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Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints, that
affects 0.5-1% of the population globally. While primarily affecting the joints,
systemic inflammation impacts other organs and the disease has a significant
socioeconomic burden. While there are a wide range of medications to
pharmacologically manage RA, it is a largely heterogeneous disease and the
current treatment strategy does not consider the heterogeneity between patients.
As such, precision medicine approaches to treatment are desired. A 5-loop
chromosome conformation signature (CCS) was identified that had 90% specificity
at predicting non-response to methotrexate (MTX) in early RA. These epigenetic
biomarkers offer a novel strategy for improving patient care, and provide insight

into disease pathogenesis.

The aim of the work presented in this thesis was to further characterise this novel
epigenetic biomarker. Investigation of this biomarker also offered the opportunity
to hypothesise about underlying pathogenesis. A combination of molecular analysis
of patient samples, and in-silico methodologies were applied to investigate these

aims.

In the first instance, the CCS was validated as a biomarker for identifying MTX
responders using bioinformatic tools. Preliminary work was also carried out to
identify the optimal method for detecting chromosome loops from the signature in
the lab. Quantitative PCR was thoroughly explored, but excluded as a reliable and
robust method of loop detection for our signature of interest. It was also found
that the CCS was MTX specific, and alternative signatures would be required for
prediction of response to other csDMARDs. Further validation of the signature,
using an independent clinical cohort, revealed that specific loops from the CCS
held stratification potential while others did not. In-silico investigations revealed
different epigenetic landscapes exist between loops associated with responders
and non-responders to MTX. Specifically, data suggests loops associated with
responders exist in an environment which enhances gene transcription, while loops
associated with non-responders have an environment indicating potential for gene

repression. Differences in chromatin architecture, revealed through a discovery



microarray, have indicated that 3D epigenetic endotypes exist within the early RA
population. Further investigations suggested each endotype have different, unique
pathways that are highly regulated. Furthermore, results revealed that there is a
stable RA chromatin signature that exists, which highlights the importance of the

3D epigenome underpinning disease.

In summation, this body of work has shown CCS to be promising biomarker for the
stratification of the early RA population. Furthermore, thorough investigation of
this signature highlighted novel pathways that may be involved in disease
pathogenesis. This work has exciting potential to contribute to improved RA

treatment in the future.
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Chapter 1 Introduction

1.1 Rheumatoid Arthritis

1.1.1 Prevalence

Rheumatic diseases are characterised by damage to joints and connective
tissues, which is often accompanied by complications for multiple other vital
organs'. Rheumatoid arthritis (RA) is a disease of this type, and is the most
common inflammatory arthritis®. RA is prevalent in approximately 0.5-1%> of the
population, and females are affected more than males with a ratio of 6.45:1%.
The most common age of onset is between 45 and 65°, however it can occur at
any age, with under 16s receiving a diagnosis of juvenile idiopathic arthritis
(JIA)®. RA is an autoimmune and inflammatory condition, with chronic
inflammation originating from the synovium leading to eventual joint

destruction’.

RA presents with symptoms of pain, fatigue and symmetrical swollen joints, with
the smaller peripheral joints, such as the hands and feet, affected first®.
Systemic inflammation can impact the eyes, lungs and blood vessels’ . If left
uncontrolled, RA is a progressively disabling disease, which can impact on all
parts of everyday life. Comorbidities such as heart disease and infection are
often experienced, and can result in early mortality'’. Cases of anxiety and
depression are also known to be higher in those with RA, compared to healthy
age and sex matched individuals''. In working-age adults with RA, the
prevalence of depression has been found to be around 25%'. Interestingly, these
comorbidities have not decreased with the better pharmacological management
of RA". It has also been found that those who experience psychiatric
comorbidities are more likely to be impacted by other comorbidities that have
been discussed'®. Psychological symptoms have also been shown to negatively
impact the likelihood of a person reaching remission after 12 months of

treatment'“,.
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1.1.2 Development

The development of RA is caused by a loss of immune tolerance to the joints,
the exact trigger of which is unknown. However, there are various well-known
genetic and environmental factors that increase susceptibility to the
development and severity of disease'. These contributions result in a
phenotypically heterogeneous RA population. RA heritability has been
demonstrated through twin studies; monozygotic twins have shown to both have
an RA diagnosis in 12-15% of cases, 10% more than non-zygotic twins?. There are
currently over 100 genetic loci known to be associated with RA™. The allele
associated with the highest risk is HLA-DR, which is an allele part of the major
histocompatibility (MHC) locus. Modifications in DR4 and DR14 are most common,
with changes in these alleles present in approximately 90% of people with RAZ,
Non-MHC genes with well documented risk for RA susceptibly are protein
tyrosine phosphatase non-receptor 22 gene (PTPN22) and peptidyl arginine
deiminase 4 (PADI4)". A suggested mechanism by which these genes are a risk

for RA, is the increased citrullination'®.

The relatively low genetic susceptibility, illustrated by twin studies, indicates
the considerable environmental component involved in RA development. It has
been proposed that the environment can impact disease susceptibly via the
microbiome, primarily the lungs, oral mucosa and gut'. Numerous studies have
also proposed that mucosal sites are where RA begins. Cigarette smoking is one
of the biggest contributing environmental risk factors for RA susceptibility and
severity, and is known to impact these mucosal sites?®. The risk of RA
development in smokers is twice that of non-smokers, with a slightly higher risk
in women than men. It is largely believed that the more somebody smokes, the
higher the risk, yet even light smokers are known to have an increased chance of
development. Some of the risks associated with smoking may be due to its
effects on the immune system which include oxidative stress, inflammation and
epigenetic changes®®. The oxidative stress can be attributed to the free radicals
contained in smoke, in addition to nicotine effects on mitochondria?'. The
effects of smoking extend to the ability to respond well to RA treatment, which
has been largely documented in biologic therapy?. Periodontal disease is

another well-known environmental risk factor for the development of RAZ. This
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also has the ability to cause epigenetic changes to the genome which results in
the damage observed in the disease?. Aspects of the diet have also been shown
to be an environmental risk factor for RA. These include low vitamin D, and high
sugar and sodium intake®%’. The gap in the knowledge of heritability and
environmental influence has meant the diagnosis, prognosis and pharmacological
management of the disease is not always correct for the patient?®. These
potential changes to the genome caused by environmental influence remain to

be thoroughly explored.

1.1.3 Socio-economic burden

Approximately 80% of working adults with RA experience pain, joint stiffness and
reduced functionality, ultimately limiting the ability to work as normal, and
carry out everyday tasks?’. As such, RA is a disease with a considerable socio-
economic burden. Work disability is a risk, even in early disease®®. There are
several risk factors for the development of workplace disability, which include
the nature of the job, disease activity and age of onset®'. When evaluating the
economic burden of RA, three main cost categories are explored: direct, indirect
and non-monetary”. Direct costs refer to costs to the healthcare system such as
medication, and other costs which are incurred by the affected person and their
families. This can include adapted transportation or living arrangements.
Indirect costs are those which are incurred by employers for example. These
include the cost of sick-leave or reduced productivity. Additionally, the large
proportion of people who remain unresponsive to RA treatment add to this
burden®?. Non-responders (NR) to treatment often lose more days at work
compared to responders (R), and are likely to have higher healthcare costs, due
to side-effects or from continued inflammatory symptoms®. The cases of
depression in working adults with RA is also a considerable contributor to the
economic burden. One study from the US revealed that those with RA and
depression were 20% more likely to be unemployed than those without
depression, and had approximately £4000 more in healthcare costs'®. It was also
documented that those with depression were more likely to experience pain,
which may have an impact on ability to attend work'?. There are also the non-
monetary costs, which are arguably the most important. Those are costs that

impact quality of life for those affected by RA. Often these non-monetary costs
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are left unmeasured in studies calculating the ‘cost’ of RA due to the difficulty

in measuring this reliably?’.

1.1.4 Immunopathogenesis

The immunopathogenesis of RA is a complex, stepwise process ranging from pre-
diagnosis to chronic inflammation®. This is driven by a host of innate and
adaptive immune mechanisms, in addition to the stromal compartment?. The
synovial membrane (SM) lines the joint capsules and secretes synovial fluid (SF)
which is essential for maintaining joint function. In RA, the SM is one of the most
affected tissues and undergoes significant structural changes. In healthy
individuals, the synovial membrane is 1-2 cells thick and is comprised of blood
vessels and adipocytes, as well as low levels of macrophages and fibroblasts**.
The synovial fluid is comprised of nutrients and cytokines. In RA, the SM
increases in thickness to form a pannus, around 10-12 cells thick with infiltrates
from both innate and adaptive immune systems including macrophages, natural
killer (NK) cells, B cells and T cells®. Fibroblast-like synoviocytes (FLS) are
central players in synovial inflammation and mediate many of the processes in

the RA synovium®.

When FLS are activated they produce IL-6, which contributes to damage®. IL-6 is
one of the major drivers of disease and exerts its effects on multiple other cells
and molecules. IL-6 signals via an IL-6 specific receptor and surface glycoprotein
named gp130. There are two types of IL-6 signalling, named classical and trans-
signalling, which correspond to IL-6 binding to a surface or soluble receptor,
respectively*®. TNFa is another pro-inflammatory cytokine that drives disease.
Macrophages in the joint are the main producers of this, but is it also released
by activated T lymphocytes®’. Two receptors exist for TNFa to bind to, these are
named CD120a and CD120b*®. TNFa is found in higher concentrations in the RA
synovium compared to healthy, and studies have shown it to be associated with

increased bone erosion®’.

The dysregulated synovium reduces the oxygen supply, resulting in a hypoxic
environment, changing from around 8% oxygen to 1%*. This environment induces

altered cellular metabolism, which in turn increases reactive oxygen species
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which perpetuates the inflammation. In response to a hypoxic environment,
immune cells activate proinflammatory signalling pathways such as NFxB*' and
hypoxia-inducible factors (HIF). HIF are transcriptional factors that are highly
expressed in the RA synovium, and accumulating evidence suggests that HIFs
helps to maintain the inflammatory environment in RA*. For example, HIF1a can
upregulate TLR-4 on macrophages. Moreover, HIF1a has been shown to regulate
mediators of angiogenesis, another known characteristic of RA pathogenesis®.
This aggressive, inflamed synovial environment invades the proximal cartilage
and bone, leading to destruction®. Synoviocytes become chronically activated
and epigenetically changed, driving this inflammation further. These changes

also occur in the infiltrating immune cells®.

In RA specifically, the adaptive immune response is contributed to by
autoantibodies*. These include rheumatoid factor (RF), an antibody against IgG,
and anti-citrullinated protein antibodies (ACPA) that are mounted against post-
translationally modified proteins*. Interestingly, these antibodies can exist
before disease presentation. People with RA are classed as sero-positive or sero-
negative, based on the presence or absence of these antibodies, respectively.
Approximately 50-80% of RA patients are sero-positive to some extent®. The
binding of these autoantibodies to the Fc receptor within synovium may trigger

innate immune mechanisms such as the complement pathway.

The erosion of bone is another process which occurs during inflammation, and
begins early, triggered by the inflamed synovial environment and
proinflammatory cytokines. This results in the activation of the receptor
activator NFxB ligand (RANKL). Fibroblasts expressing RANKL are stimulated by
macrophage-colony stimulating factor (M-CSF) resulting in the differentiation of
pre-osteoclasts into osteoclasts, which break down bone*. Monocytes in the
synovial compartment can also differentiate into osteoclasts with stimulation
from IL-6, TNFa and IL-17. This inflammatory environment can suppress the
differentiation of osteoblasts, preventing the capacity to form new bone to
counteract increased osteoclast activity*’. Bone erosion in RA is irreversible,

thus placing high importance on early intervention and appropriate treatment.
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1.1.4.1 Peripheral Blood Mononuclear Cells

Peripheral Blood Mononuclear Cells (PBMCs) are circulating immune cells within
blood, with a round nucleus®. PBMCs are comprised of members of both the
innate and adaptive immune system®. In general, the majority of cells are T
cells at around 70%, with B cells, monocytes and NK cells making up the other
15%, 10% and 5%, respectively. The composition of cell subtypes within PBMCs
can be influenced by several factors including hormone levels and state of
inflammation®'. The peripheral blood in those with RA has been shown to differ
in numerous ways from those without, in factors such as cytokine production,
cell phenotype and methylation status. In the absence of an antigen, most
PBMCs circulate as naive cells without a specific function. The activation state
and composition of PBMCs can reflect the wider immune condition of someone
with RA, and thus present an appropriate population of cells to interrogate for
insights into immunopathogenesis®®. Moreover, this circulating population of cells
are highly important from a research perspective, particularly when

investigating the influence of pharmacological intervention®.

1.1.4.2 Monocytes

Monocytes make up 10% of circulating peripheral blood cells® and they originate
from the bone marrow™. Both in states of homeostasis and inflammation,
monocytes migrate from the bloodstream into tissues. In RA, monocytes can
migrate into the synovium through interaction between CCR2 and CX3CR1
receptors and CCL2 and CX3CL1 ligands™. Three main populations of monocytes
exist based on their surface markers. 90% of monocytes, otherwise known as the
‘classical’ type, belong to one population and are CD14°CD16°. The other
populations of monocytes are CD14"CD16" and CD14'CD16", otherwise known as
‘intermediate’ and ‘non-classical’ subsets respectively’. Each subpopulation can
mediate inflammatory processes in a different way. Monocytes play an important
part in the innate immune system, with various roles including phagocytosis and
antigen presentation®*. While monocytes are great scavenger cells and
protective in that way, they also have pathogenic mechanisms in inflammatory
diseases such as atherosclerosis and RA>*. Monocytes have the capacity to
differentiate into macrophages and dendritic cells (DCs)*. In the RA joint,

monocytes produce a variety of pro-inflammatory cytokines which result in
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processes such as polarisation of CD4" T cells®. In addition, monocytes can also
differentiate to osteoclasts, which contribute to the destruction of bone via

dysregulated bone remodelling.



25

1.1.4.3 T cells

T cells make up approximately 70-90% of the PBMC population, most of which
are CD3". Within the CD3" population, there are two main types of T cell: CD4"
and CD8' T cells, the ratio of which is around 2:1°'. In the normal state, T cells
will circulate within the PBMC population as naive or memory cells, without an
effector function®'. If a T cell encounters an antigen, it can differentiate and
produce effector functions. T cells have been shown to play a significant role in
RA pathogenesis, what type, and at what stage remains unclear as evidenced
through risk genes which are involved in T cell activation®. Success of Abatacept,
which targets T-cell co-stimulatory molecule CTLA4 in the treatment of RA, also
demonstrates their pathogenic role®®. CD4* T cells have a wide range of
differentiated phenotypes including, T helper 1 (Th1), Th2, Th17 and Th22*".
Th2 cells are known to induct antibody responses in B cells, influencing the
generation of RF and ACPA®®. Th17 cells also play a large role in RA
pathogenesis, after being activated by antigen presenting cells (APCs) and

cytokines including IL-6 and 1L-21¢

. Th17 discovery shed new light onto RA
pathogenesis, which was originally believed to be a Th1 driven disease. Th17
cells produce the cytokines IL17A, IL-17F, IL-21, IL-22 and IL-26%2. Th17 cells can
reside in the gut without eliciting pathogenic effects. However, if self-reactive
Th cells are primed to become Th17 cells, they can become pathogenic and
induce a pro-inflammatory response towards a specific organ, such as the joint®'.
Other pro-inflammatory cytokines IL-1 and IL23 have been shown to regulate and

enhance the Th17 response in animal models of autoimmune diseases®’.

1.1.4.4 B cells

B cells play several important immunological roles as part of the adaptive
immune system; acting as antigen presenting cells (APCs), and producing
antibodies are just two of these vital roles®*. As with other immune cells, with
the loss of self-tolerance, B cells can ultimately cause harm to the body. For
example, B cells are known to have a pathogenic role in several autoimmune
diseases, including systemic lupus erythematosus (SLE) and RA. Specifically,
experiments with murine models, and the success of rituximab (causes B cell
depletion) in the treatment of RA, highlight the crucial role of B cells in the

pathogenesis ¢>°. Moreover, the production of cytokine and chemokines, such as



26

CXCL13 and IL4 and IL6 by B cells facilitates the infiltration of other immune
cells into the joint®’. Furthermore, B cells work closely with T cells to exert

their pathogenic effects, such as the activation of autoreactive T cells®.

1.1.5 Diagnosis

Over the last couple of decades, extensive research has demonstrated that early
diagnosis of RA, and subsequent pharmacological intervention provides the
optimal window for successful treatment and offers the best chance of achieving
a good long-term outcome®®®°. There is no diagnostic test which can diagnose
RA, instead diagnosis is made by a clinician, based on a set of criteria initially
set out in 1987. With an emphasis on the importance of early diagnosis, the 1987
RA classification criteria required updating. This was due to the fact the criteria
were developed in those with established RA, and thus had poor sensitivity for
those with early synovitis’®. As such, the main RA clinical consortiums, The
European League Against Rheumatism (EULAR) and the American College of
Rheumatology (ACR) updated their diagnosis guidelines in 2010’". Through many
validation studies, these new criteria have shown to have increased sensitivity
from previous guidelines, from 31.9% to 72.3%. However, there was a reduction
in specificity from 92.4% to 83.2%. The overall diagnostic ability is considered
moderate’?. The criteria for diagnosis considers 4 categories: 1) joint
involvement, 2) the presence of serological markers, RF and ACPA, 3)
measurements of the acute phase reactants, c-reactive protein (CRP) and
erythrocyte sedimentation rate (ESR) and 4) duration of symptoms’* (Table 1.1).
Each category has points assigned for severity. A total score of 6 or more results
in a diagnosis of RA’*. Capturing those who may have had symptoms for less than
6 weeks, but have other symptoms present, aims to capture people early and
fulfil the aim to get treatment initiated as soon as possible. Of note, anybody
presenting with bone erosions does not need the classification criteria to obtain

an RA diagnosis, as any existing damage indicates presence of disease’.
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Table 1.1 2010 ACR/EULAR classification criteria

These criteria consider symptom information from 4 domains: A) joint involvement, B)
the presence of serological markers, rheumatoid factor (RF) and anti-citrullinated
protein antibodies (ACPA), C) measurements of the acute phase reactants, c-reactive
protein (CRP) and erythrocyte sedimentation rate (ESR) and D) duration of symptoms. A
total score >6 results in an RA diagnosis. Adapted from Kay and Upchurch, 20127
ACPA, anti-citrullinated protein antibodies; CRP, C-reactive protein; ESR, erythrocyte
sedimentation rate; RF, rheumatoid factor

A Joint involvement (0-5 points)
1 large joint 0
2-10 large joints 1
1-3 small joints 2
4-10 small joints 3
> 10 joints including at least 1 5
small joint
B Serology (at least one test needed classification (0-3 points)
-RF and -ACPA 0
Low +RF or low +ACPA 2
High +RF or high +ACPA 3
C Acutg phase reactants (at least one test needed for classification (0-
1 point)
Normal CRP and normal ESR 0

Abnormal CRP or abnormal ESR 1

D Duration of symptoms
< 6 weeks 0
> 6 weeks 1

1.2 Treatment

1.2.1 Treatment Overview

RA treatment aims to control pain and inflammation, reduce joint destruction
and achieve remission’>. While there is currently no cure for RA, there are a
wide variety of pharmacological therapies available to try and manage the
disease. These include non-steroidal anti-inflammatory drugs (NSAIDs) and
disease modifying anti-rheumatic drugs (DMARDs), both non-biologic and
biologic. Non-biologic DMARDs offer broad immunosuppression functions, while
biologic DMARDs (bDMARDs) target immune cells and mediators, such as B cells
(Rituximab), IL-6 (Tocilizumab) and TNFa (Etanercept) involved in RA
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pathology’®”’. For a drug to be classed as a DMARD in the treatment of RA, it has
to have demonstrated a reduction in the radiographic progression of disease’.
Historically, NSAIDs were the only treatment option, and while these eased the
pain of symptoms, they did not slow progression of disease’’. The development
of biologics over the past 2 decades has significantly improved disease outcome
for many patients®. It should be noted that until the emergence of the biologics,
many of the drugs used in RA were not created specifically for the disease and
unsurprisingly this has contributed to the variation in efficacy of treatment in
patients (Figure 1.1). Moreover, the heterogeneity between patients further

influences the disparity in drug response.

The drugs themselves have not only developed over the last couple of decades,
but the treatment strategy has also changed. RA clinics now adopt a treat to
target strategy (T2T), developed in 2010%" which aims to get patients into
clinical remission, or at the very least, low disease activity (LDA). Disease
activity is quantified by various clinical scores. The Clinical Disease Activity
Index (CDAI) is widely used and considers the number of tender and swollen
joints, as well the patient and clinician assessment of disease. Another widely
use measure of disease activity is the Disease Activity Score (DAS) 28 of which
there are several variations. The number of tender and swollen joints is always
considered, and other inflammatory markers such as ESR and CRP can be
interchanged. The T2T strategy involves changing treatment if disease activity is
not improving within a designated duration®. The T2T approach can be adapted
to any medication, which may vary from country to country, and it encourages
an accelerated approach at treatment initiation, which has shown to be optimal
in RA treatment for the long term® (Figure 1.2). The RA treatment regimen in
newly diagnosed patients is particularly structured and during the periods of
drug assessment, irreversible joint destruction often occurs in the individuals
that are not responding to therapy. Currently, determining 1° line therapy does
not consider underlying molecular mechanisms of disease but is based on clinical
symptoms in addition to economics. bDMARDs are considerably more expensive
than csDMARDs and are therefore only given in cases of poor efficacy or

intolerability’®.
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Figure 1.1 RA treatment history

Schematic illustrating the timeline over which drugs were implemented in the
treatment of RA. Adapted from reflections on ‘older’ drugs: learning new lessons in
rheumatology.®

bDMARDs, biological disease modifying anti-rheumatic drugs; NSAIDs, non-steroidal anti-
inflammatory drugs; tsDMARDs, targeted synthetic disease modifying anti-rheumatic
drugs

A) B)

Clinical RA csDMARD: EE——
diagnosis monotherapy MTX/LEF/HCQ/SSZ S

+/- glucocorticoids

Alternative/additional csDMARD:
montherapy SSZ/LEF or C)
No improvement at 3 combination

months or target achieved Add bDMARD /JAK-inhibitor: BN
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Figure 1.2 T2T Strategy

Schematic demonstrating current T2T strategy in the treatment of RA, A) T2T strategy,
clinical diagnosis as defined by ACR/EULAR 2010 criteria, desired target is remission, or
if remission not possible, low disease activity. B) Representation of targeting overall
inflammation and lack of specific target. C) representation of rituximab targeting CD20
on B cells. D) Representation of etanercept targeting CTLA4 molecule. E) representation
of anti-TNF targeting TNF molecule. Adapted from EULAR recommendations for the
management of rheumatoid arthritis with synthetic and biological disease-modifying
anti-rheumatic drugs: 2019 update.®
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bDMARD disease modifying anti-rheumatic drugs; csDMARDs disease modifying
anti-rheumatic drugs; HCQ, hydroxychloroquine; JAK, janus kinase, LEF, leflunomide;
MTX, methotrexate; RA, rheumatoid arthritis, SSZ, sulphasalazine

1.2.2 Current Treatment

1.2.2.1 csDMARDs

The nomenclature for RA drug treatment was updated in 2014. Conventional
Synthetic DMARDs (csDMARDs) are the most common first-line therapy in the
treatment of RA. This group of drugs comprises of methotrexate (MTX),
hydroxychloroquine (HCQ), sulphasalazine (SSZ) and leflunomide (LEF). These
can be given with or without glucocorticoids®. This group of drugs does not have

a specific therapeutic target but aims to reduce overall inflammation.

1.2.2.2 Methotrexate

MTX, once known as amethopterin, has been used in the treatment of RA since
FDA approval in 1986 and is now considered the ‘anchor drug’ in RA%*:%’, MTX can
be found on the list of the WHO essential medications due to the number of uses
for which it was not the original indication®’. This drug was originally used as an
anti-cancer agent and the exact mechanism in the treatment RA remains
unclear, despite 40 years of use in this indication®. The mechanism of action in
the treatment of Leukaemia, and the most documented mechanism of action in
RA is folate antagonism, by inhibiting the enzyme dihydrofolate reductase
(DFTR), essential for production of folate. For leukaemia treatment, MTX has to
be given in high doses, however at lower doses it was found to be effective in
RA¥. This mechanism reduces purine synthesis and thus causes cell death. This
has been shown to have effect on T cells™. Folic acid supplementation in RA is
crucial, to compensate for the reduction in folate’'. Many studies have explored
the addition of folic acid on efficacy of MTX and it was found to have little
effect, suggesting that folate inhibition is not the only mechanism by which
inflammation is reduced®”. Adenosine signalling and reduction of reactive oxygen

species are other suggested mechanisms of MTX in the treatment of RA%,
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MTX has become an anchor drug due to its superior efficacy and tolerability
compared to other csDMARDs’? and is now the most popular 1% line treatment in
the world®. It is often given as a monotherapy, but in some cases with the
addition of other csDMARDs, HCQ or $5Z°*> and can be given either orally, or
subcutaneously. While MTX is considered an effective therapy in RA, it is a drug
with many side effects and some patients need to change drug due to
intolerability. One of the most commonly documented side effect is problems
with the gastrointestinal (Gl) tract, with approximately 20-70% of people on MTX
experiencing them®®. Nausea is the most common Gl tract side effect, with
vomiting and abdominal pain also widely documented. Interestingly, Calasan and
others have shown that MTX Gl side effects can be associative or anticipatory®.
Other known side effects include infections, as well as toxicity in the pulmonary,
haematological and hepatic systems’’. Side effects may contribute to non-
compliance with medication, and thus contribute to the known efficacy of the
drug. A recent study explored MTX adherence and found that often it is not

optimal and various demographic factors lead to non-adherence®.

While effective in a large proportion of recipients, MTX is not effective in every
individual, with around 30% of patients switching drug within 12 months, some
due to inefficacy, and some due to side effects’. A benefit of using MTX as first
line, and an anchor drug with other medications, is the cost-effectiveness'®.
With MTX being unsuitable in approximately 30%, a biomarker for MTX response
would be extremely valuable. Furthermore, as discussed previously, it is well
established that the sooner effective therapy is initiated, the better the long-
term outcome for the patient”’. Currently, there is an assay that exists to try
and determine MTX response in patients. This assay is used to genotype
thiopurine S-methyltransferase (TPMT) which is involved in the MTX metabolism
pathway. However, this assay has yet to achieve widespread clinical
implementation'®'. This is due to evidence of interaction with other medications

and varying results between laboratories'®.

1.2.2.3 Hydroxychloroquine

HCQ is another of the csDMARDs used in the treatment of RA and is another drug

with a previous original indication. HCQ was first used in the treatment of
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malaria. However, after it was found to have immunomodulatory properties, it
was used in the treatment of autoimmune conditions such as systemic lupus
erythematosus (SLE) and RA'®. HCQ was developed though chemical adjustments
to Atabrine, one of the first antimalarial drugs, after Atabrine caused severe
side effects. HCQ has been found to be less efficacious than MTX or SSZ, and
thus is rarely given as monotherapy, unless it’s in cases of more mild disease or
in combination with the other csDMARDs'®. Similar to MTX, the mechanism by
which HCQ reduces inflammation in RA is not fully understood'®. HCQ is known
to inhibit ion channels and Schroeder et al have shown that HCQ can inhibit
calcium dependent potassium channels, which may lead to impaired
inflammasome activity'®. Another study has demonstrated the ability of HCQ to
supress the inflammatory responses of class-switched B cells'®. HCQ achieved
this effect via TLR9, providing evidence of HCQ on toll-like receptors. T
follicular helper cells have also been shown to be influenced by HCQ

treatment'®

. Many studies have found benefits of HCQ on comorbidities of RA
associated with the cardiovascular and metabolic systems'”. In a mouse model
of arthritis, HCQ had protective effects against atherosclerosis and a human
population-based study demonstrated HCQ use was associated with a decreased
risk of coronary artery diseases compared to non-users'®'%°, HCQ also has
associated side effects, one of the main effects being retinopathy. Studies
remain ongoing to determine an effective dose of HCQ that will not increase risk
of retinopathy''’. Like MTX, as HCQ is used in the early stages of disease, ability

to predict drug response before use would be beneficial.

1.2.2.4 Sulphasalazine

SSZ is a csDMARD made in 1930 for use in the treatment of ulcerative colitis (UC)
and RA. SSZ is a drug which combines the antibiotic sulphapyridine and the
NSAID 5-aminosalicyliac acid'"". It has been found to have similar efficacy to
MTX, however is normally given in triple combination with MTX and HCQ''?. One
of the mechanisms of action of SSZ is inhibition of platelet thromboxane''". $5Z
has been known to induce sulphonamide hypersensitivity reactions in people
with RA, higher than that in the normal population''. Like the other csDMARDs
in RA, the mechanism of action is not fully comprehended. One study has

illustrated the effect of SSZ on endothelial cell chemotaxis'**. This study also
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demonstrated expression of ICAM-1, IL-8 and MCP-1, known genes involved in

angiogenesis'™

. While SSZ is efficacious in UC, the drug effects on the humoral
immune system in RA is not clear. One study has suggested that in RA, SSZ exerts
its effects systemically'". This study illustrated reduction of IL-6, in serum of
patients treated with SSZ. It is thought this contributed to the serum reduction
on IgA and IgM'"”. These results came after a previous study showed similar
results which revealed a reduction in IL-6 levels, 4 months post-SSZ treatment,

which correlated with a reduction in disease activity''®.

1.2.2.5 Combination therapy

The csDMARDs, MTX, HCQ and SSZ are sometimes given in conjunction to treat
RA, referred to as triple therapy. If 1° line monotherapy MTX is unsuccessful, as
an alternative to bDMARDs, a combination of csDMARDs can be used. This
approach has been shown to be more efficacious that MTX alone or combination
of HCQ and SSZ'"7. Several clinical trials have tested whether triple csDMARD
therapy is better or worse than MTX with the addition of the bDMARD,
etanercept and have found them to be comparable in treating RA''. In terms of
drug cost, triple csDMARD therapy is superior. However, when assessing Quality
Adjusted Life Years (QALYs), csDMARD triple therapy is inferior to the MTX-
Etanercept combination''?. These two treatment strategies have also been
studied to understand whether other combinations are less likely to cause side
effects such as infections and Gl disturbances. A study by Quanch et al revealed
that those treated with triple therapy were more likely to suffer Gl side effects
than those with MTX-etanercept, however they were less likely to suffer from
infections'?. Overall, the literature demonstrates that both these approaches
work well for the treatment of RA, and in such a heterogeneous population, both
approaches are beneficial. Yet there is still space for improvement as not all will

respond to triple therapy.

1.2.2.6 bDMARDs

bDMARDs have been designed to target specific molecular structures involved in
RA pathology'?'. The first bDMARD was developed against TNFa. A neutralising,
chimeric monoclonal antibody was tested in a clinical trial and patients

responded well to the treatment with considerable reductions in disease activity
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measurements. The discovery of the efficacy of this type of treatment in RA
paved the way for other bDMARDs targeting other molecules involved in
inflammation'?2. Since then, 5 anti-TNFa medications have been licenced for use
in the treatment of RA. Infliximab was the first of these to be used in
patients'?®. This a monoclonal antibody that works by inhibiting TNFa from
triggering the TNF receptor complex. Adalimumab is a monoclonal antibody that
works in the same way. Both have been shown to have increased efficacy when
given with MTX. Rituximab (RTX) is another widely used bDMARD used to treat
RA. RTX is a monoclonal antibody against the CD-20 molecule, which is found on
B cells. RTX uses a variety of mechanisms to deplete B cells, including apoptosis
and complement-dependent cytotoxicity'**. Complete B cell depletion occurs in
the blood, but B cells in synovial tissue and bone marrow are only depleted in
part. As such, response to RTX has been found to correlate with B cell levels in
synovial tissue'®. There is also a bDMARD that targets IL-6. Tocilizumab (TCZ) is
a monoclonal antibody which targets soluble and membrane bound IL-6
receptor'?. This stops IL-6 binding to the receptor and the signal transducer
glycoprotein 130 complex, stopping downstream activation of the Janus Kinase
signal transducer and activator of transcription (JAK-STAT) pathway. While
bDMARDs have dramatically changed the treatment of RA, they can cost up to
10x more than csDMARDs'?. As such, it is not cost-effective to initiate bDMARD
therapy for everyone in early disease since csDMARDs are efficacious in many.
This emphasises the need to find a way to establish who would benefit from

csDMARD therapy at the beginning of treatment.

1.2.2.7 tsDMARDs

There is now a new drug class called the targeted synthetic DMARDs (tsDMARD),
which target other small molecules involved in pathogenic pathways in RA. One
such pathway is the JAK-STAT signalling pathway. This pathway is essential for
many cytokines'?. Upon cytokine stimulation, JAKs are activated and
phosphorylate STATS. There are 2 drugs that target this pathway currently in
clinical use. Tofacitinib primarily targets JAK1 and JAK3 family members in vivo
129 while baricitinib provides reversible inhibition of JAK1 and JAK2 family
members'*®. Blocking of these kinases effects the downstream cytokines IL-2, IL-

4, IL-9, IL-15 and IL-21. Tofacitinib has shown efficacy and safety and been
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effective as monotherapy or in combination with MTX. The RA-BEAM clinical trial
investigated the safety and efficacy of baricitinib compared to placebo and
adalimumab'®'. Baricitinib achieved a reduction in disease activity, with more
patients having an ACR20 response over placebo at 12 weeks. Baricitinib also
inhibited radiographic progression of joint damage. The emergence of the
tsDMARDs has provided an alternative to the conventional DMARDs and may be

useful for treatment in those who are unresponsive to the csDMARDs.

1.3 The Human Genome

1.3.1 Genome Organisation

The size of the human genome is approximately 3100 million base pairs (bp)'2.

Packaging this DNA into 6um of a cell nucleus presents a significant structural
challenge'. As such, the DNA is packaged into a highly-organised structure
(Figure 1.3)"*. This intricate organisation not only serves a structural purpose,
but a functional one. DNA has three main layers of organisation within the
cell'®. The baseline structure of DNA is the well-known double-helix, consisting
of 4 bases, joined by a hydrogen bond with a sugar-phosphate backbone (Figure
1.3A)"®. This double-helix is then wrapped around proteins known as histones.
Multiple histones create nucleosomes, first described in 1974, which can be
considered the core building block of the genome (Figure 1.3B). A nucleosome
consists of 147 bp of DNA wound around an octamer of histone proteins'. This
octamer is made from 2 of each type of histone protein: H2A, H2B, H3 and H4'*,
The DNA can then be wound into a higher order structure called chromatin
(Figure 1.3C). This level is often referred to as ‘beads-on-a-string’, with the
beads representing nucleosomes. The chromatin itself is then looped in a
functional manner (Figure 1.3D). Chromosomes are then arranged into
topologically associated domains (TADs), which facilitate increased DNA
interaction between genes within a TAD by regulating enhancer-promotor
contacts (Figure 1.3E)"*?. The boundaries of TADs are generally made up of
highly-expressed genes. While TADs promote gene expression with genes in
close-proximity, chromatin is also able to be regulated by features from a far
topological distance. The dynamic chromatin structure allows regulatory factors

to access the chromatin only when required and ensures there is no unrestrained
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gene expression'. Finally, the DNA forms chromosome territories. The location
of the chromosomes in these territories may resemble well-recognised
positions'*2. A technique named chromosomal painting helped visualise these
chromosome territories'®. These studies demonstrated that genes on one
chromosome interacted with genes on the same chromosome, more than they
would interact with genes on another chromosome. In more recent years, these
findings have been replicated with higher resolution technologies''.
Euchromatin refers to chromatin in an open conformation, thus facilitating gene
transcription, while heterochromatin is condensed often leading to gene

repression'*.

A) B)

Figure 1.3 Schematic of Genome Organisation

Schematic illustrating the multiple layers of genome organisation within a cell. A) DNA
double-helix. B) Nucleosomes composed of 147bp of DNA wrapped around 8 histone
proteins (2x H2A, H2B, H3 &H4). C) 30nm fibre chromatin (beads-on-a-string). D)
Chromatin loops. E) Topologically associated domains (TADs) consisting of chromosomes.
F) Chromosome territories which form the 23 chromosomes in the human genome. G)
DNA organised within the cell nucleus

1.3.2 Epigenome

The genome is packaged into every cell in the human body, yet cells can be
phenotypically different. This can be explained in part by epigenetic
mechanisms. Historically, epigenetics was defined as changes to the DNA that do

not alter the DNA sequence itself, and that result in a stable, heritable
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phenotype'®. The definition of epigenetics has become more diverse and it is
now considered that epigenetics encompasses changes to the chromatin, that
may involve addition or removal of proteins, or changes to the chromatin
structure itself'*. Others have described epigenetics as ‘the structural
adaptation of chromosomal regions so as to register, signal or perpetuate altered
activity states’'. It appears that the evolution of the definition focuses on the
influence of structure, and consequential influence on gene function. In the
1990s, research on imprinting genes introduced DNA methylation into the
‘epigenetics’ definition, followed later by histone modifications'*. Epigenetic
changes include DNA methylation, histone modification and changes to the

7 The tails of histone proteins are often susceptible to

chromosome architecture
these epigenetic changes in the form of post-translational modifications such as
methylation and phosphorylation. These modifications can have a direct effect
on the structure of the chromatin which then results in the overall gene

expression and thus phenotype, and studies have been able to illustrate this'*.

The epigenetic process is highly complex and is reflective of the environment’s
interaction with the genome . Epigenetics have significant influence on

0 with many

cellular processes and often vary between different cell types
unanswered questions left in genome research, many propose these questions
could be answered from findings in the growing epigenomic research domain.
Recently, epigenome wide association studies (EWAS), which are similar to
genome wide association studies (GWAS) have been used to explore the genome
for epigenetic impact in disease''. EWAS has an additional level of complexity
over GWAS due to the dynamic, reversible nature of the epigenome. It is also
believed that studies of the genome which have taken place already could be
enhanced with additional epigenetic data'®. Some epigenetic changes are
associated with increased gene expression but in contrast some are associated
with repression of gene expression. In general, both epigenetic ‘writer’ and
‘eraser’ proteins have been described that control these changes in gene
expression. ‘Writer’ proteins cause changes to gene expression and transcription

and ‘eraser’ proteins remove these epigenetic modifications**.

Research has shown that epigenetic changes can be a contributory factor in the

development of many autoimmune diseases'*. In this case, epigenetic
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modifications can influence processes such as immune cell function. Epigenetics
could reveal a link between the known combined influence of genes and
environment in RA%. The rheumatology field has seen considerable advances in
epigenetics in recent years due to the development of many technologies
allowing high-throughput analysis of data'>2. The epigenome is susceptible to
changing characteristics of disease, as well as different therapies used to treat
conditions such as RA. This presents a wide spectrum where epigenetics could be
consulted for precision medicine application'. It is widely believed that
understanding these mechanisms will contribute to the better management of

RA in the future'*.
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1.3.2.1 Methylation

DNA methylation, with the most technologies available to explore, is the best

153 Methylation is generally considered to be

understood epigenetic modification
a stable epigenetic modification which is also heritable and can be a mechanism
of regulation in cellular processes such as differentiation'*. This epigenetic
change has been well documented and has been observed in autoimmune
diseases such as RA. DNA methylation is caused by the addition of a methyl
group to the cytosine or adenine at position 5. Methylation of DNA is prevalent in
several cell types involved in RA pathogenesis with synovial fibroblasts being one
type affected'®. The consequence of DNA methylation varies and can affect
repression of transcription which can result in disease pathology. Glant et al
performed one of the first studies into epigenetic modifiers in RA. This was a
genome wide methylation profiling study which took place in PBMCs. The study
indicated that methylation changes at the MHC locus increased the risk of
developing RA™*. It was shown that enzymes that can modify chromatin were
found in genes that are known to be expressed in RA. These include
acetyltransferases, methyltransfersases and histone kinases'>*. Another study has
illustrated the major impact that one minor epigenetic change can have in RA.
They showed that methylation at a single site in the promoter region for CTLA-4
in regulatory T cells (Tregs) could ultimately result in the failed activation of the
immune modulatory kynurenine pathway'™’. It has also been recognised that
methylation has an influence in RA by developing apoptosis resistant FLS®. Many
of the methylation studies carried out to this day have lacked substantial

numbers and have therefore been considered preliminary.

1.3.2.2 Histone Modification

Histone modifications refer to the post-translational addition or removal of
proteins on the histone NH-2 terminus, or histone ‘tail’. A histone code
hypothesis was proposed in 2000, which suggested patterns of these
modifications could influence downstream biological processes in different
ways'*8. Histone modifications include methylation, acetylation,
phosphorylation, ubiquitination and sumoylation. Depending on the combination
and number of these modifications, genes can become 1 of 4 states that are

termed active, poised, bivalent or repressed. These states have been shown in
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studies in CD8" T cells'.

The functional implications of methylation on histones has been widely
investigated, and has shown methylation can result in repression or activation of
genes. Methylation occurs on lysine or arginine residues on the histone tail.
Mono-, di or tri-methylation has been shown to indicate enhancers; in contrast
trimethylation of H3K27 (H3K27me3) which is a known repressor mark. Histone
methlytransferases are the enzymes responsible for facilitating the transfer of
methyl groups. Acetylation of histone tails is widely considered to be a mark of
gene activation. H3K27ac is a well characterised histone mark found enriched at
active enhancer sites'®’. Histone modifications of the genome are regulated by 2
enzymes, histone acetyltransferase (HAT) and histone deacetylase (HDAC)'®'.
Phosphorylation occurs to threonine or serine residues and is another
modification known to be associated with activation'®. Ubiquitination occurs to
lysine residues and can be associated with either transcriptional repression or

activation.

Many studies of histone modifications in RA have taken place in the synovial
compartment. Studies in synovial fluid have illustrated reduced HDAC activity in
RA compared to healthy controls'®. Research in PBMCs has shown there is an
alternative equilibrium of these enzymes in PBMCs of RA patients compared to
the healthy population''. A study by Gillespie et al illustrated increased levels
of HDAC in PBMCs'®. Levels of these enzymes can give an indication of the levels
of transcription of cytokines responsible for inflammatory responses in RA.
Research by Toussirot et al has suggested that different RA therapies can exert
varying epigenetic modifications in the form of histone acetylation and
deacetylation?*. In this study they showed that TNFa inhibitors such as Infliximab
increased histone acetylation in the nucleus but alternatively, RTX, increased
both acetylation and deacetylation enzymes'®'. Despite this research, the
consequences of the changing levels of these enzymes with RA treatment

remains to be fully investigated.

1.3.3.3 Chromatin loops

Chromatin architecture is the overarching epigenetic feature to the marks

already described. As discussed, chromatin loops can be considered the third
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level of organisation within the nucleus (Figure 1.3D). Chromatin loops offer an
interesting mechanism to investigate the epigenome, as they can encompass
methylation sites, histone modifications and miRNAs and can regulate how these
features interact with each other. Study of chromatin loops clearly demonstrates
the intricate relationship between genome structure and function. Simply,
chromatin loops are formed when 2 parts of the genome, separated by an
intermediate DNA sequence, are brought into close physical proximity'®. Gene
regulatory sequences are often not located beside the gene they control. When
necessary, loops allow promotors and enhancers to be brought into proximity to
a specific gene to permit activation and transcription'®. Studies have
demonstrated this, showing DNA is enriched with chromatin loops at active
enhancer and promotor sites and are less are likely to be found at inactive sites
or sites with histone modifications that cause repression'®®. Research into the
drosophila genome indicated that loops were approximately 80kb in size, and
comprised of 400 nucleosomes on average'®’. It was once considered that
chromosome looping could only occur in cis, within a chromosome. However,
studies have demonstrated regulation of a gene could occur from regulatory
elements located several megabases (mb) away'®®. These larger distance,

interchromosomal interactions are known as trans.

Investigations into the B-globin cluster were the first to provide insight into
distal regulation of the genome. The interest in the B-globin loci, mainly due to
its involvement in the blood disorder Thalassemia, provided the opportunity to
discover the role of chromatin looping in human gene regulation'®’. Deletions in
the DNA far away from the location of the B-globin gene still resulted in the
development of Thalasemmia alluding to the role of distal regulation'’. It was
through this finding that the locus control region (LCR) was found. This is a
group on B -globin gene arranged in a way on the chromosome that facilities
development in a timely manner. A study by Cater et al was the first to show

evidence of chromatin looping in LCR-B-globin gene contact'”".

One of the first demonstrations of interchromosomal interactions was in the
alternative expression of cytokine genes. The study by Charalampos et al
revealed that dynamic chromatin organisation allowed the promotor of the IFNy,

located on chromosome 10 to interact with regulatory elements of IL-4, located
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on chromosome 11. This interaction has implications for the polarisation of CD4"
T cells to Th1 or Th2"%'73,

Following on from these studies, proteins which are involved in the formation of
chromatin loops were discovered. These are called boundary elements, or
insulator proteins'’*. CCCTC-binding factor (CTCF) is one of the best documented
insulator proteins'”. It has been found to be a highly conserved nucleic acid
binding protein, with approximately 40,000 binding sites throughout the human
genome'’®. CTCF has been found to separate TAD boundaries'”’. The 11 zinc
fingers of CTCF means it can interact with DNA in various ways. Studies have
explored this binding and identified two motifs, M1 and M2. The M1 motif
engages 4-7 zinc fingers, and M2 is found upstream with 9-11 zinc fingers. Where
both these motifs can be found, it has been shown that CTCF is bound to DNA
with very high affinity'’®. Along with insulator function, CTCF can facilitate
chromatin looping. Tens of thousands of the CTCF sites throughout the genome
have been found to be co-occupied by a protein complex called cohesin'’®.
Cohesin is a ring-shaped complex made from multiple proteins that plays a role
in DNA replication. The cohesin ring ensures chromosome segregation during
mitosis and meiosis, protecting the genetic information that gets passed on'®. It
was also discovered that cohesin can bind to CTCF and facilitate chromatin

looping™®.

In most cases, chromatin loops are believed to support gene transcription by
priming genes to contact their promotors, however loops have also been known to
play an inhibitory role’®. Loops can also serve a purpose of bringing a promotor
into proximity with its terminator. This has been demonstrated in a study with the
breast cancer associated, BRCA1 gene and the maternal /gf2 gene. This should a
chromatin loop can ensure the gene promotor is kept separate from its
enhancer'® '8, Regulated DNA architecture has also been shown to have a role in
DNA repair'®. Research has suggested that these chromatin loops, or when taken
together known as chromatin conformation signatures (CCS), are more informative

and stable epigenetic marks than other alterations to the genome'.

There is evidence in the literature that demonstrates chromosome loops can both

be stable and dynamic structures. Challenges in understanding these two positions
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lies with the technologies currently available. While high-resolution ‘C’
technologies have their advantages, they can only provide a snapshot of the
epigenome’?. Studies with CTCF demonstrated that while CTCF and cohesin
facilitate stable chromatin loop structures, they are dynamic and the
conformation can be lost when CTCF and cohesin disassociate'®. Studies of the
human pituitary growth hormone have demonstrated patterns of stable of human
gene expression, as facilitated by DNA architecture'®. The reproducibility of TAD
maps in studies has also strengthened the hypothesis that chromatin loops are
stable. However, live cell imaging has illustrated the dynamic nature of loops.
Overall, evidence suggests most chromatin is stable for a short period of time,
before transforming. Many questions remain to be answered, particularly

chromatin dynamics in the context of disease.

1.4 Precision Medicine

Precision medicine is a concept of basing clinical decision on measurable
molecular biomarkers. It could be argued that medicine has always aimed to be
‘precise’, and this has been successfully demonstrated in blood transfusion and
organ transplantation for decades. However, it has only been in recent years
that the genome has been investigated for clues to prognosis of disease or
treatment response. Treatment of the individual is the ultimate aim for
clinicians, yet due to the nature of current clinical trials that are catered to a
population, this can prove difficult'®. The completion of The Human Genome
project in 2003 significantly contributed to the explosion of genomic exploration
88 The percentage of the genome that contributes to drug response is thought
to range between 20% and 95% . Studies involving this type of genetic
exploration combine three important areas: the right population, the suitable
technology, and finally, the collection of data'®. Biomarkers that are identified
can be incorporated into algorithms to predict prognosis or response to
treatment for patients. Studies have shown that it is becoming increasingly
straightforward to interrogate the genome but the translation of important
findings into the clinic has proven challenging. This type of research has led to
the current era of ‘big data’ with large datasets, which incorporate genomic
information and patient characteristics. Some have described this time as a

“biomarker revolution” and this has resulted in approved biomarkers in some



44

cancers. Despite this, it is thought that much of the germ line genetic variation
available currently is not suitable for the implementation of precision medicine
clinically. GWAS and identification of single nucleotide polymorphisms (SNPs)
were one of the first types of study in precision medicine. These look to identify

variant alleles which are associated with disease'®.

With the advancement of many genomic technologies, determining biomarkers is
becoming easier than before. For a biomarker to be successful there is a certain
number of criteria that must be met and studies must successfully illustrate this.
For a biomarker to be clinically useful it must be consistently accurate, easily
quantifiable, easily replicated and economically viable. Importantly, the
biomarker to diagnose disease or predict treatment response must be superior to
any existing methods'®. Biomarker kinetics is an area of the precision medicine
field that has not been investigated by many up until now. It is important to
understand that biomarkers are dynamic and can change over time.
Furthermore, enough statistical power is fundamental in biomarker studies. This
means that specificity and sensitivity must be high enough i.e. as little as

possible false negatives or false positives results, respectively'®.

1.4.1 Precision Medicine Technologies

1.4.1.1 Microarray

Microarrays have existed since 1995 when they were first documented by Schena
et al'®'. Many technologies have been developed since, yet microarrays are still
used today, and some consider them to be one of the fastest growing genomic

192

technology "“.The DNA microarray provided a more straight-forward and high-

throughput way to investigate the genome than normal sequence analysis, and

could be termed sequencing by hybridisation'®?

. Microarrays can be used to
explore differences in gene expression, aiding biomarker research. The three
main types of array are DNA, RNA and protein. The basis of the array is
complementary hybridisation of DNA from a sample, to short complimentary
probes printed in large numbers on a chip. The first microarrays conducted by
Schena and others used complimentary DNA on a glass slide, however, now
shorter oligonucleotides can be used which have a higher specificity'®. This

reaction creates images which can be analysed. There is both an in-silico, and
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‘wet lab’ approach involved in microarray experiments. The in-silico part is
involved in the array design, with the ‘wet lab’ part applying the desired
samples to the microarray. One of the two main approaches of making DNA
arrays are light-directed chemical synthesis and microarray spotting'”. The
light-directed chemical synthesis was first documented by the founder of
Affymetrix in 1991 for a peptide array. This led to the generation of the first
oligonucleotide array prepared in this way'®®. The first array was 1.25cm? in size
and was printed with 256 oligonucleotides. Microarray technology is still being
developed and it expected that the platforms for microarrays will be reduced in

size, creating ‘nanoarrays’'.

1.4.1.2 3C technologies

In the last decade, analysis of the complex chromosome architecture and the
influence it has on gene expression has increased our understanding of the
epigenetic influence in drug response. Epigenetic research has benefited from
the progress of genomic technologies, and genomic architecture can now be
visualised in enhanced detail. Originally, loops had to be visualised through
laborious, lower-throughput, methods such as electron or light microscopy.
Fluorescence in situ hybridisation (FISH) offers an opportunity to view multiple
loops at one time, however, the protocol for staining may impact the chromatin
conformation'”’. One method of this enhanced visualisation, named chromosome
conformation capture (3C), first described in 2002, has allowed loops in DNA to
be investigated'”’ (Figure 1.4). 3C is based on formaldehyde cross-linking of
proteins and DNA. Cross-linking will be achieved for areas of the genome that
are physically touching. 3C measures the frequency with which areas of the
genome are cross-linked. A restriction enzyme is then applied to the cross-linked
DNA, followed by ligation. The cross-linked DNA will be more likely to ligate over
non-cross-linked, i.e. physically touching DNA will be ligated. These ligated
fragments are subjected to a PCR reaction and gel electrophoresis allows
visualisation of ligated fragments, which were once loops in the genome. 3C can
be used to understand spatial organisation within the genome, as well as
interactions between regulatory elements'®®. Since the first ‘C’ technology was
published in 2002, there has been a rapid expansion of ‘C’ technologies. Often

3C is referred to as a one-to-one technology, and other C technologies have
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allowed one-to-all (4C) and all-to-all (Hi-C)'” visualisation. 3C was firstly carried
out in yeast, followed by the mouse human B-globin loci’®. RA 3C has also been
used to demonstrate how chromatin looping regulates expression of Th2
cytokines IL-4 and IL-13 in T cells?®'. While many other ‘C’ technologies have
overlapped the original 3C, it still has place in biomarker discovery and precision
medicine implementation. The protocol for 3C is less complex and laborious, and

therefore economical.

A) B) C) D)
— X — > ( 3 >
Formaldehyde Restriction Ligation 3C library
crosslinking
E)
Nested PCR

amplification

Gel
electrophoresis

Figure 1.4 Schematic of Chromosome Conformation Capture (3C) protocol
Schematic representing the stages involved in the generation and visualisation of 3C
DNA libraries. A) Formaldehyde is used to cross-link physically touching DNA. B) A
restriction enzyme is used. C) a ligation enzyme is used to ligate the 2 DNA pieces
together. D) a non-genomic, 3C template, representing a chromatin loop, is generated
from the 2 physically touching DNA regions. E) Primers designed for both parts of the
loop are used to amplify the template. F) PCR products are visualised on a gel, a band
at the expected size represents the existence of the loop

3C; chromosome conformation capture; PCR, polymerase chain reaction
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1.4.2 Liquid Biopsy

The ‘liquid biopsy’ is a concept most commonly known in the detection of cancer
biomarkers, however is becoming more popular in other diseases such as
Alzheimer’s and autoimmune conditions?®?%, Liquid biopsies use the blood as
the source of genetic information. The blood holds a vast range of biomarker
candidates including DNA, RNA, miRNA and circulating tumour DNA%*, Blood
samples as biomarkers provide advantages over tissue biopsies. These include a
normally less invasive procedure and therefore more comfortable experience for
the patient, and often less reliable on complex tissue imaging equipment?®.
Moreover, a blood sample offers the opportunity for additional testing which
may lead to a more confident molecular analysis, and blood processing protocols
are widely used across the globe in the clinical and industrial setting?®. It has
been suggested that liquid biopsies will provide a health economic benefit, for
the ability to better provide earlier diagnoses and detect poor response to
treatment?®. In RA, it could be considered that the equivalent to a tumour
biopsy is the synovial biopsy. This involves removal of a small part of the
synovial lining in the joint. As with tumour biopsies, this is an invasive procedure
and can cause discomfort, in an already inflamed joint. However, synovial
biopsies have been used in precision medicine studies in RA. These have profiled
lymphocytes, macrophages, FLS and cytokines from the synovium?®. While these
have yielded results, some researchers have transitioned to looking at liquid
biopsy from the blood in the hope of identifying better predictive biomarkers.
Circulating immune cells in RA can be considered as a liquid biopsy, and they
have the potential to reveal much about the disease state. From an RA liquid
biopsy, various methods have been applied such as gene expression profiling and
immunophenotyping. Some promising results have been achieved from this work,
such as the discovery that a group of interferon response genes could predict

non-response to RTX?"’

and the correlation of decreased circulating CD28" T cells
with abatacept response?®. Nevertheless, there is still no clinically validated

biomarker being used to aid the treatment regimen in RA today.
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1.4.3 Precision medicine in Rheumatoid Arthritis

It has been recognised that there are a significant lack of biological markers for
RA”. Physicians are becoming increasingly aware that the genome or
alternatively the epigenome could be consulted to improve the treatment
regimen and long-term outcome for patients®. It is hoped that by increasing the
understanding of the underlying molecular mechanisms of disease that
biomarkers could be identified with the potential of predicting prognosis of
disease or more excitingly the response to therapy. Ultimately, epigenetics
alone is not responsible for the development of RA, it is a multifactorial disease
influenced by the environment, risk genes and aging. RA is an extremely
complex autoimmune disease and patients are subject to a unique combination
of contributory factors which can alter their response to treatment, thus
exemplifying the need for precision medicine. Despite the barriers and
reservations to this, the transformational impact of precision medicine in
oncology practices should hopefully pave the way for other disease areas which
have the potential to see the benefit in the future. GWAS studies have
successfully identified over 100 genetic loci that can be associated with RA.
However, these loci do not always help to gain a better understanding of
underlying disease mechanisms and therefore novel therapies are rarely
produced. Moreover, cell types where changes in genetic loci exist cannot be
identified through GWAS?®. Although considerable GWAS have taken place in RA,
there remains a large proportion of the heritable component of RA to be
explained. The biggest challenge in genomic research in RA is linking different
components together, i.e. matching the genomic data together in addition to
potential proteomic and metabolomics data. Unique methods will need to be
found to address this challenge. For precision medicine to be a success,
researchers, healthcare professionals and industry representatives will have to
collaborate successfully. The most plausible predictor of precision medicine
clinically will not only include genetic information but will include other clinical

markers and take into consideration epidemiological data.

Precision medicine approaches have been explored to predict prognosis, disease
severity and treatment response. A recent study used ‘-omic’ approaches to

investigate a potential biomarker for pannus formation. They revealed
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epigenetic alternations correlate with the aggressive RA phenotype, however
exact mechanisms need to be clarified”'°. Predictive models using clinical and
demographic characteristics have been investigated. Hyrich et al found males on
concomitant MTX responded better to anti-TNFa therapy, etanercept and
infliximab. Current smokers with high Health Assessment Questionnaire (HAQ)
scores were predicted to be non-responders to anti-TNF therapies*’.. However,
these characteristics alone would not be able to predict response with enough
certainty. One study investigated the RA synovium for levels of TNFa transcripts.
They found that high levels of TNFa transcripts correlated with high disease
activity, and a worse response to first-line therapy?'". This study alludes to the
benefit of including synovial markers in the stratification of treatment in RA,
however is dependent on standardisation of synovial biopsies. A more recent
study by Humby et al. investigated cellular and molecular biomarkers from the
synovium. They showed that in treatment of naive patients, 3 synovial signatures
existed in RA patients. These three subtypes were classed as lympho-myeloid,
diffuse-myeloid and pauci-immune (few immune cells with dominant stromal
cells)?'?. The discovery of these biomarkers was aided by immunohistochemistry

methods, which is not the most high-throughput precision medicine tool.

Several studies have been conducted to find a biomarker for csDMARDs. One
study analysed naive T cell subsets in PBMCs from people with early RA. They
found patients with a higher naive T cell frequency responded better to MTX
than those with lower T cell frequencies. However, this study was limited by
patient numbers?'®. A recent study combined demographic, clinical and
psychological variables in an attempt to predict MTX non-response in the
Rheumatoid Arthritis Medication Study (RAMS)”. This study aimed to capture the
‘real-world’ RA population. Limitations of this study include the high-level of
non-response, which may be due to deviations from the normal RA treatment
regimen of MTX escalation. The classification models did not achieve suitable
sensitivity and specificity values”. Overall, the epigenetic research landscape in
RA looks very promising. Costs of this research are decreasing dramatically,
alongside increased throughput and resolution of genomic technologies?'. It is
quite likely the RA treatment regime will include DNA analysis in the future. This

addition should ensure a much more positive outlook for RA patients worldwide.
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1.4.4 EpiSwitch™

EpiSwitch™ is proprietary technology, developed by Oxford BioDynamics Plc
(OBD) to facilitate the discovery of the blood based biomarker, specifically
chromosome conformation. This platform has been used successfully to identify
biomarkers in several cancers including thyroid cancer and melanoma, as well as
neurodegenerative disorders such as Amyotrophic lateral Sclerosis (ALS) and
Huntingtons disease?'” 228, This proprietary technology uses algorithms to
predict sites in the genome where chromosomal loops are likely to occur. This
differs to other CCS discovery, and by eliminating the need for a genome wide
screen, allows more specific biological questions to be asked. The optimised
discovery pipeline begins with the algorithmic approach for EpiSwitch™ sites,
then identification of areas of the genome possibly implicated in the disease in
question. A microarray platform is then utilised to observe chromosome
conformation in samples of interest. This is followed by statistical analysis to
inform about the most appropriate biomarker to take forward. Once these
candidates are chosen, PCR primers are designed and PCR performed. Next,
extensive statistical analysis is undertaken to find a CCS with the best potential
for clinically relevant stratification. Finally, this can then be validated in an
independent cohort. Importantly, this pipeline was successfully used to identify
a 5-loop CCS with the ability to predict response or non-response to MTX in a

219 (Figure 1.5). This technology aims to generate

treatment naive RA cohort
informative CCS biomarkers from discovery to clinical validation and ultimately
clinical implementation. These biomarkers can be prognostic, diagnostic or
predictive. If biomarkers can be used to stratify patients before entering into

clinical trials, it is hoped that the success rate will substantially increase.
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1.4.5 EpiSwitch™ in Rheumatoid Arthritis

The MTX response CCS is made up of 5 loci (IL17A, CXCL13, IL21R, IL23 and
IFNAR1)(Figure 1.5), known to be involved in RA pathogenesis®'®. These signature
loci are primarily involved in cytokine and chemokine pathways. This biomarker
could predict MTX non-response with 90% sensitivity. The discovery cohort was
made up of 59 patients (30 responders and 29 non-responders), and the blinded-
validation cohort, 19 patients. All patients were from the Scottish Early
Rheumatoid Arthritis (SERA) cohort. This is a pan-Scotland, inception cohort of
over 1,200 patients. Various clinical samples and information were taken and
recorded from baseline, every 6 months. This biomarker was refined from a list
of over 13,000 loop anchor sites across 309 genetic loci, many of which are
known to be associated with RA. Statistical refinement reduced 100 to 30 loci.
These were then reduced to the final 5. This study was the proof-of-principle
that the structural epigenome could be used to predict MTX response in
treatment naive patients. This study opens the opportunity for investigating the
relationship between chromatin conformation structure and function in RA, and
a basis for validating this biomarker in other cohorts. While the biomarker
discovery approach is considered robust, the sample number used in discovery
and validation cohort could be considered small. Therefore, there is merit for
exploring the signature in a higher number of patient samples. Moreover, the
consequence or cause of these loops in RA patients is not known. Various
methods could be used to shed light on this, which could reveal more about

molecular biology underpinning MTX response and RA pathogenesis.
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Figure 1.5 CCS for MTX response prediction

This 5-loci CCS has the capacity to differentiate responders and non-responders to MTX
in treatment-naive patients with RA with 90% sensitivity. Schematic of CCS is
representing the signature in both response groups. Numbers represent EpiSwitch™ sites
on the genome. A) CXCL13 loop is present in non-responders, Chr 4. B) IL17A loop is
present in non-responders, Chr 6.C) IFNAR1 loop is present in responders, Chr 21. D)
IL21R loop is present in responders, Chr 16. E) IL23 loop is present in responders, Chr
12. For coordinates, see Appendix.

1.4.5.1 IL17A

IL17A is part of the IL17 family, that has 5 other members (IL17B-F). IL17A
signals through the IL17 receptor on Th17 cells. The receptor exists as a
heterodimer with IL17C?%°.This heterodimer has been found on fibroblasts,
endothelial and epithelial cells?*'. A number of cells from the adaptive immune
compartment can produce IL17A, namely CD3*, CD4" and CD8" T cells, NK cells,
and Th17 cells?®2. IL17A production has several pathogenic implications in RA,
including maturation of osteoclasts and fibroblast-like synoviocytes, as well as
activation of macrophages, neutrophils and B cells*?. Studies have suggested
that presence of IL17A in RA synovium is a predictor of disease progression?**.
While IL17A blockade has been shown to be very effective in the treatment of
autoimmune conditions such as psoriatic arthritis and psoriasis, blockade in RA
has been less successful. Trials of secukinumab, an IL17A monoclonal antibody,

did not have as profound therapeutic effects that other cytokine blockade
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therapies have had, such as IL-6 and TNFa??*. One study demonstrated that
secukinumab was better than placebo in RA, but not superior to anti-TNFa

therapy??.

1.4.5.2 CXCL13

CXCL13 is a chemokine that belongs to the CXC family. This chemokine is
chemotactic for B cells and interacts with the receptor CXCR5 on B cells to have
its effect?®. The role of this chemokine in B cell chemotaxis places it in position
of RA pathogenesis. The levels of CXCL13 in RA serum has been shown to high in
both early and established RA??’. Jones et al believe CXCL13 to be correlated
with RF in RA patients but show no correlation to other demographic or
serological markers such as ACPA. One study has demonstrated that CXCL13
works synergistically with CCL20 to recruit B cells to the synovium??®. Lymphoid
neogenesis is another process which implicates CXCL13 in RA pathogenesis*?’.
Several studies have been conducted which demonstrate CXCL13 role in this
process. CXCL13 can also be produced by CD4" T cells, another cell type
important in RA pathogenesis?*°. This study aimed to understand the mechanism
by which CXCL13 is produced by CD4" T cells. They found SOX4 was a
fundamental transcription factor for this process and has associated this with the
formation of FLS at inflammatory sites in human, such as synovium in people
with RA. Similarly, Kobayashi et al demonstrated that CD4" T cells can produce
CXCL13 and are involved in ectopic lymphoid neogenesis at inflammatory
sites?®!. The CXCL13 receptor CXCR5, is also expressed on Tfh cells and it has
been suggested that this essential for the development of RA. Interestingly,
CXCR5 deficient mice are unable to develop Collagen induced arthritis (CIA)**2.
This study has shown the potential for targeting of the CXCR5 receptor for
treatment in RA. As the only known ligand for the receptor is CXCL13, an

antagonist for the receptor would have little pharmacological competition?3%2%,

CXCL13 has shown promise of its predictive potential in several studies to date.
Mainly, it has been identified as marker for predicting disease activity or
potential outcome®*%, Largely, this may be due to the high levels of CXCL13 in

synovial tissue and fluid in individuals with RA?*?. Additionally, several studies
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have attributed CXCL13 to predictive capacity to TNFa inhibitors in the

treatment of RA%Z®>,

1.4.5.3 IL21R

IL21R belongs to the IL-2 cytokine family. The receptor is a heterodimer,
consisting of an alpha and gamma chain which is shared by other cytokines
including IL-2, IL-4 and IL-9%°%. The IL21R is structurally similar to IL-2R and IL-
15R (Li et al., 2006). The IL-21 receptor can be found on multiple immune cells
including DCs, NK cells, T cells and B cells®’. IL-21 is mainly produced by CD4* T
cells and NK cells and is proinflammatory in nature?®. IL-21 signals through the
IL21R, inducing the STAT pathway**’. Activation of this pathway results in
expansion of B cells and downstream production of antibodies, class switching
and plasma cell differentiation?*®%*?. |L21R expression has been found to be
higher in RA and systemic sclerosis compared to controls®*'. More recently, IL21R
has been enhanced in other inflammatory conditions such as tendinopathy?.
IL21R has also been found to be upregulated in synovial tissues of people with RA
but not osteoarthritis (OA)**'. There have been studies investigating the efficacy
of IL21R blockade in the treatment of RA and other autoimmune diseases.
Animal models have demonstrated that blockade of the IL-21/IL21R pathway was
effective in reducing RA disease activity as well as having an inhibitory effect on
cytokine production in vitro**. Mouse models lacking IL21R were found to be
unable to develop spontaneous autoimmune disease. Humoral immunity was also
comprised in these mice, highlighting the role of IL-21 in antibody production®®.
A recent study demonstrated an increase of IL21R on naive and memory B cells
in RA in comparison to healthy controls. This was associated with an increase in
PSTAT3 levels. The increased IL21R was attributed to increased SP1%4.

1.4.5.4 IL23

IL23 exists on the Th17 axis along with IL-21 and IL17A. IL23 is a member of the
IL-12 family of cytokines*®. The structure of the cytokine consists of 2 subunits:
IL23 p19, which is exclusive and the IL-12p40 subunit which is shared with
IL12**. Antigen presenting cells, monocytes, macrophages and DCs are the cell
types that produce /IL23 the most. When IL23 binds to its receptor, IL23R, it
activates the JAK-STAT pathway, specifically JAK2 and subsequent STAT3 and
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STAT4*®. The receptor is made up of /IL23 -R and IL-12R-aB1 complex?*. This
leads to the release of pro-inflammatory cytokines, IL17A and RORyt*. It is
thought the role for IL23 is maintenance, development and survival of Th17 cells
via a positive feedback loop that involves TNFa, IL-6 and IL-18%¥. Studies
involving the EAE model were crucial in revealing that the IL12-IFNy axis was not
responsible for initiation of autoimmunity, but was in fact the IL17-23 axis?*2%,
This cytokine can be found in the synovial fluid and serum of those with RA, and
studies have found it to be significantly higher than healthy individuals®°. The
levels of IL23 in the serum have been shown to correlate with severity of disease
activity?*. The implication of IL23 in inflammatory arthritis has been evidenced
in the CIA model of arthritis. Overexpression leads to development of CIA while
reduction is protective of CIA. This study showed that while /L23 plays a role in
the development of disease, once established, IL23 has less of a role. This was
shown by inhibition during disease not reducing disease severity®'. IL23 has also
been shown to have a role in the production of autoantibodies, hence its role in
the early stages of disease?’. In addition to its role in disease onset, it has been
suggested that IL23 could play a role in disease flare. This is due to successful
reduction of disease severity with blockade of 1L.23 %', Studies have also shown
IL23 to have osteoclastogenic activity, contributing to the bone erosion in RA.
While it’s role in RA pathogenesis has been demonstrated, pharmacological
targeting of IL23 has been unsuccessful in showing any benefit clinically. Two
antibodies have been tested in a stage Il clinical trial. One was a monoclonal
antibody targeting the IL23 12/23 p40 complex, and the other targeting the p19

subunit alone?®?.

1.4.5.5 IFNAR1

The IFNAR receptor is the receptor for the antiviral cytokines, named
interferons. IFNAR1 and IFNAR2 make up the single-membrane spanning IFNAR
receptor which is ubiquitously expressed®. The IFN receptors act by increasing
binding of ligands. Once the receptor is activated, intracellular signalling
cascades are activated which results in the activation of the STAT pathway**.
There are three types of interferons in humans, classed as type I, type Il and
type Ill. They all signal through the IFNAR receptor, with differing binding

affinities?. Type | interferons are heavily involved in the regulation of both the
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innate and adaptive immune response. Namely, macrophages, NK cells, B cells,
T cells and DCs are aided in their differentiation and proliferation by type |
interferons®®. IFNAR1 has been investigated in various autoimmune conditions.
One study found some patients with RA have a higher proportion of interferon
response genes compared to other patients®”’. Several studies have indicated the
presence of a type 1 interferon signature in RA. One study has shown that one
subgroup in RA, with upregulated activity in the innate immune system,
complement cascades and fatty acid metabolism?®. Another study reported
IFNAR1 blockade has been utilised in lyme arthritis>*°. The involvement of IFN
signalling in the development of lyme arthritis was also studied using IFNART -/-
mice. Severity of arthritis was reduced in the KO. Many cell types have been
found to contribute to the IFN response, including primarily myeloid cells,

resident in joint tissues, in addition to fibroblasts and endothelial cells*”’.

1.5 Aims

Despite efforts, there is no molecular biomarker currently used at diagnosis to
stratify RA patients and ensure they are on the right treatment from the outset.
The development of technologies able to interrogate the genome, as well as the
growth in biobanks, has made the study of molecular biomarkers for RA more

accessible.

While the discovery of a biomarker for MTX response in the treatment of RA is an
important and interesting finding, biomarkers require further validation until
they can be considered for adoption into a clinical setting. Additionally, research
has demonstrated that chromatin conformation reveals insight into gene
regulation, therefore there is scope that this MTX CCS could increase
understanding about the underlying mechanisms that dictate ability to respond,
or not respond to MTX treatment. Moreover, with the EpiSwitch™ pipeline
incorporating additional, more informative methods of biomarker discovery,
there is the potential of discovering additional CCS with the capacity to further

stratify the RA population.
This body of work aimed to:

1) Validate the MTX CCS bioinformatically and in an independent clinical cohort,

as well as establish the efficacy to predict response to other csDMARDs.
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2) Understand the relationship between CCS and disease pathogenesis.

3) Determine if underlying epigenetic endotypes exist in the early RA population

and if chromatin loop candidates exist to predict these.



Chapter 2 Materials and Methods

2.1 Patient Cohorts

2.1.1 Patient Identification - SERA

The Scottish Rheumatoid Arthritis (SERA) cohort is a pan-Scotland inception,
longitudinal cohort of patients with early rheumatoid arthritis (RA). Samples
were obtained at 6-month intervals, from baseline of treatment. All patients
were conventional synthetic disease modifying anti-rheumatic drug (csDMARD)
naive at baseline. Healthy samples came from demographically matched friends
or family of enrolled patients. Patients of interest in this study were identified
by their response to DMARD therapy. This was done by calculating disease
activity using clinical disease activity index (CDAI) and disease activity score 28
(DAS28) measurements at baseline, 6 months and 12 months. These calculations
take into consideration swollen (SJC28) and tender joint (TJC28) counts from 28
joints (Figure 2.1). Patient assessment of disease activity (dasVAS) and physician
(GlobalVAS) assessment of global health from a visual analogue scale (VAS) of 0-
10cm is also included. The closer to 10cm on the scale, the worse the disease
activity. Some DAS scores take the inflammatory markers, erythrocyte

sedimentation rate (ESR) and c-reactive (CRP) protein into account.

elbow

wrist
metacarpophalangeal joints

proximal interphalangeal joints
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Figure 2.1 Joints included in swollen and tender joint counts
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Disease activity calculations used were:
e C(Clinical disease activity index (CDAI) - (DasVAS/10) + (GlobalVAS/10) + SJC28 +
TJC28
e Disease activity score 28 with c-reactive protein (DAS28 CRP) - 0.56*SQRT(TJC28)
+ 0.28*SQRT(SJC28) + 0.36*In(CRP+1) + 0.014*GH + 0.96
e Disease activity score 28 with erythrocyte sedimentation rate (DAS28 ESR) 0.56*
square root (SQRT)(TJC28) + 0.28* SQRT(SJC28) +0.7*LN(ESR) *1.08+0.16

For the work in this thesis, a combination of patients were chosen: some had
reduced disease activity, from high disease activity (HDA) at baseline, to low
disease activity (LDA) or remission after 6 months of therapy, and others had
minimal, or no reduction in disease activity, representing responders and non-
responders respectively. All patients chosen were identified as having HDA at
baseline (Table 2.1).

Table 2.1 Categories of Disease Activity Score
CDAI, clinical disease activity index; DAS, disease activity score

<2.8 <2.6 Remission
>2.8 to <10 >2.6 to <3.2 Low
>10 to <22 >3.2 to <5.1 Moderate

>22 >5.1 High

2.1.2 Patient Identification - TACERA

The Towards A Cure for Early Rheumatoid Arthritis (TACERA) cohort is an early
RA cohort that is part of the larger RA-MAP consortium. Like SERA, TACERA is an

early RA, longitudinal cohort and patients were DMARD naive at enrollment. The
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online knowledge management platform, TranSMART, was used to identify
patients that were given monotherapy methotrexate (MTX) at baseline. Samples
from this cohort were used for the blinded validation of the MTX signature,
originally generated in the SERA cohort, and therefore the only data required at

the selection stage was treatment at baseline.

2.1.3 Sample Type - SERA

From the patients identified as per section 2.1.1 in the SERA cohort, frozen
buffy coat (BC) samples from baseline, 6-month and 12-month time points were
identified and selected. Clinical information was obtained alongside the clinical
samples. Of note, this includes age, BMI, smoking status and disease activity

measurements.

2.1.4 Sample Type - TACERA

From the patients identified as per section 2.1.2 in the TACERA cohort,
peripheral blood mononuclear cells (PBMCs) from csDMARD naive patients at
baseline were identified and selected. Disease activity data were also available,

but this was not retrieved until the blinded analysis was complete (See 2.2.1).

2.1.5 Sample retrieval - SERA

Samples were collected on dry ice from the SERA storage facility at Yorkhill
Biorepository. On return to the Glasgow Biomedical Research Centre (GBRC)
samples were logged in using unique barcodes on each sample tube. Samples
were subsequently thawed and then aliquoted into 110ul aliquots and stored at -

80°C until required.

2.1.6 Sample retrieval - TACERA

TACERA samples were retrieved from the UK Biocentre on dry ice before
shipment to Oxford Biodynamics Plc (OBD) where they were subsequently stored

at -80°C until required.
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2.1.7 Sample storage

The laboratory information management system (LIMS) was used to identify
samples for retrieval from the SERA biobank. Sample barcodes were scanned and
recorded on an excel spreadsheet which documented sample location in -80°C

freezer. This information was stored in a password protected folder.

2.1.8 Ethical Approval - SERA

Samples were obtained with written consent and under appropriate ethical
approval. Ethical approval for the SERA study was obtained on 28/05/2010,
under REC approval number 10/50704/20. A sample access application was
submitted to the SERA Access Committee to achieve approval to access the
requested samples and associated clinical information on several occasions
throughout this study. These applications were approved on 23/08/2017,
07/08/2018, 18/02/2019.

2.1.9 Ethical Approval - TACERA

Samples were obtained with written consent and under appropriate ethical
approval. Ethical approval for the TACERA samples was obtained on 02/05/12
under REC approval no 12/L0/0469.
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2.2 Chromosome Conformation Capture

Prior to using Chromosome Conformation Capture (3C) on valuable patient
samples, the protocol had to be optimised in my own hands using healthy samples.
Once optimised, the steps described (2.2.3 - 2.2.7) were performed using RA
patient samples. This section describes the original 3C protocol and the methods
used to determine if quantitative PCR could be used to capture the MTX

chromosome conformation signature (CCS) loci.

2.2.1 PBMC Isolation

Healthy buffy coat donors were provided from the Scottish National Blood
Transfusion service (SNBTS). PBMCs were isolated by density gradient
centrifugation with Ficoll (GE Healthcare). PBMCs were re-suspended in PBS
(Sigma) or cell separation buffer (PBS 1% Fetal Bovine Serum(FBS), 2mM EDTA).
Cells were frozen at 2x10’ in freeze buffer (10% Dimethyl Sulphoxide (DMSO),
90% fetal calf serum (FCS)) and stored at -80°C for short term storage or in liquid

nitrogen for samples getting stored for longer periods.
2.2.2 CD4" T cell Isolation

PBMCs isolated as described in section 2.2.1, were re-suspended in cell
separation buffer and CD4" T cells were separated by positive selection using

magnetic bead separation as described by manufacturer (T cells - Miltenyi
Biotec). Briefly, PBMCs were mixed by pipetting with 20ul CD4™ magnetic

microbeads in 80ul of cell separation buffer per 107 cells for 15 minutes at 4°C.

To wash off excess labelling, 10ml of cell separation buffer was added and tube
centrifuged at 300g for 10 minutes at room temperature (RT). Supernatant was
removed and cells resuspended in 500ul cell separation buffer. Cells were then

appropriately labelled and could be passed through a magnetic separation

column. A column was placed on the appropriate MidiMACS™

Separator and
rinsed with cell separation buffer. The labelled cells were applied to the
column, and the column rinsed three times with 3ml of cell separation buffer.
The column was removed from the magnet and 5ml of cell separation buffer

added. Using a plunger, cells were forced through the column. This, the positive
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fraction containing CD4" T cells, was then available for use in future

experiments.

2.2.3 Flow Cytometry Purity Check

For surface staining, 1 x 10° cells were resuspended in flow cytometry buffer
(PBS with 2% FBS and 5mM EDTA) into 6ml FACs tubes (BD Biosciences). Cells
were centrifuged at 400g for 5 minutes before adding CD4-APC antibody
(BioLegend). Tubes were incubated at room temperature for 20 minutes in the
dark. Cells were fixed in diluted fix buffer (BD Biosciences) and kept at 4 C until
they were run on the LSR Il flow cytometer. Data was then analysed using FlowJo
v10 software.

2.2.4 DNA extraction

PBMCs from healthy donors or patient BC samples were removed from -80°C prior
to DNA extraction and thawed at 4 C. This was carried out as per OBD protocol
using the Episwitch™ proprietary reagents. A starting volume of 50ul (1 million
cells) patient sample was used for each DNA extraction. Briefly, cells were fixed
with EpiMix Buffer DE-A (Thermofisher Scientific) and quenched with EpiMix Buffer
DE-B. This was followed by cell lysis with 10x EpiMix Buffer DE-C and the nuclei
were purified by density cushion centrifugation. Tag1 (Thermofisher Scientific)
and T4 DNA ligase (Takara) were used to restrict and ligate the DNA followed by
the addition of proteinase K (Roche) to remove any proteins. Incubations with
these reagents were carried out on the Veriti thermocycler, see Table 2.2 for

thermocycler conditions.

An updated extraction protocol (Protocol 2) was implemented after quantitative
PCR was introduced. This was carried out as described above, with the addition
of protease inhibitors (Sigma) prior to EpiMix Buffer DE-A treatment and during
lysis. During the EpiMix Buffer DE-A step, a non-fixation (NF) control was
generated with the addition of water instead of EpiMix Buffer DE-A. See Table 2.3
for cycling conditions associated with the updated protocol. Once extraction was

complete, the sample was pelleted using density centrifugation and the pellet
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then purified using the QlAamp FFPE tissue kit (Qiagen) as per manufacturer’s

instructions.

Table 2.2 Thermocycler conditions for 3C - Protocol 1

Taq1 65 20 minutes
1x EpiMix Buffer DE-F | 65 5 minutes
1x EpiMix Buffer DE-G | 37 5 minutes
DNA Ligase 16 10 minutes
Proteinase K 37 30 minutes
94 10 minutes

Table 2.3 Thermocycler conditions for 3C - Protocol 2

25x EpiMix Buffer DE-F 65 15 minutes

2x EpiMix Buffer DE-G 37 15 minutes

Taq1 65 20 minutes

1x EpiMix Buffer DE-F 65 5 minutes

1X EpiMix Buffer DE-G 37 5 minutes

DNA ligase 16 10 minutes
80 20 minutes
4 hold

2.2.5 DNA Quantification - Picogreen

After DNA extraction and the preparation of 3C libraries, the DNA had to be
quantified. The first method of quantification used Picogreen. Here, 20x Tris-
EDTA (TE) buffer was diluted with 200x Quant-iT Picrogreen to make a 1 in 10
working solution. Volumes of working solution were dependent on the number of
DNA samples being analysed. A 1 in 2 serial dilution of 100ug/ml lambda DNA
was created to act as a standard. All standards and samples were diluted 1:100.
Next, 100pl of diluted samples were added to a 96-well ELISA plate in triplicate
and the 100pl of 1x TE-Picogreen mix was added. The plate was incubated at RT

for 5 minutes then read on a Tecan M200 Pro at 480nm.
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2.2.6 DNA Quantification - Qubit

The Qubit DNA quantification kit was used as an alternative method of
quantification to Picogreen. The Qubit high sensitivity (HS) double-stranded
(ds)DNA kit (Thermofisher Scientific) was used. A working solution was prepared
by diluting Qubit dsDNA HS reagent 1:200 in Qubit dsDNA HS buffer. For samples,
2ul was added to 198ul of working solution and for standards, 10ul was added to
190 ul of working solution. Standards and samples were briefly vortexed and
incubated at RT for 2 minutes before being read on the Qubit 3.0 Flourometer
(Thermofisher Scientific). The Qubit dsDNA broad range (BR) kit (protocol as
described for HS kit) was implemented if the DNA concentration was out with
the range of the HS kit.

2.2.7 Nested PCR

After the DNA quantification, nested PCR was carried out using primers listed in
Table 2.4. Primers for nested PCR were designed by OBD using Primer3 software.
Primers were stored at -20°C until needed, at which point they were thawed at
RT. Samples were normalised to a concentration of 1ug/pl in nuclease free water.
A master mix of 16.5ul, nuclease free water (Thermo Fisher Scientific), 4pl of both
outer primers and 12.5ul kappa blood mix was made. 37l of master mix was added
to 0.2ml tubes followed by 13pl of diluted template. A non-template control (NTC)
was created by adding nuclease free water instead of DNA sample to the mix.
Samples were added to the thermocycler for the 1% round. For the 2™ round,
master mixes were prepared as before with 24.5ul nuclease free water and inner
primers. 45ul of master mix was added to a new set of 0.2ml tubes and 5pl of

1St

template (from the round) was added. The tubes were added to the

thermocycler for round 2. Cycling conditions are documented in Table 2.5.
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Control MMP13 CAGAAAAGAGTTAAGAGTGTCAGAC Forward Outer
MMP1 11 TCCAGGTCCATCAAAAGGAG Reverse Outer
MMP1 4 ATTTGTGAAATGGGGAGTGG Forward Inner
MMP1 12 AGCTAAGCCAGAAGGGCAAG Reverse Inner
MMP1 10 AAGGCTGGAGGTAAACTATACAGG Forward Outer
MMP19 CAACAGGACACACCTATCAAACC Reverse Inner
ER 15 GGAGCATTTGAGGGAGAGAG Forward Outer
ER 18 GGTTTTACCAAGACTGCTTGC Reverse Outer
ER 16 CGGGGAACTATGGTAAACTCC Forward Inner
ER 17 TCACATGCAGCACAGAATACC Reverse Inner
RFA17 ACCCAGTCCCCACTCCTATC Forward Outer
RFA18 ACTCCCCATAGGCACAAGC Reverse Outer
RFA19 TGTGGTGGAGACAAAAATGG Forward Inner
RFA20 AGAAGTTGCCAAGGGTGATG Reverse Inner
ERTM3 TGTGTGACTCCTTCCTGCAC Forward Outer
ERTM4 TTTCAATTTCCCCAGCAGAG Reverse Outer
ERTM17 AGTTTGCGTCTGTGCATCTG Forward Inner
ERTM18 TGCGTCAATTCCTAGTGTGG Reverse Inner

MTX CCS loci RAA65 GAGTCACAGCAGAAGGGTAAG Forward Outer
RAA67 ATACAGATGGAGGAGGAGGTAG Reverse Outer
RAA66 GGAAGTGCTACACCTTTAAACCA Forward Inner
RAA68 CCTCCTCTACACACGACCA Reverse Inner
RAA89 CAGTCTGTCACGTGGGTTATT Forward Outer
RAA91 CCTTATTCATGTCTGCCCTAAGA Reverse Outer
RAA90 TTCTTTCCAGTGGCTGCTTAT Forward Inner
RAA92 GCTCTCTGATAGCCAGATGATTC Reverse Inner
RAA93 GATGTGGGATGACTCCATCT Forward Outer
RAA95 CTGTAAACATCAGGCTCAAAGG Reverse Outer
RAA94 GTCTAGTGCATTCAGAGAGTGG Forward Inner
RAA96 GACATCCAGTCAGCCTCATTA Reverse Inner
RAA98 CAGTAGAAAGGTGCCAGACAT Forward Outer
RAA100 CCAAGATCAGAAAGACGCAAAC Reverse Outer
RAA97 CGAGGGTTTGAAGTACGAAGA Forward Inner
RAA99 TATCCAGGAGGAAGGCTGTA Reverse Inner
RAA46 GCCTCCTGCATTCTCTTCTT Forward Outer
RAA48 CCCAGCTTTGCTTCATGTATTT Reverse Outer
RAA45 CTCACTCTTTCCGGCCTATG Forward Inner
RAA47 GGAAGTAGATACCAGCCAAACT Reverse Inner
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Table 2.5 Nested PCR Cycling Conditions

94 5 minutes 1 1
94 1 minute

56 45 seconds 25 1
72 30 seconds

72 5 minutes 1 1
4 Hold 1
94 5 minutes 1 2
94 1 minute 2
62 45 seconds 25

72 30 seconds

72 5 minutes 1 2
4 Hold 2

2.2.8 gPCR product purification

After DNA extraction of samples intended for gPCR using the method described in
2.2.3 (Protocol 2), the Qiagen FFPE tissue kit was used for purification prior to
gPCR. In brief, 1-8 pellets from each sample were suspended in ATL buffer and
transferred to DNA LoBind tubes with the addition of 20ul Proteinase K. These
were incubated on a heat block for 1 hour at 56°C followed by 1 hour at 90°C.
Samples were cooled to RT after which 2ul RNase was added followed by RT
incubation for 2 minutes. A master mix of 1:1 AL buffer and 200 proof ethanol was
made. 400pl of the AL/ethanol mix was added to the samples which were then
transferred to MiniElute columns. 500ul of AW1 buffer from the kit was added to
the columns, followed by a 6000g spin in a centrifuge for 1 minute. After flow
through was discarded, 500ul of buffer AW2 was added to the column and had a
6000¢g spin in a centrifuge for 1 minute. For elution, 30ul 1x TE buffer was added
to the columns, which were incubated for 5 minutes at RT. This was followed by
a 20000g spin for 1 minute. DNA concentration could then be measured by the
Qubit dsDNA HS kit, as described in section 2.2.5.

Primers for gPCR were designed using the PrimerQuest tool within Integrated DNA
Technologies (IDT). The default primer option for intercalating dyes was selected.
This considers primer characteristics such as an optimum melting temperature of
62°C, a GC content of 50%, primer size of 22 nucleotides (nts) and amplicon of
100nts. Once designed, primer specificity was tested using NCBI Blast

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). All qPCR primers were then tested
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experimentally. A master mix was made from 5ul 2x kappa probe force, 0.25ul of
each forward and reverse primer (stock 100uM; see Table 2.6), and 0.5ul of 20x
PowerSYBR green (Invitrogen). Patient samples were pooled together once
normalised to 10ng/ul. These samples, along with NF control (generated as
described in 2.2.3), genomic control (PE Biosystems), a loading buffer control (TE)
and non-template control (NTC) were prepared. The master mix was plated in a
96-well plate and 4pl of template was added in duplicate to make a 10ul reaction.
One CCS loci was tested per 96-well plate, primers shown in Table 2.6. Once
prepared, the plates were sealed and centrifuged for 30 seconds. Plates were run
on Applied Biosystems StepOne Plus or QuantStudio 7 Flex Real-Time System. The
qPCR block set with 6 annealing temperatures of 68°C, 67.5C, 66.4C, 64.4C,
62°C, 60°C to determine the optimal annealing temperature for each primer. A
melt curve was also generated per run to identify the presence of only a single
product without evidence of primer dimerization. The cycling conditions are

shown in Table 2.7.
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Control MMP1 3 CAGAAAAGAGTTAAGAGTGTCAGACC Forward Outer
MMP1 11 TCCAGGTCCATCAAAAGGAG Reverse Outer
MMP1 4 ATTTGTGAAATGGGGAGTGG Forward Inner
MMP1 12 AGCTAAGCCAGAAGGGCAAG Reverse Inner
MMP1 10 AAGGCTGGAGGTAAACTATACAGG Forward Outer

MTX CCS loci IL17A CCCTCAACATGCAGGGATTA Sense 62
IL17A TCACCCACTTGGATGAGC Antisense 61
IL17A CCCTCAACATGCAGGGATTAC Sense 63
IL17A ACTCACACTCTCACCCACTT Antisense 63
IL17A ACTGCCCTCATAATCCAATCAC Sense 62
IL17A ACTCACACTCTCACCCACTT Antisense 63
CXCL13 CTGACATGAGTGATGCGTTT Sense 61
CXCL13 ATTTTTATCATCAGATACATAAAATGAGA Antisense 60
CXCL13 GCTCTGACATGAGTGATGCG Sense 63
CXCL13 ATAGGGAAGTTTTTTTTTTGCTTCA Antisense 61
CXCL13 GTGGCTGCTTATATCTCCTACC Sense 62
CXCL13 TCAAACCTGATTTTTATCATCAGATACA Antisense 62
IL21R CTGAGGCAGGCAGATCAT Sense 62
IL21R CAGGTGACCTTGTCTCTGG Antisense 62
IL21R CAGTGGCTCACACCTGTAAT Sense 62
IL21R ATAGGGAAGTTTTTTTTTTGCTTCA Antisense 62
IL21R CAGTGGCTCACACCTGTAAT Sense 62
IL21R AGCTCTGGACATCCAGTCA Antisense 62
1L23 GGGAGACAGGGTGTCATTC Sense 61
IL23 ACGTAAGAACGTAAATGTTTGG Antisense 61
1L23 ATAGTGGCATGATCACAGCTC Sense 62
.23 AACGTAAGAACGTAAATGTTTGGG Antisense 62
1L23 AGGCTGGAGAATAGTGGCA Sense 63
.23 AGAACGTAAATGTTTGGGTGTTG Antisense 62
IFNAR1 GAAGGAGGAAGTGGCTGAG Sense 61
IFNAR1 CTCTTCTTGCTCAGGGTGAATA Antisense 62
IFNAR1 ACCAGACCGTTGCTGTG Sense 62
IFNAR1 CTCTTCTTGCTCAGGGTGAATA Antisense 62
IFNAR1 GAAGTGGCTGAGCGACC Sense 62
IFNAR1 TTAATGAAATCAAATAAACTCTTCTTGCT Antisense 62

Table 0 gPCR cycling conditions

98 3 minutes 1

95 10 seconds 44
60-68 20 seconds

Melt curve 5 minutes 1

4 Hold
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2.2.9 Gel electrophoresis

The amplified nested PCR products were visualised using gel electrophoresis. A
1.5% agarose gel was prepared with 1x tris-acetate-EDTA (TAE) buffer with 1x
Ethidium Bromide (1pg/ml). A 1kb" ladder (Thermofisher Scientific) was used
and gels were run until this ladder had migrated adequately through the gel. The
gels were imaged with UV light and the image was captured using the Gel Logic

200 imaging system.

2.2.10 Gel Purification

The qPCR amplified products of interest were run on a 1% agarose gel, which was
prepared with 1x Ethidum Bromide. The gels were imaged with UV light and once
products of interest were confirmed, bands were excised for purification. The
excised gel was then put into a labelled 1.5 ml microcentrifuge tube for weighing
and images were captured using the Gel Logic 200 imaging system. The excised
product of interest was then processed for sequencing. In brief, solubilization and
binding buffer (GQ) was added to each 100mg of gel. This was then incubated tor
10 minutes at 15°C to dissolve the gel. Following this, 100ul of isopropanol was
added to the sample and mixed. To bind the DNA, the sample was applied the
sample to a QIAquick column, and centrifuge at 18,000g for 1 minute. Run-through
was discarded and the column was added to a clean tube with 15ul TE buffer to
elute the DNA.

After gel purification, samples had to be sent for sequencing. Gel purification as
described above did not yield the required concentration of DNA for sequencing.
To increase the yield, the optimisation steps included GQ incubation for 15
minutes with shaking every 2 minutes, and incubation with elution buffer (10 mM
Tris-Cl, pH 8.5) for 3 minutes. Additionally, DNA was eluted into heated buffer
(37°C water bath).

2.2.11 LabChip GX

As an alternative to gel electrophoresis as described above (2.2.8, 2.2.9), the

LabChiP GX microfluidic system was used to visualise PCR products in high
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throughput at a later stage in the study. The 1K reagent kit was used as per
manufacturer’s instructions. In brief, the LabChip was washed and reagents
filled in the appropriate wells. Subsequently, a 96-well plate was prepared with
samples in triplicate. The LabChip and the plate were loaded onto the LabChip
GX Touch Nucleic Acid Analyzer, which was run for 3 hours, changing LabChip
reagents after 1.5 hours. The samples were analysed using the LabChip GX
software. Product band sizes were observed to confirm presence or absence of

loop of interest.

2.2.12 Tubeseq

After gPCR products were purified, they had to be sent for sequencing to confirm
that it was our product of interest. gPCR products were sent to Eurofins genomic
sequencing to confirm the qPCR product of interest. The Tubeseq service was
used. Samples were prepared at 1ng/pl for the 150-300bp products. The total
volume of sample was 17ul, made up of 15ul of DNA sample at appropriate
concentration, and 2ul primer at 10pmol/pul. Samples were prepared in 1.5ml
tubes and labelled with unique Tubeseq barcodes for identification. Samples were
transferred at RT to the Eurofins sequencing facility. Sequencing results were
emailed several days after samples arrived at the facility. It should be noted that
the first sequencing run was unsuccessful, and optimisation steps were required,

see section 2.2.12 and 2.2.13 below.

2.2.13 Cloning

The first set of qPCR samples that were sent for sequencing were not successfully
sequenced as the sample was of poor quality. As such, cloning of the gPCR product
was introduced to increase quality. In brief, the chosen qPCR product was inserted
into the TOPO 2.1 vector (Thermofisher) and incubated for 5 minutes at RT. This
was then transformed into OneShot cells and plated on agar plates coated with
kanamycin (50pg/pl). These were incubated overnight at 37°C. White clones were
chosen and placed in liquid culture in a shaking incubator (200rpm) overnight. The
plasmid was then isolated using the purelink miniprep kit as per manufacturer’s
instructions. The plasmid was then analysed for inserts by restriction digest with

EcoR1. Inserts were identified by running an ethidium bromide gel (see section
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2.2.8) and looking for a product 300 bp in length. This is based on the plasmid size
of 3.9kb, EcoR1 restriction size of ~3kb.

2.2.14 PolyA tailing

Cloning alone was unsuccessful in achieving product of interest during restriction
digest, and optimisation of sequencing preparation was carried out. A polyA tail
was added to the qPCR product with the aim of generating a more stable product
for future steps in the cloning protocol. Briefly, a master mix was created by
adding, 2ul of 5x GoTaq reaction buffer, 2ul of 1mM dATP, 1ul GoTaq flexi DNA
polymerase and 0.6pl of 25mM MgCl,. 2ul of purified blunt-ended DNA fragment
was added and nuclease free water was added to bring the final volume to 10pl.
This was incubated at 70°C for 15-30 minutes in a water bath. PolyA tailing alone
was unsuccessful, and success of generating a restriction product involved

optimisation of the ligation ratio for the desired concentration of 1.5ng of insert.
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2.3 Validation of MTX CCS in TACERA Cohort

Data was analysed with Ewan Hunter and Christina Koutsothanasi, OBD. 3C
libraries were created and nested PCR was carried out as described in 2.2.3 and
2.2.6 on 70 PBMC samples chosen from the TACERA cohort (2.1.2). Briefly, two
machine learning algorithms were employed to test the ability of the MTX CCS to
stratify R and NR to MTX. Both models, namely XGBoost
(https://xgboost.readthedocs.io/en/latest/) and LightGBM
(https://lightgbm.readthedocs.io/en/latest/), utilise a gradient boosting

decision tree algorithm and were used via R studio. 47 samples were unblinded
(R vs NR status revealed) for classification; 23 samples remained blinded during
analysis. R and NR status was determined by disease activity (CDAI) at 6 months

after treatment.

2.4 In-silico data analysis of MTX CCS epigenomic
environment

2.4.1 DeepBlue Data retrieval

Online datasets were utilised for these investigations. Namely the DeepBlue
Epigenomic Data Server and the Promotor-Capture HiC (PCHiC) dataset,
generated by Javierre et al**° . To analyse the data, a combination of Microsoft
Excel and packages within R and R studio were used. From the DeepBlue
Epigenomic Server, various datasets were downloaded dependent on the
epigenetic feature of interest. Specifically, data from Chromatin
immunoprecipitation followed by sequencing (ChIP-Seq) experiments identifying
H3K27ac, H3K4me3, H3K4me1, H3K27me3, H3K36me3 and K3K9me3, in addition
to data from Bisulphite-Seq and DNase-Seq to identify methylation marks and

DNase hypersensitive sites (DHSs), respectively.
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hg38 IL17A 6 52161697-52172165 52184632-52187067
CXCL13 4 77510412-77512093 77602625-77605433
IL21R 16 27356311-27357534 27449257-27451508
IL23 12 56345719-56347275 56361069-56361825
IFNAR1 21 33324378-33325411 33373955-33376515
hg19 IL17A 6 52026495-52036963 52049430-52051865
CXCL13 4 78431566 -78433247 78523779-78526587
IL21R 16 27367632-27368855 27460578-27462829
IL23 12 56739503- 56741059 56754853-56755609
IFNAR1 21 34696683-34697716 34746261-34748821

2.4.2 DeepBlue data analysis

Once downloaded, the files were processed in R to identify if the marks were
present in the regions of interest (MTX CCS loci). Dependent on the dataset
downloaded, either hg38 or hg19 coordinates (Table 2.8) were used in the analysis
script (Appendix). Regions of the genome 500 kb upstream of the first anchor site
and 500 kb downstream of the second anchor site of chromosome loops were also
investigated. Outputs from R were then quantified to understand enrichment of

different epigenetic marks at each chromatin loop site.

2.5 Discovery Microarray

2.5.1 Microarray Set-up

For this analysis 54 buffy layer samples from the SERA cohort were used. Here,
18 healthy samples were used as a pooled standard on the array. 4x180k, custom
Agilent microarrays were designed by OBD and run at their facility. OBD
proprietary EpiSwitch™ pattern recognition algorithm was used to identify high
probability chromatin folding interactions in combination with findings from
Walsh et al*®® were used to generate a list of probes that were functionally

relevant in RA.

hTM

Each probe was present in quadruplicate on the EpiSwitch'™ microarray. The

Agilent protocol for enzymatic labelling was followed. In brief, the standard

hTM

EpiSwitch'™ extraction as described previously (2.2.3) was used to generate the
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3C library for each sample. Subsequently, the DNA concentration of each sample
was determined using the absorbable nanoquant plate on the Tecan Infinate
M200 Pro. 800ng DNA was used per sample. A pool of the healthy samples was
generated by determining DNA concentration as before and adding 6.2ng of each
together. An ethanol precipitation step was then conducted to clean the sample
before beginning the sample labelling. The Agilent DNA enzymatic labelling kit
(Agilent p/n 5190-0449) was used to label the DNA library. This kit uses random
primers and exo-Klenow fragments to label the DNA with fluorescently labelled
nucleotides using cyanine 3-dUTP and cyanine 5-dUTP dyes. Samples were spun
for 1 min at 6000g in a centrifuge. 5ul of random primers were then added and
the samples were incubated at 95°C in a thermocycler for 3 minutes. Samples
were again spun at 6000g for 1 min in a thermocycler. A master mix of Cy3 and
Cy5 was prepared by mixing nuclease free water, 5xbuffer, 10xdNTP, Cy3 or Cy5
and Exo-Klenow fragment. 19ul of master mix was added to each reaction tube,
giving a total of 50ul. Samples were then incubated at 37°C for 2 hours, 65°C for
10 mins then held at 4 C. The hybridisation master mix was then prepared by
mixing cot-1 DNA, Agilent 10x Blocking reagent and 2x Hi-RPM buffer. The
master mix was incubated at 95 C for 3 minutes, then 37°C for 30 minutes. After

incubation, samples were spun at 6000g for 1 minute in a centrifuge.

2.5.2 Microarray processing and feature extraction

100ul of hybridisation sample (section 2.5.1) was dispensed onto a clean gasket
slide in the Agilent SureHub chamber base. The assembled chamber slide was
placed in the rotator rack in the hybridisation oven at 65°C, 20 rotations per
minute (rpm) and left for 24 hours. Then, the slide staining dishes, rack and bars
were washed thoroughly with milli-Q water to remove any contaminated
material. The slide rack and bar were then added to the slide staining dish,
which was filled with 100% acetonitrile. The magnetic stir plate was set to a
speed of 4 and washed for 5 mins at RT. The step was repeated and then the
plate was dried in a fume hood. To wash the array slides, the first 2 staining
dishes were filled with Oligo aCGH wash buffer 1 at RT and placed on magnetic
stir plate. The pre-warmed glass dish filled with water and containing slide
staining dish 3 was also placed on the magnetic stir plate. Staining dish 3 was
filled with Oligo aCGH wash buffer 2, which had been warmed to 37°C. A 4™

staining dish with acetonitrile was placed in a fume food with a magnetic stir bar
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added and placed on magnetic stir plate. A 5" staining dish was filled in the
fume hood with hybridisation and drying solution, and was place on magnetic stir
plate with magnetic bar. The hybridisation chamber was disassembled and the
array slide placed in staining dish 1 and this was repeated for further slides.
Slides were then transferred to staining dish 2 and stirred on setting 4 for 5
minutes. Slides were then transferred to dish 3 for 1 min, and dish 4 for 10
seconds and dish 5 for 30 seconds. Slides were removed with barcode facing
upwards with a slide cover was placed on top. Slides then were immediately

scanned using the SureScan DA model.

Features were then extracted using feature extraction software and images were
extracted as .tif. A QC report was carried out to ensure each extraction was

completed successfully.
2.5.3 Microarray analysis - Limma

Once the array was completed, feature extraction data was downloaded from
the raw OBD server. Data was analysed using several packages within R studio,
namely, Limma and RankProd 2.0. Appropriate target files were generated for
each analysis run. The use of the common reference healthy control sample
allowed comparison of the loop expression across all RA samples. Target and raw
data files were read into the R package (Appendix). Briefly, agilent control
probes were removed first followed by probes that had a saturation signal above
65525. The Limma background correction and the data was then normalised
within arrays using the locally weighted polynomial regression (Loess) method. A
log matrix of log; ratios of fluorescence intensities was generated from the
normalised data. Since duplicate probes were used on the array, a matrix was
generated from the mean, median and cv values that could be taken forward in
the analysis. The log median matrix was used for the analysis. A design matrix,
followed by a contrast matrix were generated and a linear regression model was
then fitted to the data based on the design. Statistics were then computed using
the empirical bayes method (ebayes). A table of probes (loops) could then be
extracted that had differential abundance between samples. Extra filtration
could be implemented if desired, such as a specified number of loops to be
output, and filtering on adjusted P.value (FDR correction) and abundance scores
(AS), such as adj.P.Val <0.05 and AS -1.1< or >1.1.
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2.5.4 Microarray analysis - RankProd

Data was analysed with assistance from Ewan Hunter and Christina
Koutsothanasi, OBD. After exploration of the data using Limma, it was decided a
more stringent method of analysis should be implemented to differentiate the 3
responder groups. For this, the RankProd package 2.0 was used to subsequently
analyse the data. The Rank Product (RP) is a statistical technique which is used
to find differentially expressed marks from molecular profiling studies. The
RankProd package utilises this technique. The RP and Rank Sum (RS) are non-
parametric tests which can determine up or downregulated variables in repeat
experiments. The P value for RP has strict bounds and calculated in a
computationally fast manner. For this analysis, firstly data was normalised
(Loess) and an expression matrix produced. Data were then filtered on adjusted
P value and abundance scores (AS); loops with an adjusted P value <0.05 and of -

1.1< or >1.1 were carried forward for further analysis.

2.5.5 Microarray Analysis - Searchlight

Data was also analysed using Searchlight
(https://github.com/Searchlight2/Searchlight2), an automated, platform for the

analysis and visualization of RNAseq data, which was adapted for our microarray
dataset. Data was analysed by John Cole, University of Glasgow. Searchlight
provided an alternative way to analyse our data from the microarray
experiment, and provided a streamlined, expedited way to facilitate deep
exploration of the data that could not be achieved with RankProd in the same
time frame. In summation, the three types of analysis performed were:

e Expression - how much of a loop was present in a sample
e Differential expression - how did the loop abundance differ between 2
groups
e Signature analysis - did groups of differently abundant loops generate a
signature that would allude to a predictive biomarker
The normalised expression matrix data was used for this analysis, and was
generated as described above (2.5.3). To generate differential expression
signatures, numpy was used to generate mean expression values and differential

expression of loop abundance. Comparisons were: R vs NR;, NR vs IR and R vs IR
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at each time point. To determine signatures, each loop was classified by its
starting signature based on the differential expression from the comparisons
described. Expression values for each loop was converted to a z-score which
allowed metagene expression for all samples. 2 expression metagenes were
correlated to each other using the Spearman Correlation Coefficient to find

signatures with similar expression profiles.

2.5.6 Microarray Biological Interpretation - Bedtools

To begin biological exploration of array data the Bedtools programme was used.
This was implemented via the terminal to analyse protein coding loci in
proximity to loops of interest, found via Limma and RankProd analysis pipelines.
The Bedtools closest function was used to identify the closest three protein
coding loci to each loop of interest. Once a list of loci was produced, these were
put through the online tool, Hugo Gene Nomenclature Committee, to filter and
ensure all information was captured. This list was then entered into the online
platform, GeneAnalytics to identify functional enrichment of genes and other
genomic features. GeneAnalytics aims to identify potential associations of gene
sets with pathways, compounds and Gene Ontology (GO) terms (biological
process and molecular function). The results are ranked by relevance to the

analysed gene set.

2.5.7 Microarray Biological Interpretation - STRING

Gene lists of interest generated by GeneAnalytics were analysed further using
the Search Tool for Retrieval of Interacting Genes/Proteins (STRING)

(https://string-db.org) version 11.0, a database consisting of over 9 million

known and predicted protein sequences. Gene lists corresponding to various
analyses were entered into the online STRING platform and interaction networks
were generated. Network nodes within the string represent proteins and the
edges indicate functional associations between proteins. Proteins that are
grouped based only on shared homology are excluded. The PPI enrichment value
identified if the network had significantly more enrichment than expected. The

interaction scores are given from zero to 1 and are based on the confidence that
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the interaction/association is true. Other information such as enriched biological
processes were extracted as .csv files, in addition to downloading the networks

as images (Appendix).

2.5.8 Microarray Biological Interpretation - Cytoscape

Based on additional functionality, Cytoscape version 3.7.2

(https://cytoscape.org) was used to conduct further network analysis of protein

networks generated using STRING. Cytoscape represents genes or molecular
marks as nodes and edges represent interactions between them. The network
.csv file taken from STRING was loaded into the Cytoscape software. The
network analysis tool was implemented to identify the network nodes with the
most connected edges. The most connected nodes were identified as those with

the most directed edges in the network.

2.5.9 Microarray Biological Interpretation - IGV

The Integrated Genome Viewer (IGV)

(https://software.broadinstitute.org/software/igv/) was used for the

exploration and visualisation of loops of interest, in addition to other genomic
and epigenomic features. Files of interest were prepared in ‘.bed’ format and
loaded into IGV version 2.4.14. Files are represented as ‘tracks’ on the viewer.
Files included in the analysis included the Janssen expression quantitative trait

loci (eQTL) files, and loop anchor sites. Images could be saved from analyses.

2.5.10 EpiSwitch™ Data Portal

The longitudinal data from the RankProd analysis was uploaded to the

hTM

EpiSwitch™ data portal (https://episwitch3dgenomicsportal.com), an interactive

interface to allow for easy manipulation and visualisation of the 3D genome
data. The portal incorporates Bedtools functionality, described above (2.5.6) as
well as IGV visualisation software that has also been described above (2.5.9).
From the portal, data could be downloaded and images saved for future use and

analysis.



80

2.6 Statistical Analysis

Statistical analysis not already described above was conducted in GraphPad
Prism 6 software. Tests were chosen based on the distribution of the data and
the desired comparisons to be made. Figure legends detail the exact statistical
test used on each data set. In this study 0.05 was considered significant, with *
P<0.05, ** P<0.01, ***P<0.001, *** P<0.0001.



Chapter 3 Validation and Further Characterisation of
Methotrexate Chromosome Conformation Signature and
Optimisation of Detection Method

3.1 Introduction

Previous work from our lab, in collaboration with Oxford BioDynamics Plc (OBD),
produced a chromosome conformation signature (CCS) with promising capacity
to differentiate responders (R) and non-responders (NR) to methotrexate (MTX)
in an early rheumatoid arthritis (RA) population?'’. The discovery and validation
populations both came from the Scottish Early Rheumatoid Arthritis (SERA)
cohort. This signature was developed to be exclusive to RA patients, and was not
in the same conformation in healthy samples. While molecular biomarker
investigations can show promise in the discovery and preliminary validation
stages, studies have shown subsequent validation can produce less efficacious
results?®'. Therefore, before clinical implementation, it is fundamental that a
biomarker is validated, proving the efficacy and ensuring it is a true
representation of a heterogeneous disease population®?. RA is a well-
characterised heterogeneous population, and it must be established if the MTX
CCS can predict response in other early RA cohorts, and identify any potential
confounding factors that may impact the predictive ability of the biomarker??.
Validation in a completely independent cohort that is demographically matched

to SERA would be both interesting and clinically important.

While the results from Carini et al*'” demonstrate the potential of a MTX
biomarker, it is not only MTX that is given at baseline of RA treatment. Some
patients cannot tolerate the therapy and suffer side effects such as nausea and
hepatotoxicity, or in the case of around 50%, will not respond clinically to
MTX?63:264.265,266 ' ther conventional synthetic disease modifying anti-rheumatic
drugs (csDMARDs), primarily hydroxychloroquine (HCQ) and sulphasalazine (SSZ)
exist as alternative first-line therapies. Despite investigations to find biomarkers
of treatment response to these csDMARDs, there has yet to be a clinically
implementable finding and often studies investigate HCQ and SSZ in combination
with MTX*728_ The study by Kremers et al., identified HCQ and MTX as having
better retention than other treatments. However, this was predicted using

survival analysis techniques, taking into consideration comorbidities and disease
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characteristics such as duration of disease, instead of employing molecular

268 Molecular biomarker studies for HCQ alone are limited.

biology methodologies
One study investigating SSZ, as part of triple csDMARD therapy, suggested gene
variants in NAT2 and ABCG2 were associated with a limited response to SSZ''2.
This study has yet to be validated. Predictors of response to csDMARD treatment
as a whole have been attempted. One recent study investigated the ability of
both molecular and synovial signatures to predict response to csDMARDs. They
identified cellular synovial and molecular signatures that had the potential to
predict disease progression and treatment response. This study offers the
potential for a blood based pan-DMARD predictor that would be of clinical
benefit?'2. However, this study incorporated low-throughput techniques that
would not be advantageous in a clinical setting. Therefore, it would be valuable
to know if the MTX CCS biomarker has the capacity to predict response to
csDMARD treatment, regardless of which monotherapy or combination therapy is

assigned.

The work for the MTX CCS study was carried out at OBD where the EpiSwitch™
proprietary technology exists. The work in this thesis required the establishment
of this 3C propriety protocol at the University of Glasgow. This chapter details
the steps taken to ensure efficient establishment of this technique, which
included exploring transition to a higher throughput method of chromosomal
loop detection. The nested PCR method used in the MTX CCS discovery study
could be considered low throughput. Moreover, quantification capabilities are
limited with gel electrophoresis outputs and there is difficulty in determining
any weak 3C signals®’. Implementing a quantitative PCR (qQPCR) method would
not only be of benefit in our study, but in future clinical use. It would be higher
throughput and offer the opportunity of multiplexing?’®. gPCR has been
successfully used in the study of the mouse HoxB1 loci?’'. The process of gPCR
implementation in the work in this thesis followed the Minimum Information for
Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines for
primer design to ensure accuracy and robust results moving forward. These
guidelines state the in-silico and wet lab steps required to create publishable-
qPCR results?’2. As such, this chapter explores the investigation into qPCR as a

method of loop detection, adhering to the MIQE guidelines.
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The aim of the work in this chapter was to further characterise the predictive
ability of the MTX CCS and identify the optimal way to investigate the chromatin

architecture of samples throughout this study. To achieve this, the aims were:

1) Validate the MTX CCS both bioinformatically and experimentally using an

independent clinical RA cohort

2) Set up 3C protocol independently and determine the optimal method for loop

detection through exploration of different PCR methodologies

3) Assess whether MTX CCS is stable after treatment and if it can accurately

predict response to csDMARD treatment as a whole
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3.2 Results

3.2.1 Bioinformatic validation of MTX CCS

Validating the prior MTX CCS signature in-silico by independently analysing the
data was an important first step in this study. The initial step to achieve this was
to use a Limma-based analysis to interrogate the quality of the microarray-
generated data (Figure 3.1). Limma is a package that facilitates the analysis of
gene expression arising from microarray or RNA-Seq experiments. Limma utilises
linear models to identify differential expression. In the case of data in our study,
Limma was used to identify abundance changes of loops between healthy and RA
samples. The starting data file was the intensity of each spot on the array,
which had been extracted by the Agilent Feature Extraction Software. The red-
green density plots were used to visualise the signal distribution across the
arrays. The density plot before normalisation indicated that the signals had an
expected distribution and there were no outliers (Figure 3.1A). Moreover, the
dye intensity of both red and green dyes were similar, indicating the absence of
dye bias. The ‘within array’ normalisation step was successful by bringing the
signal distributions closer together (Figure 3.1B). Loess normalisation was used,
which is a type of Generalised Additive Model (GAM). MA plots were then used to
understand the relationship between the red-green intensity log ratio (M) and
average intensity of a spot on the array (A). Figures 3.1C and Figure 3.1D
highlight the successful normalisation, by the flattening of the line around the M
value of 0. A boxplot was then produced to illustrate the distribution of M values
across all 8 arrays (Figure 3.1E). The normalisation brought the medians close
together and the range of M values can still be visualised. Most of the M values
are distributed around 0. This analysis supported the concept that the data was

of good quality and suitable for further interpretation.
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Figure 3.1 Quality Control Assessment of MTX CCS Microarray Data

Series of plots demonstrating quality of raw microarray data and the influence of
normalisation. 8 dual-colour arrays in total. Array 1-4 compared R and NR, array 5+6
compared HC and R, array 7+8 compared HC and NR. 13,322 EpiSwitch™sites across 123
loci were analysed. A) Red-green density histogram before normalisation. B) Red-green
density histogram after ‘within array’ locally weighted polynomial regression (Loess)
normalisation. C) MA plot before normalisation. D) MA plot after ‘within array’ Loess
normalisation. E) Boxplot illustrating M value (log-ratios) distribution after Loess
normalisation. Plots created using Limma package on R studio.

A, mean average; HC, healthy control; M, log ratio; R, responder; NR, non-responder
After using multiple plots to visualise that the MTX CCS data was of good quality
and normalisation procedures were effective, it was important to find out if the
predictive loops would be replicated using the original nested PCR dataset
(Figure 3.2). Limma was used to apply a linear model to the data to identify
loops that could differentiate responders (R), non-responders (NR) and healthy
controls (HC). The results shown for the MTX CCS genomic regions indicate the
potential for stratification. Differences of loop abundance was used as a
measure of stratification potential with a positive value associated with the
condition on the left of the contrast model, and a negative value associated with
the condition on the right side of the model (Figure 3.2A). The first output from
the Limma contrast model, contrasting NR and R, illustrated that IL17A and
CXCL13 had a positive fold change. In contrast, IL21R, IL23 and IFNAR1 had
negative fold change values. This demonstrated the association of IL17A and

CXCL13 with NR and IL21R, IL23 and IFNAR1 with R as per the MTX CCS. Next, a
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classification model was used to test the predictive value of the signature. A
Random Forest method was used to test the data that was taken from the nested
PCR results from 55 RA patients, collected at the time of the study by Carini et
al?’®. The model successfully predicted 26 R, and 22 NR correctly (Figure 3.2B).
This resulted in a true positive rate of 0.96 and 0.79 for R and NR, respectively

which gave an overall accuracy of 87%.

A) B)
MTX CCS gene EpiSwitch FC Association Classified
nomenclature

IL17A IL17A_3_1_RR 1 NR Observed Responder Non-responder
response

CXCL13 CXCL13_1_3_RR 1 NR
Responder 26 1

IL21R IL21R_5_2_RR -1 R

IL23 IL23_4_5_FR -1 R Non-responder 6 22

IFNAR1 IFNAR1_2_4_RR -1 R

)
ROC Curve
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True Positive Fraction
o
@
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Figure 3.2 Statistical Validation of MTX CCS

Limma linear model results and validation using PCR data from 55 RA patients using 5-
loop MTX CCS. A) Limma linear model results of contrast model between R and NR. B)
Binary classifier model conducted in Weka using Random Forest classification. C) ROC
curve illustrating relationship between sensitivity and specificity. ROC curve generated
using web-based calculator which utilises JROCFIT program.

3.2.2 Technical optimisation of 3C in peripheral blood from
healthy donors

The first step in establishing the EpiSwitch™

3C assay in house was to use a
range of primary cells from human donors. It should be noted that the original
MTX CCS was generated in peripheral blood mononuclear cells (PBMCs) from RA
patients. However, given the precious nature of clinical samples, for the 3C
technical optimisation it was not deemed appropriate to use RA patient samples.
Thus, PBMCs were isolated from healthy buffy coat (BC) donors. Flow cytometry
analysis was performed to check cell purity prior to further analysis (Figure 3.3).
70.2% of PBMCs were lymphocytes. Analysis revealed that 56.5% of PBMCs were

CD4" T cells, and after isolation by magnetic bead separation, 92.5% were CD4™ T
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cells. These values confirmed that it was a normal PBMC population that was

isolated.
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Figure 3.3 PBMC Isolation Purity Check

Purity of the isolation was examined using flow cytometry. Representative flourescence-
activated cell sorting (FACS) plots of PBMCs and CD4" T cells from healthy BC donors.
PBMCs and T cells stained with CD4-APC antibody. A) Gate demonstrating defined
population of single cells within PBMCs, percentage of gate is displayed within plot. B)
Percentage of lymphocytes in total PBMCs. C) Percentage of CD4" T cells in single cells.
D) Percentage of CD4" T cells after CD4" magnetic separation.

Once PBMCs (and purified CD4" T cells) were successfully isolated, 3C DNA
extraction was carried out (See Section 2.2). After extraction, the DNA library
concentration had to be measured to confirm successful isolation of DNA, and to
determine a reference for the normalisation in later protocol stages. The Quant-
iT PicoGreen DNA quantification assay was initially used to determine DNA

concentration in PBMCs, as this was an optimised methodology used at OBD and
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suitable for our sample type. This method revealed samples contained more than
20ng/ul of DNA (Figure 3.4).
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Figure 3.4 3C DNA Library Isolation Check
Confirmation of successful extraction of DNA library from PBMCs. A) Representative
FACS plot of PBMCs used for DNA library preparation. B) DNA concentration of first DNA

During the course of the optimisation, it was anticipated that fewer samples
would be processed at one time than generally occurs at OBD, and thus, the
Quant-iT PicoGreen assay (tailored for large sample number) was not optimal.
The Qubit High Sensitivity (HS) double-stranded DNA (dsDNA) kit was chosen as a
suitable alternative quantification method, based on sample number
requirements, speed of protocol and rapid reading capabilities. To confirm that
this was an appropriate alternative quantification method, samples were run in
parallel using both methods, enabling the comparison of the techniques to
determine if that resulted in consistent in DNA concentrations. Surprisingly, the
resulting DNA concentrations calculated from the two methods were not
comparable, producing different concentrations in the same sample (Figure 3.5).
Consequently, this experiment was repeated to determine if the methods
continued to produce different results. Each experiment produced different
concentrations per sample, with the Quant-iT PicoGreen assay consistently
measuring higher concentrations of DNA compared to the Qubit. Experiment 1
demonstrated a significant difference between the two methods. Additionally,
there was a significant difference between the concentrations measured by
Quant-iT PicoGreen between experiment 1 and experiment 2. Combining the
results from all experiments (Figure 3.5B), there was a significant difference

between the 2 methods. The PicoGreen method showed a much larger variation
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in DNA concentration values with a standard deviation of 10.98 compared to
2.312 for the Qubit. The maximum DNA concentration measured by the
PicoGreen method was 30.53ng/ul and the maximum measured by the Qubit HS
dsDNA assay was 10.30ng/ul. Based on the more consistent DNA concentration
measurements, and the concentrations considered within normal range for this
type of library preparation, the Qubit dsDNA HS assay was selected as the most

robust method to move forward with.
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Figure 3.5 Comparison of DNA Quantification Methods

Comparison of Quant-iT PicoGreen and Qubit dsDNA HS assay. 3C DNA libraries were
extracted from PBMCs and both methods were used to measure the DNA concentration
of each sample. A) DNA concentrations (ng/ul) calculated via the 2 independent
methods are plotted for comparison, data across 3 experimental repeats. Experiment 1
and 2, n=7, experiment 3, n=4. Non-parametric T-test used to compare methods in one
experiment. Wilcoxon test to compare between experiments. B) Combined DNA
concentrations (ng/ul) from 3 experimental repeats, calculated via 2 independent
methods - plotted for method comparison (N=18). Mann Whitney T test to compare
methods. * P< 0.05. Data is shown as box and whisker plot showing the median and
range.

The 3C assay preparation continued with the optimisation of nested PCR and
ultimate visualisation of the ligated DNA on an agarose gel, which is the
surrogate for the presence of a loop in a sample. Establishment of a reliable
detection method of DNA concentration (Qubit) enabled normalisation of sample
DNA concentration prior to nested PCR. The first step in the PCR process was to
test the variety of control primers that can aid the 3C assay (Table 3.1) to

confirm if the 3C could be replicated at our site.



Table 3.1 Control Primers

List of control primers tested for the 3C protocol.
- = negative control, PCR = controlling for PCR reaction

+ = positive control,

90

Control

MMP1 3

MMP1 11

MMP1 4

MMP1 12

MMP1 10

MMP19

ER 15

ER 18

ER 16

ER 17

RFA17

RFA18

RFA19

RFA20

ERTM3

ERTM4

ERTM17

ERTM18

Table 3.2 Gel electrophoresis interpretation
Interpretation of gel data when samples are loaded on gel in triplicate. Sample names

hypothetical.

1A 0 0 No loop
1B 1 0 No loop
2A 2 1 Loop
2B 3 1 Loop

DNA loops from PBMCs (Figure 3.6A) and CD4" T cells (Figure 3.6B) were used to

test the control primers. Three primers were positive 3C controls, one was a PCR

control and 1 was a negative control. 6 PBMC samples had bands present for the
control primers MMP1 4/12, MMP1 9/12, ER 16/17, and RFA 17/19 at the
expected size of 281bp or 556bp, 185bp, 246bp and 252bp, respectively
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confirming successful 3C and loops present at these loop sites. It should be
noted, however, that there was a level of variation in the RFA control. Across
the 6 samples, some samples had the expected 252bp whilst other had a band
that indicated a larger size product. The CD4" T cells also had bands present at a
variation of sizes using primers MMP1 4/12, MMP1 9/12 and RFA 17/19. These
results suggested possible incomplete digestion of chromatin resulting in
multiple ligation products. The ER primer consistently showed clear bands in
each sample. This illustrated the PCR protocol was successfully executed. The

ERTM negative control also worked along with the non-template control (NTC).
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B)

MMP 4/12 MMP 9/12 ER

L 1A 1B 2A 28 3A 3B NTC 1A1B 2A 28 3A 3B NTC 1A 1B 2A 2B 3A 3BNTC

FRA ERTM
L 1A 1B 2A 2B 3A 3B NTC 1A1B 2A 2B 3A 38 NTC

Figure 3.6 Gel Electrophoresis of Control Primers

Gel electrophoresis of nested PCR using DNA extracted from PBMCs and CD4" T cells
testing 5 3C controls. 3C DNA libraries were amplified using nested PCR and then loaded
onto a 1.5% gel, N=3. L= 1kb" ladder, 7 ul DNA ladder and 15 ul sample loaded. Samples
loaded in 1 well each in duplicate. MMP1 4/12 and MMP1 9/12 = 3C controls, ER = PCR
control, RFA = positive control and ERTM = negative control. Non-template control
(NTC) used for each primer. A) DNA was extracted from PBMCs. B) DNA was extracted
from CD4" T cells
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While the results presented in Figure 3.6 illustrated using the PCR method was
successful in some samples for determining DNA loop presence, some consider it
non-quantitative. Therefore, a semi-quantitative approach was attempted. After
initial gel electrophoresis, MMP1 4/12 and MMP1 9/12 were considered the most
robust 3C controls to use based on the most consistent presence of bands at the
expected size. Additionally, after the initial gel electrophoresis, samples were
loaded onto the gels in triplicate in line with the protocol used at OBD (Table 3.2).
When carried out in triplicate, if a sample presents with 1 band or lower it can be
stated that no loop is present at the locus of interest. However, if 2 or 3 bands
are present at the predicted size, it can be stated that a loop is present at that
locus. The samples for the semi-quantitative method were prepared by creating a
1:2 serial dilution of samples. When carrying out this method it would be expected

that 3C copy number would decrease as the DNA concentration decreased.

The semi-quantitative method was tested with control primers and RA primers
(Figure 3.7 and Figure 3.8). There was not a clear concentration dependent effect
on loops using the control MMP 4/12 primer set. The neat sample had only 1 set
of bands at expected size, however diluted samples of 0.25ng/ul and lower had
multiple bands in some samples. Both samples used had instances with multiple
bands. The images shown in Figure 3.8A reveal that only 1 patient, at 1 DNA
concentration had bands present for the IL17A loop. The images in Figure 3.7B
(CXCL13) demonstrate no bands were present. Due to the lack of bands in A + B,
it was difficult to determine the effect of the varying DNA concentrations on 3C
copy number. In contrast, Figure 3.8C (IL21R), D (IL23) and E (IFNART) highlight
the semi-quantitative method well. Particularly in 3.8C, it was evident that the
3C copy number decreased gradually with decreasing DNA concentration in sample
1A1. This is also presented in 3.8D with sample 1A1. It is evident from this figure
that the IL21R, IL23 and IFNAR1 loci had several loops in multiple samples. Overall,
considering the unreliable semi-quantitative results in 3C controls, and the limited
reliability in MTX CCS genes, the semi-quantitative method was not taken forward.
However, based on the other data collected, it was confirmed that the 3C assay

could be successfully conducted in my hands.
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Figure 3.7 Gel Electrophoresis of 3C control loop using semi-quantitative method
DNA was extracted from PBMCs of healthy donors, N=2, labelled A+B. 3C DNA libraries
were amplified using nested PCR and then loaded onto a 1.5% gel. L= 1kb" ladder, 7 pnl
DNA ladder and 13 pul of sample loaded in triplicate. Various concentrations of DNA



used: 1 ng/ul, 0.5 ng/ul, 0.25 ng/pul, 0.125 ng/ul, 0.06 ng/ul. Non-template control
(NTC) also used.
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Figure 3.8 Gel Electrophoresis of MTX CCS Loops using Semi-quantitative Method
DNA was extracted from PBMCs of healthy donors, N=3, labelledA1, A2 + 2A. 3C DNA
libraries were amplified using nested PCR and then loaded onto a 1.5% gel. L= 1kb"
ladder, 7 ul DNA ladder and 13 ul of sample loaded in triplicate. Various concentrations
of DNA used: 1 ng/ul, 0.5 ng/ul, 0.25 ng/ul, 0.125 ng/ul, 0.06 ng/ul. Non-template
control (NTC) also used. A) RA1 (IL17A). B) RA2(CXCL13). C) RA3 (IL21R). D) RA4(IL23).
E) RA5(IFNART). Patient sample annotation indicated above gel image, DNA library
concentration shown below gel.

3.2.3 Establishing use of quantitative PCR for MTX CCS

Having verified that it was possible to run the original 3C method independently,
but clearly demonstrating that the semi-quantitate method failed to produce
robust results, | considered introducing a higher-throughput, more informative
method of observing chromosomal loops. Moreover, OBD were in the process of
transitioning to this methodology and therefore this work aligned with the
direction of travel for EpiSwitch™ technology. A more informative method would
be one which could successfully quantify the loops within a patient sample. A
higher-throughput method would not only be of benefit in the short-term of the
study, but also in the long-term if the signature was to be implemented
clinically. Quantitative PCR (qPCR) would fill these criteria, however, the
development and refinement of this process for chromosomal loops is complex
and required a systematic approach. Various steps were carried out to determine
if gPCR primers were suitable for detection of chromosomal loops of interest,
and determine the optimal annealing temperature to use for the primers. This
was carried out in accordance with the MIQE guidelines. Primers were designed
to capture the 3C ligated DNA product which centred around a 4 base TCGA
sequence (Figure 3.9A). Firstly, primers were designed (Section 2.2.7) and
tested for the 3C control gene, MMP1 (Figure 3.10). For the process of
determining the optimal primer annealing temperature, 3 primer versions for

each loop of the MTX CCS were tested.
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A) B)

A

IL17A 84

CXCL13 135

IL21R 110

1L23 138

TCGA IFNAR1 117
B

IL17A 94

CXCL13 104

IL21R 119

IL23 81

IFNAR1 117
C

IL17A 121

CXCL13 116

IL21R 119

IL23 85

IFNAR1 149

Figure 3.9 Primer Design for qPCR
A) Ligated DNA region in which gPCR primers are designed around, full sequences found
in Appendix. B) Expected sizes of qPCR products for all primers designed and tested

The chromosomal loop, from pooled RA patient samples, was amplified at 6
annealing temperatures and gave cycle threshold (Ct) values ranging from 31 to
34 (Figure 3.10A). Melt curve analysis showed amplification of a single product
(Figure 3.10B). This could be considered a successful qPCR amplification. The
high Ct values for MMP1 may reflect weak ligation and the results were a
possible indication that other loops from the MTX CCS may also amplify at a

higher Ct value than expected for other qPCR reactions.

A) B)

Ct value

&

o » M
Q" & X

Temperature (°C) Pooled patient (PP) M@ pooled healthy (PH)

¢ &

Gen control NF control
B TE control B NTC

Figure 3.10 Quantitative PCR with 3C control

Quantitative PCR using pooled RA patient samples with MMP1 primers. A) Representative
plot from 1 qPCR experiment of Ct values at 6 annealing temperatures with pooled RA
patient samples, (N=8). B) Representative melt curve of from 1 qPCR experiment that
was repeated twice with pooled patient samples (N=8): NF, non-fixtion, NTC, not-
template control; PH, pooled healthy, PP, pooled patient; TE, Tris-EDTA; NF= non-



103

fixation - control generated by using nuclease-free water to fix the DNA, instead of
formaldehyde.

Once it was confirmed qPCR could be successful for amplifying chromosomal
loops of interest, the next step was to determine the optimal annealing
temperature of gPCR primers for all 5 loci in the MTX signature. This single step
process used a temperature gradient to identify the optimum annealing
temperature and overall primer efficiency. Amplification of only the product of
interest (loop in pooled patient sample), without any product present in the
negative controls (pooled healthy sample, Gen control, NF control, TE control,
NTC) was the aim. The first primer set for IL17A amplified the product of
interest at a Ct value of 9, at an annealing temperature of 68 C, alongside
amplification of negative controls at higher Ct values (Figure 3.11A). Primer set
B for IL17A could amplify the product of interest at all 6 annealing
temperatures, however, there was also better amplification of negative controls
at all 6 annealing temperatures (Figure 3.11B). Primer set 3 was also able to
amplify the product of interest at all 6 temperatures at Ct values ranging from
27 to 40. At 67.5°C only the product of interest was amplified (Figure 3.11G).
The high Ct values of primer set B and C suggested presence of off-target
products. Melt curve analysis was conducted alongside to confirm primer
specificity. Many melt curves for IL17A primers, had multiple peaks (Figure
3.11B,E,H) indicating the presence of off-target amplification products. The
gPCR products were then purified using gel electrophoresis, which could also be
used to check the amplified product was of the expected size. All 3 primer sets
had products at the expected size (representative gel images can be found in
Appendix). There was also the presence of multiple bands for all primers sets in
pooled patient (PP) and pooled healthy (PH) samples at lower annealing
temperatures. Primer set A and B did not meet requirements, however primer
set C met requirements at 67.5 C only. As pooled heathy controls were amplified
at neighbouring annealing temperatures, these results should be interpreted

with caution.
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Figure 3.11 Temperature Gradient Quantitative PCR with IL17A primers
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3
versions of IL17A primers, Ct values shown as individual samples, and mean of 2. A) Ct

values of version A primers, N=2. B) Representative melt curve at 68°C. Q)
Representative melt curve at 66.4 C. D) Ct values of version B primers, N=2. E)

Representative melt curve at 62°C. F) Representative melt curve at 64.4°C. G) Ct values
from version C primers, N=1 H) Representative melt curve at 68°C. |) Representative
melt curve at 64.4°C. J) Summary of gel electrophoresis results from 3 primer versions.
Numbers highlighted in red indicate one of the bands are at the expected size of 84bp
for version A primers (2 technical repeats), 94bp for version B primers (2 technical
repeats) and 104bp for version C primers.

NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient;
TE, Tris-EDTA

The first primer set tested for CXCL13 was unable to amplify the product of
interest. At 68'C, 64.4°C, and 62 °C the NTC control was amplified. Melt curves
from 68°C (Figure 3.12B) and 66.4 C (Figure 3.12C) highlighted the presence of
multiple products. The second primer set was also unable to amplify the product
of interest (Figure 3.12D). At 62°C and 60°C there was amplification of the
genomic control and TE control respectively. The melt curve from 64.4 C (Figure
3.12F) suggested there was a single product. The melt curve from 60°C (Figure
3.12E) also showed evidence that the product of interest was amplified. The
product of interest was amplified with primer set C, at annealing temperatures
of 64.4°C, 62°C and 60°C at Ct values of 33, 31 and 32, respectively. At each of
those temperatures there was also amplification of negative controls. The melt
curve at 60°C indicated that there was only a single product of interest amplified
(Figure 3.12l). Gel electrophoresis of qPCR products for primer set B were
reflective of amplification and melt curve results. A selection of products of
interest at the expected size of 116 and 135bp were present on a gel for primer
set A and C. No functional primer set was found for the CXCL13 chromosomal

loop.
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Figure 3.12 Temperature Gradient Quantitative PCR with CXCL13 Primers
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3
versions of CXCL13 primers, Ct values shown as individual samples, and mean. A) Ct

values of version A primers, N=2. B) Representative melt curve at 68°C. Q)
Representative melt curve at 66.4 C. D) Ct values of version B primers, N=2. E)
Representative melt curve at 60°C. F) Representative melt curve at 64.4°C. G) Ct values
form version C primers, N=1. H) Representative melt curve at 68°C. 1) Representative
melt curve at 60°C. J) Summary of gel electrophoresis results from 3 primer versions.
Numbers highlighted in red indicate one of the bands are at the expected size of 135bp
for version A primers, 104bp for version B primers and 116bp for version C primers, 2
technical repeats for all primer sets.

NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient;
TE, Tris-EDTA

IL21R primers could amplify the product of interest, but only alongside
amplification of negative controls. Temperatures of 66.4 C to 60°C for primer set
A had amplification of the pooled patient (PP) sample (Figure 3.13A). This was
accompanied by amplification of negative controls. Melt curves from primer set
A had multiple peaks indicating presence of off-target products (Figure 3.13B,C).
Primer set B successfully amplified the product of interest at all 6 annealing
temperatures (Figure 3.13D). Negative controls were also amplified at all 6
temperatures. Melt curve from 64.4°C indicated peaks for only PP and PH.
Primer set C also had amplification of PP at all annealing temperatures, as well
as amplification of negative controls (Figure 3.13G). Gel electrophoresis of the
gPCR results highlighted the presence of multiple bands at all temperatures in
PP and PH samples (Figure 3.13J). Primer set A did not have any qPCR products
at the expected size, however primer set B and C had bands at expected size.
Primer set B and C met primer requirements at some temperatures. However,
taken together, there is not enough evidence that any IL21R primer set could

successfully translate to a gPCR platform.
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Figure 3.13 Temperature Gradient Quantitative PCR with IL21R Primers
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3
versions of IL21R primers, Ct values shown as individual samples, and mean. A) Ct values

of version A primers, N=2. B) Representative melt curve at 66.4°C. C) Representative
melt curve at 64.4°C. D) Ct values of version B primers, N=2. E) Representative melt
curve at 64.4 C. F) Representative melt curve at 68°C. G) Ct values form version C

primers, N=2. H) Representative melt curve at 68°C. I) Representative melt curve at

64.4C. J) Summary of gel electrophoresis results from 3 primer versions. Numbers
highlighted in red indicate one of the bands are at the expected size of 110bp for
version A primers, 119bp for version B primers and 119bp for version C primers 2
technical repeats for all primer sets.

NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient;
TE, Tris-EDTA

Like IL21R, IL23 primer sets achieved amplification of the patient product of
interest but not without amplification of control primers. Primer set A saw
amplification at temperatures 64.4 C, 62°C and 60°C. Amplification of negative
controls also occurred (Figure 3.14A). Primer set B also had amplification of the
product of interest and negative controls at these temperatures, as well as
66.4 C (Figure 3.14D). There was amplification of only the product of interest at
annealing temperature of 66.4 C using primer set C (Figure 3.14G). Amplification
also occurred at the 3 lower annealing temperatures along with negative
controls. The melt curves for primer set A and B indicate the presence of non-
specific products (Figure 3.14B,C,E,F). At 62°C using Primer set C, the melt
curves appeared to have less evidence of non-specific products (Figure 3.14l).
Primer set A produced no products at the expected size when gel electrophoresis
of gPCR products was conducted (Figure 3.14J). At temperatures from 64.4 C to
60°C primers set B and C had bands at the expected sizes. Primer C met
requirements at 66.4 C but again, annealing temperatures 2°C below had
amplification of negative controls and this that temperature should be

considered further.
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Figure 3.14 Temperature Gradient Quantitative PCR with IL23 Primers
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3
versions of IL23 primers, Ct values shown as individual samples, and mean. A) Ct values

of version A primers, N=2. B) Representative melt curve at 62°C. C) Representative melt
curve at 60 C. D) Ct values of version B primers, N=2. E) representative melt curve at
66.4°C. F) Representative melt curve at 62°C. G) Ct values form version C primers, N=1.

H) representative melt curve at 64.4°C, I) Representative melt curve at 60°C. J)
summary of gel electrophoresis results from 3 primer versions. Numbers highlighted in
red indicate one of the bands are at the expected size of 80bp for version A primers,
81bp for version B primers and 85bp (2 technical repeats) for version C primers.

NF, non-fixtion, NTC, not-template control; PH, pooled healthy, PP, pooled patient; TE,
Tris-EDTA

gPCR using primer sets A, B and C for the IFNAR1 loop resulted in amplification
of the product of interest, but not without amplification of negative controls.
There was amplification of the patient product with annealing temperatures
ranging from 67.5°C to 60°C using primer set A (Figure 3.15A). There was also
amplification of negative controls at these temperatures. Primer set B achieved
amplification of PP at temperatures from 66.4°C to 60°C (Figure 3.15D). Using
primer set C, the product of interest was not amplified without negative controls
(Figure 3.15G). Melt curves using primers set A produced varying results. At
annealing temperature 66.4C the melt curve shows evidence of multiple
products (Figure 3.15B), but at 62°C the melt curve suggests only presence of a
single product (Figure 3.15C). Melt curves using primer set B and C suggest
presence of non-specific products (Figure 3.15E,F,H,l). There were bands at the
expected sizes using all 3 primer sets, as well as multiple bands at all
temperatures in many samples reflecting the melt curve results (Figure 3.15J).
Primer set B and C met some requirements at some temperatures, but it was not

robust.
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Figure 3.15 Temperature gradient quantitative PCR with IFNAR1 primers
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3
versions of IFNAR1 primers, Ct values shown as individual samples, and mean. A) Ct

values of version A primers, N=1. B) Representative melt curve at 66.4 C. Q)
Representative melt curve at 62°C. D) Ct values of version B primers, N=2. E)
Representative melt curve at 66.4°C. F) Representative melt curve at 64.4°C. G) Ct
values from version C primers, N=1. H) Representative melt curve at 62°C. )

representative melt curve at 67.5C. J) Summary of gel electrophoresis results from 3
primer versions. Numbers highlighted in red indicate one of the bands are at the
expected size of 117bp for version A primers, 117bp for version B primers and 149bp for
version C primers.

NF, non-fixtion, NTC, not-template control; PH, pooled healthy, PP, pooled patient; TE,
Tris-EDTA

Overall, the gPCR protocol up to this point revealed some potentially useful
primer candidates from successful amplification of the product of interest
without parallel amplification of negative controls. Some annealing
temperatures were emerging successful, but this could not be robustly
replicated in multiple experiments. Despite the results not being conclusive, the
gel products had to be purified before sending to Eurofins Genomics for
sequencing (See section 2.2.11). This would be another measure to confirm
amplification of the product of interest was successful, as the sequenced
product could be checked against the known sequence (Appendix). The original
gel purification protocol (as described in 2.2.9) was attempted but yielded little
DNA, with concentrations ranging from 0.25ng/ul to 0.88ng/ul (Figure 3.16B).
These concentrations were not sufficient for sequencing protocols, indicating
optimisation of the gel purification process was needed. The first step to
improve DNA yield was to add extra incubation steps at the buffer GQ stage and
the elution stage of the protocol. This decreased DNA yield further to the lowest
concentration of 0.106ng/ul (Figure 3.16B). The second optimisation step
combined extra incubation stages (Section 2.2.9) with elution into heated
elution buffer. This successfully increased yield to concentrations suitable for
future sequencing. The minimum concentration from this attempt was 1.07
ng/ul with a maximum of 2.8 ng/ul (Figure 3.16B). All protocols had significantly
different DNA concentrations, with protocol 1.0 and 3.0 also having significantly
different yields. We proceeded with protocol 3.0 based on the yield of DNA

produced.
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Figure 3.16 Optimisation of Gel Purification

Optimisation of gel purification to increase DNA yield. A) Schematic representing
optimisation steps used. Protocol 1.0: running qPCR products on 1.5% agarose gel, gel
fragments of interest excised and dissolved using buffer GQ from QIAquick gel

purification kit. Incubation with buffer GQ for 10 mins at 50°C. Incubation with elution
buffer (1xTE) for 1 minute at RT. Protocol 2.0: As protocol 1.0 with buffer GQ
incubation for 15 minutes with shaking every 2 minutes, incubation with elution buffer
for 3 minutes. Protocol 3.0: as protocol 2.0, with heated (37°C water bath) elution
buffer. B) Concentration of DNA ng/ul using each protocol version, protocol 1.0 N=7,
protocol 2.0 N=2, protocol 3.0 N=6. 2 tailed Mann Whitney test used to compare DNA
yield between protocols, Kruskal-Wallis test comparing variation between 3 groups as a
whole. ** P< 0.01, **** P <0.0001.

When the gel purification protocol was optimised to yield enough DNA for
sequencing, the first sample to be sent was a product amplified by IFNAR1
Version B primers at an annealing temperature of 62°C. This sequencing run
proved unsuccessful. Images provided by Eurofins revealed the DNA was poor
quality, as illustrated by the large proportion of black underneath each sequence
row, representing DNA of 0-9% quality (Figure 3.17A). The alignment with the
desired IFNAR1 loop sequence was 6.91% (Figure 3.17B), although as the
sequencing was such low quality, this could not be interpreted with any
certainty. The known sequence, based on DNA digestion and re-ligation, primer
design, predicted amplicon size (Figure 3.9 and Appendix) facilitated the ability

to determine alignment. The decision was made to implement cloning of the gel
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purified qPCR product as a way to improve the quality of the sequencing product
(Figure 3.17C). Plasmids produced from cloning steps would be expected to be of
high quality and ideal for sequencing. After the cloning of the gPCR product into
the Topo 2.1 cloning vector, a restriction digest using the EcoR1 enzyme using a
standard protocol (Section 2.2.12), was conducted to confirm presence of the
gPCR product. The first attempt based on the original cloning protocol (section
2.2.12) did not yield the PCR product at expected size (Figure 3.17D). Version
2.0 of the protocol added an polyA tail to the gPCR product with the aim of
increasing product stability (Section 2.2.13). This also did not yield a product at
the expected size (Figure 3.17E). Version 3.0 of the protocol combined a polyA
tail addition with an optimised ratio of reagents for ligation. This was hoped to
increase the chances of the product being successfully inserted into the plasmid
and creating a positive clone. After restriction digest, this version of the
protocol yielded a product at a size around 300bp, which was in the range to be
expected. This product, which came from IL21R at 64.4 C, was sent for
sequencing. This product was chosen as results appeared more robust than the
IFNAR1 product used previously. Images from Eurofins were provided to illustrate
sequencing quality. The quality of the sequencing was better than the first
sample sent, highlighted by the large proportion of green, representing DNA of
>30% quality. (Figure 3.17G). However, alignment with the desired sequence was
only 6.96%.
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Sequence: RS 62 Samples: 12220 Quality: 0-9 — Page: 1/3
Bases: ant 10-19 e— 24.11.2018
Average spacing:  26.0 20-29
Average quality >= 10: 262, 20: 15,30:0 >=30 —

C A TCTTCC T T GTACCGTTCAAT TAGGT GATT AATTGATTG A TTGG CAACTT GTTTAGCTT

Alignment of Sequence_l: [RA5 620C B sequence unclipped.xdna] with Sequence 2: [IFNARl sequence .xdna]

Similarity : 108/1562 (6.91 %)

Seq_1 1 e e e e e e e e e e e e e e e g-ttatctaa--g 10

Seq 2 1141 agGgGtGecAgtGagGtttgtCgAgCgTGgtcCggGtatGtecAgecataTtCgACTGGgGE 1200

seq 1 11 gA-TT-CTa-Cca--GtaTagatcCttactTtCacCtTTgtAtatcGatatctagtAgee 65

Seq_2 1201 GtttACCGgCcATgggTTCaGecatattgAcgatGGtgCgetgtttegteCCCegGgGCGa 1260

Seqg_1 66 cggctgCACcACccttAGgeCgActececcgegCGgTaTtaCCaTagaCtTCatagagTttT 125
|

Seq_2 1261 tCcCcaatAtAGTCAaactcgGGGCgAcggTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 1320

Seqg_1 126 TatgatctcgacacgtCaatCatTtcttagaagttacAgActctCagttgttAgtattgt 185

Seq_2 1321 TTTTTTTTTTgTTTTTTTTTTTgttgatGTCCAgaCAGGaaAccGAggAATacTTaTtTa 1380

Seqg_1 186 gttatctaCCTggTgTcCCATCgAtattctgCTGecahAagatcgeGGtaatgGeAcAAcga 245
|

Seq_2 1381 aAatCAGCAGcTcgAGttgCtAatCtGATccCGecCAtGaatgCTGtgGaCTGaGCacTT 1440

Seq_1 246 aCTTTTCACTaaacgaacttGGGTCcTCcCaCtttacTTgatgegtgAaATtaTGaCaGG 305

Seq_2 1441 CtCattgeCTCgtAgtcAgactAcTgGGAGGettgCgAaGTggGggATacTATTTATTTC 1500

Seq_1 306 gcAtCccGeegAcAtGGeGATaCgtAttatattCgeCgTecataracatCttTttTteCat 365

Seq_2 1501 gtgACGcCtCCTtCGagGecaaTcATTageCTCttTctetAttectaggttgtTaGttgeect 1560

Seq_1 366 CatatatAAtataatat 382

Seq_2 1561 ca-————————————-- 1562



Q)

1.0 Original
cloning

protocol

2.0 Addition of
polyA tail

122

3.0 Addition of
purified polyA tail
Optimised ratio
for ligation



D) 1kb+
L +-+-+-+-+ -

’

L+-+-+-+-+-

E) 1kb+
L+-4-4-+-+-

L+-+-+-4-+-

F) 1kb+
L 4+-+-+-+-+-

R T R R I Iy e

123



124
G)

Cip. 1 BQ20WL10  Sequence:664N_Midrev-29 Clipped length: 328 Sampls: 15502 Qualty: 0-9 — Page: 1/3
Leftclip: 400 Bases: 1063 10-19 e— 02.04.2019

A

A

Right clp 727
Avg. qual. incip: 3891

werage spacing: 150 20-29
werage quality >= 10: 98, 20: 259, 30: 606 >=30 —

JAVN AAAA_A4AAAAAAKﬁ%QK3A.

% 100 10 120 130 140 150
ATGACAGCACTCTGGGGTGGTGAGGAGAGTGTATCACC T TAACCCAGGAGTTTGAGACCAGCCTGTGCAACATGGC

160 m 180 190 20 210 20 20
ACAATCCTGTCTCTACAAAAAATACAAAGATAGCAGGGCATGGTGGCATGTGCCTATAGTCCTAGCTACTG G

20 250 260 2 280 20 300
GGGCGCTCAGGTGGGATAGCCGT TTGAGCCAGGG AGGTCGAACTCCTGAGCCCAAGCAATCCACGCGCACCTCA

ato a2 o R a0 . 350 " a60 N
G C CTCCCAAAGTTCT GGGATTACAGGTGTGAGCCACTGAAGGGCGAATTCTGCAGATATCCATCACACTG

N . e N 390 . ) 1o g0 " <0 o
G CGGBCCGCTCGAGGCATGGCATCTAGAGGGGCTTTTTTCGCCCTATAGT TGAGTC GTATTACAATTCACTGGGC

H)
Bimilarity : 25/35% [6.96 %)
SEeg 1 1 gttatctaCgggGgtaGTtoGTataTagatoCttactTtCacCtTTgtAtatcGatatet 60
Seg 2 1 o
Seq 1 &1 agtAigoocoggotgCACcACoottAGgeCghctoocogogCGgTaTtaCCaTagaCtTCata 120
Seg 2 1 o

Seg 1 121 gagTttTTatTgatoctogacacgtCaatCatTicttaTgaagttachghctotCagttgt 180

Eeg 1 1Bl thgtattgtgttatctacC-gTgCotA-ToCTCCTAACCCagandCttactcATGECCAN: 238

Beq 2 1 - = O A TEG CTCACACC TG TAATC CCAGCACT TIGGGAGGCTGAGGCA 45

Beg 1 239 nagﬁhthcctCtTcTCaTagth?TgatGgTthatGanethTteCtCaGCﬁCﬂhTac 298

SBeg 2 46 GGCAGATCATEACGTCAGGAS TTCGAGCCCTGOACCCCAGGCCAGCTAATGAGGCTIGACT 1058

Seg 1 293 CGagaCTCocANCGoCATtCotahacatCrtTetTtoCatCatatatAtatacocacecota 158

Bag 2 106 GOATOICCAGADCTesssccsscscsssscsssscsssscsssssssasessassssens 118

Eeg 1 3539 t 359

Seg 2 120 . 11%

Figure 3.17 Optimisation of Sequencing of Quantitative PCR Products

Optimisation of gPCR product cloning to increase sequencing quality. Eurofins Tubeseq
service was used for sequencing. A) Sequencing of product from IFNAR1 primer version
B, at annealing temperature of 62°C, image provided by Eurofins. B) Alignment of
sequenced product with expected IFNAR1 loop sequence, image provided by Eurofins. C)
Schematic representing optimisation of the cloning method to generate plasmids
containing loop products. Protocol 1.0: Topo 2.1 cloning vector used. Plasmid isolated
using purelink miniprep kit. Restriction digest with EcoR1. Protocol 2.0: as protocol 1.0
with addition of PolyA tail to qPCR product before insertion to cloning plasmid. Protocol
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3.0: as protocol 2.0 with ligation ratio optimised for 1.5ug DNA insert. D) Gel image of
restriction digestion of cloned qPCR product using protocol 1.0. E) Gel image of
restriction digestion of cloned qPCR product using protocol 2.0. F) Gel image of
restriction digestion of cloned qPCR product using protocol 3.0. G) Sequencing of
product from IL21R primer version C, at annealing temperature of 66.4C, image
provided by Eurofins. H) Alignment of IL21R sequenced product with IL21R expected
loop sequence, image provided by Eurofins.

In summation, reviewing the collection of data from the qPCR optimisation
(Figure 3.10 to Figure 3.17), | concluded that it was not possible for me to
translate the nested PCR-based method previously used to evaluate our
chromosomal loops of interest into a qPCR-based method. Whilst some primers
showed some evidence that they could successfully amplify the loop of interest
in the absence of negative control amplification at some temperatures,
sequencing revealed they were not the expected loop product. After discussions
with OBD, after they acquired additional propriety information about the
translatability of the 5 markers to the gPCR platform, it was agreed that it was
not appropriate to invest more time into the translation of these particular
loops. Notably, since that point, the platform at OBD has been optimised and

markers are now more easily translated from the nested to the qPCR platform.

Overall, based on minimal evidence that loops from the MTX signature could
successfully be detected with gPCR following MIQE guidelines, the decision was
taken to revert to nested PCR to amplify our 3C libraries. Based on this decision,
an alternative method of gel visualisation was sourced. The decision to use the
Lab Chip GX provided results quicker than a traditional gel electrophoresis
protocol and results that were easily interpreted, highlighted by a clear band in
combination with clear peaks at the expected size (Figure 3.18). These features
allow high-throughput, more informative analysis than the original gel

electrophoresis protocol, which is advantageous for a biomarker.
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Figure 3.18 LabChip GX platform

Representative images from LabChipGX Touch imaging platform of /L23 loci. 3C from
SSZ treated RA patient. A) 1kb" DNA ladder highlighting a band at 171bp. B) Peaks
highlighting the lower (LM) and upper (UM) of the 1kb+ ladder and band at 171bp.

3.2.4 Understanding the stability of the MTX CCS

Having determined that it was not possible to translate the assay into a qPCR-
based platform, | decided to go back to the nested PCR-based assay and
evaluate the stability of the MTX CCS signature over time. To achieve this,
baseline and 6 month samples from the original SERA cohort (R and NR groups
used to discover the MTX signature) were used. It is important to note that
patients in the R group at 6 months had reduced clinical disease activity index
(CDAI) scores compared to baseline. All R had CDAI of less than 7.7, meaning all
had low disease activity (LDA) or were in remission (Figure 3.19). NR had little or
no improvement in CDAI scores by 6 months. All samples were investigated to
find the presence or absence of each of the 5 loops of the MTX CCS at 6 months.
Across all 5 loci, there were several samples that had a loop at both time points
(labelled stable), a number that had no loop at baseline and one at 6 months,
and another group that had a loop at baseline, but no loop at 6 months. These
three categories of loop dynamics were present in both R and NR. The genomic
locations with the most stable loops were IL17A NR, with 21 patients (72.4%)
having loops present at both time points (Figure 3.19C). The least stable loop
was IL21R from R, with 3 patients (10.7%) having loops at 6 months who had
them at baseline (Figure 3.19E). 13.8% of NR had the CXCL13 loop still present at
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6 months (Figure 3.19D). 35.7% and 46.4% of R had IL23 (Figure 3.19F) and
IFNAR1 loops present at 6 months, respectively (Figure 3.19G).
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Figure 3.19 MTX CCS stability at 6 months

Analysis of presence of MTX CCS loops at 6 months in MTX R and NR from SERA cohort.
A) CDAI of R at baseline (BL) and 6 months (6m), N=28. B) CDAI of NR at BL and 6m,
N=29. C) Loop status of IL17A loop at BL and ém. D) Loop status of CXCL13 loop at BL
and 6m. E) Loop status of IL21R loop at BL and 6m. F) Loop status of /L23 loop at BL and
6m. G) Loop status of IFNART loop at BL and 6m. R shown in green and NR shown in red.
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6m, 6 months; BL, baseline; CDAI, clinical disease activity index; m, month;
MTX, methotrexate; NR, non-responder; R, responder; SERA, Scottish Early Rheumatoid
Arthritis Cohort

Statistical tests were carried out on this data to gain further insight into the
stability of the MTX CCS. The Boschloo independence tests were employed to
measure the change in the signature at both time points for both groups, as well
as measure the ability to stratify the two groups at each time point. This test
was chosen based on the sample number available. The score of 0.48 for IL17A
showed that is the only loop in R to not significantly change between baseline
and 6 months, i.e., partly stable. In NR, IL17A, CXCL13 and IL21R significantly
changed between time points (Figure 3.20A). The score of 1 for IL23 suggested
the loop does not change between time points and suggests stability of that loop
in NR. With a score of 0.69 in IFNAR1, the loop in NR could be considered partly
stable. The test of how the CCS could stratify between R and NR to MTX at both
time points confirmed, at baseline only, all loci of the signature could
successfully stratify, with significant scores of 0.1 and below for all gene loops
(Figure 3.20B). This was expected as it was based on the original MTX CCS study
data and illustrates the 5 loci required for the signature. At 6 months, the score
of 1 for IL17A suggests the loss of significant stratification ability to differentiate
MTX R and NR for that loop. Other scores ranging from 0.19 to 0.76 implies
limited stratification ability for the 4 remaining CCS loops at 6 months.
Ultimately the data showed that the signature is not stable and would only be

successful if used at baseline.
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A)
IL17A 0.47982255 IL17A 0.07552019
CXCL13 0.03852677 CXCL13 |0.003585556
IL21R 0.00036069 IL21R 0.184399036
IL23 0.02968988 IL23 1
IFNAR1 0.05777856 IFNAR1 | 0.688879761
B)
IL17A 0.00863913 IL17A 1
CXCL13 0.10479109 CXCL13 | 0.4088694
IL21R 0.00024335 IL21R 0.191031
IL23 0.0350002 IL23 0.7630735
IFNAR1 0.0350002 IFNAR1 | 0.5900533

Figure 3.20 Statistical analysis for identification of stable markers and markers with
stable stratification ability

Analysis conducted by Ewan Hunter (OBD). Boschloo independence test carried out using
binary data from MTX ém stability analysis at baseline (BL) and 6 months (6m). Green
for significant, red for insignificant and black for limited significance. A) Test analysing
difference between time points, significant <0.4. B) Test analysing difference
stratification ability of R and at BL and ém, significant < 0.1.

BL, baseline; CDAI, clinical disease activity index; m, month; NR, non-responder;

R, responder

With the results indicating a largely instable CCS, an initial investigation was
carried out using clinical scores to determine whether disease severity played a
role in this variability between time points. As such, the correlation between CDAI
(Figure 3.21) and DAS28 (Figure 3.22) scores with number of stable loops was
examined. The results showed no clear correlation between chromatin stability
and disease activity state. The numbers of stable loops are similar between R and
NR. Furthermore, individual patient scores are widely distributed within each
stable loop category, from as low as CDAI 10 to 49.5 (Figure 3.21C). This showed

that loop architecture was not influenced by disease activity.
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Figure 3.21 CDAI Correlation with Loop Stability

The CDAI scores for each patient sample at BL and 6m was plotted against the no of
stable loops. A) baseline CDAI in R. B) 6m CDAI in R. C) baseline CDAI in NR. D) 6m CDAI
in NR. The linear regression of the data was plotted. R, N=27, NR, N=28.
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Figure 3.22 DAS28 correlation with loop stability

The DAS28 scores for each patient sample at BL and 6m was plotted against the no. of
stable loops. A) Baseline DAS28 ESR in R, N=18. B) 6m DAS28 ESR in R N=17. C) Baseline
DAS28 ESR in NR, N=18. D) 6m DAS28 ESR in NR, N=18. E) Baseline DAS28 CRP in R, N=27.
F) 6m DAS28 CRP in R, N= 27. G) baseline DAS28 CRP in NR, N=27. H) 6m DAS28 CRP in
NR, N=28. The linear regression of the data was plotted.

CDAI, clinical disease activity index; CRP, C-reactive protein;

DAS, disease activity score; ESR, erythrocyte sedimentation rate
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3.2.5 Ability of the MTX CCS to predict response csDMARD
treatment

While a biomarker for MTX is beneficial, there would be value in identifying if
the MTX CCS biomarker could predict response to baseline treatment, regardless
of which csDMARD or csDMARDs were given to a patient. We wanted to assess
whether the MTX CCS 5-loop signature for MTX would be applicable for
determining response to patients treated with a combination of csDMARD

treatment.

To evaluate the suitability of this, the disease activity at baseline, 6 months and
12 months was assessed in the SERA cohort. Patients were assigned a R or NR
status based on the disease activity scores at 6 months and 12 months (Figure
3.23). To differ from the cohort used previously, patients were identified that
had been treated with HCQ or SSZ, which may have been in addition to MTX. 35
patients treated with HCQ or SSZ, with or without MTX, were selected that had
strong R or NR status (Table 3.3). A strong status was defined as a R remaining in
remission or low disease activity at 12-months, or a NR with a high disease
activity score at that time point. Patient baseline demographics revealed a
similar profile between groups (Table 3.4 and 3.5). The presence/absence of

MTX CCS loops was assessed in patients from these groups.

Table 3.3 Chosen SERA Patient Treatment Assignment
csDMARDs received in first 12 months of treatment
HCQ, hydroxychloroquine; MTX, methotrexate; SSZ, sulphazine

HCQ monotherapy 9
SSZ monotherapy 10
HCQ and MTX 13

SSZ and MTX 7
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Figure 3.23 Disease activity in responders and non-responders to HCQ and SSZ

CDAI scores at baseline and 6 months (shown on left and right within each responder
type, respectively) in SERA patients treated with HCQ or SSZ with or without MTX. CDAI
represented as individual scores. A) R (N=9) and NR (N=12) to HCQ. B) R (N=11) and NR
(N=8) to SSZ. T test to compare CDAI between time points, *P< 0.05.

CDAI, clinical disease activity index; HCQ, hydroxychloroquine; NR, non-responder;

R, responder; SSZ, sulphasalzine
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Monotherapy Combination therapy Monotherapy Combination therapy
Number 2 7 3 6
Age (years) 47 +5 70.1 £ 6.9 57.8 +3.1 55.7 + 10.8
Sex no (%) male 2 +100 3 (42.9) 2 (50) 2 (33.3)
Caucasian no (%) 2 (100) 7 (100) 4 (100) 6 (100)
BMI kg/m? 27.0 (7.8) 29.4 +3.9 274 +3.8 28.3 +4.4
Alcohol excess (%) 0(0) 0(0) 0(0) 0 (0)
Current smoker no (%) 0 (0) 1(14.3) 2 (50) 1 (16.6)
Previous smoker no (%) 0(0) 2 (16.6) 1 (25) 1(22.2)
RF (IU/ml) NA 211.3 + 473.3 112.3 +£137.7 15.5 £ 4.5
CCP(U/mL) 225.5 +223.5 50.3 + 86.6 51.7 +50.3 220 + 150.0
CDAI 18.9 +2 35.0 + 14.0 17.0 £+ 9.5 24.8 £ 19.7
DAS28 CRP 4.55 +0.55 53 1.2 3.9 £0.9 4.8 £1.3

Table 3.5 SSZ+/- MTX-Treated Patient Demographics

Monotherapy Combination therapy Monotherapy Combination therapy
Number 6 4 4 3
Age (years) 69.8 + 19.9 67.8 £ 5.4 58.3 + 6.18 60 +5.9
Sex no (%) male 3 (50) 3 (75) 4 (100) 3 (66.7)
Caucasian no (%) 6 (100) 4 (100) 4 (100) 3 (100)
BMI kg/m? 27.4 £5.3 30.2 + 4.7 48.5 + 3.5 27.4 +4.9
Alcohol excess (%) 3 (50) 2 (50) 0 (0) 0 (0)
Current smoker no (%) 1(16.7) 0(0) 1 (25) 2 (66.7)
Previous smoker no (%) 3 (50) 2 (50) 1 (25) 1(33.3)
RF (IU/ml) 357.7 + 4711 43.3 +40.3 234.9 + 311.2 NA
CCP(U/mL) 374.3 + 251.8 1.4 +0.43 1.5+£0.5 36.5 + 51.2
CDAI 22 +15.8 4.6 £17.2 25.6 + 8.1 30.7 £ 9.5
DAS28 CRP 4.4 £1.6 6.0 +1.3 4.6 £0.9 5.5+0.8

3C analysis was used to examine the presence of loops belonging to the MTX

signature in HCQ and SSZ (with or without MTX) treated patients at baseline.

Patients had a variety of loop combinations, however there was no clear

difference between R or NR in most treatment subgroups (Figure 3.24).

Monotherapy HCQ was the only treatment subgroup that showed a

differentiation in signature loci between R and NR (Figure 3.24A). However, this
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was also the smallest treatment group, and not large enough for robust
interpretation. Loops were only present at IL17A, CXCL13 and IL23 loci. There
were no loops detected at IL21R and IFNAR1 loci in any response group which
meant these loci always clustered together within the heat map. The MTX CCS
NR signature was observed 5 times (Figure 3.24B, C), but was only once observed
in a patient with a clinical NR status (Figure 3.24C). The HCQ combination
therapy group had most variation in loop presence of all subgroups, but no clear
differentiation between R and NR could be observed. All subgroups were very

low in number, therefore solid conclusions cannot be drawn from the data.
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Figure 3.24 Heat map of MTX CCS loop presence in R and NR

3C carried out on baseline samples from patients treated with HCQ or SSZ, with or
without MTX. Heat map indicating binary presence or absence of 5 MTX CCS loci loops.
A) Patients treated with monotherapy HCQ. B) Patients treated with combination HCQ +
MTX. C) Patients treated with monotherapy SSZ. D) Patients treated with combination
SSZ +MTX. Blue = loop, Red = no loop. Yellow box indicates NR signature in a clinical
response, green box indicates NR signature in clinical NR

NR, non-responder; R, responder
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Based on the MTX signature, HCQ and SSZ +/- MTX treated patients were
assigned a predicted response. The correct response status was only assigned in
1 patient (Figure 3.25B). This patient received monotherapy. Several patients,
also monotherapy SSZ-treated, had a NR signature present, but were clinically
responders to therapy. The remaining patients had a combination of loops out-
with the MTX signature conformation and therefore their response could not be
predicted. These values were used to employ ROC analysis to determine
specificity and sensitivity of the signature in this group. The ROC curve for HCQ
monotherapy treated patients had a sensitivity of 50% and a specificity of 33.3%
(Figure 3.26A) and combination treated ROC curve had a sensitivity of 33.3% and
a specificity of 50%. ROC analysis of monotherapy SSZ treated patients revealed
a sensitivity of 0% and a specificity of 25% (Figure 3.26D). Combination treated
SSZ patients had sensitivity of 0% and specificity of 100%. The highest accuracy
value was 50%, which confirms that there is no predictive potential for the MTX

CCS for response to csDMARD treatment.
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Figure 3.25 Binary classifier and ROC curve analysis of MTX signature for csDMARD
response prediction

Assessment of the predictive ability of the MTX CCS to stratify HCQ and SSZ +/- MTX
treated patients. Classifier of observed and predicted response status for A)
Monotherapy HCQ and B) SSZ + MTX. C) Monotherapy SSZ. D) SSZ + MTX. E) ROC curve
for monotherapy HCQ. F) ROC curve for HCQ + SSZ. G) ROC curve for monotherapy SSZ.
H) ROX curve for SSZ and MTX. ROC curves generated using web-based calculator which
utilises JROCFIT program.

To understand why the CCS could successfully predict response in only 1 patient,
and other patients had a mostly undefined signature, demographic and disease
activity was measured in each category (Figure 3.26). The patients were split
into 4 categories: 1) responders who were predicted to be non-responders (R-NR,
2) non-responder predicted to be non-responder (NR-NR), 3) responders who
could not be given a prediction response (R-un-defined (UD) and 4) non-
responders that could not be given a prediction (NR-UD). The NR that had the NR
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signature had an age within the range of ages in the other 3 categories of
patients. Unlike the other 3 categories, the successfully predicted NR was
neither a current smoker, or had an ex-smoker status. In the other categories,
there was at least 1 current smoker and ex-smoker. The alcohol intake in the NR
was within the range of the other categories. When considering the baseline
disease activity of the NR, it was within the CDAI and DAS28 CRP upper range
with the other categories. The CDAI and DAS28 CRP of the NR were 39.1 ad 5.7
respectively. The other interesting group to consider was the 4 R who had the
NR signature. While the prediction was wrong, the MTX CCS was present. This R
group had the largest age range from a minimum of 28 to a maximum of 88. The
number of current smokers was the same as the R-UD group and ex-smoker
number half of the UD groups. Alcohol intake, CDAI and DAS28 CRP scores were
in similar range with the UD groups. As already discussed, the sample number for
this part of the stud were very low and higher numbers in every subgroup would

be needed to draw the right conclusions.
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Figure 3.26 Demography and disease activity relationship with csDMARDs response
prediction

BL demographic factors and disease activity was measured in all HCQ/SSZ +/- MTX-
treated patients. A) Age. B) Number of patients who currently smoke. C) Number of
patients who smoked previously. D) Units of alcohol consumed weekly. E) CDAI at BL. F)
DAS28CRP at BL.

CDAI, clinical disease activity index; CRP, C-reactive protein; NR, non-responder;

R, responder; UD, undefined

CDAI
DAS28 CRP

As well as exploring the relationship between demographic factors and the

ability of the MTX CCS to predict response correctly, it was important to
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understand if mono or combination therapy had an influence. Most patients with
the presence of the MTX NR signature were SSZ monotherapy treated. There was
1 patient in this group that was treated with a combination of HCQ and MTX
(Figure 2.27). The R and NR group that had an UD signature had a combination of
the 4 treatment options of monotherapy HCQ or SSZ, or combination therapy
with MTX. 35.7% of R with the UD signature had most patients treated with the
HCQ and MTX combination. 26.6% had combination SSZ and MTX, followed by
21.4% with monotherapy SSZ and 14.3% with HCQ. 31% of NR with UD signature
were monotherapy HCQ treated. The remaining 3 combinations made up 23%
each of this group. R with UD signature had over 60% using combination therapy,
however the R with NR signature have 75% on monotherapy. Overall, most
patients that had loci in a conformation from the MTX CCS were monotherapy
treated. This could be expected as the signature was developed in a

monotherapy cohort. However, numbers are too low to draw a solid conclusion.

[ HCQ+MTX
B HCQ
Bl SSZ+MTX
Bl Ssz
Total=4 Total=1 Total=14 Total=13
R-NR NR-NR R-UD NR-UD
Figure 3.27 Relationship of mono and combination therapy with csDMARD response
prediction

BL treatment was recorded and split into 4 groups: HCQ monotherapy, SSZ
monotherapy, HCQ+MTX combination therapy and SSZ+MTX combination therapy. R
predicted to be NR = R-NR, NR correctly predicted as NR=NR-NR, R without prediction=
R-UD, NR without prediction = NR-UD

HCQ, hydroxychloroquine; MTX, methotrexate; NR, non-responder; R, responder;

SSZ, sulphsalazine; UD, undefined

3.2.6 Validation of MTX CCS in new clinical cohort

With a robust PCR protocol established for assessing the 3C epigenome in RA
patients, the decision was made to validate the MTX CCS in another RA cohort. A
group of early RA samples from the Towards A Cure for Early Rheumatoid

Arthritis (TACERA) cohort were selected based on the assignment of
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monotherapy MTX at baseline. The TACERA cohort replicates the SERA cohort
based on collection of samples from early RA patients who were treatment naive
at baseline. Peripheral blood samples were retrieved from these patients. At
selection for our study, patient characteristic information was not retrieved as it
was to be conducted blinded. Nested PCR was carried out at OBD and statistical
analysis was used to understand if the MTX CCS could predict MTX response in an
independent clinical cohort. 2 models were used to assess the predictive ability
and plots can be used to visualise the loops in the CCS with the best predictive
potential (Figure 3.28). These models have been developed since the discovery
of the MTX CCS and are sophisticated, boosted machine learning models.
Compared to the Weka model used to develop the original MTX CCS, the newer
models are better at classification. The other advantage is the ability to see use
these models directly in R Studio, as opposed to using externally with the Weka
model. Weka could be used within R, but functionality is limited. Dilutions of
primers to detect each loop were also used to help assess the influence of each
loop on the model. The plot for one of the models, named XGBoost, shows
SHapley Additive exPlanations (SHAP) scores which best represent results from
tree-based algorithms. The plot shown highlights that IL17A provided the most
stratification potential to the model with a score of 0.705 (Figure 3.28). Many
patient samples with a low abundance of this loop had good prediction of a
producing a negative in the model, and another group of patient samples with a
high abundance of this loop contributed to a positive predictive score. Overall,
this contributes to the highest ranking of this loop in the model. IL21R did not
add any value to the model with all dilutions of the sample producing a score of
zero. The plot indicates that most dilutions over 2-fold did not add anything to

the model with scores of zero.
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Figure 3.28 Identification of MTX CCS Loops that add value to Model in New RA
Cohort

Data from XGBoost training model to plot contribution of each MTX CCS to new
prediction model using the SHapley Additive exPlanations (SHAP) values. Each dot
represents patient sample. Positive and negative values on x-axis indicate whether the
loop is associated with a positive or negative prediction. Colour indicates whether loop
abundance is high or low. Loops are ranked from top to bottom (from best to worst),
based on the contribution to model. EpiSwitch™ loop detecting primers diluted used
neat, or diluted 2, 4 or 8 fold; ‘_1’, neat; ‘_2’, 2-fold; ‘_4’, 4 fold; ‘_8’ 8 fold.

2 training models were built using 2 methods, XGBoost and Light GBM (Figure
3.29). For the purposes of prediction, these patients had to be unblinded. The
first model, XGBoost, identified 20 R successfully and 15 NR successfully (Figure
3.29A). 9 NR were incorrectly identified as R, and 3 R wrongly assigned a NR
status. With the Light GBM model, 12 R were correctly identified and 20 NR
successfully identified (Figure 3.29B). 11 NR were predicted to be a R and 6 R
predicted to be NR. The XGBoost model revealed a sensitivity of 0.833 and
specificity of 0.69 (Figure 3.29C). The Light GBM model revealed a sensitivity of
0.62 and specificity of 0.67 (Figure 3.29D). The XGboost model had 74.5% [95% CI
(0.59, 0.86)] accuracy and the light GBM an accuracy of 63.8% [95% CI (0.49,
0.77)].
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Figure 3.29 Binary classifier and ROC curve analysis of Training Models of MTX CCS
for MTX Response prediction

Assessment of the predictive ability of the training models on 47 RA patients. Classifier
of observed and predicted response status for A) XGBoost model and B) Light GBM model
C) ROC curve for XGBoost. D) ROC curve for LightGBM. ROC curves generated using web-
based calculator which utilises JROCFIT program.

Once the training sets had been generated, they were tested on 23 blinded
patients (Figure 3.30). The XGBoost identified 6 R successfully and 8 NR
successfully (Figure 3.30A). 5 NR were incorrectly identified as R, and 4 R
wrongly assigned a NR status. With the Light GBM model, 7 R were correctly
identified and 8 NR successfully identified (Figure 3.30B). 4 NR were predicted
to be R and 4 R predicted to be NR. The XGBoost model revealed a sensitivity of
0.62 and specificity of 0.6 (Figure 3.30C). The Light GBM model revealed a
sensitivity of 0.67 and specificity of 0.64 (Figure 3.30D). The XGBoost model had
65.2% [95% CI (0.39, 0.8)] accuracy and the Light GBM an accuracy of 63.8% [95%
Cl (0.49, 0.77)]. Overall, | can’t conclusively say that the signature was
successfully validated in another cohort. There is some evidence that some loci
hold their predictive capacity, but ultimately, the signature was not validated.
Based on the recognition of the models used and their predictive power,
evidence suggests that the signature should be improved, as the sophistication of
the models used would have likely extracted the results of stratification if it was

possible in this group.
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Figure 3.30 Binary classifier and ROC curve analysis of testing models of MTX CCS for
MTX Response Prediction
Assessment of the predictive ability of the testing models on 23 blinded RA patients.
Classifier of observed and predicted response status for A) XGBoost model and B) Light
GBM model C) ROC curve for XGBoost. D) ROC curve for LightGBM. ROC curves
generated using web-based calculator which utilisies JROCFIT program.
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3.3 Discussion

The discovery that chromosome conformation signatures had the ability to
successfully predict MTX response in treatment naive RA patients at baseline was
a promising finding, but validation was needed. The work in this chapter
explores the validation of this biomarker using bioinformatics techniques and
experimentally using an independent clinical cohort. It also explores the
transition of the 3C technique from OBD to the lab in house and the attempt to
transition to alternative protocols. Further measurements to define the
stratification potential by measuring stability of the MTX CCS at 6 months, and
ability to predict response to treatment, regardless of csDMARD(s) assigned at

baseline was also explored.

The first step in the in-silico validation process was to assess the quality of the
data. It is recognised that pre-processing and appropriate normalisation steps
are crucial to produce robust results that lead to reliable biological
interpretation?’>. Limma was chosen as the software to validate the results due
to its features to analyse data quality and normalisation, and for its linear
modelling potential. Multiple studies have demonstrated that dye bias exists in
dual colour microarray experiments, so this was one of the first steps to assess
quality in our dataset?’*. This dye bias can contribute to the inaccurate
interpretation of the expression intensities of the material being measured.
There is debate in the literature about the methods that should be used to
combat dye bias. Some researchers believe that dye swaps should be used,
however, others believe that it is not essential, and the latter was the approach
in this study?’**”°. The red-green dye densities shown did not highlight any
arrays with a dye bias and the distribution of both colours was comparable
(Figure 3.1A). MA plots were also used to visualise the red-green intensity log
ratio (M) and mean signal intensities of each of spot on the array (A). With our
dataset, it was assumed that most loops captured on the array were unlikely to
change, meaning the plots should have most spots centred around the middle 0
line. The results in Figure 3.1C show a curved line, highlighting that pre-
normalisation, there were more spots than expected with a positive or negative
fold change representing loop abundance. There was also substantial variability

at the low intensities, shown by the V shape on the left side to the middle of the
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plot. This shape of plot has been shown in the literature?”® and suggests a low
intensity bias for large fold changes. Despite the indication that there may be
some bias at certain intensities for large fold changes, this analysis highlights
that the most loops do not change between samples, but that there were enough

to warrant further investigation.

After this first visualisation step of the array parameters, normalisation of the
data was required. Loess normalisation is considered an appropriate
normalisation approach for datasets where most measured elements are unlikely
to change. Loess normalisation successfully reduced variability between the dyes
in each array, indicated by more uniform histogram distributions (Figure 3.1B).
In the MA plots (Figure 3.1D), it is evident that Loess normalisation reduces the
curvature of the middle of the plot, highlighting the reduction in the number of
loops with differential fold change. The last QC assessment shown is the boxplot
(Figure 3.1E). This represents normalisation of signal intensities across 8 the
arrays, and similar to other plots, indicated normalisation was successful and

there were no problematic arrays that should be removed from the analysis.

The second stage of the validation process was to confirm the stratification
potential of the MTX CCS loci. Analysis confirmed the potential for stratification
using the MTX CCS loops. Contrast models in Limma, contrasting NR and R
revealed the association of IL17A and CXCL13 with NR and IL21R, IL23 and
INFAR1 with R, as is present in the signature (Figure 3.2A). Next, the 5 loci had
to be tested on a set of patient samples. Using a Random Forest classification
method, the model revealed an accuracy of 87%, shown visually with a ROC
curve, which can be considered in alighment with the original model. Overall
these tests indicated that the signature could be validated and there was a basis

to explore this signature further throughout this study.

The first stage in establishing that | could carry out the 3C independently was to
obtain samples to work with. These samples were generated from healthy BC
donors. A purity check was carried out to ensure successful isolation of the
intended cell type (Figure 3.3). These checks illustrated that the isolation was
effective. The population of CD4" T cells were within the expected range of 20-
60% of the total PBMC population®’®.
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The generation of the first 3C libraries using these cells was successful, as
demonstrated by the Quant-iT PicoGreen method of DNA quantification (Figure
3.4). After measuring the first samples using the PicoGreen assay, it was
considered that there may be a higher-throughput method of quantification for
the 3C libraries, which would be more suited to the number of samples in our
study. The Qubit platform has been shown to be a reliable method of choice to
calculate DNA concentration when carrying out next-generation sequencing
(NGS) or microarray methods?”’. Compared to other DNA quantification methods,
the Qubit is rapid, precise and sensitive?’®. As such, this was the alternative
method to PicoGreen that was chosen. A direct comparison was carried out
between PicoGreen and the Qubit dsDNA HS assay (Figure 3.5). The results
revealed a statistically significant difference in the yield of DNA measured. This
experiment was repeated and there continued to be a disparity in results
between the two quantification methods, with the Qubit consistently calculating
lower concentrations. Exploration of these methods has also been shown in the
literature?”®. Like the results described, the Qubit measured lower DNA yields
than an alternative method, specifically, the Tagman RNAse assay. This could be
considered surprising as the Qubit should capture all dsDNA. However, since the
Qubit only measures dsDNA and not any single stranded (ssDNA) or other
contaminants which may be present in the sample, that could be a contributor
to the disparity in this example. Interrogation of the data showed that the Qubit
results were the most consistent over the 3 experiments. These results, coupled
with the reliability of this assay in the literature meant the Qubit was the
method chosen to continue the study with. Moreover, the Qubit system has
various kits that can be tailored to the yield of DNA expected from a sample,

which could be useful in the future?’.

Another essential check that had to be carried out was nested PCR and gel
electrophoresis using the control primers for EpiSwitch™ 3C before future work
could commence. Figure 3.6 illustrates these results and highlights that the
control primers perform as expected. MMP1 4/12 and MMP1 9/12 are positive 3C
controls as there is a stable copy nhumber in normal blood. Both controls were
consistently present at the expected size. The primers designed to capture the

loops in the MTX signature were also tested in healthy BC before being used on
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patient samples (Figure 3.7 and Figure 3.8). This employed a semi-quantitative
method, which was used in the seminal 3C paper by Dekker et al. The analysis of
gel electrophoresis from healthy donors displayed a wide variation between
samples. The higher copy number of loops in the IL21R and IL23 loci compared to
the other 3 loci was interesting. It could suggest that these genes are more
active genes in the general population or could mean the alternative if the
looping of the gene causes inactivation. Until the function of the loops within
the signature is investigated, it cannot be fully understood why there are a
higher number of loops at these loci in healthy donors over IL17A and CXCL13.
There is the likelihood that absence of loops in these loci could mean that IL17A
and CXCL13 are more associated with disease phenotype and pathogenesis
compared to the other genes in the signature. Marwa et al have suggested a
polymorphism in IL17A has been associated with response to MTX**°. As our
signature has the predictive power in only RA patients, it is not unsurprising that
the healthy donors used for the 3C assays thus far would have a low number of
individuals presenting with loops in our genomic regions of interest. It should be
noted that the results shown are from a limited number of healthy donors
therefore it is difficult to draw conclusions from this data. In summary, the
results presented thus far demonstrate that | was able to successfully execute
the 3C assay and analysis using patient samples from the SERA biobank could

commence.

In my hands, | considered whether we could transition to a high-throughput
method of biomarker detection. Work in this chapter details the attempt to
optimise a qPCR assay for this purpose. This aligned with the work being carried
out at OBD, as they were translating other signatures to the higher throughput
gPCR platform. gqPCR has been described widely in the literature, but it is
recognised that there are challenges in achieving a robust assay for 3C
templates. A high DNA template concentration and primer-dimers can result in
non-specific fluorescence®'. As such, it was important that the MIQE guidelines
were followed which state the minimum requirements for publication of PCR

results?’?

. qPCR MMP control primers were obtained from OBD and tested in RA
patient samples (Figure 3.10). The results for gqPCR with the MMP primer
indicated that generally there is a low level of 3C template, indicated by the

high Ct value. This has been consistently shown with work since carried out at
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OBD where the MMP positive control primer has a low Ct value indicating very
low DNA template. (Figure 3.31). This gave an indication of what could be
expected from the MTX CCS loci.

CCSs_Controls
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Figure 3.31 qPCR Positive Control Analysis

Concentration of DNA of 3C products using positive 3C controls from recent qPCR
microarray data generated at OBD. Data is shown as box and whisker plot showing the
median and standard deviation, N=1.

One of the first stages in the optimisation process was primer design. 3C regions
are non-germline and low complexity which makes them prone to hairpin loops
and primer dimers, therefore making primer design challenging. A low
complexity sequence will reduce the primers discriminatory power on the
sequence of interest and result in nonspecific binding?®%?3, This challenge is
reflected in the results shown in this chapter. To be taken forward, primers had
to demonstrate evidence of efficiency and specificity. Efficiency was measured
by temperature gradient qPCR, with the aim of identifying the optimal
temperature that a single product could be amplified. Specificity is shown by the
existence of a single product, which can be evidenced through the melt curve
and gel electrophoresis analysis. Three separate primer sets were tested for all 5
loci from the MTX signature, and results indicated that most primer sets were
marginally improved on the set before, i.e. A better than B, and B better than C.
This can be seen from primer set A having the most amplification of negative
controls and primer set C, designed last, having the least amplification of

negative controls. However, this was not the case for IL21R. Moreover, it was
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evident that primers for CXCL13 were not efficient or specific with any set
(Figure 3.12). The three primer sets tested were unable to amplify the patient
product of interest at most annealing temperatures. Any occurrence of the loop
of interest was accompanied by amplification of negative controls. In general,
the lower the annealing temperature, the lower the Ct of the patient loop of
interest. However, it is at temperatures of 66.4 C and above that appear to be
most optimal to amplify only the patient loop of interest without negative
controls. Based on analysis of the Ct values, primer set C for IL17A and IL23
appeared good candidates for 3C qPCR (Figure 3.11 and Figure 3.14). However,
when gel electrophoresis was carried out on the gPCR products, a band could not
be found at the temperatures that resulted in single product amplification.
Manual gel loading could be considered a reason for this. Additionally, gel and
melt curve analysis taken together suggest the presence of non-specific
amplification. The mean Ct values for IL21R and IFNAR1 suggest that no primer
set was suitable for amplifying the patient loop of interest. However, limited
individual experiments provided evidence that the primers may be good
candidates for 3C qPCR. 68°C was an optimal temperature for primer set B and C
to amplify the patient IL21R loop of interest without amplification of negative
controls. For primer set B, the gPCR product of interest did not appear at the
expected size, however it did appear at the expected size for primer set C. The
optimal annealing temperatures for amplification of only the IFNAR1 loop were
66.4'C and 64.4°C. This only occurred with primer set B, and this was in
conjunction with a gel band at the expected size. Based on the limited primer
success there were several candidates that were chosen for sequencing: IL21R

version C and IFNAR1 version B.

Sequencing was used to confirm if the amplified qPCR product was correct. The
known sequence of the ligated 3C product with the characteristic TCGA
sequence in the centre was used as the reference. This, combined with the
predicted product size based on the specific primer design facilitated this
prediction. In order to send a qPCR product for sequencing, the band from gel
electrophoresis had to be purified and the yield of DNA established. As
documented in Figure 3.16, this process required optimisation as the original
protocol yielded only 0.88ng/ul which was not sufficient for sequencing

protocols. The first attempt to improve the yield added additional incubation
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steps to the protocol. The kit used for this purification is based on the
centrifugal filtration method. This method has been shown to have a normal
recovery rate of between 60%*%*. This was chosen as the first factor to modify,
based on evidence from the literature that states increased incubation
temperature or incubation time could improve yield in cross-linked DNA?, This
proved unsuccessful, yielding less DNA than the first attempt. A possible cause
could be degradation of the DNA. Alternatively, since the sizes of DNA fragments
are not considerably large, this alteration of the protocol may not have had
much influence. The third attempt to increase the DNA yield comprised of
additional incubation steps in addition to elution in heated buffer with the aim
that this would allow more DNA to be released from the membrane. This
optimisation step resulted in a statistically significant increase in DNA yield from
the first attempt (Figure 3.16) and provided sufficient DNA concentrations to

facilitate sequencing steps.

As discussed, the first product sent for sequencing was a product from an IFNAR1
reaction; annealing temperature 62 °C. This resulted in sequencing that was low
quality and had a very low alignment with the known IFNAR1 loop sequence
based on only a small number bases of the known sequence aligning with the
sequencing product (Figure 3.17). This meant optimisation was required to
ensure a good quality DNA product was sent for sequencing. Cloning of the gel-
purified gPCR product was chosen as a method of increasing DNA quality. This
would allow amplification of only the single gPCR product. After cloning, a
restriction digest was conducted to cleave the cloned gPCR product. The results
from the first cloning attempt did not yield the product with restriction digest
(Figure 3.17D). This revealed that optimisation of the cloning protocol would be
necessary. The addition of a PolyA tail to the qPCR product was not enough, and
an optimised ligation ratio to facilitate increased chance of clone insert was
needed. With the protocol optimised, another gPCR product was sent for
sequencing. Despite the quality improvement on the first sequencing attempt,
the alignment with the loop sequence was too low. The resulting high quality
product, with similarly low alignment to the first sequencing attempt which

suggested the primers were not amplifying the correct product.
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Combined, the data generated suggested that the translation of this assay to a
gPCR-based platform was not easily achievable. This could be due to a multitude
of reasons, but it is conceivable that the gPCR assay could be less sensitive due
to low ligation frequency in 3C loops in our signature of interest. As mentioned
above, 3C ligated sequences produce low-complexity templates, and it has been
documented that in some circumstances, low complexity sequences are
excluded from primer design processes®®. Furthermore, these low-complexity
templates have been explored and shown to contribute to the formation of
pathological ribonucleoprotein assemblies®®’. Taken together, this evidence
illustrates the challenge of designing gPCR primers for these loop regions and
why it is plausible that optimisation would be ineffective. However, with the
addition of a more easily interpreted, high-throughput gel electrophoresis
technology (Figure 3.18), | was confident that | could move forward with nested
PCR.

We also wanted to understand if the biomarker was stable after 6 months on
treatment. The literature describes chromosome conformation as both stable
and dynamic'®, so it was important to establish chromatin dynamics in the
context of RA. Establishing the time frame within which this biomarker can
successfully stratify R and NR to MTX is of great importance. It has been
recognised that the timing of biomarker detection is critical and that plasticity
of the epigenome is a complex factor to consider in such studies?®®?*° If the
biomarker is to measure disease progression, biomarkers that fluctuate with
disease progression is desirable, as demonstrated by Selaas et al**°. They found
that /L-6 and VEGF-A could be promising candidate disease biomarkers due to
their reduction over the disease course. However, as the MTX CCS has the aim of
establishing treatment response, and MTX can be given at any time throughout
the RA treatment regimen, stability would be considered beneficial. Results
illustrated that the signature was not stable in the majority of the patients. All 5
loops from the signature, had variability between time points in both R and NR.
The loop dynamics came in the form of loops being lost and gained over the 6
months on treatment. It is highly plausible that MTX treatment can influence the
structural epigenome. Studies of the transmembrane receptor tyrosine kinase,
HER2, have illustrated the influence of treatment on the epigenetic landscape.

In two breast cancer cell lines, there was genome-wide reprogramming of HER2
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binding sites after treatment with the growth factor EGF?*'. Molecular changes
caused by treatment have also been shown in RA studies. A study by Tasaki et al
investigated the levels of multiple serum proteome signatures associated with
RA, such as serum CRP and ESR over time. They found that treatment with
Infliximab and Tocilizumab reduced proteome signatures, as did MTX to a lesser

extent???

. While this study did not monitor the molecular features of the MTX
signature, it does highlight the ability of MTX to modify other markers and
highlights that loops would be likely to alter conformation as a result of
treatment. The Boschloo test was used to statistically test the degree of change
in the signature loops between baseline and 6 months in each responder group.
Only /L23 was considered statistically stable as the confirmation in most patients
remained the same at both time points. Boschloo independence tests were also
used to determine the predictive ability of differentiating R and NR to MTX at 6
months (Figure 3.20B). The tests clearly confirmed the ability of the signature to
differentiate between R and NR at baseline, as expected, but by 6 months this
capability is lost. It must be considered how the underlying disease has changed
in this time, and may be the reason why the signature no longer has predicative

capacity.

To try and understand if there was a relationship between the stability of the
biomarker, and demographic factors, correlations were carried out between
CDAI and DAS28 scores and the number of stable loops (Figure 3.21 and 3.22).
There was a minimal positive correlation between CDAI at baseline and the
number of stable loops. Those with a lower CDAI at baseline have marginally
lower chance of having more stable loops. This relationship is also observed with
DAS28 ESR and CRP scores at baseline in R (Figure 3.22A and E). In all NR, there
is the indication that there is a negative correlation that exists between
increased disease activity and number of stable loops. However, collectively, the
results suggest there is no relationship between disease activity and the number
of loops in the signature that are present at both time points. Several R had all 5
loops in the MTX CCS at baseline and 6 months, whereas there were no NR with
all 5 loops present at both time points. This may allude to a stable epigenetic
set point that facilities a good response to MTX. However, the distribution of
stable loop number is otherwise similar between these 2 groups. Due to the lack

of interim time point to test the presence of the biomarker loops in all patients
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we are unable to conclude if the chromatin loops change immediately after
treatment, or at some point in between. Many studies in the field of oncology
have illustrated the ability of drug treatment to alter chromatin architecture.
Using histone modification enzymes, Gerrard et al illustrated that structural
epigenome changes occurred within days of drug treatment?”. Based on those
findings, it would be reasonable to consider an earlier time point after MTX

administration to test the presence of MTX CCS loops.

Another important question to explore for the MTX CCS was the ability to use it
to predict response to csDMARD treatment as a whole. The results demonstrated
that the signature was not able to predict response to treatment, whether it be
monotherapy or combination therapy. The results shown in Figure 3.24
illustrated that there was no difference in signature loci conformation between
R and NR. Only monotherapy HCQ showed a clear differentiation between R and
NR based on loop confirmation. However, 5 patients is not enough to draw a
robust conclusion. Moreover, in the HCQ +/- MTX R group, there was a marked
age difference between patients receiving monotherapy and those receiving
combination therapy. Specifically, monotherapy patients had an average age of
47, and combination therapy patients, an average of age 70. Due to the low
numbers of patients already in each responder, and therapy, subgroup,
unfortunately, the groups could not be stratified further to account for age. This
is something that should be considered in the future, and enough samples should
be obtained to ensure subgroups are comparable in age, or numbers are
sufficient to stratify by age group. In contrast to the MTX signature that groups
IL17A and CXCL13 together, and IL21R, IL23 and IFNAR1 together, all heat maps
appear to group IL23 with IL17A and CXCL13. However, a new signature involving
these new groupings would not be possible, as this grouping is the same in R and
NR.

Based on the binary results, a predicted response type was assigned to each
patient. The results shown in Figure 3.25 show that most predictions could not
be made and were labelled undefined (UD). No patient sample had an R
signature, but 5 patients in total had an NR signature. However, of those, only 1
patient was a clinical NR. The ROC analysis conducted from this data highlighted

the specificity and sensitivity of the signature in these patients. All ROC analyses
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had poor sensitivity and specificity results. The predictive ability of the MTX CCS
for these combination of therapies is poor, at no more than 50% accuracy. This is
greatly reduced from the predicative capacity of the CCS for MTX R and NR of
87% and 90%. The findings of the monotherapy HCQ group highlight, on a small
scale, the importance of a large patient group for biomarker testing. Recent CCS
discovery studies have used 74, 59 and 116 patients in their cohorts to define
their signature?'®2'®2'7 The MTX CCS was systematically developed with a group
of treatment naive samples that were given MTX monotherapy. Due to this
systematic approach, it is not surprising there is little capacity for the same

signature to stratify patient treated with a combination of other csDMARDs.

In general, there was no obvious demographic or clinical characteristic which
defined why some patients had the MTX CCS present, and others didn’t (Figure
3.26). The successfully predicted NR had no history of smoking, while patients in
the other 3 groups had a combination of current and ex-smokers. It could be
disputed that as smoking is well recognised influence on the RA epigenome, that
this may play a role. However, in the patient groups used to identify the original
MTX CCS, there were current and previous smokers. The same numbers of
current and previous smokers were present in from the HCQ and SSZ treated
patient groups, as well as no smoking history. Therefore, it is unlikely that
smoking plays a significant role in the efficacy of the biomarker. The
successfully predicted NR was in the middle of the age range of all other groups,
suggesting this is not an influential factor either. Baseline disease activity
measurements were in the upper range of values. CDAI and DAS28 CRP for this
patient were close to the maximum values of the response groups with an
undefined signature. The other group of responders that had a signature,
although unsuccessfully predicted, also had patients with high baseline disease
activity. This may suggest that the presence of the MTX CCS is more likely in

those with worse disease at baseline.

When investigating the potential influence of treatment option on the ability of
the MTX CCS to successfully predict response, results in Figure 2.27 suggest
treatment has little influence. Observing these results from the perspective of
treatment option on response, suggests monotherapy or combination therapy has

around equal chance of being successful. The clear majority of patients with the
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presence of a MTX signature were monotherapy treated. However, there was 1
combination DMARD treated patient. R and NR with UD signatures have patients
representing all 4 treatment options. R with UD signatures have marginally more
combination treated patients, however, non-responders have marginally more
monotherapy treated patients. However, with the MTX CCS loci in the ‘correct’
conformation in only 5 patients, the influence of therapy is difficult to
comprehend fully. Looking at this data with a view of understanding if DMARD
treatment option had an influence on response, once again, overall monotherapy
and combination therapy both appear to work just as well as each other in this
patients group. This work is very limited by patient number and if this was to be
explored further, a much larger patient group would be needed. This data
confirms that it is not a csDMARD biomarker that was found, but a biomarker
specifically for MTX response and highlights the need to explore other options
for a CCS for baseline csDMARD treatment. The 5 genetic loci for the MTX CCS
began with a list of RA associated loci, so it is plausible to consider that a pan-
DMARD CCS could be generated from this list. Similar questions of CCS extending
to other therapy areas have been discussed, but not fully explored in the
literature. Work by Rousseau et al, identified a CCS could be used to classify a
subtype of leukaemia. They acknowledged that it was likely other genes would
have to be consulted to find a signature able to identify other subtypes**.
Similarly, in another study by Rousseau, they found evidence that distinct
cellular states in macrophages had distinct chromatin conformations®®>. This
means with further investigation, different cellular states, captured by 3C, may

shed more light on the MTX CCS and biological consequences.

Overall, while the data has been interpreted with a lot of caution based on
limitations described, these findings suggest that the patient cohorts used to
test the stratification potential of the signature were comparable, and the
difference in sensitivity and specificity measures were unlikely to be caused by
patient demographics or disease activity measures. This experiment was very
limited by available patient samples and the fact that many patients were on
combination therapy makes it difficult to interpret where the clinical response is
arising from and therefore the meaning of the stratification using the chromatin
signature. Based on the data gathered, it is evident that the MTX CCS is not
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capable of stratifying patients who are on a different csDMARDs and a new

signature would be required to stratify RA patients at baseline.

Another clinically important question that had to be asked was if the MTX CCS
could also be validated in an independent clinical cohort. The results from this
investigation indicated that the CCS could not differentiate R and NR to MTX as
well as in the SERA cohort. Despite both experiments using different models
(Weka vs XGBoost and Light GBM), evidence has shown that the newer models
used to assess the signature in the TACERA cohort are statistically superior, and
if the signature could differentiate R and NR, these models would have most
likely identified this. Only 3 of the 5 loops from the MTX CCS were shown to have
albeit limited, stratification potential with the newer models. A dilution series
was used as a semi-quantitative method that was described previously (Figure
3.7, 3.8). Only the neat primer cocktail and the 2-fold dilution produced results
that added any value to the predictive model. It must be considered that the
sample collection processes of the SERA samples and TACERA samples were
different and that could impact the ability of the signature to perform as well. It
is known that nucleic acids are susceptible to oxidative damage after blood
collection?®. One study compared blood extraction protocol for whole blood
gene expression profiling experiments using mRNA. They revealed that there
were substantial differences in the transcriptomic profiles of PBMCs that had
gone through three different blood collection processes?”’. However, it is largely
understood that DNA is more stable than RNA and therefore, for our signature,
differences in blood collection should not have as much of an effect.
Interestingly, the 3 loci with promising predictive potential were IL17A, IL23 and
IFNAR1. The results from the gPCR optimisation revealed IL21R and to a lesser
extent, IFNAR1, as better candidates than other loci for an effective qPCR assay,
while CXCL13 showed little evidence of success. This may be due to the
advantage of the updated extraction protocol (Protocol 2, Section 2.2.3) that
has been implemented by OBD, supporting the idea that the extraction protocol
favours loops in some genes over others. This could be attributed to the
variation of copy number of each library that is evidenced with the 3C control
primers (Figure 3.31). In contrast, these 3 loops suggesting some of their
predictive potential was retained across cohorts may suggest that the regulation

of these three genes is more important in RA pathogenesis, or in response to
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MTX. The IL17A/IL23 axis and its role in driving chronicity in autoimmunity has
been widely explored®®. Moreover, this axis is heavily implicated in PsA. Based
on that evidence, it could be possible that the CCS may hold some predictive
potential in patients with PsA. However, as has been suggested by our data,
heterogeneity and protocol variances may play a large role in the stratification
potential of the biomarker and therefore, a tailored biomarker for PsA would
most likely need to be specifically found. The role of this axis in response to MTX
has been investigated in murine models of psoriasis’®®. One human study with
etanercept plus MTX revealed higher levels of IL17A and IL23 in PBMCs in
psoriasis patients?”®. The combination therapy significantly reduced cytokine
levels and the addition of MTX improved therapeutic response. Another study in
humans, with RA, explored the effect of anti-TNFa on levels of IL17A and IL23
among other pro-inflammatory cytokines. At the beginning of the study there
were increased level of cytokines in the sera of patients. After 24 weeks of
treatment this was reduced*®. Loops form in IL174 and IL23 loci in NR and R,
respectively, therefore it is important to establish the biological impact of loop
formation to understand gene expression and it’s relation to drug response. This
will be explored later in this thesis. However, there are multiple studies that
have explored the involvement of IFNAR1 and CXCL13 in RA pathogenesis, and
therefore it can’t be said with certainty that the biomarker translates better for

some loci than other due to underlying pathogenesis.

Of the 2 models tested, the XGBoost model had better capacity to differentiate
R and NR. The sensitivity was much higher than Light GBM in the training set and
comparable with Light GBM in the testing cohort (Figure 3.29 and 3.30). The
literature supports use of both models and each have their own advantages and
disadvantages. While Light GBM can find results faster in some cases, in some
experiments, while slower, XGBoost has been shown to find the more accurate
answer?’'. Moreover, compared to Light GBM, XGboost has been found to require
less training time to produce an accurate model. While not impacted by our
dataset, studies have shown LightGBM to be superior for large datasets due to

memory limitations for XGBoost and this should be considered going forward.

One of the limitations of this part of the study was the difference in blood

collection protocols and difference in DNA extraction method. Both differences
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could contribute to the reduced predictive capacity of the signature and
reduction of statistically significant loops. Furthermore, a blinded cohort of 23 is
not large, and a larger cohort may reveal more about the predictive potential of
the CCS in this cohort. However, as the aim would be to have this work at the
individual level, it must be considered if a larger cohort size would be of

relevance.

The selection process for sample collection for this validation was based only on
csDMARD assignment at baseline, as it was the important to carry out the testing
blinded. Therefore, disease activity information was only retrieved once the
testing had been carried out. This meant that the heterogeneity that is present
in RA could not be fully interrogated and shed light on the clinical information
which may impact the stratification ability. Moreover, of the work documented
in this thesis, this validation experiment was the most recently conducted and
therefore there was not sufficient time to investigate correlations between
demographic factors and predictive ability of the signature as was done with the
cohort for testing broad csDMARD stratification potential. With more time, this
would be useful to understand if differences in demographics or disease activity
contributed to the decreased sensitivity and specificity of the signature in this
cohort. Furthermore, additional work is planned to test the TACERA samples
with additional markers that have been found through other studies (which will

be described in Chapter 5) to identify the best stratification marker.

A significant caveat to the work described in this chapter from an exploratory
perspective is the heterogeneity of PBMCs. Studies have successfully illustrated
the differences in the epigenome between subsets of cells within PBMCs?%+3%
and therefore it is important to consider that the CCS will likely be structurally
different in the cell subsets. The aim would be to identify the loops that are
relevant in one state but not in other states. For successful assessment of the
subsets within PBMCs, they would have to be isolated before freezing. The
biobank samples used in this study did not have cell subsets prepared in this way
and therefore this question could not be easily addressed. Despite this,

EpiSwitch™

is a technique developed to work in a mixed population of cells and
is sensitive enough to detect loops even if they were present in only in a certain

subtype. Future work examining CCS in patient groups would benefit from bio
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banking cell subsets separately in order to fully understand the heterogeneity of

each cell type.
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3.4 Conclusion

In summation, this chapter details the complexity of investigating the structural
epigenome in RA. It was ascertained that assessment of the MTX CCS should be
carried out with nested PCR methodology and the Qubit dsDNA HS assay and
LabChip GX technology could facilitate a high-throughput protocol for the
number of samples normally processed. It was also established that the MTX CCS
was not stable, but largely dynamic. Additionally, we ascertained that some loci
of the MTX signature had some predictive capacity in an independent clinical
cohort, but the full signature had limited capacity. Further work should be done
to find a more powerful signature suitable to a range of sample collection
protocols. Furthermore, results confirmed the CCS was specific to MTX response
prediction and not suitable to simply predict response regardless of baseline

treatment.

Further work is warranted to understand the consequence of MTX CCS loop
formation on the underlying RA cellular biology. Moreover, ways to interrogate

the data in cell subtypes should be explored.
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Chapter 4 Exploration of the Possible Functional
Implications of Methotrexate Chromosome Confirmation
Signature on Underlying Cellular Biology

4.1 Introduction

The work in Chapter 3 explored the stratification potential of the methotrexate
(MTX) chromosome conformation signature (CCS). Following on from these
findings, it was important to begin to understand the potential biological
consequences of loop formation in MTX responders (R) and non-responders (NR).
It is known that chromosome looping has a role in the regulation of
transcription, by bringing regulatory regions such as enhancers and promotors
together’®. As epigenetic features of the genome are subject to changes
through exposure to medication, understanding the epigenetic landscape in CCS
genes pre-treatment may help to understand the differences in R and NR to MTX
28 The work by Carini et al highlighted that expression quantitative trait loci
(eQTL), identified from work by Walsh et al, were present at R loop sites but
absent at NR loop sites, which provides a foundation for the suggestion of

regulatory differences between response types?*2"?.

Some epigenetic features that could help elucidate the function of the MTX CCS
loops are methylation, histone modifications, DNase hypersensitive sites (DHSs),
and their relationship with transcription factors (TF). When hypermethylation of
a promotor occurs, this results in gene repression due to the inability of TF to
bind to the promoter region. However, hypomethylation, largely characterised in
cancer, often occurs in heterochromatin and can aid in upregulation of gene
expression®®®. Hyper and hypomethylation have been previously explored in RA T
cells and monocytes in the context of MTX treatment. Andres et al found that RA
patients had global hypomethylation before initiation of MTX treatment, and
treatment appeared to reverse this. However, this study did not incorporate the
influence of the chromatin conformation, which may impact the methylation

effects™

. Multiple histone modifications have been characterised, with some
associated with increased transcription, and others with transcriptional
repression. The work in this chapter focuses on 6 histone modifications, chosen
based on availability of data and their representation of various transcriptional

consequences. H3K4me1, H3K4me3, H3K27ac and H3K36me3 represent
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transcriptional activation marks and H3K27me3 and H3K9me3 represent
transcriptional repression marks. Furthermore, DNase hypersensitivity can
provide an additional layer to the understanding of the 3D epigenetic landscape.
DNase | is a DNA sequence non-specific endonuclease. This enzyme at open
chromatin sites and collocated with transcriptionally active genes. As such,
these areas are termed DHSs***%, These sites are often located at
transcriptionally active genes and are susceptible to multiple regulatory

elements.

As research into the genome, and epigenome, has grown over the last decade,
there are multiple online databases where data can be downloaded and analysed
for other research interests. Numerous datasets from peripheral blood
monocular cells (PBMCs), and derivatives are available. Two such databases are
the encyclopedia of DNA elements (ENCODE), and the BLUEPRINT epigenomics
consortium, both of which have previously yielded informative results in
Rheumatology®”*%3%°  However, utilising this information for an extension of an
epigenetic biomarker has yet to be done. It has been recognised that combining

this data is ultimately what will result in a clinically useful biomarker®'°.

Based on the loci within the MTX signature, multiple cell types could be explored
to provide insight into the potential biological impact of loop formation.
However, to ensure a comprehensive analysis of multiple epigenetic features in
the context of this study, PBMCs, CD4'T cells and CD14"CD16™ monocytes were

chosen as a focus.

The aim of this chapter was to elucidate potential regulatory differences
between R and NR, which may indicate the relationship between the MTX CCS

and underlying pathogenesis. To accomplish this, the aims were:

1) Utilise publicly available online datasets from healthy cells to extract
information about epigenetic regulatory features present at the MTX loop sites in
PBMCs, CD4'T cells and CD14"'CD16” monocytes

2) Where possible, use RA datasets to build on findings from healthy data.
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4.2 Results

4.2.1 ldentification of publicly available data available to explore
3D epigenetic environment at MTX CCS loop sites

The first step in exploring the 3D epigenomic landscape was to identify the data
that was publicly available. Through a search of the literature, the DeepBlue

Epigenomic Data Server (https://deepblue.mpi-inf.mpg.de) was found. This

database collates the findings from several large-scale epigenome studies.
Numerous studies are included, namely the BLUEPRINT Epigenome, ChlIP-Atlas,
ENCODE and Roadmap Epigenomics (Figure 4.1A). Once this data source was
found, it was important to establish the experiments that would yield data that
was of interest in our study. As such, the techniques, biosources and epigenetic
marks from the database were explored, and biologically relevant sources
quantified. Many experiments were available for interrogation. Analysis of the
experimental techniques included in the database highlighted the epigenetic
motifs that had the most interest from researchers. There were significantly
more ChIP-Seq experiments than any other methodology, with 31,922
experiments included in the database (Figure 4.1B). As such, this technique was
removed and a second graph plotted to clearly identify the distribution of other
techniques (Figure 4.1C). The next technique with the most data available was
DNAse-Seq, used to identify DHSs throughout the genome, with 3,855
experiments available. The next stage in the process was to ascertain the
biosources available. Blood, with 3,817, was the biosource with the most
experiments accessible (Figure 4.1D). Multiple experiments from cells types of
interest were found, namely PBMCs and derivatives including CD14°CD16’
classical monocytes and CD4" T cells with 46,287 and 1,171 experiments
available, respectively. Lastly, the epigenetic marks of interest were quantified
(Figure 4.1E). In line with the techniques available, histone modifications were
the highest epigenetic mark represented, with 3,635 experiments available

measuring H3K27ac, closely followed by DNase with 3,652 experiments available.
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Figure 4.1 Quantification of DeepBlue Epigenomic Server Data

Identification and quantification of epigenetic data available for our study. A)
Schematic of relevant studies collated within DeepBlue Epigenomic Data Server. B)
Quantification of techniques from server. C) Quantification of techniques, with ChlP-Seq
excluded. C) Quantification of Biosources from server. D) Quantification of Epigenetic
marks available from server. Data includes experiments using both Hg38 and Hg19
genomes.

CTCF, CCCTC-binding factor

Once appropriate biosources and epigenetic marks were identified, the next step
was to extract the relevant information for the MTX CCS sites. A custom script
(Appendix) was used to pull out any epigenetic marks that were found in and
around the signature anchor sites (Figure 4.2). As well as the coordinates of the
loop anchor sites (Figure 4.2A,B), coordinates 500 kilobases (kb) up stream of
anchor point a and downstream of anchor point b (Figure 4.2C,D) were included
in the analysis, as epigenetic marks from that distance can be brought into close
proximity with the formation of a chromosomal loop. Data from between the
loop anchor sites was also captured (Figure 4.2E), which could include up to

91,723 base pairs (bp) of the genome (Table 1).

1 ) : >
500kb E) 500kb
Q) D)

Figure 40 Sites Included in In-silico Analysis Methodology

Schematic illustrating sites included in custom script to map epigenetic marks to CCS
loop sites. Site a = first EpiSwitch™ anchor point in CCS loop, site b= second EpiSwitch™
anchor point in CCS loop. A) EpiSwitch Site a = IL17A (Site 3), CXCL13 (Site 1), IL21R Site
5), IL23 (Site 4), IFNAR1 (Site 2). B) EpiSwitch site b = IL17A (Site1), CXCL13 (Site 3),
IL21R (Site 2), IL23 (Site 5), IFNART1 (Site 4). C) 500kb upstream of EpiSwitch Site a. D)
500kb downstream of EpiSwitch Site b. E) Distance between site a and site b.
Coordinates used to capture epigenetic marks at EpiSwitch sites, the distance 500kb
upstream and downstream and in-between (See Appendix).
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Table 4.1 Genomic Distances Between CCS Anchor Sites

IL17A 8 10,468 1 2,435 12,467
CXCL13 1 1,681 3 2,808 90,532
IL21R 5 1,223 2 2,251 91,723
IL23 4 1,556 5 756 13,794
IFNAR1 2 1,033 4 2,560 48,544

4.2.2 Exploration of epigenetic landscape in PBMCs

In the first instance, as the biomarker was found in the PBMC population, broad
analysis of epigenetic marks in PBMCs was explored (Figure 4.3). Firstly, ranges
of the genome within which histone peaks were found were mapped around MTX
CCS loop anchor sites. All loop sites had the presence of at least one histone
modification. At the IL17A site there was the presence of H3K4me1 at site a and
H3K9me3 and H3K27me3 at site b (Figure 4.3A). At the CXCL13 site there was
the presence of only H3K27me3 (Figure 4.3B). There were H3K4me1, H3K4me3,
H3K27ac, H3K36me3 and H3K27me3 ranges at the IL-12R loop sites (Figure 4.3C).
Both IL23 and IFNAR1 had H3K4me1, H3K4me3 and H3K27ac histone peaks at
loop sites, with a maximum of 2 ranges quantified (Figure 4.3D,E).Between loop
anchor sites, the histone profile was similar to that of anchor sites at the IL17A
locus and IL23 locus. However, at the other 3 signature loci, histones with both
enhancer and repression transcriptional consequences were captured.
Methylation was also explored in PBMCs. At all loop sites hypermethylation was
present at the minimum of one anchor site. Most ranges, maximum of 3, were
present at site a for IL17A. At site b, IL21R had most (2) hypermethylation
ranges (Figure 4.3F). Hypomethylation was less present than hypermethylation,
with only ranges present at IL21R and IFNAR1 loop sites (Figure 4.3G). Between
anchor sites, IL21R has the most hyper and hypomethylation ranges (20 and 24,
respectively), with CXCL13 having a similar number of hypermethylation ranges

(23). DHSs represent accessible areas of the genome, and as such, these sites
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were mapped at loop regions and could be layered above other epigenetic marks
to understand how likely the other modifications may impact gene expression.
IFNAR1 had the most ranges, with an average of 7.5 at site a (Figure 4.3H). IL21R
had the most ranges at site b, and between anchor sites, with an average of 5
and 20, respectively. CXCL13 was the only loop site not to have any DNase | sites
present. Overall, the data suggest that there is the potential for a more
repressive transcriptional environment at IL17A and CXCL13 loci, than at IL21R,
IL23 and IFNART1 loci. Moreover, based on the DNAse | sites mapped, IL21R may
be the loci with the potential to be most accessible and could aid in enhancing

transcriptional in combination with the other epigenetic marks.
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Figure 4.3 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in PBMCs
Mapping of histones, methylation and DHSs in PBMCs from healthy samples, extracted
from DeepBlue Epigenomic Server. Data from hg38 genome. Histone data from ChIP-Seq
technique (N=2), methylation data from Bisulphite-Seq (N=1) and DNase data from
DNase-Seq (N=1). Ranges = regions of the genome within which peaks were recorded
from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first EpiSwitch™
anchor point in CCS loop, site b= second EpiSwitch™ anchor point in CCS loop. In-
between = stretch of DNA between CCS sites. Coordinates (See Appendix). A) Histones
from IL17A. B) Histones from CXCL13. C) Histones from IL21R. D) Histones from IL23. E)
Histones from IFNAR1. F) Hypermethylation at EpiSwitch™ sites for all MTX CCS loops.
G) Hypomethylation at EpiSwitch™ sites for all MTX CCS loops. H) DHSs at MTX CCS loop
sites. Data is presented as mean with range. 1-way ANOVA with Tukey’s multiple
comparisons. *p<0.05, **p< 0.01, ***p < 0.005, ***p<0.0001

Taking the association of regions of DNA with an epigenetic mark further, the
Integrated Genome Browser (IGV) was used to visualise how the epigenetic
marks may overlap at the loop anchor sites. The IL21R site is shown as a
representative of this visualisation in PBMCs (Figure 4.4). Data representing
eQTLs were also overlaid in this data. The IL21R loop site 5 can be visualised
overlapping with H3K36me3. At IL21R loop site 2, there is overlap between
multiple eQTLs, H3K4me1, H3K27me3, and multiple DNase | sites. These data
further suggest that enhanced gene transcription at this locus is possible.
Moreover, the anchor sites coming together would bring the DNase | sites closer

to H3K36me3, potentially making this a highly active transcription site.
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Figure 4.4 Environment Surrounding IL21R MTX CCS Loop Anchor Sites in PBMCs
Images generated in IGV. Representative image of IL21R MTX CCS sites. hg38 genome
used. Histone and DNase | data from DeepBlue Epigenomic server. eQTL data from
Walsh et al. 2. CCS sites boxed in red encompassing epigenetic marks that lie within
that region. Tracks shown in collapsed format. Track marks in green represent
epigenetic marks that are likely to increase transcription, and track marks in red
representative of epigenetic marks with potential repressive transcriptional impact. Site
5 is CCS site on left, Site 2 is CCS site on right.

CCS, chromosome conformation signature; eQTLs, expression quantitative trait loci;

kb, kilobase; RR, reverse-reverse orientation

Following on from the association analysis of epigenetic marks at the loop
anchor sites, the number of histones were quantified 500kb up and downstream
of the loop anchor sites (Figure 4.5). At 500kb upstream, IL17A appears most
distinct from the other 4 loci in the signature (Figure 4.5A). This is based on the
higher number of H3K27me3 histone marks and low number of other histone
marks. All other signature loci have many ranges of H3K4me1 and H3K27ac 500kb
upstream. 500kb downstream from the CCS sites, the distribution of histones
appears different. All loci have the presence of H3K4me1, H3K36me3 and
H3K27ac (Figure 4.5B). IL17A has the highest presence of H3K4me1, IL21R the
highest for H3K36me3 and CXCL13, IL23 and IFNAR1 highest for H3K27ac. There
were low numbers of H3K9me3 and H3K27me3 captured across all loci.
Upstream, this data somewhat reflects the data at the anchor sites at the IL17A

loci, as it suggests a largely repressive environment. Yet downstream, there is
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little differentiation between IL17A and CXCL13 from IL21R, IL23 and INFAR1, as
there was at the anchor sites themselves. This indicates the importance of
considering the whole stretch of DNA to provide a more thorough picture of the

potential effect on transcription with the formation of a loop.

Moving on, using the online datasets offered the opportunity to explore cell
types within the PBMC population and shed further light on regulatory

differences between loci. As such, CD4" T cells were analysed next.
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Figure 4.5 Histone Enrichment Up and Downstream of MTX CCS Loop sites in PBMCs
Plots generated in JMP. Heat map representing number of ranges within which histones
500kb up and downstream of MTX CCS sites in PBMCs were mapped. Data from DeepBlue
Epigenomic Server. Number of ranges were unique for each locus and each histone mark
(See Appendix). A) Enrichment of histones mark 500kb upstream of MTX CCS site a. B)
Enrichment of histone marks 500kb downstream of MTX CCS site b. Coordinates used to
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and
downstream and in-between (See Appendix).

4.2.3 Exploration of epigenetic landscape in CD4" T cells

CD4" T cells were chosen as one of the cell types relevant for our loci of interest.
These were chosen as CD4" T cells are known producers of IL17A, CXCL13, and
express IL21R and IFNAR1%2%231:238 ' As before, histone and methylation
enrichment were mapped, in addition to DHSs (Figure 4.6). Site b for both IL17A
and CXCL13 loci had no histone marks recorded. H3K27me3 was only recorded at
IL17A and CXCL13 site a and between CXCL13 and IFNAR1 anchor sites (Figure
4.6A,B,E). The CXCL13 site also had the presence of H3K27ac captured (Figure
4.6B). H3K4me1 marks were present at IL17A, IL21R, IL23 and IFNAR1 sites.
H3K27ac had more ranges than the other histone marks and these were found at
the IL21R site. Between anchor sites IL21R had considerably more, with one
experiment finding 79 H3K27ac peaks. H3K36me3 marks were also present at

IL21R and IFNAR1 sites. There were statistically significant differences between

Enrichment
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the histones across the IL21R and IFNAR1 loci, and site a and in-between on the
IL23 loci. At the CXCL13 in-between site, there was also a statistically significant
different between the histones. Overall, the most statically significant
differences appeared to be at site a or b of the loci. Similarly, when quantifying
DNase ranges, there was statistical significant differences between the loci at
site a and b, but not in-between. Ranges with hypermethylation and
hypomethylation were recorded at both sites in at least 1 loci. Hypermethylation
was present in more abundance than hypomethylation (Figure 4.6E,F). IL17A site
a had the most hypermethylation recorded with 4 ranges in 2 experiments. Other
genes had similar levels of hypermethylation, between 1 and 3 ranges.
Hypomethylation marks were only found at IFNART and IL21R at site a and b
respectively. Hypomethylation was more represented in between anchor points,
but only at IL21R, IL23 and IFNAR1 loci only. At anchor sites, IL17A, CXCL13 and
IFNAR1 sites had DHSs present (Figure 4.6G). IL17A had a large variation of
ranges between samples, from 1 to 6. CXCL13 had DNase | marks only at 1
anchor point (Figure 4.6H). Yet, between sites, IL21R is clearly the locus with
the most DNase | sites, and no sites are recorded at the IL17A loci. This data
suggests that a stable gene repression state may exist in CD4" T cells at the
IL17A locus and an enhanced transcription state may be possible at the IL21R
site. Interestingly, this would be on contrast to the known expression of IL17A in

T cells in the inflammatory setting.
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Figure 4.6 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in CD4" T cells
Mapping of histones, methylation and DHSs in CD4" T cells from healthy samples,
extracted from DeepBlue Epigenomic Server. Data from hg38 and hg19 genome. Histone
data from ChIP-Seq technique (N=9), methylation data from Bisulphite-Seq (N=34) and
DNase data from DNase-Seq (N=12). Ranges = regions of the genome within which peaks
were recorded from ChiIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first
EpiSwitch™ anchor point in CCS loop, site b= second EpiSwitch™ anchor point in CCS
loop. In-between = stretch of DNA between CCS sites. Coordinates used to capture
epigenetic marks at EpiSwitch sites, the distance 500 kb upstream and downstream and
in-between (See Appendix). A) Histones from IL17A. B) Histones from CXCL13, site, in-
between,. C) Histones from IL21R. D) Histones from IL23. E) Histones from IFNAR1. F)
Hypermethylation at EpiSwitch sites for CCS loops. G) Hypomethylation at EpiSwitch
sites for CCS loops. H) DHSs MTX CCS loop sites. Data is presented as mean with range.
1-way ANOVA with Tukey’s multiple comparisons. *p<0.05, **p< 0.01, ***p < 0.005,
***p<0.0001

As with PBMCs, IGV software was used to image the relationship between
epigenetic marks. IGV demonstrated the location of histone marks at IL17A loop
anchor site 3 (Figure 4.7). The site is dominated by the repressive marks
H3K9me3 and H3K27me3. However, overall there is no overlap of histone marks
at the same genomic locations. This suggests that both enhancing/repressive
marks could have an influence on the gene transcription as they are unlikely to
be in direct contact with each other, and there are no marks at anchor site b to

come into contact with, with the formation of a loop.
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Figure 4.7 Environment Surrounding IL17A MTX CCS Loop Anchor Sites in CD4" T
Cells

Image generated in IGV. Representative image of IL17A MTX CCS sites in CD4" T cells.
Histone data from DeepBlue Epigenomic server. CCS sites boxed in red encompassing
histone marks that lie within that region. Tracks shown in collapsed format. Track
marks in green represent epigenetic marks that have a positive effect on transcription,
and track marks in red are representative of a potential repressive transcriptional
histone modifications. Site 3 is CCS site on left and Site 1 is CCS site on right.

CCS, chromosome conformation signature; kb, kilobase; RR, reverse-reverse orientation

At the anchor sites, there was little evidence which indicated that the
regulatory environment differed between loci that are known to be expressed by
CD4'T cells, and those that are not. Therefore, at this stage of the analysis, |
chose to focus on genes known to be expressed by CD4" T cells, thus the
presence of histones 500kb up and downstream of more biologically relevant CCS
sites in CD4'T cells was determined (Figure 4.8). At the region 500kb upstream,
IL17A appears more distinct from CXCL13, IL21R and IFNAR1 (Figure 4.8A). IL17A
had most H3K27me3 ranges, followed by H3K9me3, suggestive of an environment
that could supress gene expression. Conversely, CXCL13, IL21R and IFNAR1 have
most ranges of H3K4me1 and H3K27ac, with less of the other histone marks. At
500kb downstream of the CCS anchor sites, IL21R appeared most distinct with
high enrichment of H3K36me3 only (Figure 4.8B). IL17A most H3K4me1 ranges,
with many ranges of H3K27ac also quantified. CXCL13 and IFNAR1 appear to
share similar enrichment of H3K36me3 ranges with IL21R. The number of
repressive histone marks quantified at IL17A build on earlier evidence which
suggests a highly repressive environment which extends upstream. However, the
data downstream suggest a largely gene enhancing environment which, if coming
into contact with the region upstream, may create something of a more poised,

non-enhanced outcome on gene transcription.
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Figure 4.8 Histone Enrichment Up and Downstream of MTX CCS Loop Sites in CD4" T
cells

Plots generated in JMP. Heat map representing enrichment of histones 500kb up and
downstream of biologically relevant MTX CCS sites in CD4" T cells. Data from DeepBlue
Epigenomic Server. Enrichment values were unique to each locus and each histone mark
(See Appendix). A) Enrichment of histone marks 500kb upstream of MTX CCS site a. B)
Enrichment of histone marks 500kb downstream of MTX CCS site b. Coordinates (See
Appendix).

4.2.4 Exploration of epigenetic landscape in CD14" CD16°
Monocytes

CD14'CD16 monocytes were determined another appropriate cell type to allude
to the potential functional impact of loop formation. This was decided due to
the known expression of CXCL13 and IL23, as well as IFNAR1*"33, As before,
histone marks, methylation and DHSs were mapped at all CCS sites (Figure 4.9).
Both IL17A and CXCL13 sites had only few histones ranges associated, with
H3K27me3 and H3K9me3 being the dominant marks, with 4 samples with 4
ranges of H3K9me3 in the stretch between CXCL13 anchor sites (Figure 4.9A,B).
Across it’s anchor sites, the IL21R locus had ranges with all histone marks apart
from H3K4me3 (Figure 4.9C). Between anchor sites, ranges with all histone
marks were found. /L23 had the presence of H3K27ac and H3K36me3 at both
loop anchor points, as well as H3K4me1 and H3K4me3 at site b (Figure 4.9D).
This distribution was also found in the region in-between. At the IFNART site,
both anchor points had ranges of H3K4me1, H3K4me3, H3K27ac and H3K36me3
(Figure 4.9E). H3K4me3 and H3K27ac had the most variation in ranges, between
1 and 3. At all points across the IL21R, IL23 and IFNAR1 loci measure, there was
a statistically significant difference between the number of histone ranges.

Hypermethylation ranges were found at all site b anchor points. (Figure 4.9F).
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Hypomethylation was only found in the anchor regions of IL17A, IL21R and
IFNAR1 (Figure 4.9G). Ranges with DNase | were not found at the IL17A or
CXCL13 loop anchor sites. However, they were present at /L23 and IFNART1 sites
(Figure 4.9G). IFNAR1 site b had the most hypersensitive ranges, with a
maximum of 9 and average of 5 between experiments. This observation was also
similar in the region between IFNAR1 anchor sites, with many more DNase |
ranges than the other loci. There was a statistically significant difference
between the loci at all methylation sites and DNase sites measured. Taken
together, these data suggest that there is a similar regulatory environment at
IL17A and CXCL13, which differs to IL21R, IL23 and IFNAR1; with epigenetic
marks indicating is a repressive environment, and an environment that would

facilitate gene expression, respectively.
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Figure 4.9 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in CD14°CD16°
monocytes

Mapping of histones, methylation and DHSs in CD14°CD16  from healthy samples,
extracted from DeepBlue Epigenomic Server. Data from hg38 and hg19 genome. Histone
data from ChIP-Seq technique, methylation data from Bisulphite-Seq and DNase data
from DNase-Seq. Ranges = regions of the genome within which peaks were recorded
from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first EpiSwitch™
anchor point in CCS loop, site b= second EpiSwitch™ anchor point in CCS loop. In-
between = stretch of DNA between CCS anchor sites. Coordinates used to capture
epigenetic marks at EpiSwitch sites, the distance 500kb upstream and downstream and
in-between (See Appendix). A) Histones from IL17A. B) Histones from CXCL13. C)
Histones at IL21R. D) Histones from IL-23. E) Histones from IFNAR1. F) Hypermethylation
CCS sites. G) Hypomethylation at CCS sites. H) DNasel hypersensitive sites at CCS loop
sites. Data is presented with range. 1-way ANOVA with Tukey’s multiple comparisons.
***p < 0.005, ***p<0.0001

Once again, IGV was used to better visualise the epigenetic landscape at the CCS
sites. As multiple histone marks were associated with the loop sites of IFNAR1,
this was a useful region to visualise. There is enrichment of enhancer associated
histones (Figure 4.10A). Each loop anchor point clearly overlaps with multiple
histone marks. These marks also overlap with DHSs. The transcription associated
histone, H3K36me3, is also evident at this loop site. The DeepBlue epigenomic
server also provided data on transcription factors at this site of interest. IGV
demonstrated that DHSs at the CCS anchor points intersect with several TF
(Figure 4.10B). IFNAR1 loop site 2 is branched by CCCTC-binding factor (CTCF)
and Signal transducer and activator of transcription 1 (STAT1). The IFNAR1 loop
site 4 overlaps with CTCF, interferon regulatory factor (IRF) and STAT1. As
demonstrated previously, multiple eQTLs are present at this site and as such,
overlap with the epigenetic marks described. Despite represented separately, it
is evident that TF would also be present at the site of histone marks. Taken
together, this data suggests that there is likely to be enhanced gene expression

with the formation of a loop at this locus.



182

83191 1575570816 rs0984204 rsB128785 rs17860241

152834169 15999260 rs1467849 rsdac)
I I

706 rs2843972 rs12626220 rd72)

chr21
I el NN B S R s E—
A) pi3 p12 pi1.2 plLl qll1.2 q21.1 q21.2 q21.3 q22.11 q22.12 q22.2 q22.3
275kb
34,600 kb 34,700 kb 34,800 kb
1 1 1 L 1
RefSeq Genes HH HiH t } h H-HH t i —
IFNAR2 IL1ORB-AS1 IL10RB IFNAR1 IFNGR2 TMEMS0B
IFNAR1 CCS sites ! ™
IFNAR1_Ske] Sited_RR IFNAR1_Sfed Sited_RR
LT (VAL L T AR LT UL LRI AR T AT NIRRT O T VAT T (O A (AR R LU T T

573194070 158132006 159976414 rs72
[l

2876 rs969478

eQTLs

IFNAR1_Site2_DNase

IFNAR1_Sited_DNase

IFNAR1_Site2_CTCF

IFNAR1_Sited_CTCF

IFNAR1_Sited_IRF

IFNAR1_Site2_STAT1

IFNAR1_Sited_STAT1

rs8178568

R ) |
5713141

|
9

rs2843990

«QTLs 82372 1051393 rs8178568 rs71318149 57202190 rs4817570
]
IFNAR1_Site2_DNase
i
IFNAR1_Site4_DNase
IFNAR1_Site2_H3Kame1 L
—— | ——————
IFNAR1_Site4_H3Kdma1
IFNAR1_Site2_H3K4me3 m3
]
IFNAR1_Site4_H3Kdma1
IFNAR1_Site2_H3K27ac
IFNAR1_Sited_H3K27ac
IFNAR1_Site2_H3K36me3 !
IFNAR1_Site4_H3K36me3
chr21
I I | ooml BN B B B E—
B) p13 p12 pl1.2 plLl ql1.2 q21.1 q21.2 q21.3 q22.11 q22.12 q22.2 q22.3
nd 128 kb -
kb 34,680 kb 34,700 kb 34,720 kb 34,740 kb 34,760 kb 34,780 kb
| | 1 | | | | 1 1
™~ T | 151 b j— [ | i > }
RefSeq Genes | U UL U L P AL
IL10RB IFNAR1 IFNGR2
IFNAR1 CCS sites | -
IFNAR1_Sjteq Sited_RR IFNAR1_{ite2 |Sited_RR
(O (T 1TV O TR TUTRL T LU (A T I 1 M| L O I A A o 1 o I N1 L
5999261 rs11702575 rs9984454 rs283419¢ | rs2850020 rs6517164 rs11700514 512626220 52834206 28735854 158126534 rs7283827 rs17879003 rsQ80875

|
rs57202190

Figure 4.10 Environment Surrounding IFNAR1 MTX CCS Loop Anchor Sites in
CD14°CD16” monocytes
IGV used to generate image of area surrounding IFNAR1 MTX CCS sites in CD14°CD16
monocytes. CCS sites boxed in red encompassing epigenetic marks that lie within that
region. Histone and DNase | data from DeepBlue Epigenomic server. eQTL data from
Walsh et al.,2016. Tracks shown in collapsed format. Track marks in green represent
epigenetic marks that have a positive effect on transcription, and track marks in red are
representative of potential negative transcriptional epigenetic marks. A) Histones at
IFNAR1 CCS sites. B) DHSs and transcription factors at IFNAR1 CCS sites.

CCS, chromosome conformation signature; CTCF, CCCTC-binding factor;

eQTLs, expression quantitative trait loci; IRF, interferon-regulatory factors;
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kb, kilobase; RR, reverse-reverse orientation; STAT1, 1 Signal transducer and activator
of transcription 1

Again, presence of histone marks 500kb up and downstream of sites in
monocytes were mapped (Figure 4.11). As with CD4™ T cells, | chose the most
biologically relevant loci to focus analysis on at this stage. Upstream, in the
region of CXCL13, H3K4me1 was the mark with most ranges (Figure 4.11A).
H3K27ac was the most enriched mark in the region of IL23 and IFNAR1. The
lowest number of H3K27me3 ranges were found at the CXCL13 region, closely
followed by IL23. H3K36me3 was the histone with least ranges at the IFNAR1
region. Enrichment of histones 500kb downstream was similar to upstream
(Figure 4.11B). Broadly, the histone profile for all 3 loci appear similar and
suggest an enhanced gene expression environment which would be in line with

what we know about their expression in monocytes.
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Figure 4.11 Histone Enrichment Up and Downstream of MTX CCS Loop Sites in
CD14'CD16 ' monocytes

Plots generated in JMP. Heat map representing enrichment of histones 500kb up and
downstream of biologically relevant MTX CCS sites in CD14°CD16 monocytes. Data from
DeepBlue Epigenomic Server. Enrichment values unique to each histone modification
(See Appendix). A) Enrichment of histone marks 500kb upstream of MTX CCS site a. B)
Enrichment of histone marks 500kb downstream of MTX CCS site b. Coordinates used to
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and
downstream and in-between (See Appendix)

4.2.5 Exploration of markers of chromatin stability
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As explored in earlier work detailed in this thesis (Chapter 3, Section 3.2.4),
data suggest the MTX CCS biomarker cannot be considered stable. There are
known markers of stability that can be found throughout the genome, therefore
it was decided that it would be of interest to identify if these markers could be
found at loop anchor sites. Once only known for their function in holding sister
chromatids together, cohesin proteins, and co-localisation to CTCF, have now
been implicated in loop stability and gene regulation. As such, cohesin protein
and CTCF interaction was quantified at MTX CCS loop sites (Figure 4.12). To
determine interaction, a function of the Bedtools program in R software was
used. This program determines overlap between genomic elements and provides
an output of interactions, which can then be quantified. Only data from the
GM12878 cell line was available in the server, which is representative of B cells.
Whilst not a focus in this chapter, B cells are very much a biologically relevant
cell type and suitable for this part of the study. Based on available data, RAD21
and SMC3 proteins (which are part of the cohesin complex) were quantified. At
site a, the IL17A loop had a maximum of 43 interactions between RAD21 and
CTCF, and at site b, a maximum of 26 interactions between SMC3 and CTCF
(Figure 4.12A). The difference between the number of these proteins was
statistically significant. These interactions were visualised in IGV software
(Figure 4.12B). This visualisation helps visualise that a loop would be required to
form, to bring the cohesin complex into contact with the IL17A gene. At the
IL21R loop site a, there were 3 interactions between CTCF and SMC3 (Figure
4.12C). At the IFNAR1 loop site a, there were a maximum of 10 interactions
between SMC3 and CTCF, and maximum of 27 with SMC3 and CTCF at site b
(Figure 4.12E). The difference between the number of these proteins was
statistically significant. Interactions were visualised with IGV (Figure

4.12E,F). These data indicate that there is the potential for a stable loop
formation at these loci, but since data of all cohesin proteins was not available,

these data do not provide a full picture.
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Figure 4.12 CTCF and Cohesin Protein Overlap at CCS MTX Loop Anchor Sites
Quantification of interactions between CTCF sites and cohesin proteins from the
GM12878 cell line, extracted from DeepBlue Epigenomic Server. Data from hg19
genome. Number of samples variable for each loci. Site a = first EpiSwitch™ anchor
point in CCS loop, site b= second EpiSwitch™ anchor point in CCS loop. Coordinates used
to capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and
downstream and in-between (See Appendix). A) Intersections from IL17A, site a -
RAD21, N=40, SMC3, N=21. B) IGV visualisation of intersections from IL17A. C)
Intersections from IL21R, site 6 - SMC3, N=4. D) IGV visualisation of intersections from
IL21R. E) Intersections from IFNAR1, site a - SMC3, N=4, site b - SMC3, N=28. F) IGV
visualisation of intersections from IFNAR1. Data is presented as mean + SD. Mann
whitney test. ****p<0.0001

CCS, chromosome conformation signature; CTCF, CCCTC-binding factor;

kb, kilobase; RR, reverse-reverse orientation; SMC3, structural maintenance of
chromosomes protein 3

4.2.6 Exploration of promotor sites at MTX CCS sites

Another technique that we thought could be informative and enable
interpretation of the interactions was Promotor Capture HiC (PCHiC). This
technique aims to capture loops from the genome that occur at the promotor
site. Javierre et al conducted a study in 17 human primary blood cell types to
determine the relationship between 3D architecture and gene regulation using
promotor capture HiC ?®°, Data from the MTX CCS loop sites was extracted from
their dataset and significant interactions were quantified (Figure 4.13). IL17A
understandably had significant interactions in the lymphoid compartment. IL21R,
IL23 and IFNAR1 had significant interactions in myeloid and lymphoid cells.
There were no peaks at the CXCL13 site. Most significant interactions for IL17A
were in non-activated (na) CD4 cells. All lymphoid cells had 3 significant
interactions in the IL21R loop region. naCD4 cells also had the most significant
interactions at the IL23 loop site, and (total B) tB cells had the most significant
interactions for IFNAR1 loop site. This data shows that at the MTX signature loci,
there is the potential for a loop to cause the activation of the gene, and suggests
this is most likely in lymphoid cells. As with all data explored to this point, it
was found in healthy cell populations, therefore finding an inflammatory cell

type of comparison would be of use.
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Figure 4.13 Mapping of Promotor Loops at MTX CCS Loop Anchor Sites

Mapping of number of significant interactions defined by CHiCAGO score >5 (Appendix).
Data from Promotor Capture HiC (PCHiC) study by Javierre et al., 2016. A) Part 1 of
PCHiC protocol, generation of libraries for capture. Briefly, DNA is formaldehyde
crosslinked, restriction digested and labelled with biotin. This is followed by ligation.
Next, sonication and streptavidin pull down is used to shear ligated fragments and
enrich the HiC library for ligation products, alongside A-tailing to repair the sheared
ends. Adapters are then ligated to the ends of each fragment ahead of sequencing. B)
Part 2 of PCHiC protocol, bait capture. C) Quantification of significant interactions at
IL17A loop site. D) Quantification of significant interactions at IL21R loop site. E)
Quantification of significant interactions at IL23 loop site. F) Quantification of
significant interactions at IFNAR1 loop site. Monocytes (Mon), Naive Macrophages (M0),
Type 1 Macrophages (M1), Type 2 Macrophages (M2), Neutrophils (Neutrophils),
Megacaryocytes (MK), Erythrocytes (Ery), Fetal Thymus FeT), Naive CD4" T cells (NCD4),
Total CD4" T cells (tCD4), non-activated CD4" T cells (naCD4), activated total CD4* T
cells, naive CD8" T cells (nCD8) total CD8" T cells (tCD8), naive B cells (nB), total B cells
(tB).



4.2.7 Exploration of epigenetic landscape in Inflammatory
Macrophages

As most of the data was obtained from healthy cells, data from inflammatory
samples was sourced as a way of understanding the epigenome in the
inflammatory environment more clearly. Data from inflammatory macrophages
was obtained from the DeepBlue server. These were derived from healthy
primary cells cultured with beta glucan to induce an inflammatory phenotype.
Data from macrophages was also mapped to allow comparison of the
inflammatory and non-inflammatory state and allude the influence of an
inflammatory environment (Figure 4.14). In both cell types, only inhibitory
histone marks were present at the IL17A locus (Figure 4.14A). At the CXCL13
locus, only H3K4me3 and H3K36me3 marks were not present, across both sites
and in-between (Figure 14.4B). Across both anchor sites, all 6 histone marks
were found at the IL21R, IL23 and IFNAR1 loci in both cell types (Figure
4.14C,D,E). As before, methylation marks were also mapped. Across all 5 loci,
hypermethylation was more present than hypomethylation (Figure 4.14F,G). At
anchor site a, IL17A had the most hypermethylation ranges, at site b, IL21R, and
in-between sites, CXCL13 has the highest number of ranges, closely followed by
IL21R. Hypomethylation ranges were only found at the IFNAR1 locus at anchor
site a. IL17A had no hypomethylation marks at any site. Ranges with DNase |
sites were present at IL17A and IFNAR1 loci at anchor site a, IL21R, IL23 and
IFNAR1 at anchor site b, and across all loci in between sites (Figure 4.14H). In
general, macrophages and inflammatory macrophages had similar epigenetic
landscapes at the 5 CCS loci. DNase | was the only epigenetic mark to indicate
any difference between macrophages and inflammatory macrophages, however
this profile differed between the anchor sites and the region in-between.
Specifically, at anchor sites of IFNAR1, macrophages had more DNase | ranges
than inflammatory macrophages. Yet, in between anchor sites, inflammatory
macrophages had more ranges. Therefore, taking this region as one, the
difference is minimal and conclusions cannot be drawn. Taken together, this
data broadly reflects earlier data from PBMCs, CD4" T cells and monocytes, and
shows that repressive epigenetic marks are more present at IL17A and CXCL13
sites, and more enhancing epigenetic marks at the other CCS loci. However, as

this dataset was gathered to understand the influence of an inflammatory



190

setting and overall, macrophage and inflammatory macrophage as largely
comparable this did not further that understanding. However, it is important to
note that the length of activation time of macrophage in an in-vitro setting is
considerably different than the chronic activation that is present in RA.
Ultimately these data highlight that to ascertain the difference in epigenetic
marks between inflammatory and non-inflammatory environments, more
datasets need to be used. It was considered that data from disease and healthy

samples may provide that some of that insight.
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Figure 4.14 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in
Inflammatory Macrophages
Mapping of histones and methylation in inflammatory macrophages from healthy
samples, extracted from DeepBlue Epigenomic Server. Data from hg38 genome. Histone
data from ChIP-Seq technique (N=14), methylation data from Bisulphite-Seq (N=14) and
DNase data from DNase-Seq (N=14). Ranges = regions of the genome within which peaks
were recorded from ChiIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first
EpiSwitch™ anchor point in CCS loop, site b= second EpiSwitch™ anchor point in CCS
loop. In-between = stretch of DNA between CCS anchor sites. Coordinates used to
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and
downstream and in-between (See Appendix). A) Histones from IL17A. B) Histones from
CXCL13. C) Histones from IL-21R. D) Histones from IL-23. E) Histones from IFNAR1. F)
Hypermethylation at EpiSwitch™ sites. G) Hypomethylation at EpiSwitch™ sites. Data is
presented as mean. H) DNasel hypersensitive sites at CCS loop sites. 2-way ANOVA with
Tukey’s multiple comparisons. **p< 0.01, ***p < 0.005, ***p<0.0001
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4.2.8 Exploration of epigenetic landscape in RA CD14°'CD16°
Monocytes

While data collected in healthy subjects could provide some insight, data from
RA samples offered the opportunity to improve understanding of the epigenetic
landscape and the potential functional consequences in disease. Other lab
colleagues, namely John Cole and Cecilia Ansalone, conducted a ChIP-Seq
experiment on RA CD14" monocytes to understand the H3K4me3 profile in those
cells. From the data, the same approach employed with the DeepBlue data was
used to extract the MTX CCS relevant information. All patients were comparable
in age, but there was a large variation on clinical disease activity index (CDAI) at
the time the sample was taken (Table 4.2). Broadly, at sites of interest, RA and
HC samples had similar H3K4me3 profiles (Figure 4.15). At Site a, IFNAR1 was
the only locus to have any H3K4me3 peaks, both RA and HC had 1 peak present
(Figure 4.15A). At Site b CCS loci, IL21R, IL23 and IFNAR1 had H3K4me3 peaks,
with a maximum of 3 recorded in 1 RA patient (Figure 4.15B). In-between CCS
sites, only IL17A (RA + HC) and CXCL13 (HC) had no peaks (Figure 4.15C). The
IL21R site had most peaks, with a maximum of 16 recorded in 1 RA patient.
These in-between data highlight the largest difference between RA and HC
samples; at the IL21R site, RA samples have more peaks, but at the IFNART site,
HC have more peaks. Considering H3K4me3 is associated with enhancer activity,
these data replicate earlier findings, that loop sites associated with R have

regulatory features that could enhance transcription.



Table 4.2 Characteristics of RA Patients used for ChIP-Seq

Demographic and clinical information of 9 RA patients at the time peripheral blood

samples were taken.
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Figure 4.15 Mapping of H3K4me3 at MTX CCS Loop Anchor Sites in RA CD14"

Monocytes
Data from ChIP-Seq experiment in CD14"CD16" monocytes from RA peripheral blood, N=9
and peripheral blood from HC, N=5. A) Number of peaks of H3K4me3 at Site a at all CCS
loop sites. B) Number of peaks of H3K4me3 at Site b at all CCS loop sites. C) Number of
peaks of H3K4me3 in-between all CCS loop sites. Coordinates used to capture epigenetic



195

marks at EpiSwitch sites, the distance 500kb upstream and downstream and in-between
(See appendix). Data is presented as mean.
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4.3 Discussion

The work in this chapter aimed at identifying possible functional implications of
the loop formation in the MTX CCS genes. Previous data indicated there may be
a functional difference between R and NR loops, and epigenetic marks were used
to investigate this further. Publicly available datasets were utilised to identify
these epigenetic marks at the sites of interest. In the search for appropriate
datasets to use, the DeepBlue Epigenomic Data Server was identified. Within this
server were hundreds of datasets that could be mined for relevant information
in this study. Included in the server were data on histone modifications, DNA
methylation, DNA accessibility and markers of chromatin stability. Taken
together the work explored in this chapter suggests the loops in NR may be more
inhibitory for gene expression, and the R loops may be causing enhanced gene

expression.

The datasets available within the DeepBlue Epigenomic server reflect the
literature. Most experiments were from blood, a part of which (PBMC) would be
relevant in our work. The availability of data from various cell types also offered
the opportunity to breakdown the potential impact of loops forming in each cell
type. ChIP-Seq experiments were the most represented in the DeepBlue
database. This is expected based on the discovery of ChIP-Seq in 2007, providing
12 years to gather data using this methodology. Furthermore, ChIP-Seq is a
relatively low complexity analysis and offers the ability to increase sensitivity by
increasing sequencing depth®'“. DNase-Seq was another technique with abundant
experiments available. This may be based on this technique being the hallmark
for the identification of epigenetic modifications of the genome, and many other
techniques have been adapted from that®'>. DNase-Seq is a versatile technique
that can identify open chromatin, leading to identification of many regulatory
features from enhancers and promotor regions to silencer regions. Moreover, it
can often be applied to any cell type and applied genome-wide*'®. Other
techniques, including ATAC-Seq, are in their relative infancy and therefore it
was not expected that there would be an abundance of data for these
techniques®'’. Data for multiple histone modifications also had thousands of
experiments. Less data was available for cohesin proteins, but there was a
minimal set of data that could be applied to this study. Ultimately, there was

enough data to interrogate regions of interest for the MTX CCS.
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With the datasets identified, data specific for our study could be extracted. We
were interested in quantifying the epigenetic marks at the EpiSwitch™ anchor
sites, including regions up to 500kb up and downstream. This was important as
loops have been shown to range in size, comprising a large genomic area and
bringing large stretches of DNA into close-proximity. Mamberti and Cardaso have
shown loops to range from 30-90kb in size*'® and loops in a study by Zhao et al
were a median of 16kb in size*'. Some other studies have suggested a region of
~500kb to 2mb could be possible for a loop, and could even reach over
7mb™'32°_ Notably, this variation in sizes will depend of sequencing depth used,
and larger loops may be less regulatory dense. Moreover, the EpiSwitch™
algorithm identifies loops, which may differ in size, but that are reproducibly
detected. Loop formation can have a variety of consequences, dependent on the
other epigenetic features in the 3D genomic area. Including the larger region in
our analysis provided a more detailed, informative picture of the possible
functional consequences of loop formation. This also extends on previous studies
that have chosen to include regions 5kb up and downstream of genes of

interest®?',

With the availability of data on epigenetic marks with differing regulatory
consequences, the potential functional implications of loop formation could be
explored. Firstly, data was studied from experiments using healthy PBMC
samples. IL17A and CXCL13 loop sites (associated with NR) had predominantly
the presence of known inhibitory histone modifications, H3K9me3 and
H3K27me3. IL21R, IL23 and IFNAR1 loop sites (associated with R) had the
majority known to be associated with increased transcription (Figure 4.3). The
disparity between activation and repression marks were not as clear with
methylation. At the EpiSwitch™ loop anchor sites, hypermethylation was
marginally more present than hypomethylation, suggesting the potential for
transcriptional inhibition. DHSs at loop anchor points were also measured. The
IFNAR1 loop was the most accessible, based on DHSs, while CXCL13 had no
presence of any hypersensitive sites. This suggests the CXCL13 locus may be less
accessible for other epigenetic modifications to have a regulatory impact.
Mapping the data between the anchor sites showed the disparities at the anchor

sites were not replicated, which makes the potential functional impact of loop
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formation less clear. IGV was used to visualise how these epigenetic marks may
interact with each other (Figure 4.4). The representative image of the IL21R
EpiSwitch™ site illustrates that DHSs interact with several histone marks. The
overlap of enhancer marks H3K27ac and H3K4me1 suggest the site is an active
enhancer site. However, these marks also overlap with the known repressor
mark, H2K27me3, suggesting the potential for a more poised state of this gene.
Identifying transcription factor binding sites would be helpful to further
understand the enhancer potential of this loop and others in the signature®?,
The enrichment of histone marks up and downstream of the site also alluded to
the potential function of signature loops (Figure 4.5). Results revealed the IL17A
locus to be most distinct based on enrichment. Similar to results at the

EpiSwitch™

anchor points, data suggests that the IL717A loop may be inhibitory in
nature. This may result in the downregulation of other proinflammatory
cytokines. Secukinumab, an IL17A inhibitor has been shown to be effective in
the reduction of RA disease activity*?. Based on the efficacy of this therapy, it
may suggest if IL17A activity in RA is already reduced, MTX or other

pharmacological interventions may be less effective.

The data from CD4" T cells appeared to replicate the findings from PBMCs
(Figure 4.6). IL17A and CXCL13 had mostly inhibitory histone marks while IL21R,
IL23 and IFNAR1 regions were absent of inhibitory histone marks. Similarly,
hypermethylation was highest in IL17A at site a, and highest in IL21R at site b, as
with PBMCs. Again, hypomethylation levels were lower than hypermethylation.
As with PBMCs, IFNAR1 and IL21R were the only loci to have ranges of
hypomethylation in their region. There were many more DHSs recorded in CD4" T
cells than in PBMCs. Most loci, at both loop anchor sites, and in-between anchor
sites, had considerably large variation in the number of DHSs recorded between
experiments, which serves as a reminder that the results should be interpreted
with care. IGV visualisation suggests IL17A is in a poised state, based on the co-
localisation of histone modifications with opposite regulatory functions (Figure
4.7)**, Considering the histone enrichment 500kb upstream, CD4" T cells are
comparable to PBMCs and illustrate IL17A is the most distinct gene (Figure 4.8).
The enrichment of H3K27me3 continues the suggestion that IL17A loop may be
inhibitory in nature. IL21R and IFNAR1, are almost identical in enrichment of all

histones measured. This splitting of enrichment, grouping IL21R and IFNAR1
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together follows the hypothesis that R and NR loops have functional differences.
The profile associated with particular loops is lost when monitoring the
enrichment of histones 500kb downstream of loop anchor sites. In this region,
IL21R appears most distinct, with high enrichment of only H3K36me3. Compared
to upstream, the enrichment of histones at the region around IL17A implies an
environment likely to enhance transcription. Overall, this suggests the formation

of a loop would create more of a poised environment.

CD14'CD16 monocyte data suggests histone enrichment at loop sites to be
similar to previous data from PBMCs and CD4" T cells (Figure 4.9). There were no
histone marks mapped to CXCL13 sites and no inhibitory histone marks mapped
to IL23 and IFNAR1 anchor sites. At IFNAR1 anchor site b, there was a substantial
degree of variation between ranges recorded between samples, particularly at
H3K4me3 and H3K27ac, which highlights the importance of interpreting the data
with caution. As with previous data, there were more ranges of
hypermethylation than hypomethylation recorded across all loci. The DNase
hypersensitivity profile was different to CD4" T cells with the absence of DHSs at
the CXCL13 loci. IFNAR1 had considerably more DHSs then IL23. IGV visualisation
showed crossover of multiple histone marks at both loop anchor sites in IFNAR1
(Figure 4.10). However, in the absence of inhibitory histone marks, unlike the
suggested poised state of genes shown in PBMCs and CD4" T cells, this data here
suggests IFNAR1 is an active enhancer site. This data was also supported by the
availability of transcription factor data from the DeepBlue Epigenomic server.
DHSs sites overlap with CTCF, STAT1 and IRF at site a and b, respectively. This
further supports the suggestion of likelihood that there could be enhanced
transcription of this gene. This is supported by previous work in mice and
humans, particularly in the locus control region (LCR). In transgenic mice, in a
1.9kb region with a DHS, the human beta-globin gene expression was increased
100-fold*?*. Previous work has implicated the role for DHSs in protein
interactions at the LCR. Data suggests that DHS properties are more responsible
for protein interactions than to other LCR regulatory features®?®. In the region
500kb upstream, all 3 loci appear to have similar enrichment of all histones
(Figure 4.11). IL23 differs with the higher enrichment of H3K4me3 and
H3K36me3. Based on the low enrichment of H3K9me3 and H3K27me3, all three

loci in this region appear to be in an environment which would support active
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transcription. This environment appears to be similar 500kb downstream, based
on higher enrichment of the same histones as upstream. The data suggests
active transcription would be more likely in the downstream region based on the

higher enrichment of H3K36me3.

Exploring data in the differing cell types gave the opportunity to observe if the
epigenetic environment may be different between them, a question that could
not be answered from data explored in Chapter 3. Overall, the data suggests
that the environments at CCS loci are similar in CD4" T cells, CD14'CD16
monocytes and PBMCs. Similar regulatory profiles between CD14" monocytes and
CD4" T cells alludes to their interaction in vivo®?’. However, as this data is for
healthy cells, samples from RA are very likely to differ. In RA, elevated IFNAR1
expression is known, which would parallel our data*®. However, it could be
hypothesised that there may be more enrichment of enhancer marks at the
IFNAR1 locus in an inflammatory cell than found in healthy populations studied
here. Moreover, a study has shown that the whole blood IFNAR1 signature is
mostly contributed to by peripheral granulocytes, such as neutrophils. This is an
indication of another cell type of interest for future work®’. While our data
suggest that CXCL13 expression could be repressed, CXCL13 levels have been
suggested to be a potential candidate for measuring RA disease severity?**.
Furthermore, while IL21R expression is known to contribute to osteoclast
formation in multiple myeloma, its expression in RA is less understood. Our data
from healthy subjects would indicate the potential for increased expression of
this gene, which exemplifies the need for caution when interrogating the data

and the importance of exploring these results in RA patients®?.

The overlap of CTCF and cohesin has been widely discussed in the literature and
has been found to be indicative of stable chromatin loop formation®**. From the
datasets available, interactions between CTCF sites and cohesin proteins were
discovered. Most interactions were found at the IL17A loop site, which was the
only loop site to have both RAD21 and SMC3 cohesin complex proteins (Figure
4.12). The IL21R loop site had least CTCF cohesin protein overlap, with only
SMC3 presence at one anchor point on the loop. Li et al carried out a study to
demonstrate constitutive CTCF and cohesin interaction in the human genome.
Using multiple cell lines they illustrated that RAD21 and SMC3 overlap in 90% of
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cases®>'. This may suggest the CTCF-cohesin interaction at the MTX CCS loop
sites are not constitutive, which would relate to the findings that the loops are
largely dynamic (Section 3.2.4). The CTCF and cohesin proteins are not close to
promotors of transcription start sites (TSS) in the IL17A loop region, suggesting a
structural role. The interactions at IL21R and IFNAR1 loop sites may play more of
a transcriptional role based on the localisation to the gene itself. If this co-
localization was indicative of enhancer transcription, and results could be
translated from cell line to B cells in the context of RA, this may suggest
contribution to B cell dysregulation in those who respond to MTX** 332, B cells
would be of interest to explore further as they have been heavily implicated in
RA pathogenesis. Specifically, they can act as antigen-presenting cells leading to
the activation of autoreactive T cells, and can also contribute to the production
of autoantibodies®*****. Contrastingly, some studies report that peripheral B cell
level in RA blood is comparable to healthy blood. Moreover, some new roles for
B cells in RA have been found which suggest B cells within bone marrow
aggregates contribute to the upregulation of bone-resorbing osteoblasts, and
thus restore bone homeostasis**>. Preferably, exploration of these concepts
would be done in primarily cells, although data from a B cell representative cell

line, GM12878 would be an appropriate surrogate.

Further research has shown that CTCF-cohesin protein interactions are highly
cell specific. Cohesin was found to co-localize with master regulators such as ER
in breast cancer cell lines and HNF4A in liver cell lines***, which suggests their
role in transcription. As our data was taken from the GM12878 cell line, it would
be of interest to understand if any of the cohesin proteins at the loop sites were
also in proximity to master regulators for B cells, such as Pax5**’. There was not
sufficient time to identify publicly available datasets for this information, but it
should be done going forward to build on the data already found. Moreover, the
interpretation of these results is limited by the lack of datasets available to
explore the presence of other cohesin proteins such as SMC1 and STAG. Research
should be done to ascertain if other online datasets exist obtain this

information.

Data shown in Figure 4.13 revealed that significant interactions at promotor sites

are present within the regions of the MTX CCS loci. These results indicate that
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the formation of signature loops in R and NR to MTX are potentially playing a
vital role in transcriptional regulation. IL23 and IFNAR1 have most interactions,
and the biggest range across the 17 cell types tested. These findings closely
relate to the findings from mapping of other epigenetic marks at MTX CCS sites
and further support the hypothesis that the loops in IL21R, IL23 and IFNAR1 are
acting to enhance gene expression. Lymphoid subsets have more interactions
than the myeloid subset, which would correspond to the cytokines and receptors
being investigated. CD4" T cells had high numbers of significant interactions in
all loci. Earlier data shown in this chapter suggests that some loci may be in a
poised state based on the co-localisation of certain histone marks. Interestingly,
a study has linked the formation of new promotor-enhancer loops, identified by
PCHiC, with activation of poised genes**. Moreover, a recent study has shown an
adapted 3C method has facilitated identification of over 7000 active
promotors®*. Specifically, by removing the noise created by some 3C
methodologies, it has allowed the capture of more information, such as hubs.
Another newly developed enhancer exploratory network, HACER, allows
exploration of cell-specific enhancers at loci of interest*®. Association analysis
with these datasets would be useful to compliment the work described in this
chapter. Our work shows where possible poised genes were identified is also
where promotor loop interactions were found. No interactions were captured at
the CXCL13 locus in our area of interest, however, other datasets may exist to
find out information about the epigenetic marks in this region. In future studies,
it will be important to explore this dataset further and capture the relationship
between promotor sites and eQTLs. Notably, a recent study has explored this
concept in heart disease and was able identify new candidate genes in heart
disease through exploration of the promotor interactome and eQTLs in
embryonic stem cell-derived cardiomyocytes®*'. Out with the scope of this
chapter was exploration of the possible orientation of transcription. This may be

an appropriate follow up experiment.

So far, based on availability, only data from healthy cells had been analysed. To
translate these findings to further understand disease, data from cells in an
inflammatory environment was considered beneficial. Data from inflammatory
macrophages was of interest in the exploration of possible loop function.

Mapping of epigenetic marks in macrophages, allowed direct comparison
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between a non-inflammatory and inflammatory environment. Like PBMCs, the
histone enrichment at loop sites suggests the region surrounding the CXCL13
locus is more inhibitory, and the region around IL23 and IFNAR1 may be more
likely to enhance transcription (Figure 4.14). However, there was only 1
H3K237ac protein identified at the CXCL13 loop site, therefore it is difficult to
be conclusive. Multiple experiments identified a peak of H3K36me3 at the /L23
loop site, indicating potential for transcription. Regulation of transcription in
macrophages can be largely attributed to enhancers**?. The H3K4me3"H3K27ac"
status of site a in IFNAR1 indicates enhancer presence. An enhancer at this site
would result in the downstream increase of inflammatory cytokines***. There
was no methylation data extracted at the /IL23 site, while CXCL13 loop site was
more enriched for hypermethylation, than IFNAR1. In this case, the histone data
and methylation data are partially aligned with each other in terms of functional
implications. Once more, further data on other inflammatory cell types would

provide more insight.

In summation, the high-throughput mapping of histone marks, methylation and
DNA hypersensitive sites consistently suggests that NR loops are more likely to
have an inhibitory function, while R loops are more likely to enhance
transcription. This is consistent with the eQTL presence at only R loops, which
show where single nucleotide polymorphisms (SNPs) are likely to have a
functional impact. It is important to note that variation in results and the
variation between samples in each cell type may not be due to biological
reasons, but down to differing experimental protocols. As mentioned previously,
ChIP-Seq experiments are easily adaptable and vary in sequencing depth. As
such, a peak measured in one region in one experiment and not another, may be
due to sequencing depth**. Moreover, variability with methylation
quantification can arise from the incomplete bisulphite conversion resulting in a

hyper methylated region being interpreted as a hypo methylated region®®.

Further to the analysis described, interpretation of the data could be enhanced
by quantifying the signal of each peak, mapping the coverage of each epigenetic
mark, quantifying the distance to nearest to TSS and finding more TF data.
Previous research has identified that signal quantification is more applicable to

transcription factor binding as there is a large peak over a small range, as
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opposed to a histone modification which may span a large region, as this data
has shown (Figure 4.10)**. HACER, as mentioned above, would be an
appropriate tool to explore this concept further. HACER could facilitate
association analysis with functional SNPs and TF binding sites. Moreover, going
forward it would be useful to look at B cells and DCs. Work by Karlic et al
demonstrated that gene expression predictions based on the predictions of
certain histone modifications could be translated successfully from one cell type

to another®¥.

Although data from inflammatory macrophages may be more easily applied to
RA, the data was still from healthy donors. Data from RA patients would be
extremely valuable to understand the epigenetic landscape in RA and observe if
there were similarities or differences with the data gathered from healthy
datasets. Thus, data from a previous experiment carried out in the lab on CD14"
monocytes was used. It was found that H3K4me3 peaks had similar profiles in
both RA and healthy samples (Figure 4.15). Across IL17A and CXCL13 loci, there
were few H3K4me3 peaks, in comparison to the IL21R, IL23 and IFNAR1 loci.
Whilst this data did not provide much insight into the influence of RA on this
histone profile, the data did align with other findings discussed earlier in this
chapter (Figure 4.6, 4.9, 4.12) and suggest at some loci where loops are
associated with R (IL21R and IFNART1), there is an environment that could
enhance gene expression activity. A recent study demonstrated that increased
IFNAR1 expression could be associated with patients less likely to respond to

TNFa inhibitor treatment>®

. Most of these patients were also being treated with
MTX, so it is interesting to consider the influence of increased IFNAR1 expression
and contribution to treatment response from MTX. As IL21R is not expressed on
classical monocytes, the result of increased expression in RA in this cell type is
less understood. However, increased expression in monocyte derived
macrophages and Th1 cells, is known to contribute to osteoclastogenesis and
cytokine production, respectively, which ultimately contributes to RA disease
progression if not controlled®**°, The caveat to this section of the study is that
only the H3K4me3 histone modification was explored, and therefore, it is very
likely there are other epigenetic marks at these sites in RA patients would
provide more insight into the pathogenic consequences of loop formation in R

and NR.
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One of the significant limitations of this chapter is the varied availability of data
for each epigenetic mark and cell type. As mentioned above, data from DCs, B
cells, and regulatory T cells, from both health and disease would of benefit to
provide a more informed picture on RA pathogenesis implications. Not all cell
types had data available for every epigenetic mark of interest. Moreover, most
data came from healthy samples, therefore the implications of disease have yet
to be fully understood. There was also differing number of samples and
experiments between each locus and epigenetic mark, which limited statistical
analysis capabilities. Other datasets that would strengthen interpretation of
functional implication of loop formation may be those that identify the function
of SNPs which co-localise with loop anchor points and epigenetic marks. Further
work in-silico to gain more of an understanding may lead to useful in-vitro

studies.
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4.4 Conclusion

The work in this chapter builds on the findings of the MTX CCS and has shed light
on the possible functional implications of loop formation in RA patients pre-MTX
treatment. As with the previous chapter, this work demonstrates the complexity
of investigating the 3D epigenetic environment in disease. The breadth of
publicly available data analysed in this work suggests that R and NR loops are
present in contrasting epigenetic environments, that may contribute the ability
to respond to MTX. Data from RA patients implied that the findings from healthy
data collected could be applicable in disease, however this is likely to change

with analysis of more RA datasets.

In future studies, the work in this chapter should be extended to further publicly
available datasets, or the generation of new bespoke data, to assess the
epigenetic environment in other disease relevant cell types such as B cells and
DCs, as well as RA T cells and monocytes. Ultimately this work should be
translated in-vitro to validate the findings found in-silico. Overall, this work has
shown the potential to gather a more informed picture of CCS loops and their
functional potential, which may ultimately provide insight into disease

pathogenesis and MTX response.
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Chapter 5 Identification of Early RA Epigenetic Endotypes

5.1 Introduction

The work in previous chapters explored the stratification potential of the
methotrexate (MTX) chromatin conformation signature (CCS) in more detail and
attempted to understand the functional consequences of loop formation and its
relation to disease pathogenesis. Whilst exploring stratification around MTX
response is vital, further baseline stratification signatures would be beneficial
and may provide useful insight into the 3D architecture underpinning different

responses to rheumatoid arthritis (RA) therapy.

There has been a regulatory role suggested for genome-wide association study
(GWAS) loci, which has been strengthened by the observation that single
nucleotide polymorphisms (SNPs) found through GWAS are abundant at DNA
variants associated with gene expression alterations’”. These are known as
expression quantitative trait loci (eQTL) and have been found in the loci of
people with autoimmune diseases, including RA. These eQTLs could provide the
link between suggested causal SNPs and the consequent abnormal gene

expression which can lead to disease.

By most, RA is now considered a heterogeneous syndrome, based on molecular

and clinical endotypes®™’

. With the development of new technologies, identifying
endotypes in RA has attracted growing research interest. Various methods have
been used to define RA endotypes, such as identification of serum biomarkers®>’,
as well as RNA-seq of blood and synovial tissue from RA patients®*. Given that a
prior proof-of-principle study in leukaemia patients provided evidence that

chromosome conformation could classify leukaemia subtypes?*3>3

we
hypothesised that using 3D chromosomal conformation could be a way to define

endotypes in RA.

For the work in this chapter, custom microarrays were designed based on

findings by Walsh et al *®

, with the aim of capturing the differences in the 3D
epigenetic environment underpinning different response states in RA. This

chapter explores the process of identifying appropriate longitudinal early RA
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clinical samples for use on the custom microarrays and determining the most

informative analysis methods.

To achieve this the aims were:

1) Identify patients from Scottish Early Rheumatoid Arthritis (SERA) cohort with

varying 12-month response trajectories

2) Use samples on custom microarrays to identify stratifying EpiSwitch™ loops

between groups

3) Statistically refine microarray data to find informative stratifying loops and

use these to shed light on underlying pathogenesis between endotypes

4) ldentify potential candidates for a new CCS that could predict response

trajectory/endotype at baseline
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5.2 Results
5.2.1 Distinct trajectories of early RA exist in SERA cohort

In addition to identifying prediction signatures for response to specific therapies,
being able to identify if someone will follow a certain response trajectory is
valuable. The SERA cohort was interrogated to identify the 12-month response
trajectories of early RA patients (Figure 5.1). Three main trajectories were
observed over this time-period. The first of these are the ‘responders’ (R)
(Figure 5.1A). These are patients who achieve clinical remission or low disease
activity (LDA), CDAI <2.8, by 6 months and maintain this state by 12 months. The
second common group are the ‘non-responders’ (NR). These are patients who are
do not reach LDA (CDAI 2.8>10) or remission, regardless of therapy (Figure 5.1B).
The third group identified in this cohort are the ‘initial responders’ (IR) (Figure
8.1C). These are patients who achieve remission by 6 months, however by 12
months, these patients have increased disease activity that varies from low to
high (HDA). By examining the epigenome from patients from these three groups,
we hypothesised that there may be a differing 3D chromatin profile, which could
allude to differing underlying pathogenesis. To do this, the ‘extremes’ from the
3 trajectories were chosen (Figure 5.1D-F), and the demographics of these
patients were assessed to determine if there was indication of which trajectory
a patient would follow (Table 5.1). Of the chosen ‘extreme’ patients, the R
group were made of patients who all had HDA at baseline, reached remission and
remained there for the period of observation. Those in the NR group all had HDA
over the 12-month period. In the IR group, 4 patients had HDA at baseline, of
which 2 achieved LDA and 2 achieved remission by 6 months. The 2 patients in
remission had moderate disease activity by 12 months and the 2 with LDA at 6
months, had HDA at 12 months. The other 2 patients in this group began with
moderate CDAI at baseline, reached low CDAI at 6 months and returned to HDA

at 12 months.
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Figure 5.1 Identification of Different Response Trajectories in SERA cohort
Trajectory of patient response over 12 months. CDAI defined as (TJC28/10)+(5JC28/10)+
patient global assessment + physician global assessment. A) Responders. B) Non-
responders. C) Initial responders. D-F) Trajectory of patients selected for use on arrays
(N=6 for each group, each time point =54 samples in total). DAS28 scores were also used
to confirm disease activity; data not shown

BL, baseline; CDAI, clinical disease activity index; DAS, disease activity score; N,
number of samples; TJC, tender joint count; SJC, swollen joint count

Most baseline characteristics of chosen SERA patients were similar between the 3
groups, with the biggest difference between groups observed with clinical
disease activity scores (Table 5.1). NR and IR had very comparable average ages
(54.6 and 57.6, respectively), with R having the highest average age (61.3). Sex,
race and BMI were very comparable between groups. NR and IR had the same
percentage of rheumatoid factor (RF) positive patients; and R and IR had the
same percentage of anti-citrullinated protein antibodies (ACPA) positive
patients. Overall, there was no baseline demographic, serum protein or disease
activity score that could successfully predict what trajectory someone would
follow from baseline. The baseline characteristics between groups were tested
for statistical significant differences. DAS28 CRP was the only characteristic to
show statistically significant differences between the 3 responder groups. As
there was no statistically significant differences between the groups for CDAI
score, this meant that the groups were comparable in terms of baseline disease
activity. This warranted the investigation via custom microarrays to identity the

3D epigenome in all 18 patients.
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Table 5.1 Baseline Characteristics of RA Patients used for Custom Microarray
ACPA, anti-citrullinated protein antibodies; CDAI, clinical disease activity index; CRP, C-
reactive protein; DAS, disease acidity index; RF, rheumatoid factor

Number 6 6 6
Age Years Mean (SD) 61.3 (11.7) 54.6 (17.3) 57.6 (15.2)
Sex (% female) 66.6 50 66.6
Alcohol excess (%)
Males 1 (50) 0 1 (20)
Females 1 (25) 0 0
BMI (SD) 31.5 (1.5) 29.98 (3.1) 31.69 (7.3)
Current smoker (%) 0 0 16
Race (% white) 100 100 100
RF+ (%) 50 66.6 66.6
ACPA+ (%) 66.6 50 66.6
CDAI Mean (SD) 36.8 (15.8) 44.7 (8) 27.9 (10.9)
DAS28 CRP Mean (SD) 4.8 (0.7) 6.15 (0.6) 4.4 (1.2)

There was an effort to select patients for the microarray that had the same
treatment regimens. However, the priority was the availability of patients with
‘extreme’ trajectories that had samples from all three time points available
from the SERA biobank. As such, chosen patients had a variety treatments over
the 12-month trajectory (Figure 5.2). All patients were treated with at least 1
conventional synthetic disease modifying anti rheumatic drug (csDMARD) over
the 12 months and only 1 patient did not start treatment on MTX. 4 of 6 R were
treated with monotherapy MTX for the year, with 1 other on combination MTX
and HCQ therapy and the other combination MTX and SSZ. Four NR were also
only treated with monotherapy MTX over 12 months. One patient was treated
with triple csDMARD therapy. The other NR was treated with MTX for 3 months
before switching to SSZ monotherapy, then SSZ and HCQ in combination. Most IR

were treated with a combination of csDMARD therapy over the 12-month period.
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Figure 5.2 Treatment Timeline of Chosen RA Patients for Microarray Patient
Treatment Timeline

Treatment trajectories shown for patients selected for endotype microarray analysis.
Patient treatment information from SERA cohort. Trajectory represents csDMARD
therapy over 12 months from baseline. R shown in green, NR shown in red, IR shown in
orange. Black arrows represent MTX, blue for HCQ and green for SSZ.

csDMARDs, conventional synthetic disease modifying anti-rheumatic drug;

HCQ, hydroxychloroquine; NR, non- responder; m, month; MTX methotrexate;

R, responder SERA, Scottish Early rheumatoid arthritis cohort; SSZ, sulphasalazine

5.2.2 Microarray quality control

The custom microarrays were designed by Oxford BioDynamics Plc (OBD), based
on results from the study by Walsh et al. In brief, EpiSwitch™ loops in proximity
to eQTLs identified by Walsh et al®®®, which were biologically relevant for RA,
were chosen for the array (Appendix). After clinical samples were chosen, they
were subsequently sent to the facilities at OBD to be run on the microarrays.
The first step in the microarray analysis process was to measure the quality of
the data. Firstly, this involved observing the red / green dye distribution of the
data. Preliminary analysis before all batches of the array had been run, revealed
that 1 array was an outlier, as the dye distribution was not in-line with the other
arrays (data not shown). This resulted in that array being included in the 4™
batch where the error was rectified, and all densities were uniform (Figure

5.3A). Loess normalisation was successful, as shown in Figure 5.3B. Another
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quality control (QC) measure was to plot slide number on a PCA plot. To reduce
batch effects, samples of different time points and different response
trajectories were spread across slides, therefore slides would not be expected to
cluster on the PCA. Samples from slide 14 are highlighted as a representative of

this distribution which shows this QC measure was successful (Figure 5.3C).
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Figure 5.3 Quality Control Assessment of Microarray Data
Series of plots demonstrating quality of raw microarray data and the influence of
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normalisation. 4 dual-colour arrays in total, 4 slides per array, 4 samples per slide. Each
slide had samples of different responder types and time points. A) Red-green density
histogram before normalisation. B) Red-green density histogram after within array
locally weighted polynomial regression (Loess) normalisation. C) PCA plot with numbers
of slides labelled, and samples from slide 14 circled in orange. Plots created using
Limma package on R studio.

Based on the success of the quality control, it was deemed appropriate to
continue with further analysis. In the first instance this involved the use of
Limma software (Section 2.5.3). Clustering through PCA plotting was performed
as a global level analysis of the data (Figure 5.4). At baseline, R appeared to
cluster together in PC1, with some more overlap between NR and IR (Figure
5.4A). At 6m, NR and IR more closely clustered together and R did not cluster as
1 group, but 2 groups (Figure 5.4B). At the 12-month time point all groups were
clustered together, with only 3 IR samples shown in proximity to each other
(Figure 5.4C).
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Figure 5.4 Global Analysis of Microarray Data

Pre-linear model analysis of microarray data. 4 dual-colour arrays in total, 4 slides per
array, 4 samples per slide. N=6 for each responder group at each time point. A) PCA
labelled by responder type at baseline. B) PCA labelled by responder type at 6m. C) PCA
labelled by responder type at 12m. Plots created using Limma package on R studio.
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5.2.3 Limma linear modelling

After global level analysis, a linear model within Limma was used to extract
informative contrasts between endotype groups, as well as between disease and
pooled healthy controls (HC) (Table 5.2). An informative contrast was one that
adj.P.Val <=0.05 and abundance score (AS) -1.1<= or >=1.1. More details on this
analysis are found in Section 2.5.3. Disease-HC contrasts produced more
informative loops than endotype comparisons at all time points. All disease-HC
contrasts had over 10,000 informative loops. The maximum number of
informative loops was found from the R-HC contrast (23131); R in the R-IR

comparison at 12m had the least informative loops (1129).
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Table 5.2 Informative loops from Limma contrasts

Data generated from contrasts made in the Limma linear model. Informative loops
defined as a statistically significant difference from 0 on a log 2 scale with adj.P.Val
<0.05 and abundance score (AS) -1.1< or >1. Positive (+) AS associated with sample on
left of the contrast model and negative (-) AS associated with sample on right of the
contrast model.

6m, 6 months; 12m, 12 months; HC, healthy control; IR, initial responder;

NR, non-responder; R, responder

R-HC Baseline 14095 10831
NR-HC Baseline 12611 11732
IR-HC Baseline 10608 10057
R-NR Baseline 7383 4811
IR-NR Baseline 2744 1602
R-IR Baseline 5341 5569
R-HC 6m 23131 21894
NR-HC 6m 14481 12253
IR-HC 6m 12034 11233
R-NR 6m 11238 13708
IR-NR 6m 1788 1392
R-IR 6m 9182 9255
R-HC 12m 12022 12506
NR-HC 12m 15146 13532
IR-HC 12m 13880 12184
R-NR 12m 2001 2796
IR-NR 12m 2614 3200
R-IR 12m 1129 2081

Reflecting on the data from the Limma contrasts, | debated whether the model
was extracting many more ‘meaningful’ loops than expected. This led me to
consider that the model may not be stringent enough to find true stratifying,
and disease-informing loops. With some comparisons extracting over 20,000
‘informative’ loops, approximately 10% of the total loops captured on the array,
it was decided that a more stringent method of identifying stratifying loops was
needed. The hope with a new model is that we would find true biologically
meaningful results, and it would also reduce the number of loops to take

forward for further analysis.
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5.2.4 RankProd analysis of microarray data - Responders

To overcome the possible issues of statistical filtering with the linear parametric
testing using Limma, an alternative analysis method was chosen. Namely,
RankProd 2.0, a Bioconductor package used to find differentially expressed
molecular profiles based on two non-parametric statistics (rank product and rank
sum). This method has been widely used to detect variables consistently
upregulated (or downregulated) in replicate experiments and developed with
gene expression microarrays in mind. As such, RankProd 2.0 was chosen as the

analysis method going forward.

The RankProd approach produced many significant loops, but considerably less
than the Limma method, with a maximum number of statistically significant
loops of 4765 in the R-HC contrast at 6m (Table 5.3). Disease-HC contrasts were

most significant at 6m for R and NR groups, and at 12m for IR.

Table 5.3 Informative Loops from RankProd Contrasts

Analysis conducted under supervision of Dr Ewan Hunter and Christina Koutsothanasi
(OBD). Significant loops defined as loops adj P value <0.05 and AS -1.1<or >1.1 For each
patient group at each time point, N=6, pooled HC, N=20

6m, 6 months; 12m, 12 months; HC, healthy control; IR, initial responder;

NR, non-responder; R, responder

R-HC Baseline 384
NR-HC Baseline 739
IR-HC Baseline 300
R-HC 6m 4765
NR-HC 6m 1791
IR-HC 6m 1513
R-HC 12m 621

NR-HC 12m 967

IR-HC 12m 1566




219

The significant loops that had the potential to stratify disease and pooled HC
samples were taken for further analysis. Initially, a Venn diagram was generated
from the significant loops at baseline, 6m and 12m in R (Figure 5.5A). This
allowed the visualisation of stratifying loops common between pairs of time
points, and importantly loops that were common to all time points. 319
significant loops were common to all time points, and could be considered the
‘stable’ loops. 6m had the highest number of time-point unique loops (4175),
followed by 12m (48) and baseline (16). Using analysis software on the
EpiSwitch™ data portal, a new interactive interface

hTM

(https://episwitch3dgenomicsportal.com) to interrogate EpiSwitc analysis

data, the closest 3 genes to the 319 ‘stable’ loops were identified (Figure
5.5B)(Section 2.5.10). This list of genes was then entered into the Gene
Analytics platform to understand the most significant pathways enriched based
on these genes (Figure 5.5C). All pathways had medium score matches for the
genes in each pathway which indicated a corrected P-value of 0.05 to 1. The
‘phagosome’ pathway was the most significant of this group, with 16 genes
matching this pathway. Gene Ontology (GO) terms were also explored (Figure
5.5D). In contrast to the pathways, all GO terms had a high score match for the
genes associated with each term, suggesting better ontologies with defined
genes, in addition to a corrected P value of <0.05. The ‘ER to golgi transport
vesical membrane’ had the highest match score in this group. This may suggest
that the effective transport of intracellular proteins is important in responding

to RA therapy.
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Figure 5.5 Pathway Enrichment of Significant Stable Loops in R
List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn
diagram of significant loops in the R group at all time points, significant <0.05 and AS -

1.1< or 21.1. B) Schematic representing how EpiSwitc

hTM

data portal captures 3 closest

genes to an anchor site, IL17A locus used as a representative image. Gene Analytics

then used to generate list of significant pathways based on matched genes. Scores are
given to each pathway to reflect their matching quality to the set of genes entered to
the analysis platform. An algorithm is used to determine the threshold for high, medium

21H
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and low scores in each dataset. Cells in green = high score match, corrected P-value of
<0.05, cells in orange = med score match, corrected P-value of 0.05->1. Tables
generated for C) Top pathways, D) Top GO terms.

6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;

RR, reverse-reverse orientation

The gene list used for Gene Analytics analysis was then used to make a protein
network to understand the relationship between the genes found in the region of
stable loops in the R group (Figure 5.6). The online STRING platform
(https://string-db.org/) was used to generate this network (Appendix). which
could subsequently be transferred to a programme called Cytoscape for further
analysis (Section 2.5.7, 2.5.8). Network analysis tools (topology statistics) were
then employed on Cytoscape to find the most connected genes, represented by
network ‘nodes’ and ‘edges’. This was carried out with a view of considering the
more connected nodes, the most contributing loci in the pathways associated
with R. The top 9 nodes were noted (Figure 5.6A). The most connected node for
the R network, with 23 connections to other genes from the whole Gene
Analytics list, was BRCA1. Finally, the EpiSwitch™ data portal was used to
visualise the genomic environment around this locus, an approach shown in
Chapter 4 (Figure 5.6B). Two loops could be visualised in this region; the anchor
point of the loop with statistical significance in R is highlighted. For closer
characterisation, specifically to visualise the other epigenetic marks that
surround this locus, a circos plot was generated (Figure 5.6C). The ability to

h™ data portal was extremely useful, as

generate circos plot within the EpiSwitc
this platform contained data from other experiments which investigated histone
modifications in immune cells. The anchor point that resides within the BRCA1
gene overlapped with H3K27ac, (found in CD8, CD4 cells) as well as multiple
clinically important SNPs. The other anchor point that is part of this loop lies
within G6PC locus. At this site, there is also the presence of H3K27ac from CD8
and CD19 cells. These epigenetic marks illustrate an environment that may

enhance transcription of the genes in their proximity.
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Figure 5.6 Environment Surrounding Central Enriched R Loop

Network analysis used to understand central players in significant pathways. A) Top
most connected nodes determined by most directed edges of a node in Cytoscape. Gene
with most connections highlighted in red. B) Genome browser view from EpiSwitch™
data portal showing BRCA1 gene genomic environment. Genes in dark blue, loops in pink
and EpiSwitch™ anchor points in orange. Red boxes illustrate anchor points statistically
significant loops in this group. 1 anchor point present behind ‘EpiSwitch™ Anchors’
label. C) Circos plot with the addition of ClinVar representing disease associated SNPs,
and H3K27ac marks from publicly available datasets. Red box indicates gene of interest
and gene which other loop anchor point lies within and where anchor points of interest
interact with other epigenetic features.

5.2.5 Rank Prod analysis of microarray data - Non-Responders

The same approach used for significant R loops was used for NR loops (Figure
5.7). 625 loops significantly differentiated disease and HC at all 3 time points
(Figure 5.7A). 825, 70 and 25 loops significantly differentiated between disease
and HC at 6m, 12m and baseline, respectively. The 625 ‘stable’ loop list was
entered into GeneAnalytics software. All pathways had a med match gene score
(Figure 5.7B). The top scoring pathway was the ‘Phagosome’ pathway. There
were 2 high score matching GO terms, namely ‘Interferon-gamma-mediated
signalling pathway’ and ‘ER to golgi transport vesical membrane’ with 13 and 14
matched genes, respectively (Figure 5.7C). This data suggests regulation of
interferon gamma signalling may be important to NR, and the enrichment of
genes in the ‘ER to golgi transport vesical membrane’ pathways may suggest that

it is not a R specific pathway, but more important in RA as a whole.
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Figure 5.7 Pathway Enrichment of Significant Stable Loops in NR

List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn
diagram of significant loops at all time points, significant adj. P value <0.05 and AS -
1.1< or 21.1. Gene Analytics then used generated list of significant pathways based on
matched genes. Scores are given to each pathway to reflect their matching quality to
the set of genes entered to the analysis platform. An algorithm is used to determine the
threshold for high, medium and low scores in each dataset. Cells in green = high score
match, corrected P-value <0.05, cells in orange = med score match. P-value 0.05->1.
Tables generated for B) Top pathways and C) Top GO terms.

6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;

RR, reverse-reverse orientation

Once again, the gene list generated from stable loops was used for network
analysis to further characterise the significant pathways differentiating NR and
pooled HC (Figure 5.8). The top 10 nodes had at least 25 connections in the
network, with the top a total of 34 (Figure 5.8A). The most connected node
represented the TLR4 gene. This was an interesting find based on it’s
implications in RA pathogenesis. TLR4 is expressed on a number of immune cells
involved in RA pathogenesis, including peripheral monocytes and synovial
macrophages. Activation of TLR4 can lead to down-stream production of

hTM

interferons, cytokines and chemokines. As such, the EpiSwitch'™ data portal was

used to visualise the genomic area around this gene. The genome browser view

h™ anchor

clearly demonstrated this gene was enriched with many EpiSwitc
points, hinting that it is a highly-regulated region (Figure 5.8B). Of note, not all
loops in this region are associated with the NR endotype. The largest central
anchor point, connecting several of these loops, was the EpiSwitch™ loop with
significance in this NR group. To look at this area in more detail, a circos plot
was used (Figure 5.8C). The second anchor point of this loop does not lie within
another locus, but does overlap with H3K27ac, recorded in CD19 cells.
Visualising in this way showed that the anchor point within the TLR4 locus can
overlap with H3K27ac marks which have been found in CD4, CD8, CD19 and CD56
cells. Interestingly, there are no clinically relevant SNPs residing in this area.
The histone marks present at this locus suggest the potential for enhanced
transcription, which would be in line with what we know about this locus in RA

pathogenesis.
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Figure 5.8 Environment Surrounding Central Enriched NR loop

Network analysis used to understand central players in significant pathways. A) Top
most connected nodes determined by most directed edges of a node in Cytoscape. Gene
with most connections highlighted in red. B) Genome browser view from EpiSwitch™
Data Portal showing TLR4 gene genomic environment. Genes in dark blue, loops in pink
and EpiSwitch™ anchor points in orange. Red boxes illustrate anchor points statistically
significant loops in this group. C) Circos plot generated from genome browser with the
addition of ClinVar representing disease associated SNPs and H3K27ac marks from
publicly available datasets. Red box indicates gene of interest and region which other
loop anchor point lies within and where anchor points of interest interact with other
epigenetic features.

5.2.6 RankProd analysis of microarray data - Initial Responders

As with the other endotype groups, multiple analysis tools were employed to
understand the highly-regulated areas the genome unique to the IR disease
group (Figure 5.9). 279 loops could stratify disease and pooled HC at all time
points (Figure 5.9A). 4, 392 and 447 were unique to baseline, 6m and 12m,
respectively. As with the other endotype groups, the closest 3 genes to each of
the stable loops were carried forward for gene enrichment analysis. The
pathways enriched had a mix of high scoring and med scoring enrichment scores
(Figure 5.9B). The high scoring pathways were ‘translocation of ZAP-70 to
immunological synapse’, and ‘TCR signalling’. There were 8 GO terms scoring a
high match score (Figure 5.9C). The pathway with the most matched genes was
the ‘T cell receptor signalling pathway’. Deficient TCR signalling has been shown
to contribute to RA pathogenesis and it is interesting that this pathway was
enriched in the IR group. Exploring the genomic region of genes in this pathway

would be of use to understand this mechanism more.
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Figure 5.9 Pathway Enrichment of Significant Stable loops in IR

List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn
diagram of significant loops at all time points, significant adj P value <0.05 and AS -1.1<
or >1.1. Gene Analytics then used generated list of significant pathways based on
matched genes. Scores are given to each pathway to reflect their matching quality to
the set of genes entered to the analysis platform. An algorithm is used to determine the
threshold for high, medium and low scores in each dataset. Cells in green = high score
match, P-value <0.05 cells in orange = med score match, P-value 0.05->1. Tables
generated for B) Top pathways and C) Top GO terms.

6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;

RR, reverse-reverse orientation;

As with previous analysis approaches, network analysis tools were used to
further characterise genes from significant pathways (Figure 5.10). Once again,
in Cytoscape, network analysis was used to identify the most connected nodes.
The most connected nodes ranged from 14 to 18 connections, with HLA-DRB1
having the most connections (18) (Figure 5.10A). Again, this is a gene with
known implications in RA pathology. Specifically, this allele is associated with
susceptibility to the development of RA. This gene was explored further using
the EpiSwitch™ data portal. Exploration of the surrounding genomic area
revealed that 5 loops resided in this region (Figure 5.10B). All loops were
statistically significant in the IR group. A circos plot was used again to visualise
the epigenomic environment in more depth (Figure 5.10C). The area was clearly
enriched with H3K27ac marks which can be found in CD4, CD8, CD19 and CD56
cells. This data illustrates the capacity for enhanced gene transcription at this
site. Of note, 4 loops stem from 1 anchor point in this region, which appears to
lie within the HLA-DRB5 locus, hinting at the significant regulatory role of this
gene. Interestingly, this allele has been shown to be play a protective role in RA.
Anchor sites residing within loci with differing functional consequences in RA is

interesting, particularly as this is the IR group.
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Figure 5.10 Environment Surrounding Central Enriched IR Loop

Network analysis used to understand central players in significant pathways. A) Top
most connected nodes determined by most directed edges of a node in Cytoscape. Gene
with most connections highlighted in red. B) Genome browser view from EpiSwitch™
Data Portal showing HLA-DRB1 gene genomic environment. Genes in dark blue, loops in
pink and EpiSwitch™ anchor points in orange. Red boxes illustrate anchor points
statistically significant loops in this group. C) Circos plot generated from genome
browser with the addition of ClinVar representing disease associated SNPs and H3K27ac
marks from publicly available datasets. Red box indicates gene of interest and gene
which other loop anchor point lies within and where anchor points of interest interact
with other epigenetic features.

5.2.7 RankProd analysis of microarray data - RA

While it was of interest to understand the pathways enriched in each endotype
group, it was also of interest to determine the loops common to all endotypes
that could stratify disease and HC at all time points. As such, all the stable loops
from each endotype group were used to generate a fourth Venn diagram (Figure
5.11A). One hundred and eighty-three loops were common to all groups, and
collectively made an RA-specific loop signature group. Forty-three, 23 and 297
loops were unique to R, IR and NR, respectively. The closest 3 genes to the 183
RA loops were analysed further using GeneAnalytics as before. This produced a
set of pathways all with a med gene match score (Figure 5.11B). The most
significant enriched pathway was the pathway of the ‘regulation of apoptosis by
parathyroid hormone related protein’. Once again, GO terms were also
interrogated. Seven GO terms in total had high gene match scores (Figure
5.11C). The ‘cytosol’, ‘nucleus’ and ‘cytoplasm’ were GO terms with many
matched genes. This alludes to the highly-regulated environment of an RA

peripheral blood cell.
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Figure 5.11 Pathway Enrichment of Significant Stable Loops in Disease

A) Venny 2.1 used to generate venn diagram of significant loops at all time points,
significant <0.05 and AS -1.1< or >1.1. Gene Analytics then used generated list of
significant pathways based on matched genes. Scores are given to each pathway to
reflect their matching quality to the set of genes entered to the analysis platform. An
algorithm is used to determine the threshold for high, medium and low scores in each
dataset. Cells in green = high score match, corrected P-value <0.05 cells in orange =
med score match, P-value 0.05 < 1.Tables generated for B) Top pathways and C) Top GO
terms.

6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;

RR, reverse-reverse orientation;

As before, network analysis was used to further interpret the data (Figure 5.12).
Using network tools, the most connected nodes were identified, with the top
nodes having 13 or more connections. The most connected node was shown to be
PSMC6 with 18 connections (Figure 5.12A). Using the EpiSwitch™ data portal, the
genomic environment around the PSMC6 gene was revealed (Figure 5.12B). Two
loops were found to be in this region. For increased characterisation, a circos
plot was used (Figure 5.12C). H3K27ac marks found in CD4, CD8, CD19 and CD56
cells were found at all anchor points, once again suggesting that this region of
the genome may be subject to enhanced transcription in T cells, B cells and NK
cells. This enhanced transcription in RA could lead to increased immune
pathology and exacerbation in disease. The circos plot also illustrates that the
second anchor point of the significant loop lies in proximity to the GRP137C

gene, known for cell proliferation, but limited evidence of its implications in RA.
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Figure 5.12 Environment Central Enriched Disease Loop

Network analysis used to understand central players in significant pathways. A) Top
most connected nodes determined by most directed edges of a node. Gene with most
connections highlighted in red. B) Genome browser view from EpiSwitch™ Data Portal
showing PSMC6 gene genomic environment. Genes in dark blue, loops in pink and
EpiSwitch™ anchor points in orange. Red boxes illustrate anchor points of statistically
significant loops in this group. C) Circos plot generated from genome browser with the
addition of ClinVar representing disease associated SNPs and H3K27ac marks. Red box
indicates gene of interest and where anchor point of interest interacts with other
epigenetic features.

Whilst the network analysis data extracted genes that did appear to heavily be
regulated, many of the pathways from GeneAnalytics analysis had limited
significance with corrected P-values between 0.05 and 1, suggesting there may
be more significant pathways to find. With this in mind, it was of interest to
employ a second analysis method, as a way to compare evidence and observe if

similar pathways were found in both methods.

5.2.8 SearchLight as second approach to analysis of microarray
data

To potentially identify other important loops that could be used to stratify RA
patients at baseline, and to possibly strengthen our confidence in the findings
from the RankProd method, it was decided that another method could be used
to validate and further explore findings. A computational analysis method,
Searchlight, primarily used for RNA-seq data, was adapted to analyse our
microarray data. While analysis with RankProd focused on contrasts between
disease and HC, Searchlight was used to focus on contrasts between pairs of
endotype groups. Using linear modelling, differences between endotype groups
at all 3 time points were extracted using the contrasts from the model within
Limma. A 1 to 1 comparison between pairs of endotypes was done to attempt to
understand the degree of difference between each group. This pairwise
comparison was done first as a thorough approach to find regulatory differences
and hopefully capture the nuances between groups, that may not be captured if
a three-way analysis was done in the first instance. This would be carried out
later in the analysis pipeline. Firstly, the stratification of NR and R was assessed
(Figure 5.13). PCA plots were generated to assess differences between groups at
each time point (Figure 5.13A-C). The largest separation between NR and R was
seen at baseline (Figure 5.13A). Observing the plots, the least separation seems

to appear at 12 months (Figure 5.13C). The reduction in difference between
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baseline and 12m may be due to the effect of treatment on individuals. The next

step was to evaluate whether there were any loops that were significantly

different at the various time points, and observe if any signatures emerged from

the data. Notably, there were no significant differentiating loops at 12m,

however, at both baseline and 6 months, differences were observed (Figure

5.13D-E). At both the baseline and 6m time points, there were 2 loops which had
differential fold change in abundance between NR and R. One loop had higher
fold change in NR and the other in R. Both loops at 6m also had differential fold

change. At 6m, all 6 individual patients appeared to have more varied fold

change values that the 6 patients at baseline. Collectively these data suggested

at the 3D epigenome level, R and NR had few significant differences.
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NR R

Figure 5.13 Differential Loops Between R and NR at Each Time-point

Data analysis was performed by John Cole, University of Glasgow. Principal component
analysis (PCA) of microarray data at (A) MO (baseline), (B) 6 months, (C) 12 months.
Data scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = NR,
blue =R. N=12. (D&E) un-clustered heat map representing significantly different loops
between NR and R at (D) baseline and (E) 6 months. Log2 fold > 1, adj. P value < 0.05.
Expression levels of loops represented as z-scores, -1 -1 = loop abundance fold change

Whilst analysis did not identify stratification signatures at each time point, the
most differential individual loops, based on fold change in abundance, were
identified to discover if any individual loops had differences at the patient level
(Figure 5.14). The 10 most up and down regulated loops were plotted and those
loops were then mapped to the closest gene, with a view to understand possible
functional consequences of loop formation. To investigate the extent of change
in each loop across samples, we evaluated the loops that were most up or down
regulated in R compared to NR. The loops that appeared to be most upregulated
in R were Loop_41682 (KIAA1468), Loop_79207 (RP11-500G9.1) and Loop_38167
(GBP3)(Figure 5.14A). Two other loops in this set also mapped to KIAA1468 and
GUCYGP2, implying that expression of these genes has implications for the R
group. The loops that appeared most downregulated in R compared to NR were
LOOP_105854(UBE2H), LOOP_36217 (LINCO0854) and LOOP_88219 (BTLN8)(Figure
5.14B). It was demonstrated that 2 other loops in this group mapped to UBE2H, 2
others mapped to BTLN8 and another 2 to TSNAX-DISC1. As 3 loops in this group
mapped to UBE2H, it is plausible to consider that this gene may be an important

gene in NR.
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Figure 5.14 Significantly Up and Down Regulated Loops in R (R vs NR comparison)
Data analysis was performed by John Cole, University of Glasgow Violin plots of
significantly up and down regulated loops, (p.adj < 0.05, absolute log2 fold >1). N=12.
A) Significantly upregulated genes in R at baseline time-point. B) Significantly
downregulated loops in R at baseline. Loop number highlighted above plot, with closest
gene to loop site above. Closest gene determined by Bedtools closest function. Pink =

NR, blue = R
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Stratification of IR and R was next to be analysed (Figure 5.15). There was a
degree of separation between IR and R at baseline when using PCA analysis
(Figure 5.15A). This separation was partly lost at é6m (Figure 5.15B) and at 12m,
IR and R samples were plotted amongst each other (Figure 5.15C). As with the
NR and R analysis, heat maps were used to visualise the data and determine if
any signatures emerged from the data that could differentiate between IR and
R. There were more significantly different loops between these 2 groups than NR
and R at baseline and 6m time points (Figure 5.15D,E). Again, there were not
enough significantly different loops to plot a heat map at 12m. The fold change
of the signature loops at baseline was more than at 6m. At both time points,
there were 2 main signatures which differentiated the endotypes; signature 1
had upregulation of loops in IR and downregulation of loops in R, signature 2 had

the opposite.
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Figure 5.15 Differential Loops Between IR and R at Each Time-point

Data analysis was performed by John Cole, University of Glasgow. Principal component
analysis (PCA) of microarray data at A) MO (baseline), B) 6 months, C) 12 months, Data
scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = IR, blue
=R. N=12. D) un-clustered heat map representing significantly different loops between
NR and R at baseline, E) 6 months. Log2 fold > 1 adj. P value < 0.05. Expression levels of



242

loops represented as z-scores. -2 -3 = loop abundance fold change. Green brackets and
numbers indicate different signatures.

The most significantly up and down regulated loops between IR and R were
plotted and mapped to their closest gene (Figure 5.16). Across samples, the
loops that appeared to be most consistently upregulated in R were Loop_93401
(HLA-DQA1), Loop_93393 (SNX19) and Loop_38167 (GBP3) (Figure 5.16A). Two
other genes in the group mapped to SNX19 and HLA-DQ1. Others in the group
mapped to MICU1 and HLA-DRA. The loops that appeared most downregulated in
R compared to NR were LOOP_107119 (TNSAX-DISC1),
LOOP_107121(TSNAX_DISC1) and LOOP_88225 (BTLN3)(Figure 5.16B). Other loops
in this downregulated group mapped to VAMP4, RP11-345118.6, FRAS1 and
BTLN8. Two loops mapping to TSNAX-DISC1 may be an indicator that repression

of expression is important in R.
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Figure 5.16 Significantly Up and Down Regulated Loops in R (IR vs R comparison)
Data analysis was performed by John Cole, University of Glasgow Violin plots of
significantly up and down regulated loops, (adj. P value < 0.05, absolute log2 fold >1).
N=12. A) Significantly upregulated genes in R at baseline time-point. B) Significantly
downregulated loops in R at baseline. Loop number highlighted above plot, with closest
gene to loop site above. Closest gene determined by Bedtools closest function. Pink =
IR, blue =R

The last comparison to be made was between NR and IR (Figure 5.17). PCA

analysis was once again used to visualise clustering of the 2 groups at baseline,

6m and 12m. There was a lot of overlap between endotypes at baseline (Figure
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5.17A). The 2 groups became more separated at 6m, however the endotypes
were not clustered separately (Figure 5.17B). Similar clustering was observed at
12m (Figure 5.17C). Once again, heat maps were used to picture the data and
identify stratifying signatures between endotypes. At baseline, 2 signatures
emerged from the heat map (Figure 5.17D). The smaller of the 2 signatures (1)
showed upregulation of loops in NR. The other signature shows upregulated loops
in IR. At the 6m time point there were less distinct signatures shown in the heat
map (Figure 5.17E). From the heat map only 1 signature emerged. This signature
showed a small group of highly upregulated loops in NR. The rest of the heat
map did not highlight a high level of differentiation between the endotypes. As
other comparisons have shown, there were not enough significant loops at 12m

to plot a heat map.
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Figure 5.17 Differential Loops Between NR and IR at Each Time-point

Data analysis was performed by John Cole, University of Glasgow. Principal component
analysis (PCA) of microarray data at A) MO (baseline), B) 6 months, C) 12 months, Data
scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = NR, blue
= IR. N=12. D) un-clustered heat map representing significantly different loops between
NR and R at baseline, E) 6 months. Log2 fold > 1 adj P value < 0.05. Expression levels of
loops represented as z-scores. -2 - 2 = loop abundance fold change
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As before, the most significantly up and down regulated loops between the
endotypes were plotted and closest gene to each, identified (Figure 5.18). The
loops that appeared to be most consistently upregulated in NR were Loop_93401
(HLA-DQA1), Loop_93402 (HLA-DQA1) and Loop_88916 (RP4-76112.5)(Figure
5.18A). Two other loops in the group mapped to HLA-DQ1. This data suggests
importance of the expression of this gene in the NR. Others in the group mapped
to MICU1 and HLA-DRA. The loops that appeared most downregulated in NR
compared to R were LOOP_113951 (PRUNE2), LOOP_122895 (GUCY2GP) and
LOOP_99942 (AC018641.7) (Figure 5.18B). Other loops in this downregulated
group mapped to PDE8B, WDR41, and RP11-551L14.1.
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Figure 5.18 Significantly Up and Down Regulated Loops in NR (NR vs IR comparison)
Data analysis was performed by John Cole, University of Glasgow. Violin plots of
significantly up and down regulated loops, (p.adj < 0.05, absolute log2 fold >1). N=12 A)
upregulated genes in IR at baseline time point. B) Significantly downregulated loops in

IR at baseline. Loop number highlighted above plot, with closest gene to loop site
above. Closest gene determined by Bedtools closest function. Pink = NR, blue = IR

5.2.9 SearchLight as second approach to analysis of microarray
data - RA

As well as identifying stratifying loops and signatures between pairs of endotypes

across the time points, analysis was conducted to compare all 3 endotypes
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together at each time point (Figure 5.19). Global PCA analysis of all 3 endotypes

at baseline demonstrated 2 large clusters, consisting of patients of all endotypes

(Figure 5.19A). This hints as shared RA pathology between endotypes, but

highlights the heterogeneity of the RA population. There was no distinct cluster

based on endotype. To try and identify stratifying signatures between the

groups, we analysed the data with the use of a heat map (Figure 5.19B). Four

clear signatures emerged from the heat map. The first clear signature (1) shows

upregulation of loops in IR and NR, with downregulation of loops in R. The

second signature (2) demonstrated highly significant upregulation of loops in IR,

with downregulation in the other 2 endotype groups. The third signature (3)

shown upregulation of loops in R with downregulation in NR and IR. The fourth

signature (4) shows upregulation in R with downregulation in the other 2

endotype groups, with 2 patients in the IR groups showing upregulation of loops

at a similar significance to the R group.
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Figure 5.19 Differential Loops Between R, NR and IR at Baseline
Data analysis was performed by John Cole, University of Glasgow. Principal component
analysis (PCA) of microarray data at A) baseline, Data scaled by Z-score transformation.
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Each dot represents 1 patient sample. Green = IR, blue = NR, pink =R. N=18. B) un-
clustered heat map representing significantly different loops between IR, NR and R at
baseline, Log2 fold > 1 adj.P value < 0.05. Abundance of loops represented at z-scores.
Green brackets and numbers indicate different signatures.

Nos 1-4 represent individual signatures within the heat map

Alike to the analysis conducted between pairs of endotype groups, the most
significantly different loops between the three groups were investigated, and
the top 8 plotted (Figure 5.20). LOOP_14360 and LOOP_14364, both mapping to
DOCK9, appeared to be upregulated in IR and NR samples, compared to R. This
difference was consistent across time points. This could mean down regulation
of this gene is important in responding to RA therapy. In contrast, LOOP_24104
(RP11-282M16.1) and LOOP_64070 (DSCR3) showed highest loop expression in R,
with similarly lower levels in IR and NR. Overall, the difference between groups
remained similar across all 3 time points. However, it appeared at baseline,
some loops showed the biggest difference, as observed in LOOP_24101 (RP11-
282M16.1), LOOP_38537 (PRR11) and LOOP_950095 (SUPT3H). Interestingly, no
loops that were significantly different in the pairwise analysis, were the most
significant in the comparison between all 3 groups. This may suggest findings are
an artefact, or could mean that we captured the slight differences between

groups, that can’t be captured by analysing the groups all together.
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Figure 5.20 Significantly Different Loops between R, NR, IR at All Time points
Data analysis was performed by John Cole, University of Glasgow. A) Violin plots of
significantly different loops in between R, NR and IR across all time points. Loop number
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highlighted above plot, with closest gene to loop site above. Closest gene determined
by Bedtools closest function.

5.2.10 Comparison of analysis approaches

Direct comparison of the analysis pipelines was complex due to the RankProd
approach focusing on enriched biological pathways, while analysis with
SearchLight focused on individual genes. Moreover, RankProd analysis focused on
differences between disease and HC, whilst SearchLight focused on differences
between endotypes. Yet notably, this was how | approached the analysis, and
both platforms could be used to approach analysis in different ways. However,
the EpiSwitch™ data portal visualisation software was used to gather more detail
about the most significantly changed loops between the endotypes identified
through the Searchlight pipeline, and identify if genes from Searchlight were in
regions of other EpiSwitch™ loops (Figure 5.21). Data was available in the portal
for DOCK9, PRR11 and DNAJB13. In the region of DOCK9, multiple loop anchor
points could be found, with over 10 loops visualised, interacting between them
(Figure 5.21A). Of these 3 genes with data in the portal, only DOCK9 was a gene
that was found to be significant with the RankProd analysis pipeline. This was
significant in NR and IR. DOCK9 can be seen with an anchor site within the
RPL17L1P12 locus (Figure 5.21B). Interestingly, there was no interaction with
histones or SNPs in this region. Only 2 loops could be visualised in the region of
PRR11 (Figure 5.21C). Both loops have anchor points within the RP11 gene
region, and loop to anchor points in TRIM37. The loops also overlap with SNPs.
Again, the circos plot visualisation provides further detail and highlights that the
loops span 3 and 4 genes (Figure 5.21D). Three loops could be shown in the
region of DNAJB13 (Figure 5.21E). Two anchor sites within the gene region
interact with one other anchor site in the region of CDA4. The other loop in this
region has anchor points either side of the DNAJB13 gene. These loops also
overlap with SNP sites. The circos plot replicates this data and highlighted one
loop spans 0.2mb (Figure 5.21F). DOCKO is clearly an enriched region, and since
it was a significantly differential loop in both analysis pipelines, it is highly likely
that this gene is important in RA pathogenesis. Furthermore, using the

hTM

EpiSwitch'™ visualisation software, it allowed us to capture this enriched region,

which may not have been as clear otherwise. However, it should be noted that
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only comparing 10 genes across platforms is a small number and may not reflect

the comparability of the techniques as a whole.
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Figure 5.21 EpiSwitch™ Data Portal Visualisation of Searchlight Genes

Most significantly changed genes from Searchlight analysis were searched for in
EpiSwitch™ data portal. Data was available for 3 genes. Visualised in IGV simulation and
replicated in circos plot for A+B) DOCK9. C+D) PRR11. E+F) DNAJB13
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5.2.11 Identification of candidates for endotype CCS

As one of the aims from this part if the study was to identify loops that have the
potential to become part of an effective predictive CCS, it was important to
establish the dynamics of loop significance across the 3 time points. To identify
the loops with the strongest stratification potential for prediction of endotypes,
the quality threshold (QT) clustering algorithm was used on the RankProd data.
This algorithm does not specify the number of clusters a priori, and clusters
must pass a user-defined quality threshold. To be included in the cluster, a loop
must have had to be significant in at least 1 time point. Data generated from
RankProd, which has been explored above, was used in the clustering algorithm.
Three groups of clusters were produced based on comparison between each
endotype and pooled HC. Comparison between R and HC produced 9 clusters
(Figure 5.22). From the 9 clusters, 7 loop dynamic patterns can be observed.
Two clusters (2 and 5) have statistically significant loops at all 3 time points and
2 (6 and 9) clusters have significance at baseline and 12m but not at ém. The
cluster with the most loops (2511), had loops with statistical significance only at
6m. In the interest of stratification significance over 12 months, cluster 2 would
be the choice cluster to be taken for further analysis. Loops from this cluster

would be the most likely to generate a significant stratifying signature.
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Figure 5.22 QT clustering of Loops in R

Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from R and pooled
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold
loops had to have significance, <0.2 FDR. Data with most potential for an endotype
stratification signature highlighted in yellow square.
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Comparison between NR and pooled HC revealed 9 clusters (Figure 5.23).
Clusters 2-9 had 121 loops or more identified. In contrast, cluster 1 had 1729
loops identified. This cluster, along with cluster 4 and 6 are made of loops with
statistical significance at all time points. The 6 remaining clusters have unique
dynamics ranging from significance only at baseline to significance only at 12m
These clusters are made of 4 and 3 loops respectively. Cluster 1 would be the
cluster of choice to be taken forward for further analysis based on strong

significance at all time points in many loops.
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Figure 5.23 QT clustering of Loops in NR

Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from NR and pooled
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold
loops had to have significance, < 0.2 FDR. Data with most potential for an endotype
stratification signature highlighted in yellow square.
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Clustering of IR and pooled HC comparison data revealed 8 clusters (Figure

5.24). Again, cluster 1 had considerably more loops than the other clusters with
1566 loops compared to the second highest cluster made up of 228 loops. Cluster
1, 4 and 8 had loops with statistical significance at all time points. The
remaining 5 had dynamics unique to each cluster. Of these 5 clusters, the cluster
with significance at baseline and 12m had the least loops (18). Based on stable
significance throughout 12m, data from cluster 1 would be the most promising

cluster to take forward for further analysis to determine an endotype signature.
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Figure 5.24 QT clustering of Loops in IR

Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from IR and pooled
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold
loops had to have significance, < 0.2 FDR. Data with most potential for an endotype

stratification signature highlighted in yellow square.
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5.3 Discussion

The work in this chapter has alluded to the presence of several molecular
endotypes, specifically 3D chromatin endotypes, that exist in early RA.
Moreover, the data suggests that there may be loops present in each endotype
at baseline that may be able predict which trajectory a patient will follow.
Analysis also revealed that some loops were present in all endotype groups at all
time points, revealing a RA signature that suggests a baseline level of
dysregulation dictated by the 3D structural epigenome. Moreover, as many the
loops in this group were determined ‘stable’, it implies a core RA state, from
which important disease relevant pathways can be found. The loops in disease
were of most interest based on the aim of using stratifying loops to understand

underlying pathogenesis.

Analysis of the SERA dataset revealed the presence of 3 main response
trajectories (Figure 5.1). This analysis builds on the interrogation of the SERA
cohort for the identification of the MTX CCS. Where R, and NR were assessed on
their clinical scores at 6m, extending analysis to include the 12m time point
revealed the IR response group, that at 6 months have the same trajectory as R.
Using these longitudinal samples is a great advantage to this work. These
trajectories are similar to findings from other RA cohorts. Other studies often
identify 3 groups of responder; named fast/rapid, slow/gradual or
non/inadequate-responders®**3*, Some studies have even characterised 5 groups
established on baseline DAS**®. However, the R group from our cohort were not
split into fast or poor responders. Most studies identify the majority (82.6%) of
patients to be in one of the rapid or gradual responder categories, with only a
small proportion of patients classed as non-responders (3.3%). In the SERA
cohort, a similar proportion of patients are R and NR, with a small proportion of
patients classed as IR. The difference with the SERA cohort, and the patients
investigated, is the absence of biologic treatment during the 12 months
explored. The study by Siemons et al>*® followed a treat-to-target strategy that
included the introduction of anti-TNFa biologic, adalimumab, at Week 24, and
etanercept at Week 48, which would most likely contribute to the increased
good responder rates. However, one observational cohort study, with patients
commencing MTX treatment for the first time found non-response rates at 6

months to be 43%°°. Due to the ‘extreme’ responders being chosen for the array,
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all 6 in the R group could be considered fast responders. The most extreme
trajectories were chosen as best as possible, however, sample availability from
the SERA biobank did impact the choice of patients. It was desirable to have all
patients in each group with as similar a trajectory as possible, to reduce
confounding factors in the analysis, and this was achieved with R and NR groups.
Unfortunately, the IR group had different trajectories, with some variation in
disease activity at all time points. Specifically, there was a combination of high
and moderate, remission and low, and high and moderate disease activity at
baseline, 6m and 12m, respectively. Subgroup analysis of the IR trajectories was
out with the scope of this work, however, it would be of interest to stratify this
group alone to reveal if differences in disease activity were reflected by

underlying 3D chromatin structures.

Analysis of baseline demographic and clinical characteristics showed all groups
were comparable at baseline (Table 5.1). Autoantibody presence was also
comparable between groups. One of the clearer indications of which trajectory a
patient would follow was clinical scores at baseline, with NR having the highest
CDAI and DAS28 CRP at this time point. These findings have been widely

described in other RA studies®’ 38 3%

with some studies isolating individual joint
scores as predictors of poorer response®®3', Other studies exploring baseline
predictors to MTX have indicated female gender and current smoker status as
associated with a decreased likelihood of achieving a EULAR response after 4

months>®2

. Moreover, other studies have shown baseline depression and anxiety
scores to have a negative impact on response to DMARD therapy®®*. This wasn’t a
factor that was explored in this work, but would be useful to consider. The only
current smokers in our array cohort were in the IR group, who all achieved good
response at 6m. However, with only 6 patients, the effect may not be obvious
and not all 6 were treated with monotherapy MTX. Interestingly, IR were the
group with the lowest CDAI and DAS28 CRP at baseline. DAS28 ESR was not
documented based on values needed to accurately calculate the score missing

from several patients.

It was also of importance to record the treatment trajectory of each patient as a
consideration of any inter-endotype differences (Figure 5.2). Understandably,

most R were treated on monotherapy MTX throughout the 12 months. The
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differing treatment trajectories could be considered a limitation to this work, as
it introduces variability in the data. However, it is unrealistic for a NR or IR to
stay on a drug or combination of drugs that isn’t having a clinically meaningful
improvement. Of the patients changing drug in the 12m period, there was
considerable variation in the treatment regimen between patients, which is
reflective of real-world disease management®®*. Surprisingly, 3 NR remained on
monotherapy MTX despite showing no clinical response. On further investigation,
all patients that remained on a therapy without showing a clinical response were
found to be enrolled at different study sites, therefore that is unlikely to explain
the reason for remaining on the drug given at baseline. There are a number of
other reasons a patient may have had to remain on a given drug, including
avoidance of exacerbating other conditions, such as cardiovascular disease or

liver disease’®’

. Moreover, studies have varying conclusions on the best way to
approach treatment with the 3 csDMARDs, such as the parallel use'” and the
step-up approach®®®. Furthermore, the patient perspective should be considered.
One qualitative study analysed the reasons for patient refusal of DMARDs in
RA%. Some reservations were due to dangers of medications, disappointment
with other treatments and denial of disease. Fraenkel et al have demonstrated
that these feelings can be especially prominent when patients have highly active
disease®®. Even for the small number of patients in our study, trying to fully
understand the reasons behind treatment assignment could be a complex

analysis and was out with the scope of the aims of this chapter.

The patients were chosen, and the microarrays run at OBD. Subsequently, the
first step of analysis was to assess the quality of the data (Figure 5.3). Recording
the red-green densities of arrays confirmed no outliers were present and that
Loess normalisation was successful. Moreover, these steps helped to ensure
information was preserved and no variations in the data were wrongly
inflated*®°. Another important QC check was to assess the slide distribution; this
was done by the generation a PCA plot with the slides labelled. The issue of
batch effects is widely recognised in microarray studies, especially with human
samples®°. Strategically, patients with the same response trajectory and
samples from the same time point were not grouped together on the same slide
to reduce the chance of a batch effect associated with a particular group of

samples. The PCA plot showed that slides did not cluster together, which was
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expected. This provided assurance that measures taken to reduce batch effects

were successful and provided confidence for further data analysis.

Top level analysis of each group, prior to linear modelling revealed some
grouping based on endotype through PCA plots (Figure 5.4). The results
suggested that the largest differences between disease groups was at baseline
and the epigenome would gradually lose stratification ability at subsequent time
points. The PCA plots also suggested most variance in the dataset came from the
R group. Of note, PCA visualisation were ultimately an approximation of the data

distribution and more in-depth analysis was required.

The Limma programme was carried forward and a linear model implemented to
find contrasts between responder groups, as well as between RA and pooled HC
(Table 5.2). Importantly, this approach has been used successfully in many
studies including the MTX CCS that formed the basis for this work and provides a
flexible platform to analyse experiments with multiple parameters®'®3”!. This
analysis produced thousands of differentiating loops between groups at all time
points. The data suggested that there more differences between RA and HC than
between different RA responder groups, which is not surprising. However, there
were differences between each pair of endotype group at each time point,
alluding to the existence of epigenetic endotypes. Further, data suggests the
biggest difference in the structural epigenome between disease and pooled
healthy exists at 6m followed by 12m. This is in contrast to the PCA results,

emphasising the importance of those plots as a guide only.

On reflection of this data and the total number of significant loops, | considered
that the Limma model was not stringent enough to reveal truly statistically
significant and biologically relevant stratifying loops. Furthermore, in the
interests of utilising the data to integrate the underlying biology of all groups, it
would be useful to begin work with a smaller list of loops to streamline the
analysis process and find meaningful results. The Limma method of analysis is
still of importance and produced results which lead to the MTX CCS findings in
previous work. However, the microarray for this endotype work had a more
complex design, and therefore it was plausible that an alternative, more

stringent method was needed. Based on the data available, analysis focused on
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the differences between each disease group and the pooled HC. Analysing these
comparisons meant that the disease relevant loops, with removal of any loops
possibly important in a healthy state would maximise disease relevant

information.

The analysis method chosen was RankProd 2.0, a Bioconductor package used to
find differentially expressed molecular profiles. RankProd has several
advantages which made it an appropriate method for this work, in particular the
ability to analyse data with a small sample size and sample heterogeneity, which
is of particular relevance in this study®’?. These features have been effectively
demonstrated using a wide variety of sample types, from plants and mouse

models, to human acute leukaemia samples®’>.

A similar table to that produced from the Limma model was produced with the
RankProd results (Table 5.3). As previously discussed, the disease loops were of
most interest based on the aim of using stratifying loops to understand
underlying pathogenesis. As such, the number of loops able to stratify disease
and pooled HC in each endotype group at each time point were quantified.
Clearly, the RankProd analysis was more stringent and reduced the number of
stratifying loops considerably, with the highest number of stratifying loops being
4765 in the NR 6m group and the lowest number of 384 loops in R at baseline. In
contrast to the global level analysis that suggested the most difference between
endotype groups was at baseline, this RankProd analysis suggested that the
biggest difference between groups is present at 6m, which is line with the
Limma analysis. While the analysis approaches differ, this provides an internal
validation of the results up to this point. This data highlighting the 6m time
point alludes to the influence of treatment on the 3D epigenome. Based on the
number of significant loops, HC appeared most different from NR at baseline, R
at 6m and IR at 12m. While these results showed that disease and pooled HC are
epigenetically different throughout the first 12m of treatment, the results also
revealed the existence of endotypes, as different number of stratifying loops
between disease and HC exist at each time point, highlighting that some loops
must have unique statistical significance in each group. As reducing the number

of loops to analyse was considered beneficial, it was positive that analysis using
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the RankProd method also reduced the number of loops to investigate for

biological inference and would streamline the analysis process going forward.

The approach to understanding the biological relevance of the loops found to be
significant through the RankProd approach was to look at each endotype group
separately in the first instance. It is important to note that each loop may not
necessarily be present at each time point in each group, but more likely to be
compared to HC. And as explored in Chapter 4, the presence of a loop does not
mean that expression of a gene is increased, a loop may be inhibitory. Yet,
understanding the pathways for which the genes in proximity to statistically
significant loops exist is important. For all endotype groups, a Venn diagram was
generated to show the number of loops that could stratify disease and HC at
each time point (Figure 5.5, Figure 5.7, Figure 5.9). The Venn diagram allowed
visualisation of the loops that stayed stable throughout the 12 months of
csDMARD treatment and also revealed the loops that were unique to a particular
time point. To focus the analysis, the loops in the centre of the Venn diagram,
i.e. the most ‘stable’ loops were used for gene enrichment analysis. The closest
3 genes to each loop were used as an input for this analysis. This approach
revealed that many of the same pathways were enriched in all endotype groups.
However, each endotype group had some unique pathways enriched, further
strengthening the idea that endotypes exist and pathogenesis may be different
in each group. The overlap of significant pathways between endotypes is
because we took the loops that were stable over 12 months in each group, but
not unique to that endotype. Of note, common to all endotype groups was
enrichment of ‘phagosome’, ‘TCR signalling’, ‘translocation of zap70 to
immunological synapse’, ‘rheumatoid arthritis’, ‘interferon gamma signalling’
and ‘MHC class Il antigen presentation’ pathways. These results are not

surprising, as these pathways are known to be involved in RA pathogenesis.

Some unique pathways of interest to each group were ‘haematopoietic cell
lineage’ in R, ‘CLEC7A and glucagon signalling’ pathway in NR and ‘HIF
repressors’ and ‘cell adhesion molecules’ in IR. CLEC7a, or Dectin-1 as it’s
otherwise known, has been shown to have increased expression in RA synovial
tissues, potentially contributing to disease severity*’*. The enrichment of this

pathway in NR suggests this pathway could be stopping the ability to respond to
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treatment. Glucagon signalling in RA has been mostly explored in fibroblast-like
synoviocytes, demonstrating that expression of glycogen metabolites can
contribute to chronic inflammation®”°. Our understanding of this in PBMCs has
yet to be fully explored. Again, this data implies enhanced inflammation could
be a contributing factor to the non-response endotype. HIF is a transcription
factor associated the hypoxic environment in RA joints. Interestingly, HIF
repressors are known to facilitate repression through chromatin remodelling®’é.
As this is a pathway we’ve found in the IR group, it alludes to an attempt of

regulation in the underlying cellular biology.

It is intriguing that in all endotype groups, many of the pathways that are
enriched are involved in metabolism. In recent years, immunometabolism in RA

t377

has gained increased interest™’. Many metabolic checkpoints are now being

considered as therapeutic targets®’®.

Further to the pathway enrichment analysis, as with the approach in Chapter 4,
we were interested to drill down on some loops and observe the
epigenetic/genomic environment around these loops to begin to understand the
possible consequence of loop formation (Figure 5.6, Figure 5.8, Figure 5.10). The
EpiSwitch™ data portal platform facilitated such an investigation. To narrow
down on loops we wanted to focus on, we used a network analysis approach to
help determine some of the central genes involved in the pathways. Cytoscape
software allowed central nodes to be identified, and this was used as a way of
finding genes involved in many of the pathways enriched for each group. In
contrast to the GeneAnalytics analysis, which showed many pathways were the
same between endotype groups, network analysis produced a more unique
dataset. Only PPP2CA and WDR12 were common to all endotype groups. PPPC2A
has been mainly implicated in systemic lupus erythematosus®’*~**°, On the other
hand, WDR12 polymorphisms have been implicated in cardiovascular events in

RA patients®".

The top genes unique to each group were BRCA1, TLR4, HLA-DBR1, associated
with R, NR, IR, respectively. BRCA1 is a tumour suppressor and a mutation in
BRCA1 is widely recognised as a risk factor for breast cancer, specifically a

lifetime risk of 80%. Monitoring of this mutation could be considered precision
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medicine in the oncology field®® %3, However, it’s role in RA has not been
extensively explored. One study has shown miR146a binds to the same site as the
3’ UTR in the BRCA1 gene and subsequently down-regulated the gene.
Interestingly, mir146a has been shown to be differentially expressed in
inflammatory disease, including RA®“. As such, it is being considered as a
potential new therapeutic target. Moreover, similar therapies are being
considered to treat cancer and inflammatory disease, namely PARP inhibitors®®.
The ability to inhibit DNA repair has made these drugs considered for both
indications. Based on these findings, this gene being significant in the R group in
our study may suggest an enhanced inflammatory response mediated by BRCA1

may contribute to good response to therapy.

The significance of TLR4 in the NR group is interesting. Activation of TLR4 is
known to exacerbate RA through activation of serval components in the innate
immune system®®. Furthermore, blockade of TLR4 has been investigated as a
drug target in RA*®’. Moreover, the endogenous TLR4 receptor agonist, MRP8/14
was shown to be a promising candidate for the prediction of biologic response in
RA, with baseline serum levels correlated with HDA®®. After defining the central
gene, this was taken into EpiSwitch™ data portal to visualise other genetic and
epigenetic features surrounding the loop. Some loops were revealed to be part
of a ‘hub’ with multiple loops in the same region. Furthermore, some loop
anchor points overlapped with H3K27ac marks indicating potential for enhanced
gene transcription activity. Interestingly, disease associated SNPs, did not
overlap with anchor points, although they were in close proximity to them.
Evidence has suggested that the closer in proximity epigenetic elements are to
each other, the more likely they will be to impact each other and influence gene
regulation®®. Further work could be conducted on this data to quantify the

number of bases each anchor site is from a SNP.

Both R and NR groups had considerably more loops at the 6m time point,
reflecting the results presented in Table 5.3. However, the IR group had most
loops at the 12m time point and most loops were shared between the 6m and
12m time points. Moreover, only 4 loops were present at baseline alone, and
only 9 common to baseline and ém. These results are of great interest and allude

to a major change in the epigenome after 6m. This is reasonable considering the
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change from remission or LDA to MDA or HDA by 12m. This type of change has
been mostly explored in the oncology field. Global changes to chromosome
conformation have been shown to contribute to development of leukaemia, and
thus a target for therapy®®°. However, there is evidence for RA drug therapies
manipulating the epigenome, such as the effect of etanercept and adalimumab

on multiple histones at the CCL2 promotor site*”!

. Moreover, a recent study has
shown inhibition of histone enzymes could reduce cytokine production and
osteoclastogenesis in vitro**2. These data also allude to the effect of DMARD
therapy on the IR group particularly. Furthermore, this indicates the importance
of this group of significant loops in understanding loss of response in RA, as well
as flare. A lot remains to be understood about RA flare, and like RA itself, it is a
multifactorial and heterogeneous process. One of the most interesting loops
from the group in IR was HLA-DBR1. This gene has been largely explored in RA
but not in the context of flare or loss of response. The effect of HLA-DRB1 on
susceptibility to RA has been widely described. It has been shown to contribute
to radiographic progression and treatment response'®. The HLA-DRB1*13 allele
has been shown to have protective effects in some stages of RA in ACPA positive

patients®®.

Through this analysis, it was discovered that 183 loops were common to all 3
endotypes, at all 3 time points, creating a ‘stable’ RA signature (Figure 5.11).
Pathways of interest enriched in this group were osteoclast differentiation,
negative regulation of MAPK pathway and innate immune system. These
pathways are well known to be involved in RA pathogenesis, with
osteoclastogenesis showing evidence of mediation though the MAPK pathway***.
Enrichment of these pathways indicates that these processes are likely driving
pathogenesis. Pathways that have been explored less in RA and have appeared in
this group were nitrogen metabolism and thyroxine production. A recent study
investigated the role of the thyroid hormone network on RA synovial
fibroblasts**>. They found evidence to suggest TNFa may have a role in the
degradation of thyroid hormones in the synovial environment. Studies of
nitrogen metabolism date back decades and did not appear to have an effect of

disease activity*®.
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In the RA associated genes, the most connected node was PSMC6. This gene is an
ATPase subunit and inhibition of this has been recently explored in colon cancer
3%7 This is a gene previously has also been shown to be associated with juvenile

idiopathic arthritis**®

region of PSMC6. Loops can be seen in proximity to GPR137C, ERO1A and

and asthma. Upon visualisation, only 2 loops were in the

GNPNAT1. Like loops in the different endotypes, anchor point overlap with
H3K27ac marks observed in with T cells, B cells and NK cells. Similar to endotype
loops, there was no direct SNP overlap with RA associated genes. ERO1A has
been reported to have biomarker potential in pancreatic cancer. Data mined
from microarrays suggested that expression of this gene was negatively
correlated with poor prognosis. GPR137C encodes a G-protein coupled receptor,
the downregulation of which has been implicated in several cancers®”. Studies
on these 3 genes in RA are limited, thus further work may be justified to
understand their context in RA. The lack of studies in the literature which

implicate PSMC6 in RA, may indicate a novel driver of disease has been found.

Following on from this analysis, the Searchlight platform was utilised compare
findings and explore if other loops were found to be significant (Figure 5.13 -
Figure 5.20). While RankProd and Searchlight used different angles to the
analysis, with RankProd focusing on healthy and disease comparisons, and
Searchlight comparing pairs of endotypes at all endpoints, they had the same
aim of understanding the 3D epigenome underlying disease and differences
between groups of patients. The RankProd and Searchlight data did show some
broad similarities, but not at the individual loop level. Both analysis approaches
identified 6m as the time point with the most significant stratifying loops.
However, the loops found through each method map to different genes, which
means that the results could be an artefact and the true epigenetic differences
between endotypes remain unknown. Moreover, for all responder contrasts,
Searchlight analysis did not identify significant differences at 12 months. This
may suggest that results from the 12m time point using the RankProd pipeline

should be interpreted with great caution.

There was some validation that the RankProd and Searchlight data were
capturing comparable answers when the genes associated with most significant

loops found in Searchlight analysis, were entered into the EpiSwitch™ data
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portal and enrichment of loops were found (Figure 5.21). The 3 genes explored
could be described as ‘hubs’ where multiple loops are present. This alludes to a
high level of regulation of these genes. Regulatory hubs have been described in
the literature, where they have also been referred to as ‘cliques’ or frequently
interacting regions (FIRES)*® “":402 However, it is widely acknowledged that
defining the role of these hubs in disease mechanisms remains a challenge, and

additional studies are needed.

DOCK9 was clearly significantly different between endotype groups, and on
inspection in the data portal, it appears this region is a hub of regulation with
over 10 loops, and multiple other anchor points present in this region. These
data suggest this is a highly regulated and important gene in RA. It has been
previously identified as having increased expression in mouse models of RA*%,
Moreover, a SNP within the DOCK9 locus was shown to be significantly associated
with RA in a North Indian cohort of RA patients*®. Interestingly, compared with
the other 2 genes visualised in this way, this region has no presence of SNPs. The
other 2 genes investigated revealed 3 loops in the region, indicating a similar,
yet slightly less of a regulatory region. In contrast to the DOCK9 region, these
loops were in the region of SNPs. This visualisation of data provided a validation
of the importance of Searchlight findings by identifying regulatory hubs which
may impact pathogenesis. Overall, this demonstrates the valuable resource of

hTM

the 3D epigenome and EpiSwitch'™ platform to find novel genes which may drive

disease or subtypes of disease.

Understanding the loop dynamics over the 12 months was of great interest to not
only find candidates for a stable biomarker for predicting patient endotype, but
also to understand loops that lose stratification potential at certain time points,
which may reveal the influence of csDMARDs on the 3D epigenome (Figure 2.22 -
Figure 2.24). Recent research has acknowledged determining stability of
biomarkers in complex disease a challenge and has attempted the development

%5, We took the decision to use the QT clustering

of 2 assays to measure this
algorithm for our analysis. This was considered advantageous based on the

quality control thresholds required to identify statistically significant findings,
and the lack of need to identify the number of clusters prior to analysis. All 3

comparisons revealed similar clustering dynamics. All groups had at least 1
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cluster with loops that were significant at stratifying disease and HC at all time
points. This holds potential to take forward for further analysis for a potential
biomarker. This clustering approach has been used previously to identify miRNA
combinatorial biomarkers using breast cancer cell lines*®. The algorithm has
also demonstrated it’s precision in the application of mass spectrometry“?”’. As
other data has shown, R and NR have similar proportions of stable and dynamic
loops. IR was shown to have alternative dynamics, and this can also be seen with
the clustering. Both R and NR had 9 clusters, and IR had only 8. Interestingly, IR
had the largest number of loops that gain significance at ém, shown in cluster 3
in the IR group. This data makes sense based on other findings that most loops
are significant at 6m, with many loops significant and common to 6m and 12m

time points.

There are several limitations that need to be considered with work in this
chapter. While significant work and proprietary information was used to design
an array that would capture meaningful data for RA; by designing the array,
there was the chance that significantly stratifying loops could be missed.
Another limitation was the lack of analysis into the loops significant in the HC.
While disease loops were of most interest, understanding the loops that had
stratification potential in pooled HC and did not have that ability in disease may
indicate relevant RA pathogenesis information. Ultimately, this chapter was a
discovery process and exploratory in nature, and many further exploratory and

validation steps are required, some of which have already been discussed above.

There is a considerable amount of future investigation that could be carried
forward from this work. Primarily, biomarker candidates should be taken
forward for analysis. In the first instance this involves identifying a number of
loops for PCR analysis from which loops can be statistically refined for a
predictive endotype CCS. For further validation steps, multiple other samples
would have to be sourced. In this instance, baseline samples alone would be
sufficient, which may be available from the SERA cohort. Other cohorts could be
sourced for this work, such as the TACERA cohort, used in the attempted
validation the MTX CCS explored in Chapter 3. Furthermore, visualisation of
epigenetic marks using EpiSwitch™ data portal was limited by the data that was

included in the system, meaning there could, and very most likely would be
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other epigenetic marks of interest that would shed more light on the potential
consequences of loop formation, and association with each endotype. It should
be noted, that since the generation of the data for this chapter, the data portal
has been updated with more information, therefore offering the opportunity to

explore our data further.

Recently published work has built on other studies suggesting that autoantibody
positive and autoantibody negative RA are 2 distinct diseases and stratifying by
presence of autoantibodies would help considerably for precision treatment*®.
Overall, around 50% of patients in each endotype group were autoantibody
positive. It would therefore make sense to pre-stratify patients that way and
work through the analysis pipeline to find if antibody presence effects
stratification by chromosomal loops. One group has produced a bioinformatics
framework to profile biomarkers in ACPA positive and negative patients*”. This
group revealed that differentially methylated regions were found between
patients with opposite APCA status, as well as common differentially methylated
regions between the patient groups. This mix of similarities and differences in
the epigenome is similar to the results produced in this study and enforces the
key the epigenome may play in ascertaining the underlying pathogenesis in RA.
Their work was optimised for small samples of twins, so it may be applicable to
small samples of RA patients, albeit not twins. This methodology also has the
advantage of a deconvolution to account for the differences in epigenome
between cell types, primarily T cells, NK cells and neutrophils. It would be worth

further exploration for this work.

Furthermore, there is extensive other analyses that could be conducted for the
data gathered. Each endotype group and time point revealed a long list of
pathways and genes that may be relevant in disease. It would be interesting to
explore more in depth the genes not already known to be associated with RA
pathogenesis. Moreover, while the clusters of loops that retain significance over
12 months is important for biomarker discover, studying the loops that lose
significance could reveal more about treatment influence on the epigenome. It
would also be extremely valuable to determine transcription factor binding site

locations in relation to the anchor points, and ultimately characterise the
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transcription factors that bind there, to further understand the gene regulatory

process in RA patients.
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5.4 Conclusion

In conclusion, this chapter clearly demonstrates the complexity of RA
heterogeneity and suggests that 3D epigenetic endotypes exist in the early RA
population. Interrogation of the biological relevance of stratifying loops found
known contributors to RA pathogenesis were more likely driving disease in some
endotypes than others. Moreover, this analysis revealed genes that may be
driving different endotypes, and RA as a whole. The data presented here
provides a great basis for development of a CCS biomarker that could predict
endotype at baseline and provides a chance to understand the complex

pathogenesis further.
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Chapter 6 General Discussion

6.1 Discussion

Overall, this thesis sought to investigate the stratification potential of
chromosome conformation signatures (CCS) in rheumatoid arthritis (RA). In doing
so, this work also aimed to use CCS to investigate the underlying pathogenesis of
the disease. Therefore, this thesis aimed to strike a balance between clinically
important experiments for the implementation of a biomarker and exploratory
experiments that may allude to novel regulatory pathways of disease. In terms
of the biomarker discovery pipeline, Chapter 3 demonstrated the validation
stage of the process, Chapter 4, some exploration and Chapter 5 illustrated the

discovery stage*'%4!",

The first aim of the work in this thesis was to validate the methotrexate (MTX)
CCS biomarker through bioinformatics approaches and in an independent clinical
cohort. Results showed that in my hands, the biomarker could be validated
computationally and replicated the high sensitivity and specificity scores that
would be desirable for a biomarker*'2. Unfortunately, data gathered from testing
the MTX CCS in an independent cohort of early RA patients suggests that it was
not validated, and further exploratory work should be done. Whilst
disappointing, it is not entirely surprising that it was not validated in the first
SERA-independent cohort. There is the theory that differences in protocol could
have contributed to the differences, however, until further work is done this
cannot be concluded. Moreover, throughout this thesis, it has been
demonstrated on a number of occasions that more precision medicine studies
have been conducted in the oncology field than other fields. Yet, despite the
concentrated work in this area, few biomarkers have made it into the clinic*'®
41 The complex biomarker discovery process has also been reported for acute

415 and heart failure*'®*"”. These studies exemplify the complexity of

liver injury
biomarker discovery and highlight the need for future work to ascertain the

clinical potential for the MTX CCS.

Complexity of ascertaining the stratification ability of the MTX CCS was further

demonstrated when testing in a cohort treated with several conventional
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synthetic disease modifying anti-rheumatic drugs (csDMARDs). The data have
shown that the 5-loop MTX CCS is specific for MTX alone. Our findings suggest
that to achieve a clinically significant biomarker for all csDMARDs, a new
biomarker will have to be found, likely by using a systematic approach similar to
the discovery process of the MTX CCS. On reflection, as a highly systematic
approach was employed to find the MTX CCS, it is very plausible that new CCS
would need be developed for other therapies?'®. This has been demonstrated in
prostate cancer, where dynamic chromatin conformation resulted in over
expression of UBE2C, which could be targeted by several drugs including

1*'® and Ipatasertib*’®. However, in the same disease, it was clear that

carvacro
other dysregulated regions within the genome had to be rectified with
alternative therapies, such as cisplatin and niclosamide®®**!, Ultimately, |

[*'° and the new

believe that with a combination of the data from Carini et a
data gathered here, a more specific, informative biomarker may be found. This
integrated approach to biomarker discovery has been successfully demonstrated

by Spiliopoulou et al*??.

Whilst understanding how well the MTX CCS could predict response to baseline
csDMARDs, it was of interest to understand the relationship between the MTX
CCS and underlying cellular biology. Based on evidence from Walsh et al*® that
there was a functional difference between responder (R) and (NR) loci, we
hypothesized that the regulatory environment surrounding these loci may
differ®®. The exploratory approach in Chapter 4 revealed some evidence that
the regulatory environment within and surrounding the loci of R and NR loops
differed at the epigenetic level. Specifically, across cell types, loci where loops
form in NR suggested an inhibitory environment, based on the presence of
histone modifications that are associated with repression of gene expression.
Conversely, at loci of loops that form in R, quantification of epigenetic marks
suggested an environment that could enhance gene expression (Figure 6.1B).
Evidence of the ability of molecular signatures to differentiate R and NR to RA
therapy has been demonstrated in a recent study by Tao et al. They showed that
transcription signatures in peripheral blood monocular cells (PBMCs) differed
between R and NR to two biologic therapies, Adalimumab and Etanercept*?. The

caveat to our work was that it largely came from healthy samples, and it has yet
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to be validated by other datasets, either existing, or yet to be created through

novel wet-lab experiments.

Through observation of disease activity from the SERA cohort, various response
trajectories were identified, and we hypothesized that 3D epigenetic endotypes
exist in the early RA population (Figure 6.1A). We employed a systematic
approach using a novel, custom microarray to ascertain if 3D epigenetic
endotypes existed, and to identify candidates for a new CCS. The data shows
that we were successful in identifying 3D epigenetic endotypes in the early RA
population and we have statistically significant loops that can be taken forward
for development of a new CCS. Precision medicine remains highly desirable in
RA, with patients showing non-response to not only csDMARDs but also biologic
(b)DMARDs. Moreover, a recent study concluded that there is a lack robust
evidence on how to pharmacologically manage difficult-to-treat RA patients*?. It
could be speculated that many RA patients, if given the correct csDMARD at the
start of treatment, would be subject to less joint damage, and therefore maybe
more susceptible to responding to bDMARDs in the future. This exemplifies the
importance of identifying the endotype of each patient as early as possible to

facilitate appropriate clinical intervention.

An interesting finding from this data was the ‘stable’ RA loop profile that was
found through our discovery microarray (Figure 6.1C). This suggested that a
baseline level of dysregulation exists in all RA patients, regardless of 3D
endotype. A recent study suggested that a baseline dysregulation of B cells
exists, which may contribute to autoimmunity in RA*'2. There is limited data on
B cells throughout this thesis, but data gathered from a PCHiC dataset, shown in
Chapter 4, suggested there were significant promotor interactions at the IFNAR1
loop site in B cells, which is suggestive of enhanced gene expression with loop
formation in R. There was further evidence to suggest that histone marks
associated with enhanced gene expression activity are present around other loci
that were statistically significant in the ‘RA’ group. Our gene enrichment
analysis suggested that genes in proximity to statistically significant EpiSwich™
loops were associated with regulation of the cytoplasm, nucleus and cytosol. As
the transcription of mRNA into proteins through the nucleus to the cytoplasm is

crucial for normal gene regulation and physiological function, it may suggest
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that this is a contributor to the dysregulation in RA patients*®. Interestingly,
nucelo-cytoplasmic transport has recently been suggested to have a role in

426 Moreover, one of the most

autoimmune neurodegenerative diseases
significant genes found through our analysis was PSMCé6, a gene which encodes
part of the ATPase subunit and is involved in regulation of the proteasome*?’. As
such, regulation of this gene has implications on antigen presentation and the
immune response. Notably, this is a gene that has had reported involvement in
juvenile idiopathic arthritis (JIA), and asthma in Asian populations“®*’. These

findings suggest further investigation into this gene in RA cohorts is warranted.

It should also be considered that insight from other autoimmune diseases could
be combined with our findings to provide a more informed picture of
pathogenesis. Our data suggest this is plausible as statically significant
stratifying loops were found in regions known to be implicated in other
autoimmune diseases such as systematic lupus erythematosus (SLE)*”*-*%°, This is
of research interest to many, evidenced by the formation of The Immune-
Mediated Inflammatory Disease Biobanks in the UK (IMID-Bio-UK). This aims to
bring together biobanks of clinical information and samples from patients with a
host of autoimmune diseases including RA and SLE into one cohort. It is thought

that shared pathology can be found through bringing this cohort together.

The strengths of the work detailed in Chapter 5 include the use of longitudinal
samples®%*1432 Firstly, observing SERA patients past their 6-month time point
revealed the initial responder (IR) endotype. Based on their disease activity, this
group appear like the R group at 6 months. Moreover, having epigenetic data
from 3 time points allowed the possibility of understanding the changing
pathogenesis over time, and the ability to filter CCS candidates for the most
statistically significant through time. Furthermore, this study used more patient
samples per condition than in the study by Carini et al*'’. Whilst the sensitivity
and specificity was not replicated with our analysis of the MTX CCS in an

independent cohort, the work by Carini et al*"’

, the work is still promising. This
provides confidence that with further work, an even more sensitive and specific

biomarker will be found through our endotype data.
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Another strength of this work as a whole is the use of peripheral blood, which is
a major advantage for future clinical implementation. Recently, there has been
a focus to transition to the synovium in search for predictive RA biomarkers*.
However, this often involves using a needle biopsy to retrieve the synovial
sample. Whilst these biomarkers may show promise, a biomarker found from the

blood would rely on a less invasive procedure®**,

Early RA

C)
Dysregulated
nucleo-cytoplasmic transport

and proteasome ?

Figure 6.1 Suggested 3D Epigenetic Regulatory Differences and Similarities
between RA Endotypes

Schematic representation of early RA 3D endotypes and the possible functional
differences and similarities between them, collated from findings in Chapter 4
and Chapter 5. A) 3 response trajectories (R, NR, IR) from SERA cohort,
suggestive of different endotypes. B) Epigenetic environment surround MTX CCS
loci suggests possibility of increased gene expression in loci of R associated
loops, and suppression of gene expression in NR associated loops. C) Custom
microarray and analysis with Rankprod revealed 183 shared statistically
significant loops between all endotypes. Gene enrichment analysis suggested
these loops were in proximity to genes that were part of the nucleus, cytosol

and cytoplasm pathways
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6.2 Limitations

The work throughout this thesis has demonstrated the challenges of researching
the 3D epigenome; this was most obvious in Chapter 3. The attempt to transition
to a new platform to measure 3C loops was complex and involved many
optimisation processes, which impacted on time. However, after optimisation, |

was confident with the robust nature of the protocols.

PMBC heterogeneity is another limitation that has been discussed in all chapters.
Due to the nature of sample collection, splitting cells was not possible. This is a
well-recognised limitation, particularly when investigating the epigenome*®.
Studies in the RA field are now taking this into consideration in the sample
collection process and separating cells into their subtypes before
cryopreservation to facilitate more informative 3D epigenome analysis.
Moreover, software is being developed to take into account this
heterogeneity®’. In contrast Liu et al and Glossop et al have argued that a
mixed cell population would provide an overall accurate picture of the RA
epigenetic profile*®4¥,

Sample sizes for different parts of this work have been recognised as a
limitation, particularly when assessing the stratification ability of the CCS as a
pan-DMARD predictor. Having such a small sample size, with many patients on
combination of csDMARDs, the predictive ability of HCQ and SSZ alone could not

be determined.

6.3 Future Directions

The data described in this thesis, particularly the findings from Chapter 5,
provide an exciting basis for the development of a baseline CCS that can predict
endotype at baseline of RA treatment. Using the data discussed in Chapter 3 and
Chapter 5, this can inform future collaborative studies with OBD to refine the
CCS for RA.

It would also be useful to consider the use of clinical information in the

biomarker model. Studies have shown markers of bone metabolism and signalling

molecules could aid in the prediction of treatment response in RA*%41,
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Some of the findings from Chapter 4, which revealed different epigenetic
landscapes in at the sites of R and NR loops, could be tested in vitro using
appropriate cell lines and subsequently primary RA cells. Interestingly, some
researchers are now modelling whole cells in-silico*?. It is recognised that
modelling cells in this way requires accurate knowledge of the biology, have
accurate mathematics and an appropriate simulation platform. However, RA in-
vitro models have been successfully established**. These models have ranged
from 2D co-cultures and 3D cultures to the less common organ-on-a-chip****.
446 ChIP-Seq is another accessible technique that could hopefully be used to
replicate our findings. Asadipour et al have used ChlIP-Seq successfully to
demonstrate that that chromatin is accessible in monocytes and lymphocytes.
Furthermore, ATAC-seq is a technique that has been developed in recent years
and could complement this work. This is a technique that allows identification of
open areas of chromatin throughout the genome*’. This technique has been

used to report regulatory landscape in CD4" T cells*®.

As a whole, the clinical application of precision medicine still has a number of
barriers. One of the substantial barriers is the highly complex technologies and
methods needed to interrogate the genome and identify the relevant genes
contributing to drug response, as evidenced through the work in this thesis. To
overcome this, there has been a rise in the computational methods used to
interpret this and an increasing number of people with the desired skills'®®. It
has been suggested that the burden of cost is not associated with the genomic
technology itself, but in the interpretation of the data produced and the linking
of this information with other patient characteristics to make this a relevant
clinical biomarker. Other challenges include storage of the data that is produced
from this research, issues with security and ownership of data and the cost to
the healthcare system '®. Additionally, as previously discussed, the era of
precision medicine will see a rise in bio-banks that will be essential for
biomarker studies. This will involve the public being on board with the concept

and trusting that any samples donated to a bio-bank will be used appropriately.

As alluded to above, this thesis has approached experiments from an exploratory

and clinically meaningful angle. Going forward, both angles should be
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considered. Experiments such as HiC and other ‘C’ derivatives could provide a
wealth of information that could be mined for biologically important findings.
However, from a clinically implementable biomarker perspective, HiC would not
be the best method economically. Moreover, 3C has been shown to have
sufficient specificity and sensitivity, and can be successfully carried out over 48
hours; it is also financially realistic in a clinical setting. Ultimately, EpiSwitch™
CCS continue to demonstrate the applicability across a breadth of therapy areas,

with a recent study demonstrating its ability in sports and exercise**.
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6.4 Conclusions

In summation, this work has clearly demonstrated the heterogeneity of RA at the
clinical and epigenome level, and highlighted that study of the 3D epigenome
may provide a novel opportunity to provide insight into RA. It has also shown the
complexity, and at times difficulty in successfully examining the epigenome.
Taken together, data has shown that using the EpiSwitch™ CCS platform
provides an integrated view of gene regulation, providing a more informed
picture than studying epigenetic modifications separately. This thesis has shown
that RA endotypes exist at the 3D epigenome level and implies that there is
dysregulation that underpins RA as a whole. Further work is warranted to take
this data further and identify if a CCS can be developed that has the capacity to
stratify treatment naive patients at baseline. It is hoped that this work will

contribute to the more tailored treatment of RA patients in the future.
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Appendix

Sequences for each loci for gPCR primer design

IL17A

ATTCATAATATGCATTTATAATTTGCTTAAAATATTGTGAAGACCTTTGTCTATGGAAAG
TACCTAAAAGGAAAGTGGATTAGTCAATTTTCACACTGCTATAAAGAACTACCTGAGACT
GAGTAATTTATAAAGAAAAGAGGTTTGATTGACTCATAGTTCCTCAAGGTTAGGGAGACC
TCAGGAAACTCAGAGTCACAGCAGAAGGGTAAGGGGGAAGTAAGGCATGTCTTACGTGGC
AGCAGGAGAGAAAGAGAGAATGAAGGGGGAAGTGCTACACCTTTAAACCATCGGATCTCT
TGAGAACTCACTATCACAAGAACAGCATGGGGGAAACTGCCCTCATAATCCAATCACCTC
CCACCAGATCCCTCCCTCAACATGCAGGGATTACAATTCGAAGATGGTCTGAAGGAAGCA
ATTGGGAAAAGCAAGCATAGCTCATCCAAGTGGGTGAGAGTGTGAGTTAGAGGAAGCTTG
GAAATTGGTGATGTGAGAGATGCTGCAGCTTCTGGGATTGCTGCCTGGTCGTGTGTAGAG
GAGGGGCAGTAGGGCTCATTCTGAATCTTGTCTTGAAAAGCACATAGATAGTGATGCCAA
AACCAGGACTACGGAAATCACTTGAAGCTGTATCCTACCTCCTCCTCCATCTGTATCTGC
TTCACCTATCAAGGATATCTACTATTGCCACTAAAATTCAGGTGCTTATGGCCTCCCTCA
TTCATCAGCCAGGGTTTATCTGGCCAGGAAAGAGAAGCCCCTTCAGGCATTTGCAACAGA
GGGAGTTTAAGTCAGAGA

CXCL13
CTTCCAGAGACAACAGGGCTTGTTTCAGATTTCATTGAAAGATCAAGATTTCCCTTCTAC
TAGCTTAAGCCTGCTCCCGAGGCACAGACAGCTTCTCCATGCCCCTGTCCTGAAGCTCTG
CCCCTCTTCTCCCACTCACCCGGCTGCATCTGGTTCCTCTAAGGCTGGAGCCCAAGGTGA
AGGTGAGGGCTGGAGTTCTAAGAGGCAGGAAAGGGCTTGGCTGGCTTTCAGGTAATCTCA
TGTTGGCTCCCTTGGGCCAGGGCAAGTGTTTGACTGACAGTCTGTCACGTGGGTTATTTG
AAGGCTCCCCGTAGGAATGCAAAGCAAACTGCTCTGACATGAGTGATGCGTTTTCTTTCC
AGTGGCTGCTTATATCTCCTACCTCCAAGCCTGGCAGTCGATTCCAAAGTGAAGCAAAAA
AAAAACTTCCCTATAATTTTCTCATTTTATGTATCTGATGATAAAAATCAGGTTTGATAT
AAACCAAGTTATGTATTTTTATGTTTCTAAACAAGGGTATCTATAAAATCTATTTTAAAA
ATAAATTGTTTCCATTTGAGTTTTAAATCTATTTGTTTAAATATTTTTTCTTCTTGTCAT
CAGAGTTTTTGAAATTTATACCTCTACCATAAGATATCATGTAGTGTTGGACTTGAAACT
TCTAGAATCATCTGGCTATCAGAGAGCTGCCCAACCTCCAGCCCCATCTTAGGGCAGACA
TGAATAAGGCTTCTTTGGTCTAAATAAGCTAAATCCAGAGCTCTGGGCATTAAAGAAACT
GAAGTCAGATTTTAGAAT
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IL21R

FCAAATTCCTCTGGCTCCTACCACATG CCCCCAGATGCCCCCAGTTGCCCAGGCACCCAG
CGTTGTAAGGGGATGTGGGATGACTCCATCTTGCTTATCCCTGGCCAGCTCATTCTCCCC
AGTCAGGGCCCCCCTCAAATTTTCCCTCCTTGGAGAGCCTTATCCTGGTCCCCCTTGCAA
AAAGCACCCCAGAAGATCTCTGGCCTGCACCCTGGTCTAGTGCATTCAGAGAGTGGGTCA
CTATGGAAAACCACCTGTTTGTGATTGATATGTATTTTCAGTCTCCCCAGTAGGATGCCG
GTTTTAGAAATGTGGAGTCCTGGTTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTT
TGGGAGGCTGAGGCAGGCAGATCATGAGGTCAGGAGTTCGAGCCCTGGACCCCAGGCCAG
CTAATGAGGCTGACTGGATGTCCAGAGCTGGCCAGGCCACTGGGCCCTGAGCCAGAGACA
AGGTCACCTGGGCTGTGATGTGAAGACACCTGCAGCCTTTGGTCTCCTGGATGGGCCTTT
GAGCCTGATGTTTACAGTGTCTGTGTGTGTGTGTGCATATGTGTGTGTGTGCATATGCAT
GTGTGTGTGTGTGTGTGTCTTAGGTGCGCAGTGGCATGTCCACGTGTGTGTGTGATTGCA
CGTGCCTGTGGGCCTGGGATAATGCCCATGGTACTCCATGCATTCACCTGCCCTGTGCAT
GTCTGGACTCACGGAGCTCACCCATGTGCACAAGTGTGCACAGTAAACGTGTTTGTGGTC
AACAGATGACAACAGCCG

IL23
GAAGCGCAGTAGAAAGGTGCCAGACATGGTCTTCTTCAGCAGCCGGCGCTCCTGGCTCCG
ACTCACAAAGCCCATGATGCGTCTGGAGCACAGAGAGCAGCTGTGAGACACCGCCCAACA
CCCTGCCCCACCAGGCCCCTGCCTCCCTGCTCCCCTTGTATGGAGAAACAGCCCAGGTTT
GGAATCCAGGCTTTGGACCAAGCCCTGCCACTTAGCTTTTTTTTATCTTTTACAAGTCAC
TTCACTTTGCTGACAATAGCCACCTTCCGAGGGTTTGAAGTACGAAGATTCAGTGAGATC
ACACAGATGAACAGCACTTTTTTTTTTTTCTGGGAGACAGGGTGTCATTCTGTCACCCAG
GCTGGAGAATAGTGGCATGATCACAGCTCACTGCCACCTCGAAACCAAACCCTGTGACTT
CAACACCCAAACATTTACGTTCTTACGTTTTACTGTACAGCCTTCCTCCTGGATAAATCA
GATTAAAATTTTGAAGACATGTATATAGCTTGTCAGGGTAGTACAGTTATTAATTCTGTG
GTTACCACATTCTTTTATATCTCAAGACTCCCAGCCCCAGGATCTAAGTCATAGCTCTTG
ATTATGGCCCACCCCCAGTAGGGAGCTGAACTTACTACTTCTGATATGAAAGAAGCCAGA
GTAGTTGTTTCTTCCAAGTCACTCACATCTGAGATGGCCCTCAAACCCTCCTTGGTGGTC
TCCGGCTGAGAGATGTTTGCGTCTTTCTGATCTTGGTAATACTGGATCAACTGCTGAACC
CCAGACCTTAATGCAGGTT
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IFNAR1
CTTAGAAATCGCAGGCCTCCTGCATTCTCTTCTTCCTCACTCTTTCCGGCCTATGGCCGG
TCTGGAGCACTTCACCATCGCATTCCAGGACGACTCCCCCTCACAGGAGGCCTTGACCTT
CACAGGATCGCGGCACACACCTGCGCAGACCCAGCGACTTTGGAGTTCCCGCGTCTCTTC
CCCATGTCTGCAGTCGGAGGGCGCGGGTGGGCTCCTGGTCGCGGCCCGGCGCTCTTCGTC
CTCGCCCTTCTCCGCCCGGGGCGCTTGCTGACCCTAGAGTCTTGGACAGTGGCGTTGGGA
GTCCCCAGCGGCCTGGGAACCAGATGAGGCTGGAAGGAGGAAGTGGCTGAGCGACCAGAC
CGTTGCTGTGTGCAGAGCGAGAGCGGGGCAGAGGCGGTCGAAACTGGGAGAATTCATCTG
AAATGATTATTTATGAAGTTCAAGTATATATTCACCCTGAGCAAGAAGAGTTTATTTGAT
TTCATTAAAATCATAACTGCATGGAAAACAAGTTGGTAAAATAAAGCATTTGTGTTGCAC
GTGTTTTCCTCTAAAATTAAACTGGGATTATACCCAAAAGCTGCCTTCTGTAACCAGCTC
TGTACCAGTTTGGCTGGTATCTACTTCCTGAAACTCACATCTTTATGACAATAATCATCA
AGAATAAATACATGAAGCAAAGCTGGGTCTTCCTAGTTCTGTTGCTGCTTGTCACTTCAG
GGAAAGGAAGTTGAAAGAAAGAAGACCGAGTATATTTGTTCATCCTACAAACTGTGTGAG
TGTATTGTATGCCCTATA



Representative gels from qPCR

Version A (from IFNAR1 60°C)

Ikbe PP PP PP PHOPH. PH, Gen Gen G
SLAVEH06

L 64462760 6‘.4”67";\.«1

lkb+NF NF NF TE TETE  NTCNTCNTC
BAPEPHP GLAP600 H44°962060°

Version B (from IL23 62°C)

1kb+ PP PP. PP. PH PH PH. Gen Gen Gen
64.4° 620 60° 64.4 62060° 64.4962°60°

FLoonne oo

1kb+NF NF NF TETETE NTCNICNTC
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Version C (From IFNAR1 60°C)

1kb+ PP PP. PP. PH. PH PH. Gen Gen Gen
64.4° 620 60° 64.4 620600- 64.4062060°

1kb+NF NF NF TETETE NTCNICNTC

64.4° 62° 60° 64.462°600  64.4°62060°
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Representative Scripts

Limma
library(limma)

targets_RAall <- readTargets("targets_RA.txt")
#reading the targets to run analysis as single channel
targets_RAall2 <- readTargets("targets_RA_2.txt")

# find the files to read in and load them with the same order as the targets file.
files <- unlist(lapply(targets_RAallSFileName, function(x) list.files("./", pattern =
X, full.names =T)))
array_data_read <- utils::capture.output(array_data <-
limma::read.maimages(files, columns = list(G = "gMedianSignal”, Gb =
"gBGMedianSignal”,
R =

“rMedianSignal”,Rb = "rBGMedianSignal”),

annotation =
c("ControlType","ProbeName”,"SystematicName", "PValueLogRatio"),

source = "agilent"))

HEHBH AR AR 1. Remove agilent control probes
e e

# Remove agilent control probes and output the number of probes removed and
remain in the log file. ####

rmenrl <-which(array_dataSgenesSControlType == 0)

agilentcnrl <-which(array_dataSgenesSControlType != 0)

gb <-array_data[rmcnrl,]

Hit B 2. Remove Saturated probes #######H#HEHIHA#HEH
# Remove probes that have a saturated signal above 65525 ####
satSignal <- 65525

#Find the index of the Red table that has a signal over the satSignal for every
file.
indexR <-unlist(apply(gbSR, 2, function(x) which(x>=satSignal)))
#Find the index of the Green table that has a signal over the satSignal for every
file.
indexG <- unlist(apply(gb$G, 2, function(x) which(x>=satSignal)))
# Create the union of the two indexes.
indexRG <- union(indexR, indexG)
# Keep the elements of the RGList (R or G) that do not have signal values over
the satSignal
if (length(indexRG)>0){
gbNoSatNew<-gb[-indexRG,]
telsef
gbNoSatNew<-gb

3
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gb <- gbNoSatNew

HEHBHBHBHBR B RS SHH#E 3. Background_correction #####HBHBHBHBHBHBHABHIHY
# Call the backgroundCorrect function of the limma package to background
correct the expression intensities ####

rg <- limma::backgroundCorrect(gb, method="normexp"”, offset=50)

Hit BSR4, Normalise_Within_Arrays

HHBH AR

# Call normalizeWithinArrays function of the limma package to normalize the
expression log-ratios with ####

# the loess method, so that the log-ratios average to zero within each array.
it

RGg<- limma::normalizeWithinArrays(rg, method="loess")

HitHH B 6.Quality_checks
HHH BB AR
#Unlog the M values

processed_data <- RGq

unlog_M <- 2" (processed_dataSM)
processed_dataSM <- unlog_M

# create the pca plot
pca <- stats::princomp(stats::na.omit(processed_dataSM))

# export and save the plot in the svg graphics device

svg("./Slide_PCA.svg")
plot(pcaSloadings[,1],pcaSloadings[,2],pch=19,cex=0.5,col=as.factor(targetsSSlid
e))

text(pcaSloadings[,1], pcaSloadings[,2], labels=as.factor(targetsSSlide), pos=3,
offset=0.22, cex=0.6)

title("PCA plot of M values for Slide!")

dev.off()

#just produce the plot

lab <- as.factor(targets_RAallSGroup)

pcaVar <- round((pcaSsdev”2 / sum(pcaSsdev”2)),4)*100

plot(pcaSloadings[, 1], pcaSloadings[, 2], pch = 19, cex = 0.5, col = lab,
xlab=paste0("PC1 (",pcaVar[1],"%)"), ylab = pasteO("PC2 (",pcaVar[2],"%)"))

graphics::text(pcaSloadings[, 1], pcaSloadings[, 2], labels = lab, pos = 3, offset =

0.22, cex = 0.7)

title(pasteO("PCA plot of M values for ", title))

HAHHARH RS R 7. Merge Probes section ###HH#HIHHIHHIHHHHHIH

source("/Users/caitlinduncan/Desktop/PhD docs/DATA/duplicateCalculation.R")
list_of_matrices <- duplicateCalculation(MAdata = processed_data)

# Export the logMedianMatrix matrix ####



295

fwrite(list_of_matricesSlogMedianMatrix,
file = "logMedianMatrix_M_values.txt",
sep = "\t", col.names =T,
row.names = T, quote = F,
eol ="\n", na = "NA", dec =".")

BB R
If single channel option is selected, individual channel processing will follow

# Split data into individual G & R channels ####

RGt <-limma::RG.MA(RGq)

split_data_RAall <-(matrix(c(RGtSG,RGtSR),ncol=size <- (length(files)*2)))
rownames(split_data_RAall)=rownames=RGtSgenesSProbeName

split_data_RAall <-as.data.frame(split_data_RAall)
colnames(split_data_RAall)=targets_RAall25Group
split_data_RAall[,"SystematicName"] <-RGtSgenesS$SystematicName

list_of_Splitmatrices <- duplicateCalculation(split_data_RAall)

# Export the logMedianMatrix matrix ####
fwrite(list_of_SplitmatricesSlogMedianMatrix,
file = "logMedianMatrix_Channel_values.txt",
sep = "\t", col.names =T,
row.names = T, quote = F,
eol ="\n", na = "NA", dec =".")

AT 8. Perform the limma Contrasts

# Use the log median data for the analysis
logMedianMatrix_s <- list_of_SplitmatricesSlogMedianMatrix

#create the design of the analysis
design<-model.matrix(~0+factor(targetsR25Cy3))
colnames(design) <- c("RA", "HC")

#create the contrasts.matrix
contrast.matrix <- makeContrasts(RA-HC,levels=design)

#Fit linear model for each gene or attribute, based on the array files given
linear_model<- ImFit(logMedianMatrix_s, design = design)

#Based on the above linear model fit to microarray data, compute estimated
coefficients and standard errors for a given set of contrasts.
contrast_model <- contrasts.fit(linear_model,contrast.matrix)

#Given the microarray linear model fit, compute moderated t-statistics,
#moderated F-statistic, and log-odds of differential expression by empirical
Bayes moderation

ebay_model <- eBayes(contrast_model)

head(coef(ebay_model))
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HAHHBH B HHHHHH

# OR to add extra filtration you can also do:

HAHHHH B

#1. Filter with p.value<=0.05 (or adj.P.Val)

contrasts <- contrasts[which(contrastsSP.Value<=0.05),]

#2. Set a cutOff of 1.1 and -1.1 by setting the LS column to 1 or -1 respectively
and remove the probes with in between values!

contrastsSLS <- ifelse(contrastsSFC_1>=1.1,1,ifelse(contrastsSFC_1<=-1.1,-1,0))
Informative <- which(contrastsSLS!=0)

contrasts <- contrasts[Informative,]

#4. Calculate the absolute Fold change and sort the table by that column (abs).
contrasts <- contrasts[order(contrastsSFC_1, decreasing = T),]

write.csv (contrasts, file = ".csv")

Bedtools

bedtools closest [OPTIONS] -a <FILE> \

-b <FILE1, FILE2, ..., FILEN>

bedtools intersect [OPTIONS] -a <FILE> \

-b <FILE1, FILE2, ..., FILEN>

DeepBlue Epigenome

#Install and download necessary packages

install.packages (“BiocManager”)

BiocManager:: install(“DeepBlueR”)

library(“DeepBlueR”)

#request desired experimental data

experiment = deepblue_Llist_experiments(type="peaks",
epigenetic_mark="H3K27ac", biosource=c("peripheral blood mononuclear cell”,
project="ENCODE"))

#retrieve names of experiments

experiment

#get data on specified experiments
query_id=deepblue_select_experiments(experiment_name=c("™,

)
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request_id = deepblue_count_regions(query_id=query_id)
requested_data = deepblue_download_request_data(request_id=request_id)

#get data on specific experiments, and at the genome region of interest
query_id = deepblue_select_experiments (experiment_name=c(*“”
chromosome=“chré”, start=52161697, end=52172165)

#get the regions the epigenomic mark is in, in a readable format

request_id = deepblue_get_regions(query_id=query_id,
output_format="CHROMOSOME,START,END,SIGNAL_VALUE,PEAK,@NAME,@BIOSO
URCE")

regions = deepblue_download_request_data(request_id=request_id)

#list regions
regions

#export data as bed file, to folder of choice
deepblue_export_bed(regions, target.directory =
"/Users/caitlinduncan/Desktop/DeepBlue_Bed_files", file.name =
"311019_H3K27ac_peripheralbloodmononuclearcell_IL17Aa_hg38”)
#export data as tab file, to folder of choice
deepblue_export_tab(regions, target.directory =
"/Users/caitlinduncan/Desktop/DeepBlue_tab_files", file.name =
"311019_H3K27ac_peripheralbloodmononuclearcell_IL17Aa_hg38”)

Coordinates for DeepBlue:

hg38

“chr6”, start=52161697, end=52172165
“chr6”, start=52184632, end= 52187067
“chr4”, start= 77510412, end= 77512093
“chr4”, start= 77602625, end= 77605433
“chr16”, start= 27356311, end= 27357534
“chr16”, start= 27449257, end= 27451508
“chr12”, start= 56345719, end= 56347275
“chr12”, start= 56361069, end= 56361825
“chr21”, start= 33324378, end= 33325411
“chr21”, start= 33373955, end= 33376515

hg19

“chr6”, start=52026495, end= 52036963
“chr6”, start= 52049430, end= 52051865
“chr4”, start= 78431566, end= 78433247
“chr4”, start= 78523779, end= 78526587
“chr16”, start= 27367632, end= 27368855
“chr16”, start= 27460578, end= 27462829
“chr12”, start= 56739503, end= 56741059
“chr12”, start= 56754853, end= 56755609
“chr21”, start=34696683, end= 34697716
“chr21”, start=34746261, end= 34748821



hg19 - 500kb upstream

“chré”, start= 51526495, end= 52026495
“chr4”, start= 77931566, end=78431566
“chr16”, start= 26867632, end= 27367632
“chr12”, start=56239503, end= 56739503
“chr21”, start= 34196683, end= 34696683

hg19 - 500kb downstream

“chr6”, start= 52051865, end= 52551865

“chr4”, start= 78526587, end= 79026587

“chr16”, start= 27462829, end= 27962829
“chr12”, start= 56755609, end= 57255609
“chr21”, start=34748821, end= 35248821

hg38 - 500kb upstream

“chré”, start= 51661697, end= 52161697
“chr4”, start= 77010412, end= 77510412
“chr16”, start= 26856311, end= 27356311
“chr12”, start= 55845719, end= 56345719
“chr21”, start= 32824378, end= 33324378

hg38 - 500kb downstream

“chré”, start= 52187067, end= 52687067
“chr4”, start= 77605433, end= 78105433
“chr16”, start= 27451508, end= 27951508
“chr12”, start= 56361825, end= 56861825
“chr21”, start= 33376515, end= 33876515
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Enrichment values for histones

PBMCs
IL17A  CXCL13
0 45
1.0333 6.7667
2.0667 9.0333
3.1 11.3
41333 13.567
5.1667 15.833
7.6333 19.567
10.1 233
12.567 27.033
15.033 30.767
17.5 345
IL21R IL23
2 2
465 10.917
7.3 19.833
9.95 28.75
12.6 37.667
15.25 46.583
18.6 67.667
21.95 88.75
253 109.83
28.65 130.92
32 152
IFNAR1

30.333
36.567

42.8
49.033

10
14.067
18.133

22.2
26.267



CD4" T cells
IL17A CXCL13
1 43
1.82 52267
2.64 6.1533
3.46 7.08
428 8.0067
5.1 8.9333
7.82 10.507
10.54 12.08
13.26 13.653
15.98 15.227
187 16.8
IL21R IFNAR1
7.1 6.8
9.26 8.6067
11.42 10.413
13.58 12.22
15.74 14.027
17.9 15.833
20.54 18.267
23.18 20.7
25.82 23.133
28.46 25.567
31.1 28

CD14'CD16™ Monocytes

CXCL13
4.2
5.12
6.04
6.96
7.88
8.8
10.14
11.48
12.82
14.16
15.5

1L23
1.5
6.67
11.84
17.01
22.18
27.35
31.66
35.97
40.28
44.59
48.9

IFNAR1
6.6
10.167
13.733
17.3
20.867
24.433
29.367
343
39.233
44.167
49.1

IL17A
1.8
4.3033
6.8067
9.31
11.813
14.317
17.053
19.79
22.527
25.263
28
IL21R
2.4
4.0167
5.6333
7.25
8.8667
10.483
14.987
19.49
23.993
28.497
33

1L23
4.1
73767
10.653
13.93
17.207
20.483
23.527
26.57
29.613
32.657
35.7

I 13

CXCL13
6.1
7.96
9.82
11.68
13.54
15.4
18.12
20.84
23.56
26.28
29

IFNAR1

3.39
5.48
7.57
9.66
11.75
14.56
17.37
20.18
22.99
25.8

CXCL13 IFNAR1

3.3 1.3
533 5.42
7.36 9.54
9.39 13.66

11.42 17.78
13.45 21.9
17.36 26.66
21.27 31.42
25.18 36.18
29.09 40.94

33 457
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ChiCAGO score (used to determine significance in PCHiC dataset)

Let x; denote the measured value of a quantitative property (such as CHiCAGO
interaction score or gene expression level) for cell type i € I. Then, the
specificity score s for a given cell type ¢ € | is a weighted mean of the
differences x. - x; for i = c,

where the weights d. ; are distances between cell type ¢ and cell types i,
calculated using the complete dataset (e.g., CHiCAGO interaction scores for all
interactions or expression values for all genes; distances calculated using
Euclidean distance metric).

1
Se = =2, d¢ ;i (X, — X;)
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Results
th Total Genes K2 # SuperPath Matchek: Matched Genes (Syra Evidence URL
13.16 Phagosome. 152 16 FCGR2C, CTSS, STX7, TU necard
12.02 of ZAP-70to ical Synapse 46 8 CSK, PTPN22, HLA-DOA: d ion_of_zap-70_to_i |_synapse
1.22 TCR Signaling (REACTOME) 122 13 CSK, PSMIB4, PTPN22, cards.org/card/tcr_signaling_(reactome)
1048 Pentose Phosphate Pathway 30 6 PFKP, FBP2, GPI, FBP1, f d :_phosphate_pathway
955 G-protein Signaling N-RAS Regulation Pathway 60 8 CTSS, ITPR1, HLA-DQA2, cards.org/card/g-protein_signaling_n-ras_regulation_pathway
935 141 13 FCGR2C, LAMICL, LAMC: genecard: i
9.08 180 15 CALMLA, FCGR2C, CTSS, rd:
870 ICos-ICosL Pathway in T-Helper Cell 131 2 CSK, TXK, ITPR1, HLA-DC necard: icos|_pathway_in_t-helper_cell
834 Nitrogen Metabolism 17 4 CA1, CA13,CA2,CA3 _ http://pathcards.genecards.org/card/nitrogen_metabolism
7.96 Complement and Coagulation Cascades 88 9 KLKB1, F2, PROCR, CR2, necard: :_and_coagulation_cascades
7.57 Interferon Gamma Signaling 202 15 GBP2, KPNA3, GBP1, genecard:
656 MHC Class Il Antigen Presentation 103 9 CTSS, HLA-DQA2, HLA-D necard:
650 CD28 Co-stimulation 86 8 CSK, HLA-DQA, HLA-DC rd X
630 CTLA4 Signaling 7 7 PTPN22, HLA-DQA2, HL/ d _signaling
624 Lysosomal Ol Catabolism 5 2 MANBA, MAN2B2 rd |_oli :_catabolism
5.89 id Arthritis 93 8 ITGB2, HLA-DQA2, HLA- d id_arthritis
574 Pentose Phosphate Pathway (Erythrocyte), i 6 2 GPI, PGD rd :_phosphate_pathway_(erythrocyte)_pharmacodynamics
5.65 Aureus Infection 9% 8 FCGR2C, ITGB2, HLA-DC genecard: _aureus_infection
551 Fanconi Anemia Pathway 62 6 RADSIC, FANI, MLH1, genecard: fanconi_anemia_pathway
5.42 Cell Lineage £ 8 CR2, HLA-DQA2, CR1, CI necard: ar _cell_lineage
Results
score B2 Name #Genes Matched Genes (¢ | Evidence URL K2 Ontology
1540 T Cell Receptor Signaling Pathway 179 19 BTNL3, CSK, TXK, PSMBA4 http://amigo.geneontology.org/amigo/term/G0:0050852 GoBiolProc
1378 Antigen Processing and Presentation of Peptide or Antigen Via MHC Class I 12 5 HLA-DQA2, HLA-DQB2, 1/GO:0002504 GoBiolProc
1359 Microtubule Cytoskeleton Organization 148 16 PPP2R3C, DCLK2, CALML 60:0000226 iolP
10.16 Fructose 6-phosphate Metabolic Process 12 4 PFKP, FBP2, FBP1, GFPT; 0006002 GoBiolProc
10.00 Antigen Presentation a4 7 CTSS, HLA-DQAZ, HLA-D(ht 60:0019882 iolP
9.88 rferon-g: athwa 7 s GBP2, GBP1, JAKL, 0060333 GoBiolProc
896 b 37 6 CAL, DHFR, CA13, CA2, G0:0006730 GoBiolProc
378 Negative Regulation of Transposon Integration 2 2 ZNF91, ZNF93 0070895 GoBiolProc
878 Histidy-ANA 2 2 HARS1, HARS2 G0:0006427 iolP
878 Sucrose Biosynthetic Process 2 2 FBP2, FBP1 /GO:0005986 GoBiolProc
858 39 6 CAV2, PEXS, LNPK, ATL2, 60:0007029 iolP
846 Negative Regulation of Coagulation 8 3 PROCR, ANXAS, ANXAG 0050819 GoBiolProc
799 Fructose 1, letabolic Process ] 3 PFKP, FBP2, FBP1 G0:0030388 GoBiolProc
776 ER to Golgi Vesicle-mediated Transport 199 15 ERGIC2, F2, COPG2, GoBiolProc
7.65 Synaptic Vesicle to Endosome Fusion 3 2 EEAL VAMPA iolP
7.65 Carnitine Transport 3 2 SLC22A4, SLC22A5 GoBiolProc
7.65 ulation of Mitotic Cell Cycle Phase Transition 3 2 KLHL18, TMOD3 iolP
7.65 Hormone 3 2 ARNT, HIFLA GoBiolProc
757 By RNA 10 3 TNRCEC, TNRC6B, AGO2 GoBiolProc
744 Nucleotide-excision Repair 6 6 GTF2Hs, FAN, STN, AT GoBiolProc
1628 ERto Golgi Transport Vesicle Membrane 61 1 SREBF2, HLA-DQA2, SECih GoCellCor
1471 ‘Trans-Golgi Network Membrane %5 13 MMP24, AP4BI, SCAMP GoCellcomp
1440 'MHC Class Il Protein Complex 18 6 HLA-DQA?, HLA-DQB1, GoCellCo
1388 ‘Transport Vesicle Membrane 49 el ITPR1, HLA-DQA2, HLA-L GoCellComp
1244 Clathrin-coated Endocytic Vesicle Membrane 3 7 HLA-DQA?, HLA-DQB1, GoCellComp.
10.73 Integral Component of Lumenal Side of Endoplasmic Reticulum Membrane 2 6 HLA-DQA2, HLA-DQB1, GoCellComp
1038 Tubular 5 3 LNPK, RTNG, ATL2 GoCellCor
974 Specific Granule 13 4 ANXALL, ANXA3, STXBP GoCellcomp.
9.05 Golgi Membrane 661 38 COPG2, CAV2, GBP2, GoCellCo
332 ‘Transport Vesicle 101 10 COPG2, CAVZ, TRIP11 GoCellComp
7.65 CHRAC 3 2 CHRACL, BAZIA GoCellComp.
741 Lysosome a4 25 CXCR4, CTSS, ADA, SLCL| GoCellComp
719 Awrophil Granule 1 3 ANXALL STX7, SNAP23 GoCellCor
685 Tertiary Granule 4 2 STXBP3, STX7 GoCellcomp.
662 f Plasma Membrane 2 4 USP8, EEAL, USP50, AAK GoCellCor
624 5 2 cTSs, CTsk GoCellComp
575 RISC Complex 16 3 SND1, AGO2, EIFAE GoCellComp.
574 Sec61 Translocon Complex 6 2 SEC618, SEC61A2 GoCellComp
557 Myofibri 5 5 LRRC10, PSMAG, TMOD3 GoCellCor
557 Vacuolar Membrane 30 4 VMP1, SLC36A3, SLC36A GoCellComp
1501 'MHC Class Il Receptor Activity 10 5 HLA-DQA2, HLA-DQB, GoMolecFunc
1170 Protein Activity 9 a ACP1, PTPN22, PTPNIZ,
9.63 e Activity 3 3 CAL, APMAP, CA2 GO: GoMolecFunc
9.00 Sialic Acid Transporter Activity 7 3 LC17A3, SLC35AL, SLC1 0015136
878 Fructose 1, 1-phosphatase Activity 2 2 FBP2, FBP1 60:0042132 GoMolecFunc
878 Histidine-tRNA Ligase Activity 2 2 HARS1, HARS2 04821
865 Carbonate Dehyd 16 4 CAL CA13, CA2, CA3 G0:0004089 GoMolecFunc
794 Receptor Tyrosine Kinase Binding 57 7 CPNE3, YWHAG, NRGL [ 0030971
7.65 Carnitine Transporter Activity 3 2 SLC22A4, SLC22AS 60:0015226 GoMolecFunc
7.65 Amino Activity 3 2 SLC36A3, SLC36AZ 00052
757 Activity 10 3 ANXAS, ANXA3, ANXAG G0:0004859 GoMolecFunc
752 Hydro-lyase Activity 20 a CAL CA13, CA2, CA3 i 0016836
7.28 bic Acid Binding 21 4 PAHAL, ALKBH3, PAM, 60:0031418 GoMolecFunc
685 Q i Transporter Activity a 2 SLC22A4, 5LC22A5 i 0015651
685 Mispair Binding 4 2 MLHL, MSH3 60:0032137 GoMolecFunc
654 g 13 3 ERCC5, BIVM, BIVM-ERC 0004520
654 Channel Activity 13 3 TMC8, TMC1, TMC6. G0:0008381 GoMolecFunc
626 AMP Binding 1 3 PFKP, FBP1, ACSS1 0016208
624 Procollagen-proline 4-dioxygenase Activity 5 2 PAHAL P4HA2 G0:0004656 GoMolecFunc
624 Complement Component C3b Binding 5 2 1TGB2, CR1 i 0001851
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es
13
12.93 Somatic 5 4
10.17 39 8 (CAV2, PEXS, ATL1,
9.81 i i Response 4 3 FGL2, HLA-DQB1, HLA- httpy /GO:0002381
9.81 e i izatic 4 3 ATL1, RTN4, ATL2 /G0:1990809
9.21 Negative Regulation of Natural Killer Cell Mediated toxicit 10 4 MICA, LGALSS, HLA-G, http:/
9.09 4 8 CTSS, HLA-B, HLA-DRA,
890 Siaic Acid Transport s 3 LC17A4, SLCI7A3, Sl hry /G0:0015739 | GoBiolProc
827 igen i i o Class Il 12 4 HLA-DRA, HLA-DRBL, /GO:0002504. GoBiolProc
827 Fructose 6-phosphate Metabolic Process. 12 4 PFKP, FBP2, FBP1, GFP http:, IProc
777 2 2 IDI2, IDI1 IProc.
777 Regulation of Interleukin-4 Production 2 2 LGALSS, HLA-DRB1 http:, 32673 GoBiolProc
771 Sucrose Biosynthetic Process 2 2 F8P2, FBPL ? /GO:0005986 __ GoBiolProc
777 i i Reticulum 2 2 ALG2, AQP11 http:/ i /G0:0033577 GoBiolProc
777 2 2 IDI2, IDI1 GoBiolProc
777 Regulation of Kidney Size 2 2 LRRK2, ASXL1 http:, i GoBiolProc
7.77 MAF 2 2 STYX, DUSP16 15204 GoBiolProc.
754 506 39 EX0SC9, CCRS, MICA, - http:/ 6955 GoBiolProc
7.50 14 4 MIS12, POGZ, CENPK, GoBiolProc
733 Nucleotide-excision Repair, DNA Incision, 3“to Lesion 23 5 (GTF2H1, GTF2HS, ERC http:/ i GoBiolProc
18.13 ER to Golgi Transpor 61 14 PDCDS, SREBF1, GoCellComy
1297 Integral Component of Lumenal Side of Endoplasmic Reticulum Membrane 29 8 HLA-B, HLA-DRA, HLA- http: /GO:0071556 _ GoCellComp
12.93 e i 5 4 ATL1, LNPK, RTN4, ATL /GO:0098826 GoCellComp.
10.86 13 5 ANXA11, ANXA3, STX3 http:/ i GoCellComp.
9.76 95 13 MMP24, AP4B1, GoCellComp
8.81 MHC Class Il Protein Complex 18 5 HLA-DRA, HLA-DQB, | http) /GO:0042613 __ GoCellComp
8.72 il 1 4 ANXA11, STX3, STX7, /G0:0042582 GoCellComp.
8.15 Transport Vesicle Membrane 45 8 [TPR1, HLA-DRA, HLA-| http:/ GoCellComp.
794 1016 70 ZDHHCS, PIGP, GoCeliComp
792 Golgi Membrane 661 49 PDCDS, COPG2, CAV2, http: /G0:0000139 | GoCellComp
7.88 Cytosol 5213 296 KIF3B, FANK1, ERRFI1, /G0:0005829 GoCellComp.
7.77 Interleukin-18 Receptor Complex 2 2 IL18R1, IL18RAP " 10045092 GoCellComp
777 Inte h: Comple 2 2 ITGB1, ITGA10 GoCeliComp
724 Membrane 33 6 HLA-DRA, HLA-DQB1, | http:y 130669 GoCellComp.
697 Golgi Apparat 1366 8 ZDHHCE, PPP2RAC, ? /GO:0005794 __ GoCellComp
6.96 Perinuclear Region of Cytoplasm 720 51 RADS51C, RAPGEF1, CA i /GO:0048471 GoCellComp.
6.65 I 3 2 KIF3B, BORCSS GoCellComp.
6.56 RNA P Holoenzyme 9 3 POLR2M, GCOML1, RPF http:, i GoCellComp.
629 External Side 404 31 CCRS, F2, MICA, CXCR r GoCeliComp
627 e ic letwork 18 4 REEP1, ATL1, LNPK, RT http:, 82 GoCellComp.
13.28 Natural Il Lectin-like Receptor Binding S 5 MICA, ULBP2, ULBP3,
1173 Binding 33 8 HLA-B, HLA-DRA, HLA- http:/ i
1110 Sialic Acid porter Activity. 7 4 LC17A4, SLCI7A3,
9.81 ine Mispair Binding 4 3 MLH1, MSHE, MSH3 _ http: /60:0032137
9.77. ing Proteir it S 4 ACP1, PTPN22, PTPN1: htty /GO:0004726
9.54 NAD(P)+ 16 5 IL18R1, IL18RAP, IL1RL http:, i
9.54 il Cycli 16 5 IL18R1, IL18RAP, IL1RL
9.21 MHC Cl: Activity 10 4 HLA-DRA, HLA-DQBI, | httpy /G0:0032395
8.16 Hydro-lyase Activity 20 5 (CA1, CA13, L3HYPDH, /GO:0016836 GoMolecFunc
777 Activity 2 2 IDI2, IDI1 )/
777 thyl: 2 2 ALKBH3, ALKBH2
777 eceptor Activity 2 2 IL18RY, IL18RAP 160:0042008
777 Fructose 1,6-bis Activity 2 2 FBP2, FBP1 /G0:0042132
7.59 Chemokine Receptor Activity 2 5 CCRS, CXCR4, CCR3, C¢ 0004950 GoMolecFunc
733 Receptor Activity 23 5 CCRS, CXCR4, CCR3, CC
7.15 g 15 4 ALPK1, PFKP, GPI, FBP_htty 18029
7.08 C-C Chemokine Binding 2 5 CCRS, CXCR, CC ? /G0:0019957
6.84 16 4 (CA1, CA13, CA2, CA3 /GO:0004089
6.65 Transfer tivity 3 2 GP, LSS
6.65 Activity 3 2 LC36A3, SLC36A2_ http://ami
Results
Score SuperPath Name #SuperPath Total Genes K2 # SuperPath Matched Genes K Matched Genes (ym K Evidence URL
11.71 Phagosome 152 19 FCGR2C, CTSS, STX7, ITGBhttp://pathcards.genecards.org/card/phagosome
8.70 ZAP-70 to YNapse 46 8 CSK, PTPN22, HLA-DRA, necar 1_of_2ap-70_to_i I_synapse
8.47 Rhe atoid Arthritis 93 12 ITGB2, HLA-DRA, ATP¢ id_arthritis
8.24 Interferor Signaling 202 20 GBP2, CAMK2G, PRKCD, | genecard 1_gamma_signaling
7.89 hosphate Pathway 30 6 PFKP, FBP2, GPI, FBP1, :_phosphate_pathway
7.52 141 15 CCRS, FCGR2C, LAMC1, genecard
7.20 ICos-ICosL Pathway in T-Helper Cell 131 14 PPP3CA, CSK, CAMK2G,
6.78 TCR Signaling (REACTOME) 122 13 CSK, PSMB4, PTPN22, ds.org/card/tcr_signaling_(reactome)
6.66 Tuberculosis 180 17 PPP3CA, CALML4, FC(
6.54 Nitrogen Metabolism 17 4 CA1, CA13, CA2, CA3 ds 1_metabolism
6.8 Regulation Pathway 60 3 CTSS, 5082, ITPR1, in_signaling_n-ras_regulation_pathway
6.37 Immune Response Role of DAP12 Receptors in NK Cells. 199 18 PPP3CA, MICA, SO52, d :_response_role_of_dap12_receptors_in_nk_cells
6.16 dian Oscillators 10 3 CLOCK, LDHC, LDHA c_states_and_circadian_oscilators
6.04 CLEC7A (Dectin-1) Signaling 145 14 PPP3CA, MUC21, PRKCD, )_(dectin-1)_signaling
6.02 IMHC Class Il Antigen Presentation 103 1 KIF38, CTSS, KLC1, HLA-DIh class_ii_antigen_presentation
5.77 inositide Degradation 20 4 PMPCA, INPPSJ, INPPSB, ide_degradation
5.75 Y. 106 1 PPP3CA, PFKP, FBP2, CALIh \_signaling_pathway
5.69 Decay 93 10 EXOSC9, EXOSCT, PFKP, ion-dep _mrna_decay
5.67 igen Processing-Cross Presentation 121 12 CTSS, SNAP23, PSMB4, _f resentation
5.55 i i i EBP (SREBF) 55 7 GPAM, SREBF1, SREBF2, | d 1_of_cholesterol_biosynthesis_by_srebp_(srebf)
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Results
score 2 superPath Name K2 # superpath Total Geneskd # SuperPath Matched GRd: Matched Genes (SyEd: Evidence URL
1510 Transiocation of ZAP-70 to Immunol 3 s CSK, PTPN: *of_zap-70_to.| synapse
1351 _TCR Signaling (REACTOME) 122 12 CSK, PTPN22, rd/tr_signaling_(reactome)
1247 thway 60 8 CTSS, ITPRY, 1_signaling_n-ras_regulation_pathway
1162 Toxoplasmosis 141 2 FCGR2C, LAMCL, LAMC
1067 Phagosome 15 ) FCGRIC, CTSS, ST,
1031 Interferon 202 14 (GBP2, KPNA3, GBP1,G. 1_gamma_signaling
¥ Tubereulosis 180 3 cam h
9 Nitrogen Metabolism 17 4 AL, CA13, CA2, CA3 \_metabalism
MHCCl 103 9 CTSS, HLA-DQA: ss_ii_antigen_presentation.
X 028 Co-stimulati 86 s CSi, HUDQA?, 6/cd28_co-stmulati
6 7 7 FIPN22, HLA-DOAZ, HL signaling
5 s 1TGB2, HLA-DAZ, HLA {arthit
% 8 FCGRIC, TGB2, HLADCT aureus_infection
1 1Cos-Cost Pathway InT-Helper Cell 131 5 CSK, TPR1, HLA-DOAZ, I_pathway_in_thelper_cell
706 30 ) PP, FBP2, FBP1, PGD. : phosphate_pathway
613 18 9 CLONS, G682, HLA-DQ /cell_adhesion_molecules_(cams)
572 2 3 JAK1, PIAS1, MAVS 1_alph: alpha-2b_pathway_(hepatocyte)_pharmacodynamics
s Protein 2 3 BCL2L13, BCL2LLS, BID) of_apoptosis._by_parathyroid_hormone-relaed_proteln
sS40 IF Repressors 2 3 UMO3, ARNT, HIFLA { repressor
539 162 ) JAKL, HUA-DOY 4/th17_cell_differentation
Results
K2 # Matched Genes B2 Matched Genes (S\E2: Evidence URL
1590 Antigen Processing and Presentation of Peptide or Polysaccharide Antigen Via MHC Class II 12 5 HLA-DQA2, HLA-DQB2, i /G0:0002504 __ GoBiolProc
13.79 T Cell Receptor Signaling Pathway 179 15 BTNL3, CSK, PTPN22, G0:0050852 | GoBiolProc
13.10 Interferon-gai i Pathway 7 ) GBP2, GBP1, JAKL, HL /GO:0060333 ___GoBiolProc.
12.66 Antigen Processing and Presentation a 7 CTSS, HLA-DQA2, HLA- /G0:0019882 __ GoBiolProc
1183 Fructose Process 12 a PFKP, FBP2, FBP1, GFP' /G0:0006002 __ GoBiolProc
1085 ic Reti izat 39 3 CAV2, PEXS, LNPK, AT 60:0007029 __GoBiolProc
9.73 Negative Regulation of Coagulation ) 3 PROCR, ANXAS, ANXA /GO:0050819 __ GoBiolProc.
9.66 Sucrose. Process 2 2 FBP2, FBPL G0:0005986 ___GoBiolProc
9.66 Negative Regulation of T Integratio 2 2 ZNF91, ZNFO3 /G0:0070895 __GoBiolProc.
925 Fructose 1,6-bi ic Process 9 3 PFKP, FBP2, FBP1 G0:0030388 __GoBiolProc
852 Camitine Transport 3 2 SLC22A4, SLC22AS /G0:1902603 __ GoBiolProc
852 Positive Regulation of Mitotic Cell Cycle Phase Transition 3 2 KLHL18, TMOD3 G0:1901992 __GoBiolProc
852 Positive Regulation of Hormone ic Process 3 2 ARNT, HIF1A /G0:0046886 __ GoBiolProc
843 Peptidyl-proli hydroxy-L-proline 1 3 PAHAL, P4HA2, ERO1A G0:0018401 ___GoBiolProc
839 Nucleotide-excision Repair, DNA Incision, 3"to Lesion 23 a ‘GTF2Hs, ERCCS, BIVM, /GO:0006295 __GoBiolProc.
8.00 ig ing and ion of Exog ptide Antigen Via MHC Class Il 98 8 CTSS, HLA-DQA2, HLA- G0:0019886 __ GoBiolProc
776 I g 3 3 JAK1, PTPN2, PIASL /G0:0060334 __GoBiolProc
771 Negative Regulation of Platelet-derived Growth Factor Receptor-beta Signaling Pathway 4 2 PTPN12, PTPN2 G0:2000587 ___GoBiolProc
771 i i P 4 2 HLA-DQB1, HLA-DRB1 /GO:0002381 __GoBiolProc
771 Quaternary Ammonium Group Transport 4 2 SLC22A4, 5LC22A5 G0:0015697 | GoBiolProc
ER to Golgi Transport Vesicle Membrane 61 1 SREBF2, HLA-DQAY, SE /G0:0012507 __ GoCellComy
1737 Transport Vesicle Membrane 29 9 ITPRL, HLA-DQA2, HLA (G0:0030658 __ GoCellC:
1696 ‘Trans-Golgi Network Membrane £ 12 MMP24, AP4B1 /G0:0032588 __GoCellComp
1691 MHC Class Il Protein Complex 18 6 HLA-DOA2, HLA-DQBL G0:0042613 __ GoCellCom
1523 Clath, \brane 3 7 HLA-DQA2, HLA-DQB1, /GO:0030669 __ GoCellComp
13.12 Integral Component of Lumenal Side of Reticulum Membrane 29 6 HLA-DQA2, HLA-DQB1 'GO:0071556 GoCellCom,
12.18 Golgi Membrane 661 EE} COPG2, CAV2, GBP2, G0:0000135 __GoCellC
9.85 Lysosome 414 2 CXCRA, CTSS, ADA, SLC G0:0005764 | GoCellCom
771 y Granule 4 2 /G0:0070820 __GoCellComp
737 Golgi Apparatus 1366 50 PPP2R3C, COPG2, CAV. 1G0:0005794 __GoCellCom,
734 Myofibril a5 5 LRRC10, PSMAG, TMOIh /G0:0030016 __GoCellComp
7.09 Tubular 5 2 LNPK, ATL2 GO:0098826 GoCellCom,
7.09 umen B 2 CTSS, CTSK G0:0036021 __ GoCellComy
692 Endocytic Vesicle Membrane 68 6 HLA-DOA, HLA-DQBL G0:0030666___GoCellComp
624 252 13 APPL2, ANTXR1, HL /G0:0010008 _ GoCellComp
602 Transport Vesicle 101 7 COPG2, CAV2, SCAMP. G0:0030133 | GoCellCt
588 PML Body. 103 7 SUMO3, NR2C1, CALC /G0:0016605
581 Extrinsic Component of ) 2 USP8, USPS0 60:0031313 __GoCellC:
532 ed Complex 1 1 SEHIL G0:0035859 __ GoCellComy
532 Proximal Portion of Axoneme 1 1 DNAH11 G0:0120134 | GoCellComp
17.16 MHC Class Il Receptor Activity. 10 3 HLA-DQA2, HLA-DQBL, /G0:0032395 __GoMolecFunc
1341 Non-membrane Spanning Protein Tyrosine Phosphatase Activity 9 4 ACP1, PTPN22, PTPN1 G0:0004726 | GoMolecFunc
1092 3 B CA1, APMAP, CA2 /G0:0004064 __ GoMolecFunc
1029 Carbonat 16 4 CAL, CA13, CA2, CA3 /G0:0004089 | GoMolecFunc
1028 Sialic Acid Transporter Activity. 7 3 SLC17A3, SLC35A1, SLC /GO:0015136 __GoMolecFunc
9.66 Fructose 1, Activity 2 2 FBP2, FBPL G0:0042132 | GoMolecFunc
911 Hydro-lyase Activi 20 4 CA1, CA13, CA2, CA3 /G0:0016836 MolecFunc
882 Activity 10 3 ANXAS, ANXA3, ANXA- G0:0004859 | GoMolecFunc
852 Amino Activity 3 2 SLC36A3, SLC36A2 /G0:0005280 __ GoMolecFunc
852 Camnitine Transporter Activity 3 2 SLC22A4, SLC22A5 60:0015226 | GoMolecFunc
7.76 ivity 13 3 ERCCS, BIVM, BIVM-EF b /GO:0004520 __GoMolecFunc
7.76 Channel Activity 13 3 TMC8, TMC1, TMCE G0:0008381 __GoMolecFunc
771 Quaternary Ammonium Group ‘Transporter Activity 4 2 SLC22A4, SLC22AS /GO:0015651 MolecFunc
7.47 AMP Binding 1 3 PFKP, FBP1, ACSS1 G0:0016208 | GoMolecFunc
7.09 Procollag i Activity. 5 2 PAHAL P4HA2 /G0:0004656 __ GoMolecFunc
659 Peptide A Binding 3 a HLA-DQB1, HLA-DRBL, /G0:0042605___ GoMolecFunc
651 E-box Bindi 52 5 CLOCK, SREBF2, TCF12 /G0:0070888 __ GoMolecFunc
623 Binding 98 7 SNX19, APPL2, ITPRY, ¢ G0:0035091 | GoMolecFunc
617 Lproline Transporter Activity. 7 2 SLC36A3, SLC36A2 /GO:0015193 __GoMolecFunc
617 Lalanine Transporter Activity. 7 2 SLC36A3, SLC36A2 G0:0015180 | GoMolecFunc
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Raw GeneAnalytics data - RA

Results
2 supe: K2 Matched Genes (Sym&d): Evidence URL
992 Regultion o Apoptoss By Parathyroid BCLaLi3, Betalis, PTHL of_apoptosis._by_parathyroid_hormane.rolated_proteln
941 ol HIFIA, NFKB1, ST sm_siruins_an_
909 SLCI7A3, LoALSS, stci  pathway_s
845 RET,CYP1B1, ARNT, PSAC Lhydrocarbon_receptor
817 _metaphase_and_anaphase
79 thway. E breast_cancer_pathway
785 Lysosome. 1
76 s etaboism
728 Thyroxine (Thyroid H _(thyrold_hormone)_production
88 er B promotes._cell matiity.
667 ¥ _aloha-2,_pthway_(hepatocyte) sharmacodynamics
65 oerculosis I
a1 fonoamine GPCRS .
at legative Regulaton of MAPK Pathway reguition_of_maplpathway.
611 ssteacast Diferentiation diferentation
589 Assembly of RNA \_0f_tha_polymerase-_nitiation_complex.
71 sc_and._hepatocelllar_crci
56 Herpes Smplex irus 1 nfection 253, 2NF10, 20721, simplex_vis_1_inection
) FoP2, Fav1, PGD :_ohosphate._path,
sas 1 TNFRSFISC, KUHLe2, THR _mmune_system

Sialic Acid Transport

1177 179 12
1037 2 2
1027 Toxin Metabolic Process 9 3
9.84 tyrosi 102 8
9.84 Response to Interferon-alpha 10 3
9.84 Response to Interferon-beta 10 3
9.46 Response to Interferon-gamma 2 4
o e = a
22 Positive Regulation i
22 Positive i i
22 Carnitine. Transport
.09 i 2

6 interferon-gamy iated s Pathway 3
.49 Intracellular Protein Tr 364 16 0006886 io
.41 Quaternary Ammonium Group Transport a 2 /60:0015697 | GoBiolProc
841 Negative i Factor Recept ) 2 /GO:2000587 __GoBiolProc
813 ion of Transcription From RNA Polymerase Il Promoter in Response to Hypoxia 7 3 ARNT, BACHL, HIF1A, | http: GoBiolProc
7.94 Ras Transduction 75 6 RAPGEFS, KSR1 ‘GoBiolProc
7.93 i i Activity 16 3 FCGR2B, CGA, MUCA _ http i GoBiolProc
1926 Cytosol 5213 16 FANKL, PTPN23, CAL GoCellcomp.
17.65 Nucleus 6708 176 FANKL, ERIL, PTPN23, http://ami GoCellComp
16.09 lasm 6964 73 FANKI, ERI1, PTPN23, GoCellcomp.
9.41 i 8 7 STK178, GNPNATL, Mi http://ami GoCellComp
8.85 Myofibril 5 5 LRRC10, PSMA, ‘GoCellComp.
7.93 Lysosome 214 7 5LC17A2, CXCR, CTSS http://ami GoCellcomp
7.78 Lumen 5 2 K GoCellComp.
7.10 i 1562 a5 VMP1, POMT1, MOGA htts GoCellComp
7.07 lex iz 2 PRPF3, RAPGEF1 GoCellComp.
685 Golgi Apparat 1366 0 PPP2R3C, CCDCA1, PE it ‘GoCellComp
674 Sarcomere 3 5 ACTNI, MYBPHL GoCellComp.
670 Perinuclear Region of Cytoplasm 720 7] RADS1C, RAPGEF1, PR hut 48471 GoCellComp
6.69 Nucleoplasm 37143 5: FANK1, ERI1, PTPN23, SoCellComp.
648 insi 8 USP8, USPSO ttp /60:0031313 | GoCellComp.
64 Extracellular Exosome a7 E PTPN23, CAL, ACP1, /GO:0070062 __ GoCellComp

Preribosome, i 2 NSA2, EIF6, WDR12 y /60:0030687 | GoCellComp

5.9 leton 1384 3 FANKI, PTPN23, KLHL /G0:0005856 __GoCellComp
8 Nuclear Pore Outer Ring 10 AHCTF1, SEHIL http: /60:0031080 | _GoCellComp
6 ERFL 1 N6AMT1 10035657 GoCellComp
6 Rhabdomere 1 1 MERTK hittp://ami i /60:0016028 | _GoCellComp
6.19 Sialic Acid Transporter Activity 7 4 SLC17A2, SLC17A3, /GO:0015136 __ GoMolecFunc
14.79 Protein Tyrosi it 9 4 ACP1, PTPN22, PTPN1 hitp: ‘GoMolecFunc
14.40 1836 61 YMELLL, RADS1C, lecFunc
1341 134 1 PTPN23, FBP2, FBP1, S http i ‘GoMolecFunc
1037 Fructose 1, h Activity 2 2 FBP2, FBPL lecF.
1033 i 11207 254 KLHL18, FANK1, VMP1. http://ami lecFunc
9.84 y 10 3 SLC17A2, SLC17A3, ‘GoMolecFunc
9.67 Protein Tyrosine Phosphatase Activty 104 8 PTPN23, DNAICE, ACP http://ami lecFunc
9.44 IgG Binding u 3 FCGR3A, FCGR2, ‘GoMolecFunc
922 Amino Acidiproton Activity 3 2 5LC36A3, 5LC36A2_ hitp://ami lecFunc
9.22 Carnitine Transporter Activity 3 2 SLC22A4, SLC22A: lecFunc
8.76 Channel Activity 13 3 TMCB, TMC1, TMC6 _ http ‘GoMolecFunc
8.73 ydrolase 1674 50 ERIL, PTPN23, lecFunc
8.59 ATP Binding. 1515 46 YMELLL, RADSIC, DH) http; ‘GoMolecFunc
841 Quaternar Transporter Activity. 4 2 LC22A4, SLC22A ‘GoMolecFunc
841 ErbB-2 Class Receptor Binding 4 NRGL, MUCA ttp: 3
841 2 4 DUSP26, PSPH lecFunc
836 148 PTPN23, DNAICE, ACP hutp: /60:0004721
819 Transporter Activity 15 SLC17A3, SLC22AS, g g /G0:0042910
7.97 52 CLOCK, SREBF2, TCF12 http://ami i 070888
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