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Summary 

Colorectal cancer remains the 2nd most common cause of cancer-related mortality worldwide and 5-

year survival is only ~60%. The current method of staging disease, TNM staging, was devised in the 

1940s, and it is recognised this could be improved (1). Research has focused on identifying new ways 

to segregate disease for prognostic information, and to predict response to different types of therapy. 

This culminated in the development of the consensus molecular subtypes in 2015 from an 

international consortium (2). The CMS consist of 4 groups: immune, canonical, metabolic, and 

mesenchymal, based on transcriptomic and mutational profiles. CMS are devised from bulk 

sequencing data and are not solely focused on the tumour compartment. To combat this, the cancer 

cell intrinsic subtypes, CRIS, were developed in 2017, based specifically on the underlying biology of 

tumour cells, to classify patients into 1 of 5 groups, CRISA-E (3-5). Despite the advancement in our 

understanding of patient heterogeneity and prognostic information gained from CMS and CRIS, both 

methods require complex and costly laboratory processes not yet feasible for routine diagnostics.    

A more clinically relevant tool for segregating patient disease, Glasgow Microenvironment Score 

(GMS), was devised by Park et al in 2015, which only requires a single H&E-stained resection (5-7). 

Tumours are assessed for level of inflammatory infiltrate via Klintrup-Mäkinen grading and stromal 

invasion by tumour stroma percentage, to form 3 independently prognostic groups: GMS0 immune, 

GMS1 intermediate, and GMS2 stromal (6, 7). Patients in the immune group observe the best 

prognosis in terms of cancer-specific survival (CSS), and those with stromal-rich tumours have the 

worst outcomes (6). In 2017 Roseweir et al built on the GMS through phenotypic subtyping, which 

splits GMS1 patients into 2 groups based on Ki67 proliferation index. This resulted in formation of 

immune, canonical, latent and stromal histological groups (8). These two subtyping methods are 

independently prognostic, could easily translate to clinical practise and therefore represent exciting 

strategies for segregating disease for prognosis and ultimately guiding treatment options. There is 

currently limited evidence as to how GMS or phenotypic subtypes could be utilised to predict 

response to specific therapies, and the underlying biology driving phenotypes is unknown.  

This thesis aimed to address this firstly by validating histological subtyping in stage I-IV retrospective 

CRC cohorts, and exploring a potential mechanism driving phenotypic differences observed in GMS 

and phenotypic subtypes. It could be hypothesised that the observed histologic differences are driven 

by cancer-associated dysregulation of specific cellular signalling pathways. IL6/JAK/STAT3 

represents one such signalling pathway implicated in CRC development and progression in the 

literature (9). To investigate this, a CRC tissue microarray (n=1030) with GMS/phenotypic subtyping 

data was stained via IHC for members of IL6/JAK/STAT3 signalling. Staining was scored semi-

quantitatively and related to outcome, clinicopathological features and tumour phenotype. High 
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expression of key pathway members, IL6R, JAK2 and pSTAT3tyr705 were associated with significantly 

reduced CSS, particularly in GMS2 stromal subtyped patients.  

Next, mutational (n=285), and transcriptional profiling (n=100) were performed on a subset of these 

patients to investigate the underlying biology driving GMS phenotypes and activated STAT3 at the 

protein level. There were no clear mutational patterns driving GMS, however patients with high 

pSTAT3tyr705 protein observed a significantly higher frequency of MAP2K mutations. In terms of 

transcriptomics there were no differentially expressed genes associated with pSTAT3tyr705 phenotypes, 

however 5 differentially expressed genes were observed in GMS1 compared to GMS0/2 patients. 

Gene set enrichment analysis identified a strong inflammatory component to these genes that were 

downregulated in GMS1 patients. These data represent a step towards understanding the mechanisms 

driving tumour phenotypes, however the study was underpowered and larger cohorts should be 

utilised to validate findings and uncover other genomic/transcriptomic patterns. 

Data from the IHC studies highlighted IL6/JAK/STAT3 as a promising therapeutic target, specifically 

in patients with stromal-rich tumours (GMS2). There are already a number of drugs which target 

intermediate pathway members (JAK1/2/3) approved for use in inflammatory disorders such as 

rheumatoid arthritis (10). The next aim of this thesis was to perform preliminary drug screening 

experiments using 2 repurposed Jakinibs, Ruxolitinib and Tofacitinib, in 7 distinct 2D CRC cell lines. 

HCT116, SW620 and SW480 lines showed the highest reduction in cell viability following treatment, 

which was of interest as all 3 are classified as stromal-rich CMS4 via their transcriptomic profiles 

(11).  

It is now widely accepted that 2D cell lines are not representative of patient disease, therefore 3D 

patient-derived tumouroids were established and used to screen JAK inhibitors. H&E and Ki67 IHC 

was performed on the diagnostic specimen from which organoids were devised and utilised to 

establish GMS and phenotypic subtypes to assess subtype relationship to drug response. The organoid 

lines observed to have the greatest reduction in cell viability following JAK inhibition were from 

organoids derived from GMS2/Stromal tumours. This observation requires further validation in a 

larger independent cohort of organoids, and future work should include developing co-culture models 

to further recapitulate human disease.  

In summary, data from this thesis have validated histological scoring of CRC and identified a role for 

IL6/JAK/STAT3 signal transduction in stromal dense tumours. Preliminary data from preclinical cell 

line and organoid work suggested that inhibiting STAT3 activation may be a promising, novel 

therapeutic approach for GMS2/stromal subtyped patients. These GMS2 patients observe the worst 

clinical outcomes and therefore require new treatment options. Ruxolitinib and Tofacitinib are already 

FDA approved for inflammatory disorders, and therefore they may be easily translated into clinical 

trials for CRC should validation work prove successful. 
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1.1 Colorectal cancer incidence  

Colorectal cancer (CRC) is the 2nd most common cause of cancer-related death worldwide and 

incidences are still rising amongst low- and middle-income countries (12). In the UK, overall 

incidence of CRC has remained relatively stable between 2002 and 2014, at around 8.37 per 100000 

in 2014 (13). In Scotland, between the years of 1997-2017, there were 77,262 CRC diagnoses (14). 

The introduction of the Scottish Bowel Screening programme in 2007 resulted in adults aged between 

50-74 being offered a faecal occult blood test (FOBT) once every two years to improve earlier 

detection (15). Uptake of FOBT is approximately 55% of individuals offered (16). Since screening 

was introduced, overall incidence has fallen however rates amongst young people (<50 years old) 

have increased from 5.3 per 100,000 in 2000 to 6.8 per 100,000 in 2017 (14). The overall 5-year 

survival rate for patients with CRC is ~60%, however this varies with respect to stage at time of 

detection (17). 

1.2 CRC development and pathogenesis  

Several genetic and environmental factors cause an individual to be more at risk of developing CRC. 

Modifiable risk factors for CRC include high body mass index, high consumption of red meats, low 

physical activity, age, smoking status, and poor diet (17, 18). Non-modifiable risk factors include 

comorbidities such as inflammatory bowel disease and genetic predisposition, namely hereditary 

CRC. There are two main types of hereditary CRC: familial adenomatous polyposis and hereditary 

non-polyposis colorectal cancer (19).  

1.2.1 Hereditary CRC 

1.2.1.1 Familial Adenomatous Polyposis  

Familial Adenomatous Polyposis (FAP) is autosomal dominant and occurs as a result of inherited 

germline truncating mutations in the adenomatous polyposis coli (APC) gene on chromosome 5q21 

(19). Patients with FAP have a 100% lifetime risk of developing CRC and make up less than 1% of 

total CRC cases (19).  

1.2.1.2 Hereditary non-polyposis colorectal cancer 

Hereditary non-polyposis colorectal cancer (HNPCC) or lynch syndrome is an autosomal dominant 

condition that arises as a result of germline mutation in at least one of 4 mismatch repair genes 

(MMR) genes; MLH1, MSH6, PMS2, MSH2 (20). HNPCC accounts for 1-3% of total CRC cases 

worldwide (20).  
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1.2.2 Sporadic CRC 

Colorectal cancers occur sporadically in over 95% of cases. CRC is heterogeneous and the 

mechanisms of pathogenesis are complex. Development and progression are characterised by 3 main 

pathways of genetic instability, including the chromosomal instability pathway (CIN), CpG island 

methylation and microsatellite instability.  

1.2.3 Signet ring CRC 

Signet ring carcinoma is an extremely rare form of CRC that accounts for <1% of cases (21). It is 

characterised by distinct ring-like pathology whereby mucinous deposits push the tumour cell nuclei 

outwards (21). Signet ring carcinoma confers very poor prognosis, in part due to diagnoses at late-

stage disease because of late-onset symptoms (21). 

1.2.4 Chromosomal Instability Pathway  

Approximately 65-75% of all CRC cases are thought to occur via the CIN pathway (22). The multi-

step process was devised by Vogelstein in 1990 and the first stage of the pathway involves 

inactivation of the APC gene (Figure 1.1). APC loss of function is associated with formation of early 

adenoma (23) (Figure 1.1). This is followed by activating mutations in the KRAS, which leads to 

larger adenoma formation (23) (Figure 1.1). Accumulation of alterations in TGFß, PIK3CA and TP53 

signalling pathways ultimately cause development of carcinoma (23)  (Figure 1.1).  
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Figure 1.1 Chromosomal instability pathway. Diagram showing sequence of mutation 

accumulation resulting in formation of adenoma to carcinoma in the Vogelstein model of CRC 

development. Loss-of function mutation in the APC gene leads to formation of an early adenoma. 

Activating mutation in the KRAS gene then subsequently leads to development of a large adenoma. 

Progression to carcinoma occurs after accumulation of PIK3CA, TGFβ and TP53 mutations.  

1.2.5 Microsatellite Instability  

The normal process for repair of DNA replication errors is called mismatch repair (MMR). 

Microsatellite instability (MSI) pathway refers to alterations or deletions in DNA repeats caused by 

mutations in ≥1 MMR gene (MSH2, MSH6, MLH1, PMS1 and/or PMS2). The most common reason 

for MSI in CRC is epigenetic silencing of the MLH1 promoter. Diagnoses of MSI is performed via 

polymerase chain reaction using the Bethesda panel of genes: BAT-25, BAT-26, D2S123, D5S346 

and D17S250 (24). Cancer with instability at ≥2 of these genes is considered MSI-h (24). IHC is used 

to detect MMR deficiency at the protein level by staining for MSH2, MLH1, MSH6, PMS1 and 

PMS2(25). Patients with MMR deficiency will show complete loss of protein expression of at least 

one of the four markers within the tumour cell nests (25). There is a high degree of concordance 

between MSI/dMMR cases identified by each technique (25). MSI-h/MMR deficiency leads to 

tumour characterised by mucinous, poorly differentiated phenotypes with high levels of tumour-

infiltrating lymphocytes. This increase in immunogenicity is coupled with improved clinical outcome 

and improved response to immunotherapies (26). MSI accounts for 10-15% of sporadic CRC cases 

(27). 
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1.2.6 CpG island methylation  

CpG (cytosine preceding guanine) islands are found in the promoter regions of ~50% of all genes 

(27). CpG dinucleotides tend to be methylated in normal cells and in cancer become unmethylated or 

hypermethylated (27). This results in promotion of tumourigenic genes and patients who exhibit these 

epigenetic changes are classified as CpG-island methylate phenotype (CIMP) (27). Approximately 

30-40% of proximal colon cancer patients observe CpG methylation, and 3-12% of distal colon and 

rectal cancer patients display CIMP (28). Patients with this phenotype tend to have worse clinical 

outcomes when coupled with microsatellite stable (MSS) disease (29).    

1.3 Colorectal cancer pathology 

1.3.1 Anatomy  

The bowel is a large tubular organ, which consists of connective tissue and muscular walls with an 

inner mucosal layer (30). Its main functions surround absorption of water and nutrients, and formation 

of stool. The most proximal portion of the colon is the cecum which is joined to the ascending colon 

(30) (Figure 1.2). At the hepatic flexure the ascending colon turns ~90 degrees to become the 

transverse colon (30) (Figure 1.2). This is generally the largest part of the bowel in length and 

terminates at the splenic flexure where at a 90 degree turn it becomes the descending colon (30) 

(Figure 1.2). The sigmoid section of the colon joins the descending colon and the rectum (30). The 

rectum is the terminal portion of the large intestine which is responsible for temporary storage of stool 

and connects to the anus (30) (Figure 1.2).  
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Figure 1.2 Anatomy of the bowel. Illustrative diagram showing the different anatomical areas of the 

large intestine. The proximal part of the colon is the cecum which leads to the ascending colon and 

turns at the hepatic flexure to form the transverse colon. The splenic flexure joins the transverse colon 

to the descending colon, which ultimately leads to the sigmoid colon, rectum and anus. 

1.3.2 Sidedness 

The anatomy of the bowel is important in terms of CRC, as there are notable differences in disease 

depending on the precise location of tumour formation. Broadly, CRC tumour location can be divided 

into 3 subclasses; right-sided, left-sided and rectal tumours (Figure 1.2). Right-sided tumours form in 

the ascending colon and proximal 2/3rds of the transverse colon. Left-sided tumours originate in the 

descending and sigmoid colon (31). Rectal tumours originate in the most distal part of the bowel, the 

rectum. Right-sided tumours tend to have the worst prognosis and are associated with unfavourable 

clinical characteristics such as increased systemic inflammatory response (32, 33).  

1.3.3 TNM Staging  

Tumour Node Metastases (TNM) staging is the current method used clinically for segregating disease, 

indicating how advanced the cancer is, predicting prognosis and guiding treatment regimens (34). T 

stage is determined by the level of tumour spread through the bowel wall, as outlined in Table 1. 
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Patients with no tumour detected are T0, when the tumour has grown into the submucosa tumours are 

classified as T1 and if the tumour has grown through the muscularis propria T2 is assigned. T3 occurs 

classification is when the tumour has grown into the subserosa or peritoneum and T4 is assigned if the 

tumour has invaded into different organs from the primary site, or perforation into the visceral 

peritoneum is present (Table 1.1). N stage is based on the presence of cancer within lymph nodes. If 

there are no lymph node metastases this is classified at N0, if there between 1 and 3 lymph nodes with 

metastases this is N1 and patients with ≥4 affected nodes are classified as N2 (Table 1.2). M stage is 

based on the absence (M0) or presence (M1) of any distant metastases (Table 1.3). The most common 

site of metastases for colorectal cancer is the liver. Overall TMM stage ranges from I-IV (Table 1.4). 

TNM stage I patients are T1N0M0 or T2N0M0 and TNM stage II are either T3N0M0 or T4N0M0 

(Table 1.4). TNM stage III patients are classified as any T stage, N1 M0 or N2M0 (Table 1.4). 

Patients are categorised at TNM IV if there is presence of any metastases- Any T, Any N M1 (Table 

1.4). Patients at TNM stage I have the best prognosis and stage IV patients observe the worst 

outcomes. TNM staging was first devised in the 1940s and is now considered to be outdated as there 

is no account for tumour heterogeneity and its inability to effectively guide therapeutics (22). More 

advanced prognostic measures and ways to predict optimal therapy regimes for patients needs to be 

translated into routine clinical practise.  

T Stage Clinical Description 

T0 No primary tumour detected  

T1 Tumour grown into submucosa  

T2 Tumour grown into muscularis propria 

T3 Tumour grown into subserosa or into peritoneum  

T4 Tumour invaded into other organs or perforated through the 

visceral peritoneum  

Table 1.1 T stage. Table outlining the clinical description for each colorectal cancer T stage with 

reference to T0, T1, T2, T3 and T4 describing various stages of tumour growth through the bowel 

wall. 

 

N Stage Clinical Description  

N0 No lymph node metastases  

N1 1-3 lymph nodes with metastases  

N2 ≥4 lymph nodes with metastases  

Table 1.2 N stage. Table outlining the clinical description for each colorectal cancer N stage. This is 

a classification system based on the number of lymph nodes with detectable metastases. 

 

M Stage Clinical Description  

0 No distant metastases present 

1 Distant metastases present  

Table 1.3 M stage. Table outlining the clinical description for each colorectal cancer M stage, with 

M stage 0 patients showing no presence of distant metastases, and M stage 1 patients with distant 

metastases present. 
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TNM 
Stage 

Classification 

I T1 N0 M0, T2 N0 M0 

II T3 N0 M0, T4 N0 M0 

III Any T N1 M0, Any T N2 M0 

IV Any T Any N M1 

Table 1.4 TNM stage. Table outlining how TNM stages are determined based on the combination of 

T stage, N stage and M stage to form 4 prognostic groups; TNM stages I-IV. 

1.3.4 Dukes staging 

Dukes staging is a similar method to TNM staging devised in 1932 specifically for rectal cancer, but 

is now known to also be prognostic in colon cancers (35). Dukes’ stages include 4 patient groups: A, 

B, C and D (36). Dukes stage A is assigned if the patient’s tumour is confined to the inner lining of 

the bowel and stage B occurs if the cancer has grown into the muscle wall. Dukes stage C is 

characterised by spread to lymph nodes and stage D encompasses patients with metastatic spread of 

the primary colorectal tumour(36). TNM staging is currently the preferred method, over Dukes, for 

grading disease in the clinic. 

1.4 Current therapeutic approaches in CRC 

1.4.1 Surgery 

The primary treatment option for CRC patients with no distant metastases is surgical resection of the 

affected area. This can involve local resection for smaller early-stage tumours or can involve removal 

of larger parts of the bowel in procedures such as right or left hemi-colectomies. For rectal cancer 

there is evidence that total mesorectal excision can be beneficial in terms of preventing recurrence and 

improving prognosis (37).  

1.4.2 Chemotherapy  

In current clinical practise, TNM staining is utilised to determine which patients are offered 

chemotherapy. Regimes can be neoadjuvant (before surgical procedure) or adjuvant (post-surgical 

procedure). Patients with rectal cancer generally receive neoadjuvant short course radiotherapy or 

neoadjuvant long course chemoradiotherapy (cRT) and may receive additional adjuvant 

chemotherapy. Colon cancer patients are less likely to receive any radiotherapy but may be offered 

adjuvant chemotherapy if they have high risk TNM stage II or stage III disease. There is a lack of 

biomarkers used to guide which chemotherapy patients should receive and more research needs to 

focus on identifying better disease segregation methods to predict the best course of action. 
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The main chemotherapeutic agents utilised for CRC (stage III) are fluoropyrimidine with oxaliplatin 

(38). These can be administered intravenously as FOLFOX (bolus and infused fluorouracil with 

oxaliplatin) or orally via the CAPOX regime (capecitabine and oxaliplatin) (38). Chemotherapy is 

generally given over a 6-month period, however results from the recent SCOT non-inferiority clinical 

trial have provided evidence that 3-month regimens may be equally as beneficial and result in fewer 

adverse side effects (38). FOLFIRI (Folinic acid, fluorouracil, and irinotecan) is also being 

increasingly used for CRC, in the adjuvant setting for colon cases and both pre- and post-operatively 

for rectal cancer (39).  

1.4.3 Radiotherapy 

Radiotherapy is only used rarely for downsizing advanced colon cancer cases preoperatively, 

however, is often used as neoadjuvant therapy in rectal cancer for downstaging purposes and to 

improve surgical margins (40). The improvement in magnetic resonance imaging (MRI) for rectal 

cancer diagnoses and staging has assisted with identifying patients at more at risk of local recurrence 

and thus likely to benefit from preoperative radiotherapy (40). Other than TNM staging there are no 

biomarker methods to identify which patients will benefit most from preoperative cRT. There are two 

main Neoadjuvant courses of RT used for rectal cancer, short and long course. Short course or 

hypofractionation generally involves administration of 5 fractions of RT over 1-2 weeks followed by 

up to 12 weeks of 5 cycles of chemotherapy. Long course RT or hyper fractionation involves 

administration of 28 fractions over a 5–6-week period followed by up to 12 weeks of 4 cycles of 

chemotherapy. There is now evidence that cRT may provide benefit to the patient not only as a 

standalone treatment but may also prime aspects of the TME to produce a better response to targeted 

therapies.     

1.4.4 Targeted therapies and immunotherapy  

The use of biologic therapy for CRC is restricted to stage IV metastatic disease (mCRC). Epidermal 

growth factor receptor (EGFR) neutralising antibodies such as cetuximab are approved for use in 

stage IV KRAS wild-type patients (41). In clinical trials cetuximab stabilised disease in 32-52% of 

patients (41). Anti-angiogenic biologic Bevacisumab which targets vascular endothelial growth factor 

receptor (VEGFR) was approved for mCRC in 2004 and produces a survival benefit in patients who 

have their primary tumour resected (42). More recently there has been a focus on immunomodulatory 

checkpoint inhibitors which has culminated in the approval of programmed death cell protein 1 (PD1) 

inhibitors Pembrolizumab and Nivolumab for refractory MMR deficient mCRC in 2017 (43). Recent 

phase II clinical trials investigating combined inhibition of programmed death ligand 1 (PDL1) and 

Cytotoxic T lymphocyte-associated protein (CTLA4) with Durvalumab and Tremelimumab, 
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respectively, has demonstrated survival benefit in both MSS and MSI disease (44). There are ongoing 

phase II clinical trials (PRIME-RT, NCT04621370 and DUREC, NCT04293419) investigating the 

immune priming effect of radiotherapy to enhance response to Durvalumab in rectal cancer patients. 

There are also promising results from the PANDORA (NCT04083365) phase II study which is 

ongoing but has reported limited toxicity and good rates of complete pathological responses thus far 

(45). Although the advent of targeted therapies has profoundly revolutionised treatment of CRC, 

further research is required to translate biological therapy to precision medicine approaches for earlier 

TNM stage patients.  

 

1.5 CRC subtyping  

1.5.1 Genomic and Transcriptomic CRC subtypes  

In order to segregate CRC to better predict prognosis and response to specific treatment regimens 

there has been a vast body of research focused on developing better subtypes of CRC. This 

culminated in the identification of the Consensus Molecular Subtypes (CMS) by Guinney and 

colleagues in 2015 (2). CMS were devised from a consortium of six independent research groups with 

transcriptomic data on over 3000 CRC patients resulting in the identification of four distinct 

prognostic groups. The main characteristics of the CMS subgroups are shown in table 1.5. CMS1, the 

immune subtype, is characterised by a strong inflammatory component, MMR proficient disease, and 

hypermutation. CMS2 canonical patients’ tumours are characterised by MYC and WNT dysregulation 

and the CMS3 metabolic group have tumours with altered metabolism. CMS4, the mesenchymal 

subtype, is characterised by angiogenesis, stromal invasion and TGFß signalling. There is evidence 

that CMS can predict response to current therapies, for example CMS1 patients are most likely to 

respond to immunotherapy (Table 1.5). CMS2 patients respond best to anti-EGFR such as cetuximab 

and FOLFOX (46). CMS3 patients also respond to FOLFOX and CMS4 patients have shown most 

promising results when treated with FOLFIRI (46). CMS1 patients with strongly immunogenic 

tumours observe the best prognosis and patients classified as stromal CMS4 are likely to have poor 

prognosis (Table 1.5) (46). The development of the CMS was a huge step forward for CRC precision 

medicine and understanding of disease heterogeneity. However, the techniques required to determine 

an individual’s CMS are expensive, time-consuming, and not feasible for routine diagnostics.  

 

 

http://clinicaltrials.gov/show/NCT04083365
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 CMS1  

Immune 

CMS2 

Canonical 

CMS3 

Metabolic 

CMS4  

Mesenchymal 

Characteristics MSI-H 

BRAF V600E 

Strong immune 

component  

TP53 

Wnt, Myc, Src 

KRAS 

Dysregulated 

metabolism 

EMT, TGF-β 

CAFS 

Prognosis Best Intermediate Intermediate Worst 

Therapeutics  Immunotherapy  EGFR 

FOLFOX 

FOLFOX FOLFIRI 

Table 1.5 CMS classifications of disease. Table outlining the characteristics of the consensus 

molecular subtypes of colorectal cancer and relative survival predication. CMS1, the immune subtype 

is characterised by MSI-H disease, BRAF mutation, influx of immune cells, good prognosis and good 

response to immunotherapy. The canonical CMS2 subtype consists of patients with TP53, Wnt, Myc 

and Src mutations, and these patients have intermediate prognosis but show a good response to 

EGFR inhibitors and the FOLFOX chemotherapy regime. CMS3 Metabolic patients generally have 

KRAs mutations, dysregulated cellular metabolism, intermediate prognosis and benefit most from 

FOLFOX chemotherapy. The mesenchymal/stromal group are characterised by epithelial to 

mesenchymal transition, TGF-β, presence of CAFs, worst prognosis and respond preferentially to 

FOLFIRI chemotherapy.  Modified from Buikhuisen et al, 2020 (46)  

Subsequently in 2017 the cancer-cell intrinsic subtypes (CRIS) were developed in patient-derived 

xenografts (PDX) and consist of 5 patient groups: CRIS-A-CRIS-E, as shown in Table 1.6 (3). PDXs 

are defined as models which involve transplanting human tissue (tumours) into mice. The authors 

argue that by utilising PDX models they were able to exclude stromal cell signatures and focus solely 

on tumour cell transcriptomics/genomics, by removing the murine stromal compartment from 

analyses. CRIS-A consists of tumours that are mainly either BRAF mutated and MSI, or KRAS 

mutated, and MSS. CRIS-B consists of tumours with dysregulated TGFß signalling, specific to the 

tumour compartment and therefore differs from CMS4 bulk data. The main characteristic of CRIS-C 

tumours is responsiveness to anti-EGFR therapy. CRIS-D tumours exhibit IGF2 overexpression and 

CRIS-E patients generally have KRAS mutated and Paneth cell-like phenotype tumours. Patients 

classified as CRIS-D observe the best clinical outcomes, and patients in the CRIS-B group have the 

worst survival outcomes. Like CMS, CRIS subtyping has some disadvantages, as the transcriptomic 

and genomic techniques are not yet used in routine diagnostics. Additionally, use of PDX models may 

have introduced bias into the signatures. However, CRIS subtyping is more likely than CMS to 

predict concordant results when multiple tumour samples are analysed from the same patient (4). 

CRIS focuses specifically on tumour epithelium areas and therefore combats intra-tumour 

heterogeneity better than CMS (4). 
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 CRIS-A CRIS-B CRIS-C CRIS-D CRIS-E 

Characteristics MSI-H or 

BRAF 

TGFβ 

dysregulation 

in tumour 

TP53 IGF2 

overexpression 

KRAS 

Prognosis  Intermediate Worst Intermediate Best Intermediate 

Therapeutics  - - Anti-EGFR - - 

Table 1.6 CRIS classifications of disease. Table outlining the characteristics of the cancer cell 

intrinsic subtypes of colorectal cancer and relative survival predication. CRIS-A classified patients 

are generally MSI-H or BRAF mutated with intermediate prognosis. CRIS-B patients observe 

dysregulated TGF-β signalling in the TME and have the worst outcomes. CRIS-C patients have 

mutations in TP53, intermediate prognosis and respond to EGFR therapy. CRIS-D categorised 

patients have overexpression of IGF2 and the best clinical outcomes. CRIS-E patients generally have 

KRAS mutations and intermediate prognosis. Modified from Buikhuisen et al, 2020 (46) 

1.5.2 Histological CRC subtypes  

To identify more clinically translatable segregation of CRC disease, Park et al devised Glasgow 

Microenvironment scoring (GMS) in 2015 (6). Using a simple Haematoxylin and Eosin-stained 

section, patients can be assigned to one of three independently prognostic GMS groups based on 

inflammatory infiltrate and stromal invasion. GMS groups are outlined in Table 1.5 and include 

GMS0, immune, GMS1, intermediate and GMS2, stromal (Table 1.7). The inflammatory infiltrate is 

assessed by Klintrup Mäkinen grading (KM) which is an established pathological measure of the level 

of immune cell presence at the invasive margin (7). Stromal invasion is measured using tumour-

stroma percentage (TSP) to assess the level of intra-tumour stroma (5). GMS had been validated in a 

number of cohorts, and more recently was found to associate with response to chemotherapeutic 

regime in the TransSCOT clinical trial cohort (47). Patients in the GMS0 groups had a significantly 

better clinical response to FOLFOX chemotherapy over CAPOX (47). The authors hypothesise that 

the dense inflammatory infiltrate of GMS0 tumours interferes with capecitabine metabolism, which 

reduces its cytotoxicity and thus harbours a reduced clinical effect (47). Further research is needed to 

validate these findings, understand the mechanisms of action, and identify other favourable treatment 

options for each GMS group. 
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KM Grade 

(Immune 

Infiltrate) 

TSP 

(Stromal 

Invasion) 

GMS Prognosis  

High (2-3) Any 0 Good 

Low (0-1) <50% 1 Intermediate  

Low (0-1) >50% 2 Worst  

 Table 1.7 Glasgow Microenvironment Scoring. Table outlining the components of Glasgow 

Microenvironment Scoring and relative prognosis of each subgroup. GMS0 is the high immune group, 

GMS2 is characterised by high intra-tumour stromal invasion and GMS1 is an intermediate group 

with low inflammation and low stromal invasion.  

In 2017, Roseweir et al, preformed a review of the CMS classification to assess how to histologically 

define the four groups.  Interestingly, they identified similar phenotypic features to the GMS, 

including stromal and immune infiltration. However, they also identified growth rate as a key feature 

and therefore further built on GMS by segregating GMS1 patients into two intermediate groups based 

on Ki67 proliferation index (48). This gave rise to 4 phenotypic subtypes: Immune, Canonical, Latent 

and Stromal as shown in table 1.8 The immune subtype confers the best prognosis, followed by 

canonical, latent and stromal groups. It could be argued that GMS1 patients represent a diverse array 

of CRC disease phenotypes, and phenotypic subtyping is able to stratify this GMS1 such that the 

canonical and latent subtypes provide more accurate segregation of patient disease. Phenotypic 

subtypes are independently prognostic, predict risk of recurrence and could easily be translated into 

routine diagnostics (49). Furthermore, the immune subtype showed the same response to FOLFOX 

chemotherapy as GMS0, therefore, identifying targeted therapies for each of the other three 

phenotypic subtype groups represents a promising therapeutic strategy for CRC precision medicine 

going forward.  

Phenotypic Subtype KM Grade TSP Ki67 Prognosis 

Immune High Any Any Best 

Canonical Low Low High Intermediate 

Latent Low Low Low Intermediate 

Stromal Low High Any Worst 

Table 1.8 Phenotypic subtyping. Table outlining the components of phenotypic subtypes of 

colorectal cancer and relative prognosis of each subgroup. The immune subtype is characterised by 

high inflammatory infiltrate at the invasive edge and patients have the best prognosis. Patients in the 

canonical subtype have intermediate prognosis and tumours are immunologically cold, with low 

stroma but high proliferation. Latent patients are low for all 3 histological measures and have 

intermediate prognosis. The stromal subtype patients have a high stromal invasion and exhibit the 

worst clinical outcomes. 
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Another histopathological score which has been extensively validated in the literature is the 

Immunoscore developed by Galon et al in 2012 (50). In contrast to GMS and phenotypic subtype, 

Immunscore relies on measurement of specific populations of immune cells via immunohistochemical 

staining. Tumours are graded based on presence of lymphocyte populations CD3+/CD45RO+, 

CD3+/CD8+ or CD45RO+/CD8+ cells within the tumour centre and at the invasive margin (50). The 

Immunoscore ranges from I0 to I4 based on density of cells per mm2 and is highly prognostic for 

disease-free survival in CRC (50). Immunoscore was investigated in relation to disease-free survival 

in the IDEA clinical trial investigating stage II CRC patients receiving 3 or 6 months standard of care 

chemotherapy, CAPOX or FOLFOX regimens (51). Patients classified as I2-I4 (high T cell infiltrates) 

showed increased DFS with administration of FOLFOX over 6 months compared to 3 months 

treatment(51). 

1.5.3 Inflammatory subsets in CRC 

In addition to the two lymphocyte populations utilised in the Immunoscore there are numerous other 

inflammatory cell populations known to associate with prognosis (52). The immune system is 

extremely complex, and expression of markers used to define specific populations can be transient 

depending on the surrounding milieu. Broadly, immune cell types can be linked to pro-tumour actions 

and poor prognosis or anti-tumour and better prognosis. Pro-tumour populations promote an 

immunosuppressive microenvironment whereby tumour cells can evade the immune response (52). 
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Figure 1.3. T-lymphocyte subsets in colorectal cancer. Diagram showing the main subsets of T 

lymphocytes studied with regard to colorectal cancer, production of signalling molecules, effect on 

CRC prognosis and links with consensus molecular subtypes. The most well-studied subsets include 

CD8+ cytotoxic T cells, CD4+ Th1, CD4+ Th2, CD4+ Th17, FOXP3+ regulatory T cells and more 

recently investigated γδ T cells.  

The general role of most subsets of T lymphocytes in the tumour microenvironment are detailed in 

figure 1.3). As encompassed by Immunoscore, influx of CD3+ T cells to the TME is associated with 

good prognosis, and more specifically CD3+CD8+ cytotoxic T cells are strong drivers of anti-tumour 

responses (53). CD8+ T cells exert anti-tumour effects through production of granzyme B, perforin, 

and expression of death receptor ligands such as FasL and TRAIL. High levels of CD8+ T cells 

within the invasive margin and tumour centre (and overall CD3+ T cell infiltrates) are classified as 

Immunoscore 4 or I4.  T helper cells with a Th1 phenotype are associated with good prognosis, and 

function through production of IFN-γ, IL2 and TNF-β. Cytotoxic T cells and Th1 cells are associated 

with influx to CMS1 classified tumours. Th2 cells are characterised by production of IL4, IL5, IL10, 

and IL13, and to date there has been no strong association with prognosis or CMS in CRC identified. 

In contrast, Th17 cells have shown a strong association with poor outcome in CRC and stromal-rich 

CMS4, functioning through production of IL-17A. FOXP3+ regulatory T cells are also generally 

associated with poor prognosis and CMS4. Tregs are regarded as a mainly immunosuppressive 

population dampening the cytotoxic nature of anti-tumour cells through production of IL10 and TGF-

β (54). A significant increase in FOXP3+ expression amongst systemic CD4+ T cells has been noted 

in CRC patients compared to age-matched healthy controls (55). A less well-studied population of T 

cells, Gamma delta (γδ) T cells, role in the TME can be pro or anti-tumourigenic depending on the 



42 
 

specific subset. The presence of those which produce IL-17A are generally associated with worse 

clinicopathological characteristics and those which produce IFN-γ are anti-tumourigenic (56).  

The innate arm of the immune system is also implicated in CRC progression and prognosis. Tumour-

associated macrophages (TAMs) are generally polarized to a pro-tumour phenotype, characterised by 

high expression of CD163. Presence of high numbers of CD163+ TAMs at the invasive margin is 

associated with unfavourable clinicopathological characteristics and reduced recurrence-free survival 

(57). There are a variety of mechanisms through which TAMs promote tumour progression including 

expression of PDL1/CTLA4 leading to T cell suppression, secretion of anti-inflammatory cytokines 

TGF-β and IL10 and chemokines CCL5, CCL20 and CCL22, which recruit regulatory T cells to the 

TME and production of reactive oxygen species(58, 59). Tumour-associated Neutrophils are also 

generally polarised to a pro-tumour phenotype functioning through production of IL8, CCL2 and 

TNFα. Interestingly, recent studies in gastric cancer have identified crosstalk between MSCs and 

TANs within the TME, which results in promotion of angiogenesis and migration. MSCs produce 

IL6, which activates STAT3 and ERK1/2 in the TANs, which causes promotion of MSCs 

differentiation into pro-tumourigenic CAFs(60). 

Natural killer cells (CD56+) are mainly regarded as functioning in as an anti-tumour cell type via their 

production of IFNγ, and cytolytic nature. However, infiltration to the tumour bed is relatively sparse 

with CD56+ cells only detectable (>4 cells/section) in about 30% of cases. It is hypothesised that their 

main function in the TME is working collaboratively with CD8+ T cells, and it has been shown that 

patients with high levels of infiltrating CD8+ T cells and NK cells observe good prognosis in 

CRC(61). 

There is increasing evidence that the spatial orientation of immune populations relative to each other 

is of paramount importance in determining outcome. Development of multiplex IHC-based tissue 

studies has allowed for assessment of a vast number of different cell types on a single tumour section, 

such as the co-detection by indexing (CODEX) system. In a recent study it was shown that the 

presence of PD1+ CD4+ T cells was only associated with poor outcomes in cases where granulocytes 

were in close proximity(62). Another study looking at the spatial orientation of different subsets of 

immune cells found that the distance between myeloid populations (CD11b CD14, and CD11b CD15) 

and cytotoxic CD8s T cells was higher amongst MSI patients (63). 

Single populations of inflammatory cells influence prognosis, but there is also strong evidence that in 

fact the density of the infiltrate is more predictive than its composition (7). The recent advances in the 

development of immunotherapies, highlight the importance of the immune system in CRC and the 

potential to harness inflammation to improve outcome (52). 
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1.5.4 Stromal cells and prognosis in CRC 

In addition to the important role of the inflammatory infiltrate, stromal cell populations are also 

involved in shaping the tumour microenvironment. Stromal populations associated with CRC include 

cancer-associated fibroblasts (CAFs), endothelial cells, myofibroblasts and mesenchymal stem cells 

(MSCs) (64). CAFs can be derived from numerous stromal precursor cells and are defined as 

activated fibroblasts within or around the tumour. CAFs promote progression of CRC through a 

number of mechanisms including promotion of invasion and angiogenesis, modulating tumour cell 

metabolism and driving metastases (65). MSCs are phenotypically similar to CAFs and display a 

range of pro-tumour actions including inhibition of apoptosis, promotion of angiogenesis and 

metastases (64). MSCs promote an immunosuppressive tumour microenvironment (TME) through 

polarisation of macrophages to M2 phenotype and negatively affect CD8+ T cell cytotoxicity through 

expression of programmed death ligand 1 (PDL1) (64, 66). Taken together, these pro-tumour 

responses of stromal cells in the TME likely contribute to the profoundly poor prognosis seen in 

patients with stromal-rich GMS2/stromal phenotypic subtype tumours.  

 

1.6 IL6/JAK/STAT3 in CRC 

1.6.1 IL6/JAK/STAT3 signal transduction 

It is now widely accepted that CRC heterogeneity can be driven by dysregulation of cellular signalling 

pathways (67). The IL6/JAK/STAT3 pathway is well characterised in inflammatory disorders and is 

thought to play a role in CRC development and progression in a subset of patients. Signal transducer 

and activator of transcription 3 (STAT3) is a member of a family of 7 STAT signalling molecules 

which include STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 (68). STAT3 is 

composed of two subunits, STAT3α and STAT3ß (9). STAT3 is constitutively active in the cancer 

setting and drives tumour progression via its downstream effects on gene transcription (68). Signal 

transduction occurs when IL6 binds its cognate receptor, IL6R (Figure 1.1). Classical signalling 

occurs when IL6R is membrane bound, however IL6R can also be found soluble in the cytoplasm, 

which can initiate trans-signalling (69). This trans-signalling cascade is enabled by cleavage of the α 

subunit of the IL6R by proteases ADAM10 and ADAM17 (9). Part of the receptor complex required 

for signal transduction, gp130, is ubiquitously expressed, which enables IL6 signalling in a huge 

range of cell types (69). The gp130 tails of IL6R do not have an intracellular kinase domain and so 

rely on activation of one of four JAK family members to transduce a signal. JAK1, JAK2, JAK3 and 

TYK2 can all be activated upon IL6 binding IL6R, which results in phosphorylation of STAT3 at 

tyrosine 705 (70). STAT3 isoforms then dimerise and translocate to the nucleus where STAT3 acts as 
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a master regulator of genes which promote the hallmarks of cancer (69). STAT3 can become fully 

activated by phosphorylation at serine 727 after activation at tyrosine 705 as part of post-translational 

modifications (71).  

In addition to its role as a transcription factor, STAT3 is also implicated in metabolic processes, 

autophagy, and cell mobility (9). In terms of metabolism STAT3 activity promotes aerobic glycolysis, 

suppresses electron transport chain activity, and promotes the production of reactive oxygen species 

(ROS) (9). STAT3 can physically interact protein kinase R (PKR) blocking it from binding to 

autophagy inducer Eukaryotic initiation factor 4A-II (eif2A). Further anti-autophagy roles of STAT3 

include promoting the expression of anti-autophagic genes BCL2 and MCL1 (9). Finally, STAT3 can 

negatively regulate microtubule formation and bind to focal adhesion kinase (FAK) and paxillin to 

affect cell motility (9). 

 

Figure 1.4. IL6/JAK/STAT3 signalling. Schematic diagram showing IL6/JAK/STAT3 classical and trans-

signal transduction. Classical signalling involves IL6 binding membrane bound IL6R initiating a cascade of 

signal transduction involving JAK1/2/3 or TYK2 activation, leading to phosphorylation of STAT3 at tyrosine 

705 and/or serine 727, dimerization of STAT3 and translocation to the nucleus where it promotes expression of 

pro-tumourigenic gene. Trans-signalling involves IL6 binding to the soluble form of IL6Rwhich then bind to 

gp130 expressed on cellular membranes causing initiation of the same cascade.  
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1.6.2 IL6/JAK/STAT3 signalling in cancer  

Elevated systemic levels of IL6 are associated with unfavourable clinical characteristics and poor 

prognosis (72, 73). In retrospective tissue studies high expression of IL6 and STAT3 are associated 

with poor prognosis in solid tumours (74, 75). For example, in earlier work published from this lab, 

phosphorylated STAT3 was shown to associate with poor outcomes in patients with invasive ductal 

breast cancer (76). However, this pro-tumour role for STAT3 was not seen in an earlier study 

investigating castrate-resistant prostate cancer (77).  IL6 can be produced by a plethora of cells in the 

TME, with links to inflammatory infiltrates, stromal cells and tumour cells (69). The most prominent 

source is likely myeloid-derived populations such as tumour associated macrophages (TAMs) or 

stromal cells such as cancer-associated fibroblasts (CAFs).   

1.6.3 IL6/JAK/STAT3 in different compartments of the 

TME 

STAT3 can be dysregulated amongst infiltrating immune cells as well as the tumour cells themselves. 

Hyperactivation of STAT3 amongst immune cells is associated with promotion of an 

immunosuppressive microenvironment, with enhanced regulatory T cell action and therefore cancer-

promoting. In the tumour cells STAT3 signalling promotes proliferation, invasion, metastases, 

angiogenesis, and inhibition of apoptosis (78). STAT3 signalling can also actively induce IL6 

production, resulting in a feed-forward autocrine feedback loop (79). 

IL6 has been shown to directly promote CRC tumour cell proliferation, angiogenesis, survival, and 

invasion (Figure 1.2)(80, 81). IL6 also promotes tumour development and progression through its 

effects on specific populations of the inflammatory infiltrate. IL6 polarises macrophages to a pro-

tumour phenotype which produce IL10 and show increased PDL1 expression(82). IL6 causes a 

reduction in TNFα, IL1 and IFN-γ production in tumour associated neutrophils. In terms of dendritic 

cells, IL6 causes decreased expression of major histocompatibility complex II, resulting in a decrease 

in antigen presenting, alongside a decrease in CD80/86 expression, decreased IL12 production and 

increased IL10 production(83). T cells are promoted to differentiate to a FOXP3+ regulatory 

phenotype by IL6, and cytotoxic CD8+ T cells observe decreased cytolytic activity, decrease 

chemotaxis to the TME via CXCR3 and increased PD1 expression in the presence of IL6(84, 85). In 

addition to the pro-tumourigenic effects on immune cells, IL6 can also assist tumourigenesis via 

promotion of CAF survival, migration, and collagen fibrogenesis(86). Data from the literature has 

clearly shown a vast array of pro-tumour functions of IL6 with evidence for roles in every 

compartment of the TME.  
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Figure 1.5 IL6 in the tumour microenvironment. Diagram showing some of the main characterised 

roles for IL6 in colorectal cancer. IL6 promotes tumour progression through increasing tumour cell 

survival, angiogenesis, survival, and invasion. IL6 also acts on innate immune cells to increase 

production of anti-inflammatory cytokines such as IL10 by macrophages and decreases production of 

TNF-α, IL1 and IFN-γ by tumour-associated neutrophils. In terms of T cells, IL6 dampens the 

cytotoxic effect of CD8+ cells and promotes the expansion of regulatory T cells. IL6 acts on dendritic 

cells to cause increased production of IL10 and decreased expression of major histocompatibility 

complex II. IL6 also effects the surrounding stroma and causes increased survival, migration, and 

collagen fibrogenesis amongst CAF populations.   

1.6.4 IL6/JAK/STAT3 signalling pathway crosstalk 

There is increasing evidence that cellular signalling pathways do not exist in isolation and crosstalk 

between pathways is common (67). One major signalling cascade associated with CRC development 

is NFκB signalling.  STAT3 and NFκB promote transcription of overlapping cancer-promoting genes 

that cause proliferation, angiogenesis and production of pro-tumour chemokines and cytokines (87).  

Additionally, NFκB signalling is responsible for promoting IL6 production in myeloid populations 

(67). The two master regulators can also physically interact causing retention in the nucleus and thus 

continual transcription of downstream cancer-associated genes (87). Evidence from prostate cancer 

models have proven a link between STAT3 signalling with Akt and RAS pathways. RTK signalling 

via Epidermal growth factor receptor (EGFR) leads to synergistic activation of STAT3, 

RAS/RAF/ERK and Akt/mTORC1, which all converge to promote the hallmarks of cancer (88, 89).  
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1.7 Inhibition of IL6/JAK/STAT3 signalling  

1.7.1 Inhibitors of IL6/IL6R 

Inhibiting STAT3 itself poses challenges so initial efforts were focused on inhibiting upstream 

pathway components. Inhibition of IL6 binding to IL6R and therefore blocking signal transduction 

has been successful in certain inflammatory disorders. Tocilizumab is a potent IL6R inhibitor 

approved for clinical use in refractory Rheumatoid Arthritis (RA) in 2009 and systemic juvenile 

idiopathic arthritis and cytokine release syndrome in 2017 (90, 91). Siltuximab targets the cytokine 

itself, and was approved for RA patients in 2017 (92). Siltuximab monotherapy has reached phase I/II 

clinical trialling for KRAS mutant CRC and was well tolerated but no clinical effects were observed 

(93). In addition to activating STAT3, IL6 can also activate STAT1, which has opposing anti-

tumourigenic functions to STAT3. Therefore, targeting IL6 or IL6R may not be the preferred route for 

inhibiting STAT3 clinically (69).       

1.7.2 Inhibitors of JAK family members 

Several small molecule competitive ATP inhibitors of JAK intermediate pathway members (Jakinibs) 

have been approved by the FDA for clinical use in settings other than cancer. JAK1/2 inhibitor, 

Ruxolitinib, was approved in 2011 for the treatment of Myelofibrosis. JAK2/3 inhibitor, Tofacitinib, 

was approved for use in RA and ulcerative colitis patients in 2012. Baficitinib which targets JAK1 

and JAK2 is also approved for clinical use in RA (94). TYK2 inhibitor, Deucravasinib, is currently in 

phase II clinical trials for the treatment of psoriasis (53). Similarly, oral JAK3 inhibitor, PF-

06651600, has entered phase IIb/III clinical trials for moderate/severe alopecia areata in a Pfizer 

sponsored study. One concern of JAK inhibition is the associated toxicity with neutropenia and 

opportunistic infection commonly noted side effects (9).  Jakinibs have however produced excellent 

results in the cases of polycythaemia and myeloproliferative disorders and offer a promising 

repurposing option for subsets of many solid tumour types (9). 

1.7.3 STAT3 inhibitors 

There are challenges with targeting the STAT3 molecule specifically due to its similar chemical 

structure to STAT 1 and STAT5 (95). To combat this, STAT3 oligonucleotides have been designed 

for STAT3 to bind as a decoy preventing downstream transcription. In a preclinical xenograft model 

of head and neck cancer STAT3 oligos reduced growth and caused downregulation of STAT3 target 

genes (96). However, more recently a phase III clinical trial investigating the effects of first-in-class 

STAT3 inhibitor Napabucasin in advanced stage CRC found no survival benefit between placebo and 

treatment arms (97). Further research is required to determine the best way of targeting STAT3 
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signalling, and whether inhibiting upstream kinases/receptors/cytokines produces better effects than 

drugs which act on STAT3 itself.  

1.8 Research aims and hypotheses 

This thesis aimed to investigate IL6/JAK/STAT3 signalling in CRC and determine association 

between pathway activation with histological subtype. Targeted therapies in the form of small 

molecule inhibitors and biological therapies are showing increasing promise for combating disease 

heterogeneity associated with CRC. To investigate the rationale and therapeutic potential for 

inhibiting STAT3 activation in CRC patients the main objectives were as follows: 

1.Use archival tissue from retrospective CRC patients to validate histological subtyping (Glasgow 

Microenvironment Score and Phenotypic Subtype) in 4 new cohorts ranging from stage I screen-

detected CRC to stage IV metastatic disease. 

2. Investigate protein expression of key pathway members of IL6/JAK/STAT3 inflammatory 

signalling pathway within tumour cells of retrospective stage I-IV CRC patient tissue microarrays and 

assess association with prognosis, clinicopathological features and histological subtypes to establish if 

targeting IL6/JAK/STAT3 has therapeutic potential.  

3. Explore the underlying biology in a subset of these patients to determine any differences in 

genomic or transcriptomic profiles of patients across GMS subtypes and with upregulated 

phosphorylated STAT3 by mutation panel DNA sequencing and bulk RNA sequencing. 

4. Determine the effects of inhibiting JAK1/2 and JAK2/3 to abrogate STAT3 activation in 2D CRC 

cell lines and 3D patient-derived organoid models to preliminarily assess therapeutic benefit relative 

to CMS/histological subtype of the original patient resections.  
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2.1 Tissue studies- Tumour Phenotyping  

To investigate histological tumour phenotyping methods: Glasgow Microenvironment Scoring (GMS) 

and Phenotypic Subtyping in stage I-IV CRC, archival tumour resections were stained with 

Haematoxylin and Eosin (H&E) and for Ki67 by immunohistochemistry (IHC). Histological 

subtyping was performed in five retrospective CRC cohorts including the Glasgow combined cohort, 

TransSCOT clinical trial cohort, Australian TMA cohort, Synchronous resection cohort and DM-

CRC-TMA screen detected CRC cohort. Utilising these cohorts allowed for validation of histological 

subtyping in a broad range of CRC stages and use of an international cohort enabled assessment of 

geographical distinct patients.  

2.1.1 Cohorts  

2.1.1.1 Glasgow combined cohort 

The Glasgow combined cohort consisted of 1030 stage I-V CRC patients undergoing potentially 

curative resection across Greater Glasgow and Clyde (GGC) hospitals between 1997 and 2007.   

Tumours were staged with the 5th edition of TNM staging. Clinicopathological characteristics for each 

patient was available as part of an SPSS database. Clinical follow up data was last updated in 2017 

from NHS GGC Safe Haven data.  At this time, 324 patients (32%) had died of primary colorectal 

cancer, 332 patients (32.8%) had died of other causes and 355 patients (35.1%) were still alive. 

Survival data were missing for 19 patients. Cancer-specific survival (CSS), (date of surgery until last 

follow up) was used as a clinical endpoint throughout this study. Mean follow-up time was 139 

months.  

2.1.1.2 TransSCOT clinical trial cohort 

The TransSCOT cohort consisted of 2912 CRC patients from the SCOT non-inferiority clinical trial 

who underwent surgical resection between 2008-2013. Tumours were staged with the 7th edition of 

TNM staging and patients were all classified as high-risk stage II or stage III. Patients in the trial 

received a random allocation of either 3- or 6- months of FOLFOX or CAPOX chemotherapy. The 

mean survival time of patients was 35.4764 months. At the time of writing patients were all followed 

up for at least 3 years and there were 2221 patients alive and 691 patients who had died of cancer.  

2.1.1.3 Glasgow screening cohort 

The DM-CRC-TMA cohort consisted of surgical resection CRC tissue from 159 T1/2 patients, 

screen-detected by faecal occult blood test (FOBT) under NHS GGC 2009-2011. Tumours were 
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staged with the 5th edition of TNM staging.  Clinical follow up data was last obtained in 2014 and was 

added into an SPSS database along with other clinicopathological information. Median follow up time 

was 91 months. Of the 159 patients 16 died of the primary cancer and 13 had died of other causes. 

Due to the lack of events, overall survival was used as a clinical endpoint in this study.  

2.1.1.4 Australian cohort 

Tissue micro arrays were available via a collaboration with Prof C Soon Lee at Western Sydney 

University. A total of 410 Australian patients with primary operable colorectal cancer were included 

in the cohort. Full tumour resections were not available; however, TMA cores were taken from the 

invasive edge and the tumour centre to allow for TSP and KM grading. Survival data were only 

available for 156 patients and after 30-day mortalities were excluded this left 144 patients included in 

analysis. At the time of last follow up 47 (27.6%) of patients were still alive, 68 (40.0%) patients had 

died of cancer-related causes and 29 (17.1%) had died of other causes. Mean survival time was 39.412 

months.  

2.1.1.5 Synchronous resection cohort  

The synchronous resection cohort consisted of patients (n=46) who had primary colorectal cancer 

tumours and metastatic liver metastases resected synchronously at Glasgow Royal Infirmary between 

2002-2010. Approval for using patient tissue was obtained through NHS GGC Biorepository. 

Tumours were staged with the 5th edition of TNM staging.  Clinical follow up data was updated in 

2017 and available in a database with other clinicopathological characteristics. At the time of last 

follow-up 24 (40.0%) patients were alive, 30 had died of cancer-related causes (50.0%) and 3 patients 

(5.0%) had died of unrelated causes. Mean follow-up time was 40.14 months.  

2.1.2 Tumour phenotyping  

Full tumour sections (and TMAs in the case of the Australian cohort) stained with Haematoxylin and 

eosin and Ki67 (Dako) were scanned at X20 onto NDP Viewer (Hamamatsu, Hertfordshire, UK) at 

x20 magnification using a Hamamatsu NanoZoomer (Hertfordshire, UK) by the Glasgow Tissue 

Research Facility (GTRF). In the Glasgow combined cohort GMS was determined by James H Park 

and phenotypic subtype was determined by Dr Antonia K Roseweir. In the TransSCOT cohort both 

GMS and Phenotypic subtyping was performed by Dr Antonia K Roseweir. In the Australian TMA 

cohort, DM-CRC-TMA screen-detected CRC cohort and the synchronous resection cohort GMS and 

phenotypic subtyping was performed by KP.  
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2.1.2.1 Haematoxylin and Eosin (H&E) staining  

Staining of the combined array was performed by Mr Arfon Powell and staining of the TransSCOT 

cohort was performed by Dr Jennifer Hay. Staining of the Synchronous resection cohort, DM-CRC-

TMA screen-detected cohort, and Australian TMA cohort were performed as outlined below.  

2.1.2.1.1 H&E staining protocol  

Tumour sections were deparaffinized in Histoclear (Agar Scientific, Essex, UK) (3 x 3 minutes) and 

then rehydrated through a series of graded alcohols; 2 x 3 minutes 100% ethanol, 1 x 3 minutes 95% 

ethanol, 1 x 3 minutes 90% ethanol, 1 x 3 minutes 80% ethanol, 1 x 3 minutes 70% ethanol, 1 x 3 

minutes 50% ethanol, 1 x 30% ethanol. Sections were then washed in deionised water for 5 minutes 

and placed in Harris Haematoxylin for 3 minutes. After rinsing in water for 5 minutes slides were 

dipped in acid alcohol (3% HCl in 70%) ethanol for 3 seconds and rinsed for 2 minutes in water. 

Sections were then added to Eosin for 30 seconds and passed through a series of graded alcohols to 

dehydrate; 1 x 2 minutes 30% ethanol, 1 x 2 minutes 50% ethanol, 1 x 2 minutes 70% ethanol, 1 x 2 

minutes 80% ethanol, 1 x 2 minutes 90% ethanol, 1 x 2 minutes 95%, 2 x 2 minutes 100% ethanol. 

Slides were then placed in Histoclear for 3 x 3 minutes. Sections were mounted using dystrene 

plasticiser and xylene (DPX) and left to dry overnight. Sections were scanned onto NDP Viewer 

(Hamamatsu, Hertfordshire, UK) at x20 magnification using a Hamamatsu NanoZoomer 

(Hertfordshire, UK) by Glasgow Tissue Research Facility.   

2.1.2.1.2 Klintrup-Makinen Grading 

Klintrup-Makinen (KM) grading was performed as previously described (7). Briefly, H&E-stained 

sections were assessed at the deepest point of tumour invasion for the broad inflammatory infiltrate on 

a scale of 0 to 3. Tumours were graded 0 if there were no immune cells present and 1 if a patchy band 

of immune cells was seen. Tumours with a prominent thin band of inflammatory cells were graded 2 

and those with a thicker florid cup of immune cells were graded 3. For the purposes of GMS and 

Phenotypic Subtyping, patients graded 0 or 1 were classed as low (0) and patients graded 2 or 3 were 

graded high (1) for inflammatory infiltrate.  

2.1.2.1.3 Tumour-stroma percentage 

Tumour stroma percentage was assessed using H&E-stained tumour sections as previously described 

(98). The intra-tumoural area was assessed for the level of stromal invasion, excluding necrotic areas. 

Patients were graded as low for stromal invasion if the intra-tumour areas were made up of <50% 

stromal cells, and high if the intra-tumour stroma was deemed >50% of total area. 
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2.1.2.3 Glasgow Microenvironment Scoring 

Glasgow microenvironment scores (GMS) were determined as previously described and as outlined 

and as shown in table 2.1 (98). Patients with a high KM grade were automatically assigned to GMS0. 

Patients with a low KM grade but high TSP were categorised as GMS2. Patients with a low KM grade 

and a low TSP were classified as GMS1.  

KM Grade 

(Immune 

Infiltrate) 

TSP 

(Stromal 

Invasion) 

GMS 

High (2-3) Any 0 

Low (0-1) <50% 1 

Low (0-1) >50% 2 

Table 2.1 Glasgow Microenvironment Scores. Table outlining categorisation of each GMS score 

based on KM Grade and TSP. Tumours with a high KM grade (2-3) are considered to be GMS0, 

patients with a high tumour-stroma percentage (>50%) are GMS2 and patients low for both measures 

are GMS1.  

2.1.2.4 Phenotypic subtype 

Phenotypic subtypes were determined as previously outlined by Roseweir et al and in table 2.2 (48). 

Briefly, patients with a high KM grade were assigned to the Immune subtype. Patients with a low KM 

grade but high TSP were classified as Stromal. Patients with a low KM grade, low TSP but high Ki67 

proliferation index (protocol defined in 2.2.3) were classed as canonical and those with low KM 

grade, low TSP and low Ki67 proliferation index were classified as latent.  

Phenotypic Subtype Immune Infiltrate 

(KM Grade) 

Stromal Invasion 

(TSP) 

Proliferation rate 

(%Ki67+) 

Immune High Any Any 

Canonical Low Low High 

Latent Low Low Low 

Stromal Low High Any 

Table 2.2 Phenotypic Subtyping. Table outlining categorisation of each phenotypic subtype based 

on histological assessment of the tumour. Tumours with a high KM grade (2-3) are considered to be 

Immune, patients with a high tumour-stroma percentage (>50%) are Stromal. Patients low for both 

measures are divided into Canonical if they have high Ki67 expression (>30%), and Latent if <30% 

of tumour cells are positive for Ki67.  
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Figure 2.1. Derivation of GMS/Phenotypic histological subtypes. Tumours are firstly assessed for 

level of inflammatory infiltrate by Klintrup-Makinen Grade and patients classed as high are 

automatically assigned to GMS0/Immune subtype. Tumours are then graded for intra-tumour stromal 

invasion and patients classed as high are considered GMS2 or stromal phenotypic subtype. Patients 

with a low KM grade and low TSP are automatically GMS1. These patients are split into 2 groups for 

phenotypic subtype by Ki67 proliferation grade, with tumours with >30% proliferating cells classed 

as canonical and <30% classed as latent.  

2.1.3 Statistical analysis of tumour phenotype tissue 

studies  

All statistical analyses were completed using IBM SPSS version 22 (IBM, New York, USA). 

Statistical significance was set to p<0.05. Kaplan Meier log rank curves were used to identify 

associations between protein expression and cancer-specific survival (CSS) within the full cohorts, 

and then when disease was segregated by GMS, MMR status and tumour subsite (Right-sided, Left-

sided, and rectal cases). Cox regression was performed to determine hazard ratios. 

 

2.2 Tissue studies- Investigating IL6/JAK/STAT3 pathway  

To assess protein expression of members of JAK-STAT3 signalling in stage I-IV CRC, 

immunohistochemistry (IHC) was conducted utilising the Glasgow combined colorectal tissue 

microarray (TMA) of surgically resected tumour specimens. The Glasgow combined array was 
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previously constructed manually by Dr Jonathan Platt and Dr Arfon Powell, before being 

reconstructed by KP and Glasgow Tissue Research Facility in 2020 using a TMA Grandmaster (3D 

Histotech Ltd, Budapest, Hungary). 

2.2.1 Antibody Validation  

To ensure antibodies utilised were specific for the target protein, specificity testing was performed as 

outlined in Table 2.3.  

2.2.1.1 Western blotting for antibody specificity  

Western blotting was used to validate the specificity of IL6R, JAK1, JAK3, TYK2, STAT3, 

pSTAT3tyr705 and pSTAT3ser727 antibodies. To make cell lysates, colorectal cell lines SW620 

or HT29 cells were seeded at 1x105 in 6 well plates and left to attached overnight. Cells were 

then treated with either 001% DMSO, 1mM Ruxolitinib (JAK1/2 inhibitor, Abcam) or 1mM 

Tofacitinib (JAK2/3 inhibitor, Abcam). Cells were washed in cold PBS twice on ice before 

250µL Laemmli’s sample buffer was added to each well. Cells were scraped, sheared using a 

21-gauage needle and transferred to Eppendorf tubes. Cells were centrifuged at 15000RPM at 

4oC for 15 minutes. Supernatant was carefully removed, transferred to new Eppendorf tubes 

and heated for 5 minutes at 95oC on a heat block. Cell lysates were used immediately. 

Running buffer was prepared by diluting 100mL 10X running buffer, tris/glycine/SDS in 

900mL distilled water. Precast protein gels (7.5% mini-PROTEAN ® TGX ™) were utilised 

(Bio-Rad #4561023). The gel tank was assembled, added to the Bio-Rad tank, and tested for 

leakage when the reservoir was filled with running buffer. Ladder (10µL) was loaded into 

lane 1 and 25µL samples were added to remaining wells in triplicate. Gels were run for 90 

minutes or until the samples reached the edge of the gel at a constant 120 Volts. Transfer 

buffer was prepared by adding 200mL methanol and 100mL 10X transfer buffer (tris/glycine) 

to 700mL distilled water. Polyvinylidene fluoride (PVDF) membranes were soaked in 

methanol for 5 minutes. Sponges and filter paper were soaked in transfer buffer.  Sandwich 

was prepared as outlined in figure 2.1 and rolled using to remove any air bubbles. The 

assembled cassette was added to the tank and run at constant 300mA for 90 minutes to 

transfer protein from gels to the membranes.  
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Figure 2.2 Western blot transfer. Diagram showing the makeup of gel membrane sandwich 

utilised in western blot transfer step. The cassette is opened, and a piece of sponge is placed 

at both ends. Two pieces of filter paper are added to each side and the membrane is placed 

on the side nearest the black end of the cassette. The gel is carefully added on top of the 

membrane and the sandwich is assembled.  

The sandwich was removed from the tank and membranes were blocked in 3% bovine serum 

albumin (BSA) for 1 hour at room temperature. Membranes were incubated in appropriate 

primary antibody (diluted in 0.3% BSA) overnight at 4oC and then washed in tris-buffered 

saline (TBST) 3 x 10 minutes. Secondary antibodies were diluted in 0.3% BSA with anti-

ladder at 1:50000 (1:5000 for anti-rabbit and 1:5000 for anti-mouse antibodies). Membranes 

were incubated for 90 minutes in secondary antibodies at room temperature and then washed 

3 x 10 mins in TBST. After washing, membranes were incubated in horse radish peroxidase 

(HRP) substrate enhanced chemiluminescence reagent (Pierce ECL) (Thermo Fisher 

Scientific, Waltham, MA, USA) for 5 minutes at room temperature. Membranes were blotted 

on blue roll and then imaged using Syngene Gene Sys (Syngene International Ltd, India).  

2.2.1.2 Cell pellets for antibody specificity  

Cell pellets were used to validate the specificity of JAK2, JAK3, TYK2, pSTAT3tyr705 and 

pSTAT3ser727 antibodies. Cells (SW620 or COLO205) were passaged into T75 flasks and 

incubated overnight. Flasks were treated with 0.01% DMSO, 10µM Ruxolitinib (Abcam, 

141346) or10µM Tofacitinib (Abcam, 142068) for 72 hours. For each treatment, 1 x T75 

flask was required to make 1 cell pellet. Cells were trypsinised and added to a 15mL falcon 

tube with medium up to 10mL. Tubes were centrifuged for 3 minutes at 1200RPM. 

Supernatant was removed using an aspirator and the pellet resuspended in PBS. Cells were 
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spun for 3 minutes at 1200RPM. Supernatant was removed and cells were resuspended in 

1ml 4% paraformaldehyde (PFA) and transferred to Eppendorf tubes. After 20 minutes 

fixation cells were spun at 1200RPM for 3 minutes and washed in PBS twice. Once dry, the 

pellet was resuspended in 1% agarose and left overnight at 4oC. The embedded pellet was 

removed and transferred to a labelled cassette. The pellet was dehydrated through a series of 

graded alcohols; 1 x 15 minutes 50% ethanol, 1 x 15 minutes 75% alcohol, 2 x 15 minutes 

absolute ethanol and then 2 x 10 minutes Histoclear. The pellet in the cassette was transferred 

to melted paraffin wax in a TissueTech embedding centre for 1 hour. Finally, the pellet was 

removed from the cassette, placed in a mould, embedded in paraffin wax and left on a cold 

block for 1 hour. After setting overnight embedded pellets were cut at 4µM thick on a 

microtome and attached to slides by baking overnight at 50oC. Pellets were then stained using 

the same IHC method outlined in 2.1.4 for respective proteins, aside from heating at pressure 

for 3 minutes as opposed to 5 minutes for TMAs and full sections. 

  



58 
 

2.2.1.3 Antibody validation for each protein  

For JAK1 (Cell signalling #3344), western blotting was performed on HT29 cell lysates provided by 

Dr Jean Quinn and PC-3 lysates provided by Dr Milly McAllister. Probing for JAK1 in HT29 cells 

detected a band at the correct molecular weight of 130Kda in triplicate, with no bands detected in PC3 

lysates and tubulin consistent at 52KDa in all samples (Table 2.3). JAK2 (Cell signalling #3773) 

specificity was tested by staining COLO205 cell pellets treated with either 0.01% DMSO or 1mM 

Ruxolitinib JAK2 inhibitor (Table 2.3). JAK3 (Abcam, ab45141) antibody specificity was confirmed 

via western blotting of HT29 cell lysates and PC3 lysates. A single band in triplicate was detected at 

115KDa was detected in HT29 cells, with no bands in the PC3 lysates but consistent bands at 52KDa 

when probed for tubulin (Table 2.3). TYK2 (Abcam, ab223733) specificity was confirmed by probing 

HT29 and PC3 cell lysates and identifying a single band in triplicate in HT29 cells at 134KDa and no 

bands in PC3 cells but consistent tubulin detected at 52KDa (Table 2.3). Further validation was 

performed by staining SW620 cell pellets treated with either 0.01% DMSO or AT2983 JAK3 

inhibitor Selleckchem, #S1134). Expression of TYK2 was higher in vehicle control treated cell pellets 

compared to AT9283-treated cells (Table 2.3). Specificity of STAT3 (Cell Signalling, #9132) was 

assessed via western blotting of HT29, HeLa and PC3 cell lysates. A single band at 88KDa was 

detected in HT29 and HeLa lysates with no bands detected in PC3 cells. SW620 cell lysates 

treated/untreated with JAK inhibitor Ruxolitinib were probed for pSTAT3tyr705 via western blot. 

Single band in triplicate was observed at 88KDa in the untreated samples and no bands were detected 

in the Ruxolitinib-treated cells. COLO205 cell pellets treated with 0.01% DMSO showed higher 

protein expression of pSTAT3tyr705 versus 1mM Ruxolitinib COLO205 treated pellets when stained 

via IHC. Finally, pSTAT3ser727 antibody (Cell Signalling #9134) specificity was tested in SW620 cell 

lysates treated with 0.01% DMSO or 1mM Ruxolitinib via western blot. Single bands in triplicate 

were detected at 86KDa in vehicle control samples and no bands were observed in JAK1/2 inhibited 

cells. Ruxolitinib-treated SW620 cell pellets showed lower expression of pSTAT3ser727 compared to 

vehicle control treated cells when stained via IHC. 
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Table 2.3: Antibody validation. The antibody with catalogue number and method of 

validation outlined for each protein of interest. For each antibody either western blotting to 

detect a single band in a positive control or staining of cell pellets known to be 

positive/negative for protein of interest or both was performed.  

2.2.2 Patient TMA 

Prior to this study FFPE CRC blocks were retrieved from NHS GGC pathology archives and used to 

construct TMA blocks. Full sections from each block were stained using Haematoxylin and Eosin and 

marked by a pathologist for tumour-rich areas. Four 0.6mm cores were taken from the tumour-rich 

Protein Antibody Validation method  

IL6R Abcam #ab128008 • Single band on Western blot in HeLa lysates at 

51KDa with no bands detected at the same 

molecular weight in LNCaP cell lysates  

JAK1 Cell signalling #3344 • Single band on Western blot at 130KDa in 

HT29 cell lysates and no band detected in true 

positive PC3- lysates  

JAK2 Cell signalling #3773 • Higher JAK2 protein expression observed via 

IHC staining in COLO205 cell pellets from 

cells treated with 0.01% DMSO versus 

COLO205 cells treated with JAK2 inhibitor  

JAK3 Abcam #ab45141 • Single band on Western blot at 115KDa in 

HT29 cells with no bands detected in PC3 

lysates. IHC staining of SW620 cell pellets 

treated with JAK3 inhibitor or 0.01% DMSO. 

TYK2 Abcam #ab223733 • Single band on Western blot of HT29 cell 

lysates at 134KDa with no bands detected in 

PC3 lysates.  

• IHC staining of sw620 cell pellets treated with 

TYK2 inhibitor or 0.01% DMSO.  

STAT3 Cell signalling #9132 • Single band at 88KDa detected in HT29 cell 

lysates and HeLa cell lysates and no bands in 

PC3 lysates.  

pSTAT3705 Cell signalling #9131 • Single band at 88KDa in Sw620 cell lysates 

treated with vehicle control with no bands in 

Sw620s treated with Ruxlitinib and consistent 

Tubulin at 52KDa in all samples.  

• COLO205 cell pellets treated with 0.01% 

DMSO or Ruxolitlinib stained via IHC for 

pSTAT3tyr705  

pSTAT3727 Cell signalling #9134 • Single band on western blot detected at 86KDa 

in Sw620 cells treated with 0.01% DMSO and n 

bands at the same molecular weight in 

Ruxolitinib treated SW620 lysates.  

• IHC staining of pSTAT3ser727 in Sw620 cell 

pellets treated with 1mM Ruxolitinib or 

Tofacitinib.  
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areas of each full section and embedded in four separate recipient paraffin blocks. The use of a core 

from four discrete areas aims to account for tumour heterogeneity.  

2.2.3 Immunohistochemistry  

The Glasgow combined cohort TMA was stained via IHC for IL6R, JAK1, JAK2, STAT3 and 

pSTAT3727 by KP. Staining of pSTAT3705 was previously completed by Mr James H Park. Antibody 

optimisation was performed on surplus colorectal tissue slides prior to staining the patient cohort 

tissue.  

Ki67 staining of the combined array was performed by Mr Arfon Powel and staining of the 

TransSCOT cohort was performed by the pathology laboratory at the Queen Elizabeth University 

Hospital, Glasgow. The synchronous resection cohort, DM-CRC-TMA cohort and Australian TMA 

cohorts were stained as outlined below.  

2.2.3.1 Slide preparation 

TMA sections were requested from NHS GGC Biorepository and provided by Glasgow Tissue 

Research Facility. Slides were stored at 4oC before use. Immediately before staining TMA sections 

were baked at 55oC for 10 minutes to minimise the loss of cores. 

2.2.3.2 Dewaxing and rehydration 

Sections were dewaxed in Histoclear (2 x 3 minutes) and rehydrated through a series of graded 

alcohols; (2 x 3 minutes in absolute ethanol, 1 x 2 minutes in 90% ethanol, 1 x 70% ethanol for 2 

minutes). Slides were rinsed in running water for 10 minutes.  

2.2.3.3 Antigen retrieval 

To unmask epitopes blocked during formalin fixation antigen retrieval was performed using Citrate 

buffer pH6 or TRIS-EDTA buffer pH8 or pH9. Appropriate buffer and pH were determined during 

antibody optimisation.  Citrate buffer was made using 2mM tris-sodium citrate dehydrate and 8mM 

citric acid in 1L distilled water. TRIS-EDTA buffer was prepared using 5mM Tris Base and 1mM 

EDTA in 1L distilled water. Prior to antigen retrieval 1L of buffer was heated in an open pressure 

cooker in a microwave for 13 minutes. Slides were added to the buffer and the pressure cookers seal, 

lid and topper were secured. The slides were heated for ~3 minutes until pressure reached and then 

heated for a further 5 minutes. After heating sections were left to cool for 30 minutes in buffer and 

then rinsed in running water.  
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2.2.3.4 Blocking endogenous peroxidase activity  

Slides were placed in 3% H2O2 for 10 minutes (pSTAT3tyr705) or 20 minutes for all other proteins, to 

quench endogenous peroxidases, thus reducing background staining. Slides were rinsed in running 

water. 

2.2.3.5 Blocking non-specific binding 

To prevent off-target non-specific binding sections were incubated in a blocking solution. During 

optimisation optimum blocking solution was identified for each antibody (Table 2.4). Tumour tissue 

on each slide was circled using a Dako pen (S2002, Dako, Agilent technologies, Stockport, UK) to 

ensure the blocking solution covered the entire tumour section and was unable to run off the slide. 

Blocking solution (5%/10% casein or 5% horse serum) was added and slides were incubated for 1 

hour or 30 minutes (only pSTAT3tyr705) at room temperature. Blocking solutions were diluted in 

antibody diluent (S0809, Dako, Agilent Technologies, Stockport, UK).  

Protein Buffer Blocking 

solution 

Antibody 

dilution  

Secondary  

IL6R Citrate pH6 5% casein 1:3000 ImmPRESS™ 

JAK1 Citrate pH6 5% casein 1:100 ImmPRESS™ 

JAK2 Citrate pH6 5% casein 1:100 ImmPRESS™ 

JAK3 TRIS-EDTA 

pH9 

5% goat serum 1:200 ImmPRESS™ 

TYK2 TRIS-EDTA 

pH9 

5% goat serum 1:200 ImmPRESS™ 

STAT3 Citrate pH6 10% casein 1:300 ImmPRESS™ 

pSTAT3705 TRIS-EDTA 

pH9 

5% horse serum 1:50 Envision™ 

pSTAT3727 TRIS-EDTA 

pH9 

10% casein 1:400 ImmPRESS™ 

Ki67 (S0809 
MIB-1 clone, 

Dako, Agilent, 

#GA626) 

TRIS-EDTA 

pH8 

10% casein 1:50 Envision ™ 

Table 2.4: IHC conditions for each protein of interest. Description of antigen retrieval 

buffer, blocking solution and antibody dilation used for each protein of interest. The buffers 

utilised were either citrate pH6, TRIS-EDTA pH8 or pH9 all determined during antibody 

optimisation. The blocking solutions used were 5/10% casein, 5% goat serum or 5% horse 

serum. The antibody dilution in antibody diluent ranged from 1:3000 to 1:50 dependant on 

optimisation experiments. ImmPRESS™ or Envision™ were utilised as secondary antibodies.  
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2.2.3.6 Primary antibody incubation 

Antibodies were diluted to respective concentrations (Table 2.4) in antibody diluent (S0809, Dako, 

Agilent Technologies, UK). Blocking solution was tapped off, diluted antibodies were added, and 

sections were incubated at 4oC overnight. 

2.2.3.7 Secondary antibody incubation 

After incubation sections were washed twice in TBS for 5 minutes and then incubated in 

ImmPRESS™ reagent (Vector Laboratories Inc, California, USA) or EnVision™ (only for 

pSTAT3tyr705) (K5007, Dako, Agilent Technologies, Stockport, UK) for 30 minutes at room 

temperature. Slides were washed twice in TBS for 5 minutes.  

2.2.3.8 Visualisation with DAB substrate 

Sections were incubated in DAB chromogen substrate (Vector Laboratories Inc, California, USA) for 

5 minutes at room temperature and subsequently rinsed in running water for 10 minutes.  

2.2.3.9 Counterstaining, dehydration and mounting  

Slides were counterstained in Harris Haematoxylin for 5 minutes, dipped in 1% acid alcohol (HCl in 

ethanol) for 3 seconds and blued in Scott’s Tap Water Substitute (80mM Magnesium sulphate, 40mM 

sodium hydrocarbonate in distilled water) for 45 seconds. Sections were dehydrated through a series 

of graded alcohols; 1 minute in 70% ethanol, 1 minute in 90% ethanol, 2 x 1 minute in absolute 

ethanol and then 2 x 1 minutes in Histoclear. Coverslips were mounted onto slides using histological 

mounting medium Omnimount (HS-110, SLS, Nottingham, UK).   

2.2.3.10 Slide scanning and visualisation  

After staining slides were scanned onto NDP Viewer (Hamamatsu, Hertfordshire, UK) at x20 

magnification using a Hamamatsu NanoZoomer (Hertfordshire, UK).   

2.2.4 Scoring of IHC staining  

Scoring was performed by a single observer blinded to clinical outcome data, with 10% scored by a 

coinvestigator. For cytoplasmic and nuclear stains, weighted histoscoring was performed and for 

membrane staining histoscoring was performed. Weighted histoscore assessment was performed at 

X20 magnification using: 0 x (% of cells not stained/negative) +1 x (% cells weakly stained) +2 x (% 

cells moderately stained) + 3 x (% cells strongly stained), giving a range of scores from 0-300. 
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Membrane histoscores were determined by allocating strong staining a score of 3, moderate staining 

2, weak staining 1 and no staining 0. For membrane staining, modified histoscoring was performed 

with tumours graded as absent or present for expression. Validation of manual scoring was performed 

using QuPath digital pathology software v0.2.3 (QuPath, Edinburgh, UK) for 10% of cores by Sara Al 

Badran for IL6R, JAK1, JAK2, JAK3, STAT3 and by KP for TYK2, and both pSTAT3 proteins(99). 

To validate reliability of scores, interclass correlation coefficient (ICCC) was calculated using SPSS 

software between both observers scores. If an ICCC>0.7 and a correlation coefficient of >0.7 were 

observed scoring was deemed valid. Scatter plots and Bland Altman plots were constructed to 

visualise the correlation between scores. 

IL6R, JAK3, TYK2, pSTAT3ser727 were scored within the tumour cytoplasm. JAK1 and JAK2 were 

assessed within the tumour cytoplasm and membrane. STAT3 was scored within the tumour 

cytoplasm and nuclei. Expression of pSTAT3tyr705 was assessed only in the tumour nuclei.  

For the combined array and TransSCOT cohorts, scoring of Ki67 was performed by Dr Antonia 

Roseweir using an automated nuclear algorithm in Slidepath digital image hub (Leica Biosystems, 

Wetzlar, Germany. Scoring of the synchronous cohort, DM-CRC-TMA cohort and Australian TMA 

cohorts was performed by a single observer blinded (KP). Hot spot areas with the greatest intensity of 

nuclear staining were selected and the percentage of positive cells within three predetermined fields of 

view at X400 were assessed. Receiver operator curves (ROC) were previously utilised to determine 

the optimal cut point for high and low Ki67 expression at 30%. Patients with a proliferation index of 

<30% were classified as low proliferation and those with a score off >30% were highly proliferative 

(49).  

2.2.5 Statistical Analysis of IHC tissue-based studies 

To set threshold values for high and low expression of each protein log rank statistics were performed 

in R Studio (RStudio, Boston, MA, USA) using survminer, survival, tidyverse and maxstat packages. 

All further statistical analyses were completed using IBM SPSS version 22 (IBM, New York, USA).  

Kaplan Meier log rank curves were used to identify associations between protein expression and 

cancer-specific survival (CSS) within the full Glasgow combined cohort, and then when disease was 

segregated by GMS, MMR status and tumour subsite (Right-sided, Left-sided and rectal cases). Cox 

regression was performed to determine hazard ratios. Chi-squared testing was performed to assess 

association between expression of each protein and clinicopathological characteristics. Chi-squared 

testing was also utilised to determine association between main pathway activation marker 

pSTAT3tyr705 and the other pathway members. Statistical significance was set to p<0.05.   
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2.3 RNAscope®   

To detect the soluble cytokine that activates JAK-STAT3 signalling, interleukin-6 (IL6), novel RNA 

in situ hybridisation RNAscope (ACD Bio, California, USA) was performed by Colin Nixon at the 

CRUK Beatson Institute on the Glasgow combined cohort TMAs. This technique enabled quantitative 

detection of IL6, which were unable to be detected by IHC to a sufficient quality. At the same time of 

IL6 probing, staining of housekeeping gene, PPIB, was also performed in the Glasgow combined 

cohort. IL6 was quantified using Halo digital pathology software (Indica Labs, Albuquerque, NM, 

USA) in copies per µM2. A classifier to distinguish between tumour and stromal rich areas was built 

to measure IL6 in different TME areas. Thresholds were set to measure the intensity of brown staining 

indicative of the level of IL6 mRNA copies. Raw scores for IL6 expression within the tumour and 

stroma were normalised to PPIB scores. Data were entered into IBM SPSS version 22 software (IBM, 

New York, USA), and statistical analyses were performed in the same manner as for the IHC protein 

pathway data. Cut offs for high and low expression were determined using survminer, survival, 

maxstat and tidyverse packages in R studio based on cancer-specific survival (RStudio, Boston, MA, 

USA).   

2.4 Genomics 

Mutational profiling was performed on a subset of patients from the Glasgow cohort of patients from 

the Glasgow combined cohort (n=252). DNA was previously extracted from FFPE sections by NHS 

molecular diagnostics, Dundee and stored at -80oC. DNA quality and concentration were determined 

using the Qubit assay (ThermoFisher, Massachusetts, USA). Samples with a DNA concentration 

of >10ng/µL were included in the study. Sequencing was outsourced and performed by Dr Susie 

Cooke and the Glasgow Precision Oncology Laboratory (GPOL) using a custom in-house designed 

panel of 151 cancer-associated genes. Statistical analyses of broad mutational patterns relative to 

GMS and pSTAT3tyr705 high/low groups were performed using maftools packages of R Studio. 

Summary plots were used to visualise the top variant types and classifications, mutation burden and 

SNV classes. Oncoplots were used to visualise the top 10 mutations within each patient group. 

Pathway enrichment analysis was performed to identify patterns of mutation in genes assigned to 

distinct cancer-associated signalling pathways. Fishers’ exact tests were performed to identify any 

significantly different mutations across groups and results were visualised in forest plots. Copy 

number analysis was performed in collaboration with Dr Akhill Yerdusi using Python. Swarm and 

point plots were used to visualise the most differentially mutated genes between each GMS group and 

pSTAT3tyr705 high/low groups.  
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2.5 Transcriptomics  

Whole genome RNAseq was performed on a subset of patients from the Glasgow combined cohort 

(n=100). To utilise available FFPE full section tissue, novel RNAseq technique, TempO-Seq was 

employed (Biospyder Technologies, Carlsbad, CA, USA). TempO-Seq gene expression profiling was 

performed according to manufacturer’s directions. Briefly, whole sections (~100 mm2 x 0.5 µm) were 

excised from FFPE slides of colorectal cancer resection samples and placed into wells of a PCR plate. 

TempO-Seq Lysis Buffer was added, and the sample was overlaid with mineral oil. After 

deparaffinization by heating, the tissue was lysed using TempO-Seq Protease mix. The lysate was 

then combined with a mixture of detector oligonucleotides (DOs), designed as pairs that anneal 

adjacent to one another on the target RNAs. After a hybridization step, unbound DOs were degraded 

in an enzymatic step, and the bound DOs were ligated into a complete probe sequence. The ligated 

probes were amplified in a PCR step, purified, and combined in an indexed multiplex library 

which was sequencing using an Illumina instrument (Illumina, CA, United States) to count the 

relative amount of each target DO pair representing each gene’s expression level. 

Statistical analyses were performed in R Studio (RStudio, Boston, MA, USA). Raw counts were 

normalised using DESeq2 and analysed for both GMS and pSTAT3tyr705 high/low groups. Analysis 

was performed using the full 22,000 gene probes by Bioclavis (Bioclavis, Glasgow, UK). DESeq2 

was used to construct tables of differential gene expression. Box plots were constructed by KP in 

SPSS (IBM, NY, USA) for differentially expressed genes relative to GMS groups. Over-

representation analysis was performed in R Studio using go_enrich to analyse interactions between 

differentially expressed genes by KP. PCA plots were constructed to determine any clustering of gene 

expression between histological groups. Volcano plots were plotted by Dr Gerard Lynch to visualise 

and differentially expressed genes between pSTAT3tyr705 groups. For the purposes of this study 

significance was set to padj <0.05.  

2.6 In vitro cell line studies 

2.6.1 Colon cancer cell line culture 

Seven colon cancer cell lines were cultured in ATCC recommended growth medium and FBS, as 

outlined in table 2.5. Using seven different lines allowed for a broad spectrum of mutational 

backgrounds and MSI statuses. Cells were grown in T75 flasks at 37oC 5% CO2 and medium was 

changed every 2-3 days. Upon reaching 70% confluence cells were passaged using 0.05% Trypsin 

(Thermo Fisher Scientific, Waltham, MA, USA) and split at a 1:3 ratio. Mycoplasma testing was 

performed once every 3 months. Brightfield images of COLO205, T84, HT29, SW620, HCT116 and 

SW480 were taken at X40 magnification pre-treatment and are shown in figure 2.2 to visualise 
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distinct morphological differences between each cell line. Images were not available for DLD-1 or 

SW48 lines.  

Table 2.5: Colorectal cancer cell lines. Table outlining colorectal cell lines used in drug 

screening assays including COLO205, HT29, HCT116, DLD-1, T84, SW620, SW480 and 

SW48. For each cell line CMS, MSI status and mutation profile was available in the 

literature (11). Culture medium was utilised in accordance with ATCC guidelines as shown 

in the table.   

Cell Line CMS MSI Mutations Medium 

COLO205 Immune MSS BRAF 

Dulbeccos Modified Eagle Medium 

(DMEM) Glutamax (61965240, Life 

Technologies, Paisley, UK), 10% FBS 

 

HT29 

(ATCC 

HTB-38TM) 

Metabolic  MSS BRAF, PI3K, 

TP53 

McCoy’s 5A (Modified Medium, 

GlutaMAXTM Supplement (36600021, 

Life Technologies, Paisley, UK), 10% 

FBS 

HCT116 Mesenchymal MSI-

h 

KRAS, PI3K 

RPMI 1640 Media (12633012, Life 

Technologies, Paisley, UK), 10% FBS 

 

DLD-1 Immune MSI-

h 

KRAS PI3K, 

TP53 RPMI 1640 Media (12633012, Life 

Technologies, Paisley, UK), 10% FBS 

 

T84 (ATCC, 

CCL-248TM) 

Canonical MSS KRAS Dulbecco’s Modified Eagle Medium 

(DMEM)/F12 (Ham) (11320033, Life 

Technologies, Paisley, UK), 5% FBS 

SW620 Mesenchymal MSS KRAS, TP53 

RPMI 1640 Media (12633012, Life 

Technologies, Paisley, UK), 10% FBS 

 

SW480 Mesenchymal MSS KRAS, TP53 

Dulbeccos Modified Eagle Medium 

(DMEM) Glutamax (61965240, Life 

Technologies, Paisley, UK), 10% FBS 

 

SW48 Immune MSI-

h 

WT 

Dulbeccos Modified Eagle Medium 

(DMEM) Glutamax (61965240, Life 

Technologies, Paisley, UK), 10% FBS 
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Figure 2.3 Brightfield images of CRC cell lines utilised. Light microscopy images taken at X40 

magnification of COLO205, T84, HT29, SW620, HCT116 and SW480 colorectal cell lines showing 

distinct morphologies. DLD-1 and SW48 cell lines were also utilised within the project however 

images were unfortunately not available. 

 

2.6.2 Inhibition of JAK-STAT3 signalling in colon cancer 

cell lines  

2.6.2.1 ELISA to detect cellular pSTAT3tyr705 

To confirm that Ruxolitinib and Tofacitinib were targeting IL6/JAK/STAT3 signalling a solid phase 

sandwich enzyme linked immunosorbent assay (ELISA) was performed to detect levels of 

pSTAT3tyr705 in treated and untreated 2D cell line samples (RND Systems DYC4607B-2). SW620 cell 

lines were seeded at 1x106 per well of a 6 well plate. Cells were treated 24 hours after plating with 

either 0.01% DMSO, 1mM Ruxolitinib or 1mM Tofacitinib in triplicate and incubated at 37oC for 72 

hours. Plates were rinsed with PBS. Cells were lysed in lysis buffer (1 mM EDTA, 0.5% Triton X-

100, 5 mM NaF, 6 M Urea, 25μg/mL Leupeptin, 25μg/mL Pepstatin, 100μM PMSF, 3.0μg/mL 

Aprotinin, 2.5 mM Sodium Pyrophosphate, 1 mM activated Sodium Orthovanadate in PBS, pH 7.2-

7.4) and left on ice for 15 minutes before being frozen at -80oC. Prior to performing the assay, tubes 

were centrifuged at 2000 x g for 5 minutes and supernatant was transferred to fresh tubes. Samples 

were diluted 6-fold in diluent (1 mM EDTA, 0.5% Triton X-100, 5 mM NaF in PBS). The ELISA 

plate was incubated overnight at room temperature with carrier protein provided in the kit. Wells were 

washed with 0.05% Tween in PBS before being blocked with 1% BSA, 0.05% NaN3, in PBS for 2 
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hours at room temperature. Plates were washed with 0.05% Tween in PBS and then samples, and 

standards were added to the plate in triplicate and duplicate, respectively. Plates were incubated for 2 

hours at room temperature, washed, and incubated for 2 hours at room temperature with 100uL 

detection antibody.  Plates were washed and 100uL Streptavidin-HRP was added for 20 minutes in the 

dark. Plates were washed again and 100uL Substrate solution added to each well for 20-minute sin the 

dark. Finally, 50uL stop solution was added to each well and optical density was read at 450nM using 

a TECAN Infinite 200 PRO plate reader (Tecan Group Ltd, Switzerland).  Optical density read outs 

for standards were utilised to determine concentration of pSTAT3tyr705 in the SW620 samples by 

plotting a standard curve in Microsoft Excel (Microsoft, Albuquerque, NM, USA). Paired T tests were 

used to determine any statistical difference between DMSO vehicle control and JAK inhibitor samples 

with α set to 0.05.  

2.6.2.2 Expression of pSTAT3tyr705 in patient derived 

explants  

Patient-derived explants were utilised to perform further validity testing of Ruxolitinib and 

Tofacitinib targets. The explant model was developed by Dr Lesley Stark (University of Edinburgh) 

and adapted for applying to surplus available tissue. Normal and tumour resections from colorectal 

cancer patients undergoing surgery with curative intent were obtained from NHS GGC tissue biobank. 

Samples were stored at 4oC in PBS until processing. Small biopsy sized chunks of tissue were 

removed from larger resection specimens. For each patient the aim was to obtain 3 

“biopsies/explants” each from the tumour and normal resection. Samples were washed in phosphate 

buffered saline-antibiotic (PBS-ABS) twice. Each explant was placed in separate wells of a 6-well 

plate. One well of each plate was treated as control wells and 0.5mL Dulbecco’s Modified Eagles 

Medium with Nutrient Mixture F12 Hams medium (DMMEM) (Invitrogen #12634) (with no 

additives) was added to each well. The remaining explants were immersed in either 0.5mL 10µM 

Tofacitinib or 10µM Ruxolitinib. Explants were incubated overnight at 37oC 5% CO2 and then fixed 

in 4% paraformaldehyde in universal tubes overnight. After fixation explants were washed in PBS and 

immersed in ethanol overnight. Paraffin embedding was performed by Colin Nixon and the CRUK 

Beatson histology service. Sections for IHC staining (4µM thick) were cut using a microtome and 

baked overnight on slides at 50oC. Explant slides were stained for pSTAT3tyr705 using the same 

protocol as for TMA sections to compare protein expression between treated and untreated samples. 

IHC was performed exactly as outlined in section 2.2. Sections were scanned onto NDP Viewer 

(Hamamatsu, Hertfordshire, UK) at x20 magnification using a Hamamatsu NanoZoomer 

(Hertfordshire, UK) by Glasgow Tissue Research Facility.   
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2.6.2.3 Jakinib drug screening  

To perform inhibition of JAK-STAT3 signalling, cell lines were grown to 70% confluence and then 

seeded into 96 well plates. Due to the difference in growth rates optimum seeding densities (Table 

2.6) were determined prior to any drug screening experiments. The volume of cells/medium per well 

was 200µL. After plating, cells were left to attach overnight at 37oC 5% CO2. Medium was removed 

using an aspirator and replaced by either fresh medium, 0.01% DMSO in medium, 1mM, 100µM, 

10µM, 1µM, 0.1µM Ruxolitinib (Abcam, Jak1/2 inhibitor) or Tofacitinib (Abcam, Jak2/3 inhibitor) in 

triplicate. Cells were incubated for 48 hours, 72 hours or 96 hours. This was repeated for each time 

point 3 times to give n=3.  

Cell Line Seeding density (96 well 

plate) 

COLO205 15000/well 

HT29 5000/well 

HCT116 5000/well 

DLD-1 10000/well 

T84 10000/well 

SW620 10000/well 

SW480 10000/well 

SW48 25000/well 

Table 2.6 Cell line seeding densities. Table outlines number of cells for each cell line 

seeded in each well of a 96 well plate in preparation for drug screening. Density ranged from 

25,000 cells per well to 5000 per well depending on growth rates determined during assay 

optimisation.    

2.6.3 Cell viability of colon cancer cell lines following 

JAK-STAT inhibition  

At the appropriate time points, 20µL WST-1 reagent was added to each well in the dark. Plates were 

incubated for 1-2 hours at 37oC 5% CO2 and the absorbance was read at 450nM using a TECAN 

infinite 200 PRO plate reader (Tecan Group Ltd, Switzerland). Averages of the 3 wells were 

calculated and treated wells were normalised to control read outs. Normalised values for each plate 

were averaged for the 3 experiments. Microsoft excel (Microsoft, Albuquerque, NM, USA) was used 

to perform paired T-tests (2-tailed) to compare cell viability between experimental conditions and 
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vehicle control wells. Bar charts were plotted to show the data graphically and significance was set to 

p<0.05. 

2.7 Colorectal cancer models; in vitro 3D patient-derived 

organoids 

2.7.1 Patient-derived organoid establishment  

For the purposes of this thesis, patient-derived organoids (PDOs) were either established and grown 

from fresh surplus surgical resection tissue (Glasgow patients) or obtained through Professor Owen 

Sansom’s laboratory at the CRUK Beatson institute from Sanger centre PDO lines.  

PDOs from tumour resections were grown using a protocol developed at Memorial Sloan Kettering 

Cancer Center by Mr Josh Smith and Dr Chao Wu. Additional help was initially received from Dr 

Kevin Myant at the University of Edinburgh.  

Tumour resections were obtained from NHSGGC tissue biobank covered by ethics for surplus tissue, 

with consent from patients undergoing potentially curative resection of primary CRC. Resections for 

organoid culture were immediately place in cold PBS and kept on ice/at 4oC until processing.  

Tumour specimens were washed in cold PBS-BS twice and chopped in PBS-DTT using two sterile 

scalpel blades. Chopped tissue was transferred to a 15mL falcon tube with 10mL digestion media 

(100mL ADMEM + 2mL FBS + 2mL penicillin streptomycin + 10mg Collagenase XI + 12.5mG 

Dispase II). Samples were incubated at 37oC on a shaker for 40 minutes, after which 1 volume 

TryPLE (Thermo Fisher Scientific, Waltham, MA, USA #12605028) was added and the samples 

incubated for a further 20 minutes at 37oC. The sample was washed through a 40µM filter to remove 

any larger chunks and spun for 5 minutes at 1200RPM for 5 minutes. Pellet was washed in PBS, spun, 

and resuspended in 0.2-0.6mL Cultrex Reduced Growth Factor Basement Membrane Extract (BME) 

(Rnd Systems 3433-001) depending on pellet size. Resuspended cells were transferred to a pre-

warmed 24 well plate (20µL/well), inverted and incubated for 30 minutes at 37oC 5% CO2. After the 

BME had solidified 0.5mL ADMEM with additives (Table 2.7) was added to each well. Medium was 

changed every 2-3 days and organoids passaged upon reaching 70% confluence.  

 

 

 

 

https://www.thermofisher.com/order/catalog/product/12605028


71 
 

Component Supplier Final 

volume/concentration 

Advanced Dulbecco’s Modified Eagles 

Medium with Nutrient Mixture F12 

Hams (ADMEM) 

Invitrogen #12634 11.5mL/plate 

FBS Thermo #26140 5mL/500mL ADMEM 

Glutamax Invitrogen 35050-079 10mL/500mL ADMEM 

B27 Gibco 12587-010 1X 

N2 R&D Systems AR009 1X 

Normacure  Invivogen 1mL/500mL ADMEM 

Wnt3a R&D Systems 5036- WN 

 

10 µM 

Gastrin Sigma-Aldrich G9145 10nM 

N-Acetyl-L-cysteine Sigma-Aldrich A9165-5G 1.25mM 

Nicotinamide  Sigma-Aldrich N0636 10mM 

H recombinant Rspondin Peprotech 120-38 1µg/mL 

P38 MAPK inhibitor (SB202190) Sigma S7067 10µM 

Noggin Peprotech 120-10C 100ng/mL 

EGF Gibco PMG8043 50ng/mL 

TGFβ Receptor inhibitor (A83-01) Tocris 2939 500nM 

Prostaglandin E2  Sigma P0409 10nM 

Rhok inhibitor (Y027632) Merk Millipore SCM075 10µM 

Table 2.7: Medium for derivation of patient-derived organoids. Table describing the 

constituents of PDO medium including manufacturer and final concentrations. Protocol for 

making medium was obtained from Mr Josh Smith and Dr Chao Wu at Memorial Sloan 

Kettering, New York.  
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2.7.2 Characterisation of patient-derived organoids using 

immunofluorescence  

To confirm the presence of a mixture of cell types in organoid structures cells were stained for marker 

of tumour cells (CD326/EpCam1) and fibroblasts (α-SMA) using immunofluorescence. Antibody 

concentrations and manufacturers are listed in table 2.8. Protocol was adapted with help from Dr 

Dustin Flannagan (Sansom group, CRUK Glasgow) using Nature Protocols Broutier et al (100). 

Organoids were grown in 24 well plates (20µL BME ‘dot’ per well) to 70-80% confluence. For each 

protein of interest 100-200 organoids were required (2-3 wells) and during each IF experiment a 

negative control (no primary antibody) was used. Medium was removed using a P1000 Gilson pipette, 

taking care not to disrupt the BME. Wells were washed with 1mL of PBSB (1X PBS with 0.1% BSA) 

and organoids were transferred to 15 mL tubes using a PBSB-coated Pasteur pipette (1 tube per stain). 

Tubes were topped up with ~10mL cold PBS and left on ice for 10 minutes to allow organoids to 

settle. PBS was carefully removed, and cells were washed in cold PBS by inverting the tube and 

settled on ice for 30 minutes. Organoids were fixed in 4% paraformaldehyde on ice for 30 minutes 

and then washed in PBS on ice for 10 minutes. Blocking was performed using PBSDT (PBS 1X 0.5% 

TritonX 1% DMSO 1% BSA 1% FBS) for 1-3 hours at room temperature with gentle agitation. 

Organoids were transferred to Eppendorf tubes and incubated in primary antibody (α-SMA (mouse), 

Epcam-1/CD326 (rat) (Invitrogen) or pan-Cytokeratin (mouse) diluted 1:200 in PBSB) for 24-48 

hours at 4oC with gentle agitation. Cells were washed in PBSB and left to settle for 10 minutes at 

room temperature. Pellets were resuspended in appropriate secondary antibody diluted 1:250 in PBSB 

as outlined in table 7 and incubated at room temperature in the dark for 2 hours. Organoids were 

washed in PBSB and allowed to settle for 10 minutes at room temperature. Pellets were resuspended 

in 200µL Vectashield with DAPI using a PBSB coated pipette and placed onto the centre of a glass 

slide. Coverslips were added and slides were kept in the dark at 4oC overnight. Visualisation was 

performed using a Zeiss LSM 780 confocal microscope (Carl Zeiss AG, Oberkochen, Germany). The 

10x objective lens was used to locate organoids on the slide and images were taken with the x20 

objective lens. Zeiss Zen 2 software (Carl Zeiss AG, Oberkochen, Germany) was used to adjust the 

gain and save images.  

 

 

 



73 
 

Protein of interest  Primary 

antibody 

dilution  

Secondary 

antibody  

Secondary 

antibody 

dilution  

CD326/EpCam1(eBioscience™, 

#14-4321-82)  

1:200 Goat anti rat 488 

Abcam 

1:250 

α-SMA (Invitrogen #MA5-11547) 1:200 Donkey anti 

mouse 568 

Invitrogen 

1:250 

Table 2.8: Antibodies used for PDO characterisation via IF. Table detailing primary and 

secondary antibodies used to identify tumour and fibroblast cells, product codes and 

dilutions used. CD326 was utilised to detect tumour cells and α-SMA was used to identify the 

presence of stromal population in the organoid cultures. Antibodies were diluted as shown in 

table in PBS with 0.1% bovine serum albumin. 

2.7.3 Inhibition of JAK-STAT3 in patient-derived 

organoids  

Organoids were grown to 70-80% confluence in 24 well plates. Wells were washed in cold PBS and 

PDOs were incubated at 37oC 5% CO2 in PBS-EDTA for 20 minutes. PDOs from 2 wells were 

combined, transferred to an Eppendorf tube, and spun at 300RPM for 2 minutes. The pellet was 

resuspended in ~200µL BME and seeded into a pre-warmed 96 well plate with 5µL added per well. 

Plates were inverted and incubated for 37oC for 30 minutes. ADMEM plus additives (Table 6) was 

added to each well (200µL/well). Samples were incubated at 37oC 5% CO2 for ~3-5 days to allow for 

organoids to reform. Medium was removed and replaced with either fresh medium, 0.01% DMSO, 

10µM-1mM Tofacitinib, 10µM-1mM Ruxolitinib or 10µM-1mM 5FU in triplicate. Plates were 

incubated for 72 hours at 37oC 5% CO2.  

2.7.3.1 Cell viability of patient-derived organoids following 

JAK/STAT3 inhibition  

After incubation images were taken of each treatment using a Zeiss light microscope (Carl Zeiss AG, 

Oberkochen, Germany) using the x20 objective lens to record morphological changes. Next, 20µL 

WST-1 reagent was added to each well in the dark. Plates were incubated at 37oC 5% CO2 for 2 hours 

and absorbance was read at 450nM on the TECAN infinite 200 PRO plate reader (Tecan Group Ltd, 

Switzerland). Organoids from each patient were screened in triplicate and average calculated where 

availability of samples allowed. Paired T-tests were performed in Microsoft Excel (Microsoft, 
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Albuquerque, NM, USA) to determine any changes in cell viability between vehicle controls and 

treated wells.  

2.7.3.2 IF staining of patient-derived organoids following 

JAK/STAT3 inhibition  

After drug treatments, 3 patient-derived organoid Sangerlines were expanded sufficiently to perform 

IF staining for markers of mid-phase apoptosis (Caspase-8, Novus, discontinued) and proliferation 

(Ki67, Dako #M7240). IF staining was performed as previously outlined in 2.7.2. DMSO-treated 

sample Ki67 and Caspase-8 expression was compared to Ruxolitinib-treated organoids in Sanger31, 

25 and 37 cases. 

2.7.3.3 Histology of tumour resections from tumouroid 

patients  

To determine histological subtypes of patient tissue from which Sangerand Glasgow organoids were 

derived the original resection blocks were requested from NHS GGC Biorepository. H&E staining 

was performed by Glasgow Tissue Research Facility and Ki67 IHC was performed by KP using the 

protocol outlined in 2.1.2.2. KM grading, TSP and KI67 index were all assessed as previously 

outlined. GMS and phenotypic subtype were determined by a single observer (KP) and assessed for 

pattern of response to Jakinib in the PDO model system. Sections were also stained via IHC for 

pSTAT3tyr705 to assess baseline expression of pathway activation. Scoring was performed using 

weighted histoscore methods identical to that performed on the Glasgow combined cohort TMAs.  

2.8 Statistical Analyses summary 

2.8.1 Analyses of tumour phenotype, IHC and 

RNAScope™ data 

Statistical analyses of tumour phenotype, IHC and RNAScope™ data were performed in SPSS (IBM, 

NY, USA). Kaplan Meier survival curves were plotted to determine association between groups and 

cancer-specific survival. To determine associations with clinicopathological features chi-squared tests 

were performed. Significance was set to α<0.05. 
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2.8.2 Analysis of Mutational data  

Mutational profiling data were analysed in R Studio (IBM, NY, USA) using the maftools package. 

Fishers’ exact tests were utilised to determine any differential patterns of mutation between 

pSTAT3tyr705 and GMS patient groupings. Copy number analysis was performed by KP and Dr Akhill 

Yeduresi using Python (Python Software Foundation, Wilmington, DE, USA). Significance was set to 

α<0.05. 

2.8.3 Analysis of transcriptomics data 

RNAseq data analysis was mainly outsourced and performed by Bioclavis (Bioclavis, Glasgow, UK). 

Data were normalised using DESeq2 in RStudio (RStudio, Boston, MA, USA). Principal component 

analyses enabled investigation in top gene clustering between GMS and pSTAT3tyr705 groups. SPSS 

v22 (IBM, NY, USA) was utilised to perform Kruskal Wallis tests and construct box plots for 

differentially expressed genes. Over-representation analyses were performed in R Studio using 

go_enrich to analyse pathway enrichment and associations of differentially expressed genes. Volcano 

plots were constricted by Dr Gerard Lynch using ggplot in R Studio to visualise differential gene 

expression. Significance was set to padj. <0.05.  

2.8.4 Analysis of 2D cell line and 3D tumouroid data 

Data from cell viability assays were analysed using Microsoft Excel (Microsoft Corporation, 

Albuquerque, NM, USA). Raw optical density read outs were averaged and normalised to vehicle 

controls. Paired t tests were used to determine any significant differences between treatment groups. 

Significance was set to α<0.05. 
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3.1 Introduction  

Colorectal cancer is the third most commonly diagnosed cancer worldwide and 5-year survival rates 

are ~60%. Currently in the clinic, disease is segregated using tumour node metastases (TNM) staging 

(101). This prognostic classification system assigns patients to one of 4 groups (I/II/III/IV) based on 

the depth of tumour invasion into the bowel wall, the number of positive local lymph nodes and 

presence of metastases. Although this method can be used to predict patients’ outcomes, there is a 

vast degree of heterogeneity amongst patients that fall into the same TNM stage (102). Given the 

advances in precision medicine for oncology, TNM staging is now considered by many in the field as 

outdated. Research has focussed on identifying new ways of determining patient prognosis with an 

aim of establishing tools that predict response to different treatment regimes. In 2015 the consensus 

molecular subtypes were devised, which group patients based on genomic and transcriptomic tumour 

features to form 4 groups: immune, canonical, metabolic, and stromal (2). Although the CMS are a 

useful tool for combating tumour heterogeneity, this method relies on complex next generation 

sequencing technologies that are not yet feasible for clinical laboratory use. In 2015 Park et al 

developed Glasgow Microenvironment Score for CRC, a simple histological measure based on 

Klintrup-Mäkinen Grading (KM) and tumour stroma percentage (TSP) of an H&E slide to give 3 

prognostic groups (103). Additionally, in 2017 there was further development of  histology-based 

measures with phenotypic subtyping devised by Roseweir et al (104). This method complements 

GMS with the addition of tumour proliferation index via Ki67 immunohistochemistry to form 4 

distinct independently prognostic CRC groups; immune, canonical, latent, and stromal. The laboratory 

methods required for both phenotypic measures are already used in routine diagnostics and could be 

easily translated to clinical practise unlike the components of CMS.  

KM grade is a measure of the density of immune cells at the invasive edge of the tumour. Although 

this measure is highly prognostic is it also of importance to understand the composition of specific 

populations of immune cells. This has been assessed in prognostic histological subtyping method 

immunoscore which measure the ratio and spatial relationship of total CD3+ T cells, and cytotoxic 

CD8+ T cells. It is hypothesised that patients with a high KM grade are likely to have a strong influx 

of anti-tumour lymphocytes. In contrast, the presence of a high TSP is associated with the presence of 

a myeloid populations, specifically cells functioning in a pro-tumour fashion. 

Retrospective patient samples are an invaluable resource in cancer research to investigate the 

relationship between novel biomarkers, prognosis and other clinicopathological factors. In this study 

five independent colorectal cancer cohorts were utilised to assess the clinical utility of tumour 

histopathological phenotype measures, namely the GMS and Phenotypic Subtype method. The 

Glasgow combined cohort was used as a training cohort to assess tumour phenotype in stage I-IV 

primary operable CRC. Patient tissue from the SCOT clinical trial was available to be utilised as a 
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stage II-III CRC validation cohort. To determine utility of GMS and phenotypic subtype in stage IV 

CRC, the synchronous resection cohort provided access to both primary CRC tumour and matched 

synchronously resected metastatic liver tissue. Lastly, the DM-CRC-TMA screen-detected cohort was 

used to investigate tumour phenotypic measures in a stage I CRC screening cohort by looking for 

associations with prognostic clinicopathological features. An independent cohort consisting of patient 

tissue from Australia was used to validate GMS and Phenotypic Subtyping methods using a tissue 

microarray as opposed to full tumour sections. Outcomes were assessed by cancer-specific survival 

(time from diagnosis to cancer death) in the Glasgow combined cohort, synchronous resections cohort 

and Australian TMA cohort. Disease-free survival (time to diagnosis to disease recurrence or any 

death) was used to measure outcome in the TransSCOT cohort. 

GMS is determined using an H&E-stained tumour section by combining a measure of the local 

inflammatory infiltrate (Klintrup-Mäkinen (KM) Grade and intra-tumour stroma percentage (TSP). 

This gives rise to 3 groups, GMS0 (immune), GMS1 (intermediate) and GMS2 (stromal) (103). 

Phenotypic subtype is determined using KM Grade, TSP, and proliferation index (% Ki67 positive 

tumour cells). This segments patients into 4 groups, immune, canonical, latent and stromal (104). 

Representative images used to determine GMS and phenotypic subtypes are shown in figure 3.1. 

Published work has shown GMS and phenotypic subtype associate with CSS in stage I-III CRC (49) 

(105). Patients assigned to GMS0 or the immune phenotypic subtype show the best prognosis, while 

those with high stromal infiltrates (GMS2/stromal subtype) exhibit the worst outcomes. Current TNM 

staging used clinically is outdated and subject to inaccuracies. Both GMS and phenotypic subtyping 

methods would be easily translatable to routine diagnostics and represent promising tools for 

providing prognostic information for clinicians and patients.  

Here, GMS and phenotypic subtyping were performed in 5 independent retrospective colorectal 

cancer cohorts to assess their prognostic capability across a range of different disease stages, with the 

hypothesis being that both GMS and phenotypic subtyping would be prognostic in all stage I-IV 

retrospective CRC cohorts being assessed. This work will also allow for novel biomarkers being 

studied in these cohorts to be tested for association with tumour phenotype. This chapter aims to 

validate GMS and phenotypic subtyping in retrospective CRC cohorts and introduce these measures 

as not only prognostic tools for CRC but also as groups which could guide targeted therapies in the 

future. It was hypothesised that both histological measures, GMS and phenotypic subtype, would be 

prognostic in all 5 independent cohorts. Patients with immunologically hot tumours would be 

predicted to observe the best clinical outcomes and those with stromal-rich tumours likely to exhibit 

the shortest survival times. 
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Figure 3.1 Representative images used to determine GMS and Phenotypic subtype. 

H&E mages taken at x5 and x20 magnifications showing an example of low (A) and high (B) KM 

grade at the invasive edge, arrow indicates band of immune cells. H&E images taken at x5 and x20 

magnification showing examples of low (C) and high (D) intra tumour stromal percentage. 

Representative images of CRC tissues stained for Ki67 with an example of low (E) and high (F) 

proliferation indexes. Scale bar represents 200µM. 

3.2 Clinicopathological characteristics of patient cohorts  

3.2.1 Glasgow combined cohort  

A total of 1030 patient samples were identified from a retrospective stage I-IV colorectal cancer 

database held within the Glasgow Royal Infirmary. Clinical specimens came from patients undergoing 

surgery with curative intent between 1997 and 2007. Most patients (76.9%) had primary colon cancer 

and 23.1% had primary rectal cancer. There was a relatively even split between sexes with 48.8% 

males. Patients were predominantly T stage III (55%), with 28.6% T stage IV, 12.1% T stage II and 
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4.3% T stage I. Most patients were N stage 0 (62.5%), with 26.3% N stage I and 11.2% N stage II. 

32.9% of patients received adjuvant chemotherapy and 82.1% were MMR proficient. Patients were 

excluded from the study if they received neoadjuvant therapy, died within 30 days of surgery, or 

presented with stage IV disease. The primary endpoint used was cancer-specific survival defined as 

time in months from the date of surgery to cancer-related mortality. Clinical factors including age 

(p<0.001), T stage (P<0.001), N Stage (p<0.001) and administration of adjuvant chemotherapy 

(p=0.040) were associated with colorectal cancer-specific survival.  
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Clinicopathological 

Characteristic 

n (%) Clinical outcome 

significance  

Age  

<65 

>65 

 

293 (31.8) 

628 (68.2) 

 

<0.001 

Sex 

Female 

Male 

 

447 (48.5) 

474 (51.5) 

 

0.044 

T stage  

I 

II 

III 

IV 

 

40 (4.3) 

111 (12.1) 

507 (55.0) 

263 (28.6) 

 

<0.001 

N Stage 

0 

I 

II 

 

574 (62.3) 

241 (26.2) 

103 (11.2) 

 

<0.001 

Tumour subsite 

Right 

Left 

Rectum 

 

394 (43.1) 

316 (34.5) 

205 (22.3) 

 

0.521 

MMR status  

pMMR 

dMMR 

 

739 (80.2) 

161 (17.5) 

 

0.185 

Adjuvant therapy  

No  

Yes 

 

218 (67.1) 

107 (32.9) 

 

0.040 

Table 3.1 Clinicopathologic characteristics of Glasgow combined cohort of colorectal 

cancer patients. Table showing the number (and %) of patients with clinical characteristics and 

association with cancer-specific survival outcomes in patients from the Glasgow combined cohort 

including age, sex, T stage, N stage, tumour subsite, MMR status and administration of adjuvant 

therapy.  

3.2.2 TransSCOT clinical trial cohort 

A total of 2913 colorectal cancer patients from the TransSCOT adjuvant chemotherapy clinical trial 

(ISRCTN no. 59757862) were included in analysis of GMS. For phenotypic subtype, specimens from 

1790 patients were available for analysis (due to a reduced number of Ki67 stained sections compared 
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to H&Es). Tissue was resected between 2008-2013 from high risk TNM II or TNM III patients during 

surgeries with curative intent undertaken throughout the UK. Patients were mostly T stage III (58.2%) 

and N stage I (57.1%). 61% of patients were male and most tumours were located in the colon 

(82.5%). Disease-free survival (DFS) was used as a primary endpoint defined as survival in months 

from the date of surgery until recurrence or all-cause mortality. Minimum follow-up was 3 years and 

patients were excluded from analysis if they died within 30 days of surgery. T stage (p<0.001), N 

stage (p<0.001) and tumour site (p=0.003) were significantly associated DFS (Table 3.2).  

Clinicopathological 

Characteristic 

n (%) Clinical outcome 

significance  

Sex 

Female 

Male 

 

1135 (39) 

1778 (61) 

 

0.436 

T stage  

I 

II 

III 

IV 

 

78 (2.7) 

250 (8.6) 

1696 (58.2) 

889 (30.5) 

 

<0.001 

N Stage 

0 

I 

II 

 

556 (19.1) 

1663 (57.1) 

694 (23.8) 

 

<0.001 

Site 

Colon 

Rectum 

 

2402 (82.5) 

511 (17.5) 

 

0.003 

Table 3.2 Clinicopathologic characteristics of TransSCOT cohort. Table showing the 

number of patients with clinical characteristics and associations with disease-free survival in the 

TransSCOT cohort including age, sex, T stage, N stage, and tumour subsite. 

3.2.3 Synchronous resection cohort  

A total of 44 stage IV colorectal cancer patients who underwent synchronous resection of primary 

colorectal tumours and matched liver metastases were included in the cohort. Patients were operated 

on between April 2002 and June 2010 at Glasgow Royal infirmary. 59% of patients were over the age 

of 65 years, and 59% were male. Primary tumours were mainly T3 or T4 tumours (91%). Primary 

tumours were mainly located in the colon (55%) and neoadjuvant chemotherapy was administered to 

73% of patients. There were 33 cancer-related deaths, 4 non-cancer related deaths and 5-year survival 
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was 64%. The primary end point used was cancer-specific survival. In terms of association with 

outcomes, N stage was the only clinicopathological feature associated with cancer-specific survival 

(p=0.032). No exclusion criteria were applied before analysis due to the size of this cohort (Table 

3.3).  
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Clinicopathological 

Characteristic 

n (%) Clinical outcome 

significance  

Age  

<65 

>65 

 

18 (41) 

26 (59) 

 

0.484 

Sex 

Female 

Male 

 

18 (41) 

26 (59) 

 

1.000 

T stage  

I/II 

III/IV 

 

4 (9) 

41 (91) 

 

 

0.114 

N Stage 

0 

I 

II 

 

18 (41) 

18 (41) 

8 (18) 

 

0.032 

Tumour subsite 

Colon 

Rectum 

 

24 (55) 

20 (45) 

 

 

0.896 

Adjuvant therapy  

No  

Yes 

 

18 (42) 

25 (58) 

 

 

0.409 

Neoadjuvant therapy  

No  

Yes 

 

32 (73) 

12 (27) 

 

0.655 

Table 3.3: Clinicopathological characteristics of synchronous resection cohort of 

colorectal cancer patients. Table showing the number (and %) of patients exhibiting clinical 

features and association with cancer-specific survival in the synchronous cohort including age, sex, T 

stage, tumour subsite, adjuvant therapy and neoadjuvant therapy.  

 

3.2.4 DM-CRC CRC Screening cohort  

A total of 159 faecal occult blood test (FOBT) screen-detected CRC patients undergoing surgery 

within Greater Glasgow and Clyde health board were included. Approximately two-thirds of patients 

were over the age of 65 years, and most were male (69%). Tumours were mainly TNM stage 1 (142, 
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89%) with the remaining TNM stage III (17, 11%). Right colon cancer accounted for 60% of cases, 

with 27% left colon cancer and 25% rectal cancers. 10% of patients underwent adjuvant 

chemotherapy. Median follow-up was 91 months, and 8 all-cause deaths were recorded to date. Due 

to the early stage of cancer patients and limited number of events in this cohort, none of the outlined 

clinicopathological characteristics were associated with cancer-specific survival (Table 3.4).  

Clinicopathological 

Characteristic 

n (%) Clinical outcome 

significance  

Age  

<65 

>65 

 

83 (45.6) 

99 (54.4) 

 

0.462 

Sex 

Male 

Female 

 

127 (69.0) 

55 (29.9) 

 

0.455 

T stage  

I 

II 

 

136 (74.7) 

46 (25.3) 

 

 

0.355 

N Stage 

0 

I 

II 

 

108 (58.7) 

14 (7.6) 

4 (2.2) 

 

0.761 

Tumour subsite 

Right colon 

Left colon 

Rectum 

 

26 (14.1) 

108 (58.7) 

48 (26.1) 

 

0.129 

Adjuvant therapy  

No  

Yes 

 

164 (89.1) 

18 (9.8) 

 

 

0.427 

Table 3.4; Clinicopathological characteristics of DM-CRC screen-detected stage I 

colorectal cancer cohort. Table showing the number of patients (and %) with clinical features 

category and association of clinical features with cancer-specific survival including age, sex, T stage, 

N stage, tumour subsite and adjuvant therapy.  

 

 



86 
 

3.2.5 Australian TMA cohort  

Tissue micro arrays were available via a collaboration with Prof C Soon Lee at Western Sydney 

University. A total of 410 Australian patients with primary operable colorectal cancer were included 

in the cohort. Patients were predominantly over 65 years of age (64.4%) and female (65.7%). In terms 

of T stage, most patients presented at T stage III (39.5%) with 16.6% T stage II, 9.9% T stage I and 

8.3% T stage IV. Over half (53.7%) of patients were N stage 0 and tumours were predominantly 

located in the rectum (74.6%). 43.1% of patients received adjuvant chemotherapy. Patients were 

excluded from analysis if they died within 30 days of surgery and the primary end point used was 

cancer-specific survival. T stage (p<0.001), N stage (p<0.001), tumour subsite (p=0.046) and 

administration of adjuvant chemotherapy (p=0.018) were associated with cancer-specific survival 

(Table 3.5).  
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Clinicopathological 

Characteristic 

n (%) Clinical outcome significance  

Age  

<65 

>65 

 

42 (13.7) 

264 (64.4) 

 

0.735 

Sex 

Male 

Female 

 

137 (34.3) 

262 (65.7) 

 

0.797 

T stage  

I 

II 

III 

IV 

 

29 (9.9) 

68 (16.6) 

162 (39.5) 

34 (8.3) 

 

<0.001 

N Stage 

0 

I 

II 

 

159 (53.7) 

70 (23.6) 

67 (22.6) 

 

<0.001 

Tumour subsite 

Colon 

Rectum 

 

104 (25.4) 

306 (74.6) 

 

 

0.046 

Adjuvant therapy  

No  

Yes 

 

156 (56.9) 

118 (43.1) 

 

 

0.018 

Table 3.5; Clinicopathological characteristics of Australian TMA colorectal cancer 

cohort. Table showing the number (and %) of patients with clinical features and associations of 

clinical features and cancer-specific survival in the Australian TMA cohort including age, sex, T 

stage, N stage, tumour subsite and adjuvant therapy.  

3.3 Glasgow Microenvironment Score as a prognostic tool 

in colorectal cancer  

3.3.1 Glasgow Microenvironment Score in the Glasgow 

combined cohort  

Histopathological scores for KM Grade, TSP and GMS were available from a previous study by 

James H Park. After 30-day mortalities, neoadjuvant therapy and stage IV disease patients were 
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excluded 921 patients were left for GMS analysis. This cohort consisted of 297 GMS0 patients 

(33.6%), 442 GMS1 patients (48%) and 144 GMS 2 patients (16.3%). To determine whether GMS 

associated with cancer-specific survival Kaplan-Meier survival curves were plotted (Figure 3.3A). 

Kaplan-Meier curve survival analysis showed a significant association between GMS and CSS (HR= 

1.901, 95%CI; 1.589-2.275, p<0.001 Figure 3.2). Patients classified as GMS0 observed the best 

outcomes with a mean survival of 173.006 months (95% CI 165.024-180.988) compared to 145.053 

months (95% CI 137.051-153.055) for GMS1 group. Patients with GMS2 tumours exhibited the worst 

prognosis with a mean survival time of 112.725 months (95% CI 97.386-127.614). MMR status 

performed via IHC in a diagnostic NHS laboratory was available for this cohort. When cases were 

stratified based on MMR status, GMS was associated with survival in MMR proficient (pMMR) cases 

(HR= 2.064, 95% CI; 1.701-2.505, log rank p<0.001) and in MMR deficient (dMMR) cases (n=156) 

(HR= 1.410, 95%CI; 0.896-2.220, log rank p=0.044) (Figure 3.2). Next, the association between 

GMS and prognosis was investigated with patients segregated by tumour subsite. In patients with 

primary right-sided colon tumours (n=375) GMS was associated with CSS (HR= 1.863, 95%CI; 

1.417-2.450, log rank p<0.001) (Figure 3.2). Similar relationships between GMS and CSS were 

observed for left-sided colon tumours (HR=1.904, 95%CI; 1.399-2.591, p<0.001, n=299) and rectal 

cases (HR= 2.803, 95%CI; 1.465-2.963, p<0.001, n=193) (Figure 3.3A) suggesting GMS can be used 

to predict outcomes regardless of tumour subsite.  
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Figure 3.2 Glasgow Microenvironment Score in the Glasgow combined cohort. Kaplan Meier 

curves showing association between GMS and cancer-specific survival in the full Glasgow combined 

cohort (A), MMR proficient patients (B), MMR deficient patients (C), right-sided disease (D), left-

sided disease (E) and rectal cases (F). In the full cohort (A) the hazard ratio for GMS was 1.901 

(95%CI; 1.589-2.275), log rank p<0.001. 
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3.3.2 Glasgow Microenvironment Score in the TransSCOT 

colorectal cancer clinical trial cohort  

Histopathological scores for KM, TSP and GMS were available from a recent study by Mr Peter 

Alexander and Dr Antonia K Roseweir. After 30-day mortalities were excluded 2887 patients were 

left for analysis. Of these patients 381 (13.2%) were GMS0, 1848 (64%) were GMS 1 and 658 

(22.8%) were GMS2. To determine whether GMS associated with cancer-specific survival Kaplan-

Meier survival curves were plotted. GMS was significantly associated with CSS (HR= 1.495, 95%CI; 

1.323-1.689, p<0.001, Figure 3.3). In validation of the observed results from the Glasgow combined 

cohort, the GMS0 patients showed the best prognosis with a mean survival time of 69.453 months 

(95%CI 66.407-72.498). The GMS2 and GMS1 groups exhibited mean survival times of 58.535 

months (95%CI 55.697-61.373) and 66.157 months (95%CI 64.247-68.068) respectively. When the 

association between GMS and DFS were analysed with respect to disease subsite, GMS was only 

significantly associated with prognosis in the colon cases (HR=1.502, 95%CI; 1.310-1.723, p<0.001) 

and not in rectal cases (Figure 3.3). Chemotherapy data was available for the TransSCOT clinical trial 

cohort as some patients received one of two combinations: FOLFOX (folinic acid, fluorouracil, 

oxaliplatin) or CAPOX (oxaliplatin & capecitabine). GMS was significantly associated with DFS in 

patients from both treatment arms (p<0.001), validating the observations seen in the Glasgow 

combined cohort (Figure 3.3).  
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Figure 3.3 Glasgow microenvironment score in the TransSCOT clinical trial cohort. Kaplan 

meier curves showing association between GMS and CSS in the full TransSCOT cohort (A), colon 

cases (B), rectal cases (C), FOLFOX-treated patients (D) and CAPOX-treated patients (E). In the full 

cohort the hazard ratio for GMS was 1.495 (95%CI; 1.323-1.689) log rank p=0.260. 
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3.3.3 Glasgow Microenvironment Score in the 

Synchronous resection cohort  

KM Grade and TSP scoring was undertaken by a single observer (KP) as previously described (106). 

GMS was calculated for a total of 42 primary tumours and 32 metastatic liver tumours, with some 

patients excluded due to missing/damaged sections. In terms of the primary tumours 22 (51.2%) were 

GMS0, 11 (25.6%) were GMS1 and 10 (23.3%) were GMS2. Metastatic tumours followed a similar 

pattern of segmentation with 19 patients categorised as GMS0 (59.4%), 5 as GMS1 (15.36%) and 8 as 

GMS2 (25.0%). To determine whether GMS associated with cancer-specific survival Kaplan-Meier 

survival curves were plotted. Kaplan-Meier curve survival analysis showed a significant association 

between GMS and CSS in stage IV primary CRC tumours (HR= 1.488, 95%CI; 0.961-2.304, 

p=0.004, Figure 3.4). Patients with GMS0 tumours had a mean survival time of 80.938 months 

(95%CI 61.070-100.807) compared to GMS2 patients at 38.247 months (95% CI 29.328-47.166). 

GMS1 patients showed the worst prognosis in this cohort with a median survival time of 27.947 

months (95% CI 21.148-34.476). GMS of matched liver metastases was also significantly associated 

with CSS (HR=1.403, 95%CI; 0.896-2.196, p=0.017, Figure 3.4). Metastatic tumours graded GMS0 

showed the best prognosis with a median survival time of 74.623 months compared to GMS2 tumours 

at 38.196 months (95% CI 28.426-47.967). GMS2 patients had the worst prognosis with median 

survival time 35.085 months (95% CI 16.956-53.214). Due to the smaller number of patients GMS 

was not investigated in relation to tumour subsite in this cohort as analysis would be under powered.  

 

Figure 3.4 Glasgow microenvironment score in the synchronous resection stage IV CRC cohort. 

Kaplan Meier curves showing association between GMS and CSS in the primary colorectal tumours 

(A) and synchronously resected matched liver metastases (B). In primary tumours the hazard ratio for 

GMS was 1.488, (95%CI; 0.961-2.304), log rank p= 0.004) and in liver metastases the hazard ratio 

was 1.403, 95%CI; 0.896-2.196), log rank p=0.017. 
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3.3.4 Glasgow Microenvironment Score in the DM-CRC 

screen-detected CRC cohort 

In the DM-CRC screen-detected cohort the clinical utility of GMS was assessed by testing for 

associations with known prognostic clinicopathological features due to the limited number of events. 

KM grade and TSP were scored manually by a single observer (KP). Due to missing/damaged 

sections and 30-day mortality exclusions a total of 110 patients were analysed. In this cohort, 33 

(42.9%) patients had GMS0 tumours, 33 (42.9%) had GMS1 tumours and 11 (14.3%) had GMS2 

tumours. Chi-squared analysis showed no statistically significant associations between GMS and 

clinical features tested (Table 3.6). 
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Clinical feature GMS p 

0 (n=33) 1 (n=33) 2 (n=11) 

Age 

<65 

>65 

 

17 (51.5) 

16 (48.5)  

 

18 (54.5)  

15 (45.5) 

 

4 (36.4) 

7 (63.6) 

 

0.571 

Sex 

Female 

Male 

 

21 (63.6) 

12 (36.4) 

 

24 (72.7) 

9 (27.3) 

 

10 (90.9) 

1 (9.1) 

 

0.354 

T stage 

I 

II 

 

15 (45.5) 

18 (54.5) 

 

14 (42.4) 

19 (57.6) 

 

4 (36.4) 

7 (63.6) 

 

0.867 

N Stage 

0 

I 

II 

 

26 (78.8) 

6 (18.2) 

1 (3.0) 

 

25 (75.8) 

5 (15.2) 

3 (9.1) 

 

9 (90.0) 

1 (10.0) 

0 (0.0) 

 

0.603 

Site 

Colon 

Rectum  

 

21 (63.6) 

12 (36.4) 

 

26 (78.8) 

7 (21.2) 

 

8 (72.7) 

3 (27.3) 

 

0.392 

Vascular Invasion 

Absent 

Present 

 

27 (81.8) 

6 (18.2) 

 

21 (65.6) 

11 (34.4) 

 

7 (63.6) 

4 (36.4) 

 

0.260 

Adj. Chemotherapy  

No 

Yes 

 

26 (78.8) 

7 (21.2) 

 

27 (81.8) 

6 (18.2) 

 

9 (81.8) 

2 (18.2) 

 

0.947 

Table 3.6 Glasgow microenvironment score and clinicopathologic characteristics in 

the DM-CRC cohort. Table showing chi-squared analysis for associations between clinical factors 

and GMS scores including age, sex, T stage, N stage, tumour subsite, vascular invasion and adjuvant 

chemotherapy. 

3.3.5 Glasgow Microenvironment Score in the Australian 

CRC TMA cohort 

The Australian TMA cohort was used to determine if using tissue microarrays to score tumours for 

KM grade, TSP and GMS would be as effective as using full tumour sections. KM grade and TSP 

were scored manually by a single observer (KP). A total of 133 patients were included in the analysis 

with some patients excluded due to 30-day mortality, missing survival data and/or missing/damaged 

cores. The TMA consisted of two cores taken from the intra tumour area, which were used to 

determine TSP and two cores taken from the tumour edge were used to determine KM grade. There 
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were 40 patients (25.6%) categorised as GMS0, 62 patients (39.7%) GMS1 and 54 (34.6%) of patients 

with GMS2 tumours. To determine whether GMS associated with cancer-specific survival Kaplan-

Meier survival curves were plotted. GMS determined from Australian cohort TMAs was not 

associated with cancer-specific survival (HR= 1.006, 95%CI; 0.738-1.372, p=0.968, Figure 3.5), 

suggesting full section analysis is needed to perform GMS accurately. When patients were stratified 

by disease subsite GMS was not associated with CSS in primary colon or primary rectal cases (Figure 

3.5).  
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Figure 3.5 Glasgow microenvironment score in the Australian TMA cohort. Kaplan Meier curves 

showing association between GMS and cancer-specific survival in the full Australian TMA cohort (A), 

primary colon cases (B), and primary rectal cases (C). In the full cohort the hazard ratio for GMS 

was 1.006, (95%CI; 0.738-1.372), log rank p=0.968. 

3.4 Phenotypic Subtyping as a prognostic tool in colorectal 

cancer  

3.4.1 Phenotypic subtype in the Glasgow combined cohort  

Data for Klintrup-Mäkinen grade, TSP, Ki67 and phenotypic subtype were already available from a 

prior study conducted by Dr Antonia K Roseweir. After exclusion criteria were applied there were 

921 patients left. Of these patients 299 (34.1%) were grouped as immune, 250 (28.5%) were 

canonical, 186 (21.2%) were latent and 143 (16.3%) were assigned to the stromal phenotypic subtype. 

To determine whether phenotypic subtype associated with cancer-specific survival, Kaplan-Meier 

survival curves were plotted. As previously shown in published work, phenotypic subtype was 
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significantly associated with cancer-specific survival in this cohort of stage I-III CRC patients (HR= 

1.507, 95%CI;1.346-1.687, p<0.001 Fig 3.6). Patients in the immune subtype observed the best 

prognosis with a mean survival time of 173.228 months (95%CI 165.295-181.160) versus the worst 

prognostic group, the stromal subtype, which had a mean survival time of 112.037 months (95%CI 

97.093-126.980). The canonical and latent subtypes observed mean survival times of 149.525 months 

(95%CI 139.013-160.038) and 125.810 months (95%CI 125.810-150.429), respectively. When 

patients were stratified by MMR status, 161 were MMR deficient and 739 were MMR proficient. 

Phenotypic subtype in pMMR patients was significantly associated with CSS (HR=1.592, 95%CI; 

1.411-1.795, p<0.001), however phenotypic subtype was not associated with prognosis in dMMR 

patients (Figure 3.6). When disease was stratified by tumour subsite, 394 patients presented with 

right-sided colon tumours, 316 had left-sided primary colon tumours and 205 had tumours located in 

the rectum. Phenotypic subtype was significantly associated with CSS regardless of tumour subsite, 

slightly potentiated in rectal cases with the highest HR of 1.613 (95% CI; 1.278-2.036, p<0.001) 

(Figure 3.6). 
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Figure 3.6 Phenotypic subtyping in the Glasgow combined cohort. Kaplan Meier curves showing 

association between GMS and cancer-specific survival in the full Glasgow combined cohort (A), 

MMR proficient patients (B), MMR deficient patients (C), right-sided disease (D), left-sided disease 

(E) and rectal cases (F). In the full cohort the hazard ratio for phenotypic subtype was 1.507, 95%CI; 

1.346-1.687), log rank p<0.001. 
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3.4.2 Phenotypic subtype in the TransSCOT colorectal 

clinical trial cohort 

Histological scores for KM Grade, TSP, Ki67 and phenotypic subtype were provided from previous 

work by Dr Antonia K Roseweir. After excluding patients who died within 30 days of surgery 1776 

patients were available for analysis. Of the patients included, 381 (21.5%) were immune, 542 (30.5%) 

were canonical, 195 (11.0%) were latent and 658 (37.0%) were classified as the stromal phenotypic 

subtype. To determine whether phenotypic subtype associated with cancer-specific survival Kaplan-

Meier survival curves were plotted. As previously described by Roseweir et al 2020, phenotypic 

subtype was associated with disease-free survival in the TransSCOT colorectal cohort (HR= 1.274, 

95%CI; 1.179-1.376, p<0.001, Figure 3.7). Patients in the immune subtype showed the best prognosis 

with a mean survival time of 69.543 months (95%CI 66.407-72.498) compared to the worst 

prognostic group, the canonical subtype, which observed a mean disease-free survival of 56.816 

months (95% CI 53.144-60.487). The latent and stromal subtypes showed mean disease-free survival 

times of 55.306 months (95%CI 51.290-59.322) and 58.622 months (95%CI 55.785-61.460) 

respectively. In concordance with GMS, phenotypic subtype was only associated with DFS in colon 

cases (HR= 1.282, 95%CI; 1.180-1.393, log rank p<0.001) and not in rectal cases (Figure 3.7). In 

terms of treatment regime, phenotypic subtype was significantly associated with DFS in both 

FOLFOX and CAPOX-treated patients (p<0.001, p=0.002, respectively, Figure 3.7). However, of 

note, in the FOLFOX group patients in the immune subtype had a mean survival time of 75.240 

months (95%CI; 70.772-79.708 months) compared to the CAPOX-treated patients’ immune group 

who observed a mean survival time of only 65.934 months (95%CI; 62.352-69.515). These data show 

that patients in the immune subtype respond better to FOLFOX chemotherapy over CAPOX, as 

previously discussed (47). Patients in the latent subtype observed a trend towards the opposite effect, 

with the mean survival time of FOLFOX-treated patients 45.395 months versus 57.865 months for 

CAPOX-treated patients (p=0.062).
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Figure 3.7 Phenotypic subtype and prognosis in the TransSCOT clinical trial cohort. Kaplan 

Meier curves showing association between phenotypic subtype and disease-free survival in the full 

TransSCOT cohort (A), colon cases (B), rectal cases (C), FOLFOX-treated patients (D) and CAPOX-

treated patients (E). In the full cohort the hazard ratio for phenotypic subtype was 1.274, (95%CI; 

1.179-1.376) log rank p<0.001. 
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3.4.3 Phenotypic subtype in the Synchronous resection 

cohort 

KM grade and TSP were scored manually by a single observer (KP) to obtain the components of 

GMS. Ki67 proliferation index (% tumour cells positive for Ki67) was scored digitally using the 

Slidepath digital pathology platform (Leica Microsystems, Wetzlar, Germany). The total number of 

sections scored for KM grade, TSP and Ki67 proliferation index was 42 for primary tumours and 32 

for liver metastases due to damaged or sections not being scoreable (total cohort n=44 paired 

samples). In terms of primary tumours, 20 patients (48.8%) were immune, 5 (8.3%) were canonical, 4 

(6.7%) were latent and 12 (29.3%) were stromal. When phenotypic subtyping was applied to 

metastatic tumours 18 patients (54.5%) were immune, 2 patients were canonical (6.1%), 3 patients 

were latent (9.1%) and 10 patients were categorised as stromal subtype (30.3%). To determine 

whether phenotypic subtype associated with cancer-specific survival Kaplan-Meier survival curves 

were plotted. Phenotypic subtype of primary tumours significantly associated with CSS (HR= 1.272, 

95%CI; 0.954-1.697, p=0.001, Figure 3.8). Patients in the immune subtype observed the best 

prognosis with a mean survival time of 80.938 months (95%CI; 61.070-100.87) compared to the 

stromal subtype group which had a mean survival time of 38.247 months (95%CI; 29.328-47.166). 

The mean survival time for the canonical subtype was 22.472 months (95%CI; 10.64-34.251) and the 

latent subtype showed a mean survival of 29.199 (95%CI; 22.525-35.873).  

In terms of metastatic liver tumours, phenotypic subtype was trending towards an association with 

CSS (HR=1.252, 95%CI; 0.926-1.692, p=0.068, Figure 3.8). Patients within the immune group 

observed the best outcomes with a mean survival time of 74.623 months (95%CI; 54.931-94.315) 

compared to the worst prognostic group, canonical, which observed a mean survival time of 26.327 

months (95%CI; 24.495-28.359). The stromal subtype has a mean survival time of 38.196 months 

(95%CI; 28.426-47.967) and the latent subtypes mean survival time was 42.152 months (13.377-

70.927).  
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Figure 3.8 Phenotypic subtyping in the synchronous resection stage IV CRC cohort. Kaplan 

Meier survival cures showing association between phenotypic subtype and CSS in primary colorectal 

tumours (A) and matched liver metastases (B). In primary colorectal tumours the hazard ratio for 

phenotypic subtype was 1.272, (95%CI; 0.954-1.697), log rank p=0.001 and in liver metastases the 

hazard ratio was 1.252, (95%CI; 0.926-1.692), log rank p=0.068. 

3.4.4 Phenotypic subtype in the DM-CRC screen-detected 

CRC cohort 

KM grade and TSP were scored manually by a single observer (KP). Ki67 proliferation index (% 

tumour cells positive for Ki67) was scored digitally using the Slidepath digital platform (Leica 

Microsystems). Due to the small number of events in this cohort, phenotypic subtype was assessed in 

relation to clinicopathological features and not survival outcomes. When phenotypic subtyping was 

applied to this cohort, 33 patients were immune (45.2%), 10 patients were canonical (13.7%), 19 

patients were latent (26%), and 11 patients were categorised as stromal (15.1%). Chi squared analysis 

revealed a significant association between phenotypic subtype and tumour site (p=0.041, Table 3.7). 

No other statistically significant associations were observed between phenotypic subtype and 

clinicopathological features analysed. 
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Clinical factor Phenotypic Subtype p 

Immune  

(n=33) 

Canonical 

(n=10) 

Latent 

(n=19) 

Stromal 

(n=11) 

Age 

<65 

>65 

 

17 (51.5) 

16 (48.5) 

 

5 (50) 

5 (50) 

 

10 (52.6) 

9 (47.4) 

 

4 (36.4) 

7 (63.6) 

 

0.826 

Sex 

Female 

Male 

 

21 (63.6) 

12 (36.4) 

 

6 (60) 

4 (40) 

 

14 (73.7) 

5 (26.3) 

 

10 (90.9) 

1 (9.1) 

 

0.319 

T stage 

I 

II 

 

15 (45.5) 

18 (54.5) 

 

4 (40) 

6 (60) 

 

9 (47.4) 

10 (52.6) 

 

4 (36.4) 

7 (63.6) 

 

0.931 

N stage 

0 

I 

II 

 

26 (78.8) 

6 (18.2) 

1 (3) 

 

8 (80) 

1 (10) 

1 (10) 

 

14 (73.7) 

3 (15.8) 

2 (10.5) 

 

9 (90) 

1 (90) 

0 (0) 

 

0.767 

Site 

Colon 

Rectum 

 

21 (63.6) 

12 (36.4) 

 

6 (60) 

4 (40) 

 

18 (94.7) 

1 (5.3) 

 

8 (72.7) 

2 (27.3) 

 

0.041 

Vascular 

invasion 

Absent 

Present  

 

27 (81.8) 

6 (18.2) 

 

8 (80) 

2 (20) 

 

12 (63.2) 

7 (36.8) 

 

7 (63.6) 

4 (36.4) 

 

0.395 

Adj. 

Chemotherapy 

No 

Yes 

 

26 (78.8) 

7 (21.2) 

 

8 (80) 

2 (20) 

 

17 (89.5) 

2 (10.5) 

 

9 (81.8) 

2 (18.2) 

 

0.785 

 

 Table 3.7 Phenotypic subtype associations with clinical features. Table showing Chi 

squared analysis comparing phenotypic subtype and clinicopathological features including age, sex, 

T stage, N stage, tumour subsite, vascular invasion and adjuvant chemotherapy. 
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3.4.5 Phenotypic subtype in the Australian CRC TMA 

cohort  

KM grade and TSP were scored manually by a single observer (KP). Ki67 proliferation index (% 

tumour cells positive for Ki67) was scored digitally using the Slidepath digital platform (Leica 

Microsystems). Phenotypic subtyping was performed in 145 patients, with some patients excluded 

due to missing survival data, mortality within 30 days of surgery or missing/damaged TMA cores. Of 

the remaining patients, 40 (27.6%) were categorised as the immune subtype, 29 patients (20.0%) to 

the canonical subtype, 7 patients (4.8%) as latent subtype and 69 patients (47.6%) to the stromal 

subtype. To determine whether phenotypic subtype associated with cancer-specific survival Kaplan-

Meier survival curves were plotted. Phenotypic subtype was significantly associated with CSS (HR= 

1.023, 95%CI; 0.848-1.234, p=0.014 Figure 3.9), however the results did not reflect the observations 

in the Glasgow combined cohort. Patients in the canonical subtype showed the best prognosis with a 

mean survival time of 69 months (95%CI32.057-105.943) compared to group with the worst 

prognosis (latent) with mean survival of 16 months (95%CI 3.556-28.444). The immune subtype had 

a mean survival time of 43 months (95%CI 29.053-56.947) and the stromal subtype showed a mean 

survival time of 46 months (95%CI 30.038-61.962). When patients were stratified by disease subsite, 

phenotypic subtype was not associated with CSS in primary colon (B) or primary rectal (C) cases.  

This is evidence that TMA sections are not sufficient for performing phenotypic subtyping and full 

tumour sections are needed. 
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Figure 3.9 Phenotypic subtyping in the Australian TMA cohort. Kaplan Meier survival cures 

showing association between phenotypic subtype and CSS in the full Australian TMA cohort (A), 

colon cases (B) and rectal cases (C). In the full cohort the hazard ratio for phenotypic subtype was 

1.023, (95%CI; 0.848-1.234), log rank p=0.014. 

3.5 Concordance of tumour phenotype in metastatic CRC 

3.5.1 Comparison of Glasgow Microenvironment Score 

and Phenotypic Subtyping across matched tumours from 

the Synchronous resection cohort  

The synchronous resection cohort provided unique access to matched primary and metastatic tumours 

removed during the same surgical procedure. To determine if phenotype of primary tumours was 

reflective of phenotype of metastatic tumours Spearman correlation analysis was performed. There 

was a high concordance of GMS between primary tumours and matched metastases (rho= 0.719, 

p<0.001, Table 3.8). Similarly, phenotypic subtype of primary lesions was also strongly associated 

with phenotypic subtype of matched liver metastases (rho=0.688, p<0.001). KM grade of primary 

tumours was strongly associated with KM grade assigned to matched metastases (rho=0.723, 
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p<0.001). Ki67 proliferation index of primary tumour (<30%/>30%) was strongly associated with 

matched liver metastases Ki67 proliferation index (rho= 0.675, p<0.001). However, TSP showed 

discordance between sites (rho=0.186, p=0.326).  

Phenotypic measure  rho p 

GMS 0.719 <0.001 

Phenotypic Subtype 0.688 <0.001 

Klintrup-Mäkinen Grade 0.723 <0.001 

Tumour-stroma % 0.186 0.326 

Ki67 proliferation index 0.675 <0.001 

Table 3.8 Degree of concordance between phenotype of primary and matched 

metastatic colorectal tumours. Table showing Spearman correlations for phenotypic measures 

applied to primary colorectal cancers and matched metastatic liver tumours. 

3.6 Discussion  

Colorectal cancer is one of the most common malignancies worldwide and still harbours poor 5-year 

survival outcomes (12). Research over the past decade has focused on moving treatment towards 

individualised regimes by subtyping tumours. A lot of this work has focused on genomic and 

transcriptomic measures, which are currently not translationally relevant to the clinic (104). 

Phenotyping tumours based on histopathological markers represents an exciting, cost-effective, easily 

translatable method that could be used initially to predict patient prognosis and potentially guide 

treatment regimes in the future. Glasgow microenvironment scoring requires a simple H&E section, 

already available as part of routine clinical diagnostics. Phenotypic subtyping additionally requires a 

Ki67 IHC stained section, which could easily be adopted to practise as it is already used for subtyping 

other cancer types. It is not yet clear which is a better measure of tumour phenotype between GMS 

and phenotypic subtype. It could be argued that GMS is easier to perform, requiring only 1 tumour 

section, however phenotypic subtype may segment disease better by accounting for heterogeneity 

present within GMS1.  

As previously published, GMS and phenotypic subtype both strongly associated with cancer-specific 

survival in the Glasgow combined stage I-III CRC cohort, and this relationship was recently validated 

in the TransSCOT clinical trial cohort (49, 105, 106). Access to the TransSCOT tissue provided, for 

the first time, an ability to look for associations between phenotypic measures and response to specific 

chemotherapeutic regimes. The SCOT trial was a non-inferiority trial that compared the use of two 

chemotherapy types (CAPOX (capecitabine and oxaliplatin) and FOLFOX (bolus and infused 

fluorouracil and oxaliplatin)) for either 3- or 6-months duration (107). Patients categorised as GMS0 

or immune phenotypic subtype, had better clinical outcomes when they received FOLFOX over 
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CAPOX regimes (105). This work represented a first step towards understanding how histological 

phenotypic measures could be used clinically to guide optimal treatment for stage II-III CRC patients. 

Future work is needed to validate these findings and ultimately to look at predicting response to more 

targeted therapies.  

In terms of stage IV disease, utilising the Synchronous resection cohort, both GMS and phenotypic 

subtype significantly associated with CSS in primary tumours with the immunologically hot tumours 

observing best clinical outcomes. At the metastatic site a similar trend was observed for both 

phenotypic measures. The data suggests that in stage IV CRC, presence of a strong inflammatory 

infiltrate is the most important aspect of tumour phenotype with the immune subtype showing the best 

prognosis in primary and secondary disease. Although phenotypic subtype only trended towards an 

association with CSS in metastatic liver tumours in this cohort, spearman correlations showed a 

significant link between tumour phenotype (both GMS and phenotypic subtype) of primary site and 

matched metastases. This result is promising as it suggests future targeted therapies designed for each 

phenotype may be effective against tumours at both sites in patients with stage IV disease.  

Data acquired from the Australian TMA suggests that to accurately depict GMS and phenotypic 

subtype, full tumour section H&Es as opposed to tissue-microarray cores are a necessity. In terms of 

moving GMS forward into the clinic, it would be optimal for scoring to be performed on pre-

treatment tumour biopsies. A TMA core is arguably more similar to a biopsy than a full-face tumour 

resection. CRIS, but not CMS subtypes have previously been shown to be effectively determined 

from a tumour biopsy alone (Dunne 2018). Similarly, a surrogate IHC based method of 

determining CMS was identified in 2017, and this proved prognostic when assessed in 

TMAs. The method was 87% concordant with matched transcriptomic CMS classification 

and involved staining for 5 proteins (CDX2, FRMD6, HTR2B, ZEB1, and KER) plus MSI 

status showing 87% concordance with transcriptionally defined CMS (Trinh et al 2017 CCR). 

This was an interesting step forward towards making CMS clinically translatable, however is 

still more complex than GMS and although prognostic, not independently prognostic like 

GMS. 

To tackle the limitations of needing a full face section for determining GMS, in 2019 Park et al 

showed that using a CD3 IHC stained biopsies to determine immune grading for GMS could be used 

instead of KM grade, therefore it could be hypothesised that using a TMA would be similarly 

effective (108). Unfortunately, it was not possible to obtain CD3 stained sections or histological T cell 

counts for the Australian cohort to validate this finding. It may be of interest to repeat GMS and 

phenotypic subtyping in this cohort using full sections to determine if lack of prognostic pow(109)er 

was due to geographical and environmental differences between UK-based and Australian-based 

patients rather than limitations with sample format.  
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GMS was not associated with any clinicopathological features within the DM-CRC-TMA gFOBT 

screen detected cohort, suggesting that phenotype might not be an important measure for early CRC. 

Phenotypic subtype was significantly associated with tumour subsite in the DM-CRC-TMA cohort 

(p=0.041), with almost all patients in the latent group presenting colonic tumours (94.7%) compared 

to the canonical group, which consisted of 40% rectal origin. Given that high TSP within tumours 

predicts higher risk of recurrence in stage II-III disease (110), it may be interesting to monitor the 

follow up data on these DM-CRC-TMA patients to look for any patterns of recurrence and association 

with GMS/Phenotypic subtype. 

In conclusion, GMS and phenotypic subtyping measures are promising histopathological methods for 

assessing CRC patient prognosis. Routine diagnostics could easily introduce these scores to clinical 

practice. Future work should focus on identifying underlying biological factors responsible for driving 

the observed phenotypes to identify novel and repurposed therapeutics optimally suited to each group. 

From these data, the presence of a dense inflammatory infiltrate is of profound prognostic significance 

in stage II through to stage IV CRC. Therefore, investigation into inflammatory signalling pathways 

will be important for understanding the mechanisms of CRC development, progression, and 

phenotype.     
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Chapter 4: Expression of IL6, IL8 and 
IL6R in colorectal cancer clinical 

specimens 
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4.1 Introduction  

Interleukin-6 (IL6) is a pleiotropic cytokine associated with inflammation, tissue repair and, 

tumourigenesis. In the colorectal cancer setting IL6 activates several downstream transcription factors 

to promote tumour proliferation, differentiation, and metastases (111). Signal transduction is initiated 

by IL6 binding its cognate receptor, IL6R, which can either be soluble or membrane bound. Ligation 

results in a cascade of signals ultimately leading to activation of STAT3. Systemic IL6 levels are 

well-characterised in the literature to be associated with poor prognosis in CRC, however the role of 

IL6/IL6R expression within CRC tumour tissue is less well characterised. In cancer IL6 is mainly 

produced by tumour-associated macrophages (TAMs), tumour cells or adjacent stromal cells, and 

IL6R can be found within/on tumour cells and inflammatory cells (112).  

IL6 is generally associated with promoting tumour development and progression through its effects on 

tumour cells, tumour infiltrating leukocytes and cancer-associated stromal cells. In terms of direct 

effects on the tumour, IL6 promotes many of the hallmarks of cancer including angiogenesis, 

proliferation, invasion,  (80, 81, 113) The effects of IL6 on the inflammatory infiltrate involves 

polarization of Macrophages to pro-tumour phenotypes, which produce IL10 leading to an 

immunosuppressive TME (82). This is perpetuated via IL6 promoting T cell differentiation to a 

regulatory phenotype via inducing FOXP3 expression, and these Tregs have shown enhanced 

suppressive capacities (84). Presence of IL6 hinders Th1 cell and dendritic cell differentiation which 

hinders the cytotoxic functions of CD8+ T cells(83). Additionally, IL6 promotes CAF and tumour cell 

survival and migration(86). IL6 can promote cancer through a number of mechanisms and has been 

implicated in each compartment of the TME of CRC.  

In addition to IL6, TAMs often produce inflammatory chemokine IL8/CXCL8. The main roles of IL8 

identified in tumour progression include recruitment of neutrophils and promotion of angiogenesis 

and metastases (114). There is a degree of crosstalk between IL6/IL6R and IL8 signalling with 

overlap between STAT3, NFκB and AKT pathways (115). For example, IL8 activates the canonical 

NFκB cascade which results in production of IL6. IL8 has also been shown to phosphorylate JAK 

resulting in activation of STAT3 (114). Additionally, IL6 can activate NFκB resulting in a feedback 

loop. Both IL6 and IL8 have been implicated in a number of tumour types, including CRC 

development and progression (112).    

The aim of this chapter was to semi-quantitively measure IL6, IL8 and IL6R within patient samples 

from the Glasgow combined cohort with the hypothesis that high expression of each marker would 

associate with reduced survival outcomes and unfavourable clinical characteristics. Due to the soluble 

nature of IL6 and IL8 it was difficult to access protein expression via IHC, as expression is not 

localised with the cell and appears as a brown blush and non-specific staining. Therefore 

RNAScope® was utilised to detect mRNA copies of each cytokine per µM2, enabling quantification 
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of mRNA expression and the cellular location. IL6R protein expression was assessed in the same 

patient samples via IHC. For RNAScope®, images were analysed digitally using HALO software 

within tumour epithelium-rich and stromal areas of each core. For IL6R expression was measured 

manually by performing weighted histoscoring, with 10% validated by digital pathology software 

QuPath (116). Expression of IL6, IL8 and IL6R were related to clinical outcome and 

clinicopathological characteristics. Data were analysed in relation to GMS phenotypes as a step 

towards understanding if a particular subtype of patients may benefit from therapeutic intervention 

targeting the IL6/JAK/STAT3 pathway.  

4.2 Expression of IL6, IL8 and IL6R in CRC patient 

specimens  

The Glasgow combined array was stained via RNAScope™ for IL6, IL8 and IL6R. A consort 

diagram was constructed to show the number of patients included in the final set of analysis due to 

exclusion criteria of damaged/missing cores, mortality within 30 days of surgery and/or 

administration of neoadjuvant chemotherapy (Figure 4.1).  

Figure 4.1 Consort diagram showing patient exclusions. Consort/flow diagram showing the 

number of patients included in analysis for each marker based on exclusion criteria of 

missing/damaged cores, mortality within 30 days of surgery and/or administration of neoadjuvant 

therapy. There were 1030 patients in the full cohort prior to exclusions. After exclusions there were 

625 patients analysed for stromal and tumour IL6 mRNA, 382 patients for stromal IL8 mRNA, 383 for 

tumour IL8 mRNA and 369 patients analysed for intensity of IL6R staining.     

 

Eligible Patients

(n 1030)

Patients excluded due to 

missing/damaged TMA 

cores

Eligible Patients

Patients excluded due to 

mortality within 30 days of 

surgery or administration of 

neoad uvant therapy
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Tumour IL-6

n 683
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Stromal IL-6
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Stromal IL-8
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Tumour IL-8
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n 36 
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4.2.1 Expression of IL6 within the tumour-surrounding 

stroma and clinical outcome 

RNAScope® was utilised to probe for IL6 mRNA in the Glasgow combined cohort TMA cores. 

Staining was performed by Colin Nixon at the Beatson Histology unit, Glasgow. In addition to IL6, 

housekeeping gene PPBIB was probed for in the same cohort. Expression was quantified using Halo 

digital analysis platform to determine copies per µM2. A classifier was built to distinguish between 

tumour epithelium and stromal tissue within cores. Thresholds for intensity of DAB chromogen 

staining were set and kept constant for each TMA section. Scores were obtained for IL6 in the tumour 

areas and stroma-rich areas from 3 cores for each patient and an average was taken. Data for IL6 were 

normalised to housekeeping gene PPIB expression. Normalised data were then entered to the master 

SPSS database and analysed for association with clinical outcomes and clinical features. 

Representative images of positive and negative staining of IL6 are shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Representative images of RNAScope™. Representative images of RNAScope™ high 

and low staining for IL6 within tumour and stromal areas, and a representative image of PPIB 

housekeeping gene.  
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In terms of IL6 within the stromal regions, scores were available for 683 patients from the 1030 

Glasgow combined patients due to missing or damaged cores. Patients who died within 30 days of 

surgery or received neoadjuvant therapy were excluded leaving 625 patients included in further 

analysis. A histogram was plotted to assess distribution pattern of the data, which showed a positive 

skew (Figure 4.3). The mean score was 1.117, with a range of 0-29.13 copies per µM2. Maxstat and 

survminer packages in R studio were used to determine optimal cut points for high and low 

expression by log rank statistics based on CSS. Density and scatter plots were constructed to visualise 

the optimal cut point determined to be 2.48 (Figure 4.4). This resulted in 20 patients classified as high 

stromal IL6 expression and 605 patients as low for stromal IL6. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Distribution of stromal IL6. Histogram showing positively skewed distribution pattern of 

stromal IL6 scores for 625 patients from the Glasgow combined cohort. Mean score for stromal IL6 

was 1.117 copies per µM2 and scores ranged from 0-29.13 copies per µM2. 
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Figure 4.4 Defining optimal cut point for high and low stromal IL6 expression. Density 

and scatter plot showing optimal cut off point for high and low expression of stromal IL6 groups 

based on cancer-specific survival. For stromal IL6 the optimal cut point determined was 2.48 copies 

per µM2, so patients with a score of  2.48 were classified as high and those with a score of  2.48 

were classified as low for stromal IL6 expression. 

High stromal IL6 was associated with reduced CSS in the full cohort (HR= 1.957, 95%CI; 1.000-

3.827, log rank p=0.045) (Figure 4.5). Patients with low expression observed a mean survival time of 

150.507 months compared to 113.812 months for the high expression group. When patients were 

stratified by GMS there was no association between stromal IL6 mRNA expression and CSS in any 

subgroup (Figure 4.6). This may be due to the limited number of patients in the high expression group 

when subdivided into GMS groups.  
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Figure 4.5 Association between stromal IL6 expression and cancer-specific survival. 

Kaplan Meier curve showing association between stromal IL6 mRNA expression and CSS in patients 

from the Glasgow combined cohort with hazard ratio of 1.957 (95% confidence interval 1.000-3.827), 

log rank p=0.045.  
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Figure 4.6 Association between stromal IL6 expression and CSS in each GMS 

classification. Kaplan Meier survival analysis of IL6 mRNA expression and CSS in patients 

classified as GMS0 (A), GMS1 (B) and GMS2 (C). Hazard ratio for GMS0 patients was 0.982 

(95%CI; 0.134-7.212), log rank p=0.985. GMS1 patients observed a hazard ratio of 2.270 (95%CI; 

0.831-6.201), log rank p=0.099 and in GMS2 patients the hazard ratio was 1.437, (95%CI; 0.348-

5.934), log rank p=0.612. 

Stromal IL6 expression was strongly associated with reduced CSS in patients with MMR deficient 

tumours (HR=3.747, 95%CI; 1.114-12.611, log rank p=0.022), but not MMR proficient tumours 
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(Figure 4.7). Patients with high stromal IL6 expression in dMMR cases had a mean survival time of 

66.25 months compared to 161.170 months for the low stromal IL6 expression patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Association between stromal IL6 expression and CSS in pMMR and dMMR 

cases. Kaplan Meier survival analysis of stromal IL6 mRNA expression and CSS in MMR proficient 

patients (A) and MMR deficient patients (B). The hazard ratio for stromal IL6 in patients with pMMR 

disease was 1.955 (95%CI; 0.964-4.425), log rank p=0.100, and in patients with dMMR disease the 

hazard ratio was 3.747 (95%CI; 1.114-12.611), log rank p=0.022.  

In terms of tumour subsite, there was no significant association between stromal IL6 expression and 

CSS when Kaplan Meier survival analysis was applied to right-sided, left-sided, or rectal cases 

(Figure 4.8). Patients with rectal tumours observed a trend towards reduced CSS with high expression 

of stromal IL6, but the relationship did not reach significance (p=0.052) (Figure 4.8).  

B 

A 



118 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 IL6 expression, CSS, and tumour subsite. Kaplan Meier survival analysis 

showing association between IL6 mRNA expression and CSS in right-sided disease (A), left-sided 

disease (B) and rectal disease (C). In patients with right-sided disease the hazard ratio for stromal 

IL6 expression was 1.388 (95%CI; 0.437-4.410) log rank p=0.575 and in left sided cases the hazard 

ratio was 2.138 (95%CI; 0.671-6.818), log rank p=0.187. In patients with rectal tumours the hazard 

ratio for stromal IL6 expression was 3.042, (95%CI; 0.932-9.923) log rank p=0.052. 

Chi-squared testing was performed to identify any association between stromal IL6 mRNA expression 

and clinicopathological characteristics. No significant associations were observed (Table 4.1).  
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Clinical Factor    Stromal IL6 mRNA
 
Expression

  

Low (n=605)          High (n=20) 
p 

Age 
<65 
>65 

 

197 (32.6) 
408 (67.4) 

 

6 (30.0) 
14 (70.0) 

 

0.512 

Sex 
Female 
Male 

 

298 (59.3) 
307 (50.0) 

 

11 (55.0) 
9 (45.0) 

 

0.391 

T Stage 
I 
II 
III 
IV 

 

24 (4.0) 
82 (13.6) 
327 (54.0) 
172 (28.4) 

 

2 (10.0) 
1 (5.0) 

11 (55.0) 
6 (30.0) 

 

0.451 

N Stage 
0 
I 
II 

 

375 (62.2) 
158 (26.2) 
70 (11.6) 

 

9 (45.0) 
7 (35.0) 
4 (20.0) 

 

0.287 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

256 (42.7) 
217 (36.2) 
127 (21.2) 

 

9 (45.0) 
6 (30.0) 
5 (25.0) 

 

0.832 

GMS 
0 
1 
2 

 

200 (34.3) 
282 (48.4) 
101 (17.3) 

 

7 (38.9) 
8 (44.4) 
3 (16.7) 

 

0.921 

Phenotypic Subtype 
1 
2 
3 
4 

 

201 (34.5) 
170 (29.2) 
111 (19.1) 
100 (17.2) 

 

7 (38.9) 
3 (16.7) 
5 (27.8) 
3 (16.7) 

 

0.611 

mGPS 
0 
1 
2 

 

248 (52.9) 
136 (29.0) 
85 (18.8) 

 

8 (50.0) 
4 (25.0) 
4 (25.0) 

 

0.789 

MMR status  
pMMR 
dMMR 

 

495 (82.0) 
109 (18.0) 

 

14 (77.8) 
4 (22.2) 

 

0.419 

Tumour differentiation 
0 
1 

 

536 (88.6) 
69 (11.4) 

 

16 (80.0) 
4 (20.0) 

 

0.196 

Marginal involvement  
0 
1 

 

578 (95.5) 
27 (4.5) 

 

18 (90.0) 
2 (10.0) 

 

0.236 

Vascular invasion  
0 
1 

 

406 (67.1) 
199 (32.9) 

 

11 (55.0) 
9 (45.0) 

 

0.185 

Table 4.1 Association between IL6 expression and clinical features. Chi-squared table of 

associations for IL6 mRNA expression and clinical prognostic factors including age, sex, T stage, N 

stage, tumour subsite, GMS, phenotypic subtype, systemic inflammation measured via modified 

Glasgow Prognostic Score (mGPS), MMR status, tumour differentiation, marginal involvement and 

vascular invasion.  
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4.2.2 Expression of IL6 within the tumour epithelium and 

clinical outcome 

IL6 mRNA was detected within the tumour epithelium in addition to the stromal compartment of 

TMA cores. Halo software was utilised to quantify IL6 expression in copies per µM2. Scores were 

normalised to expression levels of PPBIB housekeeping gene scores obtained for the same core area. 

Tumoural IL6 data were collected for 683 patients from the Glasgow combined cohort. Patients who 

died within 30 days of surgery or received neoadjuvant therapy were excluded leaving 625 patients 

included in the analysis. Scores ranged from 0 to 11.28 copies per µM2, and data were positively 

skewed as can be observed in histogram plot (Figure 4.9). Survminer and maxstat packages in R 

studio were utilised to determine an optimal cut point for high and low expression of IL6 within the 

tumour stroma. Density and scatter plots were constructed to visualise the optimal cut point based on 

CSS (Figure 4.10). There were 191 patients classed as high and 191 classed as low for tumoural IL6 

based on a cut point of 0.05 copies per µM2.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Distribution of tumoural IL6. Histogram showing positively skewed distribution curve 

for tumoural IL6 scores (n=625). The mean value for tumour IL6 was 0.48 copies per M2 and scores 

ranged from 0-11.28 copies per M2.  
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Figure 4.10 Defining optimal cut point for high and low tumour IL6 expression. Density 

and scatter plot showing optimal cut off point for high and low expression of tumour IL6 groups 

based on cancer-specific survival. The optimal cut point determined was 0.05 copies per M2 

therefore patients with a score of 0.05 copies per M2 were classified as high expression and patients 

with a score of 0.05 copies per M2 were classified as high for expression of tumour IL6. 

In contrast to IL6 within the stroma, there was no association between tumoural IL6 mRNA 

expression and CSS in the full cohort (Figure 4.11).  
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Figure 4.11 Association between tumour IL6 expression and cancer-specific survival. 

Kaplan Meier curve showing association between tumour IL6 mRNA expression and CSS in patients 

from the Glasgow combined cohort. The hazard ratio for IL6 copies per M2 within the tumour 

compartment was 1.006 (95%CI; 0.707-1.431), log rank p=0.972. 

When patients were stratified based on GMS classification, there was no association between tumour 

IL6 mRNA expression and CSS in GMS0, GMS1 or GMS2 (Figure 4.12). 
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Figure 4.12 Association between tumour IL6 expression and CSS in each GMS 

classification. Kaplan Meier survival analysis of tumour IL6 mRNA expression and CSS in patients 

classified as GMS0 (A), GMS1 (B) and GMS2 (C). The hazard ratio for tumour IL6 expression in 

GMS0 patients was 1.006 (95%CI; 0.449-2.248), log rank p=0.990 and for patients with GMS1 

tumours the hazard ratio was 0.860, (95%CI; 0.520-1.422), log rank p=0.555. In GMS2 cases the 

hazard ratio for tumoural IL6 expression was 0.893, (95%CI; 0.448-1.781), p=0.747. 
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Similarly, when stratified by MMR status, there was no survival difference between patients with 

high/low tumour IL6 in pMMR or dMMR tumours (Figure 4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Association between tumour IL6 expression and CSS in pMMR and dMMR 

cases. Kaplan Meier survival analysis of tumour IL6 mRNA expression and CSS in MMR proficient 

patients (A) and MMR deficient patients (B). In MMR proficient cases, the hazard ratio for tumour 

IL6 expression was 0.905, (95% CI; 0.622-1.315), log rank p=0.598 and in MMR deficient cases the 

hazard ratio was 1.819, (95%CI; 0.624-5.306), log rank p=0.265.  

When patients were subdivided by tumour subsite, no association between CSS and tumour IL6 was 

observed in right-sided, left-sided, or rectal cases (Figure 4.15). These data suggest IL6 within the 

stromal compartment is of greater importance than IL6 detected within the tumour-rich areas of CRC. 
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Figure 4.15 Tumour IL6 expression, CSS and tumour subsite. Kaplan Meier survival 

analysis showing association between tumour IL6 mRNA expression and CSS in right-sided disease 

(A), left-sided disease (B) and rectal disease (C). In right sided cases the hazard ratio for expression 

of tumour IL6 was 0.957, (95%CI; 0.563-1.628), log rank p=0.904 and in left-sided cases the hazard 

ratio was 0.837, (95%CI; 0.475-1.474), log rank p=0.494. In patients with rectal tumour the hazard 

ratio for tumoural IL6 expression was 1.444, (95%CI; 0.602-3.463), log rank p=0.459. 

A 

B 

C 



126 
 

Chi-squared tests were conducted to determine any association between tumour IL6 and clinical 

features. High expression of IL6 within the tumour epithelium was associated with reduced systemic 

inflammation assessed via modified Glasgow prognostic score (p=0.040) (Table 4.2).  
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Clinical Factor  Tumour IL6 mRNA Expression
 
 

Low (n=191)       High (n=191) 
p 

Age 
<65 
>65 

43 (30.3) 
99 (69.7) 

160 (33.1) 
323 (66.9) 

0.298 

Sex 
Female 
Male 

64 (45.7) 
78 (54.9) 

245 (50.7) 
238 (49.3) 

0.138 

T Stage 
I 
II 
III 
IV 

5 (3.5) 
18 (12.7) 
76 (53.5) 
43 (30.3) 

21 (4.3) 
65 (13.5) 
262 (54.2) 
135 (28.0) 

0.929 

N Stage 
0 
I 
II 

94 (66.7) 
34 (24.1) 
13 (12.6) 

290 (60.2) 
131 (27.2) 
12.7 (11.5) 

0.320 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

62 (3.5) 
50 (35.7) 
28 (20.0) 

203 (42.3) 
173 (36.0) 
104 (21.7) 

0.884 

GMS 
0 
1 
2 

52 (38.2) 
67 (49.3) 
17 (12.5) 

155 (33.3) 
223 (48.0) 
87 (18.7) 

0.194 

Phenotypic Subtype 
1 
2 
3 
4 

52 (38.2) 
44 (32.4) 
23 (16.9) 
17 (12.5) 

156 (33.6) 
129 (27.8) 
93 (20.0) 
86 (18.5) 

0.229 

mGPS 
0 
1 
2 

 

51 (44.0) 
44 (37.9) 
21 (18.1) 

 

205 (55.6) 
96 (26.0) 
68 (18.4) 

0.040 

MMR status  
pMMR 
dMMR 

114 (80.9) 
27 (19.1) 

395 (82.1) 
86 (17.9) 

0.408 

Tumour 

differentiation 
0 
1 

122 (85.9) 
20 (14.1) 

430 (89.0) 
53 (11.0) 

0.192 

Marginal 

involvement  
0 
1 

185 (96.9) 
 (6.1) 

180 (94.2) 
11 (5.8) 

0.161 

Vascular invasion  
0 
1 

92 (64.8) 
50 (35.2) 

325 (67.3) 
158 (32.7) 

0.323 

Table 4.2 Association between tumour IL6 expression and clinical features. Chi-squared 

table of associations for tumour IL6 mRNA expression and clinical prognostic factors including age, 

sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, systemic inflammation as measured 

by modified Glasgow Prognostic Score (mGPS), MMR status, tumour differentiation, marginal 

involvement and vascular invasion.  
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4.2.3 Expression of IL8 in the tumour-stroma and clinical 

outcome 

RNAScope® was performed to detect IL8 within the stroma of the Glasgow combined cohort TMA 

cores. Due to missing and damaged cores, a total of 439 patients were assessed. After patients who 

died within 30 days of surgery and those who received neoadjuvant therapy were excluded 382 

patients were included in further analysis. obtained for IL8 expression were normalised to PPIB 

housekeeping gene data. A histogram was plotted to show the distribution pattern of copies, which 

was positively skewed (Figure 4.15). The mean score was 0.78 with a range of 0-32.35 copies per 

µM2. Surminer and maxstat packages in R Studio were utilised to determine the optimal cut point for 

high and low expression. Scatter and density plots were constructed to visualise the cut-off point of 

0.32 (Figure 4.16). This stratified patients into two equal groups with 191 classified as low expression 

and 191 patients classified as high expression of stromal IL8. 

 

Figure 4.1 Distribution of stromal IL8. Histogram showing positively skewed distribution of 

stromal IL8 scores. The mean score for stromal IL8 was 0.78 copies per M2 and the scores ranged 

from 0-32.35 copies per M2. 
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Figure 4.16 Defining optimal cut point for high and low stromal IL8 expression. Density 

and scatter plot showing optimal cut off point for high and low expression of stromal IL8 groups 

based on cancer-specific survival. The optimal cut point determined was 0.32 and therefore patients 

with a score of  0.32 copies per M2 were classed as high and patients with a score of 0.32 copies 

per M2 were classified as low for expression of stromal IL8. 

Kaplan Meier survival analysis was performed to determine any association between IL8 expression 

within the stroma and CSS. There was a trend towards high expression of stromal IL8 associating 

with reduced CSS (p=0.061) (Figure 4.17).  
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Figure 4.17 Association between stromal IL8 expression and cancer-specific survival. 

Kaplan Meier curve showing association between stromal IL8 mRNA expression and CSS in patients 

from the Glasgow combined cohort. The hazard ratio for stromal IL8 in the full cohort was 1.439, 

(95%CI; 0.981-2.111), log rank p=0.061.  

When patients were stratified by GMS classification there was no association between stromal IL8 

mRNA expression and CSS in any group (Figure 4.18). 
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Figure 4.18 Association between stromal IL8 expression and CSS in each GMS 

classification. Kaplan Meier survival analysis of stromal IL8 mRNA expression and CSS in patients 

classified as GMS0 (A), GMS1 (B) and GMS2 (C). The hazard ratio for stromal IL8 in GMS0 cases 

was 0.629 (95%CI; 0.189-2.095), log rank p=0.446 and in GMS1 cases the hazard ratio was 1.520, 

(95%CI; 0.917-2.519), log rank p= 0.101. In GMS2 stromal-rich patients the hazard ratio for stromal 

IL8 was 1.248, (95%CI; 0.599-2.601), log rank p=0.550. 

Similarly, when pMMR and dMMR patient groups were analysed separately there was no significant 

association between stromal IL8 mRNA expression and CSS in either group (Figure 4.19). 
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Figure 4.19 Association between stromal IL8 expression and CSS in pMMR and dMMR 

cases. Kaplan Meier survival analysis of stromal IL8 mRNA expression and CSS in MMR proficient 

patients (A) and MMR deficient patients (B). In MMR proficient cases the hazard ratio for stromal 

IL8 was 1.383, (95%CI; 0.916-2.087), log rank p=0.121 and in MMR deficient cases the hazard ratio 

was 2.430, (95%CI; 0.761-7.761), log rank p=0.121. 

Kaplan Meier survival analysis was performed to assess stromal IL8 expression within right-sided, 

left-sided, and rectal cases and no significant association with CSS was observed for any tumour type 

(Figure 4.20). 
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Figure 4.20 Stromal IL8 expression, CSS, and tumour subsite. Kaplan Meier survival 

analysis showing association between stromal IL8 mRNA expression and CSS in right-sided disease 

(A), left-sided disease (B) and rectal disease (C). In right-sided cases, the hazard ratio for IL8 within 

the stromal compartment of the TME was 1.667, (95%CI; 0.933-2.979), log rank p=0.080 and in left-

sided cases the hazard ratio was 1.039, (95%CI 0.549-1.967), log rank p=0.906. In terms of rectal 

cases the hazard ratio for stromal IL8 was 1.517, (95%CI; 0.616-3.735), log rank= 0.361.  
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Chi-squared tests were performed to identify association between clinicopathological characteristics 

and stromal IL8 mRNA expression (Table 4.3). High expression was enriched in GMS2 (p=0.048) 

and the stromal phenotypic subtype (p=0.048) (Table 4.3). There was a significant association 

between stromal IL8 levels and tumour differentiation (p=0.038) (Table 4.3).  
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Clinical Factor  Stromal IL8 mRNA Expression
 
 

Low (n=191)       High (n=191) 
p 

Age 
<65 
>65 

 

52 (27.2) 
139 (72.8) 

 

52 (27.2) 
139 (72.8) 

 

0.546 

Sex 
Female 
Male 

 

99 (51.8) 
92 (48.2) 

 

97 (50.8) 
94 (49.2) 

 

0.459 

T Stage 
I 
II 
III 
IV 

 

11 (5.8) 
37 (19.4) 
94 (49.2) 
49 (25.7) 

 

4 (2.1) 
24 (12.6) 

104 (54.2) 
59 (30.9) 

 

0.055 

N Stage 
0 
I 
II 

 

130 (68.4) 
37 (19.4) 
24 (12.6) 

 

116 (60.7) 
53 (27.7) 
22 (11.5) 

 

0.154 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

84 (44.0) 
72 (37.7) 
35 (18.3) 

 

87 (46.3) 
74 (39.4) 
27 (14.4) 

 

0.579 

GMS 
0 
1 
2 

 

66 (34.7) 
102 (53.7) 
22 (11.6) 

 

54 (28.3) 
98 (51.3) 
39 (20.4) 

 

0.048 

Phenotypic Subtype 
1 
2 
3 
4 

 

 

67 (35.4) 
69 (36.5) 
31 (16.4) 
22 (11.6) 

 

 

54 (28.3) 
59 (30.9) 
39 (20.4) 
39 (20.4) 

 

0.048 

mGPS 
0 
1 
2 

 

75 (55.6) 
27 (20.0) 
33 (24.4) 

 

57 (48.7) 
28 (23.9) 
32 (27.4) 

 

0.546 

MMR status  
pMMR 
dMMR 

 

154 (81.5) 
35 (18.5) 

 

153 (80.5) 
37 (19.5) 

 

0.458 

Tumour 

differentiation 
0 
1 

 

163 (85.3) 
28 (14.7) 

 

175 (91.6) 
16 (8.4) 

 

0.038 

Marginal involvement  
0 
1 

 

185 (96.9) 
 (6.1) 

 

180 (94.2) 
11 (5.8) 

 

0.161 

Vascular invasion  
0 
1 

 

120 (62.8) 
71 (37.2) 

 

128 (67.0) 
63 (33.0) 

 

0.227 

Table 4.3 Association between stromal IL8 expression and clinical features. Chi-

squared table of associations for stromal IL8 mRNA expression and clinical prognostic factors 

including age, sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, 

tumour differentiation, marginal involvement and vascular invasion.  
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4.2.4 Expression of IL8 in the tumour epithelium and 

clinical outcome 

IL8 in the tumour epithelium of the Glasgow combined cohort was probed for by RNAScope® and 

quantified using Halo® digital pathology platform. Due to missing and damaged cores 439 patients 

were assessed for tumour IL8 and after exclusion criteria were applied 383 patients were left for 

further analysis. Scores for tumour IL8 were normalised to PPIB housekeeping gene scores for the 

same area. A histogram plot was constructed to visualise the distribution pattern of tumour IL8 levels, 

which appeared positively skewed (Figure 4.21). The mean score for tumoural IL8 was 0.57 with a 

range of 0-13.80 copies per µM2. Survminer and maxtast R studio packages were utilised to determine 

the optimum cut point for high and low expression. Scatter and density plots were constructed to 

visualise the output with an optimal cut point of 0.65 copies per µM2 devised (Figure 4.22). This 

resulted in 289 patients classified as low for tumour IL8 copies, and 92 as high for tumour IL8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Distribution of tumour IL8. Histogram showing positively skewed distribution pattern 

of tumour IL8 scores. The mean score for tumour IL8 was 0.57 copies per M2 and the scores ranged 

from 0-13.80 copies per M2. 
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Figure 4.22 Defining optimal cut point for high and low tumour IL8 expression. Density 

and scatter plot showing optimal cut off point for high and low expression of tumour IL8 groups 

based on cancer-specific survival. The optimalt cut off point determined was 0.65 copies per M2, 

therefore patients with a score of 0.65 IL8 copies per M2 were classified as low and patients with a 

score of  0.65 copies per M2 were classed as high for tumour IL8 expression. 

Kaplan Meier survival analysis was performed to investigate association between tumour IL8 and 

CSS in the full Glasgow combined cohort. There was no difference in survival time between patients 

with high or low expression of tumour IL8 (Figure 4.23).  

 

 

 

 

 

 

 

 

Figure 4.23 Association between tumour IL8 expression and cancer-specific survival. 

Kaplan Meier curve showing association between tumour IL8 mRNA expression and CSS in patients 

from the Glasgow combined cohort. The hazard ratio for tumour IL8 expression in the full cohort was 

1.049, (95%CI; 0.677-1.625), log rank p=0.830. 
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When survival analysis was performed on patients from each histological GMS classification, no 

association between tumour IL8 and CSS was observed in any group (Figure 4.23).  
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Figure 4.24 Association between tumour IL8 expression and CSS in each GMS 

classification. Kaplan Meier survival analysis of tumour IL8 mRNA expression and CSS in patients 

classified as GMS0 (A), GMS1 (B) and GMS2 (C). In GMS0 cases the hazard ratio for tumour IL8 

expression was 0.863, (95%CI; 0.231-3.221), log rank p=0.826 and in GMS1 cases the hazard ratio 

was 1.047, 95%CI; 0.585-1.867), log rank p=0.876. In gMS2 stromal-rich cases the hazard ratio for 

tumour IL8 was 1.211, (95%CI; 0.555-2.641), log rank p=0.628. 

When patients were stratified by MMR status, no association between tumour IL8 and CSS was seen 

in pMMR or dMMR tumours (Figure 4.25). 
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Figure 4.25 Association between tumour IL8 expression and CSS in pMMR and dMMR 

cases. Kaplan Meier survival analysis of tumourIL8 mRNA expression and CSS in MMR proficient 

patients (A) and MMR deficient patients (B). In MMR proficient cases the hazard ratio for tumour IL8 

expression was 1.094, (9%CI; 0.677-1.768), log rank p=0.713 and in MMR deficient cases the hazard 

ratio was 1.170, (95%CI; 0.378-3.623), log rank p=0.785. 

 

There was no significant association between tumour IL8 levels and CSS in right-sided, left-sided, or 

rectal cases (Figure 4.26).  

 

 

 

A 

B 



141 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Tumour IL8 expression, CSS and tumour subsite. Kaplan Meier survival 

analysis showing association between tumour IL8 mRNA expression and CSS in right-sided disease 

(A), left-sided disease (B) and rectal disease (C). In patients with right-sided tumours the hazard ratio 

for tumour IL8 was 1.233, (95%CI; 0.661-2.299), log rank =0.508 and in left-sided cases the hazard 

ratio was 1.138, (95%CI; 0.548-2.363), log rank =0.728. In rectal cases, the hazard ratio was 0.495, 

(95%CI; 0.144-1.702), log rank p=0.254. 

Chi-squared tests were performed to determine if levels of tumour IL8 were associated with 

clinicopathological characteristics. No statistically significant associations were identified (Table 4.4).  
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Clinical Factor  Tumour IL8 mRNA Expression
 
 

Low (n=289)       High (n=92) 
p 

Age 
<65 
>65 

81 (28.0) 
208 (72.0) 

22 (23.9) 
70 (76.1) 

0.264 

Sex 
Female 
Male 

152 (52.6) 
137 (47.4) 

44 (47.8) 
48 (52.2) 

0.249 

T Stage 
I 
II 
III 
IV 

11 (3.8) 
49 (17.0) 
152 (52.6) 
77 (26.6) 

4 (4.3) 
12 (13.0) 
45 (48.9) 
31 (33.7) 

0.550 

N Stage 
0 
I 
II 

190 (65.7) 
64 (22.1) 
35 (12.1) 

56 (60.9) 
26 (28.3) 
10 (10.9) 

0.493 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

130 (45.5) 
108 (37.8) 
48 (16.8) 

42 (45.7) 
36 (39.1) 
14 (15.1) 

0.932 

GMS 
0 
1 
2 

91 (31.6) 
153 (53.1) 
44 (15.3) 

30 (32.6) 
46 (50.0) 
16 (17.4) 

0.841 

Phenotypic Subtype 
1 
2 
3 
4 

92 (32.1) 
102 (35.5) 
49 (17.1) 
44 (15.3) 

30 (32.6) 
26 (28.3) 
20 (21.7) 
16 (17.4) 

0.546 

mGPS 
0 
1 
2 

101 (51.0) 
44 (22.2) 
53 (26.8) 

31 (58.5) 
12 (22.6) 
10 (18.9) 

0.461 

MMR status  
pMMR 
dMMR 

238 (82.9) 
49 (17.1) 

69 (75.8) 
22 (24.2) 

0.089 

Tumour differentiation 
0 
1 

254 (87.9) 
15 (5.2) 

90 (97.8) 
2 (2.2) 

0.178 

Marginal involvement  
0 
1 

274 (94.8) 
3 (5.8) 

303 (95.6) 
14 (4.4) 

0.439 

Vascular invasion  
0 
1 

186 (64.4) 
103 (35.6) 

63 (68.5) 
29 (31.5) 

0.277 

Table 4.4 Association between tumour IL8 expression and clinical features. Chi-squared 

table of associations for stromal IL8 mRNA expression and clinical prognostic factors including age, 

sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, tumour 

differentiation, marginal involvement and vascular invasion.  
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Stromal IL6 and IL8 scores were combined to form a new score of low for both, high for one, or high 

for both markers. Kaplan Meier survival analysis showed no significant association for combined 

stromal IL6 and stromal IL8 score (p=0.184) (Figure 4.27). This could be due to the number of 

patients in the high for both markers category being too few.  

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Combined stromal IL6 and IL8 expression and CSS. Kaplan Meier survival 

analysis showing association between a combined score of stromal IL6 and IL8 mRNA expression and 

CSS in the full Glasgow combined cohort. The hazard ratio for a combined score of stromal IL6 and 

IL8 was 1.384, (95%CI; 0.958-1.998), log rank p= 0.184. 

 

4.2.5 Expression of IL6R in the tumour epithelium and 

clinical outcome 

Cytoplasmic expression of IL6R in tumour cells was assessed by a single observer (KP) in patients 

from the Glasgow combined array. Representative images of weak, moderate, and strong staining and 

shown in Figure 4.28. Weighted histoscores ranged from 0 to 200 with a median of 100. True positive 

control for IL6R was liver tissue and a true negative was prostate tissue (Figure 4.28). Positive control 

colorectal tissue identified during antibody optimisation and a negative control with no primary 

antibody representative images are shown in Figure 4.28. Antibody specificity was performed via 

western blotting, with a single band at 51KDa observed in 3 replicates of HeLa lysates and no protein 

detected in LNCaP prostate lysates, with tubulin present in all 6 samples at 52KDa (Figure 4.28). 

Positive staining for IL6R was noted in stromal and immune cell compartments of the TME, with 
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representative images of low and high expression for each shown in Figure 4.28, however it was 

outwith the scope of this study to quantify expression in these areas, and analysis was focused on the 

tumour areas. 

 

Figure 4.28 Representative images and antibody specificity for IL6R. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of IL6R within 

tumour cells. Representative images of positive (D) and negative (E) colorectal tissue, and true 

positive (F) and true negative tissue (G). Image of western blot showing single band in triplicate for 

HeLa cell lysates (20L loaded per well) probed for IL6R at the correct molecular weight of 51KDa 

and no visible band in triplicate for true negative LNCaP lysates (20L loaded per well) at 51KDa, 

but visible bands at 55KDa across all samples when the membrane was probed for tubulin (H). 

Representative images of low expression of IL6R within the stromal (I) and immune (J) compartments 

A  C

  

  

H

I  
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of the TME, respectively. Representative images of high expression of IL6R within the stromal (K) and 

immune (L) compartments of the TME. 

Due to missing and damaged cores scores were obtained for 404 patients from the 1030 patient 

cohort. Exclusion criteria were applied (30-day mortality and neoadjuvant therapy), leaving 369 

patients included in downstream analysis. Data were relatively normally distributed as shown in 

histogram plot (Figure 4.29). Scoring was validated using QuPath digital image analysis software on 

10% of TMA cores, with a correlation of 0.720 and an intra-class correlation coefficient of 0.825 

obtained. A scatterplot (Figure 4.30) and a Bland-Altman (Figure 4.31) were constructed to visualise 

the correlation and bias between scores, respectively. Cut offs for high and low expression were 

determined using survminer and maxstat packages in R studio via log rank statistics based on cancer-

specific survival. The optimal cut point determined by this method was 44.9, as shown in density and 

scatter plot (Figure 4.32). This resulted in 52 patients classified as low for IL6R expression and 317 as 

high expressers. 

 

Figure 4.29 Distribution of weighted histoscores for IL6R. Histogram showing the range of 

scores obtained for cytoplasmic tumour IL6R expression and normal distribution pattern of the data 

(n=369). The mean score for IL6R was 84.18 and the scores ranged from 0-200.   
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Figure 4.30 Correlation between manual and digital weighted histoscoring of IL6R. 

Scatter plot showing correlation between tumour cytoplasm weighted histoscores for IL6R for 10% of 

co-scored cases. The correlation coefficient was 0.72.  

 

 

 

 

 

 

 

 

 

Figure 4.31 Validation of IL6R manual scoring. Bland Altmann plot showing difference 

between manual and digital QuPath scores for IL6R in tumour cytoplasm for the 10% of cases co-

scored. 
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Figure 4.32 Defining cut off point for IL6R expression high and low groups. Density plot 

and scatter plot for visualisation of optimal cut off point for high and low expression of tumour 

cytoplasmic IL6R. The optimal cut point determined was 44.9, therefore patients with a weighted 

histoscore of  44.9 were classified as high and patients with a weighted histoscore of  44.9were 

classified as low for cytoplasmic IL6R expression. 

Kaplan Meier survival analysis was performed to determine association of IL6R expression with 

cancer-specific survival. Overall, there was no significant association between IL6R expression and 

CSS, however there was a trend towards high expression associating with poorer outcome (HR= 

1.496, 95%CI; 0.957-2.341, log rank p=0.075) (Figure 4.33).   

 

 

 

 

 

 

 

 

4.33 Association between IL6R expression and Cancer-specific survival. Kaplan Meier 

curve showing association between IL6R tumour cytoplasmic expression and CSS in the full Glasgow 

combined cohort. The hazard ratio for IL6R expression in the full cohort was 1.496, (95%CI; 0.957-

2.341), log rank p=0.075. 
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When stratified by GMS, IL6R expression in patients classified as GMS0 and GMS1 was not 

associated with CSS (Figure 4.34).  However, there was a profound difference in patients with 

stromally-dense GMS2 tumours. High IL6R expression in these patients was associated with 

significantly reduced CSS (HR= 3.017, 95%CI; 1.255-7.255, log rank p=0.009) (Figure 4.34). 

Patients with low IL6R expression observed a median survival time of 139.701 months compared to 

78.987 months for patients with high expression. 
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4.34 Association between IL6R expression and Cancer-specific survival in each GMS 

classification. Kaplan Meier curve showing association between IL6R tumour cytoplasmic 

expression and CSS in GMS0 patients (A), GMS1 patients (B) and GMS2 patients (C). In patients with 

GMS0 classified tumours the hazard ratio for IL6R expression was 2.195, (95%CI; 0.465-10.346), log 

rank p=0.308 and for GMS1 cases the hazard ratio was 0.985, (95%CI; 0.537-1.808), log rank 

p=0.961. In GMS2 stromal-rich cases the hazard ratio for IL6R expression was 3.017, 95%CI; 1.255-

7.255), log rank p=0.009. 
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In terms of MMR status there was no significant association between CSS and cytoplasmic IL6R 

expression in patients with proficient or deficient MMR tumours (Figure 4.345.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.35 Association between IL6R expression and Cancer-specific survival stratified by 

MMR status. Kaplan Meier curve showing association between IL6R tumour cytoplasmic 

expression and CSS in pMMR patients (A) and dMMR patients (B). In patients with MMR proficient 

disease the hazard ratio for IL6R expression was 1.310, 95%CI; 0.812-2.115), log rank p=0.266 and 

MMR deficient cases the hazard ratio was 2.86, (95%CI; 0.806-10.189), log rank p=0.088. 

 

Patients with right-sided disease exhibited worse prognosis if their tumour cells were highly 

expressing IL6R (HR= 2.225, 95%CI; 1.033-4.792, log rank p= 0.035) (Figure 4.35). In right-sided 

cases, patients with low expression of IL6R had a mean survival time of 171.843 months compared to 

140.110 months for patients with high expression. IL6R levels were not associated with CSS in 

patients with left-sided disease or with rectal tumours (Figure 4.36).  
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Figure 4.36 Association between IL6R expression and Cancer-specific survival 

stratified by disease subsite. Kaplan Meier curve showing association between IL6R tumour 

cytoplasmic expression and CSS in right-sided cancer (A), left-sided cancer (B) and rectal cancer 

patients (C). In patients with right-sided tumour the hazard ratio for IL6R expression was 2.225, 

(95%CI; 1.033-4.792), log rank p=0.03 and in left-sided cases the hazard ratio was 1.271, (95%CI; 

0.608-2.009), log rank =0.522. In patients with rectal tumours, the hazard ratio for IL6R expression 

was0.826, (95%CI;0.340-2.009,), log rank p=0.672. 
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Next, IL6R expression was assessed for association with clinicopathological factors via chi-squared 

analysis. Low expression of IL6R was associated with female sex (p=0.001). High expression was 

more common in rectal cases and right-sidedness than left-sided tumours (p=0.015) and more 

commonly observed in MMR proficient tumours (p=0.023) (Table 4.5).  
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Clinical Factor  IL6R Expression 
 
Low (n=425)             High (n=197) 

p 

Age 
<65 
>65 

18 (34.6) 
34 (65.4) 

109 (34.4) 
208 (65.6) 

 

0.545 

Sex 
Female 
Male 

 

36 (69.2) 
16 (30.8) 

 

46 (46.1) 
171 (53.9) 

 

0.001 

T Stage 
I 
II 
III 
IV 

 

2 (3.8) 
4 (7.7) 

29 (55.8) 
17 (32.7) 

 

13 (4.1) 
47 (14.8) 

177 (55.8) 
80 (25.2) 

 

0.422 

N Stage 
0 
I 
II 

 

34 (65.4) 
11 (21.2) 
7 (13.5) 

 

196 (61.8) 
87 (27.4) 
34 (10.7) 

 

0.582 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

21 (40.4) 
26 (50.0) 
5 (9.6) 

 

141 (44.9) 
101 (32.2) 
72 (22.9) 

 

0.015 

GMS 
0 
1 
2 

 

16 (30.8) 
26 (50.0) 
10 (19.2) 

 

103 (33.2) 
144 (46.5) 
63 (20.3) 

 

0.893 

Phenotypic Subtype 
1 
2 
3 
4 

 

16 (30.8) 
15 (28.8) 
11 (21.2) 
10 (19.2) 

 

104 (33.7) 
81 (26.2) 
62 (20.1) 
62 (20.1) 

 

0.966 

mGPS 
0 
1 
2 

 

18 (66.7) 
4 (14.8) 
5 (18.5) 

 

128 (53.3) 
63 (26.3) 
49 (20.4) 

 

0.325 

MMR status  
pMMR 
dMMR 

 

37 (71.2) 
15 (28.8) 

 

265 (84.1) 
50 (15.9) 

 

0.023 

Tumour differentiation 
0 
1 

 

43 (82.7) 
9 (17.3) 

 

208 (88.3) 
37 (11.7) 

 

0.178 

Marginal involvement  
0 
1 

 

49 (94.2) 
3 (5.8) 

 

303 (95.6) 
14 (4.4) 

 

0.439 

Vascular invasion  
0 
1 

 

39 (75) 
13 (25) 

 

211 (66.6) 
106 (33.4) 

 

0.147 

Table 4.5 IL6R Expression and association with clinical factors. Chi-squared test for 

associations between IL6R expression and clinicopathological factors including age, sex, T stage, N 

stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, tumour differentiation, 

marginal involvement and vascular invasion.  

Scores for IL6R and stromal IL6 were combined to form 3 groups: low for both markers, high for one, 

or high for both markers. This resulted in 109 patients classed as low for both, 235 for one high and 9 

patients classed as high for both stromal IL6 and IL6R. Kaplan Meier survival analysis showed no 
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significant association between the combined stromal IL6 and IL6R score (p=0.184) (Figure 4.37). 

However, patients with high for both markers observed the worst prognosis and the study appears 

underpowered.  

 

 

 

 

 

 

 

 

 

 

Figure 4.37 Association between combined stromal IL6/IL6R expression and Cancer-

specific survival. Kaplan Meier curve showing association between a combined score of stromal 

IL6 and cytoplasmic tumour IL6R and CSS in the full Glasgow combined cohort (n=353). The hazard 

ratio for a combined score of stromal IL6 and cytoplasmic tumoural IL6R in the full cohort was 

1.456, (95%CI; 0.972-2.181), log rank p=0.184. 

Stromal IL8 and IL6R scores were combined to form a similar set of groups: low for both, high for 

on, or high for both. This resulted in 31 patients classed as low for both, 140 as high for one and 94 as 

high for both IL8 and IL6R. There was no significant association between combined IL8 and IL6R 

scores and CSS when a Kaplan Meier survival plot was constructed (p=0.099) (Figure 4.38). Patients 

low for both markers showed the best prognosis and those with one of both high observed similarly 

worse outcomes.  
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Figure 4.38 Association between combined stromal IL8/IL6R expression and Cancer-

specific survival. Kaplan Meier curve showing association between a combined score of stromal 

IL8 and cytoplasmic tumour IL6R and CSS in the full Glasgow combined cohort. The hazard ratio for 

the combined score of IL6R and stromal IL6 in GMS2 cases was 1.424, (95%CI; 0.987-2.053), log 

rank p=0.099.  

 

4.3 Discussion  

The mechanisms underlying colorectal cancer development and progression are complex and 

heterogeneous. Dysregulation of cellular signalling pathways plays a role in tumorigenesis. IL6 is a 

key inflammatory cytokine involved in activating the JAK/STAT3 signalling pathway. Classical 

signal transduction occurs when IL6 binds membrane bound IL6R. Once bound, this triggers a 

cascade of signals leading to cancer growth, invasion, and metastases  (75, 111, 117). IL6R can be 

found membrane-bound or in a soluble form in the cytoplasm. Signalling via soluble IL6R is known 

as trans-signalling, is associated with increased expression of adhesion markers promoting a pro-

tumour microenvironment, independently of classical signalling (118). Cancer-associated fibroblasts 

(CAFs) are a major source of IL6 in the tumour microenvironment (119). In oesophageal cancer, 

stroma derived IL6 is associated with driving epithelial to mesenchymal transition (120). The data 

from this chapter showed a strong association between IL6R expression and poor outcomes, 

particularly in patients with stroma rich GMS2 tumours. The proximity of IL6 producing CAFs and 

tumour cells in these GMS2 cases could explain this observation (81). In terms of genetic subtypes of 

CRC, IL6 is also upregulated in the stromal group, CMS4 (121). Further studies using full tissue 
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sections could be employed to investigate the importance of the spatial orientation of IL6R+ tumour 

cells and CAFs producing IL6.   

Tumour-associated macrophages (TAMs) are another source of IL6 in the TME (122). CAFs recruit 

TAMs to the TME via production of IL8 and increased expression of VCAM1 (119). IL8 is a 

proinflammatory chemokine which can act synergistically with IL6 to promote tumourigenesis. In 

prostate cancer IL8 exerts pro-tumour effects via STAT3, NFĸß and AKT signalling (123). IL8 plays 

a role in driving CRC metastases (124). The crosstalk between IL8 and IL6 signalling has been 

observed in head and neck cancer (115). A feedback loop resulting in continual over-production of 

both IL6 and IL8 forms aiding tumour progression. Evidence for IL8 and IL6 pathway interaction is 

not well-characterised in colorectal cancer specifically and further studies are required to understand 

the importance of any crosstalk in this setting.  

The results from this chapter indicate that IL6 within the stromal compartment of the TMA is of 

greater prognostic significance than IL6 located within tumour epithelial areas. High tumoural IL6 

was associated reduced CSS (p=0.045), and this was potentiated in MMR deficient cases (p=0.022). 

The data suggested that IL8 was not associated with outcome in this cohort, however IL8 levels in the 

stroma were significantly higher in GMS2 tumours (p=0.048). Due to the soluble nature of IL6 and 

IL8, it was not possible to quantify protein expression, only mRNA copies, therefore further studies to 

investigate both cytokines in vitro and in vivo would be beneficial to corroborate findings. IL6R 

expression was assessed at the protein level via IHC. In patients with stromal-rich GMS2 tumours, 

high expression of IL6R was associated with reduced CSS (p=0.009) with a survival difference of 

60.714 months between groups. High expression of IL6R was also associated with poorer outcomes in 

right-sided cases (p=0.035), with a mean survival difference of 31.733 months. IL6R expression 

within the tumour was stronger amongst rectal cases (p=0.015) and in males (p=0.001). These data, 

taken with evidence from the literature, suggest a link between stromal-tumour interactions and 

IL6/IL6R signal transduction. These results provide a first step towards the hypothesis that 

CMS4/GMS2 patients may be the target population for inhibition of STAT3 signalling.  

Future work should include quantifying staining of IL6R within the stromal and immune cell 

compartments of the TME, given that a range of intensities was observed not only within the tumour 

cells. The level of IL6R expression in all areas could potentially associate with prognosis and be 

important for assessing pathway inhibition given that inhibitors would not necessarily be specific for 

tumour cells. 
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Chapter 5: Expression of JAK1, JAK2, 
JAK3 and TYK2 in colorectal cancer 

clinical specimens 
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5.1 Introduction  

The IL6/JAK/STAT3 pathway has been implicated in CRC development and progression. Canonical 

signalling involves IL6 binding to membrane-bound IL6R resulting in activation of one or more Janus 

kinase tyrosine (JAK) family proteins (69) (Figure 5.1). This ultimately causes phosphorylation, 

dimerization and translocation to the nucleus of STAT3, where it can influence transcription of pro-

tumour genes (69). There are four members of the JAK family of proteins; JAK1, JAK2, JAK3 and 

TYK2 (125). Studies investigating expression of JAK family oncokinases in large cancer patient 

cohorts are lacking. The aim of this chapter was to assess levels of JAK1, JAK2, JAK3 and TYK2 

expression in the Glasgow combined colorectal tissue microarray by immunohistochemistry. 

Weighted histoscores for each protein were then analysed for association with clinical outcomes and 

characteristics. Prior to staining the patient cohort, antibodies were validated for specificity and IHC 

staining conditions were optimised on work-up tissue. Data were analysed with respect to histological 

phenotypic group GMS, MMR status and tumour subsite as a step towards identifying a specific 

subgroup of patients who may benefit from therapeutic targeting of the IL6/JAK/STAT3 pathway. It 

was hypothesised that high expression of JAK1, JAK2, TYK2 and JAK3 would be associated with 

reduced CSS and unfavourable clinical characteristics.    
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Figure 5.1. Diagram showing IL6/JAK/STAT3 signal transduction. Representation of IL6 

binding IL6R, initiating activation of JAK1, JAK2, TYK2 or JAK3 leading to activation, dimerization 

and translocation to the nucleus of STAT3. IL6 can activate all 4 JAK family members, however mist 

evidence to date suggests preferential activation of JAK1 and JAK2.  
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5.2 Expression of JAK family members and association 

with clinical outcomes and features 

The Glasgow combined cohort was stained for intermediate members of the IL6/JAK/STAT3 

pathway, JAK1, JAK2, JAK3 and TYK2 via IHC. Patients were excluded due to missing or damaged 

TMA cores, mortality within 30 days of surgery and/or receiving neoadjuvant chemotherapy, as 

shown in consort diagram (Figure 5.1).  

 

Figure 5.2 Consort diagram showing exclusion criteria. Consort/flow diagram showing the number 

of patients included in analysis for each marker based on exclusions of missing/damaged cores, 

mortality within 30 days of surgery and/or administration of neoadjuvant chemotherapy. Following 

removal of patients meeting exclusion criteria, this left 364 with JAK1 data, 461 with JAK2, 726 for 

JAK3 and 716 stained for TYK2. 

 

5.2.1 Expression of JAK1 and clinical outcome 

Cytoplasmic expression of Janus kinase-1 (JAK1) was assessed in the Glasgow combined cohort via 

immunohistochemistry. Representative images showing examples of weak, moderate, and strong 

cytoplasmic staining is shown in Figure 5.2. A true positive control, lung tissue, and a true negative 

control, prostate tissue, were stained alongside the TMA cohort (Figure 5.2). A positive and negative 

control colorectal section identified during the antibody optimisation process were also stained for 

JAK1 during the same run as the TMA staining (Figure 5.2). Antibody specificity was validated by 

western blotting. A single band in triplicate at 130KDa molecular weight was observed in HT29 

colorectal cell lines indicating the presence of JAK1.  No bands were present in adjacent wells which 

were loaded with PC3 prostate lysates, known to not express JAK1 (Figure 5.2). Tubulin was detected 

at similar intensity across all samples at 52KDa (Figure 5.2).  
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Figure 5.3 Representative images and antibody specificity for JAK1. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of JAK1 within 

tumour cells. Representative images of true positive and true negative tissue stained for JAK1 (D-E). 

Representative images of positive (D) and negative (E) colorectal tissue. Image of western blot 

showing single band in triplicate at 130KDa in HT29 cell lysates (20L loaded per well) probed for 

JAK1 and no visible bands in triplicate for true negative PC3 lysates (20L loaded per well), with 

bands visible at 50KDa for all samples probed for tubulin (H).  

Manual weighted histoscoring of tumour cytoplasmic expression of JAK1 was performed by a single 

observer (KP). Data were available for 398 patients due to missing and damaged cores. Of these 
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patients 34 were excluded due to administration of neoadjuvant chemotherapy or mortality within 30 

days of surgery leaving 364 included in analysis. Scores ranged from 40 to 300 and data were 

normally distributed (Figure 5.3). To validate scoring, QuPath digital software was utilised to measure 

cytoplasmic JAK1 in 10% of TMA scores by Sara Al-Badran. A scatter plot was constructed to 

visualise correlation between manual and digital scores (Figure 5.4), with a correlation coefficient of 

0.733 obtained showing strong positive association. A Bland Altman was plotted to ensure scores 

were sufficiently similar and not biased (Figure 5.5). The intra-class correlation coefficient of was 

0.810 indicating the scores were strongly aligned. Cut off points for high and low expression were 

determined in R Studio using survminer and maxstat packages. The optimal cut point based on CSS 

was 137.70 as shown in histogram and scatterplot (Figure 5.6). This resulted in 151 patients classified 

as low for cytoplasmic JAK1 expression and 212 patients for high cytoplasmic JAK1 expression.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Distribution of JAK1 weighted histoscores. Histogram showing JAK1 tumour 

cytoplasmic scores with normal distribution observed (n=364). The mean score for JAK1 was 151.24 

and scores ranged from 0-300.   
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Figure 5.5 Correlation between Manual and QuPath cytoplasmic JAK1 scores. Scatter plot 

showing the correlation between manual scores and digital scores for cytoplasmic JAK1 with a 

correlation of 0.733 obtained for the 10% of co-scored cores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Difference between manual and digital JAK1 scores. Bland Altman plot showing the 

similarity between manual and QuPath derived scores for cytoplasmic JAK1 in the 10% of Glasgow 

combined array co-scored.  
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Figure 5.7 Defining optimal cut point for high and low expression of cytoplasmic JAK1 

expression. Density and scatter plot showing optimal cut off point for high and low expression of 

JAK1 groups based on cancer-specific survival. The optimal cut off point determined was 137.7, 

therefore patients with a weighted histoscore for JAK1 of  137.7 were considered high and patients 

with a score of 137.7 were classed as low for cytoplasmic JAK1. 

Kaplan Meier survival analysis was performed to determine any association between cytoplasmic 

JAK1 expression and CSS. Low expression of JAK1 was associated with reduced survival time (HR= 

0.628, 95% CI; 0.414-0.951, log rank p= 0.026) (Figure 5.7). Patients with low expression of JAK1 

had a mean survival time of 139.737 months compared to patients with high expression at 161.853 

months. When patients were stratified by GMS subtype, this relationship was potentiated in GMS1 

patients with low JAK1 expressing patients observing the best prognosis (HR=0.444, 95%CI; 0.235-

0.839, log rank p=0.010) (Figure 5.8). The mean survival time of GMS1 patients with low JAK1 

expression was 129.094 months versus GMS1 patients with high JAK1 expression at 167.897 months. 

GMS0 and GMS2 patients observed no survival benefit relative to JAK1 expression (Figure 5.8). 

Patients with MMR proficient tumours exhibited better outcomes with high JAK1 expression 

(HR=0.587, 95%CI; 0.376-0.9117, log rank p=0.018) (Figure 5.9). The mean survival time of pMMR 

patients with low JAK1 expression was 136.191 months compared to 161.113 months for the pMMR 

high JAK1 expression group. This was not observed in patients with MMR deficient tumours (Figure 

5.9). In terms of sidedness, a trend towards survival benefit with high JAK1 expression was only 

observed in right-sided disease, however this did not reach significance (p=0.054; Figure 5.10). No 

association or trend between JAK1 expression and CSS was observed in patients with left-sided 

colonic tumours or rectal cases (Figure 5.10).  
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Figure 5.8 Association between tumoural cytoplasmic JAK1 expression and cancer-specific 

survival. Kaplan Meier curve showing association between cytoplasmic JAK1 expression and CSS in 

patients from the Glasgow combined cohort. The hazard ratio for JAK1 expression in the full cohort 

was 0.628, (95%CI;0.414-0.951), log rank p=0.026. 
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Figure 5.9 Association between JAK1 expression and CSS in each GMS classification. Kaplan 

Meier survival analysis of JAK1 cytoplasmic expression and CSS in patients classified as GMS0 (A), 

GMS1 (B) and GMS2 (C). The hazard ratio for JAK1 expression in patients classed as GMS0 immune 

was 0.706, (95%CI;0.224-2.227), log rank p=0.549 and for GMS1 patients the hazard ratio was 

0.444, (95%CI; 0.235-0.839), log rank p=0.010). In GMS2 stromal patients the hazard ratio for JAK1 

expression was 1.190, (95%CI; 0.623-2.309), log rank p=0.605.  
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Figure 5.10 Association between JAK1 expression and CSS in pMMR and dMMR cases. Kaplan 

Meier survival analysis of JAK1 cytoplasmic expression and CSS in MMR proficient patients (A) and 

MMR deficient patients (B). In MMR proficient patients the hazard ratio for JAK1 expression was 

0.587, (95%CI; 0.376-0.917), log rank p= 0.018 and for MMR deficient cases the hazard ratio was 

0.952, (95%CI; 0.302-3.002), log rank p=0.934. 
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Figure 5.11 JAK1 expression, CSS and tumour subsite. Kaplan Meier survival analysis showing 

association between JAK1 expression and CSS in right-sided disease (A), left-sided disease (B) and 

rectal disease (C). For patients with right-sided disease the hazard ratio for JAK1 expression was 

0.524, (95%CI; 0.268-1.025), log rank p=0.054 and for patients with left-sided colonic tumours the 

hazard ratio was 0.623, (95%CI; 0.305-1.272), log rank p=0.189. For patients with rectal disease the 

hazard ratio relative to JAK1 expression was 0.714, (95%CI; 0.296-1.725), log rank p=0.451. 
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JAK1 expression was assessed for association with clinical features by chi-squared analyses. No 

significant relationships were identified. However, there was a trend towards an increase in tumour 

vascularisation in patients with low cytoplasmic tumoural JAK1 expression (p=0.066) (Table 5.1).  
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Clinical Factor    Cytoplasmic JAK1
 
Expression

 
 

 
Low (n=151)             High (n=212) 

p 

Age 
<65 
>65 

 

50 (32.9) 
102 (67.1) 

 

70 (33.0) 
142 (67.0) 

 

0.536 

Sex 
Female 
Male 

 

76 (50.0) 
76 (50.0) 

 

107 (50.5) 
105 (49.5) 

 

0.507 

T Stage 
I 
II 
III 
IV 

 

9 (5.9) 
19 (12.5) 
80 (52.6) 
44 (28.9) 

 

7 (3.3) 
32 (15.1) 

118 (55.7) 
55 (25.9) 

 

0.526 

N Stage 
0 
I 
II 

 

82 (53.9) 
48 (31.6) 
22 (14.5) 

 

133 (62.7) 
58 (27.4) 
21 (9.9) 

 

0.197 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

68 (44.7) 
61 (40.1) 
23 (15.1) 

 

87 (41.6) 
74 (35.4) 
48 (23.0) 

 

0.170 

GMS 
0 
1 
2 

 

45 (30.4) 
70 (47.3) 
33 (22.3) 

 

74 (35.4) 
102 (48.8) 
33 (15.8) 

 

0.265 

Phenotypic Subtype 
1 
2 
3 
4 

 

44 (29.7) 
44 (29.7) 
27 (18.2) 
33 (22.3) 

 

75 (35.7) 
59 (28.1) 
42 (20.0) 
34 (16.2) 

 

0.412 

mGPS 
0 
1 
2 

 

63 (56.8) 
27 (24.3) 
21 (18.9) 

 

87 (56.9) 
29 (19.9) 
30 (20.5) 

 

0.690 

MMR status  
pMMR 
dMMR 

 

127 (84.1) 
24 (15.9) 

 

181 (85.8) 
30 (14.2) 

 

0.383 

Tumour differentiation 
0 
1 

137 (90.1) 
15 (9.9) 

186 (87.7) 
26 (12.3) 

0.295 

Marginal involvement  
0 
1 

142 (93.4) 
10 (6.6) 

206 (97.2) 
6 (2.8) 

0.073 

Vascular invasion  
0 
1 

 

93 (61.2) 
59 (38.8) 

 

No 147 (69.3) 
65 (30.7) 

0.066 

Table 5.1 Association between JAK1 expression and clinical features. Chi-squared table 

of associations for JAK1 expression and clinical prognostic factors including age, sex, T stage, N 

stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, tumour differentiation, 

marginal involvement and vascular invasion.  
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Positive staining for JAK1 was also observed within tumour membranes of some patients. Modified 

histoscoring was performed by a single observer (KP) to determine intensity of membranous JAK1, 

with 0 being absent, 1 being present. This resulted in 71 patients classed as absent for membranous 

JAK1 and 210 patients classed as present for membrane JAK1 staining. Kaplan Meier survival 

analysis showed no association between membranous staining of JAK1 and CSS in the full Glasgow 

combined cohort (p=0.199) (Figure 5.11).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Membrane JAK1 expression and CSS with patients stratified by tumour subsite. 

Kaplan Meier survival analysis of membrane JAK1 expression, which is a surrogate of activation, in 

patients from the Glasgow combined cohort. The hazard ratio for membranous expression of JAK1 in 

the full cohort was 1.720, (95%CI; 0.903-3.275), log rank p=0.199. 

 

5.2.2 Expression of JAK2 and clinical outcome 

Cytoplasmic janus kinase-2 (JAK2) expression was assessed in the Glasgow combined cohort TMA 

via immunohistochemistry. Representative images of weak, moderate, and high cytoplasmic staining 

expression patterns are shown in Figure 5.12 (A-C). True positive tissue (lung) shows positive 

staining for JAK2, and the true negative prostate tissue known to not express JAK2 at high levels is 

shown in figure 5.12. Positive and negative control colorectal tissue was used during the antibody 

optimisation process (Figure 5.12). To test antibody specificity SW620 cell lines were treated with 

either 0.01% DMSO or AT9283 JAK2 inhibitor. Cell pellets were then stained using the JAK2 

antibody at the same concentration and using identical conditions as the TMA staining protocol. Cell 
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pellets with JAK2 inhibited showed reduced expression of JAK2 when compared to the vehicle 

control (Figure 5.12, H).  

 

Figure 5.13 Representative images and antibody specificity for JAK2. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of JAK2 within 

tumour cells. Representative images of positive (D) and negative (E) colorectal tissue, and true 

positive (F) and true negative tissue (G). Representative images of cell pellets treated with a JAK2 

inhibitor and vehicle control (DMSO) and subsequently stained for JAK2 via IHC to observe lower 

intensity of staining in inhibitor-treated cells relative to vehicle control treated cells (H).  

 

Expression of cytoplasmic Janus kinase-2 was scored manually by a single observer (KP) in 503 

patients from the 1030 Glasgow combined patient cohort due to missing or damaged cores. Of these 

patients 42 were subsequently excluded due to mortality within 30 days of surgery or administration 

of neoadjuvant chemotherapy leaving 461 included in downstream analysis. Manual scores were 

validated by co-scoring of 10% of the cohort with QuPath digital pathology software by Sara Al-

Badran. Manual weighted histoscores ranged from 0 to 240 with a relatively normal distribution 

pattern from histogram (Figure 5.13). Manual scores were strongly positively correlated with the 10% 

QuPath scores with a correlation coefficient of 0.815 indicating a strong positive relationship. A 
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scatter plot was constructed to visualise the correlation between scores (Figure 5.14). A Bland Altman 

was plotted to show minimal bias between scores and an intraclass correlation coefficient of 0.898 

was obtained indicating the scores were significantly similar (Figure 5.15). To determine optimal cut 

points for high and low expression based on cancer-specific survival log rank statistics were 

performed using R Studio packages survminer and maxstat. A density and scatter plot were 

constructed to visualise the optimal cut point (Figure 5.16). The optimal cut point determined was 

67.37, therefore patients with a weighted histoscore ≥67.37 were considered to highly express JAK2 

(n 158) and those with a weighted histoscore ≤67.37 were classified as low for cytoplasmic JAK2 

expression (n=219).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Distribution of JAK2 weighted histoscores. Histogram showing JAK2 tumour 

cytoplasmic scores with a normal distribution (n=503). The mean score for JAK2 was 99.28 with 

scores ranging from 0-240. 
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Figure 5.15. Correlation between Manual and QuPath cytoplasmic JAK2 scores. Scatter plot 

showing the correlation between manual scores and digital scores for cytoplasmic JAK2 for the 10% 

of patients co-scored from the cohort. A correlation coefficient of 0.815 was obtained. 

 

 

Figure 5.16. Difference between manual and digital JAK2 scores. Bland Altman plot showing the 

similarity between manual and QuPath derived scores for cytoplasmic JAK2 in the 10% of patients 

Glasgow combined array co-scored.  
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Figure 5.17. Defining optimal cut point for high and low expression of cytoplasmic JAK2 

expression. Density and scatter plot showing optimal cut off point for high and low expression of 

JAK2 groups based on cancer-specific survival. The optimal cut off point identified was 67.37, 

therefore patients with a weighted histoscore of 67.37 for JAK2 were classed as low and patients 

with a weighted histoscore of 67.37 were classified as high for JAK2 cytoplasmic expression. 

 

Kaplan Meier survival analysis was performed to determine association between cytoplasmic JAK2 

expression and CSS. Cytoplasmic JAK2 expression was not associated with CSS in the full cohort 

(HR=1.162, 95%CI; 0.790-1.710, log rank p=0.444; Figure 5.17). When patients were segregated 

based on GMS, JAK2 expression was significantly associated with CSS in the stromal GMS2 subtype 

(HR=1.881, 95%CI;0.992-3.565, p=0.048; Figure 5.18). Patients with GMS2 classified tumours and 

high JAK2 expression had a mean survival time of 66.893 months compared to 108.169 months for 

patients with low cytoplasmic JAK2 expression. In immune GMS0 and intermediate GMS1 patients 

cytoplasmic JAK2 expression in tumour cells showed no association with CSS (Figure 5.18). There 

was no association between JAK2 expression and CSS when patients were grouped by MMR status 

(Figure 5.19). In terms of sidedness, no significant association between JAK2 expression and CSS 

was observed at any tumour subsite (Figure 5.20).  
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Figure 5.18 Cytoplasmic JAK2 expression and CSS in the full cohort. Kaplan Meier survival 

analysis of cytoplasmic JAK2 expression in the Glasgow combined cohort. The hazard ratio for JAK2 

expression in the full cohort was 1.162, (95%CI; 0.790-1.710), log rank p=0.444. 
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Figure 5.19 Cytoplasmic JAK2 expression and CSS with patients stratified by GMS. Kaplan 

Meier survival analysis of cytoplasmic JAK2 expression in GMS0 patients (A), GMS1 patients (B) and 

GMS2 patients (C). In patients with GMS0 immune graded tumours the hazard ratio for JAK2 

expression was 0.795, (95%CI; 0.266-2.374), log rank p=0.681 and for patients with GMS1 tumours 

the hazard ratio was 1.160, (95%CI; 0.655-2.055), log rank p=0.611. Patients with stromal-rich 

GMS2 tumours observed a hazard ratio of 1.881, (95%CI; 0.992-3.565, log rank p=0.048 for 

cytoplasmic JAK2 expression. 
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Figure 5.20 Cytoplasmic JAK2 expression and CSS with patients stratified by MMR status. 

Kaplan Meier survival analysis of cytoplasmic JAK2 expression in patients with MMR proficient 

tumours (A) and MMR deficient tumours (B). In MMR proficient cases, the hazard ratio for JAK2 

expression was 1.167, 95%CI; 0.768-1.772), log rank p=0.468 and for patients with MMR deficient 

disease the hazard ratio for JAK2 was 1.192, (95%CI; 0.432-3.291), log rank p=0.733. 
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Figure 5.21 Cytoplasmic JAK2 expression and CSS with patients stratified by tumour subsite. 

Kaplan Meier survival analysis of cytoplasmic JAK2 expression in patients with right-sided tumours 

(A), left-sided tumours (B) and rectal tumours (C). In patients with right-sided tumours the hazard 

ratio associated with JAK2 expression was 0.993, (95%CI:0.545-1.808), log rank p=0.967 and for 

patients with left sided tumours the hazard ratio was 0.919, (95%CI; 0.468-1.807), log rank p=0.908. 

The hazard ratio for JAK2 expression in patients with rectal tumours was 1.851, (95%CI; 0.799-

4.288), log rank p=0.135. 

A 

B 

C 



180 
 

Next, JAK2 expression was assessed for association with clinicopathological characteristics via Chi-

squared analyses (Table 5.2). Cytoplasmic JAK2 was associated with T stage (p<0.001), N stage 

(p=0.035), modified Glasgow prognostic score (systemic inflammation) (p=0.029), tumour budding 

(p=0.027), phenotypic subtype (p=0.047) and marginal involvement (p=0.041).  
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Clinical feature  Cytoplasmic JAK2 Expression 
        
    Low (n=219)                  High (n=158) 

p value 

Age 
>65 
<65 

 

24 (32.2) 
50 (67.6) 

 

132 (34.1) 
255 (65.9) 

 

0.446 

Sex 
Female 
Male 

 

30 (40.5) 
44(59.5) 

 

196 (50.6) 
191 (49.4) 

 

0.071 

T Stage 
I 
II 
III 
IV 

 

3 (4.1) 
0(0) 
42 (56.8) 
29 (39.2) 

 

15 (3.9) 
61 (15.8) 
212 (54.8) 
99 (25.6) 

 

<0.001** 

N Stage 
I 
II 
III 

 

36 (48.6) 
25 (33.8) 
13 (17.6) 

 

249 (64.3) 
98 (25.3) 
40 (10.3) 

 

0.035* 

Tumour subsite  
Right 
Left  
Rectum  

 

33 (44.6) 
26 (35.1) 
15 (20.3) 

 

169 (43.7) 
129 (33.3) 
89 (23.0) 

 

0.868 

mGPS 
0 
1 
2 

 

24 (42.9) 
23 (41.1) 
9 (16.1) 

 

171 (58.4) 
69 (23.5) 
53 (18.1) 

 

0.029* 

Tumour budding  
Absent-Low 
Moderate-High 

 

37 (59.7) 
25 (40.3) 

 

253 (72.9) 
94 (27.1) 

 

0.027* 

Phenotypic subtype 
Immune  
Canonical  
Latent 
Stromal 

 

18 (25.7) 
16 (22.9) 
21 (30.0) 
15 (21.4) 

 

145 (38.2) 
101 (26.6) 
65 (17.1) 
69 (18.2) 

 

0.047* 

GMS 
0 
1 
2 

18 (25.7) 
36 (51.4) 
16 (22.9) 

143 (37.5) 
169 (44.4) 
69 (18.1) 

0.148 

Marginal Involvement  
Absent 
Present 

66 (89.2) 
8 (10.8) 

369 (95.3) 
18 (4.7) 

0.041* 

Table 5.2 JAK2 Expression and Clinical Features. Table of Chi-squared associations between 

JAK2 expression and clinicopathological prognostic features including age, sex, T stage, N stage, 

tumour subsite, GMS, phenotypic subtype, MMR status, mGPS, tumour budding and marginal 

involvement.  

JAK2 staining was also present in the tumour membrane. Modified histoscoring was performed by a 

single observer (KP) to determine intensity of membranous JAK2, with 0 being absent, 1 being 

present. This resulted in 64 patients classified as present for membrane JAK2, and 234 absent for 
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JAK2 membranous expression. There was no significant association between membranous JAK2 and 

CSS when Kaplan Meier survival curves were plotted (p=0.406) (Figure 5.21).  

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Membrane JAK2 expression and CSS with patients stratified by tumour subsite. 

Kaplan Meier survival analysis of membrane JAK2 expression in patients from the Glasgow 

combined cohort. In the full cohort the hazard ratio for membranous JAK2 expression was 1.564, 

(95%CI; 0.840-2.912) log rank p=0.406. 

 

 

 

Membrane scores for JAK1 and JAK2 were combined to form a new score of absent for both markers, 

one marker present, and both markers present. There were 147 patients with JAK1 and JAK2 

membrane expression present, 78 with presence of JAK1 or JAK2 membranous staining and 17 

exhibiting no membranous staining for JAK1 or JAK2. In terms of prognosis, patients with high 

JAK1 and JAK2 membrane staining had poorer outcomes in terms of CSS when compared to patients 

low for both (HR= 1.638, 95%CI; 1.059-2.534, log rank p= 0.039) (Figure 5.22). The mean survival 

time of patients with high membranous JAK1/2 was 77.35 months compared to patients with low 

expression at 93.44 months. Interestingly, this observation was potentiated in GMS2 stromally dense 

tumours (HR=3.227, 95%CI; 1.410-7.387, log rank p=0.013) (Figure 5.23). 
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Figure 5.23 Membranous expression of JAK1 and/or JAK2 expression and CSS. Kaplan Meier 

survival analysis of JAK1 and JAK2 membranous expression in patients from the Glasgow combined 

cohort. In the full cohort, the hazard ratio for combined JAK1 and JAK2 membranous expression 

score both high versus both low was 1.638, (95%CI; 1.059-2.534), log rank p=0.039. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Membranous expression of JAK1 and/or JAK2 expression and CSS in GMS2 

patients. Kaplan Meier survival analysis of JAK1 and JAK2 membranous expression in patients 

classified as GMS2 from the Glasgow combined cohort. In GMS2 stromal-rich cases the hazard ratio 

for combined JAK1 and JAK2 membranous score was 3.227, (95%CI; 1.410-7.387), log rank 

p=0.013 for both high versus both low.  
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5.2.4 Expression of JAK3 and clinical outcome 

Cytoplasmic expression of Janus kinase-3 (JAK3) was assessed in patients from the Glasgow 

combined cohort by staining TMAs via IHC. Representative images of weak, moderate, and strong 

staining are shown in Figure 5.24 (A-C). Negative and positive controls colorectal tissue was stained 

at the same time as the cohort with representative images in Figure 5.24 (D-E). True negative, normal 

colon tissue, and true positive, liver tissue, are shown in Figure 5.24 (F-G). Antibody specificity was 

performed by staining sw620 cell pellets treated with 0.1%DMSO (H) or AT2983 JAK3 inhibitor (I) 

for JAK3 via IHC (Figure 5.24). Further validation was performed by western blotting to probe for 

JAK3 in HT29 cell lysates and PC3 cell lysates. The bands detected from HT29 cells were of a higher 

intensity than PC3 cells and tubulin remained constant for each sample at 52KDa (Figure 5.24) (J).  
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Figure 5.25 Representative images and antibody specificity for JAK3. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of JAK3 within 

tumour cells. Representative images of positive (D) and negative (E) colorectal tissue, and true 

positive (F) and true negative tissue (G). Image of western blot showing single band in triplicate for 

HT29 cell lysates (20L per lane loaded) probed for JAK3 and weaker intensity of bands in triplicate 

for true negative PC3 lysates (20L per lane loaded), with tubulin detected at 52KDa at a similar 

intensity across all 6 samples.  

Weighted histoscoring was performed manually by a single observer (KP) in 790 patients from the 

Glasgow combined array. When patients who received neoadjuvant therapy or those who died within 

30 days of surgery were excluded, this left 726 patients included in analysis. Scores ranged from 0-

260 with a mean of 154.58. A histogram was plotted to determine the distribution pattern of scores 

which was normal (Figure 5.25). Manual scores were validated using QuPath for 10% of cores by KP. 
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A correlation coefficient of 0.876 indicating a strong positive correlation between scores. A scatter 

plot was constructed to visualise this correlation (Figure 5.26). An intra-class correlation coefficient 

of 0.934 was determined indicating the scores were strongly related and not significantly different. A 

Bland Altman plot was constructed to visualise the bias between manual and digital JAK3 scores 

(Figure 5.27). Survminer and maxstat packages in R Studio were utilised to determine the optimal cut 

point for high and low expression based on CSS by log rank statistics. The optimum cut off 

determined was 208.33. Scatter and density plots were constricted to visualise this cut point (Figure 

5.28). This resulted in 632 patients classified as low for expression of JAK3 and 94 patients as high 

for cytoplasmic JAK3 expression.  

 

 

 

Figure 5.26 Distribution of JAK3 weighted histoscores. Histogram showing JAK3 tumour 

cytoplasmic scores with normal distribution pattern (n=726). The mean score for JAK3 was 154.58 

and scores ranged from 0-260. 
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Figure 5.27 Correlation between Manual and QuPath cytoplasmic JAK3 scores. Scatter plot 

showing the correlation between manual scores and digital scores for cytoplasmic JAK3 in 10% of 

patients from the Glasgow combined cohort that were co-scored, with a correlation coefficient of 

0.876 obtained. 

 

 

 

 

 

 

 

 

 

 

Figure 5.28 Difference between manual and digital JAK3 scores. Bland Altman plot showing the 

similarity between manual and QuPath derived scores for cytoplasmic JAK3 in the 10% of patients 

from the Glasgow combined array co-scored for validation purposes.  
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Figure 5.29 Defining optimal cut point for high and low expression of cytoplasmic JAK3 

expression. Density and scatter plot showing optimal cut off point for high and low expression of 

JAK3 groups based on cancer-specific survival. The optimal cut off point determined was 208.33, 

therefore patients with a weighted histoscore of 208.33 2 were considered as low expression and 

patients with a weighted histoscore of 208.33 were classed as high for JAK3 expression. 

Kaplan Meier survival analysis was performed to determine any association between cytoplasmic 

tumoural expression of JAK3 and CSS. In the full cohort low JAK3 expression was associated with 

reduced survival time (HR=0.503, 95%CI;0.302-0.837, log rank p=0.007) (Figure 5.29). Patients with 

low expression of JAK3 had a mean survival of 142.535 months versus 167.563 months for patients 

with high JAK3 expression. When patients were stratified by GMS histological subtypes, patients 

classed as intermediate GMS1 observed a survival benefit with high cytoplasmic JAK3 expression 

(HR=0.449, 95%CI; 0.227-0.888, log rank p=0.018) (Figure 5.30). GMS1 patients with low JAK3 

expression had a mean survival time of 137.608 months compared to patients with high tumoural 

JAK3 expression at 166.930 months. In GMS0 immune patients and GMS2 stromal patients there was 

no association between JAK3 expression and CSS (Figure 5.30). JAK3 expression was associated 

with CSS in patients with MMR proficient but not patients with MMR deficient tumours (Figure 

5.31). In pMMR cases, the mean survival time of patients with low JAK3 expression was 139.809 

months versus 173.354 months in patients with high JAK3 expression. When patients were segregated 

by primary subsite, JAK3 expression was associated with CSS in left-sided colon cases (HR=0.451, 

95%CI; 0.207-0.982, log rank p=0.039) (Figure 5.31). Patients with left-sided colon tumours and low 

JAK3 expression had a mean survival time of 142.225 months compared to high JAK3 expression at 
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171.912 months. There was no association between cytoplasmic JAK3 expression and outcome in 

patients with right-sided colonic or rectal tumours (Figure 5.32).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30 Figure 5.29 Cytoplasmic JAK3 expression and CSS in the full cohort. Kaplan Meier 

survival analysis of cytoplasmic JAK3 expression in the Glasgow combined cohort. The hazard ratio 

for JAK3 expression in the full cohort was 0.503, (95%CI; 0.302-0.837), log rank p=0.007.  
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Figure 5.31 Cytoplasmic JAK3 expression and CSS with patients stratified by GMS. Kaplan 

Meier survival analysis of cytoplasmic JAK3 expression in GMS0 patients (A), GMS1 patients (B) and 

GMS2 patients (C). The hazard ratio for patients with GMS0 graded tumours was 0.375, (95%CI; 

0.0900-1.559), log rank p=0.160 and patients with GMS1 tumours saw a hazard ratio of 0.449, 

(95%CI; 0.227-0.888), log rank =0.018. In patients with GMS2 stromally dense tumours the hazard 

ratio for JAK3 was 0.832, (95%CI; 0.331-2.092), log rank p=0.695. 

B 

A 

C 



191 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32 Cytoplasmic JAK3 expression and CSS with patients stratified by MMR status. 

Kaplan Meier survival analysis of cytoplasmic JAK3 expression in patients with MMR proficient 

tumours (A) and MMR deficient tumours (B). In MMR proficient cases the hazard ratio for JAK3 

expression was0.383, (95%CI; 0.202-0.724), log rank p=0.002 and in MMR deficient cases the 

hazard ratio was 0.899, (95%CI; 0.309-2.610), log rank p=0.844. 
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Figure 5.33 Cytoplasmic JAK3 expression and CSS with patients stratified by tumour subsite. 

Kaplan Meier survival analysis of cytoplasmic JAK3 expression in patients with right-sided tumours 

(A), left-sided tumours (B) and rectal tumours (C). In patients with right-sided tumours the hazard 

ratio for JAK3 expression was 0.462, (95%CI; 0.188-1.140), log rank p=0.085 and in left-sided 

colonic tumours the hazard ratio was 0.451, (95%CI; 0.207-0.982), log rank p=0.039. In rectal cases 

the hazard ratio for JAK3 expression was 0.787, (95%CI; 0.281-2.200), log rank p=0.646.   
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Chi-squared analyses were performed to determine association between JAK3 expression and 

clinicopathological characteristics. High cytoplasmic JAK3 was significantly associated with 

increased vascular invasion (p=0.009) and lower N stage (p=0.008) (Table 5.3).  
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Clinical Factor     JAK3
 
Expression

 
 

Low (n=632)                 High (n=94) 
p 

Age 
<65 
>65 

 

195 (30.9) 
437 (69.1) 

 

26 (27.7) 
68 (72.3) 

 

0.30  

Sex 
Female 
Male 

 

305 (48.3) 
327 (51.7) 

 

51 (54.3) 
43 (45.7) 

 

0.165 

T Stage 
I 
II 
III 
IV 

 

23 (3.6) 
70 (11.1) 

343 (54.3) 
196 (31.0) 

 

4 (4.3) 
20 (21.3) 
48 (51.1) 
22 (23.4) 

 

0.051 

N Stage 
0 
I 
II 

 

370 (58.8) 
185 (29.4) 
74 (11.8) 

 

70 (75.3) 
16 (17.2) 
7 (7.5) 

 

0.008 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

279 (44.5) 
212 (33.8) 
136 (21.7) 

 

33 (35.5) 
42 (45.2) 
18 (19.4) 

 

0.102 

GMS 
0 
1 
2 

 

198 (32.7) 
299 (49.4) 
108 (17.9) 

 

29 (31.2) 
54 (58.1) 
10 (10.8) 

 

0.141 

Phenotypic Subtype 
1 
2 
3 
4 

 

197 (32.6) 
170 (28.1) 
130 (21.5) 
108 (17.9) 

 

29 (31.9) 
28 (30.8) 
24 (26.4) 
10 (11.0) 

 

0.323 

mGPS 
0 
1 
2 

 

263 (50.9) 
160 (30.9) 
94 (18.2) 

 

34 (57.6) 
20 (33.9) 
5 (8.5) 

 

0.12  

MMR status  
pMMR 
dMMR 

 

520 (83.3) 
104 (16.7) 

 

72 (79.1) 
19 (20.9) 

 

0.1 7 

Tumour differentiation 
0 
1 

 

565 (89.4) 
67 (10.6) 

 

89 (90.1) 
5 (5.3) 

 

0.072 

Marginal involvement  
0 
1 

 

597 (94.5) 
11 (4.2) 

 

420 (92.9) 
32 (7.1) 

 

0.414 

Vascular invasion  
0 
1 

 

418 (66.1) 
214 (33.9) 

 

74 (78.7) 
20 (21.3) 

 

0.009 

Table 5.3 JAK3 Expression and Clinical Features. Table of Chi-squared associations between 

JAK3 expression and clinicopathological prognostic features including age, sex, T stage, N stage, 

tumour subsite, GMS, phenotypic subtype, MMR status, tumour differentiation mGPS, tumour 

differentiation, marginal involvement and venous invasion.  
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5.2.5 Expression of TYK2 and clinical outcome. 

Expression of TYK2 was assessed in tumour cytoplasm of patients from the Glasgow combined 

cohort tissue microarray. Representative images of weak, moderate, and strong staining are shown in 

Figure 5.33 (A-C). Positive and negative control colorectal tissue were stained alongside the cohort 

and representative images are shown in Figure 5.33 (D-E). True positive tissue (liver and true 

negative tissue (breast) were stained during the same run as the TMA cores and representative images 

are shown in Figure 5.33. Antibody specificity was performed via staining of cell pellets treated with 

0.01% DMSO vehicle control or TYK2 inhibitor AT9283, representative images are shown in Figure 

5.33 (H). The inhibitor-treated pellets showed significantly reduced TYK2 expression compared to 

the vehicle control-treated SW620 cells.  

 

Figure 5.34 Representative images and antibody specificity for TYK2. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of TYK2 within 

tumour cells. Representative images of positive (D) and negative (E) colorectal tissue, and true 

positive (F) and true negative tissue (G). Cell pellets made from SW620 cell lines treated with either 

AT2983 TYK2 inhibitor or 0.01% DMSO vehicle control, stained via IHC for TYK2 to show higher 

expression in vehicle treated cells compared to TYK2 inhibitor treated cells (H). 

Expression of TYK2 was semi-quantitively measured using manual weighted histoscoring by a single 

observer (KP). Scores were obtained for 796 patients from the 1030 patient cohort due to missing 

and/or damaged TMA cores. After excluding patients who died within 30 days of surgery or those 
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who received neoadjuvant chemotherapy 716 patients were included in further analysis. Weighted 

histoscores ranged from 0 to 300 with a mean score of 188.70. A histogram was plotted to visualise 

the range of scores and data were relatively normally distributed (Figure 5.34). Due to scores being 

devised by a single observer (KP), scoring was validated in 10% of tumour cores utilising QuPath 

digital pathology software by KP. A correlation coefficient of 0.890 indicating a strong positive 

correlation was obtained between scores and data were visualised in a scatter plot (Figure 5.35). A 

Bland Altman plot was constructed to visualise the bias between scores and to prove scores were not 

statistically different (Figure 5.36). An intra-class correlation coefficient of 0.946 indicated the scores 

were strongly positively correlated and not different from each other. Cut offs were determined using 

maxstat and survminer in R studio via log rank statistics based on CSS. This method yielded an 

optimum cut off score for high and low expression groups of 182.5. The cut point was visualised by 

constructing scatter and density plots (Figure 5.37). Subsequently there were 264 patients classified as 

low for TYK2 expression and 452 patients as high for expression of cytoplasmic TYK2.  

 

 

 

 

Figure 5.35 Distribution of weighted histoscores for TYK2. Histogram showing the range of 

scores obtained for cytoplasmic tumour TYK2 expression and distribution pattern of the data 

(n=716). The mean score for TYK2 expression was 188.70 and the scores ranged from 0-300. 
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Figure 5.36 Correlation between manual and digital weighted histoscoring of TYK2. Scatter plot 

showing correlation between tumour cytoplasm weighted histoscores for TYK2 for the 10% of cases 

co-scored using QuPath digital pathology. A correlation coefficient of 0.890 was obtained.  

 

 

Figure 5.37 Validation of TYK2 manual scoring. Bland Altmann plot showing difference between 

manual and digital QuPath scores for TYK2 in tumour cytoplasm for the 10% of co-scored cases in 

the Glasgow combined array. 
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Figure 5.38 Defining cut off point for TYK2 expression high and low groups. Density plot and 

scatter plot for visualisation of optimal cut off point for high and low expression of tumour 

cytoplasmic TYK2. The optimal cut point determined was 182.5, therefore patients with a weighted 

histoscore of 182.5 were considered high for TYK2 expression and patients with a weighted 

histoscore of 182.5 were classed as low for cytoplasmic tumoural TYK2 expression. 

 

Kaplan Meier plot survival analysis was used to determine any association between cytoplasmic 

tumour TYK2 expression and CSS. In the full cohort TYK2 expression was not significantly 

associated with CSS (p=0.094) (Figure 5.38). Patients were subdivided into GMS classification 

groups and Kaplan Meier survival analysis was performed again. No significant association between 

cytoplasmic expression of TYK2 and CSS was observed in any subtype (Figure 5.39). In the GMS2, 

although not a significant relationship, patients with high cytoplasmic TYK2 trended towards worse 

prognosis (Figure 5.39). No significant association between cytoplasmic TYK2 expression and CSS 

was found in either MMR proficient or MMR deficient disease (Figure 5.40). When TYK2 was 

analysed in the context of tumour subsite, a significant association was observed between CSS and 

cytoplasmic expression in rectal tumours, with high expression associated with worse outcomes (HR= 

1.344, 95%CI; 0.742-2.434, log rank p=0.050) (Figure 5.41). Patients with rectal tumours and high 

TYK2 expression had a mean survival of 139.512 months compared to low TYK2 expression at 

169.759 months. No significant relationship between CSS and cytoplasmic TYK2 expression as seen 

in right-sided or left-sided colonic disease (Figure 5.41). 
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Figure 5.39 Cytoplasmic expression of TYK2 expression and CSS. Kaplan Meier survival analysis 

of cytoplasmic TYK2 expression in patients from the Glasgow combined cohort. In the full cohort the 

hazard ratio for TYK2 expression was 1.279, (95%CI; 0.957-1.709), log rank p=0.094. 
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Figure 5.40 Cytoplasmic expression of TYK2 expression and CSS relative to GMS classification. 

Kaplan Meier survival analysis of cytoplasmic TYK2 expression in patients from the Glasgow 

combined cohort classified as GM0 (A), GMS1 (B), and GMS2 (C). For patients classified as GMS0 

immune the hazard ratio for TYK2 expression was 0.936, (95%CI; 0.458-1.911), log rank p=0.855 

and for patients with GMS1 tumours the hazard ratio was 1.123, (95%CI; 0.760-1.659), log rank 

p=0.559. In GMS2 stromal-rich cases the hazard ratio for TYK2 expression was 1.709, (95%CI; 

0.941-3.104), log rank p= 0.074. 
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Figure 5.41 Cytoplasmic expression of TYK2 expression and CSS relative to MMR status. 

Kaplan Meier survival analysis of cytoplasmic TYK2 expression in patients from the Glasgow 

combined cohort with MMR proficient tumours(A) and MMR deficient tumours (B). In MMR 

proficient cases the hazard ratio for TYK2 expression was 1.219, (95%CI; 0.222-6.682), log rank 

=0.130 and in MMR deficient cases the hazard ratio was 1.562, (95%CI; 0.695-3.509), log rank 

p=0.096. 
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Figure 5.42 Cytoplasmic expression of TYK2 expression and CSS relative to tumour subsite. 

Kaplan Meier survival analysis of cytoplasmic TYK2 expression in patients from the Glasgow 

combined cohort with right-sided disease (A), left-sided disease (B), and rectal disease (C). In 

patients with right-sided colonic tumours the hazard ratio for TYK2 expression was 0.410, (95%CI; 

0.251-0.669), log rank p=0.122 and in left-sided colon tumours the hazard ratio was 1.169, (95%CI; 

0.726-1.882), log rank p=0.943. In rectal cases the hazard ratio for TYK2 expression was 1.344, 

(95%CI; 0.742-2.434) log rank p=0.050. 
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Next, TYK2 expression was assessed for associations with clinicopathological characteristics via Chi-

squared analyses. High TYK2 expression was associated with the canonical phenotypic subtype 

(p<0.001) and systemic inflammation measured via modified Glasgow prognostic score (mGPS) 

(p=0.034) (Table 5.4). 
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Clinical Factor  TYK2
 
Expression 

Low (n=264)                       High (n=452) 
p 

Age 
<65 
>65 

 

82 (31.1) 
182 (68.9) 

 

139 (30.8) 
313 (69.2) 

 

0.498 

Sex 
Female 
Male 

 

124 (47.0) 
140 (53.0) 

 

222 (49.1) 
230 (50.9) 

 

0.317 

T Stage 
I 
II 
III 
IV 

 

8 (3.0) 
30 (11.4) 
151 (57.2) 
75 (28.4) 

 

21 (4.6) 
61 (13.5) 

236 (52.2) 
134 (29.6) 

 

0.462 

N Stage 
0 
I 
II 
III 

 

166 (62.9) 
66 (25.0) 
32 (12.1) 

 

286 (63.7) 
110 (24.5) 
53 (11.8) 

 

0.976 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

117 (44.7) 
92 (35.1) 
53 (20.2) 

 

200 (44.6) 
151 (33.7) 
97 (21.7) 

 

0.880 

GMS 
0 
1 
2 

 

90 (35.4) 
122 (48.0) 
42 (16.5) 

 

134 (30.7) 
231 (52.9) 
72 (16.5) 

 

0.396 

Phenotypic Subtype 
1 
2 
3 
4 

 

90 (35.6) 
55 (21.7) 
66 (26.1) 
42 (16.6) 

 

133 (30.6) 
155 (35.6) 
75 (17.2) 
72 (16.6) 

 

<0.001 

mGPS 
0 
1 
2 

 

111 (48.3) 
85 (37.0) 
34 (14.8) 

 

185 (54.1) 
92 (26.9) 
65 (19.0) 

 

0.034 

MMR status  
pMMR 
dMMR 

 

214 (82.3) 
46 (17.7) 

 

363 (81.4) 
83 (18.6) 

 

0.422 

Tumour differentiation 
0 
1 

 

235 (89.0) 
29 (11.0) 

 

405 (89.6) 
47 (10.4) 

 

0.449 

Marginal involvement  
0 
1 

 

253 (95.8) 
11 (4.2) 

 

420 (92.9) 
32 (7.1) 

 

0.075 

Vascular invasion  
0 
1 

 

182 (68.9) 
82 (31.1) 

 

290 (64.2) 
162 (35.8) 

 

0.111 

Table 5.4 TYK2 Expression and Clinical Features. Table of Chi-squared associations between 

cytoplasmic tumoural TYK2 expression and clinicopathological prognostic features including age, 

sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, tumour 

differentiation, marginal involvement and vascular invasion.  
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5.2.5 JAK2 and TYK2 combined score and clinical 

outcome 

Given the trend towards association with high JAK2 and TYK2 expression and reduced CSS, scores 

for these proteins were combined to form 3 groups, high for both, high for 1 marker, and low for both. 

This resulted in 54 patients classified as low for both, 142 and high for 1 marker and 84 as high for 

both markers. In the full cohort the combined JAK2/TY2 score was associated with CSS (HR=1.203, 

95%CI; 0.881-1.644, log rank p=0.016) (Figure 5.42). Patients with low expression of both proteins 

had a mean survival of 152.943 months, compared to 148.745 months for both high and 135.028 for 

high for 1 marker. This relationship was somewhat potentiated in patients with GMS2 stromal rich 

tumours (HR=1.801, 95%CI; 1.077-3.012, log rank p=0.022) (Figure 5.43). Patients with low 

expression of both markers had a mean survival time of 157.500 months compared to patients high for 

both markers at 63.107 months (p=0.010), and patients high for 1 marker at 70.406 months.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43 Combined cytoplasmic expression of JAK2 and TYK2 expression and CSS. Kaplan 

Meier survival analysis of combined cytoplasmic JAK3 and TYK2 expression in patients from the 

Glasgow combined cohort. In the full cohort the hazard ratio for combined JAK2/TYK2 score was 

1.203, (95%CI; 0.881-1.644), log rank p=0.016. 
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Figure 5.44 Combined cytoplasmic expression of JAK2 and TYK2 expression and CSS in GMS2 

patients. Kaplan Meier survival analysis of combined cytoplasmic JAK3 and TYK2 expression in 

patients with stromally-dense GMS2 tumours from the Glasgow combined cohort. The hazard ratio 

for combined JAK2/TYK2 score in GMS2 patients from the combined array was 1.801, (95%CI; 

1.077-3.012), log rank p=0.022. 

 

 

5.3 Discussion  

Over the past decade, our understanding of the underlying mechanisms leading to CRC development 

and progression has greatly increased. It is now widely accepted that tumourigenesis is characterised 

by the dysregulation of cellular signalling pathways leading to promotion of all seven hallmarks of 

cancer (126). One such cancer-associated pathway is IL6/JAK/STAT3 signal transduction. The 

prognostic roles of IL6 and STAT3 are relatively well established in many solid tumour types, with 

both pathway members linked to poor outcomes (127). Akin to other cytokine receptors, IL6R does 

not contain an intracellular tyrosine kinase domain and signalling therefore relies on activation of 

JAK family members to transduce the signal (128). Expression of these intermediate IL6/JAK/STAT3 

pathway components; JAK1, JAK2, TYK2 and to some extent JAK3 are less well defined in the 

cancer setting.  

Data suggests JAK2 and TYK2 are generally associated with unfavourable clinical outcomes in 

cancer. At the genome level, mutations in JAK2 and TYK2 genes are associated with reduced survival 
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in both colon and rectal cancer (129). In CRC cell lines and spheroids, JAK2 expression is associated 

with reduced apoptosis, enhanced clonogenic potential and promotion of resistance to radiotherapy 

(130). TYK2 hyperactivation is associated with tumour cell invasiveness in prostate cancer (131). 

TYK2 has also been shown to interact with a variety of other oncogenic signalling pathways including 

RAF/ERK, MAPK and PI3K/AKT/mTOR (132). Data from this chapter showed high JAK2 

expression was associated with reduced survival times in GMS2 patients (HR=1.881, 95%CI;0.992-

3.565, p=0.048). Although TYK2 expression alone showed no prognostic capability, when TYK2 

scores were combined with JAK2, high expression was associated with poorer outcomes in the full 

cohort, and this relationship was potentiated in GMS2 tumour cases (HR=1.801, 95%CI; 1.077-3.012, 

log rank p=0.022). This indicates further evidence that targeting IL6/JAK/STAT3 may be useful in 

patients with highly stromal tumours.  

JAK3 is generally associated with haematologic cell signalling and expression has not been frequently 

reported in solid tumours (133). JAK3 expression, at this time, has not been extensively investigated 

in large scale tissue-based studies. However, JAK3 is overexpressed in colorectal cell lines and 

inhibiting JAK3 in CRC cell lines does reduce STAT3 activation (134). Interestingly, the data 

discussed in this chapter, suggested high tumour expression of JAK3 was associated with increased 

survival time (HR=0.503, 95%CI;0.302-0.837, log rank p=0.007). This observation was most evident 

in GMS1 intermediate tumours, MMR proficient and right and left-sided colon cases. Further research 

is needed to confirm these findings in a validation cohort.  

The role of JAK1 in CRC is also not well-defined in the literature and there are conflicting data about 

whether expression is favourable or unfavourable for prognosis. In breast cancer low JAK1 

expression is associated with reduced survival, and high JAK1 expression associates with increased 

anti-tumour infiltrating immune cells (135). Similar results were observed for the Glasgow combined 

cohort in this chapter with low expression of JAK1 predictive of reduced CSS. However, in non-small 

lung cancer expression of p-JAK1 associates with poor prognosis and unfavourable clinical 

characteristics (136). In this chapter, only total JAK1/JAK2/JAK3/TYK2 were stained for, which 

might not provide a clear picture of the role each protein plays in CRC. Activation may be of more 

importance than total protein, therefore future work should include staining the cohort TMAs for the 

phosphorylation sites of each JAK family member.  

Positive staining for each of the JAK family proteins was observed in the tumour cytoplasm. JAK1 

and JAK2 staining was also seen as a membranous pattern on some patient’s tumour cells. When 

modified histoscoring as ‘absent’ or ‘present’ for membrane expression was performed, patients with 

membrane JAK1 and JAK2 had significantly worse outcomes than those with no staining, particularly 

in the stromal subtype (HR=3.227, 95%CI; 1.410-7.387, log rank p=0.013). Membranous expression 

could be a surrogate marker of activation as this could indicate the JAKs were associating with the 
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cytoplasmic domains of the cytokine receptor (128). No previous studies have shown a role for 

membrane expression of JAK1/2 in stratifying patient survival outcomes any solid tumour type, 

however membranous staining patterns have been observed in pancreatic ductal adenocarcinoma 

(137).  Multiplex IF or IHC could be utilised to confirm this and assess colocalization of IL6R and 

JAK1 and/or JAK2.  

Future work could also include investigating which of the JAK family members if predominant in 

activating STAT3 in the CRC setting. Each of the proteins is capable of transducing signals from 

IL6R to STAT3, however there is limited evidence as to which is the most common component of the 

pathway in tumour cells. JAK1, JAK2, JAK3 and TYK2 are also capable of activating other STAT 

proteins such as STAT1 and STAT5 (138). Mechanistic studies looking specifically at STAT3 

activation are needed to improve our understanding of each JAK family members role in CRC.  

In conclusion, expression of oncokinases JAK2 and TYK2 associated with poor outcome in the 

Glasgow combined retrospective CRC cohort, particularly in patients with a low inflammatory 

infiltrate. Conversely, JAK1 and JAK3 expression within tumour cytoplasm was associated with good 

prognosis. In order to fully understand the role of these proteins in CRC, the activation sites of each 

marker should be stained for and assessed for associations with clinical characteristics and outcome. 

The majority of data from this chapter indicate that patient with stromal-rich GMS2 tumours represent 

the target CRC patient population for therapeutic inhibition of IL6/JAK/STAT3 signalling.  
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Chapter 6: Expression of STAT3, 
pSTAT3tyr705, and pSTAT3ser727 in 

colorectal cancer clinical specimens 
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6.1 Introduction  

Signal-transducer and activator of transcription- 3 (STAT3) is a master regulator of transcription 

involved in promoting many of the hallmarks of cancer. Constitutive activation of STAT3 is present 

in colorectal, prostate, gastric, pancreatic cancers (139-141). STAT3 is classically activated via IL6 

binding IL6R, causing phosphorylation of JAK1/2/3/TYK2, leading to STAT3 dimerization and 

translocation to the nucleus. STAT3 can be phosphorylated at two sites, canonically at tyrosine 705, 

and subsequently at serine 727. Activation is associated with invasion, migration, metastases and 

angiogenesis (142). Previous studies have shown that expression of pSTAT3 in tumour cells is 

associated with poor prognosis and unfavourable characteristics in CRC including Duke’s stage, 

invasion, and overall survival (74, 143). There is limited evidence in the literature investigating the 

importance of STAT3 expression relative to tumour phenotype, however upregulation is most 

commonly associated with the immune subtype, CMS1 (144).  

The aims of this chapter were to investigate protein expression of STAT3, pSTAT3tyr705 and 

pSTAT3ser727 in the Glasgow combined retrospective CRC cohort and determine association with 

prognosis and clinical features. Data were analysed with respect to GMS histological subtypes, MMR 

status and tumour subsite as a step towards understanding if tumour phenotype could be utilised to 

predict a subgroup of patients that may benefit from therapeutic inhibition of STAT3 activation. It 

was hypothesised that patients with high tumoural expression of nuclear and cytoplasmic STAT3, 

pSTAT3tyr705, pSTAT3ser727 would have significantly reduced CSS compared to patients with low 

expression. 
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6.2 Expression of STAT3, pSTAT3tyr705 and pSTAT3ser727 

in clinical colorectal cancer specimens 

The Glasgow combined cohort tissue microarrays were stained for STAT3, pSTAT3tyr705 and 

pSTAT3ser727 via IHC. The total number of patients included in analyses were less than the 1030 

patients in the full cohort due to exclusion criteria. Patients were excluded from analysis due to 

missing or damaged TMA cores, mortality within 30 days of surgery and/or receiving neoadjuvant 

chemotherapy, as shown in consort diagram (Figure 6.1). 

 

Figure 6.1 Consort diagram showing exclusion criteria. Consort/flow diagram showing the number 

of patients included in analysis of each marker based on exclusion criteria of missing/damaged TMA 

cores, mortality within 390 days of surgery and/or administration of neoadjuvant chemotherapy.  

 

6.2.1 Expression of cytoplasmic STAT3 and clinical 

outcome 

STAT3 expression was analysed in the Glasgow combined colorectal cohort via 

immunohistochemical tissue of the tissue microarrays. Representative images of weak, moderate and 

strong staining for STAT3 in the cytoplasm of tumour cells are shown in Figure 6.1A-C. Positive and 

negative control colorectal tissue are also shown in Figure 6.2(D-E). For STAT3, no true negative 

tissue was available for staining, however true positive, liver tissue, is shown in 6.2 (F). Antibody 

specificity testing was performed via western blotting, with single bands detected at 88KDa in HT29 

and HeLa lysates and no bands detected at the correct molecular weight in true negative PC3 prostate 
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lysates (G) (Figure 6.2). Tubulin was detected at 52KDa in all 9 samples with similar band size 

indicating samples contained similar levels of protein (Figure 6.2). 

 

Figure 6.2 Representative images and antibody specificity for STAT3. Images showing 

representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of STAT3 within 

tumour cells. Representative images of positive (D) and negative (E) colorectal tissue, and true 

positive tissue(F). Image of western blot showing single band in triplicate at 88Kda for HT29 cell 

lysates (20L loaded per lane) and HeLa lysates (20L loaded per lane) probed for STAT3 and no 

visible bands at 88KDa in triplicate for true negative PC3 lysates (20L loaded per lane. For all 9 

samples there was a visible band at 52KDa when probed for tubulin (G).  

Cytoplasmic STAT3 scoring was performed manually by a single observer (KP) in 651 patients from 

the Glasgow combined cohort. After patients who died within 30 days of surgery and/or those who 

received neoadjuvant therapy were excluded, data from 643 patients were available for downstream 

analysis. Cytoplasmic STAT3 scores ranged from 0-300 with a mean score of 62.37. A histogram was 

plotted to visualise the distribution of the data, which showed a positively skewed pattern (Figure 
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6.3). Validation of manual scoring was performed on 10% of cores using QuPath digital pathology 

software by Sara Al-Badran. A scatter plot was constructed to show the correlation between manual 

and digital scores with a correlation coefficient of 0.825 obtained (Figure 6.4). A Bland Altman plot 

was constructed to visualise variation and bias between manual and digital scores (Figure 6.5). The 

intra-class correlation coefficient was 0.863, which indicated a strong positive relationship between 

manual and digital validation scores. Optimal cut points for high and low expression of cytoplasmic 

STAT3 were determined using R Studio packages survminer and maxstat by log rank statistics based 

on CSS. A density and scatter plot were constructed to visualise the cut point of 63.0 (Figure 6.6). 

Patients with a weighted histoscore for cytoplasmic STAT3 of ≥63 were classified as high for 

cytoplasmic STAT3 expression (n 432) and ≤63 were low for cytoplasmic STAT3 expression 

(n=211).  

 

Figure 6.3 Distribution of weighted histoscores for cytoplasmic STAT3. Histogram 

showing the range of scores obtained for cytoplasmic tumour STAT3 expression and positively skewed 

distribution pattern of the data (n=643). The mean score for cytoplasmic STAT3 was 62.37 and 

scores ranged from 0-300. 
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Figure 6.4. Correlation between manual and digital weighted histoscoring of 

cytoplasmic STAT3. Scatter plot showing correlation between manual and digital tumour 

weighted histoscores for cytoplasmic STAT3 in 10% of the Glasgow combined array co-scored for 

validation purposes. A correlation coefficient of 0.825 was obtained between scores.  

 

 

Figure 6.5 Validation of cytoplasmic STAT3 manual scoring. Bland Altman plot showing 

difference between manual and digital QuPath scores for STAT3 in tumour cytoplasm of 10% of 

patients in the Glasgow combined array scored for validation purposes. 
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Figure 6.6 Defining cut off point for STAT3 expression high and low groups. Density 

plot and scatter plot for visualisation of optimal cut off point for high and low expression of tumour 

cytoplasmic STAT3. The cut-off point determined was 63.0, therefore patients with a weighted 

histoscore of 63.0 were classed as high for cytoplasmic STAT3 expression and patients with a 

weighted histoscore of 63.0 were classed as low for cytoplasmic STAT3 expression. 

 

Kaplan Meier survival analysis was performed to determine any association with expression of 

STAT3 in the cytoplasm of tumour cells and CSS. Overall, high cytoplasmic expression of STAT3 

was significantly associated with reduced CSS (HR=1.384, 95%CI; 1.040-1.841, log rank p=0.025) 

(Figure 6.6). The mean survival time of patients with high expression of STAT3 in the tumour 

cytoplasm was 139.370 months compared to 151.803 months for patients with low expression. When 

patients were stratified based on GMS histological subtype, no significant association between 

cytoplasmic STAT3 expression and CSS was observed in any group (Figure 6.7). There was a trend 

towards high expression associating with poorer outcome in GMS1 patients (p=0.080). There was no 

significant association between STAT3 expression and CSS when patients were stratified by MMR 

status, however there was a trend towards high expression associating with reduced survival time in 

MMR proficient cases (p=0.060) (Figure 6.8). High expression of cytoplasmic STAT3 was 

significantly associated with reduced CSS in patients with right-sided tumours (HR= 1.565, 95%CI; 

1.030-2.378, log rank p=0.034) (Figure 6.9). The mean survival time of right-sided colon disease 

patients with high STAT3 expression was 131.051 months versus 147.555 months for patients with 
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low cytoplasmic STAT3 expression. No significant association between STAT3 expression in the 

cytoplasm and CSS was observed for left-sided or rectal cases (Figure 6.9).  

 

 

Figure 6.7 Cytoplasmic expression of STAT3 expression and CSS. Kaplan Meier survival 

analysis of cytoplasmic STAT3 expression in patients from the Glasgow combined cohort. In the full 

cohort the hazard ratio for cytoplasmic STAT3 expression within the tumour cells was 1.384, (95%CI; 

1.040-1.841) log rank p= 0.025.   
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Figure 6.8 Cytoplasmic expression of STAT3 expression and CSS relative to GMS 

classification. Kaplan Meier survival analysis of cytoplasmic STAT3 expression in patients from 

the Glasgow combined cohort classified as GMS0 (A), GMS1 (B), and GMS2 (C). In patients 

classified as GMS0 the hazard ratio for cytoplasmic STAT3 was 1.377, (95%CI; 0.673-2.818), log 

rank p=0.379 and in GMS1 patients the hazard ratio was 1.422, (95%CI; 0.560-0.654), log rank 

p=0.890. In GMS2 stromal-rich cases the hazard ratio for cytoplasmic STAT3 was 0.963, (95%CI; 

0.560-0.654), log rank p=0.890.  
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Figure 6.9 Cytoplasmic expression of STAT3 expression and CSS relative to MMR 

status. Kaplan Meier survival analysis of cytoplasmic STAT3 expression in patients from the 

Glasgow combined cohort with MMR proficient tumours (A) and MMR deficient tumours (B). In 

MMR proficient cases the hazard ratio for cytoplasmic STAT3 was 1.345 (95%CI; 0.985-1.837), log 

rank p=0.060 and in MMR deficient cases the hazard ratio was 1.395 (95%CI; 0.673-2.891), log rank 

p=0.368.   

 

 

 

 

B 

A 



219 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Cytoplasmic expression of STAT3 expression and CSS relative to tumour 

subsite. Kaplan Meier survival analysis of cytoplasmic STAT3 expression in patients from the 

Glasgow combined cohort with right-sided (A), left-sided (B), and rectal disease (C). In patients with 

right-sided colonic tumours the hazard ratio for cytoplasmic STAT3 was 1.565, (95%CI; 1.030-

2.378), log rank p=0.034 and in left-sided cases the hazard ratio was 0.994, (95%CI; 0.581-1.699, 

log rank p=0.982. In rectal cases the hazard ratio for cytoplasmic STAT3 was 1.415, (95%CI; 0.753-

2.657), log rank p=0.277.  
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Chi-squared tests were performed to determine any association between cytoplasmic expression of 

STAT3 and clinicopathological features. There were no significant associations between STAT3 

expression, and any clinical feature included in the analysis (Table 6.1). There was a slight trend 

towards high cytoplasmic expression associating with increased systemic inflammation measured by 

mGPS (p=0.075).  
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Clinical Factor  Cytoplasmic STAT3 expression 
Low (n=347)                     High (n=296) 

p 

Age 
<65 
>65 

 

109 (31.4) 
238 (68.6) 

 

95 (32.1) 
201 (67.9) 

 

0.460 

Sex 
Female 
Male 

 

169 (48.7) 
178 (51.3) 

 

149 (50.3) 
147 (49.7) 

 

0.369 

T Stage 
I 
II 
III 
IV 

 

16 (4.6) 
42 (12.1) 
195 (56.2) 
94 (27.1) 

 

10 (3.4) 
41 (13.9) 

161 (54.4) 
84 (28.4) 

 

0.462 

N Stage 
0 
I 
II 

 

209 (60.6) 
100 (29.0) 
36 (10.4) 

 

189 (64.1) 
75 (25.4) 
31 (10.5) 

 

0.591 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

148 (42.9) 
113 (32.8) 
84 (24.3) 

 

145 (49.7) 
89 (30.5) 
58 (19.9) 

 

0.196 

GMS 
0 
1 
2 

 

115 (34.6) 
172 (51.8) 
45 (13.6) 

 

94 (32.3) 
144 (49.5) 
53 (18.2) 

 

0.279 

Phenotypic Subtype 
1 
2 
3 
4 

 

116 (35.0) 
107 (32.3) 
64 (19.3) 
44 (13.3) 

 

95 (32.8) 
83 (28.6) 
58 (20.0) 
54 (18.6) 

 

0.291 

mGPS 
0 
1 
2 

 

178 (57.4) 
81 (26.1) 
51 (16.5) 

 

104 (47.9) 
64 (29.5) 
49 (22.6) 

 

0.075 

MMR status  
pMMR 
dMMR 

 

283 (82.3) 
61 (17.7) 

 

253 (85.8) 
42 (14.2) 

 

0.138 

Tumour differentiation 
0 
1 

 

 

303 (87.3) 
44 (12.7) 

 

 

259 (87.5) 
37 (120.5) 

 

 

0.521 

Marginal involvement  
 

0 
1 

 

 

325 (93.7) 
22 (6.3) 

 

 

284 (95.9) 
12 (4.1) 

 

 

0.132 

Vascular invasion  
0 
1 

 

228 (65.7) 
119 (34.3)  

 

180 (60.8) 
116 (39.2) 

 

0.115 

Table 6.1 Cytoplasmic STAT3 Expression and Clinical Features. Table of Chi-squared 

associations between cytoplasmic tumoural STAT3 expression and clinicopathological prognostic 

features including age, sex, T stage, N stage, subsite, GMS, phenotypic subtype, mGPS, MMR status, 

tumour differentiation, marginal involvement and vascular invasion.  
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6.2.2 Expression of nuclear STAT3 and clinical outcome 

When STAT3 becomes activated, it translocates from the cytoplasm to the nucleus. Positive staining 

for STAT3 was present in the nuclei of tumour cells in some of the Glasgow combined array TMA 

cores. Representative images of weak (A), moderate (B) and strong (C) nuclear STAT3 staining and 

shown in Figure 6.11.  

Figure 6.11 Nuclear STAT3 Expression in the Glasgow combined cohort. Representative 

images of weak (A), moderate (B) and strong (C) nuclear staining of STAT3 in patients from the 

Glasgow combined cohort stained via conventional IHC.  

Nuclear scoring of STAT3 of 651 stage I-IV CRC patients from the Glasgow combined array was 

performed manually by a single observer (KP). After exclusion criteria were applied (30-day 

mortalities post-surgery and neoadjuvant therapy) a total of 600 patients were included in downstream 

analysis. Scores ranged from 0 to 245 with a mean score of 47.01. A histogram was plotted to 

visualise the distribution pattern of scores which was positively skewed (Figure 6.12). Validation of 

scoring was performed on 10% of TMA cores manually by Sara Al-Badran. A scatter plot was 

constructed to visualise the correlation between manual and digital scores with a correlation 

coefficient of 0.901 obtained, indicating a strong positive relationship (Figure 6.13). A Bland Altman 

plot was constructed to show visualise the difference between the sets of scores (Figure 6.14). The 

intra class correlation coefficient between scores was 0.910. Survminer and maxstat packages in R 

Studio were utilised to determine optimal cut points for high and low expression of nuclear STAT3 

relative to CSS. A scatter plot and density plot were used to visualise the optimally defined cut point 

of 31.67 (Figure 6.15). Patients with a weighted histoscore of ≥31.67 for nuclear STAT3 were 

assigned to the high expression group (n 108) and those with a score of ≤31.67 were considered low 

expressors (n=492). 
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Figure 6.12 Distribution of weighted histoscores for nuclear STAT3. Histogram showing 

the range of scores obtained for tumour nuclear STAT3 expression and distribution pattern of the 

data (n=600). The mean score for nuclear STAT3 was 47.01 and the scores ranged from 0-245. 

 

 

 

Figure 6.13 Correlation between manual and digital weighted histoscoring of nuclear 

STAT3. Scatter plot showing correlation between tumour weighted histoscores for nuclear STAT3 

between two observers manual scores for 10% of the Glasgow combined cohort utilised for validation 

purposes. The correlation coefficient obtained was 0.901.  
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Figure 6.14 Validation of nuclear STAT3 manual scoring. Bland Altman plot showing 

difference between two observers manual scores for STAT3 in tumour nuclei in the 10% of the 

Glasgow combined cohort utilised for validation purposes. 

Figure 6.15 Defining cut off point for nuclear STAT3 expression high and low groups. 

Density plot and scatter plot for visualisation of optimal cut off point for high and low expression of 

tumour nuclear STAT3. The optimal cut off point determined by survminer was 31.67, therefore 

patients with a weighted histoscore of 31.67 were classed as low expression and patients with a 

weighted histoscore of 31.67 were classified as high for nuclear expression of total STAT3.  
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Kaplan Meier curves survival analysis was performed to determine any association between nuclear 

STAT3 expression and CSS. Overall, there was no significant association between nuclear STAT3 

expression and CSS (p=0.142) (Figure 6.16). When patients were stratified by GMS histological 

subtypes, high nuclear STAT3 expression was significantly associated with reduced survival time in 

GMS1 patients (HR=1.729, 95%CI; 1.128-2.652, log rank p=0.011) (Figure 6.17). The mean survival 

time for GMS1 patients with high nuclear STAT3 expression was 134.648 months compared to 

155.282 months for patients with low nuclear STAT3 expression. No association between nuclear 

STAT3 expression and CSS was observed in the GMS0 or GMS2 group of patients (Figure 6.17). 

When patients were segregated by MMR status and subsequently tumour subsite no significant 

association between nuclear STAT3 expression and CSS was observed in any group (Figure 6.18 and 

Figure 6.19, respectively)  

 

Figure 6.16 Nuclear expression of STAT3 expression and CSS. Kaplan Meier survival 

analysis of nuclear STAT3 expression in patients from the Glasgow combined cohort. The hazard 

ratio for tumour nuclear STAT3 expression in the full cohort was 1.242, (95%CI; 0.929-1.662), log 

rank p=0.142.  
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Figure 6.17. Nuclear expression of STAT3 expression and CSS relative to GMS 

classification. Kaplan Meier survival analysis of nuclear STAT3 expression in patients from the 

Glasgow combined cohort classified as GM0 (A), GMS1 (B), and GMS2 (C). In GMS0 immune 

graded cases the hazard ratio for nuclear STAT3 was 0.769; (95%CI;0.382-1.546), log rank p=0.459, 

and the hazard ratio in patients with GMS1 tumours was 1.729, (95%CI;1.128-2.652), log rank 

p=0.011. In GMS2 stromal-rich cases the hazard ratio for nuclear STAT3 expression was 0.862, 

(95%CI; 0.503-1.479), log rank= 0.589.  
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Figure 6.18 Nuclear expression of STAT3 expression and CSS relative to MMR status. 

Kaplan Meier survival analysis of nuclear STAT3 expression in patients from the Glasgow combined 

cohort with MMR proficient tumours (A) and MMR deficient tumours (B). In MMR proficient cases 

the hazard ratio for nuclear STAT3 was 1.265, (95%CI; 0.919-1.741), log rank p=0.148 and in MMR 

deficient cases the hazard ratio was 1.119, (95%CI; 0.550-2.279), log rank p=0.756. 
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Figure 6.19 Nuclear expression of STAT3 expression and CSS relative to tumour 

subsite. Kaplan Meier survival analysis of nuclear STAT3 expression in patients from the Glasgow 

combined cohort with right-sided (A), left-sided (B), and rectal disease (C). In patients with right-

sided colonic tumours the hazard ratio for nuclear STAT3 was 1.453, (95%CI; 0.941-2.244), log rank 

p=0.089 and in left-sided colonic tumours the hazard ratio was 0.933, (95%CI;0.554-1.573), log rank 

p=0.795. In rectal cases the hazard ratio for nuclear STAT3 was 1.258, (95%CI; 0.664-2.386), log 

rank p=0.479. 
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Chi-squared tests were conducted to determine any association between nuclear expression of STAT3 

and host clinical characteristics. High nuclear STAT3 expression was associated with stromal tumour 

phenotypes GMS2 (p=0.003) and the stromal phenotypic subtype 4 (p=0.009) (Table 6.2).  
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Table 6.2 Nuclear STAT3 Expression and Clinical Features. Table of Chi-squared 

associations between nuclear tumoural STAT3 expression and clinicopathological prognostic features 

including age, sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, MMR status, mGPS, 

tumour differentiation, marginal involvement, and venous invasion.  

 

Clinical Factor    Nuclear STAT3
 
Expression

 
 

Low (n=310)                      High (n=328) 
p 

Age 
<65 
>65 

 

105 (33.9) 
205 (66.1) 

 

102 (31.1) 
226 (68.9) 

 

0.254 

Sex 
Female 
Male 

 

146 (47.1) 
164 (52.9) 

 

169 (51.5) 
159 (48.5) 

 

0.149 

T Stage 
I 
II 
III 
IV 

 

14 (4.5) 
39 (12.6) 

168 (54.2) 
89 (28.7) 

 

12 (3.7) 
42 (12.8) 

1898 (57.6) 
85 (25.9) 

 

0.781 

N Stage 
0 
I 
II 

 

190 (61.5) 
91 (29.4) 
28 (9.1) 

 

207 (63.5) 
81 (24.8) 
38 (11.7) 

 

0.305 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

128 (41.6) 
108 (35.1) 
72 (23.4) 

 

156 (48.0) 
98 (30.2) 
71 (21.8) 

 

0.246 

GMS 
0 
1 
2 

 

103 (34.7) 
147 (49.5) 
47 (15.8) 

 

107 (33.3) 
161 (50.2) 
53 (16.5) 

 

0.932 

Phenotypic Subtype 
1 
2 
3 
4 

 

104 (35.0) 
74 (24.9) 
72 (24.2) 
47 (15.8) 

 

108 (33.9) 
110 (34.5) 
48 (15.0) 
53 (26.6) 

 

0.009 

mGPS 
0 
1 
2 

 

157 (58.1) 
77 (28.5) 
36 (13.3) 

 

121 (48.8) 
65 (26.5) 
62 (25.0) 

 

0.003 

MMR status  
pMMR 
dMMR 

 

261 (84.5) 
48 (15.5) 

 

267 (82.2) 
58 (17.8) 

 

0.251 

Tumour differentiation 
0 
1 

 

266 (85.8) 
44 (14.2) 

 

295 (89.9) 
33 (10.1) 

 

0.069 

Marginal involvement  
0 
1 

 

293 (94.5) 
17 (5.5) 

 

312 (95.1) 
16 (4.9) 

 

0.433 

Vascular invasion  
0 
1 

 

207 (66.8) 
103 (33.2) 

 

204 (66.2) 
124 (37.8) 

 

0.130 
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6.2.3 Expression of pSTAT3705 and clinical outcome 

The main phosphorylation site of STAT3 is at tyrosine 705. STAT3tyr705 expression was assessed in 

the Glasgow combined colorectal cohort via immunohistochemistry. Representative images of weak, 

moderate, and strong pSTAT3tyr705 staining are shown in figure 6.20 (A-C). Positive and negative 

control colorectal tissue were stained alongside the cohort and representative images of staining can 

be observed in Figure 6.20 (D-E). True positive tissue, lung, and true negative, healthy colorectal 

epithelium were also stained alongside the cohort (Figure 6.20) (F-G). Antibody specificity for 

pSTAT3tyr705 was initially performed via staining COLO205 cell pellets treated with either 0.01% 

DMSO or 1mM JAK1/2 inhibitor Ruxolitinib (H) (Figure 6.20). Western blotting was performed for 

additional validation of specificity utilising Sw620 cell line lysates treated with either 0.01% DMSO 

or 1mM Ruxolitinib. Single bands at 88KDa were obtained in triplicate for the vehicle control 

samples with no bands detected at 88KDa in the treated samples (Figure 6.20). Tubulin remained 

consistent across all 6 samples indicating that similar levels of protein were present in all samples 

(Figure 6.20). 
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Figure 6.20 Representative images and antibody specificity for pSTAT3tyr705. Images 

showing representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of 

pSTAT3tyr705 within tumour cells. Representative images of positive (D) and negative (E) colorectal 

tissue, and true positive tissue(F). COLO205 cell pellets treated with vehicle control or JAK1/2 

inhibitor and then stained for pSTAT3tyr705(G). Image of western blot showing single band in triplicate 

for SW620 cell lysates (20L loaded per lane) treated with vehicle control probed for pSTAT3tyr705and 

no visible bands in triplicate for JAK1/2 inhibited SW620 cells (20L loaded per lane) at 88KDa (H).  

  



233 
 

Expression of pSTAT3705 in tumour nuclei was scored manually by a single observer (James H Park) in 

921 patients from the Glasgow combined cohort. Of these, 80 patients were excluded due to mortality 

within 30 days of surgery, or administration of neoadjuvant chemotherapy leaving 841 available for 

statistical analysis. Weighted histoscores ranged from 0 to 205 with a mean score of 47.45. A histogram 

was plotted to visualise the distribution pattern of scores, which showed positive skewing (Figure 6.20). 

Scoring was validated using QuPath digital platform by KP on 10% of TMA cores. A correlation 

coefficient of 0.83 was obtained indicating a strong positive correlation between manual and digital 

scores. A scatter plot was constructed to visualise this correlation (Figure 6.21). A Bland Altman plot 

was used to visualise the bias and difference between manual and digital scoring (Figure 6.22). An 

intra-class correlation coefficient fell shy of acceptable at 0.612, however after assessing the cores with 

the biggest differences it was determined that manual scores were correct. Log rank statistics were used 

to determine optimal cut offs for high and low expression groups using survminer and maxstat packages 

in R Studio. Density and scatter plots were constructed to visualise the optimum cut point of 38.75 

(Figure 6.23). Patients with a weighted histoscore for nuclear pSTAT3tyr705 of ≥38.75 (n=399) were 

classified as high for pSTAT3tyr705 expression and ≤38.75 were classified as low expression (n 442). 

 

Figure 6.21 Distribution of weighted histoscores for nuclear pSTAT3tyr705. Histogram 

showing the range of scores obtained for nuclear tumour pSTAT3tyr705 expression and positively 

skewed distribution pattern of the data. The mean score for nuclear STAT3tyr705 was 47.45 and scores 

ranged from 0-205. 
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Figure 6.22 Correlation between manual and digital weighted histoscoring of 

pSTAT3tyr705. Scatter plot showing correlation between tumour cytoplasm weighted histoscores for 

pSTAT3tyr705 in 10% of patients from the Glasgow combined cohort co-scored for validation. A 

correlation coefficient of 0.6815 was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Validation of pSTAT3tyr705 manual scoring. Bland Altman plot showing difference 

between manual and digital QuPath scores for pSTAT3tyr705 in tumour cytoplasm in 10% of patients 

from the Glasgow combined cohort co-scored for validation purposes. 
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Figure 6.24 Defining cut off point for nuclear pSTAT3tyr705 expression high and low 

groups. Density plot and scatter plot for visualisation of optimal cut off point for high and low 

expression of tumour nuclear pSTAT3tyr705. The optimal cut point determined was 38.75 and therefore 

patients with a weighted histoscore of 38.75 were classed as high for nuclear pSTAT3tyr705 and 

patients with a weighted histoscore 38.75 were classed as low. 

Kaplan Meier survival analysis was performed to determine any association between pSTAT3tyr705 

expression and CSS. In terms of the full cohort, there was a trend towards high nuclear expression of 

pSTAT3tyr705 associating with reduced CSS, however significance was not reached (HR= 1.236, 

95%CI; 0.790-1.710, log rank p=0.101) (Figure 6.24). When patients were stratified by GMS, there 

was a profound association of pSTAT3tyr705 expression and CSS in the GMS2 patients with stromally-

dense tumours (HR= 2.086, 95%CI; 1.224-3.554, log rank p = 0.006) (Figure 6.25). The mean 

survival time of GMS2 patients with high pSTAT3tyr705 expression was 90.666 months versus those 

with low expression at 134.157 months. This association with outcome was not observed in patients 

with GMS0 immune tumours or GMS1 tumours (Figure 6.26). When patients were segregated by 

MMR status, there was no significant association between pSTAT3tyr705 expression and CSS (Figure 

6.27). Kaplan Meier survival analysis was then performed on data from patients grouped by tumour 

subsite. High expression of pSTAT3tyr705 in rectal cases showed a trend towards an association with 

reduced CSS (HR= 1.778, 95%CI; 0.956-3.306, log rank p= 0.065) (Figure 6.28). There was no 

significant association between pSTAT3tyr705 status and CSS in patients with tumours of right or left-

sided colon origin (Figure 6.27).  
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Figure 6.25 Nuclear expression of pSTAT3tyr705 expression and CSS. Kaplan Meier 

survival analysis of nuclear pSTAT3tyr705 expression in patients from the Glasgow combined cohort. 

The hazard ratio for pSTAT3tyr705 in the full cohort was 1.236, (95%CI; 0.790-1.710), log rank= 

0.101.  
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Figure 6.26 Nuclear expression of pSTAT3tyr705 expression and CSS relative to GMS 

classification. Kaplan Meier survival analysis of nuclear pSTAT3tyr705 expression in patients from 

the Glasgow combined cohort classified as GM0 (A), GMS1 (B), and GMS2 (C). In GMS0 immune 

patients the hazard ratio for nuclear pSTAT3tyr705 was 1.603, (95%CI; 0.869-2.954), log rank p=0.127 

and in GMS1 cases the hazard ratio was 0.870, (95%CI; 0.611-1.238), log rank p=0.438. In GMS2 

cases the hazard ratio for nuclear STAT3tyr705 was 2.085, (95%CI; 1.224-3.554), log rank p=0.006. 
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Figure 6.27 Nuclear expression of pSTAT3tyr705 expression and CSS relative to MMR 

status. Kaplan Meier survival analysis of nuclear pSTAT3tyr705 expression in patients from the 

Glasgow combined cohort with MMR proficient tumours (A) and MMR deficient tumours (B). In 

MMR proficient cases the hazard ratio for pSTAT3tyr705 expression was 1.266, (95%CI;0.959-1.670), 

log rank p=0.094 and in MMR deficient cases the hazard ratio was 1.078, (95%CI; 0.566-2.056) log 

rank p=0.819.   
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Figure 6.28 Nuclear expression of pSTAT3tyr705 expression and CSS relative to tumour 

subsite. Kaplan Meier survival analysis of nuclear pSTAT3tyr705 expression in patients from the 

Glasgow combined cohort with right-sided (A), left-sided (B), and rectal disease (C). In patients with 

right-sided colonic tumours the hazard ratio for pSTAT3tyr705 expression was 1.188, (95%CI; 0.812-

1.738), log rank p=0.372 and in left-sided colon cases the hazard ratio was 1.138, (95%CI; 0.738-

1.755), log rank p=0.557. In rectal cases the hazard ratio for pSTAT3tyr705 was 1.778, (95%CI; 0.956-

3.306, log rank p=0.065.   
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Chi-squared tests were performed to determine any associations between pSTAT3tyr705 

expression and clinicopathological characteristics. High expression of pSTAT3tyr705 was 

significantly associated with higher age (p=0.015), rectal disease subsite (p=0.011), latent and stromal 

phenotypic subtypes (p<0.001) and lower systemic inflammation as measured by modified Glasgow 

prognostic score (p=0.014) (Table 6.3). 
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Clinical Factor    Nuclear pSTAT3tyr705 Expression
 
 

  Low (n=442)                  High (n=399) 
p 

Age 
<65 
>65 

 

115 (27.8) 
298 (72.2) 

 

150 (35.0) 
278 (65.0) 

 

0.015 

Sex 
Female 
Male 

210 (50.8) 
203 (49.2) 

204 (47.7) 
224 (52.3) 

0.196 

T Stage 
I 
II 
III 
IV 

23 (5.6) 
56 (13.6) 

218 (52.8) 
116 (28.1) 

15 (3.5) 
50 (11.7) 

239 (55.8) 
124 (29.0) 

0.391 

N Stage 
0 
I 
II 

267 (65.3) 
95 (23.2) 
47 (11.5) 

254 (59.3) 
125 (29.2) 
49 (11.4) 

0.133 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

68 (44.7) 
61 (40.1) 
23 (15.1) 

 

87 (41.6) 
74 (35.4) 
48 (23.0) 

 

0.011 

GMS 
0 
1 
2 

 

138 (33.9) 
212 (52.1) 
57 (14.0) 

 

137 (34.2) 
192 (47.9) 
72 (18.0) 

 

0.260 

Phenotypic Subtype 
1 
2 
3 
4 

 

138 (33.9) 
146 (35.9) 
66 (16.2) 
57 (14.0) 

 

139 (34.8) 
88 (22.0) 

102 (25.5) 
71 (17.8) 

 

<0.001 

mGPS 
0 
1 
2 

 

180 (54.1) 
83 (24.9) 
70 (21.0) 

 

184 (53.3) 
113 (32.8) 
48 (13.9) 

 

0.014 

MMR status  
pMMR 
dMMR 

339 (82.3) 
73 (17.7) 

355 (83.1) 
72 (16.9) 

0.406 

Tumour differentiation 
0 
1 

369 (89.3) 
44 (10.7) 

 384 (89.7) 
44 (10.3) 

0.474 

Marginal involvement  
0 
1 

392 (94.9) 
21 (5.1) 

405 (94.6) 
23 (5.4) 

0.487 

Vascular invasion  
0 
1 

271 (65.6) 
142 (34.4) 

292 (68.2) 
136 (31.8) 

0.233 

Table 6.3 Nuclear pSTAT3tyr705 Expression and Clinical Features. Table of Chi-squared 

associations between nuclear pSTAT3tyr705 expression and clinicopathological prognostic features 

including age, sex, T stage, N stage, tumour subsite, GMS, phenotypic subtype, mGPS, MMR status, 

tumour differentiation, marginal involvement, and vascular invasion.  
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6.2.4 Expression of pSTAT3727 and clinical outcome 

Expression of pSTAT3ser727 was assessed in the Glasgow combined colorectal array by 

immunohistochemistry. The staining pattern was mainly cytoplasmic within the tumour with very few 

patients expressing pSTAT3ser727 in the nucleus. Cytoplasmic staining represents that the protein has 

been active, whereas nuclear staining as in the case of pSTAT3tyr705 indicates that the protein is active. 

Given the frequency of patients expressing cytoplasmic STAT3ser727 versus nuclear expression, it was 

deemed more appropriate to score the cytoplasmic staining. Representative images showing weak, 

moderate, and strongly stained TMA cores are shown in figure 6.29 (A-C). Examples of true positive 

(spleen) and true negative (tonsil) tissue shown in 6.29 (D-E). Positive control colorectal tissue 

identified during antibody optimisation is and negative control colorectal tissue with no primary 

antibody added during overnight incubation are also shown in representative images (Figure 6.29) (F-

G). The pSTAT3ser727 antibody specificity was validated by single band at the correct molecular 

weight on western blot in Sw620 cell lysates treated with 0.01% DMSO and no bands detected in 

JAK1/2 inhibited cell lysates (Figure 6.29). Further specificity was proven via staining COLO205 

(treated/untreated) cell pellets for pSTAT3ser727 (Figure 6.29) (H).   
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Figure 6.29 Representative images and antibody specificity for pSTAT3ser727. Images 

showing representative images of weak (A), moderate (B) and strong (C) cytoplasmic staining of 

pSTAT3ser727 within tumour cells. Representative images of positive (D) and negative (E) colorectal 

tissue (F), and true positive tissue(G). COLO205 cell pellets treated with vehicle control or JAK1/2 

inhibitor and then stained for pSTAT3ser727(H). Image of western blot showing single band in triplicate 

at 86KDa for SW620 cell lysates (20L loaded per well) treated with vehicle control probed for 

pSTAT3ser727 and no visible bands in triplicate for pSTAT3tyr705 inhibited SW620 cells (20L loaded 

per well) at 86KDa, and tubulin detected in all samples at 52KDa (H).  

 

H 
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Cytoplasmic expression of pSTAT3ser727 was manually scored by a single observer (KP) in 622 

patients from the Glasgow combined cohort. Of these patients, 102 were excluded due to 

administration of neoadjuvant therapy or mortality within 30 days of surgery leaving 520 patients 

included in downstream analysis. Manual weighted histoscores ranged from 0 to 232.72 with a mean 

score of 120.66. A histogram was plotted to assess the distribution pattern of the data, which showed a 

normal distribution (Figure 6.30). Digital scoring was performed using QuPath to validate manual 

scoring in 10% of TMA cores. A scatter plot was constructed to visualise correlation between scores 

and a correlation coefficient of 0.725 was obtained (Figure 6.31). A bland Altman was plotted to show 

minimal variation between manual and digital scores (Figure 6.32). An intra-class correlation 

coefficient of 0.778 indicated the scores were not significantly different. Cut offs for high and low 

expression were determined by log rank statistics using survminer and maxstat in R studio which 

devised an optimum threshold of 146.02. Density and scatter plots were constructed to visualise the 

optimal cut point (Figure 6.33). This resulted in 159 patients classified as high for pSTAT3ser727 

expression and 362 as low expression of pSTAT3ser727. 

 

 

Figure 6.30. Distribution of weighted histoscores for nuclear pSTAT3ser727. Histogram 

showing the range of scores obtained for nuclear tumour pSTAT3ser727 expression and normal 

distribution pattern of the data (n=520). The mean score for pSTAT3ser727 was 120.66 and scores 

ranged from 0-232.72. 
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Figure 6.31 Correlation between manual and digital weighted histoscoring of 

pSTAT3ser727. Scatter plot showing correlation between tumour cytoplasm weighted histoscores for 

pSTAT3ser727 in 10% of cases from the Glasgow combined cohort co-scored for validation. A 

correlation coefficient of 0.725 was obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.32 Validation of pSTAT3ser727 manual scoring. Bland Altman plot showing difference 

between manual and digital QuPath scores for pSTAT3ser727 in tumour cytoplasm in the 10% of cases 

from the Glasgow combined array co-scored for validation. 
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Figure 6.33 Defining cut off point for nuclear pSTAT3ser727 expression high and low 

groups. Density plot and scatter plot for visualisation of optimal cut off point for high and low 

expression of tumour nuclear pSTAT3ser727. The optimal cut-off point determined was 146.02 and 

therefore patients with a weighted histoscore of 146.02 were considered low for pSTAT3ser727 and 

patients with a weighted histoscore of 146.02 were classified as high for pSTAT3ser727 expression.  

 

Kaplan Meier curves were plotted to determine any association between pSTAT3ser727 expression and 

cancer-specific survival in the full cohort and in patient subsets. When analysed with respect the full 

cohort, pSTAT3ser727 was not associated with cancer-specific survival (HR=0.895, 95%CI;0.629-

1.274, log rank p=0.535) (Figure 6.34). When stratified by histological measure GMS, cytoplasmic 

pSTAT3ser727 expression and CSS failed to reach statistical significance in any group (Figure 6.35). 

Similarly, when stratified by MMR status no association of cytoplasmic pSTAT3ser727 expression was 

observed for MMR proficient or MMR deficient patients (Figure 6.36). There was no significant 

association between pSTAT3ser727 expression and CSS with respect to disease subsite (Figure 6.37).  
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Figure 6.34 Nuclear expression of pSTAT3ser727 expression and CSS. Kaplan Meier 

survival analysis of nuclear pSTATtser725 expression in patients from the Glasgow combined cohort. In 

the full cohort the hazard ratio associated with pSTAT3ser727 expression was 0.895, (95%CI; 0.629-

1.274), log rank p= 0.535. 

 

 

 

 

 

 

 

 

 

 

 

 



248 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.35 Nuclear expression of pSTAT3ser727 expression and CSS, Kaplan Meier 

survival analysis of nuclear pSTAT3ser727 expression in patients from the Glasgow combined cohort 

classified as GM0 (A), GMS1 (B), and GMS2 (C). Patients with GMS0 immune graded tumours 

observed a hazard ratio of 0.325, (95%CI; 0.097-1.089), log rank p=0.055 for pSTAT3ser727 

expression. In patients with GMS1 tumours the hazard ratio for pSTAT3ser727 expression was 0.943, 

(95%CI; 0.593-1.500), log rank p=0.804 and for GMS2 stromal-rich tumours the hazard ratio was 

1.404, (95%CI; 0.730-2.699), log rank p=0.304.    
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Figure 6.36 Nuclear expression of pSTAT3ser727 expression and CSS relative to MMR 

status. Kaplan Meier survival analysis of nuclear pSTAT3ser727 expression in patients from the 

Glasgow combined cohort with MMR proficient tumours (A) and MMR deficient tumours (B). In 

MMR proficient cases the hazard ratio for pSTAT3ser727 expression was 0.858, (95%CI; 0.586-1.256), 

log rank p= 0.428 and in MMR deficient cases the hazard ratio was 1.192, (95%CI; 0.466-3.048), log 

rank p=0.713.    
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Figure 6.37 Nuclear expression of pSTAT3ser727 expression and CSS relative to tumour 

subsite. Kaplan Meier survival analysis of nuclear pSTAT3ser727 expression in patients from the 

Glasgow combined cohort with right-sided (A), left-sided (B), and rectal disease (C). In patients with 

right-sided colonic tumours the hazard ratio for pSTAT3ser727 was 0.955, (95%CI; 0.569-1.605), log 

rank p=0.862 and in left-sided cases this was 0.666, (95%CI; 0.359-1.237, log rank p=0.194. In 

patients with rectal tumours the hazard ratio for pSTAT3ser727 was 1.225, (95%CI; 0.512-2.926), log 

rank p=0.647. 
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Chi-squared tests were performed to determine any association between pSTAT3ser727 expression and 

clinicopathological features. No significant associations were observed in this cohort (Table 6.4). 

These data validate other observations in the literature which suggest phosphorylation at tyrosine 705 

is a more important activation site than pSTAT3ser727.  
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Clinical Factor  Cytoplasmic pStat3ser727 Expression 
       Low (n=362)              High (n=159) 

p 

Age 
<65 
>65 

 

98 (27.1) 
264 (72.9) 

 

42 (26.4) 
117 (73.6) 

 

0.483 

Sex 
Female 
Male 

 

167 (46.1) 
195 (53.9) 

 

86 (54.1) 
73 (45.9) 

 

0.057 

T Stage 
I 
II 
III 
IV 

 

217 (4.7) 
47 (13.0) 
193 (53.3) 
105 (29.0) 

 

7 (4.4) 

24 (15.1) 
80 (50.3) 
48 (30.2) 

 

0.892 

N Stage 
0 
I 
II 

 

223 (62.1) 
92 (25.6) 
44 (12.3) 

 

109 (68.6) 
35 (22.0) 
15 (9.4) 

 

0.350 

Tumour subsite 
Right-sided colon 
Left-sided colon 
Rectum 

 

168 (46.8) 
128 (35.7) 
63 (17.5) 

 

68 (43.3) 
58 (36.9) 
31 (19.7) 

 

0.731 

GMS 
0 
1 
2 

 

115 (33.0) 
176 (50.6) 
57 (16.4) 

 

49 (31.0) 
84 (53.2) 
25 (15.8) 

 

0.860 

Phenotypic Subtype 
1 
2 
3 
4 

 

116 (33.3) 
118 (33.9) 
57 (16.4) 
57 (16.4) 

 

49 (31.2) 
52 (33.1) 
31 (19.7) 
25 (15.9) 

 

0.832 

mGPS 
0 
1 
2 

 

132 (46.8) 
95 (33.7) 
55 (19.5) 

 

67 (56.3) 
31 (26.1) 
21 (17.6) 

 

0.197 

MMR status  
pMMR 
dMMR 

 

291 (80.4) 
71 (19.6) 

 

133 (84.7) 
24 (15.3) 

 

0.147 

Tumour differentiation 
0 
1 

324 (89.5) 
38 (10.5) 

 146 (91.8) 
13 (8.2) 

0.258 

Marginal involvement  
0 
1 

341 (94.2) 
21 (5.8) 

150 (94.3) 
9 (5.7) 

0.565 

Vascular invasion  
0 
1 

242 (66.9)  
120 (33.1) 

105 (66.0) 
54 (34.0) 

0.466 

Table 6.4 Nuclear pSTAT3ser727 Expression and Clinical Features. Table of Chi-squared 

associations between nuclear pSTAT3ser727 expression and clinicopathological prognostic features 

including age, sex, T stage, N stage, GMS, phenotypic subtype, MMR status, mGPS, tumour 

differentiation, marginal involvement and venous invasion.  
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6.2.5 Expression of pSTAT3705 and pSTAT3727 and clinical 

outcome 

There is evidence from mouse data that for maximum pathway activation, phosphorylation at both 

tyrosine 705 and serine 727 is necessary(71). Therefore, scores for both sites were combined to form 

2 new groups: Low for both pSTAT3tyr705 and pSTAT3ser727 or high for 1 marker, and high for both 

markers. Kaplan Meier survival analysis was performed to determine any association between 

expression of both pSTAT3tyr705 and pSTAT3ser727 and CSS. No significant difference in survival time 

was observed (p=0.733) (Figure 6.38). However, when analysed with respect to GMS, patients with 

stromal-rich GMS2 tumours had significant worse outcomes if they were high for both pSTAT3tyr705 

and pSTAT3ser727 expression (HR=2.758, 95%CI; 1.183-6.429, log rank p=0.014) (Figure 6.39). The 

mean survival time of patients with high expression for both markers was profoundly low at 38.969 

months compared to 126.007 months for patients with both low/1 high.  

Figure 6.38 Nuclear expression of pSTAT3tyr705 and cytoplasmic pSTAT3ser727 

expression and CSS relative to tumour subsite. Kaplan Meier survival analysis of nuclear 

pSTAT3tyr705 and cytoplasmic pSTAT3ser727 expression in patients from the Glasgow combined cohort. 

In the full cohort a combined score of pSTAT3ser727 and pSTAT3tyr705 yielded a hazard ratio of 1.096, 

(95%CI 0.641-1.880), log rank p=0.733. 
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Figure 6.39 Nuclear expression of nuclear pSTAT3tyr705 and cytoplasmic pSTAT3ser727 

expression and CSS relative to tumour subsite. Kaplan Meier survival analysis of nuclear 

pSTAT3tyr705 and cytoplasmic pSTAT3ser727expression in patients from the Glasgow combined cohort 

with GMS2 classified tumours. In GMS2 stromal-rich cases the hazard ratio for a combined 

pSTAT3tyr705 and pSTAT3ser727 score was 2.758, (95%CI; 1.183-6.429), log rank p=0.014. 

 

6.4 Discussion   

Colorectal cancer is characterised by dysregulation of numerous cellular signalling pathways. 

Constitutive activation or overproduction of upstream signals of certain transcription factors results in 

pro-tumour gene transcription. STAT3 is an example of a master regulator that can become 

hyperactivated in colorectal cancer (145). In its inactive state, STAT3 is located within the cytoplasm 

and when activated it dimerizes and translocates to the nucleus where it can promote transcription of a 

variety of cancer-promoting genes (142). Dysregulation of STAT3 transcriptional activity in CRC is 

associated with many of the hallmarks of cancer including angiogenesis, proliferation, invasion, 

migration, and differentiation (146). More recently, it has also been shown that STAT3 can support 

tumourogensis irrespective of its transcriptional activity (9). For example, STAT3 activation can 

modulate the TME to an immunosuppressive phenotype by repressing production of inflammatory 

cytokines including type I interferons(147). This has been corroborated by recent tissue-based 

histology studies, with one study showing expression of STAT3 within colorectal cancer specimens 

associates with unfavourable clinical characteristics and reduced inflammatory infiltrates, specifically 

T lymphocytes (148). STAT3 also has roles in altering mitochondrial function, blocking autophagy 

and promotion of tumour cell motility leading to metastases (9, 149, 150).   
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In this chapter it was observed that high expression of cytoplasmic STAT3 in tumour cells was 

associated with reduced CSS (HR=1.384, 95%CI; 1.040-1.841, log rank p=0.025). In contrast to 

hypotheses, nuclear STAT3 was not associated with CSS in this cohort overall, although in patients 

with GMS1 tumours specifically, high expression was associated with worse outcome (HR=1.729, 

95%CI; 1.128-2.652, log rank p=0.011). Although STAT3 nuclear localisation is an indication of 

pathway activation, perhaps a more conclusive measure is expression of predominant phosphorylation 

site, pSTAT3tyr705.  In published work investigating pSTAT3try705 expression in retrospective CRC 

cohorts, high expression has previously been shown to associate with cancer-specific and overall 

survival (143). Data from this chapter investigating pSTAT3tyr705 expression in the Glasgow combined 

CRC array identified a profound association between high nuclear expression and reduced CSS in 

patients with GMS2 stromal dense tumours (HR= 2.086, 95%CI; 1.224-3.554, log rank p = 0.006). 

High expression of pSTAT3tyr705 was associated with unfavourable phenotypic subtypes latent and 

stromal by chi-squared analysis (p<0.001).  

In addition to canonical activation at tyrosine 705, STAT3 can undergo post-translational 

modifications to enhance its transcriptional action via phosphorylation at serine 727 (71). Murine 

models have indicated phosphorylation at both sites is necessary for maximal activation, however 

there is very limited evidence for the role pSTAT3ser727 plays in CRC (71). In this chapter, we found 

no association between pSTAT3 ser727 and outcome or clinical features. When pSTAT3 ser727 and 

pSTAT3tyr705 expression were combined to form 1 or both low and both high groups, no association 

with CSS was observed in the full cohort but in GMS2 patient’s survival outcomes were significantly 

worse in patients with high expression of both markers (HR=2.758, 95%CI; 1.183-6.429, log rank 

p=0.014). This indicates that maximal pathway activation in patients with stromal-rich tumours has a 

profound influence on survival time, which is highlighted by the drop in survival at ~50 months.  

In terms of the inhibiting STAT3 activation therapeutically, one of the main mechanisms proposed is 

through inhibition of upstream JAKs. This is due to the similarity in structural shape of STAT3 with 

other STAT family members STAT1 and STAT5, making it difficult to target STAT3 specifically. 

There are a number of JAK inhibitors in ongoing clinical trials in numerous solid tumour and 

haematological disorders. There are ongoing phase 3 clinical trials investigating the use of JAK2 

specific inhibitor Paracritinib for myeloproliferative disorders. Baracitinib (JAK1/2 inhibitor) was 

approved in 2016 for RA after success in the RA-BUILD trial(151). Fedratinib (JAK2 inhibitor) has 

recently been approved for use in myeloproliferative neoplasm associated myelofibrosis(152). 

Abrocitinib (JAK1 inhibitor) is currently in phase 2 and 3 clinical trials for patients with atopic 

dermatitis (153, 154). The number of clinical trials highlights the broad spectrum of JAK inhibitors 

available, and future work could include screening all the repurposable Jakinibs in a more high-

throughput model to identify the optimal JAK inhibitor for CRC patients and determining the optimal 

JAK inhibitor for specifically inhibiting STAT3 signalling. 
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In conclusion, the main findings of this chapter were that GMS2 patients had significantly reduced 

survival time if classified as high for pSTAT3tyr705 expression alone, or high for both pSTAT3 ser727 and 

pSTAT3tyr705. Taken together these data, coupled with results from previous chapters, suggest patients 

with stromal-rich GMS2 tumours would be the subgroup most likely to benefit from therapeutic 

inhibition of STAT3 activation. Repeating the staining in a validation cohort would be necessary to 

confirm the results from this discovery cohort. Data from this, and the two prior chapters have 

implicated IL6/JAK/STAT3 in CRC, however the underlying genomics driving over-expression of 

pathway members at the protein level is not yet known and may be of importance.  
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7.1 Introduction  

Data from previous chapters have highlighted a prognostics role for Glasgow microenvironment score 

and the IL6/JAK/STAT3 pathway in CRC, however the underlying genomics driving these 

phenotypes unknown. In this chapter the mutational background of patients was assessed relative to 

GMS and phosphorylated STAT3.  

Colorectal cancers are heterogenous with numerous genetic alterations associated with oncogenesis. 

Most CRCs arise sporadically, however ~4-10% of cases are of hereditary origin (155). Patients with 

familial adenomatous polyposis (FAP) exhibit germline mutations in the most frequently mutated 

CRC-associated gene, Adenomatous polyposis coli (APC) (155). FAP patients have a lifetime risk of 

100% for developing CRC and account for ~1% of CRC patients (155). Hereditary non-polyposis 

colorectal cancer (HNPCC) or Lynch syndrome accounts for 3-10% of CRCs and results from 

germline mutations in one of 5 mismatch repair (MSI genes, MLH1, MSH2, MSH6, PMS1 and/or 

PMS2 (156), unlike sporadic cases Lynch syndrome tumours with mutations in the MSI genes do not 

have BRAF V600E mutation. Patients with HNPCC have ~80% lifetime risk of developing CRC 

(156). The high risk of malignancy associated with these inherited cases of CRC highlights the 

importance of mutational profiles. In addition to mutations observed in hereditary cancers, somatic 

mutations in many different genes are observed in non-hereditary CRC, with a high degree of 

heterogeneity between patients. Perhaps the most well-defined genomic alteration linked to CRC is 

the chromosomal instability (CIN) pathway (157). Development and progression follow a pattern of 

mutation acquisition which corresponds to distinct histological changes. Loss of tumour-suppressor 

gene APC results in formation of an early adenoma from normal tissue (157, 158). APC mutations are 

found in 50-83% of sporadic CRCs, and initiate cancer progression via enabling β-catenin 

accumulation in enterocytes which leads to sustained activation of WNT signalling (158, 159). APC 

mutation status in sporadic cases of CRC is not itself associated with prognosis (160). APC loss leads 

to activation mutations in KRAS and subsequently late adenoma establishment. Alterations in KRAS 

are generally associated with poorer outcomes in CRC (160) .The final stage of the CIN pathway 

involves loss of p53 resulting in development of an adenocarcinoma via disruption to DNA repair 

processes and apoptotic cell death (157). In addition to CIN, MSI instability via methylation or 

mutation of the MLH1 gene is also strongly linked to CRC oncogenesis (161). Somatic mutations in 

many other genes have been linked to CRC progression. Research has aimed to identify mutational 

signatures that predict patient prognosis and treatment response. However, next generation sequencing 

(NGS) technologies are not used routinely in clinical laboratories due to extensive costs and time 

consuming protocols (8). A more translatable method for using mutational profiling to enhance 

therapeutics may be to link mutational signatures to distinct, easily conducted phenotypic measures 

like GMS, phenotypic subtype, or prognostic IHC-based protein staining such as for pSTAT3tyr705.  
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GMS is now an extensively validated prognostic measure of tumour phenotype in colorectal 

cancer(47, 103, 108, 162). Due to the number of patients with mutation profile data available, the 3 

GMS groups were analysed for mutational backgrounds as opposed to 4 phenotypic subtype groups 

(n=252). The aim of this analysis was to determine any patterns of genetic alterations associated with 

driving immune (GMS0), intermediate (GMS1) and stromally-dense (GMS2) phenotypes. 

Data from the Glasgow combined cohort in chapters 3, 4 and 5 suggest that IL6-STAT3 signalling is 

an important inflammatory pathway involved in CRC oncogenesis, particularly in the stromal GMS2 

subtype. To investigate the underlying biology of patients with STAT3 activation, mutational 

landscaping was performed in a subset of patients from the Glasgow combined cohort with high/low 

pSTAT3tyr705 phenotypic status available (n=207). The aim of this analysis was to determine a pattern 

of mutation associated with aberrant STAT3 signal transduction and to identify potential genes 

suitable for dual therapeutic targeting with JAK-STAT3 inhibitors for CRC patients. It was 

hypothesised that a distinct mutational pattern would be associated with each GMS group, and with 

respect to high versus low pSTAT3tyr705 protein groups. 

Finally, the Cancer Genome Atlas (TCGA) PanCancer CRC cohort (n=594) was analysed for 

alterations in IL6-STAT3 pathway members and association with outcomes/clinicopathological 

features. It was hypothesised that alterations in IL6/JAK/STAT3 pathway genes would be rare but 

associated with unfavourable clinical characteristics and reduced survival times.  

 

7.2 Mutational landscape of colorectal cancer patients  

7.2.1 Mutational landscape in a subset of the Glasgow 

combined cohort  

Mutational landscaping was performed by Glasgow Precision Oncology Laboratory in a subset of 

patient specimens from the Glasgow combined cohort (n=252). Bulk whole exome sequencing using a 

custom panel of genes designed in-house enabled analysis of 151 cancer-associated genes of interest. 

The median number of variants was 7 alterations per patient. Most (42.51%) mutations were missense 

single nucleotide polymorphisms with cytosine to thymine transitions the most frequent (58.49%) 

SNV class. To visualise the most frequently occurring mutations an oncoplot was constructed using 

the ‘oncoplot’ function in maftools package for R Studio (Figure 7.2). Genomic mutations in one or 

more of the genes in the custom panel were identified in   .21% of the patient’s tumours investigated. 

Lynch syndrome patients were identified by combined presence of alteration/s in ≥ 1 MSI gene and 

absence of BRAF mutation (n= 17, (6.74%))(163). A summary plot was created in maftools using the 

‘plotmafSummary’ function for R studio (Figure 7.1). APC was mutated in 189 (75%) of patients, 
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TP53 in 60% of patients and KRAS in 48% of patients. Pathway enrichment analysis showed 83% of 

patients with alterations in the RTK-RAS pathway, 88% in the WNT pathway and 72% in the TP53 

signalling pathway (Figure 7.3). These data are reflective of broad mutational patterns of CRC 

observed in recent scientific literature confirming the validity of the NGS performed in this cohort 

(164). 

 

Figure 7.1 Overview of cohort mutational background. Summary plot showing the distribution of 

variant classifications, variant types, SNV classes, mutation burden and top 10 mutations within the 

subset of 252 patients from the Glasgow combined cohort created using maftools in R studio version 

1.3.  
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Figure 7.2 Mutational landscape in a subset of patients from the Glasgow combined cohort. 

Oncoplot showing the top 10 mutated genes in 252 patient samples from the stage I-IV CRC Glasgow 

combined cohort created using maftools in R studio version 1.3 from custom 151-gene panel 

sequencing run by Glasgow Precision Oncology Laboratory. In the full cohort APC was mutated in 

75% of cases, TP53 in 60% and KRAS in 48% of patients. Mutation types were a mix of missense 

mutations, nonsense mutations, frameshift insertion, frameshift deletion, splice site and multi-hit 

mutations.  
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Figure 7.3 Pathway enrichment in a subset of patients from the Glasgow combined cohort. Bar 

chart showing common cancer-associated pathways and frequency of alteration in 252 patients from 

the Glasgow combined cohort created in R Studio version 1.3 using data generated from custom 151-

gene panel sequencing outsourced and performed by Glasgow Precision Oncology Laboratory.  

 

7.3 Mutational landscape underlying colorectal cancer 

phenotypes 

7.3.1 Mutational landscape and Glasgow 

Microenvironment Score  

The mutational landscape of each GMS group was investigated in patients from the Glasgow 

combined cohort with sequencing data (n=252). In terms of Immune GMS0 (n=72) patients, the 

83.33% 

46.83% 

9.92% 

43.25% 

71.83% 
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22.22% 
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median number of variants was 7 and the most common mutation types were missense single 

nucleotide polymorphisms (SNP) (39.36%) and cytosine to thymine transitions were the most 

frequently occurring SNV class (56.18%) (Figure 7.4). To visualise the top 10 most mutated genes 

amongst GMS0 patients an oncoplot was constructed (Figure 7.5). APC was mutated in 74% of 

patients, TP53 in 56% and KRAS in 46% of patients (Figure 7.5). Pathway enrichment analysis 

showed a high proportion of GMS0 patients with alterations in the WNT (87.5%), TP53 (72.22%) and 

RTK-RAS (77.77%) pathways (Figure 7.6). Fishers exact tests were used to determine any 

statistically significant differences in mutation patterns between GMS0 and all other patients (GMS1 

and GMS2 combined). A total of 7 genes were found to be enriched in GMS0 (Figure 7.7). MSI genes 

MLH1 and MSH2 were altered more frequently in GMS0 patients (p=0.000253, p=00769 

respectively) (Figure 7.7). Akt signalling pathway member PTEN was also more commonly mutated 

in GMS0 patients compared to low immune patients (p=0.014). ARID1A (chromatin remodelling, 

p=0.0166), RPL22 (ribosomal protein, p=0.0228), ERBB4/HER4 (EGFR family, p=0.025) and B2M 

(component of MHCI, p=0.033) genes were all more frequently mutated within the GMS0 group 

(Figure 7.7).  
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Figure 7.4 Overview of mutational landscape in GMS0 patients. Summary plot showing the most 

frequent variant classifications, types, SNV classes, mutation burden and top 10 mutated genes in 

GMS0 patients from a subset of the Glasgow combined cohort (n=72) run in RStudio version 1.3 

using maftools package.  
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Figure 7.5 Mutational landscape of GMS0 patients. Oncoplot showing the top 10 mutated genes in 

patients classified as GMS0 created in R Studio version 1.3 using the maftools package. In GMS0 

patients APC was mutated in 74% of cases, TP53 in 56% and KRAS in 46% of patients. Sequencing 

was performed by Glasgow Precision Oncology Laboratory using a 151-gene custom panel. 
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Figure 7.6 Pathway enrichment analysis in GMS0 patients. Bar plot showing percentage of 

patients with a mutation in at least one gene from common cancer-associated signalling pathways 

created in R Studio version 1.3 using maftools package. Sequencing was performed by Glasgow 

Precision Oncology Laboratory using a 151-gene custom panel.  
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Figure 7.7 Frequently mutated genes in GMS0 versus GMS1/2. Forest plot showing the 

significantly enriched mutation in GMS0 patients compared to GMS1 and GMS2 patients grouped 

together based on fishers exact tests and run in R Studio version 1.3 using the maftools package.  

 

When GMS1 patients were investigated, the median number of variants was also 7 and the most 

common variant classifications were also missense mutations (41.79%). Alterations tended to be 

single nucleotide polymorphisms (66.62%) and SNV classes were most frequently cytosine to 

thymine transitions (58.31%) (Figure 7.8). The top 10 mutated genes were the same for GMS 1 as 

GMS0 with APC mutated in 74% of patients, TP53 in 55% and KRAS in 50% of patients as shown in 

an oncoplot (Figure 7.9). PIK3CA was mutated in 28% of GMS1 patients compared to only 18% of 

GMS0 patients. Pathway enrichment analysis showed strong involvement of RTK-RAS (86.18%), 

WNT (86.18%) and TP53 signalling (67.48%), similar to that observed in GMS0 phenotypes (Figure 

7.10). Fishers exact tests revealed significant associations between mutations in MSI gene MSH2 and 

GMS1 versus all other patients, with GMS1 patients exhibiting less mutations in MSH2 (p=0.00611) 

(Figure 7.11). In terms of genes more frequently mutated in the GMS1 group, death associated protein 

6 DAXX (MAPK signalling, p=0.0319), ERBB2/HER2 (EGFR family, p=0.037) and MTOR 

(p=0.046) were observed at higher rates than in GMS0/2 patients (Figure 7.11).  
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Figure 7.8 Overview of mutational landscape in GMS1 patients. Summary plot showing 

distribution of variant classifications, types, SNV classes, mutation burden and top 10 mutated genes 

in a subset of the Glasgow combined cohort (n=123). Analysis was performed in R Studio version 1.3 

using the maftools package. 
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Figure 7.9 Mutational landscape in GMS1 patients. Oncoplot showing the top 10 mutated genes 

amongst GMS1 patients from a subset of the Glasgow combined cohort (n=123). In GMS1 patients 

APC was mutated in 74% of cases, TP53 in 55% and KRAS in 50% of patients. Sequencing was 

performed by Glasgow Precision Oncology Laboratory and downstream analysis was performed in R 

Studio version 1.3 using the maftools package. 



270 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Pathway enrichment in GMS1 patients. Bar plot showing the percentage of GMS1 

patients in a subset of the Glasgow combined cohort showing an alteration/s in at least one gene from 

common cancer-associated pathways. Analysis was performed in R Studio version 1.3 using the 

maftools package. 
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Figure 7.11 GMS1 versus GMS0/2 mutation patterns. Forest plot showing differences in mutation 

landscape between GMS1 and GMS0/2 patients analysed via fishers exact tests in R Studio version 

1.3 using the maftools package. 

 

 

In concordance with data from GMS0 and GMS1 groups, missense mutations were the most common 

variant classification observed (49.26%), SNPs the most common variant type (82.01%) and cytosine 

to thymine transitions the most common SNV class observed amongst GMS2 patients (62.85%) 

(Figure 7.12). The most frequently mutated gene observed in GMS2 patients was APC (78%). 

Interestingly, TP53 was mutated at a much higher frequency in GMS2 patients at 76% compared to 

56% in GMS0 and 55% in GMS1 patients (Figure 7.13). KRAS alterations were observed in 47% of 

GMS2 patients (Figure 7.13). Pathway enrichment analysis showed high rates of mutations in RTK-

RAS pathway (82.76% patients affected), WNT (91.4%) and TP53 (79.31%) similar to GMS0 and 

GMS1 (Figure 7.14). Fishers exact tests revealed significantly higher rates of TP53 (p=0.0059) and 

NTRK1 (nerve growth factor receptor, p=0.00175) genes in GMS2 patients (Figure 7.15). There were 

profoundly less TGFβ2R mutations seen in GMS2 patients than the other groups (p=0.0018).  

 



272 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12 Summary plot for GMS2 patients. Summary plot showing distribution of variant 

classifications, types, SNV classes, mutation burden and top 10 mutated genes in a subset of the 

Glasgow combined cohort (n=58). Panel sequencing of a custom 151 cancer-associated genes was 

performed by Glasgow Precision Oncology Laboratory and downstream analysis was performed in R 

Studio version 1.3 using the maftools package. 
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Figure 7.13 Mutational landscape in GMS2 patients. Oncoplot showing the top 10 mutated genes 

amongst GMS1 patients from a subset of the Glasgow combined cohort (n=58). In GMS2 patients 

APC was mutated in 78% of cases, TP53 in 76% of cases and KRAS in 47% of cases. Analysis was 

performed in R Studio version 1.3 using the maftools package. 
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Figure 7.14 GMS2 versus GMS0/1 mutation patterns. Forest plot showing differences in mutation 

landscape between GMS2 and GMS0/1 patients analysed via fishers exact tests performed in R Studio 

version 1.3 using the maftools package. 
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Figure 7.15 GMS2 versus GMS0/GMS1 patients. Forest plot showing results from fisher exact test 

to identify difference sin frequency of alterations between GMS2 and all other patients. Analysis was 

performed in R Studio version 1.3 using the maftools package and statistical significance was set to 

p<0.05. 

 

Glasgow microenvironment scores were then investigated for association with differences in copy 

number alterations. Raw copy number data was transformed by calculating the difference between 

copy number state for the sample and copy number state for the gene. Negative values were 

considered deletions and positive values were considered gains. Patients were divided intro respective 

GMS groups and the mean score for each gene was calculated within each group. The difference in 

mean copy number for each gene was calculated between groups and the top 10 amplifications in both 

directions were plotted on swarm and box plots using Python package and seaborn function. When 

GMS0 patients were compared to GMS1 and 2 patients the top amplified genes in the GMS0 group 

were STK1, PIK3R3, CIITA, SMAD4, LINC00290, FGF3, FBXW7, PARP10, IDO1 and IDO2 

(Figure 7.16). The top 10 downregulated genes in the GMS0 groups compared to GMS1 and 2 were 

ERBB2, SOX9, AR, CDK8, AMER1, NOTCH1, FANCC, RFXAP, BRCA2 and EGFR (Figure 7.16). 

Perhaps of most interest were IDO1 and IDO2, which are involved in metabolic regulation of 
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immune checkpoints and increased expression is associated with T cell anergy and tumour 

evasion (165). IDO1 and IDO2 genes showed strong amplification in the immune subgroup.  

 

 

Figure 7.16 Copy number alterations in GMS0. Swarm plot showing top 10 amplified copy number 

alterations for GMS0 versus GMS1/2 (A). Point plot showing top 10 amplified copy number 

alterations for GMS0 versus GMS1/2 (B). Swarm plot showing top 10 downregulated copy number 

alterations for GMS0 versus GMS1/2 (C). Point plot showing top 10 downregulated copy number 

alterations for GMS0 versus GMS1/2 (D). 

 

In terms of GMS1 versus the GMS0/2 the top 10 amplified genes were SOX9, ERBB2, AR, KDM6A, 

AMER1, MET, CDK4, GATA6, NOTCH1 and KDM5A (Figure 6.17). The top 10 downregulated 

genes in GMS1 were AURKA, IGF2, CCND3, HNF4A, PARP10, IDO1, FGF3, IDO2, PDCD1LG2 

and ALOX15B (Figure 7.17). Interestingly, the most amplified genes, SOX9, is involved in 

activations of WNT signalling and AR signalling in castrate resistant prostate cancer. AR and 

AMER1 (WNT pathways member) are both also upregulated in GMS1 patients suggesting crosstalk 

between these pathways may be important in patients with low immune infiltrates and low stromal 

invasion (166). 
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Figure 7.17 Copy number alterations in GMS1. Swarm plot showing top 10 amplified copy number 

alterations for GMS1 versus GMS0/2 (A). Point plot showing top 10 amplified copy number 

alterations for GMS1 versus GMS0/2 (B). Swarm plot showing top 10 downregulated copy number 

alterations for GMS1 versus GMS0/2 (C). Point plot showing top 10 downregulated copy number 

alterations for GMS1 versus GMS0/2 (D). 

 

The top 10 amplified genes amongst GMS2 patients compared to GMS0/1 patients were HNF4A, 

AURKA, CDK8, IGF2, ZNF217, IRS2, BCL2L1, BRCA2, RB1, PIK3CA (Figure 7.18). The top 10 

downregulated genes in GMS2 tumours compared to GMS0/1 were KDM6A, PPP2R2A, FAT1, 

SOX9, PIK3R3, FBXW7, KRAS, KIT, ERBB2, KDR (Figure 7.18). The most amplified gene in 

stromally dense tumours compared to high immune/low both tumours was HNF4A, a transcriptional 

regulator associated with tumour suppressor properties in gastrointestinal cancers (167).   
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Figure 7.18 Copy number alterations in GMS1. Swarm plot showing top 10 amplified copy number 

alterations for GMS2 versus GMS1/2 (A). Point plot showing top 10 amplified copy number 

alterations for GMS2 versus GMS1/2 (B). Swarm plot showing top 10 downregulated copy number 

alterations for GMS2 versus GMS1/2 (C). Point plot showing top 10 downregulated copy number 

alterations for GMS2 versus GMS1/2 (D). 

 

6.4 Mutational landscape of patients with activated 
STAT3 

In addition to mutational landscaping for each GMS group, the underlying genomic biology was also 

investigated in relation to inflammatory pathway STAT3 signalling. Patients classified as high 

pSTAT3tyr705 protein expression via prior IHC analysis were selected from the 252 Glasgow combined 

cohort patients with mutational profiling. This identified 62 patients that had high expression of 

pSTAT3tyr705 protein for mutational analysis. 91% of tumours in this subgroup had mutations present, 

this is lower than the 97% observed for the cohort as a whole.  The median number of variants 

observed in each patient tumour was 7. To visualise the mutational landscape of these high 

pSTAT3tyr705 patients a summary plot was constructed (Figure 7.19).  APC mutations were mostly 
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nonsense mutations (41.74%) or frameshift deletions (35.69%). The majority of TP53 and KRAS 

mutations were missense mutations (61.02%, 92.7%, respectively) (Figure 7.19). An oncoplot was 

constructed using the ‘oncoplot’ function in maftools package in R Studio (Figure 7.20). The top 10 

mutated genes in this subset of patients included APC (74% of patients harboured ≥1 mutation), TP53 

(66%), KRAS (52%), AR (35%), PIK3CA (23%), ARID1A (21%), TGFβR2 (18%), NOTCH3 (18%), 

ASXL1 (18%), ALK (18%) (Figure 7.20).  

 

 

 

 

Figure 7.19 Mutation landscape in patients with activated STAT3. Summary plot showing 

distribution of variant classifications, types, SNV classes, mutation burden and top 10 mutated genes 

in a subset of the Glasgow combined cohort with high STAT3tyr705 protein expression (n=62). 

Sequencing was performed by Glasgow Precision Oncology Laboratory focused on a panel of 151 

cancer-associated genes. Analysis was performed in R Studio version 1.3 using the maftools package. 
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Figure 7.20 Mutational background of patients with activated STAT3 phenotypes. Oncoplot 

showing the top 10 mutated genes in patients with high protein expression of pSTAT3tyr705. In patients 

with high pSTAT3tyr705 protein expression APC was mutated in 74% of cases, TP53 in 66% and KRAS 

in 52% of cases. Analysis was performed in R Studio version 1.3 using the maftools package. 

 

Differences in the most frequently observed mutations between patients with high pSTAT3 tyr705 and 

patients with low pSTAT3tyr705 protein expression were visualised in a co-oncoplot (constructed using 

the ‘mafcompare’ and ‘coOncoplot’ functions in maftools in RStudio) (Figure 7.21). The top 3 

mutations for both groups were concordant, with APC mutated in 64% of high pSTAT3 tyr705 patients 

versus 66% of low pSTAT3tyr705 patients, TP53 mutated in 54% high pSTAT3tyr705 group versus 50% 

of the low pSTAT3tyr705 group and KRAS mutated in 44% of high pSTAT3tyr705 group versus 39% of 

low pSTAT3tyr705 classified patients.  

In contrast, the high pSTAT3tyr705 group of patients observed less ATM mutations (13% of patients) 

than the low classified pSTAT3tyr705 group (23% of patients) and less PIK3CA mutations (17% of 

patients) than the low classified pSTAT3tyr705 group (23% of patients).  
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Figure 7.21 Mutational landscape in patients with activated STAT3 versus patients without 

STAT3 activation. Oncoplot showing the top 6 mutated genes across high and low pSTAT3 tyr705 

patient groups from a subset of the Glasgow combined cohort. Analysis was performed in R Studio 

version 1.3 using the maftools package. Mutation types included nonsense mutations, missense 

mutations, frameshift insertions, frameshift deletions, in-frame deletions, in-frame insertions, splice 

site and multi-hit mutations. 

 

A forest plot based on Fishers exact test was used to determine any significant differences in the 

presence of mutations in the panel (151 genes) between high and low pSTAT3tyr705 patient tumours 

(Figure 7.22). Genes mutated in less than 5 samples were excluded to avoid bias due to single mutated 

genes.  Patients with high pSTAT3tyr705 expression exhibited a significantly higher frequency of 

AMER1 (p=0.010), RAF1 (p=0.030), MSH6 (p=0.033), PIK3CB (p=0.034), MAP2K4 (p=0.034) and 

SF3B1 (p=0.039) (Figure 7.22). AMER1 was mutated in 16.13% (10/62) of high pSTAT3tyr705 

patients and 5.3% (6/133) of low pSTAT3tyr705 patients. RAF1 was mutated in 9.68% (6/62) of high 

pSTAT3tyr705 compared to 2.65% (3/113) low pSTAT3tyr705.  MSH6 was mutated in 16.13% (10/62) of 

high pSTAT3tyr705 compared to 7.1% (8/113) low pSTAT33tyr705. PIK3CB and MAP2K4 genes were 

mutated in 8% (5/62) of high pSTAT3tyr705 compared to 1.8% (2/113) low pSTAT3tyr705 patients. 

SF3B1 was mutated in 11.3% (7/62) of high pSTAT3tyr705 compared to 3.54% (4/113) low 

pSTAT3tyr705.   
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Figure 7.22 Comparison of mutational landscape of patients with high and low pSTAT3 tyr705 

protein expression. Forest plot showing genes most differently mutated between high and low protein 

expression pSTAT3tyr705groups. Analysis was performed in R Studio version 1.3 using the maftools 

package. 

 

To assess any patterns of co-occurrence or mutual exclusivity of mutated genes in patient with 

activated STAT3, pairwise Fishers’ exact tests were performed. A somatic interactions plot was 

constructed using the ‘somaticInteractions’ function in maftools and RStudio visualise the results 

(Figure 7.23). Presence of TP53 and BRCA2 or BRAF mutations were significantly likely to not co-

occur (p<0.01). TP53 mutations rarely occurred in the presence of RNF43 (p<0.01), TGFβR2 

(p<0.05) and RPL22 mutations (p<0.05) in patients with high pSTAT3 tyr705. AR mutations tended to 

co-occur with TGFR2 mutations (p<0.01). 

 



283 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23 Co-occurrence of genetic mutations in high pSTAT3 tyr705 patients. Somatic 

interactions plot showing the co-occurrence or exclusivity of mutations in the activated STAT3 in a 

subset of the patients from the Glasgow combined cohort. Green colour indicates a high level of co-

occurrence and orange colour represents a high level of exclusivity. Significance was set to p<0.01 

represented by ‘*’, and p<0.05 represented by ‘.’.   

 

Next, copy number alterations were analysed with respect to high and low pSTAT3tyr705 groups. Raw 

copy number data was transformed by calculating the difference between copy number state for the 

sample and copy number state for the gene. Negative values were considered deletions and positive 

values were considered gains. To determine any differences between groups, swarm plots were 

constructed by Dr Akhill Yeduresi using Python. The top ten copy number alterations with the biggest 

difference in mean between pSTAT3tyr705 groups are shown in Figure 6.24. Patients with activated 

pSTAT3tyr705 showed amplification of WNT signalling pathway member RNF43 compared low 

pSTAT3 tyr705 expressing patients (Figure 7.24). Conversely, low pSTAT3 tyr705 patients showed 

amplification of CDK8 compared to high pSTAT3tyr705 patients (Figure 7.24). No statistical testing 

was performed; however, these data show clear differences in copy number alterations between 

high/low pSTAT3tyr705 phenotypes.    
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Figure 7.24 Copy number alterations in high versus low pSTAT3tyr705 groups. Top 10 genes 

with highest difference in copy number alteration for high (A) and low (B) pSTAT3tyr705 groups. Black 

bar represents mean of low pSTAT3 tyr705 group and red bar represents mean of high pSTAT3 tyr705 group.  

 

6.5 Oncogenic signalling pathways  

To investigate oncogenic signalling pathways in specimens with high pSTAT3tyr705 protein 

expression, pathway fraction alterations were assessed using ‘OncogenicPathways’ function in 

maftools with R Studio (Figure 7.25). TP53 signalling observed the highest fraction of pathway 
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affected by a mutation with one of 4 (out of 6) genes mutated in at least one patient. TP53 mutations 

were detected in a total of 96 patients. Mutations in at least one member of the WNT signalling 

pathway and RTK-RAS were observed in 111 patients (Figure 7.25).  

 

 

 

 

Figure 7.25 Alterations in signalling pathways with respect to STAT3 activation status. Oncoplot 

showing presence of mutations in cancer-associated signalling pathways linked to STAT3tyr705 protein 

status. Analysis was performed in R Studio version 1.3 using the maftools package and created by Dr 

Akhill Yedhursi. 
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Figure 7.26 Pathway alteration fractions in high pSTAT3tyr705 patients. Pathway 

enrichment analysed via OncogneicPathways in patients from the Glasgow combined cohort with 

high pSTAT3tyr705protein expression and analysis was performed in R Studio version 1.3 using the 

maftools package.  

 

Using ‘PlotOncogenicPathways’ function, it was possible to visualise presence of mutations in 

specific genetic components of each pathway of interest (Figure 7.26). 87.1% of patients had an 

alteration in at least 1 gene in the WNT pathway, 88.71% were affected by the RTK-RAS pathway 

and 77.42% of patients displayed a mutation in TP53 signalling (Figure 7.26). 
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7.6 Amino acid changes  

7.6.1 Mutations in members of the IL6-STAT3 pathway  

In patients with high pSTAT3 tyr705 protein expression, mutations in IL6-STAT3 signalling pathway 

members JAK1, JAK2 and JAK3 were observed. Oncogenes tend to have preferential sites where 

mutations occur, referred to as ‘hot-spots’. To investigate the frequently mutated loci within JAK 

genes in this cohort, lollipop plots were constructed using the ‘lolliPlot’ function in maftools within R 

Studio. JAK1 was mutated in 1.99% of patients with activated STAT3, and mutations occurred at two 

hotspots (Figure 7.27). JAK2 was also mutated in 1.99% of patients, with mutations clustered in the 

SH2 domain (Figure 7.28). There were 4 hotspots identified within the JAK3 gene, which had an 

overall mutation rate of 3.31% in patients with high pSTAT3705 expression (Figure 7.29).  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27 Preferential mutational loci within JAK1 gene in patients with activated STAT3. 

Lollipop plot showing sites of mutation within the JAK1 gene in CRC patients categorised as high 

pSTAT3 tyr705 and mutation rate within the JAK1 gene for the cohort (1.99%). Analysis was performed 

in R Studio version 1.3 using the maftools package. 
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Figure 7.28 Preferential mutational loci within JAK2 gene in patients with activated STAT3. 

Lollipop plot showing sites of mutation within the JAK2 gene in CRC patients categorised as high 

pSTAT3 tyr705 and the mutation rate for the JAK2 gene in the cohort (1.99%). Analysis was performed 

in R Studio version 1.3 using the maftools package. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.29 Preferential mutational loci within JAK3 gene in patients with activated STAT3. 

Lollipop plot showing sites of mutation within the JAK3 gene in CRC patients categorised as high 

pSTAT3 tyr705and the mutation rate for the JAK3 gene in the cohort (3.31%). Analysis was performed 

in R Studio version 1.3 using the maftools package. 
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7.7 Mutation status, clinicopathological features and 

outcome 

Presence of a mutation in JAK1, JAK2 and/or JAK3 was detected in 29 (11.6%) of all 255 Glasgow 

combined cohort patients with mutational data available. To determine if mutation(s) in any JAK gene 

was associated with CSS a Kaplan-Meier survival curve was plotted (Figure 7.30). No significant 

association was observed (HR= 1.374. 95%CI; 0.797-2.371, p=0.248). Chi-squared analysis was used 

to look for associations between mutation(s) in JAK genes and clinicopathological features (Table 

7.1). Mutation/s in ≥ 1 JAK gene was significantly associated with T stage (p 0.014), MMR status 

(p<0.001), tumour subsite (p=0.001), peritoneal involvement (p=0.002) and marginal involvement 

(p=0.032) (Table 7.1). Patients with a JAK mutation were likely to be T stage IV (62.5%), right sided 

(79.2%) and MMR deficient (54.2%) (Table 7.1).  

 

 

 

 

 

 

 

 

 

 

Figure 7.30 JAK mutations and association with clinical outcome. Kaplan-Meier survival 

curve showing the association between presence of mutation in JAK1, JAK2 and/or JAK3 and cancer-

specific survival in the Glasgow combined cohort. In the full cohort, presence of mutation in a JAK 

gene yielded a hazard ratio of 1.374, (95%CI; 0.797-2.371), log rank p=0.248. 
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Table 7.1 

JAK 

mutations 

and 

clinicopathological features. Chi-squared table of associations for ≥ 1 mutation in JAK1, JAK2 

and/or JAK3 genes and clinical features including T stage, N Stage, MMR status, tumour subsite, 

peritoneal involvement, marginal involvement, mGPS, GMS and phenotypic subtype.  

Clinicopathological 

feature 

JAK status (JAK1/JAK2/JAK3) p 

Wild type Mutated 

T stage 

I 

II 

III 

IV 

 

7 (3.7) 

15 (7.9) 

111 (58.1) 

58 (30.4) 

 

0 (0) 

2 (8.3) 

7 (29.2) 

15 (62.5) 

 

0.014 

N Stage 

0 

1 

2 

 

98 (51.6) 

62 (32.6) 

30 (15.8) 

 

10 (41.7) 

9 (37.5) 

5 (20.8) 

 

0.638 

MMR Status 

pMMR 

dMMR 

 

161 (84.7) 

29 (15.3) 

 

11 (45.8) 

13 (54.2) 

 

<0.001 

Tumour subsite 

Right 

Left 

Rectal 

 

77 (40.3) 

72 (37.7) 

42 (22.0) 

 

19 (79.2) 

4 (16.7) 

1 (4.2) 

 

0.001 

Peritoneal involvement 

Absent 

Present  

 

133 (69.6) 

58 (30.4) 

 

9 (37.5) 

15 (62.5) 

 

0.002 

Marginal Involvement  

Absent 

Present 

 

183 (95.8) 

8 (4.2) 

 

20 (83.3) 

4 (16.7) 

 

0.032 

mGPS 

0 

1 

2 

 

83 (57.6) 

34 (23.6) 

27 (18.8) 

 

7 (38.9) 

5 (27.8) 

6 (33.3) 

 

0.264 

GMS 

0 

1 

2 

 

58 (31.2) 

91 (48.9) 

37 (19.9) 

 

7 (29.2) 

12 (50.0) 

5 (20.8) 

 

0.979 

Phenotypic subtype 

Immune 

Canonical  

Latent 

Stromal  

 

58 (31.4) 

52 (28.1) 

38 (20.5) 

37 (20.0)0 

 

7 (29.2) 

10 (41.7) 

2 (8.3) 

5 (20.8) 

 

0.351 
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7.8 TCGA analysis  

Given the association between JAK mutations and factors associated with poor prognosis and trend 

towards predicting poor outcomes in the Glasgow CRC combined cohort the Cancer Genome Atlas 

(TCGA) PanCancer Atlas cohort was analysed to validate these observations. Protein data for 

pSTAT5tyr705 was not available for this cohort so JAK-STAT3 signalling was investigated only at the 

mutation and mRNA level. A total of 594 patients were included in analysis which was completed 

using cBioPortal for Cancer Genomics software. In concordance with mutational patterns observed in 

the Glasgow combined cohort, frequently mutated genes in the TCGA PanCancer Atlas cohort 

included APC (67%), TP53 (55%) and KRAS (37%) (Figure 7.31). Mutations in the AR gene were 

less common in the TCGA cohort than the Glasgow with only 9% of patients altered (Figure 7.31). In 

terms of Jak mutations, JAK1 was mutated in 4% of patients and JAK2 and JAK3 were mutated in 

3% of patients.   

 

6.8.1 JAK mutations, outcomes, and clinical factors 

The main purpose of analysing mutation data in separate CRC cohort was to investigate JAK 

mutations and association with survival and clinical factors to validate that seen in the Glasgow 

cohort. In contrast to the Glasgow cohort, no association was observed between mutations in 

JAK1/2/3 and cancer-specific survival (p=0.526, figure 6.32). However, presence of ≥1 JAK mutation 

was associated with clinical measures including stage, with more stage IIA presentations in the 

mutated group assessed via Chi-Squared analyses p=0.00110^10) (figure 7.33) Kruskal wallis tests 

revealed significant associations between JAK mutations and mutation count, with mutated patients 

showing a higher mutation burden (p<10^10, figure 6.34). Kruskal wallis tests also revealed a 

significant association between presence of JAK mutation and MSI Mantis score (p=9.83e-9, figure 

7.34). MSI mantis score is a clinical measure used to predict the likelihood of a patient being 

microsatellite instable, the higher the mantis score the more likely a patient is to be instable.  
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Figure 7.32 JAK mutations and Cancer-Specific Survival. Kaplan Meier curve showing no 

association between presence of ≥1 JAK mutation and cancer-specific survival in the TCGA 

PanCancer Atlas CRC cohort. The red line represents patients with a mutation in at least 1 JAK gene 

and the blue line represents patients with no mutations detected in any JAK gene. Analysis was 

performed in cBioPortal.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.33 Jak mutations and CRC Stage. Bar plot showing distribution of CRC disease stage 

(Stage I-IVB) at presentation in JAK-mutated (Altered) and JAK-wildtype (Unaltered) groups. 

Analysis was performed in cBioPortal. 
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Figure 7.34 Jak mutation status and overall mutation count (a) and MSI mantis score (b). Box 

plots showing association between presence of ≥1 JAK mutations and mutation burden (a) and 

likelihood of microsatellite instability (b). For both plots altered group represents the patients in the 

cohort that had a mutation detected in at least 1 of the JAK genes (JAK1, JAK2, JAK3 or TYK2) and 

patients in the unaltered group did not present with mutation in any JAK gene. Analysis was 

performed in cBioPortal. 

 

The TCGA PanCancer Atlas CRC cohort benefits from associated protein data for numerous pre-

clinical biomarkers measured via reverse phase protein arrays (RPPAs). To investigate differences in 

protein expression between JAK mutated and JAK wildtype patients a volcano plot was constructed 

(Figure 7.35). The top two differentially expressed protein between groups were middle phase 

apoptotic marker Caspase7 (CASP7) and Ras signalling pathway member RAF1. CASP7 was 

significantly enriched in the JAK altered group (p=0.00003414, Figure 7.36). RAF1 expression was 

also significantly increased in the JAK mutant group (p=0.0167, Figure 7.37). 

 

(a) (b) 

***** ***** 
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Figure 7.35 JAK alterations and protein associations. Volcano plot showing associations between 

presence of ≥1 JAK mutation and available protein expression, significant associations highlighted in 

blue. There were data on 12 proteins which were significantly enriched in either JAK mutated or JAK 

wildtype patients. Analysis was performed in cBioPortal. 

 

Figure 7.36 JAK alterations and Caspase 7. Box plot showing Caspase 7 protein expression 

(reverse phase protein array) for JAK mutated and JAK wildtype patient groups (p<0.001). Analysis 

was performed in cBioPortal and data is publicly available. 
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Figure 7.37 JAK alterations and RAF1. Box plot showing RAF1 protein expression (reverse phase 

protein array)  for JAK mutated and JAK wildtype patient groups (p=0.0167). Analysis was 

performed in cBioPortal and data is publicly available. 

 

7.8.2 STAT3 mutations, outcomes, and clinical factors 

STAT3 mutation status was not in the custom panel utilised for sequencing the Glasgow cohort 

however data was available in the TCGA dataset. Presence of STAT3 mutation was observed in 2% 

of patients and alteration was associated with improved progression-free survival (p=0.0379, figure 

7.38) but not cancer-specific or overall survival. Similarly, IL6 was mutated in only 1.6% of patients 

and alteration was trending towards an association with improved overall survival (p=0.0741) but not 

progression-free or cancer-specific survival (Figure 7.39). Mutations in none of the other IL6-STAT3 

pathway members were associated with outcomes in this cohort. 
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Figure 7.38 STAT3 alterations association with progression-free survival. Kaplan Meier curve 

showing association between mutations in STAT3 gene and progression-free survival in TCGA 

PanCancer Atlas CRC cohort (p=0.0379). Red line represents patients with an alteration in the 

STAT3 gene and the blue line represents patients with no detectable alterations in the STAT3 gene. 

Analysis was performed in cBioPortal and is publicly available. 

 

 

 

 

 

 

 

 

 

Figure 7.39 IL6 alterations association with overall survival. Kaplan Meier curve showing 

association between mutations in IL6 gene and overall survival in TCGA PanCancer Atlas CRC 

cohort. The red line represents patients with an alteration in the IL6 gene and the blue line represents 

patients with no alteration in IL6 detected. Analysis was performed in cBioPortal and is publicly 

available. 
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7.8.3 Co-expression of mRNA 

Next, the mRNA expression levels of pathway members were analysed for association. Co-expression 

of JAK1 mRNA was moderately correlated with STAT3 mRNA expression (rho= 0.565, p=3.08e-51, 

figure 7.40). JAK2 and JAK3 mRNA expression weakly correlated with STAT3 mRNA expression 

(rho= 0.355 p=5.34e-19 and rho=0.406 p=6.69e-25, respectively, figures 6.41-42).   

 

Figure 7.40 Correlation between JAK1 and STAT3 mRNA levels. Kaplan Meier Scatter plot 

showing correlation between JAK1 and STAT3 at the mRNA level in TCGA PanCancer Atlas CRC 

cohort. Blue points correspond to wild type for both JAK1 and STAT3, red are both mutated, yellow 

only JAK1 and pink only STAT3 mutation/s present. Analysis was performed in cBioPortal and is 

publicly available. 
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Figure 7.41 Correlation between JAK2 and STAT3 mRNA levels. Kaplan Meier Scatter plot 

showing correlation between JAK2 and STAT3 at the mRNA level in TCGA PanCancer Atlas CRC 

cohort. Blue points correspond to wild type for both JAK2 and STAT3, red are both mutated, yellow 

only JAK2 and pink only STAT3 mutation/s present. Analysis was performed in cBioPortal and is 

publicly available. 
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Figure 7.42 Correlation between JAK3 and STAT3 mRNA levels. Kaplan Meier Scatter plot 

showing correlation between JAK3 and STAT3 at the mRNA level in TCGA PanCancer Atlas CRC 

cohort. Blue points correspond to wild type for both JAK3 and STAT3, red are both mutated, yellow 

only JAK3 and pink only STAT3 mutation/s present. Analysis was performed in cBioPortal and is 

publicly available. 

 

7.9 Discussion  

Colorectal cancer can be characterised numerous genomic alterations. Mutational profiling is an 

important tool for understanding tumour heterogeneity and drivers of oncogenesis. Recent advances in 

the field have identified point mutations and mutational signatures that provide prognostic 

information. Technologies such as NGS required for genomic profiling are not yet feasible for routine 

clinical practise due to costs and time-consuming protocols. Therefore, analysing mutation profiles in 

retrospective clinical specimens and investigating associations with clinicopathological characteristics 

and measures of tumour phenotype is valuable.  

Published studies have reported that presence of prominent CRC-associated mutations does affect 

tumour phenotype. For example, point mutations in WNT pathway members/β-catenin associate with 

reduced T cell infiltrates in the tumour microenvironment (TME) in CRC (168). Gain of function 

mutations in the TP53 gene are thought to modulate the TME in favour of increased stromal infiltrates 
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(169). KRAS mutations are associated with worse prognosis, and increased tumour proliferation 

(170).  

We firstly investigated if there was a mutational profile underlying the different phenotypes observed 

with GMS. Several genes were mutated at a higher frequency in each of the GMS groups. Immune 

GMS0 tumours were characterised by increased alterations in MSI genes, MSH2 and MLH6, and Akt 

signalling pathway member PTEN. These patterns are consistent with mutations observed in 

CMS1(171). GMS1 tumours exhibited higher frequencies of mutation in DAXX, HER2 and MTOR. 

The DAXX gene interacts with WNT pathway member β-catenin and is therefore linked to invasion 

and metastases(172). Stromally-dense GMS2 tumours showed profoundly high TP53 mutations with 

over 70% of patients having alterations in the TP53 gene. Interestingly, mutant p53 is known to 

modulate tumour-stroma crosstalk resulting in a pro-tumour TME via induction of unfavourable 

cytokines and chemokines(173). Given the differences in the underlying biology of each phenotype it 

could be hypothesised that GMS classifications could predict response to targeted therapies.  

In addition to investigating mutational landscape of each GMS phenotype, mutation patterns 

associated with STAT3 signalling were investigated. Evidence in the literature for a link between 

mutations in IL6-STAT3 signal transduction gene and CRC tumour phenotype is limited. JAK1 

mutations are strongly associated with MSI in multiple primary cancer sites and loss of function 

mutations are strongly linked to immune evasion (174). In non-small cell lung cancer (NSCLC), 

activating JAK2 and JAK3 mutations have been shown to regulate PDL1 expression and ultimately 

reduce response to chemotherapy (175). However, other studies have suggested mutations in the 

JAK2 gene may be of little clinical significance in the CRC setting (176). Here, we have shown a 

strong association between mutations in the pathway of interest (JAK1/2/3) and clinical features such 

as MMR status (p<0.001) and tumour subsite (p=0.001). Further research in a larger validation cohort 

is required, due to the small number of patients exhibiting a mutation in 1 or more JAK genes in this 

cohort (11.6% of patients). Further evidence to support this was found by analysis of the TCGA 

PanCancer Atlas CRC cohort with JAK mutated patients more likely to be MSI-H, however in the 

Glasgow cohort mutation was associated with higher clinical stage and this was not seen in the TCGA 

cohort. Analysis of the TCGA dataset suggested a stronger link between mRNA expression of STAT3 

and JAK1 than JAK2 or JAK3, similar to the observations made from protein (IHC) data from the 

Glasgow cohort.  

To date, only one study has investigated associations between tumour mutational landscape and 

pSTAT3tyr705 protein expression (177). In head and neck cancer patient specimens, no association 

between mutations, epigenetic modifications or copy number alterations and pSTAT3tyr705 protein 

expression was observed (15). The main aim of this chapter was to try to identify a pattern of 

mutations associated with aberrant STAT3 signalling in CRC. The pSTAT3tyr705 high and low groups 
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were defined using surv_cutpoint function of survminer in R studio with respect to CSS, which 

presents some limitations. Patients with a weighted histoscore near the cut off point for high/low 

expression may have similar underlying tumour biology. To pull out genomic differences underlying 

STAT3 activation it may be necessary to analyse only the patients at the extreme ends of either group, 

those observing the highest and lowest expression of pSTAT3tyr705. The continuous weighted 

histoscore variable could also be used to determine association between mutation landscape and 

activation of STAT3. Due to the number of patients included in the initial profiling, analysis of the 

full 2 high/low pSTAT3 tyr705 groups was deemed the most appropriate approach for the purposes of 

this chapter.  

Mutational profiling of stage I-IV CRC patients with high pSTAT3tyr705 protein expression showed 

APC, TP53 and KRAS were the most frequently mutated genes, reflective of patterns seen in the 

literature for CRC (178). However, a significant association between increased mutations in MAP2K4 

gene was observed in the hyper-activated STAT3 phenotypes. A link between MAPK and STAT3 

signalling has previously been identified in pancreatic, oral, and gastric cancers. Inhibition of STAT3 

in pancreatic ductal adenocarcinoma cell lines activated MAPK, which eventually led to reactivation 

of STAT3 despite consistent inhibitor treatment (179). Crosstalk between these pathways has been 

demonstrated via inhibition of ERK1/2 in oral cancer resulting in increased expression of 

pSTAT3tyr705 (180). In gastric cancer, activation of pro-tumour Neutrophils has been shown to occur 

via a STAT3-Erk1/2 cascade (181). This work coupled with observations from this study suggests 

dual targeting of STAT3 signalling and MAPK signalling should be investigated for solid tumours. In 

preclinical studies, dual inhibition utilising BRAF, MAK and ERK inhibitors with a JAK2 inhibitor in 

melanoma cell lines showed profound effects on inhibiting cancer growth (182).  

In addition to MAPK signalling, WNT signalling alterations were observed in a high proportion of 

patients with activated STAT3 (87.71%), and AMER1 mutations were significantly enriched in these 

patients (p=0.01). There is limited evidence in the literature of cross talk between these pathways and 

WNT signalling represents a relatively challenging pathway to therapeutically target (183). Upon 

copy number alteration analysis, WNT signalling pathway member RNF43 was observed to be 

amplified in pSTAT3tyr705 high patients. Mutations in the RNF43 gene associate with poor prognosis 

in CRC via enhancing tumour growth and promoting disease recurrence (184). Recent data from 

murine models have shown a reduction in tumour growth through the intestinal epithelium when mice 

were treated with porcupine inhibitors targeting RNF43 mutations (185). Combination treatment with 

porcupine inhibitors and JAK inhibitors in preclinical CRC models may represent an interesting 

therapeutic approach to jointly target WNT and STAT3 signalling.  

The results from this chapter show the presence of some differences in mutation patterns for each 

GMS group, and for high/low STAT3 activation phenotypes. Analysis of NGS mutation profiling in a 
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validation cohort is needed to corroborate these data. Further investigation is required to understand 

the significance of mutations in MAP2K4 and amplifications of RNF43 association with pSTAT3tyr705 

protein expression to determine if there is any clinical utility in dual targeting of both pathways. In 

addition to mutation patterns underlying each phenotype, analysis of the underlying transcriptome 

should also be investigated to determine gene expression profiles.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



304 
 

 

 

 

 

 

 

8. Investigating differential gene 
expression in relation to pSTAT3tyr705 

protein expression and Glasgow 
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8.1 Introduction 

Given our findings from chapter 3 that GMS phenotyping was highly prognostic and chapter 4/5/6 

that IL6/JAK/STAT3 signal transduction was associated with poor outcomes, here we aim to unravel 

any differences in the underlying transcriptome of these phenotypes. Colorectal cancer is associated 

with a variety of genetic alterations. Research has identified numerous differentially expressed genes 

between normal colon and tumour regions (186). Whole transcriptome bulk RNA sequencing was 

performed on 100 patient samples from the Glasgow combined CRC cohort utilising TempO-Seq 

profiling (BioSpyder Technologies, Carlsbad, CA, USA). This technique is highly specific and allows 

for RNA sequencing of formalin-fixed paraffin embedded tissue samples enabling easy profiling of 

retrospective patient cohorts (187). The aim of performing TempOSeq was to unravel any 

transcriptomic patterns associated with each GMS to investigate potential drivers of histological 

phenotype and therefore identify novel therapeutic targets for each GMS classification. Subsequent 

analysis included investigation of the transcriptome of pSTAT3tyr705 high/low protein groups with the 

aim of understanding mechanisms driving pathway hyperactivation and identification of potential 

candidates for dual therapeutic targeting. Probes for the full transcriptome were used enabling 

coverage of ~22000 genes in each sample. It was hypothesised that the underlying transcriptome of 

patients would be different between GMS phenotypic groups, and between patients with high and low 

pSTAT3tyr705 protein expression.  

8.2 Cohort characteristics  

A subgroup of the Glasgow combined cohort was included in the study with TempOSeq profiling 

performed on 100 patients. In this subset of the cohort the median survival time was 84.05 months. In 

terms of GMS, data were available for 87 patients with 36.7% of patients GMS0 immune, 32.2% 

GMS1 intermediate and 31.1% were classified as stromal-rich GMS2. The pSTAT3tyr705 protein status 

was available for 85 patients. There were 55.9% of patients categorised as high for pSTAT3tyr705 based 

on IHC data utilising the maxstat cut point of >33. Data were analysed in all 85 patients in the first 

instance and subsequently patients with the top 25 highest and lowest weighted histoscores were 

extracted and analysed separately. This was performed to remove any bias occurring due to patients 

scores falling near the threshold for low and high expression, allowing focus to be on the extremes of 

pSTAT3tyr705 expression.  

8.3 Generation of differentially expressed genes files and 

analytical plan  

TempOSeq assays and conversion from FastQ files was outsourced and performed by Bioclavis 

(Bioclavis Ltd, Glasgow, UK) to generate a raw gene counts file. Mahanolobis distance analysis 
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identified   potential patients’ outliers from the 100 patient samples. Raw counts files were 

normalised in R Studio (RStudio, Boston, MA, USA) by dividing the number of reads per gene by the 

total number of reads for the sample. Differential gene expression analysis was performed using 

DESeq2 in R Studio (RStudio, Boston, MA, USA) on scaled counts data to generate tables of 

differentially expressed genes in relation to GMS groups and pSTAT3tyr705 high/low groups. 

Significance was set to adjusted p (p.adj) <0.05 and log2 fold >1. Gene counts for IL6/JAK/STAT3 

pathway members were extracted and assessed for association with GMS and pSTAT3tyr705 IHC 

protein status in SPSS (IBM, NY, USA) via Kruskal Wallis non-parametric tests.  

 

8.4 Transcriptomics analysis of GMS groups  

Next, analysis of full transcriptomic data was performed relative to GMS groups to determine any 

differences in gene expression patterns underlying tumour histological phenotypes. GMS 

classifications were available for 96 of the 100 patients from the Glasgow combined cohort with 

TempOSeq gene profiling. After excluding 9 patient outliers, 87 were included in analysis. There 

were 36 GMS0 immune, 26 GMS1 intermediate and 25 GMS2 stromal patients. Principal component 

analysis and DESeq2 analyses was performed by Bioclavis (Bioclavis Ltd, Glasgow, UK). Principal 

component analyses revealed no clustering of gene expression relative to GMS groups (Figure 8.1).  
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Figure 8.1 PCA plot for GMS classifications. Unweighted principal component analysis plot 

showing gene clustering when patients were segregated into GMS0, GMS1 and GMS2 histological 

groups. GMS0 immune patients are represented by red points, GMS1 by green and GMS2 stromal-

rich tumours by blue coloured points.  

When DESeq2 differential gene expression analyses were performed there were no significantly 

differentially expressed genes when GMS0 was compared to all other patients (GMS1 and GMS2 

combined). When GMS1 was compared to all other patients there were 5 significantly differentially 

expressed genes identified; Free fatty acid receptor 2 (FFAR2), interleukin 1β (IL1β), Variable 

change X-linked (VCX), GRIA1and MAGEA6 at p.adj <0.05. When GMS2 gene profiles were 

compared to all other patients one significantly deregulated gene was identified, ADGR5. Raw gene 

counts for the significantly differentially expressed genes were extracted and added to an SPSS 

database. Box plots were constructed in SPSS (IBM, NY, USA) to visualise the expression profiles of 

significant genes relative to GMS groups on log base 10 scale.  

FFAR2 is activated by factors produced by the microbiota and signalling is linked to regulation of 

inflammatory processes and epigenetic modifications. In mouse models of colon cancer loss of 

FFAR2 is associated with influx of Neutrophils to the TME and promotion of tumourigenesis (188). 

Patients classified as GMS1 showed reduced expression of FFAR2 compared to GMS0/2 patients as 
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shown in box plot (Figure 8.2). Nonparametric Kruskal Wallis testing in SPSS confirmed significant 

difference in gene counts between groups (p=0.004).  

 

 

 

 

Figure 8.2 Expression of FFAR2 relative to GMS histological subtype. Box plot showing the raw 

gene counts of FFAR2 in GMS0, GMS1 and GMS2 histologically subtyped patients. Gene counts were 

obtained from full transcriptome sequencing performed by TempOSeq in a subset of the Glasgow 

combined cohort.  

IL1β is an inflammatory cytokine implicated in activating the NF-ĸB master regulator, and is 

associated with improved prognosis in CRC (189). Here, IL1β gene counts were higher in GMS0/2 

patients compared to GMS1 intermediate patients (Figure 8.3). Nonparametric Kruskal Wallis testing 

in SPSS confirmed significant difference in gene counts between groups (p=0.045). 
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Figure 8.3 Expression of IL1β relative to GMS histological subtype. Box plot showing the raw 

gene counts of IL1β in GMS0, GMS1 and GMS2 histologically subtyped patients. Gene counts were 

obtained from full transcriptome sequencing performed by TempOSeq in a subset of the Glasgow 

combined cohort.  

 

 

VCX is less well-characterised and has been reported to be rarely expressed in cancer with little 

evidence for its cellular function (190). In this cohort of CRC patients, expression of VCX was higher 

in GMS0 immune and GMS2 stromal patients than GMS1 patients. A box plot was constructed in 

SPSS to visualise the data (Figure 8.4). Nonparametric Kruskal Wallis testing in SPSS confirmed 

significant difference in gene counts between groups (p=0.003). 
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Figure 8.4 Expression of VCX relative to GMS histological subtype. Box plot showing the raw 

gene counts of VCX in GMS0, GMS1 and GMS2 histologically subtyped patients. Gene counts were 

obtained from full transcriptome sequencing performed by TempOSeq in a subset of the Glasgow 

combined cohort.  

 

Glutamate ionotropic receptor to AMPA type subunit 1 (GRIA1), is a neurotransmitter and growth 

factor that can activate cellular signalling pathways such as EGFR, and high mRNA expression 

correlates with reduced overall survival in basal-like bladder cancer (191). In this cohort of CRC 

patients, GMS0 immune and GMS2 stromal patients observed higher expression of the GRIA1 gene 

than GMS1 intermediate classified patients. A box plot was constructed to visualise these results 

(Figure 8.5). Nonparametric Kruskal Wallis testing in SPSS confirmed significant difference in gene 

counts between GMS groups in terms of expression of GRIA1 (p=0.026). 
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Figure 8.5 Expression of GRIA1 relative to GMS histological subtype. Box plot showing the raw 

gene counts of GRIA1 in GMS0, GMS1 and GMS2 histologically subtyped patients. Gene counts were 

obtained from full transcriptome sequencing performed by TempOSeq in a subset of the Glasgow 

combined cohort.  

 

 

Melanoma-associated antigen family A 6 (MAGEA6) acts as a ubiquitin ligase AMP-activated 

protein kinase (AMPK) and is overexpressed at both the mRNA and protein level in tumour cells of 

gastric cancer (192). Raw counts of the MAGEA6 gene were much higher than the other significantly 

differentially expressed genes. A box plot was constructed in SPSS using a logarithmic scale to 

visualise the raw gene counts of MAGEA6 for each GMS group (Figure 8.6). When DESeq2 analysis 

was performed there was a significant difference in expression of the gene between GMS1 and the 

other patients, however when nonparametric Kruskal Wallis testing was performed in SPSS this 

significant difference was not validated (p=0.207).  
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Figure 8.6 Expression of MAGEA6 relative to GMS histological subtype. Box plot showing the 

raw gene counts of MAGEA6 in GMS0, GMS1 and GMS2 histologically subtyped patients on a 

logarithmic scale. Gene counts were obtained from full transcriptome sequencing performed by 

TempOSeq in a subset of the Glasgow combined cohort.  

 

 

When the DE genes were analysed for interactions using STRING analysis, GRIA1 showed 

association with IL1β, which could be linked to FFAR2 via IL10 (Figure 8.7). There were no protein-

protein interactions that could be linked with MAGEA6 and VCX. Overrepresentation analysis 

(ORA) was performed using the enrichGO function in R studio (IBM, NY, USA). Only 2 of the 5 

genes analysed could be linked, and there was a strong inflammatory component which was identified 

through IL1β and FFAR2 as shown in cnet plot (Figure 8.8) and enrichment dot plot (Figure 8. ) (ad . 

p = 0.011). This suggests patients with GMS1 tumours have less immunogenic tumours than 

GMS0/GMS2 tumours.  
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Figure 8.7 String map of DE genes between GMS1 and GMS0/2. String interaction network 

diagram showing relationships between the differentially expressed genes between GMS1 compared 

to GMS0/2 groups from full transcriptional sequencing on a subset of the Glasgow combined cohort.  

 

 

 

 

 

 

 

 

 

Figure 8.8 Enrichment cnet plot for DE genes. Enrichment plot showing the network of processes 

linking the genes identified as differentially expressed between GMS1 and GMS0/2 groups. GMS1 

showed differential expression of genes associated with lipid storage, positive regulation of acute 

inflammatory response, IL8 production, regulation of cytokines involved in the immune response and 

chemokine production.   
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Figure 8.9 Enrichment dot plot for DE genes. Enrichment dot plot showing the network of 

processes linking the genes identified as differentially expressed between GMS1 and GMS0/2 groups 

(p=0.0114). 

8.4 Analysis of IL6/JAK/STAT3 pathway components 

relative to tumour phenotype  

 

Raw counts for the probes IL6_3341, JAK1_3463, JAK2_3466, STAT3_6829, IL6ST_17219 and 

IL6R_3341 were extracted from the full transcriptome data and analysed relative to pSTAT3tyr705 

high/low groups and GMS histological subtypes. A string interaction network plot was constructed 

using string version 11.0 (STRING consortium) to visually represent the pathway members being 

investigated (Figure 8.10). Pink lines linking genes show interactions which have been experimentally 

determined, green lines show interactions determined via textmining and blue lines linking genes 

show interactions confirmed from curated databases. IL6ST represents the gene that encodes for the 

gp130, which binds to IL6R to form the signal transduction complex.  
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Figure 8.10 String map of pathway members. String interaction network diagram showing pathway 

genes in TempOSeq panel.  

 

8.4.1 IL6/JAK/STAT3 RNA in pSTAT3tyr705 protein 

groups 

Patients were divided in into 2 groups based on IHC protein data for pSTAT3tyr705 and mean values for 

each pathway member probe were calculated for high/low groups. A bar chart was plotted in 

Microsoft Excel (Microsoft, Albuquerque, NM, USA) to visualise mean counts (Figure 8.11). Non-

parametric K independent Kruskal-Wallis tests were performed in SPSS version 22 (IBM, NY, USA) 

to determine any statistical differences between patients classified as high and low for pSTAT3tyr705 

tumour protein. Significance was set to α<0.05. No statistically significant differences were observed 

between counts from any gene and pSTAT3tyr705 groups (Figure 8.11). Independent T tests were also 

performed and no significant association between gene counts and pSTAT3tyr705 status were identified. 
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Figure 8.11 Pathway gene counts relative to pSTAT3tyr705 status. Bar chart showing mean raw 

gene counts for members of the IL6/JAK/STAT3 pathway for high and low pSTAT3tyr705 protein 

groups. Gene counts were obtained from full transcriptome sequencing performed by TempOSeq in a 

subset of the Glasgow combined cohort.  

 

8.4.2 IL6/JAK/STAT3 RNA in GMS histological groups 

Patients were then segregated into Glasgow Microenvironment Score histological groups. Kruskal 

Wallis non-parametric testing was performed in SPSS version 22 (IBM, NY, USA) and no significant 

differences in raw counts of any pathway probe were identified across GMS classifications. A bar 

chart was plotted in Microsoft Excel (Microsoft, Albuquerque, NM, USA) to visualise the data 

(Figure 8.12). One-way ANOVAs were performed in SPSS version 22 (IBM, NY, USA) and no 

significant differences were observed for any genes counts relative to GMS histological subtype.  
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Figure 8.12 Pathway gene counts relative to GMS. Bar chart showing mean raw gene counts for 

members of the IL6/JAK/STAT3 pathway for Glasgow Microenvironment Score groups. Gene counts 

were obtained from full transcriptome sequencing performed by TempOSeq in a subset of the 

Glasgow combined cohort.  

 

 

8.6 Transcriptomic profiles of pSTAT3tyr705 groups  

8.6.1 Full cohort of pSTAT3tyr705 patients  

There were 85 patients included in the TempOseq assay with pSTAT3tyr705 protein expression from 

IHC data in chapter 6. These 85 patients were extracted from the full cohort raw counts file and a 

sample sheet was built to align each patient with respective pSTAT3tyr705 high/low status. The counts 

and sample sheet files were loaded into R Studio (RStudio, Boston, MA, USA) and DESeq2 analysis 

was performed. There was some potential clustering of gene expression observed between 

pSTAT3tyr705 groups when principal component analysis was performed by Bioclavis (Bioclavis Ltd, 

Glasgow, UK) (Figure 8.13). Overall, there were no significantly differentially expressed genes 

between groups at p.adj <0.05 as shown in volcano plot constructed by Dr Gerard Lynch using ggplot 

in R Studio (RStudio, Boston, MA, USA) (Figure 8.14).  
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Figure 8.13 PCA plot for pSTAT3tyr705 classifications. Principal component analysis plot showing 

gene clustering when patients were segregated into high and low for protein expression of 

pSTAT3tyr705 groups. Gene counts were obtained from full transcriptome sequencing performed by 

TempOSeq in a subset of the Glasgow combined cohort.  

 

 

 

 

 

 

 

 

 

 

Figure 8.14 Volcano plot for full cohort based on pSTAT3tyr705 protein status. Differential gene 

expression analysis on the full cohort relative to pSTAT3tyr705 group shown in a Volcano plot. Gene 

counts were obtained from full transcriptome sequencing performed by TempOSeq in a subset of the 

Glasgow combined cohort.  
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8.6.2 Extremes of pSTAT3tyr705 patients  

The 85 patients included in the first step of pSTAT3tyr705 analyses contained some patients with 

protein scores close to the cut point of ≥33 for high/low expression. Given that no significantly 

differentially expressed genes were identified from analysis of the full 85 patients, analysis was 

conducted again focused on the top 25 highest and lowest IHC-based scores for pSTAT3tyr705, referred 

to as the cohort ‘extremes’. This results in 49 patients being included due to 3 patients having the 

same weighted histoscore, and 24 was deemed more appropriate than selecting 27 patients for one 

group. However again, there were no significantly differentially expressed gene identified between 

pSTAT3tyr705 groups as shown in volcano plot constructed by Dr Gerard Lynch (Figure 8.15).  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8.15 Volcano plot for full cohort based on extremes of pSTAT3tyr705 protein status. 

Differential gene expression analysis on the extremes (top 25 highest and lowest weighted histoscore) 

of pSTAT3tyr705 groups shown in a Volcano plot. Gene counts were obtained from full transcriptome 

sequencing performed by TempOSeq in a subset of the Glasgow combined cohort.  

8.7 Single sample Gene Set Enrichment Analysis  

8.7.1 Full cohort ssGSEA 

Analysis of differences in expression of single genes between pSTAT3tyr705 groups yielded no 

differential expression. Data were then analysed to determine if common cancer-associated pathways 

of genes were dysregulated specific to high/low pSTAT3tyr705 groups in the full cohort. Single sample 
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gene set enrichment (ssGSEA) was performed by Sidhir Malla and Dr Philip Dunne. The normalised 

gene counts file (by DESeq2) was transformed using the variance stabilising method in RStudio 

(RStudio, Boston, MA, USA) to obtain a vst matrix from the count’s matrix. A heatmap was 

constructed to visualise the top dysregulated pathways amongst the full 100 patients using heatmap.2 

in R Studio (RStudio, Boston, MA, USA) (Figure 8.16). Further downstream analysis was performed 

in the form of microenvironment cell populations counter (MCP) analysis to gain a measure of 

different types of infiltrating cell populations to the TME. A heatmap was constructed in R studio 

using heatmap.2 in RStudio (RStudio, Boston, MA, USA) to visualise the different cell populations 

abundance in the full 100 patients (Figure 8.17). These data are similar to what would be expected 

from a CRC cohort highlighting heterogeneity of gene expression in cancer-associated pathways and 

in the types of tumour-infiltrating cells. 
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Figure 8.16 Full cohort single cell gene set enrichment. Heatmap showing the patterns of gene 

expression of common cancer-associated pathways as measured by single cell gene set enrichment 

analysis for full the full cohort. Plot was constructed by Sidhir Malla. 
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Figure 8.17 Microenvironment cell populations counter analysis of the full cohort. Heatmap 

showing the patterns of gene expression used to determine infiltrating cell populations by MCP 

analysis in the full cohort. Plot was constructed by Sidhir Malla. 

 

 

Next, analysis was performed to determine if pathway gene set enrichment was associated with 

pSTAT3tyr705 protein groups. High and low pSTAT3tyr705 groups were overlayed onto a ssGSEA 

heatmap using ComplexHeatmap in R studio. No patterns of pathway dysregulation were associated 

with pSTAT3 status (Figure 8.18). Similarly, when MCP analysis was related to pSTAT3tyr705 protein 

status there were no patterns observed in terms of infiltrating cell population between groups (Figure 

8.19).  
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Figure 8.18 Full cohort single cell gene set enrichment overlayed with pSTAT3tyr705 status. 

Heatmap showing the patterns of gene expression of common cancer-associated pathways as 

measured by single cell gene set enrichment analysis for full the full cohort with each patients 

pSTAT3tyr705 protein status overlayed. Plot was constructed by Sidhir Malla. 
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Figure 8.19 Microenvironment cell populations counter analysis of the full cohort with 

pSTAT3tyr705 status overlayed. Heatmap showing the patterns of gene expression used to determine 

infiltrating cell populations by MCP analysis in the full cohort with pSTAT3tyr705 protein status 

overlayed. Plot was constructed by Sidhir Malla. 

 

8.6 Discussion  

Results from previous chapters have implicated a strong role for IL6/JAK/STAT3 signalling in CRC 

at the protein level particularly in GMS2 patients, and a profound association between GMS and 

cancer-specific survival. We therefore aimed to investigate IL6/JAK/STAT3 at the transcriptomic 

level in a sub cohort of CRC patients, and determine any patterns of underlying biology associated 

with GMS histological subtypes and STAT3 activation at the protein level.  

Genes included in the probe panel associated with IL6/JAK/STAT3 signal transduction included 

IL6_3341, JAK1_3463, JAK2_3466, STAT3_6829, IL6ST_17219 and IL6R_334. When raw counts 

were assessed, there was no association between gene counts of pathway members and GMS or 

pSTAT3tyr705 protein status. There were not enough patients included in the study to perform survival 
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analysis. We hypothesised that distinct gene expression patterns would be associated with driving 

tumour phenotype, specifically IL6/JAK/STAT3 genes and stromal-rich GMS2, however this was not 

observed in the subset of patients from the Glasgow combined cohort assessed. Interestingly, of the 

pathway genes assessed, IL6ST showed the highest expression amongst all patients, and the protein 

this gene encodes for (gp130) is currently under investigation for therapeutic targeting in preclinical 

models of CRC (193). 

When the full transcriptome was assessed for gene enrichment relative to GMS classification, there 

were 5 differentially expressed genes identified between GMS1 versus GMS0/2. Gene set ontology 

enrichment analysis suggested a strong inflammatory response link between the five genes, due to 

higher expression of IL1β and FFAR2 in GMS0/2 patients. These data suggest GMS1 patients may 

harbour an immune-related anomaly whereby there is dysfunction in production of cytokines, 

chemokines, and the acute response. However, this study is unpowered and future work should look 

to validate these findings in a larger cohort. Another factor to consider is the overlap in some 

phenotypic measures between GMS groups. For example, patients with a high KM grade are 

automatically assigned to the GMS0 group, however these patients may have a high or low stromal 

component to their tumours. Future analysis could include analysing the RNAseq data focused on the 

component histological scores of GMS (TSP and KM grade) in a larger cohort of patients.   

There are few studies in the literature which have looked to determine transcriptomic patterns 

associated with other measures of CRC tumour histology. Tumour budding is a histological score 

assessed from an H&E full section, which can be used to determine patient prognosis in CRC. Studies 

have investigated the underlying biology of budding phenotypes and found a strong correlation with 

KRAS mutations, β-catenin expression, and microsatellite stability (194, 195). Interestingly, when 

tumour budding was assessed in >1300 patient samples, budding was enriched in CMS4 patients 

(194). This study again emphasises the need for a larger cohort to be used when analysing the 

transcriptome of GMS groups in future work. In breast cancer, a recent novel study investigated if 

tumour morphology from an H&E section of breast cancer could be utilised to predict gene expression 

profiles (196). Of the 17, 695 genes assessed, 9334 were predicted by morphological assessment of 

H&E, as validated by matched RNA-sequencing(196). In multiple cancer types it is possible to infer 

MSI status from a routine H&E section based on a deep learning approach (197). Transcriptomic 

datasets from lung cancer patients have revealed genes involved in cell cycle regulation and 

nucleotide binding by KEGG pathway analysis can predict histological grade in terms of tumour 

differentiation(198). In the same study it was found that an algorithm built on features of histology 

such as cell size, shape and intensity distribution was able to significantly predict TP53 mutation 

status (198). A study by Kather et al published in 2020 collected data on over 5000 tumour types 

found that with they could predict 9 oncogenic drivers (APC, KRAS, TP53, BRAF, PIK3CA, 

KMT2B, KMT2D, BRCA1 and RNF43) and significantly predict CMS classification using an H&E 
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tumour section (199). Analysis of a significantly larger number of GMS-graded tumours 

transcriptome may tease out differences in the transcriptomic factors driving histological differences 

in each GMS, as previous studies have reported links between certain phenotypic measures and gene 

expression. 

After focussing on GMS histological subtypes, the full transcriptome was assessed relative to 

pSTAT3tyr705 protein groups. In the full cohort (n=85), there were no differentially expressed genes 

identified, and subsequently when the extremes of pSTAT3tyr705 high/low expression were selected 

there were still no significantly differentially expressed genes at padj <0.05. This could be due to the 

study being underpowered, and ultimately due to the heterogeneity of cancer a significantly larger 

cohort would be required to identify/validate any meaningful differentially expressed genes. The ratio 

of gene probes to samples may have also decreased the likelihood of identifying differential 

expression, therefore future work could include analysing the data using a more focused panel of 

CRC-associated genes to dilute out the lowly-expressed genes. For examples, gene profiles of 

pSTAT3tyr705 groups could be reanalysed after extracting the ~600 gene panel used to determine CMS. 

Principal component analysis highlighted some potential gene clustering between pSTAT3tyr705 

groups, however more patients should be included in further analyses to confirm this. Overall data 

from transcriptomics and pSTAT3tyr705 groups in this cohort preliminarily suggests that post-

translational modifications such as phosphorylation of STAT3 are of greater importance in driving 

cancer progression than the underlying transcriptome of phenotypes. This hypothesis is validated by 

data from a breast cancer study which found that the tumour transcriptome was not predicative of the 

tumour proteome, and in patients where there was concordance, there was a decrease in survival 

outcomes (200). Similarly, in CRC a study which assessed STAT3 and pSTAT3 at the protein and 

mRNA levels, there was no correlation between the measures, and only protein expression was 

significantly upregulated in tumour versus normal samples (201).  

Data from this chapter has identified 5 differentially expressed genes between GMS1 and GMS0/2 

and no differences in the underlying transcriptome of pSTAT3tyr705 high and low protein expressing 

patients. There are limitations to these data due to the limited number of patients included in the study 

and the low mean expression of genes, and therefore further research is needed to validate the 

findings. It appears that in the case of GMS and pSTAT3tyr705 protein status, post-translational 

modifications such as phosphorylation may be of more importance clinically. From prior chapters, 

STAT3 activation at the protein level associated with reduced CSS in GMS2 patients and inhibition 

represents a promising therapeutic target for CRC. This transcriptomics analysis has not identified any 

obvious pathways for dual targeting with IL6/JAK/STAT3 inhibition, however IL1β and FFAR2 

could be further assessed for any therapeutic potential given the association with GMS. 
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9.1 Introduction  

Small molecule inhibitors that block specific components of dysregulated cellular signalling pathways 

are increasingly used to treat inflammatory and autoimmune disorders. A promising therapeutic 

approach for CRC is repurposing of these inhibitors to target tumour progression.  

Data from the previous chapters could lead us to hypothesise that patients with GMS2 stromally-

dense tumours may benefit from blockade of IL6/JAK/STAT3 signal transduction. The aim of this 

chapter was to investigate the therapeutic potential of repurposed JAK family inhibitors; Ruxolitinib 

(JAK1/2) and Tofacitinib (JAK2/3). These small molecule inhibitors were FDA approved in 2012 and 

2011, respectively, to treat myelofibrosis and ulcerative colitis/rheumatoid arthritis(202, 203), and 

therefore this project will determine if they could potentially be repurposed for treatment of colorectal 

cancer.  

To determine the effect of JAK inhibition on cell viability of 7 CRC tumour cell lines, drug screening 

was performed and evaluated using WST-1 cell viability assays. An ELISA probing for pSTAT3tyr705 

was performed on cell lysates to ensure both inhibitors were on target for reducing STAT3 pathway 

activation. It is now widely accepted that 2D cell lines are relatively poor models of disease, therefore, 

to better recapitulate CRC in the clinic, patient-derived organoids (PDOs) were developed. This was 

particularly relevant for this study as the source of the ligand which activates the pathway (IL6) likely 

arises from components of the TME not present in 2D lines. The 3D tumour models were treated with 

Ruxolitinib and Tofacitinib and assessed for response via WST-assays and IF staining for makers of 

apoptosis (Caspase 8) and proliferation (Ki67). The original tumour block for each patient from which 

the organoids were derived were obtained from tissue archives and stained with H&E to determine 

histological subtype and ultimately map response to phenotype. Matched sections were also stained 

for Ki67 to determine phenotypic subtype and pSTAT3tyr705 to assess constitutive levels of pathway 

activation within the tumour. 

These experiments aimed to provide a step towards understanding the therapeutic potential of JAK 

inhibitors, for use in combination with standard of care chemotherapy. A secondary aim was to 

investigate if tumour phenotype could predict response to targeted inhibition of STAT3 signalling. It 

was hypothesised that inhibiting JAK2 would result in STAT3 blockade and cell death in CRC cell 

lines and additionally a reduction in proliferation and apoptosis in patients derived organoids. 
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9.2 Targeting IL6/JAK/STAT3 signalling in colorectal 

tumour cell lines 

9.2.1 Inhibitors of JAK1/2 and JAK2/3  

Two inhibitors of JAK/STAT3 signalling were selected for inclusion. Ruxolitinib is a potent inhibitor 

of JAK1 and JAK2 and was FDA approved in 2012 for the treatment of myelofibrosis (204). 

Tofacitinib inhibits JAK2 and JAK3 and gained FDA approval in 2011 for the treatment of 

inflammatory disorders including rheumatoid arthritis and ulcerative colitis. Repurposing of these 

drugs for the treatment of colorectal cancer in combination with standard of care chemotherapy, may 

represent a promising therapeutic option for a subset of patients. To confirm that inhibition of JAK1/2 

and JAK2/3 impact STAT3 activation, an ELISA was performed on SW620 cell lysates treated with 

0.01% DMSO vehicle control, 1mM Ruxolitinib (Abcam, Cambridge, UK), or 1mM Tofacitinib 

(Abcam, Cambridge, UK) for 72 hours to an n=3. Optical density was measured at 450nM using a 

TECAN plate reader (TECAN, AG, Switzerland). Data were analysed in Microsoft Excel (Microsoft, 

Washington, USA). A standard curve was plotted and a linear trendline equation utilised to determine 

the concentration of experimental samples in ng/ml. A box plot was constructed to visualise data, with 

10 times standard deviation error bars (Figure 9.1). Treatment with Ruxolitinib (p=0.077) and 

Tofacitinib (p= 0.062) trended towards reduced pSTAT3tyr705 protein compared to vehicle control. The 

mean concentration of pSTAT3tyr705 in vehicle control samples was 13.0ng/mL (+/-0.036), compared 

to 7.69ng/mL (+/-0.086) in Ruxolitinib-treated samples and 11.12ng/mL (+/-0.023) in Tofacitinib-

treated cells.  

 

Figure 9.1 pSTAT3tyr705 following JAK1/2/3 Inhibition in CRC lines. Box plot showing cell 

levels of pSTAT3tyr705 from cell lysates treated with 0.01% DMSO, 1mM Ruxolitinib or 1mM 

Tofacitinib over 72 hours with 10xSD error bars. Concentration of pSTAT3tyr705 was measured via 

ELISA and units are ng/ml. 
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Further testing for on target effects was performed by staining patient-derived normal and tumour 

explants for pSTAT3tyr705 via IHC. Representative images are shown in 9.2. Nuclear expression of 

pSTAT3tyr705 protein was weaker in both normal and tumour samples treated with Ruxolitlinib (C, F) 

and Tofacitinib (B, E) compared to vehicle control (A, D) (Figure 9.2).  

Figure 9.2 Representative images of tumour explants stained for pSTAT3tyr705 via IHC. 

Explants were grown from surplus CRC adjacent normal and tumour resection tissue cultured for 48 

hours in complete medium with 0.01% DMSO, 1mM Tofacitinib or 1mM Ruxolitinib. Explants were 

then fixed in formalin and embedded in paraffin blocks, cut and stained for pSTAT3tyr705 via IHC. 

Representative images of adjacent normal colon untreated (A), Tofacitinib treated (B) and Ruxolitinib 

treated (C) explants stained via IHC for pSTAT3tyr705. Representative images of tumour colon 

untreated (D), Tofacitinib treated (E) and Ruxolitinib treated explants (F) stained via IHC for 

pSTAT3tyr705. 
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9.2.2 Inhibiting JAK1/2 in CRC cell lines 

CRC cell lines were available through the American Type Culture Collection (ATCC) or provided by 

other research groups within the University of Glasgow and the CRUK Beatson institute. Cells were 

grown according to standard aseptic culture conditions provided by ATCC. Mutational profiles, MSI 

status and CMS classification based on transcriptomic profiles of each cell line are shown in Table 

9.1(11, 205). There were 3 cell lines characterised as CMS1: COLO205, DLD1 and SW48. 

COLO205s have APC, TP53 and BRAF mutations and are microsatellite stable. DLD-1s have 

microsatellite instability and mutations in APC, TP53, KRAS, BRCA2 and PIK3CA. SW48s are MSI 

and observe mutations in APC, BRCA2 and PIK3CA genes. T84 cell lines are categorised as CMS2, 

MSI and have mutations APC, TP53 and KRAS.  HT29 cells are generally MSS, CMS3 and have 

mutations in APC, TP53 and BRAF. There were 3 cell lines available categorised as CMS4: SW620, 

SW480 and HCT116. SW620 and SW480 cells are MSS with mutations in APC, TP53 and KRAS. 

HCT116 cells are MSI with mutations in KRAS, BRCA2 and PIK3CA. Utilising these cell lines 

allowed for investigation of response to JAK inhibitors in a wide variety of genotypes and cellular 

phenotypes.  

Cell line CMS Mutation profile MSI Status 

COLO205 1 APC, TP53, BRAF MSS 

DLD-1 1 APC, TP53, KRAS, BRCA2, 

PIK3CA 

MSI 

SW48 1 APC, BRAC2, PIK3CA MSI 

T84 2 APC, TP53, KRAS MSS 

HT29 3 APC, TP53, BRAF MSS 

SW620 4 APC, TP53, KRAS MSS 

SW480 4 APC, TP53, KRAS MSS 

HCT116 4 KRAS, BRCA2, PIK3CA MSI 

Table 9.1 Mutational profile and characteristics of CRC cell lines. Table showing mutational, 

CMS and MSI status of CRC cell lines based on characterisation from previous studies.  

As a step towards understanding if inhibiting JAK1/2 or JAK2/3 could be therapeutically beneficial 

WST-1 assays were performed to determine the percentage of viable cells following treatment with 

Ruxolitinib and Tofacitinib relative to controls. Standard of care chemotherapeutic agent 5FU was 

used a positive control. Cells were seeded in triplicate and an n=3 for each condition in 96 well plates 

according to appropriate densities calculated during optimisation experiments. Treatments were 

applied 24 hours after seeding and WST-1 cell viability assays were performed at 48-, 72-, or 96-

hours post-treatment. Optical density was measured at 450nM using a TECAN plate reader (TECAN, 

AG, Switzerland). Data were normalised to vehicle control in Microsoft Excel (Microsoft, 
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Washington, USA) and statistically analysed by paired T-tests comparing treatment group with 

vehicle control. Significance was set to α≤0.05. Representative light microscopy images of a subset of 

lines; COLO205 (A), HT29 (B) and HCT116 cells (C) treated with media control, vehicle control and 

1mM Ruxolitinib and 1mM Tofacitinib, are shown in Figure 9.3. 

 

 

Figure 9.3 CRC Cell lines treated with JAK inhibitors. Representative light microscopy 

images from a selection of CRC cell lines utilised in this study including COLO205 (A) , HT29 (B), 

and HCT116 (C) cells treated with 0.1% DMSO vehicle control, 1mM Ruxolitinib or 1mM Tofacitinib 

for 48 hours. 

 

Analysis of WST-1 assay data from cells treated with Ruxolitinib data was performed and a box plot 

was constructed to visualise the results (Figure 9.4). The percentage of viable DLD-1 cells was 

significantly reduced when treated with 1mM Ruxolitinib versus vehicle control at 48- (p=0.006), 72- 

(p=0.005) and 96 hours post-treatment (p=0.023) (Figure 9.4).  There was no significant difference in 

DLD-1 cell viability between vehicle control and any other Ruxolitinib doses at any time point 

(Figure 9.4). The percentage of viable COLO205 cells was significantly reduced following 1mM 
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Ruxolitinib treatment compared to vehicle control at 48- (p=0.011) and 96 hours post treatment 

(p=0.034). HCT116 cells treated with 1mM Ruxolinitib showed significant reduction in viability 

compared to vehicle control at 96- hours post-treatment (p=0.009) (Figure 9.4). A significant 

reduction in HCT116 cell viability was also observed at 100µM (p=0.011) and 10µM (p=0.018) at 96 

hours post treatment. There was a significant reduction in cell viability of HT29 cells when treated 

with Ruxolitinib at 1mM for 48 hours (p=0.037) and this was potentiated at 96 hours post-treatment 

(p=0.0009) (Figure 9.4).  In terms of SW620 cells, treatment with 1mM Ruxolitinib significantly 

reduced cell viability compared to vehicle control 48 hours post-treatment (p=0.0007) (Figure 9.4). A 

significant difference between vehicle and drug treatment was also observed in SW620 lines for 

10µM (p=0.05) and 1mM Ruxolitinib (p=0.0055) 96 hours after treatment (Figure 9.4). The vehicle 

control sample from the SW620s yielded low cell viability and this assay should be repeated in future 

work. There was a significant reduction in cell viability of T84 cells when treated with Ruxolitinib at 

1mM (p=0.0052) and 100µM (p=0.0075) 96 hours post-treatment (Figure 9.4). SW480 cells treated 

with 1mM Ruxolitinib observed a significant reduction in percentage of viable cells compared to 

vehicle control at the 48-hour time point (p=0.009) (Figure 9.4). Finally, SW48 cells also showed 

significantly reduced viability at 48 hours post treatment with 1mM Ruxolitinib compared to vehicle 

control (p=0.037) (Figure 9.4). Collectively these data suggest that Ruxolitinib is effective at killing 

most CRC tumour cell lines, but at a dose not clinically relevant (1mM). The only cell lines to 

respond to Ruxolitinib at a lower, more promising concentration wereCMS4 lines SW620 and 

HCT116, which supports our hypothesis that inhibiting IL6/JAK/STAT3 signalling would be most 

beneficial in patients with stromal-rich tumours. Data from the 2 cell lines (HCT116, SW620) which 

showed the most promising response following treatment with Ruxolitinib were extracted and plotted 

on another bar chart (Figure 9.5).  
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Figure 9.4 Cell Viability following JAK1/2 Inhibition in CRC lines. Box plot showing cell 

viability normalised to media control of CRC cell lines treated with 0.01% DMSO, 100nM, 1µM, 

10µM, 100µM and 1mM Ruxolitinib over at least two time points from 48-, 72- and 96- hours.  
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Figure 9.5 Cell Viability following JAK1/2 Inhibition in CMS4 CRC lines which showed 

a response. Box plot showing cell viability normalised to media control of CRC cell lines which 

showed a response to treatment with Ruxolitinib at 96- hours post-treatment. Paired t-tests were 

utilised to determine any significant differences between vehicle control and treated samples with 

p<0.05 set as the threshold for significance.  

 

Next, data from WST-1 assays of CRC cell lines treated with JAK2/3 inhibitor Tofacitinib were 

analysed via paired T-tests and visualised in a bar chart (Figure 9.6). DLD-1s observed a significant 

reduction in cell viability following Tofacitinib treatment at 96 hours at 1mM (p=0.024) and 1µM 

(p=0.04). There was no significant effect on COLO205 cell viability following Tofacitinib treatments. 

In HCT116 cells, 48 hours post Tofacitinib treatment no significant effects on cell viability were 

observed. However, at 72 hours post treatment HCT116 cells treated with 1mM Tofacitinib had a 

significant reduction in viability compared to vehicle control (p=0.04). This was potentiated at 96 

hours when Tofacitinib was successful at reducing the percentage of viable cells at 1µM (p=0.0096), 

100µM (p=0.011) and 10µM (p=0.018) compared to vehicle control. HT29 cells treated with 1mM 

Tofacitinib had significant reduction in percentage of viable cells at 48 hours (p<0.0001) and 96 hours 

(p=0.02) post treatment compared to vehicle control. There were no significant effects of Tofacitinib 

treatment on percentage of viable SW620 cells at any time point. Cell viability of T84 cells was 

significantly reduced compared to vehicle control treated cells at 96 hours but only at 100nM 

Tofacitinib (p=0.03). Interestingly, the viability of SW480 cells was significantly reduced compared 

to vehicle control at 48 hours post treatment with 1mM (p=0.014), 100µM (p=0.041), 1µM (p=0.023) 

and 100nM (p=0.001) Tofacitinib. There was no significant difference in percentage of viable SW48 

cells between any dose of Tofacitinib and vehicle control at 48 hours. Overall, akin to the 

observations with JAK1/2 inhibition, CMS4 cell lines (SW480 and HCT116) showed the most 
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promising response to treatment with Tofacitinib. HCT116 and DLD-1 cell viability data at 96 hours 

post Tofacitinib treatment, and SW480 at 48 hours were plotted on bar chart to enable easier 

visualisation of the significant responses to drug treatment (Figure 9.7).  
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Figure 9.6 Cell Viability following JAK2/3 Inhibition in CRC lines. Box plot showing cell 

viability normalised to media control of CRC cell lines treated with 0.01% DMSO, 100nM, 1µM, 

10µM, 100µM and 1mM Tofacitinib over at least two time points from 48-, 72- and 96- hours.  
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Figure 9.7 Cell Viability following JAK1/2 Inhibition in CMS4 CRC lines which showed 

a response. Box plot showing cell viability normalised to media control of CRC cell lines which 

showed a response to treatment with Tofacitinib at 96- hours/48 hours post-treatment. Paired t-tests 

were utilised to determine any significant differences between vehicle control and treated samples 

with p<0.05 set as the threshold for significance.  

 

 

9.3 Targeting IL6/JAK/STAT3 signalling in patient-

derived tumour organoids 

9.3.1 Derivation and characterisation of patient-derived 

organoids  

Due to the importance of the tumour microenvironment being increasingly recognised, it is now 

accepted within the field of cancer research that 2D cell lines are not the gold standard for modelling 

patient disease, and there is a move towards 3D tumour models which better recapitulate CRC. 

Patient-derived organoids (PDOs) are spheres of mixed populations of cells derived from tumour 

resections and/or biopsies. The 3D nature of PDOs and heterogeneity results in a more representative 

model of patient disease than 2D cell lines. Therefore, PDOs were utilised in this project to build on 

the 2D cell line experiments and test the efficacy of JAK inhibitors in a more robust, clinically 

relevant way.  

For the purposes of this project a method to grow CRC PDOs directly from Greater Glasgow and 

Clyde surplus patient tissue was developed and optimised. Collaboration with Dr Chao Wu and Mr 
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Josh Smith at Memorial Sloan Kettering, New York and Dr Kevin Myant at the University of 

Edinburgh enabled translation of protocols to the University of Glasgow. This resulted in the 

establishment of 7 organoid lines. Additionally, there were 5 PDO lines available from the Sanger 

centre array, provided by Professor Sansoms laboratory at the Cancer Research UK Beatson Institute.  

 Given the hypothesis that patient with GMS2 tumours is the group with the most potential for 

therapeutic inhibition of IL6/JAK/STAT3 signalling, the original donor tissue resection blocks were 

requested and pulled by the Glasgow Tissue Research Facility. An H&E section was utilised to 

determine GMS of each of the Sanger and Glasgow lines.  The tumour resection block from the cases 

Sanger organoids were derived from were requested from NHS GGC and provided by Glasgow 

Tissue Research Facility. H&E staining was performed by Glasgow Tissue Research Facility. Ki67 

IHC staining was performed by KP. Resections were scored for KM grade, TSP and Ki67 

proliferation index. There were 2 GMS0, 2 GMS1 and 1 GMS2 patient in the Sanger cases (Table 

9.2). In terms of phenotypic subtype, there were 2 immune cases, 1 canonical, 1 latent and 1 stromal 

patient (Table 9.2). Sections were also stained for pSTAT3tyr705 via IHC with representative images 

shown in figure 9.8. Sanger31, 37 and 25 showed some positive staining for pSTAT3tyr705, whereas 

Sanger13 and 41 showed no positive staining for pSTAT3tyr705.   

 

 

Table 9.2 Histological subtypes of Sanger organoid patients. Table showing GMS classification 

and phenotypic subtypes assigned to Sanger case organoids as determined by histological scoring of 

a matched full tumour section from the same patient.  
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Figure 9.8 IHC staining of Sanger cases for pSTAT3tyr705. Representative images of IHC 

staining for pSTAT3tyr705 of Sanger case tumour resections, with Sanger 13 (A), Sanger 31 (B), Sanger 

37 (C), Sanger 25 (D) and Sanger 41 (E).  

 

The tumour resection blocks for patients from which Glasgow organoids were derived were pulled by 

Glasgow tissue research facility and stained with H&E and for Ki67 via IHC. GMS and phenotypic 

subtyping were determined with data shown in Table 9.3. There were 2 patients classed as GMS0, 4 

patients as GMS1 and 1 patient was classed as GMS2. In terms of phenotypic subtype, there were 2 

immune patients, 2 canonical, 2 latent and 1 patient assigned to the stromal subtype. Tumour 

resections were also stained for pSTAT3tyr705 via IHC and representative images for each patient are 

shown in figure 9.9. The highest expression of pSTAT3tyr705 was observed in patient BB200040. 

Positive staining was observed in the other cases except for BB200534.  
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Table 9.3 Histological subtypes of Glasgow organoid patients. Table showing GMS classification 

and phenotypic subtypes assigned to Glasgow case organoids. Histological scoring was performed on 

full face sections from the patients from which the organoids were derived.  

Figure 9.9 IHC staining of Sanger cases for pSTAT3tyr705. Representative images of IHC 

staining of original Glasgow cases tumour resections for pSTAT3tyr705.   

CMS classification and mutational profiles were available for Sanger samples, as outlined in table 9.4. 

Patients 13 and 37 were CMS2, 25 and 41 were CMS3 and 31 was CMS4 (Table 9.4) giving a range  
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of molecular subtypes. All patients observed mutation in APC and all patients except Sanger41 also 

had mutations in the TP53 gene (Table 9.4). For the Glasgow patient-derived samples transcriptomics 

and mutational profiles were not yet available. 

 

Table 9.4 Sanger organoid mutational profiles and CMS classifications. Table outlining the CMS 

classifications assigned to each case of the Sanger organoids included in the stud as previously 

performed by the Sanger centre.  

9.3.2 Inhibiting JAK proteins in CRC tumouroids  

Prior to drug screening assays, organoids were analysed for the presence of a mixed population of cell 

types. IF staining for epithelial cell adhesion molecule-1 (EpCAM1) was utilised to confirm the 

presence of an epithelial tumour component and staining for α-smooth muscle actin (α-SMA) was 

utilised to confirm a stromal component to the PDOs.  

Subsequently, drug screening of JAK inhibitors Ruxolitinib and Tofacitinib was performed in a 

similar manner to the WST-1 assays in 2D CRC cell lines. PDOs were plated in 5uL domes in 96 well 

plates, with treatment conditions set up in duplicate or triplicate based on availability of cells. Images 

were taken at 72-hours post-treatment with a Zeiss light microscope at x20 magnification. WST-1 

reagent was added 72 hours post treatment and optical density was measured at 450nM using a 

TECAN Infinite PRO plate reader (TECAN, AG, Switzerland). Absorbance data for each treatment 

were averaged and normalised to vehicle control. Paired T-tests were performed in Microsoft Excel 

(Microsoft, Washington, USA) to compare each treatment to vehicle control. Statistical significance 

was set to α=0.05.  

Representative images of Sanger 31 organoids stained via IF for EpCam1 and α-SMA are shown in 

Figure 9.10 (A) indicating the presence of tumour epithelial cells and stromal cells. This provided 

evidence that the Sanger 31 PDOs were good models of disease and therefore drug screening of JAK 

inhibitors was proceeded with. Light microscope representative images taken 72 hours post-treatment 

shows healthy Sanger31 organoids in the vehicle control sample (Figure 9.10 (B)). PDOs treated with 

10µM Ruxolitinib or 10µM 5FU show necrotic cores and dead cells (Figure 9.6 (B)). The morphology 

Sanger ID CMS Driver mutations 

13 2 APC, TP53, KRAS, FBXW7, PCBP1, CHD4, LRP1B 

25 3 APC, TP53, KRAS 

31 4 APC, TP53, BCL9L 

37 2 APC, TP53, FBXW7, CHD4, MAPK1, CCDC169, SOHLH2 

   

41 3 APC, SOX9, SMAD2, MAP2K1, KMT2B, STRN, PIK3CB 
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of organoids treated with 1mM Tofacitinib was similar to that of the control samples (Figure 9.6 (B)). 

Immediately after light microscope images were taken, WST-1 assays were performed to assess the 

percentage of viable cells in each condition. A bar chart was plotted in Microsoft Excel to visualise 

absorbance data from WST-1 data (Figure 9.10 (C)). There was a significant reduction in the 

percentage of viable cells following treatment with 10µM Ruxolitinib (p=0.015) and 10µM 5FU 

(p=0.003) (Figure 9.10 (C)). No significant difference in the percentage of viable cells was observed 

between vehicle control and cells treated with 10µM Tofacitinib. IF staining was utilised to 

investigate the effects of Ruxolitinib on apoptosis and proliferation of PDOs. The percentage nuclei 

positive for Ki67 was reduced following treatment with 1mM Ruxolitinib compared to samples 

treated with 0.01% DMSO, as seen in representative images (Figure 9.10 (D)). Ruxolitinib-treated 

samples also showed a profound increase in expression of mid-phase apoptosis marker caspase-8 

compared to vehicle control as shown in representative images (Figure 9.10 (D)). These data were 

interesting as Sanger 31 was graded GMS2, stromal phenotypic subtype and CMS4, which supported 

the hypothesis that stromal-rich tumour would respond to JAK inhibition. 

 

 

 

 



344 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.10 Drug screening of JAK inhibitors in Sanger 31. Representative images showing 

IF staining for characterisation of tumour cells (EpCam1) and stromal cells (α-SMA) within 

Sanger31 PDOs (A). Representative light microscopy images showing Sanger13 organoids 72 hours 

post media control, 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 5FU treatment (B). Box 

plot showing % of viable cells normalised to media control of CRC cell lines treated with 0.01% 

DMSO (C). Representative images of IF staining for Ki67 proliferation marker and Caspase8 

apoptosis marker in Sanger31 PDOs treated with vehicle control or 1mM Ruxolitinib (D).  
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Next, Sanger 37 PDOs were utilised for investigation into therapeutic potential of JAK inhibition in 

CRC. Representative images of tumour and stromal cell characterisation of Sanger37 organoids are 

shown in Figure 9.11 (A). This IF staining confirmed the presence of a mixed population of cells and 

therefore drug screening and WST-1 cell viability assays were subsequently performed. A bar chart 

was plotted in Microsoft Excel (Microsoft, Washington, USA) to visualise the effects of each 

treatment on the percentage of viable cells (Figure 9.11 (B)). There was a significant reduction in cell 

viability following addition of 1mM Ruxolitinib to cultures at 72 hours post treatment (p=0.049). 

There was no significant difference between vehicle control sample viability compared to Tofacitinib 

or 5FU-treated specimens, however there was a trend towards reduced viability in the 5FU-treated 

PDOs (p=0.08) (Figure 9.11 (B)). To investigate the effects of Ruxolitinib treatment further, PDOs 

were stained for Ki67 to assess proliferation and Caspase 8 to look for signs of apoptosis. Vehicle 

control samples were negative for caspase 8 and high for nuclear Ki67 expression (Figure 9.11 (C)). 

In contrast, PDOs treated with 1mM Ruxolitinib had high expression of caspase-8 and lower 

expression of nuclear Ki67 (Figure 9.11 (D)). Sanger 37 was classified as GMS0, Immune, so it 

would have been hypothesised that this patient would likely not benefit most from treatment with 

Jakinibs.  
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Figure 9.11 Drug screening of JAK inhibitors in Sanger 37. Representative images of IF-

stained Sanger37 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability following 

treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU (B). Representative 

images of IF staining for Ki67 proliferation marker and apoptosis marker Caspase 8 in Sanger 37 

PDOs treated with vehicle control or Ruxolitinib.  

Sanger 25 PDOs highly expressed both EpCam1 and α-SMA when stained via IF (Figure 9.12 (A)). A 

bar chart was plotted to visualise data from cell viability assays investigating the effects of inhibiting 

JAK1/2 and JAK2/3 (Figure 9.12 (B)). Paired t-tests were performed to analyse data from the WST-1 
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assay, which indicated a significant reduction in the percentage of viable cells following treatment 

with 1mM Ruxolitinib (p=0.034) compared to vehicle control (Figure 9.12 (B)). There was no 

significant effect on cell viability following Tofacitinib or 5FU treatment, however there was a trend 

towards reduced viability in the 5FU PDOs (p=0.095). To investigate the effects of Ruxolitinib in 

more detail, treated PDOs were stained via IF for markers of proliferation (Ki67) and apoptosis 

(caspase 8).  PDOs treated with Ruxolitinib showed increased expression of caspase 8 compared to 

vehicle control (Figure 9.12 (C)). There was no tangible difference in expression of proliferation 

marker Ki67 between PDOs treated with vehicle control and Ruxolitinib, with both moderate nuclear 

positively observed for both conditions, suggesting inhibiting JAK1/2 in this PDO line did not affect 

cell proliferation (Figure 9.12 (C)). When graded histologically Sanger 25 was assigned to the GMS1 

and canonical phenotypic subtype groups, and therefore a strong response to JAK inhibition would 

not have been predicted as the tumour was not deeply infiltrated with stroma.  
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Figure 9.12 Drug screening of JAK inhibitors in Sanger 25. Representative images of IF-

stained Sanger25 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability following 

treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU (B). Representative 

images of IF staining for Ki67 proliferation marker and apoptosis marker Caspase 8 in Sanger 25 

PDOs treated with vehicle control or Ruxolitinib.  
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Next Sanger 13 was assessed via IF for expression of EpCam1 and α-SMA. PDOs showed moderate 

expression of both markers confirming the presence of a mixed population of tumour and stromal 

cells (Figure 9.13 (A)). To assess the percentage of viable cells following treatment of PDOs with 

1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU a WST-1 assay was performed to n=3. A bar chart 

was plotted to visualise the percentage of viable cells in each treatment group (Figure 9.13 (B)). There 

was no significant difference in cell viability of PDOs treated with Ruxolitinib, Tofacitinib or 5FU 

compared to 0.01% DMSO vehicle control (Figure 9.13, B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13 Drug screening of JAK inhibitors in Sanger 13. Representative images of IF-

stained Sanger13 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability of Sanger 13s 

following treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU (B).  

 

Sanger 41 PDOs were stained via IF for EpCam1 and α-SMA to investigate the cellular populations 

present. Representative images of tumour (EpCam1) and stromal (α-SMA) cells are shown in Figure 

9.14 (A). Compared to other Sanger cases, expression of both markers was weaker, however some 
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positive staining was observed. A WST-1 cell viability assay was performed to assess response to 

1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU treatments. A bar chart was plotted to visualise the 

percentage of viable cells in each treatment group (Figure 9.14 (B)). Paired T tests were performed to 

compare vehicle control viability to treatment groups and no statistically significant differences were 

observed at α=0.05.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.14 Drug screening of JAK inhibitors in Sanger 41. Representative images of IF-

stained Sanger41 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability of Sanger41s 

following treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 5FU (B).  

 

Following experiments conducted on of Sanger organoid lines, PDOs derived from Glasgow patient 

surplus tissue were assessed. Staining for EpCam1 and α-SMA via IF confirmed organoids derived 

from patient resection tissue BB200040 consisted of a mixed population of tumour and stromal cells. 

Representative images are shown in Figure 9.15 (A). Subsequently cell viability was assessed via 

WST-1 assays following treatment with 10µM Ruxolitinib, 10µM Tofacitinib and 10µM 5FU. Light 

microscopy images were taken 72 hours post treatment and representative images are shown in Figure 

9.15 (B). PDOs treated with complete media and 0.01% DMSO vehicle control observed a healthy 

morphology at 72 hours. Ruxolitinib and 5FU treated samples appeared dead and necrotic with dark 

centres (Figure 9.15 (B)). The morphology of Tofacitinib treated samples was similar to that of the 
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media control (Figure 9.15 (B)). Interestingly, at n=3, there was no difference in cell viability 

following WST-1 assay between media control and Ruxolitinib, Tofacitinib or 5FU treated PDOs via 

paired T-tests. A bar chart was plotted using Microsoft Excel (Microsoft, Washington, USA) to 

visualise the data (Figure 9.15 (C)).  

Organoids derived from Glasgow patient tissue BB200099 were established and stained for Epcam1 

and α-SMA. Representative images are shown in Figure 9.16 (A), with positive staining observed for 

both markers indicating the presence of tumour and stromal calls (Figure 9.16 (A)). Drug screening 

with JAK inhibitors Ruxolitinib and Tofacitinib was performed only to an n=1 at a concentration of 

10µM, therefore no statistical testing was performed. Light microscopy images were taken 72 hours 

post-treatment. Representative images of control and vehicle treated organoids show healthy cells 

(Figure 9.16 (B)). Ruxolitinib and Tofacitinib treated PDOs had similar morphology to control 

samples (Figure 9.16 (B)). The PDOs treated with 5FU appeared to be dead and much smaller in size 

(Figure 9.16 (B)). A bar chart was plotted to visualise the WST-1 data, 5FU-treated PDOs had a lower 

percentage of viable cells compared to vehicle control, and the same was observed for Ruxolitinib 

treatment, albeit to a lower extent (Figure 9.16 (C)).   
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Figure 9.15 Drug screening of JAK inhibitors in Glasgow BB200040. Representative 

images of IF-stained BB200040 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability 

of BB200040 following treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 

5FU (B).  
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Figure 9.16 Drug screening of JAK inhibitors in Glasgow BB200099. Representative 

images of IF-stained BB200099 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability 

of BB200099 following treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 

5FU (B).  
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The PDOs established from BB190240 were grown and then stained via IF for EpCam1 and α-SMA 

to assess tumour and stromal compartments, respectively. Representative images of staining are 

shown in Figure 9.17 (A). Drug screening was performed to investigate the effect of JAK inhibitors 

on PDO cell viability. Representative images of light microscope images are shown in Figure 9.17 

(B). From these images, control, and vehicle control PDOs appear healthy and had similar 

morphologies 72 hours post-treatment. However, 10µM Ruxolitinib and 10µM 5FU samples had dark 

cores and membrane blebbing indicating cell death. The 10µM Tofacitinib-treated PDOs appeared 

similar in morphology to both control samples. A WST-1 assay was used to measure cell viability 72 

hours post-treatment. A bar chart was plotted in Microsoft Excel (Microsoft, Washington, USA) to 

visualise the percentage of viable cells in each treatment group (Figure 9.17 (C)). Paired T-tests were 

performed to determine any statistical difference between vehicle control and drug-treated groups and 

no difference were observed at α 0.05. The dose of JAK inhibitors used in this experiment was only 

10µM as opposed to the 1mM utilised when treated Sanger organoids. This was used as it was felt to 

be a more clinically relevant dose, however response in terms of reduction in cell viability was not as 

evident at this lower concentration.  
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Figure 9.17 Drug screening of JAK inhibitors in Glasgow BB190240. Representative 

images of IF-stained BB190240 PDOs for EpCam1 and α-SMA (A). Bar chart showing cell viability 

of BB190240 following treatment with 0.01% DMSO, 1mM Ruxolitinib, 1mM Tofacitinib and 1mM 

5FU (B).  
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Figure 9.18 Characterisation and pilot screening of JAK inhibitors in Glasgow 

BB200534. Representative images of IF-stained BB200534 PDOs for EpCam1 and α-SMA (A). 

Light microscope images of PDOs treated with 0.01% DMSO, 10µM Ruxolitinib, or 10µM Tofacitinib 

taken at x40 objective magnification.   

Developing the method to grow patient-derived organoids directly from patient tissue was a 

challenging and time-consuming process, and some pilot experiments were not successful through to 

full cell viability assay. PDOs from BB200534 were characterised and showed positive staining for 

tumour cells via EpCam1 and stromal cells via α-SMA (Figure 9.18 (A)). Although for this patient 

sample WST-1 assay data was not available, light microscope images revealed distinct difference in 

morphology between PDOs treated with 0.01%DMSO vehicle control and 10µM Ruxolitinib (Figure 

9.18 (B)). Inhibiting JAK1/2 visually appeared to kill cells as PDOs formed a dark necrotic core. 

There was no morphological difference observed between Tofacitinib treated cells and vehicle control 

(Figure 9.18 (B)). Similarly, organoids derived from BB190614 were characterised for α-SMA 

expression via IF and light microscope images were taken to visually assess response to the JAK1/2 

inhibitor Ruxolitinib (Figure 9.19 (A-B)). PDOs treated with control media and 0.01% DMSO 

appeared healthy at 72 hours but those treated with 10µM Ruxolitinib or 10µM 5FU appeared 

fragmented and as if undergoing cell death (Figure 9.19 (B)). Two PDO samples were characterised 

but did not proceed to drug screening assays. BB200154 and BB200011 showed modest expression of 

EpCam1 and α-SMA when stained via IF and representative images are shown in Figure 9.20.  
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Figure 9.19 Characterisation and pilot screening of JAK inhibitor in Glasgow 

BB190614. Representative images of IF-stained BB190614 PDOs for α-SMA (A). Light microscope 

images of PDOs treated with media control, 0.01% DMSO, 10µM Ruxolitinib, or 10µM Tofacitinib 

taken at x40 objective magnification.   
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Figure 9.20 Characterisation of Glasgow PDOs. Representative images of IF-stained 

BB200154 and BB200011 PDOs for EpCam1 and α-SMA.  

9.5 Discussion  

IL6/JAK/STAT3 signalling is dysregulated in CRC. Inhibiting signal transduction represents a 

promising therapeutic strategy for improving CRC survival outcomes in a subset of patients. Protein 

data from chapter 4 highlighted a strong association between activated STAT3 and poorer outcomes 

specifically in patients with GMS2 stromal-rich tumours.  Here, we investigated inhibiting upstream 

pathway components of pSTAT3tyr705 using two repurposed JAK inhibitors in 2D and 3D tumour 

models. 

Ruxolitinib is a potent JAK1/2 inhibitor FDA approved for the treatment of myelofibrosis (204). 

Tofacitinib targets JAK2 and preferentially JAK3 and was approved in 2011 for the treatment of the 

autoimmune disorder rheumatoid arthritis (10). Repurposing of these agents would be easily 

translatable to CRC, if efficacy was proven, as they are already known to be well-tolerated and safe in 

patients with other diseases.  
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There is accumulating evidence that supports inhibiting STAT3 signalling in preclinical models slows 

cancer growth and differentiation. For example, in head and neck cancer xenograft models, inhibiting 

JAK1/2 with AZ1480 significantly reduced tumour proliferation and expression of pSTAT3tyr705(206). 

Similarly in ovarian cell lines, Ruxolitinib synergises with paclitaxel, cisplatin and other 

chemotherapeutic agents to reduce tumour cell viability, promote apoptosis and reduce tumour 

volume in xenograft models (207). Meanwhile, JAK2/3 inhibitor Tofacitinib has shown promise for 

myeloma through preventing cancer cell line proliferation (203). Focusing more specifically on CRC, 

inhibiting JAK2 in HCT116, SW480 and HT29 cell lines promotes apoptosis and inhibits 

proliferation (78) In another study JAK1/2 inhibition in HT29 and SW1116 cell lines reduced cell 

growth, increased apoptosis, induced cell cycle arrest and inhibited tumour cell invasion (208).  

In this chapter, a reduction in the percentage of viable cells following treatment with Ruxolitinib and 

Tofacitinib was observed in a subset of available CRC 2D cell lines. The most profound responses 

were seen in CRC lines classified as CMS4 by their transcriptomic profiles and histologically 

subtyped as stromally-dense. This would fit well with the hypothesis that GMS2 patients are most 

likely to benefit from therapeutic targeting of the pathway based on aforementioned IHC protein data. 

The dose of Jakinib required to elucidate a response was potentially not clinically relevant to the dose 

that would ultimately be tolerated in humans. Therefore, further research is required to determine if 

combining JAK inhibition with standard of care chemotherapy would synergistically promote tumour 

destruction. The proposal would be that similar to novel immunotherapeutic drugs such as anti-PDL1, 

which have recently been approved for use in some CRC cases, Jakinibs would be given alongside 

standard of care chemotherapy. In terms of the cell lines experiments, data could be enhanced by 

stimulating cells with IL6 pre-treatment to better recapitulate human disease and ensure pathway 

activation. Additionally, ELISAs could be performed again using a positive control to relate 

constitutive pSTAT3tyr705 levels to a proven high-expressor, for example fibroblast lines treated with 

IL6. It would also appear from the data and literature that JAK2 is the main JAK family member 

involved in driving CRC progression and therefore identifying a repurposable drug which specifically 

targets only JAK2 should be investigated.  

Although the results from JAK inhibition in 2D lines could have been more promising, there are now 

more advanced models of disease to perform drug screening on, which are indictors of patient 

response. Patient-derived organoids are a 3D tumour model with recapitulate CRC clinical disease 

better than 2D immortalised cell lines(202). PDOs can be utilised to study the potential therapeutic 

effects of novel/repurposed drugs and predict patient response to therapy (209). Development of 

tumouroid systems was a complex process with very specific culture conditions required for 

establishment and optimal growth. In this chapter PDOs derived from Sanger centre patients and 

surplus tissue from Glasgow patients were utilised to study the effects of JAK inhibitors on cell 

morphology, viability and in some cases proliferation and apoptosis. Treatment with 1mM Ruxolitinib 
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resulted in a reduction in the percentage of viable cells in most cases. This was not observed 

following treatment with 1mM Tofacitinib. The dose of 1mM is not clinically relevant and further 

work is needed to elucidate if lower doses of Ruxolitinib could still be therapeutically beneficial in a 

subset of patients. Further work is also required to investigate if combination of 5FU with Ruxolitinib 

could produce a synergistic effect resulting in enhanced reduction in cell viability.  

Although PDOs represent a better model of disease than 2D cell lines there are still limitations 

associated. The TME consistent of a plethora of cell types broadly categorised into the immune, 

stromal and tumour compartments. In terms of PDOs, the only compartment available to study is the 

tumour cells. Given that STAT3 signalling is known to be present in stroma and immune populations 

testing the drug only on tumour cells means that results should be interpreted with caution. Utilising a 

mouse model to test Jak inhibitors would provide a more comprehensive model of disease, although 

this does also have some limitations including the issues with translatability and ethical 

considerations. A coculture system where PDOs are grown alongside immune cells or fibroblasts 

could also be a good model for studying mechanisms and providing a better model than tumouroids 

alone, however this system is still artificial and no considered the gold standard of modelling patient 

disease.  

Another limitation of this chapter was measuring response solely using cell viability assays. In future 

work, further measures of response should be considered including apoptosis assays, cell cycle assays.  

Given that these inhibitors are already used clinically, the need to investigate mechanisms of action 

was overlooked somewhat. Future work should seek to repeat ELISA assays using a positive control 

for pSTAT3tyr705, stimulate matched plates with IL6 to try and observe an enhanced response to 

inhibition and silence STAT3 in matched cell lines to investigate whether the effect of the inhibitor on 

cell viability in these cells is lost. 

In addition to chemotherapy and JAK inhibitor combination therapy, there is evidence that JAK 

inhibitor action may be enhanced by combination therapy with chemo-radiotherapy (cRT). JAK2 is 

the predominant JAK family oncokinase involved in driving CRC and JAK2/STAT3 signalling may 

be involved in resistance to radiotherapy(130). Pilot data from a proof-of-concept study lead by Mr 

Campbell Roxburgh show at the transcriptomic level, IL6/JAK/STAT3 gene signatures are 

upregulated following radiotherapy in serial pre- and post-treatment rectal biopsies. These data 

suggest combination therapy of JAK2 inhibitors with cRT may be therapeutically beneficial for a 

subset of rectal cancer patients. Future work should include investigating this in 2D lines, PDOs and 

xenograft models. 

In conclusion the data from this chapter show that stromal CMS4 CRC cell lines observed the most 

promising response to inhibition of JAK family proteins. Furthermore, in 3D tumouroid models, 

which recapitulate patient disease to a greater extent than 2D models, JAK1/2 inhibitor Ruxolitinib 
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successfully reduced cell viability compared to vehicle controls in a subset of patients, particularly 

those with stromal-rich GMS2 tumours. Further work is necessary to understand the mechanisms 

underlying drug responses observed, to perform screening in a higher throughput system and to 

unpick the clinical relevance of combination therapy of JAK inhibitors with standard of care 

chemotherapy or cRT.  
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10: General Discussion and future work  

Colorectal cancer remains the third leading cause of cancer-related death worldwide and it is therefore 

pertinent that scientific research identifies new therapeutic options for patients. CRC is characterised 

by all seven of the hallmarks of cancer (126). CRC is a heterogenous disease and treatment regimens 

need to evolve to target factors driving tumorigenesis on a patient-by-patient basis with a precision 

medicine-based approach. This thesis firstly aimed to validate clinically translatable histological 

subtyping methods GMS and phenotypic subtyping, and subsequently investigate the role of one 

inflammatory signalling pathway, IL6/JAK/STAT3, in a retrospective stage I-IV CRC cohort through 

immunohistochemistry, RNAscope®, mutational profiling and bulk RNA-sequencing. The secondary 

aim was to determine if pathway inhibition could be a novel therapeutic target for a histologically 

classified subset of CRC, which was investigated through drug screening in 2D CRC cell lines and 

patient-derived 3D tumour models.   

Data from previous in vivo mouse model studies have implicated IL6/JAK/STAT3 in CRC 

development and progression. For example IL6-/- mice injected with azoxymethane and dextran 

sodium sulphate (DSS) had significantly reduced tumour number and size compared to wildtype 

controls (113) This data built on work from Becker at al in 2004 which showed a reduction in tumour 

growth following IL6 inhibition(145, 210). Loss of STAT3 in DSS treated mice resulted in increased 

apoptosis compared to IL6 ablation, which itself caused an increase in apoptosis compared to 

wildtype (113). In mouse xenograft models, injecting HT29 cell lines expressing dominant negative 

STAT3 resulted in the formation of smaller tumours than wild type HT29 cells (145). HT29 cells with 

constitutively active STAT3, or those stimulated with IL6 showed increased proliferation compared to 

dominant negative STAT3 lines (145). In other studies which aimed to block IL6 signal transduction 

in mouse models, inhibiting gp130 in colitis associated premalignant mice caused a reduction in 

pSTAT3 expression and using short hairpin RNA to block IL6/STAT3 inhibited tumour growth (211, 

212). These data from earlier mouse models support the hypothesis that inhibition of STAT3 

signalling could be a promising therapeutic strategy for CRC. The work in this thesis aimed to 

investigate the translatability of IL6/JAK/STAT3 as a target in human tissue and relative to a novel, 

prognostic histologically subtyping method.   

Tissue-based studies- validation of histological subtypes  

A vast body of research over the past decade has focused on finding ways to classify CRC disease to 

predict prognosis and optimal treatment regimes. The development of the consensus molecular 

subtypes (CMS) in 2015 and CRIS subtypes in 2017 were steps towards segregating disease for 

prognostic information (2, 3). More recently, CMS subtyping has been analysed for its ability to 

predict response to chemotherapy regimens. A study by Okita et al in 2018, highlighted a progression-

free survival benefit in CMS4 patients receiving first-line irinotecan-based therapy over oxaliplatin-
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based therapy (213). In the same study it was observed that CMS2 patients responded well to anti-

EGFR therapy, and CMS1 patients who received EGFR inhibitors exhibited significantly worse 

outcome (213). However, another study focussed on the MOSAIC clinical trial cohort of stage III 

CRC found no survival benefit of oxaliplatin-based therapy for any subtype (214). Evidence for using 

CMS to predict optimal therapy is still limited and further research is required.  

The transcriptomic techniques required to determine a patients CMS/ CRIS subtype are time-

consuming, expensive, and not currently feasible for routine clinical testing. This led to the 

development of GMS and phenotypic subtyping, which are determined by pathological assessment of 

H&E and Ki67 stained sections (103, 104). From chapter 3, GMS was independently prognostic in the 

stage I-IV Glasgow combined cohort. Patient with a low inflammatory infiltrate and high stroma 

percentage (GMS2) observed the worst prognosis and those with a high inflammatory infiltrate 

(GMS0) show markedly better outcome in terms of CSS. This was validated in the TransSCOT 

clinical trial high risk stage II-III CRC cohort and the stage IV synchronous resection cohort. In the 

TransSCOT cohort GMS0 immune patients observed a significantly better clinical response in terms 

of disease-free survival to FOLFOX chemotherapy(47). Interestingly, in the stage IV mCRC cohort, 

GMS of primary tumour was significantly predicative of GMS of matched liver metastases GMS. 

This is potentially very important as if GMS is used to predict optimal therapeutic regimen in the 

future, there would need to be phenotypic concordance between sites for this approach to work in 

mCRC cases. GMS showed no association with clinicopathological characteristics in T stage I/II 

screen-detected DM-CRC-TMA cohort, suggesting it should be confined to >stage II disease. There 

was also no association between GMS and CSS in the Australian TMA stage II-III cohort when KM 

grading and TSP were performed on tissue cores as opposed to full tumour resections. These data 

suggest for performing GMS accurately, full tumour sections must be assessed. This is likely due to 

discrepancies with KM grading, as differentiating between patchy and full bands may not be possible 

on a TMA even when invasive edge cores are present (215). One method to combat this could be to 

replace KM grading with CD3+ T cell IHC staining, which has previously been proven to work in 

tumour biopsies by Park et al (215). Neoadjuvant therapy can alter the TME, therefore utilising 

preoperative pre-treatment biopsies rather than tumour resections would be the optimal method for 

determining tumour phenotype (215).  

GMS can be further segregated into 4 phenotypic subtypes as devised by Roseweir et al (104). GMS0 

is referred to as immune phenotypic subtype and GMS2 is the stromal subtype. GMS1 is split into 2 

group based on Ki67 proliferation index (104). Patients with a high proliferation rate are classed as 

canonical and those with a low proliferation rate are assigned to the latent phenotypic subtype (216). 

Phenotypic subtype was associated with CSS in the Glasgow combined cohort, TransSCOT clinical 

trial cohort and primary tumours of the synchronous resection cohort. From the TransSCOT cohort, 

patients in the immune subtype had improved disease-free survival when treated with FOLFOX 
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chemotherapy, and conversely the latent group trended towards a better response to CAPOX 

chemotherapy. Further research is required to validate these findings in other retrospective CRC 

cohorts with chemotherapy data. Concordant with GMS, phenotypic subtype was not able to stratify 

patient survival in the Australian TMA cohort or the screen-detected stage I-II DM-CRC-TMA 

cohort. In the liver metastases of the synchronous cohort, there was a trend towards an association of 

phenotypic subtype with CSS and a larger cohort may yield significant results.  

This thesis has shown that in stage II-IV CRC both histological scoring methods are independently 

prognostic when determined using full tumour resections in stage II-IV primary CRC. However, 

perhaps the real challenge is identifying how we can use these phenotypes to inform therapeutic 

decision making in the clinic. Thus far the only study that has investigated how histological subtyping 

could be used to guide treatment, found that patients in the immune GMS0 group responded better to 

CAPOX chemotherapy than FOLFOX chemotherapy, was published in 2020 (47). Further work is 

needed to validate these findings and determine if GMS/phenotypic subtyping could be used to 

predict response to novel/repurposed targeted biologic therapies.  

Tissue-based studies- IL6/JAK/STAT3  

Stromal subtype patients have the poorest prognosis, whether you look at the transcriptomic level of 

CMS (CMS4) or histologically via GMS (GMS2) and phenotypic subtyping (stromal)(2, 103, 104). 

Therefore, this group represents a key subset of patients who need better treatment options, through 

novel/repurpose-able drugs. IL6/JAK/STAT3 signalling has been implicated in CRC development and 

progression, and several inhibitors of STAT3 activation are already approved for other diseases, 

which makes this pathway a promising target for CRC therapeutics (9). In this thesis we found that 

key members of IL6/JAK/STAT3 signalling were associated with worse prognosis, particularly in 

patients assigned to GMS2 stromal subtype in a stage I-IV retrospective CRC cohort.  

Data from chapter 4 showed that high IL6 mRNA copies within the tumour stroma were associated 

with reduced CSS in the full Glasgow combined cohort. There was no association between tumoural 

IL6 mRNA copies and CSS in the full cohort or when disease was segregated by GMS, MMR status 

or tumour subsite. Previous studies have shown the importance of circulating IL6 in CRC, however 

there is limited data focused on IL6 in tissue-based studies (217). High expression of the cognate 

receptor of IL6, IL6R, was also associated with poor prognosis, particularly in GMS2 patients in the 

Glasgow combined cohort. Interestingly, expression of IL6R was mostly noted in the tumour 

cytoplasm suggesting soluble IL6R may be more important than receptor bound IL6R in the CRC 

setting. sIL6R allows for signalling in a variety of cells due to ubiquitous expression of gp130 tails, 

which forms part of the receptor needed for signal transduction (218). Previous studies have suggested 

that the switch from classical signalling via membrane bound IL6R to trans-signalling via sIL6R is 
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associated with tumorigenesis, inflammatory processes and is implicated in driving metastases (218, 

219).   

For IL6 to activate STAT3, intermediate pathway components, JAK family members must be 

phosphorylated. JAK1 and JAK2 are thought to be the main signal transducers for this pathway, 

however there is also evidence that TYK2 and to a lesser extent JAK3 can be involved in STAT3 

activation (220). Results from chapter 5 suggest that JAK2 is perhaps the key pathway member 

implicated in CRC. High expression of cytoplasmic JAK2 was significantly associated with reduced 

CSS in GMS2 stromal patients from the Glasgow combined cohort. A combined score of JAK1 and 

JAK2 within the tumour cell membrane was also able to stratify survival in the Glasgow combined 

array, with high expression predicative of worse cancer-specific survival time. High protein 

expression of JAK2 has recently shown to associate with reduced overall survival in pancreatic ductal 

adenocarcinoma and ovarian cancer (221, 222). However, in breast cancer there is evidence that high 

JAK2 expression is in fact associated with better clinical outcomes (223, 224). In a study of 62 

patients, high JAK1 expression was associated with increased stage and independently associated with 

reduced prognosis in colon cancer (225). In the same study they found a similar role for total STAT3 

expression (225). Further mechanistic research is required to understand JAK family proteins driving 

STAT3 activation in CRC and to validate whether JAK2 is the preferential kinase for signal 

transduction of this pathway. 

In this thesis no association between total STAT3 in the nucleus or cytoplasm was associated with 

outcome from chapter 6 data. High nuclear expression of pSTAT3tyr705 trended towards an association 

with reduced CSS in the full cohort, and this was potentiated in the GMS2 stromal subtype. It was 

hypothesised that nuclear STAT3 would be significantly associated with reduced prognosis as nuclear 

localisation is a surrogate marker of activation and STAT3 is held inactive in the cytoplasm. In the 

literature, several studies have assessed the prognostic significance of tumoural phosphorylated 

STAT3 levels in CRC, with conflicting results. One study in 2010 found that higher pSTAT3tyr705 

specifically amongst advanced rectal cancer patients from the EORTC 22921 clinical trial was 

indicative of significantly better outcomes (226). However, in colorectal cancer retrospective studies, 

Kusaba et al and Park et al, observed a survival benefit in patients with low pSTAT3tyr705 protein 

expression (143, 148). This may highlight the underlying difference in colon versus rectal cancer 

cases. However, in chapter 6 when patients were stratified by tumour subsite pSTAT3tyr705 expression 

the greatest survival benefit of low expression was observed in rectal cases (although p=0.065). Most 

studies focus on pSTAT3tyr705 due to the main role it plays in pathway activation. There is more 

limited evidence on involvement of pSTAT3ser727, however for maximal pathway activation at serine 

727 must occur in addition to initial activation at tyrosine 705 (71). In the Glasgow combined array 

there was no association between pSTAT3ser727 expression and survival in the full cohort, or when 

patients were segregated by GMS, MMR status of tumour subsite. However, when the two STAT3 
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phosphorylation sites were combined to form a new score of 0 (low for both), 1 (high for one) and 2 

(high for both markers), high expression of both proteins was significantly associated with reduced 

CSS. Another interesting observation was the expression pattern of pSTAT3ser727, which was mainly 

observed in the cytoplasm of tumour cells in the Glasgow combined array contrary to the expectation 

of nuclear localisation. It’s not clear why the pattern was observed, and previous studies focus on 

expression in the nucleus. In glioblastoma high expression of nuclear pSTAT3ser727 associated with 

reduced progression-free survival in a retrospective cohort of 88 patients assessed via IHC (227). In 

prostate cancer, activation at serine 727 has been shown to drive cancer progression independently of 

tyrosine 705 activation (228). Further research is required to elucidate the implication of STAT3 

activation sites in CRC tumorigenesis and validate expression relative to histological subtyping. It 

would be of interest to perform IF staining of both phosphorylation sites to investigate levels of 

colocalization. It would then be possible to determine if patients that showed high expression of both 

pSTAT3 proteins in the same cells observe worse prognosis than patients with high expression of 

each marker in neighbouring/different cells. This could provide evidence that both pSTAT3 markers 

need to be expressed in the same cell for maximal pathway activation.  

One potentially important factor is the location of STAT3 within the tumour microenvironment. This 

thesis focused solely on tumoral expression of each pathway member (aside from IL6 measured in the 

stroma). Potentially of equal importance is activation of the pathway amongst the immune infiltrate 

and cancer associated stromal cells. Histological scoring of expression of each pathway member 

should be assessed in these other components of the TME in future work. STAT3 is known to be 

expressed in a number of tumour-infiltrating immune cells, for example regulatory T cells, CD8+ T 

cells, and macrophages. In vitro studies have demonstrated a pro-tumour role for STAT3 in cytotoxic 

T cells, with high expression associated with downregulation of chemokine receptor CXCR3 which 

blocks their recruitment to the TME (229). Conversely, deletion of STAT3 in macrophages enhances 

tumour progression in breast cancer models (230). One of the hypotheses to come out of this thesis is 

that the source of IL6 is mainly of stromal origin, which is why GMS2 patients with stromal-rich 

tumours show the worst prognosis with pathway activation. However, this is likely a more complex 

process and it is well characterised that macrophages and other myeloid populations can also be 

potent IL6 producers (75). CAFs and MSCs recruit tumour-promoting myeloid cells to the TME, and 

stromally dense tumour are associated with increased presence of macrophages of the M2 phenotype. 

(231, 232). In prostate cancer models CAFs and M2 macrophages have been shown to work together 

to promote an immunosuppressive cancer-promoting microenvironment (232). There may be a 

network of feedback events which orchestrate STAT3 hyperactivation in GMS2-like phenotypes, 

ultimately leading to the poor patient outcomes observed. Further research to understand the 

mechanisms of stroma-immune-tumour crosstalk leading to aberrant STAT3 tumour signalling is 

necessary.  
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Underlying biology of tumour phenotypes  

We hypothesised that patients with high levels of STAT3 signalling may have similar underlying 

biology in terms of their mutational landscape and transcriptomic profiles. Overall, the results from 

the Glasgow combined discovery cohort indicated that targeting STAT3 activation in patients may be 

of clinical benefit, particularly in patients with stromal-rich tumours. The protein levels of some 

pathway members were prognostic, however there is a lack of evidence regarding the factors driving 

hyperactivated STAT3 phenotypes. Mutation and transcriptomic profiles were investigated with 

respect to high/low pSTAT3tyr705 groups as a step towards understanding the biology potentially 

driving phenotypes observed. Identifying mutations and transcriptomic patterns associated with 

aberrant STAT3 signalling was also investigated to gain insight into any other cellular signalling 

pathways that could be dual targeted with STAT3 to produce a synergistic therapeutic benefit.  

Mutations 

At the time of writing to our knowledge no previous studies had investigated the underlying biology 

of activated STAT3 phenotypes in any type of cancer. Data from chapter 7 showed patients with 

hyperactivated STAT3 phenotypes were more likely to have MAP2K mutations. This was of interest 

due to emerging evidence that crosstalk between STAT3 and MAPK signalling is implicated in cancer 

(89). Dual targeting of both pathways has already been investigated in mouse models of pancreatic 

ductal adenocarcinoma, with promising results in terms of tumour regression in xenograft models 

using MEK inhibitors (233). Similar results were obtained in a study of melanoma cell lines, where 

dual inhibition of MAPK and STAT3 yielded better effects on reducing cell growth than inhibiting 

one pathway alone (182).  

In addition to investigating the mutation patterns of STAT3 phenotypes, mutations in pathway 

member genes included in the panel were also analysed for association with prognosis and clinical 

features of disease. In the Glasgow combined cohort, a combined score of presence of mutation in ≥1 

of JAK1, JAK2 or JAK3 gene/s was not significantly associated with CSS. However, patients with a 

mutation in at least one JAK gene were more likely to present with unfavourable clinical 

characteristics including higher T stage, dMMR disease and more peritoneal involvement and 

marginal involvement. The most characterised somatic mutation in the literature from JAK/STAT 

signalling pathway is JAK V1617F, which is acquired in almost all cases of myeloproliferative 

cancers (234). In terms of other cancers, its prevalence is much rarer, with one study of ~10500 cancer 

cases identified mutations in only 0.2% of cases (234). In the Glasgow combined cohort, the rate of 

mutation at least one JAK member was 11%. Mutations in the STAT3 gene itself are rare in solid 

cancers, and it is generally accepted that hyperactivated signalling can only be driven by mutation in 

upstream pathway members (216). Data from chapter 7 suggests that in CRC, aberrant STAT3 
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signalling is not driven by mutation in upstream kinases, with JAK mutations not associated with 

pSTAT3tyr705 protein expression when assessed via chi-squared analyses.  

Transcriptomics 

Given that mutation profile did not seem to drive STAT3 activation in the Glasgow combined cohort, 

the transcriptomic profile of 100 patients was assessed for association with pSTAT3tyr705 groups.  Data 

from chapter 8 identified no significant differentially expressed genes between pSTAT3tyr705 protein 

expression groups in the full cohort or when the top 25 expressers, ‘extremes’, of tyrosine 705 

expression were selected for analysis. This may be due to the heterogeneity of cancer and too small a 

sample size to pull out transcriptomic differences. Bulk RNA-sequencing was performed probing for 

~22000 genes, which may have been too large a dataset to observe differential genes. The use of 

‘extremes’ was employed to remove patients near the threshold line of high/low pSTAT3tyr705 protein 

expression, however still no differentially expressed genes were identified. Further work could 

include increasing the size of the cohort and/or analysing the groups with genes filtered to only 

include cancer-associated genes or the genes used to define CMS. For the purposes of analyses, the 

adjusted p value (padj) was set to 0.05 for significance however, some studies use padj <0.1, so 

subsequent analyses could be performed with a higher padj which may reveal some differentially 

expressed genes between groups.   

Further subsequent analyses could be to analyse the prognostic effect of gene expression counts of 

pathway members. In previous studies gene set enrichment analysis in pre-cancerous colon polyps has 

implicated JAK/STAT3 signalling in driving CMS1 disease (235). STAT3-associated gene signatures 

have also been implicated in specifically driving basal-like breast cancers, but not luminal A or 

luminal B disease (236). In a 2019 renal cell cancer (RCC) study by Robinson et al, 32 STAT3-

associated genes were assessed for association with renal cancer subtypes. This study identified one 

subtype (clear cell RCC) which was enriched for STAT3 at the transcriptomic level. A similar method 

could be employed with the data from chapter 8 in this thesis whereby the 32 gene signature could be 

analysed relative to CMS, GMS and phenotypic subtypes to investigate if akin to the protein data, 

CMS4/GMS2/Stromal subtype patients would be most likely to benefit from pathway inhibitors (237). 

In vitro studies  

The IHC-based protein data from chapters 4, 5 and 6 suggested inhibiting STAT3 activation could be 

of therapeutic benefit for a subset of CRC patients and thus the hypothesis was tested in preclinical 

models. Several Jakinibs are already approved for clinical use in myeloproliferative and inflammatory 

disorders and therefore repurposing for colon or rectal cancer is a good option for safety purposes and 

speed of clinical trials. Jak inhibitors already approved for clinical use include Ruxolitinib (JAK1/2), 

Tofacitinib (JAK2/3), Baracitinib (JAK1/2) and Upadacitinib (JAK1) (238). 
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Previous studies in preclinical models have shown inhibition of STAT3 activation causes decreased 

levels of angiogenesis, proliferation, invasion, metastases, and increased apoptosis in number of 

tumour types including head and neck squamous cell carcinoma, ovarian, breast and gastric cancer 

(206, 239, 240).  Similarly, colon cancer cell lines HCT116, HT29 and SW480s have shown 

decreased cell proliferation and increased apoptosis following treatment with JAK inhibitor AZD1480 

(78). Comparable results have also been observed in SW620 colon cancer cell lines in another study 

(241). In chapter 9 of this thesis, seven 2D CRC cell lines were investigated for effects on cell 

viability following treatment with Ruxolitinib and Tofacitinib. Of the cells assayed, CMS4 

categorised line HCT116 showed the most promising results following treatment with JAK2/3 

inhibitor Ruxolitinib, with significant reductions observed at doses of 1mM, 0.1mM and 10µM. This 

result corroborated our hypothesis driven by the protein based IHC data that suggested stromal 

subtyped patients were the most likely subgroup to benefit from therapeutic targeting of 

IL6/JAK/STAT3. Data from cell viability of CMS1, CMS2 and CMS3 cell lines were more modest 

with responses only observed at 1mM drug concentration which is not representative of clinical drug 

doses. Although the reduction in cell viability is indicative of potential therapeutic benefit further 

research is required to investigate the effects of Ruxolitinib/Tofacitinib on tumour cell apoptosis, 

proliferation, and cell cycle arrest. The use of 2D models is cost-effective and easy to perform, 

however cell lines do not recapitulate human disease effectively. Utilising seven different lines with 

varying genetic and transcriptomic backgrounds helped account for different tumour types, however 

development of protocol to grow patient-derived organoids enabled assessment of Jak inhibitors in 

profoundly better models of CRC disease than the 2D lines. 

In the available tumouroids treatment with JAK1/2 inhibitor Ruxolitinib reduced cell viability, 

increased apoptosis, and decreased proliferation as measured by WST-1 assay and IF staining, 

respectively. CMS3 and CMS4 subtyped PDOs observed the most promising response to Jakinib 

treatment, which supports the hypothesis formed from 2D cell line work and tissue-based studies from 

this thesis. When blinded GMS phenotyping was performed on the original resection block, Sanger31 

PDO, which showed a good response to inhibition of STAT3 was GMS2 and stromal phenotypic 

subtype. Due to difficulties with growth conditions and extensive protocol optimisation, only 12 lines 

were utilised for the purposes of this thesis. To gain a more thorough understanding of patient 

populations likely to benefit from targeting STAT3 activation a larger pool of PDOs would need to be 

used. Further work which could be employed to make the drug screening system higher throughput 

could be utilisation of microfluidic devices, which enable assessment of individual organoids post-

treatment and allow for a gradient of drug concentrations to be applied in one assay. This technology 

was developed by collaborators (Dr Michele Zagnoni and Dr Theresa Mulholland) at the University 

of Strathclyde and has already proved successful in the assessment of primary prostate cancer 

spheroids with standard of care chemotherapeutic agents (242).  
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Future Perspectives  

Future work following on from this thesis should look to validate that STAT3 signal transduction is 

associated with poor outcomes in stage II-IV CRC and further investigate if inhibiting the pathway 

would be therapeutically beneficial in the clinic.   

Expanding organoid data 

One of the most novel findings of this study was that at the protein level, aberrant STAT3 signalling 

associated with the worst prognosis in patients with stromally-dense tumour classified as GMS2. This 

finding should be validated in another large retrospective CRC cohort. Preliminary data from 

inhibiting STAT3 signal transduction in CRC cell lines and PDOs suggested that 

CMS4/GMS2/stromal phenotype tumours observed a greater reduction in the percentage of viable 

cells post-treatment than CMS1/2/3 tumours and treatment was associated with increased apoptosis 

and decreased proliferation where investigated. Future work should expand on these data by testing 

Jakinibs on other Sanger organoid lines and new lines established from surplus Glasgow patient 

tissue.   

IL6/JAK/STAT3 in the different TME components 

Limitations of the current study include a lack of proper recapitulation of the TME during drug 

screening. Blockade of STAT3 activation in tumour cells alone is no sufficient evidence that pathway 

inhibition would be therapeutically useful due to the lack of immune and stromal populations in the 

model. This could be combated in the first instance using co-culture methods, and the effect of 

STAT3 inhibitors on fibroblasts and immune populations alongside the tumour cells should be 

investigated. Aside from coculture moving towards mouse models would provide a more 

comprehensive argument for moving Jakinibs into the clinic. The Sansom laboratory have developed 

a number of mouse models which recapitulate CMS4/GMS2 diseases such as AKPT and KPN 

models.  

The effects of STAT3 blockade could be investigated in these models in relation to each specific 

compartment of the tumour microenvironment. Inhibiting the pathway shows promise as high 

tumoural expression of the pathway is associated with worse outcome, however if the same 

observation is not seen when immune cells/stromal cells are scored there may be paradoxical evidence 

for targeting the pathway. Investigating protein expression of the pathway amongst the inflammatory 

infiltrate and tumour-stroma represents another key piece of future work, which could be easily put 

into practise with all IHC staining already completed. These scores could then be assessed for 

association with CSS relative to subtype, MMR status and tumour subsite as well as assessed for 

association with tumour expression of each marker.  
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Multiplex IF staining could be used to assess vehicle and STAT3 inhibited tumours via staining for 

Ki67, Caspase 8, pSTAT3, CD68, CD3, aSMA and panCK to investigate the spatial relationship 

between key members of the TME.  

Another important future study of interest could be to develop 3D tumouroid cocultures with cancer-

associated stroma and/or macrophages. These models could be utilised to understand the main source 

of IL6 and investigate other interactions between primary tumour cells and stroma/macrophages. This 

represents challenges due to difficulty in deriving sufficient primary macrophages/stromal cells to 

grow in culture. If developed, these coculture systems could also be utilised to assess Jakinib affects 

in an even more representative model of disease than PDOs alone and could be investigated in the 

context of cRT combination therapy also.  

Staining validation 

Future work should include staining the Glasgow combined cohort and a validation cohort for the 

activation sites of the JAK family members; pJAK1, pJAK2, pJAK3 and pTYK2. This is necessary as 

we observed no association between total STAT3 and prognosis, however a prognostic effect was 

observed for expression of STAT3 activation sites in GMS2 patients. Additionally, there is evidence 

that the ratio of STAT1 to STAT3 could be an important prognostic measure in CRC, so staining the 

Glasgow combined array for STAT1 could represent another experiment of interest (243). It would 

also be of interest to perform STAT1 and STAT3 staining via IF to investigate co-expression levels 

on a cell-cell basis and relate data to survival outcome and clinicopathological characteristics.  

Mechanistic work 

In order to investigate the mechanisms of signal transduction, IL6R could be silenced from cell lines, 

and the drug screening performed with and without IL6 stimulation. Results could be evaluated using 

cell viability, apoptosis TUNEL assays, cell cycle assays, and western blots probing for pSTAT3 

performed on cell lysates from each treatment group. Mouse models could be utilised to perform 

silencing of IL6/JAK/STAT3 in each compartment of the TME with downstream effects on tumour 

volume and number investigated. Much of the evidence in the literature suggests that STAT3 

activation in the tumour, immune cells and in the surrounding stroma is associated with poor outcome 

and a promotion of the tumour. 

JAK inhibitors and chemo-radiotherapy  

Data from the literature and preliminary data from Mr Campbell Roxburgh’s proof of concept rectal 

cancer study shows an increase of IL6/JAK/STAT3 signalling following treatment with radiotherapy 

(244). This suggests combination therapy with JAK inhibitors and radiotherapy should be investigated 
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in future work using PDOs and PDX animal models. In head and neck cancer lines, inhibiting STAT3 

has been shown to enhance sensitivity to radiotherapy, with a greater effect observed under hypoxic 

conditions (245). The radiosensitizing effect of STAT3 inhibition has also been observed in 

oesophageal cancer models, whereby blocking STAT3 activation caused downregulation of hypoxia-

inducing factor-1 and VEGF, and enhanced response to radiation (246). This could provide a link with 

the data from this thesis, with high tumour-stroma potentially associated with driving hypoxia through 

formation of a physical barrier around the tumour (247). JAK inhibition should also be investigated in 

combination with standard of care chemotherapy, and with other kinase inhibitors to obtain maximal 

pathway inhibition. 

Conclusion  

Glasgow microenvironment score and phenotypic subtype histological scoring methods were 

prognostic in the stage I-IV Glasgow combined cohort, high risk stage II-III TransSCOT clinical trial 

cohort and stage IV synchronous resection cohort. However, both histological subtyping methods did 

not stratify patient survival in the Australian TMA cohort, suggesting full sections are needed to 

accurately perform GMS and phenotypic subtyping. Additionally, in stage I-II screen detected CRC 

cohort, DM-CRC-TMA, GMS, and phenotypic subtype did not associate with clinicopathological 

characteristics indicating histological subtyping may not be useful for early-stage disease. We 

hypothesised that histological subtypes may be driven by different underlying aberrant cellular 

signalling pathways. As a first step towards investigating this the IL6/JAK/STAT3 pathway was 

investigated in the Glasgow combined cohort and an association with worse prognosis was observed 

for key pathway members. This effect was potentiated in GMS2 stromal tumours in the case of IL6, 

cytoplasmic IL6R, cytoplasmic JAK2, membranous JAK1/2 and pSTAT3tyr705/pSTAT3ser727. There 

were no distinct patterns of genomic or transcriptomic expression associated with protein 

pSTAT3tyr705 groups, however patients with high pSTAT3tyr705 protein expression were more likely to 

have mutations in the MAP2K gene. Inhibiting STAT3 activation by targeting JAK1/2 and JAK2/3 

reduced cell viability in CMS4 classified cell lines (HCT116) and patient derived organoids, 

particularly those classified as CMS4/GMS2/stromal subtype. PDOs treated with Jakinibs also 

displayed reduced proliferation and increased apoptosis. Further research is required to validate these 

findings and to confirm that inhibiting IL6/JAK/STAT3 represents a promising therapeutic target for 

CRC patients with stromal-rich GMS2 tumours. If validated, this method represents a highly 

translatable method to transform CRC treatment, due to the simplicity of GMS histological subtyping 

and repurpose-able nature of JAK inhibitors.  
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