability may be an important consideration, and 

adequate biological replication is necessary to enable reliable interpretation of 

results, a consideration that can be overlooked by even the most sophisticated 

systems. Inter-individual variation in gut microbial communities is widely observed 

in human studies, that demonstrate more between-person variation than within-

person variation with adults having an average unique microbial signature that is 

largely stable over time (Costello et al. 2009, Stearns et al. 2011, Human 

Microbiome Project Consortium 2012, Huttenhower et al. 2012, Rajilić-Stojanović 

et al. 2013). This is also true in Atlantic salmon – our previous work clearly shows 

high levels of interindividual variability in farmed (Heys et al. 2020a) and wild 

(Llewellyn et al. 2016) fish, as does the work of all others. It was reported, for 
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example, that a single Lactobacillales OTU represented 96% of the microbiome of 

one fish which compared to a mean of only 3.5% relative abundance in the other 

fish from the same shoal in an aquaculture setting (Schmidt et al. 2016). Well-

established gut microbiome systems, such as SHIME, use inoculums from only one 

donor (Van Den Abbeele et al. 2010) or in recent studies 2 donors in which 

differences were found in microbiota distribution even when using control diets 

(Rovalino-Córdova et al. 2020). Furthermore, some artificial gut systems pool 

biological replicates together to produce a “representative microbiome 

inoculum”, such as in a recent in vitro Chicken Gut Model, and even in these 

systems microbiomes still show variability (Card et al. 2017). To our knowledge in 

this study, we are the first to run a gut microbiome model in biological triplicate 

and to highlight the importance of accounting for inter-individual differences 

before drawing conclusions. Prior to the current study, only one other attempt 

was made to study the effect of diet on Atlantic salmon gut microbial composition 

in vitro (Zarkasi et al. 2017). In this preliminary study a simple in vitro system was 

used to assess the impact of different feed formulations on the microbial 

communities of faecal slurries prepared from live salmon. However, no direct 

comparison was made with a true in vivo trial; nor were the different gut 

compartments present in salmon modelled in any detail and the predictive value 

for such simple in vitro systems in not immediately clear. Nonetheless, the work 

provided an important catalyst for the development of more sophisticated 

systems.   

 Conclusions 

Our results indicate that SalmoSim can not only stably maintain the most abundant 

microbial communities from real salmon, but also demonstrates similar responses 

to experimental feed treatments as those seen in real salmon. These results are 

encouraging, however, the nature of the treatment applied in this study: a switch 

between two similar feeds that had little effect on the gut microbiota in vivo, 

suggests that further experimentation with SalmoSim would be beneficial. For 

example, the survival and influence of probiotics within the system or the 

influence of known prebiotics could also be assessed, as has been previously 

studied in other in vitro gut systems (Duysburgh et al. 2020). Gut models such as 

SalmoSim could provide a powerful tool for aquaculture, where there is 
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considerable interest associated with the development of feed and feed additives 

(Kristiansen et al. 2011, Hartviksen et al. 2014, Encarnação 2016), but where the 

capacity for in vivo trials is limited. The aim of such systems could be to provide 

a pre-screening tool for new feed ingredients and additives with the aim of 

reducing the cost and scale of in vivo testing. In parallel, an in vitro gut model for 

salmon could also be exploited to understand questions of public health 

importance (e.g. antimicrobial resistance and transfer (Card et al. 2017)), as well 

as the fundamental ecological processes that underpin microbiome dynamics and 

assembly.  
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 Deploying an in vitro gut model to 
assay the impact of a mannan-oligosaccharide 
prebiotic, Bio-Mos® on the Atlantic salmon 
(Salmo salar) gut microbiome. 

 Abstract 

Mannose-oligosaccharide (MOS) pre-biotics are widely deployed in animal 

agriculture as immunomodulators as well as to enhance growth and gut health. 

Their mode of action is thought to be mediated through their impact on host 

microbial communities and the associated metabolism. Bio-Mos is a commercially 

available pre-biotic currently used in the agri-feed industry. To assess Bio-Mos for 

potential use as a prebiotic growth promotor in salmonid aquaculture, we have 

modified an established Atlantic salmon in vitro gut model, SalmoSim, to evaluate 

its impact on the host microbial communities. Inoculated from biological 

triplicates of adult farmed salmon pyloric caeca compartments, the microbial 

communities were stabilised in SalmoSim followed by a twenty-day exposure to 

the prebiotic and in turn followed by an eight day ‘wash out’ period. Dietary 

inclusion of MOS resulted in a significant increase in formate (p=0.001), propionate 

(p=0.037) and isovalerate (p=0.024) levels, correlated with increased abundances 

of several, principally, anaerobic microbial genera (Fusobacterium, Agarivorans, 

Pseudoalteromonas). DNA metabarcoding with 16S rDNA marker confirmed a 

significant shift in microbial community composition in response to MOS 

supplementation with observed increase in lactic acid producing Carnobacterium. 

In conjunction with previous in vivo studies linking enhanced volatile fatty acid 

production alongside MOS supplementation to host growth and performance, our 

data suggests that Bio-Mos may be of value in salmonid production. Furthermore, 

our data highlights the potential role of in vitro gut models to augment in vivo 

trials of microbiome modulators. 

 Introduction 

Since the late 1970s, the salmon aquaculture sector has grown significantly, 

currently exceeding 1 million tonnes of salmon produced per year (FAO 2018). In 

aquaculture environments, fish are exposed to abiotic conditions and biotic 
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interactions that are extensively different from the wild, such as changes in 

temperature and salinity, and close contact between animals that can favour 

potential disease outbreaks by proliferating pathogenic agents present from the 

surrounding environment from one animal to the other (Kennedy et al. 2016), as 

well as long term stress through physical aggression and overcrowding (Turnbull 

et al. 2005, Adams et al. 2007). Thus, the rapid expansion of the aquaculture 

sector requires a means to promote feed performance, reduce the need for 

medical treatments and reduce waste discharges whilst also improving farmed fish 

quality and boosting profitability.  

In order to mitigate disease outbreaks, as a preventative nutritional strategy, and 

improve feed performance, prebiotics are widely deployed in agriculture and 

aquaculture settings (Patterson and Burkholder 2003, Ringø, Olsen, et al. 2010, 

Markowiak and Ślizewska 2018). Prebiotics are defined as non-digestible food 

additives that have a beneficial effect on the host by stimulating growth and 

activity of bacterial communities within the gut that improve animal health 

(Gibson, Glenn R. and Roberfroid 1995). One prebiotic type found in aquaculture 

is mannooligosaccharides (MOS), which are made of glucomannoprotein-

complexes derived from the outer layer of yeast cell walls (Saccharomyces 

cerevisiae) (Merrifield et al. 2010). MOS compounds were shown to improve gut 

function and health by increasing villi height, evenness and integrity in chickens 

(Iji et al. 2001, Hooge 2004), cattle (Castillo et al. 2008) and fish (Dimitroglou et 

al. 2009). MOS supplementation in monogastrics has been reported to drive 

changes in host associated microbial communities (Sims et al. 2004, Halas and 

Nochta 2012). Associated increase of volatile fatty acid (VFA) production was 

reported which can have beneficial knock-on effects in terms of host metabolism 

and gut health in various mammalian species (Besten et al. 2013).   

There are a limited number of studies investigating the effect of MOS on the fish 

microbiome (Dimitroglou et al. 2009, Ringø et al. 2016a), with disparities in the 

observed results that could be partially explained by the duration of MOS 

supplementation, fish species, age or environmental conditions. For example, it 

was found that MOS supplemented diets improved growth and/or feed utilization 

in some studies (Staykov et al. 2007, Yilmaz et al. 2007, Buentello et al. 2010, 

Gültepe et al. 2011, Torrecillas et al. 2013), but others found that MOS 
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supplementation did not affect fish performance or feed efficiency (Pryor et al. 

2003, Peterson et al. 2010, Razeghi Mansour et al. 2012).  Detailed studies are 

needed to investigate the effect of MOS supplements on the fish microbiome to 

enhance our understanding of the link between MOS and gut health. In vitro gut 

models offer the advantage of doing so in a replicated and controlled 

environment.   

SalmoSim is a salmon gut simulation system that continuously maintains the 

microbial communities present in the intestine of marine phase Atlantic Salmon 

(Salmo salar) (Kazlauskaite et al. 2020). The current study deploys a modified 

version of SalmoSim designed to evaluate the effect of Bio-Mos (Alltech), a 

commercially available MOS product, on the microbial communities of the Atlantic 

salmon pyloric caecum compartment in biological triplicate. We assayed microbial 

composition and fermentation in the SalmoSim system and show a significant 

impact of Bio-Mos supplementation on both.   

 Materials and Methods 

 In vivo sample collection and in vitro system inoculation 

Three starved adult Atlantic salmon gut samples were collected from the MOWI 

processing plant in Fort William, Scotland and transferred to the laboratory in an 

anaerobic box on ice. Samples were placed in an anaerobic hood and contents 

from the pyloric caeca compartment were scraped and collected into separate 

sterile tubes. Half of each sample was stored in a -80oC freezer, whilst the other 

half was used as an inoculum for the SalmoSim system. Fresh bacterial inocula 

were prepared for the in vitro trial from the pyloric caeca compartment sampled 

from individual fish (three biological replicates) by dissolving them in 1 ml of 

autoclaved 35 g/L Instant Ocean® Sea Salt solution.  

 SalmoSim in vitro system preparation 

In vitro system feed media was prepared by combining the following for a total of 

2 litres: 35 g/L of Instant Ocean® Sea Salt, 10 g/L of the Fish meal (see Table 3-

1), 1 g/L freeze-dried mucous collected from the pyloric caecum, 2 litres of 

deionised water and 0.4% of Bio-Mos (derived from the outer cell wall of 
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Saccharomyces cerevisiae strain 1026) for the prebiotic supplemented feed. A 

supplementation level of 0.4% was chosen based on previous studies (Dimitroglou 

et al. 2011, Torrecillas et al. 2015). This feed was then autoclave-sterilised, 

followed by sieving of the bulky flocculate, and finally subjected to a second round 

of autoclaving. System architecture was prepared as described previously with 

some modifications (Kazlauskaite et al. 2020). In short, appropriate tubes and 

probes were attached to a two-litre double-jacketed bioreactor, and three 500 ml 

Applikon Mini Bioreactors.  Four 1 cm3 aquarium sponge filters were added to each 

Mini Bioreactor vessel which were then autoclaved, sterilised, and connected as 

in Figure 4-1. Nitrogen gas was periodically bubbled through each vessel to 

maintain anaerobic conditions. The two-litre double jacketed bioreactor and 

three 500 ml bioreactors were filled with 1.5 litres and 400 ml of feed media, 

respectively. Once the system was set up, media transfer, gas flow and acid/base 

addition were undertaken for twenty-four hours axenically in order to stabilise 

the temperature, pH, and oxygen concentration with respect to levels measured 

from adult salmon. SalmoSim system diagram is visualised in Figure 4-1. 

Physiochemical conditions within the three 500 ml SalmoSim gut compartments 

were kept similar to the values measured in vivo (Kazlauskaite et al. 2020): 

temperature inside the reactor vessels was maintained at 12°C, dissolved oxygen 

contents were kept at 0% by daily flushing with N2 gas for 20 minutes, and pH 7.0 

by the addition of 0.01 M NaOH and 0.01 M HCl. The 2-litre double jacketed 

bioreactor (represents a sterile stomach compartment) was kept at 12oC and pH 

at 4.0 by the addition of 0.01 M HCl. During this experiment (apart from the initial 

pre-growth period), the transfer rate of slurry between reactor vessels was 238 

ml per day. Finally, on a daily basis, 1 ml of filtered salmon bile and 0.5 ml of 

autoclaved 5% mucous solution were added to the three bioreactors simulating 

pyloric caecum compartments. 
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Figure 4-1 Artificial gut model system set-up and in vitro trial set up. A SalmoSim system 
designed to run in biological triplicate. 

 

 SalmoSim inoculation and microbial growth 

To generate stable and representative microbial communities for experimentation 

(Kazlauskaite et al. 2020), microbial communities were grown within the SalmoSim 

system during a separate twenty-four day run prior to the main experimental run 

(Figure 4-2A). This was achieved by adding fresh inoculum from pyloric caeca to 

three 500 ml bioreactors which was then pre-grown for 4 days without media 

transfer, followed by 20 days feeding the system at a 238 ml per day feed transfer 

rate. A volume of 15 ml of the stable communities were collected at the end of 

this pre-growth period, centrifuged at 3000 g for 10 minutes and supernatant 

removed. The pellet was then dissolved in 1 ml of autoclaved 35 g/L Instant 

Ocean® Sea Salt solution, flash frozen in liquid nitrogen for 5 minutes and stored 

long term in -80oC freezer for later microbial DNA analysis. 
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Figure 4-2 In vitro trial setup. A Stable community pre-growth run within the SalmoSim system; B 
Main experimental run that involved four stages: (i) pre-growth (without feed transfer for 4 days), (ii) 
feeding system with Fish meal (Pre-Bio-Mos: 5 days), (iii) feeding system with Fish meal diet 
supplemented with Bio-Mos (Bio-Mos: 20 days), (iv) wash out period during which system was fed 
Fish meal without the addition of prebiotic (Wash out: 6 days); C SalmoSim sampling time points, 
which include definition of stable time points for Bio-Mos phase (days 22, 24, and 26 - once 
bacterial communities had time to adapt to Bio-Mos addition). 
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 Assaying Bio-Mos impact on microbial communities in the 
SalmoSim in vitro system 

Frozen pre-grown stable pyloric caeca samples were thawed on ice and added to 

the SalmoSim system with each 500 ml bioreactor inoculated using bacterial 

communities pre-grown from a different fish. The system was run in several 

stages: (i) 4-day initial pre-growth period without feed transfer (Pre-growth), (ii) 

5-day period during which SalmoSim was fed without prebiotic (Pre-Bio-Mos), (iii) 

20-day period during which SalmoSim was fed on feed supplemented with Bio-Mos 

(Bio-Mos), (iv) 6-day wash out period during which SalmoSim was fed on Fish meal 

diet without addition of prebiotic (Wash out). The schematic representation of 

the experimental design is visually represented in Figure 4-2B. Sixteen samples 

were collected throughout the experimental run as described previously (one per 

each biological replicate at each sampling time point) (Figure 4-2C) (Kazlauskaite 

et al. 2020). 

 Genomic DNA extraction and NGS library preparation  

DNA extraction and NGS library preparation protocols were previously described 

(Heys et al. 2020a, Kazlauskaite et al. 2020). Briefly, the samples collected from 

SalmoSim system and stable pre-grown inoculums were thawed on ice and exposed 

to bead-beating step for 60 seconds by combining samples with MP Biomedicals™ 

1/4" ceramic sphere (Thermo Fisher Scientific, USA) and Lysing Matrix A Bulk (MP 

Biomedicals, USA). DNA was then extracted by using the QIAamp® DNA Stool kit 

(Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol (Claassen 

et al. 2013). After, extracted DNA was amplified using primers targeting the V1 

bacterial rDNA 16S region under the following PCR conditions: 95°C for ten 

minutes, followed by 25 cycles at 95°C for 30 seconds, 55°C for 30 seconds and 

72°C for 30 seconds, followed by a final elongation step of 72°C for 10 minutes. 

The second-round PCR, which enabled the addition of the external multiplex 

identifiers (barcodes), involved six cycles only and otherwise had identical 

reaction conditions to the first round of PCR. This was followed by the PCR product 

clean-up using Agencourt AMPure XP beads (Beckman Coulter, USA) according to 

the manufacturers' protocol and gel-purification using the QIAquick Gel Extraction 

Kit (Qiagen, Valencia, CA, USA). Finally, the PCR products were pooled together 
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at 10 nM concentration and sent for sequencing using a HiSeq 2500 sequencer by 

Novogene. 

 NGS data analysis 

NGS data analysis was undertaken as described previously (Kazlauskaite et al. 

2020). In short, to determine microbial community stability within the SalmoSim 

system over time, two alpha diversity metrics (effective microbial richness and 

evenness (effective Shannon)) were calculated using the Rhea package 

(Lagkouvardos et al. 2017a) and visualised by using the microbiomeSeq package 

based on the phyloseq package (McMurdie and Holmes 2013, Ssekagiri et al. 2017).  

To provide an overall visualisation of microbial composition across all samples, 

Principal Coordinates Analysis (PCoA) was performed by using the phyloseq 

package (Love et al. 2017, Ssekagiri et al. 2017) with Bray-Curtis dissimilarity 

measures calculated using the vegdist function from the vegan v2.4-2 package 

(Oksanen et al., 2013). Bray-Curtis distances were calculated for four different 

datasets: the full dataset (containing all biological replicates together), and three 

different subsets each containing only one of the three biological replicate 

samples from SalmoSim: Fish inoculum 1, 2, or 3.  

To further compare microbial structure between various experimental phases, 

beta diversity was calculated for two different datasets: (i) all (complete data set 

containing all the samples sequenced) and (ii) subset (containing all samples for 

Pre-Bio-Mos and Wash out period, but only stable samplings from Bio-Mos period 

(time points 22, 12 and 26)). From these datasets ecological distances were 

computed using Bray-Curtis and Jaccard distances with the vegdist function from 

the vegan v2.4-2 package (Oksanen et al., 2013). Furthermore, the phylogenetic 

distances were computed for each dataset using GUniFrac distances  (generalised 

UniFrac) at the 0% (unweighted), 50% (balanced) and 100% (weighted) using the 

Rhea package  (Lagkouvardos et al. 2017b). Both ecological and phylogenetic 

distances were then visualised in two dimensions by Multi-Dimensional Scaling 

(MDS) and non-metric MDS (NMDS) (Anderson 2001). Finally, a permutational 

multivariate analysis of variance (PERMANOVA) was performed using distance 

matrices (including phylogenetic distance) to explain sources of variability in the 
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bacterial community structure as result of changes in recorded parameters  

(Anderson 2001). 

To identify differentially abundant OTUs between various experimental phases 

(Pre-Bio-Mos, Bio-Mos and Wash out), differential abundance was calculated using 

the microbiomeSeq package based on the DESeq2 package (Love et al. 2017, 

Ssekagiri et al. 2017). Results were then summarised using bar plots at the genus 

level, identifying a number of OTUs belonging to a specific genus level that 

increase or decrease between various experimental phases.  

To identify OTUs that correlated with measured VFAs, the Pearson correlation 

coefficient (r>0.8) was calculated between taxonomic variables (OTUs) and VFA 

values measured, and visualised using tools supplied by the Rhea package within 

different experimental phases (Pre-Bio-Mos, Bio-Mos, and Wash out) 

(Lagkouvardos et al. 2017b).  

Finally, in order to analyse microbial community structure within different 

experimental phases, network analysis using Spearman correlation (r>0.8) was 

performed on three datasets: (i) all Pre-Bio-Mos samples, (ii) stable Bio-Mos 

samples (samples from days 22, 24, and 26), and (iii) all Wash out samples. Key 

network characteristics (degree and centrality betweenness) were compared 

between the three experimental phases: Pre-Bio-Mos, Bio-Mos, and Wash out. All 

these comparisons were analysed and visualised using the “ggstatsplot” package.  

 Protein fermentation and Volatile Fatty Acid (VFA) analysis 

At each sampling point, microbial protein fermentation was assessed by measuring 

the protein concentration using the Thermo Scientific™ Pierce™ BCA Protein Assay 

Kit (Thermo Fisher Scientific, USA) and the ammonia concentration using Sigma-

Aldrich® Ammonia Assay Kit (Sigma-Aldrich, USA). Both methods were performed 

according to manufacturer protocol by using a Jenway 6305 UV/Visible 

Spectrophotometer (Jenway, USA). For VFA analysis, nine samples from each 

pyloric caecum compartment were collected (from 3 biological replicates): 3 

samples from the Pre-Bio-Mos period (days 2-6), 3 samples from stable time points 

from the period while SalmoSim was fed on feed supplemented with Bio-Mos (days 
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22-26), and 3 samples from the Wash out period (days 28-32). VFA sampling was 

performed as described previously (Kazlauskaite et al. 2020). Extracted VFAs were 

sent for gas chromatographic analysis at the MS-Omics (Denmark).  

In order to establish whether VFA concentrations were statistically different 

between different experimental phases (Pre-Bio-Mos, Bio-Mos and Wash out), a 

linear mixed effect model was deployed (Model 1) considering time point 

(sampling time point) and run (biological replicate of SalmoSim system) as random 

effects.  

Model 1 = lmer(VFA~ Phase+(1|Time point)+(1|Run)) 

Finally, in order to establish whether ammonia production changed throughout 

the experimental run, a linear mixed effect model was deployed (Model 2) treating 

run biological replicate (of SalmoSim system) as random effect. 

Model 2 = lmer(ammonia concentration~ Time point+(1|Run)) 

 Results 

In order to explore the impact of the Bio-Mos prebiotic on microbial communities 

in SalmoSim, microbial amplicons in different experimental phases (Pre-Bio-Mos, 

Bio-Mos and wash out) were surveyed using Illumina NovaSeq amplicon sequencing 

of the 16S V1 rDNA locus. In total 11.5 million sequence reads were obtained after 

quality filtering. Alpha diversity metrics (effective richness in Figure 4-3A and 

effective Shannon diversity in Figure 4-3B) indicated that the initial inoculum 

contained the lowest number of OTUs and had the lowest bacterial richness 

compared to later sampling time points from the SalmoSim system, but these 

differences were not statistically significant. Furthermore, this figure indicates no 

statistically significant differences between different experimental phases (Pre-

Bio-Mos, Bio-Mos and Wash out) both in terms of effective richness and Shannon 

diversity. Taken together, diversity and richness estimates suggest non-

statistically significant increase in the number of detectable microbial taxa as a 

result of transfer into SalmoSim system, but overwise stable diversity and richness 

over the different experimental phases.  
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Figure 4-3 Alpha-diversity dynamics within the SalmoSim system during exposure to Bio-
Mos prebiotics. The figure represents different alpha diversity outputs at different sampling time 
points (days) from the SalmoSim system. Time point 0 represents microbial community 
composition within the initial SalmoSim inoculum from the pre-grown stable bacterial communities, 
time points 2-6 identify samples from the SalmoSim system fed on the Fish meal diet alone (Pre-
Bio-Mos: green), time points 8-26 identify samples from the SalmoSim system fed on a Fish meal 
diet with addition of Bio-Mos (Bio-Mos: red), and time points 28-32 identify samples from the wash 
out period while SalmoSim was fed on feed without addition of the prebiotic (Wash out: blue). A 
visually represents effective richness (number of OTUs), B represents effective Shannon diversity. 
 

Biological replicate (the founding inoculum of each SalmoSim run) appears to be 

a major driver of community composition in the experiment (Figure 4-4A). This is 

supported by Figure 4-5 that visually represents varying microbial composition 

within different fish. Only when individual SalmoSim replicates were visualised 

separately in PCoA plots, do the changes to microbial communities in response to 

the different experimental phases become apparent (Figure 4-4B-D). These results 

indicate that bacterial communities shift from Pre-Bio-Mos to Bio-Mos, but they 

remain fairly stable (statistically similar, p>0.05 in majority of cases) between 

Bio-Mos and Wash out periods as reflected by beta diversity results summarised in 

Table A4-1. However, community shifts do not necessarily occur along the same 

axes in each SalmoSim replicate indicative, perhaps, of a different microbiological 

basis for that change. This trend is confirmed in Figure 4-5 that indicates a more 

substantial shift in microbial community profile between Pre-Bio-Mos and Bio-Mos 

phases for Fish 2 and 3, but to a lesser extent for Fish 1. These results were 

confirmed by performing beta-diversity analysis using both phylogenetic and 

ecological distances, both of which indicated statistically significant differences 

between Pre-Bio-Mos and Bio-Mos phases, but not between Bio-Mos and Wash out 

periods (Table A4-1). Furthermore, Table A4-1 indicates that 149 OTUs were found 
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to be differentially abundant between Pre-Bio-Mos and Bio-Mos phases, while only 

5 OTUs were differentially abundant between Bio-Mos and Wash out phases.  

 

Figure 4-4 Beta diversity plots visualising bacterial communities dissimilarities within the 
SalmoSim bioreactors during exposure to Bio-Mos prebiotic. In the PCoA plots, Bray-Curtis 
distance was used between samples originating from different experimental phases (Inoculum, 
Pre-Bio-Mos, Bio-Mos and Wash out), annotated with sampling time points and biological 
replicates. A represents all sequenced data together for all 3 biological replicates in which different 
colours represent different biological replicates (samples from pyloric caecum from 3 different fish) 
and different shapes represent different experimental phases (Inoculum, Pre-Bio-Mos, Bio-Mos and 
Wash out); B-D represent sequenced data for each individual biological replicate (B: Fish 1, C: 
Fish 2, D: Fish 3). In figures B-D different colours represent different sampling time points and 
different shapes represent different experimental phases (Inoculum, Pre-Bio-Mos, Bio-Mos and 
Wash out).  Dim 1 is principal coordinate 1 and Dim 2 is principle coordinate 2.  
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Figure 4-5 Microbial composition (25 most common genus + others) amongst different 
biological replicates and experimental phases. Labels on X axis in green represent samples 
from Pre-Bio-Mos phases, in red samples fed on Bio-Mos phase and in blue samples from Wash 
out period. Only a subset of time points is visualised for each phase: time points 2- 6 for Pre-Bio-
Mos, 8-12 and 22-26 for Bio-Mos, and 28-32 for Wash out. 
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To compare experimental phases in more detail, differentially abundant OTUs 

between various experimental phases were summarised in bar plots at a genus 

level in Figure 4-6. Figure 4-6A indicates that between Pre-Bio-Mos and Bio-Mos 

phases, more OTUs decreased in abundance, rather than increased. The OTUs that 

differentially increased from Pre-Bio-Mos to Bio-Mos phase were identified to 

belong to: Aeromonas (higher proportion increased (50%) rather than decreased 

(12.5%)), Agarivorans, Aliivibrio, Carnobacterium (only showed increase and no 

decrease), Fusobacterium, Pseudoalteromonas, Pseudomonas, Psychobacter, and 

Shewanella. Figure 4-6B indicates the increase of OTUs belonging to Enterococcus 

and Thalassospira genera between Bio-Mos and Wash out, while OTUs belonging 

to Micrococcus, Myroides, and Shewanella genera have decreased.  

 

Figure 4-6 Differential abundance of OTUs grouped at genus level between different 
experimental phases (Pre-Bio-Mos, Bio-Mos and Wash out). Differentially abundant OTUs 
grouped at genus level between different experimental phases: Pre-Bio-Mos vs Bio-Mos (A), Bio-
Mos vs Wash out (B). Red and blue represents statistically significant (p<0.05) decrease and 
increase respectively between the experimental phases compared. 

 

For the analysis of the microbial community structure throughout the experiment, 

three OTU co-occurrence networks were analysed for each phase (Pre-Bio-Mos, 

Bio-Mos, and Wash out), and the main network characteristics were compared: 

the degree, and centrality betweenness (Figure A4-1). Pre-Bio-Mos phase (Figure 

A4-1A) indicates a higher average degree (number of edges per node) than in the 
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Bio-Mos or Wash out phases. However, the median of degrees is much higher in 

the Bio-Mos phase compared to the Pre-Bio-Mos, suggesting that during the Pre-

Bio-Mos phase there were clusters of interacting OTUs (one cluster with a high 

degree and another with lower degree). As such, the distribution of connectivity 

is more uniform in the Bio-Mos phase, compared to the Pre-Bio-Mos. Moreover, 

the average of betweenness centralities (centrality measure based on the shortest 

paths between nodes) is higher in Bio-Mos and Wash out phases compared to the 

Pre-Bio-Mos phase (Figure A4-1B). 

These results are visually represented in Figure 4-7, which indicates that 

statistically significant increases were found between Pre-Bio-Mos and Bio-Mos 

phases in formic, propanoic and 3-methylbutanoic acid concentrations. No 

significant differences in any VFA production by the system was noted between 

Bio-Mos and Wash out periods.  
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Figure 4-7 VFA responses in SalmoSim pyloric caecum compartment after Bio-Mos 
introduction and subsequent wash out period. The figure above represents production of 11 
volatile fatty acids in three different experimental phases: (i) SalmoSim fed on Fish meal alone 
without prebiotic addition (Pre-Bio-Mos: green), (ii) SalmoSim fed on Fish meal with addition of Bio-
Mos (Bio-Mos: red), (iii) wash out period during which SalmoSim was fed on Fish meal without Bio-
Mos (Wash out: blue). X axis represents the concentration of specific volatile fatty acid (mM) while 
the Y axis represents different sampling time points (days). The lines above bar plots represent 
statistically significant differences between different experimental phases. The asterisks show 
significance: (*: 0.01 ≤ p < 0.05; **: 0.05 ≤ p < 0.001; ***: p ≤ 0.001). 
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Results shown in Figure 4-8 identify that in the Bio-Mos phase alone, a number of 

OTUs which showed a strong correlation with various VFAs, had already been 

picked up by differential abundance analysis (Figure 4-6), identifying statistically 

significant increases. OTUs belonging to Agarivorans and Fusobacterium genera 

were found to be positively correlated with propanoic and formic acid, but 

negatively correlated with 3-methyl butanoic acid. An OTU belonging to 

Pseudoaltermonas genus was found to be positively correlated with propanoic 

acid, but negatively correlated with 3-methyl butanoic acid, while other OTUs 

belonging to Pseudoaltermonas genus were found to be negatively correlated to 

propanoic acid. Finally, one OTU belonging to Fusobacterium was found to be 

negatively correlated to 3-methyl butanoic acid. While within Pre-Bio-Mos and 

Wash out phases, statistically significant Pearson correlations (r>0.8) were also 

identified between various OTUs and VFAs, however, these OTUs were not picked 

up in differential abundance analysis between those phases (Figure 4-6).  
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Figure 4-8 Pearson correlation coefficients across VFAs and taxonomic variables. 
Statistically significant (p<0.05) and strongly correlated (r>0.8) Pearson correlation coefficients 
across a set of VFAs (that showed statistically significant change between feeds: propanoic, formic 
and 3-methyl butanoic acids) and taxonomic variables (OTUs summarised at genus level apart 
from * to order level) are shown in various experimental phases (Pre-Bio-Mos, Bio-Mos and Wash 
out). Blue colour represents negative correlations and red colour represents positive correlations, 
respectively. The boxes indicate that these OTUs in differential abundance analysis showed 
statistically significant increase from Pre-Bio-Mos to Bio-Mos phase.  

 

Figure 4-9 summarises measured ammonia (NH3) concentration changes through 

the experiment. The data indicates a statistically significant increase in ammonia 

production between time points 2 and 4, and between time points 20 and 22, and 

statistically significant decrease in ammonia concentration between time points 

30 and 32.  
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Figure 4-9 ammonia (NH3) concentration in SalmoSim pyloric caecum compartment 
throughout experiment. Ammonia (NH3) production in three different experimental phases: (i) 
SalmoSim fed on Fish meal alone without prebiotic addition (Pre-Bio-Mos: green), (ii) SalmoSim 
fed on Fish meal with addition of Bio-Mos (Bio-Mos: red), (iii) wash out period during which 
SalmoSim was fed on Fish meal without Bio-Mos (Wash out: blue). X axis represents the 
concentration of ammonia (µg/ml) while the Y axis represents different sampling time points (days). 
The lines above bar plots represent statistically significant differences between sequential time 
points. The asterisks show significance: (*: 0.01 ≤ p < 0.05; **: 0.05 ≤ p < 0.001; ***: p ≤ 0.001) 

 

 Discussion  

Our study aimed at elucidating the effect of a commercially available MOS product 

(Bio-Mos) on the microbial communities within the gut content of Atlantic salmon 

using a newly developed artificial salmon gut simulator ‘SalmoSim’. Inclusion of 

Bio-Mos within the tested feed did not affect microbial community diversity and 

richness in the SalmoSim system, nor did subsequent removal of the prebiotic 

during wash out. The biological replicate (the founding inoculum of each SalmoSim 

run) appears to be a major driver of variations in community composition and 



Chapter 4 Deploying an in vitro gut model to assay the impact of a mannan-
oligosaccharide prebiotic, Bio-Mos® on the Atlantic salmon (Salmo salar) gut 

microbiome.  106 
structure throughout the experiment. This could be explained by the fact that 

feed used in the in vitro study was sterile, thus the bacterial communities 

retrieved within the SalmoSim system originated only from real salmon inoculums 

as in a previous experiment involving SalmoSim (Kazlauskaite et al. 2020). Our 

results indicate that bacterial community composition between Pre-Bio-Mos and 

Bio-Mos experimental phases was significantly different, but was statistically 

similar between Bio-Mos and Wash out periods. Similar trends were observed in 

the bacterial activity (VFA production) that showed statistically significant 

increases in formic, propanoic and 3-methylbutanoic acid concentrations during 

the shift from Pre-Bio-Mos to Bio-Mos phase, but no statistically significant change 

in bacterial activity between Bio-Mos and Wash out periods. The lack of change in 

bacterial composition and activity between Bio-Mos and Wash out period could be 

explained by the short time frame of the Wash out period, lasting only 6 days, 

compared to the 20-day Bio-Mos phase. This is potentially not long enough to see 

a reversal any of changes driven by Bio-Mos. Finally, a statistically significant 

increase in the ammonia production during Bio-Mos phase was observed at the 

later time points (between days 20 and 22), followed in the reduction in ammonia 

concentration during the Wash out period (between days 30 and 32), the potential 

drivers of which are discussed below. 

Several studies have shown that in vertebrates (e.g. chicken, mouse, turkey) 

supplementing feed with MOS increases the production of propionate and butyrate 

by gut bacteria (Zdunczyk et al. 2005, Pan et al. 2009, Ao and Choct 2013), while 

other studies have not reported any effect of MOS on the VFA production (Gürbüz 

et al. 2010). In our study we report a statistically significant increase in the 

production of formic, propanoic and 3-methylbutanoic acids in the SalmoSim 

system associated with feed supplemented with Bio-Mos. In humans propionate is 

commonly absorbed and metabolised by the liver, where it impacts host 

physiology via regulation of energy metabolism  (El Hage et al. 2020).  It has also 

been associated with healthy gut histological development and enhanced growth 

in fish and shellfish (da Silva et al. 2016, Wassef et al. 2020). Formic acid, although 

frequently deployed as an acidifier in monogastrics to limit the growth of enteric 

pathogens (Luise et al. 2020), is not known to directly impact host phenotype. 

Similarly, except as the rare genetic disorder that occurs in humans, isovaleric 

acidemia, where the compound accumulates at high levels in the absence of 
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isovaleric acid-CoA dehydrogenase activity in host tissues (Vockley and Ensenauer 

2006), isovaleric (3-methylbutanoic) acid is not expected to directly impact host 

phenotype either.    

Further analysis identified that an increase in formic acid during the Bio-Mos phase 

positively correlated with OTUs belonging to Agarivorans (facultative anaerobic) 

and Fusobacterium (anaerobic) genera. While an increase in propanoic acid during 

the Bio-Mos phase also positively correlated with OTUs belonging to the 

Agarivorans (facultative anaerobic) and the Fusobacterium (anaerobic) genera as 

well as the Pseudoaltermonas (facultative anaerobic) genus, a negative 

correlation was found with two OTUs belonging to the same Pseudoaltermonas 

(facultative anaerobic) genus. Finally, only negative correlations were identified 

between the increased amount of 3-methyl butanoic acid in the Bio-Mos phase and 

OTUs belonging to Pseudoaltermonas (facultative anaerobic), Fusobacterium 

(anaerobic) and Agarivorans (facultative anaerobic) genera. All of these OTUs 

were found to not only be correlated with increased VFAs, but also to be 

differentially abundant between Pre-Bio-Mos and Bio-Mos phases, providing 

circumstantial evidence for a link between these microbes and the measured 

metabolites. The causal directionality between these genera and the respective 

VFAs is hard to establish. A strong positive correlation has been found previously 

in humans between the Fusobacterium genus and propanoic acid concentration 

(Riordan 2007). Propionate is a key substrate that can metabolised by several 

classes of methanogenic anaerobes (Mah et al. 1990) and may be driving the 

growth of the genera noted here. Equally, propionate is a major product of 

microbial metabolism of amino acids (Louis and Flint 2017), and it is likely here 

that more efficient protein metabolism in the system by certain genera is driving 

its abundance. An increase in ammoniacal nitrogen (ammonia) production was 

noted after the addition of Bio-Mos in all three replicates, albeit with a noticeable 

lag. Furthermore, although formate, propionate, isovalerate and ammonia show a 

downward trend after the removal of Bio-Mos, seemingly a longer wash-out period 

is required to allow VFA and ammonia levels to recover to their pre-Bio-Mos levels.  

Previously published research has suggested that feed supplementation with MOS 

modulates immune response in animals by stimulation of the production of 

mannose-binding proteins which are involved in phagocytosis and activation of the 
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complement system (Franklin et al. 2005, Taschuk and Griebel 2012). Such 

relationships with host immunity are difficult to predict with a simplified in vitro 

system. It is thought the feed supplementation with MOS elevates the immune 

response within the host by increasing the lactic acid bacteria (LAB) levels in 

common carp (Momeni-Moghaddam et al. 2015).  In the present study, an increase 

in differential abundance of Carnobacterium (LAB bacteria) from Pre-Bio-Mos to 

Bio-Mos phases was observed. This bacterial genus has been proposed as a 

potential probiotic when present within Atlantic salmon (Salmo salar) and rainbow 

trout (Oncorhynchus mykiss) (Robertson et al. 2000). The use of Carnobacteria as 

probiotics were shown to be correlated with increased survival of the larvae of 

cod fry and Atlantic salmon fry (Gildberg et al. 1995), rainbow trout (Irianto and 

Austin 2002), and salmon (Robertson et al. 2000). A fishmeal-based diet with 

limited carbohydrate content was used to perform this experiment, and has been 

previously linked to lower abundances of lactic acid producing bacteria when 

compared to microbial gut composition of Atlantic salmon fed on plant-based feed 

(Reveco et al. 2014). To enhance LAB growth even further alongside MOS in protein 

rich diets, some carbohydrate supplementation may be necessary.  

Network analysis suggested a change in the distribution of connectivity of the 

microbial network during the Bio-Mos phase as compared to the Pre-Bio-Mos 

phase. The microbial network during the Bio-Mos phase shows higher modularity 

(nodes in the network tend to form denser modules), that is also reflected by a 

higher average of betweenness centralities within the Bio-Mos phase, a measure 

which represents the degree of interactive connectivity between nodes. Thus, 

feed supplementation with Bio-Mos may be correlated with more frequent species-

species interactions, and a greater stability of network structure within the 

network. Stable microbial communities are also though to contribute to pathogen 

colonisation resistance via nutrient niche occupancy (Stecher et al. 2013, Romero 

et al. 2014, Xiong et al. 2019). However, a challenge experiment would be 

required to test this assertion. 

 Conclusions 

Our study indicates a positive correlation between Bio-Mos supplementation and 

production of propanoic and formic acids, both of which are known to benefit 
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animal microbiome and health (Haque et al. 1970, EFSA 2014). Although, our in 

vitro model lacks a host component, previous studies involving the use of gut 

simulators to analyse the effectiveness of various pre-biotics were shown to 

produce similar results to in vivo trials (Sivieri et al. 2014, Duysburgh et al. 2020). 

Our data highlights the potential usefulness of various in vitro gut systems in fin 

fish aquaculture to study the effectiveness of feed additives.  
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 Contributions, Discussion and 
Conclusion 

 Research highlights  

The use of in vitro systems to study and model the microbial communities of 

monogastric vertebrates is becoming increasingly widespread, with systems 

simulating: Sus scrofa (pig) (Tanner et al. 2014), Gallus gallus (chicken) (Card et 

al. 2017), Canis lupus (dog) (Duysburgh et al. 2020) and other vertebrate guts. 

Using in vitro gut simulators is also a widely accepted approach to study the human 

gut microbiome (Déat et al. 2009, Van Den Abbeele et al. 2010, Kim et al. 2016). 

An aim of this thesis was to design, build, validate, and use in practice an artificial 

Atlantic salmon gut simulator, SalmoSim.  

The work conducted in Chapter 2 offered a foundation to both the design of the 

SalmoSim system and methods used in Chapters 3 and 4. The physiochemical 

conditions, required to design an Atlantic salmon gut simulator (such as pH, 

dissolved oxygen, temperature, flow rates, and more), were identified via 

experimentation, literature review, and data from industry partners. These 

conditions were then put into practice via a preliminary twenty-day SalmoSim 

replicate run study in which two identical SalmoSim runs were performed and the 

variability (experimental error) between two runs of the system via next 

generation sequence profiling of the 16S rRNA gene were assayed. Unfortunately, 

statistical analysis could not be performed on the current experiment due to 

insufficient replication as a result of a failure during one of the triplicate runs. 

Our results suggest visual differences between the SalmoSim system replicate runs 

using alpha diversity metrics. However, shared OTU analysis indicated that these 

differences were driven by rare OTUs, which comprise less than 1% of the total 

reads in both runs. Visual analysis of the alpha diversity metrics over time 

indicated that effective richness (number of OTUs) and effective Shannon diversity 

remained largely static throughout each replicate run regardless of gut 

compartment, with no observed visual pattern. Furthermore, this study identified 

a visual difference between the initial inoculum and SalmoSim system, in 

particular, the loss of the Mycoplasma genus in pyloric caecum and mid gut 

compartments. Finally, our results suggest that the microbial composition within 
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the stomach compartment is statistically different from the other two 

compartments.  

The preliminary run performed in Chapter 2 acted as a pilot to identify future 

pitfalls and improvements allowing the enhancement of SalmoSim runs for 

Chapters 3 and 4. In order to improve the replicability between different replicate 

runs, the SalmoSim protocols were adapted for Chapter 3 and 4 by producing a 

pool of bile and mucous, and sampling at the same time of the day, as well as, 

considering run as a random effect during statistical analysis. Furthermore, to 

improve reproducibility, the SalmoSim system was further adapted in Chapter 4 

to run triplicate experiments in parallel. In order to prevent the loss of taxa from 

founding inoculum to SalmoSim, in Chapters 3 and 4 the initial inoculum samples 

from real salmon were collected and processed under anaerobic conditions and a 

snap freezing method in liquid nitrogen was utilised instead of addition of glycerol 

before long term storage in -80oC.  

In Chapter 3 I focused on validating the system as a potential means of testing the 

impact of feeds on salmon gut microbial communities by comparing the 

performance and response of the in vitro simulator during a feed trial with parallel 

in vivo modulation of the gut microbial community in a cohort of marine phase 

Atlantic salmon.  As in the trial SalmoSim replicate experiment described in 

Chapter 2, the SalmoSim microbiomes became increasingly stable over the first 

20 days of the validation experiment. Furthermore, while in Chapter 2 the data 

identified the loss of taxa during the transfer of inoculum to the SalmoSim system, 

in the validation study SalmoSim microbiomes were indistinguishable (p=0.230) 

from their founding inocula at 20 days and the most abundant genera (e.g. 

Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim (OTUs 

accounting for 98% of all reads shared with founding communities), which 

indicates the success of the adapted inoculum collection protocol from Chapter 2. 

Regarding the validation, real salmon and SalmoSim responded similarly to the 

introduction of novel feed, with the majority of the taxa (96% Salmon, 97% 

SalmoSim) unaffected, while a subset of taxa (e.g. a small fraction of 

Psychrobacter) were differentially affected across both systems.  Consistent with 

a low impact of the novel feed on microbial fermentative activity, volatile fatty 

acids profiles were not significantly different in SalmoSim pre- and post-feed 
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switch. By establishing stable and representative salmon gut communities, this 

study represents an important step in the development of an in vitro gut system 

as a tool for the improvement of salmon nutrition and welfare.  

Overall, our results from the validation study in Chapter 3 indicate that SalmoSim 

can not only stably maintain the most abundant microbial communities from real 

salmon, but also demonstrates similar responses to experimental feed treatments 

as those seen in real salmon. These results are encouraging, however, given this 

study utilised a switch between two similar feeds that had little effect on the gut 

microbiota in vivo, further experimentation with SalmoSim would be beneficial. 

For example, the survival and influence of probiotics within the system or the 

influence of known prebiotics could also be assessed, as has been previously 

studied in other in vitro gut systems (Duysburgh et al. 2020). Thus, in Chapter 4 

we assess Bio-Mos (commercially available pre-biotic currently used in the agri-

feed industry) for potential use as a prebiotic growth promotor in salmonid 

aquaculture. Taking results from Chapter 2 we modified SalmoSim (enabling 

performance of triplicate experiment in parallel), to evaluate the impact of Bio-

Mos on the host microbial communities. Inoculated from biological triplicates of 

adult farmed salmon pyloric caeca compartments, the microbial communities 

were stabilised in SalmoSim for 20-days as determined in Chapters 2 and 3, 

followed by a twenty-day exposure to the prebiotic and in turn followed by an six 

day ‘wash out’ period. Dietary inclusion of MOS resulted in a significant increase 

in formate (p=0.001), propionate (p=0.037) and isovalerate (p=0.024) levels, 

correlated with increased abundances of several, principally, anaerobic microbial 

genera (Fusobacterium, Agarivorans, Pseudoalteromonas). DNA metabarcoding 

with the 16S rDNA marker confirmed a significant shift in microbial community 

composition in response to MOS supplementation, with an observed increase in 

lactic acid producing Carnobacterium. In conjunction with previous in vivo studies 

linking enhanced volatile fatty acid production alongside MOS supplementation to 

host growth and performance, the data in Chapter 4 suggests that Bio-Mos may be 

of value in salmonid production. Finally, our data highlights the potential role of 

in vitro gut models to augment in vivo trials of microbiome modulators. 
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 Future Research  

 Adapting the SalmoSim system for other fish species 

Whereas studies have been performed using a simple in vitro batch method to 

study fermentation of various feeds using inocula of Nile tilapia (Oreochromis 

niloticus) and European sea bass (Dicentrarchus labrax), these systems lack 

complexity (Leenhouwers et al. 2008). In this thesis it was identified that in order 

to design and build an artificial gut simulator with similar complexity to SalmoSim 

the key parameters must be identified either via experimentation, literature 

review, or data from industry partners. These parameters include physiochemical 

conditions within fish’s gut (pH, temperature, dissolved oxygen), feed media 

composition (for fish species raised in aquaculture setting the feed composition 

would need to be sourced from an industry partners), and flow rate between 

different gut compartments. If all these parameters can be determined, as well 

as access to fresh gut samples (for inoculation and collection of supplements, such 

as bile and mucous) of the fish species of interest, then there is no evidence to 

suggest that the adaptation of SalmoSim to other fish species (e.g. trout, carp) 

should not be possible. However, prior to application of these adaptations, re-

validation of the system against an in vivo trial for the specific fish species would 

need to be carried out. 

 Introducing digestibility to SalmoSim system  

In the aquaculture industry determination of the digestibility of nutrients in 

various feeds provides an indication of their nutritional value and is often 

considered as the first step in feed quality evaluation (Allan et al. 2000, Glencross 

et al. 2007, Liu et al. 2009, Luo et al. 2009). In order for the SalmoSim system to 

be used as a proxy for digestibility trials, and thus enhance its usefulness to the 

industry, the system and protocols would need to be adapted. While some in vitro 

systems used to assess digestibility in Atlantic salmon use enzymes sourced from 

pigs, and bovines, such as porcine pepsin/porcine trypsin, bovine chymotrypsin, 

and porcine peptidase (Stewart Anderson et al. 1993), the enzyme extracts from 

different parts of the digestive system from real salmon should be chosen to 

ensure accurate simulation of the in vivo digestion process. Thus, adaptations of 

SalmoSim should include the addition of enzyme extracts from the stomach and 
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pyloric caecum compartments of real salmon in order to hydrolyse ingredients 

within the feed being tested (Moyano et al. 2015). Furthermore, as the 

concentration of the digestive enzymes within the fish’s gut fluctuates depending 

on circadian rhythms (Montoya et al. 2010, Yúfera et al. 2014) and different food 

intakes (feeding protocols) (Martínez-Llorens et al. 2021), the enzyme:subrate 

ratio for in vitro studies needs to be calculated. These calculations should include 

measurement of the range of values of total protease amylase, and lipolytic 

enzymes, released during gastric and intestinal digestion in fish of a specific size, 

and measuring the amount of protein in a feed, calculated by considering the daily 

ration for a specific fish size and the mean protein content of a commercial feed 

(Gilannejad et al. 2018). Furthermore, a dialysis loop could be introduced with a 

molecular weight cut-off, in order to filter out the low molecular weight products 

of digestion as they are formed as well as to strip out the nutrients, thus improving 

the microbiome model by making it more similar to real fish (Moyano et al. 2015). 

Finally, new methods need to be developed to assess the digestibility of various 

feeds and ingredients within SalmoSim system, such the Dumas method, to 

determine the total nitrogen content (Simonne et al. 1997), phthalaldehyde assay 

to determine the total amino acid absorption (Hamdan et al. 2009, Perera et al. 

2010), and HPLC-MS (high performance liquid chromatograph – mass spectrometer) 

to determine the amino acid profile of the undigested sample and absorbed 

nutrients (Martinez-Montantildo et al. 2011, Márquez et al. 2013). The outputs of 

these analyses for various feeds and ingredients could then be compared to 

generic aquafeed protein ingredients, such as fish meal, feather meal, or soya 

meal.  

 Applying SalmoSim system to understand antimicrobial 
resistance transfer 

In the past decade, antimicrobial compounds were increasingly used in agriculture 

and aquaculture to prevent and treat diseases as well as promoting animal growth 

(Van Boeckel et al. 2015). While several symbiotic commensals of the gut 

microbiome of higher organisms play a vital role in preventing the colonization by 

pathogens, the gastrointestinal tract can constitute a favourable environment for 

the transfer of multidrug resistance (MDR) plasmids. The gastrointestinal 

microbiome can act as a reservoir of antibiotic resistance genes that can be 

transferred to and from the resident microflora to pathogens and transient 
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colonizers, undermining the beneficial protective role of the commensal gut 

microbiota for the host as well as being cause for public concern (Haug et al. 2011, 

Card et al. 2017). In vitro systems such as bioreactors, fermenters and chemostats 

emulating the gastrointestinal tracts of different organisms offer ethical and safe 

in vitro platforms to model the selection, emergence, and dissemination of 

antibiotic resistance within the gut as well as the resulting repercussions on 

bacterial interactions. For example, an in vitro colonic fermentation model 

developed by Haug et al. to monitor horizontal antibiotic resistance gene transfer, 

demonstrated the transfer of a multiresistance plasmid to commensal bacteria in 

the presence of competing faecal microbiota, suggesting that commensal bacteria 

contribute to the increasing prevalence of antibiotic-resistant bacteria (Haug et 

al. 2011). Another in vitro system used to study the transmission of antimicrobial 

resistance used chemostats inoculated with human intestinal bacteria to study the 

effect of Tulathromycin (macrolide antibiotic used to treat bovine respiratory 

disease in cattle and swine) on colonization resistance, antimicrobial resistance, 

and virulence of the human gut microbiota (Hao et al. 2016). This study identified 

that the long-term exposure to high concentrations of Tulathromycin may damage 

the colonization resistance of the human gut microbiota and induce the 

development of antimicrobial resistance in Enterococcus. Finally, in a study using 

a recently developed in vitro chemostat system, which approximates the chicken 

caecal microbiota, colonization by an MDR Salmonella pathogen was simulated to 

examine the dynamics of transfer of its MDR plasmid harbouring the extended-

spectrum beta-lactamase blaCTX-M1 (Card et al. 2017). The use of this system was 

successfully applied to analyse the impact of antibiotic administration on plasmid 

transfer and microbial diversity (Card et al. 2017). SalmoSim could be utilised to 

conduct amicrobial resistance transfer studies, using similar principles and 

experimental design outlined in these examples.   

 Concluding remarks  

The work in this thesis has made important first steps in the designing and 

validating the artificial Atlantic salmon gut system SalmoSim. Future research can 

now use this validated system as is to address clear hypotheses focused on the 

Atlantic salmon microbiome interaction and response to various feeds, feed 

additives and drugs. Furthermore, the system could be improved further to start 

assessing digestibility. Finally, the steps of the system development described in 
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this thesis can be used as guidelines to develop various other systems representing 

other fish species.  
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Appendices 

Appendix 1: Chapter 3 appendices  

Table A3-1 16S rRNA gene-targeted group-specific primers. Table lists primer sets that 
already published and validated in the literature. All primers were used on mouse faeces 
samples apart from Alphaproteobacterial specific primers that were used on marine biofilm 
samples. 

Group Primer sequence Source 

Bacteroidetes F GTTTAATTCGATGATACGCGAG (Yang et al., 2015) 

Bacteroidetes R TTAASCCGACACCTCACGG 

Firmicutes F GGAGYATGTGGTTTAATTCGAAGCA 

Firmicutes R AGCTGACGACAACCATGCAC 

Actinobacteria F TGTAGCGGTGGAATGCGC 

Actinobacteria R AATTAAGCCACATGCTCCGCT 

Gammaproteobacteria F TCGTCAGCTCGTGTYGTGA 

Gammaproteobacteria R CGTAAGGGCCATGATG 

Betaproteobacteria F AACGCGAAAAACCTTACCTACC 

Betaproteobacteria R TGCCCTTTCGTAGCAACTAGTG 

Alphaproteobacteria F CIAGTGTAGAGGTGAAATT (Bacchetti De Gregoris et 

al., 2011) 
Alphaproteobacteria R CCCCGTCAATTCCTTTGAGTT 

General Bacteria F ACTCCTACGGGAGGCAGCAGT (Clifford et al., 2012) 

General Bacteria R TATTACCGCGGCTGCTGGC 

Mycoplasma F AGCAGCCGCGGTAATACATAG Generated by DECIPHER 

software* 
Mycoplasma R GAGCATACTACTCAGGCGGAT 

Lactobacillus F CAGCAGTAGGGAATCTTCCACAA 

Lactobacillus R CATGGAGTTCCACTCTCCTCTT 

 

Table A3-2 First round PCR primers used for the first round of NGS library preparation. 

Primer  Name Illumina 5′ sequencing 

primer (CS1/CS2) 

Internal 

index 

Heterogeneity 

spacer 

16S rRNA gene 

v1 primer 

Forward  27F ACACTCTTTCCCTACACG

ACGCTCTTCCGATCT 

Index (8bp) heterogeneity 

spacer (5/3 bp) 

AGAGTTTGAT

CMTGGCTCAG 

Reverse 338R GTGACTGGAGTTCAGAC

GTGTGCTCTTCCGATCT 

Index (8bp) None GCTGCCTCCC

GTAGGAGT 
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Table A3-3 Second round PCR primers used for the NGS library preparation. 

Primer name Illumina MiSeq 3′ flow 

cell linker (i5/i7)  

External index  Illumina 5′ sequencing 

primer (CS1/CS2) 

Forward AATGATACGGCGACC

ACCGAGATCTACAC 

Index (8bp) CACTCTTTCCCTACA

CGACGCT 

Reverse CAAGCAGAAGACGG

CATACGAGAT 

Index (8bp) GTGACTGGAGTTCAG

ACGTGTGCTC 

 

Table A3-4 OTUs prevalence analysis by sub-setting full dataset into multiple core OTUs. The 
table summarises the number OTUs within each subset dataset (subset by the % of samples that 
share OTUs) and percentage of the total number of OTUs within the full dataset (100%). This 
table also shows the number of reads and the percentage of total reads (100%) within each of 
the subset datasets. Note: in the 60% subset three samples were lost as they did not retain any 
OTUs under that criteria: Id-val1-PC1, Id-Val2-MG4 and Id-Val2-PC1. 

% of samples 
that share OTUs 

Number of OTUs 
(% of total OTUs) 

Number 
of reads 

% of total 
reads 

80% 1 (0.10%) 77,528 2.18% 

75% 1 (0.10%) 77,528 2.18% 

60% 6 (0.61%) 186,285 5.23% 

50% 13 (1.33%) 1,179,477 33.10% 

40% 34 (3.48%) 2,796,009 78.47% 

30% 65 (6.65%) 3,204,411 89.93% 

All OTUs 978 (100%) 3,563,318 100% 
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Table A3-5 Bacterial group responses to feed change within different gut compartments in 
real salmon and SalmoSim based on qPCR data. The table summarises the Estimated Marginal 
Means output for each mixed-effect linear model run with different qPCR measured relative 
abundance values identifying the difference between real salmon and SalmoSim response to 
feed change (Fish meal to Fish meal free diet) within different gut compartments (S – stomach, 
PC – pyloric caeca, and MG – mid gut). P>0.05 values identify no change in the bacterial group, 
p<0.05 identifies decrease (Est is negative), and p<0.05 identifies increase (Est is positive) in 
the relative abundance of target group after the feed change. Bold values identify similarities 
between SalmoSim and real salmon samples. The SalmoSim values used for this test involves 
stable SalmoSim time points: days 16, 18 and 20 (Fish meal diet – once bacterial communities 
adapted to the SalmoSim environment), and days 36, 38 and 40 (Fish meal free diet – once 
bacterial communities adapted to feed change). 

  
real salmon SalmoSim 

S PC MG S PC MG 

Actinobacteria p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 

Alphaproteobacteria p>0.05 p>0.05 p>0.05 p<0.001 p<0.001 p<0.001 

Bacteroidetes p=0.005 p=0.002 p=0.015 p<0.001 p>0.05 p>0.05 

Betaproteobacteria p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 

Firmicutes p>0.05 p>0.05 p>0.05 p=0.029 p=0.001 p=0.015 

Gammaproteobacteria p>0.05 p>0.05 p>0.05 p<0.001 p>0.05 p>0.05 

Lactobacillus p>0.05 p>0.05 p>0.05 p=0.017 p>0.05 p=0.002 

Mycoplasma p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05 

 

 

 

Figure A3-1 Physiochemical conditions measured within different real Atlantic salmon gut 
compartments. 1A-1C measured physicochemical conditions within real salmon (n=3) gut 
compartments: pH (1A), temperature (°C, 1B), dissolved oxygen (mg/L, 1C). 
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Figure A3-2 Specificity of the primers that target Lactobacillus and Mycoplasma genus. The 
results in figure summarise bacterial genus targeted by Lactobacillus (Figure 1 A, B, C) and 
Mycoplasma (Figure 1 D, E, F) specific primer set. It shows that of all genus captured by 
Lactobacillus primer pair 98% were Lactobacillus in fish 1, 78% in fish 2, and 65% in fish 3. While 
of all genus captured by Mycoplasma primer pair 95% were Mycoplasma in fish 1, 79% in fish 2, 
and 56% in fish 3. 
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Figure A3-3 Stability within SalmoSim system calculated by using unweighted and weighted 
UniFrac values for pairwise beta diversity analysis. The figure represents microbial stability 
within the SalmoSim system (data from all gut compartments combined) as the pairwise beta 
diversity comparison between different sampling time points (days), calculated by using A 
unweighted (0%) and B weighted (100%) UniFrac as a distance measure. A small p-value 
indicates that the two time points are statistically different, and p>0.05 indicates that two time 
points are not statistically different. The colour key illustrates the p-value: red end of spectrum 
denoting low p values (distinct compositions between time points) and dark green indicating high p 
values (similar compositions between timepoints).  
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Figure A3-4 Measured value (qPCR, ammonia, and protein concentrations) stability within 
different SalmoSim compartments fed on Fish meal and Fish meal free diets. The figure 
summarises the Estimated Marginal Means output for each mixed-effect linear model (Model 1) run 
with different values measured in different SalmoSim compartments (qPCR measurements, 
ammonia and protein concentrations) identifying the difference between different time points during 
the first (system fed on Fish meal diet) and last 20 days (system fed on Fish meal free diet) of 
validation experiment. A small p-value indicates that the two time points are statistically different, 
and p>0.05 indicates that two time points are not statistically different. The colour key illustrates the 
p-value: red end of spectrum denoting low p values (low correlation between time points) and dark 
green indicating high p values (no differences between timepoints).   
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Figure A3-5 Stability within SalmoSim system, within different biological replicates and 
different gut compartments, calculated by using generalised UniFrac values for pairwise 
beta diversity analysis. The figure represents microbial stability within the SalmoSim system 
(data separated by different biological replicates and gut compartments) as the pairwise beta 
diversity comparison between different sampling time points (days), calculated by using 
generalised (50%) UniFrac as a distance measure. A small p-value indicates that the two time 
points are statistically different, and p>0.05 indicates that two time points are not statistically 
different. The colour key illustrates the p-value: red end of spectrum denoting low p values (distinct 
compositions between time points) and dark green indicating high p values (similar compositions 
between timepoints).  
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Figure A3-6 Stability within SalmoSim system calculated by using different UniFrac values 
for pairwise beta diversity analysis. The figure represents microbial stability within the SalmoSim 
system (data from all gut compartments and two different technical replicate runs combined) as the 
pairwise beta diversity comparison between different sampling time points (days), calculated by 
using unweighted (A: 0%), generalised (B: 50%) and weighted (C: 100%) UniFrac as a distance 
measure. A small p-value indicates that the two time points are statistically different, and p>0.05 
indicates that two time points are not statistically different. The colour key illustrates the p-value: 
red end of spectrum denoting low p values (distinct compositions between time points) and dark 
green indicating high p values (similar compositions between timepoints).  
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Figure A3-7 Calculated alpha-diversity metrics within different gut compartments of real 
salmon and SalmoSim fed on Fish meal and Fish meal free diets. Figure represents different 
alpha diversity outputs within different gut compartments of real salmon in red and SalmoSim in 
yellow (stable time points: 16, 18 and 20 fed on Fish meal, and 36, 38 and 40 fed on Fish meal free 
diet) fed on Fish meal and Fish meal free diets. A represents effective richness (number of OTUs), 
B represents effective Shannon diversity. The lines above bar plots represent statistically 
significant differences after feed change. The stars flag the levels of significance: one star (*) for p-
values between 0.05 and 0.01, two stars (**) for p-values between 0.01 and 0.001, and three stars 
(***) for p-values below 0.001. 
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Figure A3-8 In vivo phenotypic fish performance fed on two different feeds. Figure represents 
different phenotypic performance data of fish (n=32 per feed) fed on two different feed. A Atlantic 
salmon length in centimetres; B Atlantic salmon length in weight in kilograms; C Atlantic salmon 
percentage carcass yield; D Atlantic salmon gonad weight in grams; E Atlantic salmon gutted 
weight in kilograms; F Atlantic salmon liver weight in grams. Blue box plots represent data from 
salmon (n=32) fed on Fish meal free diet, and red represents Atlantic salmon fed on Fish meal diet 
(n=32). 
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Figure A3-9 VFA production within different SalmoSim compartments fed on different feeds. 
Figure represents the production of 11 volatile fatty acids within SalmoSim system fed on Fish meal 
and Fish meal free diets within different gut compartments. Y axis represents the concentration of 
specific volatile fatty acid (mM) while the X axis represents each gut compartment (stomach, pyloric 
caeca, midgut). Red colour denoted Fish meal and blue – Fish meal free diets. The lines above bar 
plots represent statistically significant differences between different feeds and gut compartments. 
The stars flag the levels of significance: one star (*) for p-values between 0.05 and 0.01, two stars 
(**) for p-values between 0.01 and 0.001, and three stars (***) for p-values below 0.001. 
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Supplementary methods for Chapter 3 

1. qPCR data analysis 

1.1. Performing qPCR analysis  

The concentration of each DNA sample was measured using a Qubit® fluorometer (Thermo Fisher 

Scientific, USA), and dilutions were performed using Microbial DNA-Free Water (Qiagen, Valencia, 

CA, USA). Inoculums from all three real salmon gut compartments were diluted to 0.25 ng/µl. 

SalmoSim stomach samples were also diluted to 0.25 ng/µl, and pyloric caecum and midgut 

SalmoSim samples were diluted to 1 ng/µl. After, the qPCR analysis was performed on each DNA 

sample in duplicates by using SensiFAST™ SYBR® No-ROX Kit (Bioline, UK) and primer sets 

summarised in Supplementary Table 1 at a final concentration of 1 pM of each primer. Reaction 

conditions for all PCR reactions were 95°C for three minutes, followed by 40 cycles at 95°C for 5 

seconds, 60°C for 10 seconds and 72°C for 20 seconds, followed by a final elongation step of 95°C 

for 10 minutes. 

In order to measure the relative abundance of the target group (target determined by the specificity 

of the qPCR primer pairs); several steps were undertaken by adapting ∆∆Cq method (Rao et al., 

2013). First, the average quantitation cycle (Cq) value of each primer set negative control was 

found. This was followed by subtraction Cq value generated by using one of the primer pairs in 

Supplementary Table 1, from corresponding average Cq value of the corresponding negative 

control (generated with the same primer pair) in order to generate value X. After, the Cq value 

generated by using the general primer set was subtracted from the average Cq value of the 

corresponding negative control (generated using general primer set) in order to generate the value 

Y. Finally, the value X was divided by the value Y in order to find out the relative abundance of the 

target group with respect to the total number of bacterial 16S copies in the sample. The equations 

used for all these calculations are summarised below: 

x = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐶𝑞 − 𝐶𝑞 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑟𝑜𝑢𝑝 

𝑦 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐶𝑞 − 𝐶𝑞 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑟𝑜𝑢𝑝 =  𝑥 ÷  𝑦 

This method was carried out for each sample, quantified using different primer sets targeting 

various bacterial taxon groups. Several published and validated primer sets in the literature were 

used (Supplementary Table 1). Primer sets targeting Mycoplasma, and Lactobacillus genus were 

designed by using DECIPHER software based on the data collected by Heys et al., 2020. These 

primers target specificity was analysed via amplicon sequencing of the products (See 

Supplementary Figure 2). 

1.2. Investigating bacterial dynamics within SalmoSim system over time 

In order to investigate the time taken for the measured values (qPCR of different bacterial groups, 

protein and ammonia concentrations) to stabilise within different gut compartments of the 

SalmoSim system, the data for all three SalmoSim runs (three biological replicates) was combined 

and then split-up by each separate SalmoSim compartment (stomach, pyloric caecum and midgut). 

These three resulting datasets were then further split-up in half: pre- and post-feed changes. The 

subdivided datasets by different SalmoSim gut compartment and different feed were used to run 

Model 1 with different values measured during a validation experiment considering run (biological 

replicates) as a random effect. The normality and heterogeneity of the residuals for of each model 

were checked by using Shapiro and Bartlett’s tests. If these tests showed that residues were not 

normally distributed or not heterogeneous, the data were subsequently transformed by using Code 

1 and then used to re-run Model 1. Finally, the post-hoc Estimated Marginal Means test (also known 

as Least-Squares Means) was used with Model 1 and ran with different values in order to investigate 

in-between individual time point comparison. 
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Model 1 = lme(value~ Time, random =c(~1|Run), data=groupX) 

Model 1 Mixed effect linear model formula to investigate the effect of time taking run as a 

random effect. In Model 1 groupX denotes subdivided data sets by different SalmoSim compartments 

(stomach, pyloric caecum or midgut), and value denotes the qPCR results for one of the different 

targeted bacterial groups (Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, 

Firmicutes, Gammaproteobacteria, Lactobacillus, Mycoplasma) or protein or ammonia concentrations. 

This model takes different SalmoSim runs as a random effect (biological replicates).  

  if(lambda!=0){y=((value)^lambda-1)/lambda} 

  if(lambda==0){y=log(value)} 

Code 1 Code used to transform the data. Value in this code denotes the qPCR results for one of the 

different targeted bacterial groups (Actinobacteria, Alphaproteobacteria, Bacteroidetes, 

Betaproteobacteria, Firmicutes, Gammaproteobacteria, Lactobacillus, Mycoplasma) or protein or 

ammonia concentrations. Lambda values in 0.1 increments were tested.  

1.3. Comparing in vivo and in vitro trials  

In order to investigate whether a change in the feed from FMD to FMF results in similar trends 

measured between SalmoSim and real salmon samples, a combined data set was produced 

containing qPCR values measured in real salmon gut compartments (stomach, pyloric caecum and 

midgut of three fish fed on FMD and three fish fed on FMF) and SalmoSim compartments at the last 

three time points for both feeds (once bacterial communities were stabilised while feeding 

SalmoSim both FMF and FMD: days 16, 18, and 20 for FMD and days 36, 38, and 40 for FMF feed). 

This combined dataset was then separated by different SalmoSim gut compartments (stomach, 

pyloric caecum, and midgut). The subdivided datasets for each gut compartment for both real 

salmon (all samples) and SalmoSim (samples from only stable time points) were input into Model 

2. In order to investigate how bacterial groups within different types of sample (SalmoSim or real 

salmon) react to the change in feed the Post-hoc Estimated Marginal Means test (also known as 

Least-Squares Means) was used in order to have a more detailed look at the effect of the interaction 

between feed and sample on the abundance of each target taxon. 

Model 2 = lm(value~ Feed*samples, data=GroupX) 

Model 2 Linear model formula to investigate the effect of interaction between feed (Fish meal 

and Fish meal free diets) and sample (real salmon and SalmoSim samples) on the qPCR values 

measured. In model 2, value denotes the qPCR results for one of the different targeted bacterial groups 

(Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, Firmicutes, 

Gammaproteobacteria, Lactobacillus, Mycoplasma). Group X is a subset of dataset separated by 

different gut compartments (stomach, pyloric caecum and midgut). Feed identifies Fish meal and Fish 

meal 0 diets, and sample identifies real salmon and stable time point SalmoSim samples (days 16, 18 and 

20 SalmoSim fed on Fish meal diet, and days 36, 38, and 40 SalmoSim fed on Fish meal free diet).  

2. Volatile Fatty Acid (VFA) analysis 

The measured VFA values were input to Model 4 including time point (sampling time point) and run 

(biological replicate of SalmoSim system) as random effects. This was followed by the Post-hoc test 

Estimated Marginal Means (also known as Least-Squares Means) in order to have a more detailed 

look at the effect of the interaction between feed and SalmoSim compartment affect the 

concentration of VFAs. 

Model 3 = lmer(VFA~ Feed*Compartment+(1|Time point)+(1|Run)) 

Model 3 Mixed effect linear model to investigate the significance of different VFA 

concentrations between SalmoSim fed on Fish meal and Fish meal free diets within 

different SalmoSim compartments. In Model 3 VFA denotes the VFA values measured. This 

model takes run and time as random effects. 
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3. Beta-diversity analysis workflow 

 

#' Script: Beta-Diversity analysis for SalmoSim 

#' Author: Raminta Kazlauskaite (adapted from Rhea script produced by Ilias Lagkouvardos) 

 

#' Calculate beta-diversity for microbial communities 

#' based on permutational mulitvariate analysis of variances (PERMANOVA) using multiple distance 

matrices 

#' computed from phylogenetic distances between observed organisms 

#' 

#' Input: 

#' 1. Set the path to the directory where the file is stored  

#' 2. Write the name of the normalized OTU table without taxonomy information  

#' 3. Write the name of the mapping file that includes the samples groups 

#' 4. Write the name of the OTU tree 

#' 5. Write the name of the variable (sample group) used for comparison  

#'  

#' 

#' Output:  

#' The script generates three graphical outputs (pdf), one text file and a newick tree 

#' 1. A phylogram with colour-coded group clustering 

#' 2. MDS and NMDS plots showing information about beta-diversity across all sample groups 

#' 3. MDS and NMDS plots of all pairwise comparisons 

#' 4. The distance matrix 

#' 5. Plot showing the optimal number of clusters   

#' 6. Dendogram for all samples in a newick tree file 

#' 

#' Concept: 

#' A distance matrix is calculated based on the generalized UniFrac approach 

#' (Chen J, et al. Associating microbiome composition with environmental covariates using 

generalized UniFrac distances. 2012) 

#' Samples are clustered based on the distance matrix using the Ward's hierarchical clustering 

method 

#' To determine similarities between samples, a multivariate analysis is applied 
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#' and sample distribution is illustrated by means of MDS and NMDS (non-metric) plots 

#' The Calinski-Harabasz (CH) Index is used to assess the optimal number of clusters the dataset was 

most robustly partitioned into   

 

################################################################################

## 

######             Set parameters in this section manually                  ###### 

################################################################################

## 

 

#' Please set the directory of the script as the working folder (e.g D:/studyname/NGS-

Data/Rhea/beta-diversity/) 

#' Note: the path is denoted by forward slash "/" 

setwd("")      #<--- CHANGE ACCORDINGLY 

 

#' Please give the file name of the normalized OTU-table without taxonomic classification 

input_otu = ""              #<--- CHANGE ACCORDINGLY !!! 

 

#' Please give the name of the meta-file that contains individual sample information 

input_meta = ""                #<--- CHANGE ACCORDINGLY !!! 

 

#' Please give the name of the phylogenetic tree constructed from the OTU sequences 

input_tree = ""                   #<--- CHANGE ACCORDINGLY !!! 

 

#' Please give the column name (in the mapping file) of the categorical variable to be used for 

comparison (e.g. Genotype) 

group_name = ""                            #<--- CHANGE ACCORDINGLY !!! 

 

################################################################################

## 

######                  Additional parameters                               ###### 

################################################################################

## 

 

#' Turn on sample labeling 
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#' 0 = Samples are not labeled in the MDS/NMDS plots 

#' 1 = All Samples are labed in the MDS/NMDS plots 

label_samples = 0 

 

#' Determine which sample lable should appear 

#' Write the name of samples (in quotation marks), which should appear in the MDS/NMDS plots, 

in the vector (c) below 

#' If more than one sample should be plotted, please separate their IDs by comma (e.g. 

c("sample1","sample2")) 

label_id =c("") 

 

#' De-Novo Clustering will be perfomed for the number of samples or maximal for the set limit 

#' Default Limit is 100 

kmers_limit=20 

 

######                  NO CHANGES ARE NEEDED BELOW THIS LINE               ###### 

 

################################################################################

## 

######                             Main Script                              ###### 

################################################################################

## 

 

###################       Load all required libraries     ######################## 

 

# Check if required packages are already installed, and install if missing 

packages <-c("ade4","GUniFrac","phangorn","cluster","fpc")  

 

# Function to check whether the package is installed 

InsPack <- function(pack) 

{ 

  if ((pack %in% installed.packages()) == FALSE) { 

    install.packages(pack,repos ="http://cloud.r-project.org/") 

  }  
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} 

 

# Applying the installation on the list of packages 

lapply(packages, InsPack) 

 

# Make the libraries 

lib <- lapply(packages, require, character.only = TRUE) 

 

# Check if it was possible to install all required libraries 

flag <- all(as.logical(lib)) 

 

 

###################       Read all required input files      #################### 

 

# Load the tab-delimited file containing the values to be analyzed (samples names in the first 

column) 

otu_file <- read.table (file = input_otu, check.names = FALSE, header = TRUE, dec = ".", sep = "\t", 

row.names = 1, comment.char = "") 

 

# Clean table from empty lines 

otu_file <- otu_file[!apply(is.na(otu_file) | otu_file =="",1,all),] 

 

# Load the mapping file containing individual sample information (sample names in the first 

column) 

meta_file <- read.table (file = input_meta, check.names = FALSE, header = TRUE, dec = ".", sep = 

"\t", row.names = 1, comment.char = "") 

 

# Clean table from empty lines 

meta_file <- data.frame(meta_file[!apply(is.na(meta_file) | meta_file=="",1,all),]) 

 

# Load the phylogenetic tree calculated from the OTU sequences  

tree_file <- read.tree(input_tree) 
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# Create the directory where all output files are saved (is named after the target group name set 

above for comparisons) 

dir.create(group_name) 

 

####################       Calculate beta-diversity          ################### 

 

# OTU-table and mapping file should have the same order and number of sample names 

# Order the OTU-table by sample names (ascending) 

otu_file <- otu_file[,order(names(otu_file))] 

 

# Transpose OTU-table and convert format to a data frame 

otu_file <- data.frame(t(otu_file)) 

 

# Order the mapping file by sample names (ascending) 

meta_file <- data.frame(meta_file[order(row.names(meta_file)),]) 

 

# Save the position of the target group name in the mapping file 

meta_file_pos <- which(colnames(meta_file) == group_name) 

 

# Select metadata group based on the pre-set group name 

all_groups <- as.factor(meta_file[,meta_file_pos]) 

 

# Root the OTU tree at midpoint  

rooted_tree <- midpoint(tree_file) 

 

# Calculate the UniFrac distance matrix for comparing microbial communities: 0.0 – Unweighted 

UniFrac, 0.5 Balanced UniFrac and 1.0 Weighted UniFrac.  

unifracs <- GUniFrac(otu_file, rooted_tree, alpha = c(0.0,0.5,1.0))$unifracs 

 

# Weight on abundant lineages so the distance is not dominated by highly abundant lineages with 

0.5 having the best power 

unifract_dist <- unifracs[, , "d_0.5"] 

 

################ Generate tree ####################### 
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# Save the UniFrac output as distance object 

all_dist_matrix <- as.dist(unifract_dist) 

 

# Apply a hierarchical cluster analysis on the distance matrix based on the Ward's method 

all_fit <- hclust(all_dist_matrix, method = "ward.D2") 

 

# Generates a tree from the hierarchically generated object 

tree <- as.phylo(all_fit) 

my_tree_file_name <- paste(group_name,"/phylogram.pdf",sep="") 

plot_color<-rainbow(length(levels(all_groups)))[all_groups] 

 

# Save the generated phylogram in a pdf file 

pdf(my_tree_file_name) 

 

# The tree is visualized as a Phylogram color-coded by the selected group name 

plot(tree, type = "phylogram",use.edge.length = TRUE, tip.color = (plot_color), label.offset = 0.01) 

print.phylo(tree) 

axisPhylo() 

tiplabels(pch = 16, col = plot_color) 

dev.off() 

 

#################            Build NMDS plot           ######################## 

 

# Generated figures are saved in a pdf file  

file_name <- paste(group_name,"beta-diversity.pdf",sep="_") 

pdf(paste(group_name,"/",file_name,sep="")) 

 

# Calculate the significance of variance to compare multivariate sample means (including two or 

more dependent variables) 

# Omit cases where there isn't data for the sample (NA) 

all_groups_comp <- all_groups[!is.na(all_groups)] 

unifract_dist_comp <- unifract_dist[!is.na(all_groups), !is.na(all_groups)] 
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adonis<-adonis(as.dist(unifract_dist_comp) ~ all_groups_comp) 

all_groups_comp<-factor(all_groups_comp,levels(all_groups_comp)[unique(all_groups_comp)]) 

 

# Calculate and display the MDS plot (Multidimensional Scaling plot) 

s.class( 

  cmdscale(unifract_dist_comp, k = 2), col = unique(plot_color), cpoint = 

    2, fac = all_groups_comp, sub = paste("MDS plot of Microbial Profiles\n(p-value 

",adonis[[1]][6][[1]][1],")",sep="") 

) 

if (label_samples==1) { 

  lab_samples <- row.names(cmdscale(unifract_dist_comp, k = 2)) 

  ifelse (label_id != "",lab_samples <- replace(lab_samples, !(lab_samples %in% label_id), ""), 

lab_samples) 

  text(cmdscale(unifract_dist_comp, k = 2),labels=lab_samples,cex=0.7,adj=c(-.1,-.8)) 

} 

 

# Calculate and display the NMDS plot (Non-metric Multidimensional Scaling plot) 

meta <- metaMDS(unifract_dist_comp,k = 2) 

s.class( 

  meta$points, col = unique(plot_color), cpoint = 2, fac = all_groups_comp, 

  sub = paste("metaNMDS plot of Microbial Profiles\n(p-value ",adonis[[1]][6][[1]][1],")",sep="") 

) 

if (label_samples==1){ 

  lab_samples <- row.names(meta$points) 

  ifelse (label_id != "",lab_samples <- replace(lab_samples, !(lab_samples %in% label_id), ""), 

lab_samples) 

  text(meta$points,labels=lab_samples,cex=0.7,adj=c(-.1,-.8)) 

} 

 

#close the pdf file 

dev.off() 

 

###############          NMDS for pairwise analysis        ################### 
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# This plot is only generated if there are more than two groups included in the comparison 

# Calculate the pairwise significance of variance for group pairs 

# Get all groups contained in the mapping file 

unique_groups <- levels(all_groups_comp) 

if (dim(table(unique_groups)) > 2) { 

 

# Initialise vector and lists 

pVal = NULL 

pairedMatrixList <- list(NULL) 

pair_1_list <- NULL 

pair_2_list <- NULL 

 

for (i in 1:length(combn(unique_groups,2)[1,])) { 

  

  # Combine all possible pairs of groups 

  pair_1 <- combn(unique_groups,2)[1,i] 

  pair_2 <- combn(unique_groups,2)[2,i] 

   

  # Save pairs information in a vector 

  pair_1_list[i] <- pair_1 

  pair_2_list[i] <- pair_2 

     

  # Generate a subset of all samples within the mapping file related to one of the two groups 

  inc_groups <- 

    rownames(subset(meta_file, meta_file[,meta_file_pos] == pair_1 

                    | 

                      meta_file[,meta_file_pos] == pair_2)) 

   

  # Convert UniFrac distance matrix to data frame 

  paired_dist <- as.data.frame(unifract_dist_comp) 

   

  # Save all row names of the mapping file 

  row_names <- rownames(paired_dist) 



139 
 
   

  # Add row names to the distance matrix 

  paired_dist <- cbind(row_names,paired_dist) 

   

  # Generate distance matrix with samples of the compared groups (column-wise) 

  paired_dist <- paired_dist[sapply(paired_dist[,1], function(x) all(x %in% inc_groups)),] 

   

  # Remove first column with unnecessary group information 

  paired_dist[,1] <- NULL 

  paired_dist <- rbind(row_names,paired_dist) 

   

  # Generate distance matrix with samples of the compared group (row-wise) 

  paired_dist <- paired_dist[,sapply(paired_dist[1,], function(x) all(x %in% inc_groups))] 

   

  # Remove first row with unnecessary group information  

  paired_dist <- paired_dist[-1,] 

   

  # Convert generated distance matrix to data type matrix (needed by multivariate analysis) 

  paired_matrix <- as.matrix(paired_dist) 

  class(paired_matrix) <- "numeric" 

   

  # Save paired matrix in list 

  pairedMatrixList[[i]] <- paired_matrix 

   

  # Applies multivariate analysis to a pair out of the selected groups 

  adonis <- adonis(paired_matrix ~ all_groups_comp[all_groups_comp == pair_1 | 

                                            all_groups_comp == pair_2]) 

   

  # List p-values 

  pVal[i] <- adonis[[1]][6][[1]][1] 

   

} 
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# Adjust p-values for multiple testing according to Benjamini-Hochberg method 

pVal_BH <- p.adjust(pVal,method="BH", n=length(pVal)) 

 

# Generated NMDS plots are stored in one pdf file called "pairwise-beta-diversity-nMDS.pdf" 

file_name <- paste(group_name,"pairwise-beta-diversity-NMDS.pdf",sep="_") 

pdf(paste(group_name,"/",file_name,sep="")) 

 

for(i in 1:length(combn(unique_groups,2)[1,])){ 

    meta <- metaMDS(pairedMatrixList[[i]], k = 2) 

    s.class( 

      meta$points, 

      col = rainbow(length(levels(all_groups_comp))), cpoint = 2, 

      fac = as.factor(all_groups_comp[all_groups_comp == pair_1_list[i] | 

                                   all_groups_comp == pair_2_list[i]]), 

      sub = paste("NMDS plot of Microbial Profiles\n ",pair_1_list[i]," - ",pair_2_list[i], "\n(p-value 

",pVal[i],","," corr. p-value ", pVal_BH[i],")",sep="") 

    ) 

} 

dev.off() 

 

# Generated MDS plots are stored in one pdf file called "pairwise-beta-diversity-MDS.pdf" 

file_name <- paste(group_name,"pairwise-beta-diversity-MDS.pdf",sep="_") 

pdf(paste(group_name,"/",file_name,sep="")) 

 

for(i in 1:length(combn(unique_groups,2)[1,])){ 

  # Calculate and display the MDS plot (Multidimensional Scaling plot) 

  s.class( 

    cmdscale(pairedMatrixList[[i]], k = 2), col = rainbow(length(levels(all_groups_comp))), cpoint = 

      2, fac = as.factor(all_groups_comp[all_groups_comp == pair_1_list[i] | 

                                           all_groups_comp == pair_2_list[i]]), sub = paste("MDS plot of Microbial 

Profiles\n ",pair_1_list[i]," - ",pair_2_list[i], "\n(p-value ",pVal[i],","," corr. p-value ", 

pVal_BH[i],")",sep="") 

  ) 

} 
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dev.off()                                      

                                      

} 

 

################################################################################

# 

######                        Write Output Files                           ###### 

################################################################################

# 

 

# Write the distance matrix table in a file 

file_name <- paste(group_name,"distance-matrix-gunif.tab",sep="_") 

write.table( unifract_dist_comp, paste(group_name,"/",file_name,sep=""), sep = "\t", col.names = 

NA, quote = FALSE) 

write.table( unifract_dist_comp, "distance-matrix-gunif.tab", sep = "\t", col.names = NA, quote = 

FALSE) 

write.tree(tree,"samples-Tree.nwk",tree.names = FALSE) 

 

# Graphical output files are generated in the main part of the script 

if(!flag) { stop(" 

    It was not possible to install all required R libraries properly. 

                 Please check the installation of all required libraries manually.\n 

                 Required libaries:ade4, GUniFrac, phangorn") 

} 

 

################################################################################

# 

######                           End of Script                             ###### 

################################################################################

# 
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Appendix 2: Chapter 4 appendices  

 

Figure A4-1 Comparison of key network analysis indicators between different experimental 
phases (Pre-Bio-Mos, Bio-Mos and Wash out). Figure compares key characteristics of networks 
produced for three experimental phases: Pre-Bio-Mos (green), Bio-Mos (red), and Wash out (blue). 
A compares degree of each network; B betweenness centrality. The asterisk show significance: (*: 
0.01 ≤ p < 0.05; **: 0.05 ≤ p < 0.001; ***: p ≤ 0.001). 

 

Table A4-1 Beta diversity and differential abundance values from the comparison of 
microbial composition between different phases (Pre-Bio-Mos, Bio-Mos and Wash out). The 
table summarises different beta-diversity analysis outputs calculated by using different 
distances: phylogenetic (unweighted, balanced, and weighted UniFrac) and ecological (Bray-
Curtis and Jaccard’s), between different experimental phases: Pre-Bio-Mos, Bio-Mos and Wash 
out. Numbers represent p-values, with p-values <0.05 identifying statistically significant 
differences between compared groups. The comparisons are shown for 3 different datasets: (i) 
All (completed data set containing all the samples sequenced), (ii) a Subset (containing all 
samples for Pre-Bio-Mos and (iii) the Wash out period, but only stable samplings from Bio-Mos 
period (time points 22, 24 and 26)). The last row indicates the number of differentially 
abundant OTUs between Phases of interest. 
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Appendix 3: The Role of the Gut Microbiome in 
Sustainable Teleost Aquaculture. 
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As the most diverse vertebrate group and a major component of a growing
global aquaculture industry, teleosts continue to attract significant scientific
attention. The growth in global aquaculture, driven by declines in wild
stocks, has provided additional empirical demand, and thus opportunities,
to explore teleost diversity. Among key developments is the recent growth
in microbiome exploration, facilitated by advances in high-throughput
sequencing technologies. Here, we consider studies on teleost gut micro-
biomes in the context of sustainable aquaculture, which we have discussed
in four themes: diet, immunity, artificial selection and closed-loop systems.
We demonstrate the influence aquaculture has had on gut microbiome
research, while also providing a road map for the main deterministic forces
that influence the gut microbiome, with topical applications to aquaculture.
Functional significance is considered within an aquaculture context with
reference to impacts on nutrition and immunity. Finally, we identify key
knowledge gaps, both methodological and conceptual, and propose pro-
mising applications of gut microbiome manipulation to aquaculture, and
future priorities in microbiome research. These include insect-based feeds,
vaccination, mechanism of pro- and prebiotics, artificial selection on the holo-
genome, in-water bacteriophages in recirculating aquaculture systems (RAS),
physiochemical properties of water and dysbiosis as a biomarker.

1. Introduction
Since its conception in the 1980s describing soil ecology [1], the term microbiome
has evolved into an intensely studied area of research. In recent decades, this area
has begun expanding from an anthropocentric and medically dominated field,
into a taxonomically broad field, examining research questions in non-model
species, from trees [2] to frogs [3], and increasingly, fish. The diversification in
microbiome studies has been driven by increased access to next generation
sequencing (NGS), a tool that is not reliant upon culture-based techniques,
which often require previous knowledge of target microbes.

Currently, gut bacterial communities have been assessed in over 145 species of
teleosts from 111 genera, representing a diverse range of physiology and ecology
(figure 1a), often with similarities in bacterial phyla composition between fish
species, dominated by Bacteroidetes and Firmicutes [5,6]. Non-model taxa from
an array of aquatic ecosystems have had their gut microbiomes sequenced
using NGS, with studies extending beyond species identification, into hypothesis
testing which was once only feasible in model systems. Examples of studies on
non-model teleost gut microbiomes range from those demonstrating rapid gut
microbiome restructuring after feeding in clownfish (Premnas biaculeatus) [7] to
the effect of differing environmental conditions, such as dissolved oxygen con-
tent, on the gut microbial diversity of blind cave fish (Astyanax mexicanus) [8].

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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Interest in the gut microbiome of fish has accelerated for many
reasons, as not only do teleosts represent the most diverse
vertebrate group [9], they are also of significant economic
importance, including in aquaculture [10]. Aquaculture now
provides over 45% of fish-based food products globally [11],
and influence of the aquaculture industry on teleost gut micro-
biome research is demonstrated by the research questions
tackled, with a clear bias towards salmonids (genera:
Oncorhynchus and Salmo), carp (genera: Hypophthalmichthys,
Carassius, Cyprinus and Ctenopharyngodon) and tilapia (genus:
Oreochromis) (figure 2).

Rapid growth of the aquaculture industry has led to
mounting pressure to make it more sustainable [13], and here
we discuss four key components relevant to its sustainability
in the context of the teleost gut microbiome: diet, immunity,
artificial selection and closed-loop systems. We highlight
some key deterministic factors important to aquaculture,
although as shown in figure 3, there are numerous interacting

ecological processes. More in-depth reviews focusing on these
specific interactions are available, for example, interactions
between the gut microbiome and the immune system [14],
energy homeostasis [15] and physiology [16]. Understanding
and manipulating microbial–host–environmental interactions
(figure 3a) and associated functional capacity in these areas
could contribute substantially towards achieving a more
sustainable aquaculture industry. We identify potential for
future research, both methodological and conceptual. Other
microbiomes are known to impact host function, in particular,
the skin microbiome and its relationship to immunity [17],
however, due to their differing ecology [18] and aquaculture
applications [19], the gut microbiome will remain our
focus here.

2. Diet
The gut microbiome has long been linked with diet, yielding
insights into the commensal relationship between certain
microbes and host. It has been shown that the teleost gutmicro-
biome produces a range of enzymes (carbohydrases, cellulases,
phosphatases, esterases, lipases and proteases) which con-
tribute to digestion [10,20]. More intimate relationships also
exist, for example, anaerobic bacteria in the teleost gut have a
role in supplying the host with volatile fatty acids [21], an
end product of anaerobic fermentation that provides energy
for intestinal epithelial cells [22]. Gut microbes also synthesize
vitamins and amino acids in the gut of aquatic vertebrates
[23,24]. For example, the amount of vitamin B12 positively
correlated with the abundance of anaerobic bacteria belonging
to the genera Bacteroides and Clostridium, in Nile tilapia
(Oreochromis niloticus) [25]. Here, we discuss this host–microbe
relationship in the context of contemporary aquaculture, with a
focus on two timely issues: fishmeal and starvation.

(a) Fishmeal
Fishmeal is an efficient energy source containing high-quality
protein, as well as highly digestible essential amino and fatty
acids [26], which is included in feed for a range of teleost
species. Fish used in fishmeal production is, however,
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Figure 1. (a) Number of studies on the gut microbiome using NGS broken down by the genus of fish that the study was conducted on, as well as the environment
those fish same from. Asterisk represents salmonid, carp and talapia. (b) The number of studies that assessed the water microbial communities. Gut microbiome
studies were compiled using Web of Science [4] and only include studies that implemented NGS. It is acknowledged that total microbiome research extends further
than this. Further information on search terms and filtering can be found in the electronic supplementary material. (Online version in colour.)
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Figure 2. Growth in the studies using NGS on fish gut microbiomes, includ-
ing food aquaculture species (aquaculture status taken from FishBase [12]).
Further information on search terms and filtering can be found in the elec-
tronic supplementary material. (Online version in colour.)
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predominantly sourced from capture fisheries, putting
pressure on already overfished stocks [13]. Despite a global
decrease in fishmeal production, from an average of 6.0
million tonnes between 2001 and 2005 to 4.9 million tonnes
between 2006 and 2010 [27], and growth in plant-based sub-
stitutes (e.g. wheat gluten, soya bean protein and pea
protein), some aquaculture species still require a proportion
of fish-sourced amino acids and proteins [28].

As dietary changes can alter the fish gut microbiome [29],
there has been a considerable rise in the number of studies
investigating the influence of alternative plant-protein sources
on host–microbe interactions. Plant-protein sources have been
shown to disturb the gut microbiota of some fish, with the pro-
duction of antinutritional factors (factors that reduce the
availability of nutrients) and antigens, impeding host resilience
to stress [30], metabolism [31] and immune functioning [32].
Fish fed plant-protein-based diets can exhibit alterations in
their intestinal morphology including disruption to the
lamina propria and mucosal folds [33], which may modify
attachment sites for commensal bacteria [34], and can therefore
impact microbial composition [32,35].

Insect meal is increasingly used in aquafeed as a protein
source with a high nutritional value [36], and several studies
have demonstrated its potential use in manipulating the gut
microbiome in fish [37,38]. As insects are chitin rich, these
diets have been associated with prebiotic effects, through
increased representation of beneficial commensal bacteria
such as Pseudomonas sp. and Lactobacillus sp., which in
turn improves performance and health in some fish [37].
Despite this, however, the beneficial effects of chitin are
species specific, with Atlantic cod (Gadus morhua) and several
cyprinid species demonstrating increased growth rates on
diets with varying levels of chitin, whereas tilapia hybrids
(O. niloticus ×O. aureus) and rainbow trout (Oncorhynchus
mykiss) both display decreased growth rates [39]. Chitin can
therefore not be described as a probiotic for all species. The
influence of insect meal on microbial-mediated functions also

remains underexplored, with little known about the extent
to which species-specific responses to a chitin-rich diet are
microbially mediated [40], offering scope for future research.

(b) Starvation
Starvation is common in the production of valuable species
such as salmon [41], sea bream [42], halibut [43] and cod
[44], prior to handling, transportation and harvest, but is also
used as amethod to improve fillet quality. However, starvation
is likely to have a substantial impact on host–microbe inter-
actions (figure 3b). Gut microbial communities of the Asian
seabass (Lates calcarifer), for example, shifted markedly in
response to an 8-day starvation period, causing enrichment
of the phylum Bacteroidetes, but a reduction of Betaproteo-
bacteria, resulting in transcriptional changes in both host and
microbial genes [45]. Perturbation to the gut microbiome
could lead to the opening of niches for other commensal or
even pathogenic bacteria [46], especially if this is combined
with the compromised immune system of a stressed host [47]
(figure 3d ). Even if all fish are terminated shortly after star-
vation, gut microbial community changes before termination
could cause long-term impacts to the microbial composition
of water and biofilters in closed recirculating aquaculture sys-
tems (RAS). RAS systems will be discussed in greater detail
later in this review.

3. Immunity
Gutmicrobial communities have strong links to immunity [48],
which is pertinent in fish as they are in constant contact with
water, a source of pathogenic and opportunistic commensal
microbes [49]. In addition to this, fish cultured intensively are
often stocked at high densities, allowing for easier transmission
of microbes. Therefore, a microbially diverse gut microbiome
in aquaculture is important to prevent unfavourable microbial
colonization [50], and although the mechanisms are not fully
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Figure 3. (a) Schematic view of the deterministic processes that influence gut microbial communities in fish. Community assemblage of bacteria in the gut starts
with inputs from the environment (green), such as the bacteria within the water column, or in solid particulates of biofilm, sediment and feed. Once ingested, these
bacteria are influenced by interacting deterministic processes (brown) such as the host’s abiotic gut environment, interaction with the hosts’ physiology through the
gut lining and its secretions, as well as interactions between other microbiomes. The outcome (red) is final community assembly, which can be characterized using
an array of cutting-edge molecular techniques ( purple). A subset of the boarder interactions is provided, with focus on (b) microbe–environment–host interactions,
(c) host gut physiology and (d ) behaviour. (Online version in colour.)
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understood, some key processes have been identified. For
example, Bacillus and Lactobacillus, two common probiotic
genera of bacteria used in aquaculture, are able to stimulate
expression of inflammatory cytokines in the fish gut [51],
increase the number of mucus layer producing goblet cells
[52] and increase phagocytic activity [53]. Furthermore, com-
parison in gene expression between gnotobiotic zebrafish
(Danio rerio) and conventionally reared zebrafish has shown
bacteria induced expression of myeloperoxidase, an enzyme
that allows neutrophil granulocytes to carry out antimicrobial
activity [54]. Colonizing microbes can also modulate host
gene expression to create favourable gut environments, thereby
constraining invasion by pathogens [23], while also promoting
expression of proinflammatory and antiviral mediators genes,
leading to higher viral resistance [55]. Reducing viral and bac-
terial pathogens, such as Vibrio sp. and Aeromonas sp., is
important for fish health in aquaculture, and will be discussed
further in the context of closed-loop systems later in the review.

The interaction between the gut microbiome and the
immune system is bilateral, for example, secretory immuno-
globulins in fish recognize and coat intestinal bacteria to
prevent them from invading the gut epithelium [56]. Similarly,
in wild three-spined stickleback (Gasterosteus aculeatus), a
causal chain (diet→ immunity→microbiome)was discovered,
demonstrating the impact of diet on fish immunity and thus
the microbial composition of the gut [57]. Understand-
ing microbial–host–environmental interactions like this are
crucial for aquaculture, where, as previously discussed, diet
is often manipulated.

(a) Antibiotics
As most antibiotics used in aquaculture display broad-
spectrum activity, they can affect both pathogens and
non-target commensal microbes [58]. Oxytetracycline is one of
the most widely used veterinary antibiotics, with 1500 metric

tonnes applied between 2000 and 2008 to salmon aquaculture
in Chile [59]. However, oxytetracycline was seen to reduce
gut microbial diversity in Atlantic salmon (Salmo salar), while
enriching possible opportunistic pathogens belonging to the
genus Aeromonas, and leading to a high prevalence of multiple
tetracycline resistance-encoding bacterial genes [60]. Long-term
exposure to oxytetracycline has also been reported to negatively
affect growth, immunity and nutrient digestion/metabolism in
Nile tilapia (O. niloticus) through antibiotic-induced disruption
to the microbiota [61], causing considerable changes in the
representation of Bacteroidetes and Firmicutes.

Vaccination has become a widespread prophylactic
measure applied in aquaculture to improve immune function-
ing and disease resilience in farmed fish [62]. One study
attempted to identify potential alterations in the microbiota
structure and localized immune responses caused by a novel
recombinant vaccine against Aeromonas hydrophila in grass
carp (Ctenopharyngodon idella) [63]. Results from their study
suggest that oral vaccines can target Aeromonas sp. through
activation of innate and adaptive immune defences within
the intestine without causing large disturbances in non-target
microbiota populations. Given the importance of the immune
response in regulating the gut microbiome [64], only a small
number of studies have investigated the influence of vaccines
on the resident microbiota composition and function in fish,
providing grounds for future study.

(b) Pro- and prebiotic supplementation
In view of the challenges associated with antibiotics, studies
have examined the impact of alternative, prophylacticmeasures
such as pro- and prebiotics (figure 4a). As literature on the types
of pro- and prebiotics used in aquaculture have been reviewed
elsewhere [65,66], as well as their effectiveness [67,68], we focus
here on the ability of these compounds to induce changes
in host physiology and function through shifts in the gut
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Figure 4. Schematic diagram of (a) feed inputs (green), (b) water processing (both RAS and BFT) (blue) and the (c) species being cultivated, along with its gut
microbiome (red). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20200184

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 J

un
e 

20
21

 



microbiome. As has already been discussed, Bacillus sp.
and Lactobacillus sp. have a beneficial effect on immunity
and are suggested to provide an alternative approach to
controlling disease in aquaculture. Targeted microbiota
manipulation using these samebacteria have also been reported
to exert beneficial effects on fish growth through (i) alterations
in gut morphology [69], leading to improved digestion
and metabolism [70] and (ii) microbial-mediated regulation of
the genetic components involved in growth and appetite
control [71,72]. Recently, the establishment of Lactobacillus
probiotic bacteriawithin the gut microbiotawas also associated
with improved learning/memory capacity and changes in
shoaling of zebrafish [73,74], indicating a potential gut–brain
interaction pathway similar to what is described in higher
vertebrates [75].

Research into themodulation of gutmicrobial communities
using prebiotic compounds has expanded also. Certain dietary
components have been reported to induce changes in gut
morphology within the fish host, including vacuolation of
enterocytes [76] and enhancing mucosal barrier integrity [77].
Improved mucosal protection and disease resilience are
thought to be driven by microbes and associated microbial
metabolites. Several prebiotics have been reported to manip-
ulate the resident microbiota community of a host in favour
of Firmicutes and short-chain fatty acid producing commu-
nities [78]. Mechanistic pathways remain elusive, however,
with additional research required.

4. Artificial selection
Within aquaculture, selection has been applied routinely to
increase production by enhancing desirable traits such as
growth and disease resilience [79,80]. Recent evidence suggests,
however, that host genetics plays a fundamental role in deter-
mining the gut microbiota in fish [81]. The ‘hologenome’
concept proposes that the host organism, along with their com-
mensal microbial community, form one unit of selection [82].
Host physiology, for example, is determined in part by the
host’s genome and has the ability to shift gut microbiome com-
position, as demonstrated in zebrafish, whereby host neural
activity and subsequent gut motility is able to destabilize
microbial communities [46] (figure 3c). Although not described
in teleosts, the reverse has also been seen, whereby microbial
communities are able to regulate the host’s gut through:
(i) serotonin signalling [83,84], (ii) macrophages and enteric
neurons interactions [85], (iii) metabolism of bile salts [86] and
possibly, (iv) metabolism of short-chain fatty acids such as
butyrate [87]. The host–microbe relationship means that
traits selected during breeding programmes may be traits
from the hologenome. Pyrosequencing studies have also
shown significant changes in the microbial community compo-
sition of genetically improved fish comparedwith domesticated
individuals [88,89]. Artificial selection has also been demon-
strated on single species of bacteria, with Aeromonas veronii
selected to exhibit greater colonization success in gnotobiotic
zebrafish [90]. Environmental filtering of the reservoir of
bacteria surrounding the fish generates the potential for
improving colonization success of commensal bacteria.
Currently, bacterial communities selected by breeding pro-
grammes could be neutral, sympathetic or antagonistic to the
goals of artificial selection, and understanding this relationship
will be vital in manipulating the hologenome.

5. Closed aquaculture systems
Many environmental problems plague current aquaculture
practices. In addition to those already discussed, there are also
issues with parasite transmission to wild fish [91], interactions
between wild and escaped farmed fish [92], and release of
faeces and excess feed into the environment [93]. One way to
better control these problems is to remove aquaculture from
ecosystems and bring it into a land-based setting [94].

(a) Manipulating environmental microbiota
RAS and biofloc technology (BFT) are forms of aquaculture
which use microbial communities to minimize excess nutrients
and pathogens in rearing water (figure 4). In these systems,
microbial reconditioning of the rearing water is vital as fish
are stocked at high densities, resulting in elevated levels of
organic material, which can promote microbial growth [95].
Selection of competitive, slow-growing K-strategist bacteria
shifts the community from autotrophy to heterotrophy activity.
Such shifts allow for a microbial community which maintains
both water quality, through nutrient recycling, and inhibits
the growth of fast-growing, opportunistic r-strategists, which
include many bacterial pathogens such as Aeromonas sp.
[96,97]. RAS and BFT could therefore be combined with vacci-
nation against bacterial pathogens such as Aeromonas sp., as
previously discussed, to reduce infections. The selection of
K-strategist microbial communities differ between RAS and
BFT. In RAS; K-selection is achieved by passing rearing water
through heterotrophic biofilters [98], whereas in BFT, a high
carbon to nitrogen ratio within rearing water is conditioned
by the addition of carbohydrate sources, favouring hetero-
trophic K-strategist bacteria [99]. High-carbon conditions in
BFT systems also promote nitrogen uptake into microbial
biomass, which forms protein-rich bacterial ‘flocs’ that
supplement feed [100].

Manipulation ofmicrobes associatedwith live feed cultures
is critical to the production of fish larvae as live feeds often con-
tain opportunistic pathogens (figure 4a), resulting in stochastic
mortality [64]. While traditional approaches involve non-selec-
tive, temporary methods (i.e. physical/chemical disinfection
[101]), more recent efforts have shifted towards targeted
manipulation through probiotics, for example, the successful
use of Phenylobacterium sp., Gluconobacter sp. and Paracoccus
denitrificans in rotifer (Brachionus plicatilis) production [102].
Lytic bacteriophages have also proven somewhat successful
in reducing the prevalence of opportunistic pathogens, such
as Vibrio sp. [103–105]. Live feed also appears to play a critical
role in the delivery and establishment of colonizing gut micro-
biota in fish larvae upon first feeding [106]. Supplementation of
live feed cultures with beneficial microbes, such as the pre-
viously mentioned Lactobacillus spp. and Pediococcus sp., has
become common practice in hatcheries, with beneficial effects
on growth, mucosal immunity and stress tolerance of larvae
[17,107,108]. Bacteriophages and probiotics have also been
applied directly to tank water (figure 4b); probiotics such as
Bacillus spp. preventing fish mortality from Vibrio spp. infec-
tions [109] and Flavobacterium columnare-infecting phages
have been shown to persist in RAS for up to 21 days [110].
Far less is known about the application of probiotics directly
to tankwaterwhen comparedwith feed application [111]; how-
ever, and the use of bacteriophages is still in its infancy,
providing potential for future research.
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(b) Controlling environmental variables
Changes in abiotic conditions in the water column propagate
into the gut, as seen with dissolved oxygen concentration [8].
Such parameters are hard to controlwithin the natural environ-
ment, but closed-loop systems provide consistent abiotic
conditions, and allow for other variables, such as hologenome
(figure 4c), to be manipulated with greater ease. The effect
of many important physiochemical water properties (e.g.
nitrate, ammonia and phosphate) on the teleost gut micro-
biome has not been studied, however, let alone how these
properties interact [112]. Salinity is another important
physiochemical property for the gut microbiome in many
aquaculture species. When Atlantic salmon transition
from freshwater to saltwater, individuals can experience a
100-fold increase in gut bacteria, combined with a shift in
dominant microbial taxa [113]. Increasing salinity in RAS
systems can, however, negatively impact nitrate removal in bio-
reactors [114], highlighting the importance of understanding
interacting physiochemical properties.

(c) Dysbiosis as a stress biomarker
The use of closed-loop systems is a progression to amore inten-
sive method of aquaculture, mirroring the progression seen
in animal agriculture, and a crucial element to sustainable
intensification is welfare. It is possible to measure fish welfare
through physiological and behavioural indicators, with a
current focus on identifying stress. The microbiome has been
identified as another potential biomarker [64] due to its inter-
action with the host immune system, and its responsive
nature to stressors [115,116]. Therefore, identifying imbalances
in the gut microbiome, or dysbiosis, could be a useful pre-
dictor of stress-related syndromes, which could ultimately
lead to mortality. Using non-invasive faecal samples could

complement other non-invasive stress biomarkers, such as
water cortisol [117], allowing for the optimization of husban-
dry, alerting operators to chemical (e.g. poor water quality,
diet composition imbalance, accumulation of wastes), biologi-
cal (e.g. overcrowding, social dominance, pathogens), physical
(e.g. temperature, light, sounds, dissolved gases) or procedural
(e.g. handling, transportation, grading, disease treatment)
stressors [118]. More research is needed, however, in assessing
the reliability and accuracy of faecal microbiome sampling in
identifying stress.

6. Conclusion and future applications
The teleost gut microbiome has a clear role in the future of
aquaculture, and although research has come a long way in
recent decades, there are still many areas of gut microbiome
research that require further development. As highlighted in
figure 1b, there are still key elements lacking from many
studies, particularly those assessing metacommunity compo-
sition, with the lack of water samples being particularly
glaring. The ability to sample the environmental metacommu-
nity with ease is one of the strengths of using a teleost model.
Another methodological problem that will hinder comparabil-
ity, reproducibility and metanalysis of fish gut microbiome
datasets is the varying degree of sequencing platforms and
markers (figure 5). A solution to this problem would be to
focus on one marker, and one sequencing platform, with
many metabarcoding microbiome studies adopting the V3
and V4 regions, sequenced on Illumina platforms. It is noted,
however, that different markers and sequencing platforms
work better in some systems with no simple fit-all approach.
Therefore, tools that incorporate differences in taxonomic
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identification that arise through using differentmethodological
approaches will be vital in comparing datasets.

Current findings, as summarized here, show that the teleost
gutmicrobiomeplays an important role inaquaculture, however,
the literature is dominatedwith studies performedonmammals,
leading to limited data on functional capacity of fish gut micro-
biomes [64]. Furthermore, a knowledge gap exists between
ascertaining the compositionof themicrobiomeandunderstand-
ing its function, partly due to the complexity and variability in
the ecology of teleost gastrointestinal tracts [119] and unknown
bacterial taxa. More specifically, however, it has been caused by
the lack of synthesis between multiple cutting-edge molecular
techniques. Progression in teleost gut microbiome research will
depend on combining function (RNA sequencing), composition
(metabarcoding and metagenomics) and spatial distribution
(fluorescence in situ hybridization). Understanding host genetic
diversity (population genomics) and expression (RNA sequen-
cing) of that diversity, all while incorporating environmental
variation, will also be vital.

Finally, there are many areas in which synergies between
gut microbiomes and aquaculture can be made. These have
been highlighted through the review, but, in summary, include
a better understanding of the gut microbiome with respect to
insect-based feeds, vaccination, mechanism of pro- and prebio-
tics, artificial selection on the hologenome, in-water
bacteriophages in RAS/BFT, physiochemical properties of
water and dysbiosis as a biomarker.
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ABSTRACT In recent years, a wealth of studies has examined the relationships be-
tween a host and its microbiome across diverse taxa. Many studies characterize the
host microbiome without considering the ecological processes that underpin micro-
biome assembly. In this study, the intestinal microbiota of Atlantic salmon, Salmo
salar, sampled from farmed and wild environments was first characterized using 16S
rRNA gene MiSeq sequencing analysis. We used neutral community models to deter-
mine the balance of stochastic and deterministic processes that underpin microbial
community assembly and transfer across life cycle stage and between gut compart-
ments. Across gut compartments in farmed fish, neutral models suggest that most
microbes are transient with no evidence of adaptation to their environment. In wild
fish, we found declining taxonomic and functional microbial community richness as
fish mature through different life cycle stages. Alongside neutral community models
applied to wild fish, we suggest that declining richness demonstrates an increasing
role for the host in filtering microbial communities that is correlated with age. We
found a limited subset of gut microflora adapted to the farmed and wild host envi-
ronment among which Mycoplasma spp. are prominent. Our study reveals the eco-
logical drivers underpinning community assembly in both farmed and wild Atlantic
salmon and underlines the importance of understanding the role of stochastic pro-
cesses, such as random drift and small migration rates in microbial community as-
sembly, before considering any functional role of the gut microbes encountered.

IMPORTANCE A growing number of studies have examined variation in the micro-
biome to determine the role in modulating host health, physiology, and ecology.
However, the ecology of host microbial colonization is not fully understood and
rarely tested. The continued increase in production of farmed Atlantic salmon, cou-
pled with increased farmed-wild salmon interactions, has accentuated the need to
unravel the potential adaptive function of the microbiome and to distinguish resi-
dent from transient gut microbes. Between gut compartments in a farmed system,
we found a majority of operational taxonomic units (OTUs) that fit the neutral
model, with Mycoplasma species among the key exceptions. In wild fish, determinis-
tic processes account for more OTU differences across life stages than those ob-
served across gut compartments. Unlike previous studies, our results make detailed
comparisons between fish from wild and farmed environments, while also providing
insight into the ecological processes underpinning microbial community assembly in
this ecologically and economically important species.
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Worldwide, salmonid aquaculture accounted for over 9 billion euros in 2014 (1),
with the industry rapidly expanding to feed a growing global population. As

such, the need to further current knowledge of core host processes, such as energy
allocation, physiology, and behavior, is at the forefront of salmonid research. Previous
studies on mammals, fish, and invertebrates have implicated the gut microbiota in
a number of these processes (2). To date, there are limited studies discussing the
bacterial diversity and functional diversity of fish intestinal microbiota (e.g., refer-
ences 3 and 4). In salmon, no studies have addressed the relative roles of neutral
(stochastic) and selective (deterministic) processes in shaping gut communities,
which are key to understanding the importance of the host environment in driving
community assembly (5).

The life cycle of Atlantic salmon, Salmo salar, is complex, with individuals employing
a number of different life history strategies (reviewed in reference 6). Most forms are
anadromous, completing a juvenile stage in freshwater, a long migration to the ocean
for maturity, and a return migration back to the original freshwater rearing grounds for
spawning. To transition from the juvenile “parr” stage, individuals must smoltify to
enter the marine environment. Smoltification encompasses all physiological, develop-
mental, and behavioral changes that accompany this life stage transition (7). Changes
include silvering of the skin and darkened fin margins alongside the reorganization of
major osmoregulatory organs including the gills, gut, and kidney in order to develop
seawater tolerance (7, 8). Following maturity in marine waters, individuals must then
physiologically reacclimate to the freshwater environment to which they return to
reproduce. Studies have shown that individuals respond differently to stress according
to life stage, with smolts more responsive to stress than parr, measured by increased
levels of plasma cortisol (9, 10). Each transition between life cycle stages to enable
individuals to survive and thrive in a different environment will likely impact the
resident host-associated microbiota.

The gut microbiota in salmonids is thought to be largely shaped by dietary and
environmental factors, although initial bacterial colonization of the gastrointestinal
tract begins shortly after hatching (11). Salmonids are gastric fishes. Their guts are
characterized by a clearly defined stomach followed by a pylorus with attached blind
vesicles called pyloric ceca as well as a relatively short and nonconvoluted posterior
(mid and distal) intestine leading to the anus (12). Attempts have been made to map
the microbial diversity of different gut compartments in onshore saltwater recirculation
systems, but it is unclear where either pyloric ceca or stomach has been sampled (13).
A number of studies have demonstrated the impact of diet on the resident gut
microbiota (14, 15). It has been shown that certain diets, such as soybean protein
concentrate, can cause dysbiosis of the gut microbiota by increasing the bacterial
diversity to include those not typically associated (16). The core gut microbiota of wild
Atlantic salmon is typically characterized by the key presence of Firmicutes, Bacte-
roidetes, and Actinobacteria in freshwater life stages and Tenericutes (genus Myco-
plasma) in marine-phase adults (4). Only a minority of core operational taxonomic units
(OTUs) is thought to be conserved across both freshwater and saltwater phases in the
wild (4). In contrast to wild salmon, the microbiota of farmed salmon seems to be more
stable during the transition from freshwater to saltwater (17).

There is considerable debate in the literature around the role of gut microbes in host
health and ontology across taxa (e.g., reference 18). One step toward understanding
the relationship between microbes and their host is to establish whether the host
environment has any impact on microbial community structure. For example, there is
evidence in both vertebrate and invertebrate systems that some species can lack a
resident microbiome altogether (e.g., reference 19). By combining next-generation
sequencing and modeling approaches, one can assess the relative contribution of
stochastic and deterministic processes in driving community assembly to indicate
whether host-associated microbes are indeed any different from those in the immedi-
ate environment. One such approach is via the application of neutral community
models (NCMs) (e.g., reference 20). Neutral theory assumes species are “neutral” in their
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ecological niches, and community assembly is the result of stochastic dispersal and drift
whereby organisms are randomly lost and replaced by migration from the source
metacommunity (21). In contrast, “nonneutral” deterministic theory predicts that envi-
ronmental (e.g., intrahost) conditions and interspecific interactions determine microbial
species abundance (22). Due to their wide-ranging relevance, NCMs have successfully
been applied to the understanding of microbial community assembly and have suc-
cessfully predicted community structures (23–26). Arguably, the most robust NCM is by
Sloan et al. (20), as it calibrates Hubbell’s neutral theory and is able to reproduce
patterns throughout variously sized samples (23). However, despite the clear benefits of
NCMs, they are not without controversy, with some arguing that they only explain a
very small percentage of variance in host organisms (e.g., reference 27).

In the current study, we use 16S rRNA gene MiSeq sequencing analysis and NCMs
(20) to examine microbial community assembly and transfer between different life
history stages and digestive compartments in Atlantic salmon, S. salar. In a wild salmon
system, we compare the microbiota within the midgut of each freshwater life cycle
stage, including parr, smolt, and returning adults, alongside the midgut of marine-
phase adults. We also analyze adult salmon gut microbial communities, sampled from
an aquaculture fishery, to assess microbial diversity and function in different sections of
the digestive tract. Finally, we are also able to compare community composition and
taxonomic and functional diversity as well as determine the role of neutral and
nonneutral processes in community assembly and transfer in salmon from both farmed
and wild environments.

RESULTS
Richness comparisons for farmed and wild salmon. We undertook surveys of

both functional and taxonomic richness among our study groups, including direct
comparisons between midgut richness in farmed and wild salmon. Among wild salmon,
we observed a significant decline in the number of taxa present throughout the life
cycle, although retuning adults held a greater diversity of microbes than that of
marine-phase adults (P � 0.001) (Fig. 1). In farmed salmon, the lowest richness was
observed in the pyloric cecum, significantly lower than richness levels in the stomach
(P � 0.008), midgut (P � 0.012), or bile duct (P � 0.003) (Fig. 1). Interestingly, taxonomic
richness in wild, adult marine-phase fish (n � 47) was significantly lower than that
observed in the farmed adults (P � 0.021). Functional richness estimates generated by
modeling whole microbial metagenomes from 16S data using Tax4Fun (28) indicated
similar patterns of statistical significance in variation to taxonomic richness among wild
samples (i.e., declining with maturation between life cycle stages) (Fig. 2). Functional
richness estimates among different gut compartments in farmed salmon support a
reduction in diversity in the pyloric cecum compared to that in all other compartments;
however, the bile duct also appears different, with a richer functional repertoire than
the midgut (P � 0.003) and stomach (P � 0.029) (Fig. 2). Interestingly, functional rep-
ertoire comparisons between the midgut of farmed and wild marine-phase salmon
suggest no significant differences, despite large differences in taxonomic diversity
(P � 0.720) (Fig. 2).

Taxonomic diversity and compositional differences between life history stages,
gut compartments, and farmed and wild salmon. Pairwise comparisons of beta
diversity among all pairs of samples are shown in Table 1. Significant divergence was
observed among farmed adults and both freshwater and marine wild individuals (Fig.
3). Multiple instances of significant compositional divergence were also observed
between gut compartments in farmed fish, especially in relation to comparisons with
the pyloric cecum. Life cycle stage had a significant effect on microbial community
composition, as we have observed previously (4). Microbial genera that showed sig-
nificant differential abundance between gut compartments and life cycle stages are
summarized in Fig. S1 and S2 in the supplemental material. Again, life cycle stage-specific
differences are described extensively in Llewellyn et al. (4). In terms of differential taxonomic
abundance between gut compartments, the stomach is most frequently an outlier, being
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FIG 1 Alpha diversity measured in terms of richness of OTUs found across samples. (A) Comparison between
freshwater (Fr.W) and loch water (L.W). (B) Comparison between the midgut of wild individuals sampled according
to life cycle stage, including marine-phase adults (MG.A.Sl), parr (MG.P.Fr), smolt (MG.S.Fr), and returning adults
(MG.R.Fr). (C) Different gut compartments of farmed subadults including midgut (MG.A.Fa), stomach (S.A.Fa),
pyloric cecum (PC.A.Fa), and bile duct (BD.A.Fa). (D) Midgut of wild individuals sampled according to life cycle stage
and midgut of farmed subadults (MG.A.Fa). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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FIG 2 Functional diversity found across samples. (A) Comparison between freshwater (Fr.W) and loch water (L.W). (B) Comparison between the midgut of wild
individuals sampled according to life cycle stage, including marine-phase adults (MG.A.Sl), parr (MG.P.Fr), smolt (MG.S.Fr), and returning adults (MG.R.Fr). (C)
Midgut of wild individuals sampled according to life cycle stage and midgut of farmed subadults (MG.A.Fa). (D) Different gut compartments of farmed subadults
including midgut (MG.A.Fa), stomach (S.A.Fa), pyloric cecum (PC.A.Fa), and bile duct (BD.A.Fa). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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highly enriched for Aliivibrio, Weissella, Lactobacillus, Photobacterium, Paracoccus, and Pan-
toea species. The pyloric cecum is highly enriched for Mycoplasma species while Paracoccus
and Lactobacillus species show lower abundance. High levels of enrichment for Mycoplasma
species in the pyloric cecum likely account for the position of this gut compartment as an
outlier on the basis of beta diversity estimates. The lowest abundance of Mycoplasma
species was found in the bile, which also corresponds to the compartment from which no
host cellular material was included in the DNA extraction.

Neutral model in shaping community assembly. Differences in beta diversity
among microbial communities may result from neutral sampling effects (e.g., demo-
graphic bottlenecks) rather than adaptation of microbes to different environments. To
explore the role of neutral processes in determining microbial community assembly, we
first deployed the Sloan neutral model (20) in both the farmed and wild systems. In the
farmed system, we examined the relative role of neutral and deterministic processes in
a sequential, stepping-stone pattern (Fig. 4), moving from a combined food and water
source through the gut system (Fig. 4, bar plot, neutral model hybrid). We noted a
preponderance of OTUs that fitted the neutral model among all comparisons. Many of
the OTUs that accounted for those that did not fit the neutral model were assigned to
Mycoplasma species (indeed no Mycoplasma sp. OTUs fitted the neutral model), which
can be observed in Fig. 4 as well as in Table S1 in the supplemental material. Aliivibrio,
Lactobacillus, and Paracoccus species were also among those that showed nonneutral
patterns of colonization in farmed fish (see Table S1). Figure 5 shows similar analyses
describing OTU abundances among wild salmon. Again, neutral processes best account
for the presence of the majority of OTUs among different life cycle stages compared to
their freshwater source communities. Overall, however, deterministic processes account
for more OTU differences between life cycle stages than between gut compartment
communities (Fig. 4 and 5). The intestines of returning adults appear to contain the
largest number of OTUs that show evidence of host adaptation compared to the
abundance and diversity of their source microbes in the freshwater environment, as

TABLE 1 Mean pairwise beta diversity identifying significant differences in microbial profile across the environment, gut compartment,
and life cycle stage of S. salara

aAll relevant comparisons (GUniFrac with PERMANOVA test) are stated, and the corresponding significance value (adjusted P value, Benjamini-Hochberg test) included.
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FIG 3 Principal coordinates analysis (PcoA) plot showing the mean pairwise beta diversity in microbial profile across the environ-
ment, gut compartment, and life cycle stage of S. salar. (A) Comparison between the midgut and pyloric cecum of farmed individuals.
(B) Pyloric cecum and stomach of farmed adults. (C) Environmental loch water to stomach of farmed adults. (D) Fresh water and
midgut of wild smolt. (E) Freshwater and midgut of returning wild adults. (F) Freshwater and midgut of wild parr.
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FIG 4 Demographic variation of community neutrality (measured as percentage) across differing samples of farmed S. salar. Neutrality
is measured as the migration rate from the source community. Different gut compartments of subadult farmed individuals were
compared to environmental feed and water samples (FW) as the source community, before being compared sequentially through the
digestive tract as follows: stomach (S), pyloric cecum (PC), midgut (MG), bile duct (BD). Neutral processes are shown in black while
nonneutral are depicted in gray. Selection of comparisons to show how well the OTUs fit the neutral model. Neutral OTUs are shown
in black, nonneutral are depicted in gray, while the red is Mycoplasma sp. OTUs. We see no Mycoplasma sp. OTUs that fit the neutral
model. The roles of OTUs from the pyloric cecum as the source community to the midgut (top), stomach compartment to the pyloric
cecum (middle), and combined food and water to the stomach compartment (bottom) are shown.
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FIG 5 Demographic variation of community neutrality (measured as percentage) across differing samples of wild S. salar. Neutrality is
measured as the migration rate from the source community. The midgut of different life cycle stages of wild individuals was sampled and
compared to environmental water samples as the source community before being compared sequentially through life cycle stages as

(Continued on next page)
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well that of their source microbes in marine adults (Fig. 5). We also explored the
goodness of fit of mycoplasmas and found that Mycoplasma OTU abundance in wild
fish, as with farmed fish (Fig. 5), was poorly explained by the neutral model (Fig. 5).
Stegen’s (29) indices of taxonomic (nearest taxonomic index [NTI]) and phylogenetic
(net relatedness index [NRI]) dispersion among the gut compartments and environ-
mental communities associated with farmed fish (Fig. 6) largely support the findings
from Sloan’s model (Fig. 4), with little deviation from neutral expectations overall with

FIG 5 Legend (Continued)
follows: parr (Pa), smolt (Sm), marine adult (MA), and returning adult (RA). Neutral processes are shown in black while nonneutral are
depicted in gray. Selection of comparisons to show how well the OTUs fit the neutral model. Neutral OTUs are shown in black, nonneutral
are depicted in gray, while the red is Mycoplasma sp. OTUs. We see no Mycoplasma sp. OTUs that fit the neutral model. The roles of OTUs
from combined food and water as the source community to the parr life cycle stage (top), food and water to smolt (middle), and food and
water to returning adult (bottom) are shown.

FIG 6 Indices of phylogenetic (NRI) (A) and taxonomic (NTI) (B) dispersion among the gut compartments and environ-
mental communities associated with farmed fish. Samples include stomach (S.A.Fa), pyloric cecum (PC.A.Fa), midgut
(MG.A.Fa), bile duct (BD.A.Fa), and loch water (LW.W.Fa). Significant differences are indicated with an asterisk (*, P � 0.05).
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the exception of some weakly significant differences in NRI between the bile duct,
stomach, and environmental microbes (see Table S1 in the supplemental material).
Among wild life cycle stages, NRI scores are generally negative, although values from
fish do not deviate from their freshwater source community, suggesting no genuine
effect (Fig. 4). NTI scores, conversely, are strongly negative in marine-phase salmon. A
comparison to the freshwater sample is not relevant, and local sampling of microbes
from Greenland’s marine environment was not possible. Significant declines in NTI
values between parr and adults (marine-phase and returning) support an increasingly
important role of the host habitat in filtering community diversity (Fig. 7) and may link
to the declining OTU richness also observed in alpha diversity analyses (see Fig. 1).

DISCUSSION

Our study explores the ecological processes underpinning community assembly in
Atlantic salmon, makes detailed comparisons between farmed and wild fish, and makes

FIG 7 Indices of phylogenetic (NRI) (A) and taxonomic (NTI) (B) dispersion among the midguts of different life cycle stages
of wild salmon. Samples include combined food and water (FW.W.Fr), smolt (MG.S.Fr), parr (MG.P.Fr), returning adult
(MG.R.Fr), and marine adult (MG.A.Sl). Significant differences are indicated with asterisks (*, P � 0.05; **, P � 0.01).
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direct comparisons between the gut compartments of farmed Atlantic salmon from sea
cages. In the wild fish, we see declining microbial community richness, both taxonomic
and functional, as fish mature through different life cycle stages alongside an increasing
role for the host in filtering microbial communities. In gut compartments of farmed fish,
the neutral models suggest that the majority of microbes appear to be transient, with
a limited subset of gut microflora apparently adapted to the host environment, among
which Mycoplasma spp. are dominant. In our data, while taxonomic richness estimates
between the guts of wild and farmed marine-phase salmon show significant differ-
ences, their predicted functional richness is stable.

Our findings that the environmental microbes are the source of salmon intestinal
microbes in parr are consistent with findings that initial bacterial colonization of the
gastrointestinal tract begins shortly after hatching (11). However, microbes from the
environment apparently continue to actively colonize later life cycle stages (smolts and
returning adults) directly from the water, and the majority of OTUs fit a neutral model
assuming freshwater as the origin. Burns et al. (21) found that the proportion of OTUs
fitting a neutral model, with respect to environmental sources, declined linearly with
age during early zebrafish development. This is presumably due to increasingly selec-
tive filtering by the host environment (21). Similar patterns were not observed in our
data, although all salmon studied were at a much later stage of development than the
embryonic zebrafish investigated by Burns et al. (21). We did, however, note an
increasingly important role for host filtering in comparisons between life cycle stages
(parr and smolt, smolt and marine adult, marine adult and retuning adult). These data
corresponded broadly with increasingly negative NTI values among later life cycle
stages and suggest that a subset of host-adapted, taxonomically related OTUs come to
dominate the S. salar microbiome as it matures. The declining trend in OTU richness
observed across life cycle stages in our study is also consistent with observations that
gut OTU richness declines with age in juvenile Atlantic salmon (30). As we noted in a
previous study based on the wild salmon data set (4), Mycoplasma spp. are a dominant
presence, especially among adults, with others observing the same phenomenon (31,
32). The inability of neutral models to explain the abundance of any Mycoplasma sp.
OTUs in any comparisons in the current study suggests that these organisms may be
highly adapted to the host environment.

A principal aim of our study was to establish the diversity of microbes among
different sections of the Atlantic salmon gut. A previous attempt to map the diversity
of microbes across different gut compartments did so in a recirculating aquaculture
system (RAS) (13). Differences between this study and ours may, therefore, reflect
variation in the environmental source communities, given their likely importance in
defining microbial community structure. In our study, the great majority of microbial
OTUs experienced no host filtering as they pass through the gut from the environment
(feed and water). Comparisons with Gajardo et al. (13) are further frustrated by a lack
of anatomical precision in the definition of different gut compartments. In this sense,
the adoption of a standardized nomenclature and anatomical map, akin to that
presented by Løkka et al. (12), would benefit the research community. Particularly
abundant microbial OTUs from the intestines of farmed fish in our study included
Aliivibrio, Mycoplasma, Lactobacillus, and Paracoccus species (see Fig. S1 in the supple-
mental material), many of which did not follow the neutral model. We find a number
of similarities to others who have characterized the gut of farmed Atlantic salmon in
open mariculture (31, 32). The abundance of Paracoccus species in our system, espe-
cially the stomach, may in part be explained by its abundance in the feed (data not
shown). As with wild samples, the lack of compliance of any Mycoplasma sp. OTUs with
neutral models supports some form of active adaptation to the host environment. The
pyloric cecum, a region of densely packed epithelial folds and the site of most nutrient
absorption in Atlantic salmon, was most enriched for Mycoplasma sp. OTUs. Many
Mycoplasma species are intracellular commensals or pathogens (e.g., references 33 and
34). If Mycoplasma spp. recovered from the samples here share a similar lifestyle,
abundant gut epithelial cells in constant contact with the digesta in this pyloric cecum
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may represent a permissive microbial habitat. Further work, potentially involving in situ
visualization of microbes in the gut (e.g., reference 35), could reveal more.

The dominance of Mycoplasma species in both farmed and wild fish may not be an
example of evolutionary convergence. Marine salmon farms are very frequently placed
along the costal migratory routes of their wild congeners. Pathogen and parasite
transfer between farmed and wild fish is a major consideration of coastal economies
(e.g., reference 36). It is entirely possible that commensals like Mycoplasma spp. can also
pass between farmed and wild fish in a similar fashion. Other microbial species were
shared between farmed and wild marine-phase salmon (e.g., Aliivibrio and Photobac-
terium species); however, microbial taxonomic diversity was notably lower in the wild.
Estimates of functional diversity suggested that this decline in taxonomic diversity had
little impact on functional diversity in the midguts of farmed or wild salmon. However,
predictive algorithms for microbiome function based on 16S data must be approached
with caution, as microbes from nonmodel organisms are usually underrepresented in
KEGG databases (28).

In conclusion, our study updates the “map” of microbial communities that colonize
the different gut compartments of salmon. However, the predominance of neutral
processes dominating the stepwise colonization of the salmon gut indicates a powerful
role for the environment, not the host, in defining the microbial communities therein.
Nonetheless, many of the most abundant gut OTUs were nonneutral in their coloni-
zation dynamics, suggesting that the host might be exerting a powerful influence over
a small subset of important taxa. Between life cycle stages in wild salmon, more
evidence of host filtering is apparent— declining alpha diversity with age and a
relatively larger number of OTUs that do not fit a neutral model. One explanation for
this could be due to wild fish having a more varied diet, as diet is well known to be a
determining factor on the host microbiome (e.g., reference 37). We hope one role of
this work will be to focus attention on the microbes that consistently do show signs of
adaptation to the gut environment, the mycoplasmas, for example. Further work is
required to understand what specific adaptive role such microbes may play in salmon
host digestion and physiology as well as to illuminate how these organisms interact
with their host.

MATERIALS AND METHODS
Sample collection in aquaculture setting. Farmed Salmo salar subadults (3 to 5 kg) were sampled

from marine cages at an aquaculture farm site at Corran Ferry, near Fort William, Scotland, in autumn
2017. Samples of environmental microbes were collected concurrently by filtering 500 ml of sea cage
water (n � 14) through a 0.22-�m nitrocellulose membrane filter (Millipore, USA) (e.g., reference 4).
Samples of pellet feed (n � 13) were also collected and stored at �80°C until DNA extraction. Individual
fish were dissected using aseptic technique, and samples of several gut compartments excised and flash
frozen in liquid nitrogen as follows: stomach (n � 42), pyloric cecum (n � 31), bile fluid (n � 23), and
“midgut” (approximately 20 cm from the vent; n � 39). Gut samples were taken via the excision of a short
section of gut wall alongside gut contents to minimize potential sampling bias between adherent/
planktonic microbes. A full representation of the sampling method is presented (Fig. 8).

Sample collection in wild setting. Wild S. salar specimens were collected from sites in Ireland,
Canada, and west Greenland. Several life cycle stages were targeted in freshwater (Burrishoole and Erriff
rivers, West Ireland [n � 9]; St. Jean and Trinite rivers, QC, Canada—parr [1� age class representing 1 year
after hatching; n � 32], smolt [n � 12], and returning adults [n � 31]) and marine settings (Sisimut,
Manitsoq, Greenland, feeding subadults [n � 9]). Contents of mid and distal intestines were collected and
flash frozen. Environmental microbes were sampled via the same microfiltration protocol as before at all
freshwater sites. Details of sample collection from this wild S. salar cohort have been described previously
(4). A full representation of the sampling method is presented (Fig. 8).

DNA extraction from gut contents and 16S rRNA gene amplification. DNA purification from all
aquaculture samples, including both gut and environmental samples, was achieved using a QIAamp
stool kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol (e.g., reference 38) with an
additional ceramic bead-beating step (60 s) to break down the tissue samples. DNA extraction from wild
samples was achieved using an MO BIO PowerSoil kit as described previously (39). As such, we limit direct
alpha and beta diversity comparisons between farmed and wild fish. Amplification of the 16S V4
hypervariable region of the universal rRNA 16S gene (40) was achieved using redundant, tagged primers
519_f, 5=-CAGCMGCCGCGGTAA-3=, and 785_r, 5=-TACNVGGGTATCTAATCC-3=, at a final concentration of
1 pM of each primer. V4 was chosen in light of its widespread use to profile vertebrate-associated
microbiota as well as its suitability for Illumina paired end sequence read lengths at the time of
sequencing (40). Each primer was 5= tagged with a common 22-bp tag for Illumina barcode attachment
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(CS1-ACACTGACGACATGGTTCTACA; CS2-TACGGTAGCAGAGACTTGGTCT). Reaction conditions for the
first round PCR were 95°C for 5 min, followed by 30 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s,
followed by a final elongation step of 72°C for 10 min. The second round PCR, which enabled the addition
of the multiplex identifiers (barcodes), involved only six cycles and otherwise identical reaction condi-
tions to the first. Frequent miss-priming was observed in primary PCRs, especially in samples including
high volumes of salmon tissue, resulting in either a single ca. 200-bp amplicon or two amplicon sizes (one
at 200 bp, a further at the expected ca. 300 bp). Poor amplification efficiency was a feature of all PCRs.
Sequencing of the smaller amplicon and comparison with NCBI databases revealed high sequence
similarity to the mitochondrially encoded S. salar 12S ribosomal gene (data not shown). Gel extraction
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FIG 8 Representation of sampling methods within farmed and wild populations of Atlantic salmon (Salmo salar). The midgut (MG) of different life cycle stages
of wild individuals was collected and analyzed for microbial diversity, abundance, and richness and compared to environmental water samples. Different life
cycle stages included parr, smolt, marine-phase adult, and returning adult. In a farmed aquaculture system, samples were collected from different gut
compartments of subadults, including stomach, pyloric cecum, midgut, and bile duct, and compared to environmental samples consisting of feed pellets and
water.
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of 300-bp products was achieved using a PureLink gel extraction kit (Thermo) prior to a second round
PCR (8 cycles) to incorporate Illumina barcodes for multiplex library preparation (see supplemental
material for custom barcode sequences). The sequencing platform used was Illumina MiSeq with a read
length of 300 bp.

Analysis of 16S rRNA gene amplicons. Sequence analysis was performed with our bioinformatic
pipeline as described previously (4). Firstly, we used Sickle version 1.2 (41) to trim sequencing reads
(�Q30 Phred quality score) and screen sequencing errors (�Q23) in forward reads (R1) of the 16S rRNA
V4 hypervariable region. Due to poor read quality of R2, we discarded them from the analysis to avoid
the significant loss of data size after R1 and R2 merging and synchronization. After read filtration
processing, all samples that counted for lower than 8,000 reads were discarded from the analysis. Sample
sizes are included above. Secondly, after screening for size (�100 bp) and homopolymer errors with
mothur (42), the 12,759,456 filtered reads were clustered in operational taxonomic units (OTUs) using
USEARCH version 9 at 97% identity. We used the algorithm UNOISE2 to filter out chimeric sequences
produced during PCR amplification cycles. Subsequently, for the taxonomic assignment, the 7,109
clustered OTUs were annotated using the Silva database (version 123), and a tree of OTUs clusters was
constructed using the algorithm SINTAX (43). The OTU table was converted to biological observation
matrix (BIOM) format in order to predict the function categories and metabolic pathways using Tax4Fun
software (28). Analysis of variance (ANOVA) and Wilcoxon tests were employed to compare functional
categories.

Post-OTU statistical analysis. The alpha diversity distribution and differences within the micro-
biome of farmed and wild fish were plotted and analyzed for significance using the Rhea package (44).
Briefly, the significance of alpha diversity indexes (richness and evenness) and beta diversity (phyloge-
netic distance) differences between groups were assessed using rank statistics tests (Kruskal-Wallis/
Wilcoxon). The computed P values of pairwise comparisons in alpha and beta diversity were corrected
for multiple testing using the Benjamini-Hochberg method (45). Beta diversity was measured using
generalized UniFrac (46). Permutational multivariate analysis of variance (PERMANOVA) method (47) was
applied on the GUniFrac distance matrices to determine the significant separation of experimental
groups. Nonmetric multidimensional scaling (NMDS) was performed to visualize GUniFrac distances (46)
in a reduced space of two dimensions (48). To detect significant differences in composition and
abundance between groups, we used the nonparametric Kruskal-Wallis rank sum test (49) as the
normality distribution of OTU data is rarely assumed.

Neutral and deterministic models of microbial community assembly. To investigate the role of
neutral processes in microbiome assembly, we fitted the distribution of OTUs to a neutral model
suggested by Sloan et al. (20), and recently implemented by others (e.g., reference 21), using nonlinear
least-squares based on fitting beta distributions. The estimated migration rate (m) is the probability that
a random loss (death or immigration) of an OTU in a local community is replaced by dispersal from the

FIG 9 Heatmap showing the predicted pathways in the midgut of Atlantic salmon.
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metacommunity source. The comparisons of community assembly demographic and time fates between
gut compartments and life cycle stages are highlighted (Fig. 8). In the gut compartment comparisons, the
source communities were defined in a sequential fashion (water and feed as source for stomach, stomach
as source for pyloric cecum, etc.) to assess the progression of microbes through the digestive tract. For
life cycle comparisons among wild fish, source communities were defined either as the water sample or
as the preceding life cycle stage. Predicted versus observed OTU frequencies from the neutral model
were compared to highlight the percentage of OTUs that fit the model with a confidence interval of 95%.
The goodness of fit to the neutral model was assessed using R2 as the coefficient of determination. We
also complemented Sloan’s model by a second measure adapted from Stegen et al. (29) using the Picante
package (50) to explore patterns of phylogenetic (net relatedness index [NRI]) and taxonomic (nearest
taxonomic index [NTI]) relatedness within sample groups. These indices measure the extent of the
overdispersion and underdispersion of relatedness at different timescales (NRI distant, NRI recent)—with
an expectation that communities whose membership is primarily the result of neutral processes should
approximate zero. Based on the broad assumption that taxonomically and/or phylogenetically similar
groups might share a similar niche, underdispersion indicates habitat filtering and overdispersion
intraspecific competition (29).

Tax4Fun (28) was used to predict the functional content of microbial communities based on 16S
rRNA data sets (all prokaryotic KEGG organisms are available in Tax4Fun for Silva version 123 and KEGG
database release 64.0). In Tax4Fun, the MoP-Pro approach (51) was employed to provide precomputed
274 KEGG pathway reference profiles. The ultrafast protein classification (UProC) tool (52) generated the
metabolic profiles after normalizing the data for 16S rRNA gene copy numbers. The inferred nature of
these functional predictions is highlighted in Fig. 9.

Data availability. All sequence data were deposited into the NCBI database under accession number
PRJNA594310.
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A B S T R A C T   

Mycoplasmas are the smallest autonomously self-replicating life form on the planet. Members of this bacterial genus are known to parasitise a wide array of 
metazoans including vertebrates. Whilst much research has been significant targeted at parasitic mammalian mycoplasmas, very little is known about their role in 
other vertebrates. In the current study, we aim to explore the biology of mycoplasmas in Atlantic Salmon, a species of major significance for aquaculture, including 
cellular niche, genome size structure and gene content. Using fluorescent in-situ hybridisation (FISH), mycoplasmas were targeted in epithelial tissues across the 
digestive tract (stomach, pyloric caecum and midgut) from different development stages (eggs, parr, subadult) of farmed Atlantic salmon (Salmo salar), and we 
present evidence for an intracellular niche for some of the microbes visualised. Via shotgun metagenomic sequencing, a nearly complete, albeit small, genome 
(~0.57 MB) as assembled from a farmed Atlantic salmon subadult. Phylogenetic analysis of the recovered genome revealed taxonomic proximity to other salmon 
derived mycoplasmas, as well as to the human pathogen Mycoplasma penetrans (~1.36 Mb). We annotated coding sequences and identified riboflavin pathway 
encoding genes and sugar transporters, the former potentially consistent with micronutrient provisioning in salmonid development. Our study provides insights into 
mucosal adherence, the cellular niche and gene catalog of Mycoplasma in the gut ecosystem of the Atlantic salmon, suggesting a high dependency of this minimalist 
bacterium on its host. Further study is required to explore and functional role of Mycoplasma in the nutrition and development of its salmonid host.   

1. Introduction 

Mycoplasmas are a diverse group of bacteria known to parasitise a 
wide array of metazoans, plants, invertebrates and vertebrates, 
including fisheries (Razin, 1992). Mycoplasma had been isolated from 
multiple fish species, (Carp: Cyprinus carpio; Tench Tinca tinca; Trout: 
Salmo trutta; Eel: Anguilla anguilla; Sheat fish: Silurus glanis; Mosaic 
threadfin: Trichogaster leeri; cichlid:Tropheus sp.; Plaice: Pleuronectes 
platessa; Salmon: Salmo salar; goldfish: Carassius aurarus; Brook lamprey: 
Lampetra planeri) by the early 1980s (Kirchhoff and Rosengarten, 1984). 
More recently, several studies have identified Mycoplasma from marine 
teleosts using culture-free approaches. Mudsucker (Gillichthys mirabilis) 
and pinfish (Lagodon rhomboids), for example, have been identified as 
having gut microbiomes rich in Mycoplasma (Egerton et al., 2018). 
However, salmonids in particular are frequently reported to be colonised 
by Mycoplasma (Holben et al., 2002; Llewellyn et al., 2016). This is 
especially true in Atlantic salmon (Salmo salar), both in wild and in 
farmed settings (Holben et al., 2002; Zarkasi et al., 2016). In some cases, 

Mycoplasma phylotypes can comprise >70% of the total microbial reads 
recovered from salmon intestines (Heys et al., 2020; Llewellyn et al., 
2016). The distribution and biological role of Mycoplasma in the in-
testines of salmonids are far from clear and require further exploration. 
Nonetheless, demographic modelling of microbial communities suggests 
colonisation of salmonid guts by these microorganisms as non-neutral, i. 
e. the rate at which these bacteria colonise the gut indicates a significant 
degree of specific adaptation to the host environment (Cheaib et al., 
2020; Heys et al., 2020). Interestingly, Mycoplasma sp. are also preva-
lent in different extraintestinal organs (gills, liver, spleen, kidney, 
reproductive organs, serous membrane from the peritoneum and the 
swim bladder) of different fish species (EI-Jakee Ei-Jakee, 2020; Sellyei 
et al., 2021). Even after 40 years form their discovery, the role of My-
coplasma sp. in fisheries and aquaculture production is not clear. In 
particular, questions around Mycoplasma pathogenicity remains 
unresolved. 

Mycoplasmas, as well as related taxa included in the class Mollicutes 
(Spiroplasmas, Ureaplasma and Acholeplasmas), are recognized as the 
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smallest and simplest free-living and self-replicating forms of life (Bové, 
1993; Trachtenberg, 2005). Mycoplasmas lack a peptidoglycan cell wall 
and are bounded by a simple cell membrane (Miyata and Ogaki, 2006). 
In addition to being physically small, mycoplasmas have the smallest 
genomes of any free-living organism (Razin et al., 1998). Mycoplasma 
genitalium, in particular, has a genome size of 580 kilobases comprising 
of only 482 protein-coding genes(Citti and Blanchard, 2013), whilst 
Mycoplasma mycoides, typically has 473 protein-coding genes, of which 
149 still have no known function (Citti and Blanchard, 2013). 

The simplicity of mycoplasmas, their small genome sizes, as well as 
their close association with metazoan hosts has led them to be consid-
ered as a target species to explore theories around genome erosion or 
reductive evolution (Fadiel et al., 2007; Rocha and Blanchard, 2002). 
Dependence on host organisms can theoretically lead to mutual inter-
dependence of metabolic processes. This results in its relaxed selection 
among the pool of bacterial genomes, with the main process being the 
accumulation of loss-of-function mutations in coding genes, and the 
eventual loss of genetic material from the bacterial genome (Boscaro 
et al., 2017). Genetic drift can also play a significant role as host- 
associated microbes have relatively fewer opportunities to exchange 
genetic material with the wider microbial community (Moran, 1996). 
Isolation from microbial congeners and host dependence may be further 
enhanced in mycoplasmas that exploit an intracellular niche, which 
several species have been shown to do within the literature (Razin et al., 
1998; Yavlovich et al., 2004). Mycoplasmas, likely owing to their 
dependence on their hosts, have fastidious requirements for in vitro 
culture. Culture-free approaches for microbial identification, especially, 
with the advent of DNA sequencing approaches, have markedly 
increased in recent years to identify new Mycoplasma strains (Aceves 
et al., 2018; Costello et al., 2013; Martin et al., 2013). 

In the current study, we aimed to explore the characteristics of My-
coplasma in salmonids, including a potentially intracellular niche, 
taxonomic affiliations, genome structure and gene content. We also 
examined genetic features and metabolic functions that reveal the role 
of reductive evolution in shaping its genome. Finally, we discuss what 
role Mycoplasma may have in impacting host fitness, especially in the 
context of aquaculture, by reviewing genomic features it possesses that 
are consistent with parasitic or symbiotic lifestyles. 

2. Materials and methods 

2.1. Sample collection 

Farmed Atlantic salmon (Salmo salar) subadults (individuals from 3 to 
5 kg) fed on a commercial diet were sampled from 3 marine cages at an 
aquaculture facility at Corran Ferry, near Fort William, Scotland, in 
Autumn 2017 in collaborations with MOWI Ltd. Salmo salar freshwater 
parr (30-50 g) and ova were sampled at the Institute of Biodiversity, 
Animal Health and Comparative Medicine aquarium facility, University 
of Glasgow. The fishes were euthanized by blunt cranial trauma under a 
Schedule 1 procedure and gut compartments (stomach, pyloric caecum, 
and midgut) samples were dissected under aseptic conditions before 
being fixed in formalin for subsequent microscopy, or flash frozen in 
liquid nitrogen prior to DNA analysis. 

2.2. Fluorescence in-situ hybridisation (FISH) 

Previous work has established the dominance of Mycoplasma in 
marine Salmo salar GI (gastrointestinal tract) (Heys et al., 2020). To 
explore their physical distribution in different gut compartments and life 
cycle stages, FISH was undertaken on stomach, pyloric caecum and hind 
gut from marine farmed adults (three individuals, MOWI, Scotland) and 
juvenile parr reared in aquaria at the University of Glasgow (three in-
dividuals). Samples were fixed in a freshly made sterile-filtered solution 
of 4% paraformaldehyde in PBS (pH 7.4) for 16–24 h and maintained at 
room temperature for 16–48 h. Fixed samples were then washed with 

sterile-filtered PBS (pH 7.4) three times before being stored in 70% 
ethanol. Samples were then gradually dehydrated in a series of ethanol- 
xylene-paraffin treatment steps (Copper et al., 2018). Before sectioning, 
samples were embedded in paraffin and stored at 4 ◦C. At least four 3–4 
μm sections were taken from each embedded tissue block, rehydrated in 
sterile ddH20, and mounted on slides for pepsin treatment and straining. 
Pepsin treatment was undertaken in a 0.05% pepsin solution and 0.01 M 
HCL. Samples were DAPI stained to target cell nuclei of host cells, and 
FISH probes were hybridized at 55 ◦C to the 16S rDNA small subunit of 
bacterial cells. Multiple FISH probes labelled with Cy3 and Cy5 dyes 
were deployed to distinguish Mycoplasma strains from other microbes 
present in samples (Table 1). To improve the visualization of non- 
mycoplasma bacteria, multiple probes were deployed using the same 
dye. A Mycoplasma probe (Myc1–1) (Table 1) probe was designed based 
on Illumina amplicon sequences based upon the most abundant opera-
tional taxonomic (OTU) sequence identified in Adult Salmon that we 
identified in previous work (Heys et al., 2020). To establish respective 
specificity of probes, positive controls of for both universal probes 
(E. coli) and Mycoplasma probes (Mycoplasma muris) were used. Attempts 
culture Mycoplasma from salmon were not successful. All samples were 
visualised at 20-30× magnification on a DeltaVision-Core microscope 
(Applied Precision, GE), equipped with a CoolSNAP HQ camera (Pho-
tometrics) and operated with SoftWoRx software (Applied Precision, 
GE). 

2.3. DNA extraction, library annotation and sequencing 

DNA was extracted from a section of pyloric caecum derived from a 
single individual on which FISH analyses had identified the presence of 
Mycoplasma organisms, based on their labelling with a targeted 16S 
probe. The sample homogenised via bead beating and DNA extracted 
using a Qiagen DNAeasy Stool Kit. A sequencing library for Illumina 
Next-Seq WGS (whole genome shotgun) was prepared using a sonication 
protocol and a TruSeq library protocol and adaptors. Sequencing was 
undertaken at the University of Glasgow Polyomics facility. 

2.4. Data preprocessing, assembly, binning and annotations 

The short paired-end NextSeq Illumina reads (2 × 63 million reads) 
were preprocessed for quality filtering using sickle V1.2 (https://github. 
com/najoshi/sickle). Decontamination of good quality reads was per-
formed by mapping reads against the Salmo salar genome (available at 
NCBI sequence archive with the accession number GCF_000233375.1) 
using Deconseq V 0.4.3 (Schmieder and Edwards, 2011) based on BWA 
mapper V 0.5.9 (Li, 2013). The decontaminated paired-end reads (~18 
millions of bacterial reads) were assembled using the Megahit V1.1 
software (Li et al., 2015). The assembled contigs (~93,400) were pro-
cessed for binning using MetaBAT V2.12.1 (Kang et al., 2015). Quality 
assessment for completeness and contamination of sequence was per-
formed using CheckM V1.0.18 software (Parks et al., 2015). Annotation 
of gene content was performed using the pipeline ATLAS-metagenome 
(Kieser, 2019), which involves the prediction of open reading frames 
(ORFs) using Prodigal (Hyatt et al., 2010). Translated gene products 
were clustered using LinClust (Steinegger and Söding, 2018) to generate 
non-redundant gene and protein catalogues, which were mapped to the 
eggNOG catalog (Huerta-Cepas et al., 2019) using DIAMOND (Buchfink 
et al., 2015). 

2.5. Phylogenetic analyses 

Two approaches were undertaken to construct phylogenetic trees: a) 
MLST-based (Multi Locus Sequence Typing); and b) 16S gene markers 
(recovered from the genome) of the mycoplasma MAG (metagenome- 
assembled genome) from this study as well as what is previously avail-
able in the literature. Using CheckM software, the MLST-based strategy 
focused on a concatenation of 21 conserved housekeeping genes 
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annotated in the mycoplasma MAG supplemented with the orthologues 
available for all the Mycoplasma genera, to date. The MLST-based 
dataset included 55 orthologues of protein sequences of concatenated 
21 conserved markers. The 16S rDNA sequence dataset included: one 
sequence of 16S rDNA gene annotated from the mycoplasma MAG; five 
Operational Taxonomic Units (OTUs) sequences of mycoplasmas char-
acterised form the same farmed salmon system (Heys et al., 2020); 101 
and 17 sequences of 16S rDNA from the Mycoplasma sp. and Sprioplasma 
sp. genomes respectively from IMG database; and 11 sequences, from 
environmental studies, detected in marine species including shrimp, fish 
and isopods. DNA and protein sequences were aligned using MAFFT 
version 6.24 (Katoh and Standley, 2013). Phylogenetic inference was 
performed using PhyML version 3.0 (Guindon and Gascuel, 2003) and 
MrBayes V.3.2.6 (Huelsenbeck and Ronquist, 2001). The evolutionary 
model was chosen using MODELTEST(Posada and Crandall, 1998), and 
parameters were iteratively estimated in PhyML using the GTR + I + G 
model for the nucleotide sequence of 16 s trees and the LG + I + G model 
for amino-acid sequences of concatenated markers trees (Le and Gas-
cuel, 2008). Bootstrap values were calculated using 100 replicates 
(Felsenstein, 1985). With MrBayes, posterior probability values were 
calculated using an average standard deviation of partition frequencies 
<0.01 as a convergence diagnostic (Ronquist et al., 2012). MrBayes runs 
consisted of eight simultaneous Markov chains, each with 1,000,000 
generations, a subsampling frequency of 1000, and a burn-in fraction of 
0.15. Trees were then visualised and adapted for presentation in FigTree 
version1.4.3 as a graphical viewer of phylogenetic trees (http://tree.bio. 
ed.ac.uk). 

2.6. Metabolic pathways comparison and genome reduction analysis 

All Pfam V.32 (comprehensive and accurate collection of protein 
domains and families) annotations were predicted with Prodigal and 
analysed in terms of function categories and metabolic content (focusing 
on Enzyme EC numbers). The 570 genes identified were associated with 
746 Pfam functions. The Pfam functions led to the recovery of Gene 
Ontology (GO) terms and were then mapped to the KEGG database. 
Simultaneously, the alternate approach involving the MetaCyc database 
was employed to elucidate metabolic pathways from all domains of life 
(Caspi et al., 2018). The EC numbers of the coding sequence regions in 
Mycoplasma penetrans were extracted from the KEGG database and were 
then compared with those annotated within the mycoplasma MAG from 
Salmo salar in this study. The mapping of metabolic pathways from both 
genomes was visualised using the iPath (Yamada et al., 2011). From the 
IMG genomic database, all available metadata on sequenced myco-
plasma strains were then collected and compared to the mycoplasma 
MAG for the genome size, GC content, gene content and their preference 
(e.g. intracellular, free-living etc). Annotations for the mycoplasma MAG 
were submitted to CG view (Grant and Stothard, 2008) for radial visu-
alization of its genomic. Using a core gene approach, the 570 predicted 
genes were compared at the DNA and protein sequence levels against all 
the available genes of Mycoplasma penetrans using BLAST+ V 2.8.1 
(Altschul et al., 1990). The best hits for each query were represented in a 
radial plot using Circoletto software version V.069–9 (Darzentas, 2010). 
Complimentary annotations were performed using RAST software 

which, consisted of subsystem classification of microbial functions 
available in the curated database, i.e. SEED subsystems (Overbeek et al., 
2014). 

3. Results 

3.1. Fluorescence in situ hybridization (FISH) of mycoplasmas in the 
farmed salmon 

The set of probes used in FISH for the identification of bacterial 
populations is summarized in Table 1. The Mycoplasma probe Myc1–1 
showed specific hybridization, and its specificity was evaluated against 
in pure culture Escherichia coli and Mycoplasma muris (Supplementary 
Fig. S1). The probe gives a positive signal solely with cultured Myco-
plasma muris. We made multiple attempts in both solid and liquid culture 
mycoplasmas from the salmon intestines, but without success. FISH 
visualization in salmon ova demonstrated a low abundance of bacteria 
and no signal of Mycoplasma sp. (Fig. 1A; Supplementary Fig. S2.1). In 
Salmo salar freshwater parr, Mycoplasma sp. aggregates were observed 
on the stomach lining of all samples (Fig. 1B; Supplementary Fig. S2.2), 
as well as on the muscular mucosae, and epithelium of the pyloric 
caecum (Fig. 1C; Supplementary Fig. S2.3). In the midgut of salmon parr 
(distal to the pyloric caecum) the aggregation of Mycoplasma sp. in the 
epithelium cells was also identified (Supplementary Fig. S2.4). In the 
stomach (Fig. 1D; Supplementary Fig. S2.5) and pyloric caecum 
(Fig. 1E–F; Supplementary Fig. S2.6) of adult salmon, Mycoplasma sp. 
signals were clustered in small aggregates in the lumen around the 
nuclei of epithelial cells. Fig. 1 indicates this intracellular clustering 
most clearly. In the midgut of adult salmon, Mycoplasma sp. showed 
lower abundance and the signals of Mycoplasma sp. showed aggregations 
near epithelium cell nuclei (Supplementary Fig. S2.7). More compre-
hensive, 16S -amplicon-seq based surveys of Mycoplsama abundances in 
farmed sub adults from the same site can be found in Heys et al., 2020. 

3.2. Mycoplasma MAG (metagenome-assembled genome) features and 
orthologs 

Using a total of 63,180,207 reads, and after decontamination, 93,397 
contigs were assembled using megahit software (see Materials and 
methods). The assembled contigs were binned, annotated, and assessed 
for completeness (see materials and methods). The best quality assem-
bled bins corresponded to a nearly complete genome assigned to a 
Mycoplasma sp. (see the genome sequence in Supplementary File 2). The 
completeness of this metagenome-assembled genome (MAG) was esti-
mated at 92.18% with 0.38% of contamination (Table 2). The meta-
genome and MAG were deposited into the NCBI database under the Bio 
project accession number PRJNA714611. 

The average size of the assembled genome was estimated to be 0.57 
Mb and comprised a set of 570 predicted genes accounting for a total of 
694 CDS regions found on the 5′3’ and 3′5’ ORFs. The GC percentage 
was estimated to be 24.98% (Table 2). Circular representation of the 
genomic structure of the mycoplasma MAG highlights CDS annotations 
on the negative (Fig. S3-a) and positive (Fig. S3-b) strands, respectively. 
To further resolve CDS annotations, a supplementary annotation 

Table 1 
Fish probes and sequences deployed in this study.  

Probes Target group Sequence (5′-3′) Reference 

Myc1–1 Mycoplasma GCGGTAATACATAGGTYGCAAGCG This study 
Gam-1 Gammaproteobacteria GCCTTCCCACATCGTTT Manz et al., 1992 
FIR-1 Firmicutes GGAAGATTCCCTACTGCTG Hallberg et al., 2006 
EUB338 All bacteria GCTGCCTCCCGTAGGAGT Amann et al., 1990 
EUB338 II Planctomycetes GCAGCCACCCGTAGGTGT Daims et al., 1999 
EUB338 III Verrucomicrobia GCTGCCACCCGTAGGTGT 
Non EUB338 None CGACGGAGGGCATCCTCA Wallner et al., 1993 

This table resumes the probes used for targeting general and specific bacterial groups including the Mycoplasmas and control negative. 
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framework was applied using the curated SEED database and the RAST 
server (Glass et al., 2010). The number of curated annotations was 
reduced to 600 CDS across the negative (275 CDS) and positive strands 
(325 CDS). Among these CDS regions, 390 had functional annotations, 
and within these, three annotated CDS regions (> 85% of similarity 
threshold against SEED) were identified as riboflavin kinase (EC 
2.7.1.26/EC 2.7.1.26;1278 bp) along with two Riboflavin/purine 
transporters of length 1383 bp and 1608 bp, respectively. Other func-
tions required for host-microbiota symbioses, such as ribonucleotide 
reductase, were annotated with SEED and are reported (Supplementary 
Table 1). 

3.3. Phylogenetic proximity to Mycoplasma penetrans 

Robust phylogenetic trees were recovered based on 16S rDNA and 
MLST data. The 16S rDNA tree includes four OTUs of Mycoplasma 
detected in the digestive tract of farmed salmon previously (Jin et al., 
2019), as well as all OTUs recovered from our recent work on the same 
farm system (Heys et al., 2020). All Mycoplasma OTUs, including the 
MAG we sequenced lie in a clade alongside M. muris and M. penetrans. 
(Fig. 2). No evidence of an ecological association between mycoplasmas 
from similar ecotopes (e.g. marine, freshwater, terrestrial) was noted. 

To further ascertain the above clustering of 16S rDNA sequences of 
Mycoplasma, and the phylogenetic relatedness, a second analysis based 
on MLST approach using 21 concatenated housekeeping genes (see 
PFAM IDs of markers and their functions in Supplementary File 1) 

increased our confidence in M. penetrans being close to the recovered 
mycoplasma MAG (Fig. 3). These 21 markers are detected in single 
copies and are conserved in the bacteria and the mycoplasmas lineage. 
The MLST tree shows high posterior probabilities in support of this to-
pology (post prob. >0.9). Tip labels of the selected Mycoplasma sp. were 

Fig. 1. FISH visualization of Mycoplasma in salmon parr and adults. The images were an overlay of DAPI signals (blue), hybridization signals of Gam-1, FIR-1, 
EUB338, EUB338 II, EUB338 III probes (Cy5, red) and Mycoplasma sp. Specific Myc1–1 probe (Cy3, orange). Scale bars are shown in the bottom left corner of each 
image (A) Mycoplasma sp. are absent from salmon ova, and bacteria scarce. (Scale 10um). (B) Distribution of Mycoplasma sp. in the stomach of salmon parr, scaled at 
10 μm. Orange signals indicate mycoplasmas were clustered in small groups. (C) Distribution of Mycoplasma sp. in the epithelium of pyloric caecum of salmon parr 
(Scale 10um). (D) Distribution of Mycoplasma sp. in the stomach of adult salmon (Scaled 50 μm). (E, F) Distribution of Mycoplasma sp. in the pyloric caecum of adult 
salmon scaled at 10 μm (E) and 5 μm (F) respectively. Mycoplasmas signals were aggregated on the muscularis mucosae, lamina propria (E) and clustered in high 
abundance around epithelial cell nuclei (white arrows, F). These experiments were performed using at least three technical replicates of each life stage and digestive 
tract compartment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of Mycoplasma metagenome assembled genome (MAG).  

Genome Mycoplasma assembled genome 

Completeness 92.18 
Contamination 0.38 
Unique markers (of 43) 39 
Multi-copy 0 
Taxonomy (contained) Genus: Mycoplasma 
Taxonomy of sister lineage Mycoplasma penetrans 
GC content 24.98 
Genome size (mbp) 0.57 
Gene count 570 
Coding density 0.93 
Length 577,903 
N50 14,796 
Genome completeness 92.18% 

The shotgun metagenomics data (63 million reads) were trimmed after a quality 
control assessment, then assembled using Megahit, binned using Metabat and 
checked for binning quality using CheckM software. The metagenome was 
sequenced from the pyloric caecum of one individual subadult farmed Atlantic 
salmon (Salmo salar). 
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further annotated with the information of genome size in Mbp. It should 
be noted that the genome sizes did not appear to correlate with the 
phylogenetic distribution of Mycoplasma sp. in the tree. The genome size 
of M. penetrans (1.36 Mb) is approximately double to that of the myco-
plasma MAG and, is the highest among the Mycoplasma sp. genomes. 

3.4. Orthology, metabolic pathways and genome reduction analyses 

A core genome analysis including the amino acid sequences of pre-
dicted CDS and all the available CDS from the closely related 
M. penetrans, available on NCBI repository, were blasted against the COG 
database. Circular track of the genome including the orthology clearly 
showed the difference in genome size between the mycoplasma MAG 
and M. penetrans. We observed heterogeneity across in terms of GC 
content and GC skew (Fig. 4). An orthology analysis based on SEED 
annotations indicated 14 functions (oxidative stress, periplasmic stress, 
protein biosynthesis, detoxification, ribonuclease H, cation transporters, 
ABC transporters) specific to the mycoplasma MAG, 144 functions spe-
cific to M. penetrans, and 156 functions that are common to mycoplasma 

MAG and M. penetrans. The shared functions between these two ge-
nomes belong to nine different general subsystems including those 
related to commensalism such as riboflavin metabolism; intracellular 
resistance; and resistance to antibiotics and toxic compounds (RATC) 
(Supplementary Table 2). We only found two similarity hits associated 
with RATC. Complimentary analysis pointed out a bifunctional ribo-
flavin kinase/FMN FMN adenylyltransferase among the best reciprocal 
similarity’s hits between the mycoplasma MAG in this study and My-
coplasma penetrans (Fig. S5; Supplementary Table 3). 

To understand genome reduction in the mycoplasmas lineage, the 
genome size and genes count were compared across 247 strains (Fig. 5A; 
Supplementary Table 4) of the mycoplasmas available in the integrated 
microbial database (IMG). These strains include a wide variety of human 
and animal sources and comprising both parasitic and commensal. 
Given the collected data (Supplementary Table 4), also, this study my-
coplasma MAG, gene content and genome size are strongly correlated. 
The average genome size of the 247 available mycoplasmas was 0.87 
Mbp ± 0.15, and the average genes count was 790 ± 157 genes; how-
ever, this was not the case with all considered genomes. For instance, 8 
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genomes are lower than 0.8 Mb, accumulating somewhere between 829 
and 1036 genes. Further analysis revealed that pseudogenes count had 
no relationship with genome size whilst both the transmembrane pro-
teins and GC content were correlated with Mycoplasma sp. genome sizes 
(Fig. 5B). Furthermore, the average count of pseudogenes was signifi-
cantly higher in free-living than within intracellular mycoplasmas 
(Supplementary Fig. S4), although available databases contain incom-
plete information with regards to mycoplasmas lifestyles. Finally, 
enzyme content was analysed in terms of metabolic pathways by 
comparing the annotated EC numbers of the mycoplasma MAG and 
M. penetrans. Common pathways of both genomes are highlighted in red 
lines (Fig. 6) including the riboflavin biosynthesis pathway. 

4. Discussion 

Mycoplasmas are hyper-abundant commensals of salmonid guts. Our 
study suggests, based on FISH data, that in Salmo salar, these organisms 
grow intracellularly in the epithelial and possibly muscular lining of the 
fish’s GI tract, both in freshwater and during marine lifecycle stages. 
Mycoplasmas were not visualised on salmon ova, but we cannot rule out 
vertical transmission between individuals. The Mycoplasma sp. se-
quences recovered from Salmo salar, including the mycoplasma MAG 
reported here, had a strong phylogenetic similarity to M. penetrans. 
Comparative analysis of genome size and content across Mycoplasma sp. 
strains suggest that the genome we recovered in this study is, to the best 
of our knowledge, among the smallest ever observed. Comparative ge-
nomics analyses between the mycoplasma MAG and M. penetrans were 
undertaken and provide insight into the potential host-microbe inter-
action. Several features of the Mycoplasma’s genome organisation and 
content suggest a strong level of dependence on the salmon host, as well 
as a potential role for nutrient provisioning relevant to aquaculture. 

Mycoplasmas have been widely reported within Salmo salar (Holben 
et al., 2002), and other teleosts (Cheaib et al., 2021; Ei-Jakee, 2020; 
Sellyei et al., 2021). It is not uncommon to find that communities of gut 
microorganisms are dominated by mycoplasmas (Dehler et al., 2017). 
The modelling approaches comparing environmental and intestinal 
frequency distributions of these organisms undertaken in this study have 
previously suggested that salmon mycoplasmas are well adapted to the 
colonisation of their hosts (Heys et al., 2020). Culture-based approaches 
have had been less successful in isolating these organisms (Llewellyn 
et al., 2014) and despite numerous attempts, we failed to obtain pure 
cultures of Mycoplasma sp. from the adult salmon used in this study (data 
not shown). This may be attributed to a potential source of bias arising 
from cell wall deficiency (Razin, 1995) in mycoplasmas which decreases 
their growth in presence of inhibitors such as nucleoside and nucleobase 
as demonstrated in Mycoplasma pneumoniae (Sun and Wang, 2013) and 
others mycoplasmas (Wehelie et al., 2004). FISH data from the current 
study, however, indicate that many mycoplasmas could be sequestered 
within the basal the epithelial cells, suggesting potential unknown pa-
rameters in symbiosis with Salmo salar which were missed from the 
culture media trials and reduce their cultivability. Although only a 
qualitative assessment is possible by employing FISH, consistent with 
recent 16S amplicon-seq data from the same farm site (Heys et al., 
2020), our data suggest that Mycoplasma comprised the majority of the 
resident microbes (Fig. 2). 

A high level of adaptation to, and dependence on the host organism, 
is a key feature of many Mycoplasma species (Faucher et al., 2019). The 
exploitation of an intracellular niche, dependence on the host, and 
relative isolation from the other microorganisms and mobile genetic 
elements are thought to have contributed to genome decay in myco-
plasmas (Sirand-Pugnet et al., 2007). One result of this decay is a 
reduction in genome size and the number of genes, and the mycoplasma 
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Fig. 3. Phylogenetic tree of mycoplasmas based on 21 MLST markers with the details given in the supplementary data. Sequence name abbreviation of tree tips labels 
is explained in Supp. File 1 (sheet 3). The tree as consrtucted using MrBayes software , the nodes labels represent the calculated posterior probability values (see 
Materials and methods). 
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MAG in this study appears to have been potentially affected by such 
processes in comparison to the other mycoplasmas (Fig. S5). According 
to the phylogenetic tree, we did not observe any specific relationship 
between the tree topology and the genome sizes of mycoplasmas (Fig. 2). 
Indeed, the closely related M. penetrans was over three times larger than 
the size of the mycoplasma MAG in this study. Despite sharing a recent 
ancestor with the human pathogen M. penetrans, a long and close 
evolutionary association of this Mycoplasma and salmonids is possible 
given the similarity of another mycoplasma MAG sourced from the 
Norwegian sea salmon and identified to M. penetrans (Jin et al., 2019). 
We were also able to identify Mycoplasma sp. in freshwater parr via the 
FISH method in this study. One potential route for vertical transmission 

of the Mycoplasma sp. among salmon could be observed during ovipo-
sition. We were not able to identify microbes colonising eggs in this 
study, although our sample size was limited. Further development on 
specific Mycoplasma sp. strain markers could potentially reveal their 
abundance as well as their epidemiology, and potential routes of inter-
generational transmission. 

Some insight for the potential role of these mycoplasma on salmon 
health in an aquaculture setting may be possible. Many well- 
characterised mycoplasmas are pathogens (Meseguer et al., 2003; 
Rosengarten et al., 2000; Sasaki et al., 2002), with several Mycoplasma 
sp. being responsible for human, animal and plant diseases; however, 
some species are considered to be commensal organisms (Razin et al., 

Fig. 4. Circular track of the core genes. This figure highlights the orthologs genes shared between the mycoplasma MAG from this study and related Mycoplasma 
penetrans species. 

Fig. 5. Genomic features of Mycoplasmas. (A) The plot of genome size and genes count in the Myoplsamas lineage. (B) The plot of functions and GC contents against 
genome size in the Mycoplasmas lineage. 
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1998; Siqueira et al., 2013). The role of Mycoplasma in the context of 
Salmo salar is not well established. Koch’s postulates were not applied in 
this study (Falkow, 2004). Given the challenges encountered in 
culturing these microorganisms, it seems quite likely that they may 
never be applied. Furthermore, the apparent abundance of Mycoplasma 
in the healthy salmonids (Heys et al., 2020; Holben et al., 2002; Lle-
wellyn et al., 2016), and lack of any clear associated pathology in gut 
tissues, implies that there is not a significant impact on the host health or 
fitness. Commensal exploitation of the host intracellular niche is 
potentially the most parsimonious description of the host-microbe 
interaction in this case. The ultimate metabolic adaptation to an intra-
cellular lifestyle (i.e Buchnera, Wigglesworthia and Blochmannia) appears 
to be solely regulated by the metabolic activity of the host cells to which 
the bacteria may actively contribute to, by delivering essential metab-
olites that are limited in their habitats and are not produced by the hosts 
(Fuchs et al., 2012). In this context, the presence of genes encoding 
riboflavin pathway could potentially indicate benefit from the salmon 
host perspective of Mycoplasma sp. colonisation. Riboflavin, known as 
the precursor for the cofactors flavin mononucleotide (FMN) and flavin 
adenine dinucleotide, is an essential metabolite in organisms (Fuchs 
et al., 2012; Gutiérrez-Preciado et al., 2015), although vertebrates 
cannot synthesize it on their own (Vitreschak et al., 2002). The Myco-
plasma may play a role in riboflavin supplementation in salmon, as has 
been suggested in several deep-sea snailfish (Lian et al., 2020), although 
it must be noted that riboflavin biosynthetic pathways also occur in 
pathogenic mycoplasmas (Gutiérrez-Preciado et al., 2015). Riboflavin 
supplementation is not limited to the mycoplasmas; in the bedbug Cimex 
lectularius, the gram-negative Wolbachia can synthesize biotin and 
riboflavin which, are crucial for the host growth and reproduction 
(Kubiak et al., 2018; Moriyama et al., 2015). Riboflavin biosynthesis is 

common for symbiotic associations and therefore occurs even in small 
and optimized genomes size like Wolbachia (~ 1.48 Mb) and myco-
plasmas (0.51–1,38 Mb). 

Also, it is reported that many Mycoplasma species can modify their 
surface antigenic molecules with high frequency (Horino et al., 2003; 
Rosengarten et al., 2000) which may likely play a key role in out-
manoeuvring the host immune system. This ability may generate 
phenotypic heterogeneity in colonising Mycoplasma populations and 
provide fitness benefits such as evasion of host immune responses and to 
the adaptation to the environmental changes (Halbedel et al., 2007; 
Horino et al., 2003). The majority of the variable surface antigenic 
molecules of mycoplasmas are lipoproteins (Chambaud et al., 1999; 
Halbedel et al., 2007; Wise, 1993), which, depending on the species, are 
encoded by single or multiple genes (Rosengarten et al., 2000; Rose-
ngarten and Wise, 1990). The expression of these lipoproteins, due to 
extensive antigenic variation, is thought to be a major factor for immune 
evasion, for example, the P35 lipoprotein and its paralogs, which are 
distributed across the surface of M. penetrans cells, are immunodominant 
(Distelhorst et al., 2017; Neyrolles et al., 1999; Wang et al., 1992). Two 
lipoprotein encoding genes were found only in Mycoplasma penetrans but 
not in the mycoplasma MAG of this study, and the lack of such virulence 
factors or mobile genes could again support a non-pathogenic lifestyle 
(Supplementary Table 2). 

Our work demonstrates a potentially important ecological and 
functional association between Mycoplasma sp. and Salmo salar that 
merits further investigation in the context of aquaculture disease and, 
potentially, nutrition. Targeted meta-transcriptomics and strain-specific 
screening for this organism could improve our understanding of its 
biology, function, and its role in the host homeostasis. Furthermore, 
targeted studies involving genome reduction and their association with 

Fig. 6. Pairwise Metabolic pathways comparison of mycoplasma MAG from this study and Mycoplasma penetrans. Red colour represents shared and conserved 
pathways between the two genomes, whereas blue colour represents the metabolic pathways of the mycoplasma MAG from this study and the green colour represent 
the metabolic pathways of Mycoplasma penetrans. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the host dynamics are also necessary to fully understand the evolution of 
Mycoplasma sp. symbiosis in Salmo salar. Furthermore, bespoke in-
fections experiments, informed by the findings of this study, may lead to 
the development of practices that can improve the aquaculture industry, 
especially in the context of the probiotic potential of mycoplasmas in 
salmonids. 
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