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Abstract 

In everyday life we are constantly required to make decisions about things that 

we perceive in order to interact with our environment and perform everyday 

tasks. Perceptual decision making is the process by which sensory evidence is 

collected and accumulated towards one of two or more possible choices. This is 

an inherently a noisy process, and decisions made need to optimally trade-off 

between speed and accuracy, as well as combine complementary evidence of 

more than one sensory type (here, sound and vision). While great progress has 

been made in understanding the neural correlates of unisensory perceptual 

decision making, relatively little is known about the enhancements or changes to 

this process that result from the integration of more than one modality of 

information.  

The current thesis presents empirical findings from three studies that sought to 

provide a more complete characterization of multisensory decision making using 

electrophysiological and diffusion modelling methods. Specifically, Study 1 

(Chapter 2) investigates the temporal evolution of audiovisual decision making 

and compares whether early sensory integration or late post-sensory decision 

processing of visual evidence is enhanced in the presence of complementary 

auditory information. We recorded EEG measurements from human subjects 

during performance of a face versus car categorisation task. On some trials, 

participants were presented with images alone, while in others we 

simultaneously presented sounds of the same object category (i.e. speech and 

car sounds). Responses were more accurate and slower during audiovisual trials, 

and both accuracy and response time scaled with sensory evidence. Neural 

activity discriminating between face and car trials was observed peaking shortly 

before the time of response in a fashion that mirrored the process of evidence 

accumulation. This interpretation was confirmed using a neurally-informed drift 

diffusion model. Further, we found that trial-by-trial changes in behaviour could 

be predicted by neural activity within this model. Topographical representations 

of these signals revealed a prominent centroparietal cluster of activity.  

Leading on from this, Study 2 (Chapter 3) modified a continuous version of the 

dot motion discrimination task to include sound motion and audiovisual motion 

trials. Participants received no obvious sign as to the start of a coherent motion 

period, which therefore prevented visually-evoked potentials and provided an 
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unimpeded observation of evidence accumulation activity from the beginning of 

the trial to the point of decision. In doing so, we sought to further understand 

the enhancement of evidence accumulation activity during audiovisual trials. We 

focused on the same centroparietal cluster that we had observed in the previous 

chapter, and that was highlighted in the original study by Kelly and O’Connell 

(2013). Participants missed significantly fewer trials with audiovisual motion. 

Activity clearly increased at a steady rate from around 200/300ms post-stimulus 

onset, up until the point of response, in a pattern again mirroring evidence 

accumulation. We found that this activity was again enhanced during audiovisual 

trials compared to visual-only trials, with greater rates of increase in activity. 

Activity also peaked at a slightly higher level shortly before the time of 

response. These findings supported those of the Chapter 2 in that the presence 

of complementary auditory information enhanced the decision making process.  

Finally, we asked whether oscillatory patterns within the EEG signals may offer 

additional insights into the neural representations of multisensory decision 

making. We extended the investigation of neural signals collected in Chapter 3 

using the continuous dot motion discrimination task by decomposing the original 

broadband signal into its component frequencies, here focusing on beta, gamma, 

and high-gamma activity. We compared the rate of change in power between 

sensory conditions leading up to the time of response, as well as shortly after. 

While we did find interesting modulations in power relating to specific sensory 

conditions within the task, including a pattern of desynchronization that may 

suggest input from premotor structures in the embodiment of the decision, we 

did not find the same robust modulation in evidence accumulation by sensory 

condition that we had observed in the previous chapters. However, we could 

clearly see gradual changes in power that seems to reflect evidence 

accumulation.  

Together, our results reveal novel insights into the neural representations of 

multisensory decision making in the human brain and point to new research 

directions that may uncover more about the neural underpinnings of audiovisual 

decision making. It also suggests further study of related activity such as 

decision confidence, or the embodiment of evidence accumulation within 

premotor areas.  
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1 General Introduction 

Perceptual decision making is the process whereby humans and other animals 

identify and make behavioural decisions about their surroundings in a way that 

changes with their environment. Sensory information is collected and evaluated 

until there is sufficient sensory evidence in favour of an option, in order to 

decide how best to respond and prepare relevant motor actions (Hauser and 

Salinas, 2014). Neuroscientists investigate this process in an attempt to 

understand how we perceive and react to our environment using an 

interconnected hierarchy of cortical areas. In order to explore its topographical 

and temporal properties, a behavioural task will challenge participants to 

discriminate between finely tuned stimuli that may range in difficulty, causing 

differences in reaction time (RT) within each trial. Greater difficulty levels also 

allow longer decision times, creating a better opportunity to measure cortical 

differences through methods such as electroencephalography (EEG).  

Recent literature has begun investigating the effects of the bimodal sensory 

presentation of stimuli on the resulting decision process, with examples of both 

informative and uninformative stimuli. It is likely that the presence of 

additional, task-relevant information could facilitate the decision process, as 

related information gathered from multiple sensory modalities is likely to be 

integrated to better perform a task (Shi and Müller, 2013). However, the neural 

underpinnings of these changes require further exploration in order to 

understand what cortical changes are causing this effect. 

The following introduction attempts to summarise recent literature exploring 

the role of multisensory integration within perceptual decision making. First, it 

will establish the current understanding of perceptual decision making. Further, 

it will explore evidence of multisensory integration within early sensory cortices. 

Finally, it will review recent examples of multisensory perceptual decision 

making. 
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1.1 Unimodal perceptual decision making 

A simple unisensory task, for example visual, is normally used in order to 

observe perceptual decision making in participants. Differences in accuracy and 

RT can be used to measure performance differences between groups, or 

included in Bayesian models such as the drift diffusion model (DDM; Bogacz, 

Brown, Moehlis, Holmes, & Cohen, 2006) which take a number of parameters 

into account, in an attempt to predict responses and better understand the 

decision process. These strategies are often implemented in combination with a 

method of neuroimaging such as EEG or functional magnetic resonance imaging 

(fMRI). These have been successfully used to reveal a hierarchical procedure of 

activation during perceptual decision making (Gold and Shadlen, 2007; Ratcliff, 

Philiastides and Sajda, 2009; Ding and Gold, 2010). 

Traditionally, perceptual decision making tasks have presented visual stimuli 

quickly and with immediate onset and offset times, causing them to only flash 

briefly onscreen. This allows more completed trials and some control of 

difficulty, and tasks of this manner have revealed many insights into the decision 

making process. For example, random dot motion (RDM) discrimination tasks 

have suggested the role of the lateral inferior parietal cortex in systematic 

evidence accumulation (Shadlen and Newsome, 1996; Ho, Brown and Serences, 

2009).  

However, sudden stimulus presentations increase noise from basic sensory 

processing and could be facilitating detection performance in some cases. It may 

be better to try to mask the onset of a stimulus. O’Connell, Dockree, and Kelly 

(2012) used a flickering annulus that gradually changed in contrast, and asked 

participants to detect when they noticed the stimulus begin to dim, while 

recording using EEG. This task caused greater variation in RTs, however almost 

all incidences were noticed by participants. Analysis revealed a centroparietal 

positivity (CPP) event-related potential (ERP) that scaled in strength as evidence 

was accumulated, regardless of whether detection required a button press or 

mentally keeping count of the number of changes. CPP changes matched those 

of motor left hemisphere beta preparatory activity for button pressing, 

suggesting the role of CPP as a supramodal decision variable component. A 

further study used gradual presentation of RDM detection trials, again finding 
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that CPP increased in activity in proportion with the rate of evidence 

accumulation, suggesting the role of CPP as a supramodal decision variable 

(Kelly and O’Connell, 2013). These two experiments also avoided problems of 

peak responsivity with sudden stimulus onset by using this gradual onset, 

continuous monitoring design. This CPP component has been linked to the P300 

component found in previous literature as being highly involved in evidence 

accumulation and the decision process (Rohrbaugh, Donchin and Eriksen, 1974; 

Duncan-Johnson and Donchin, 1982; Kelly and O’Connell, 2015). This literature 

suggests the potential of gradual onset, continuous monitoring designs in order 

to better explore the neural activity of perceptual decision making. 

 

1.2 Multisensory integration 

It is the multisensory integration of information between sensory cortices that 

make up the early stages of multisensory decision making and the facilitatory 

effects it may have. Romei, Murray, Cappe, and Thut (2009) found greater 

incidences of phosphenes caused by transcranial magnetic stimulation when 

accompanied by naturally threatening ‘looming’ sounds, suggesting that they 

had increased excitability of the visual cortex. In an audiovisual fMRI 

experiment, participants tended to respond superadditively and faster to 

bimodal stimuli compared to unimodal stimuli (Brang et al., 2013). They also 

found direct pathways between the primary visual and auditory cortices, with a 

relationship between anatomical connectivity and multisensory processing. 

Kayser, Petkov, Augath, and Logothetis (2007) used fMRI to reveal the 

modulation of early auditory cortex by presentation of visual scenes. Lange, 

Christian, and Schnitzler (2013) observed audiovisual oscillation synchronisation 

in a speech task using magnetoencephalography (MEG), where Broca’s area and 

the auditory cortex exhibited coupling during congruent stimuli. Mercier et al. 

(2013) also observed oscillatory activity resetting of the visual cortex, as 

modulated by input from auditory stimuli. They also found evidence of auditory 

ERPs within visual areas themselves. 

The above clearly demonstrates that a large pattern of interconnectivity exists 

within early sensory cortices that serves to modulate the activity of one area 

based on the simultaneous information gained from others. This likely has a key 
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role when performing perceptual decision making tasks with multimodal 

information. 

 

1.3 Multisensory decision making, optimisation, and 
facilitation 

A number of recent studies have begun exploring the use of bimodal stimulus 

presentation during perceptual decision making tasks. The primary findings have 

been of behavioural facilitation resulting from bimodal sensory evidence. 

Raposo, Sheppard, Schrater, and Churchland (2012) found that both humans and 

rats could perform event stream rate estimations at near statistically optimal 

levels when both visual and auditory stimuli were presented, compared to 

unimodal presentation. Chen, Huang, Yeh, and Spence (2011) asked human 

participants to complete a Gabor patch discrimination task, with some trials also 

including a simultaneous audio cue. Both discrimination and detection 

performance were enhanced in bimodal trials compared to unimodal. 

Interestingly, the audio component was uninformative of the discrimination task. 

These behavioural advantages seem to cross species, with Kulahci, Dornhaus, 

and Papaj (2008) finding that bees trained to discriminate using two sensory 

modalities could learn to identify rewarding flowers faster than those trained 

unimodally. 

Literature exploring cortical processing underlying these behavioural changes is 

an emerging area of interest. In an EEG study by Stekelenburg and Vroomen 

(2012), participants completing a biological motion perception discrimination 

task showed early N1 and P2 auditory ERP component suppression during trials 

with audiovisual stimuli. Naci, Taylor, Cusack, and Tyler (2012) presented 

unimodal or bimodal audiovisual animal stimuli, during EEG. Early superadditive 

activity was found in the anterior temporal cortex and inferior prefrontal cortex 

during bimodal tasks. Activity in the posterior occipital cortex appeared later, 

suggesting top-down feedback processes during multisensory decision making. 

Otto & Mamassian (2012) used an audiovisual decision task where either 

modality was sufficient in order to make a decision, and found that evidence 

accumulation occurred separately for each sensory modality, before integration 

with a logical operator.  
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Some studies note changes in oscillatory activity during bimodal perceptual 

decision tasks. Gleiss and Kayser (2013) asked participants to perform a two-

interval RDM discrimination task while a white noise sound played. The sound 

was either stationary through the whole trial or moved coherently, or 

incoherently, horizontally with the visual stimulus. Audiovisual modulation of 

low frequency and alpha band activity, particularly at 300ms post-stimulus, was 

predictive of a perceptual multisensory benefit, in that the additional presence 

of a sound facilitated visual processing required to detect motion. A behavioural 

improvement was most apparent during moving sound trials. A following study by 

Gleiss and Kayser (2014), this time using Gabor patch visual detection, played 

either continuous noise or transient sounds and recorded electrocortical activity 

using EEG. Both transient and continuous sounds resulted in increased task 

performance, which was linked to reduced alpha-band power as audio noise 

increased. 

These results, and those of the former experiment, suggest that alpha-band 

oscillatory changes could be monitored as an indirect measure of visual cortex 

sensitivity during bimodal decision tasks, or that attention plays a key role in 

processing of these stimuli. There are also the suggestions of a number of 

additional effects on perceptual decision making processing involving 

simultaneous bimodal presentation, such as increased RTs and early feedback 

from higher processing areas to sensory cortex. 

Statistical models of behavioural data have become a more common method of 

explaining the underlying processes and features of perceptual decision making 

such as optimisation. As described previously in research by Raposo et al. (2012), 

several other studies have discussed measuring reaction time and error rate 

during a two-alternative forced-choice task, in order to model the speed-

accuracy trade-off (SAT) of decisions. SAT describes how response behaviour 

may be strategised as a balance between fast, less accurate decisions and 

slower, more accurate decisions, in order to maximise reward. The most popular 

statistical models, such as the DDM, attempt to describe the decision process as 

the gradual accumulation of evidence until a decision boundary or threshold is 

reached, and a final decision made. An amount of noise is also accounted for, 

and the placement of the decision bounds may change depending on the SAT of a 
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particular decision. If a faster decision is required to maximise reward, the 

bounds may be closer to the midpoint, whereas if accuracy is a priority they may 

be further away, meaning the decision takes longer but more evidence has been 

accumulated before this point (Bogacz et al., 2006; Ratcliff and McKoon, 2008; 

Krajbich and Rangel, 2011). SAT has also been linked to increased baseline 

activity in the pre-supplementary motor area and the dorsolateral prefrontal 

cortex during speed-emphasised tasks (Bogacz et al., 2010), which are areas 

related to preparation and association more so than sensory processing. 

Some statistical models that can predict the performance enhancements 

resulting from multisensory information and integration were only able to do so 

when both stimulus presentation time and response time were kept constant 

throughout the task. While the findings were interesting, other studies such as 

that by Drugowitsch, DeAngelis, Klier, Angelaki, and Pouget (2014) criticised this 

model, stating that variable reaction times should also be taken into account to 

maintain ecological validity. In real-world settings, participants make decisions 

with varying response speed, often waiting until they have sufficient information 

within the context before making a choice. While a model by Clark and Yuille 

(1990) describe participants as optimising their decisions to combine information 

across modalities when presentation and reaction times were fixed, Drugowitsch 

et al. found that data with varying reaction times was found to be suboptimal by 

the same criteria. However when using their own model that took varying 

reaction times into account, responses were instead found to be near 

statistically optimal, meaning that information gained in multisensory trials was 

equal to the sum of that gained from each unisensory stimulus. This suggested 

that participants were able to combine information across sensory modalities in 

a way that gave the highest likelihood of reward, and that SAT played a role in 

this. However, recent studies have found evidence suggesting that this total 

summation of sensory information is imperfect. Carland et al. (2016) observed 

the effects of brief motion pulses on a variant of a constant-coherence motion 

discrimination task when pulsed trials were presented in blocks or were 

interleaved. Pulses slowed responses during later interleaved trials when 

participants slowed their decision policy, which the authors suggests reflects a 

growing urgency signal for decisions as the task progresses, that is more in line 

with an urgency-gating model. In this model, it is possible for information to 
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‘leak’, which the DDM does not account for, suggesting that the DDM may not 

model perceptual decision making behaviour completely.  

 

1.4 Aims for the thesis 

As this chapter has highlighted, considerable prior research exists that has 

characterised the neural underpinnings of perceptual decision making, but more 

recently the need to investigate similar mechanisms within multisensory decision 

making has emerged and begun to take shape.  

Our first study (Chapter 2) aims to explore the temporal evolution of decision 

making activity by building on an established behavioural and analytical 

paradigm, and observing how neural representations of visual evidence are 

enhanced when complementary auditory evidence is provided in tandem. In 

short, we collected EEG measurements from human participants as they made 

speeded categorisations of images as of faces or cars, however we additionally 

played speech or car sounds in half of the trials. Using a single-trial linear 

discriminant analysis, we found that neural signals of both trial types mirrored a 

pattern of decision-related evidence accumulation, gradually rising to a peak 

shortly before the time of response. We showed that the rate of evidence 

accumulation increased significantly during audiovisual trials, and this was 

corroborated by a neurally-informed drift diffusion model which also found that 

behaviour could be predicted using this activity. 

Our second study sought to investigate the change in evidence accumulation 

further, and used a version of the classic random dot motion discrimination task 

(Ratcliff, 1978) that had been modified to present a seamless transition between 

incoherent and coherent motion periods (Kelly and O’Connell, 2013). We then 

modified this further by adding an auditory element, allowing us to compare 

evidence accumulation rates and peak activity between visual, auditory, and 

audiovisual trials. We again showed an increase in the rate of evidence 

accumulation during audiovisual trials compared to those with visual evidence 

only, indicating an enhancement of this process that coincides with the 

complementary information provided. We then asked whether further 
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information may be contained within oscillatory patterns of activity within the 

broadband signal that we had already analysed. Therefore, for our third results 

chapter we conducted a reanalysis of the data from our second study, 

decomposing the signal into beta, gamma, and high-gamma fluctuations in 

power. The primary goal of this approach was to explore whether more could be 

learned from the neural signals of enhanced evidence accumulation that we had 

already seen in our previous chapters. While they generally followed this 

pattern, we did not observe the same clear differences between sensory 

conditions that we had seen before. However, the results of this chapter and 

those before indicated there may be potential in studying the relationship 

between multisensory decision making and increased confidence, or whether 

there is more to be learned about the embodiment of evidence accumulation 

within premotor areas by using a similar paradigm. 
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2 Chapter 2. Audiovisual sensory evidence 
enhances post-sensory decision processing 

Note on contributions to work contained within the following 
chapter: I played a central role in experiment planning and 
implementation, data collection, and data analysis that gave rise to 
the results included in sections 2.4.1 and 2.4.2, however 2.4.3 on was 
developed further and completed by colleagues as part of work 
towards our publication in Nature Communications (Franzen et al., 
2020), in which I am joint-first (i.e. equally contributing) author. This 
chapter as presented here is an earlier version of that work. 

 

2.1 Summary 

Multisensory decision making requires the combination of different types of 

sensory information from the environment, the integration and accumulation of 

sensory evidence in favour of a choice, and the motor instigation of that choice. 

Despite considerable progress in characterising unisensory perceptual decision 

making, relatively little is known about how this process changes when 

multisensory information must be integrated as a part of that decision. 

Specifically, it remains unclear how complementary auditory information alters 

the temporal evolution of neural activity during visual decision making. Here, we 

employ a modified paradigm whereby participants discriminated face and car 

images in a speeded task, and presented simultaneous, complementary sound 

stimuli during half of the trials. This modification allowed us to capture the 

temporal characteristics of any enhancement to electrophysiological signals 

during audiovisual decision making, compared to visual-only (unisensory) 

decision making. Discrimination increased gradually and peaked before 

participants made their choice, in a pattern mirroring that of evidence 

accumulation. When participants heard complementary sound stimuli, their 

decisions were more accurate, slower, and were best predicted by late post-

sensory decision processing. Neurally-informed cognitive modelling further 

suggested that the addition of auditory information enhanced the rate of 

evidence accumulation during this period. Correspondingly, spatial 

representations of activity accompanying these changes featured a prominent 

centroparietal cluster. 
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2.2 Introduction 

In everyday life, we often encounter situations that demand rapid decisions 

based on ambiguous sensory information. Consolidating the available evidence 

requires processing information presented in more than one sensory modality, a 

process commonly referred to as multisensory decision making (Angelaki, Gu and 

DeAngelis, 2009; Bizley, Jones and Town, 2016). For example, the decision to 

cross a street on a foggy morning will be based on a combination of visual 

evidence about hazy objects in your field of view and muffled sounds from 

various sources. 

The presence of complementary audiovisual (AV) information can improve our 

ability to make perceptual decisions when compared to visual information alone 

(Lippert, Logothetis and Kayser, 2007; Raposo et al., 2012; Kayser, Philiastides 

and Kayser, 2017). While recent studies have provided a detailed picture of the 

emergence of different types of unisensory and multisensory representations in 

the brain (Aller and Noppeney, 2019; Cao et al., 2019; Rohe, Ehlis and 

Noppeney, 2019), these studies have not provided a conclusive mechanistic 

account of how the brain encodes and ultimately translates the relevant sensory 

evidence into a decision (Bizley, Jones and Town, 2016). Specifically, it remains 

unclear whether the perceptual improvements by multisensory integration are 

best explained by a sensory processing benefit, changes in decision dynamics 

such as the efficiency of evidence accumulation, or the amount of accumulated 

evidence required to commitment to a choice.  

These questions can be addressed within the general framework of sequential 

sampling models, such as the drift diffusion model, which posits that decisions 

are formed by a stochastic accumulation of evidence over time (Ratcliff, 1978; 

Ratcliff and Tuerlinckx, 2002; Ratcliff and Smith, 2004; Bogacz, 2007; Ratcliff 

and McKoon, 2008). The DDM decomposes behavioural data into internal 

processes that reflect the rate of the sensory accumulation process (drift rate), 

the amount of evidence required to make a decision (starting point and decision 

boundaries corresponding to the different decision alternatives), and latencies 

induced by early stimulus encoding and response production (non-decision time). 

Importantly, different signatures of brain activity were shown to reflect distinct 

aspects of this mechanistic model, and therefore, single trial measurements of 
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such neural activity could be used to further constrain these models (O’Connell, 

Dockree and Kelly, 2012; Philiastides, Heekeren and Sajda, 2014; Polanía et al., 

2014; Tagliabue et al., 2019; von Lautz, Herding and Blankenburg, 2019).  

To date, few studies have exploited such neural markers of dissociable 

representations associated with sensory and decision evidence to arbitrate 

between different accounts of how multisensory evidence influences decisions in 

the human brain.  While some studies have performed careful comparisons 

between diffusion models and behavioural data (Drugowitsch et al., 2014, 2015; 

Regenbogen et al., 2016; Chandrasekaran, 2017; Colonius and Diederich, 2018), 

they did not constrain these models against neural activity. Other studies, in 

contrast, tried to dissociate pre- and post-perceptual mechanisms by traditional 

activation mapping but without clear mechanistic decision-making model 

supporting the interpretation of brain activity (Giard and Peronnet, 1999; 

Noppeney, Ostwald and Werner, 2010; Chandrasekaran, Lemus and Ghazanfar, 

2013). Furthermore, many studies focusing on visual judgements have 

considered only very simplistic stimuli such as contrast, random dot motion, or 

orientation (Lippert, Logothetis and Kayser, 2007; Esposito, Mulert and Goebel, 

2009; Hirokawa et al., 2011; Leo et al., 2011), which may be encoded locally at 

the level of early sensory processing, and hence may not generalise to complex 

real-life conditions. As a result, the general mechanistic influence of information 

from one modality on the decision making process of another modality remains 

unknown.  

Here we employed a well-established visual object categorisation task in which 

early sensory evidence and post-sensory decision evidence can be properly 

dissociated based on EEG recordings. Specifically, using a face/car 

categorisation task, we have previously profiled two temporally distinct neural 

components that discriminate between the two stimulus categories; an ‘Early’ 

component, appearing approximately 170-200ms post-stimulus, and a ‘Late’ 

component, seen 300ms after the stimulus presentation (Delis et al., 2016; Diaz 

et al., 2017; Philiastides et al., 2006; Philiastides and Sajda, 2006; Philiastides 

and Sajda, 2006; Philiastides and Sajda, 2007; Ratcliff et al., 2009).  We found 

that the Late component was a better predictor of behaviour than the Early 

component, predicted changes in the rate of evidence accumulation in a drift 
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diffusion model and shifted later in time with longer deliberation times. Taken 

together, these findings established that the Early component encodes the initial 

sensory evidence while the Late component encodes post-sensory decision 

evidence.  

Finally, we capitalised on these distinct validated neural representations of 

visual information to identify the stage at which complementary auditory 

information influences the encoding of decision-relevant visual evidence in a 

multisensory context. Based on recent results (Rohe and Noppeney, 2015; Aller 

and Noppeney, 2019; Cao et al., 2019), we hypothesised that using AV 

information to discriminate complex object categories, rather than more 

primitive visual features, would lead primarily to enhancements in the Late, as 

opposed to the Early, component, consistent with a post-sensory account. 

Importantly, by combining single trial modelling and EEG data, we exploited the 

trial-by-trial variability in the strength of the Early and Late neural components 

in a neurally-informed drift diffusion model to derive mechanistic insights into 

the specific role of these representations in AV integration. 
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2.3 Methods 

2.3.1 Participants 

We tested 40 participants (male = 18, female = 22; Mean age = 23.85, SD = 5.47) 

on a speeded (face versus car) categorisation tasks. All participants were right-

handed with normal or corrected-to-normal vision and no self-reported history of 

neurological disorders. This study was approved by the ethics committee of the 

College of Science and Engineering at the University of Glasgow (CSE 

300150102). All participants provided written informed consent prior to 

participation. 

 

  

 

Figure 2.1 Experimental paradigm.  Schematic representation of the task design illustrating the 
order of presented events on the testing day. Participants had to categorise noisy representations 
of faces and cars. A brief stimulus, which was either an image (V) or a congruent image and sound 
(AV), was presented for 50 ms and followed by a delay period of up to 1500 ms during which 
participants were required to indicate their decision with a button press. Their response was 
followed by an inter-trial interval (blank screen), jittered between 1000 and 1500 ms in duration, 
before the next stimulus was presented. 
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2.3.2 Stimuli and task 

We used a set of 15 face and 15 car greyscale images (image size 670x670 pixels, 

8-bits per pixel), adapted from our previous experiments (Philiastides and Sajda, 

2006b; Philiastides, Ratcliff and Sajda, 2006; Diaz, Queirazza and Philiastides, 

2017). Face images were selected from the face database of the Max Planck 

Institute of Biological Cybernetics (Troje and Bülthoff, 1996) and car images 

were sourced from the internet. Both image categories contained an equal 

number of frontal and side views (up to ± 45 degrees). All images were equated 

for spatial frequency, contrast, and luminance, and had identical magnitude 

spectra (average magnitude spectrum of all images in the database). We 

manipulated the phase spectra of the images using the weighted mean phase 

technique (Dakin et al., 2002), whereby we changed the amount of visual 

evidence in the stimuli as characterised by their percentage phase coherence. 

To manipulate task difficulty, we used four levels of sensory visual evidence 

(27.5%, 30%, 32.5% and 35% phase coherence; for examples see Figure 2.1). 

These levels were based on our previous studies (Philiastides and Sajda, 2006b; 

Philiastides, Ratcliff and Sajda, 2006; Philiastides, Heekeren and Sajda, 2014; 

Diaz, Queirazza and Philiastides, 2017) as they are known to result in 

performance spanning psychophysical threshold. We displayed all pictures on 

light grey background (RGB [128, 128, 128]) using the PsychoPy software (version 

1.83.04; Peirce, 2009). 

Auditory sounds were used in addition to the visually presented images on a 

random half of trials. Sounds were either human speech or car/street-related 

sounds obtained from online sources. They were sampled at a rate of 22.05 kHz 

and stored as .wav files. In MATLAB (version 2015a, The MathWorks, 2015), we 

added a 10 ms cosine on/off ramp to reduce the effects of sudden sound onsets 

and normalised all sounds. Subsequently, we reduced the intensity of these 

normalised sounds by lowering their amplitude by 80%. Sounds were embedded 

in Gaussian white noise and the relative amplitude of the sounds and noise was 

manipulated to create 17 different levels of relative noise-to-signal ratios 

(ranging from 12.5% to 200% of noise relative to the lowered amplitude signal, in 

increments of 12.5%). The resulting noisy speech and car-related sounds were 

presented binaurally for 50 ms through Sennheiser stereo headphones HD 215. 
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The stimulus display was controlled by a Dell 64 bit-based machine (16 GB RAM) 

with an NVIDIA Quadro K620 (Santa Clara, CA) graphics card running Windows 

Professional 7 or Linux-x86_64 and PsychoPy presentation software (version 

1.83.04; Peirce, 2009). All images were presented on an Asus ROG Swift PG278Q 

monitor (resolution, 2560x1440 pixels; native refresh rate 144 Hz, set to 120 

Hz). Participants were seated 75 cm from the stimulus display, and each image 

subtended approximately 11 x 11 degrees of visual angle. 

Task. We employed an adapted audiovisual version of the widely used visual 

face versus car image categorisation task (Philiastides and Sajda, 2006b, 2007; 

Philiastides, Ratcliff and Sajda, 2006; Diaz, Queirazza and Philiastides, 2017). 

This task required participants to decide whether they saw a face or a car 

embedded in the stimulus (Figure 2.1). Participants were asked to indicate their 

decision via button press on a standard keyboard as soon as they had formed a 

decision. The response deadline was set at 1.5 seconds. On half of the trials, 

participants were also given an additional auditory cue in the form of a brief 

noisy sound that was congruent with the picture’s content. Audiovisual face 

trials were accompanied by a human speech sound, whereas audiovisual car 

trials were accompanied by a car-related sound, such as squeaking tires or a 

slammed door. All stimuli were presented for 50 ms in the centre of the screen, 

and on audiovisual trials to both ears. During audiovisual trials pictures and 

sounds were presented simultaneously. More specifically, we used four levels of 

visual noise, but only one (participant-specific) auditory difficulty level, 

obtained at perithreshold performance during an initial auditory training task 

(see below). Thereby we accounted for inter-individual differences in auditory 

perception, independently of visual image difficulty. 

Training. This experimental paradigm required participants to attend a training 

and a testing session on two consecutive days, at the same time of the day. On 

the first day (i.e., the training day), participants were asked to perform three 

separate simple categorisation tasks to familiarise themselves with the task: (1) 

a visual image discrimination task (face versus car), (2) an auditory sound 

discrimination task (face/speech versus car/street sounds) and (3) an audiovisual 

discrimination task (face versus car). Only during training, participants were 

given visual feedback following each response on all three tasks in the form of 
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visual feedback presented in the centre of the screen (“Incorrect” written in red 

and “Correct” written in green for trials on which participants responded within 

the response deadline, and “Too slow” written in blue when they exceeded the 

response deadline).  

During the visual training task, we used the same images and all four levels of 

visual evidence as on the second day (i.e., the testing day). During the auditory 

training task, we presented sounds to participants using eight different levels of 

relative noise-to-signal ratios (12.5%, 37.5%, 62.5%, 93.75%, 125%, 150%, 175%, 

and 200% of added noise).  We estimated subject-specific noise levels supporting 

individual perithreshold performance (i.e., ~70% decision accuracy), including 

levels that might have fallen in between the eight noise-to-signal ratios used in 

this training task (from the larger set of 17; M = 140%, SD = 45%). We used these 

individual levels for the audiovisual training task and the main experiment. 

During the audiovisual training task, we used all images at the four levels of 

visual evidence together with the subject-specific perithreshold noise-level 

determined above. This audiovisual training task mimicked the main task 

presented on the second (testing) day, with the exception that participants 

received feedback on their choices.  

Overall, on the training day, we presented 480 trials for each of the visual and 

auditory discrimination training tasks split into four blocks of 120 trials with a 60 

second rest period between blocks. We presented 240 trials, split into two 

blocks, during the audiovisual training task. Taken together, all three training 

tasks lasted approximately 55 minutes on the first day. 

Full task. On the second day, we collected behavioural and EEG data using 

randomly interleaved visual (unisensory) and audiovisual (multisensory) trials in 

a combined task (Figure 2.1). Stimuli presentation employed the same task 

timings as outlined above on both days. Crucially, we did not provide any 

feedback to participants during testing. Using only one auditory noise level per 

participant on the testing day allowed us to evaluate the effects of auditory 

benefit at different levels of visual evidence. We presented 720 trials, divided 

equally between all stimulus categories (i.e., face/car, visual/audiovisual, and 

four levels of visual evidence), in short blocks of 60 trials with 60 second breaks 
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between blocks. The entire task on the testing day lasted approximately 45 

minutes. EEG data were collected only during the testing day. 

 

2.3.3 Behavioural analysis 

Our main behavioural analysis quantified participants’ behavioural performance 

(i.e., decision accuracy and response times) in the data collected during the 

testing day using two separate generalised linear mixed effects models (GLMMs). 

GLMMs are superior to traditional repeated measures ANOVA analysis as their 

random effects structure better accounts for inter-participant variability and 

allows mixing of categorical and continuous variables (Baayen, Davidson and 

Bates, 2008). Both models included all main effects and interactions of our two 

predictor variables, modality (visual and audiovisual) and visual evidence (27.5%, 

30%, 32.5% and 35%), along with by-subject random slopes and random 

intercepts for all relevant main effects. Hence, the two models used the 

maximal random effects structure justified by the design (Barr et al., 2013). We 

employed post-hoc likelihood-ratio X2 model comparisons to quantify the 

predictive power and significance of all main effects and interactions initially 

showing p values below or around threshold (i.e., alpha < 0.05) by both GLMMs. 

These likelihood-ratio X2 model comparisons compared the full model (i.e., a 

model including all main effects, interactions and random effects) to a reduced 

model excluding the predictor or the set of predictors in question. Only results 

and statistics of the post-hoc model comparisons are reported in the main 

results section. We performed these GLMM analyses using the lme4 package 

(Bates et al., 2015) in RStudio (RStudio Team, 2016) specifying a binomial logit 

model in the family argument of the glmer function for decision accuracy, a 

binary dependent variable, and a gamma model for response time, a continuous 

dependent variable while selecting the bobyca optimiser. The predictor modality 

was entered in mean-centred form (deviation coding), whereas the predictor 

visual evidence (four levels) was entered using mean-centred backward 

difference coding. By using mean-centred coding schemes we accounted for 

small imbalances in trial numbers between the predictor’s levels. Random 

correlations were excluded for both GLMMs. 
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To formally rule out that our choice of subject-specific levels of auditory 

evidence could exclusively explain individual improvements in decision accuracy 

on audiovisual trials, we correlated these measures across subjects using a 

robust bend correlation analysis (Pernet, Wilcox and Rousselet, 2013). 

Specifically, we evaluated whether the individual levels of auditory noise 

correlated with the difference in accuracy between visual and audiovisual trials 

(i.e., accuracyaudiovisual – accuracyvisual) across participants. As part of this 

correlation analysis, we computed the mean accuracy across all trials of each 

level of visual evidence and modality for each participant separately. We found 

that the level of subject-specific auditory noise accounted for only a minimal 

fraction of the variance in accuracy improvements (R2 = 0.01).  

 

2.3.4 EEG data acquisition and pre-processing 

We acquired continuous EEG data in a sound-attenuated and electrostatically 

shielded room from a 64-channel EEG amplifier system (BrainAmps MR-Plus, 

Brain Products, Germany) with Ag/AgCl scalp electrodes placed according to the 

international 10-20 system on an EasyCap (Brain Products GmbH, Germany). A 

chin electrode acted as ground and all channels were referenced to the left 

mastoid during recording. We adjusted the input impedance of all channels to 

<20kΩ. The data were sampled at a rate of 1000 Hz and underwent online 

(hardware) filtering by a 0.0016–250 Hz analogue band-pass filter. We used 

PsychoPy and Brain Vision Recorder (BVR; Version 1.10, Brain Products, 

Germany) to record trial specific information including experimental event codes 

and button responses simultaneously with the EEG data. These data were 

collected and stored for offline analysis in MATLAB. Offline data pre-processing 

included applying a software-based 0.5-40 Hz band-pass filter. To avoid phase-

related distortions, we applied these filters non-casually (using MATLAB 

“filtfilt”). Finally, the EEG data were re-referenced to the average of all 

channels.  

We removed eye movement artefacts such as blinks and saccades using data 

from an eye movement calibration task completed by participants before the 

main task on the testing day. During this task, participants were instructed to 
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blink repeatedly upon the appearance of a black fixation cross on light grey 

background in the centre of the screen before making several lateral and 

horizontal saccades according to the location of the fixation cross on the screen. 

Using principal component analysis, we identified linear EEG sensor weights 

associated with three eye movement artefacts (one component each for 

upward/downward saccades, leftward/rightward saccades, and blinks), which 

were then projected onto the broadband data from the main task and subtracted 

out (Parra, Spence, Gerson, and Sajda, 2005). The choice of principal component 

analysis to identify and remove these artefacts was based on previous 

experiments in our lab having successfully done so. Further, using independent 

component analysis in its place would have led to almost identical results as the 

topographies of these components are so prototypical. We excluded all trials 

from all subsequent analyses where participants exceeded the response time 

limit of 1.5 seconds, indicated a response within less than 300 ms after onset of 

the stimulus or the EEG signal exceeded a maximum amplitude of 150 V during 

the trial (0.8%, 0.06%, and 0.03% of all trials across participants, respectively). 

As we excluded trials where participants failed to respond in time (i.e., within 

1.5 seconds), this also meant that any trials where participants blinked and 

missed the stimulus (as it was presented for only 50 ms) should also have been 

excluded. 

 

2.3.5 EEG data analysis 

We employed a linear multivariate single-trial discriminant analysis of stimulus- 

and response-locked EEG data (Parra et al., 2002; Parra et al., 2005) to identify 

early sensory and late decision-related EEG components discriminating between 

face and car trials as in previous work (Philiastides and Sajda, 2006b; Ratcliff, 

Philiastides and Sajda, 2009). We performed this analysis separately for visual 

and audiovisual trials to independently identify the sensor signals discriminating 

the relevant visual evidence in each modality and allow direct comparisons 

between them in terms of overall discrimination performance. 

Specifically, we identified a projection of the multichannel EEG signal, 𝑥𝑖(𝑡), 

where 𝑖=  [1…N trials], within short time windows (i.e., a sliding window 
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approach) that maximally discriminated between face and car trials (i.e., visual 

discrimination: face vs car; audiovisual discrimination: face/speech vs car/street 

sounds). All time windows had a width of 60 ms and onset intervals every 10 ms. 

These windows were centred on and shifted from -100 to 1,000 ms relative to 

stimulus onset on stimulus-locked data and from -600 to 500 ms relative to the 

response button press on response-locked data. Specifically, a 64-channel spatial 

weighting  𝒘(𝜏) was learned by means of logistic regression (Parra et al., 2005) 

that achieved maximal discrimination within each time window, arriving at the 

one-dimensional projection 𝑦𝑖(𝜏), for each trial 𝑖 and a given window 𝜏: 

𝒚(𝜏) = 𝒘𝑇𝒙(𝜏) = ∑ 𝑤𝑖𝑥𝑖(𝜏)
𝐷

𝑖=1
      (1) 

Here, 𝑇 refers to the transpose operator. In separating the two stimulus 

categories, the discriminator was designed to map component amplitudes 𝑦𝑖(𝜏) 

for face and car trials, to positive and negative values, respectively. To quantify 

the performance of our discriminator for each time window, we used the area 

under a receiver operating characteristic (ROC) curve (Green and Swets, 1966), 

referred to as an Az value, combined with a leave-one-trial-out cross-validation 

procedure to control for overfitting (Duda, Hart and Stork, 2001; Philiastides and 

Sajda, 2006a; Gherman and Philiastides, 2018). 

Specifically, for every iteration, we used N-1 trials to estimate a spatial filter 𝒘, 

which was then applied to the left-out trial to obtain out-of-sample discriminant 

component amplitudes (𝒚) and compute the Az value. Moreover, we determined 

significance thresholds for the discriminator performance (rather than assuming 

an Az of 0.5 as chance performance) using a bootstrap analysis whereby face and 

car labels were randomised and submitted to a separate leave-one-trial-out test. 

This randomisation procedure was repeated 1000 times, producing a probability 

distribution for Az, which we used as reference to estimate the Az value leading 

to a significance level of P < 0.05 (subject average Azsig = 0.56). Note that this 

EEG analysis pipeline was performed on individual subjects such that each 

subject became their own replication unit (Smith and Little, 2018). 

Finally, the linearity of our model allowed us to compute scalp projections of 

our discriminating components resulting from equation (1) by estimating a 

forward model as: 
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𝐚(𝜏) =
𝒙(𝜏)𝒚(𝜏)

𝒚(𝜏)𝑇𝒚(𝜏)
        (2) 

where the EEG data (𝒙) and discriminating components (𝒚) are now in a matrix 

and vector notation, respectively, for convenience. Such forward models can be 

displayed as scalp topographies and interpreted as the coupling between the 

observed EEG and the discriminating component amplitudes (i.e., vector 𝐚 

reflects the electrical coupling of the discriminating component 𝒚 that explains 

most of the activity in 𝒙).  

 

2.3.5.1 Temporal cluster-based bootstrap analysis 

To quantify if and when the discriminator performance differed between visual 

and audiovisual trials, we used a percentile bootstrap technique for comparing 

the group-level Az difference between two dependent samples (Rousselet, Foxe 

and Bolam, 2016; Rousselet, Pernet and Wilcox, 2017). Specifically, on a sample-

by-sample basis, we created a distribution of shuffled Az difference scores (i.e., 

audiovisual minus visual) across participants (drawing with replacement). We 

repeated this shuffling procedure 1000 times for each sample whereby we 

created a random bootstrap distribution of median Az difference scores from 

every iteration. We computed the median of this bootstrap distribution for a 

given sample along with the 90% confidence interval (5% to 95%) of the resulting 

distribution of median difference scores. To test whether our bootstrapped 

median difference was significantly different from zero for each sample we 

compared it against the lower bound of the estimated confidence interval (i.e. 

at the 5%; P < 0.05).  

To form contiguous temporal clusters and avoid transient effects due to false 

positives, we required a minimum temporal cluster size of at least three 

significant samples. This threshold was determined by means of the 95th 

percentile of a data-driven null distribution of maximum cluster sizes. We first 

applied a permutation procedure (i.e., shuffling temporal samples without 

replacement) to abolish the relationship across temporal samples, while keeping 

the relative difference between V and AV Az values unchanged, for each sample 

and participant. We generated the null distribution of maximum cluster sizes by 
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calculating the maximum number of adjacent significant samples of the largest 

cluster for each of the 1000 iterations. This procedure corrects for multiple 

comparisons and is comparable to the temporal cluster-based non-parametric 

permutation test reported in Maris and Oostenveld (2007). We performed this 

analysis on the discriminator performance on both stimulus- and response-locked 

data (Figure 2.3b and Figure 2.4b respectively). 

Lastly, to ensure that neural effects were also reliably traceable on individual 

participants without group-level averages masking variability, we also computed 

the proportion of participants who demonstrated a participant-level effect in 

line with the general group-level effect per sample (that is, higher audiovisual Az 

value for a given sample – see Figure 2.3c and Figure 2.4c). We performed these 

statistical analyses using MATLAB code obtained from the Figshare and Github 

repositories associated with Rousselet et al. (2017) and Rousselet et al. (2016). 

 

2.3.5.2 Hierarchical Drift Diffusion Modelling of behavioural data 

We fit the subjects’ performance, i.e. face/car choice and response time (RT), 

with a hierarchical drift diffusion model (HDDM) (Wabersich and 

Vandekerckhove, 2014). Similar to the traditional drift diffusion model, the 

HDDM assumes a stochastic accumulation of sensory evidence over time, toward 

one of two decision boundaries representing the two choices (face or car). The 

model returns estimates of internal components of processing such as the rate of 

evidence accumulation (drift rate), the distance between decision boundaries 

controlling the amount of evidence required for a decision (decision boundary), 

a possible bias towards one of the two choices (starting point) and the duration 

of non-decision processes (non-decision time), which include stimulus encoding 

and response production.  

HDDM model fitting. The HDDM uses Markov-chain Monte Carlo sampling to 

iteratively adjust the above parameters to maximize the summed log likelihood 

of the predicted mean response time (RT) and accuracy. The DDM parameters 

were estimated in a hierarchical Bayesian framework, in which prior 

distributions of the model parameters were updated on the basis of the 
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likelihood of the data given the model, to yield posterior distributions (Kruschke, 

2010a; Wiecki, Sofer and Frank, 2013; Wabersich and Vandekerckhove, 2014). 

The use of Bayesian analysis, and specifically the hierarchical drift diffusion 

model, has several benefits relative to traditional DDM analysis. First and 

foremost, this framework supports the use of other variables as regressors of the 

model parameters to assess relations of the parameters with other physiological 

or behavioural data (Cavanagh et al., 2014; Frank et al., 2015; Nunez, Srinivasan 

and Vandekerckhove, 2015; Turner, Van Maanen and Forstmann, 2015; Nunez, 

Vandekerckhove and Srinivasan, 2017; Pedersen, Frank and Biele, 2017; Delis et 

al., 2018). This property of the HDDM allowed us to establish the link between 

the EEG components and the aspects of the decision making process they are 

implicated in. Second, posterior distributions directly convey the uncertainty 

associated with parameter estimates (Kruschke, 2010b). Third, the Bayesian 

hierarchical framework has been shown to be especially effective when the 

number of observations is low (Ratcliff and Childers, 2015). Fourth, within this 

hierarchical framework, all observers in a dataset are assumed to be drawn from 

a group, which yields more stable parameter estimates for individual subjects 

(Wiecki, Sofer and Frank, 2013).  

To implement the hierarchical DDM, we used the Wiener module (Wabersich and 

Vandekerckhove, 2014) in JAGS (Plummer, 2003), via the Matjags interface in 

MATLAB to estimate posterior distributions. For each trial, the likelihood of 

accuracy and RT was assessed by providing the Wiener first-passage time (WFPT) 

distribution with the three model parameters (boundary separation, non-decision 

time, and drift rate). Parameters were drawn from uniformly distributed priors 

and were estimated with non-informative mean and standard deviation group 

priors. The starting point was set as the midpoint between the two decision 

boundaries as the experimental design induced no bias towards one of the two 

choices (Philiastides et al., 2011; Herz et al., 2016). For each model, we ran 5 

separate Markov chains with 5500 samples each; the first 500 were discarded (as 

“burn-in”) and the rest were subsampled (“thinned”) by a factor of 50 following 

the conventional approach to MCMC sampling whereby initial samples are likely 

to be unreliable due to the selection of a random starting point and neighbouring 

samples are likely to be highly correlated (Wiecki, Sofer and Frank, 2013; 

Wabersich and Vandekerckhove, 2014). The remaining samples constituted the 
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probability distributions of each estimated parameter from which individual 

parameter estimates were computed.  

To ensure convergence of the chains, we computed the Gelman-Rubin R2 

statistic (which compares within-chain and between-chain variance) and verified 

that all group-level parameters had an R2 close to 1 and always lower than 1.03. 

For comparison between models, we used the Deviance Information Criterion 

(DIC), a measure widely used for fit assessment and comparison of hierarchical 

models (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). DIC selects the 

model that achieves the best trade-off between goodness-of-fit and model 

complexity. Lower DIC values favour models with the highest likelihood and least 

degrees of freedom.  

HDDM model with EEG regressors. We first estimated a model that used our 

EEG discrimination analysis to inform the fitting of the behavioural data. In this 

model, we input the single-trial RTs and (face or car) choices of all 40 subjects 

and hypothesized that the evidence accumulation rate on each trial would be 

dependent on the amount of neural evidence about face or car choice on that 

trial. Therefore, as part of the model fitting within the HDDM framework, we 

used the single-trial EEG measures of face.vs.car discrimination as regressors of 

the drift rate (δ) as follows: 

𝛿 = 𝛽0 + 𝛽1 ∗ 𝑦𝐸𝑎𝑟𝑙𝑦
𝑠 +  𝛽2 ∗ 𝑦𝐿𝑎𝑡𝑒

𝑅      (3) 

where 𝑦𝑒𝑎𝑟𝑙𝑦
𝑠  and 𝑦𝑙𝑎𝑡𝑒

𝑅  are the single-trial discriminator amplitudes of subject-

specific stimulus-locked Early EEG components (corresponding to individual peak 

Az across V and AV in the range 170-250ms post-stimulus) and response-locked 

Late EEG components (corresponding to individual peak Az difference between 

AV and V in the range –150ms to –60ms pre-response), respectively. Whereas the 

analysis used to identify individual peak Az was implemented to understand the 

temporal characteristics of audiovisual decision making, and therefore to test 

our hypothesis that the Late component would capture the effects of the 

additional sensory evidence provided, our analysis using single-trial measures as 

explained here instead sought to link neural activity with behaviour and 

understand the functional role of the component that produced those values. 

Had the same hypothesis been tested by both stages of analysis, the results 
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would have been inflated, however here each stage is motivated by a distinct 

hypothesis, specifically the temporal characteristics and then the link between 

these EEG components and behavioural performance.  

The coefficients 𝛽𝑖 weight the slope of the drift rate by the values of 𝑦𝑒𝑎𝑟𝑙𝑦
𝑠  and 

𝑦𝑙𝑎𝑡𝑒
𝑅  on that specific trial, with an intercept 𝛽0. Here we estimated 𝛽𝑖’s for each 

subject, sensory condition and coherence level. Hence, by using these regression 

coefficients we were able to test the influences of each of the two identified 

components on the drift rate in both sensory conditions (Cavanagh et al., 2014). 

Posterior probability densities of each regression coefficient were estimated 

using the sampling procedure described above. Significantly positive (negative) 

effects were determined when >99.9% of the posterior density was higher 

(lower) than 0. 

HDDM model without neural information. For comparison, we also estimated a 

HDDM without including any neural correlates. We fit the HDDM to RT 

distributions for correct and incorrect choices conditioned on the sensory 

condition (V or AV) for each trial. Overall drift rate, boundary separation and 

non-decision time were estimated for each individual and were dependent on 

the sensory condition. As per common practice, we assumed that evidence 

strength affected the drift rate, thus we separately estimated drift rate for each 

coherence level of the two sensory conditions (Ratcliff and Frank, 2012). 
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2.4 Results 

2.4.1 Behavioural results 

We collected behavioural and EEG data from 40 participants during a speeded 

face/car categorisation task (Figure 2.1). Participants were required to identify 

a noisy image as being either a face or a car, presented in a randomly 

interleaved fashion either alone (visual trials; V) or simultaneously with 

distorted speech or car sounds (audiovisual trials; AV). The amount of visual 

evidence (image phase coherence) varied consistently across subjects over four 

levels, whereas auditory evidence was set at a subject-specific threshold 

throughout the task. This was determined by calculating the level of distortion 

required for between 68% and 72% of trials being correctly discriminated during 

an auditory-only training session on the previous day (as previously described in 

‘Training’, page 26). 

We used generalised linear mixed-effects models (GLMM) and post-hoc 

likelihood-ratio χ2 model comparisons to evaluate decision accuracy and response 

times (using a binomial logit and a gamma model, respectively), both as a 

function of modality (V/AV) and the levels of visual evidence (see Methods). We 

found that participants performed more accurately on trials with AV evidence (χ2 

= 30.04, df = 1, P < 0.001) as well as with increases in the amount of visual 

evidence (χ2 = 87.13, df = 3, P < 0.001) (Figure 2.2a,b). There were no significant 

interactions between modality and the level of visual evidence (all P > 0.05), 

though, on average, the AV accuracy improvements appear most enhanced at 

the lowest (most difficult) level of visual evidence. Response times increased 

with AV evidence (χ2 = 18.73, df = 1, P < 0.001) and decreased with the amount 

of visual evidence (χ2 = 16.03, df = 3 P = 0.001) (Figure 2.2c,d).  There were no 

significant interactions between modality and the level of visual evidence (all P 

> 0.05). 
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Figure 2.2 Behavioural performance.  A,C, Group averages of (a) decision accuracy and (c) 
response time across the four levels of visual evidence (phase coherence) and as a function of the 
visual (V; turquoise) and audiovisual (AV; red) trials. Shaded error bars indicate standard errors 
across participants (N=40). B,D, Individual participant behavioural performance changes 
(audiovisual - visual trials) for (b) decision accuracy and (d) response time across the four levels of 
visual evidence (phase coherence). Solid black lines indicate group averages. 

 

To ensure that our choice in the amount of subject-specific auditory evidence 

could not independently explain the overall improvements in accuracy during AV 

trials, we quantified the extent to which subjects provided with more accurate 

auditory evidence benefited more in AV trials. We found that the amount of 

auditory evidence explained only a minimal fraction of the variance in accuracy 

across subjects (R2 = 0.01). Taken together, these results suggest that the 

combined influence of audiovisual information indeed contributed to an 

increased likelihood of making a correct decision (overall improvement M = 

4.14%, SD = 3.91), but at the cost of some speed (overall slowing M = 33.1ms, SD 

= 35.02). The latter is likely due to additional encoding time required for the 

auditory stimulus (see Neurally-informed cognitive modelling). 
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2.4.2 Temporal impact of auditory evidence on visual 
representations 

Next, we analysed the EEG data to identify the Early (sensory) and Late 

(decision-related) components that discriminated between face and car visual 

evidence. We performed this analysis separately for V and AV trials to 

characterise the extent to which the visual representations encoded in these 

temporally distinct components were affected by the additional auditory 

evidence. Specifically, for each subject separately, we performed a single-trial 

multivariate discriminant analysis (Parra et al., 2005; Sajda, Philiastides, & 

Parra, 2009) to estimate linear spatial weightings (i.e. spatial filters) that 

maximally discriminated face-vs-car trials within short pre-defined temporal 

windows, locked either to the onset of the stimulus or the response (see 

Methods).  

Applying the resulting spatial filters to single-trial data produces a measure of 

the discriminating component amplitudes (henceforth y), which can be used as 

an index of the quality of the visual evidence in each trial (Philiastides and 

Sajda, 2006b; Philiastides, Ratcliff and Sajda, 2006; Guggenmos, Sterzer and 

Cichy, 2018). In other words, more extreme amplitudes, positive or negative, 

indicate more face or car evidence respectively, while values closer to zero 

indicate less evidence. To quantify the discriminator’s performance over time 

and identify our Early and Late components, we used the area under a receiver 

operating characteristic curve (i.e., Az value) with a leave-one-trial-out cross 

validation approach, to control for overfitting.  

The discriminator’s performance as a function of stimulus-locked time revealed 

the presence of two temporally specific components (Figure 2.3a; Early (V/AV): 

mean peak time 230/220 ms; Late (V/AV): mean peak time 460/500ms), with 

distinct scalp topographies (Figure 2.3a; Early: bilateral occipitotemporal 

clusters, consistent with the well-described N170; Late: centroparietal cluster, 

consistent with the decision-related centroparietal positivity) but similar spatial 

projections for V and AV trials (group average cross correlation: EarlyV/AV = 0.97; 

LateV/AV = 0.91). These components (and overall classification performance) 
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were comparable to those identified in previous experiments using our face/car 

paradigm, both in terms of their latency and spatial distribution (Philiastides and 

Sajda, 2006a, 2006b, 2007; Philiastides, Ratcliff and Sajda, 2006; Ratcliff, 

Philiastides and Sajda, 2009). 

 

 

 

Figure 2.3 Stimulus-locked face-vs-car discrimination analysis.  a, Mean discriminator 
performance (Az) during face versus car discrimination of stimulus-locked EEG data after a leave-
one-trial-out cross-validation procedure, as a function of the visual (V; turquoise) and audiovisual 
(AV; red) conditions. Dotted black line represents the group average permutation threshold at P < 
0.05. Shaded error bars indicate standard errors across subjects. Scalp topographies at 
representative time windows corresponding to the Early and Late EEG components, encoding 
sensory and post-sensory visual evidence, respectively. Inset: Late EEG component amplitudes 
reflecting the relative separation across face and car trials (yfaces – ycar) at the point of maximum Az 
separation between V and AV trials (solid black line – see b), b, Bootstrapped difference in 
discriminator performance (audiovisual - visual; thick black line) with 90% confidence intervals (5-
95%; thin black lines). Horizontal thick black lines above the x-axes in panels a and b illustrate 
significant temporal windows resulting from this permutation testing (i.e. those in which the lower 
confidence interval is greater than zero with an added minimum requirement of three contiguous 
windows). c, Fraction of participants showing discriminator performance (Az) in the same direction 
a the group-level mean. 
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Having identified these components in both V and AV trials we next used a 

temporal cluster-based permutation analysis (Rousselet, Pernet and Wilcox, 

2017), to identify contiguous windows during which the discriminator 

performance differed systematically between V and AV trials. Specifically, for 

each temporal sample we created a bootstrap distribution of group-level Az 

difference scores (AV – V) and compared our bootstrapped median difference 

score against the estimated confidence intervals of the distribution (supporting a 

significance level of P < 0.05). To form contiguous temporal clusters and avoid 

transient effects due to false positives, we required a minimum temporal cluster 

size of at least three significant samples (see Methods). 

This analysis revealed only a single temporal cluster overlapping with the Late 

component (490ms to 540ms) over which the discriminator performance for AV 

trials was significantly improved compared to V trials (Figure 2.3a,b). During this 

time up to 78% of participants showed increases in the discriminator’s 

performance for AV trials, compared to only 60% of participants during the Early 

component (Figure 2.3c). Taken together, these findings indicate that the 

addition of auditory information in our task enhances primarily the quality of 

visual evidence (as reflected in our discriminator component amplitudes y) 

during post-sensory decision-related processing of our face/car stimuli (Figure 

2.3a; inset). 

In previous work, we showed that the Late component activity starts out as 

being stimulus-locked but persists and becomes more robust near the response 

(Philiastides and Sajda, 2006a, 2006b; Philiastides, Ratcliff and Sajda, 2006; 

Blank et al., 2013), consistent with the notion that decision evidence 

reverberates and accumulates continuously until one commits to a choice. We 

therefore repeated the single-trial multivariate discrimination analysis on 

response-locked data. Importantly, this analysis also helps rule out potential 

motor confounds associated with differences in response times across V and AV 

trials by abolishing potential temporal lags near the time of the response. 

As with the stimulus-locked analysis, we ran a cluster-based permutation test, 

comparing face/car discriminator performance for V and AV trials. We identified 

a temporal cluster leading up to the eventual choice (–150ms to –60ms pre-

response) during which discriminator performance was significantly enhanced for 
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AV compared to V trials (Figure 2.4a,b), with consistent effects (>70%) appearing 

across participants (Figure 2.4c). Inspection of the resulting scalp maps during 

this period indicated that the spatial topographies, featuring a prominent 

centroparietal cluster, are consistent with the Late component seen in the 

earlier stimulus-locked analysis (compare scalp topographies in Figure 

2.3a/Figure 2.4a) and in line with previous work (Blank et al., 2013). These 

findings further highlight that it is primarily late, decision-related visual 

evidence that is being amplified during audiovisual object categorisation (Figure 

2.4a; inset). 
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Figure 2.4 Response-locked face-vs-car discrimination analysis.  a, Mean discriminator 
performance (Az) during face versus car discrimination of response-locked EEG data after a leave-
one-trial-out cross-validation procedure, as a function of the visual (V; turquoise) and audiovisual 
(AV; red) conditions. Dotted black line represents the group average permutation threshold at P < 
0.05. Shaded error bars indicate standard errors across subjects. Scalp topographies at 
representative time windows corresponding to the Late EEG component, encoding persistent post-
sensory visual evidence up until the eventual commitment to choice. Inset: Late EEG component 
amplitudes reflecting the relative separation across face and car trials (yfaces – ycar) at the point of 
maximum Az separation between V and AV trials (solid black line – see b), b, Bootstrapped 
difference in discriminator performance (audiovisual - visual; thick black line) with 90% confidence 
intervals (5-95%; thin black lines). Horizontal thick black lines above the x-axes in panels a and b 
illustrate significant temporal windows resulting from this permutation testing (i.e. those in which the 
lower confidence interval is greater than zero with an added minimum requirement of three 
contiguous windows). c, Fraction of participants showing discriminator performance (Az) in the 
same direction a the group-level mean. 
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2.4.3 Neurally-informed cognitive modelling 

Having characterised whether the added influence of auditory information 

enhances early sensory or late post-sensory visual representations, we then 

asked whether the identified single-trial neural responses are directly linked to 

improvements in behaviour between V and AV trials. To this end, we employed a 

neurally-informed variant of the traditional Hierarchical Drift Diffusion Model 

(HDDM, see Methods), a well-known psychological model for characterising rapid 

decision making (Ratcliff and McKoon, 2008; Wiecki, Sofer and Frank, 2013; 

Nunez, Vandekerckhove and Srinivasan, 2017) to offer a mechanistic account of 

how the human brain translates the relevant evidence into a decision. In doing 

so, we directly constrained the model based on additional neural evidence, 

hence closing this persistent gap in the literature (Noppeney, Ostwald and 

Werner, 2010; Chandrasekaran, Lemus and Ghazanfar, 2013; Drugowitsch et al., 

2014). 

In brief, the traditional HDDM decomposes task performance (i.e. choice and 

RT), into internal components of processing representing the rate of evidence 

integration (drift rate, δ), the amount of evidence required to make a choice 

(decision boundary separation, α), and the duration of other processes, such as 

stimulus encoding and response production (non-decision time, τ). Ultimately, by 

comparing the obtained values of all three core HDDM parameters across the V 

and AV trials, we could associate any behavioural differences resulting from the 

addition of auditory information (improved performance and longer RTs as in 

Figure 2.1) to the constituent internal processes reflected by each of these 

parameters. 
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Figure 2.5 Neurally-informed cognitive modelling.  a, Graphical representation showing 
hierarchical estimation of nHDDM parameters. Round nodes represent continuous random 
variables and double-bordered nodes represent deterministic variables, defined in terms of other 
variables. Shaded nodes represent recorded or computed signals, i.e. single-trial behavioural data 
(accuracy, RT) and EEG component amplitudes (y’s). Parameters are modelled as random 
variables with inferred means μ and variances σ2. Plates denote that multiple random variables 
share the same parents and children. The outer plate is over sensory conditions (V,AV) and the 
two inner plates are over phase coherence levels (Coh) and subjects (n) respectively. b, Histogram 
and nHDDM model fits for RT distributions of Car (left) and Face (right) choices in the V (top – in 
cyan) and AV (bottom – in pink) conditions. c, Regression coefficients (β) of the Early (light colours) 
and Late (dark colours) EEG component amplitudes (y’s) in A (cyan) and AV (pink) conditions, as 
predictors of the drift rate (δ) of the nHDDM shown in a. Dots indicate single-subject values and 
lines connect the population means. d, Across-subject correlation of differences in regression 
coefficients of the Late component (β2 – x-axis) and differences in choice accuracy (y-axis) across 
conditions (AV-V). e, Boundary separation values (α) estimated by the nHDDM in A (cyan) and AV 
(pink) conditions. Dots indicate single-subjects and lines connect the population means. f, Non-
decision times (τ) estimated by the nHDDM in A (cyan) and AV (pink) conditions. Dots indicate 

single-subjects and lines connect the population means.   

 

Importantly, we deployed of a neurally-informed HDDM (nHDDM), whereby we 

incorporated single-trial EEG component amplitudes (y-values) into the 

parameter estimation (Figure 2.5a). Specifically, we extracted single-trial 

discriminator amplitudes from subject-specific temporal windows corresponding 

to both the Early (stimulus-locked) and the Late (response-locked) EEG 

components (see Materials and Methods). Since these values represent the 

amount of face or car evidence available for the decision (i.e. indexing the 
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quality of the visual evidence as we demonstrated in previous work (Ratcliff, 

Philiastides and Sajda, 2009)) we used them to construct regressors for the drift 

rate parameter in the model, based on the idea that evidence accumulation is 

faster when the neural evidence for one of the choices is higher. We therefore 

estimated regression coefficients (βEarly, βLate) to further assess the relationship 

between trial-to-trial variations in EEG component amplitudes and drift rate.   

Our results revealed that the behavioural data were fit well (R2 = 0.94) by the 

neurally-informed HDDM for both V and AV trials (Figure 2.5b). Consistent with 

the functional role of the two EEG components in conveying sensory and post-

sensory evidence respectively, the within-subject single-trial discriminator 

amplitudes of both components were predictive of drift rate in both sensory 

conditions (Figure 2.5c; βEarly, βLate significantly larger than zero for both V and 

AV, t(39) = 19.25  , t(39) = 15.56 for βEarly(V), βEarly(AV) respectively and t(39) = 

15.36, t(39) = 20.66 for βLate(V), βLate(AV) respectively, all P’s < 0.001). 

Furthermore, regression coefficients for the Late component were significantly 

higher than for the Early component in both conditions (Figure 2.5c, paired t-

tests, t(39) = -2.08, P < 0.05 for V and t(39) = -3.86, P < 0.001 for AV) suggesting 

a higher modulation of the rate of evidence accumulation by the Late 

component amplitudes, consistent with the higher stimulus discrimination 

accuracy of this component and its role in encoding decision evidence.  

Crucially, the contribution of the Late but not the Early component (i.e. βLate, 

but not βEarly) was significantly higher in AV compared to V trials (Figure 2.5c, 

paired t-test, t(39) = -3.30, P < 0.005). This is consistent with the increased 

discrimination power of the Late component in AV trials and suggests that this 

component underpins the behavioural facilitation of evidence accumulation via 

post-sensory amplification of visual evidence entering the decision process. 

Furthermore, when we compared the differences in the component contributions 

across the two sensory conditions, we found that the difference between the 

Late and Early component amplitudes was significantly higher in AV compared to 

V trials (paired t-test, t(39) = -2.09, P < 0.05). This interaction effect further 

corroborates our conclusion that the addition of auditory information enhances 

the rate of evidence accumulation via post-sensory, and not early sensory, visual 

representations.   
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Next, we asked whether the observed drift rate increases in AV trials as 

explained by the Late EEG component (βLate) were predictive of the behavioural 

improvements in accuracy across all 40 subjects. Indeed, we found a significant 

positive correlation (Pearson’s R= 0.41, P < 0.01), suggesting that, overall, 

participants with greater amplification of their Late EEG component in AV 

relative to V trials, achieved stronger improvements in accuracy across the two 

conditions (Figure 2.5d). This result further validates the functional role of the 

Late EEG component in the observed behavioural benefits in AV trials via 

amplification of the post-sensory evidence entering the decision process itself.  

We subsequently investigated the effect of the additional auditory information 

on the two other core parameters of the nHDDM. We found no difference in 

boundary separation between the two sensory conditions (Figure 2.5e) and 

significantly longer non-decision times in AV trials (Figure 2.5f, 370±9 ms for V 

versus 408±10 ms for AV, paired t-test, t(39) = -4.68, P < 0.0001). The latter 

indicates longer stimulus encoding in AV trials, since motor response production 

(indicated by the same button presses) should not differ between the two 

sensory conditions. This finding attributes the somewhat longer RTs we observed 

in AV trials (636±16 ms for V versus 673±18 ms for AV) primarily to longer 

stimulus encoding processes, which may result from the extra time required to 

process the auditory stimulus (see Discussion). Notably, the average difference 

in RTs (37 ms) is very similar as the average non-decision difference between the 

two conditions (38 ms), which provides further evidence for the early sensory 

origins of the longer RTs in AV trials.  

 

2.4.4 Neurally-informed model outperforming behaviourally 
constrained model  

Given that most previous studies in multisensory decision making have fit the 

drift diffusion models only to behavioural data, it is worth asking whether the 

inclusion of EEG-derived regressors actually improves model performance and/or 

shapes the conclusion derived from the model. We formally compared the 

neurally-inspired HDDM to a standard HDDM without neurally-informed 

constraints; the traditional model yielded a poorer trade-off between goodness-
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of-fit and complexity (as assessed by the Deviance Information Criterion - DIC for 

model selection (Spiegelhalter et al., 2002)) compared to its neurally-informed 

counterpart (DICHDDM=2371 vs DICnHDDM=1865). In addition, the conclusions that 

would have been derived from such a poorer model contradict those reported 

above. For example, the conventional HDDM yielded larger boundary separations 

in the AV trials (paired t-test, t(39) = -3.52, P < 0.005), the non-decision-times 

estimated by this model were ~100-120 ms longer for both sensory conditions 

compared to the nHDDM (490±10 ms for V and 509±11 ms for AV), and the 

difference in average non-decision times across conditions (19 ms) did not track 

the mean RT difference as closely as the non-decision times estimated by the 

nHDDM. Hence, this poorer performing model constrained only on the 

behavioural data could lead to the wrong conclusion that the auditory 

information also affects the response caution (or the speed-accuracy trade-off 

implemented by the subjects). This supports the importance of constraining 

behavioural models with neural data and suggests that integrating neural 

information in these models can potentially enable a more accurate 

characterisation of the behavioural effects as well as a mechanistic 

interpretation of their neural correlates. 
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2.5 Discussion 

In this work we used multivariate single-trial EEG analysis and behavioural 

modelling to investigate the enhancement of visual perceptual decisions by 

complementary auditory information. We showed that significant improvements 

in behavioural performance in AV trials were accompanied primarily by 

enhancements in a Late EEG component indexing decision-related processes 

(Philiastides and Sajda, 2006a, 2006b, 2007; Ratcliff, Philiastides and Sajda, 

2009). In contrast, an earlier EEG component encoding sensory (visual) evidence 

remained unaffected by the addition of complementary auditory evidence. Using 

neurally-informed cognitive modelling we showed that these multisensory 

behavioural and neural benefits could be explained primarily by improvements in 

the rate of evidence accumulation in the decision process itself.       

 

2.5.1 Early and late accounts of multisensory decision making 

There are two prominent theories in the field of multisensory decision making 

that emphasise either the role of early or late integration of multisensory 

information, respectively (Bizley, Jones and Town, 2016). The early integration 

hypothesis (Schroeder and Foxe, 2005; Ghazanfar and Schroeder, 2006; Kayser 

and Logothetis, 2007) posits that sensory evidence is combined at the stage of 

early sensory encoding. This hypothesis is supported by evidence for direct 

pathways between early visual and auditory regions or cross-modal influences on 

neural responses in early visual cortices (Ghazanfar and Schroeder, 2006; Eckert 

et al., 2008; Wang et al., 2008; Falchier et al., 2010; Klinge et al., 2010; Petro, 

Paton and Muckli, 2017) and studies demonstrating benefits for the perception of 

simplistic visual stimuli such as contrast (Talsma and Woldorff, 2005; Lippert, 

Logothetis and Kayser, 2007), motion direction (Esposito, Mulert and Goebel, 

2009; Kayser, Philiastides and Kayser, 2017) and simple shape discrimination 

(Giard and Peronnet, 1999) from acoustic information. However, the use of such 

simple stimuli may have specifically engaged only early sensory regions, hence 

providing a biased interpretation that does not generalise to more complex 

objects.  
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In contrast, the late integration hypothesis proposes that evidence from each 

sensory modality is processed separately during early sensory encoding, and is 

combined into a single source of evidence downstream, during the process of 

decision formation itself (Bizley, Jones and Town, 2016). Support for this 

hypothesis comes from both animal and human experiments demonstrating that 

multisensory information is accumulated right up to the point of a decision, 

while processing of unisensory information occurs prior to the formation of a 

multisensory decision (Raposo et al., 2012; Sheppard, Raposo and Churchland, 

2013). Similarly, recent neuroimaging work has provided new insights that 

flexible behaviour can be accounted for by causal inference models (Körding et 

al., 2007), with multisensory representations converging on higher-level parietal 

and prefrontal regions (e.g. inferior parietal sulcus, superior frontal gyrus) 

previously linked to the process of evidence accumulation (Heekeren et al., 

2004; Aller and Noppeney, 2019; Cao et al., 2019; Rohe, Ehlis and Noppeney, 

2019). 

Our findings appear to be at odds with the early integration hypothesis since we 

found no evidence that the addition of auditory information had any impact on 

the encoding of early visual evidence, which remained comparable between 

visual and audiovisual trials. Instead, we offered support of post-sensory 

enhancements of visual evidence with the addition of auditory information that 

is most consistent with the late integration hypothesis. Importantly, these later 

visual representations are likely to reside in higher-order visual areas involved in 

object recognition and categorisation (e.g. lateral occipital cortex), as we have 

shown previously (Philiastides and Sajda, 2007), consistent with a higher-level 

conceptualisation of the evidence (Aller and Noppeney, 2019). Specifically, the 

timing of these representations (starting after early sensory encoding and lasting 

until the commitment to choice) suggests that they unfold concurrently with the 

decision and provide the input to the process of evidence accumulation in 

prefrontal and parietal cortex (Heekeren et al., 2004; Ploran et al., 2007; 

Philiastides et al., 2011; Filimon et al., 2013).   
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2.5.2 Using neurally-inspired models to understand decision 
making 

Crucially in this work, we were able to characterise the neural underpinnings of 

the behavioural benefits obtained from the addition of auditory information. 

This novel contribution was made possible by the joint cognitive modelling of 

behavioural and neural data that linked the neural correlates of sensory and 

decision evidence with the internal processes involved in decision making. Our 

neurally-informed drift diffusion model indicated that the improvement in 

behavioural performance derived mainly from an enhanced representation of 

post-sensory evidence that modulates the rate of evidence accumulation. This 

result ran contrary to the behavioural-only version of a standard drift diffusion 

model which provided a less parsimonious fit to the behavioural data and 

attributed the longer response times in audiovisual trials to additional changes 

(increases) in decision boundary and to a lesser extend in early encoding of the 

auditory stimulus.  

We suggest that the reason for this discrepancy is a less accurate account of the 

trial-by-trial variability in the decision dynamics (also indicated by the poorer fit 

of the single-trial data) than its neurally-informed counterpart. In other words, 

the inclusion of the two well-characterised EEG components provided a more 

accurate account of the contributions of early sensory and decision evidence to 

the decision formation dynamics and thus enabled the disambiguation of the 

internal processing stage that yielded such a behavioural benefit. Additional 

support for this claim is provided by the fact that the behavioural model yielded 

longer stimulus encoding times whose difference across conditions did not track 

the difference in measured response times.  

Our findings suggest that by constraining models of perceptual decision making, 

they can provide key mechanistic insights that may remain unobserved using 

behavioural modelling. This argument is in line with recent research suggesting 

that the high complexity of decision making models may yield neurally-

incompatible outcomes (McGovern, Hayes, Kelly, & O’Connell, 2018; Turner, 

Gao, Koenig, Palfy, & McClelland, 2017; Turner et al., 2015). However, when 

informed by neural measurements, these models can not only yield more reliable 

parameter estimates but also shed light on the neural mechanisms underpinning 
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behavioural effects (Ratcliff, Philiastides and Sajda, 2009; Cavanagh et al., 

2011, 2014; Ratcliff and Frank, 2012; Dmochowski and Norcia, 2015; Frank et 

al., 2015; Nunez, Vandekerckhove and Srinivasan, 2017; Delis et al., 2018).   

It is worth noting that several previous studies have used DDMs to study 

multisensory decision making. Some of these considered models in which the 

combination of multisensory information was explicitly hard-wired, for example 

to converge during sensory accumulation (Drugowitsch et al., 2012, 2014; 

Colonius and Diederich, 2018).  By doing so, these models can describe certain 

aspects of human behaviour, but they can’t evaluate competing hypotheses 

about the locus of convergence. Other multisensory studies have combined 

behavioural modelling using DDMs and EEG, but did not use the neural data to 

constrain the behavioural model. Using such an approach, we have previously 

argued that the encoding of visual random dot motion in early sensory regions is 

affected by acoustic motion (Kayser et al., 2017), speaking in favour of a 

sensory-level integration effect. However, this sensory level effect was not 

validated using an EEG-inspired DDM model, as done here.  One explanation for 

these diverging findings is that the use of simpler stimuli, such as random dot 

motion, may have biased the earlier study to a sensory-level effect, whereas 

multisensory information about more complex objects is instead combined at a 

post-sensory stage.  This interpretation is supported by neuroimaging studies 

that have reported audiovisual interactions for complex stimuli mostly at longer 

post-stimulus latencies or in high-level brain regions (Beauchamp et al., 2004; 

Stekelenburg and Vroomen, 2007; Werner and Noppeney, 2010a, 2010b).  

Another, potentially important difference that might explain these divergent 

findings is the particular construction of the multisensory context across tasks. 

Many audiovisual integration studies use tasks in which there is a direct mapping 

between the source of the evidence across the two modalities, for instance, 

seeing a person’s mouth while producing speech (i.e. lip reading), to 

compensate from sound loss in a noisy bar. In our task, as in many real-world 

scenarios, however, this direct audiovisual mapping is not immediately 

available. In our earlier example, the decision to cross the street on a foggy 

morning will be based on hazy objects in your visual field together with street 

sounds that cannot immediately be matched to individual objects. In other 
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words, the decision to step off the curb will be based on a broader audiovisual 

context and a higher-level conceptualisation of the evidence, such as the 

presence of car-like objects and sounds signalling a busy street. This is a subtle 

but critical distinction in deciphering the mechanisms underlying audiovisual 

integration and reconciling discrepancies across different experimental designs.  

Though the Early component described in this study did resemble the well-

described N170 component of the ERP in terms of the spatial distribution of 

activity, the temporal features were not exactly in alignment with it; by 

definition, the face-specific N170 occurs approximately 170 ms after stimulus 

presentation, however here we characterised our Early component as appearing 

around 220/230 ms post-stimulus. This could have been caused by a delay in 

early sensory encoding. The stimuli were presented very briefly compared to 

previous iterations of this task, making it more difficult for participants to 

process sensory information with less evidence present. It may have been harder 

to reach the stage of face-specific processing if there was less information to use 

to identify a face to begin with. Differences in non-decision time were also 

identified as linked to response time differences by our neurally-informed 

model.  

On the contrary, the brevity of the sensory stimuli used here may have biased 

the results towards finding more significant effects in the later stages of 

decision making, as the short presentation provides very little to accumulate, 

which may place higher demand on the later decision stage. Further study might 

investigate this possibility by making small changes to the presentation time of 

the stimuli used in this study, and observe whether any early sensory processing 

effects begin to appear when evidence is presented for a longer period of time. 

Finally, a limitation of this study is that it used congruent audiovisual stimuli 

throughout, meaning that auditory and visual stimulus content matched in what 

category of object/concept was present. This means that we are demonstrating 

the effect within intermodal integration, but not content-specific integration 

across modality. We cannot be sure that some of the effect we describe cannot 

be explained simply by the presence of additional sensory input. Interestingly, 

some studies have found improvements in visual motion perception even when 

additional auditory evidence, provided alongside visual stimuli, is not ‘useful’ to 
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the task, i.e. it does not provide any more information as to the direction of 

motion (Gleiss and Kayser, 2014). Another future direction of study using the 

current task may therefore be to investigate whether the same effect would 

have been observed if the additional auditory evidence was not useful to the 

task, meaning that sounds may be presented but they are not congruent with the 

visual stimulus category or do not help inform decision making. We might expect 

that unisensory (visual only) decision making performance would be lowest, 

followed by incongruent audiovisual trials, then congruent audiovisual trials. In 

conclusion, our analysis revealed significant enhancements to post-sensory 

decision processing that were associated with increased evidence accumulation. 

We successfully modified an existing discrimination paradigm as a framework to 

assess changes during audiovisual decision making, and employed a neurally-

informed model to explain changes in behaviour associated with these 

enhancements. Some questions remained, such as whether a task with more 

direct mapping of information across modalities may provide a better 

opportunity to study evidence accumulation. 
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3 Chapter 3. Centroparietal positivity reflects 
audiovisual evidence accumulation 

 

3.1 Summary 

In our previous chapter, we revealed the temporal characteristics of 

enhancements to post-sensory decision processing during audiovisual decision 

making. The spatial representation of this effect resembled a centroparietal 

cluster. In addition, our results appeared to be at odds with the early integration 

hypothesis, revealing no significant changes during this period. However, the 

task used may have masked some of this effect, and further study of the 

temporal evolution of evidence accumulation was needed. Here, we asked 

participants to discriminate motion direction during a modified random dot 

motion task, adapted from Kelly and O’Connell (2013) to include visual and/or 

auditory information. An ERP analysis of electrophysiological activity within a 

centroparietal cluster (CPP) during the task revealed a clear pattern of gradually 

ramping activity leading up to the time of response. The rate of increase in this 

activity (i.e. evidence accumulation rate) was greater following presentation of 

audiovisual motion, and activity peaked at a higher level. Further, improvements 

in behavioural performance were partially explained by changes in the rate of 

evidence accumulation. This supported the findings of our previous chapter. 

However, our analysis revealed significant issues with the task design, which 

may have been capturing other non-decision processing such as detection 

activity, that requires further investigation. 
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3.2 Introduction 

While many studies have investigated sensory processing and evidence encoding 

in a ‘clean’ environment, it remains important to observe how this process may 

change when a decision is required in the presence of external noise. Humans 

are frequently required to selectively collect sensory evidence from their 

surroundings in order to correctly respond to external cues. This often occurs in 

situations where sensory information from other sources makes this decision 

more difficult, but where it is crucial that the correct decision be made; 

someone about to cross the road on a foggy day needs to quickly and accurately 

judge whether they can see or hear any cars approaching, despite the poor 

conditions hindering their ability to do so. Being unable to properly sample 

evidence from this environment, or to successfully integrate complementary 

multisensory evidence, can impede your ability to make timely, accurate 

decisions. On the contrary, it is important that the process of sequentially 

sampling evidence from your environment facilitates decision making despite 

suboptimal conditions.  

Some of the previous literature has therefore focused on the evidence 

accumulation process in experiments that simulate the presence of external 

sensory noise. In doing so we can observe, in a more realistic context, how 

relevant evidence from different sensory modalities is sampled and integrated to 

reach a decision boundary. In investigating the timing of sensory integration, a 

debate has formed between the early and late integration hypotheses (see Bizley 

et al., 2016 for review). Some have argued that the integration of visual and 

auditory information takes place early on in a decision, and that it is tied to the 

initial encoding of sensory information. Indeed, several examples exist either 

describing early interactions between primary sensory cortices (Lakatos et al., 

2007; Chandrasekaran, Lemus and Ghazanfar, 2013) or relationships between 

early integration signals and behaviour (Iurilli et al., 2012; Perrodin et al., 

2015). In opposition, others argue that sensory information is encoded largely in 

a unisensory fashion, and that any complementary information will not be 

combined until the later stages of decision formation (Werner and Noppeney, 

2010b; Raposo et al., 2012; Sheppard, Raposo and Churchland, 2013; Kayser, 

Philiastides and Kayser, 2017).  
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In Chapter 2, we began to address this by employing a ‘noisy’ audiovisual task 

with face/car stimuli designed to be more reflective of those in a real-world 

decision. We investigated how audiovisual integration might impact on decision 

evidence and found that, compared to a visual-only decision, complementary 

auditory evidence significantly enhanced the later post-sensory decision 

component and not the early sensory encoding component. This result was 

consistent with the late integration hypothesis. Neurally-informed modelling also 

found that this was reflected in the evidence accumulation component of the 

decision process, as compared to early sensory encoding. If audiovisual 

integration truly impacted on the later stage of the decision, we should see 

similar changes in the speed with which a decision boundary is reached.  

Whereas this work revealed significant effects on the post-sensory evidence 

entering the decision, our next focus was therefore to investigate how this 

effect impacts on the decision process, and evidence accumulation, itself. In 

order to investigate the effect of audiovisual evidence on evidence 

accumulation, it is necessary to use a task that can properly capture this 

process. It would also need to isolate the evidence accumulation process itself 

from other activity related to presenting visual and auditory stimuli, such as 

visually evoked potentials caused by the sudden presentation of visual stimuli. 

These would potentially mask ramping activity and make any examination of 

changes difficult. Kelly and O’Connell (2013) describe employing a continuous 

monitoring random dot motion task, based off the prototypical direction 

discrimination task (Newsome, Britten and Movshon, 1989; Britten et al., 1992). 

In this task, participants are presented with a central patch of moving dots, a 

set percentage of which are moving coherently in one of two directions. They 

are required to respond with the direction they believed the dots to be moving. 

In the 2013 paper, the task has been altered so that the intertrial intervals are 

replaced with the same style of moving dots, but with no coherent motion, 

rather than instantly transitioning from a blank screen to the dot stimuli. 

Participants are asked to continuously monitor the dots and respond when they 

perceive coherent motion, at the same time indicating the direction of motion 

they perceived. No cues were provided to indicate the start or end of the target 

motion period. Difficulty was modulated by changing the proportion of 
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coherently moving dots during the target motion periods, for a total of four 

difficulty levels.  

Analysis of the associated electrophysiological response recorded as participants 

discriminated motion direction revealed a gradual ramping of activity, beginning 

around 200ms post stimulus and steadily increasing to peak just before the 

response. This analysis focused on a cluster of centroparietal electrodes that 

showed the maximum component amplitude, consistent with previous work 

(O’Connell, Dockree and Kelly, 2012), and this centroparietal positivity (CPP) 

signal was associated with the gradual build-to-threshold ramping activity likely 

to represent sequential sampling and evidence accumulation. The researchers 

found that the rate at which activity ramped up approaching the decision scaled 

with increased motion coherence, in other words with additional sensory 

evidence. Furthermore, the slope of the CPP predicted response times within 

coherence levels, suggesting a tangible link between neural enhancements and 

behavioural benefits. Interestingly, they also found that decision amplitudes 

peaked at similar levels just before the time of response, a peak they suggested 

might represent a common decision boundary-crossing stopping criterion. 

We decided to use this work as a basis of investigation into the effects of 

audiovisual integration on evidence accumulation. As the existing task was 

developed with only a visual stimulus, we modified the task to include a 

complementary moving sound stimulus. Consistent with other works investigating 

audiovisual integration (Gleiss and Kayser, 2014; Kayser, Philiastides and Kayser, 

2017), we employed a moving white noise stimulus. During random motion 

intervals, a simple, unmoving, white noise was audible over headphones. 

However, as the dots seamlessly transitioned from random motion to a target 

motion period, the sound began to move from a perceived central location to 

either the left or right, consistent with the direction of coherent dot motion, 

and gradually moved across during the target motion period. As in the original 

task design, we instructed participants to respond when they perceived coherent 

motion in either direction but did not cue our participants as to the start of a 

target period. 

Our task was designed to present coherent, simultaneous audiovisual motion in 

this way (hereafter ‘AV’). However, we also presented trials with dot (visual) 
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motion but not sound motion (hereafter ‘V’ trials), with the white noise 

remaining central (i.e. not moving), as our visual-only trials. To complement 

this, we also used sound-only trials where the sound would move during target 

periods, but dots would move incoherently throughout (hereafter ‘A’ trials). This 

allowed us to examine, should there be behavioural benefits or enhancement of 

either evidence accumulation or peak amplitude, whether those benefits were 

primarily driven by the visual or auditory information. This was something we did 

not account for completely in the previous chapter and sought to rectify in this 

task; AV and V trials were present but not A trials, preventing us from being able 

to make that same comparison when looking at temporal components. 

Operating under the assumption that this task design would properly capture the 

ramping up of decision-related activity, we hypothesised that participants would 

discriminate motion direction more accurately on AV trials compared to V or A 

trials. In line with Kelly and O’Connell’s behavioural results, we also predicted 

that participants would miss fewer target motion periods in AV trials compared 

to both other conditions. Regarding the neural data, we first hypothesised that 

we would see an increased evidence accumulation rate during AV trials 

compared to V or A trials. With complementary information available, the 

quality of the decision evidence is enhanced above that of either unisensory trial 

type. This should be reflected in a steeper slope of the evidence accumulation 

rate in the ERP analysis.  

When analysing the profile of neural activity around the response, there is some 

debate as to what to expect in the data specifically when locking it to the 

response time. Kelly and O’Connell found ramping activity reaching a common 

threshold around the time of response, something they attributed to a boundary-

crossing stopping criterion, as discussed above. However, previous studies 

examined this time period found differences in peak amplitudes near the 

response, specifically modulation of said amplitudes with confidence. We 

calculated a confidence proxy as inversely proportional to the square root of the 

total decision time, and found that increased confidence positively correlated 

with deviations from the mean component amplitude at the time of choice on a 

trial-by-trial basis ( Philiastides, Heekeren and Sajda, 2014). A further task 

allowed participants to reveal low decision confidence by opting out of a trial 
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for a small, certain reward. Analysis of EEG data revealed a gradual ramping 

activity likely reflecting evidence accumulation. On a trial-by-trial basis, 

fluctuations in the rate of accumulation predicted the likelihood of participants 

opting out (Gherman and Philiastides, 2015). Crucially, both these works did not 

find accumulation to a common amplitude threshold; both found that, 

dependent on trial-by-trial evidence strength or confidence, ramping activity did 

not meet a common threshold, instead reaching the time of decision at 

significantly different peak amplitudes. 

Based on these findings and considering the differences in evidence quality 

between our conditions, we expected that differences in decision confidence 

could again lead to peak amplitude modulation. To investigate this, we 

conducted an exploratory analysis which investigated whether any amplification 

of the ERP at the conclusion of evidence accumulation was related to decision 

confidence, or further whether this amplification might be a measurable 

confidence index. Should the AV trials in fact be more confident decisions for 

participants, with enhanced decision evidence, these trials may have enhanced 

peak amplitudes compared to low confidence trials. We therefore hypothesise 

that AV trials will have higher peak amplitudes, around the time of response, 

compared to V or A trials.  
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3.3 Materials & Methods 

3.3.1 Participants 

Thirty-nine participants took part in the RDK EEG experiment. Five were 

subsequently removed from the analysis due to recording issues (n=1) and poor-

quality data recording (n=4) during the EEG session. All results presented here 

are based on the remaining thirty-four participants (age range 19-33 years, 20 

female). All were right-handed, and reported normal or corrected to normal 

vision, normal hearing, and no history of neurological problems. All participants 

were compensated at a rate of £6 per hour. This study was approved by the 

ethics committee of the College of Science and Engineering at the University of 

Glasgow (CSE 300150102) and informed consent was obtained from all 

participants. 

 

3.3.2 Stimuli and task 

The task design was based on an evidence accumulation study (Kelly and 

O’Connell, 2013), where a random dot kinematogram (RDK) stimulus smoothly 

transitioned between periods of coherent motion and random motion. Their task 

was designed with the intention of recording the isolated evidence accumulation 

processes during a perceptual decision. In other words, they intended to capture 

a less disrupted view of the neural ramping activity associated with evidence 

accumulation processes, importantly, without impedance from visually evoked 

potentials created through the sudden presentation of a new visual stimulus in 

each trial. In their task, large visual changes were kept to a minimum, while the 

motion information contained within the RDK stimulus changed. Participants 

were required to discriminate motion direction from moving dots in RDK stimuli 

that transitioned between coherent and incoherent (random) motion.  

Using this task design, we intended to take a step further from unisensory 

perceptual decision making, to investigate audiovisual decision making, by 

introducing a new sound motion aspect. We presented this in the form of white 

noise that would move gradually from the centre either to the left or the right, 

simultaneously with RDK motion direction, and we asked participants to 
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discriminate motion direction having perceived this combined audiovisual 

evidence. We also presented either unisensory version, with RDK and white noise 

stimuli present in each trial, but with ‘useful’ coherent motion only present 

within one sensory modality depending on the trial.  

Stimuli. All stimuli were displayed on an Asus ROG Swift PG278Q monitor 

(resolution, 2560x1440 pixels; 96x96 dots per inch; native refresh rate 144Hz, 

set to 120Hz). Participants were seated inside an electrostatically shielded 

room, positioned 75cm from the display, and instructed to remain still during 

each testing block. Experimenters monitored participants throughout the task 

for lack of attention, excessive movement, touching of the EEG equipment, or 

eye-closing, through a live webcam placed inside the testing booth. All 

participants were informed of this beforehand and gave their consent. 

We created and presented all dot stimuli using the PsychoPy® software, version 

1.82.02 (Peirce et al., 2019). Stimuli consisted of random dot kinematograms 

(hereafter RDK; Newsome and Pare, 1988), whereby a proportion of the dots 

moved coherently in one direction (left vs. right), while the remaining dots 

moved in random directions. Specifically, each stimulus consisted of a dynamic 

field of white dots (number of dots = 118; dot diameter = 0.07 degrees of visual 

angle, dva; dot lifetime = 8 frames; dot speed = 0.96 dva/s), displayed centrally 

on a grey background through a circular aperture (diameter = 5 dva). We 

manipulated task difficulty by specifying the proportion of dots moving 

coherently in the same direction, with the remainder of dots moving in random 

directions (i.e. motion coherence). In the final design of the task, the three 

difficulty levels presented were of 22%, 33%, and 40% dot motion coherence. 

These were selected based on motion direction discrimination performance of 

near and above threshold during piloting of the task (see Piloting below). 

We created sound stimuli using version 2.1.2 of Audacity® recording and editing 

software (Audacity Team, 2016). Static and moving sounds consisted of white 

noise generated within the program (amplitude = 0.5). Sounds moving from the 

centre to the left or right were created by modifying two independent stereo 

tracks using the pan and fade out functions within the program. One track, 

equally balanced between the left and right channels and so positioned 

centrally, would decrease in amplitude to zero at a consistent rate over the 
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duration of the sound. At the same time, we manipulated the balance between 

the left and right channels of a second stereo white noise clip, depending on the 

intended direction of motion and degree of motion of the final sound stimulus, 

and increased the amplitude of this over time as the first decreased. Coupled 

with the use of headphones, this created the perception of the sound moving 

from the centre to the left or right. We manipulated the degree of motion, or 

the distance by which the sound appeared to move from the centre over to the 

left or right (degrees), by adjusting the amount by which the second stereo track 

was weighted in either direction. For example, to create a sound that moved 

from the centre to 45° to the left, the balance of the second white noise clip 

would be set (‘panned’) 50% to the left, causing the sound to move at a steady 

rate during the target period from the centre to 45° to the left as the 

amplitudes of the first and second sound clips decreased and increased 

respectively. In the final design of the task, the three difficulty levels presented 

were of motion distances of 40.5°, 45°, and 67.5°. As with the visual stimuli, 

these were selected based on group average near and above threshold motion 

direction discrimination performance recorded during piloting of the task.  

Piloting. To maintain task performance near threshold, here between 60% and 

80% of responses correctly discriminating motion, we selected three visual and 

sound motion coherence levels based on the results of unisensory (one visual-

only, one auditory-only) behavioural pilots of the task.  

To pilot the visual portion of the task and to examine which levels of coherent 

motion were perceivable and therefore appropriate for use in the final 

experiment design, 15 participants were presented with periods of coherent and 

incoherent leftward or rightward motion using RDK stimuli. We manipulated dot 

motion coherence, i.e. difficulty, in 5% increments from 5-50% motion 

coherence. We presented a total of 320 trials in 8 blocks of 40 trials, with equal 

numbers of trials presenting each motion coherence level. Participants were 

asked to maintain focus on a central fixation cross, and monitor for the presence 

of coherent motion, responding with the direction in which they perceived said 

motion using the respective arrow keys (left and right only) on the keyboard. In 

a similar design and with the same number of trials presented, 8 participants 

completed a sound-only direction discrimination task with sound stimuli panning 
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from the centre to between 9-90° laterally, either to the left or the right. 

Participants were instructed to attend to the sound and, when they perceived 

the sound moving, indicate the direction of the perceived motion using the left 

and right arrow keys on the keyboard. They were asked to do so as soon as they 

perceived any coherent motion. 

 

 

 

Figure 3.1 Behavioural task design. Figure adapted from Kelly & O’Connell, 2013. Participants 
were required to detect and discriminate coherent motion within audiovisual trials (as above) or 
unisensory (i.e. visual or auditory only) trials. White noise and RDK stimuli were presented 
throughout ITIs and target periods, however we presented coherent motion to the left or right 
during target periods only. No blank periods (i.e. without stimuli) were presented. RDK 
coherence was proportion of dots moving together in the same direction. White noise degree of 
motion was consistent during AV trials while RDK coherence varied (y-axis). On auditory trials, 
RDK would remain at 0% coherence throughout while white noise degree of motion varied 
between 40.5° / 45° / 67.5°. 
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Using the mean proportion of trials during which participants successfully 

discriminated motion direction, and extrapolating between the exact coherences 

presented, we selected three sound distances (40.5°, 45°, and 67.5°) and dot 

motion coherences (22%, 33%, and 40%) where motion discrimination was 

estimated to equate approximately 70%, 80%, and 90% accuracy. These were 

selected to present a range of difficulties from around threshold and above, or 

from relatively difficult to relatively easy. 

Training. To familiarise participants with the white noise and dot stimuli prior, 

as well as to the lack of obvious cues for coherent motion periods during the 

main task, we asked them to complete two short training tasks. The first used a 

high level of motion coherence that we expected should be easily detectable, 

and we asked participants to respond when they perceived motion in either 

direction, until they responded correctly for five consecutive trials. This was 

usually completed within 10-15 trials. We then followed with another training 

task that included both visual and sound motion, this time with two levels of 

difficulty, one at a high motion coherence/distance that should have been 

relatively easy for participants to detect (but slightly more difficult than in the 

first training task), and a lower coherence/distance that we expected 

participants would miss some of the time (both based on early piloting). We also 

provided feedback that indicated if the participant had successfully detected a 

target motion period, or if they had missed one, using on screen text; 

participants saw “HIT” in green text if they responded during the target motion 

period, “MISS” in red if they responded during the ITI, and “TOO SLOW” in blue 

if a target motion period passed with no response. The intention of this training 

task was to familiarise participants with needing to continuously monitor for 

motion periods that may not be immediately obvious, as in the full task. This 

training task lasted ~3 minutes.  

Due to the lack of obvious cues in the task, we found it could be relatively quick 

to tire participants, so we adopted a procedure of offering short, frequent 

breaks throughout the day of testing to minimise the effect of this on task 

performance or concentration. We also fitted the EEG cap on the participant 
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prior to training as allowing the gel time to settle tended to reduce the 

measured impedance levels by the time we began recording. 

Main task. The main task was divided into 15 blocks of 36 trials each, for a total 

of 540 trials. Each block exclusively presented visual, auditory, or audiovisual 

motion, and lasted 3 minutes 15 seconds on average. There were 5 blocks per 

modality, with the order of block presentation pseudorandomised at the 

beginning of each participant’s task using the PsychoPy shuffle function. An 

equal number of the 540 trials presented either A, V, or AV motion, each of the 

three difficulty levels, and leftward or rightward motion, for a maximum of 30 

repetitions of each unique trial type (60 not including motion direction). This 

was to ensure sufficient power during statistical analysis of the results. While 

sensory modality was manipulated between blocks, task difficulty and motion 

direction changed within each block, with an equal number of trials of each 

difficulty level and direction presented in each block.  

We provided 30 second breaks between each block to prevent fatigue, and after 

the fifth and tenth blocks participants were provided with an untimed break 

which they could end once they were ready to continue; this was usually only a 

few minutes long. Subjects were allowed to get up out of their seat if requested, 

but this was not suggested or encouraged as we did not want to unnecessarily 

disturb the EEG equipment. We cued participants with the modality of each 

block from five seconds prior using on-screen text; after a break, this also served 

as a warning as to the beginning of the next block.  

Participants fixated on a central cross for the duration of each block and were 

instructed to maintain attention to both visual and sound stimuli regardless of 

block category. This was specified due to some participants employing tactics 

during piloting such as choosing to close their eyes during sound motion blocks. 

They were instructed to monitor the stimuli for motion towards either the left or 

right, and that they were to indicate as soon as they saw leftward or rightward 

motion using the relevant index finger and arrow key on the keyboard (left index 

finger on left arrow for leftward motion, and vice versa for rightward motion). 

No feedback was given during the task, and coherent motion periods would 

continue to present for their full length regardless of when a keypress was 

detected, so as to prevent a) unnecessary cues signalling the change between 
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coherent and incoherent motion, and b) additional VEPs potentially caused by 

the small change in audiovisual information influencing neural data recorded 

around the time of the response. 

During V motion blocks, dot motion coherence alternated between complete 

incoherence (0 during intertrial intervals (ITI), and coherent motion (one of 

either 22%, 33%, or 40% coherence) during the target motion period, however no 

auditory motion was present, with a static white noise of equal amplitude 

presented throughout. In the case of A motion blocks, the opposite was true; the 

auditory stimulus (white noise) alternated between being static during the ITI, 

and transition to one of three motion distances (40.5°, 45°, and 67.5°) during 

the target motion period. Finally, for AV motion blocks, stimuli alternated 

between static/incoherent motion during the ITI and coherent motion during the 

target period; in this case specifically, we presented all three dot motion 

coherences but maintained sound motion at 45° only. At the end of each target 

period, the next ITI began, and so incoherent or static motion was presented as 

defined by the modality of the block. The transition between the ITI and target 

motion period in each case was seamless; without any clear cue or disruption of 

presentation, the dot stimuli switched from incoherent motion in one frame to 

coherent in the next, and regarding the white noise stimulus, from a static 

‘central’ sound to one moving gradually from the centre to the left or right. 

 

3.3.3 Behavioural analysis 

To calculate differences in task performance, we used the timings and condition 

codes provided by EEG recording events. This ensured that all results translated 

accurately between behavioural and neural analyses. At an earlier stage of 

analysis during piloting, we attempted to take the accuracy of motion direction 

discrimination as a measure of task performance. Specifically, we calculated 

performance accuracy as the proportion of trials where participants correctly 

discriminated the direction of coherent motion presented in the trial. In doing so 

however, we found widespread ceiling effects (see Behavioural results). 

Instead, differences in task performance seemed to be embodied by their hit 

rate, that being the proportion of trials where participants responded during the 
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target motion period, or specifically trials where participants were confident 

enough that they could perceive coherent motion that they responded. For this 

reason, further analysis of task performance focused on hit rate (coherent 

motion detection) rather than direction accuracy (motion direction 

discrimination). 

We subsequently calculated the mean miss rate, specifically the proportion of 

trials where participants failed to respond during the target motion period, per 

participant, and the group mean miss rate per condition (modality and 

difficulty). To evaluate variability, we calculated the standard error of the mean 

for each condition.  

To compare participant response speeds across conditions, we calculated the 

median response time per participant, per condition, and the mean across the 

group per condition. We then calculated the standard error of the mean across 

the group. 

 

3.3.4 EEG data acquisition 

Participants performed the training tasks and main task on the same day, in a 

dark, sound-attenuated, and electrostatically shielded room. Continuous EEG 

data were recorded using a 64 channel EEG amplifier system (BrainAmps MR-

Plus, Brain Products, Germany) with Ag/AgCl scalp electrodes placed according 

to the international 10-20 system on an EasyCap (Brain products GmbH). 

Channels were referenced to the left mastoid, with a chin electrode acting as 

ground. During recording set up, we ensured input impedance was <30kΩ in all 

cases, with most <20kΩ, and sampled the data at a rate of 1000 Hz at an 

analogue band pass of 0.0016-250Hz. To obtain accurate event onset times, 

experimental event codes and participant responses were recorded 

simultaneously with the EEG data using PsychoPy and Brain Vision Recorder 

(Version 1.10, Brain Products, Germany). 

As well as the task, participants completed an eye-movement calibration task; 

they were asked to blink naturally at a white fixation cross on a grey background 
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for a period of ten seconds, before following the cross in lateral and vertical 

saccades around the screen. The exact timings of blink and eye movement 

events were recorded in the same method as task events, to be used in EEG data 

pre-processing. 

 

3.3.5 EEG data pre-processing 

The data were pre-processed offline (excluding the previously mentioned 

analogue band pass, see EEG data acquisition) using MATLAB (The MathWorks, 

2015b). We applied a 0.5-40Hz bandpass filter to remove slow DC drifts and 

higher frequencies, to focus our analysis on slower evoked responses. We also 

used data recorded in the eye-movement calibration task to identify linear 

artefacts associated with eye blinks and eye-movement, using a principal 

component analysis approach as described in (Parra et al., 2005) to remove 

them. The data were re-referenced to the average of all channels and baseline 

corrected to 100ms prior to stimulus onset. Following eye-movement removal, 

further trials were removed if participants responded so soon after the onset of 

coherent motion that it was unlikely they were responding to this(i.e. trials 

where the response time was faster than 300ms post-stimulus), or where 

amplitudes exceeded 150μV. 

 

3.3.6 EEG data analysis 

We analysed stimulus- and response-locked ERPs to identify temporal activity 

related to accumulation of perceptual evidence, specifically of visual and/or 

auditory neural evidence of coherent motion. ERP analyses were performed 

using custom MATLAB code and the Current Source Density (CSD) toolbox (Kayser 

and Tenke, 2006). We sectioned the pre-processed data into stimulus-locked 

epochs, from -750ms to +2000ms relative to the onset of coherent motion of any 

condition. We then converted this data to current source density, using the CSD 

toolbox, which aims to minimize the influence of volume conduction while 

increasing spatial selectivity. This step was also performed to provide 
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consistency with Kelly & O’Connell (2013), who also applied this transformation. 

We applied this filter to the data of each participant individually, before 

proceeding with the analysis.  

We then transformed our stimulus-locked data into shorter response-locked 

epochs (-600ms to +100ms) using individual trial response times. For each trial, 

we found the response time, took this time as 0ms, then created our new epochs 

around this. We calculated the mean (ERP) across participants and coherence 

levels, per condition, ignoring NaNs, followed by calculating the mean across 

participants for the group mean. 

We created a separate script within MATLAB to analyse the amplitudes and ramp 

of activity within these ERPs. First, we specified a group of six posterior 

electrodes across which to focus our analysis (CPZ, P1, P2, PO1, PO2, OZ ; see 

Figure 3.3). Sensors with the steepest increase in activity approaching the time 

of response, collapsed across all conditions, were selected for our analysis. 

Interestingly, the spatial distribution of steeper slopes approaching the point of 

decision was similar to those of Kelly & O’Connell’s work, where they identified 

the centroparietal positivity component linked to evidence accumulation and 

decision formation. That the ramping activity was similar to that identified by 

Kelly & O’Connell gave us confidence that we had successfully replicated and 

expanded on their decision making task, here adding the auditory element 

without compromising the overall effect of observing evidence accumulation. 

Therefore, we continued with this selection of sensors to explore the effect of 

additional auditory evidence on the visual-only decision making described by the 

previous authors, more specifically looking at its effect on evidence 

accumulation approaching the time of decision. 

We then endeavoured to quantify, and to compare between conditions, the 

temporal peak and rate of evidence accumulation during coherent motion 

periods. To define the rate of evidence accumulation in stimulus-locked data, 

specifically the rate of increase in activity over time in our ERP, we visually 

selected the beginning of amplitude increases, based on ERPs averaged across 

the group, and the approximate timepoint of the peak amplitude across the 

group, for each condition, which formed the start and end points of our analysis 

windows. We therefore defined condition-specific time ranges that would 
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encompass this whole period (+300ms to +1100ms for sound-only trials, +200ms 

to +700ms for visual-only and audiovisual trials). We then found the maximum 

value within these time ranges, per participant and condition. For response-

locked peaks, we started our range at -550ms using the same method and found 

the maximum ERP value between -150ms to +50ms around the response, 

anticipating that the majority of peaks would fall just before the response. We 

then fit a linear regression to each subject-specific and condition-specific ERP 

within these predefined time windows using custom code in MATLAB, using m, 

the slope, as our measure of rate of evidence accumulation. Finally, we 

compared the rates of evidence accumulation (m) and peak amplitudes of each 

condition using (as appropriate) parametric or non-parametric analyses of 

variance, and post-hoc pairwise comparisons 
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3.4 Results 

3.4.1 Behavioural results 

For this task, our intended method of measuring behavioural performance, or 

specifically to discriminate dot motion direction, was to take the proportion of 

correctly discriminated trials as a proportion of the total number of trials, i.e. 

accuracy. However, during our pilot experiments we found that this was unlikely 

to be a useful measure of performance. In separate visual and auditory pilot 

tasks implemented to verify coherences with perithreshold performance, we 

found that participants would frequently present very high decision accuracy 

once missed trials were excluded (98.22%, 97.68%, and 97.76% median accuracy 

in V, A, and AV trials, respectively). After increasing the motion coherence 

ranges in subsequent pilots for each condition, we found that, while accuracy 

did scale with increasing motion coherence, this seemed to be almost 

completely driven by whether participants responded at all; when excluding 

missed trials, participants almost always correctly discriminated motion 

direction. 

Interestingly, Kelly & O’Connell themselves reported that miss rate, rather than 

direction discrimination accuracy, was modulated by sensory evidence; 

participants correctly discriminated motion direction in more than 98.5% of trials 

that they responded to in time. It appeared that we had captured the same 

effect due to the same ceiling effect just described, as did a more recent work 

using the same paradigm (Newman et al., 2017; Van Kempen et al., 2019). 

Following this, we continued to calculate miss rate as our measure of 

behavioural performance, both so that we would hopefully be able to see 

decision behaviour modulated by our conditions, but also to stay consistent with 

the original work.  

This apparent inability to use accuracy as an effective behavioural measure, in 

either the previous paper or this experiment, may suggest that the behavioural 

task failed to properly capture decision processing. If participants were able to 

correctly discriminate motion in almost all trials where they successfully 

detected that a target motion period is occurring, or that coherent motion was 

present, this may suggest that this task captures more of a detection process 
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rather than true discrimination. If this task were capturing motion 

discrimination, we should be able to see gradual increases in accuracy with 

increased motion coherence, independently of the miss rate. However, it is 

possible that this task would not fully capture evidence accumulation ramping 

up to the decision as intended, as it seems more demanding of successfully 

detecting motion and not discriminating it. Van Kempen et al. (2019) argues that 

this effect was because the motion coherence levels used were above threshold, 

and a measure of performance variability, calculated by dividing the standard 

deviation in RT by the mean, was used instead. However, our lowest motion 

coherence was selected based on pilot data, where participants should have 

been able to discriminate motion direction in ~70% of trials, without excluding 

missed trials. This suggests that the ceiling effect we saw once removing missed 

trials may be related to whether participants were primarily having to perform  

detection or discrimination task, rather than the task being too easy to allow 

meaningful comparisons of discrimination accuracy modulation. For this reason, 

we approached the rest of our analysis with caution. 

A

 

 

B

 

Figure 3.2 Behavioural results of audiovisual motion task.  Colours represent different sensory conditions; 
red = visual trials (V), green = auditory trials (A), blue = audiovisual trials (AV). Motion level (hard -> easy) 
represents increasing motion coherence (dots) or distance (sounds; see Stimuli and task). Error bars are 
standard error of the mean. A Miss rate of responses, meaning the proportion of trials in which participants 
failed to respond by indicating any direction of motion during the target motion period. B Media response latency 
per condition and difficulty level, from the start of target motion period. Averaged across trials and participants. 
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Miss rate. First, we inspected the rate at which participants failed to respond 

during target motion periods (miss rate, Figure 3.2a). It is clear that, at the 

most difficult motion coherence, participants missed coherent AV motion (mean 

= 7.63%) much less often than A or V trials (21.81% and 28.19% respectively). 

This difference remained true as motion coherence increased, however the 

difference between AV trial miss rate and the unisensory conditions did reduce 

at higher motion coherences (2.31%, 6.42%, and 10.15% respectively at the 

highest level).  

We conducted a repeated-measures ANOVA to assess the effects of modality and 

coherence on miss rate. Regarding modality, Mauchly’s test indicated that the 

assumption of sphericity was violated (ꭓ2(2) = 15.65, p < .001), therefore degrees 

of freedom were corrected using Greenhouse-Geisser estimates of sphericity (Ꜫ = 

.72). The results showed that there was a significant effect of whether coherent 

motion was present in the dots and/or sounds on miss rate, and with a large 

effect size indicated by partial eta-squared estimates (F(1.44, 47.59) = 12.21, 

p<.001; ⴄp
2 = .27). For coherence, Mauchly’s test indicated that the assumption 

of sphericity was violated (ꭓ2(2) = 40.49, p < .001), and we again corrected 

degrees of freedom using Greenhouse-Geisser estimates of sphericity (Ꜫ = .58). 

The results showed that there was a significant effect of the amount of evidence 

of coherent motion on miss rate, with a large effect size (F(1.16, 38.42) = 66.94, 

p<.001; ⴄp
2 = .67). Finally, investigating an interaction between modality and 

coherence, Mauchly’s test indicated that the assumption of sphericity was 

violated (ꭓ2(9) = 27.94, p = .001), therefore degrees of freedom were corrected 

using Greenhouse-Geisser estimates of sphericity (Ꜫ = .74). This was also highly 

significant, with a strong interaction between coherence and modality evident 

(F(2.98, 98.84) = 24.13, p<.001; ⴄp
2 = .42).  

In summary, while miss rates for A and V trials were relatively comparable, the 

amount of motion evidence presented, and whether motion was presented 

visually, aurally, or audiovisually, all had significant effects on whether 

participants were able to successfully respond during the target motion period. 

Specifically, when motion was presented audiovisually, participants were more 

likely to correctly detect coherent motion. 
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Reaction time. Next, we investigated the effects of modality and coherence on 

reaction time (Figure 3.2b). From plotting the resulting data, the most 

prominent effect was clearly that the auditory condition had considerably longer 

reaction times than either of the other two conditions. However, this may be 

explained by the extra time needed for participants to detect motion due to the 

design of the stimulus (see Discussion). Other than this difference, we found that 

V and AV trial reaction times were comparable, with all modalities trending 

towards faster reaction times with increased motion coherence.  

We conducted a further repeated-measures ANOVA to assess the effects of 

modality and coherence on reaction time. Regarding modality, Mauchly’s test 

indicated that the assumption of sphericity was violated (ꭓ2(2) = 16.86, p < .001), 

therefore degrees of freedom were corrected using Greenhouse-Geisser 

estimates of sphericity (Ꜫ = .71). The results showed that there was a significant 

effect of whether coherent motion was present in the dots and/or sounds on 

reaction time, with a large effect size (F(1.42, 46.82) = 123.99, p<.001; ⴄp
2 = 

.79). For coherence, Mauchly’s test did indicate that the assumption of 

sphericity was violated (ꭓ2(2) = 7.12, p = .028), and degrees of freedom were 

corrected using Huynh-Felt estimates of sphericity (Ꜫ = .87). The results showed 

that there was a significant effect of the amount of evidence of coherent motion 

on reaction time, with a large effect size (F(1.75, 57.60) = 228.57, p<.001; ⴄp
2 = 

.87). Finally, investigating an interaction between modality and coherence, we 

again corrected degrees of freedom with Huynh-Feldt estimates of sphericity 

(ꭓ2(9) = 17.20, p = .046; Ꜫ = .87). This was also highly significant, with a strong 

interaction between coherence and modality evident (F(3.47, 114.53) = 16.69, 

p<.001; ⴄp
2 = .36).  

In summary, both the amount of sensory evidence and the modalities in which 

they were presented had significant effects on reaction time, reducing them in 

both cases. 
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3.4.2 EEG results 

To measure the rate of evidence accumulation during the course of the decision, 

we computed an event-related potential (ERP) driven analysis, calculating the 

slope of a linear fit to ramping activity leading up to the time of response as our 

measure of evidence accumulation rate (see EEG data analysis). A steeper 

slope, meaning an increased rate of change in activity over time, would indicate 

a faster rate of evidence accumulation. The spatial distribution of sensors where 

activity ramped up gradually near the time of response can be see in Figure 3.3, 

which highlights the cluster of sensors selected for inclusion in the ERP analysis 

(using data collapsed across conditions). 

 

 

 

 

Figure 3.3 Topography of ramping activity, collapsed across conditions. Spatial distribution 
of rate of increase in activity during period approaching point of decision, using the slopes of 
sensor-specific linear regressions calculated across all conditions, between 100ms and 800ms 
post stimulus onset (left) or between -500m and 0ms pre-response (right). Lighter/more yellow 
colouring represents regions where activity was more steeply increasing approaching the point 
of decision, darker/more blue regions represent activity more steeply declining approaching the 
point of decision. Regions where activity most steeply increased during the trial, namely the six 
centroparietal electrodes (CPZ, P1, P2, PO1, PO2, OZ) circled by the inner-most ring on the figure, 
corresponded approximately with those identified as the centroparietal positivity component by 
Kelly and O’Connell (2013), providing reassurance that we had captured the same component in 
replicating and modifying their task. We selected the six sensors included in the rest of the EEG 
analysis based off of this information. 
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First, we investigated the effects of sensory modality on the rate of evidence 

accumulation when centring ERPs on the point of stimulus presentation. We 

collapsed across motion coherences to increase the number of trials per 

modality and increase statistical power, and plotted separate ERPs per condition 

(V, A, and AV trials). We then fit linear regressions to each condition between 

predefined start points and the peak amplitude of each condition, chosen from 

inspection of ERPs averaged across conditions (see EEG data analysis), in order 

to use the slope of each regression to quantify the rate of change in activity.  

 

 
A

 

B

 

C 

 

Figure 3.4 Temporal profile of stimulus-locked ERP from CPP sensors.  Colours indicate 
conditions as follows: red = visual trials, green = auditory trials, blue = audiovisual trials. A 
Dotted traces represent group-averaged (mean) ERPs of activity measured from the CPP cluster 
from the onset of coherent motion presentation, i.e. the start of the target motion period. Trials 
averaged across participants and coherences, per condition. Shaded areas surrounding each 
trace represent standard error of the mean. Straight solid lines are linear regressions fitted to 
each condition, starting at 200ms (V & AV) or 300ms (A) post-stimulus, until the mean time of 
subject-specific peaks per condition. B Box plot representing the distribution of peak times 
selected for each participant per condition. Centre line of each boxplot is median peak time. 
Peaks were selected based on code searching for maximum response amplitudes between 
200ms and 700ms (V & AV trials) or 300ms and 1100ms (A trials only). C Slope of linear 
regressions fit per participant and condition, with group median (large diamond) and individual 
slopes (scatter).   
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On initial inspection of the stimulus-locked ERPs, the ramping of activity of V 

and AV trials appeared considerably steeper than that of A trials (Figure 3.4). V 

and AV trial activity increased sharply from around 200ms post-stimulus, 

increasing at a consistent rate and peaking just before 600ms post-stimulus. 

When combined with the average response times seen in these two conditions, it 

appears that, should the activity from these electrodes be measuring evidence 

accumulation as hoped, that this peaked roughly 200-250ms before participants 

responded. The most significant period of decrease after this peak also appeared 

to begin as the average point of response was reached. However, as this analysis 

used stimulus-locked data, the actual distribution of response times represented 

here will spread considerably around the condition-averaged peaks seen in this 

figure, and so it is hard to pinpoint exact differences in timing from this 

visualisation alone. The only discernible difference between stimulus-locked AV 

and V trial ERPs was that the two slowly diverged as the trial progressed, with 

AV responses remaining slightly higher overall compared to V. 

Interestingly, A trial activity did not begin to ramp up until slightly later, just 

after 300ms post-stimulus, and continued to build until much later in the trial, 

over 900ms after stimulus presentation. Activity seemed to increase at a slower 

rate, more gradually building up from the pre-stimulus baseline level to one 

approaching (but not matching) those of AV and V trial amplitudes (Figure 3.4c).  

We qualitatively assessed the distribution of subject-specific, stimulus-locked 

slopes within each condition using the Kolmogorov-Smirnov test, and found that 

slopes fit to the average of AV trials were significantly non-normal (D(34) = 0.17, 

p = .012). There were also two notable outliers within AV trial data and one 

within V trial data, and a significant level of skewness in steepness of both V (p < 

.05) and AV trial (p < .01) slopes. As normally-distributed data are assumed to 

use a parametric approach, we used non-parametric methods to examine the 

differences in our data. Doing so allowed us to account for the non-normal 

distribution of the data and still make a fair assessment of any significant effects 

present, but at the cost of the additional statistical power garnered by 

parametric tests.  

We statistically assessed the difference in the rate of evidence accumulation of 

each condition using Friedman’s ANOVA, the non-parametric equivalent of a 
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repeated-measures ANOVA. Specifically, we compared the steepness of subject-

specific linear slopes, fit to the mean ERP for V, A, or AV trials, to assess 

whether the sensory modality of motion was a significant factor affecting the 

steepness of the slope. Sensory modality was found to be a significant factor 

affecting the steepness of the slope (2(2) = 27.941, p < .001). Wilcoxon tests 

were used to follow up this finding, to further understand differences between 

individual modalities. A Bonferroni correction was applied; therefore all effects 

are reported at a .0167 level of significance. Wilcoxon test statistics are 

reported as z-scores (absolute values). A trial slopes (Mdn = 0.0234) were found 

to be significantly shallower than both V trial (Mdn = 0.0488; z = -4.47, p < .001) 

and AV trial (Mdn = 0.0501; z = -4.49, p < .001) slopes, with medium to large 

effect sizes (r = -0.44 in both cases). This suggested that the rate of evidence 

accumulation was significantly slower during trials with only auditory motion 

evidence compared to those with visual motion, either instead of auditory 

motion or in addition to it. There was no significant difference between the 

steepness of slope during V and AV trials (z = -.214, p = .840, r = -0.02), 

suggesting comparable rates of evidence accumulation where visual motion 

evidence was present. 

This result mirrored our findings that A trial response times were longer than 

those in V or AV trials; it would make sense for evidence to accumulate over a 

longer period, therefore showing a shallower slope, if the decision was reached 

later in the trial. As A trial responses were considerably longer than those during 

AV or V trials, therefore occurring much later into the trial past the ‘lock’ point 

of this ERP, it is possible that a greater amount of variance in the time course of 

the response may have been ‘spreading’ the ramping of activity we had tried to 

visualise, making it more difficult to observe clearly any features of responses 

taking place later than others. In fact, when comparing the peak times of ERPs 

identified by our code (i.e. the times taken as end-points when we fit linear 

regressions to subject-specific data) between conditions using repeated-

measures T-tests, we observed that the A trial ERPs peaked significantly later in 

the trial compared to V (p < .001) or AV (p < .001) trials. Figure 3.4b visualises 

this difference, as well as the relatively high variance in A trial peak times 

compared to V or AV trials.  
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In summary, A trial ERPs tended to peak further into the trial and became more 

variable in their timings, when starting from the time of stimulus presentation, 

than A or AV trial responses. This suggested that, in order to best compare the 

rate of evidence accumulation between conditions, locking to the time of 

stimulus presentation may not be most appropriate, as the effects of later 

responses weighed on the temporal profile of the data. In order to account for 

the greater variability and more careful examine these slopes, we realigned the 

data around the time of response, specifically the point at which participants 

submitted their choice of motion direction via a button press. This meant that 

we could more directly compare the slopes of each condition, and more clearly 

capture the final few hundred milliseconds of activity as participants made their 

decision and acted on it.  

Once we had aligned our data to the time of response and visualising it, it 

became immediately apparent that a much clearer comparison could be made 

(Figure 3.5). Whereas previously the A trial ERPs had appeared significantly 

different to V and AV trials, we believe largely due to the comparatively 

extensive response times, we could now see the temporal characteristics of 

activity in the period immediately preceding the response more clearly, and 

therefore the point of decision being made. 
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Figure 3.5 ERPs locked to the time of response, per sensory condition.  Colours indicate 
conditions as follows: red = visual trials, green = auditory trials, blue = audiovisual trials. A 
Dotted traces represent group-averaged (mean) ERPs of activity measured from the CPP 
cluster, centred on the point of response in each trial (i.e. response-locked). Trials averaged 
across participants and coherences, per condition. Shaded areas surrounding each trace 
represent standard error of the mean. Straight solid lines are linear regressions fitted to each 
condition, starting at -550ms pre-response, until the mean of subject-specific peaks selected per 
condition between -150ms and +50ms around the response. B Median peak ERP amplitude 
near the point of response, across participants and coherences (large diamond), along with 
single-subject data (scatter). C Slope of linear regressions fit per participant and condition, with 
group median (large diamond) and individual slopes from subject-specific fits (scatter). 

 

The change in amplitude between conditions was relatively similar, with all 

three slowly ramping up to a peak that appears to be just before the time of 

response. There appeared to be some differences in the rate of increase 

between conditions; while A and AV trial slopes started at similar points, by the 

time the point of decision was reached they had diverged considerably.  

A Kolmogorov-Smirnov test found that the data were normally distributed (all 

conditions p > .05). There were no significant outliers within any of the 

conditions, and no significant levels of skewness or kirtosis. The data therefore 

met the initial assumption of being normally distributed to qualify for 

parametric statistical tests, and we chose to proceed with using a repeated-
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measures ANOVA as a suitable assessment of any significant main effects. 

Mauchly’s test for sphericity returned as significant and so the assumption of 

sphericity was violated (2(2) = 28.81, p < .001), therefore degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity ( = .63). The 

results found no significant main effect of sensory modality on the steepness of 

slope (F(1.26, 41.42) = 1.88, p = .160). This suggested that sensory modality had 

no effect on the rate of evidence accumulation between conditions.  

As a further check, and as the assumption of sphericity had been violated, we 

next assessed the extent of the effect of sensory modality on slope steepness 

(i.e. evidence accumulation) using the less stringent but less statistically 

powerful Friedman’s ANOVA, as we had when statistically analysing stimulus-

locked ERP data. Although we had attempted to correct for the violation of 

sphericity using the Greenhouse-Geisser correction, it is possible that it was still 

clouding any effects in our data. A non-parametric test requires fewer 

assumptions to be met, but generally does not have the statistical power of its 

parametric counterparts and so should not return significant results where only 

the strength of the effect is of issue; it should only reveal a significant effect 

where other issues in the distribution of the data make parametric tests 

unsuitable for use. In this case, a Friedman’s ANOVA found a significant main 

effect of sensory condition on the steepness of ERP slopes (2(2) = 8.18, p = 

.016). We followed up by assessing differences between individual conditions 

using Wilcoxon tests, with a Bonferroni correction applied, meaning all effects 

are reported at a .0167 level of significance. We found that AV trial slopes (Mdn 

= 0.0445) were significantly steeper than V trial slopes (Mdn = 0.0399; z = -2.90, 

p = .003) with a medium effect size (r = -0.28). Contrary to our stimulus-locked 

analysis where all significant differences were between A trial slopes and those 

of the other two conditions, these results suggest that, when centring our 

analysis on the point of decision, the greatest change in the steepness of ERP 

slopes was between trials with both auditory and visual motion evidence and 

those with visual evidence alone. 

In summary, AV trial slopes were significantly steeper than in V trials, suggesting 

that the rate of evidence accumulation was increased during this condition, 

potentially due to the complementary auditory motion information present in 
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this condition. Interestingly, though they appeared to be different, there was no 

statistically significant difference between AV and A trial slopes (A trial Mdn = 

0.0329; z = -1.74, p = .084, r = -0.17). By realigning the ERPs of the earlier 

stimulus-locked analysis to the time of response, we revealed that the rates of 

evidence accumulation were comparable when participants were presented with 

motion evidence of one sensory modality alone. In fact, the boost to behavioural 

performance seen during AV trials, in the form of decreased miss rates, seemed 

to coincide with the steeper slope we observed. This suggests that evidence 

accumulation occurred at an increased rate during trials with audiovisual 

motion, with the difference being the amount of sensory evidence for coherent 

motion present, and indeed the presence of complementary audiovisual 

evidence of coherent motion.  

Another interesting difference visible in the profile of ERP activity preceding the 

time of response (Figure 3.5) was in the peak of ERP amplitudes close to the 

time of response. On visualising the data, it appeared that this peak may be 

highest during AV trials compared to either V or A trials, which were relatively 

comparable.  

A Kolmogorov-Smirnov test found that the data were normally distributed (all 

conditions p > .05). There were no significant outliers within any of the 

conditions, and no significant levels of skewness or kirtosis. The data therefore 

met the initial assumption of being normally distributed to qualify for 

parametric statistical tests, and we chose to proceed with using a repeated-

measures ANOVA as a suitable assessment of any significant main effects. 

Mauchly’s test for sphericity returned as significant and so the assumption of 

sphericity was violated (2(2) = 13.99, p = .001), therefore degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity ( = .74). The 

results found a significant main effect of sensory modality on the peak 

amplitude of response-locked ERPs (F(1.48, 48.74) = 4.71, p = .022). This 

suggested that sensory modality had a significant effect on the peak amplitude 

of the slopes identified leading up to the time of response. We followed this up 

with pairwise comparisons using a Bonferroni correction, meaning that all 

effects are reported at a .0167 level of significance. We found that AV trial 

peaks (M = 24.76V/m2) were significantly higher than those of V trial peaks (M = 
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22.07V/m2; p = .004). There was also a trend towards significance that did not 

pass the Bonferroni correction, suggesting that AV trial peaks were also higher in 

general than A trial peaks (M = 22.03V/m2, p = .023). 

In summary, these results suggest that the peak of ERPs shortly before the time 

of response were significantly higher during trials with both visual and auditory 

motion evidence presented, compared to when visual motion alone is present, 

and that there may be a trend in a similar direction when comparing to trials 

with sound motion alone. These results may link in with work examining the 

effect that modulating the amount or quality of motion evidence has on the 

amplitude of activity observed. In Kelly & O’Connell’s original results where 

motion coherence was modulated over four levels, the amplitude of responses 

appeared to be higher overall as motion coherence increased, however this 

effect disappeared when ERPs were centred to the point of decision, as in the 

second half of our statistical analysis.  

Effect of confidence. One possible reason behind differences in the peak 

amplitudes of our ERPs may be that the presence of additional sensory evidence 

for motion infers further confidence in the decision made by the participant. 

More specifically, by presenting coherent motion in both visual and auditory 

formats, simultaneously and with complementary information, the observing 

participant objectively has more information at their disposal to make a decision 

on the direction of motion (or presence of coherent motion), which may make 

them feel more confident as they make this decision and respond. Previous work 

has demonstrated increased response amplitudes during decisions which 

participants indicate were made with more confidence (Gherman and 

Philiastides, 2015; Philiastides, Heekeren, and Sajda, 2014) . However, if true in 

our case the difference does not seem to be so apparent as in these works, with 

smaller overall differences in amplitude.  

In order to ascertain whether differences in decision confidence could have been 

influencing the amplitude of mean ERPs, we conducted a single-trial correlation 

between peak ERP amplitudes and miss rates. Specifically, we calculated the 

mean amplitude per single trial of a 50ms window centred on the peak, or the 

peak component amplitude, and correlated this with a single-trial proxy of 
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confidence (1 √⁄ response time) on a per-subject basis using individual robust 

linear regressions. This was calculated across conditions, meaning all trials were 

included. We then assessed the significance of any effect using a one-sample t-

test with the resulting 2 values. This produced a non-significant result (p = .373) 

suggesting that there was no significant relationship between the confidence 

proxy used and the miss rate of subjects in this task.  

A 

 

B

 

 

Figure 3.6 Robust linear regression predicting miss rate with ERP slope steepness (i.e. 
evidence accumulation rate).  Stimulus-locked data are visualised in the left-hand figures, and 
response-locked data in the right-hand figures. A Robust linear regression output with single-
subject scatter (grey) least squares line fit (solid red) and 95% confidence bounds (dashed red). 
B Repeat of the same distribution of data, with least squares fit line, and with colours indicating 
sensory condition of each data point (red = visual; green = auditory; blue = audiovisual).  



3 85 
 
 

Link to behaviour. While the exploration of our data up until this point revealed 

some interesting features of the behavioural responses of participants, and the 

neural activity occurring while they completed the task, this does not in itself 

suggest any relationship between the two. Establishing a link between ‘brain and 

behaviour’ is important as this cannot be assumed; these two features of our 

data could be entirely independent processes and responses unless we show that 

a link exists between them. In our analysis, we interpreted the steepness of ERP 

slopes as the rate of evidence accumulation, as in Kelly & O’Connell’s original 

work. In sequential sampling models of decision making such as the drift 

diffusion model, the rate at which evidence is sampled affects the overall 

outcome of the decision, such as whether a decision threshold is surpassed and a 

choice made and acted upon, as well as the associated speed and accuracy of 

that decision.  We therefore sought to understand whether the rate of evidence 

accumulation in this task, measured in the steepness of ERP slopes, was related 

to the overall likelihood that a participant would successfully respond to 

coherent motion. This would indicate that the effects of coherent motion on the 

rate of evidence accumulation and the decision to respond were linked, and not 

necessarily happening due to independent processes.  

To explore this effect, we therefore calculated a robust linear regression model, 

including miss rate as our predictor variable and ERP slope as our response. In 

other words, we assessed the strength of the relationship between the rate of 

increase in evidence accumulation observed before the time of response and the 

likelihood of a given subject being able to detect and respond to coherent 

audiovisual motion. We chose to use a robust linear regression as it would be less 

influenced by outliers, and our previous statistical analyses had found that our 

data were not always normally distributed. Our linear regressions included 

subject mean miss rates and slopes for all three conditions in the same 

regression (102 observations total). We computed two robust linear regressions 

that included either stimulus-locked or response-locked ERP data (Figure 3.6). 

There was a significant relationship between stimulus-locked ERP slope 

steepness (i.e. evidence accumulation) and miss rate (F(2,100) = 5.13, p = .026), 

meaning that we were statistically significantly able to predict miss rate using 

stimulus-locked ERP slopes, however according to adjusted R-squared measures 
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this only accounted for 3.9% of the explained variability in miss rate, meaning 

that in practice the model fit could not successfully predict these values. Results 

for our second robust linear regression were similar; there was a significant 

relationship between response-locked ERP slope steepness and miss rate 

(F(2,100) = 12.2, p < .001), which accounted for 9.9% of the explained variance 

according to the adjusted R-squared calculation. 

Our results suggest a significant relationship between our neural measure of 

evidence accumulation and the rate at which subjects could detect coherent 

audiovisual motion, however further work would be needed to discover which 

factors account for the variance within this relationship. 

To summarise the findings of our analyses: Participants missed significantly 

fewer target motion periods when coherent visual and auditory motion evidence 

was simultaneously presented, compared to individually. They were also more 

likely to respond during trials with higher levels of motion coherence presented. 

Sensory modality had a significant effect on response times, with participants 

responding significantly slower during A trials and where less sensory evidence 

was present (i.e. lower coherence trials). When assessing ERPs following the 

point of stimulus presentation, A trial slopes were significantly shallower than 

AV and V trial slopes, suggesting lower rates of evidence accumulation, however 

when reassessing responses approaching the point of response, we found that AV 

trial slopes were significantly steeper than V trial but not A trial slopes. We were 

able to find evidence of a link between ERP slopes and behaviour, but our 

resulting linear model did not account for a lot of the explained variance. 

Finally, there were significant differences between the peak amplitude of ERPs, 

shortly before the time of response, with AV trial ERPs peaking significantly 

higher than during V trials. Although this suggested confidence may be 

influencing decision making, a single-trial analysis comparing a confidence-proxy 

to miss rates found no significant relationship.  
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3.5 Discussion 

In this chapter, we explored how the temporal profile of centroparietal EEG 

activity during perceptual decision making was altered when participants were 

able to recruit both visual and (complementary) auditory information. 

Specifically, we employed a modified version of the classic RDK motion 

discrimination task (Newsome, Britten and Movshon, 1989; Britten et al., 1992) 

first described by Kelly and O’Connell (2013), in which participants continuously 

monitored for coherent motion periods amongst incoherent motion ITIs. This 

meant that visually evoked potentials typically induced shortly after coherent 

motion onset were avoided, allowing us to investigate changes in evidence 

accumulation throughout the trial. We then analysed the behavioural benefit of 

integrating audiovisual evidence and, in an ERP-centred analysis, compared 

changes in the rate of ramping activity leading up to the point of response, as 

well as the link between neural activity encoding evidence accumulation and 

behaviour. We also explored whether changes in peak activity shortly before 

responses were related to changes in decision confidence.  

As expected, we found that participants were more likely to respond during 

coherent motion periods when motion coherence was higher, meaning more 

evidence of visual and/or auditory motion was available. This aligns well with 

previous literature demonstrating improved decision accuracy with increased 

sensory evidence (Philiastides and Sajda, 2006b; Philiastides, Ratcliff and Sajda, 

2006; Ratcliff, Philiastides and Sajda, 2009; O’Connell, Dockree and Kelly, 2012; 

Diaz, Queirazza and Philiastides, 2017). Interestingly, participants missed 

coherent motion periods during similar proportions of A and V trials, but were 

significantly more likely to respond when audiovisual motion was present. This 

suggested that the additional evidence presented during AV trials was of benefit 

as participants made decisions quickly, leading to more accurate decision 

making. This effect is also well documented in previous research (Gleiss and 

Kayser, 2012; Raposo et al., 2012; Sheppard, Raposo and Churchland, 2013), and 

the effect was true whether comparing V or A trials to AV trials. This was 

reassuring in that we had manipulated the task to a level at which this benefit 

was relatively balanced, and that one type of sensory evidence was not 

outweighing the other. However, this balanced improvement was expected as 

we had selected coherence levels for V and A trial stimuli corresponding with 
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preselected miss rates during piloting, although we did not do so for AV trial 

stimuli or take neural responses into account while making this selection. 

Our investigation of changes in response time also revealed some interesting 

effects. Participants responded faster with increasing motion coherence, within 

all sensory conditions, as expected based on previous research demonstrating 

this effect (Gold and Shadlen, 2007; Ding and Gold, 2012; Reinagel, 2013). When 

looking at the pattern of response times across conditions, we saw that 

participants were considerably slower to respond during A trials compared to 

both V and AV trials, which were statistically insignificant from each other. This 

effect raised several questions. As participants were able to detect motion in a 

comparable proportion of trials during A and V trials, we might assume that the 

quality of evidence contained in the target motion period was also roughly the 

same; if this were the case, would this suggest that perceptual decision making 

involving auditory stimuli are just slower?  

Another study with a similarly designed task to our own, although presenting 

visual or auditory motion exclusively rather than in tandem, found responses to 

auditory stimuli overall slower (Mulder et al., 2013). However, other historical 

papers have documented auditory response times as generally faster than visual 

(Welford, Brebner and Kirby, 1980; Green and Von Gierke, 1984). Another 

question might be whether the auditory stimulus we used, intended as an 

equivalent to V trial RDK motion discrimination, might have been an effective 

match in terms of accuracy but not speed. Whereas V trial stimuli consisted of 

multiple individual instances of motion, together forming an overall perception 

of motion in a cloud of moving dots, A trials featured a moving sound that was in 

essence a singular sound object moving in one direction. Participants might have 

simply needed to attend to the stimuli for longer to perceive the direction of 

sound motion, whereas in the same period of time participants would have been 

able to perceive multiple examples of visual motion direction already, reducing 

the time needed to make that decision. In the task designed by Mulder et al. 

(2013), the auditory stimulus is comprised of multiple tones that, over the 

course of the trial, either increase or decrease in pitch. In this way, subjects are 

able to sample from multiple sounds over the course of the trial, rather than 

listening for more gradual changes as in the current experiment, so a design 
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similar to this may be more appropriate. However, their task does still require 

participants to monitor for a longer period of time over which a general 

direction of pitch can be perceived. For this reason, perhaps a follow-up study 

could establish a more appropriate sound-equivalent of the RDK stimulus, for use 

in an audiovisual decision making task. 

We investigated how electrophysiological responses varied between audiovisual 

and unisensory (A or V only) trials by using an ERP-centred approach, and 

averaged across participants and coherences both when centring on the onset of 

coherent motion (stimulus-locked) and on the time of response (i.e. a button 

press; response-locked; see EEG data analysis). We also selected sensors that, 

during piloting and from visual inspection of ERP traces averaged across 

conditions, clearly demonstrated gradual increases leading up to the time of 

response (see Figure 3.3). Stimulus-locked ERPs revealed that AV and V trial 

slopes were significantly steeper than A trial, implying faster rates of sequential 

sampling and therefore evidence accumulation. This was clear from the visibly 

delayed peak in activity during A trials compared to V/AV, which corresponded 

with the slower responses during A trials, and motivated our decision to 

transition to a response-locked view of ERPs; in theory this would allow us to 

more clearly compare evidence accumulation rates between trial types, and 

indeed this appeared to be the case once the corresponding figures had been 

generated (Figure 3.5). This view did seem to provide a more accurate temporal 

profile of activity leading up to the time of response, once the latency 

differences had been accounted for. In this view, we discovered that AV trial 

slopes were significantly steeper than V trials, but not A trials (although there 

was a non-significant trend in this direction). Indeed, A and V trial slopes were 

comparable which mirrored the similarity in miss rate found during these two 

conditions.  Although we cannot factor in AV versus A trial slopes, the results 

suggested that audiovisual perceptual decision making was enhanced, compared 

to visual only, both in participants’ ability to detect coherent motion and in the 

rate at which they accumulated sensory evidence. This is consistent with 

previous research demonstrating positive changes in neurological activity during 

trials with complementary audiovisual stimuli (Bernstein, Auer and Takayanagi, 

2004; Lippert, Logothetis and Kayser, 2007; Bernstein et al., 2008; Raposo et 

al., 2012; Mercier and Cappe, 2020). However, our attempt to link neural and 



3 90 
 
behavioural improvements was only moderately successful; while a robust linear 

regression was able to find a significant relationship between the two, the linear 

model that we fit did not explain much of the variance seen. We would 

therefore recommend that future work should investigate this relationship more 

closely and include other factors that might have contributed to this 

relationship, such as coherence, sensory condition, and confidence. 

Following on from our analysis of evidence accumulation changes, we sought to 

explore differences in peak activity shortly before the response, specifically to 

examine whether the presence of complementary auditory evidence might lead 

to increased peak activity compared to either unisensory condition. Our analysis 

found that participant ERPs peaked at significantly higher levels during AV trials 

compared to V trials, however there was no significant difference between AV 

and A trials. One possible interpretation of this result, from the perspective of 

sequential sampling modeling, is that in the presence of more sensory evidence 

the threshold for a decision may be higher. When both visual and auditory 

evidence is present, there is also a greater amount of noise, and a higher 

decision threshold accounts for this by requiring more evidence to accumulate 

(therefore assuming that some may be noise). This may be why we saw higher 

ERP peaks just before responses, however this effect was not as pronounced as 

in other work where the same modality in varying coherence levels is used. We 

have captured this data in our work for potential further investigation, however 

as our audiovisual condition only used one auditory coherence level it may be 

necessary to repeat the experiment with further coherences included. 

Another interpretation of varied pre-response ERP peaks could be varying levels 

of decision confidence. Other research employing unisensory perceptual decision 

tasks have linked self-reported levels of decision confidence with changes in pre-

response amplitude (Kiani and Shadlen, 2009; Ding and Gold, 2013; Gherman and 

Philiastides, 2015, 2018). We investigated whether the increased availability of 

sensory evidence created by the inclusion of helpful information from more than 

one modality may have increased the levels of confidence participants had when 

making their decision. If this were true, we should see a positive relationship 

between a measure of confidence (here a proxy measure using single-trial 

response times) and subject-specific pre-response peak amplitudes, meaning 
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that trials where participants were potentially more confident were also trials 

with higher peak amplitudes just before they responded. Our analysis did not 

find any such relationship, however it was not exhaustive in nature and there 

remains potential to investigate this effect. One limitation of this exploration 

was that we did not incorporate a direct measure of confidence into the task, 

meaning that we could only estimate what levels of confidence were on each 

trial and not use data explicitly reported by the participants themselves. Further 

research could try to incorporate this into the task, however this may come at 

the cost of the gradual nature of the task; if a visual prompt to report 

confidence were included after each trial, that would undo the otherwise 

seamless transition from ITI to target motion period, and participants would 

have a clear signal that a motion period had just finished. However, if a 

successful incorporation of measuring confidence can be achieved, researchers 

could investigate the interaction between audiovisual motion evidence (versus 

unisensory) and confidence on decision processing, in a task that allows a clear 

observation of evidence accumulation.  

Other limitations of this task may exist outside of effectively capturing 

confidence. As we reported in our results, once trials where participants failed 

to respond were removed, participants could discriminate the direction of 

motion at a high level of accuracy (>97% in all conditions within the current 

dataset), Based on observing this effect during piloting, our decision moving 

forward to the full study was to use miss rate as our behavioural measure, as this 

did scale with coherence and was not obscured by a ceiling effect. Indeed, Kelly 

& O’Connell report high levels of accuracy and used miss rate as a primary 

behavioural measure in their original study. This raises significant questions as to 

the type of decision making being captured by this task; if, when participants do 

respond, they are able to discriminate motion direction in a large proportion of 

trials, it may imply that a significant amount of the task difficulty is in 

successfully detecting coherent motion and not solely in discriminating its 

direction. This does not mean that the decision making process is not being 

captured in our EEG data, only that a considerable detection component may be 

being included in the activity we see. The temporal profile of our results 

certainly appears to follow the gradual ramping up in activity documented by 

other perceptual decision making research not using this task (Philiastides and 
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Sajda, 2006b; Philiastides, Ratcliff and Sajda, 2006; Ratcliff, Philiastides and 

Sajda, 2009), suggesting that perceptual decision making is a key component of 

the signal recorded in this task, however the recorded behavioural results 

indicate a high demand on detection processing. This may be a factor in why our 

attempt to correlate confidence with pre-response amplitudes was unsuccessful; 

changes in detection processing before discrimination will have impacted on 

non-decision time and therefore the overall response times of each trial, and as 

our confidence proxy used response times this may have clouded any effect.  

One proposed solution to the overweighted role of motion detection in this task 

may be to include a cue prior to the start of a target motion period, however 

the timing and presentation of said cue would have to be careful and avoid 

creating the VEPs that the task was indeed designed to prevent. An auditory cue 

presented roughly a second before the onset of coherent motion would avoid 

creating VEPs and may be recent enough to direct additional attention to the 

task, aiding in motion detection but still requiring motion discrimination to 

occur. This may also mediate the issue of drifting attention during the task; 

during piloting, participants indicated feeling tired of the task relatively quickly, 

and this often seemed to be due to the lack of any clear stimulus changes during 

the task. While this was by design, we factored this effect into the experiment 

design and made trial blocks as short as possible. Though not examined 

empirically, clear alpha waves were visible in the raw EEG data as participants 

completed the task. 

Our previous results chapter (see 2.4 Results) found changes in late post-sensory 

processing during audiovisual decision making, compared to during visual 

decision making, and in opposition to changes in early sensory processing. This 

follows a debate on whether the integration of multisensory evidence for 

decision making occurs earlier on, shortly following stimulus onset and while 

Here, with the effects of VEPs significantly reduced if not eliminated, we did not 

observe many early changes in processing. Activity began to diverge from 

roughly equivalent amplitudes shortly after stimulus presentation, but became 

distinct in the rate at which activity ramped up as the point of response 

approached. This was true whether looking at the data from a stimulus- or 

response-locked view. One point of interest was that A trial activity seemed to 
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ramp up later into the trial (~100ms later or so) compared to V or AV trial 

activity. Indeed, this was our motivation behind fitting linear models to A trial 

data using a later start time than for the other two conditions, in order to best 

capture the rate of interest. However, this may be due to factors induced by the 

task design such as changes in non-decision time and detection-related activity, 

as we have already discussed.  

Regarding the selection of analysis windows for stimulus-locked and response-

locked data, per condition, which were based on visual inspection; if this 

experiment were to be repeated, these windows would ideally have been 

selected using methodology less prone to bias. For example, one approach could 

be to select the start and end points of the windows using definitions set out 

before seeing any data, or computationally, for example, by attempting to fit 

flat and sloped linear regressions to see where modelled data began to increase 

over time. 

That we found increased rates of evidence accumulation during audiovisual 

decisions, compared to visual, also aligns with the findings of our previous 

chapter. Specifically, in the previous chapter we used a neurally-informed 

cognitive model and found that the improvements in behavioural decision 

making observed (i.e. that participants were more accurate when discriminating 

audiovisual stimuli versus visual) could be explained largely by increased rates of 

evidence accumulation. It is encouraging that when participants completed this 

task involving ‘lower complexity’ stimuli, and with a different approach to 

measuring changes to evidence accumulation rates, we continued to see the 

same effect. This overall gives credence to the understanding that key 

components involving perceptual decision making, and the integration of 

audiovisual evidence for that decision, occur later in the trial (closer to the time 

of decision making). 

Whereas in our previous chapter we were able to directly predict behavioural 

improvements using neural data, our attempt to do so with this task and our ERP 

focus was less successful. The most significant difference is that the relationship 

found in the previous chapter used single trial data as part of a more rigorous 

neurally-informed hierarchical drift diffusion model, whereas the current 

chapter used participant-averaged data in a relatively simple robust linear 
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regression. The variability in rates of accumulation in each trial could contain 

useful data, as sequential sampling models understand decision making to 

involve the noisy accumulation of evidence, and by averaging across trials in the 

current chapter this information is lost. We also did not include other factors in 

our model, therefore a follow up analysis for the current chapter may involve 

using single trial fits of accumulation rates (i.e. slopes) to predict response time 

or miss rate, ideally including sensory modality and coherence as contributory 

factors.  

In summary, the use of this continuous version of the RDK motion discrimination 

task is a useful tool to examine changes in evidence accumulation rate, and 

supports the findings of our previous chapter in that providing audiovisual 

evidence of a decision, as opposed to visual alone, enhances decision 

performance. Furthermore, this seems to be linked to improvements in the rate 

of evidence accumulation. However, there were several limitations to this work 

that may be addressed by a) adjusting the task design to prevent detection 

featuring too predominantly in the neural activity captured, which might also 

allow us to compare true decision performance (accuracy) without a ceiling 

effect, and b) by incorporating some of the analytical techniques used in the 

previous chapter, such as using single-trial data in our analysis and perhaps 

including it in a neurally-informed cognitive model of decision making as we did 

successfully in Chapter 2.  
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4 Temporal characterisation of oscillatory activity 
during audiovisual perceptual decision making 

 

4.1 Summary 

The thesis so far has supported theories that the integration of evidence during 

multisensory decision processing (here audiovisual specifically) is reflected in 

enhancements to evidence accumulation later on in the course of a decision. 

Additional auditory information appears to boost behaviour performance, and 

this enhancement is linked to augmentations of late, post-sensory decision 

processing, as opposed to early activity. Our analyses thus far focussed on 

electrophysiological information captured by EEG, however this information has 

been used to demonstrated oscillatory patterns in neural activity that can reveal 

further information on the neural correlates of perceptual decision making. 

Here, we performed a reanalysis of data collected in Chapter 3, instead using a 

spectral analysis to decompose the broadband signal recorded into its 

component parts. We again discovered a gradual change in power leading up to 

the time of perceptual decisions in a pattern mirroring evidence accumulation 

processing, however the differences in evidence accumulation rates did not 

reveal the same enhancements specifically during trials with audiovisual sensory 

information, versus visual or auditory only, in the same way that we had seen in 

our previous chapters. Some changes in oscillatory activity indicated a potential 

role of premotor areas in evidence accumulation, as suggested by the 

embodiment hypothesis. Further work would investigate this possibility more 

directly. 
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4.2 Introduction 

In the previous chapter, we explored changes in broadband electrophysiological 

neural activity relating to the process of evidence accumulation (EA), when 

making an audiovisual perceptual decision. Specifically, we explored how, 

approaching the point of response, EA is modulated by the type and strength of 

sensory evidence presented (V, A, or AV). In this experiment, participants found 

it easier to perceive and respond to AV motion compared to either unisensory 

variant (V or A). Following a response-locked ERP analysis, we observed a 

steeper ramping up of EA activity in the period approaching the decision, 

specifically as in the CPP component previously identified by O’Connell et al. 

(2012).  

While this analysis was successfully employed to identify temporal 

electrocortical signals linked to the process of perceptual decision making 

(PDM), by its nature it was only able to provide a direct view of the ramping up 

of broadband activity approaching the response, although our analysis may have 

extracted activity related to specific frequency bands. Often, complementary 

information to that of broadband neural activity can be discovered by using a 

spectral analysis to decompose the signal into its component frequency bands; a 

typical event-locked broadband signal tends to be dominated by lower frequency 

activity, such as that of delta (1-4Hz), theta (4-8Hz), and alpha (8-12Hz) 

frequencies, and as a consequence any activity reflected within higher 

oscillatory patterns such as beta (13-30Hz), (low) gamma (30-70Hz), or high 

gamma (70-100Hz) can be obscured. The overrepresentation of alpha band 

activity could have caused some issue if relying only on the broadband analysis, 

as the design of our task required a continuous monitoring of dot motion stimuli, 

with no cues as to the start or end of trials. This may have kept participants 

more engaged or alert due to the need to continuously and actively search for 

coherent motion. On the other hand, some may have felt disengaged due to the 

lack of cues or obvious stimulus changes during each block. Importantly, lack of 

attention has been linked to increased alpha activity (Cooper et al., 2003; 

Herring et al., 2015), which may have obscured information from within other 

frequency bands when taking a broadband approach to our investigation.  
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For this reason, we were motivated to conduct a time-frequency analysis, as 

there is potential to reveal additional complementary information about the PDM 

process unfolding during our audiovisual task. By decomposing the broadband 

signal, we were able to observe whether there were changes to the rate of EA or 

the setting of decision boundaries, and whether those were seen specifically 

within certain frequency bands. Any effects on the rate of EA would be apparent 

in the speed with which activity began to ramp up as the time of decision 

approached (FitzGerald et al., 2015) whereas changes to the setting of a 

decision boundary would be seen in a general modulation in the magnitude of 

that activity at the time of, or shortly before the time of, the response 

(Philiastides, Heekeren and Sajda, 2014; Gherman and Philiastides, 2015). In 

investigating these effects, and comparing the activity revealed in each of our 

sensory conditions, we would be able to observe whether the presence of 

complementary audiovisual information during our motion discrimination task 

had specific effects on EA or the setting of a decision boundary during said task. 

As participants were presented with unisensory trials of each sensory modality (V 

and A) as well as the AV trials, we were also able to observe whether those 

changes were linked more to the addition of one type of sensory evidence over 

the other; that is, if more change in activity was seen in AV trials compared to V 

trials or A trials alone. 

Following insight into broadband analyses of EA and decision boundary effects, 

the use of a time-frequency analysis on PDM activity has been a focus of some 

previous research in the field. Several studies have investigated whether specific 

frequencies of oscillatory activity have individual roles within these PDM 

processes. The coordinated patterns of excitatory and inhibitory activity seen 

during perceptual decisions, and that contribute to the ramping of ERPs seen in 

the previous chapter (O’Connell, Dockree and Kelly, 2012), have been observed 

to lead to gamma-band oscillations (Bollimunta and Ditterich, 2012; Buzsáki and 

Wang, 2012). Further, others have found monotonic increases in gamma activity 

within EA areas (Wang, 2002), suggested in Polanía et al. (2014) to be reflective 

of large collections of neurons in coordinated activity detectable via the readout 

of extracellular electric fields (Buzsáki and Wang, 2012).  



4 98 
 
The 2014 study by Polanía considered the potential neural links between value-

based and perceptual decision making, specifically whether overlap exists 

between the two in terms of the neural computations involved that seem to 

accumulate evidence in favour of one choice or another. To do so, they recorded 

EEG data during a task where trials differed only in the type of decision required 

(preference or perception), while the stimuli and general design remained the 

same. They fit a simple sequential sampling model (SSM) to their behavioural 

results, using this to make trial-specific predictions of EA signals with the EEG 

data, which had been decomposed using a time-frequency analysis. Specifically 

during PDM trials, these predicted EA signals were found in gamma oscillations 

(48-66Hz) within parietal sensors, however in contrast to their findings regarding 

value-based decision making, they did not find any predicted activity from 

sensors located over frontal regions. Further, they found that lateralised 

readiness potentials (LRPs) within motor areas were highly correlated with the 

SSM’s predictions during perceptual decision trials (as well as value-based trials), 

interestingly in areas very similar to the CPP cluster identified during PDM tasks. 

This study suggests key roles of parietal gamma-band activity and motor-related 

LRPs in PDM, in that they reflect and seem to embody EA as the time of decision 

is approached, rather than simply driving the motor response that instigates the 

decision. This is consistent with the relatively recent embodiment hypothesis 

(Rorie and Newsome, 2005; Filimon et al., 2013); whereas previous work 

supported the role of areas such as the dorsolateral prefrontal cortex as an 

abstract decision module, with motor and premotor areas primarily being 

involved in carrying out the outcome of a decision (i.e. a button press), the 

embodiment hypothesis instead suggests that these areas may play a role in the 

formation of the decision itself (Tosoni et al., 2008). Indeed, a recent animal 

multi-neuron recordings paper revealed that, while decision representations in 

sensory and association cortex were sufficient to perform the task, inactivation 

of a downstream premotor area led to gross behavioural impairment (Wu et al., 

2020). 

Further evidence regarding beta-band activity was highlighted in work by Donner 

et al. (2009), in addition to similar findings regarding gamma-band and 

sensorimotor decision activity.  The experimenters recorded MEG activity while 
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participants completed a “yes/no” visual motion task, responding when they 

identified coherent motion within a random dot kinematogram (RDK) stimulus, 

and with trials labelled according to signal detection theory (Green and Swets, 

1966). Using a multitaper spectral analysis (Mitra, 2007) and adaptive spatial 

filtering, they identified gamma- and beta-band activity that predicted the 

choice of participants seconds before the choice itself was made by a button 

press. This activity gradually increased towards both possible choices during 

stimulus presentation, an observation possible due to the lateralisation of each 

response (yes/no choices were made with a left/right hand button press 

exclusively). They also found such choice-predictive activity was linked to the 

temporal integration of gamma-band activity in the motor cortex, suggesting 

that motor planning for each respective choice was the result of continuous 

sensory evidence accumulation as participants viewed the RDK stimuli. Other 

studies have found similar patterns of increasing beta-band activity prior to 

perceptual decision (Siegel, Engel and Donner, 2011; O’Connell, Dockree and 

Kelly, 2012; Wyart et al., 2012). Such beta-band activity has been described as 

reflecting the “temporal and spatial dynamics of the accumulation and 

processing of evidence in the sensorimotor network leading to the decision 

outcome” (Haegens et al., 2011). These findings again support the embodiment 

hypothesis; rather than simply being fed instructions to “push the button” from 

a separate decision module, sensorimotor areas themselves may contribute to 

the decision to do so, i.e., the motor decision is embodied within motor and 

premotor regions. 

After seeing clear changes to ramping activity leading up to the point of 

response in our previous analysis, we decided to investigate whether any further 

frequency-band-specific effects had been missed by using a broadband 

approach, with particular regard to the effects of AV integration on perceptual 

decision making. By reanalysing the electrophysiological data previously 

described in Chapter 3 (see 3.3.4), and decomposing it using a time-frequency 

analysis, we were able to investigate whether the integration of AV evidence 

elicited particular changes to decision making activity within frequency bands 

such as beta or gamma. Specifically, we would investigate changes to oscillatory 

activity linked to decision variables such as ramping activity (EA) or the peak of 

activity shortly before the response (a decision boundary). 
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In order to best frame our approach, we mirrored the analysis of our third 

chapter. Assuming the centroparietal cluster reflects the main generator of the 

relevant decision activity (O’Connell, Dockree and Kelly, 2012; Kelly and 

O’Connell, 2013; Polanía et al., 2014), we decided to decompose it further into 

its constituent frequency bands. We focused our analysis on the centroparietal 

positivity component (CPP) highlighted in our ERP analysis and previously 

identified by O’Connell et al. (2012), as this region seemed to reflect the main 

generator of the relevant decision activity to this task. Further, we decided to 

decompose it into its constituent frequency bands with a time-frequency 

analysis, and investigated whether we would see similar changes to activity near 

the time of the response, here in the form of a ramping up of the power of 

oscillatory activity or in a change to the peak of decision activity, the latter of 

which would suggest a change to the decision boundary. To observe these 

effects, we followed the same method of statistical analysis as in the previous 

chapter, instead comparing the power estimates across time and between 

conditions. In doing so, we would be able to clearly compare and translate any 

effects seen between the broadband and time-frequency analyses. In particular, 

following on from the work of Polanía et al. (2014) and Donner et al. (2009), we 

were interested in changes to beta- and gamma-band power leading up to the 

time of response, and whether the additional sensory evidence provided during 

AV trials would impact on features of perceptual decision making such as 

evidence accumulation or the setting of a decision boundary. Due to the 

additional benefit that AV trials should provide in terms of the strength of 

sensory evidence, one finding we expected to see was on EA, specifically in an 

increased rate of ramping up of beta- or gamma-band power approaching the 

time of decision, with AV trials having a steeper ramp compared to A or V trials 

alone. This would be reflective of a faster rate of EA or increased drift rate, 

potentially due to the additional sensory evidence provided in this condition. 

Further, we expected we might see a modulation of the peak beta- or gamma-

band power shortly before the response, with AV trials having a higher peak than 

A or V trials. This difference would reflect a change in the threshold of sensory 

evidence set to reach a decision.   
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4.3 Materials & Methods 

This study is based on reanalysis of data presented in Chapter 3 (see Materials & 

Methods). All methodological details relating to participants, stimuli and 

behavioural paradigm, as well as EEG data acquisition and pre-processing, are 

identical unless otherwise specified. 

 

4.3.1 Participants 

Thirty-four paid participants (20 female, age range 19-33 years) who took part in 

the experiment were included in the full analysis; thirty-nine completed the task 

however five were discounted due to data collection issues (n=1) and poor-

quality data recording (n=4). All were right-handed, reported normal or 

corrected to normal vision, normal hearing, and no history of neurological 

problems. The study was approved by the college of Science and Engineering 

Ethics Committee at the University of Glasgow (CSE 300150102) and informed 

consent was obtained from all participants. 

 

4.3.2 Stimuli and task 

Stimuli and the behavioural paradigm are described in more detail in Chapter 3 

(3.3.2). In short, participants were asked to attend to a continuous version of 

the classic RDK motion detection task (Kelly and O’Connell, 2013) and 

discriminate motion direction without clear indication as to the start of coherent 

motion periods (target periods). Additionally, we altered the task to include a 

simultaneously-presented continuous auditory stimuli where white noise would 

move to the left or right in parallel with coherent RDK motion. In the place of a 

normal ‘blank’ inter-trial interval (ITI), we presented either incoherently moving 

dots or a static sound, meaning the types of stimuli used in the target period 

were present but did not contain any useful sensory information regarding a 

direction of motion. By presenting an almost undetectable transition between 

the ITI and target period, we aimed to prevent causing ERPs due to the sudden 

change in stimulus presentation. Instead, we changed the information contained 
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within it, which allowed us a relatively undisrupted view of the 

electrophysiological features of the decision making process over time. With the 

task split into 15 blocks, each block presented coherent motion visually (V 

trials), aurally (A trials), or audiovisually (AV trials) exclusively. Trials also 

varied within each block between two motion coherences, therefore varying the 

difficulty of the task within each sensory condition.  

Participants were asked to fixate on a central cross and were informed via on-

screen text of the stimulus type that would contain coherent motion five 

seconds before beginning (i.e. V, A, or AV trials), but were requested to monitor 

all stimuli throughout as while piloting this task we found that some participants 

chose to close their eyes during A trials. They were instructed that, in the 

instance they perceived coherent motion in either a leftward or rightward 

direction, they should indicate the direction as quickly as possible with a button 

press. During each trial, following an incoherent motion interval of 2s, 3.5s, or 

5s, we presented coherent motion for 1.9s. This was a fixed amount of time 

regardless of if participants responded before the end of the target period. The 

target period would then transition into the next ITI and then another target 

period, without an obvious cue or indication as to the boundary between the end 

of the ITI and the start of the target period.  

Prior to the full task as described above, participants completed two shorter 

training tasks with lowered difficulty. This was to ensure participants had a basic 

level of familiarity with the task design and stimuli before moving on to the 

extended full task. Task difficulty was controlled using, for dot and sound stimuli 

respectively, the proportion of dots moving together coherently or the ‘distance’ 

by which the sound stimulus travelled from the centre to the left or right (see 

3.3.2 for further explanation). 

 

4.3.3 EEG data acquisition 

Continuous EEG data were recorded using a 64 channel EEG amplifier system 

(BrainAmps MR-Plus, Brain Products, Germany) with Ag/AgCl scalp electrodes 

placed according to the international 10-20 system on an EasyCap (Brain 
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products GmbH). Channels were referenced to the left mastoid, with a chin 

electrode acting as ground. Data were sampled at a rate of 1000 Hz at an 

analogue band pass of 0.0016-250Hz. To obtain accurate event onset times, 

experimental event codes and participant responses were recorded 

simultaneously with the EEG data using PsychoPy and Brain Vision Recorder 

(Version 1.10, Brain Products, Germany).  

 

4.3.4 EEG data pre-processing 

The data were pre-processed offline (excluding the previously mentioned 

analogue band pass, see EEG data acquisition) using MATLAB (version 2015b, The 

MathWorks, 2015). We applied a 0.5-100Hz bandpass filter to remove slow DC 

drift, retaining higher frequency data for our time-frequency decomposition 

later in the analysis. We also used data recorded in an eye-movement calibration 

task to identify linear artefacts associated with eye blinks and eye-movement, 

using a principal component analysis approach as described in Parra et al.( 2005) 

to remove them. The data were re-referenced to the average of all channels. 

Following eye-movement removal, further trials were removed if participants 

responded so soon after the onset of coherent motion that it was unlikely that 

they were responding to stimulus changes (i.e., trials where the response time 

was faster than 300ms post-stimulus), where amplitudes exceeded 150μV, or 

where participants failed to respond within the target period were removed.  

 

4.3.5 EEG spectral analysis 

The spectral analysis and code were adapted from Gherman (2017), including 

custom code which was edited and restructured for the present work. We 

performed two spectral analyses using the FieldTrip toolbox (Oostenveld et al., 

2011) and custom MATLAB code. These analyses varied only in the tapering 

method used, with all other parameters consistent between the two. Pre-

processed data were segmented into epochs from -1750ms to +1000ms relative 

to the time of response. Each time-frequency decomposition was performed 
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separately per channel and per trial, with windows centred from -1250ms to 

+500ms in 50ms steps, again relative to the time of response. We computed 

time-frequency representations of the EEG signal at 50 frequencies (2-100Hz, in 

steps of 2Hz), using a sliding-window Fourier transform. As in our analysis in 

Chapter 3, we focused on the same six electrodes (CPZ, P1, P2, PO1, PO2, OZ) 

roughly positioned over the centroparietal positivity (CPP) component identified 

by Kelly and O’Connell (2013), however we ran the full spectral analysis as 

described here on data from all 64 electrodes.  

Before the Fourier transform, we multiplied our windows of interest with, 

separately per analysis, a) a single Hanning taper or b) using the Multitaper 

method. We chose this approach as, while the Hanning taper is commonly 

employed and useful for high signal-to-noise ratio situations (i.e. beta-band 

activity), at higher frequencies where the signal-to-noise ratio can be lower (i.e. 

gamma-band activity) a Multitaper method may be preferable due to its ability 

to improve the signal-to-noise ratio (Cohen, 2014). The latter should not, 

however, be used when the frequencies of interest lie within the beta-band as 

the otherwise useful spectral smoothing feature can impede frequency isolation 

in this range. Therefore, by using two separate tapering methods we were able 

to optimise our analyses for our frequency bands of interest; beta (16-30Hz), 

gamma (30-64Hz excluding 50Hz to account for AC power noise), and high 

gamma (64-100Hz). We used the power estimates of one tapering method 

exclusively per frequency band, specifically those of the Hanning taper method 

of beta-band power, and the Multitaper method for both gamma- and high-

gamma-band power. 

For both analyses, we also aimed to find an ideal balance between the spectral 

and temporal resolution of our power estimates (Cohen, 2014) by adapting the 

length of the sliding window per frequency. To do so, we modulated the number 

of cycles per frequency, using logarithmically-spaced numbers of cycles rounded 

to the nearest integer, with the number of cycles ranging from 4 for the lowest 

frequency (1000ms, 2Hz) to 16 cycles for the highest frequency (160ms, 100Hz). 

Specifically for the Multitaper spectral analysis, we computed these 

representations with frequency smoothing set to scale with frequency, three 
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orthogonal Slepian tapers, and the same method of adjusting the sliding window 

length.  

Following the time-frequency decomposition, the resulting single-trial power 

estimates were then averaged across trials within each sensory condition (A, V, 

and AV) and each subject. These values were baseline-normalised relative to the 

power within the period -500ms to -200ms pre-stimulus onset, calculated using 

sliding windows in steps of 50ms for a total of 5 windows, which varied in length 

per frequency as in our main analyses. To do so we ran two other spectral 

analyses locked to the time of stimulus presentation, stored the baseline value 

from these data, and applied them during the baseline correction of the 

response-locked spectral analyses described here. All other parameters were 

kept the same while doing so, meaning that the data were comparable in all 

ways except timing. We averaged the power estimates across all conditions, 

separately per subject and frequency, and by averaging across conditions we 

could increase the signal-to-noise ratio of the baseline calculation that followed. 

This correction was applied to all condition-averaged power estimates on a 

subject- and frequency-specific basis. From here, these data were used in 

further statistical analyses. 

 

4.3.6 Statistical analysis 

Much of the structure of our statistical analysis was based on that of Chapter 3 

(see 3.3.6), with a focus on identifying periods of peak activity, and the ramping 

up or down of said activity, approaching the time of response. In the place of 

ERP data and amplitudes we harnessed power, with the spectral analysis having 

produced power estimates for each of our three conditions (V, A, and AV). 

Throughout our statistical analysis, we separated these power estimates into 

three separate frequency bands; beta-band (16-30Hz), gamma-band (30-64Hz, 

excluding 50Hz to avoid noise from AC power supplies) and high gamma-band 

(64-100Hz). These definitions were based on those of Donner et al. (2009). 

In order to explore the temporal profile of these power estimates, we first 

calculated grand-averaged power over time per frequency band. Specifically, we 
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calculated the mean across conditions, subjects, electrodes from our specified 

cluster, and frequencies within each band, to produce a grand mean of power 

over time per band. In doing so, we were able to specify the times of interest 

for further analysis without the influence of any condition-specific effects. From 

here, we defined specific time points from which the rate of change in power 

appeared to increase considerably, and time windows surrounding the point of 

peak power, producing a ‘start’ time and an ‘end’ window per period of interest 

identified.  

Having defined these time periods, we then extracted subject-specific peak 

frequencies and peak times, separately per condition and frequency band, for 

each period of interest. To do so, we used the condition-specific power 

estimates of each subject, still decomposed into separate frequencies in steps of 

2Hz, and calculated the minimum or maximum power across frequencies within 

our defined windows, depending on whether power had been increasing or 

decreasing prior to this period (i.e. following a period where power was ramping 

down, we calculated the minimum power within the peak window, and where 

power had ramped up we calculated the maximum). This produced the specific 

frequency within each band and per condition of peak power, for each of the 

time points contained within our defined windows (in 50ms steps). We then 

calculated the minimum/maximum of these to produce a single peak frequency 

and time point per subject, per condition. We used this process in full for each 

period of interest, where power increased or decreased rapidly near to the time 

of response.  

We used these peaks to analyse peak power differences between conditions (V, 

A, and AV), specifically whether the complementary sensory information 

provided during AV trials caused power to reach a significantly different level to 

V or A trials before the time of response or otherwise. To statistically compare 

the difference in peak power between conditions, we ran one-way repeated-

measures analyses of variance (ANOVA) which compared V, A, and AV power 

across subjects. Before each ANOVA, we computed Mauchly’s Test for Sphericity, 

and corrected the output of the ANOVA where this assumption was violated. 

Where the ANOVA revealed a significant effect of the condition on peak power, 

we computed pairwise comparisons to identify specifically which comparison of 
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conditions was driving the overall effect. In this case, we adjusted for multiple 

comparisons using the Bonferroni correction. We calculated the statistical 

difference between the peak power of V, A, and AV trials using this method for 

each frequency band and period of interest.  

In a further analysis, we sought to investigate whether the condition had any 

effect on the rate of change in power over time, in other words the slope, as we 

were interested in whether the differences between sensory information 

available in each of the conditions would lead to changes during the decision 

process. These changes could be related to the accumulation of evidence, if 

looking shortly before the time of decision, or potentially in a measure of 

confidence, if focusing on the time period of or shortly after the response. In 

one possibility, if the rate of change in power leading to or just before the time 

of response was greater in AV trials compared to V or A trials, this could suggest 

that the greater amount of evidence present led to increased rates of evidence 

accumulation leading up to the point of decision. To explore this, we calculated, 

on a subject-specific basis, linear fits to the data between the start points we 

had already defined and the subject-specific peak times we had subsequently 

extracted. We also calculated these linear fits using the subject-specific peak 

frequency per band we had identified in the same process. For clarity, for each 

subject, condition, frequency band, and period of interest, we fit a slope to the 

peak frequency of each subject between the time at which power began to 

rapidly increase or decrease and the point at which power peaked shortly 

afterwards.  

Finally, we used the estimate of the slope, m, to compute statistical 

comparisons between the slope estimates of each condition, across subjects, per 

frequency band and period of interest. We used the same approach as in the 

comparison of peak power, computing one-way repeated-measures ANOVAs per 

frequency band and period of interest, with appropriate corrections and pairwise 

comparisons where a more detailed breakdown of the statistical difference 

present was needed. 
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4.4 Results 

4.4.1 Behaviour 

All behavioural results are presented in the Results section of Chapter 3 (see 

3.4.1). Importantly, we showed that subjects were more likely to perceive 

coherent motion during AV trials (7.63% missed trials) compared to V or A trials 

(21.81% and 28.19% of trials respectively; F (1.44, 47.59) = 12.21, p < .001), and 

respond with the direction of perceived coherent motion during the target 

period. This was despite initial intentions to assess decision accuracy as the main 

proxy of decision making during the task, however we found that, once missed 

trials were removed, the average accuracy across the remaining trials was close 

to ceiling. As we were able to demonstrate differences in behaviour with the 

type and amount of sensory information presented, and our ERP analysis 

revealed that there were clear periods of electrophysiological activity up to and 

at the time of response, we argued that the task did capture a decision making 

process. Further, our results were consistent with those of Kelly & O’Connell 

who also reported miss rate as their main behavioural measure of task 

performance. For this reason, this result is comparable with that of other 

literature that demonstrates that audiovisually-informed decisions are more 

accurate than those informed by sound or vision alone (Chen et al., 2011; 

Raposo et al., 2012; Gleiss and Kayser, 2013, 2014).  

 

4.4.2 Spectral analysis 

As the grand-average calculation showed rapid changes in power both 

approaching and shortly after the response in all frequency bands (Figure 4.1), 

we decided to focus our analysis on two periods of interest that we hereafter 

refer to as a pre-response period and a post-response period. The specific 

temporal definitions of these are defined in Table 4.1.  
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Figure 4.1 Temporal evolution of power estimates, relative to the time of response. Mean 
calculated across subjects CCP cluster sensors, conditions, and frequencies (within each 
frequency band). Error bars are standard error of the mean (SEM). Dashed line indicates time of 
response. 

 

 

Period of 

interest 

Frequency 

band 

Beginning of 

slope (ms) 

Peak selection 

window (ms) 

Pre-response Beta -550 -100 : 0 

 Gamma -750 -250 : -50 

 High-gamma -750 -300 : -100 

Post-response Beta 0 +200 : +300 

 Gamma -150 +200 : +300 

 High-gamma -200 +50   : +150 

Table 4.1 Specific timings of slope and peak power per period of interest and frequency band. All 
times are relative to the time of response. 
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Window definition. Firstly, for the pre-response period, we selected ‘start’ 

timepoints at which power seemed to begin ramping down more steeply (Figure 

4.1), with one timepoint defined per frequency band. For gamma- and high 

gamma-band power, there was an extended period over which power ramped 

down quite consistently from close to the start of our data epoch, without a 

clearly-identifiable beginning, so in this instance our chosen time was based 

approximately on the average response time of V and AV trials1 to make sure 

that we were capturing a period consistently within the decision process on each 

trial. For beta-band power, this timing was based on the point at which a clear 

downward slope was evolving, which was also consistent with that which we 

defined in the ERP analysis of the previous chapter. Next, we defined time 

windows that encompassed the period of peak power per frequency band. For 

beta-band power, as clear in Figure 4.1, this was defined as shortly before or at 

the time of response (Table 4.1). However, for gamma- and high-gamma band 

power, this peaked before but not at the time of response, resulting in window 

selections that spanned either side of these peaks but not overlapping with the 

time off response.  

We then defined the timings of the post-response period of notable change in 

power. In opposition to the pre-response period, power ramped up during this 

time, and we later used these peak window definitions to identity the time and 

frequency of maximum power per participant (as opposed to minimum power). 

Beta-band power clearly ramped up sharply shortly after the time of response 

and continued to do so until the end of our selected epoch, therefore this period 

began at the time of response and ‘peaked’ a few tenths of a second later. The 

peak window was defined with potential subject-specific variation in this change 

in power in mind, and to make sure we captured the period of clearest power 

change following the time of response. For gamma-band power, the start of 

change in power was defined as shortly before the response, with the peak 

window consistent with that of beta-band power. Finally, high-gamma band 

power also began ramping up before the time of response, however the peak 

 
1 The average response time of auditory trials was considerably longer than that of visual and 

audiovisual trials, and so to prevent capturing periods of time that would precede the point of 
stimulus presentation in some instances, we based our selection of a start time of ramping 
down to account for this caveat and ensure that the window more consistently reflected the 
decision process. 
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window was defined slightly earlier than for beta or gamma, as it appeared to 

level off shortly after the response itself.  

Using these timings, we extracted subject-specific peak power estimates per 

condition (V, A, and AV) and frequency band (beta, gamma, and high-gamma), 

along with the associated timings and frequency of these peaks. We averaged 

across these subject-specific values to produce an estimate of mean power over 

time, per condition and frequency band (Figure 4.2). We also specifically used 

the peak frequencies produced per period of interest’s respective definitions, 

resulting in two versions of the condition-specific group-averaged power 

estimates per analysis.  

Pre-response period. The resulting group-average power estimates of the pre-

response period are visualised in Figure 4.2a. While all conditions appeared to 

show consistent ramping down in power approaching the time of response, there 

were clear differences between the characteristics of the response during trials 

of each condition. Beta-band power seemed to show the clearest distinction 

between conditions and less variability between subjects, however the same 

shape of response was also present in gamma-band power, and to a lesser extent 

in high-gamma band power with a slower, more gradual downward slope than 

the other two frequency bands. 

The relative power of A trials appeared considerably closer to zero than V and 

AV trials within both beta- and gamma-band power, the former more-so than the 

latter, which could be related to the CPP electrodes used in this analysis being 

relatively close to visual processing areas compared to auditory, which would be 

positioned more laterally. This could also be related to the similarity of V and AV 

trial power if this signal were more reflective of visual inputs to evidence 

accumulation. Referring to gamma-band power, it also appeared that AV peak 

power resided somewhat in between V and A trials. Interestingly, AV trials 

appeared to have relatively lower high-gamma power across almost the whole 

period relative to the time of response, with V and A trials instead mirroring one 

another. 
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A 

 

B 

 

C 

 

D 

 

Figure 4.2 Spectral and statistical analysis results of period of interest leading up to the 
time of response (‘pre-response’ period). Colours indicate conditions as follows: red = visual 
trials (V), green = auditory trials (A), blue = audiovisual trials (AV). A Group mean across subject-
specific peak frequencies per band (beta, gamma, high-gamma) of power estimates locked to the 
time of decision. Peak frequencies included per subject were selected using peak window timings 
specified in Table 4.1. Error bars are standard error of the mean. Dashed line indicates time of 
response. B The same group-averaged power estimates per condition, without error bars. Dashed 
coloured lines indicate the slope of the pre-response period of interest, using the mean slope (m) 
and peak time per condition calculated by averaging across subject-specific linear fits and peak 
times respectively. C Group mean of peak power per condition (larger points on grey line) with 
single-subject scatter. D Group mean across individual slopes (m), calculated in linear fits per 
condition and subject. Larger points are group means per condition. Smaller points scattered 
around these values are single-subject slopes per condition. 
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We examined the statistical differences in subject-specific peak power between 

conditions using three separate repeated-measures ANOVAs, one per frequency 

band, with each condition entered on a single level (Figure 4.2c). We also 

computed pairwise comparisons where a significant main effect was found, the 

results of which were adjusted using the Bonferroni adjustment for multiple 

comparisons, which provided a significance threshold of .017. First, for our 

comparison of beta-band power during this pre-response period of interest, 

Mauchly’s test of sphericity was violated (2(2) 17.04, p < .001), and we 

accounted for this by correcting degrees of freedom using Greenhouse-Geisser 

estimates (adjusted p = .708). We found a significant main effect of sensory 

condition (F (1.42, 46.72) = 30.92, p < .001), with a large effect size as 

calculated using partial eta squared (η2p = .48). Pairwise comparisons showed 

significant differences between A trials and both V (p < .001) and AV trials (p < 

.001). We also found a significant main effect between sensory conditions in 

gamma-band peak power of medium effect size (F (2, 66) = 3.07, p = .014, η2p = 

.12; assumption of sphericity was met, 2(2) 1.08, p = .584). Pairwise 

comparisons found no significant difference between V and A trials, according to 

the applied Bonferroni adjustment (p = .036), and no significant difference 

between A and AV trials (p = .091). Finally, there was a significant main effect 

of sensory condition regarding high-gamma-band power, also of medium effect 

size (F (2, 66) = 4.57, p = .014, η2p = .12; assumption of sphericity was met, 

2(2) 2.28, p = .321). However, this result was further decomposed into non-

significant differences between A and AV trials (p = .041) as well as between V 

and AV trials (p = .080).  

Next, we reviewed the differences in slope calculations between conditions 

(Figure 4.2b). Differences here were overall slightly more subtle, with some 

notable exceptions. Within beta-band power, A trials appeared to show the 

shallowest change in power over time, with V trial power ramping down at a 

much steeper slope, followed by AV trial power. However, AV trial power 

seemed to start from a lower power relative to V trials, which could explain 

some of this difference despite reaching roughly the same peak level. There 

were similar patterns in gamma-band power, with V and AV trial power ramping 

down at similar rates and both more steeply than A trial power. Finally, these 
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differences were mirrored in high-gamma-band power, however overall the rate 

of change appeared to be lower. 

We examined the statistical difference between subject-specific ramps per 

condition and frequency band as we had for peak power, with three repeated-

measures ANOVAs and Bonferroni-adjusted pairwise comparisons where a 

significant main effect was found (again, requiring p < .017). Firstly, our beta-

band comparison violated the assumption of sphericity (2(2) 10.37, p = .006) 

therefore we adjusted our degrees of freedom using Greenhouse-Geisser 

estimates. We found a significant main effect of sensory condition on the slope 

of power, with a large effect size (F (1.57, 51.70) = 6.32, p = .007, η2p = .16). 

Pairwise comparisons revealed that this difference was largely driven by a 

significant difference between V and A trials only (P = .009). Next, we found a 

significant main effect of sensory condition on gamma-band power with a large 

effect size (F (2, 66) = 9.90, p < .001, η2p = .23; assumption of sphericity met, 

2(2) 2.92, p = .232). Pairwise comparisons revealed that A trial slopes were 

significantly different from both V trial (P = .004) and AV trial slopes (P < .001). 

Finally, we found no significant main effect of sensory condition on the slope of 

power within high-gamma-band frequencies (F (2, 66) = 1.52, p = .227; 

assumption of sphericity met, 2(2) 4.90, p = .086). 

Post-response period. Next, we moved on to look at differences between peak 

power in the period of rapid change at or shortly after the time of response. The 

resulting group-average, condition- and frequency-specific power estimates of 

this post-response period are visualised in Figure 4.3. The most notable 

difference when selecting peaks based on post-response power, rather than pre-

response, was that gamma-band power seemed to show differences in power 

across time for AV trials compared to V and A trials (Figure 4.3a). This was in 

comparison to our first analysis where the difference in this frequency band 

seemed to be most prominent between A trials and V/AV trials. The overall 

profiles of beta-band and high-gamma-band power were largely the same, with A 

trial beta-band power substantially closer to zero throughout, and the same 

pronounced difference between AV trial high-gamma power and that of the 

other two unisensory conditions.  
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Figure 4.3 Spectral and statistical analysis results of period of interest at and shortly after 
the time of response (‘post-response’ period). Red = visual trials (V), green = auditory trials (A), 
blue = audiovisual trials (AV). A Group mean across subject-specific peak frequencies per band 
(beta, gamma, high-gamma) of power estimates locked to the time of decision. Peak frequencies 
included per subject were selected using peak window timings specified in Table 4.1. Error bars 
are standard error of the mean. Dashed line indicates time of response. B The same group-
averaged power estimates per condition, without error bars. Dashed coloured lines indicate the 
slope of the pre-response period of interest, using the mean slope (m) and peak time per condition 
calculated by averaging across subject-specific linear fits and peak times respectively. C Group 
mean of peak power per condition (larger points on grey line) with single-subject scatter. D Group 
mean across individual slopes (m), calculated in linear fits per condition and subject. Larger points 
are group means per condition. Smaller points scattered around these values are single-subject 
slopes per condition.  
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We statistically compared, within each frequency band, the differences between 

condition-averaged peak power (extracted from timings specified in Table 4.1), 

using three separate repeated-measures ANOVAs. We also computed pairwise 

comparisons where a significant main effect was found, the results of which 

were adjusted using the Bonferroni adjustment for multiple comparisons 

(significance where p < .017).. First, for our comparison of beta-band power, 

Mauchly’s test of sphericity was violated (2(2) 21.65, p < .001), and we 

accounted for this by correcting degrees of freedom using Greenhouse-Geisser 

estimates (adjusted p = .670). We found a significant main effect of sensory 

condition (F (1.34, 44.25) = 15.58, p < .001), with a large effect size as 

calculated using partial eta squared (η2p = .32). Pairwise comparisons showed 

significant differences between A trials and both V (p < .001) and AV trials (p = 

.001). Despite the appearance of some differences regarding AV trials, we did 

not find a significant main effect of condition on gamma-band peak power, and 

therefore did not follow up with pairwise comparisons (2(2) 7.06, p = .029, 

Greenhouse-Geisser corrected p = .835; F (1.67, 55.10) = 1.77, p = .178). Finally, 

we found a significant main effect of sensory condition on high-gamma-band 

peak power; the assumption of sphericity was violated (2(2) 11.73, p = .003) 

therefore we corrected the degrees of freedom using Greenhouse-Geisser 

estimates (p = .765; F (1.53, 50.50) = 5.62, p = .011). Pairwise comparisons 

found a trend towards a difference in this case between A and AV trials (p = 

.020). 

Next, we compared the linear fits estimating the rate of change in condition-

specific power estimates during our window after the time of response (Table 

4.1), within each frequency band (Figure 4.3b). Beta-band power appeared to 

increase at very similar rates across conditions, with the difference largely 

contained within power differences. However, A trial slopes appeared to be 

shallower than both V and AV trials in both gamma- and high-gamma-band power 

estimates. This roughly mirrored our findings from the pre-response portion of 

the analysis.  

We examined the statistical difference between subject-specific ramps per 

condition and frequency band as we had for peak power, with three repeated-

measures ANOVAs and Bonferroni-adjusted pairwise comparisons where a 
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significant main effect was found. Our beta-band comparison did not reveal a 

significant main effect of sensory condition on the rate of change in power 

(assumption of sphericity met, 2(2) 5.43, p = .066; F (2, 66) = 0.36, p = .698), 

nor did the comparison within gamma-band power (assumption of sphericity 

violated, 2(2) 5.43, p = .005; corrected with Greenhouse-Geisser estimates of 

degrees of freedom, p = .782; F (1.56, 51.61) = .581) or high-gamma-band power 

(assumption of sphericity violated, 2(2) 14.19, p = .001; corrected with 

Greenhouse-Geisser estimates of degrees of freedom, p = .736; F (1.47, 48.60) = 

.155). 

To summarise our main findings: Shortly before the time of response we found 

that beta-band peak power estimates were significantly closer to zero during A 

trials compared to V or AV trials. Though gamma-band peak power estimates 

were affected by the type of sensory motion presented, pairwise comparisons 

could not reveal specific differences between conditions. Similarly, though there 

was a main effect of sensory modality on high-gamma-band peak power, 

pairwise comparisons did not reveal any significant differences between specific 

conditions. Additionally, the rate of change in power was significantly steeper 

during V trials than A trials within beta-band power estimates, and in V and AV 

trials than A trials within gamma-band power estimates. After the time of 

response, we found fewer significant differences overall; beta-band peak power 

was significantly higher during A trials than V and AV trials, though this seemed 

to be due to its overall smaller fluctuations away from zero over the course of 

the trial. Further, high-gamma-band peak power soon after the time of response 

was significantly affected by sensory condition. There were no significant 

differences in the rate of change in power after the time of response within any 

frequency band.   
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4.5 Discussion 

In this chapter, we performed spectral analyses of EEG data recorded as 

participants completed a continuous audiovisual motion decision task. We 

computed time-frequency decompositions and investigated condition-specific 

differences between: a) the rate of change (ramping up or down) in power 

estimates approaching or near the time of response; and b) the subject-specific 

maximum or minimum power at these times. These were each computed within 

beta-band, gamma-band, and high-gamma-band power. In lower frequencies, 

pre-decision differences seemed to be present in that A trial power was closer to 

zero and changed more slowly than other sensory conditions, but in the highest 

frequencies AV trial power was considerably closer to zero than either 

unisensory condition which both reduced much further in power by the time of 

response. Our analysis of the period following the time of response revealed 

similar findings regarding the overall upward shift in A trial beta-band power, 

but it did not replicate the same difference between the change in power of 

these conditions. Selecting peaks based on the post-response period suggested 

that AV trial power was the outlying condition within gamma-band frequencies, 

however this difference was not significant. Nonetheless, as in the pre-response 

period, high-gamma power was significantly affected by sensory condition.  

Overall, while we did find some interesting differences in power between 

conditions, they were not as consistent with some of the literature we described 

in the introduction as we might have hoped. We were most interested in changes 

relating to evidence accumulation, the setting of a decision boundary, or other 

aspects such as confidence which might have been visible as power modulation 

shortly after the time of response (Pleskac and Busemeyer, 2010; Fleming, 

Huijgen and Dolan, 2012; Gherman and Philiastides, 2015), in particular within 

the CPP-related sensors we defined in Chapter 3. This followed discovering 

increased rates of evidence accumulation during audiovisual decision making 

when performing an ERP-centred analysis. Specifically, we were investigating 

whether any of these changes would occur as a result of the presence of 

complementary audiovisual information, as opposed to unisensory visual or 

auditory information alone.  
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As we expected, the temporal evolution of power leading up to the time of 

response did seem to resemble a decision process, with power beginning to ramp 

up or down, peaking shortly before or at the time of response, then beginning to 

return to ‘normal’ after the response. This resembled that of Kelly and 

O’Connell (2013) and Polanía et al. (2014) who also saw this ramping of activity 

associated with a decision making process, and our results here also mirrored 

the ERP analysis of Chapter 3 (see 3.3.6) where we saw a similar evolution. 

Regarding changes to the rate of evidence accumulation in particular, we looked 

for whether the additional information present in AV trials (compared to V or A 

trials) caused an increase in the rate of change of our condition-specific power 

estimates. Our working assumption was that the general increase in power 

leading up to the time of response was indicative of sequential sampling of the 

sensory evidence within the stimuli presented (Forstmann, Ratcliff and 

Wagenmakers, 2016). Further, if more evidence were present in some trial types 

compared to others (i.e. AV trials compared to V or A trials), it is possible that 

the rate of evidence accumulation may have increased (Ratcliff et al., 2016), 

and this difference could have been visible in the steepness of the slope of the 

activity related to evidence accumulation (as in Chapter 3), hence why we chose 

to quantify the slope of linear fits to rapidly-changing power and calculate the 

difference between condition-specific slopes. If AV trials led to an increased 

rate of evidence accumulation compared to trials presenting A or V motion 

alone, the slope of AV trial power may have been steeper, resembling a 

superadditive effect if demonstrably steeper than either of the unisensory 

conditions. This could suggest that the rate of evidence accumulation is 

enhanced by the additional sensory evidence present in AV trials. A major 

distinction in the approaches of these two chapters, however, is that our 

previous ERP-driven analysis was likely primarily driven by lower frequency 

activity, while here we focused on the “motor accumulation” activity reflected 

within higher frequencies (i.e., gamma- and high-gamma-band activity). This 

difference in perspective may not have captured activity in the same way using 

the CPP-related sensors as in the previous chapter. 

However, we ultimately found that AV and V trial slopes were statistically 

indistinguishable within beta-band power changes measured here. This is 

mirrored in the average response times of these trials, which were also 
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comparable (Figure 3.2), further suggesting little difference in the temporal 

profiles of V and AV trial beta-band activity. The average slope of A trials was 

significantly shallower than both V and AV trials, mirroring our finding that 

response times were overall slower during A trials, which suggests a slower rate 

of evidence accumulation. This difference also mirrors our ERP findings in 

Chapter 3, suggesting that, in this task, the auditory condition was largely 

driving the effect.  

As discussed in the previous chapter, some of the uncertainty in our 

measurement of evidence-accumulation-related neural activity may be due to 

the task design. The task deliberately makes the onset of coherent motion 

difficult to detect; no obvious cue to the switch from ITI to the target period is 

provided in any trial, and stimuli remain largely unchanged in appearance 

except for the proportion of dots moving together in any one direction. The 

intention was to reduce the effect of visually evoked potentials on the initial 

stages of evidence accumulation, however it is possible that the extra demand 

on participants to notice this change may have caused motion detection 

processing to be represented to a greater magnitude within the neural activity 

we recorded than expected. Direction discrimination is still an integral part of 

succeeding at the task, however this may have been relatively trivial to do 

compared to detecting that coherent motion was being presented and a 

response was required. The effects of this are most obvious in the high levels of 

direction discrimination accuracy once missed trials are removed, to the extent 

that we had to include all trials and instead look at modulation of the miss rate 

by coherence and sensory condition (and as Kelly & O’Connell did in their 

original analysis). 

One takeaway, however, was that we did not see the same pattern of effect 

when calculating the rate of change of power in our ‘post-response’ period, 

which suggests that the differences we did discover were reliable in themselves 

and not the result of noise; if our analysis had been an unsuitable method to 

measure of the rate of evidence accumulation, there would not have been any 

distinguishable difference between the pre-response and post-response periods.  

Another focus of our analysis was to investigate whether the complementary 

audiovisual information had an effect on peak power around the time of 
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response. A peak in neural activity shortly before a response is made may 

indicate the surpassing of a decision criterion and the enacting of said choice as 

required by the task at hand (e.g. saccade, button press). Other research has 

found modulations in peak power with increased sensory evidence or higher 

levels of confidence (Gherman and Philiastides, 2015). In the case of our 

experiment, we wanted to quantify the difference between condition-specific 

peak power to investigate whether complementary sensory evidence would 

impact on peak power (i.e. AV evidence versus A or V evidence alone).  

Confidence is a key component of many real-world decisions, particularly those 

involving the accumulation of noisy sensory information such as when looking 

and listening for cars during foggy weather. In the face of environmental noise, 

confidence can be reflected in the amount of information required to be 

collected before a decision is made (i.e. the decision criterion). Multisensory 

sources of information are one way of increasing evidence availability, and could 

therefore increase decision confidence, particularly when that information is 

complementary in nature (Keane et al., 2015). For example, if weather 

conditions are poor and it is objectively harder to tell if a car is approaching, 

your confidence in deciding whether to cross a road or not is likely to be higher 

if you can watch and listen for cars, compared to if you had to rely on sight or 

sound alone.  

Our participants knew to anticipate multiple sensory sources of information 

during AV trials as we prompted them with this information before each AV 

block. Knowledge of this upcoming complementary information may have 

impacted on decision confidence, causing participants to approach AV trials with 

more confidence relative to V or A trials. In a study by Gherman and Philiastides 

(2015), levels of confidence seemed to modulate peak power either around the 

time of, or just after, response. Similarly, Philiastides et al. (2014) found scalp 

potentials near the time of response were modulated by the amount of sensory 

evidence available during the trial, and that inter-trial variability in this was 

predictive of behaviour. Due to the differing levels of confidence per condition 

that might have been induced by the varying amounts of sensory information 

present, we might therefore have expected to see increased peak power in AV 

trials compared to V or A trials. We were also inclined to think there would be a 



4 122 
 
difference as we knew that behavioural performance (i.e. miss rate) was 

enhanced during AV trials compared to V or A trials, meaning that there was a 

real difference in performance that might indicate increased confidence. In the 

case of our data, we compared condition-specific peak power both shortly 

before the time of response, specifically within our ‘pre-response’ window per 

frequency band, as well as within our ‘post-response’ window. 

Comparing peak beta-band power revealed similar statistical differences to our 

ERP analysis of Chapter 3; V and AV trial power peaked at comparable levels, 

with A trial power peaking significantly closer to zero. However, in contrast to 

our ERP analysis, the peaks of V and AV power were considerably different 

shortly before the response, with AV trials peaking much closer to zero. In fact, 

when taking into account the similarity of the slope of power in this frequency 

band, there appears to be an overall modulation in high-gamma-band power, in 

that the pattern of change in high-gamma-power is very similar between 

conditions, but the ‘starting points’ for V and AV trials reflect the disparity in 

power seen throughout the trial. This same pattern of results was seen both in 

pre-response and post-response peak power (i.e. where different group-averaged 

power per condition was calculated based on the relative peak times per each 

analysis). Interestingly, gamma-band power almost shows the transition between 

these, with AV trial power appearing to peak closer to zero overall but not 

distinctly enough to be statistically significant. 

It is possible that some of the differences between conditions seen here were 

reflected then in an overall offset in power, rather than strictly within the time 

up to and shortly after the response. To investigate this effect, a future analysis 

might include comparing peak-to-trough power amplitude, rather than 

comparing only the value at peak power itself across conditions. By doing so, we 

would account for overall differences in power that are more consistent across 

the trial, and highlight the change in power potentially caused by decision 

making activity shortly before the response.  

One interesting feature of our power estimates is that we see an overall 

reduction in high-gamma power during AV trials, compared to A and V trial 

power. This could be a desynchronisation effect. Within all frequency bands 

analysed here, the desynchronisation of power seen may be indicative of a 
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contribution from premotor structures. Traditionally, these structures have been 

thought of as primarily executing the result of decision making, with evidence 

accumulation towards a decision criterion encapsulated in parietal and frontal 

regions. This information would then be projected forward to motor and 

premotor areas for instigation of the choice made. However, recent research has 

investigated the role of premotor structures within the decision process itself. 

Mice trained to complete a delayed match to sample olfactory task were 

significantly impaired during context-dependent decisions, but not those were 

context was not needed, following inactivation of downstream anterolateral 

motor cortex (Wu et al., 2020), suggesting it encodes such contextual 

information for the task (as opposed to passively enacting a decision reached 

elsewhere). In a recent preprint (not peer-reviewed at the time of writing) 

involving macaques trained to discriminate between pattern orientations, 

inactivation of the superior colliculus was shown to alter the balance of evidence 

accumulation, as opposed to augmenting sensory or motor processing or by 

biasing evidence before accumulation (Jun et al., 2020).  Other researchers 

found that activity in the posterior medial frontal cortex (pMFC) during value-

based decision making could not be purely explained by the upcoming motor 

response, but included further trial-by-trial decision dynamics, suggesting it 

encoded or embodied decision-related activity itself (Pisauro et al., 2017). 

Importantly, this work also identified a centroparietal cluster linked to decision-

related evidence accumulation, and trial-by-trial variability in signals from this 

cluster explained fMRI responses in pMFC, suggesting a link in decision-related 

activity between these regions. This may contribute to the desynchronisation 

seen in our results, should the pMFC be influencing the activity in the CCP 

measured in our study. 

The decision evidence reflected in these areas seems to be more substantial 

than just ‘echoes’ of the activity taking place in areas that feed forward into 

them, rather they have a fundamental role in the formation of the decision 

itself. Theories of decision making processing hierarchies previously centred 

around a clear distinction between the sensory processing and evidence 

accumulation stages and the motor activity, decision-enacting stages of neural 

activity, however this more recent line of thinking suggests that aspects of the 

decision process are fed forward and embodied in motor areas while decision 
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making takes place. Recent works have begun to attempt to disentangle the 

relationship between these processes (Verdonck, Loossens and Philiastides, 

2020), and importantly the influence of these regions has not been accounted 

for to a sufficient extent in prior sequential sampling works, as the newer 

evidence in favour of the embodiment hypothesis suggests (Ratcliff, 1978; 

Palmer, Huk and Shadlen, 2005).  

Following this, future work might seek to further understand the role of motor 

effectors in decision processing, as characterised by sequential-sampling models, 

by manipulating the motor effector used and assessing how models differ in 

identifying regions linked to decision variables. For example, when participants 

make perceptual decisions using hand movements might be explained by the 

supplementary motor area (SMA), then asking them to perform the same task but 

using saccades might show models shift and link decision variables to the 

superior colliculus of the lateral intraparietal cortex (LIP, as in Jun et al.). This 

would build on Filimon et al. (2013), which disentangled perceptual decision 

making from motor processing by notifying participants of their response method 

(saccade or hand movement) only after stimuli had appeared, meaning 

participants would make a decision before being able to commit to a motor 

response, allowing researchers to look at these two stages of their overall 

response more independently. Repeating a similar experiment but using a 

neurally-informed drift diffusion model might help us to identify the specific 

roles of perceptual and motor processing in these regions, and their links to 

decision variables. 

To conclude, despite some issues with the task design leading to an unexpected 

emphasis on the detection component of perceptual decision making, we were 

able to capture the temporal profile of evidence accumulation within beta, 

gamma, and high-gamma power estimates. The rate of change in power was 

generally greater in trials including visual motion compared to sound motion, 

however due to limitations identified in the previous chapter a more 

appropriately matched stimulus may need to be designed to make these more 

directly comparable, as visual and audiovisual power was often similar during 

decision processing in this task. Future work should also investigate the role of 

motor effectors in decision making more specifically, as the desynchronisation of 
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power seen here may be related to the currently popular embodiment 

hypothesis. 
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5 General Discussion 

 

5.1 Overview 

Perceptual decision making is an absolutely essential part of the way we 

navigate through life and happens so frequently, yet so seamlessly, despite often 

occurring in the presence of high levels of noise. Recognising the face of your 

own child in among a sea of other children leaving school, noticing the doorbell 

ring over the sound of playing music, or selecting the freshest-looking fruit in a 

supermarket; these are all processes that require the collection of sensory 

evidence in favour of one of many alternatives. However, the world is 

multisensory by nature and these decisions are often complicated further, but 

not necessarily hindered, by multiple types of sensory information relevant to 

the decision we are making. In this thesis, we have used the continued analogy 

of the decision to cross a road on a misty night as it exemplifies how mundane, 

but also how essential, the ability to combine such information is. Understanding 

the fundamental neural correlates of this process is therefore incredibly 

important, and even more so when we consider how the dysfunction of this 

process may impact on people’s lives (Huang et al., 2015; O’Callaghan et al., 

2017).  

As discussed in the introductory chapter, there has been significant process 

towards understanding the neural underpinnings of unisensory perceptual 

decision making. Early progress in animal models of decision making implicated 

patterns of neural activity linked to evidence accumulation within specific 

regions of the brain (Gold and Shadlen, 2007). This formed the basis of 

sequential sampling models (Ratcliff, 1978), which have subsequently been used 

to characterise and decompose human behaviour using a wide array of 

perceptual decision tasks (Kelly and O’Connell, 2015). A well-developed field of 

neuroscientific research has now implicated areas such as LIP (Huk, Katz and 

Yates, 2017), the superior colliculus (Ratcliff, Cherian and Segraves, 2003), and 

the DLPFC (Heekeren et al., 2006) in activity relating to evidence accumulation 

and decision formation. At the same time, researchers have worked to 

characterise the process of sensory integration, including feedforward and 
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feedback mechanisms between primary sensory cortices (Kayser and Logothetis, 

2007). However, it is only in recent years that multisensory decision making has 

received as much research attention, therefore relatively little is known about 

the mechanisms underpinning it. In an ongoing discussion, the early integration 

(Schroeder and Foxe, 2005; Ghazanfar and Schroeder, 2006) and the late 

integration hypotheses (Bizley, Jones and Town, 2016) have argued for distinct 

temporal profiles within which sensory information is transformed into a 

resolved decision. In addition, there is still much to learn regarding how 

behavioural enhancements during multisensory decision making are reflected in 

neural activity.  

To this end, the current thesis sought to understand further the neural 

correlates of multisensory decision making, specifically audiovisual decision 

making. We hoped to further characterise the temporal evolution of evidence 

accumulation towards multisensory decision formation, and see whether changes 

or enhancements in this activity can be linked with enhancements in behavioural 

performance.  

 

5.2 Key findings 

In Chapter 2, we provided evidence that post-sensory evidence accumulation of 

visual information was enhanced by the presence of complementary auditory 

evidence. Our approach capitalised on a well-established paradigm that had 

previously been used to investigate decision making behaviour; the face versus 

car task (Philiastides and Sajda, 2006b; Philiastides, Ratcliff and Sajda, 2006; 

Philiastides et al., 2011) uses a linear discriminant analysis to identify activity 

specifically linked to decision making behaviour, and has been successfully 

employed to characterise the temporal evolution of decision processing, 

including perceptual learning (Diaz, Queirazza and Philiastides, 2017), and 

confidence (Gherman and Philiastides, 2015). By adapting this task to investigate 

audiovisual decision making, we could have confidence that the task would be 

properly capturing the relevant activity and form a solid basis for comparison 

between sensory conditions. This was done so successfully, and we were able to 

reveal that complementary sound stimuli enhanced late post-sensory decision 
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processing, but not early sensory encoding. This was in opposition to the early 

integration hypothesis which posits that information from more than one 

modality is combined earlier on in the decision, then a multisensory 

representation of evidence is accumulated towards a decision boundary. Instead, 

here we observed that the additional information changed late decision-

processing, specifically the rate of evidence accumulation, as shown by a 

neurally-informed drift diffusion model. Interestingly, the scalp topography 

associated with this activity suggested that a centroparietal cluster of sensors 

contributed substantially to this process, in a similar fashion to neural 

representations of evidence accumulation demonstrated using other perceptual 

tasks and sensory modalities (O’Connell, Dockree and Kelly, 2012; Kelly and 

O’Connell, 2013; Philiastides, Heekeren and Sajda, 2014). Participants were 

more accurate in their decisions, and trial-by-trial behaviour could be predicted 

well by neural activity within our diffusion model. Overall, our results suggested 

that audiovisual enhancements of decision making activity occurred during post-

sensory evidence accumulation leading up to the time of response.  

Chapter 3 continued to investigate this pattern of neural activity by employing a 

modified version of a task that had been reported to capture the neural markers 

of evidence accumulation (Kelly and O’Connell, 2013) in a way that would 

prevent early visually-evoked potentials (VEPs) from obscuring observation and 

that might address concerns we had regarding how well audiovisual sensory 

information could be mapped onto each other in our previous task. Importantly, 

our analysis focused on a centroparietal positivity (CPP) component, 

documented by Kelly & O’Connell, but that also mirrored the topographical 

pattern of activity we observed in Chapter 2. Our results again revealed 

enhancements in the rate of evidence accumulation during audiovisual trials, 

compared to visual-alone (Drugowitsch et al., 2014), with peak activity also 

reaching a somewhat higher level shortly before the time of response. We 

considered that this may be linked to increased levels of confidence during AV 

trials, however an attempt to retroactively study this was unsuccessful; a task 

that collected more direct reporting of decision confidence (Kiani, Corthell and 

Shadlen, 2014; Gherman and Philiastides, 2015, 2018) would have been a more 

appropriate measure of this. While the modulation of neural activity observed 

during AV trials generally followed the pattern expected, the strengths of these 
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effects were not necessarily as stark as we had considered. Importantly, a 

potential issue with the task discovered during our statistical analysis suggested 

that, while evidence accumulation was indeed being captured, a larger-than-

expected representation of non-decision, detection-related activity may have 

made it harder to capture these effects than anticipated (see 5.3 below for 

further discussion). Nevertheless, our results overall supported the hypothesis 

that visual representations of sensory evidence were enhanced by auditory 

information during post-sensory evidence accumulation, which also supported 

the findings of Chapter 2. 

In Chapter 4, we aimed to further investigate the neural underpinnings of this 

activity by decomposing the broadband signal collected in the 

electrophysiological data of Chapter 3 into specific frequencies of neural 

activity. We sought to understand whether addition information regarding the 

accumulation of multisensory evidence might be contained in oscillatory 

patterns of activity. Using the data collected in Chapter 3, we performed a 

spectral analysis and presented the temporal evolution of beta (Donner et al., 

2009; Siegel, Engel and Donner, 2011; O’Connell, Dockree and Kelly, 2012; Wyart 

et al., 2012), gamma (Wang, 2002; Bollimunta and Ditterich, 2012; Polanía et 

al., 2014), and high-gamma activity over the course of the trial. Unfortunately, 

this analysis failed to reveal the same robust differences in evidence 

accumulation (captured here as a gradual increase in power estimates leading up 

to response time) between AV and V trials. However, we reported what 

appeared to be an overall modulation in high-gamma power during AV trials, 

which may have reflected a contribution from premotor areas; the recent 

embodiment hypothesis posits that evidence accumulation signals can contain 

decision-preparatory activity independent of simple motor preparation (Jun et 

al., 2020; Verdonck, Loossens and Philiastides, 2020; Wu et al., 2020). We 

suggested that the desynchronisation we observed may have been linked to 

representations of decision-related activity in premotor areas during the task. 

We further suggested that future study might employ a perceptual task with 

delayed decision method instructions such as Jun et al., in combination with a 

neurally-informed drift diffusion model, to differentiate areas associated with 

perceptual and motor processing. 
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5.3 Limitations and future directions 

One immediate limitation of the current thesis is its reliance on data recorded 

using EEG alone. While it offers clear advantages in terms of the temporal 

resolution of neural activity it is possible to capture, its ability to capture the 

spatial distribution of activity is relatively limited. Here, our analysis either does 

not specify a region from which to extract activity (Chapter 2) or it does so 

based on the previously established CCP spatial component. This may have 

helped to limit the possibility of capturing irrelevant or confounding activity 

relating to our task, as we did not attempt to select a new region without good 

basis, however it does inherently limit the scope of what we were able to study 

in this case. Various other studies have implicated different neural regions in 

decision processing using methods such as fMRI, however our technique of choice 

meant we were unable to do so with so much clarity here. Future work may 

either use a different neuroimaging technique such as this to capture this 

information in a complementary way, or indeed aim to combine them using 

advanced techniques such as combined EEG/fMRI. From there specific regions 

implicated in evidence accumulation could be identified and the scope of the 

analysis focused in further. Some of our issues capturing a clear difference 

between sensory conditions may be resolved by doing so. 

This change in approach may have been useful when investigating the role of 

premotor regions in oscillatory activity in particular; as we have already 

discussed, there is a growing suggestion that these regions may embody the 

decision signal in a way that is not simply motor preparation, and our results 

have made some suggestion in favour of this. We therefore suggest that further 

study could either aim to repeat a similar analysis but instead using a cluster 

from the premotor region, or indeed identify a task that would be better suited 

to capturing this effect.  

In relation to this, a considerable limitation arose in the task used in Chapters 3 

and 4. It appeared as though, while the task intended to allow an unimpeded 

view of the evidence accumulation process, this requirement to first detect 

coherent motion may have caused a disproportionate (compared to that 
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intended) representation of activity relating to detection earlier on in the trial. 

Our initial intention was to use accuracy, meaning the proportion of trials in 

which participants could successfully discriminate motion direction, As our 

behavioural measure of performance. However, we found that once we 

accounted for missed trials, participants very often performed at ceiling levels, 

suggesting that once they had detected that a coherent motion period was 

occurring, it was relatively trivial to then discriminate which direction that 

motion was travelling in. As we discussed in Chapter 3, this is noted somewhat 

by Kelly and O'Connell in their original paper, and in some subsequent works. 

One solution for this may be to modify the task in a relatively simple way; by 

prompting the participant to the start of a coherent motion period, a short while 

before that time begins, we may still be able to capture an unimpeded view of 

evidence accumulation during the trial, but participants are no longer required 

to perform detection to the same extent. In addition, we previously discussed a 

hope to investigate the effects of increased confidence during audiovisual trials. 

A further change to the task therefore might include asking participants to 

report decision confidence after all or some trials, and using this information to 

investigate whether increased confidence is indeed related to enhanced 

evidence accumulation in the same way we found audiovisual trials 

demonstrated here.  

Finally, in a small but important note, my progress in compiling and reporting on 

the data collected for this thesis, as well as an up-to-date account of the 

literature surrounding it, was significantly disrupted by the COVID-19 pandemic. 

This has been a difficult period for almost everyone, however I feel that the 

specific circumstances around the thesis write-up portion of a PhD are less than 

complementary to additional major causes of isolation and stress (as well as 

others that had already occurred in my life). I was fortunate, however, to have 

completed data collection and the majority of my analysis before major changes 

began. 
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5.4 Conclusion 

In summary, the current thesis has presented an account of the temporal 

evolution of evidence accumulation related activity during multisensory decision 

making, specifically audiovisual discrimination. It has shown that enhancements 

to visual representations of evidence during post sensory decision-making and 

evidence accumulation occur and are predictive of behavioural enhancements. 

Some of these effects were corroborated by subsequent study in Chapter 3, 

which showed a clear enhancement of evidence accumulation throughout the 

trial when complementary auditory evidence is provided. This was largely in 

support of previous literature demonstrating this effect, in opposition to those 

suggesting that the integration of audiovisual information during decision making 

occurs earlier on (i.e. the early integration hypothesis). An attempt to 

decompose the broadband signal of Chapter 3 into its constituent frequencies 

was less successful, however did highlight further opportunity for study in areas 

such as the role of premotor regions in the embodiment of evidence 

accumulation signals. Our results are a significant step towards understanding 

the temporal evolution of the neural correlates of multisensory perceptual 

decision making, and support the representation of this activity within 

centroparietal regions, however further study is needed to show the role of 

other areas such as premotor regions in the embodiment of evidence 

accumulation. 
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