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Abstract  
 
Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints, that 

affects 0.5-1% of the population globally. While primarily affecting the joints, 

systemic inflammation impacts other organs and the disease has a significant 

socioeconomic burden. While there are a wide range of medications to 

pharmacologically manage RA, it is a largely heterogeneous disease and the 

current treatment strategy does not consider the heterogeneity between patients. 

As such, precision medicine approaches to treatment are desired. A 5-loop 

chromosome conformation signature (CCS) was identified that had 90% specificity 

at predicting non-response to methotrexate (MTX) in early RA. These epigenetic 

biomarkers offer a novel strategy for improving patient care, and provide insight 

into disease pathogenesis.   

 

The aim of the work presented in this thesis was to further characterise this novel 

epigenetic biomarker. Investigation of this biomarker also offered the opportunity 

to hypothesise about underlying pathogenesis. A combination of molecular analysis 

of patient samples, and in-silico methodologies were applied to investigate these 

aims. 

 

In the first instance, the CCS was validated as a biomarker for identifying MTX 

responders using bioinformatic tools. Preliminary work was also carried out to 

identify the optimal method for detecting chromosome loops from the signature in 

the lab. Quantitative PCR was thoroughly explored, but excluded as a reliable and 

robust method of loop detection for our signature of interest. It was also found 

that the CCS was MTX specific, and alternative signatures would be required for 

prediction of response to other csDMARDs. Further validation of the signature, 

using an independent clinical cohort, revealed that specific loops from the CCS 

held stratification potential while others did not. In-silico investigations revealed 

different epigenetic landscapes exist between loops associated with responders 

and non-responders to MTX. Specifically, data suggests loops associated with 

responders exist in an environment which enhances gene transcription, while loops 

associated with non-responders have an environment indicating potential for gene 

repression. Differences in chromatin architecture, revealed through a discovery 
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microarray, have indicated that 3D epigenetic endotypes exist within the early RA 

population. Further investigations suggested each endotype have different, unique 

pathways that are highly regulated. Furthermore, results revealed that there is a 

stable RA chromatin signature that exists, which highlights the importance of the 

3D epigenome underpinning disease.  

 

In summation, this body of work has shown CCS to be promising biomarker for the 

stratification of the early RA population. Furthermore, thorough investigation of 

this signature highlighted novel pathways that may be involved in disease 

pathogenesis. This work has exciting potential to contribute to improved RA 

treatment in the future.  
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Chapter 1 Introduction 
 
1.1 Rheumatoid Arthritis 
 
1.1.1 Prevalence 
 
Rheumatic diseases are characterised by damage to joints and connective 

tissues, which is often accompanied by complications for multiple other vital 

organs1. Rheumatoid arthritis (RA) is a disease of this type, and is the most 

common inflammatory arthritis2. RA is prevalent in approximately 0.5-1%3 of the 

population, and females are affected more than males with a ratio of 6.45:14. 

The most common age of onset is between 45 and 655, however it can occur at 

any age, with under 16s receiving a diagnosis of juvenile idiopathic arthritis 

(JIA)6. RA is an autoimmune and inflammatory condition, with chronic 

inflammation originating from the synovium leading to eventual joint 

destruction7.  

 

RA presents with symptoms of pain, fatigue and symmetrical swollen joints, with 

the smaller peripheral joints, such as the hands and feet, affected first8. 

Systemic inflammation can impact the eyes, lungs and blood vessels9 . If left 

uncontrolled, RA is a progressively disabling disease, which can impact on all 

parts of everyday life. Comorbidities such as heart disease and infection are 

often experienced, and can result in early mortality10. Cases of anxiety and 

depression are also known to be higher in those with RA, compared to healthy 

age and sex matched individuals11. In working-age adults with RA, the 

prevalence of depression has been found to be around 25%12. Interestingly, these 

comorbidities have not decreased with the better pharmacological management 

of RA11. It has also been found that those who experience psychiatric 

comorbidities are more likely to be impacted by other comorbidities that have 

been discussed13. Psychological symptoms have also been shown to negatively 

impact the likelihood of a person reaching remission after 12 months of 

treatment14. 
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1.1.2 Development 
 

The development of RA is caused by a loss of immune tolerance to the joints, 

the exact trigger of which is unknown. However, there are various well-known 

genetic and environmental factors that increase susceptibility to the 

development and severity of disease15. These contributions result in a 

phenotypically heterogeneous RA population. RA heritability has been 

demonstrated through twin studies; monozygotic twins have shown to both have 

an RA diagnosis in 12-15% of cases, 10% more than non-zygotic twins2. There are 

currently over 100 genetic loci known to be associated with RA16. The allele 

associated with the highest risk is HLA-DR, which is an allele part of the major 

histocompatibility (MHC) locus. Modifications in DR4 and DR14 are most common, 

with changes in these alleles present in approximately 90% of people with RA2. 

Non-MHC genes with well documented risk for RA susceptibly are protein 

tyrosine phosphatase non-receptor 22 gene (PTPN22) and peptidyl arginine 

deiminase 4 (PADI4)17. A suggested mechanism by which these genes are a risk 

for RA, is the increased citrullination18.  

 

The relatively low genetic susceptibility, illustrated by twin studies, indicates 

the considerable environmental component involved in RA development. It has 

been proposed that the environment can impact disease susceptibly via the 

microbiome, primarily the lungs, oral mucosa and gut19. Numerous studies have 

also proposed that mucosal sites are where RA begins. Cigarette smoking is one 

of the biggest contributing environmental risk factors for RA susceptibility and 

severity, and is known to impact these mucosal sites20. The risk of RA 

development in smokers is twice that of non-smokers, with a slightly higher risk 

in women than men. It is largely believed that the more somebody smokes, the 

higher the risk, yet even light smokers are known to have an increased chance of 

development. Some of the risks associated with smoking may be due to its 

effects on the immune system which include oxidative stress, inflammation and 

epigenetic changes20. The oxidative stress can be attributed to the free radicals 

contained in smoke, in addition to nicotine effects on mitochondria21. The 

effects of smoking extend to the ability to respond well to RA treatment, which 

has been largely documented in biologic therapy22. Periodontal disease is 

another well-known environmental risk factor for the development of RA23. This 
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also has the ability to cause epigenetic changes to the genome which results in 

the damage observed in the disease24. Aspects of the diet have also been shown 

to be an environmental risk factor for RA. These include low vitamin D, and high 

sugar and sodium intake25-27. The gap in the knowledge of heritability and 

environmental influence has meant the diagnosis, prognosis and pharmacological 

management of the disease is not always correct for the patient28. These 

potential changes to the genome caused by environmental influence remain to 

be thoroughly explored. 

 

1.1.3 Socio-economic burden 
 

Approximately 80% of working adults with RA experience pain, joint stiffness and 

reduced functionality, ultimately limiting the ability to work as normal, and 

carry out everyday tasks29. As such, RA is a disease with a considerable socio-

economic burden. Work disability is a risk, even in early disease30. There are 

several risk factors for the development of workplace disability, which include 

the nature of the job, disease activity and age of onset31. When evaluating the 

economic burden of RA, three main cost categories are explored: direct, indirect 

and non-monetary29. Direct costs refer to costs to the healthcare system such as 

medication, and other costs which are incurred by the affected person and their 

families. This can include adapted transportation or living arrangements. 

Indirect costs are those which are incurred by employers for example. These 

include the cost of sick-leave or reduced productivity. Additionally, the large 

proportion of people who remain unresponsive to RA treatment add to this 

burden32. Non-responders (NR) to treatment often lose more days at work 

compared to responders (R), and are likely to have higher healthcare costs, due 

to side-effects or from continued inflammatory symptoms32. The cases of 

depression in working adults with RA is also a considerable contributor to the 

economic burden. One study from the US revealed that those with RA and 

depression were 20% more likely to be unemployed than those without 

depression, and had approximately £4000 more in healthcare costs12. It was also 

documented that those with depression were more likely to experience pain, 

which may have an impact on ability to attend work12. There are also the non-

monetary costs, which are arguably the most important. Those are costs that 

impact quality of life for those affected by RA. Often these non-monetary costs 
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are left unmeasured in studies calculating the ‘cost’ of RA due to the difficulty 

in measuring this reliably29.  

 

1.1.4 Immunopathogenesis  
 

The immunopathogenesis of RA is a complex, stepwise process ranging from pre-

diagnosis to chronic inflammation33. This is driven by a host of innate and 

adaptive immune mechanisms, in addition to the stromal compartment2. The 

synovial membrane (SM) lines the joint capsules and secretes synovial fluid (SF) 

which is essential for maintaining joint function. In RA, the SM is one of the most 

affected tissues and undergoes significant structural changes. In healthy 

individuals, the synovial membrane is 1-2 cells thick and is comprised of blood 

vessels and adipocytes, as well as low levels of macrophages and fibroblasts34. 

The synovial fluid is comprised of nutrients and cytokines. In RA, the SM 

increases in thickness to form a pannus, around 10-12 cells thick with infiltrates 

from both innate and adaptive immune systems including macrophages, natural 

killer (NK) cells, B cells and T cells2. Fibroblast-like synoviocytes (FLS) are 

central players in synovial inflammation and mediate many of the processes in 

the RA synovium35.  

 

When FLS are activated they produce IL-6, which contributes to damage36. IL-6 is 

one of the major drivers of disease and exerts its effects on multiple other cells 

and molecules. IL-6 signals via an IL-6 specific receptor and surface glycoprotein 

named gp130. There are two types of IL-6 signalling, named classical and trans-

signalling, which correspond to IL-6 binding to a surface or soluble receptor, 

respectively36. TNFα is another pro-inflammatory cytokine that drives disease. 

Macrophages in the joint are the main producers of this, but is it also released 

by activated T lymphocytes37. Two receptors exist for TNFα to bind to, these are 

named CD120a and CD120b38. TNFα is found in higher concentrations in the RA 

synovium compared to healthy, and studies have shown it to be associated with 

increased bone erosion39.   

 

The dysregulated synovium reduces the oxygen supply, resulting in a hypoxic 

environment, changing from around 8% oxygen to 1%40. This environment induces 

altered cellular metabolism, which in turn increases reactive oxygen species 
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which perpetuates the inflammation. In response to a hypoxic environment, 

immune cells activate proinflammatory signalling pathways such as NFkB41 and 

hypoxia-inducible factors (HIF). HIF are transcriptional factors that are highly 

expressed in the RA synovium, and accumulating evidence suggests that HIFs 

helps to maintain the inflammatory environment in RA42. For example, HIF1α can 

upregulate TLR-4 on macrophages. Moreover, HIF1α has been shown to regulate 

mediators of angiogenesis, another known characteristic of RA pathogenesis43. 

This aggressive, inflamed synovial environment invades the proximal cartilage 

and bone, leading to destruction40. Synoviocytes become chronically activated 

and epigenetically changed, driving this inflammation further. These changes 

also occur in the infiltrating immune cells40.  

 

In RA specifically, the adaptive immune response is contributed to by 

autoantibodies44. These include rheumatoid factor (RF), an antibody against IgG, 

and anti-citrullinated protein antibodies (ACPA) that are mounted against post-

translationally modified proteins44. Interestingly, these antibodies can exist 

before disease presentation. People with RA are classed as sero-positive or sero-

negative, based on the presence or absence of these antibodies, respectively. 

Approximately 50-80% of RA patients are sero-positive to some extent45. The 

binding of these autoantibodies to the Fc receptor within synovium may trigger 

innate immune mechanisms such as the complement pathway.  

 

The erosion of bone is another process which occurs during inflammation, and 

begins early, triggered by the inflamed synovial environment and 

proinflammatory cytokines. This results in the activation of the receptor 

activator NFkB ligand (RANKL). Fibroblasts expressing RANKL are stimulated by 

macrophage-colony stimulating factor (M-CSF) resulting in the differentiation of 

pre-osteoclasts into osteoclasts, which break down bone46. Monocytes in the 

synovial compartment can also differentiate into osteoclasts with stimulation 

from IL-6, TNFα and IL-17. This inflammatory environment can suppress the 

differentiation of osteoblasts, preventing the capacity to form new bone to 

counteract increased osteoclast activity47. Bone erosion in RA is irreversible, 

thus placing high importance on early intervention and appropriate treatment.  
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1.1.4.1 Peripheral Blood Mononuclear Cells 
 

Peripheral Blood Mononuclear Cells (PBMCs) are circulating immune cells within 

blood, with a round nucleus48. PBMCs are comprised of members of both the 

innate and adaptive immune system49. In general, the majority of cells are T 

cells at around 70%, with B cells, monocytes and NK cells making up the other 

15%, 10% and 5%, respectively50. The composition of cell subtypes within PBMCs 

can be influenced by several factors including hormone levels and state of 

inflammation51. The peripheral blood in those with RA has been shown to differ 

in numerous ways from those without, in factors such as cytokine production, 

cell phenotype and methylation status52. In the absence of an antigen, most 

PBMCs circulate as naïve cells without a specific function. The activation state 

and composition of PBMCs can reflect the wider immune condition of someone 

with RA, and thus present an appropriate population of cells to interrogate for 

insights into immunopathogenesis53. Moreover, this circulating population of cells 

are highly important from a research perspective, particularly when 

investigating the influence of pharmacological intervention49.    

 

1.1.4.2 Monocytes  
 
Monocytes make up 10% of circulating peripheral blood cells54 and they originate 

from the bone marrow55. Both in states of homeostasis and inflammation, 

monocytes migrate from the bloodstream into tissues56. In RA, monocytes can 

migrate into the synovium through interaction between CCR2 and CX3CR1 

receptors and CCL2 and CX3CL1 ligands55. Three main populations of monocytes 

exist based on their surface markers. 90% of monocytes, otherwise known as the 

‘classical’ type, belong to one population and are CD14+CD16-. The other 

populations of monocytes are CD14+CD16+ and CD14-CD16+, otherwise known as 

‘intermediate’ and ‘non-classical’ subsets respectively57. Each subpopulation can 

mediate inflammatory processes in a different way. Monocytes play an important 

part in the innate immune system, with various roles including phagocytosis and 

antigen presentation54. While monocytes are great scavenger cells and 

protective in that way, they also have pathogenic mechanisms in inflammatory 

diseases such as atherosclerosis and RA54. Monocytes have the capacity to 

differentiate into macrophages and dendritic cells (DCs)56. In the RA joint, 

monocytes produce a variety of pro-inflammatory cytokines which result in 



	 24	

processes such as polarisation of CD4+ T cells56. In addition, monocytes can also 

differentiate to osteoclasts, which contribute to the destruction of bone via 

dysregulated bone remodelling58. 

 

  



	 25	

1.1.4.3 T cells 
 

T cells make up approximately 70-90% of the PBMC population, most of which 

are CD3+. Within the CD3+ population, there are two main types of T cell: CD4+ 

and CD8+ T cells, the ratio of which is around 2:151. In the normal state, T cells 

will circulate within the PBMC population as naïve or memory cells, without an 

effector function51. If a T cell encounters an antigen, it can differentiate and 

produce effector functions. T cells have been shown to play a significant role in 

RA pathogenesis, what type, and at what stage remains unclear as evidenced 

through risk genes which are involved in T cell activation3. Success of Abatacept, 

which targets T-cell co-stimulatory molecule CTLA4 in the treatment of RA, also 

demonstrates their pathogenic role59. CD4+ T cells have a wide range of 

differentiated phenotypes including, T helper 1 (Th1), Th2, Th17 and Th2251. 

Th2 cells are known to induct antibody responses in B cells, influencing the 

generation of RF and ACPA60. Th17 cells also play a large role in RA 

pathogenesis, after being activated by antigen presenting cells (APCs) and 

cytokines including IL-6 and IL-2161. Th17 discovery shed new light onto RA 

pathogenesis, which was originally believed to be a Th1 driven disease. Th17 

cells produce the cytokines IL17A, IL-17F, IL-21, IL-22 and IL-2662. Th17 cells can 

reside in the gut without eliciting pathogenic effects. However, if self-reactive 

Th cells are primed to become Th17 cells, they can become pathogenic and 

induce a pro-inflammatory response towards a specific organ, such as the joint61. 

Other pro-inflammatory cytokines IL-1 and IL23 have been shown to regulate and 

enhance the Th17 response in animal models of autoimmune diseases63.  

 

1.1.4.4 B cells 
  
B cells play several important immunological roles as part of the adaptive 

immune system; acting as antigen presenting cells (APCs), and producing 

antibodies are just two of these vital roles64. As with other immune cells, with 

the loss of self-tolerance, B cells can ultimately cause harm to the body. For 

example, B cells are known to have a pathogenic role in several autoimmune 

diseases, including systemic lupus erythematosus (SLE) and RA. Specifically, 

experiments with murine models, and the success of rituximab (causes B cell 

depletion) in the treatment of RA, highlight the crucial role of B cells in the 

pathogenesis 65,66. Moreover, the production of cytokine and chemokines, such as 
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CXCL13 and IL4 and IL6 by B cells facilitates the infiltration of other immune 

cells into the joint67. Furthermore, B cells work closely with T cells to exert 

their pathogenic effects, such as the activation of autoreactive T cells64.  

 
1.1.5 Diagnosis   
 
Over the last couple of decades, extensive research has demonstrated that early 

diagnosis of RA, and subsequent pharmacological intervention provides the 

optimal window for successful treatment and offers the best chance of achieving 

a good long-term outcome68,69. There is no diagnostic test which can diagnose 

RA, instead diagnosis is made by a clinician, based on a set of criteria initially 

set out in 1987. With an emphasis on the importance of early diagnosis, the 1987 

RA classification criteria required updating. This was due to the fact the criteria 

were developed in those with established RA, and thus had poor sensitivity for 

those with early synovitis70. As such, the main RA clinical consortiums, The 

European League Against Rheumatism (EULAR) and the American College of 

Rheumatology (ACR) updated their diagnosis guidelines in 201071. Through many 

validation studies, these new criteria have shown to have increased sensitivity 

from previous guidelines, from 31.9% to 72.3%. However, there was a reduction 

in specificity from 92.4% to 83.2%. The overall diagnostic ability is considered 

moderate72. The criteria for diagnosis considers 4 categories: 1) joint 

involvement, 2) the presence of serological markers, RF and ACPA, 3) 

measurements of the acute phase reactants, c-reactive protein (CRP) and 

erythrocyte sedimentation rate (ESR) and 4) duration of symptoms73 (Table 1.1). 

Each category has points assigned for severity. A total score of 6 or more results 

in a diagnosis of RA74. Capturing those who may have had symptoms for less than 

6 weeks, but have other symptoms present, aims to capture people early and 

fulfil the aim to get treatment initiated as soon as possible. Of note, anybody 

presenting with bone erosions does not need the classification criteria to obtain 

an RA diagnosis, as any existing damage indicates presence of disease74.   
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Table 1.1 2010 ACR/EULAR classification criteria 
These criteria consider symptom information from 4 domains: A) joint involvement, B) 
the presence of serological markers, rheumatoid factor (RF) and anti-citrullinated 
protein antibodies (ACPA), C) measurements of the acute phase reactants, c-reactive 
protein (CRP) and erythrocyte sedimentation rate (ESR) and D) duration of symptoms. A 
total score ≥6 results in an RA diagnosis. Adapted from Kay and Upchurch, 201274 
ACPA, anti-citrullinated protein antibodies; CRP, C-reactive protein; ESR, erythrocyte 
sedimentation rate; RF, rheumatoid factor 

 
 

 
1.2 Treatment 
 
1.2.1 Treatment Overview  
 

RA treatment aims to control pain and inflammation, reduce joint destruction 

and achieve remission75. While there is currently no cure for RA, there are a 

wide variety of pharmacological therapies available to try and manage the 

disease. These include non-steroidal anti-inflammatory drugs (NSAIDs) and 

disease modifying anti-rheumatic drugs (DMARDs), both non-biologic and 

biologic. Non-biologic DMARDs offer broad immunosuppression functions, while 

biologic DMARDs (bDMARDs) target immune cells and mediators, such as B cells 

(Rituximab), IL-6 (Tocilizumab) and TNFα (Etanercept) involved in RA 
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pathology76,77. For a drug to be classed as a DMARD in the treatment of RA, it has 

to have demonstrated a reduction in the radiographic progression of disease78. 

Historically, NSAIDs were the only treatment option, and while these eased the 

pain of symptoms, they did not slow progression of disease79. The development 

of biologics over the past 2 decades has significantly improved disease outcome 

for many patients80. It should be noted that until the emergence of the biologics, 

many of the drugs used in RA were not created specifically for the disease and 

unsurprisingly this has contributed to the variation in efficacy of treatment in 

patients (Figure 1.1). Moreover, the heterogeneity between patients further 

influences the disparity in drug response.  

 

The drugs themselves have not only developed over the last couple of decades, 

but the treatment strategy has also changed. RA clinics now adopt a treat to 

target strategy (T2T), developed in 201081 which aims to get patients into 

clinical remission, or at the very least, low disease activity (LDA). Disease 

activity is quantified by various clinical scores. The Clinical Disease Activity 

Index (CDAI) is widely used and considers the number of tender and swollen 

joints, as well the patient and clinician assessment of disease. Another widely 

use measure of disease activity is the Disease Activity Score (DAS) 28 of which 

there are several variations. The number of tender and swollen joints is always 

considered, and other inflammatory markers such as ESR and CRP can be 

interchanged. The T2T strategy involves changing treatment if disease activity is 

not improving within a designated duration82. The T2T approach can be adapted 

to any medication, which may vary from country to country, and it encourages 

an accelerated approach at treatment initiation, which has shown to be optimal 

in RA treatment for the long term83 (Figure 1.2). The RA treatment regimen in 

newly diagnosed patients is particularly structured and during the periods of 

drug assessment, irreversible joint destruction often occurs in the individuals 

that are not responding to therapy. Currently, determining 1st line therapy does 

not consider underlying molecular mechanisms of disease but is based on clinical 

symptoms in addition to economics. bDMARDs are considerably more expensive 

than csDMARDs and are therefore only given in cases of poor efficacy or 

intolerability76.  
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Figure 1.1 RA treatment history  
Schematic illustrating the timeline over which drugs were implemented in the 
treatment of RA. Adapted from reflections on ‘older’ drugs: learning new lessons in 
rheumatology.84 
bDMARDs, biological disease modifying anti-rheumatic drugs; NSAIDs, non-steroidal anti-
inflammatory drugs; tsDMARDs, targeted synthetic disease modifying anti-rheumatic 
drugs  

 

 

Figure 1.2 T2T Strategy  
Schematic demonstrating current T2T strategy in the treatment of RA, A) T2T strategy, 
clinical diagnosis as defined by ACR/EULAR 2010 criteria, desired target is remission, or 
if remission not possible, low disease activity. B) Representation of targeting overall 
inflammation and lack of specific target. C) representation of rituximab targeting CD20 
on B cells. D) Representation of etanercept targeting CTLA4 molecule. E) representation 
of anti-TNF targeting TNF molecule.  Adapted from EULAR recommendations for the 
management of rheumatoid arthritis with synthetic and biological disease-modifying 
anti-rheumatic drugs: 2019 update.82 
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bDMARD disease modifying anti-rheumatic drugs; csDMARDs disease modifying  
anti-rheumatic drugs; HCQ, hydroxychloroquine; JAK, janus kinase, LEF, leflunomide;  
MTX, methotrexate; RA, rheumatoid arthritis, SSZ, sulphasalazine  

 
 

1.2.2 Current Treatment 
 

1.2.2.1 csDMARDs  
 

The nomenclature for RA drug treatment was updated in 2014. Conventional 

Synthetic DMARDs (csDMARDs) are the most common first-line therapy in the 

treatment of RA. This group of drugs comprises of methotrexate (MTX), 

hydroxychloroquine (HCQ), sulphasalazine (SSZ) and leflunomide (LEF). These 

can be given with or without glucocorticoids85. This group of drugs does not have 

a specific therapeutic target but aims to reduce overall inflammation.  

 

1.2.2.2 Methotrexate 
 

MTX, once known as amethopterin, has been used in the treatment of RA since 

FDA approval in 1986 and is now considered the ‘anchor drug’ in RA86,87. MTX can 

be found on the list of the WHO essential medications due to the number of uses 

for which it was not the original indication87. This drug was originally used as an 

anti-cancer agent and the exact mechanism in the treatment RA remains 

unclear, despite 40 years of use in this indication88. The mechanism of action in 

the treatment of Leukaemia, and the most documented mechanism of action in 

RA is folate antagonism, by inhibiting the enzyme dihydrofolate reductase 

(DFTR), essential for production of folate. For leukaemia treatment, MTX has to 

be given in high doses, however at lower doses it was found to be effective in 

RA89. This mechanism reduces purine synthesis and thus causes cell death. This 

has been shown to have effect on T cells90. Folic acid supplementation in RA is 

crucial, to compensate for the reduction in folate91. Many studies have explored 

the addition of folic acid on efficacy of MTX and it was found to have little 

effect, suggesting that folate inhibition is not the only mechanism by which 

inflammation is reduced87. Adenosine signalling and reduction of reactive oxygen 

species are other suggested mechanisms of MTX in the treatment of RA88.  
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MTX has become an anchor drug due to its superior efficacy and tolerability 

compared to other csDMARDs92 and is now the most popular 1st line treatment in 

the world93. It is often given as a monotherapy, but in some cases with the 

addition of other csDMARDs, HCQ or SSZ94,95 and can be given either orally, or 

subcutaneously. While MTX is considered an effective therapy in RA, it is a drug 

with many side effects and some patients need to change drug due to 

intolerability. One of the most commonly documented side effect is problems 

with the gastrointestinal (GI) tract, with approximately 20-70% of people on MTX 

experiencing them96. Nausea is the most common GI tract side effect, with 

vomiting and abdominal pain also widely documented. Interestingly, Calasan and 

others have shown that MTX GI side effects can be associative or anticipatory96. 

Other known side effects include infections, as well as toxicity in the pulmonary, 

haematological and hepatic systems97. Side effects may contribute to non-

compliance with medication, and thus contribute to the known efficacy of the 

drug. A recent study explored MTX adherence and found that often it is not 

optimal and various demographic factors lead to non-adherence98.  

 

While effective in a large proportion of recipients, MTX is not effective in every 

individual, with around 30% of patients switching drug within 12 months, some 

due to inefficacy, and some due to side effects99. A benefit of using MTX as first 

line, and an anchor drug with other medications, is the cost-effectiveness100. 

With MTX being unsuitable in approximately 30%, a biomarker for MTX response 

would be extremely valuable. Furthermore, as discussed previously, it is well 

established that the sooner effective therapy is initiated, the better the long-

term outcome for the patient77. Currently, there is an assay that exists to try 

and determine MTX response in patients. This assay is used to genotype 

thiopurine S-methyltransferase (TPMT) which is involved in the MTX metabolism 

pathway. However, this assay has yet to achieve widespread clinical 

implementation101. This is due to evidence of interaction with other medications 

and varying results between laboratories102.   

  

1.2.2.3 Hydroxychloroquine  
 

HCQ is another of the csDMARDs used in the treatment of RA and is another drug 

with a previous original indication. HCQ was first used in the treatment of 
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malaria. However, after it was found to have immunomodulatory properties, it 

was used in the treatment of autoimmune conditions such as systemic lupus 

erythematosus (SLE) and RA103. HCQ was developed though chemical adjustments 

to Atabrine, one of the first antimalarial drugs, after Atabrine caused severe 

side effects. HCQ has been found to be less efficacious than MTX or SSZ, and 

thus is rarely given as monotherapy, unless it’s in cases of more mild disease or 

in combination with the other csDMARDs103. Similar to MTX, the mechanism by 

which HCQ reduces inflammation in RA is not fully understood104. HCQ is known 

to inhibit ion channels and Schroeder et al have shown that HCQ can inhibit 

calcium dependent potassium channels, which may lead to impaired 

inflammasome activity104. Another study has demonstrated the ability of HCQ to 

supress the inflammatory responses of class-switched B cells105. HCQ achieved 

this effect via TLR9, providing evidence of HCQ on toll-like receptors. T 

follicular helper cells have also been shown to be influenced by HCQ 

treatment106. Many studies have found benefits of HCQ on comorbidities of RA 

associated with the cardiovascular and metabolic systems107. In a mouse model 

of arthritis, HCQ had protective effects against atherosclerosis and a human 

population-based study demonstrated HCQ use was associated with a decreased 

risk of coronary artery diseases compared to non-users108,109. HCQ also has 

associated side effects, one of the main effects being retinopathy. Studies 

remain ongoing to determine an effective dose of HCQ that will not increase risk 

of retinopathy110. Like MTX, as HCQ is used in the early stages of disease, ability 

to predict drug response before use would be beneficial.    

 

1.2.2.4 Sulphasalazine  
 

SSZ is a csDMARD made in 1930 for use in the treatment of ulcerative colitis (UC) 

and RA. SSZ is a drug which combines the antibiotic sulphapyridine and the 

NSAID 5-aminosalicyliac acid111. It has been found to have similar efficacy to 

MTX, however is normally given in triple combination with MTX and HCQ112. One 

of the mechanisms of action of SSZ is inhibition of platelet thromboxane111. SSZ 

has been known to induce sulphonamide hypersensitivity reactions in people 

with RA, higher than that in the normal population113. Like the other csDMARDs 

in RA, the mechanism of action is not fully comprehended. One study has 

illustrated the effect of SSZ on endothelial cell chemotaxis114. This study also 
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demonstrated expression of ICAM-1, IL-8 and MCP-1, known genes involved in 

angiogenesis114. While SSZ is efficacious in UC, the drug effects on the humoral 

immune system in RA is not clear. One study has suggested that in RA, SSZ exerts 

its effects systemically115. This study illustrated reduction of IL-6, in serum of 

patients treated with SSZ. It is thought this contributed to the serum reduction 

on IgA and IgM115. These results came after a previous study showed similar 

results which revealed a reduction in IL-6 levels, 4 months post-SSZ treatment, 

which correlated with a reduction in disease activity116.  

 

1.2.2.5 Combination therapy 
 

The csDMARDs, MTX, HCQ and SSZ are sometimes given in conjunction to treat 

RA, referred to as triple therapy. If 1st line monotherapy MTX is unsuccessful, as 

an alternative to bDMARDs, a combination of csDMARDs can be used. This 

approach has been shown to be more efficacious that MTX alone or combination 

of HCQ and SSZ117. Several clinical trials have tested whether triple csDMARD 

therapy is better or worse than MTX with the addition of the bDMARD, 

etanercept and have found them to be comparable in treating RA118. In terms of 

drug cost, triple csDMARD therapy is superior. However, when assessing Quality 

Adjusted Life Years (QALYs), csDMARD triple therapy is inferior to the MTX-

Etanercept combination119. These two treatment strategies have also been 

studied to understand whether other combinations are less likely to cause side 

effects such as infections and GI disturbances. A study by Quanch et al revealed 

that those treated with triple therapy were more likely to suffer GI side effects 

than those with MTX-etanercept, however they were less likely to suffer from 

infections120. Overall, the literature demonstrates that both these approaches 

work well for the treatment of RA, and in such a heterogeneous population, both 

approaches are beneficial. Yet there is still space for improvement as not all will 

respond to triple therapy.  

 

1.2.2.6 bDMARDs 
 

bDMARDs have been designed to target specific molecular structures involved in 

RA pathology121. The first bDMARD was developed against TNFα. A neutralising, 

chimeric monoclonal antibody was tested in a clinical trial and patients 

responded well to the treatment with considerable reductions in disease activity 



	 34	

measurements. The discovery of the efficacy of this type of treatment in RA 

paved the way for other bDMARDs targeting other molecules involved in 

inflammation122. Since then, 5 anti-TNFα medications have been licenced for use 

in the treatment of RA. Infliximab was the first of these to be used in 

patients123. This a monoclonal antibody that works by inhibiting TNFα from 

triggering the TNF receptor complex. Adalimumab is a monoclonal antibody that 

works in the same way. Both have been shown to have increased efficacy when 

given with MTX. Rituximab (RTX) is another widely used bDMARD used to treat 

RA. RTX is a monoclonal antibody against the CD-20 molecule, which is found on 

B cells. RTX uses a variety of mechanisms to deplete B cells, including apoptosis 

and complement-dependent cytotoxicity124. Complete B cell depletion occurs in 

the blood, but B cells in synovial tissue and bone marrow are only depleted in 

part. As such, response to RTX has been found to correlate with B cell levels in 

synovial tissue125. There is also a bDMARD that targets IL-6. Tocilizumab (TCZ) is 

a monoclonal antibody which targets soluble and membrane bound IL-6 

receptor126. This stops IL-6 binding to the receptor and the signal transducer 

glycoprotein 130 complex, stopping downstream activation of the Janus Kinase 

signal transducer and activator of transcription (JAK-STAT) pathway. While 

bDMARDs have dramatically changed the treatment of RA, they can cost up to 

10x more than csDMARDs127. As such, it is not cost-effective to initiate bDMARD 

therapy for everyone in early disease since csDMARDs are efficacious in many. 

This emphasises the need to find a way to establish who would benefit from 

csDMARD therapy at the beginning of treatment.  

 

1.2.2.7 tsDMARDs 
 

There is now a new drug class called the targeted synthetic DMARDs (tsDMARD), 

which target other small molecules involved in pathogenic pathways in RA. One 

such pathway is the JAK-STAT signalling pathway. This pathway is essential for 

many cytokines128. Upon cytokine stimulation, JAKs are activated and 

phosphorylate STATS. There are 2 drugs that target this pathway currently in 

clinical use. Tofacitinib primarily targets JAK1 and JAK3 family members in vivo 
129 while baricitinib provides reversible inhibition of JAK1 and JAK2 family 

members130. Blocking of these kinases effects the downstream cytokines IL-2, IL-

4, IL-9, IL-15 and IL-21. Tofacitinib has shown efficacy and safety and been 
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effective as monotherapy or in combination with MTX. The RA-BEAM clinical trial 

investigated the safety and efficacy of baricitinib compared to placebo and 

adalimumab131. Baricitinib achieved a reduction in disease activity, with more 

patients having an ACR20 response over placebo at 12 weeks. Baricitinib also 

inhibited radiographic progression of joint damage. The emergence of the 

tsDMARDs has provided an alternative to the conventional DMARDs and may be 

useful for treatment in those who are unresponsive to the csDMARDs.  

 

1.3 The Human Genome  
 

1.3.1 Genome Organisation   
 

The size of the human genome is approximately 3100 million base pairs (bp)132. 

Packaging this DNA into  6µm of a cell nucleus presents a significant structural 

challenge133. As such, the DNA is packaged into a highly-organised structure 

(Figure 1.3)134. This intricate organisation not only serves a structural purpose, 

but a functional one. DNA has three main layers of organisation within the 

cell135. The baseline structure of DNA is the well-known double-helix, consisting 

of 4 bases, joined by a hydrogen bond with a sugar-phosphate backbone (Figure 

1.3A)136. This double-helix is then wrapped around proteins known as histones. 

Multiple histones create nucleosomes, first described in 1974, which can be 

considered the core building block of the genome (Figure 1.3B). A nucleosome 

consists of 147 bp of DNA wound around an octamer of histone proteins137. This 

octamer is made from 2 of each type of histone protein: H2A, H2B, H3 and H4138. 

The DNA can then be wound into a higher order structure called chromatin 

(Figure 1.3C). This level is often referred to as ‘beads-on-a-string’, with the 

beads representing nucleosomes. The chromatin itself is then looped in a 

functional manner (Figure 1.3D). Chromosomes are then arranged into 

topologically associated domains (TADs), which facilitate increased DNA 

interaction between genes within a TAD by regulating enhancer-promotor 

contacts (Figure 1.3E)139. The boundaries of TADs are generally made up of 

highly-expressed genes. While TADs promote gene expression with genes in 

close-proximity, chromatin is also able to be regulated by features from a far 

topological distance. The dynamic chromatin structure allows regulatory factors 

to access the chromatin only when required and ensures there is no unrestrained 
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gene expression137. Finally, the DNA forms chromosome territories. The location 

of the chromosomes in these territories may resemble well-recognised 

positions132. A technique named chromosomal painting helped visualise these 

chromosome territories140. These studies demonstrated that genes on one 

chromosome interacted with genes on the same chromosome, more than they 

would interact with genes on another chromosome. In more recent years, these 

findings have been replicated with higher resolution technologies141. 

Euchromatin refers to chromatin in an open conformation, thus facilitating gene 

transcription, while heterochromatin is condensed often leading to gene 

repression142.  

 

 
Figure 1.3 Schematic of Genome Organisation 
Schematic illustrating the multiple layers of genome organisation within a cell. A) DNA 
double-helix. B) Nucleosomes composed of 147bp of DNA wrapped around 8 histone 
proteins (2x H2A, H2B, H3 &H4). C) 30nm fibre chromatin (beads-on-a-string). D) 
Chromatin loops. E) Topologically associated domains (TADs) consisting of chromosomes. 
F) Chromosome territories which form the 23 chromosomes in the human genome. G) 
DNA organised within the cell nucleus 

 
 
1.3.2 Epigenome  
 
The genome is packaged into every cell in the human body, yet cells can be 

phenotypically different. This can be explained in part by epigenetic 

mechanisms. Historically, epigenetics was defined as changes to the DNA that do 

not alter the DNA sequence itself, and that result in a stable, heritable 
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phenotype143. The definition of epigenetics has become more diverse and it is 

now considered that epigenetics encompasses changes to the chromatin, that 

may involve addition or removal of proteins, or changes to the chromatin 

structure itself144. Others have described epigenetics as ‘the structural 

adaptation of chromosomal regions so as to register, signal or perpetuate altered 

activity states’145. It appears that the evolution of the definition focuses on the 

influence of structure, and consequential influence on gene function. In the 

1990s, research on imprinting genes introduced DNA methylation into the 

‘epigenetics’ definition, followed later by histone modifications146. Epigenetic 

changes include DNA methylation, histone modification and changes to the 

chromosome architecture147.The tails of histone proteins are often susceptible to 

these epigenetic changes in the form of post-translational modifications such as 

methylation and phosphorylation. These modifications can have a direct effect 

on the structure of the chromatin which then results in the overall gene 

expression and thus phenotype, and studies have been able to illustrate this148.  

 

The epigenetic process is highly complex and is reflective of the environment’s 

interaction with the genome 149. Epigenetics have significant influence on 

cellular processes and often vary between different cell types150. With many 

unanswered questions left in genome research, many propose these questions 

could be answered from findings in the growing epigenomic research domain. 

Recently, epigenome wide association studies (EWAS), which are similar to 

genome wide association studies (GWAS) have been used to explore the genome 

for epigenetic impact in disease151. EWAS has an additional level of complexity 

over GWAS due to the dynamic, reversible nature of the epigenome. It is also 

believed that studies of the genome which have taken place already could be 

enhanced with additional epigenetic data149. Some epigenetic changes are 

associated with increased gene expression but in contrast some are associated 

with repression of gene expression. In general, both epigenetic ‘writer’ and 

‘eraser’ proteins have been described that control these changes in gene 

expression. ‘Writer’ proteins cause changes to gene expression and transcription 

and ‘eraser’ proteins remove these epigenetic modifications24.  

 

Research has shown that epigenetic changes can be a contributory factor in the 

development of many autoimmune diseases147. In this case, epigenetic 
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modifications can influence processes such as immune cell function. Epigenetics 

could reveal a link between the known combined influence of genes and 

environment in RA24. The rheumatology field has seen considerable advances in 

epigenetics in recent years due to the development of many technologies 

allowing high-throughput analysis of data152. The epigenome is susceptible to 

changing characteristics of disease, as well as different therapies used to treat 

conditions such as RA. This presents a wide spectrum where epigenetics could be 

consulted for precision medicine application153. It is widely believed that 

understanding these mechanisms will contribute to the better management of 

RA in the future154.   
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1.3.2.1 Methylation 
 

DNA methylation, with the most technologies available to explore, is the best 

understood epigenetic modification155. Methylation is generally considered to be 

a stable epigenetic modification which is also heritable and can be a mechanism 

of regulation in cellular processes such as differentiation153. This epigenetic 

change has been well documented and has been observed in autoimmune 

diseases such as RA. DNA methylation is caused by the addition of a methyl 

group to the cytosine or adenine at position 5. Methylation of DNA is prevalent in 

several cell types involved in RA pathogenesis with synovial fibroblasts being one 

type affected156. The consequence of DNA methylation varies and can affect 

repression of transcription which can result in disease pathology. Glant et al 

performed one of the first studies into epigenetic modifiers in RA. This was a 

genome wide methylation profiling study which took place in PBMCs. The study 

indicated that methylation changes at the MHC locus increased the risk of 

developing RA154. It was shown that enzymes that can modify chromatin were 

found in genes that are known to be expressed in RA. These include 

acetyltransferases, methyltransfersases and histone kinases154. Another study has 

illustrated the major impact that one minor epigenetic change can have in RA. 

They showed that methylation at a single site in the promoter region for CTLA-4 

in regulatory T cells (Tregs) could ultimately result in the failed activation of the 

immune modulatory kynurenine pathway157. It has also been recognised that 

methylation has an influence in RA by developing apoptosis resistant FLS80. Many 

of the methylation studies carried out to this day have lacked substantial 

numbers and have therefore been considered preliminary. 

 

1.3.2.2 Histone Modification 
 

Histone modifications refer to the post-translational addition or removal of 

proteins on the histone NH-2 terminus, or histone ‘tail’. A histone code 

hypothesis was proposed in 2000, which suggested patterns of these 

modifications could influence downstream biological processes in different 

ways158. Histone modifications include methylation, acetylation, 

phosphorylation, ubiquitination and sumoylation. Depending on the combination 

and number of these modifications, genes can become 1 of 4 states that are 

termed active, poised, bivalent or repressed. These states have been shown in 
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studies in CD8+ T cells159.  

 

The functional implications of methylation on histones has been widely 

investigated, and has shown methylation can result in repression or activation of 

genes. Methylation occurs on lysine or arginine residues on the histone tail. 

Mono-, di or tri-methylation has been shown to indicate enhancers; in contrast 

trimethylation of H3K27 (H3K27me3) which is a known repressor mark. Histone 

methlytransferases are the enzymes responsible for facilitating the transfer of 

methyl groups. Acetylation of histone tails is widely considered to be a mark of 

gene activation. H3K27ac is a well characterised histone mark found enriched at 

active enhancer sites160. Histone modifications of the genome are regulated by 2 

enzymes, histone acetyltransferase (HAT) and histone deacetylase (HDAC)161. 

Phosphorylation occurs to threonine or serine residues and is another 

modification known to be associated with activation162. Ubiquitination occurs to 

lysine residues and can be associated with either transcriptional repression or 

activation.  

 

Many studies of histone modifications in RA have taken place in the synovial 

compartment. Studies in synovial fluid have illustrated reduced HDAC activity in 

RA compared to healthy controls163. Research in PBMCs has shown there is an 

alternative equilibrium of these enzymes in PBMCs of RA patients compared to 

the healthy population161. A study by Gillespie et al illustrated increased levels 

of HDAC in PBMCs164. Levels of these enzymes can give an indication of the levels 

of transcription of cytokines responsible for inflammatory responses in RA. 

Research by Toussirot et al has suggested that different RA therapies can exert 

varying epigenetic modifications in the form of histone acetylation and 

deacetylation24. In this study they showed that TNFα inhibitors such as Infliximab 

increased histone acetylation in the nucleus but alternatively, RTX, increased 

both acetylation and deacetylation enzymes161. Despite this research, the 

consequences of the changing levels of these enzymes with RA treatment 

remains to be fully investigated. 

 
1.3.3.3 Chromatin loops  
 
Chromatin architecture is the overarching epigenetic feature to the marks 

already described. As discussed, chromatin loops can be considered the third 
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level of organisation within the nucleus (Figure 1.3D). Chromatin loops offer an 

interesting mechanism to investigate the epigenome, as they can encompass 

methylation sites, histone modifications and miRNAs and can regulate how these 

features interact with each other. Study of chromatin loops clearly demonstrates 

the intricate relationship between genome structure and function. Simply, 

chromatin loops are formed when 2 parts of the genome, separated by an 

intermediate DNA sequence, are brought into close physical proximity165. Gene 

regulatory sequences are often not located beside the gene they control. When 

necessary, loops allow promotors and enhancers to be brought into proximity to 

a specific gene to permit activation and transcription165. Studies have 

demonstrated this, showing DNA is enriched with chromatin loops at active 

enhancer and promotor sites and are less are likely to be found at inactive sites 

or sites with histone modifications that cause repression166. Research into the 

drosophila genome indicated that loops were approximately 80kb in size, and 

comprised of 400 nucleosomes on average167. It was once considered that 

chromosome looping could only occur in cis, within a chromosome. However, 

studies have demonstrated regulation of a gene could occur from regulatory 

elements located several megabases (mb) away168. These larger distance, 

interchromosomal interactions are known as trans.  

 

Investigations into the β-globin cluster were the first to provide insight into 

distal regulation of the genome. The interest in the β-globin loci, mainly due to 

its involvement in the blood disorder Thalassemia, provided the opportunity to 

discover the role of chromatin looping in human gene regulation169. Deletions in 

the DNA far away from the location of the β-globin gene still resulted in the 

development of Thalasemmia alluding to the role of distal regulation170. It was 

through this finding that the locus control region (LCR) was found. This is a 

group on β -globin gene arranged in a way on the chromosome that facilities 

development in a timely manner. A study by Cater et al was the first to show 

evidence of chromatin looping in LCR-β-globin gene contact171.  

 

One of the first demonstrations of interchromosomal interactions was in the 

alternative expression of cytokine genes. The study by Charalampos et al 

revealed that dynamic chromatin organisation allowed the promotor of the IFNy, 

located on chromosome 10 to interact with regulatory elements of IL-4, located 
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on chromosome 11. This interaction has implications for the polarisation of CD4+ 

T cells to Th1 or Th2172,173. 

 

Following on from these studies, proteins which are involved in the formation of 

chromatin loops were discovered. These are called boundary elements, or 

insulator proteins174. CCCTC-binding factor (CTCF) is one of the best documented 

insulator proteins175. It has been found to be a highly conserved nucleic acid 

binding protein, with approximately 40,000 binding sites throughout the human 

genome176. CTCF has been found to separate TAD boundaries177. The 11 zinc 

fingers of CTCF means it can interact with DNA in various ways. Studies have 

explored this binding and identified two motifs, M1 and M2. The M1 motif 

engages 4-7 zinc fingers, and M2 is found upstream with 9-11 zinc fingers. Where 

both these motifs can be found, it has been shown that CTCF is bound to DNA 

with very high affinity178. Along with insulator function, CTCF can facilitate 

chromatin looping. Tens of thousands of the CTCF sites throughout the genome 

have been found to be co-occupied by a protein complex called cohesin179. 

Cohesin is a ring-shaped complex made from multiple proteins that plays a role 

in DNA replication. The cohesin ring ensures chromosome segregation during 

mitosis and meiosis, protecting the genetic information that gets passed on180. It 

was also discovered that cohesin can bind to CTCF and facilitate chromatin 

looping181.  

 

In most cases, chromatin loops are believed to support gene transcription by 

priming genes to contact their promotors, however loops have also been known to 

play an inhibitory role165. Loops can also serve a purpose of bringing a promotor 

into proximity with its terminator. This has been demonstrated in a study with the 

breast cancer associated, BRCA1 gene and the maternal Igf2 gene. This should a 

chromatin loop can ensure the gene promotor is kept separate from its 

enhancer182,183. Regulated DNA architecture has also been shown to have a role in 

DNA repair184. Research has suggested that these chromatin loops, or when taken 

together known as chromatin conformation signatures (CCS), are more informative 

and stable epigenetic marks than other alterations to the genome148.  

 

There is evidence in the literature that demonstrates chromosome loops can both 

be stable and dynamic structures. Challenges in understanding these two positions 
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lies with the technologies currently available. While high-resolution ‘C’ 

technologies have their advantages, they can only provide a snapshot of the 

epigenome132. Studies with CTCF demonstrated that while CTCF and cohesin 

facilitate stable chromatin loop structures, they are dynamic and the 

conformation can be lost when CTCF and cohesin disassociate185. Studies of the 

human pituitary growth hormone have demonstrated patterns of stable of human 

gene expression, as facilitated by DNA architecture186. The reproducibility of TAD 

maps in studies has also strengthened the hypothesis that chromatin loops are 

stable. However, live cell imaging has illustrated the dynamic nature of loops. 

Overall, evidence suggests most chromatin is stable for a short period of time, 

before transforming. Many questions remain to be answered, particularly 

chromatin dynamics in the context of disease.  

 

1.4 Precision Medicine  
 
Precision medicine is a concept of basing clinical decision on measurable 

molecular biomarkers. It could be argued that medicine has always aimed to be 

‘precise’, and this has been successfully demonstrated in blood transfusion and 

organ transplantation for decades. However, it has only been in recent years 

that the genome has been investigated for clues to prognosis of disease or 

treatment response. Treatment of the individual is the ultimate aim for 

clinicians, yet due to the nature of current clinical trials that are catered to a 

population, this can prove difficult187. The completion of The Human Genome 

project in 2003 significantly contributed to the explosion of genomic exploration 
188. The percentage of the genome that contributes to drug response is thought 

to range between 20% and 95%150. Studies involving this type of genetic 

exploration combine three important areas: the right population, the suitable 

technology, and finally, the collection of data150. Biomarkers that are identified 

can be incorporated into algorithms to predict prognosis or response to 

treatment for patients. Studies have shown that it is becoming increasingly 

straightforward to interrogate the genome but the translation of important 

findings into the clinic has proven challenging. This type of research has led to 

the current era of ‘big data’ with large datasets, which incorporate genomic 

information and patient characteristics. Some have described this time as a 

“biomarker revolution” and this has resulted in approved biomarkers in some 
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cancers. Despite this, it is thought that much of the germ line genetic variation 

available currently is not suitable for the implementation of precision medicine 

clinically. GWAS and identification of single nucleotide polymorphisms (SNPs) 

were one of the first types of study in precision medicine. These look to identify 

variant alleles which are associated with disease189. 

 

With the advancement of many genomic technologies, determining biomarkers is 

becoming easier than before. For a biomarker to be successful there is a certain 

number of criteria that must be met and studies must successfully illustrate this. 

For a biomarker to be clinically useful it must be consistently accurate, easily 

quantifiable, easily replicated and economically viable. Importantly, the 

biomarker to diagnose disease or predict treatment response must be superior to 

any existing methods190. Biomarker kinetics is an area of the precision medicine 

field that has not been investigated by many up until now. It is important to 

understand that biomarkers are dynamic and can change over time. 

Furthermore, enough statistical power is fundamental in biomarker studies. This 

means that specificity and sensitivity must be high enough i.e. as little as 

possible false negatives or false positives results, respectively190.  

 

1.4.1 Precision Medicine Technologies  
 
1.4.1.1 Microarray   
 

Microarrays have existed since 1995 when they were first documented by Schena 

et al191. Many technologies have been developed since, yet microarrays are still 

used today, and some consider them to be one of the fastest growing genomic 

technology192.The DNA microarray provided a more straight-forward and high-

throughput way to investigate the genome than normal sequence analysis, and 

could be termed sequencing by hybridisation193. Microarrays can be used to 

explore differences in gene expression, aiding biomarker research. The three 

main types of array are DNA, RNA and protein. The basis of the array is 

complementary hybridisation of DNA from a sample, to short complimentary 

probes printed in large numbers on a chip. The first microarrays conducted by 

Schena and others used complimentary DNA on a glass slide, however, now 

shorter oligonucleotides can be used which have a higher specificity194. This 

reaction creates images which can be analysed. There is both an in-silico, and 
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‘wet lab’ approach involved in microarray experiments. The in-silico part is 

involved in the array design, with the ‘wet lab’ part applying the desired 

samples to the microarray. One of the two main approaches of making DNA 

arrays are light-directed chemical synthesis and microarray spotting195. The 

light-directed chemical synthesis was first documented by the founder of 

Affymetrix in 1991 for a peptide array. This led to the generation of the first 

oligonucleotide array prepared in this way193. The first array was 1.25cm2 in size 

and was printed with 256 oligonucleotides. Microarray technology is still being 

developed and it expected that the platforms for microarrays will be reduced in 

size, creating ‘nanoarrays’196.   

 

1.4.1.2 3C technologies  
 

In the last decade, analysis of the complex chromosome architecture and the 

influence it has on gene expression has increased our understanding of the 

epigenetic influence in drug response. Epigenetic research has benefited from 

the progress of genomic technologies, and genomic architecture can now be 

visualised in enhanced detail. Originally, loops had to be visualised through 

laborious, lower–throughput, methods such as electron or light microscopy. 

Fluorescence in situ hybridisation (FISH) offers an opportunity to view multiple 

loops at one time, however, the protocol for staining may impact the chromatin 

conformation197. One method of this enhanced visualisation, named chromosome 

conformation capture (3C), first described in 2002, has allowed loops in DNA to 

be investigated197 (Figure 1.4). 3C is based on formaldehyde cross-linking of 

proteins and DNA. Cross-linking will be achieved for areas of the genome that 

are physically touching. 3C measures the frequency with which areas of the 

genome are cross-linked. A restriction enzyme is then applied to the cross-linked 

DNA, followed by ligation. The cross-linked DNA will be more likely to ligate over 

non-cross-linked, i.e. physically touching DNA will be ligated. These ligated 

fragments are subjected to a PCR reaction and gel electrophoresis allows 

visualisation of ligated fragments, which were once loops in the genome. 3C can 

be used to understand spatial organisation within the genome, as well as 

interactions between regulatory elements198. Since the first ‘C’ technology was 

published in 2002, there has been a rapid expansion of ‘C’ technologies. Often 

3C is referred to as a one-to-one technology, and other C technologies have 
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allowed one-to-all (4C) and all-to-all (Hi-C)199 visualisation. 3C was firstly carried 

out in yeast, followed by the mouse human β-globin loci200. RA 3C has also been 

used to demonstrate how chromatin looping regulates expression of Th2 

cytokines IL-4 and IL-13 in T cells201. While many other ‘C’ technologies have 

overlapped the original 3C, it still has place in biomarker discovery and precision 

medicine implementation. The protocol for 3C is less complex and laborious, and 

therefore economical. 

 
Figure 1.4 Schematic of Chromosome Conformation Capture (3C) protocol 
Schematic representing the stages involved in the generation and visualisation of 3C 
DNA libraries. A) Formaldehyde is used to cross-link physically touching DNA. B) A 
restriction enzyme is used. C) a ligation enzyme is used to ligate the 2 DNA pieces 
together. D) a non-genomic, 3C template, representing a chromatin loop, is generated 
from the 2 physically touching DNA regions. E) Primers designed for both parts of the 
loop are used to amplify the template. F) PCR products are visualised on a gel, a band 
at the expected size represents the existence of the loop  
3C; chromosome conformation capture; PCR, polymerase chain reaction 
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1.4.2 Liquid Biopsy  
 
The ‘liquid biopsy’ is a concept most commonly known in the detection of cancer 

biomarkers, however is becoming more popular in other diseases such as 

Alzheimer’s and autoimmune conditions202,203. Liquid biopsies use the blood as 

the source of genetic information. The blood holds a vast range of biomarker 

candidates including DNA, RNA, miRNA and circulating tumour DNA204. Blood 

samples as biomarkers provide advantages over tissue biopsies. These include a 

normally less invasive procedure and therefore more comfortable experience for 

the patient, and often less reliable on complex tissue imaging equipment203. 

Moreover, a blood sample offers the opportunity for additional testing which 

may lead to a more confident molecular analysis, and blood processing protocols 

are widely used across the globe in the clinical and industrial setting202. It has 

been suggested that liquid biopsies will provide a health economic benefit, for 

the ability to better provide earlier diagnoses and detect poor response to 

treatment205. In RA, it could be considered that the equivalent to a tumour 

biopsy is the synovial biopsy. This involves removal of a small part of the 

synovial lining in the joint. As with tumour biopsies, this is an invasive procedure 

and can cause discomfort, in an already inflamed joint. However, synovial 

biopsies have been used in precision medicine studies in RA. These have profiled 

lymphocytes, macrophages, FLS and cytokines from the synovium206. While these 

have yielded results, some researchers have transitioned to looking at liquid 

biopsy from the blood in the hope of identifying better predictive biomarkers. 

Circulating immune cells in RA can be considered as a liquid biopsy, and they 

have the potential to reveal much about the disease state. From an RA liquid 

biopsy, various methods have been applied such as gene expression profiling and 

immunophenotyping. Some promising results have been achieved from this work, 

such as the discovery that a group of interferon response genes could predict 

non-response to RTX207 and the correlation of decreased circulating CD28+ T cells 

with abatacept response208. Nevertheless, there is still no clinically validated 

biomarker being used to aid the treatment regimen in RA today.   
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1.4.3 Precision medicine in Rheumatoid Arthritis  
 

It has been recognised that there are a significant lack of biological markers for 

RA75. Physicians are becoming increasingly aware that the genome or 

alternatively the epigenome could be consulted to improve the treatment 

regimen and long-term outcome for patients80. It is hoped that by increasing the 

understanding of the underlying molecular mechanisms of disease that 

biomarkers could be identified with the potential of predicting prognosis of 

disease or more excitingly the response to therapy. Ultimately, epigenetics 

alone is not responsible for the development of RA, it is a multifactorial disease 

influenced by the environment, risk genes and aging. RA is an extremely 

complex autoimmune disease and patients are subject to a unique combination 

of contributory factors which can alter their response to treatment, thus 

exemplifying the need for precision medicine. Despite the barriers and 

reservations to this, the transformational impact of precision medicine in 

oncology practices should hopefully pave the way for other disease areas which 

have the potential to see the benefit in the future. GWAS studies have 

successfully identified over 100 genetic loci that can be associated with RA. 

However, these loci do not always help to gain a better understanding of 

underlying disease mechanisms and therefore novel therapies are rarely 

produced. Moreover, cell types where changes in genetic loci exist cannot be 

identified through GWAS209. Although considerable GWAS have taken place in RA, 

there remains a large proportion of the heritable component of RA to be 

explained. The biggest challenge in genomic research in RA is linking different 

components together, i.e. matching the genomic data together in addition to 

potential proteomic and metabolomics data. Unique methods will need to be 

found to address this challenge. For precision medicine to be a success, 

researchers, healthcare professionals and industry representatives will have to 

collaborate successfully. The most plausible predictor of precision medicine 

clinically will not only include genetic information but will include other clinical 

markers and take into consideration epidemiological data. 

 

Precision medicine approaches have been explored to predict prognosis, disease 

severity and treatment response. A recent study used ‘-omic’ approaches to 

investigate a potential biomarker for pannus formation. They revealed 
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epigenetic alternations correlate with the aggressive RA phenotype, however 

exact mechanisms need to be clarified210. Predictive models using clinical and 

demographic characteristics have been investigated. Hyrich et al found males on 

concomitant MTX responded better to anti-TNFα therapy, etanercept and 

infliximab. Current smokers with high Health Assessment Questionnaire (HAQ) 

scores were predicted to be non-responders to anti-TNF therapies22. However, 

these characteristics alone would not be able to predict response with enough 

certainty. One study investigated the RA synovium for levels of TNFα transcripts. 

They found that high levels of TNFα transcripts correlated with high disease 

activity, and a worse response to first-line therapy211. This study alludes to the 

benefit of including synovial markers in the stratification of treatment in RA, 

however is dependent on standardisation of synovial biopsies. A more recent 

study by Humby et al. investigated cellular and molecular biomarkers from the 

synovium. They showed that in treatment of naïve patients, 3 synovial signatures 

existed in RA patients. These three subtypes were classed as lympho-myeloid, 

diffuse-myeloid and pauci-immune (few immune cells with dominant stromal 

cells)212. The discovery of these biomarkers was aided by immunohistochemistry 

methods, which is not the most high-throughput precision medicine tool.  

 

Several studies have been conducted to find a biomarker for csDMARDs. One 

study analysed naïve T cell subsets in PBMCs from people with early RA. They 

found patients with a higher naive T cell frequency responded better to MTX 

than those with lower T cell frequencies. However, this study was limited by 

patient numbers213. A recent study combined demographic, clinical and 

psychological variables in an attempt to predict MTX non-response in the 

Rheumatoid Arthritis Medication Study (RAMS)99. This study aimed to capture the 

‘real-world’ RA population. Limitations of this study include the high-level of 

non-response, which may be due to deviations from the normal RA treatment 

regimen of MTX escalation. The classification models did not achieve suitable 

sensitivity and specificity values99.  Overall, the epigenetic research landscape in 

RA looks very promising. Costs of this research are decreasing dramatically, 

alongside increased throughput and resolution of genomic technologies214. It is 

quite likely the RA treatment regime will include DNA analysis in the future. This 

addition should ensure a much more positive outlook for RA patients worldwide.  

 



	 50	

1.4.4 EpiSwitch™  
 

EpiSwitch™ is proprietary technology, developed by Oxford BioDynamics Plc 

(OBD) to facilitate the discovery of the blood based biomarker, specifically 

chromosome conformation. This platform has been used successfully to identify 

biomarkers in several cancers including thyroid cancer and melanoma, as well as 

neurodegenerative disorders such as Amyotrophic lateral Sclerosis (ALS) and 

Huntingtons disease215 216-218. This proprietary technology uses algorithms to 

predict sites in the genome where chromosomal loops are likely to occur. This 

differs to other CCS discovery, and by eliminating the need for a genome wide 

screen, allows more specific biological questions to be asked. The optimised 

discovery pipeline begins with the algorithmic approach for EpiSwitchTM sites, 

then identification of areas of the genome possibly implicated in the disease in 

question. A microarray platform is then utilised to observe chromosome 

conformation in samples of interest. This is followed by statistical analysis to 

inform about the most appropriate biomarker to take forward. Once these 

candidates are chosen, PCR primers are designed and PCR performed. Next, 

extensive statistical analysis is undertaken to find a CCS with the best potential 

for clinically relevant stratification. Finally, this can then be validated in an 

independent cohort. Importantly, this pipeline was successfully used to identify 

a 5-loop CCS with the ability to predict response or non-response to MTX in a 

treatment naïve RA cohort219 (Figure 1.5). This technology aims to generate 

informative CCS biomarkers from discovery to clinical validation and ultimately 

clinical implementation. These biomarkers can be prognostic, diagnostic or 

predictive. If biomarkers can be used to stratify patients before entering into 

clinical trials, it is hoped that the success rate will substantially increase.  
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1.4.5 EpiSwitch™ in Rheumatoid Arthritis 
 

The MTX response CCS is made up of 5 loci (IL17A, CXCL13, IL21R, IL23 and 

IFNAR1)(Figure 1.5), known to be involved in RA pathogenesis219. These signature 

loci are primarily involved in cytokine and chemokine pathways. This biomarker 

could predict MTX non-response with 90% sensitivity. The discovery cohort was 

made up of 59 patients (30 responders and 29 non-responders), and the blinded-

validation cohort, 19 patients. All patients were from the Scottish Early 

Rheumatoid Arthritis (SERA) cohort. This is a pan-Scotland, inception cohort of 

over 1,200 patients. Various clinical samples and information were taken and 

recorded from baseline, every 6 months. This biomarker was refined from a list 

of over 13,000 loop anchor sites across 309 genetic loci, many of which are 

known to be associated with RA. Statistical refinement reduced 100 to 30 loci. 

These were then reduced to the final 5. This study was the proof-of-principle 

that the structural epigenome could be used to predict MTX response in 

treatment naïve patients. This study opens the opportunity for investigating the 

relationship between chromatin conformation structure and function in RA, and 

a basis for validating this biomarker in other cohorts. While the biomarker 

discovery approach is considered robust, the sample number used in discovery 

and validation cohort could be considered small. Therefore, there is merit for 

exploring the signature in a higher number of patient samples. Moreover, the 

consequence or cause of these loops in RA patients is not known. Various 

methods could be used to shed light on this, which could reveal more about 

molecular biology underpinning MTX response and RA pathogenesis.  
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Figure 1.5 CCS for MTX response prediction 
This 5-loci CCS has the capacity to differentiate responders and non-responders to MTX 
in treatment-naïve patients with RA with 90% sensitivity. Schematic of CCS is 
representing the signature in both response groups. Numbers represent EpiSwitchTM sites 
on the genome. A) CXCL13 loop is present in non-responders, Chr 4. B) IL17A loop is 
present in non-responders, Chr 6.C) IFNAR1 loop is present in responders, Chr 21. D) 
IL21R loop is present in responders, Chr 16. E) IL23 loop is present in responders, Chr 
12. For coordinates, see Appendix. 

 

1.4.5.1 IL17A 
 

IL17A is part of the IL17 family, that has 5 other members (IL17B-F). IL17A 

signals through the IL17 receptor on Th17 cells. The receptor exists as a 

heterodimer with IL17C220.This heterodimer has been found on fibroblasts, 

endothelial and epithelial cells221. A number of cells from the adaptive immune 

compartment can produce IL17A, namely CD3+, CD4+ and CD8+ T cells, NK cells, 

and Th17 cells222. IL17A production has several pathogenic implications in RA, 

including maturation of osteoclasts and fibroblast-like synoviocytes, as well as 

activation of macrophages, neutrophils and B cells223. Studies have suggested 

that presence of IL17A in RA synovium is a predictor of disease progression224. 

While IL17A blockade has been shown to be very effective in the treatment of 

autoimmune conditions such as psoriatic arthritis and psoriasis, blockade in RA 

has been less successful. Trials of secukinumab, an IL17A monoclonal antibody, 

did not have as profound therapeutic effects that other cytokine blockade 
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therapies have had, such as IL-6 and TNFα223. One study demonstrated that 

secukinumab was better than placebo in RA, but not superior to anti-TNFα 

therapy225.   

 

 

1.4.5.2 CXCL13 
 

CXCL13 is a chemokine that belongs to the CXC family. This chemokine is 

chemotactic for B cells and interacts with the receptor CXCR5 on B cells to have 

its effect226. The role of this chemokine in B cell chemotaxis places it in position 

of RA pathogenesis. The levels of CXCL13 in RA serum has been shown to high in 

both early and established RA227. Jones et al believe CXCL13 to be correlated 

with RF in RA patients but show no correlation to other demographic or 

serological markers such as ACPA. One study has demonstrated that CXCL13 

works synergistically with CCL20 to recruit B cells to the synovium228. Lymphoid 

neogenesis is another process which implicates CXCL13 in RA pathogenesis229. 

Several studies have been conducted which demonstrate CXCL13 role in this 

process. CXCL13 can also be produced by CD4+ T cells, another cell type 

important in RA pathogenesis230. This study aimed to understand the mechanism 

by which CXCL13 is produced by CD4+ T cells. They found SOX4 was a 

fundamental transcription factor for this process and has associated this with the 

formation of FLS at inflammatory sites in human, such as synovium in people 

with RA. Similarly, Kobayashi et al demonstrated that CD4+ T cells can produce 

CXCL13 and are involved in ectopic lymphoid neogenesis at inflammatory 

sites231. The CXCL13 receptor CXCR5, is also expressed on Tfh cells and it has 

been suggested that this essential for the development of RA. Interestingly, 

CXCR5 deficient mice are unable to develop Collagen induced arthritis (CIA)232. 

This study has shown the potential for targeting of the CXCR5 receptor for 

treatment in RA. As the only known ligand for the receptor is CXCL13, an 

antagonist for the receptor would have little pharmacological competition232,233.  

 

CXCL13 has shown promise of its predictive potential in several studies to date. 

Mainly, it has been identified as marker for predicting disease activity or 

potential outcome234,28. Largely, this may be due to the high levels of CXCL13 in 

synovial tissue and fluid in individuals with RA232. Additionally, several studies 
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have attributed CXCL13 to predictive capacity to TNFα inhibitors in the 

treatment of RA235. 

 

1.4.5.3 IL21R 
 

IL21R belongs to the IL-2 cytokine family. The receptor is a heterodimer, 

consisting of an alpha and gamma chain which is shared by other cytokines 

including IL-2, IL-4 and IL-9236. The IL21R is structurally similar to IL-2R and IL-

15R (Li et al., 2006). The IL-21 receptor can be found on multiple immune cells 

including DCs, NK cells, T cells and B cells237. IL-21 is mainly produced by CD4+ T 

cells and NK cells and is proinflammatory in nature238. IL-21 signals through the 

IL21R, inducing the STAT pathway239. Activation of this pathway results in 

expansion of B cells and downstream production of antibodies, class switching 

and plasma cell differentiation240,239. IL21R expression has been found to be 

higher in RA and systemic sclerosis compared to controls241. More recently, IL21R 

has been enhanced in other inflammatory conditions such as tendinopathy238. 

IL21R has also been found to be upregulated in synovial tissues of people with RA 

but not osteoarthritis (OA)241. There have been studies investigating the efficacy 

of IL21R blockade in the treatment of RA and other autoimmune diseases. 

Animal models have demonstrated that blockade of the IL-21/IL21R pathway was 

effective in reducing RA disease activity as well as having an inhibitory effect on 

cytokine production in vitro242. Mouse models lacking IL21R were found to be 

unable to develop spontaneous autoimmune disease. Humoral immunity was also 

comprised in these mice, highlighting the role of IL-21 in antibody production243. 

A recent study demonstrated an increase of IL21R on naive and memory B cells 

in RA in comparison to healthy controls. This was associated with an increase in 

pSTAT3 levels. The increased IL21R was attributed to increased SP1244.   

 

1.4.5.4 IL23 
 

IL23 exists on the Th17 axis along with IL-21 and IL17A. IL23 is a member of the 

IL-12 family of cytokines245. The structure of the cytokine consists of 2 subunits: 

IL23 p19, which is exclusive and the IL-12p40 subunit which is shared with 

IL12246. Antigen presenting cells, monocytes, macrophages and DCs are the cell 

types that produce IL23 the most. When IL23 binds to its receptor, IL23R, it 

activates the JAK-STAT pathway, specifically JAK2 and subsequent STAT3 and 
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STAT4245. The receptor is made up of IL23 -R and IL-12R-αβ1 complex246. This 

leads to the release of pro-inflammatory cytokines, IL17A and RORγt247. It is 

thought the role for IL23 is maintenance, development and survival of Th17 cells 

via a positive feedback loop that involves TNFα, IL-6 and IL-1β247. Studies 

involving the EAE model were crucial in revealing that the IL12-IFNy axis was not 

responsible for initiation of autoimmunity, but was in fact the IL17-23 axis248,249. 

This cytokine can be found in the synovial fluid and serum of those with RA, and 

studies have found it to be significantly higher than healthy individuals250. The 

levels of IL23 in the serum have been shown to correlate with severity of disease 

activity246. The implication of IL23 in inflammatory arthritis has been evidenced 

in the CIA model of arthritis. Overexpression leads to development of CIA while 

reduction is protective of CIA. This study showed that while IL23 plays a role in 

the development of disease, once established, IL23 has less of a role. This was 

shown by inhibition during disease not reducing disease severity251. IL23 has also 

been shown to have a role in the production of autoantibodies, hence its role in 

the early stages of disease251. In addition to its role in disease onset, it has been 

suggested that IL23 could play a role in disease flare. This is due to successful 

reduction of disease severity with blockade of IL23 251. Studies have also shown 

IL23 to have osteoclastogenic activity, contributing to the bone erosion in RA. 

While it’s role in RA pathogenesis has been demonstrated, pharmacological 

targeting of IL23 has been unsuccessful in showing any benefit clinically. Two 

antibodies have been tested in a stage II clinical trial. One was a monoclonal 

antibody targeting the IL23 12/23 p40 complex, and the other targeting the p19 

subunit alone252.  

 

1.4.5.5 IFNAR1 
 

The IFNAR receptor is the receptor for the antiviral cytokines, named 

interferons. IFNAR1 and IFNAR2 make up the single-membrane spanning IFNAR 

receptor which is ubiquitously expressed253. The IFN receptors act by increasing 

binding of ligands. Once the receptor is activated, intracellular signalling 

cascades are activated which results in the activation of the STAT pathway254. 

There are three types of interferons in humans, classed as type I, type II and 

type III. They all signal through the IFNAR receptor, with differing binding 

affinities255. Type I interferons are heavily involved in the regulation of both the 
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innate and adaptive immune response. Namely, macrophages, NK cells, B cells, 

T cells and DCs are aided in their differentiation and proliferation by type I 

interferons256. IFNAR1 has been investigated in various autoimmune conditions. 

One study found some patients with RA have a higher proportion of interferon 

response genes compared to other patients257. Several studies have indicated the 

presence of a type 1 interferon signature in RA. One study has shown that one 

subgroup in RA, with upregulated activity in the innate immune system, 

complement cascades and fatty acid metabolism258. Another study reported 

IFNAR1 blockade has been utilised in lyme arthritis259. The involvement of IFN 

signalling in the development of lyme arthritis was also studied using IFNAR1 -/- 

mice. Severity of arthritis was reduced in the KO. Many cell types have been 

found to contribute to the IFN response, including primarily myeloid cells, 

resident in joint tissues, in addition to fibroblasts and endothelial cells259.  

 

1.5 Aims  
 
Despite efforts, there is no molecular biomarker currently used at diagnosis to 

stratify RA patients and ensure they are on the right treatment from the outset. 

The development of technologies able to interrogate the genome, as well as the 

growth in biobanks, has made the study of molecular biomarkers for RA more 

accessible.  

While the discovery of a biomarker for MTX response in the treatment of RA is an 

important and interesting finding, biomarkers require further validation until 

they can be considered for adoption into a clinical setting. Additionally, research 

has demonstrated that chromatin conformation reveals insight into gene 

regulation, therefore there is scope that this MTX CCS could increase 

understanding about the underlying mechanisms that dictate ability to respond, 

or not respond to MTX treatment. Moreover, with the EpiSwitchTM pipeline 

incorporating additional, more informative methods of biomarker discovery, 

there is the potential of discovering additional CCS with the capacity to further 

stratify the RA population.  

This body of work aimed to:  

1) Validate the MTX CCS bioinformatically and in an independent clinical cohort, 

as well as establish the efficacy to predict response to other csDMARDs.  
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2) Understand the relationship between CCS and disease pathogenesis. 

3) Determine if underlying epigenetic endotypes exist in the early RA population 

and if chromatin loop candidates exist to predict these.  

 

 

  



Chapter 2 Materials and Methods  
 

2.1 Patient Cohorts  
 
2.1.1 Patient Identification - SERA 
 

The Scottish Rheumatoid Arthritis (SERA) cohort is a pan-Scotland inception, 

longitudinal cohort of patients with early rheumatoid arthritis (RA). Samples 

were obtained at 6-month intervals, from baseline of treatment. All patients 

were conventional synthetic disease modifying anti-rheumatic drug (csDMARD) 

naïve at baseline. Healthy samples came from demographically matched friends 

or family of enrolled patients. Patients of interest in this study were identified 

by their response to DMARD therapy. This was done by calculating disease 

activity using clinical disease activity index (CDAI) and disease activity score 28 

(DAS28) measurements at baseline, 6 months and 12 months. These calculations 

take into consideration swollen (SJC28) and tender joint (TJC28) counts from 28 

joints (Figure 2.1). Patient assessment of disease activity (dasVAS) and physician 

(GlobalVAS) assessment of global health from a visual analogue scale (VAS) of 0-

10cm is also included. The closer to 10cm on the scale, the worse the disease 

activity. Some DAS scores take the inflammatory markers, erythrocyte 

sedimentation rate (ESR) and c-reactive (CRP) protein into account.  

 

 
Figure 2.1 Joints included in swollen and tender joint counts 
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Disease activity calculations used were: 

• Clinical disease activity index (CDAI) – (DasVAS/10) + (GlobalVAS/10) + SJC28 + 

TJC28 

• Disease activity score 28 with c-reactive protein (DAS28 CRP) - 0.56*SQRT(TJC28) 

+ 0.28*SQRT(SJC28) + 0.36*ln(CRP+1) + 0.014*GH + 0.96 

• Disease activity score 28 with erythrocyte sedimentation rate (DAS28 ESR) 0.56* 

square root (SQRT)(TJC28) + 0.28* SQRT(SJC28) +0.7*LN(ESR) *1.08+0.16 

 

For the work in this thesis, a combination of patients were chosen: some had 

reduced disease activity, from high disease activity (HDA) at baseline, to low 

disease activity (LDA) or remission after 6 months of therapy, and others had 

minimal, or no reduction in disease activity, representing responders and non-

responders respectively. All patients chosen were identified as having HDA at 

baseline (Table 2.1). 

  

Table 2.1 Categories of Disease Activity Score  
CDAI, clinical disease activity index; DAS, disease activity score 

 
 

2.1.2 Patient Identification – TACERA  
 
The Towards A Cure for Early Rheumatoid Arthritis (TACERA) cohort is an early 

RA cohort that is part of the larger RA-MAP consortium. Like SERA, TACERA is an 

early RA, longitudinal cohort and patients were DMARD naive at enrollment. The 
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online knowledge management platform, TranSMART, was used to identify 

patients that were given monotherapy methotrexate (MTX) at baseline. Samples 

from this cohort were used for the blinded validation of the MTX signature, 

originally generated in the SERA cohort, and therefore the only data required at 

the selection stage was treatment at baseline.  

 

2.1.3 Sample Type - SERA 
 

From the patients identified as per section 2.1.1 in the SERA cohort, frozen 

buffy coat (BC) samples from baseline, 6-month and 12-month time points were 

identified and selected. Clinical information was obtained alongside the clinical 

samples. Of note, this includes age, BMI, smoking status and disease activity 

measurements.  

 

2.1.4 Sample Type - TACERA 
 

From the patients identified as per section 2.1.2 in the TACERA cohort, 

peripheral blood mononuclear cells (PBMCs) from csDMARD naïve patients at 

baseline were identified and selected. Disease activity data were also available, 

but this was not retrieved until the blinded analysis was complete (See 2.2.1).  

 
2.1.5 Sample retrieval - SERA 
 

Samples were collected on dry ice from the SERA storage facility at Yorkhill 

Biorepository. On return to the Glasgow Biomedical Research Centre (GBRC) 

samples were logged in using unique barcodes on each sample tube. Samples 

were subsequently thawed and then aliquoted into 110µl aliquots and stored at -

80°C until required.  

 

2.1.6 Sample retrieval – TACERA 
 

TACERA samples were retrieved from the UK Biocentre on dry ice before 

shipment to Oxford Biodynamics Plc (OBD) where they were subsequently stored 

at -80°C until required.  
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2.1.7 Sample storage  
 

The laboratory information management system (LIMS) was used to identify 

samples for retrieval from the SERA biobank. Sample barcodes were scanned and 

recorded on an excel spreadsheet which documented sample location in -80°C 

freezer. This information was stored in a password protected folder.   

 
2.1.8 Ethical Approval - SERA  
 

Samples were obtained with written consent and under appropriate ethical 

approval. Ethical approval for the SERA study was obtained on 28/05/2010, 

under REC approval number 10/S0704/20. A sample access application was 

submitted to the SERA Access Committee to achieve approval to access the 

requested samples and associated clinical information on several occasions 

throughout this study. These applications were approved on 23/08/2017, 

07/08/2018, 18/02/2019.  

 

2.1.9 Ethical Approval - TACERA  
 

Samples were obtained with written consent and under appropriate ethical 

approval. Ethical approval for the TACERA samples was obtained on 02/05/12 

under REC approval no 12/LO/0469.  
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2.2 Chromosome Conformation Capture 
 
Prior to using Chromosome Conformation Capture (3C) on valuable patient 

samples, the protocol had to be optimised in my own hands using healthy samples. 

Once optimised, the steps described (2.2.3 - 2.2.7) were performed using RA 

patient samples. This section describes the original 3C protocol and the methods 

used to determine if quantitative PCR could be used to capture the MTX 

chromosome conformation signature (CCS) loci.  

 
2.2.1 PBMC Isolation  
 

Healthy buffy coat donors were provided from the Scottish National Blood 

Transfusion service (SNBTS). PBMCs were isolated by density gradient 

centrifugation with Ficoll (GE Healthcare). PBMCs were re-suspended in PBS 

(Sigma) or cell separation buffer (PBS 1% Fetal Bovine Serum(FBS), 2mM EDTA). 

Cells were frozen at 2x107 in freeze buffer (10% Dimethyl Sulphoxide (DMSO), 

90% fetal calf serum (FCS)) and stored at -80°C for short term storage or in liquid 

nitrogen for samples getting stored for longer periods.  

2.2.2 CD4+ T cell Isolation 
 
PBMCs isolated as described in section 2.2.1, were re-suspended in cell 

separation buffer and CD4+ T cells were separated by positive selection using 

magnetic bead separation as described by manufacturer (T cells - Miltenyi 

Biotec). Briefly, PBMCs were mixed by pipetting with 20µl CD4+ magnetic 

microbeads in 80µl of cell separation buffer per 10
7 cells for 15 minutes at 4°C. 

To wash off excess labelling, 10ml of cell separation buffer was added and tube 

centrifuged at 300g for 10 minutes at room temperature (RT). Supernatant was 

removed and cells resuspended in 500µl cell separation buffer. Cells were then 

appropriately labelled and could be passed through a magnetic separation 

column. A column was placed on the appropriate MidiMACSTM Separator and 

rinsed with cell separation buffer. The labelled cells were applied to the 

column, and the column rinsed three times with 3ml of cell separation buffer. 

The column was removed from the magnet and 5ml of cell separation buffer 

added. Using a plunger, cells were forced through the column. This, the positive 



	 63	

fraction containing CD4+ T cells, was then available for use in future 

experiments. 

 

2.2.3 Flow Cytometry Purity Check 
 
For surface staining, 1 x 106

 

cells were resuspended in flow cytometry buffer 

(PBS with 2% FBS and 5mM EDTA) into 6ml FACs tubes (BD Biosciences). Cells 

were centrifuged at 400g for 5 minutes before adding CD4-APC antibody 

(BioLegend). Tubes were incubated at room temperature for 20 minutes in the 

dark. Cells were fixed in diluted fix buffer (BD Biosciences) and kept at 4°C until 

they were run on the LSR II flow cytometer. Data was then analysed using FlowJo 

v10 software. 

 

2.2.4 DNA extraction  
 

PBMCs from healthy donors or patient BC samples were removed from -80°C prior 

to DNA extraction and thawed at 4°C. This was carried out as per OBD protocol 

using the EpiswitchTM proprietary reagents. A starting volume of 50µl (1 million 

cells) patient sample was used for each DNA extraction. Briefly, cells were fixed 

with EpiMix Buffer DE-A (Thermofisher Scientific) and quenched with EpiMix Buffer 

DE-B. This was followed by cell lysis with 10x EpiMix Buffer DE-C and the nuclei 

were purified by density cushion centrifugation. Taq1 (Thermofisher Scientific) 

and T4 DNA ligase (Takara) were used to restrict and ligate the DNA followed by 

the addition of proteinase K (Roche) to remove any proteins. Incubations with 

these reagents were carried out on the Veriti thermocycler, see Table 2.2 for 

thermocycler conditions. 

 

An updated extraction protocol (Protocol 2) was implemented after quantitative 

PCR was introduced. This was carried out as described above, with the addition 

of protease inhibitors (Sigma) prior to EpiMix Buffer DE-A treatment and during 

lysis. During the EpiMix Buffer DE-A step, a non-fixation (NF) control was 

generated with the addition of water instead of EpiMix Buffer DE-A. See Table 2.3 

for cycling conditions associated with the updated protocol. Once extraction was 

complete, the sample was pelleted using density centrifugation and the pellet 
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then purified using the QIAamp FFPE tissue kit (Qiagen) as per manufacturer’s 

instructions.  
 

Table 2.2 Thermocycler conditions for 3C – Protocol 1 

 

 

 
 
Table 2.3 Thermocycler conditions for 3C – Protocol 2  

 

2.2.5 DNA Quantification – Picogreen  
 

After DNA extraction and the preparation of 3C libraries, the DNA had to be 

quantified. The first method of quantification used Picogreen. Here, 20x Tris-

EDTA (TE) buffer was diluted with 200x Quant-iT Picrogreen to make a 1 in 10 

working solution. Volumes of working solution were dependent on the number of 

DNA samples being analysed. A 1 in 2 serial dilution of 100µg/ml lambda DNA 

was created to act as a standard. All standards and samples were diluted 1:100. 

Next, 100µl of diluted samples were added to a 96-well ELISA plate in triplicate 

and the 100µl of 1x TE-Picogreen mix was added. The plate was incubated at RT 

for 5 minutes then read on a Tecan M200 Pro at 480nm.  
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2.2.6 DNA Quantification – Qubit  
 

The Qubit DNA quantification kit was used as an alternative method of 

quantification to Picogreen. The Qubit high sensitivity (HS) double-stranded 

(ds)DNA kit (Thermofisher Scientific) was used. A working solution was prepared 

by diluting Qubit dsDNA HS reagent 1:200 in Qubit dsDNA HS buffer. For samples, 

2µl was added to 198µl of working solution and for standards, 10µl was added to 

190 µl of working solution. Standards and samples were briefly vortexed and 

incubated at RT for 2 minutes before being read on the Qubit 3.0 Flourometer 

(Thermofisher Scientific). The Qubit dsDNA broad range (BR) kit (protocol as 

described for HS kit) was implemented if the DNA concentration was out with 

the range of the HS kit.  

 

 
2.2.7 Nested PCR 
 

After the DNA quantification, nested PCR was carried out using primers listed in 

Table 2.4. Primers for nested PCR were designed by OBD using Primer3 software. 

Primers were stored at -20°C until needed, at which point they were thawed at 

RT. Samples were normalised to a concentration of 1µg/µl in nuclease free water. 

A master mix of 16.5µl, nuclease free water (Thermo Fisher Scientific), 4µl of both 

outer primers and 12.5µl kappa blood mix was made. 37µl of master mix was added 

to 0.2ml tubes followed by 13µl of diluted template. A non-template control (NTC) 

was created by adding nuclease free water instead of DNA sample to the mix. 

Samples were added to the thermocycler for the 1st round. For the 2nd round, 

master mixes were prepared as before with 24.5µl nuclease free water and inner 

primers. 45µl of master mix was added to a new set of 0.2ml tubes and 5µl of 

template (from the 1st round) was added. The tubes were added to the 

thermocycler for round 2. Cycling conditions are documented in Table 2.5.  
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Table 2.4 Nested PCR Primers 
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Table 2.5 Nested PCR Cycling Conditions 

 
 

2.2.8 qPCR product purification  
 

After DNA extraction of samples intended for qPCR using the method described in 

2.2.3 (Protocol 2), the Qiagen FFPE tissue kit was used for purification prior to 

qPCR. In brief, 1-8 pellets from each sample were suspended in ATL buffer and 

transferred to DNA LoBind tubes with the addition of 20µl Proteinase K. These 

were incubated on a heat block for 1 hour at 56°C followed by 1 hour at 90°C. 

Samples were cooled to RT after which 2µl RNase was added followed by RT 

incubation for 2 minutes. A master mix of 1:1 AL buffer and 200 proof ethanol was 

made. 400µl of the AL/ethanol mix was added to the samples which were then 

transferred to MiniElute columns. 500µl of AW1 buffer from the kit was added to 

the columns, followed by a 6000g spin in a centrifuge for 1 minute. After flow 

through was discarded, 500µl of buffer AW2 was added to the column and had a 

6000g spin in a centrifuge for 1 minute. For elution, 30µl 1x TE buffer was added 

to the columns, which were incubated for 5 minutes at RT. This was followed by 

a 20000g spin for 1 minute. DNA concentration could then be measured by the 

Qubit dsDNA HS kit, as described in section 2.2.5.   

 

Primers for qPCR were designed using the PrimerQuest tool within Integrated DNA 

Technologies (IDT). The default primer option for intercalating dyes was selected. 

This considers primer characteristics such as an optimum melting temperature of 

62°C, a GC content of 50%, primer size of 22 nucleotides (nts) and amplicon of 

100nts. Once designed, primer specificity was tested using NCBI Blast 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). All qPCR primers were then tested 
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experimentally. A master mix was made from 5µl 2x kappa probe force, 0.25µl of 

each forward and reverse primer (stock 100µM; see Table 2.6), and 0.5µl of 20x 

PowerSYBR green (Invitrogen). Patient samples were pooled together once 

normalised to 10ng/µl. These samples, along with NF control (generated as 

described in 2.2.3), genomic control (PE Biosystems), a loading buffer control (TE) 

and non-template control (NTC) were prepared. The master mix was plated in a 

96-well plate and 4µl of template was added in duplicate to make a 10µl reaction. 

One CCS loci was tested per 96-well plate, primers shown in Table 2.6. Once 

prepared, the plates were sealed and centrifuged for 30 seconds. Plates were run 

on Applied Biosystems StepOne Plus or QuantStudio 7 Flex Real-Time System. The 

qPCR block set with 6 annealing temperatures of 68°C, 67.5°C, 66.4°C, 64.4°C, 

62°C, 60°C to determine the optimal annealing temperature for each primer. A 

melt curve was also generated per run to identify the presence of only a single 

product without evidence of primer dimerization. The cycling conditions are 

shown in Table 2.7.  
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Table 2.6 qPCR primers 

 

 

 

 

Table 0 qPCR cycling conditions 
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2.2.9 Gel electrophoresis 
 

The amplified nested PCR products were visualised using gel electrophoresis. A 

1.5% agarose gel was prepared with 1x tris-acetate-EDTA (TAE) buffer with 1x 

Ethidium Bromide (1µg/ml). A 1kb+ ladder (Thermofisher Scientific) was used 

and gels were run until this ladder had migrated adequately through the gel. The 

gels were imaged with UV light and the image was captured using the Gel Logic 

200 imaging system.  

 

2.2.10 Gel Purification  
 

The qPCR amplified products of interest were run on a 1% agarose gel, which was 

prepared with 1x Ethidum Bromide. The gels were imaged with UV light and once 

products of interest were confirmed, bands were excised for purification. The 

excised gel was then put into a labelled 1.5 ml microcentrifuge tube for weighing 

and images were captured using the Gel Logic 200 imaging system.	The excised 

product of interest was then processed for sequencing. In brief, solubilization and 

binding buffer (GQ) was added to each 100mg of gel. This was then incubated tor 

10 minutes at 15°C to dissolve the gel.  Following this, 100µl of isopropanol was 

added to the sample and mixed. To bind the DNA, the sample was applied the 

sample to a QIAquick column, and centrifuge at 18,000g for 1 minute. Run-through 

was discarded and the column was added to a clean tube with 15ul TE buffer to 

elute the DNA.  

 

After gel purification, samples had to be sent for sequencing. Gel purification as 

described above did not yield the required concentration of DNA for sequencing. 

To increase the yield, the optimisation steps included GQ incubation for 15 

minutes with shaking every 2 minutes, and incubation with elution buffer (10 mM 

Tris-Cl, pH 8.5) for 3 minutes. Additionally, DNA was eluted into heated buffer 

(37oC water bath). 

 

2.2.11 LabChip GX 
 

As an alternative to gel electrophoresis as described above (2.2.8, 2.2.9), the 

LabChiP GX microfluidic system was used to visualise PCR products in high 
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throughput at a later stage in the study. The 1K reagent kit was used as per 

manufacturer’s instructions. In brief, the LabChip was washed and reagents 

filled in the appropriate wells. Subsequently, a 96-well plate was prepared with 

samples in triplicate. The LabChip and the plate were loaded onto the LabChip 

GX Touch Nucleic Acid Analyzer, which was run for 3 hours, changing LabChip 

reagents after 1.5 hours. The samples were analysed using the LabChip GX 

software. Product band sizes were observed to confirm presence or absence of 

loop of interest.  

 

2.2.12 Tubeseq  
 

After qPCR products were purified, they had to be sent for sequencing to confirm 

that it was our product of interest. qPCR products were sent to Eurofins genomic 

sequencing to confirm the qPCR product of interest. The Tubeseq service was 

used. Samples were prepared at 1ng/µl for the 150-300bp products. The total 

volume of sample was 17µl, made up of 15µl of DNA sample at appropriate 

concentration, and 2µl primer at 10pmol/µl. Samples were prepared in 1.5ml 

tubes and labelled with unique Tubeseq barcodes for identification. Samples were 

transferred at RT to the Eurofins sequencing facility. Sequencing results were 

emailed several days after samples arrived at the facility.  It should be noted that 

the first sequencing run was unsuccessful, and optimisation steps were required, 

see section 2.2.12 and 2.2.13 below.  

 

2.2.13 Cloning  
 

The first set of qPCR samples that were sent for sequencing were not successfully 

sequenced as the sample was of poor quality.  As such, cloning of the qPCR product 

was introduced to increase quality. In brief, the chosen qPCR product was inserted 

into the TOPO 2.1 vector (Thermofisher) and incubated for 5 minutes at RT. This 

was then transformed into OneShot cells and plated on agar plates coated with 

kanamycin (50µg/µl). These were incubated overnight at 37°C. White clones were 

chosen and placed in liquid culture in a shaking incubator (200rpm) overnight. The 

plasmid was then isolated using the purelink miniprep kit as per manufacturer’s 

instructions. The plasmid was then analysed for inserts by restriction digest with 

EcoR1. Inserts were identified by running an ethidium bromide gel (see section 
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2.2.8) and looking for a product 300 bp in length. This is based on the plasmid size 

of 3.9kb, EcoR1 restriction size of ~3kb. 

 

2.2.14 PolyA tailing 
 

Cloning alone was unsuccessful in achieving product of interest during restriction 

digest, and optimisation of sequencing preparation was carried out. A polyA tail 

was added to the qPCR product with the aim of generating a more stable product 

for future steps in the cloning protocol. Briefly, a master mix was created by 

adding, 2µl of 5x GoTaq reaction buffer, 2µl of 1mM dATP, 1µl GoTaq flexi DNA 

polymerase and 0.6µl of 25mM MgCl2. 2µl of purified blunt-ended DNA fragment 

was added and nuclease free water was added to bring the final volume to 10µl. 

This was incubated at 70°C for 15-30 minutes in a water bath. PolyA tailing alone 

was unsuccessful, and success of generating a restriction product involved 

optimisation of the ligation ratio for the desired concentration of 1.5ng of insert.   
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 2.3 Validation of MTX CCS in TACERA Cohort  
 

Data was analysed with Ewan Hunter and Christina Koutsothanasi, OBD. 3C 

libraries were created and nested PCR was carried out as described in 2.2.3 and 

2.2.6 on 70 PBMC samples chosen from the TACERA cohort (2.1.2). Briefly, two 

machine learning algorithms were employed to test the ability of the MTX CCS to 

stratify R and NR to MTX. Both models, namely XGBoost 

(https://xgboost.readthedocs.io/en/latest/) and LightGBM 

(https://lightgbm.readthedocs.io/en/latest/), utilise a gradient boosting 

decision tree algorithm and were used via R studio. 47 samples were unblinded 

(R vs NR status revealed) for classification; 23 samples remained blinded during 

analysis. R and NR status was determined by disease activity (CDAI) at 6 months 

after treatment.  

 

2.4 In-silico data analysis of MTX CCS epigenomic 
environment 
 
 2.4.1 DeepBlue Data retrieval   
 

Online datasets were utilised for these investigations. Namely the DeepBlue 

Epigenomic Data Server and the Promotor-Capture HiC (PCHiC) dataset, 

generated by Javierre et al260 . To analyse the data, a combination of Microsoft 

Excel and packages within R and R studio were used. From the DeepBlue 

Epigenomic Server, various datasets were downloaded dependent on the 

epigenetic feature of interest. Specifically, data from Chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq) experiments identifying 

H3K27ac, H3K4me3, H3K4me1, H3K27me3, H3K36me3 and K3K9me3, in addition 

to data from Bisulphite–Seq and DNase-Seq to identify methylation marks and 

DNase hypersensitive sites (DHSs), respectively. 
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2.4.2 DeepBlue data analysis  
 

Once downloaded, the files were processed in R to identify if the marks were 

present in the regions of interest (MTX CCS loci). Dependent on the dataset 

downloaded, either hg38 or hg19 coordinates (Table 2.8) were used in the analysis 

script (Appendix). Regions of the genome 500 kb upstream of the first anchor site 

and 500 kb downstream of the second anchor site of chromosome loops were also 

investigated. Outputs from R were then quantified to understand enrichment of 

different epigenetic marks at each chromatin loop site.   

 

2.5 Discovery Microarray  
 
2.5.1 Microarray Set-up  
 

For this analysis 54 buffy layer samples from the SERA cohort were used. Here, 

18 healthy samples were used as a pooled standard on the array. 4x180k, custom 

Agilent microarrays were designed by OBD and run at their facility. OBD 

proprietary EpiSwitchTM pattern recognition algorithm was used to identify high 

probability chromatin folding interactions in combination with findings from 

Walsh et al209 were used to generate a list of probes that were functionally 

relevant in RA.  

 

Each probe was present in quadruplicate on the EpiSwitchTM microarray. The 

Agilent protocol for enzymatic labelling was followed. In brief, the standard 

EpiSwitchTM extraction as described previously (2.2.3) was used to generate the 

Table 2.8 DeepBlue coordinates  
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3C library for each sample. Subsequently, the DNA concentration of each sample 

was determined using the absorbable nanoquant plate on the Tecan Infinate 

M200 Pro. 800ng DNA was used per sample. A pool of the healthy samples was 

generated by determining DNA concentration as before and adding 6.2ng of each 

together. An ethanol precipitation step was then conducted to clean the sample 

before beginning the sample labelling. The Agilent DNA enzymatic labelling kit 

(Agilent p/n 5190-0449) was used to label the DNA library. This kit uses random 

primers and exo-Klenow fragments to label the DNA with fluorescently labelled 

nucleotides using cyanine 3-dUTP and cyanine 5-dUTP dyes. Samples were spun 

for 1 min at 6000g in a centrifuge. 5µl of random primers were then added and 

the samples were incubated at 95°C in a thermocycler for 3 minutes. Samples 

were again spun at 6000g for 1 min in a thermocycler. A master mix of Cy3 and 

Cy5 was prepared by mixing nuclease free water, 5xbuffer, 10xdNTP, Cy3 or Cy5 

and Exo-Klenow fragment. 19µl of master mix was added to each reaction tube, 

giving a total of 50µl. Samples were then incubated at 37°C for 2 hours, 65°C for 

10 mins then held at 4°C. The hybridisation master mix was then prepared by 

mixing cot-1 DNA, Agilent 10x Blocking reagent and 2x Hi-RPM buffer. The 

master mix was incubated at 95°C for 3 minutes, then 37°C for 30 minutes. After 

incubation, samples were spun at 6000g for 1 minute in a centrifuge.  

2.5.2 Microarray processing and feature extraction 

100µl of hybridisation sample (section 2.5.1) was dispensed onto a clean gasket 

slide in the Agilent SureHub chamber base. The assembled chamber slide was 

placed in the rotator rack in the hybridisation oven at 65°C, 20 rotations per 

minute (rpm) and left for 24 hours. Then, the slide staining dishes, rack and bars 

were washed thoroughly with milli-Q water to remove any contaminated 

material. The slide rack and bar were then added to the slide staining dish, 

which was filled with 100% acetonitrile. The magnetic stir plate was set to a 

speed of 4 and washed for 5 mins at RT. The step was repeated and then the 

plate was dried in a fume hood. To wash the array slides, the first 2 staining 

dishes were filled with Oligo aCGH wash buffer 1 at RT and placed on magnetic 

stir plate. The pre-warmed glass dish filled with water and containing slide 

staining dish 3 was also placed on the magnetic stir plate. Staining dish 3 was 

filled with Oligo aCGH wash buffer 2, which had been warmed to 37°C. A 4th 

staining dish with acetonitrile was placed in a fume food with a magnetic stir bar 
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added and placed on magnetic stir plate. A 5th staining dish was filled in the 

fume hood with hybridisation and drying solution, and was place on magnetic stir 

plate with magnetic bar. The hybridisation chamber was disassembled and the 

array slide placed in staining dish 1 and this was repeated for further slides. 

Slides were then transferred to staining dish 2 and stirred on setting 4 for 5 

minutes. Slides were then transferred to dish 3 for 1 min, and dish 4 for 10 

seconds and dish 5 for 30 seconds. Slides were removed with barcode facing 

upwards with a slide cover was placed on top. Slides then were immediately 

scanned using the SureScan DA model.  

Features were then extracted using feature extraction software and images were 

extracted as .tif. A QC report was carried out to ensure each extraction was 

completed successfully.  

2.5.3 Microarray analysis - Limma  
 

Once the array was completed, feature extraction data was downloaded from 

the raw OBD server. Data was analysed using several packages within R studio, 

namely, Limma and RankProd 2.0. Appropriate target files were generated for 

each analysis run. The use of the common reference healthy control sample 

allowed comparison of the loop expression across all RA samples. Target and raw 

data files were read into the R package (Appendix). Briefly, agilent control 

probes were removed first followed by probes that had a saturation signal above 

65525. The Limma background correction and the data was then normalised 

within arrays using the locally weighted polynomial regression (Loess) method. A 

log matrix of log2 ratios of fluorescence intensities was generated from the 

normalised data. Since duplicate probes were used on the array, a matrix was 

generated from the mean, median and cv values that could be taken forward in 

the analysis. The log median matrix was used for the analysis. A design matrix, 

followed by a contrast matrix were generated and a linear regression model was 

then fitted to the data based on the design. Statistics were then computed using 

the empirical bayes method (ebayes). A table of probes (loops) could then be 

extracted that had differential abundance between samples. Extra filtration 

could be implemented if desired, such as a specified number of loops to be 

output, and filtering on adjusted P.value (FDR correction) and abundance scores 

(AS), such as adj.P.Val ≤0.05 and AS -1.1≤ or ≥1.1.  
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2.5.4 Microarray analysis - RankProd  
 

Data was analysed with assistance from Ewan Hunter and Christina 

Koutsothanasi, OBD. After exploration of the data using Limma, it was decided a 

more stringent method of analysis should be implemented to differentiate the 3 

responder groups. For this, the RankProd package 2.0 was used to subsequently 

analyse the data. The Rank Product (RP) is a statistical technique which is used 

to find differentially expressed marks from molecular profiling studies. The 

RankProd package utilises this technique. The RP and Rank Sum (RS) are non-

parametric tests which can determine up or downregulated variables in repeat 

experiments. The P value for RP has strict bounds and calculated in a 

computationally fast manner. For this analysis, firstly data was normalised 

(Loess) and an expression matrix produced. Data were then filtered on adjusted 

P value and abundance scores (AS); loops with an adjusted P value ≤0.05 and of -

1.1≤ or ≥1.1 were carried forward for further analysis.  

 

2.5.5 Microarray Analysis – Searchlight  
 
Data was also analysed using Searchlight 

(https://github.com/Searchlight2/Searchlight2), an automated, platform for the 

analysis and visualization of RNAseq data, which was adapted for our microarray 

dataset. Data was analysed by John Cole, University of Glasgow. Searchlight 

provided an alternative way to analyse our data from the microarray 

experiment, and provided a streamlined, expedited way to facilitate deep 

exploration of the data that could not be achieved with RankProd in the same 

time frame. In summation, the three types of analysis performed were:  

• Expression – how much of a loop was present in a sample 
• Differential expression – how did the loop abundance differ between 2 

groups  
• Signature analysis – did groups of differently abundant loops generate a 

signature that would allude to a predictive biomarker 

The normalised expression matrix data was used for this analysis, and was 

generated as described above (2.5.3). To generate differential expression 

signatures, numpy was used to generate mean expression values and differential 

expression of loop abundance. Comparisons were: R vs NR, NR vs IR and R vs IR 
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at each time point. To determine signatures, each loop was classified by its 

starting signature based on the differential expression from the comparisons 

described. Expression values for each loop was converted to a z-score which 

allowed metagene expression for all samples. 2 expression metagenes were 

correlated to each other using the Spearman Correlation Coefficient to find 

signatures with similar expression profiles.  

 

 2.5.6 Microarray Biological Interpretation - Bedtools  
 

To begin biological exploration of array data the Bedtools programme was used. 

This was implemented via the terminal to analyse protein coding loci in 

proximity to loops of interest, found via Limma and RankProd analysis pipelines. 

The Bedtools closest function was used to identify the closest three protein 

coding loci to each loop of interest. Once a list of loci was produced, these were 

put through the online tool, Hugo Gene Nomenclature Committee, to filter and 

ensure all information was captured. This list was then entered into the online 

platform, GeneAnalytics to identify functional enrichment of genes and other 

genomic features. GeneAnalytics aims to identify potential associations of gene 

sets with pathways, compounds and Gene Ontology (GO) terms (biological 

process and molecular function). The results are ranked by relevance to the 

analysed gene set. 

 

 

 2.5.7 Microarray Biological Interpretation - STRING  
 

Gene lists of interest generated by GeneAnalytics were analysed further using 

the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) 

(https://string-db.org) version 11.0, a database consisting of over 9 million 

known and predicted protein sequences. Gene lists corresponding to various 

analyses were entered into the online STRING platform and interaction networks 

were generated. Network nodes within the string represent proteins and the 

edges indicate functional associations between proteins. Proteins that are 

grouped based only on shared homology are excluded. The PPI enrichment value 

identified if the network had significantly more enrichment than expected. The 

interaction scores are given from zero to 1 and are based on the confidence that 



	 79	

the interaction/association is true. Other information such as enriched biological 

processes were extracted as .csv files, in addition to downloading the networks 

as images (Appendix).  

 

2.5.8 Microarray Biological Interpretation – Cytoscape 
 
Based on additional functionality, Cytoscape version 3.7.2 

(https://cytoscape.org) was used to conduct further network analysis of protein 

networks generated using STRING. Cytoscape represents genes or molecular 

marks as nodes and edges represent interactions between them. The network 

.csv file taken from STRING was loaded into the Cytoscape software. The 

network analysis tool was implemented to identify the network nodes with the 

most connected edges. The most connected nodes were identified as those with 

the most directed edges in the network.  

 

2.5.9 Microarray Biological Interpretation - IGV  
 

The Integrated Genome Viewer (IGV) 

(https://software.broadinstitute.org/software/igv/) was used for the 

exploration and visualisation of loops of interest, in addition to other genomic 

and epigenomic features. Files of interest were prepared in ‘.bed’ format and 

loaded into IGV version 2.4.14. Files are represented as ‘tracks’ on the viewer. 

Files included in the analysis included the Janssen expression quantitative trait 

loci (eQTL) files, and loop anchor sites. Images could be saved from analyses.  

 

2.5.10 EpiSwitchTM Data Portal  
 
The longitudinal data from the RankProd analysis was uploaded to the 

EpiSwitchTM data portal (https://episwitch3dgenomicsportal.com), an interactive 

interface to allow for easy manipulation and visualisation of the 3D genome 

data. The portal incorporates Bedtools functionality, described above (2.5.6) as 

well as IGV visualisation software that has also been described above (2.5.9). 

From the portal, data could be downloaded and images saved for future use and 

analysis. 
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2.6 Statistical Analysis 
 

Statistical analysis not already described above was conducted in GraphPad 

Prism 6 software. Tests were chosen based on the distribution of the data and 

the desired comparisons to be made. Figure legends detail the exact statistical 

test used on each data set. In this study 0.05 was considered significant, with * 

P<0.05, ** P<0.01, ***P<0.001, *** P<0.0001. 



Chapter 3 Validation and Further Characterisation of 
Methotrexate Chromosome Conformation Signature and 
Optimisation of Detection Method 
 
3.1 Introduction 
 
Previous work from our lab, in collaboration with Oxford BioDynamics Plc (OBD), 

produced a chromosome conformation signature (CCS) with promising capacity 

to differentiate responders (R) and non-responders (NR) to methotrexate (MTX) 

in an early rheumatoid arthritis (RA) population219. The discovery and validation 

populations both came from the Scottish Early Rheumatoid Arthritis (SERA) 

cohort. This signature was developed to be exclusive to RA patients, and was not 

in the same conformation in healthy samples. While molecular biomarker 

investigations can show promise in the discovery and preliminary validation 

stages, studies have shown subsequent validation can produce less efficacious 

results261. Therefore, before clinical implementation, it is fundamental that a 

biomarker is validated, proving the efficacy and ensuring it is a true 

representation of a heterogeneous disease population262. RA is a well-

characterised heterogeneous population, and it must be established if the MTX 

CCS can predict response in other early RA cohorts, and identify any potential 

confounding factors that may impact the predictive ability of the biomarker262. 

Validation in a completely independent cohort that is demographically matched 

to SERA would be both interesting and clinically important.  

 

While the results from Carini et al219  demonstrate the potential of a MTX 

biomarker, it is not only MTX that is given at baseline of RA treatment. Some 

patients cannot tolerate the therapy and suffer side effects such as nausea and 

hepatotoxicity, or in the case of around 50%, will not respond clinically to 

MTX263,264,265,266. Other conventional synthetic disease modifying anti-rheumatic 

drugs (csDMARDs), primarily hydroxychloroquine (HCQ) and sulphasalazine (SSZ) 

exist as alternative first-line therapies. Despite investigations to find biomarkers 

of treatment response to these csDMARDs, there has yet to be a clinically 

implementable finding and often studies investigate HCQ and SSZ in combination 

with MTX267,268. The study by Kremers et al., identified HCQ and MTX as having 

better retention than other treatments. However, this was predicted using 

survival analysis techniques, taking into consideration comorbidities and disease 
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characteristics such as duration of disease, instead of employing molecular 

biology methodologies268. Molecular biomarker studies for HCQ alone are limited. 

One study investigating SSZ, as part of triple csDMARD therapy, suggested gene 

variants in NAT2 and ABCG2 were associated with a limited response to SSZ112. 

This study has yet to be validated. Predictors of response to csDMARD treatment 

as a whole have been attempted. One recent study investigated the ability of 

both molecular and synovial signatures to predict response to csDMARDs. They 

identified cellular synovial and molecular signatures that had the potential to 

predict disease progression and treatment response. This study offers the 

potential for a blood based pan-DMARD predictor that would be of clinical 

benefit212. However, this study incorporated low-throughput techniques that 

would not be advantageous in a clinical setting. Therefore, it would be valuable 

to know if the MTX CCS biomarker has the capacity to predict response to 

csDMARD treatment, regardless of which monotherapy or combination therapy is 

assigned.  

 

The work for the MTX CCS study was carried out at OBD where the EpiSwitchTM 

proprietary technology exists. The work in this thesis required the establishment 

of this 3C propriety protocol at the University of Glasgow. This chapter details 

the steps taken to ensure efficient establishment of this technique, which 

included exploring transition to a higher throughput method of chromosomal 

loop detection. The nested PCR method used in the MTX CCS discovery study 

could be considered low throughput. Moreover, quantification capabilities are 

limited with gel electrophoresis outputs and there is difficulty in determining 

any weak 3C signals269. Implementing a quantitative PCR (qPCR) method would 

not only be of benefit in our study, but in future clinical use. It would be higher 

throughput and offer the opportunity of multiplexing270. qPCR has been 

successfully used in the study of the mouse HoxB1 loci271. The process of qPCR 

implementation in the work in this thesis followed the Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines for 

primer design to ensure accuracy and robust results moving forward. These 

guidelines state the in-silico and wet lab steps required to create publishable-

qPCR results272. As such, this chapter explores the investigation into qPCR as a 

method of loop detection, adhering to the MIQE guidelines.  
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The aim of the work in this chapter was to further characterise the predictive 

ability of the MTX CCS and identify the optimal way to investigate the chromatin 

architecture of samples throughout this study. To achieve this, the aims were: 

 
1) Validate the MTX CCS both bioinformatically and experimentally using an 

independent clinical RA cohort  

 

2) Set up 3C protocol independently and determine the optimal method for loop 

detection through exploration of different PCR methodologies 

 

3) Assess whether MTX CCS is stable after treatment and if it can accurately 

predict response to csDMARD treatment as a whole  
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 3.2 Results  
 
 3.2.1 Bioinformatic validation of MTX CCS 
 
Validating the prior MTX CCS signature in-silico by independently analysing the 

data was an important first step in this study. The initial step to achieve this was 

to use a Limma-based analysis to interrogate the quality of the microarray-

generated data (Figure 3.1). Limma is a package that facilitates the analysis of 

gene expression arising from microarray or RNA-Seq experiments. Limma utilises 

linear models to identify differential expression. In the case of data in our study, 

Limma was used to identify abundance changes of loops between healthy and RA 

samples. The starting data file was the intensity of each spot on the array, 

which had been extracted by the Agilent Feature Extraction Software. The red-

green density plots were used to visualise the signal distribution across the 

arrays. The density plot before normalisation indicated that the signals had an 

expected distribution and there were no outliers (Figure 3.1A). Moreover, the 

dye intensity of both red and green dyes were similar, indicating the absence of 

dye bias. The ‘within array’ normalisation step was successful by bringing the 

signal distributions closer together (Figure 3.1B). Loess normalisation was used, 

which is a type of Generalised Additive Model (GAM). MA plots were then used to 

understand the relationship between the red-green intensity log ratio (M) and 

average intensity of a spot on the array (A). Figures 3.1C and Figure 3.1D 

highlight the successful normalisation, by the flattening of the line around the M 

value of 0. A boxplot was then produced to illustrate the distribution of M values 

across all 8 arrays (Figure 3.1E). The normalisation brought the medians close 

together and the range of M values can still be visualised. Most of the M values 

are distributed around 0. This analysis supported the concept that the data was 

of good quality and suitable for further interpretation.  
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Figure 3.1 Quality Control Assessment of MTX CCS Microarray Data 
Series of plots demonstrating quality of raw microarray data and the influence of 
normalisation. 8 dual-colour arrays in total. Array 1-4 compared R and NR, array 5+6 
compared HC and R, array 7+8 compared HC and NR. 13,322 EpiSwitchTM sites across 123 
loci were analysed. A) Red-green density histogram before normalisation. B) Red-green 
density histogram after ‘within array’ locally weighted polynomial regression (Loess) 
normalisation. C) MA plot before normalisation. D) MA plot after ‘within array’ Loess 
normalisation. E) Boxplot illustrating M value (log-ratios) distribution after Loess 
normalisation. Plots created using Limma package on R studio. 
A, mean average; HC, healthy control; M, log ratio; R, responder; NR, non-responder 
 
After using multiple plots to visualise that the MTX CCS data was of good quality 

and normalisation procedures were effective, it was important to find out if the 

predictive loops would be replicated using the original nested PCR dataset 

(Figure 3.2). Limma was used to apply a linear model to the data to identify 

loops that could differentiate responders (R), non-responders (NR) and healthy 

controls (HC). The results shown for the MTX CCS genomic regions indicate the 

potential for stratification. Differences of loop abundance was used as a 

measure of stratification potential with a positive value associated with the 

condition on the left of the contrast model, and a negative value associated with 

the condition on the right side of the model (Figure 3.2A). The first output from 

the Limma contrast model, contrasting NR and R, illustrated that IL17A and 

CXCL13 had a positive fold change. In contrast, IL21R, IL23 and IFNAR1 had 

negative fold change values. This demonstrated the association of IL17A and 

CXCL13 with NR and IL21R, IL23 and IFNAR1 with R as per the MTX CCS. Next, a 
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classification model was used to test the predictive value of the signature. A 

Random Forest method was used to test the data that was taken from the nested 

PCR results from 55 RA patients, collected at the time of the study by Carini et 

al219. The model successfully predicted 26 R, and 22 NR correctly (Figure 3.2B). 

This resulted in a true positive rate of 0.96 and 0.79 for R and NR, respectively 

which gave an overall accuracy of 87%.  

 

 
Figure 3.2 Statistical Validation of MTX CCS  
Limma linear model results and validation using PCR data from 55 RA patients using 5-
loop MTX CCS. A) Limma linear model results of contrast model between R and NR. B) 
Binary classifier model conducted in Weka using Random Forest classification. C) ROC 
curve illustrating relationship between sensitivity and specificity. ROC curve generated 
using web-based calculator which utilises JROCFIT program. 
 
3.2.2 Technical optimisation of 3C in peripheral blood from 
healthy donors 
 
The first step in establishing the EpiSwitchTM 3C assay in house was to use a 

range of primary cells from human donors. It should be noted that the original 

MTX CCS was generated in peripheral blood mononuclear cells (PBMCs) from RA 

patients. However, given the precious nature of clinical samples, for the 3C 

technical optimisation it was not deemed appropriate to use RA patient samples. 

Thus, PBMCs were isolated from healthy buffy coat (BC) donors. Flow cytometry 

analysis was performed to check cell purity prior to further analysis (Figure 3.3). 

70.2% of PBMCs were lymphocytes. Analysis revealed that 56.5% of PBMCs were 

CD4+ T cells, and after isolation by magnetic bead separation, 92.5% were CD4+ T 
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cells. These values confirmed that it was a normal PBMC population that was 

isolated.  

 

 

Figure 3.3 PBMC Isolation Purity Check   
Purity of the isolation was examined using flow cytometry. Representative flourescence-
activated cell sorting (FACS) plots of PBMCs and CD4+ T cells from healthy BC donors. 
PBMCs and T cells stained with CD4-APC antibody. A) Gate demonstrating defined 
population of single cells within PBMCs, percentage of gate is displayed within plot. B) 
Percentage of lymphocytes in total PBMCs. C) Percentage of CD4+ T cells in single cells. 
D) Percentage of CD4+ T cells after CD4+ magnetic separation.  

 
Once PBMCs (and purified CD4+ T cells) were successfully isolated, 3C DNA 

extraction was carried out (See Section 2.2). After extraction, the DNA library 

concentration had to be measured to confirm successful isolation of DNA, and to 

determine a reference for the normalisation in later protocol stages. The Quant-

iT PicoGreen DNA quantification assay was initially used to determine DNA 

concentration in PBMCs, as this was an optimised methodology used at OBD and 
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suitable for our sample type. This method revealed samples contained more than 

20ng/µl of DNA (Figure 3.4).   

 

 
Figure 3.4 3C DNA Library Isolation Check  
Confirmation of successful extraction of DNA library from PBMCs. A) Representative 
FACS plot of PBMCs used for DNA library preparation. B) DNA concentration of first DNA    

 

 
During the course of the optimisation, it was anticipated that fewer samples 

would be processed at one time than generally occurs at OBD, and thus, the 

Quant-iT PicoGreen assay (tailored for large sample number) was not optimal. 

The Qubit High Sensitivity (HS) double-stranded DNA (dsDNA) kit was chosen as a 

suitable alternative quantification method, based on sample number 

requirements, speed of protocol and rapid reading capabilities. To confirm that 

this was an appropriate alternative quantification method, samples were run in 

parallel using both methods, enabling the comparison of the techniques to 

determine if that resulted in consistent in DNA concentrations. Surprisingly, the 

resulting DNA concentrations calculated from the two methods were not 

comparable, producing different concentrations in the same sample (Figure 3.5). 

Consequently, this experiment was repeated to determine if the methods 

continued to produce different results. Each experiment produced different 

concentrations per sample, with the Quant-iT PicoGreen assay consistently 

measuring higher concentrations of DNA compared to the Qubit. Experiment 1 

demonstrated a significant difference between the two methods. Additionally, 

there was a significant difference between the concentrations measured by 

Quant-iT PicoGreen between experiment 1 and experiment 2. Combining the 

results from all experiments (Figure 3.5B), there was a significant difference 

between the 2 methods. The PicoGreen method showed a much larger variation 
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in DNA concentration values with a standard deviation of 10.98 compared to 

2.312 for the Qubit. The maximum DNA concentration measured by the 

PicoGreen method was 30.53ng/µl and the maximum measured by the Qubit HS 

dsDNA assay was 10.30ng/µl. Based on the more consistent DNA concentration 

measurements, and the concentrations considered within normal range for this 

type of library preparation, the Qubit dsDNA HS assay was selected as the most 

robust method to move forward with.   

 
 

 
Figure 3.5 Comparison of DNA Quantification Methods  
Comparison of Quant-iT PicoGreen and Qubit dsDNA HS assay. 3C DNA libraries were 
extracted from PBMCs and both methods were used to measure the DNA concentration 
of each sample. A) DNA concentrations (ng/ul) calculated via the 2 independent 
methods are plotted for comparison, data across 3 experimental repeats. Experiment 1 
and 2, n=7, experiment 3, n=4. Non-parametric T-test used to compare methods in one 
experiment. Wilcoxon test to compare between experiments. B) Combined DNA 
concentrations (ng/ul) from 3 experimental repeats, calculated via 2 independent 
methods - plotted for method comparison (N=18). Mann Whitney T test to compare 
methods. * P< 0.05. Data is shown as box and whisker plot showing the median and 
range. 
 

The 3C assay preparation continued with the optimisation of nested PCR and 

ultimate visualisation of the ligated DNA on an agarose gel, which is the 

surrogate for the presence of a loop in a sample. Establishment of a reliable 

detection method of DNA concentration (Qubit) enabled normalisation of sample 

DNA concentration prior to nested PCR. The first step in the PCR process was to 

test the variety of control primers that can aid the 3C assay (Table 3.1) to 

confirm if the 3C could be replicated at our site.  
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Table 3.1 Control Primers  
List of control primers tested for the 3C protocol.  
+ = positive control, - = negative control, PCR = controlling for PCR reaction 
 

 

 

Table 3.2 Gel electrophoresis interpretation   
Interpretation of gel data when samples are loaded on gel in triplicate. Sample names 
hypothetical.  
 

 

 
DNA loops from PBMCs (Figure 3.6A) and CD4+ T cells (Figure 3.6B) were used to 

test the control primers. Three primers were positive 3C controls, one was a PCR 

control and 1 was a negative control. 6 PBMC samples had bands present for the 

control primers MMP1 4/12, MMP1 9/12, ER 16/17, and RFA 17/19 at the 

expected size of 281bp or 556bp, 185bp, 246bp and 252bp, respectively 
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confirming successful 3C and loops present at these loop sites. It should be 

noted, however, that there was a level of variation in the RFA control. Across 

the 6 samples, some samples had the expected 252bp whilst other had a band 

that indicated a larger size product. The CD4+ T cells also had bands present at a 

variation of sizes using primers MMP1 4/12, MMP1 9/12 and RFA 17/19. These 

results suggested possible incomplete digestion of chromatin resulting in 

multiple ligation products. The ER primer consistently showed clear bands in 

each sample. This illustrated the PCR protocol was successfully executed. The 

ERTM negative control also worked along with the non-template control (NTC).  
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Figure 3.6 Gel Electrophoresis of Control Primers  
Gel electrophoresis of nested PCR using DNA extracted from PBMCs and CD4+ T cells 
testing 5 3C controls. 3C DNA libraries were amplified using nested PCR and then loaded 
onto a 1.5% gel, N=3. L= 1kb+ ladder, 7 µl DNA ladder and 15 µl sample loaded. Samples 
loaded in 1 well each in duplicate. MMP1 4/12 and MMP1 9/12 = 3C controls, ER = PCR 
control, RFA = positive control and ERTM = negative control. Non-template control 
(NTC) used for each primer. A) DNA was extracted from PBMCs. B) DNA was extracted 
from CD4+ T cells 
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While the results presented in Figure 3.6 illustrated using the PCR method was 

successful in some samples for determining DNA loop presence, some consider it 

non-quantitative. Therefore, a semi-quantitative approach was attempted. After 

initial gel electrophoresis, MMP1 4/12 and MMP1 9/12 were considered the most 

robust 3C controls to use based on the most consistent presence of bands at the 

expected size. Additionally, after the initial gel electrophoresis, samples were 

loaded onto the gels in triplicate in line with the protocol used at OBD (Table 3.2). 

When carried out in triplicate, if a sample presents with 1 band or lower it can be 

stated that no loop is present at the locus of interest. However, if 2 or 3 bands 

are present at the predicted size, it can be stated that a loop is present at that 

locus. The samples for the semi-quantitative method were prepared by creating a 

1:2 serial dilution of samples. When carrying out this method it would be expected 

that 3C copy number would decrease as the DNA concentration decreased.  

 

The semi-quantitative method was tested with control primers and RA primers 

(Figure 3.7 and Figure 3.8). There was not a clear concentration dependent effect 

on loops using the control MMP 4/12 primer set. The neat sample had only 1 set 

of bands at expected size, however diluted samples of 0.25ng/ul and lower had 

multiple bands in some samples. Both samples used had instances with multiple 

bands. The images shown in Figure 3.8A reveal that only 1 patient, at 1 DNA 

concentration had bands present for the IL17A loop. The images in Figure 3.7B 

(CXCL13) demonstrate no bands were present. Due to the lack of bands in A + B, 

it was difficult to determine the effect of the varying DNA concentrations on 3C 

copy number. In contrast, Figure 3.8C (IL21R), D (IL23) and E (IFNAR1) highlight 

the semi-quantitative method well. Particularly in 3.8C, it was evident that the 

3C copy number decreased gradually with decreasing DNA concentration in sample 

1A1. This is also presented in 3.8D with sample 1A1. It is evident from this figure 

that the IL21R, IL23 and IFNAR1 loci had several loops in multiple samples. Overall, 

considering the unreliable semi-quantitative results in 3C controls, and the limited 

reliability in MTX CCS genes, the semi-quantitative method was not taken forward. 

However, based on the other data collected, it was confirmed that the 3C assay 

could be successfully conducted in my hands.  
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Figure 3.7 Gel Electrophoresis of 3C control loop using semi-quantitative method 
DNA was extracted from PBMCs of healthy donors, N=2, labelled A+B. 3C DNA libraries 
were amplified using nested PCR and then loaded onto a 1.5% gel. L= 1kb+ ladder, 7 µl 
DNA ladder and 13 µl of sample loaded in triplicate. Various concentrations of DNA 
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used: 1 ng/µl, 0.5 ng/µl, 0.25 ng/µl, 0.125 ng/µl, 0.06 ng/µl. Non-template control 
(NTC) also used. 
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Figure 3.8 Gel Electrophoresis of MTX CCS Loops using Semi-quantitative Method  
DNA was extracted from PBMCs of healthy donors, N=3, labelledA1, A2 + 2A. 3C DNA 
libraries were amplified using nested PCR and then loaded onto a 1.5% gel. L= 1kb+ 

ladder, 7 µl DNA ladder and 13 µl of sample loaded in triplicate. Various concentrations 
of DNA used: 1 ng/µl, 0.5 ng/µl, 0.25 ng/µl, 0.125 ng/µl, 0.06 ng/µl. Non-template 
control (NTC) also used. A) RA1 (IL17A). B) RA2(CXCL13). C) RA3 (IL21R). D) RA4(IL23). 
E) RA5(IFNAR1). Patient sample annotation indicated above gel image, DNA library 
concentration shown below gel.  
 

3.2.3 Establishing use of quantitative PCR for MTX CCS 
 
Having verified that it was possible to run the original 3C method independently, 

but clearly demonstrating that the semi-quantitate method failed to produce 

robust results, I considered introducing a higher-throughput, more informative 

method of observing chromosomal loops. Moreover, OBD were in the process of 

transitioning to this methodology and therefore this work aligned with the 

direction of travel for EpiSwitchTM technology. A more informative method would 

be one which could successfully quantify the loops within a patient sample. A 

higher-throughput method would not only be of benefit in the short-term of the 

study, but also in the long-term if the signature was to be implemented 

clinically. Quantitative PCR (qPCR) would fill these criteria, however, the 

development and refinement of this process for chromosomal loops is complex 

and required a systematic approach. Various steps were carried out to determine 

if qPCR primers were suitable for detection of chromosomal loops of interest, 

and determine the optimal annealing temperature to use for the primers. This 

was carried out in accordance with the MIQE guidelines. Primers were designed 

to capture the 3C ligated DNA product which centred around a 4 base TCGA 

sequence (Figure 3.9A). Firstly, primers were designed (Section 2.2.7) and 

tested for the 3C control gene, MMP1 (Figure 3.10). For the process of 

determining the optimal primer annealing temperature, 3 primer versions for 

each loop of the MTX CCS were tested.  
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Figure 3.9 Primer Design for qPCR 
A) Ligated DNA region in which qPCR primers are designed around, full sequences found 
in Appendix. B) Expected sizes of qPCR products for all primers designed and tested  
 

The chromosomal loop, from pooled RA patient samples, was amplified at 6 

annealing temperatures and gave cycle threshold (Ct) values ranging from 31 to 

34 (Figure 3.10A). Melt curve analysis showed amplification of a single product 

(Figure 3.10B). This could be considered a successful qPCR amplification. The 

high Ct values for MMP1 may reflect weak ligation and the results were a 

possible indication that other loops from the MTX CCS may also amplify at a 

higher Ct value than expected for other qPCR reactions.  

   

 
Figure 3.10 Quantitative PCR with 3C control  
Quantitative PCR using pooled RA patient samples with MMP1 primers. A) Representative 
plot from 1 qPCR experiment of Ct values at 6 annealing temperatures with pooled RA 
patient samples, (N=8). B) Representative melt curve of from 1 qPCR experiment that 
was repeated twice with pooled patient samples (N=8): NF, non-fixtion, NTC, not-
template control; PH, pooled healthy, PP, pooled patient; TE, Tris-EDTA; NF= non-
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fixation - control generated by using nuclease-free water to fix the DNA, instead of 
formaldehyde.  
 

Once it was confirmed qPCR could be successful for amplifying chromosomal 

loops of interest, the next step was to determine the optimal annealing 

temperature of qPCR primers for all 5 loci in the MTX signature. This single step 

process used a temperature gradient to identify the optimum annealing 

temperature and overall primer efficiency. Amplification of only the product of 

interest (loop in pooled patient sample), without any product present in the 

negative controls (pooled healthy sample, Gen control, NF control, TE control, 

NTC) was the aim. The first primer set for IL17A amplified the product of 

interest at a Ct value of 9, at an annealing temperature of 68°C, alongside 

amplification of negative controls at higher Ct values (Figure 3.11A). Primer set 

B for IL17A could amplify the product of interest at all 6 annealing 

temperatures, however, there was also better amplification of negative controls 

at all 6 annealing temperatures (Figure 3.11B). Primer set 3 was also able to 

amplify the product of interest at all 6 temperatures at Ct values ranging from 

27 to 40. At 67.5°C only the product of interest was amplified (Figure 3.11G). 

The high Ct values of primer set B and C suggested presence of off-target 

products. Melt curve analysis was conducted alongside to confirm primer 

specificity. Many melt curves for IL17A primers, had multiple peaks (Figure 

3.11B,E,H) indicating the presence of off-target amplification products. The 

qPCR products were then purified using gel electrophoresis, which could also be 

used to check the amplified product was of the expected size. All 3 primer sets 

had products at the expected size (representative gel images can be found in 

Appendix). There was also the presence of multiple bands for all primers sets in 

pooled patient (PP) and pooled healthy (PH) samples at lower annealing 

temperatures. Primer set A and B did not meet requirements, however primer 

set C met requirements at 67.5°C only. As pooled heathy controls were amplified 

at neighbouring annealing temperatures, these results should be interpreted 

with caution.  
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Figure 3.11 Temperature Gradient Quantitative PCR with IL17A primers  
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3 
versions of IL17A primers, Ct values shown as individual samples, and mean of 2. A) Ct 
values of version A primers, N=2. B) Representative melt curve at 68°C. C) 
Representative melt curve at 66.4°C. D) Ct values of version B primers, N=2. E) 
Representative melt curve at 62°C. F) Representative melt curve at 64.4°C. G) Ct values 
from version C primers, N=1 H) Representative melt curve at 68oC. I) Representative 
melt curve at 64.4°C. J) Summary of gel electrophoresis results from 3 primer versions. 
Numbers highlighted in red indicate one of the bands are at the expected size of 84bp 
for version A primers (2 technical repeats), 94bp for version B primers (2 technical 
repeats) and 104bp for version C primers.  
NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient; 
TE, Tris-EDTA  
 
 
The first primer set tested for CXCL13 was unable to amplify the product of 

interest. At 68°C, 64.4°C, and 62°C the NTC control was amplified. Melt curves 

from 68°C (Figure 3.12B) and 66.4°C (Figure 3.12C) highlighted the presence of 

multiple products. The second primer set was also unable to amplify the product 

of interest (Figure 3.12D). At 62°C and 60°C there was amplification of the 

genomic control and TE control respectively. The melt curve from 64.4°C (Figure 

3.12F) suggested there was a single product. The melt curve from 60°C (Figure 

3.12E) also showed evidence that the product of interest was amplified. The 

product of interest was amplified with primer set C, at annealing temperatures 

of 64.4°C, 62°C and 60°C at Ct values of 33, 31 and 32, respectively. At each of 

those temperatures there was also amplification of negative controls. The melt 

curve at 60°C indicated that there was only a single product of interest amplified 

(Figure 3.12I). Gel electrophoresis of qPCR products for primer set B were 

reflective of amplification and melt curve results. A selection of products of 

interest at the expected size of 116 and 135bp were present on a gel for primer 

set A and C. No functional primer set was found for the CXCL13 chromosomal 

loop.  
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Figure 3.12 Temperature Gradient Quantitative PCR with CXCL13 Primers  
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3 
versions of CXCL13 primers, Ct values shown as individual samples, and mean. A) Ct 
values of version A primers, N=2. B) Representative melt curve at 68°C. C) 
Representative melt curve at 66.4°C. D) Ct values of version B primers, N=2. E) 
Representative melt curve at 60°C. F) Representative melt curve at 64.4°C. G) Ct values 
form version C primers, N=1. H) Representative melt curve at 68°C. I) Representative 
melt curve at 60°C. J) Summary of gel electrophoresis results from 3 primer versions. 
Numbers highlighted in red indicate one of the bands are at the expected size of 135bp 
for version A primers, 104bp for version B primers and 116bp for version C primers, 2 
technical repeats for all primer sets.   
NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient; 
TE, Tris-EDTA 
 
IL21R primers could amplify the product of interest, but only alongside 

amplification of negative controls. Temperatures of 66.4°C to 60°C for primer set 

A had amplification of the pooled patient (PP) sample (Figure 3.13A). This was 

accompanied by amplification of negative controls. Melt curves from primer set 

A had multiple peaks indicating presence of off-target products (Figure 3.13B,C). 

Primer set B successfully amplified the product of interest at all 6 annealing 

temperatures (Figure 3.13D). Negative controls were also amplified at all 6 

temperatures. Melt curve from 64.4°C indicated peaks for only PP and PH. 

Primer set C also had amplification of PP at all annealing temperatures, as well 

as amplification of negative controls (Figure 3.13G). Gel electrophoresis of the 

qPCR results highlighted the presence of multiple bands at all temperatures in 

PP and PH samples (Figure 3.13J). Primer set A did not have any qPCR products 

at the expected size, however primer set B and C had bands at expected size. 

Primer set B and C met primer requirements at some temperatures. However, 

taken together, there is not enough evidence that any IL21R primer set could 

successfully translate to a qPCR platform.   
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Figure 3.13 Temperature Gradient Quantitative PCR with IL21R Primers  
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3 
versions of IL21R primers, Ct values shown as individual samples, and mean. A) Ct values 
of version A primers, N=2. B) Representative melt curve at 66.4°C. C) Representative 
melt curve at 64.4°C. D) Ct values of version B primers, N=2. E) Representative melt 
curve at 64.4°C. F) Representative melt curve at 68°C. G) Ct values form version C 
primers, N=2. H) Representative melt curve at 68°C. I) Representative melt curve at 
64.4°C. J) Summary of gel electrophoresis results from 3 primer versions. Numbers 
highlighted in red indicate one of the bands are at the expected size of 110bp for 
version A primers, 119bp for version B primers and 119bp for version C primers 2 
technical repeats for all primer sets.   
NF, non-fixation, NTC, not-template control; PH, pooled healthy, PP, pooled patient; 
TE, Tris-EDTA 
 
 

Like IL21R, IL23 primer sets achieved amplification of the patient product of 

interest but not without amplification of control primers. Primer set A saw 

amplification at temperatures 64.4°C, 62°C and 60°C. Amplification of negative 

controls also occurred (Figure 3.14A). Primer set B also had amplification of the 

product of interest and negative controls at these temperatures, as well as 

66.4°C (Figure 3.14D). There was amplification of only the product of interest at 

annealing temperature of 66.4°C using primer set C (Figure 3.14G). Amplification 

also occurred at the 3 lower annealing temperatures along with negative 

controls. The melt curves for primer set A and B indicate the presence of non-

specific products (Figure 3.14B,C,E,F). At 62°C using Primer set C, the melt 

curves appeared to have less evidence of non-specific products (Figure 3.14I). 

Primer set A produced no products at the expected size when gel electrophoresis 

of qPCR products was conducted (Figure 3.14J). At temperatures from 64.4°C to 

60°C primers set B and C had bands at the expected sizes. Primer C met 

requirements at 66.4°C but again, annealing temperatures 2°C below had 

amplification of negative controls and this that temperature should be 

considered further. 
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Figure 3.14 Temperature Gradient Quantitative PCR with IL23 Primers 
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3 
versions of IL23 primers, Ct values shown as individual samples, and mean. A) Ct values 
of version A primers, N=2. B) Representative melt curve at 62°C. C) Representative melt 
curve at 60°C. D) Ct values of version B primers, N=2. E) representative melt curve at 
66.4°C. F) Representative melt curve at 62°C. G) Ct values form version C primers, N=1. 
H) representative melt curve at 64.4°C, I) Representative melt curve at 60°C. J) 
summary of gel electrophoresis results from 3 primer versions. Numbers highlighted in 
red indicate one of the bands are at the expected size of 80bp for version A primers, 
81bp for version B primers and 85bp (2 technical repeats) for version C primers.   
NF, non-fixtion, NTC, not-template control; PH, pooled healthy, PP, pooled patient; TE, 
Tris-EDTA 
 
 
qPCR using primer sets A, B and C for the IFNAR1 loop resulted in amplification 

of the product of interest, but not without amplification of negative controls. 

There was amplification of the patient product with annealing temperatures 

ranging from 67.5°C to 60°C using primer set A (Figure 3.15A). There was also 

amplification of negative controls at these temperatures. Primer set B achieved 

amplification of PP at temperatures from 66.4°C to 60°C (Figure 3.15D). Using 

primer set C, the product of interest was not amplified without negative controls 

(Figure 3.15G). Melt curves using primers set A produced varying results. At 

annealing temperature 66.4°C the melt curve shows evidence of multiple 

products (Figure 3.15B), but at 62°C the melt curve suggests only presence of a 

single product (Figure 3.15C). Melt curves using primer set B and C suggest 

presence of non-specific products (Figure 3.15E,F,H,I). There were bands at the 

expected sizes using all 3 primer sets, as well as multiple bands at all 

temperatures in many samples reflecting the melt curve results (Figure 3.15J). 

Primer set B and C met some requirements at some temperatures, but it was not 

robust.  
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Figure 3.15 Temperature gradient quantitative PCR with IFNAR1 primers 
3C DNA libraries were loaded in duplicate on 96-well reaction plate. qPCR analysis of 3 
versions of IFNAR1 primers, Ct values shown as individual samples, and mean. A) Ct 
values of version A primers, N=1. B) Representative melt curve at 66.4°C. C) 
Representative melt curve at 62°C. D) Ct values of version B primers, N=2. E) 
Representative melt curve at 66.4°C. F) Representative melt curve at 64.4°C. G) Ct 
values from version C primers, N=1. H) Representative melt curve at 62°C. I) 
representative melt curve at 67.5°C. J) Summary of gel electrophoresis results from 3 
primer versions. Numbers highlighted in red indicate one of the bands are at the 
expected size of 117bp for version A primers, 117bp for version B primers and 149bp for 
version C primers.    
NF, non-fixtion, NTC, not-template control; PH, pooled healthy, PP, pooled patient; TE, 
Tris-EDTA 
 
 

Overall, the qPCR protocol up to this point revealed some potentially useful 

primer candidates from successful amplification of the product of interest 

without parallel amplification of negative controls. Some annealing 

temperatures were emerging successful, but this could not be robustly 

replicated in multiple experiments. Despite the results not being conclusive, the 

gel products had to be purified before sending to Eurofins Genomics for 

sequencing (See section 2.2.11). This would be another measure to confirm 

amplification of the product of interest was successful, as the sequenced 

product could be checked against the known sequence (Appendix). The original 

gel purification protocol (as described in 2.2.9) was attempted but yielded little 

DNA, with concentrations ranging from 0.25ng/µl to 0.88ng/µl (Figure 3.16B). 

These concentrations were not sufficient for sequencing protocols, indicating 

optimisation of the gel purification process was needed. The first step to 

improve DNA yield was to add extra incubation steps at the buffer GQ stage and 

the elution stage of the protocol. This decreased DNA yield further to the lowest 

concentration of 0.106ng/µl (Figure 3.16B). The second optimisation step 

combined extra incubation stages (Section 2.2.9) with elution into heated 

elution buffer. This successfully increased yield to concentrations suitable for 

future sequencing. The minimum concentration from this attempt was 1.07 

ng/µl with a maximum of 2.8 ng/µl (Figure 3.16B). All protocols had significantly 

different DNA concentrations, with protocol 1.0 and 3.0 also having significantly 

different yields. We proceeded with protocol 3.0 based on the yield of DNA 

produced.  
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Figure 3.16 Optimisation of Gel Purification  
Optimisation of gel purification to increase DNA yield. A) Schematic representing 
optimisation steps used. Protocol 1.0: running qPCR products on 1.5% agarose gel, gel 
fragments of interest excised and dissolved using buffer GQ from QIAquick gel 
purification kit. Incubation with buffer GQ for 10 mins at 50°C. Incubation with elution 
buffer (1xTE) for 1 minute at RT. Protocol 2.0: As protocol 1.0 with buffer GQ 
incubation for 15 minutes with shaking every 2 minutes, incubation with elution buffer 
for 3 minutes. Protocol 3.0: as protocol 2.0, with heated (37oC water bath) elution 
buffer. B) Concentration of DNA ng/µl using each protocol version, protocol 1.0 N=7, 
protocol 2.0 N=2, protocol 3.0 N=6. 2 tailed Mann Whitney test used to compare DNA 
yield between protocols, Kruskal-Wallis test comparing variation between 3 groups as a 
whole. ** P< 0.01, **** P <0.0001.  
 

When the gel purification protocol was optimised to yield enough DNA for 

sequencing, the first sample to be sent was a product amplified by IFNAR1 

Version B primers at an annealing temperature of 62°C. This sequencing run 

proved unsuccessful. Images provided by Eurofins revealed the DNA was poor 

quality, as illustrated by the large proportion of black underneath each sequence 

row, representing DNA of 0-9% quality (Figure 3.17A). The alignment with the 

desired IFNAR1 loop sequence was 6.91% (Figure 3.17B), although as the 

sequencing was such low quality, this could not be interpreted with any 

certainty. The known sequence, based on DNA digestion and re-ligation, primer 

design, predicted amplicon size (Figure 3.9 and Appendix) facilitated the ability 

to determine alignment. The decision was made to implement cloning of the gel 
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purified qPCR product as a way to improve the quality of the sequencing product 

(Figure 3.17C). Plasmids produced from cloning steps would be expected to be of 

high quality and ideal for sequencing. After the cloning of the qPCR product into 

the Topo 2.1 cloning vector, a restriction digest using the EcoR1 enzyme using a 

standard protocol (Section 2.2.12), was conducted to confirm presence of the 

qPCR product. The first attempt based on the original cloning protocol (section 

2.2.12) did not yield the PCR product at expected size (Figure 3.17D). Version 

2.0 of the protocol added an polyA tail to the qPCR product with the aim of 

increasing product stability (Section 2.2.13). This also did not yield a product at 

the expected size (Figure 3.17E). Version 3.0 of the protocol combined a polyA 

tail addition with an optimised ratio of reagents for ligation. This was hoped to 

increase the chances of the product being successfully inserted into the plasmid 

and creating a positive clone. After restriction digest, this version of the 

protocol yielded a product at a size around 300bp, which was in the range to be 

expected. This product, which came from IL21R at 64.4°C, was sent for 

sequencing. This product was chosen as results appeared more robust than the 

IFNAR1 product used previously. Images from Eurofins were provided to illustrate 

sequencing quality. The quality of the sequencing was better than the first 

sample sent, highlighted by the large proportion of green, representing DNA of 

>30% quality. (Figure 3.17G). However, alignment with the desired sequence was 

only 6.96%.  
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Figure 3.17 Optimisation of Sequencing of Quantitative PCR Products  
Optimisation of qPCR product cloning to increase sequencing quality. Eurofins Tubeseq 
service was used for sequencing. A) Sequencing of product from IFNAR1 primer version 
B, at annealing temperature of 62°C, image provided by Eurofins. B) Alignment of 
sequenced product with expected IFNAR1 loop sequence, image provided by Eurofins. C) 
Schematic representing optimisation of the cloning method to generate plasmids 
containing loop products. Protocol 1.0: Topo 2.1 cloning vector used. Plasmid isolated 
using purelink miniprep kit. Restriction digest with EcoR1. Protocol 2.0: as protocol 1.0 
with addition of PolyA tail to qPCR product before insertion to cloning plasmid. Protocol 
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3.0: as protocol 2.0 with ligation ratio optimised for 1.5ug DNA insert. D) Gel image of 
restriction digestion of cloned qPCR product using protocol 1.0. E) Gel image of 
restriction digestion of cloned qPCR product using protocol 2.0. F) Gel image of 
restriction digestion of cloned qPCR product using protocol 3.0. G) Sequencing of 
product from IL21R primer version C, at annealing temperature of 66.4°C, image 
provided by Eurofins. H) Alignment of IL21R sequenced product with IL21R expected 
loop sequence, image provided by Eurofins. 
 

In summation, reviewing the collection of data from the qPCR optimisation 

(Figure 3.10 to Figure 3.17), I concluded that it was not possible for me to 

translate the nested PCR-based method previously used to evaluate our 

chromosomal loops of interest into a qPCR-based method. Whilst some primers 

showed some evidence that they could successfully amplify the loop of interest 

in the absence of negative control amplification at some temperatures, 

sequencing revealed they were not the expected loop product. After discussions 

with OBD, after they acquired additional propriety information about the 

translatability of the 5 markers to the qPCR platform, it was agreed that it was 

not appropriate to invest more time into the translation of these particular 

loops. Notably, since that point, the platform at OBD has been optimised and 

markers are now more easily translated from the nested to the qPCR platform.  

 

Overall, based on minimal evidence that loops from the MTX signature could 

successfully be detected with qPCR following MIQE guidelines, the decision was 

taken to revert to nested PCR to amplify our 3C libraries. Based on this decision, 

an alternative method of gel visualisation was sourced. The decision to use the 

Lab Chip GX provided results quicker than a traditional gel electrophoresis 

protocol and results that were easily interpreted, highlighted by a clear band in 

combination with clear peaks at the expected size (Figure 3.18). These features 

allow high-throughput, more informative analysis than the original gel 

electrophoresis protocol, which is advantageous for a biomarker. 
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Figure 3.18 LabChip GX platform 
Representative images from LabChipGX Touch imaging platform of IL23 loci. 3C from 
SSZ treated RA patient. A) 1kb+ DNA ladder highlighting a band at 171bp. B) Peaks 
highlighting the lower (LM) and upper (UM) of the 1kb+ ladder and band at 171bp.  
 

 

3.2.4 Understanding the stability of the MTX CCS 
 

Having determined that it was not possible to translate the assay into a qPCR-

based platform, I decided to go back to the nested PCR-based assay and 

evaluate the stability of the MTX CCS signature over time. To achieve this, 

baseline and 6 month samples from the original SERA cohort (R and NR groups 

used to discover the MTX signature) were used. It is important to note that 

patients in the R group at 6 months had reduced clinical disease activity index 

(CDAI) scores compared to baseline. All R had CDAI of less than 7.7, meaning all 

had low disease activity (LDA) or were in remission (Figure 3.19). NR had little or 

no improvement in CDAI scores by 6 months. All samples were investigated to 

find the presence or absence of each of the 5 loops of the MTX CCS at 6 months. 

Across all 5 loci, there were several samples that had a loop at both time points 

(labelled stable), a number that had no loop at baseline and one at 6 months, 

and another group that had a loop at baseline, but no loop at 6 months. These 

three categories of loop dynamics were present in both R and NR. The genomic 

locations with the most stable loops were IL17A NR, with 21 patients (72.4%) 

having loops present at both time points (Figure 3.19C). The least stable loop 

was IL21R from R, with 3 patients (10.7%) having loops at 6 months who had 

them at baseline (Figure 3.19E). 13.8% of NR had the CXCL13 loop still present at 
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6 months (Figure 3.19D). 35.7% and 46.4% of R had IL23 (Figure 3.19F) and 

IFNAR1 loops present at 6 months, respectively (Figure 3.19G). 

 

 
Figure 3.19 MTX CCS stability at 6 months 
Analysis of presence of MTX CCS loops at 6 months in MTX R and NR from SERA cohort. 
A) CDAI of R at baseline (BL) and 6 months (6m), N=28. B) CDAI of NR at BL and 6m, 
N=29. C) Loop status of IL17A loop at BL and 6m. D) Loop status of CXCL13 loop at BL 
and 6m. E) Loop status of IL21R loop at BL and 6m. F) Loop status of IL23 loop at BL and 
6m. G) Loop status of IFNAR1 loop at BL and 6m. R shown in green and NR shown in red.  
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6m, 6 months; BL, baseline; CDAI, clinical disease activity index; m, month;  
MTX, methotrexate; NR, non-responder; R, responder; SERA, Scottish Early Rheumatoid 
Arthritis Cohort 
 
 
 
Statistical tests were carried out on this data to gain further insight into the 

stability of the MTX CCS. The Boschloo independence tests were employed to 

measure the change in the signature at both time points for both groups, as well 

as measure the ability to stratify the two groups at each time point. This test 

was chosen based on the sample number available. The score of 0.48 for IL17A 

showed that is the only loop in R to not significantly change between baseline 

and 6 months, i.e., partly stable. In NR, IL17A, CXCL13 and IL21R significantly 

changed between time points (Figure 3.20A). The score of 1 for IL23 suggested 

the loop does not change between time points and suggests stability of that loop 

in NR. With a score of 0.69 in IFNAR1, the loop in NR could be considered partly 

stable. The test of how the CCS could stratify between R and NR to MTX at both 

time points confirmed, at baseline only, all loci of the signature could 

successfully stratify, with significant scores of 0.1 and below for all gene loops 

(Figure 3.20B). This was expected as it was based on the original MTX CCS study 

data and illustrates the 5 loci required for the signature. At 6 months, the score 

of 1 for IL17A suggests the loss of significant stratification ability to differentiate 

MTX R and NR for that loop. Other scores ranging from 0.19 to 0.76 implies 

limited stratification ability for the 4 remaining CCS loops at 6 months. 

Ultimately the data showed that the signature is not stable and would only be 

successful if used at baseline.  
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Figure 3.20 Statistical analysis for identification of stable markers and markers with 
stable stratification ability  
Analysis conducted by Ewan Hunter (OBD). Boschloo independence test carried out using 
binary data from MTX 6m stability analysis at baseline (BL) and 6 months (6m). Green 
for significant, red for insignificant and black for limited significance. A) Test analysing 
difference between time points, significant ≤0.4. B) Test analysing difference 
stratification ability of R and at BL and 6m, significant ≤ 0.1.  
BL, baseline; CDAI, clinical disease activity index; m, month; NR, non-responder;  
R, responder 
 
  

With the results indicating a largely instable CCS, an initial investigation was 

carried out using clinical scores to determine whether disease severity played a 

role in this variability between time points. As such, the correlation between CDAI 

(Figure 3.21) and DAS28 (Figure 3.22) scores with number of stable loops was 

examined. The results showed no clear correlation between chromatin stability 

and disease activity state. The numbers of stable loops are similar between R and 

NR. Furthermore, individual patient scores are widely distributed within each 

stable loop category, from as low as CDAI 10 to 49.5 (Figure 3.21C). This showed 

that loop architecture was not influenced by disease activity.  
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Figure 3.21 CDAI Correlation with Loop Stability 
The CDAI scores for each patient sample at BL and 6m was plotted against the no of 
stable loops. A) baseline CDAI in R. B) 6m CDAI in R. C) baseline CDAI in NR. D) 6m CDAI 
in NR. The linear regression of the data was plotted. R, N=27, NR, N=28.  
6m, 6 months; CDAI, clinical disease activity index 
 

 
Figure 3.22 DAS28 correlation with loop stability  
The DAS28 scores for each patient sample at BL and 6m was plotted against the no. of 
stable loops. A) Baseline DAS28 ESR in R, N=18. B) 6m DAS28 ESR in R N=17. C) Baseline 
DAS28 ESR in NR, N=18. D) 6m DAS28 ESR in NR, N=18. E) Baseline DAS28 CRP in R, N=27. 
F) 6m DAS28 CRP in R, N= 27. G) baseline DAS28 CRP in NR, N=27. H) 6m DAS28 CRP in 
NR, N=28. The linear regression of the data was plotted.  
CDAI, clinical disease activity index; CRP, C-reactive protein;  
DAS, disease activity score; ESR, erythrocyte sedimentation rate 
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3.2.5 Ability of the MTX CCS to predict response csDMARD 
treatment 
 

While a biomarker for MTX is beneficial, there would be value in identifying if 

the MTX CCS biomarker could predict response to baseline treatment, regardless 

of which csDMARD or csDMARDs were given to a patient. We wanted to assess 

whether the MTX CCS 5-loop signature for MTX would be applicable for 

determining response to patients treated with a combination of csDMARD 

treatment.  

 

To evaluate the suitability of this, the disease activity at baseline, 6 months and 

12 months was assessed in the SERA cohort. Patients were assigned a R or NR 

status based on the disease activity scores at 6 months and 12 months (Figure 

3.23). To differ from the cohort used previously, patients were identified that 

had been treated with HCQ or SSZ, which may have been in addition to MTX. 35 

patients treated with HCQ or SSZ, with or without MTX, were selected that had 

strong R or NR status (Table 3.3). A strong status was defined as a R remaining in 

remission or low disease activity at 12-months, or a NR with a high disease 

activity score at that time point. Patient baseline demographics revealed a 

similar profile between groups (Table 3.4 and 3.5). The presence/absence of 

MTX CCS loops was assessed in patients from these groups.  

  

Table 3.3 Chosen SERA Patient Treatment Assignment 
csDMARDs received in first 12 months of treatment 
HCQ, hydroxychloroquine; MTX, methotrexate; SSZ, sulphazine 
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Figure 3.23 Disease activity in responders and non-responders to HCQ and SSZ  
CDAI scores at baseline and 6 months (shown on left and right within each responder 
type, respectively) in SERA patients treated with HCQ or SSZ with or without MTX. CDAI 
represented as individual scores. A) R (N=9) and NR (N=12) to HCQ. B) R (N=11) and NR 
(N=8) to SSZ. T test to compare CDAI between time points, *P< 0.05.  
CDAI, clinical disease activity index; HCQ, hydroxychloroquine; NR, non-responder; 
R, responder; SSZ, sulphasalzine 
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Table 3.4 HCQ +/- MTX-treated Patient Demographics  

 
 
Table 3.5 SSZ+/- MTX-Treated Patient Demographics  

 
 
 
3C analysis was used to examine the presence of loops belonging to the MTX 

signature in HCQ and SSZ (with or without MTX) treated patients at baseline. 

Patients had a variety of loop combinations, however there was no clear 

difference between R or NR in most treatment subgroups (Figure 3.24). 

Monotherapy HCQ was the only treatment subgroup that showed a 

differentiation in signature loci between R and NR (Figure 3.24A). However, this 
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was also the smallest treatment group, and not large enough for robust 

interpretation. Loops were only present at IL17A, CXCL13 and IL23 loci. There 

were no loops detected at IL21R and IFNAR1 loci in any response group which 

meant these loci always clustered together within the heat map. The MTX CCS 

NR signature was observed 5 times (Figure 3.24B, C), but was only once observed 

in a patient with a clinical NR status (Figure 3.24C). The HCQ combination 

therapy group had most variation in loop presence of all subgroups, but no clear 

differentiation between R and NR could be observed. All subgroups were very 

low in number, therefore solid conclusions cannot be drawn from the data.  

 

 
Figure 3.24 Heat map of MTX CCS loop presence in R and NR 
3C carried out on baseline samples from patients treated with HCQ or SSZ, with or 
without MTX. Heat map indicating binary presence or absence of 5 MTX CCS loci loops. 
A) Patients treated with monotherapy HCQ. B) Patients treated with combination HCQ + 
MTX. C) Patients treated with monotherapy SSZ. D) Patients treated with combination 
SSZ +MTX. Blue = loop, Red = no loop. Yellow box indicates NR signature in a clinical 
response, green box indicates NR signature in clinical NR  
NR, non-responder; R, responder 
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Based on the MTX signature, HCQ and SSZ +/- MTX treated patients were 

assigned a predicted response. The correct response status was only assigned in 

1 patient (Figure 3.25B). This patient received monotherapy. Several patients, 

also monotherapy SSZ-treated, had a NR signature present, but were clinically 

responders to therapy. The remaining patients had a combination of loops out-

with the MTX signature conformation and therefore their response could not be 

predicted. These values were used to employ ROC analysis to determine 

specificity and sensitivity of the signature in this group. The ROC curve for HCQ 

monotherapy treated patients had a sensitivity of 50% and a specificity of 33.3% 

(Figure 3.26A) and combination treated ROC curve had a sensitivity of 33.3% and 

a specificity of 50%. ROC analysis of monotherapy SSZ treated patients revealed 

a sensitivity of 0% and a specificity of 25% (Figure 3.26D). Combination treated 

SSZ patients had sensitivity of 0% and specificity of 100%. The highest accuracy 

value was 50%, which confirms that there is no predictive potential for the MTX 

CCS for response to csDMARD treatment.  
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Figure 3.25 Binary classifier and ROC curve analysis of MTX signature for csDMARD 
response prediction 
Assessment of the predictive ability of the MTX CCS to stratify HCQ and SSZ +/- MTX 
treated patients. Classifier of observed and predicted response status for A) 
Monotherapy HCQ and B) SSZ + MTX. C) Monotherapy SSZ. D) SSZ + MTX. E) ROC curve 
for monotherapy HCQ. F) ROC curve for HCQ + SSZ. G) ROC curve for monotherapy SSZ. 
H) ROX curve for SSZ and MTX. ROC curves generated using web-based calculator which 
utilises JROCFIT program.  
 
 
To understand why the CCS could successfully predict response in only 1 patient, 

and other patients had a mostly undefined signature, demographic and disease 

activity was measured in each category (Figure 3.26). The patients were split 

into 4 categories: 1) responders who were predicted to be non-responders (R-NR, 

2) non-responder predicted to be non-responder (NR-NR), 3) responders who 

could not be given a prediction response (R-un-defined (UD) and 4) non-

responders that could not be given a prediction (NR-UD). The NR that had the NR 
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signature had an age within the range of ages in the other 3 categories of 

patients. Unlike the other 3 categories, the successfully predicted NR was 

neither a current smoker, or had an ex-smoker status. In the other categories, 

there was at least 1 current smoker and ex-smoker. The alcohol intake in the NR 

was within the range of the other categories. When considering the baseline 

disease activity of the NR, it was within the CDAI and DAS28 CRP upper range 

with the other categories. The CDAI and DAS28 CRP of the NR were 39.1 ad 5.7 

respectively. The other interesting group to consider was the 4 R who had the 

NR signature. While the prediction was wrong, the MTX CCS was present. This R 

group had the largest age range from a minimum of 28 to a maximum of 88. The 

number of current smokers was the same as the R-UD group and ex-smoker 

number half of the UD groups. Alcohol intake, CDAI and DAS28 CRP scores were 

in similar range with the UD groups. As already discussed, the sample number for 

this part of the stud were very low and higher numbers in every subgroup would 

be needed to draw the right conclusions.  

 
 

 
Figure 3.26 Demography and disease activity relationship with csDMARDs response 
prediction 
BL demographic factors and disease activity was measured in all HCQ/SSZ +/- MTX-
treated patients. A) Age. B) Number of patients who currently smoke. C) Number of 
patients who smoked previously. D) Units of alcohol consumed weekly. E) CDAI at BL. F) 
DAS28CRP at BL. 
CDAI, clinical disease activity index; CRP, C-reactive protein; NR, non-responder;  
R, responder; UD, undefined 
 
 
As well as exploring the relationship between demographic factors and the 

ability of the MTX CCS to predict response correctly, it was important to 
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understand if mono or combination therapy had an influence. Most patients with 

the presence of the MTX NR signature were SSZ monotherapy treated. There was 

1 patient in this group that was treated with a combination of HCQ and MTX 

(Figure 2.27). The R and NR group that had an UD signature had a combination of 

the 4 treatment options of monotherapy HCQ or SSZ, or combination therapy 

with MTX. 35.7% of R with the UD signature had most patients treated with the 

HCQ and MTX combination. 26.6% had combination SSZ and MTX, followed by 

21.4% with monotherapy SSZ and 14.3% with HCQ. 31% of NR with UD signature 

were monotherapy HCQ treated. The remaining 3 combinations made up 23% 

each of this group. R with UD signature had over 60% using combination therapy, 

however the R with NR signature have 75% on monotherapy. Overall, most 

patients that had loci in a conformation from the MTX CCS were monotherapy 

treated. This could be expected as the signature was developed in a 

monotherapy cohort. However, numbers are too low to draw a solid conclusion.  

 
 
 

 
Figure 3.27 Relationship of mono and combination therapy with csDMARD response 
prediction  
BL treatment was recorded and split into 4 groups: HCQ monotherapy, SSZ 
monotherapy, HCQ+MTX combination therapy and SSZ+MTX combination therapy. R 
predicted to be NR = R-NR, NR correctly predicted as NR=NR-NR, R without prediction= 
R-UD, NR without prediction = NR-UD 
HCQ, hydroxychloroquine; MTX, methotrexate; NR, non-responder; R, responder;  
SSZ, sulphsalazine; UD, undefined 
 
 
3.2.6 Validation of MTX CCS in new clinical cohort 
 

With a robust PCR protocol established for assessing the 3C epigenome in RA 

patients, the decision was made to validate the MTX CCS in another RA cohort. A 

group of early RA samples from the Towards A Cure for Early Rheumatoid 

Arthritis (TACERA) cohort were selected based on the assignment of 
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monotherapy MTX at baseline. The TACERA cohort replicates the SERA cohort 

based on collection of samples from early RA patients who were treatment naïve 

at baseline. Peripheral blood samples were retrieved from these patients. At 

selection for our study, patient characteristic information was not retrieved as it 

was to be conducted blinded. Nested PCR was carried out at OBD and statistical 

analysis was used to understand if the MTX CCS could predict MTX response in an 

independent clinical cohort. 2 models were used to assess the predictive ability 

and plots can be used to visualise the loops in the CCS with the best predictive 

potential (Figure 3.28). These models have been developed since the discovery 

of the MTX CCS and are sophisticated, boosted machine learning models. 

Compared to the Weka model used to develop the original MTX CCS, the newer 

models are better at classification. The other advantage is the ability to see use 

these models directly in R Studio, as opposed to using externally with the Weka 

model. Weka could be used within R, but functionality is limited. Dilutions of 

primers to detect each loop were also used to help assess the influence of each 

loop on the model. The plot for one of the models, named XGBoost, shows 

SHapley Additive exPlanations (SHAP) scores which best represent results from 

tree-based algorithms. The plot shown highlights that IL17A provided the most 

stratification potential to the model with a score of 0.705 (Figure 3.28). Many 

patient samples with a low abundance of this loop had good prediction of a 

producing a negative in the model, and another group of patient samples with a 

high abundance of this loop contributed to a positive predictive score. Overall, 

this contributes to the highest ranking of this loop in the model. IL21R did not 

add any value to the model with all dilutions of the sample producing a score of 

zero. The plot indicates that most dilutions over 2-fold did not add anything to 

the model with scores of zero.  
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Figure 3.28 Identification of MTX CCS Loops that add value to Model in New RA 
Cohort  
Data from XGBoost training model to plot contribution of each MTX CCS to new 
prediction model using the SHapley Additive exPlanations (SHAP) values. Each dot 
represents patient sample. Positive and negative values on x-axis indicate whether the 
loop is associated with a positive or negative prediction. Colour indicates whether loop 
abundance is high or low. Loops are ranked from top to bottom (from best to worst), 
based on the contribution to model. EpiSwitchTM loop detecting primers diluted used 
neat, or diluted 2, 4 or 8 fold; ‘_1’, neat; ‘_2’, 2-fold; ‘_4’, 4 fold; ‘_8’ 8 fold.  
 
 

2 training models were built using 2 methods, XGBoost and Light GBM (Figure 

3.29). For the purposes of prediction, these patients had to be unblinded. The 

first model, XGBoost, identified 20 R successfully and 15 NR successfully (Figure 

3.29A). 9 NR were incorrectly identified as R, and 3 R wrongly assigned a NR 

status. With the Light GBM model, 12 R were correctly identified and 20 NR 

successfully identified (Figure 3.29B). 11 NR were predicted to be a R and 6 R 

predicted to be NR. The XGBoost model revealed a sensitivity of 0.833 and 

specificity of 0.69 (Figure 3.29C). The Light GBM model revealed a sensitivity of 

0.62 and specificity of 0.67 (Figure 3.29D). The XGboost model had 74.5% [95% CI 

(0.59, 0.86)] accuracy and the light GBM an accuracy of 63.8% [95% CI (0.49, 

0.77)].  

 

 



	 141	

 

Figure 3.29 Binary classifier and ROC curve analysis of Training Models of MTX CCS 
for MTX Response prediction 
Assessment of the predictive ability of the training models on 47 RA patients. Classifier 
of observed and predicted response status for A) XGBoost model and B) Light GBM model 
C) ROC curve for XGBoost. D) ROC curve for LightGBM. ROC curves generated using web-
based calculator which utilises JROCFIT program. 
 
Once the training sets had been generated, they were tested on 23 blinded 

patients (Figure 3.30). The XGBoost identified 6 R successfully and 8 NR 

successfully (Figure 3.30A). 5 NR were incorrectly identified as R, and 4 R 

wrongly assigned a NR status. With the Light GBM model, 7 R were correctly 

identified and 8 NR successfully identified (Figure 3.30B). 4 NR were predicted 

to be R and 4 R predicted to be NR. The XGBoost model revealed a sensitivity of 

0.62 and specificity of 0.6 (Figure 3.30C). The Light GBM model revealed a 

sensitivity of 0.67 and specificity of 0.64 (Figure 3.30D). The XGBoost model had 

65.2% [95% CI (0.39, 0.8)] accuracy and the Light GBM an accuracy of 63.8% [95% 

CI (0.49, 0.77)]. Overall, I can’t conclusively say that the signature was 

successfully validated in another cohort. There is some evidence that some loci 

hold their predictive capacity, but ultimately, the signature was not validated. 

Based on the recognition of the models used and their predictive power, 

evidence suggests that the signature should be improved, as the sophistication of 

the models used would have likely extracted the results of stratification if it was 

possible in this group.  
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Figure 3.30 Binary classifier and ROC curve analysis of testing models of MTX CCS for 
MTX Response Prediction 
Assessment of the predictive ability of the testing models on 23 blinded RA patients. 
Classifier of observed and predicted response status for A) XGBoost model and B) Light 
GBM model C) ROC curve for XGBoost. D) ROC curve for LightGBM. ROC curves 
generated using web-based calculator which utilisies JROCFIT program. 
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3.3 Discussion 
 
The discovery that chromosome conformation signatures had the ability to 

successfully predict MTX response in treatment naive RA patients at baseline was 

a promising finding, but validation was needed. The work in this chapter 

explores the validation of this biomarker using bioinformatics techniques and 

experimentally using an independent clinical cohort. It also explores the 

transition of the 3C technique from OBD to the lab in house and the attempt to 

transition to alternative protocols. Further measurements to define the 

stratification potential by measuring stability of the MTX CCS at 6 months, and 

ability to predict response to treatment, regardless of csDMARD(s) assigned at 

baseline was also explored. 

 

The first step in the in-silico validation process was to assess the quality of the 

data. It is recognised that pre-processing and appropriate normalisation steps 

are crucial to produce robust results that lead to reliable biological 

interpretation273. Limma was chosen as the software to validate the results due 

to its features to analyse data quality and normalisation, and for its linear 

modelling potential. Multiple studies have demonstrated that dye bias exists in 

dual colour microarray experiments, so this was one of the first steps to assess 

quality in our dataset274. This dye bias can contribute to the inaccurate 

interpretation of the expression intensities of the material being measured. 

There is debate in the literature about the methods that should be used to 

combat dye bias. Some researchers believe that dye swaps should be used, 

however, others believe that it is not essential, and the latter was the approach 

in this study274,275. The red-green dye densities shown did not highlight any 

arrays with a dye bias and the distribution of both colours was comparable 

(Figure 3.1A). MA plots were also used to visualise the red-green intensity log 

ratio (M) and mean signal intensities of each of spot on the array (A). With our 

dataset, it was assumed that most loops captured on the array were unlikely to 

change, meaning the plots should have most spots centred around the middle 0 

line. The results in Figure 3.1C show a curved line, highlighting that pre-

normalisation, there were more spots than expected with a positive or negative 

fold change representing loop abundance. There was also substantial variability 

at the low intensities, shown by the V shape on the left side to the middle of the 
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plot. This shape of plot has been shown in the literature273 and suggests a low 

intensity bias for large fold changes. Despite the indication that there may be 

some bias at certain intensities for large fold changes, this analysis highlights 

that the most loops do not change between samples, but that there were enough 

to warrant further investigation.  

 

After this first visualisation step of the array parameters, normalisation of the 

data was required. Loess normalisation is considered an appropriate 

normalisation approach for datasets where most measured elements are unlikely 

to change. Loess normalisation successfully reduced variability between the dyes 

in each array, indicated by more uniform histogram distributions (Figure 3.1B). 

In the MA plots (Figure 3.1D), it is evident that Loess normalisation reduces the 

curvature of the middle of the plot, highlighting the reduction in the number of 

loops with differential fold change. The last QC assessment shown is the boxplot 

(Figure 3.1E). This represents normalisation of signal intensities across 8 the 

arrays, and similar to other plots, indicated normalisation was successful and 

there were no problematic arrays that should be removed from the analysis.  

 

The second stage of the validation process was to confirm the stratification 

potential of the MTX CCS loci. Analysis confirmed the potential for stratification 

using the MTX CCS loops. Contrast models in Limma, contrasting NR and R 

revealed the association of IL17A and CXCL13 with NR and IL21R, IL23 and 

INFAR1 with R, as is present in the signature (Figure 3.2A). Next, the 5 loci had 

to be tested on a set of patient samples. Using a Random Forest classification 

method, the model revealed an accuracy of 87%, shown visually with a ROC 

curve, which can be considered in alignment with the original model. Overall 

these tests indicated that the signature could be validated and there was a basis 

to explore this signature further throughout this study.  

 

The first stage in establishing that I could carry out the 3C independently was to 

obtain samples to work with. These samples were generated from healthy BC 

donors. A purity check was carried out to ensure successful isolation of the 

intended cell type (Figure 3.3). These checks illustrated that the isolation was 

effective. The population of CD4+ T cells were within the expected range of 20-

60% of the total PBMC population276.  
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The generation of the first 3C libraries using these cells was successful, as 

demonstrated by the Quant-iT PicoGreen method of DNA quantification (Figure 

3.4). After measuring the first samples using the PicoGreen assay, it was 

considered that there may be a higher-throughput method of quantification for 

the 3C libraries, which would be more suited to the number of samples in our 

study. The Qubit platform has been shown to be a reliable method of choice to 

calculate DNA concentration when carrying out next-generation sequencing 

(NGS) or microarray methods277. Compared to other DNA quantification methods, 

the Qubit is rapid, precise and sensitive278. As such, this was the alternative 

method to PicoGreen that was chosen. A direct comparison was carried out 

between PicoGreen and the Qubit dsDNA HS assay (Figure 3.5). The results 

revealed a statistically significant difference in the yield of DNA measured. This 

experiment was repeated and there continued to be a disparity in results 

between the two quantification methods, with the Qubit consistently calculating 

lower concentrations. Exploration of these methods has also been shown in the 

literature279. Like the results described, the Qubit measured lower DNA yields 

than an alternative method, specifically, the Taqman RNAse assay. This could be 

considered surprising as the Qubit should capture all dsDNA. However, since the 

Qubit only measures dsDNA and not any single stranded (ssDNA) or other 

contaminants which may be present in the sample, that could be a contributor 

to the disparity in this example. Interrogation of the data showed that the Qubit 

results were the most consistent over the 3 experiments. These results, coupled 

with the reliability of this assay in the literature meant the Qubit was the 

method chosen to continue the study with. Moreover, the Qubit system has 

various kits that can be tailored to the yield of DNA expected from a sample, 

which could be useful in the future278.   

 

Another essential check that had to be carried out was nested PCR and gel 

electrophoresis using the control primers for EpiSwitchTM 3C before future work 

could commence. Figure 3.6 illustrates these results and highlights that the 

control primers perform as expected. MMP1 4/12 and MMP1 9/12 are positive 3C 

controls as there is a stable copy number in normal blood. Both controls were 

consistently present at the expected size. The primers designed to capture the 

loops in the MTX signature were also tested in healthy BC before being used on 
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patient samples (Figure 3.7 and Figure 3.8). This employed a semi-quantitative 

method, which was used in the seminal 3C paper by Dekker et al. The analysis of 

gel electrophoresis from healthy donors displayed a wide variation between 

samples. The higher copy number of loops in the IL21R and IL23 loci compared to 

the other 3 loci was interesting. It could suggest that these genes are more 

active genes in the general population or could mean the alternative if the 

looping of the gene causes inactivation. Until the function of the loops within 

the signature is investigated, it cannot be fully understood why there are a 

higher number of loops at these loci in healthy donors over IL17A and CXCL13. 

There is the likelihood that absence of loops in these loci could mean that IL17A 

and CXCL13 are more associated with disease phenotype and pathogenesis 

compared to the other genes in the signature. Marwa et al have suggested a 

polymorphism in IL17A has been associated with response to MTX280. As our 

signature has the predictive power in only RA patients, it is not unsurprising that 

the healthy donors used for the 3C assays thus far would have a low number of 

individuals presenting with loops in our genomic regions of interest. It should be 

noted that the results shown are from a limited number of healthy donors 

therefore it is difficult to draw conclusions from this data. In summary, the 

results presented thus far demonstrate that I was able to successfully execute 

the 3C assay and analysis using patient samples from the SERA biobank could 

commence. 

 

In my hands, I considered whether we could transition to a high-throughput 

method of biomarker detection. Work in this chapter details the attempt to 

optimise a qPCR assay for this purpose. This aligned with the work being carried 

out at OBD, as they were translating other signatures to the higher throughput 

qPCR platform. qPCR has been described widely in the literature, but it is 

recognised that there are challenges in achieving a robust assay for 3C 

templates. A high DNA template concentration and primer-dimers can result in 

non-specific fluorescence281. As such, it was important that the MIQE guidelines 

were followed which state the minimum requirements for publication of PCR 

results272. qPCR MMP control primers were obtained from OBD and tested in RA 

patient samples (Figure 3.10). The results for qPCR with the MMP primer 

indicated that generally there is a low level of 3C template, indicated by the 

high Ct value. This has been consistently shown with work since carried out at 
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OBD where the MMP positive control primer has a low Ct value indicating very 

low DNA template. (Figure 3.31). This gave an indication of what could be 

expected from the MTX CCS loci.  

 
Figure 3.31 qPCR Positive Control Analysis 
Concentration of DNA of 3C products using positive 3C controls from recent qPCR 
microarray data generated at OBD. Data is shown as box and whisker plot showing the 
median and standard deviation, N=1.  
 
 

One of the first stages in the optimisation process was primer design. 3C regions 

are non-germline and low complexity which makes them prone to hairpin loops 

and primer dimers, therefore making primer design challenging. A low 

complexity sequence will reduce the primers discriminatory power on the 

sequence of interest and result in nonspecific binding282,283. This challenge is 

reflected in the results shown in this chapter. To be taken forward, primers had 

to demonstrate evidence of efficiency and specificity. Efficiency was measured 

by temperature gradient qPCR, with the aim of identifying the optimal 

temperature that a single product could be amplified. Specificity is shown by the 

existence of a single product, which can be evidenced through the melt curve 

and gel electrophoresis analysis. Three separate primer sets were tested for all 5 

loci from the MTX signature, and results indicated that most primer sets were 

marginally improved on the set before, i.e. A better than B, and B better than C. 

This can be seen from primer set A having the most amplification of negative 

controls and primer set C, designed last, having the least amplification of 

negative controls. However, this was not the case for IL21R. Moreover, it was 
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evident that primers for CXCL13 were not efficient or specific with any set 

(Figure 3.12). The three primer sets tested were unable to amplify the patient 

product of interest at most annealing temperatures. Any occurrence of the loop 

of interest was accompanied by amplification of negative controls. In general, 

the lower the annealing temperature, the lower the Ct of the patient loop of 

interest. However, it is at temperatures of 66.4°C and above that appear to be 

most optimal to amplify only the patient loop of interest without negative 

controls. Based on analysis of the Ct values, primer set C for IL17A and IL23 

appeared good candidates for 3C qPCR (Figure 3.11 and Figure 3.14). However, 

when gel electrophoresis was carried out on the qPCR products, a band could not 

be found at the temperatures that resulted in single product amplification. 

Manual gel loading could be considered a reason for this. Additionally, gel and 

melt curve analysis taken together suggest the presence of non-specific 

amplification. The mean Ct values for IL21R and IFNAR1 suggest that no primer 

set was suitable for amplifying the patient loop of interest. However, limited 

individual experiments provided evidence that the primers may be good 

candidates for 3C qPCR. 68°C was an optimal temperature for primer set B and C 

to amplify the patient IL21R loop of interest without amplification of negative 

controls. For primer set B, the qPCR product of interest did not appear at the 

expected size, however it did appear at the expected size for primer set C. The 

optimal annealing temperatures for amplification of only the IFNAR1 loop were 

66.4°C and 64.4°C. This only occurred with primer set B, and this was in 

conjunction with a gel band at the expected size. Based on the limited primer 

success there were several candidates that were chosen for sequencing: IL21R 

version C and IFNAR1 version B. 

 

Sequencing was used to confirm if the amplified qPCR product was correct. The 

known sequence of the ligated 3C product with the characteristic TCGA 

sequence in the centre was used as the reference. This, combined with the 

predicted product size based on the specific primer design facilitated this 

prediction. In order to send a qPCR product for sequencing, the band from gel 

electrophoresis had to be purified and the yield of DNA established. As 

documented in Figure 3.16, this process required optimisation as the original 

protocol yielded only 0.88ng/µl which was not sufficient for sequencing 

protocols. The first attempt to improve the yield added additional incubation 
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steps to the protocol. The kit used for this purification is based on the 

centrifugal filtration method. This method has been shown to have a normal 

recovery rate of between 60%284. This was chosen as the first factor to modify, 

based on evidence from the literature that states increased incubation 

temperature or incubation time could improve yield in cross-linked DNA285. This 

proved unsuccessful, yielding less DNA than the first attempt. A possible cause 

could be degradation of the DNA. Alternatively, since the sizes of DNA fragments 

are not considerably large, this alteration of the protocol may not have had 

much influence. The third attempt to increase the DNA yield comprised of 

additional incubation steps in addition to elution in heated buffer with the aim 

that this would allow more DNA to be released from the membrane. This 

optimisation step resulted in a statistically significant increase in DNA yield from 

the first attempt (Figure 3.16) and provided sufficient DNA concentrations to 

facilitate sequencing steps. 

 

As discussed, the first product sent for sequencing was a product from an IFNAR1 

reaction; annealing temperature 62°C. This resulted in sequencing that was low 

quality and had a very low alignment with the known IFNAR1 loop sequence 

based on only a small number bases of the known sequence aligning with the 

sequencing product (Figure 3.17). This meant optimisation was required to 

ensure a good quality DNA product was sent for sequencing. Cloning of the gel-

purified qPCR product was chosen as a method of increasing DNA quality. This 

would allow amplification of only the single qPCR product. After cloning, a 

restriction digest was conducted to cleave the cloned qPCR product. The results 

from the first cloning attempt did not yield the product with restriction digest 

(Figure 3.17D). This revealed that optimisation of the cloning protocol would be 

necessary. The addition of a PolyA tail to the qPCR product was not enough, and 

an optimised ligation ratio to facilitate increased chance of clone insert was 

needed. With the protocol optimised, another qPCR product was sent for 

sequencing. Despite the quality improvement on the first sequencing attempt, 

the alignment with the loop sequence was too low. The resulting high quality 

product, with similarly low alignment to the first sequencing attempt which 

suggested the primers were not amplifying the correct product.  
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Combined, the data generated suggested that the translation of this assay to a 

qPCR-based platform was not easily achievable. This could be due to a multitude 

of reasons, but it is conceivable that the qPCR assay could be less sensitive due 

to low ligation frequency in 3C loops in our signature of interest. As mentioned 

above, 3C ligated sequences produce low-complexity templates, and it has been 

documented that in some circumstances, low complexity sequences are 

excluded from primer design processes286. Furthermore, these low-complexity 

templates have been explored and shown to contribute to the formation of 

pathological ribonucleoprotein assemblies287. Taken together, this evidence 

illustrates the challenge of designing qPCR primers for these loop regions and 

why it is plausible that optimisation would be ineffective. However, with the 

addition of a more easily interpreted, high-throughput gel electrophoresis 

technology (Figure 3.18), I was confident that I could move forward with nested 

PCR.  

 

We also wanted to understand if the biomarker was stable after 6 months on 

treatment. The literature describes chromosome conformation as both stable 

and dynamic185, so it was important to establish chromatin dynamics in the 

context of RA. Establishing the time frame within which this biomarker can 

successfully stratify R and NR to MTX is of great importance. It has been 

recognised that the timing of biomarker detection is critical and that plasticity 

of the epigenome is a complex factor to consider in such studies288,289. If the 

biomarker is to measure disease progression, biomarkers that fluctuate with 

disease progression is desirable, as demonstrated by Selaas et al290. They found 

that IL-6 and VEGF-A could be promising candidate disease biomarkers due to 

their reduction over the disease course. However, as the MTX CCS has the aim of 

establishing treatment response, and MTX can be given at any time throughout 

the RA treatment regimen, stability would be considered beneficial. Results 

illustrated that the signature was not stable in the majority of the patients. All 5 

loops from the signature, had variability between time points in both R and NR. 

The loop dynamics came in the form of loops being lost and gained over the 6 

months on treatment. It is highly plausible that MTX treatment can influence the 

structural epigenome. Studies of the transmembrane receptor tyrosine kinase, 

HER2, have illustrated the influence of treatment on the epigenetic landscape. 

In two breast cancer cell lines, there was genome-wide reprogramming of HER2 
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binding sites after treatment with the growth factor EGF291. Molecular changes 

caused by treatment have also been shown in RA studies. A study by Tasaki et al 

investigated the levels of multiple serum proteome signatures associated with 

RA, such as serum CRP and ESR over time. They found that treatment with 

Infliximab and Tocilizumab reduced proteome signatures, as did MTX to a lesser 

extent292. While this study did not monitor the molecular features of the MTX 

signature, it does highlight the ability of MTX to modify other markers and 

highlights that loops would be likely to alter conformation as a result of 

treatment. The Boschloo test was used to statistically test the degree of change 

in the signature loops between baseline and 6 months in each responder group. 

Only IL23 was considered statistically stable as the confirmation in most patients 

remained the same at both time points. Boschloo independence tests were also 

used to determine the predictive ability of differentiating R and NR to MTX at 6 

months (Figure 3.20B). The tests clearly confirmed the ability of the signature to 

differentiate between R and NR at baseline, as expected, but by 6 months this 

capability is lost. It must be considered how the underlying disease has changed 

in this time, and may be the reason why the signature no longer has predicative 

capacity.  

 

To try and understand if there was a relationship between the stability of the 

biomarker, and demographic factors, correlations were carried out between 

CDAI and DAS28 scores and the number of stable loops (Figure 3.21 and 3.22). 

There was a minimal positive correlation between CDAI at baseline and the 

number of stable loops. Those with a lower CDAI at baseline have marginally 

lower chance of having more stable loops. This relationship is also observed with 

DAS28 ESR and CRP scores at baseline in R (Figure 3.22A and E). In all NR, there 

is the indication that there is a negative correlation that exists between 

increased disease activity and number of stable loops. However, collectively, the 

results suggest there is no relationship between disease activity and the number 

of loops in the signature that are present at both time points. Several R had all 5 

loops in the MTX CCS at baseline and 6 months, whereas there were no NR with 

all 5 loops present at both time points. This may allude to a stable epigenetic 

set point that facilities a good response to MTX. However, the distribution of 

stable loop number is otherwise similar between these 2 groups. Due to the lack 

of interim time point to test the presence of the biomarker loops in all patients 
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we are unable to conclude if the chromatin loops change immediately after 

treatment, or at some point in between. Many studies in the field of oncology 

have illustrated the ability of drug treatment to alter chromatin architecture. 

Using histone modification enzymes, Gerrard et al illustrated that structural 

epigenome changes occurred within days of drug treatment293. Based on those 

findings, it would be reasonable to consider an earlier time point after MTX 

administration to test the presence of MTX CCS loops. 

 

Another important question to explore for the MTX CCS was the ability to use it 

to predict response to csDMARD treatment as a whole. The results demonstrated 

that the signature was not able to predict response to treatment, whether it be 

monotherapy or combination therapy. The results shown in Figure 3.24 

illustrated that there was no difference in signature loci conformation between 

R and NR. Only monotherapy HCQ showed a clear differentiation between R and 

NR based on loop confirmation. However, 5 patients is not enough to draw a 

robust conclusion. Moreover, in the HCQ +/- MTX R group, there was a marked 

age difference between patients receiving monotherapy and those receiving 

combination therapy. Specifically, monotherapy patients had an average age of 

47, and combination therapy patients, an average of age 70. Due to the low 

numbers of patients already in each responder, and therapy, subgroup, 

unfortunately, the groups could not be stratified further to account for age. This 

is something that should be considered in the future, and enough samples should 

be obtained to ensure subgroups are comparable in age, or numbers are 

sufficient to stratify by age group. In contrast to the MTX signature that groups 

IL17A and CXCL13 together, and IL21R, IL23 and IFNAR1 together, all heat maps 

appear to group IL23 with IL17A and CXCL13. However, a new signature involving 

these new groupings would not be possible, as this grouping is the same in R and 

NR.  

 

Based on the binary results, a predicted response type was assigned to each 

patient. The results shown in Figure 3.25 show that most predictions could not 

be made and were labelled undefined (UD). No patient sample had an R 

signature, but 5 patients in total had an NR signature. However, of those, only 1 

patient was a clinical NR. The ROC analysis conducted from this data highlighted 

the specificity and sensitivity of the signature in these patients. All ROC analyses 
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had poor sensitivity and specificity results. The predictive ability of the MTX CCS 

for these combination of therapies is poor, at no more than 50% accuracy. This is 

greatly reduced from the predicative capacity of the CCS for MTX R and NR of 

87% and 90%. The findings of the monotherapy HCQ group highlight, on a small 

scale, the importance of a large patient group for biomarker testing. Recent CCS 

discovery studies have used 74, 59 and 116 patients in their cohorts to define 

their signature216,218,217. The MTX CCS was systematically developed with a group 

of treatment naive samples that were given MTX monotherapy. Due to this 

systematic approach, it is not surprising there is little capacity for the same 

signature to stratify patient treated with a combination of other csDMARDs.  

 

In general, there was no obvious demographic or clinical characteristic which 

defined why some patients had the MTX CCS present, and others didn’t (Figure 

3.26). The successfully predicted NR had no history of smoking, while patients in 

the other 3 groups had a combination of current and ex-smokers. It could be 

disputed that as smoking is well recognised influence on the RA epigenome, that 

this may play a role. However, in the patient groups used to identify the original 

MTX CCS, there were current and previous smokers. The same numbers of 

current and previous smokers were present in from the HCQ and SSZ treated 

patient groups, as well as no smoking history. Therefore, it is unlikely that 

smoking plays a significant role in the efficacy of the biomarker. The 

successfully predicted NR was in the middle of the age range of all other groups, 

suggesting this is not an influential factor either. Baseline disease activity 

measurements were in the upper range of values. CDAI and DAS28 CRP for this 

patient were close to the maximum values of the response groups with an 

undefined signature. The other group of responders that had a signature, 

although unsuccessfully predicted, also had patients with high baseline disease 

activity. This may suggest that the presence of the MTX CCS is more likely in 

those with worse disease at baseline.    

 

When investigating the potential influence of treatment option on the ability of 

the MTX CCS to successfully predict response, results in Figure 2.27 suggest 

treatment has little influence. Observing these results from the perspective of 

treatment option on response, suggests monotherapy or combination therapy has 

around equal chance of being successful. The clear majority of patients with the 
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presence of a MTX signature were monotherapy treated. However, there was 1 

combination DMARD treated patient. R and NR with UD signatures have patients 

representing all 4 treatment options. R with UD signatures have marginally more 

combination treated patients, however, non-responders have marginally more 

monotherapy treated patients. However, with the MTX CCS loci in the ‘correct’ 

conformation in only 5 patients, the influence of therapy is difficult to 

comprehend fully. Looking at this data with a view of understanding if DMARD 

treatment option had an influence on response, once again, overall monotherapy 

and combination therapy both appear to work just as well as each other in this 

patients group. This work is very limited by patient number and if this was to be 

explored further, a much larger patient group would be needed. This data 

confirms that it is not a csDMARD biomarker that was found, but a biomarker 

specifically for MTX response and highlights the need to explore other options 

for a CCS for baseline csDMARD treatment. The 5 genetic loci for the MTX CCS 

began with a list of RA associated loci, so it is plausible to consider that a pan-

DMARD CCS could be generated from this list. Similar questions of CCS extending 

to other therapy areas have been discussed, but not fully explored in the 

literature. Work by Rousseau et al, identified a CCS could be used to classify a 

subtype of leukaemia. They acknowledged that it was likely other genes would 

have to be consulted to find a signature able to identify other subtypes294. 

Similarly, in another study by Rousseau, they found evidence that distinct 

cellular states in macrophages had distinct chromatin conformations295. This 

means with further investigation, different cellular states, captured by 3C, may 

shed more light on the MTX CCS and biological consequences.  

 

Overall, while the data has been interpreted with a lot of caution based on 

limitations described, these findings suggest that the patient cohorts used to 

test the stratification potential of the signature were comparable, and the 

difference in sensitivity and specificity measures were unlikely to be caused by 

patient demographics or disease activity measures. This experiment was very 

limited by available patient samples and the fact that many patients were on 

combination therapy makes it difficult to interpret where the clinical response is 

arising from and therefore the meaning of the stratification using the chromatin 

signature. Based on the data gathered, it is evident that the MTX CCS is not 
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capable of stratifying patients who are on a different csDMARDs and a new 

signature would be required to stratify RA patients at baseline.  

 

Another clinically important question that had to be asked was if the MTX CCS 

could also be validated in an independent clinical cohort. The results from this 

investigation indicated that the CCS could not differentiate R and NR to MTX as 

well as in the SERA cohort. Despite both experiments using different models 

(Weka vs XGBoost and Light GBM), evidence has shown that the newer models 

used to assess the signature in the TACERA cohort are statistically superior, and 

if the signature could differentiate R and NR, these models would have most 

likely identified this. Only 3 of the 5 loops from the MTX CCS were shown to have 

albeit limited, stratification potential with the newer models. A dilution series 

was used as a semi-quantitative method that was described previously (Figure 

3.7, 3.8). Only the neat primer cocktail and the 2-fold dilution produced results 

that added any value to the predictive model. It must be considered that the 

sample collection processes of the SERA samples and TACERA samples were 

different and that could impact the ability of the signature to perform as well. It 

is known that nucleic acids are susceptible to oxidative damage after blood 

collection296. One study compared blood extraction protocol for whole blood 

gene expression profiling experiments using mRNA. They revealed that there 

were substantial differences in the transcriptomic profiles of PBMCs that had 

gone through three different blood collection processes297. However, it is largely 

understood that DNA is more stable than RNA and therefore, for our signature, 

differences in blood collection should not have as much of an effect. 

Interestingly, the 3 loci with promising predictive potential were IL17A, IL23 and 

IFNAR1. The results from the qPCR optimisation revealed IL21R and to a lesser 

extent, IFNAR1, as better candidates than other loci for an effective qPCR assay, 

while CXCL13 showed little evidence of success. This may be due to the 

advantage of the updated extraction protocol (Protocol 2, Section 2.2.3) that 

has been implemented by OBD, supporting the idea that the extraction protocol 

favours loops in some genes over others. This could be attributed to the 

variation of copy number of each library that is evidenced with the 3C control 

primers (Figure 3.31). In contrast, these 3 loops suggesting some of their 

predictive potential was retained across cohorts may suggest that the regulation 

of these three genes is more important in RA pathogenesis, or in response to 
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MTX. The IL17A/IL23 axis and its role in driving chronicity in autoimmunity has 

been widely explored248. Moreover, this axis is heavily implicated in PsA. Based 

on that evidence, it could be possible that the CCS may hold some predictive 

potential in patients with PsA. However, as has been suggested by our data, 

heterogeneity and protocol variances may play a large role in the stratification 

potential of the biomarker and therefore, a tailored biomarker for PsA would 

most likely need to be specifically found. The role of this axis in response to MTX 

has been investigated in murine models of psoriasis298. One human study with 

etanercept plus MTX revealed higher levels of IL17A and IL23 in PBMCs in 

psoriasis patients299. The combination therapy significantly reduced cytokine 

levels and the addition of MTX improved therapeutic response. Another study in 

humans, with RA, explored the effect of anti-TNFα on levels of IL17A and IL23 

among other pro-inflammatory cytokines. At the beginning of the study there 

were increased level of cytokines in the sera of patients. After 24 weeks of 

treatment this was reduced300. Loops form in IL17A and IL23 loci in NR and R, 

respectively, therefore it is important to establish the biological impact of loop 

formation to understand gene expression and it’s relation to drug response. This 

will be explored later in this thesis. However, there are multiple studies that 

have explored the involvement of IFNAR1 and CXCL13 in RA pathogenesis, and 

therefore it can’t be said with certainty that the biomarker translates better for 

some loci than other due to underlying pathogenesis.  

 

Of the 2 models tested, the XGBoost model had better capacity to differentiate 

R and NR. The sensitivity was much higher than Light GBM in the training set and 

comparable with Light GBM in the testing cohort (Figure 3.29 and 3.30). The 

literature supports use of both models and each have their own advantages and 

disadvantages. While Light GBM can find results faster in some cases, in some 

experiments, while slower, XGBoost has been shown to find the more accurate 

answer301. Moreover, compared to Light GBM, XGboost has been found to require 

less training time to produce an accurate model. While not impacted by our 

dataset, studies have shown LightGBM to be superior for large datasets due to 

memory limitations for XGBoost and this should be considered going forward.  

 

One of the limitations of this part of the study was the difference in blood 

collection protocols and difference in DNA extraction method. Both differences 
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could contribute to the reduced predictive capacity of the signature and 

reduction of statistically significant loops. Furthermore, a blinded cohort of 23 is 

not large, and a larger cohort may reveal more about the predictive potential of 

the CCS in this cohort. However, as the aim would be to have this work at the 

individual level, it must be considered if a larger cohort size would be of 

relevance.  

 

The selection process for sample collection for this validation was based only on 

csDMARD assignment at baseline, as it was the important to carry out the testing 

blinded. Therefore, disease activity information was only retrieved once the 

testing had been carried out. This meant that the heterogeneity that is present 

in RA could not be fully interrogated and shed light on the clinical information 

which may impact the stratification ability. Moreover, of the work documented 

in this thesis, this validation experiment was the most recently conducted and 

therefore there was not sufficient time to investigate correlations between 

demographic factors and predictive ability of the signature as was done with the 

cohort for testing broad csDMARD stratification potential. With more time, this 

would be useful to understand if differences in demographics or disease activity 

contributed to the decreased sensitivity and specificity of the signature in this 

cohort. Furthermore, additional work is planned to test the TACERA samples 

with additional markers that have been found through other studies (which will 

be described in Chapter 5) to identify the best stratification marker.  

 

A significant caveat to the work described in this chapter from an exploratory 

perspective is the heterogeneity of PBMCs. Studies have successfully illustrated 

the differences in the epigenome between subsets of cells within PBMCs209,302 

and therefore it is important to consider that the CCS will likely be structurally 

different in the cell subsets. The aim would be to identify the loops that are 

relevant in one state but not in other states. For successful assessment of the 

subsets within PBMCs, they would have to be isolated before freezing. The 

biobank samples used in this study did not have cell subsets prepared in this way 

and therefore this question could not be easily addressed. Despite this, 

EpiSwitchTM is a technique developed to work in a mixed population of cells and 

is sensitive enough to detect loops even if they were present in only in a certain 

subtype. Future work examining CCS in patient groups would benefit from bio 
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banking cell subsets separately in order to fully understand the heterogeneity of 

each cell type.  
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3.4 Conclusion 
 
In summation, this chapter details the complexity of investigating the structural 

epigenome in RA. It was ascertained that assessment of the MTX CCS should be 

carried out with nested PCR methodology and the Qubit dsDNA HS assay and 

LabChip GX technology could facilitate a high-throughput protocol for the 

number of samples normally processed. It was also established that the MTX CCS 

was not stable, but largely dynamic. Additionally, we ascertained that some loci 

of the MTX signature had some predictive capacity in an independent clinical 

cohort, but the full signature had limited capacity. Further work should be done 

to find a more powerful signature suitable to a range of sample collection 

protocols. Furthermore, results confirmed the CCS was specific to MTX response 

prediction and not suitable to simply predict response regardless of baseline 

treatment.  

 

Further work is warranted to understand the consequence of MTX CCS loop 

formation on the underlying RA cellular biology. Moreover, ways to interrogate 

the data in cell subtypes should be explored.  
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Chapter 4 Exploration of the Possible Functional 
Implications of Methotrexate Chromosome Confirmation 
Signature on Underlying Cellular Biology 
 
4.1 Introduction 
 
The work in Chapter 3 explored the stratification potential of the methotrexate 

(MTX) chromosome conformation signature (CCS). Following on from these 

findings, it was important to begin to understand the potential biological 

consequences of loop formation in MTX responders (R) and non-responders (NR). 

It is known that chromosome looping has a role in the regulation of 

transcription, by bringing regulatory regions such as enhancers and promotors 

together288. As epigenetic features of the genome are subject to changes 

through exposure to medication, understanding the epigenetic landscape in CCS 

genes pre-treatment may help to understand the differences in R and NR to MTX 
288. The work by Carini et al highlighted that expression quantitative trait loci 

(eQTL), identified from work by Walsh et al, were present at R loop sites but 

absent at NR loop sites, which provides a foundation for the suggestion of 

regulatory differences between response types209,219.  

 

Some epigenetic features that could help elucidate the function of the MTX CCS 

loops are methylation, histone modifications, DNase hypersensitive sites (DHSs), 

and their relationship with transcription factors (TF). When hypermethylation of 

a promotor occurs, this results in gene repression due to the inability of TF to 

bind to the promoter region. However, hypomethylation, largely characterised in 

cancer, often occurs in heterochromatin and can aid in upregulation of gene 

expression303. Hyper and hypomethylation have been previously explored in RA T 

cells and monocytes in the context of MTX treatment. Andres et al found that RA 

patients had global hypomethylation before initiation of MTX treatment, and 

treatment appeared to reverse this. However, this study did not incorporate the 

influence of the chromatin conformation, which may impact the methylation 

effects304. Multiple histone modifications have been characterised, with some 

associated with increased transcription, and others with transcriptional 

repression. The work in this chapter focuses on 6 histone modifications, chosen 

based on availability of data and their representation of various transcriptional 

consequences. H3K4me1, H3K4me3, H3K27ac and H3K36me3 represent 
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transcriptional activation marks and H3K27me3 and H3K9me3 represent 

transcriptional repression marks. Furthermore, DNase hypersensitivity can 

provide an additional layer to the understanding of the 3D epigenetic landscape. 

DNase I is a DNA sequence non-specific endonuclease. This enzyme at open 

chromatin sites and collocated with transcriptionally active genes. As such, 

these areas are termed DHSs305,306. These sites are often located at 

transcriptionally active genes and are susceptible to multiple regulatory 

elements.   

 

As research into the genome, and epigenome, has grown over the last decade, 

there are multiple online databases where data can be downloaded and analysed 

for other research interests. Numerous datasets from peripheral blood 

monocular cells (PBMCs), and derivatives are available. Two such databases are 

the encyclopedia of DNA elements (ENCODE), and the BLUEPRINT epigenomics 

consortium, both of which have previously yielded informative results in 

Rheumatology307,308,309. However, utilising this information for an extension of an 

epigenetic biomarker has yet to be done. It has been recognised that combining 

this data is ultimately what will result in a clinically useful biomarker310.  

 

Based on the loci within the MTX signature, multiple cell types could be explored 

to provide insight into the potential biological impact of loop formation. 

However, to ensure a comprehensive analysis of multiple epigenetic features in 

the context of this study, PBMCs, CD4+T cells and CD14+CD16- monocytes were 

chosen as a focus.   

 
The aim of this chapter was to elucidate potential regulatory differences 

between R and NR, which may indicate the relationship between the MTX CCS 

and underlying pathogenesis. To accomplish this, the aims were:    

 
1) Utilise publicly available online datasets from healthy cells to extract 

information about epigenetic regulatory features present at the MTX loop sites in 

PBMCs, CD4+T cells and CD14+CD16- monocytes 

 

2) Where possible, use RA datasets to build on findings from healthy data. 



	 162	

 
4.2 Results  
 
4.2.1 Identification of publicly available data available to explore 
3D epigenetic environment at MTX CCS loop sites 
 
The first step in exploring the 3D epigenomic landscape was to identify the data 

that was publicly available. Through a search of the literature, the DeepBlue 

Epigenomic Data Server (https://deepblue.mpi-inf.mpg.de) was found. This 

database collates the findings from several large-scale epigenome studies. 

Numerous studies are included, namely the BLUEPRINT Epigenome, ChIP-Atlas, 

ENCODE and Roadmap Epigenomics (Figure 4.1A). Once this data source was 

found, it was important to establish the experiments that would yield data that 

was of interest in our study. As such, the techniques, biosources and epigenetic 

marks from the database were explored, and biologically relevant sources 

quantified. Many experiments were available for interrogation. Analysis of the 

experimental techniques included in the database highlighted the epigenetic 

motifs that had the most interest from researchers. There were significantly 

more ChIP-Seq experiments than any other methodology, with 31,922 

experiments included in the database (Figure 4.1B). As such, this technique was 

removed and a second graph plotted to clearly identify the distribution of other 

techniques (Figure 4.1C). The next technique with the most data available was 

DNAse-Seq, used to identify DHSs throughout the genome, with 3,855 

experiments available. The next stage in the process was to ascertain the 

biosources available. Blood, with 3,817, was the biosource with the most 

experiments accessible (Figure 4.1D). Multiple experiments from cells types of 

interest were found, namely PBMCs and derivatives including CD14+CD16- 

classical monocytes and CD4+ T cells with 46,287 and 1,171 experiments 

available, respectively. Lastly, the epigenetic marks of interest were quantified 

(Figure 4.1E). In line with the techniques available, histone modifications were 

the highest epigenetic mark represented, with 3,635 experiments available 

measuring H3K27ac, closely followed by DNase with 3,652 experiments available.   
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Figure 4.1 Quantification of DeepBlue Epigenomic Server Data  
Identification and quantification of epigenetic data available for our study. A) 
Schematic of relevant studies collated within DeepBlue Epigenomic Data Server. B) 
Quantification of techniques from server. C) Quantification of techniques, with ChIP-Seq 
excluded. C) Quantification of Biosources from server. D) Quantification of Epigenetic 
marks available from server. Data includes experiments using both Hg38 and Hg19 
genomes.  
CTCF, CCCTC-binding factor 

 

Once appropriate biosources and epigenetic marks were identified, the next step 

was to extract the relevant information for the MTX CCS sites. A custom script 

(Appendix) was used to pull out any epigenetic marks that were found in and 

around the signature anchor sites (Figure 4.2). As well as the coordinates of the 

loop anchor sites (Figure 4.2A,B), coordinates 500 kilobases (kb) up stream of 

anchor point a and downstream of anchor point b (Figure 4.2C,D) were included 

in the analysis, as epigenetic marks from that distance can be brought into close 

proximity with the formation of a chromosomal loop. Data from between the 

loop anchor sites was also captured (Figure 4.2E), which could include up to 

91,723 base pairs (bp) of the genome (Table 1).  

 

 
Figure 40 Sites Included in In-silico Analysis Methodology  
Schematic illustrating sites included in custom script to map epigenetic marks to CCS 
loop sites. Site a = first EpiSwitchTM anchor point in CCS loop, site b= second EpiSwitchTM 
anchor point in CCS loop. A) EpiSwitch Site a = IL17A (Site 3), CXCL13 (Site 1), IL21R Site 
5), IL23 (Site 4), IFNAR1 (Site 2). B) EpiSwitch site b = IL17A (Site1), CXCL13 (Site 3), 
IL21R (Site 2), IL23 (Site 5), IFNAR1 (Site 4). C) 500kb upstream of EpiSwitch Site a. D) 
500kb downstream of EpiSwitch Site b. E) Distance between site a and site b. 
Coordinates used to capture epigenetic marks at EpiSwitch sites, the distance 500kb 
upstream and downstream and in-between (See Appendix). 
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Table 4.1 Genomic Distances Between CCS Anchor Sites  

 
 
 
 4.2.2 Exploration of epigenetic landscape in PBMCs 
 
In the first instance, as the biomarker was found in the PBMC population, broad 

analysis of epigenetic marks in PBMCs was explored (Figure 4.3). Firstly, ranges 

of the genome within which histone peaks were found were mapped around MTX 

CCS loop anchor sites. All loop sites had the presence of at least one histone 

modification. At the IL17A site there was the presence of H3K4me1 at site a and 

H3K9me3 and H3K27me3 at site b (Figure 4.3A). At the CXCL13 site there was 

the presence of only H3K27me3 (Figure 4.3B). There were H3K4me1, H3K4me3, 

H3K27ac, H3K36me3 and H3K27me3 ranges at the IL-12R loop sites (Figure 4.3C). 

Both IL23 and IFNAR1 had H3K4me1, H3K4me3 and H3K27ac histone peaks at 

loop sites, with a maximum of 2 ranges quantified (Figure 4.3D,E).Between loop 

anchor sites, the histone profile was similar to that of anchor sites at the IL17A 

locus and IL23 locus. However, at the other 3 signature loci, histones with both 

enhancer and repression transcriptional consequences were captured. 

Methylation was also explored in PBMCs. At all loop sites hypermethylation was 

present at the minimum of one anchor site. Most ranges, maximum of 3, were 

present at site a for IL17A. At site b, IL21R had most (2) hypermethylation 

ranges (Figure 4.3F). Hypomethylation was less present than hypermethylation, 

with only ranges present at IL21R and IFNAR1 loop sites (Figure 4.3G). Between 

anchor sites, IL21R has the most hyper and hypomethylation ranges (20 and 24, 

respectively), with CXCL13 having a similar number of hypermethylation ranges 

(23). DHSs represent accessible areas of the genome, and as such, these sites 
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were mapped at loop regions and could be layered above other epigenetic marks 

to understand how likely the other modifications may impact gene expression. 

IFNAR1 had the most ranges, with an average of 7.5 at site a (Figure 4.3H). IL21R 

had the most ranges at site b, and between anchor sites, with an average of 5 

and 20, respectively. CXCL13 was the only loop site not to have any DNase I sites 

present. Overall, the data suggest that there is the potential for a more 

repressive transcriptional environment at IL17A and CXCL13 loci, than at IL21R, 

IL23 and IFNAR1 loci. Moreover, based on the DNAse I sites mapped, IL21R may 

be the loci with the potential to be most accessible and could aid in enhancing 

transcriptional in combination with the other epigenetic marks.  
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Figure 4.3 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in PBMCs 
Mapping of histones, methylation and DHSs in PBMCs from healthy samples, extracted 
from DeepBlue Epigenomic Server. Data from hg38 genome. Histone data from ChIP-Seq 
technique (N=2), methylation data from Bisulphite-Seq (N=1) and DNase data from 
DNase-Seq (N=1). Ranges = regions of the genome within which peaks were recorded 
from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first EpiSwitchTM 
anchor point in CCS loop, site b= second EpiSwitchTM anchor point in CCS loop. In-
between = stretch of DNA between CCS sites. Coordinates (See Appendix). A) Histones 
from IL17A. B) Histones from CXCL13. C) Histones from IL21R. D) Histones from IL23. E) 
Histones from IFNAR1. F) Hypermethylation at EpiSwitchTM sites for all MTX CCS loops. 
G) Hypomethylation at EpiSwitchTM sites for all MTX CCS loops. H) DHSs at MTX CCS loop 
sites. Data is presented as mean with range. 1-way ANOVA with Tukey’s multiple 
comparisons. *p<0.05, **p< 0.01, ***p < 0.005, ***p<0.0001  

 

 

Taking the association of regions of DNA with an epigenetic mark further, the 

Integrated Genome Browser (IGV) was used to visualise how the epigenetic 

marks may overlap at the loop anchor sites. The IL21R site is shown as a 

representative of this visualisation in PBMCs (Figure 4.4). Data representing 

eQTLs were also overlaid in this data. The IL21R loop site 5 can be visualised 

overlapping with H3K36me3. At IL21R loop site 2, there is overlap between 

multiple eQTLs, H3K4me1, H3K27me3, and multiple DNase I sites. These data 

further suggest that enhanced gene transcription at this locus is possible. 

Moreover, the anchor sites coming together would bring the DNase I sites closer 

to H3K36me3, potentially making this a highly active transcription site.  
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Figure 4.4 Environment Surrounding IL21R MTX CCS Loop Anchor Sites in PBMCs 
Images generated in IGV. Representative image of IL21R MTX CCS sites. hg38 genome 
used. Histone and DNase I data from DeepBlue Epigenomic server. eQTL data from 
Walsh et al. 209. CCS sites boxed in red encompassing epigenetic marks that lie within 
that region. Tracks shown in collapsed format. Track marks in green represent 
epigenetic marks that are likely to increase transcription, and track marks in red 
representative of epigenetic marks with potential repressive transcriptional impact. Site 
5 is CCS site on left, Site 2 is CCS site on right.  
CCS, chromosome conformation signature; eQTLs, expression quantitative trait loci;  
kb, kilobase; RR, reverse-reverse orientation 

 
Following on from the association analysis of epigenetic marks at the loop 

anchor sites, the number of histones were quantified 500kb up and downstream 

of the loop anchor sites (Figure 4.5). At 500kb upstream, IL17A appears most 

distinct from the other 4 loci in the signature (Figure 4.5A). This is based on the 

higher number of H3K27me3 histone marks and low number of other histone 

marks. All other signature loci have many ranges of H3K4me1 and H3K27ac 500kb 

upstream. 500kb downstream from the CCS sites, the distribution of histones 

appears different. All loci have the presence of H3K4me1, H3K36me3 and 

H3K27ac (Figure 4.5B). IL17A has the highest presence of H3K4me1, IL21R the 

highest for H3K36me3 and CXCL13, IL23 and IFNAR1 highest for H3K27ac. There 

were low numbers of H3K9me3 and H3K27me3 captured across all loci. 

Upstream, this data somewhat reflects the data at the anchor sites at the IL17A 

loci, as it suggests a largely repressive environment. Yet downstream, there is 
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little differentiation between IL17A and CXCL13 from IL21R, IL23 and INFAR1, as 

there was at the anchor sites themselves. This indicates the importance of 

considering the whole stretch of DNA to provide a more thorough picture of the 

potential effect on transcription with the formation of a loop.  

 

Moving on, using the online datasets offered the opportunity to explore cell 

types within the PBMC population and shed further light on regulatory 

differences between loci. As such, CD4+ T cells were analysed next. 

 

 
Figure 4.5 Histone Enrichment Up and Downstream of MTX CCS Loop sites in PBMCs 
Plots generated in JMP. Heat map representing number of ranges within which histones 
500kb up and downstream of MTX CCS sites in PBMCs were mapped. Data from DeepBlue 
Epigenomic Server. Number of ranges were unique for each locus and each histone mark 
(See Appendix). A) Enrichment of histones mark 500kb upstream of MTX CCS site a. B) 
Enrichment of histone marks 500kb downstream of MTX CCS site b. Coordinates used to 
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and 
downstream and in-between (See Appendix).  

 
 4.2.3 Exploration of epigenetic landscape in CD4+ T cells 
 
CD4+ T cells were chosen as one of the cell types relevant for our loci of interest. 

These were chosen as CD4+ T cells are known producers of IL17A, CXCL13, and 

express IL21R and IFNAR1222,231,238. As before, histone and methylation 

enrichment were mapped, in addition to DHSs (Figure 4.6). Site b for both IL17A 

and CXCL13 loci had no histone marks recorded. H3K27me3 was only recorded at 

IL17A and CXCL13 site a and between CXCL13 and IFNAR1 anchor sites (Figure 

4.6A,B,E). The CXCL13 site also had the presence of H3K27ac captured (Figure 

4.6B). H3K4me1 marks were present at IL17A, IL21R, IL23 and IFNAR1 sites. 

H3K27ac had more ranges than the other histone marks and these were found at 

the IL21R site. Between anchor sites IL21R had considerably more, with one 

experiment finding 79 H3K27ac peaks. H3K36me3 marks were also present at 

IL21R and IFNAR1 sites. There were statistically significant differences between 
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the histones across the IL21R and IFNAR1 loci, and site a and in-between on the 

IL23 loci. At the CXCL13 in-between site, there was also a statistically significant 

different between the histones. Overall, the most statically significant 

differences appeared to be at site a or b of the loci. Similarly, when quantifying 

DNase ranges, there was statistical significant differences between the loci at 

site a and b, but not in-between.  Ranges with hypermethylation and 

hypomethylation were recorded at both sites in at least 1 loci. Hypermethylation 

was present in more abundance than hypomethylation (Figure 4.6E,F). IL17A site 

a had the most hypermethylation recorded with 4 ranges in 2 experiments. Other 

genes had similar levels of hypermethylation, between 1 and 3 ranges. 

Hypomethylation marks were only found at IFNAR1 and IL21R at site a and b 

respectively. Hypomethylation was more represented in between anchor points, 

but only at IL21R, IL23 and IFNAR1 loci only. At anchor sites, IL17A, CXCL13 and 

IFNAR1 sites had DHSs present (Figure 4.6G). IL17A had a large variation of 

ranges between samples, from 1 to 6. CXCL13 had DNase I marks only at 1 

anchor point (Figure 4.6H). Yet, between sites, IL21R is clearly the locus with 

the most DNase I sites, and no sites are recorded at the IL17A loci. This data 

suggests that a stable gene repression state may exist in CD4+ T cells at the 

IL17A locus and an enhanced transcription state may be possible at the IL21R 

site. Interestingly, this would be on contrast to the known expression of IL17A in 

T cells in the inflammatory setting.  
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Figure 4.6 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in CD4+ T cells 
Mapping of histones, methylation and DHSs in CD4+ T cells from healthy samples, 
extracted from DeepBlue Epigenomic Server. Data from hg38 and hg19 genome. Histone 
data from ChIP-Seq technique (N=9), methylation data from Bisulphite-Seq (N=34) and 
DNase data from DNase-Seq (N=12). Ranges = regions of the genome within which peaks 
were recorded from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first 
EpiSwitchTM anchor point in CCS loop, site b= second EpiSwitchTM anchor point in CCS 
loop. In-between = stretch of DNA between CCS sites. Coordinates used to capture 
epigenetic marks at EpiSwitch sites, the distance 500 kb upstream and downstream and 
in-between (See Appendix). A) Histones from IL17A. B) Histones from CXCL13, site, in-
between,. C) Histones from IL21R. D) Histones from IL23. E) Histones from IFNAR1. F) 
Hypermethylation at EpiSwitch sites for CCS loops. G) Hypomethylation at EpiSwitch 
sites for CCS loops. H) DHSs MTX CCS loop sites. Data is presented as mean with range. 
1-way ANOVA with Tukey’s multiple comparisons. *p<0.05, **p< 0.01, ***p < 0.005, 
***p<0.0001 

 

As with PBMCs, IGV software was used to image the relationship between 

epigenetic marks. IGV demonstrated the location of histone marks at IL17A loop 

anchor site 3 (Figure 4.7). The site is dominated by the repressive marks 

H3K9me3 and H3K27me3. However, overall there is no overlap of histone marks 

at the same genomic locations. This suggests that both enhancing/repressive 

marks could have an influence on the gene transcription as they are unlikely to 

be in direct contact with each other, and there are no marks at anchor site b to 

come into contact with, with the formation of a loop.  
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Figure 4.7 Environment Surrounding IL17A MTX CCS Loop Anchor Sites in CD4+ T 
Cells 
Image generated in IGV. Representative image of IL17A MTX CCS sites in CD4+ T cells. 
Histone data from DeepBlue Epigenomic server. CCS sites boxed in red encompassing 
histone marks that lie within that region. Tracks shown in collapsed format. Track 
marks in green represent epigenetic marks that have a positive effect on transcription, 
and track marks in red are representative of a potential repressive transcriptional 
histone modifications. Site 3 is CCS site on left and Site 1 is CCS site on right.  
CCS, chromosome conformation signature; kb, kilobase; RR, reverse-reverse orientation 

 

At the anchor sites, there was little evidence which indicated that the 

regulatory environment differed between loci that are known to be expressed by 

CD4+T cells, and those that are not. Therefore, at this stage of the analysis, I 

chose to focus on genes known to be expressed by CD4+ T cells, thus the 

presence of histones 500kb up and downstream of more biologically relevant CCS 

sites in CD4+T cells was determined (Figure 4.8). At the region 500kb upstream, 

IL17A appears more distinct from CXCL13, IL21R and IFNAR1 (Figure 4.8A). IL17A 

had most H3K27me3 ranges, followed by H3K9me3, suggestive of an environment 

that could supress gene expression. Conversely, CXCL13, IL21R and IFNAR1 have 

most ranges of H3K4me1 and H3K27ac, with less of the other histone marks. At 

500kb downstream of the CCS anchor sites, IL21R appeared most distinct with 

high enrichment of H3K36me3 only (Figure 4.8B). IL17A most H3K4me1 ranges, 

with many ranges of H3K27ac also quantified. CXCL13 and IFNAR1 appear to 

share similar enrichment of H3K36me3 ranges with IL21R. The number of 

repressive histone marks quantified at IL17A build on earlier evidence which 

suggests a highly repressive environment which extends upstream. However, the 

data downstream suggest a largely gene enhancing environment which, if coming 

into contact with the region upstream, may create something of a more poised, 

non-enhanced outcome on gene transcription.  
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Figure 4.8 Histone Enrichment Up and Downstream of MTX CCS Loop Sites in CD4+ T 
cells 
Plots generated in JMP. Heat map representing enrichment of histones 500kb up and 
downstream of biologically relevant MTX CCS sites in CD4+ T cells. Data from DeepBlue 
Epigenomic Server. Enrichment values were unique to each locus and each histone mark 
(See Appendix). A) Enrichment of histone marks 500kb upstream of MTX CCS site a. B) 
Enrichment of histone marks 500kb downstream of MTX CCS site b. Coordinates (See 
Appendix). 
 

 4.2.4 Exploration of epigenetic landscape in CD14+ CD16- 
Monocytes  
 
CD14+CD16- monocytes were determined another appropriate cell type to allude 

to the potential functional impact of loop formation. This was decided due to 

the known expression of CXCL13 and IL23, as well as IFNAR1311-313. As before, 

histone marks, methylation and DHSs were mapped at all CCS sites (Figure 4.9). 

Both IL17A and CXCL13 sites had only few histones ranges associated, with 

H3K27me3 and H3K9me3 being the dominant marks, with 4 samples with 4 

ranges of H3K9me3 in the stretch between CXCL13 anchor sites (Figure 4.9A,B). 

Across it’s anchor sites, the IL21R locus had ranges with all histone marks apart 

from H3K4me3 (Figure 4.9C). Between anchor sites, ranges with all histone 

marks were found. IL23 had the presence of H3K27ac and H3K36me3 at both 

loop anchor points, as well as H3K4me1 and H3K4me3 at site b (Figure 4.9D). 

This distribution was also found in the region in-between. At the IFNAR1 site, 

both anchor points had ranges of H3K4me1, H3K4me3, H3K27ac and H3K36me3 

(Figure 4.9E). H3K4me3 and H3K27ac had the most variation in ranges, between 

1 and 3. At all points across the IL21R, IL23 and IFNAR1 loci measure, there was 

a statistically significant difference between the number of histone ranges. 

Hypermethylation ranges were found at all site b anchor points. (Figure 4.9F). 
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Hypomethylation was only found in the anchor regions of IL17A, IL21R and 

IFNAR1 (Figure 4.9G). Ranges with DNase I were not found at the IL17A or 

CXCL13 loop anchor sites. However, they were present at IL23 and IFNAR1 sites 

(Figure 4.9G). IFNAR1 site b had the most hypersensitive ranges, with a 

maximum of 9 and average of 5 between experiments. This observation was also 

similar in the region between IFNAR1 anchor sites, with many more DNase I 

ranges than the other loci. There was a statistically significant difference 

between the loci at all methylation sites and DNase sites measured. Taken 

together, these data suggest that there is a similar regulatory environment at 

IL17A and CXCL13, which differs to IL21R, IL23 and IFNAR1; with epigenetic 

marks indicating is a repressive environment, and an environment that would 

facilitate gene expression, respectively. 
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Figure 4.9 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in CD14+CD16- 

monocytes 
Mapping of histones, methylation and DHSs in CD14+CD16- from healthy samples, 
extracted from DeepBlue Epigenomic Server. Data from hg38 and hg19 genome. Histone 
data from ChIP-Seq technique, methylation data from Bisulphite-Seq and DNase data 
from DNase-Seq. Ranges = regions of the genome within which peaks were recorded 
from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first EpiSwitchTM 
anchor point in CCS loop, site b= second EpiSwitchTM anchor point in CCS loop. In-
between = stretch of DNA between CCS anchor sites. Coordinates used to capture 
epigenetic marks at EpiSwitch sites, the distance 500kb upstream and downstream and 
in-between (See Appendix). A) Histones from IL17A. B) Histones from CXCL13. C) 
Histones at IL21R. D) Histones from IL-23. E) Histones from IFNAR1. F) Hypermethylation 
CCS sites. G) Hypomethylation at CCS sites. H) DNaseI hypersensitive sites at CCS loop 
sites. Data is presented with range. 1-way ANOVA with Tukey’s multiple comparisons. 
***p < 0.005, ***p<0.0001 

 

Once again, IGV was used to better visualise the epigenetic landscape at the CCS 

sites. As multiple histone marks were associated with the loop sites of IFNAR1, 

this was a useful region to visualise. There is enrichment of enhancer associated 

histones (Figure 4.10A). Each loop anchor point clearly overlaps with multiple 

histone marks. These marks also overlap with DHSs. The transcription associated 

histone, H3K36me3, is also evident at this loop site. The DeepBlue epigenomic 

server also provided data on transcription factors at this site of interest. IGV 

demonstrated that DHSs at the CCS anchor points intersect with several TF 

(Figure 4.10B). IFNAR1 loop site 2 is branched by CCCTC-binding factor (CTCF) 

and Signal transducer and activator of transcription 1 (STAT1). The IFNAR1 loop 

site 4 overlaps with CTCF, interferon regulatory factor (IRF) and STAT1. As 

demonstrated previously, multiple eQTLs are present at this site and as such, 

overlap with the epigenetic marks described. Despite represented separately, it 

is evident that TF would also be present at the site of histone marks. Taken 

together, this data suggests that there is likely to be enhanced gene expression 

with the formation of a loop at this locus.  
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Figure 4.10 Environment Surrounding IFNAR1 MTX CCS Loop Anchor Sites in 
CD14+CD16- monocytes 
IGV used to generate image of area surrounding IFNAR1 MTX CCS sites in CD14+CD16- 
monocytes. CCS sites boxed in red encompassing epigenetic marks that lie within that 
region. Histone and DNase I data from DeepBlue Epigenomic server. eQTL data from 
Walsh et al.,2016. Tracks shown in collapsed format. Track marks in green represent 
epigenetic marks that have a positive effect on transcription, and track marks in red are 
representative of potential negative transcriptional epigenetic marks. A) Histones at 
IFNAR1 CCS sites. B) DHSs and transcription factors at IFNAR1 CCS sites.  
CCS, chromosome conformation signature; CTCF, CCCTC-binding factor;  
eQTLs, expression quantitative trait loci; IRF, interferon-regulatory factors;  
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kb, kilobase; RR, reverse-reverse orientation; STAT1, 1 Signal transducer and activator 
of transcription 1 
 
 
 

Again, presence of histone marks 500kb up and downstream of sites in 

monocytes were mapped (Figure 4.11). As with CD4+ T cells, I chose the most 

biologically relevant loci to focus analysis on at this stage. Upstream, in the 

region of CXCL13, H3K4me1 was the mark with most ranges (Figure 4.11A). 

H3K27ac was the most enriched mark in the region of IL23 and IFNAR1. The 

lowest number of H3K27me3 ranges were found at the CXCL13 region, closely 

followed by IL23. H3K36me3 was the histone with least ranges at the IFNAR1 

region. Enrichment of histones 500kb downstream was similar to upstream 

(Figure 4.11B). Broadly, the histone profile for all 3 loci appear similar and 

suggest an enhanced gene expression environment which would be in line with 

what we know about their expression in monocytes.  

 

 

 
Figure 4.11 Histone Enrichment Up and Downstream of MTX CCS Loop Sites in 
CD14+CD16-monocytes 
Plots generated in JMP. Heat map representing enrichment of histones 500kb up and 
downstream of biologically relevant MTX CCS sites in CD14+CD16-monocytes. Data from 
DeepBlue Epigenomic Server. Enrichment values unique to each histone modification 
(See Appendix). A) Enrichment of histone marks 500kb upstream of MTX CCS site a. B) 
Enrichment of histone marks 500kb downstream of MTX CCS site b.  Coordinates used to 
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and 
downstream and in-between (See Appendix) 

 

 4.2.5 Exploration of markers of chromatin stability 
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As explored in earlier work detailed in this thesis (Chapter 3, Section 3.2.4), 

data suggest the MTX CCS biomarker cannot be considered stable. There are 

known markers of stability that can be found throughout the genome, therefore 

it was decided that it would be of interest to identify if these markers could be 

found at loop anchor sites. Once only known for their function in holding sister 

chromatids together, cohesin proteins, and co-localisation to CTCF, have now 

been implicated in loop stability and gene regulation. As such, cohesin protein 

and CTCF interaction was quantified at MTX CCS loop sites (Figure 4.12). To 

determine interaction, a function of the Bedtools program in R software was 

used. This program determines overlap between genomic elements and provides 

an output of interactions, which can then be quantified. Only data from the 

GM12878 cell line was available in the server, which is representative of B cells. 

Whilst not a focus in this chapter, B cells are very much a biologically relevant 

cell type and suitable for this part of the study. Based on available data, RAD21 

and SMC3 proteins (which are part of the cohesin complex) were quantified. At 

site a, the IL17A loop had a maximum of 43 interactions between RAD21 and 

CTCF, and at site b, a maximum of 26 interactions between SMC3 and CTCF 

(Figure 4.12A). The difference between the number of these proteins was 

statistically significant. These interactions were visualised in IGV software 

(Figure 4.12B). This visualisation helps visualise that a loop would be required to 

form, to bring the cohesin complex into contact with the IL17A gene. At the 

IL21R loop site a, there were 3 interactions between CTCF and SMC3 (Figure 

4.12C). At the IFNAR1 loop site a, there were a maximum of 10 interactions 

between SMC3 and CTCF, and maximum of 27 with SMC3 and CTCF at site b 

(Figure 4.12E). The difference between the number of these proteins was 

statistically significant. Interactions were visualised with IGV (Figure 

4.12E,F).  These data indicate that there is the potential for a stable loop 

formation at these loci, but since data of all cohesin proteins was not available, 

these data do not provide a full picture. 
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Figure 4.12 CTCF and Cohesin Protein Overlap at CCS MTX Loop Anchor Sites  
Quantification of interactions between CTCF sites and cohesin proteins from the 
GM12878 cell line, extracted from DeepBlue Epigenomic Server. Data from hg19 
genome. Number of samples variable for each loci. Site a = first EpiSwitchTM anchor 
point in CCS loop, site b= second EpiSwitchTM anchor point in CCS loop. Coordinates used 
to capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and 
downstream and in-between (See Appendix). A) Intersections from IL17A, site a – 
RAD21, N=40, SMC3, N=21. B) IGV visualisation of intersections from IL17A. C) 
Intersections from IL21R, site 6 – SMC3, N=4. D) IGV visualisation of intersections from 
IL21R. E) Intersections from IFNAR1, site a – SMC3, N=4, site b – SMC3, N=28. F) IGV 
visualisation of intersections from IFNAR1. Data is presented as mean ± SD. Mann 
whitney test. ****p<0.0001 
CCS, chromosome conformation signature; CTCF, CCCTC-binding factor;  
kb, kilobase; RR, reverse-reverse orientation; SMC3, structural maintenance of 
chromosomes protein 3 
 

 
 4.2.6 Exploration of promotor sites at MTX CCS sites 
 
Another technique that we thought could be informative and enable 

interpretation of the interactions was Promotor Capture HiC (PCHiC). This 

technique aims to capture loops from the genome that occur at the promotor 

site. Javierre et al conducted a study in 17 human primary blood cell types to 

determine the relationship between 3D architecture and gene regulation using 

promotor capture HiC 260. Data from the MTX CCS loop sites was extracted from 

their dataset and significant interactions were quantified (Figure 4.13). IL17A 

understandably had significant interactions in the lymphoid compartment. IL21R, 

IL23 and IFNAR1 had significant interactions in myeloid and lymphoid cells. 

There were no peaks at the CXCL13 site. Most significant interactions for IL17A 

were in non–activated (na) CD4 cells. All lymphoid cells had 3 significant 

interactions in the IL21R loop region. naCD4 cells also had the most significant 

interactions at the IL23 loop site, and (total B) tB cells had the most significant 

interactions for IFNAR1 loop site. This data shows that at the MTX signature loci, 

there is the potential for a loop to cause the activation of the gene, and suggests 

this is most likely in lymphoid cells. As with all data explored to this point, it 

was found in healthy cell populations, therefore finding an inflammatory cell 

type of comparison would be of use. 
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Figure 4.13 Mapping of Promotor Loops at MTX CCS Loop Anchor Sites 
Mapping of number of significant interactions defined by CHiCAGO score >5 (Appendix). 
Data from Promotor Capture HiC (PCHiC) study by Javierre et al., 2016. A) Part 1 of 
PCHiC protocol, generation of libraries for capture. Briefly, DNA is formaldehyde 
crosslinked, restriction digested and labelled with biotin. This is followed by ligation. 
Next, sonication and streptavidin pull down is used to shear ligated fragments and 
enrich the HiC library for ligation products, alongside A-tailing to repair the sheared 
ends. Adapters are then ligated to the ends of each fragment ahead of sequencing. B) 
Part 2 of PCHiC protocol, bait capture. C) Quantification of significant interactions at 
IL17A loop site. D) Quantification of significant interactions at IL21R loop site. E) 
Quantification of significant interactions at IL23 loop site. F) Quantification of 
significant interactions at IFNAR1 loop site. Monocytes (Mon), Naïve Macrophages (M0), 
Type 1 Macrophages (M1), Type 2 Macrophages (M2), Neutrophils (Neutrophils), 
Megacaryocytes (MK), Erythrocytes (Ery), Fetal Thymus FeT), Naïve CD4+ T cells (NCD4), 
Total CD4+ T cells (tCD4), non-activated CD4+ T cells (naCD4), activated total CD4+ T 
cells, naïve CD8+ T cells (nCD8) total CD8+ T cells (tCD8), naïve B cells (nB), total B cells 
(tB).  



 

 4.2.7 Exploration of epigenetic landscape in Inflammatory 
Macrophages 
 
As most of the data was obtained from healthy cells, data from inflammatory 

samples was sourced as a way of understanding the epigenome in the 

inflammatory environment more clearly. Data from inflammatory macrophages 

was obtained from the DeepBlue server. These were derived from healthy 

primary cells cultured with beta glucan to induce an inflammatory phenotype. 

Data from macrophages was also mapped to allow comparison of the 

inflammatory and non-inflammatory state and allude the influence of an 

inflammatory environment (Figure 4.14). In both cell types, only inhibitory 

histone marks were present at the IL17A locus (Figure 4.14A). At the CXCL13 

locus, only H3K4me3 and H3K36me3 marks were not present, across both sites 

and in-between (Figure 14.4B). Across both anchor sites, all 6 histone marks 

were found at the IL21R, IL23 and IFNAR1 loci in both cell types (Figure 

4.14C,D,E). As before, methylation marks were also mapped. Across all 5 loci, 

hypermethylation was more present than hypomethylation (Figure 4.14F,G). At 

anchor site a, IL17A had the most hypermethylation ranges, at site b, IL21R, and 

in-between sites, CXCL13 has the highest number of ranges, closely followed by 

IL21R. Hypomethylation ranges were only found at the IFNAR1 locus at anchor 

site a. IL17A had no hypomethylation marks at any site. Ranges with DNase I 

sites were present at IL17A and IFNAR1 loci at anchor site a, IL21R, IL23 and 

IFNAR1 at anchor site b, and across all loci in between sites (Figure 4.14H). In 

general, macrophages and inflammatory macrophages had similar epigenetic 

landscapes at the 5 CCS loci. DNase I was the only epigenetic mark to indicate 

any difference between macrophages and inflammatory macrophages, however 

this profile differed between the anchor sites and the region in-between. 

Specifically, at anchor sites of IFNAR1, macrophages had more DNase I ranges 

than inflammatory macrophages. Yet, in between anchor sites, inflammatory 

macrophages had more ranges. Therefore, taking this region as one, the 

difference is minimal and conclusions cannot be drawn. Taken together, this 

data broadly reflects earlier data from PBMCs, CD4+ T cells and monocytes, and 

shows that repressive epigenetic marks are more present at IL17A and CXCL13 

sites, and more enhancing epigenetic marks at the other CCS loci. However, as 

this dataset was gathered to understand the influence of an inflammatory 
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setting and overall, macrophage and inflammatory macrophage as largely 

comparable this did not further that understanding. However, it is important to 

note that the length of activation time of macrophage in an in-vitro setting is 

considerably different than the chronic activation that is present in RA. 

Ultimately these data highlight that to ascertain the difference in epigenetic 

marks between inflammatory and non-inflammatory environments, more 

datasets need to be used. It was considered that data from disease and healthy 

samples may provide that some of that insight.  
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Figure 4.14 Mapping of Epigenetic Marks at MTX CCS Loop Anchor Sites in 
Inflammatory Macrophages 
Mapping of histones and methylation in inflammatory macrophages from healthy 
samples, extracted from DeepBlue Epigenomic Server. Data from hg38 genome. Histone 
data from ChIP-Seq technique (N=14), methylation data from Bisulphite-Seq (N=14) and 
DNase data from DNase-Seq (N=14). Ranges = regions of the genome within which peaks 
were recorded from ChIP-seq, Bisulphite-seq or Dnase-seq experiments. Site a = first 
EpiSwitchTM anchor point in CCS loop, site b= second EpiSwitchTM anchor point in CCS 
loop. In-between = stretch of DNA between CCS anchor sites. Coordinates used to 
capture epigenetic marks at EpiSwitch sites, the distance 500kb upstream and 
downstream and in-between (See Appendix). A) Histones from IL17A. B) Histones from 
CXCL13. C) Histones from IL-21R. D) Histones from IL-23. E) Histones from IFNAR1. F) 
Hypermethylation at EpiSwitchTM sites. G) Hypomethylation at EpiSwitchTM sites. Data is 
presented as mean. H) DNaseI hypersensitive sites at CCS loop sites. 2-way ANOVA with 
Tukey’s multiple comparisons. **p< 0.01, ***p < 0.005, ***p<0.0001 
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 4.2.8 Exploration of epigenetic landscape in RA CD14+CD16- 
Monocytes 
 

While data collected in healthy subjects could provide some insight, data from 

RA samples offered the opportunity to improve understanding of the epigenetic 

landscape and the potential functional consequences in disease. Other lab 

colleagues, namely John Cole and Cecilia Ansalone, conducted a ChIP-Seq 

experiment on RA CD14+ monocytes to understand the H3K4me3 profile in those 

cells. From the data, the same approach employed with the DeepBlue data was 

used to extract the MTX CCS relevant information. All patients were comparable 

in age, but there was a large variation on clinical disease activity index (CDAI) at 

the time the sample was taken (Table 4.2). Broadly, at sites of interest, RA and 

HC samples had similar H3K4me3 profiles (Figure 4.15). At Site a, IFNAR1 was 

the only locus to have any H3K4me3 peaks, both RA and HC had 1 peak present 

(Figure 4.15A). At Site b CCS loci, IL21R, IL23 and IFNAR1 had H3K4me3 peaks, 

with a maximum of 3 recorded in 1 RA patient (Figure 4.15B). In-between CCS 

sites, only IL17A (RA + HC) and CXCL13 (HC) had no peaks (Figure 4.15C). The 

IL21R site had most peaks, with a maximum of 16 recorded in 1 RA patient. 

These in-between data highlight the largest difference between RA and HC 

samples; at the IL21R site, RA samples have more peaks, but at the IFNAR1 site, 

HC have more peaks. Considering H3K4me3 is associated with enhancer activity, 

these data replicate earlier findings, that loop sites associated with R have 

regulatory features that could enhance transcription.  

 

  



	 194	

Table 4.2 Characteristics of RA Patients used for ChIP-Seq 
Demographic and clinical information of 9 RA patients at the time peripheral blood 
samples were taken. 

 
 

 
Figure 4.15 Mapping of H3K4me3 at MTX CCS Loop Anchor Sites in RA CD14+ 
Monocytes 
Data from ChIP-Seq experiment in CD14+CD16- monocytes from RA peripheral blood, N=9 
and peripheral blood from HC, N=5. A) Number of peaks of H3K4me3 at Site a at all CCS 
loop sites. B) Number of peaks of H3K4me3 at Site b at all CCS loop sites. C) Number of 
peaks of H3K4me3 in-between all CCS loop sites. Coordinates used to capture epigenetic 
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marks at EpiSwitch sites, the distance 500kb upstream and downstream and in-between 
(See appendix). Data is presented as mean. 
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4.3 Discussion 
 
The work in this chapter aimed at identifying possible functional implications of 

the loop formation in the MTX CCS genes. Previous data indicated there may be 

a functional difference between R and NR loops, and epigenetic marks were used 

to investigate this further. Publicly available datasets were utilised to identify 

these epigenetic marks at the sites of interest. In the search for appropriate 

datasets to use, the DeepBlue Epigenomic Data Server was identified. Within this 

server were hundreds of datasets that could be mined for relevant information 

in this study. Included in the server were data on histone modifications, DNA 

methylation, DNA accessibility and markers of chromatin stability. Taken 

together the work explored in this chapter suggests the loops in NR may be more 

inhibitory for gene expression, and the R loops may be causing enhanced gene 

expression.  

 

The datasets available within the DeepBlue Epigenomic server reflect the 

literature. Most experiments were from blood, a part of which (PBMC) would be 

relevant in our work. The availability of data from various cell types also offered 

the opportunity to breakdown the potential impact of loops forming in each cell 

type. ChIP-Seq experiments were the most represented in the DeepBlue 

database. This is expected based on the discovery of ChIP-Seq in 2007, providing 

12 years to gather data using this methodology. Furthermore, ChIP-Seq is a 

relatively low complexity analysis and offers the ability to increase sensitivity by 

increasing sequencing depth314. DNase-Seq was another technique with abundant 

experiments available. This may be based on this technique being the hallmark 

for the identification of epigenetic modifications of the genome, and many other 

techniques have been adapted from that315. DNase-Seq is a versatile technique 

that can identify open chromatin, leading to identification of many regulatory 

features from enhancers and promotor regions to silencer regions. Moreover, it 

can often be applied to any cell type and applied genome-wide316. Other 

techniques, including ATAC-Seq, are in their relative infancy and therefore it 

was not expected that there would be an abundance of data for these 

techniques317. Data for multiple histone modifications also had thousands of 

experiments. Less data was available for cohesin proteins, but there was a 

minimal set of data that could be applied to this study. Ultimately, there was 

enough data to interrogate regions of interest for the MTX CCS.  
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With the datasets identified, data specific for our study could be extracted. We 

were interested in quantifying the epigenetic marks at the EpiSwitchTM anchor 

sites, including regions up to 500kb up and downstream. This was important as 

loops have been shown to range in size, comprising a large genomic area and 

bringing large stretches of DNA into close-proximity. Mamberti and Cardaso have 

shown loops to range from 30-90kb in size318 and loops in a study by Zhao et al 

were a median of 16kb in size319. Some other studies have suggested a region of 

~500kb to 2mb could be possible for a loop, and could even reach over 

7mb141,320. Notably, this variation in sizes will depend of sequencing depth used, 

and larger loops may be less regulatory dense. Moreover, the EpiSwitchTM 

algorithm identifies loops, which may differ in size, but that are reproducibly 

detected. Loop formation can have a variety of consequences, dependent on the 

other epigenetic features in the 3D genomic area. Including the larger region in 

our analysis provided a more detailed, informative picture of the possible 

functional consequences of loop formation. This also extends on previous studies 

that have chosen to include regions 5kb up and downstream of genes of 

interest321.  

 

With the availability of data on epigenetic marks with differing regulatory 

consequences, the potential functional implications of loop formation could be 

explored. Firstly, data was studied from experiments using healthy PBMC 

samples. IL17A and CXCL13 loop sites (associated with NR) had predominantly 

the presence of known inhibitory histone modifications, H3K9me3 and 

H3K27me3. IL21R, IL23 and IFNAR1 loop sites (associated with R) had the 

majority known to be associated with increased transcription (Figure 4.3). The 

disparity between activation and repression marks were not as clear with 

methylation. At the EpiSwitchTM loop anchor sites, hypermethylation was 

marginally more present than hypomethylation, suggesting the potential for 

transcriptional inhibition. DHSs at loop anchor points were also measured. The 

IFNAR1 loop was the most accessible, based on DHSs, while CXCL13 had no 

presence of any hypersensitive sites. This suggests the CXCL13 locus may be less 

accessible for other epigenetic modifications to have a regulatory impact. 

Mapping the data between the anchor sites showed the disparities at the anchor 

sites were not replicated, which makes the potential functional impact of loop 
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formation less clear. IGV was used to visualise how these epigenetic marks may 

interact with each other (Figure 4.4). The representative image of the IL21R 

EpiSwitchTM site illustrates that DHSs interact with several histone marks. The 

overlap of enhancer marks H3K27ac and H3K4me1 suggest the site is an active 

enhancer site. However, these marks also overlap with the known repressor 

mark, H2K27me3, suggesting the potential for a more poised state of this gene. 

Identifying transcription factor binding sites would be helpful to further 

understand the enhancer potential of this loop and others in the signature322. 

The enrichment of histone marks up and downstream of the site also alluded to 

the potential function of signature loops (Figure 4.5). Results revealed the IL17A 

locus to be most distinct based on enrichment. Similar to results at the 

EpiSwitchTM anchor points, data suggests that the IL17A loop may be inhibitory in 

nature. This may result in the downregulation of other proinflammatory 

cytokines. Secukinumab, an IL17A inhibitor has been shown to be effective in 

the reduction of RA disease activity323. Based on the efficacy of this therapy, it 

may suggest if IL17A activity in RA is already reduced, MTX or other 

pharmacological interventions may be less effective.  

 

The data from CD4+ T cells appeared to replicate the findings from PBMCs 

(Figure 4.6). IL17A and CXCL13 had mostly inhibitory histone marks while IL21R, 

IL23 and IFNAR1 regions were absent of inhibitory histone marks. Similarly, 

hypermethylation was highest in IL17A at site a, and highest in IL21R at site b, as 

with PBMCs. Again, hypomethylation levels were lower than hypermethylation. 

As with PBMCs, IFNAR1 and IL21R were the only loci to have ranges of 

hypomethylation in their region. There were many more DHSs recorded in CD4+ T 

cells than in PBMCs. Most loci, at both loop anchor sites, and in-between anchor 

sites, had considerably large variation in the number of DHSs recorded between 

experiments, which serves as a reminder that the results should be interpreted 

with care. IGV visualisation suggests IL17A is in a poised state, based on the co-

localisation of histone modifications with opposite regulatory functions (Figure 

4.7)324. Considering the histone enrichment 500kb upstream, CD4+ T cells are 

comparable to PBMCs and illustrate IL17A is the most distinct gene (Figure 4.8). 

The enrichment of H3K27me3 continues the suggestion that IL17A loop may be 

inhibitory in nature. IL21R and IFNAR1, are almost identical in enrichment of all 

histones measured. This splitting of enrichment, grouping IL21R and IFNAR1 
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together follows the hypothesis that R and NR loops have functional differences. 

The profile associated with particular loops is lost when monitoring the 

enrichment of histones 500kb downstream of loop anchor sites. In this region, 

IL21R appears most distinct, with high enrichment of only H3K36me3. Compared 

to upstream, the enrichment of histones at the region around IL17A implies an 

environment likely to enhance transcription. Overall, this suggests the formation 

of a loop would create more of a poised environment. 

 

CD14+CD16- monocyte data suggests histone enrichment at loop sites to be 

similar to previous data from PBMCs and CD4+ T cells (Figure 4.9). There were no 

histone marks mapped to CXCL13 sites and no inhibitory histone marks mapped 

to IL23 and IFNAR1 anchor sites. At IFNAR1 anchor site b, there was a substantial 

degree of variation between ranges recorded between samples, particularly at 

H3K4me3 and H3K27ac, which highlights the importance of interpreting the data 

with caution. As with previous data, there were more ranges of 

hypermethylation than hypomethylation recorded across all loci. The DNase 

hypersensitivity profile was different to CD4+ T cells with the absence of DHSs at 

the CXCL13 loci. IFNAR1 had considerably more DHSs then IL23. IGV visualisation 

showed crossover of multiple histone marks at both loop anchor sites in IFNAR1 

(Figure 4.10). However, in the absence of inhibitory histone marks, unlike the 

suggested poised state of genes shown in PBMCs and CD4+ T cells, this data here 

suggests IFNAR1 is an active enhancer site. This data was also supported by the 

availability of transcription factor data from the DeepBlue Epigenomic server. 

DHSs sites overlap with CTCF, STAT1 and IRF at site a and b, respectively. This 

further supports the suggestion of likelihood that there could be enhanced 

transcription of this gene. This is supported by previous work in mice and 

humans, particularly in the locus control region (LCR). In transgenic mice, in a 

1.9kb region with a DHS, the human beta-globin gene expression was increased 

100-fold325. Previous work has implicated the role for DHSs in protein 

interactions at the LCR. Data suggests that DHS properties are more responsible 

for protein interactions than to other LCR regulatory features326. In the region 

500kb upstream, all 3 loci appear to have similar enrichment of all histones 

(Figure 4.11). IL23 differs with the higher enrichment of H3K4me3 and 

H3K36me3. Based on the low enrichment of H3K9me3 and H3K27me3, all three 

loci in this region appear to be in an environment which would support active 
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transcription. This environment appears to be similar 500kb downstream, based 

on higher enrichment of the same histones as upstream. The data suggests 

active transcription would be more likely in the downstream region based on the 

higher enrichment of H3K36me3.  

 

Exploring data in the differing cell types gave the opportunity to observe if the 

epigenetic environment may be different between them, a question that could 

not be answered from data explored in Chapter 3. Overall, the data suggests 

that the environments at CCS loci are similar in CD4+ T cells, CD14+CD16- 

monocytes and PBMCs. Similar regulatory profiles between CD14+ monocytes and 

CD4+ T cells alludes to their interaction in vivo327. However, as this data is for 

healthy cells, samples from RA are very likely to differ. In RA, elevated IFNAR1 

expression is known, which would parallel our data328. However, it could be 

hypothesised that there may be more enrichment of enhancer marks at the 

IFNAR1 locus in an inflammatory cell than found in healthy populations studied 

here. Moreover, a study has shown that the whole blood IFNAR1 signature is 

mostly contributed to by peripheral granulocytes, such as neutrophils. This is an 

indication of another cell type of interest for future work257. While our data 

suggest that CXCL13 expression could be repressed, CXCL13 levels have been 

suggested to be a potential candidate for measuring RA disease severity234. 

Furthermore, while IL21R expression is known to contribute to osteoclast 

formation in multiple myeloma, its expression in RA is less understood. Our data 

from healthy subjects would indicate the potential for increased expression of 

this gene, which exemplifies the need for caution when interrogating the data 

and the importance of exploring these results in RA patients329.  

 

The overlap of CTCF and cohesin has been widely discussed in the literature and 

has been found to be indicative of stable chromatin loop formation330. From the 

datasets available, interactions between CTCF sites and cohesin proteins were 

discovered. Most interactions were found at the IL17A loop site, which was the 

only loop site to have both RAD21 and SMC3 cohesin complex proteins (Figure 

4.12). The IL21R loop site had least CTCF cohesin protein overlap, with only 

SMC3 presence at one anchor point on the loop. Li et al carried out a study to 

demonstrate constitutive CTCF and cohesin interaction in the human genome. 

Using multiple cell lines they illustrated that RAD21 and SMC3 overlap in 90% of 
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cases331. This may suggest the CTCF-cohesin interaction at the MTX CCS loop 

sites are not constitutive, which would relate to the findings that the loops are 

largely dynamic (Section 3.2.4).  The CTCF and cohesin proteins are not close to 

promotors of transcription start sites (TSS) in the IL17A loop region, suggesting a 

structural role. The interactions at IL21R and IFNAR1 loop sites may play more of 

a transcriptional role based on the localisation to the gene itself. If this co-

localization was indicative of enhancer transcription, and results could be 

translated from cell line to B cells in the context of RA, this may suggest 

contribution to B cell dysregulation in those who respond to MTX239 332. B cells 

would be of interest to explore further as they have been heavily implicated in 

RA pathogenesis. Specifically, they can act as antigen-presenting cells leading to 

the activation of autoreactive T cells, and can also contribute to the production 

of autoantibodies333,334. Contrastingly, some studies report that peripheral B cell 

level in RA blood is comparable to healthy blood. Moreover, some new roles for 

B cells in RA have been found which suggest B cells within bone marrow 

aggregates contribute to the upregulation of bone-resorbing osteoblasts, and 

thus restore bone homeostasis335. Preferably, exploration of these concepts 

would be done in primarily cells, although data from a B cell representative cell 

line, GM12878 would be an appropriate surrogate. 

 

Further research has shown that CTCF-cohesin protein interactions are highly 

cell specific. Cohesin was found to co-localize with master regulators such as ER 

in breast cancer cell lines and HNF4A in liver cell lines336, which suggests their 

role in transcription. As our data was taken from the GM12878 cell line, it would 

be of interest to understand if any of the cohesin proteins at the loop sites were 

also in proximity to master regulators for B cells, such as Pax5337. There was not 

sufficient time to identify publicly available datasets for this information, but it 

should be done going forward to build on the data already found. Moreover, the 

interpretation of these results is limited by the lack of datasets available to 

explore the presence of other cohesin proteins such as SMC1 and STAG. Research 

should be done to ascertain if other online datasets exist obtain this 

information.  

 

Data shown in Figure 4.13 revealed that significant interactions at promotor sites 

are present within the regions of the MTX CCS loci. These results indicate that 
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the formation of signature loops in R and NR to MTX are potentially playing a 

vital role in transcriptional regulation. IL23 and IFNAR1 have most interactions, 

and the biggest range across the 17 cell types tested. These findings closely 

relate to the findings from mapping of other epigenetic marks at MTX CCS sites 

and further support the hypothesis that the loops in IL21R, IL23 and IFNAR1 are 

acting to enhance gene expression. Lymphoid subsets have more interactions 

than the myeloid subset, which would correspond to the cytokines and receptors 

being investigated. CD4+ T cells had high numbers of significant interactions in 

all loci. Earlier data shown in this chapter suggests that some loci may be in a 

poised state based on the co-localisation of certain histone marks. Interestingly, 

a study has linked the formation of new promotor-enhancer loops, identified by 

PCHiC, with activation of poised genes338. Moreover, a recent study has shown an 

adapted 3C method has facilitated identification of over 7000 active 

promotors339. Specifically, by removing the noise created by some 3C 

methodologies, it has allowed the capture of more information, such as hubs. 

Another newly developed enhancer exploratory network, HACER, allows 

exploration of cell-specific enhancers at loci of interest340. Association analysis 

with these datasets would be useful to compliment the work described in this 

chapter. Our work shows where possible poised genes were identified is also 

where promotor loop interactions were found. No interactions were captured at 

the CXCL13 locus in our area of interest, however, other datasets may exist to 

find out information about the epigenetic marks in this region. In future studies, 

it will be important to explore this dataset further and capture the relationship 

between promotor sites and eQTLs. Notably, a recent study has explored this 

concept in heart disease and was able identify new candidate genes in heart 

disease through exploration of the promotor interactome and eQTLs in 

embryonic stem cell-derived cardiomyocytes341. Out with the scope of this 

chapter was exploration of the possible orientation of transcription. This may be 

an appropriate follow up experiment.  

 

So far, based on availability, only data from healthy cells had been analysed. To 

translate these findings to further understand disease, data from cells in an 

inflammatory environment was considered beneficial. Data from inflammatory 

macrophages was of interest in the exploration of possible loop function. 

Mapping of epigenetic marks in macrophages, allowed direct comparison 
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between a non-inflammatory and inflammatory environment. Like PBMCs, the 

histone enrichment at loop sites suggests the region surrounding the CXCL13 

locus is more inhibitory, and the region around IL23 and IFNAR1 may be more 

likely to enhance transcription (Figure 4.14). However, there was only 1 

H3K237ac protein identified at the CXCL13 loop site, therefore it is difficult to 

be conclusive. Multiple experiments identified a peak of H3K36me3 at the IL23 

loop site, indicating potential for transcription. Regulation of transcription in 

macrophages can be largely attributed to enhancers342. The H3K4me3hiH3K27achi 

status of site a in IFNAR1 indicates enhancer presence. An enhancer at this site 

would result in the downstream increase of inflammatory cytokines343. There 

was no methylation data extracted at the IL23 site, while CXCL13 loop site was 

more enriched for hypermethylation, than IFNAR1. In this case, the histone data 

and methylation data are partially aligned with each other in terms of functional 

implications. Once more, further data on other inflammatory cell types would 

provide more insight.  

 

In summation, the high-throughput mapping of histone marks, methylation and 

DNA hypersensitive sites consistently suggests that NR loops are more likely to 

have an inhibitory function, while R loops are more likely to enhance 

transcription. This is consistent with the eQTL presence at only R loops, which 

show where single nucleotide polymorphisms (SNPs) are likely to have a 

functional impact. It is important to note that variation in results and the 

variation between samples in each cell type may not be due to biological 

reasons, but down to differing experimental protocols. As mentioned previously, 

ChIP-Seq experiments are easily adaptable and vary in sequencing depth. As 

such, a peak measured in one region in one experiment and not another, may be 

due to sequencing depth344. Moreover, variability with methylation 

quantification can arise from the incomplete bisulphite conversion resulting in a 

hyper methylated region being interpreted as a hypo methylated region345.  

 

Further to the analysis described, interpretation of the data could be enhanced 

by quantifying the signal of each peak, mapping the coverage of each epigenetic 

mark, quantifying the distance to nearest to TSS and finding more TF data. 

Previous research has identified that signal quantification is more applicable to 

transcription factor binding as there is a large peak over a small range, as 
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opposed to a histone modification which may span a large region, as this data 

has shown (Figure 4.10)346. HACER, as mentioned above, would be an 

appropriate tool to explore this concept further. HACER could facilitate 

association analysis with functional SNPs and TF binding sites. Moreover, going 

forward it would be useful to look at B cells and DCs. Work by Karlic et al 

demonstrated that gene expression predictions based on the predictions of 

certain histone modifications could be translated successfully from one cell type 

to another347.  

 

Although data from inflammatory macrophages may be more easily applied to 

RA, the data was still from healthy donors. Data from RA patients would be 

extremely valuable to understand the epigenetic landscape in RA and observe if 

there were similarities or differences with the data gathered from healthy 

datasets. Thus, data from a previous experiment carried out in the lab on CD14+ 

monocytes was used. It was found that H3K4me3 peaks had similar profiles in 

both RA and healthy samples (Figure 4.15). Across IL17A and CXCL13 loci, there 

were few H3K4me3 peaks, in comparison to the IL21R, IL23 and IFNAR1 loci. 

Whilst this data did not provide much insight into the influence of RA on this 

histone profile, the data did align with other findings discussed earlier in this 

chapter (Figure 4.6, 4.9, 4.12) and suggest at some loci where loops are 

associated with R (IL21R and IFNAR1), there is an environment that could 

enhance gene expression activity. A recent study demonstrated that increased 

IFNAR1 expression could be associated with patients less likely to respond to 

TNFα inhibitor treatment348. Most of these patients were also being treated with 

MTX, so it is interesting to consider the influence of increased IFNAR1 expression 

and contribution to treatment response from MTX. As IL21R is not expressed on 

classical monocytes, the result of increased expression in RA in this cell type is 

less understood. However, increased expression in monocyte derived 

macrophages and Th1 cells, is known to contribute to osteoclastogenesis and 

cytokine production, respectively, which ultimately contributes to RA disease 

progression if not controlled349,350. The caveat to this section of the study is that 

only the H3K4me3 histone modification was explored, and therefore, it is very 

likely there are other epigenetic marks at these sites in RA patients would 

provide more insight into the pathogenic consequences of loop formation in R 

and NR.  



	 205	

 

One of the significant limitations of this chapter is the varied availability of data 

for each epigenetic mark and cell type. As mentioned above, data from DCs, B 

cells, and regulatory T cells, from both health and disease would of benefit to 

provide a more informed picture on RA pathogenesis implications. Not all cell 

types had data available for every epigenetic mark of interest. Moreover, most 

data came from healthy samples, therefore the implications of disease have yet 

to be fully understood. There was also differing number of samples and 

experiments between each locus and epigenetic mark, which limited statistical 

analysis capabilities. Other datasets that would strengthen interpretation of 

functional implication of loop formation may be those that identify the function 

of SNPs which co-localise with loop anchor points and epigenetic marks. Further 

work in-silico to gain more of an understanding may lead to useful in-vitro 

studies.   
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4.4 Conclusion 
 
The work in this chapter builds on the findings of the MTX CCS and has shed light 

on the possible functional implications of loop formation in RA patients pre-MTX 

treatment. As with the previous chapter, this work demonstrates the complexity 

of investigating the 3D epigenetic environment in disease. The breadth of 

publicly available data analysed in this work suggests that R and NR loops are 

present in contrasting epigenetic environments, that may contribute the ability 

to respond to MTX. Data from RA patients implied that the findings from healthy 

data collected could be applicable in disease, however this is likely to change 

with analysis of more RA datasets.  

 

In future studies, the work in this chapter should be extended to further publicly 

available datasets, or the generation of new bespoke data, to assess the 

epigenetic environment in other disease relevant cell types such as B cells and 

DCs, as well as RA T cells and monocytes. Ultimately this work should be 

translated in-vitro to validate the findings found in-silico. Overall, this work has 

shown the potential to gather a more informed picture of CCS loops and their 

functional potential, which may ultimately provide insight into disease 

pathogenesis and MTX response.   
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Chapter 5 Identification of Early RA Epigenetic Endotypes  
 
5.1 Introduction 
  
The work in previous chapters explored the stratification potential of the 

methotrexate (MTX) chromatin conformation signature (CCS) in more detail and 

attempted to understand the functional consequences of loop formation and its 

relation to disease pathogenesis. Whilst exploring stratification around MTX 

response is vital, further baseline stratification signatures would be beneficial 

and may provide useful insight into the 3D architecture underpinning different 

responses to rheumatoid arthritis (RA) therapy.  

 

There has been a regulatory role suggested for genome-wide association study 

(GWAS) loci, which has been strengthened by the observation that single 

nucleotide polymorphisms (SNPs) found through GWAS are abundant at DNA 

variants associated with gene expression alterations209. These are known as 

expression quantitative trait loci (eQTL) and have been found in the loci of 

people with autoimmune diseases, including RA. These eQTLs could provide the 

link between suggested causal SNPs and the consequent abnormal gene 

expression which can lead to disease.  

 

By most, RA is now considered a heterogeneous syndrome, based on molecular 

and clinical endotypes351. With the development of new technologies, identifying 

endotypes in RA has attracted growing research interest. Various methods have 

been used to define RA endotypes, such as identification of serum biomarkers351, 

as well as RNA-seq of blood and synovial tissue from RA patients352. Given that a 

prior proof-of-principle study in leukaemia patients provided evidence that 

chromosome conformation could classify leukaemia subtypes294,353, we 

hypothesised that using 3D chromosomal conformation could be a way to define 

endotypes in RA. 

 

For the work in this chapter, custom microarrays were designed based on 

findings by Walsh et al 209, with the aim of capturing the differences in the 3D 

epigenetic environment underpinning different response states in RA. This 

chapter explores the process of identifying appropriate longitudinal early RA 
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clinical samples for use on the custom microarrays and determining the most 

informative analysis methods.  

 
To achieve this the aims were:  

 

1) Identify patients from Scottish Early Rheumatoid Arthritis (SERA) cohort with 

varying 12-month response trajectories 

 

2) Use samples on custom microarrays to identify stratifying EpiSwitchTM loops 

between groups 

 

3) Statistically refine microarray data to find informative stratifying loops and 

use these to shed light on underlying pathogenesis between endotypes 

 

4) Identify potential candidates for a new CCS that could predict response 

trajectory/endotype at baseline 
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5.2 Results 
 
5.2.1 Distinct trajectories of early RA exist in SERA cohort  
 
In addition to identifying prediction signatures for response to specific therapies, 

being able to identify if someone will follow a certain response trajectory is 

valuable. The SERA cohort was interrogated to identify the 12-month response 

trajectories of early RA patients (Figure 5.1). Three main trajectories were 

observed over this time-period. The first of these are the ‘responders’ (R) 

(Figure 5.1A). These are patients who achieve clinical remission or low disease 

activity (LDA), CDAI <2.8, by 6 months and maintain this state by 12 months. The 

second common group are the ‘non-responders’ (NR). These are patients who are 

do not reach LDA (CDAI 2.8>10) or remission, regardless of therapy (Figure 5.1B). 

The third group identified in this cohort are the ‘initial responders’ (IR) (Figure 

8.1C). These are patients who achieve remission by 6 months, however by 12 

months, these patients have increased disease activity that varies from low to 

high (HDA). By examining the epigenome from patients from these three groups, 

we hypothesised that there may be a differing 3D chromatin profile, which could 

allude to differing underlying pathogenesis. To do this, the ‘extremes’ from the 

3 trajectories were chosen (Figure 5.1D-F), and the demographics of these 

patients were assessed to determine if there was indication of which trajectory 

a patient would follow (Table 5.1). Of the chosen ‘extreme’ patients, the R 

group were made of patients who all had HDA at baseline, reached remission and 

remained there for the period of observation. Those in the NR group all had HDA 

over the 12-month period. In the IR group, 4 patients had HDA at baseline, of 

which 2 achieved LDA and 2 achieved remission by 6 months. The 2 patients in 

remission had moderate disease activity by 12 months and the 2 with LDA at 6 

months, had HDA at 12 months. The other 2 patients in this group began with 

moderate CDAI at baseline, reached low CDAI at 6 months and returned to HDA 

at 12 months.  
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Figure 5.1 Identification of Different Response Trajectories in SERA cohort 
Trajectory of patient response over 12 months. CDAI defined as (TJC28/10)+(SJC28/10)+ 
patient global assessment + physician global assessment. A) Responders. B) Non-
responders. C) Initial responders. D-F) Trajectory of patients selected for use on arrays 
(N=6 for each group, each time point =54 samples in total). DAS28 scores were also used 
to confirm disease activity; data not shown  
BL, baseline; CDAI, clinical disease activity index; DAS, disease activity score; N, 
number of samples; TJC, tender joint count; SJC, swollen joint count 

 
Most baseline characteristics of chosen SERA patients were similar between the 3 

groups, with the biggest difference between groups observed with clinical 

disease activity scores (Table 5.1). NR and IR had very comparable average ages 

(54.6 and 57.6, respectively), with R having the highest average age (61.3). Sex, 

race and BMI were very comparable between groups. NR and IR had the same 

percentage of rheumatoid factor (RF) positive patients; and R and IR had the 

same percentage of anti-citrullinated protein antibodies (ACPA) positive 

patients. Overall, there was no baseline demographic, serum protein or disease 

activity score that could successfully predict what trajectory someone would 

follow from baseline. The baseline characteristics between groups were tested 

for statistical significant differences. DAS28 CRP was the only characteristic to 

show statistically significant differences between the 3 responder groups. As 

there was no statistically significant differences between the groups for CDAI 

score, this meant that the groups were comparable in terms of baseline disease 

activity. This warranted the investigation via custom microarrays to identity the 

3D epigenome in all 18 patients.  
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Table 5.1 Baseline Characteristics of RA Patients used for Custom Microarray  
ACPA, anti-citrullinated protein antibodies; CDAI, clinical disease activity index; CRP, C-
reactive protein; DAS, disease acidity index; RF, rheumatoid factor 

 
 
 

There was an effort to select patients for the microarray that had the same 

treatment regimens. However, the priority was the availability of patients with 

‘extreme’ trajectories that had samples from all three time points available 

from the SERA biobank. As such, chosen patients had a variety treatments over 

the 12-month trajectory (Figure 5.2). All patients were treated with at least 1 

conventional synthetic disease modifying anti rheumatic drug (csDMARD) over 

the 12 months and only 1 patient did not start treatment on MTX. 4 of 6 R were 

treated with monotherapy MTX for the year, with 1 other on combination MTX 

and HCQ therapy and the other combination MTX and SSZ. Four NR were also 

only treated with monotherapy MTX over 12 months. One patient was treated 

with triple csDMARD therapy. The other NR was treated with MTX for 3 months 

before switching to SSZ monotherapy, then SSZ and HCQ in combination. Most IR 

were treated with a combination of csDMARD therapy over the 12-month period.  
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Figure 5.2 Treatment Timeline of Chosen RA Patients for Microarray Patient 
Treatment Timeline 
Treatment trajectories shown for patients selected for endotype microarray analysis. 
Patient treatment information from SERA cohort. Trajectory represents csDMARD 
therapy over 12 months from baseline. R shown in green, NR shown in red, IR shown in 
orange. Black arrows represent MTX, blue for HCQ and green for SSZ.  
csDMARDs, conventional synthetic disease modifying anti-rheumatic drug;  
HCQ, hydroxychloroquine; NR, non- responder; m, month; MTX methotrexate;  
R, responder SERA, Scottish Early rheumatoid arthritis cohort; SSZ, sulphasalazine  

 
5.2.2 Microarray quality control  
 
The custom microarrays were designed by Oxford BioDynamics Plc (OBD), based 

on results from the study by Walsh et al. In brief, EpiSwitchTM loops in proximity 

to eQTLs identified by Walsh et al209, which were biologically relevant for RA, 

were chosen for the array (Appendix). After clinical samples were chosen, they 

were subsequently sent to the facilities at OBD to be run on the microarrays. 

The first step in the microarray analysis process was to measure the quality of 

the data. Firstly, this involved observing the red / green dye distribution of the 

data. Preliminary analysis before all batches of the array had been run, revealed 

that 1 array was an outlier, as the dye distribution was not in-line with the other 

arrays (data not shown). This resulted in that array being included in the 4th 

batch where the error was rectified, and all densities were uniform (Figure 

5.3A). Loess normalisation was successful, as shown in Figure 5.3B. Another 
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quality control (QC) measure was to plot slide number on a PCA plot. To reduce 

batch effects, samples of different time points and different response 

trajectories were spread across slides, therefore slides would not be expected to 

cluster on the PCA. Samples from slide 14 are highlighted as a representative of 

this distribution which shows this QC measure was successful (Figure 5.3C).  

 

 
 
Figure 5.3 Quality Control Assessment of Microarray Data  
Series of plots demonstrating quality of raw microarray data and the influence of 
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normalisation. 4 dual-colour arrays in total, 4 slides per array, 4 samples per slide. Each 
slide had samples of different responder types and time points. A) Red-green density 
histogram before normalisation. B) Red-green density histogram after within array 
locally weighted polynomial regression (Loess) normalisation. C) PCA plot with numbers 
of slides labelled, and samples from slide 14 circled in orange. Plots created using 
Limma package on R studio. 

 

Based on the success of the quality control, it was deemed appropriate to 

continue with further analysis. In the first instance this involved the use of 

Limma software (Section 2.5.3). Clustering through PCA plotting was performed 

as a global level analysis of the data (Figure 5.4). At baseline, R appeared to 

cluster together in PC1, with some more overlap between NR and IR (Figure 

5.4A). At 6m, NR and IR more closely clustered together and R did not cluster as 

1 group, but 2 groups (Figure 5.4B). At the 12-month time point all groups were 

clustered together, with only 3 IR samples shown in proximity to each other 

(Figure 5.4C).  
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Figure 5.4 Global Analysis of Microarray Data  
Pre-linear model analysis of microarray data. 4 dual-colour arrays in total, 4 slides per 
array, 4 samples per slide. N=6 for each responder group at each time point. A) PCA 
labelled by responder type at baseline. B) PCA labelled by responder type at 6m. C) PCA 
labelled by responder type at 12m. Plots created using Limma package on R studio. 
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5.2.3 Limma linear modelling 
 
After global level analysis, a linear model within Limma was used to extract 

informative contrasts between endotype groups, as well as between disease and 

pooled healthy controls (HC) (Table 5.2). An informative contrast was one that 

adj.P.Val <=0.05 and abundance score (AS) -1.1<= or >=1.1. More details on this 

analysis are found in Section 2.5.3. Disease-HC contrasts produced more 

informative loops than endotype comparisons at all time points. All disease-HC 

contrasts had over 10,000 informative loops. The maximum number of 

informative loops was found from the R-HC contrast (23131); R in the R-IR 

comparison at 12m had the least informative loops (1129).  
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Table 5.2 Informative loops from Limma contrasts  
Data generated from contrasts made in the Limma linear model. Informative loops 
defined as a statistically significant difference from 0 on a log 2 scale with adj.P.Val 
≤0.05 and abundance score (AS) -1.1≤ or ≥1. Positive (+) AS associated with sample on 
left of the contrast model and negative (-) AS associated with sample on right of the 
contrast model.   
6m, 6 months; 12m, 12 months; HC, healthy control; IR, initial responder;  
NR, non-responder; R, responder 
 

 
 
Reflecting on the data from the Limma contrasts, I debated whether the model 

was extracting many more ‘meaningful’ loops than expected. This led me to 

consider that the model may not be stringent enough to find true stratifying, 

and disease-informing loops. With some comparisons extracting over 20,000 

‘informative’ loops, approximately 10% of the total loops captured on the array, 

it was decided that a more stringent method of identifying stratifying loops was 

needed. The hope with a new model is that we would find true biologically 

meaningful results, and it would also reduce the number of loops to take 

forward for further analysis.  
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5.2.4 RankProd analysis of microarray data - Responders 
 
To overcome the possible issues of statistical filtering with the linear parametric 

testing using Limma, an alternative analysis method was chosen. Namely, 

RankProd 2.0, a Bioconductor package used to find differentially expressed 

molecular profiles based on two non-parametric statistics (rank product and rank 

sum). This method has been widely used to detect variables consistently 

upregulated (or downregulated) in replicate experiments and developed with 

gene expression microarrays in mind. As such, RankProd 2.0 was chosen as the 

analysis method going forward.  

The RankProd approach produced many significant loops, but considerably less 

than the Limma method, with a maximum number of statistically significant 

loops of 4765 in the R-HC contrast at 6m (Table 5.3). Disease-HC contrasts were 

most significant at 6m for R and NR groups, and at 12m for IR. 

 
Table 5.3 Informative Loops from RankProd Contrasts 
Analysis conducted under supervision of Dr Ewan Hunter and Christina Koutsothanasi 
(OBD). Significant loops defined as loops adj P value ≤0.05 and AS -1.1≤or ≥1.1 For each 
patient group at each time point, N=6, pooled HC, N=20  
6m, 6 months; 12m, 12 months; HC, healthy control; IR, initial responder;  
NR, non-responder; R, responder 
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The significant loops that had the potential to stratify disease and pooled HC 

samples were taken for further analysis. Initially, a Venn diagram was generated 

from the significant loops at baseline, 6m and 12m in R (Figure 5.5A). This 

allowed the visualisation of stratifying loops common between pairs of time 

points, and importantly loops that were common to all time points. 319 

significant loops were common to all time points, and could be considered the 

‘stable’ loops. 6m had the highest number of time-point unique loops (4175), 

followed by 12m (48) and baseline (16). Using analysis software on the 

EpiSwitchTM data portal, a new interactive interface 

(https://episwitch3dgenomicsportal.com) to interrogate EpiSwitchTM analysis 

data, the closest 3 genes to the 319 ‘stable’ loops were identified (Figure 

5.5B)(Section 2.5.10). This list of genes was then entered into the Gene 

Analytics platform to understand the most significant pathways enriched based 

on these genes (Figure 5.5C). All pathways had medium score matches for the 

genes in each pathway which indicated a corrected P-value of 0.05 to 1. The 

‘phagosome’ pathway was the most significant of this group, with 16 genes 

matching this pathway. Gene Ontology (GO) terms were also explored (Figure 

5.5D). In contrast to the pathways, all GO terms had a high score match for the 

genes associated with each term, suggesting better ontologies with defined 

genes, in addition to a corrected P value of <0.05. The ‘ER to golgi transport 

vesical membrane’ had the highest match score in this group. This may suggest 

that the effective transport of intracellular proteins is important in responding 

to RA therapy.  
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Figure 5.5 Pathway Enrichment of Significant Stable Loops in R    
List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn 
diagram of significant loops in the R group at all time points, significant ≤0.05 and AS -
1.1≤ or ≥1.1. B) Schematic representing how EpiSwitchTM data portal captures 3 closest 
genes to an anchor site, IL17A locus used as a representative image. Gene Analytics 
then used to generate list of significant pathways based on matched genes. Scores are 
given to each pathway to reflect their matching quality to the set of genes entered to 
the analysis platform. An algorithm is used to determine the threshold for high, medium 
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and low scores in each dataset. Cells in green = high score match, corrected P-value of 
<0.05, cells in orange = med score match, corrected P-value of 0.05-≥1. Tables 
generated for C) Top pathways, D) Top GO terms.   
6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;  
RR, reverse-reverse orientation 
 

The gene list used for Gene Analytics analysis was then used to make a protein 

network to understand the relationship between the genes found in the region of 

stable loops in the R group (Figure 5.6). The online STRING platform 

(https://string-db.org/) was used to generate this network (Appendix). which 

could subsequently be transferred to a programme called Cytoscape for further 

analysis (Section 2.5.7, 2.5.8). Network analysis tools (topology statistics) were 

then employed on Cytoscape to find the most connected genes, represented by 

network ‘nodes’ and ‘edges’. This was carried out with a view of considering the 

more connected nodes, the most contributing loci in the pathways associated 

with R. The top 9 nodes were noted (Figure 5.6A). The most connected node for 

the R network, with 23 connections to other genes from the whole Gene 

Analytics list, was BRCA1. Finally, the EpiSwitchTM data portal was used to 

visualise the genomic environment around this locus, an approach shown in 

Chapter 4 (Figure 5.6B). Two loops could be visualised in this region; the anchor 

point of the loop with statistical significance in R is highlighted. For closer 

characterisation, specifically to visualise the other epigenetic marks that 

surround this locus, a circos plot was generated (Figure 5.6C). The ability to 

generate circos plot within the EpiSwitchTM data portal was extremely useful, as 

this platform contained data from other experiments which investigated histone 

modifications in immune cells. The anchor point that resides within the BRCA1 

gene overlapped with H3K27ac, (found in CD8, CD4 cells) as well as multiple 

clinically important SNPs. The other anchor point that is part of this loop lies 

within G6PC locus. At this site, there is also the presence of H3K27ac from CD8 

and CD19 cells. These epigenetic marks illustrate an environment that may 

enhance transcription of the genes in their proximity.  
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Figure 5.6 Environment Surrounding Central Enriched R Loop 
Network analysis used to understand central players in significant pathways. A) Top 
most connected nodes determined by most directed edges of a node in Cytoscape. Gene 
with most connections highlighted in red. B) Genome browser view from EpiSwitchTM 

data portal showing BRCA1 gene genomic environment. Genes in dark blue, loops in pink 
and EpiSwitchTM anchor points in orange. Red boxes illustrate anchor points statistically 
significant loops in this group. 1 anchor point present behind ‘EpiSwitchTM Anchors’ 
label. C) Circos plot with the addition of ClinVar representing disease associated SNPs, 
and H3K27ac marks from publicly available datasets. Red box indicates gene of interest 
and gene which other loop anchor point lies within and where anchor points of interest 
interact with other epigenetic features.  

 
5.2.5 Rank Prod analysis of microarray data – Non-Responders 
 

The same approach used for significant R loops was used for NR loops (Figure 

5.7). 625 loops significantly differentiated disease and HC at all 3 time points 

(Figure 5.7A). 825, 70 and 25 loops significantly differentiated between disease 

and HC at 6m, 12m and baseline, respectively. The 625 ‘stable’ loop list was 

entered into GeneAnalytics software. All pathways had a med match gene score 

(Figure 5.7B). The top scoring pathway was the ‘Phagosome’ pathway. There 

were 2 high score matching GO terms, namely ‘Interferon-gamma-mediated 

signalling pathway’ and ‘ER to golgi transport vesical membrane’ with 13 and 14 

matched genes, respectively (Figure 5.7C). This data suggests regulation of 

interferon gamma signalling may be important to NR, and the enrichment of 

genes in the ‘ER to golgi transport vesical membrane’ pathways may suggest that 

it is not a R specific pathway, but more important in RA as a whole.  
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Figure 5.7 Pathway Enrichment of Significant Stable Loops in NR 
List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn 
diagram of significant loops at all time points, significant adj. P value ≤0.05 and AS -
1.1≤ or ≥1.1. Gene Analytics then used generated list of significant pathways based on 
matched genes. Scores are given to each pathway to reflect their matching quality to 
the set of genes entered to the analysis platform. An algorithm is used to determine the 
threshold for high, medium and low scores in each dataset. Cells in green = high score 
match, corrected P-value <0.05, cells in orange = med score match. P-value 0.05-≥1. 
Tables generated for B) Top pathways and C) Top GO terms.   
6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;  
RR, reverse-reverse orientation  
 

Once again, the gene list generated from stable loops was used for network 

analysis to further characterise the significant pathways differentiating NR and 

pooled HC (Figure 5.8). The top 10 nodes had at least 25 connections in the 

network, with the top a total of 34 (Figure 5.8A). The most connected node 

represented the TLR4 gene. This was an interesting find based on it’s 

implications in RA pathogenesis. TLR4 is expressed on a number of immune cells 

involved in RA pathogenesis, including peripheral monocytes and synovial 

macrophages. Activation of TLR4 can lead to down-stream production of 

interferons, cytokines and chemokines. As such, the EpiSwitchTM data portal was 

used to visualise the genomic area around this gene. The genome browser view 

clearly demonstrated this gene was enriched with many EpiSwitchTM anchor 

points, hinting that it is a highly-regulated region (Figure 5.8B). Of note, not all 

loops in this region are associated with the NR endotype. The largest central 

anchor point, connecting several of these loops, was the EpiSwitchTM loop with 

significance in this NR group. To look at this area in more detail, a circos plot 

was used (Figure 5.8C). The second anchor point of this loop does not lie within 

another locus, but does overlap with H3K27ac, recorded in CD19 cells. 

Visualising in this way showed that the anchor point within the TLR4 locus can 

overlap with H3K27ac marks which have been found in CD4, CD8, CD19 and CD56 

cells. Interestingly, there are no clinically relevant SNPs residing in this area. 

The histone marks present at this locus suggest the potential for enhanced 

transcription, which would be in line with what we know about this locus in RA 

pathogenesis. 
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Figure 5.8 Environment Surrounding Central Enriched NR loop 
Network analysis used to understand central players in significant pathways. A) Top 
most connected nodes determined by most directed edges of a node in Cytoscape. Gene 
with most connections highlighted in red. B) Genome browser view from EpiSwitchTM 

Data Portal showing TLR4 gene genomic environment. Genes in dark blue, loops in pink 
and EpiSwitchTM anchor points in orange. Red boxes illustrate anchor points statistically 
significant loops in this group. C) Circos plot generated from genome browser with the 
addition of ClinVar representing disease associated SNPs and H3K27ac marks from 
publicly available datasets. Red box indicates gene of interest and region which other 
loop anchor point lies within and where anchor points of interest interact with other 
epigenetic features. 

 
 

5.2.6 RankProd analysis of microarray data – Initial Responders 
 

As with the other endotype groups, multiple analysis tools were employed to 

understand the highly-regulated areas the genome unique to the IR disease 

group (Figure 5.9). 279 loops could stratify disease and pooled HC at all time 

points (Figure 5.9A). 4, 392 and 447 were unique to baseline, 6m and 12m, 

respectively. As with the other endotype groups, the closest 3 genes to each of 

the stable loops were carried forward for gene enrichment analysis. The 

pathways enriched had a mix of high scoring and med scoring enrichment scores 

(Figure 5.9B). The high scoring pathways were ‘translocation of ZAP-70 to 

immunological synapse’, and ‘TCR signalling’. There were 8 GO terms scoring a 

high match score (Figure 5.9C). The pathway with the most matched genes was 

the ‘T cell receptor signalling pathway’. Deficient TCR signalling has been shown 

to contribute to RA pathogenesis and it is interesting that this pathway was 

enriched in the IR group. Exploring the genomic region of genes in this pathway 

would be of use to understand this mechanism more. 
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Figure 5.9 Pathway Enrichment of Significant Stable loops in IR    
List of loops generated from RankProd analysis. A) Venny 2.1 used to generate Venn 
diagram of significant loops at all time points, significant adj P value ≤0.05 and AS -1.1≤ 
or ≥1.1. Gene Analytics then used generated list of significant pathways based on 
matched genes. Scores are given to each pathway to reflect their matching quality to 
the set of genes entered to the analysis platform. An algorithm is used to determine the 
threshold for high, medium and low scores in each dataset. Cells in green = high score 
match, P-value <0.05 cells in orange = med score match, P-value 0.05-≥1. Tables 
generated for B) Top pathways and C) Top GO terms.   
6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;  
RR, reverse-reverse orientation;  
 

As with previous analysis approaches, network analysis tools were used to 

further characterise genes from significant pathways (Figure 5.10). Once again, 

in Cytoscape, network analysis was used to identify the most connected nodes. 

The most connected nodes ranged from 14 to 18 connections, with HLA-DRB1 

having the most connections (18) (Figure 5.10A). Again, this is a gene with 

known implications in RA pathology. Specifically, this allele is associated with 

susceptibility to the development of RA. This gene was explored further using 

the EpiSwitchTM data portal. Exploration of the surrounding genomic area 

revealed that 5 loops resided in this region (Figure 5.10B). All loops were 

statistically significant in the IR group. A circos plot was used again to visualise 

the epigenomic environment in more depth (Figure 5.10C). The area was clearly 

enriched with H3K27ac marks which can be found in CD4, CD8, CD19 and CD56 

cells. This data illustrates the capacity for enhanced gene transcription at this 

site. Of note, 4 loops stem from 1 anchor point in this region, which appears to 

lie within the HLA-DRB5 locus, hinting at the significant regulatory role of this 

gene. Interestingly, this allele has been shown to be play a protective role in RA. 

Anchor sites residing within loci with differing functional consequences in RA is 

interesting, particularly as this is the IR group.  
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Figure 5.10 Environment Surrounding Central Enriched IR Loop 
Network analysis used to understand central players in significant pathways. A) Top 
most connected nodes determined by most directed edges of a node in Cytoscape. Gene 
with most connections highlighted in red. B) Genome browser view from EpiSwitchTM 

Data Portal showing HLA-DRB1 gene genomic environment. Genes in dark blue, loops in 
pink and EpiSwitchTM anchor points in orange. Red boxes illustrate anchor points 
statistically significant loops in this group.  C) Circos plot generated from genome 
browser with the addition of ClinVar representing disease associated SNPs and H3K27ac 
marks from publicly available datasets. Red box indicates gene of interest and gene 
which other loop anchor point lies within and where anchor points of interest interact 
with other epigenetic features. 

 

5.2.7 RankProd analysis of microarray data – RA 
 
While it was of interest to understand the pathways enriched in each endotype 

group, it was also of interest to determine the loops common to all endotypes 

that could stratify disease and HC at all time points. As such, all the stable loops 

from each endotype group were used to generate a fourth Venn diagram (Figure 

5.11A). One hundred and eighty-three loops were common to all groups, and 

collectively made an RA-specific loop signature group. Forty-three, 23 and 297 

loops were unique to R, IR and NR, respectively. The closest 3 genes to the 183 

RA loops were analysed further using GeneAnalytics as before. This produced a 

set of pathways all with a med gene match score (Figure 5.11B). The most 

significant enriched pathway was the pathway of the ‘regulation of apoptosis by 

parathyroid hormone related protein’. Once again, GO terms were also 

interrogated. Seven GO terms in total had high gene match scores (Figure 

5.11C). The ‘cytosol’, ‘nucleus’ and ‘cytoplasm’ were GO terms with many 

matched genes. This alludes to the highly-regulated environment of an RA 

peripheral blood cell.  
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Figure 5.11 Pathway Enrichment of Significant Stable Loops in Disease 
A) Venny 2.1 used to generate venn diagram of significant loops at all time points, 
significant ≤0.05 and AS -1.1≤ or ≥1.1. Gene Analytics then used generated list of 
significant pathways based on matched genes. Scores are given to each pathway to 
reflect their matching quality to the set of genes entered to the analysis platform. An 
algorithm is used to determine the threshold for high, medium and low scores in each 
dataset. Cells in green = high score match, corrected P-value <0.05 cells in orange = 
med score match, P-value 0.05 ≤ 1.Tables generated for B) Top pathways and C) Top GO 
terms.   
6m, 6 months; 12m, 12 months; BL, baseline, kb, kilobase;  
RR, reverse-reverse orientation; 
     

As before, network analysis was used to further interpret the data (Figure 5.12). 

Using network tools, the most connected nodes were identified, with the top 

nodes having 13 or more connections. The most connected node was shown to be 

PSMC6 with 18 connections (Figure 5.12A). Using the EpiSwitchTM data portal, the 

genomic environment around the PSMC6 gene was revealed (Figure 5.12B). Two 

loops were found to be in this region. For increased characterisation, a circos 

plot was used (Figure 5.12C). H3K27ac marks found in CD4, CD8, CD19 and CD56 

cells were found at all anchor points, once again suggesting that this region of 

the genome may be subject to enhanced transcription in T cells, B cells and NK 

cells. This enhanced transcription in RA could lead to increased immune 

pathology and exacerbation in disease. The circos plot also illustrates that the 

second anchor point of the significant loop lies in proximity to the GRP137C 

gene, known for cell proliferation, but limited evidence of its implications in RA.  
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Figure 5.12 Environment Central Enriched Disease Loop 
Network analysis used to understand central players in significant pathways. A) Top 
most connected nodes determined by most directed edges of a node. Gene with most 
connections highlighted in red. B) Genome browser view from EpiSwitchTM Data Portal 
showing PSMC6 gene genomic environment. Genes in dark blue, loops in pink and 
EpiSwitchTM anchor points in orange. Red boxes illustrate anchor points of statistically 
significant loops in this group. C) Circos plot generated from genome browser with the 
addition of ClinVar representing disease associated SNPs and H3K27ac marks. Red box 
indicates gene of interest and where anchor point of interest interacts with other 
epigenetic features. 

 
Whilst the network analysis data extracted genes that did appear to heavily be 

regulated, many of the pathways from GeneAnalytics analysis had limited 

significance with corrected P-values between 0.05 and 1, suggesting there may 

be more significant pathways to find. With this in mind, it was of interest to 

employ a second analysis method, as a way to compare evidence and observe if 

similar pathways were found in both methods. 

 
5.2.8 SearchLight as second approach to analysis of microarray 
data 
 

To potentially identify other important loops that could be used to stratify RA 

patients at baseline, and to possibly strengthen our confidence in the findings 

from the RankProd method, it was decided that another method could be used 

to validate and further explore findings. A computational analysis method, 

Searchlight, primarily used for RNA-seq data, was adapted to analyse our 

microarray data. While analysis with RankProd focused on contrasts between 

disease and HC, Searchlight was used to focus on contrasts between pairs of 

endotype groups. Using linear modelling, differences between endotype groups 

at all 3 time points were extracted using the contrasts from the model within 

Limma. A 1 to 1 comparison between pairs of endotypes was done to attempt to 

understand the degree of difference between each group. This pairwise 

comparison was done first as a thorough approach to find regulatory differences 

and hopefully capture the nuances between groups, that may not be captured if 

a three-way analysis was done in the first instance. This would be carried out 

later in the analysis pipeline. Firstly, the stratification of NR and R was assessed 

(Figure 5.13). PCA plots were generated to assess differences between groups at 

each time point (Figure 5.13A-C). The largest separation between NR and R was 

seen at baseline (Figure 5.13A). Observing the plots, the least separation seems 

to appear at 12 months (Figure 5.13C). The reduction in difference between 
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baseline and 12m may be due to the effect of treatment on individuals. The next 

step was to evaluate whether there were any loops that were significantly 

different at the various time points, and observe if any signatures emerged from 

the data. Notably, there were no significant differentiating loops at 12m, 

however, at both baseline and 6 months, differences were observed (Figure 

5.13D-E). At both the baseline and 6m time points, there were 2 loops which had 

differential fold change in abundance between NR and R. One loop had higher 

fold change in NR and the other in R. Both loops at 6m also had differential fold 

change. At 6m, all 6 individual patients appeared to have more varied fold 

change values that the 6 patients at baseline. Collectively these data suggested 

at the 3D epigenome level, R and NR had few significant differences.  
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Figure 5.13 Differential Loops Between R and NR at Each Time-point  
Data analysis was performed by John Cole, University of Glasgow. Principal component 
analysis (PCA) of microarray data at (A) M0 (baseline), (B) 6 months, (C) 12 months. 
Data scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = NR, 
blue =R. N=12. (D&E) un-clustered heat map representing significantly different loops 
between NR and R at (D) baseline and (E) 6 months. Log2 fold > 1, adj. P value ≤ 0.05. 
Expression levels of loops represented as z-scores, -1 -1 = loop abundance fold change 

 
Whilst analysis did not identify stratification signatures at each time point, the 

most differential individual loops, based on fold change in abundance, were 

identified to discover if any individual loops had differences at the patient level 

(Figure 5.14). The 10 most up and down regulated loops were plotted and those 

loops were then mapped to the closest gene, with a view to understand possible 

functional consequences of loop formation. To investigate the extent of change 

in each loop across samples, we evaluated the loops that were most up or down 

regulated in R compared to NR. The loops that appeared to be most upregulated 

in R were Loop_41682 (KIAA1468), Loop_79207 (RP11-500G9.1) and Loop_38167 

(GBP3)(Figure 5.14A). Two other loops in this set also mapped to KIAA1468 and 

GUCYGP2, implying that expression of these genes has implications for the R 

group. The loops that appeared most downregulated in R compared to NR were 

LOOP_105854(UBE2H), LOOP_36217 (LINC00854) and LOOP_88219 (BTLN8)(Figure 

5.14B). It was demonstrated that 2 other loops in this group mapped to UBE2H, 2 

others mapped to BTLN8 and another 2 to TSNAX-DISC1. As 3 loops in this group 

mapped to UBE2H, it is plausible to consider that this gene may be an important 

gene in NR.  
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Figure 5.14 Significantly Up and Down Regulated Loops in R (R vs NR comparison) 
Data analysis was performed by John Cole, University of Glasgow Violin plots of 
significantly up and down regulated loops, (p.adj ≤ 0.05, absolute log2 fold >1). N=12. 
A) Significantly upregulated genes in R at baseline time-point. B) Significantly 
downregulated loops in R at baseline. Loop number highlighted above plot, with closest 
gene to loop site above. Closest gene determined by Bedtools closest function. Pink = 
NR, blue = R  
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Stratification of IR and R was next to be analysed (Figure 5.15). There was a 

degree of separation between IR and R at baseline when using PCA analysis 

(Figure 5.15A). This separation was partly lost at 6m (Figure 5.15B) and at 12m, 

IR and R samples were plotted amongst each other (Figure 5.15C). As with the 

NR and R analysis, heat maps were used to visualise the data and determine if 

any signatures emerged from the data that could differentiate between IR and 

R. There were more significantly different loops between these 2 groups than NR 

and R at baseline and 6m time points (Figure 5.15D,E). Again, there were not 

enough significantly different loops to plot a heat map at 12m. The fold change 

of the signature loops at baseline was more than at 6m. At both time points, 

there were 2 main signatures which differentiated the endotypes; signature 1 

had upregulation of loops in IR and downregulation of loops in R, signature 2 had 

the opposite. 
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Figure 5.15 Differential Loops Between IR and R at Each Time-point  
Data analysis was performed by John Cole, University of Glasgow. Principal component 
analysis (PCA) of microarray data at A) M0 (baseline), B) 6 months, C) 12 months, Data 
scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = IR, blue 
=R. N=12. D) un-clustered heat map representing significantly different loops between 
NR and R at baseline, E) 6 months. Log2 fold > 1 adj. P value ≤ 0.05. Expression levels of 
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loops represented as z-scores. -2 -3 = loop abundance fold change. Green brackets and 
numbers indicate different signatures. 

 

The most significantly up and down regulated loops between IR and R were 

plotted and mapped to their closest gene (Figure 5.16). Across samples, the 

loops that appeared to be most consistently upregulated in R were Loop_93401 

(HLA-DQA1), Loop_93393 (SNX19) and Loop_38167 (GBP3) (Figure 5.16A). Two 

other genes in the group mapped to SNX19 and HLA-DQ1. Others in the group 

mapped to MICU1 and HLA-DRA. The loops that appeared most downregulated in 

R compared to NR were LOOP_107119 (TNSAX-DISC1), 

LOOP_107121(TSNAX_DISC1) and LOOP_88225 (BTLN3)(Figure 5.16B). Other loops 

in this downregulated group mapped to VAMP4, RP11-345I18.6, FRAS1 and 

BTLN8. Two loops mapping to TSNAX-DISC1 may be an indicator that repression 

of expression is important in R. 
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Figure 5.16 Significantly Up and Down Regulated Loops in R (IR vs R comparison) 
Data analysis was performed by John Cole, University of Glasgow Violin plots of 
significantly up and down regulated loops, (adj. P value ≤ 0.05, absolute log2 fold >1). 
N=12. A) Significantly upregulated genes in R at baseline time-point. B) Significantly 
downregulated loops in R at baseline. Loop number highlighted above plot, with closest 
gene to loop site above. Closest gene determined by Bedtools closest function. Pink = 
IR, blue = R 

 
The last comparison to be made was between NR and IR (Figure 5.17). PCA 

analysis was once again used to visualise clustering of the 2 groups at baseline, 

6m and 12m. There was a lot of overlap between endotypes at baseline (Figure 
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5.17A). The 2 groups became more separated at 6m, however the endotypes 

were not clustered separately (Figure 5.17B). Similar clustering was observed at 

12m (Figure 5.17C). Once again, heat maps were used to picture the data and 

identify stratifying signatures between endotypes. At baseline, 2 signatures 

emerged from the heat map (Figure 5.17D). The smaller of the 2 signatures (1) 

showed upregulation of loops in NR. The other signature shows upregulated loops 

in IR. At the 6m time point there were less distinct signatures shown in the heat 

map (Figure 5.17E). From the heat map only 1 signature emerged. This signature 

showed a small group of highly upregulated loops in NR. The rest of the heat 

map did not highlight a high level of differentiation between the endotypes. As 

other comparisons have shown, there were not enough significant loops at 12m 

to plot a heat map.  
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Figure 5.17 Differential Loops Between NR and IR at Each Time-point 
Data analysis was performed by John Cole, University of Glasgow. Principal component 
analysis (PCA) of microarray data at A) M0 (baseline), B) 6 months, C) 12 months, Data 
scaled by Z-score transformation. Each dot represents 1 patient sample. Pink = NR, blue 
= IR. N=12. D) un-clustered heat map representing significantly different loops between 
NR and R at baseline, E) 6 months. Log2 fold > 1 adj P value ≤ 0.05. Expression levels of 
loops represented as z-scores.  -2 – 2 = loop abundance fold change  
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As before, the most significantly up and down regulated loops between the 

endotypes were plotted and closest gene to each, identified (Figure 5.18). The 

loops that appeared to be most consistently upregulated in NR were Loop_93401 

(HLA-DQA1), Loop_93402 (HLA-DQA1) and Loop_88916 (RP4-761I2.5)(Figure 

5.18A). Two other loops in the group mapped to HLA-DQ1. This data suggests 

importance of the expression of this gene in the NR. Others in the group mapped 

to MICU1 and HLA-DRA. The loops that appeared most downregulated in NR 

compared to R were LOOP_113951 (PRUNE2), LOOP_122895 (GUCY2GP) and 

LOOP_99942 (AC018641.7) (Figure 5.18B). Other loops in this downregulated 

group mapped to PDE8B, WDR41, and RP11-551L14.1.  
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Figure 5.18 Significantly Up and Down Regulated Loops in NR (NR vs IR comparison) 
Data analysis was performed by John Cole, University of Glasgow. Violin plots of 
significantly up and down regulated loops, (p.adj ≤ 0.05, absolute log2 fold >1). N=12 A) 
upregulated genes in IR at baseline time point. B) Significantly downregulated loops in 
IR at baseline. Loop number highlighted above plot, with closest gene to loop site 
above. Closest gene determined by Bedtools closest function. Pink = NR, blue = IR 
 

 
5.2.9 SearchLight as second approach to analysis of microarray 
data – RA  
 

As well as identifying stratifying loops and signatures between pairs of endotypes 

across the time points, analysis was conducted to compare all 3 endotypes 
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together at each time point (Figure 5.19). Global PCA analysis of all 3 endotypes 

at baseline demonstrated 2 large clusters, consisting of patients of all endotypes 

(Figure 5.19A). This hints as shared RA pathology between endotypes, but 

highlights the heterogeneity of the RA population. There was no distinct cluster 

based on endotype. To try and identify stratifying signatures between the 

groups, we analysed the data with the use of a heat map (Figure 5.19B). Four 

clear signatures emerged from the heat map. The first clear signature  (1) shows 

upregulation of loops in IR and NR, with downregulation of loops in R. The 

second signature (2) demonstrated highly significant upregulation of loops in IR, 

with downregulation in the other 2 endotype groups. The third signature (3) 

shown upregulation of loops in R with downregulation in NR and IR. The fourth 

signature (4) shows upregulation in R with downregulation in the other 2 

endotype groups, with 2 patients in the IR groups showing upregulation of loops 

at a similar significance to the R group.  

 

 
Figure 5.19 Differential Loops Between R, NR and IR at Baseline  
Data analysis was performed by John Cole, University of Glasgow. Principal component 
analysis (PCA) of microarray data at A) baseline, Data scaled by Z-score transformation. 
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Each dot represents 1 patient sample. Green = IR, blue = NR, pink =R. N=18. B) un-
clustered heat map representing significantly different loops between IR, NR and R at 
baseline, Log2 fold > 1 adj.P value ≤ 0.05. Abundance of loops represented at z-scores. 
Green brackets and numbers indicate different signatures.  
Nos 1-4 represent individual signatures within the heat map 

 

Alike to the analysis conducted between pairs of endotype groups, the most 

significantly different loops between the three groups were investigated, and 

the top 8 plotted (Figure 5.20). LOOP_14360 and LOOP_14364, both mapping to 

DOCK9, appeared to be upregulated in IR and NR samples, compared to R. This 

difference was consistent across time points. This could mean down regulation 

of this gene is important in responding to RA therapy. In contrast, LOOP_24104 

(RP11-282M16.1) and LOOP_64070 (DSCR3) showed highest loop expression in R, 

with similarly lower levels in IR and NR. Overall, the difference between groups 

remained similar across all 3 time points. However, it appeared at baseline, 

some loops showed the biggest difference, as observed in LOOP_24101 (RP11-

282M16.1), LOOP_38537 (PRR11) and LOOP_950095 (SUPT3H). Interestingly, no 

loops that were significantly different in the pairwise analysis, were the most 

significant in the comparison between all 3 groups. This may suggest findings are 

an artefact, or could mean that we captured the slight differences between 

groups, that can’t be captured by analysing the groups all together.  

 

 
Figure 5.20 Significantly Different Loops between R, NR, IR at All Time points  
Data analysis was performed by John Cole, University of Glasgow. A) Violin plots of 
significantly different loops in between R, NR and IR across all time points. Loop number 
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highlighted above plot, with closest gene to loop site above. Closest gene determined 
by Bedtools closest function.  

 
5.2.10 Comparison of analysis approaches 
 
Direct comparison of the analysis pipelines was complex due to the RankProd 

approach focusing on enriched biological pathways, while analysis with 

SearchLight focused on individual genes. Moreover, RankProd analysis focused on 

differences between disease and HC, whilst SearchLight focused on differences 

between endotypes. Yet notably, this was how I approached the analysis, and 

both platforms could be used to approach analysis in different ways. However, 

the EpiSwitchTM data portal visualisation software was used to gather more detail 

about the most significantly changed loops between the endotypes identified 

through the Searchlight pipeline, and identify if genes from Searchlight were in 

regions of other EpiSwitchTM loops (Figure 5.21). Data was available in the portal 

for DOCK9, PRR11 and DNAJB13. In the region of DOCK9, multiple loop anchor 

points could be found, with over 10 loops visualised, interacting between them 

(Figure 5.21A). Of these 3 genes with data in the portal, only DOCK9 was a gene 

that was found to be significant with the RankProd analysis pipeline. This was 

significant in NR and IR. DOCK9 can be seen with an anchor site within the 

RPL17L1P12 locus (Figure 5.21B). Interestingly, there was no interaction with 

histones or SNPs in this region. Only 2 loops could be visualised in the region of 

PRR11 (Figure 5.21C). Both loops have anchor points within the RP11 gene 

region, and loop to anchor points in TRIM37. The loops also overlap with SNPs. 

Again, the circos plot visualisation provides further detail and highlights that the 

loops span 3 and 4 genes (Figure 5.21D). Three loops could be shown in the 

region of DNAJB13 (Figure 5.21E). Two anchor sites within the gene region 

interact with one other anchor site in the region of CDA4. The other loop in this 

region has anchor points either side of the DNAJB13 gene. These loops also 

overlap with SNP sites. The circos plot replicates this data and highlighted one 

loop spans 0.2mb (Figure 5.21F). DOCK9 is clearly an enriched region, and since 

it was a significantly differential loop in both analysis pipelines, it is highly likely 

that this gene is important in RA pathogenesis. Furthermore, using the 

EpiSwitchTM visualisation software, it allowed us to capture this enriched region, 

which may not have been as clear otherwise. However, it should be noted that 
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only comparing 10 genes across platforms is a small number and may not reflect 

the comparability of the techniques as a whole. 
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Figure 5.21 EpiSwitchTM Data Portal Visualisation of Searchlight Genes 
Most significantly changed genes from Searchlight analysis were searched for in 
EpiSwitchTM data portal. Data was available for 3 genes. Visualised in IGV simulation and 
replicated in circos plot for A+B) DOCK9. C+D) PRR11. E+F) DNAJB13 
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5.2.11 Identification of candidates for endotype CCS 
 
As one of the aims from this part if the study was to identify loops that have the 

potential to become part of an effective predictive CCS, it was important to 

establish the dynamics of loop significance across the 3 time points. To identify 

the loops with the strongest stratification potential for prediction of endotypes, 

the quality threshold (QT) clustering algorithm was used on the RankProd data. 

This algorithm does not specify the number of clusters a priori, and clusters 

must pass a user-defined quality threshold. To be included in the cluster, a loop 

must have had to be significant in at least 1 time point. Data generated from 

RankProd, which has been explored above, was used in the clustering algorithm. 

Three groups of clusters were produced based on comparison between each 

endotype and pooled HC. Comparison between R and HC produced 9 clusters 

(Figure 5.22). From the 9 clusters, 7 loop dynamic patterns can be observed. 

Two clusters (2 and 5) have statistically significant loops at all 3 time points and 

2 (6 and 9) clusters have significance at baseline and 12m but not at 6m. The 

cluster with the most loops (2511), had loops with statistical significance only at 

6m. In the interest of stratification significance over 12 months, cluster 2 would 

be the choice cluster to be taken for further analysis. Loops from this cluster 

would be the most likely to generate a significant stratifying signature.  
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Figure 5.22 QT clustering of Loops in R  
Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from R and pooled 
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold 
loops had to have significance, ≤0.2 FDR. Data with most potential for an endotype 
stratification signature highlighted in yellow square.   
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Comparison between NR and pooled HC revealed 9 clusters (Figure 5.23). 

Clusters 2-9 had 121 loops or more identified. In contrast, cluster 1 had 1729 

loops identified. This cluster, along with cluster 4 and 6 are made of loops with 

statistical significance at all time points. The 6 remaining clusters have unique 

dynamics ranging from significance only at baseline to significance only at 12m 

These clusters are made of 4 and 3 loops respectively. Cluster 1 would be the 

cluster of choice to be taken forward for further analysis based on strong 

significance at all time points in many loops.  
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Figure 5.23 QT clustering of Loops in NR  
Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from NR and pooled 
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold 
loops had to have significance, ≤ 0.2 FDR. Data with most potential for an endotype 
stratification signature highlighted in yellow square.   
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Clustering of IR and pooled HC comparison data revealed 8 clusters (Figure 

5.24). Again, cluster 1 had considerably more loops than the other clusters with 

1566 loops compared to the second highest cluster made up of 228 loops. Cluster 

1, 4 and 8 had loops with statistical significance at all time points. The 

remaining 5 had dynamics unique to each cluster. Of these 5 clusters, the cluster 

with significance at baseline and 12m had the least loops (18). Based on stable 

significance throughout 12m, data from cluster 1 would be the most promising 

cluster to take forward for further analysis to determine an endotype signature.  
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Figure 5.24 QT clustering of Loops in IR  
Data analysis conducted by Ewan Hunter, OBD. Raw microarray data from IR and pooled 
HC comparisons was used for the QT clustering algorithm. To pass the quality threshold 
loops had to have significance, ≤ 0.2 FDR. Data with most potential for an endotype 
stratification signature highlighted in yellow square.   
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5.3 Discussion 
 
The work in this chapter has alluded to the presence of several molecular 

endotypes, specifically 3D chromatin endotypes, that exist in early RA. 

Moreover, the data suggests that there may be loops present in each endotype 

at baseline that may be able predict which trajectory a patient will follow. 

Analysis also revealed that some loops were present in all endotype groups at all 

time points, revealing a RA signature that suggests a baseline level of 

dysregulation dictated by the 3D structural epigenome. Moreover, as many the 

loops in this group were determined ‘stable’, it implies a core RA state, from 

which important disease relevant pathways can be found. The loops in disease 

were of most interest based on the aim of using stratifying loops to understand 

underlying pathogenesis. 

 

Analysis of the SERA dataset revealed the presence of 3 main response 

trajectories (Figure 5.1). This analysis builds on the interrogation of the SERA 

cohort for the identification of the MTX CCS. Where R, and NR were assessed on 

their clinical scores at 6m, extending analysis to include the 12m time point 

revealed the IR response group, that at 6 months have the same trajectory as R. 

Using these longitudinal samples is a great advantage to this work. These 

trajectories are similar to findings from other RA cohorts. Other studies often 

identify 3 groups of responder; named fast/rapid, slow/gradual or 

non/inadequate-responders354,355. Some studies have even characterised 5 groups 

established on baseline DAS356. However, the R group from our cohort were not 

split into fast or poor responders. Most studies identify the majority (82.6%) of 

patients to be in one of the rapid or gradual responder categories, with only a 

small proportion of patients classed as non-responders (3.3%). In the SERA 

cohort, a similar proportion of patients are R and NR, with a small proportion of 

patients classed as IR. The difference with the SERA cohort, and the patients 

investigated, is the absence of biologic treatment during the 12 months 

explored. The study by Siemons et al355 followed a treat-to-target strategy that 

included the introduction of anti-TNFα biologic, adalimumab, at Week 24, and 

etanercept at Week 48, which would most likely contribute to the increased 

good responder rates. However, one observational cohort study, with patients 

commencing MTX treatment for the first time found non-response rates at 6 

months to be 43%99. Due to the ‘extreme’ responders being chosen for the array, 
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all 6 in the R group could be considered fast responders. The most extreme 

trajectories were chosen as best as possible, however, sample availability from 

the SERA biobank did impact the choice of patients. It was desirable to have all 

patients in each group with as similar a trajectory as possible, to reduce 

confounding factors in the analysis, and this was achieved with R and NR groups. 

Unfortunately, the IR group had different trajectories, with some variation in 

disease activity at all time points. Specifically, there was a combination of high 

and moderate, remission and low, and high and moderate disease activity at 

baseline, 6m and 12m, respectively. Subgroup analysis of the IR trajectories was 

out with the scope of this work, however, it would be of interest to stratify this 

group alone to reveal if differences in disease activity were reflected by 

underlying 3D chromatin structures.  

 

Analysis of baseline demographic and clinical characteristics showed all groups 

were comparable at baseline (Table 5.1). Autoantibody presence was also 

comparable between groups. One of the clearer indications of which trajectory a 

patient would follow was clinical scores at baseline, with NR having the highest 

CDAI and DAS28 CRP at this time point. These findings have been widely 

described in other RA studies357 358 359 with some studies isolating individual joint 

scores as predictors of poorer response360,361. Other studies exploring baseline 

predictors to MTX have indicated female gender and current smoker status as 

associated with a decreased likelihood of achieving a EULAR response after 4 

months362. Moreover, other studies have shown baseline depression and anxiety 

scores to have a negative impact on response to DMARD therapy363. This wasn’t a 

factor that was explored in this work, but would be useful to consider. The only 

current smokers in our array cohort were in the IR group, who all achieved good 

response at 6m. However, with only 6 patients, the effect may not be obvious 

and not all 6 were treated with monotherapy MTX. Interestingly, IR were the 

group with the lowest CDAI and DAS28 CRP at baseline. DAS28 ESR was not 

documented based on values needed to accurately calculate the score missing 

from several patients.  

 

It was also of importance to record the treatment trajectory of each patient as a 

consideration of any inter-endotype differences (Figure 5.2). Understandably, 

most R were treated on monotherapy MTX throughout the 12 months. The 
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differing treatment trajectories could be considered a limitation to this work, as 

it introduces variability in the data. However, it is unrealistic for a NR or IR to 

stay on a drug or combination of drugs that isn’t having a clinically meaningful 

improvement. Of the patients changing drug in the 12m period, there was 

considerable variation in the treatment regimen between patients, which is 

reflective of real-world disease management364. Surprisingly, 3 NR remained on 

monotherapy MTX despite showing no clinical response. On further investigation, 

all patients that remained on a therapy without showing a clinical response were 

found to be enrolled at different study sites, therefore that is unlikely to explain 

the reason for remaining on the drug given at baseline. There are a number of 

other reasons a patient may have had to remain on a given drug, including 

avoidance of exacerbating other conditions, such as cardiovascular disease or 

liver disease365. Moreover, studies have varying conclusions on the best way to 

approach treatment with the 3 csDMARDs, such as the parallel use117 and the 

step-up approach366. Furthermore, the patient perspective should be considered. 

One qualitative study analysed the reasons for patient refusal of DMARDs in 

RA367. Some reservations were due to dangers of medications, disappointment 

with other treatments and denial of disease. Fraenkel et al have demonstrated 

that these feelings can be especially prominent when patients have highly active 

disease368. Even for the small number of patients in our study, trying to fully 

understand the reasons behind treatment assignment could be a complex 

analysis and was out with the scope of the aims of this chapter.  

 

The patients were chosen, and the microarrays run at OBD. Subsequently, the 

first step of analysis was to assess the quality of the data (Figure 5.3). Recording 

the red-green densities of arrays confirmed no outliers were present and that 

Loess normalisation was successful. Moreover, these steps helped to ensure 

information was preserved and no variations in the data were wrongly 

inflated369. Another important QC check was to assess the slide distribution; this 

was done by the generation a PCA plot with the slides labelled. The issue of 

batch effects is widely recognised in microarray studies, especially with human 

samples370. Strategically, patients with the same response trajectory and 

samples from the same time point were not grouped together on the same slide 

to reduce the chance of a batch effect associated with a particular group of 

samples. The PCA plot showed that slides did not cluster together, which was 
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expected. This provided assurance that measures taken to reduce batch effects 

were successful and provided confidence for further data analysis.   

 

Top level analysis of each group, prior to linear modelling revealed some 

grouping based on endotype through PCA plots (Figure 5.4). The results 

suggested that the largest differences between disease groups was at baseline 

and the epigenome would gradually lose stratification ability at subsequent time 

points. The PCA plots also suggested most variance in the dataset came from the 

R group. Of note, PCA visualisation were ultimately an approximation of the data 

distribution and more in-depth analysis was required. 

 

The Limma programme was carried forward and a linear model implemented to 

find contrasts between responder groups, as well as between RA and pooled HC 

(Table 5.2). Importantly, this approach has been used successfully in many 

studies including the MTX CCS that formed the basis for this work and provides a 

flexible platform to analyse experiments with multiple parameters219,371. This 

analysis produced thousands of differentiating loops between groups at all time 

points. The data suggested that there more differences between RA and HC than 

between different RA responder groups, which is not surprising. However, there 

were differences between each pair of endotype group at each time point, 

alluding to the existence of epigenetic endotypes. Further, data suggests the 

biggest difference in the structural epigenome between disease and pooled 

healthy exists at 6m followed by 12m. This is in contrast to the PCA results, 

emphasising the importance of those plots as a guide only.  

 

On reflection of this data and the total number of significant loops, I considered 

that the Limma model was not stringent enough to reveal truly statistically 

significant and biologically relevant stratifying loops. Furthermore, in the 

interests of utilising the data to integrate the underlying biology of all groups, it 

would be useful to begin work with a smaller list of loops to streamline the 

analysis process and find meaningful results. The Limma method of analysis is 

still of importance and produced results which lead to the MTX CCS findings in 

previous work. However, the microarray for this endotype work had a more 

complex design, and therefore it was plausible that an alternative, more 

stringent method was needed. Based on the data available, analysis focused on 
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the differences between each disease group and the pooled HC. Analysing these 

comparisons meant that the disease relevant loops, with removal of any loops 

possibly important in a healthy state would maximise disease relevant 

information.  

 

The analysis method chosen was RankProd 2.0, a Bioconductor package used to 

find differentially expressed molecular profiles. RankProd has several 

advantages which made it an appropriate method for this work, in particular the 

ability to analyse data with a small sample size and sample heterogeneity, which 

is of particular relevance in this study372. These features have been effectively 

demonstrated using a wide variety of sample types, from plants and mouse 

models, to human acute leukaemia samples373.  

 

A similar table to that produced from the Limma model was produced with the 

RankProd results (Table 5.3). As previously discussed, the disease loops were of 

most interest based on the aim of using stratifying loops to understand 

underlying pathogenesis. As such, the number of loops able to stratify disease 

and pooled HC in each endotype group at each time point were quantified. 

Clearly, the RankProd analysis was more stringent and reduced the number of 

stratifying loops considerably, with the highest number of stratifying loops being 

4765 in the NR 6m group and the lowest number of 384 loops in R at baseline. In 

contrast to the global level analysis that suggested the most difference between 

endotype groups was at baseline, this RankProd analysis suggested that the 

biggest difference between groups is present at 6m, which is line with the 

Limma analysis. While the analysis approaches differ, this provides an internal 

validation of the results up to this point. This data highlighting the 6m time 

point alludes to the influence of treatment on the 3D epigenome. Based on the 

number of significant loops, HC appeared most different from NR at baseline, R 

at 6m and IR at 12m. While these results showed that disease and pooled HC are 

epigenetically different throughout the first 12m of treatment, the results also 

revealed the existence of endotypes, as different number of stratifying loops 

between disease and HC exist at each time point, highlighting that some loops 

must have unique statistical significance in each group. As reducing the number 

of loops to analyse was considered beneficial, it was positive that analysis using 
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the RankProd method also reduced the number of loops to investigate for 

biological inference and would streamline the analysis process going forward.  

 

The approach to understanding the biological relevance of the loops found to be 

significant through the RankProd approach was to look at each endotype group 

separately in the first instance. It is important to note that each loop may not 

necessarily be present at each time point in each group, but more likely to be 

compared to HC. And as explored in Chapter 4, the presence of a loop does not 

mean that expression of a gene is increased, a loop may be inhibitory. Yet, 

understanding the pathways for which the genes in proximity to statistically 

significant loops exist is important. For all endotype groups, a Venn diagram was 

generated to show the number of loops that could stratify disease and HC at 

each time point (Figure 5.5, Figure 5.7, Figure 5.9). The Venn diagram allowed 

visualisation of the loops that stayed stable throughout the 12 months of 

csDMARD treatment and also revealed the loops that were unique to a particular 

time point. To focus the analysis, the loops in the centre of the Venn diagram, 

i.e. the most ‘stable’ loops were used for gene enrichment analysis. The closest 

3 genes to each loop were used as an input for this analysis. This approach 

revealed that many of the same pathways were enriched in all endotype groups. 

However, each endotype group had some unique pathways enriched, further 

strengthening the idea that endotypes exist and pathogenesis may be different 

in each group. The overlap of significant pathways between endotypes is 

because we took the loops that were stable over 12 months in each group, but 

not unique to that endotype. Of note, common to all endotype groups was 

enrichment of ‘phagosome’, ‘TCR signalling’, ‘translocation of zap70 to 

immunological synapse’, ‘rheumatoid arthritis’, ‘interferon gamma signalling’ 

and ‘MHC class II antigen presentation’ pathways. These results are not 

surprising, as these pathways are known to be involved in RA pathogenesis.  

 

Some unique pathways of interest to each group were ‘haematopoietic cell 

lineage’ in R, ‘CLEC7A and glucagon signalling’ pathway in NR and ‘HIF 

repressors’ and ‘cell adhesion molecules’ in IR. CLEC7a, or Dectin-1 as it’s 

otherwise known, has been shown to have increased expression in RA synovial 

tissues, potentially contributing to disease severity374. The enrichment of this 

pathway in NR suggests this pathway could be stopping the ability to respond to 
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treatment. Glucagon signalling in RA has been mostly explored in fibroblast-like 

synoviocytes, demonstrating that expression of glycogen metabolites can 

contribute to chronic inflammation375. Our understanding of this in PBMCs has 

yet to be fully explored. Again, this data implies enhanced inflammation could 

be a contributing factor to the non-response endotype. HIF is a transcription 

factor associated the hypoxic environment in RA joints. Interestingly, HIF 

repressors are known to facilitate repression through chromatin remodelling376. 

As this is a pathway we’ve found in the IR group, it alludes to an attempt of 

regulation in the underlying cellular biology.  

 

It is intriguing that in all endotype groups, many of the pathways that are 

enriched are involved in metabolism. In recent years, immunometabolism in RA 

has gained increased interest377. Many metabolic checkpoints are now being 

considered as therapeutic targets378.  

 

Further to the pathway enrichment analysis, as with the approach in Chapter 4, 

we were interested to drill down on some loops and observe the 

epigenetic/genomic environment around these loops to begin to understand the 

possible consequence of loop formation (Figure 5.6, Figure 5.8, Figure 5.10). The 

EpiSwitchTM data portal platform facilitated such an investigation. To narrow 

down on loops we wanted to focus on, we used a network analysis approach to 

help determine some of the central genes involved in the pathways. Cytoscape 

software allowed central nodes to be identified, and this was used as a way of 

finding genes involved in many of the pathways enriched for each group. In 

contrast to the GeneAnalytics analysis, which showed many pathways were the 

same between endotype groups, network analysis produced a more unique 

dataset. Only PPP2CA and WDR12 were common to all endotype groups. PPPC2A 

has been mainly implicated in systemic lupus erythematosus379,380. On the other 

hand, WDR12 polymorphisms have been implicated in cardiovascular events in 

RA patients381.  

 

The top genes unique to each group were BRCA1, TLR4, HLA-DBR1, associated 

with R, NR, IR, respectively. BRCA1 is a tumour suppressor and a mutation in 

BRCA1 is widely recognised as a risk factor for breast cancer, specifically a 

lifetime risk of 80%. Monitoring of this mutation could be considered precision 



	 272	

medicine in the oncology field382 383. However, it’s role in RA has not been 

extensively explored. One study has shown miR146a binds to the same site as the 

3’ UTR in the BRCA1 gene and subsequently down-regulated the gene. 

Interestingly, mir146a has been shown to be differentially expressed in 

inflammatory disease, including RA384. As such, it is being considered as a 

potential new therapeutic target. Moreover, similar therapies are being 

considered to treat cancer and inflammatory disease, namely PARP inhibitors385. 

The ability to inhibit DNA repair has made these drugs considered for both 

indications. Based on these findings, this gene being significant in the R group in 

our study may suggest an enhanced inflammatory response mediated by BRCA1 

may contribute to good response to therapy.  

 

The significance of TLR4 in the NR group is interesting. Activation of TLR4 is 

known to exacerbate RA through activation of serval components in the innate 

immune system386. Furthermore, blockade of TLR4 has been investigated as a 

drug target in RA387. Moreover, the endogenous TLR4 receptor agonist, MRP8/14 

was shown to be a promising candidate for the prediction of biologic response in 

RA, with baseline serum levels correlated with HDA388. After defining the central 

gene, this was taken into EpiSwitchTM data portal to visualise other genetic and 

epigenetic features surrounding the loop. Some loops were revealed to be part 

of a ‘hub’ with multiple loops in the same region. Furthermore, some loop 

anchor points overlapped with H3K27ac marks indicating potential for enhanced 

gene transcription activity. Interestingly, disease associated SNPs, did not 

overlap with anchor points, although they were in close proximity to them. 

Evidence has suggested that the closer in proximity epigenetic elements are to 

each other, the more likely they will be to impact each other and influence gene 

regulation389. Further work could be conducted on this data to quantify the 

number of bases each anchor site is from a SNP.  

 

Both R and NR groups had considerably more loops at the 6m time point, 

reflecting the results presented in Table 5.3. However, the IR group had most 

loops at the 12m time point and most loops were shared between the 6m and 

12m time points. Moreover, only 4 loops were present at baseline alone, and 

only 9 common to baseline and 6m. These results are of great interest and allude 

to a major change in the epigenome after 6m. This is reasonable considering the 



	 273	

change from remission or LDA to MDA or HDA by 12m. This type of change has 

been mostly explored in the oncology field. Global changes to chromosome 

conformation have been shown to contribute to development of leukaemia, and 

thus a target for therapy390. However, there is evidence for RA drug therapies 

manipulating the epigenome, such as the effect of etanercept and adalimumab 

on multiple histones at the CCL2 promotor site391. Moreover, a recent study has 

shown inhibition of histone enzymes could reduce cytokine production and 

osteoclastogenesis in vitro392. These data also allude to the effect of DMARD 

therapy on the IR group particularly. Furthermore, this indicates the importance 

of this group of significant loops in understanding loss of response in RA, as well 

as flare. A lot remains to be understood about RA flare, and like RA itself, it is a 

multifactorial and heterogeneous process. One of the most interesting loops 

from the group in IR was HLA-DBR1. This gene has been largely explored in RA 

but not in the context of flare or loss of response. The effect of HLA-DRB1 on 

susceptibility to RA has been widely described. It has been shown to contribute 

to radiographic progression and treatment response16. The HLA-DRB1*13 allele 

has been shown to have protective effects in some stages of RA in ACPA positive 

patients393.  

 

Through this analysis, it was discovered that 183 loops were common to all 3 

endotypes, at all 3 time points, creating a ‘stable’ RA signature (Figure 5.11). 

Pathways of interest enriched in this group were osteoclast differentiation, 

negative regulation of MAPK pathway and innate immune system. These 

pathways are well known to be involved in RA pathogenesis, with 

osteoclastogenesis showing evidence of mediation though the MAPK pathway394. 

Enrichment of these pathways indicates that these processes are likely driving 

pathogenesis. Pathways that have been explored less in RA and have appeared in 

this group were nitrogen metabolism and thyroxine production. A recent study 

investigated the role of the thyroid hormone network on RA synovial 

fibroblasts395. They found evidence to suggest TNFα may have a role in the 

degradation of thyroid hormones in the synovial environment. Studies of 

nitrogen metabolism date back decades and did not appear to have an effect of 

disease activity396. 
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In the RA associated genes, the most connected node was PSMC6. This gene is an 

ATPase subunit and inhibition of this has been recently explored in colon cancer 
397. This is a gene previously has also been shown to be associated with juvenile 

idiopathic arthritis398 and asthma. Upon visualisation, only 2 loops were in the 

region of PSMC6. Loops can be seen in proximity to GPR137C, ERO1A and 

GNPNAT1. Like loops in the different endotypes, anchor point overlap with 

H3K27ac marks observed in with T cells, B cells and NK cells. Similar to endotype 

loops, there was no direct SNP overlap with RA associated genes. ERO1A has 

been reported to have biomarker potential in pancreatic cancer. Data mined 

from microarrays suggested that expression of this gene was negatively 

correlated with poor prognosis. GPR137C encodes a G-protein coupled receptor, 

the downregulation of which has been implicated in several cancers399. Studies 

on these 3 genes in RA are limited, thus further work may be justified to 

understand their context in RA. The lack of studies in the literature which 

implicate PSMC6 in RA, may indicate a novel driver of disease has been found.  

 

Following on from this analysis, the Searchlight platform was utilised compare 

findings and explore if other loops were found to be significant (Figure 5.13 – 

Figure 5.20). While RankProd and Searchlight used different angles to the 

analysis, with RankProd focusing on healthy and disease comparisons, and 

Searchlight comparing pairs of endotypes at all endpoints, they had the same 

aim of understanding the 3D epigenome underlying disease and differences 

between groups of patients. The RankProd and Searchlight data did show some 

broad similarities, but not at the individual loop level. Both analysis approaches 

identified 6m as the time point with the most significant stratifying loops. 

However, the loops found through each method map to different genes, which 

means that the results could be an artefact and the true epigenetic differences 

between endotypes remain unknown. Moreover, for all responder contrasts, 

Searchlight analysis did not identify significant differences at 12 months. This 

may suggest that results from the 12m time point using the RankProd pipeline 

should be interpreted with great caution.  

 

There was some validation that the RankProd and Searchlight data were 

capturing comparable answers when the genes associated with most significant 

loops found in Searchlight analysis, were entered into the EpiSwitchTM data 
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portal and enrichment of loops were found (Figure 5.21). The 3 genes explored 

could be described as ‘hubs’ where multiple loops are present. This alludes to a 

high level of regulation of these genes. Regulatory hubs have been described in 

the literature, where they have also been referred to as ‘cliques’ or frequently 

interacting regions (FIRES)400 401,402. However, it is widely acknowledged that 

defining the role of these hubs in disease mechanisms remains a challenge, and 

additional studies are needed.  

 

DOCK9 was clearly significantly different between endotype groups, and on 

inspection in the data portal, it appears this region is a hub of regulation with 

over 10 loops, and multiple other anchor points present in this region. These 

data suggest this is a highly regulated and important gene in RA. It has been 

previously identified as having increased expression in mouse models of RA403. 

Moreover, a SNP within the DOCK9 locus was shown to be significantly associated 

with RA in a North Indian cohort of RA patients404. Interestingly, compared with 

the other 2 genes visualised in this way, this region has no presence of SNPs. The 

other 2 genes investigated revealed 3 loops in the region, indicating a similar, 

yet slightly less of a regulatory region. In contrast to the DOCK9 region, these 

loops were in the region of SNPs. This visualisation of data provided a validation 

of the importance of Searchlight findings by identifying regulatory hubs which 

may impact pathogenesis. Overall, this demonstrates the valuable resource of 

the 3D epigenome and EpiSwitchTM platform to find novel genes which may drive 

disease or subtypes of disease. 

 

Understanding the loop dynamics over the 12 months was of great interest to not 

only find candidates for a stable biomarker for predicting patient endotype, but 

also to understand loops that lose stratification potential at certain time points, 

which may reveal the influence of csDMARDs on the 3D epigenome (Figure 2.22 – 

Figure 2.24). Recent research has acknowledged determining stability of 

biomarkers in complex disease a challenge and has attempted the development 

of 2 assays to measure this405. We took the decision to use the QT clustering 

algorithm for our analysis. This was considered advantageous based on the 

quality control thresholds required to identify statistically significant findings, 

and the lack of need to identify the number of clusters prior to analysis. All 3 

comparisons revealed similar clustering dynamics. All groups had at least 1 
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cluster with loops that were significant at stratifying disease and HC at all time 

points. This holds potential to take forward for further analysis for a potential 

biomarker. This clustering approach has been used previously to identify miRNA 

combinatorial biomarkers using breast cancer cell lines406. The algorithm has 

also demonstrated it’s precision in the application of mass spectrometry407. As 

other data has shown, R and NR have similar proportions of stable and dynamic 

loops. IR was shown to have alternative dynamics, and this can also be seen with 

the clustering. Both R and NR had 9 clusters, and IR had only 8. Interestingly, IR 

had the largest number of loops that gain significance at 6m, shown in cluster 3 

in the IR group. This data makes sense based on other findings that most loops 

are significant at 6m, with many loops significant and common to 6m and 12m 

time points. 

 

There are several limitations that need to be considered with work in this 

chapter. While significant work and proprietary information was used to design 

an array that would capture meaningful data for RA; by designing the array, 

there was the chance that significantly stratifying loops could be missed. 

Another limitation was the lack of analysis into the loops significant in the HC. 

While disease loops were of most interest, understanding the loops that had 

stratification potential in pooled HC and did not have that ability in disease may 

indicate relevant RA pathogenesis information. Ultimately, this chapter was a 

discovery process and exploratory in nature, and many further exploratory and 

validation steps are required, some of which have already been discussed above. 

 

There is a considerable amount of future investigation that could be carried 

forward from this work. Primarily, biomarker candidates should be taken 

forward for analysis. In the first instance this involves identifying a number of 

loops for PCR analysis from which loops can be statistically refined for a 

predictive endotype CCS. For further validation steps, multiple other samples 

would have to be sourced. In this instance, baseline samples alone would be 

sufficient, which may be available from the SERA cohort. Other cohorts could be 

sourced for this work, such as the TACERA cohort, used in the attempted 

validation the MTX CCS explored in Chapter 3. Furthermore, visualisation of 

epigenetic marks using EpiSwitchTM data portal was limited by the data that was 

included in the system, meaning there could, and very most likely would be 
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other epigenetic marks of interest that would shed more light on the potential 

consequences of loop formation, and association with each endotype. It should 

be noted, that since the generation of the data for this chapter, the data portal 

has been updated with more information, therefore offering the opportunity to 

explore our data further.  

 

Recently published work has built on other studies suggesting that autoantibody 

positive and autoantibody negative RA are 2 distinct diseases and stratifying by 

presence of autoantibodies would help considerably for precision treatment408. 

Overall, around 50% of patients in each endotype group were autoantibody 

positive. It would therefore make sense to pre-stratify patients that way and 

work through the analysis pipeline to find if antibody presence effects 

stratification by chromosomal loops. One group has produced a bioinformatics 

framework to profile biomarkers in ACPA positive and negative patients409. This 

group revealed that differentially methylated regions were found between 

patients with opposite APCA status, as well as common differentially methylated 

regions between the patient groups. This mix of similarities and differences in 

the epigenome is similar to the results produced in this study and enforces the 

key the epigenome may play in ascertaining the underlying pathogenesis in RA. 

Their work was optimised for small samples of twins, so it may be applicable to 

small samples of RA patients, albeit not twins. This methodology also has the 

advantage of a deconvolution to account for the differences in epigenome 

between cell types, primarily T cells, NK cells and neutrophils. It would be worth 

further exploration for this work. 

 

Furthermore, there is extensive other analyses that could be conducted for the 

data gathered. Each endotype group and time point revealed a long list of 

pathways and genes that may be relevant in disease. It would be interesting to 

explore more in depth the genes not already known to be associated with RA 

pathogenesis. Moreover, while the clusters of loops that retain significance over 

12 months is important for biomarker discover, studying the loops that lose 

significance could reveal more about treatment influence on the epigenome. It 

would also be extremely valuable to determine transcription factor binding site 

locations in relation to the anchor points, and ultimately characterise the 
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transcription factors that bind there, to further understand the gene regulatory 

process in RA patients.  
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5.4 Conclusion 
 

In conclusion, this chapter clearly demonstrates the complexity of RA 

heterogeneity and suggests that 3D epigenetic endotypes exist in the early RA 

population. Interrogation of the biological relevance of stratifying loops found 

known contributors to RA pathogenesis were more likely driving disease in some 

endotypes than others. Moreover, this analysis revealed genes that may be 

driving different endotypes, and RA as a whole. The data presented here 

provides a great basis for development of a CCS biomarker that could predict 

endotype at baseline and provides a chance to understand the complex 

pathogenesis further.  
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Chapter 6 General Discussion 
 
6.1 Discussion 
 

Overall, this thesis sought to investigate the stratification potential of 

chromosome conformation signatures (CCS) in rheumatoid arthritis (RA). In doing 

so, this work also aimed to use CCS to investigate the underlying pathogenesis of 

the disease. Therefore, this thesis aimed to strike a balance between clinically 

important experiments for the implementation of a biomarker and exploratory 

experiments that may allude to novel regulatory pathways of disease. In terms 

of the biomarker discovery pipeline, Chapter 3 demonstrated the validation 

stage of the process, Chapter 4, some exploration and Chapter 5 illustrated the 

discovery stage410,411.  

 

The first aim of the work in this thesis was to validate the methotrexate (MTX) 

CCS biomarker through bioinformatics approaches and in an independent clinical 

cohort. Results showed that in my hands, the biomarker could be validated 

computationally and replicated the high sensitivity and specificity scores that 

would be desirable for a biomarker412. Unfortunately, data gathered from testing 

the MTX CCS in an independent cohort of early RA patients suggests that it was 

not validated, and further exploratory work should be done. Whilst 

disappointing, it is not entirely surprising that it was not validated in the first 

SERA-independent cohort. There is the theory that differences in protocol could 

have contributed to the differences, however, until further work is done this 

cannot be concluded. Moreover, throughout this thesis, it has been 

demonstrated on a number of occasions that more precision medicine studies 

have been conducted in the oncology field than other fields. Yet, despite the 

concentrated work in this area, few biomarkers have made it into the clinic413 
414. The complex biomarker discovery process has also been reported for acute 

liver injury415 and heart failure416,417. These studies exemplify the complexity of 

biomarker discovery and highlight the need for future work to ascertain the 

clinical potential for the MTX CCS.  

 

Complexity of ascertaining the stratification ability of the MTX CCS was further 

demonstrated when testing in a cohort treated with several conventional 
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synthetic disease modifying anti-rheumatic drugs (csDMARDs). The data have 

shown that the 5-loop MTX CCS is specific for MTX alone. Our findings suggest 

that to achieve a clinically significant biomarker for all csDMARDs, a new 

biomarker will have to be found, likely by using a systematic approach similar to 

the discovery process of the MTX CCS. On reflection, as a highly systematic 

approach was employed to find the MTX CCS, it is very plausible that new CCS 

would need be developed for other therapies219. This has been demonstrated in 

prostate cancer, where dynamic chromatin conformation resulted in over 

expression of UBE2C, which could be targeted by several drugs including 

carvacrol418 and Ipatasertib419. However, in the same disease, it was clear that 

other dysregulated regions within the genome had to be rectified with 

alternative therapies, such as cisplatin and niclosamide420,421. Ultimately, I 

believe that with a combination of the data from Carini et al219, and the new 

data gathered here, a more specific, informative biomarker may be found. This 

integrated approach to biomarker discovery has been successfully demonstrated 

by Spiliopoulou et al422.  

 

Whilst understanding how well the MTX CCS could predict response to baseline 

csDMARDs, it was of interest to understand the relationship between the MTX 

CCS and underlying cellular biology. Based on evidence from Walsh et al209 that 

there was a functional difference between responder (R) and (NR) loci, we 

hypothesized that the regulatory environment surrounding these loci may 

differ209. The exploratory approach in Chapter 4 revealed some evidence that 

the regulatory environment within and surrounding the loci of R and NR loops 

differed at the epigenetic level. Specifically, across cell types, loci where loops 

form in NR suggested an inhibitory environment, based on the presence of 

histone modifications that are associated with repression of gene expression. 

Conversely, at loci of loops that form in R, quantification of epigenetic marks 

suggested an environment that could enhance gene expression (Figure 6.1B). 

Evidence of the ability of molecular signatures to differentiate R and NR to RA 

therapy has been demonstrated in a recent study by Tao et al. They showed that 

transcription signatures in peripheral blood monocular cells (PBMCs) differed 

between R and NR to two biologic therapies, Adalimumab and Etanercept423. The 

caveat to our work was that it largely came from healthy samples, and it has yet 
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to be validated by other datasets, either existing, or yet to be created through 

novel wet-lab experiments.  

 

Through observation of disease activity from the SERA cohort, various response 

trajectories were identified, and we hypothesized that 3D epigenetic endotypes 

exist in the early RA population (Figure 6.1A). We employed a systematic 

approach using a novel, custom microarray to ascertain if 3D epigenetic 

endotypes existed, and to identify candidates for a new CCS. The data shows 

that we were successful in identifying 3D epigenetic endotypes in the early RA 

population and we have statistically significant loops that can be taken forward 

for development of a new CCS. Precision medicine remains highly desirable in 

RA, with patients showing non-response to not only csDMARDs but also biologic 

(b)DMARDs. Moreover, a recent study concluded that there is a lack robust 

evidence on how to pharmacologically manage difficult-to-treat RA patients424. It 

could be speculated that many RA patients, if given the correct csDMARD at the 

start of treatment, would be subject to less joint damage, and therefore maybe 

more susceptible to responding to bDMARDs in the future. This exemplifies the 

importance of identifying the endotype of each patient as early as possible to 

facilitate appropriate clinical intervention. 

 

An interesting finding from this data was the ‘stable’ RA loop profile that was 

found through our discovery microarray (Figure 6.1C). This suggested that a 

baseline level of dysregulation exists in all RA patients, regardless of 3D 

endotype. A recent study suggested that a baseline dysregulation of B cells 

exists, which may contribute to autoimmunity in RA312. There is limited data on 

B cells throughout this thesis, but data gathered from a PCHiC dataset, shown in 

Chapter 4, suggested there were significant promotor interactions at the IFNAR1 

loop site in B cells, which is suggestive of enhanced gene expression with loop 

formation in R. There was further evidence to suggest that histone marks 

associated with enhanced gene expression activity are present around other loci 

that were statistically significant in the ‘RA’ group. Our gene enrichment 

analysis suggested that genes in proximity to statistically significant EpiSwichTM 

loops were associated with regulation of the cytoplasm, nucleus and cytosol. As 

the transcription of mRNA into proteins through the nucleus to the cytoplasm is 

crucial for normal gene regulation and physiological function, it may suggest 
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that this is a contributor to the dysregulation in RA patients425. Interestingly, 

nucelo-cytoplasmic transport has recently been suggested to have a role in 

autoimmune neurodegenerative diseases426. Moreover, one of the most 

significant genes found through our analysis was PSMC6, a gene which encodes 

part of the ATPase subunit and is involved in regulation of the proteasome427. As 

such, regulation of this gene has implications on antigen presentation and the 

immune response. Notably, this is a gene that has had reported involvement in 

juvenile idiopathic arthritis (JIA), and asthma in Asian populations428,429. These 

findings suggest further investigation into this gene in RA cohorts is warranted.  

 

It should also be considered that insight from other autoimmune diseases could 

be combined with our findings to provide a more informed picture of 

pathogenesis. Our data suggest this is plausible as statically significant 

stratifying loops were found in regions known to be implicated in other 

autoimmune diseases such as systematic lupus erythematosus (SLE)379,380. This is 

of research interest to many, evidenced by the formation of The Immune-

Mediated Inflammatory Disease Biobanks in the UK (IMID-Bio-UK). This aims to 

bring together biobanks of clinical information and samples from patients with a 

host of autoimmune diseases including RA and SLE into one cohort. It is thought 

that shared pathology can be found through bringing this cohort together.  

 

The strengths of the work detailed in Chapter 5 include the use of longitudinal 

samples430,431,432. Firstly, observing SERA patients past their 6-month time point 

revealed the initial responder (IR) endotype. Based on their disease activity, this 

group appear like the R group at 6 months. Moreover, having epigenetic data 

from 3 time points allowed the possibility of understanding the changing 

pathogenesis over time, and the ability to filter CCS candidates for the most 

statistically significant through time. Furthermore, this study used more patient 

samples per condition than in the study by Carini et al219. Whilst the sensitivity 

and specificity was not replicated with our analysis of the MTX CCS in an 

independent cohort, the work by Carini et al219, the work is still promising. This 

provides confidence that with further work, an even more sensitive and specific 

biomarker will be found through our endotype data.  
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Another strength of this work as a whole is the use of peripheral blood, which is 

a major advantage for future clinical implementation. Recently, there has been 

a focus to transition to the synovium in search for predictive RA biomarkers433. 

However, this often involves using a needle biopsy to retrieve the synovial 

sample. Whilst these biomarkers may show promise, a biomarker found from the 

blood would rely on a less invasive procedure434,435.  

 

 

Figure 6.1 Suggested 3D Epigenetic Regulatory Differences and Similarities 

between RA Endotypes 

Schematic representation of early RA 3D endotypes and the possible functional 

differences and similarities between them, collated from findings in Chapter 4 

and Chapter 5. A) 3 response trajectories (R, NR, IR) from SERA cohort, 

suggestive of different endotypes. B) Epigenetic environment surround MTX CCS 

loci suggests possibility of increased gene expression in loci of R associated 

loops, and suppression of gene expression in NR associated loops. C) Custom 

microarray and analysis with Rankprod revealed 183 shared statistically 

significant loops between all endotypes. Gene enrichment analysis suggested 

these loops were in proximity to genes that were part of the nucleus, cytosol 

and cytoplasm pathways 
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6.2 Limitations 
 
The work throughout this thesis has demonstrated the challenges of researching 

the 3D epigenome; this was most obvious in Chapter 3. The attempt to transition 

to a new platform to measure 3C loops was complex and involved many 

optimisation processes, which impacted on time. However, after optimisation, I 

was confident with the robust nature of the protocols.  

 

PMBC heterogeneity is another limitation that has been discussed in all chapters. 

Due to the nature of sample collection, splitting cells was not possible. This is a 

well-recognised limitation, particularly when investigating the epigenome436. 

Studies in the RA field are now taking this into consideration in the sample 

collection process and separating cells into their subtypes before 

cryopreservation to facilitate more informative 3D epigenome analysis. 

Moreover, software is being developed to take into account this 

heterogeneity437. In contrast Liu et al and Glossop et al have argued that a 

mixed cell population would provide an overall accurate picture of the RA 

epigenetic profile438,439.  

 
Sample sizes for different parts of this work have been recognised as a 

limitation, particularly when assessing the stratification ability of the CCS as a 

pan-DMARD predictor. Having such a small sample size, with many patients on 

combination of csDMARDs, the predictive ability of HCQ and SSZ alone could not 

be determined.  

 

6.3 Future Directions 
 

The data described in this thesis, particularly the findings from Chapter 5, 

provide an exciting basis for the development of a baseline CCS that can predict 

endotype at baseline of RA treatment. Using the data discussed in Chapter 3 and 

Chapter 5, this can inform future collaborative studies with OBD to refine the 

CCS for RA.  

 

It would also be useful to consider the use of clinical information in the 

biomarker model. Studies have shown markers of bone metabolism and signalling 

molecules could aid in the prediction of treatment response in RA440,441.  



	 286	

 

Some of the findings from Chapter 4, which revealed different epigenetic 

landscapes in at the sites of R and NR loops, could be tested in vitro using 

appropriate cell lines and subsequently primary RA cells. Interestingly, some 

researchers are now modelling whole cells in-silico442. It is recognised that 

modelling cells in this way requires accurate knowledge of the biology, have 

accurate mathematics and an appropriate simulation platform. However, RA in-

vitro models have been successfully established443. These models have ranged 

from 2D co-cultures and 3D cultures to the less common organ-on-a-chip444,445. 
446. ChIP-Seq is another accessible technique that could hopefully be used to 

replicate our findings. Asadipour et al have used ChIP-Seq successfully to 

demonstrate that that chromatin is accessible in monocytes and lymphocytes. 

Furthermore, ATAC-seq is a technique that has been developed in recent years 

and could complement this work. This is a technique that allows identification of 

open areas of chromatin throughout the genome447. This technique has been 

used to report regulatory landscape in CD4+ T cells448.  

 

As a whole, the clinical application of precision medicine still has a number of 

barriers. One of the substantial barriers is the highly complex technologies and 

methods needed to interrogate the genome and identify the relevant genes 

contributing to drug response, as evidenced through the work in this thesis. To 

overcome this, there has been a rise in the computational methods used to 

interpret this and an increasing number of people with the desired skills188. It 

has been suggested that the burden of cost is not associated with the genomic 

technology itself, but in the interpretation of the data produced and the linking 

of this information with other patient characteristics to make this a relevant 

clinical biomarker. Other challenges include storage of the data that is produced 

from this research, issues with security and ownership of data and the cost to 

the healthcare system 187. Additionally, as previously discussed, the era of 

precision medicine will see a rise in bio-banks that will be essential for 

biomarker studies. This will involve the public being on board with the concept 

and trusting that any samples donated to a bio-bank will be used appropriately. 

 

As alluded to above, this thesis has approached experiments from an exploratory 

and clinically meaningful angle. Going forward, both angles should be 
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considered. Experiments such as HiC and other ‘C’ derivatives could provide a 

wealth of information that could be mined for biologically important findings. 

However, from a clinically implementable biomarker perspective, HiC would not 

be the best method economically. Moreover, 3C has been shown to have 

sufficient specificity and sensitivity, and can be successfully carried out over 48 

hours; it is also financially realistic in a clinical setting. Ultimately, EpiSwitchTM 

CCS continue to demonstrate the applicability across a breadth of therapy areas, 

with a recent study demonstrating its ability in sports and exercise449.  
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6.4 Conclusions 
 
In summation, this work has clearly demonstrated the heterogeneity of RA at the 

clinical and epigenome level, and highlighted that study of the 3D epigenome 

may provide a novel opportunity to provide insight into RA. It has also shown the 

complexity, and at times difficulty in successfully examining the epigenome. 

Taken together, data has shown that using the EpiSwitchTM CCS platform 

provides an integrated view of gene regulation, providing a more informed 

picture than studying epigenetic modifications separately. This thesis has shown 

that RA endotypes exist at the 3D epigenome level and implies that there is 

dysregulation that underpins RA as a whole. Further work is warranted to take 

this data further and identify if a CCS can be developed that has the capacity to 

stratify treatment naive patients at baseline. It is hoped that this work will 

contribute to the more tailored treatment of RA patients in the future.   
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Appendix  
 
Sequences for each loci for qPCR primer design 
 
IL17A 

 
CXCL13
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IL21R 

 

 

IL23 

 

 
 
 
 
 
 
 
 
 
 
  



	 291	

IFNAR1 
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Representative gels from qPCR  

Version A (from IFNAR1 60oC) 

 

Version B (from IL23 62oC) 

 

Version C (From IFNAR1 60oC)  
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Representative Scripts 
 
Limma 
 
library(limma) 
 
targets_RAall <- readTargets("targets_RA.txt") 
#reading the targets to run analysis as single channel 
targets_RAall2 <- readTargets("targets_RA_2.txt") 
 
# find the files to read in and load them with the same order as the targets file.  
files <- unlist(lapply(targets_RAall$FileName, function(x) list.files("./", pattern = 
x, full.names = T))) 
array_data_read <- utils::capture.output(array_data <- 
limma::read.maimages(files, columns = list(G = "gMedianSignal", Gb = 
"gBGMedianSignal", 
                                                                                                  R = 
"rMedianSignal",Rb = "rBGMedianSignal"), 
                                                                            annotation = 
c("ControlType","ProbeName","SystematicName", "PValueLogRatio"), 
                                                                            source = "agilent")) 
 
####################### 1. Remove agilent control probes 
##################### 
# Remove agilent control probes and output the number of probes removed and 
remain in the log file. #### 
rmcnrl <-which(array_data$genes$ControlType == 0) 
agilentcnrl <-which(array_data$genes$ControlType != 0) 
gb <-array_data[rmcnrl,] 
 
 
####################### 2. Remove Saturated probes ##################### 
# Remove probes that have a saturated signal above 65525 #### 
satSignal <- 65525 
 
#Find the index of the Red table that has a signal over the satSignal for every 
file. 
indexR <-unlist(apply(gb$R, 2, function(x) which(x>=satSignal))) 
#Find the index of the Green table that has a signal over the satSignal for every 
file. 
indexG <- unlist(apply(gb$G, 2, function(x) which(x>=satSignal))) 
# Create the union of the two indexes. 
indexRG <- union(indexR, indexG) 
# Keep the elements of the RGList (R or G) that do not have signal values over 
the satSignal 
if (length(indexRG)>0){ 
  gbNoSatNew<-gb[-indexRG,] 
}else{ 
  gbNoSatNew<-gb 
} 
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gb <- gbNoSatNew 
 
####################### 3. Background_correction ####################### 
# Call the backgroundCorrect function of the limma package to background 
correct the expression intensities #### 
rg <- limma::backgroundCorrect(gb, method="normexp", offset=50) 
 
 
####################### 4. Normalise_Within_Arrays 
############################# 
# Call normalizeWithinArrays function of the limma package to normalize the 
expression log-ratios with #### 
# the loess method, so that the log-ratios average to zero within each array. 
#### 
RGq<- limma::normalizeWithinArrays(rg, method="loess") 
 
 
####################### 6.Quality_checks 
####################################### 
#Unlog the M values 
processed_data <- RGq 
unlog_M <- 2^(processed_data$M) 
processed_data$M <- unlog_M   
 
# create the pca plot 
pca <- stats::princomp(stats::na.omit(processed_data$M)) 
 
# export and save the plot in the svg graphics device 
svg("./Slide_PCA.svg") 
plot(pca$loadings[,1],pca$loadings[,2],pch=19,cex=0.5,col=as.factor(targets$Slid
e)) 
text(pca$loadings[,1], pca$loadings[,2], labels=as.factor(targets$Slide), pos=3, 
offset=0.22, cex=0.6) 
title("PCA plot of M values for Slide!") 
dev.off() 
 
#just produce the plot 
 
lab <- as.factor(targets_RAall$Group) 
pcaVar <- round((pca$sdev^2 / sum(pca$sdev^2)),4)*100 
plot(pca$loadings[, 1], pca$loadings[, 2], pch = 19, cex = 0.5, col = lab, 
     xlab=paste0("PC1 (",pcaVar[1],"%)"), ylab = paste0("PC2 (",pcaVar[2],"%)")) 
graphics::text(pca$loadings[, 1], pca$loadings[, 2], labels = lab, pos = 3, offset = 
0.22, cex = 0.7) 
title(paste0("PCA plot of M values for ", title)) 
 
 
####################### 7. Merge Probes section #################### 
 
source("/Users/caitlinduncan/Desktop/PhD docs/DATA/duplicateCalculation.R") 
list_of_matrices <- duplicateCalculation(MAdata = processed_data) 
 
# Export the logMedianMatrix matrix #### 



	 295	

fwrite(list_of_matrices$logMedianMatrix, 
       file = "logMedianMatrix_M_values.txt", 
       sep = "\t", col.names = T,  
       row.names = T, quote = F,  
       eol = "\n", na = "NA", dec = ".") 
 
########################################### 
If single channel option is selected, individual channel processing will follow   
 
# Split data into individual G & R channels #### 
RGt <-limma::RG.MA(RGq) 
split_data_RAall <-(matrix(c(RGt$G,RGt$R),ncol=size <- (length(files)*2))) 
rownames(split_data_RAall)=rownames=RGt$genes$ProbeName 
 
split_data_RAall <-as.data.frame(split_data_RAall) 
colnames(split_data_RAall)=targets_RAall2$Group 
split_data_RAall[,"SystematicName"] <-RGt$genes$SystematicName 
 
list_of_Splitmatrices <- duplicateCalculation(split_data_RAall) 
 
# Export the logMedianMatrix matrix #### 
fwrite(list_of_Splitmatrices$logMedianMatrix, 
       file = "logMedianMatrix_Channel_values.txt", 
       sep = "\t", col.names = T,  
       row.names = T, quote = F,  
       eol = "\n", na = "NA", dec = ".") 
 
####################### 8. Perform the limma Contrasts  
 
# Use the log median data for the analysis  
logMedianMatrix_s <- list_of_Splitmatrices$logMedianMatrix 
 
#create the design of the analysis 
design<-model.matrix(~0+factor(targetsR2$Cy3)) 
colnames(design) <- c("RA", "HC") 
 
#create the contrasts.matrix 
contrast.matrix <- makeContrasts(RA-HC,levels=design) 
 
#Fit linear model for each gene or attribute, based on the array files given 
linear_model<- lmFit(logMedianMatrix_s, design = design) 
 
#Based on the above linear model fit to microarray data, compute estimated 
coefficients and standard errors for a given set of contrasts. 
contrast_model <- contrasts.fit(linear_model,contrast.matrix) 
 
#Given the microarray linear model fit, compute moderated t-statistics,  
#moderated F-statistic, and log-odds of differential expression by empirical 
Bayes moderation  
ebay_model <- eBayes(contrast_model) 
head(coef(ebay_model)) 
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################# 
# OR to add extra filtration you can also do: 
################# 
#1. Filter with p.value<=0.05 (or adj.P.Val) 
contrasts <- contrasts[which(contrasts$P.Value<=0.05),] 
 
 
#2. Set a cutOff of 1.1 and -1.1 by setting the LS column to 1 or -1 respectively 
and remove the probes with in between values! 
contrasts$LS <- ifelse(contrasts$FC_1>=1.1,1,ifelse(contrasts$FC_1<=-1.1,-1,0)) 
Informative <- which(contrasts$LS!=0) 
contrasts <- contrasts[Informative,] 
 
#4. Calculate the absolute Fold change and sort the table by that column (abs). 
contrasts <- contrasts[order(contrasts$FC_1, decreasing = T),] 
 
write.csv (contrasts, file = ".csv") 
 
 
 
 
Bedtools 
 

bedtools closest [OPTIONS] -a <FILE> \ 

                           -b <FILE1, FILE2, ..., FILEN> 

 

bedtools intersect [OPTIONS] -a <FILE> \ 

                             -b <FILE1, FILE2, ..., FILEN> 

 
 
DeepBlue Epigenome  
 
#Install and download necessary packages  
install.packages (“BiocManager”) 
BiocManager∷ install(“DeepBlueR”) 
library(“DeepBlueR”) 
#request desired experimental data  
experiment = deepblue_list_experiments(type="peaks", 
epigenetic_mark="H3K27ac", biosource=c("peripheral blood mononuclear cell", 
project="ENCODE")) 
#retrieve names of experiments 
experiment 
#get data on specified experiments 
query_id=deepblue_select_experiments(experiment_name=c("", 
"")) 
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request_id = deepblue_count_regions(query_id=query_id) 
requested_data = deepblue_download_request_data(request_id=request_id) 
 
#get data on specific experiments, and at the genome region of interest 
query_id = deepblue_select_experiments (experiment_name=c(“” 
 chromosome=“chr6”, start=52161697, end=52172165)  
 
#get the regions the epigenomic mark is in, in a readable format    
request_id = deepblue_get_regions(query_id=query_id, 
output_format="CHROMOSOME,START,END,SIGNAL_VALUE,PEAK,@NAME,@BIOSO
URCE") 
 
regions = deepblue_download_request_data(request_id=request_id) 
 
#list regions 
regions  
 
#export data as bed file, to folder of choice 
deepblue_export_bed(regions, target.directory = 
"/Users/caitlinduncan/Desktop/DeepBlue_Bed_files", file.name =  
"311019_H3K27ac_peripheralbloodmononuclearcell_IL17Aa_hg38”) 
#export data as tab file, to folder of choice 
deepblue_export_tab(regions, target.directory = 
"/Users/caitlinduncan/Desktop/DeepBlue_tab_files", file.name = 
"311019_H3K27ac_peripheralbloodmononuclearcell_IL17Aa_hg38”) 
 
 
Coordinates for DeepBlue: 
 
hg38 
“chr6”, start=52161697, end=52172165 
“chr6”, start=52184632, end= 52187067  
“chr4”, start= 77510412, end= 77512093  
“chr4”, start= 77602625, end= 77605433  
“chr16”, start= 27356311, end= 27357534  
“chr16”, start= 27449257, end= 27451508  
“chr12”, start= 56345719, end= 56347275 
“chr12”, start= 56361069, end= 56361825  
“chr21”, start= 33324378, end= 33325411  
“chr21”, start= 33373955, end= 33376515 
 
hg19 
“chr6”, start=52026495, end= 52036963 
“chr6”, start= 52049430, end= 52051865  
“chr4”, start= 78431566, end= 78433247  
“chr4”, start= 78523779, end= 78526587  
“chr16”, start= 27367632, end= 27368855  
“chr16”, start= 27460578, end= 27462829  
“chr12”, start= 56739503, end= 56741059 
“chr12”, start= 56754853, end= 56755609  
“chr21”, start=34696683, end= 34697716  
“chr21”, start=34746261, end= 34748821 
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hg19 – 500kb upstream 
“chr6”, start= 51526495, end= 52026495 
 “chr4”, start= 77931566, end=78431566 
 “chr16”, start= 26867632, end= 27367632 
 “chr12”, start=56239503, end= 56739503 
 “chr21”, start= 34196683, end= 34696683 
 
 
hg19 – 500kb downstream 
 “chr6”, start= 52051865, end= 52551865  
 “chr4”, start= 78526587, end= 79026587 
 “chr16”, start= 27462829, end= 27962829 
 “chr12”, start= 56755609, end= 57255609 
 “chr21”, start=34748821, end= 35248821 
 
 
 
hg38 – 500kb upstream  
“chr6”, start= 51661697, end= 52161697 
 “chr4”, start= 77010412, end= 77510412 
 “chr16”, start= 26856311, end= 27356311 
 “chr12”, start= 55845719, end= 56345719 
 “chr21”, start= 32824378, end= 33324378 
 
hg38 – 500kb downstream  
 “chr6”, start= 52187067, end= 52687067 
 “chr4”, start= 77605433, end= 78105433 
 “chr16”, start= 27451508, end= 27951508  
 “chr12”, start= 56361825, end= 56861825 
 “chr21”, start= 33376515, end= 33876515 
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Enrichment values for histones   
 
PBMCs 
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CD4+ T cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD14+ monocytes 
 
 
 
 
 
 
 
 
 
 
CD14+CD16- Monocytes 
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ChiCAGO score (used to determine significance in PCHiC dataset) 

Let xi denote the measured value of a quantitative property (such as CHiCAGO 
interaction score or gene expression level) for cell type i ∈ I. Then, the 
specificity score sc for a given cell type c ∈ I is a weighted mean of the 
differences xc – xi for i ≠ c, 

where the weights dc,i are distances between cell type c and cell types i, 
calculated using the complete dataset (e.g., CHiCAGO interaction scores for all 
interactions or expression values for all genes; distances calculated using 
Euclidean distance metric).  
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Raw GeneAnalytics data - R 
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Raw GeneAnalytics data – NR 
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Raw GeneAnalytics data – IR  
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Raw GeneAnalytics data - RA 
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STRING network - R 
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STRING network - NR 
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STRING network - IR 
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STRING network - RA 
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