

Bumpus, Benjamin Merlin (2021) Generalizing graph decompositions.
PhD thesis.

https://theses.gla.ac.uk/82496/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/82496/
mailto:research-enlighten@glasgow.ac.uk

Generalizing graph decompositions.

Benjamin Merlin Bumpus

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

School of Computing Science

College of Science and Engineering

University of Glasgow

© Benjamin Merlin Bumpus

3

Abstract

The Latin aphorism ‘divide et impera’ conveys a simple, but central idea in mathematics and computer

science: ‘split your problem recursively into smaller parts, attack the parts, and conquer the whole’. There is a

vast literature on how to do this on graphs. But often we need to compute on other structures (decorated graphs

or perhaps algebraic objects such as groups) for which we do not have a wealth of decomposition methods. This

thesis attacks this problem head on: we propose new decomposition methods in a variety of settings.

In the setting of directed graphs, we introduce a new tree-width analogue called directed branch-width.

We show that parameterizing by directed branch-width allows us to obtain linear-time algorithms for problems

such as directed Hamilton Path and Max-Cut which are intractable by any other known directed analogue of

tree-width. In fact, the algorithmic success of our new measure is more far-reaching: by proving algorithmic

meta-theorems parameterized by directed branch-width, we deduce linear-time algorithms for all problems

expressable in a variant of monadic second-order logic.

Moving on from directed graphs, we then provide a meta-answer to the broader question of obtaining

tree-width analogues for objects other than simple graphs. We do so introducing the theory of spined categories

and triangualtion functors which constitutes a vast category-theoretic abstraction of a definition of tree-width

due to Halin. Our theory acts as a black box for the definition and discovery of tree-width-like parameters in new

settings: given a spined category as input, it yields an appropriate tree-width analogue as output.

Finally we study temporal graphs: these are graphs whose edges appear and disappear over time. Many

problems on temporal graphs are intractable even when their topology is severely restricted (such as being a tree or

even a star); thus, to be able to conquer, we need decompositions that take temporal information into account. We

take these considerations to heart and define a purely temporal width measure called interval-membership-width

which allows us to employ dynamic programming (i.e. divide and conquer) techniques on temporal graphs

whose times are su�ciently well-structured, regardless of the underlying topology.

5

Table of Contents

1 Introduction 15

1.1 Preliminaries . 17

1.2 Tree-width . 22

1.3 Overview of contributions . 29

2 Directed branch-width 33

2.1 Introduction . 33

2.2 Background . 35

2.2.1 Tree-width-inspired measures. 36

2.2.2 Layouts: branch-width and rank-width. 36

2.2.3 Meta-obstructions . 38

2.3 Directed line graphs of bounded rank-width. 39

2.4 Properties of Directed branch-width. 45

2.4.1 Relationship to undirected branch-width. 45

2.4.2 Butterfly minors and directed topological minors. 50

2.4.3 Comparison to other digraph width measures. 53

2.5 Algorithmic aspects of directed branch-width. 56

2.5.1 Computing directed branch-width . 56

2.5.2 Parameterizations by directed branch-width . 57

2.6 Conclusion and open problems. 64

6 TABLE OF CONTENTS

3 Spined categories 65

3.1 Introduction . 65

3.1.1 Background and high-level overview . 67

3.2 Category-theoretic preliminaries . 70

3.2.1 Universal constructions . 74

3.3 Introducing spined categories and S-functors . 77

3.4 Tree-width in a measurable spined category . 85

3.5 New Spined Categories from Old . 95

3.6 Further Questions . 99

4 Interval-membership-width 101

4.1 Introduction . 101

4.1.1 Background on temporal graphs . 101

4.1.2 The graph theory and complexity theory of temporal graphs 104

4.1.3 Chapter overview . 107

4.2 Hardness of temporal edge exploration . 109

4.3 Interval-membership-width . 116

4.4 Win-win approach to regularly spaced times . 123

4.5 Discussion . 125

5 Future work 127

7

List of Figures

1.1 A graph C5#K2
K3 (center bottom) constructed according to the injections l :K2 ô C5 (top left)

and r :K2 ôK3 (top right). 19

1.2 An example of a tree decomposition. The intersection {b,d} = {a,b,d}„{b,d,f} (marked in

bold red) of the two top-leftmost bags {a,b,d} and {b,d,f} of (T ,V) is a vertex-separator in G. 25

2.1 Implications of boundedness between tree-width-inspired measures (adapted from a diagram of

Kreutzer and Kwon [68]). Legend: dotted (be they directed or bi-directed) arrows and marked

with ù, indicate the failure of the relevant implications. The dashed arrow labeled with a question

mark indicates that the existence of this implication is an open problem. All other arrows indicate

implications. 34

2.2 An orientation D of a (3ù3)-grid (left) and a directed branch decompositions of this grid (right).

Letting X = { ôôôíeh, ôôôíih, ôôôíif , ôôôôífe}, the edge ⇠ is associated with the edge partitions (E(G)‰X,X) and

(X,E(G)‰X). These partitions are themselves respectively associated with the directed vertex

separators {e} and {e,f}. 39

2.3 Left: the graph D3 defined in the proof of Theorem 2.4.15 (the relevant 2-contractible edges are

drawn red and dotted). Right: the graph �®
3. 52

4.1 A temporal graph (K3,⌧) with lifetime 101. 103

4.2 A counterexample to Menger’s theorem for temporal graphs taken from Michail’s survey arti-

cle [79] which was in-turn adapted from a paper of Kempe, Klienberg and Kumar [66]. Notice

that, although there are no two internally-vertex-disjoint temporal paths from s to t, after we

remove any one of x, y or z, the vertex s can still reach t via a temporal walk. 106

8 LIST OF FIGURES

4.3 Top left: K3; we assume the coloring xi ≠ i*1. Top right: star constructed from K3. Bottom:

times (and corresponding intervals) associated with the edges e1, e2 and e01,2, e11,2, e21,2 (time

progresses left-to-right and intervals are not drawn to scale). We write r1,r2,r3,r4 as shorthand

for the entries of ⌧(e01,2) (similarly, for i À [4], we write gi and bi with respect to ⌧(e11,2) and

⌧(e21,2)). The red and thick intervals correspond to visits defined by the coloring of the K3. . . 111

4.4 Building (D3,�) from (S3,⌧). The times along edges are drawn only for the edge csx1 in S3 and

for its corresponding 3-cycle cx1,1x1,2 in D3. Since t1,1, t1,2, t1,3 and t1,4 are all multiples of 2,

we know that t1,j < t1,j+1 < t1,j+1 for all j À [3]. Thus the reduction associates the visit (ts, te)

of csx1 in the star to exploration (ts, ts+1, te) of the 3-cycle corresponding to csx1 in D3. . . . 114

4.5 A temporal star (S4,⌧) with interval-membership-sequence: F1 = F2 = {cw}, F3 = {cw,cx},

F4 = F5 = {cw,cx,cy}, F6 = {cw,cy} and F7 = F8 = F9 = {cw,cz}. 118

9

Acknowledgements

At the dinner table, I was asked: ‘an aknowledgement section? Is that where you acknowledge that,

despite all your reading, you still don’t know anything?’ I laughed, but I guess there’s some truth there.

These last three years have been - in many ways - transformative and I want to extend my gratitude to all

those who have supported me along the way, to all those who have taught me and to all those who opened my

eyes to that which I have yet to learn.

First of all, I want to thank my supervisor Kitty Meeks. Thank you for taking me on as a student,

guiding me through the PhD with kindness and generosity and for teaching me how to explore and enquire with

confidence. You made every step of the way as interesting and stimulating as it could be, so thank you.

I want to thank Ornela Dardha and Adam Kleczkowski for being my mentors and friends. I want to thank

my second supervisor David Manlove for his thought-provoking questions and suggestions during my annual

progression vivas. Thanks also to Jessica Enright, Donal Smith, Jòzsef Farkas, Marwan Fayed and everyone else

who taught me mathematics. I want to thank my colleagues and o�ce mates Sofiat, Frances, Craig, William,

Michael and Ivaylo.

I want to thank my friends and colleagues Tom Wallis and Zoltan Kocsis. Thank you Tom for traveling

around the world (often to other galaxies from the comfort of a co�ee shop) with me: our countless adventures

have shaped me in so many ways. Thank you Zoltan for always being there for me and for always being excited

to learn and discover with me. I can’t keep track of the number of times we got caught in the rain while reading

mathematics together in one of Stirling’s parks.

In my personal life, I want to thank my Mom, Dad, Chris, Francesca, Calvin and the rest of my family for

their love and support and for teaching me to be true to myself: “lascia stare la porta, entra dalla finestra!”

Finally, thank you Papoula. Your love, strength and support made the sun shine even when life was a storm. We

might no-longer be Glasgow’s favourite pirates, but we still sail every sea together.

11

Author’s declaration

I declare that, except where explicit reference is made to the contribution of others, that this dissertation is the

result of my own work and has not been submitted for any other degree at the University of Glasgow or any

other institution.

Printed Name: Benjamin Merlin Bumpus

Signature:

To Papoula.

15

1 | Introduction

Graphs describe data and relationships therein. As such they are a fundamental mathematical tool that

crops up often in mathematics, computer science and many other application areas ranging from sociology to

chemistry to epidemiology and beyond. For example, we might use graphs to represent the atoms and their

bonds in a chemical molecule or to describe people and their social contacts for an epidemiological study.

To extract information from graphs, we often need to probe them algorithmically. Unfortunately, since the

vast majority of computational problems on graphs are NP-hard, we cannot expect to find algorithms that solve

these problems quickly (i.e. in polynomial-time) on any input graph. In practical terms, this amounts to the fact

that – more often than not – the best provably-correct algorithms that we know of run in exponential time with

respect to the size of the input. Still more concretely, suppose for example that we have an algorithm (presumably

one that answers some question which is very important to us) whose running time depends exponentially –

say proportionally to 2n – on the input size n. Suppose we can process n data points in a minute, if, after a few

more days of data-collection, we collect another 20 data points, our algorithm now takes over a year to run. This

apparent barrier of intractability is clearly a problem.

One way of coping with algorithmic intractability is by dropping the requirement of having running-time

guarantees on any input graph: rather than considering algorithms on the class of all graphs, we restrict our

attention to specific subclasses. For example, it is known that many problems that are intractable (NP-hard) in

general are e�ciently solvable on trees [48]. Since they do not have cycles, trees have an obvious recursive

structure that lends itself nicely to the design of fast divide and conquer algorithms. In general, it is one of the

great achievements of parameterized complexity to show that it is very often the case that ‘recursive structure’

(in a much more general sense than just trees) is algorithmically exploitable on graphs [26, 29, 43, 52]. The

basic idea is that, on appropriately defined classes of graphs that display this recursive structure, one can design

16 CHAPTER 1. INTRODUCTION

e�cient (often linear time) algorithms which proceed by dynamic programming (i.e. divide and conquer) even

for problems that are NP-hard in the general case. In practical terms, this amounts to:

(1) splitting our graph into small parts which interact in simple ways,

(2) solving the problem on the parts, and

(3) deducing the solution recursively on the whole.

A huge body of work has been devoted to the study of the above steps (1), (2) and (3) when we are

faced with graph-based computational problems [26,29,43,52,93]. In contrast, here we look beyond graphs. In

particular, this thesis focuses on the first step: how should we split (in algorithmically-exploitable ways) di�erent

kinds of inputs into smaller parts?

Why should we look beyond graphs? As we mentioned, graphs are convenient ways of modeling real world

systems. However, in applications one often needs to encode more information than just a binary relation. It might

be natural to require edges to have directions [8,9] for example when modeling of one-way roads in transportation

networks or food webs where a directed edge represents the predator-prey relationship. Alternatively, we might

need to represent the evolution of a graph over time [22,79] (with edges appearing and disappearing). This might

occur for example when representing a social network [22] (friendships may change with time) or a network in

which edges represent signals between satellites which come-and-go depending on how close two satellites are

to each-other in their orbits [22]. In fact it might even be that the best mathematical formalism for a particular

application has little do with graphs: for example it might be an algebraic object such as a group or a vector space.

Thus there is a strong need to develop algorithmic tools – not just for graphs – but for other settings as well.

This thesis should thus be understood as part of the larger scientific ambition of extending our current

algorithmic techniques to new settings. Within this context, the present contribution is to take tree decompositions

– one of the most well-understood [30, 74, 85–87, 89] and algorithmically powerful [26, 29, 42, 43, 52] methods

of recursive decomposition on graphs – and propose similar notions (often generalizations) in a variety of new

settings such as digraphs, temporal graphs and abstract categories.

Chapter Outline We shall defer the more detailed overview of the technical contributions of this thesis to

Section 1.3 so that we can first briefly recall some standard graph- and complexity-theoretic notions in Section 1.1

as well as recalling the necessary background on tree-width in Section 1.2. We note that, since the techniques

1.1. PRELIMINARIES 17

and application domains of each of the main chapters di�er greatly, we will introduce all of the more specialist

terminology and background (e.g. relating to digraphs, category theory and temporal graphs) only once it is

needed in the relevant chapters.

1.1 Preliminaries

We denote the powerset of any set S by 2S . For any natural number n, we let [n] denote the set {1,… ,n} ” N

and we write
�S
n

�
to denote the set of all n-element subsets of any set S. We denote the disjoint union of two

sets A and B by A€B and their di�erence as either A‰B or A*B.

Graphs A directed graph (also called a digraph) is a set V called the vertex-set equipped with a binary edge-

relation E; that is a pair (V ,E) with E ” V 2. Directed graphs in which the edge-relation is symmetric are called

graphs. We say that two vertices are adjacent if they are joined by an edge while we say that two edges e and

f are incident (written e„f ë Á) if they share an endpoint. For two vertices x and y we will simply write ôôôíxy

rather than (x,y) to denote a directed edge with tail x and head y; furthermore, slightly abusing notation, we

shall consider undirected edges – which we denote as xy – as un-ordered pairs {x,y} rather than as the relation

{(x,y), (y,x)}. In a digraph, vertices which have outgoing edges, but no incoming edges are called source

vertices and vertices that have incoming edges, but no outgoing edges are called sink vertices. A multi-graph

(resp. multi-digraph) is a graph (resp. digraph) in which we allow multiple occurrences of any edge: we call

two edges that have the same endpoints parallel. A loop-edge at a vertex x is an edge from the vertex x to itself.

Graphs that do not contain any loop edges are called simple graphs. A reflexive graph (resp. reflexive digraph)

is a graph (resp. digraph) in which there is a loop-edge at every vertex. A hypergraph is a pair (V ,E) of vertices

and hyperedges where every hyperedge E ” V is a vertex-subset. For r À N, we say that a hypergraph H is

r-uniform if every one of its hyperedges has cardinality exactly r. Note that simple graphs are just 2-uniform

hypergraphs. We write V (H) and E(H) to denote the set of vertices and edges of a hypergraphH and we extend

this notation in an analogous way to graphs (be they simple or not) and digraphs.

The class G consists of all finite simple graphs (i.e. without loops or parallel edges). We write Kn to

denote ([n],{xy : x,y À [n]}) and we call it the n-vertex complete graph (also referred to as ‘n-vertex clique’);

K0 is the empty graph (Á,Á) and K1 is the graph with a single vertex and no edges. Analogously, we refer to the

hypergraph ([n],2[n] ‰{Á}) as the complete hypergraph.

18 CHAPTER 1. INTRODUCTION

The complement of a graph G is the graph G :=
�
V (G),

�V (G)
2

�
‰E(G)

�
obtained by removing all edges

in G and adding all edges that are not in G. We call Kn the n-vertex discrete graph. For graphs G and H , we

denote by G€H and G„H respectively their disjoint union (V (G)€V (H),E(G)€E(H)) and intersection

(V (G)„V (H),E(G)„E(H)). We call a vertex v of a graph G an apex if it is adjacent to every other vertex in

G. We denote by G?v the operation of adjoining a new apex vertex v to G.

An n-edge walk in a graph G is a finite alternating sequence W := (x1e1,… ,xnenxn+1) of vertices and

edges ofH such that {xi,xi+1}” ei for each iÀ [n]. We callW a circuit if x1 and xn+1 coincide. If no confusion

arises, we will write walks and circuits only as sequences of edges (i.e. we might write e1,… ,en to denote the

walk W above). A walk (resp. circuit) with no repeated vertices is called a path (resp. a cycle). A graph that

contains no circuits is called a tree. We say that a graph (resp. directed graph) is connected (resp. strongly

connected) if there is a path (resp. directed path) connecting every pair of its vertices. A vertex separator (or

simply a separator) in a connected graph G is a vertex-subset S ” G which, when removed from G yields a

disconnected graph (i.e. S is a separator if G*S is disconnected). The vertex-connectivity number of a graph

G (denoted (G)) is the cardinality of the smallest separator in G (note that for a complete graph Kn, we follow

the convention that (Kn) = n).

Definition 1.1.1. A graph homomorphism from a graph G to a graph H is a mapping h : V (G)ô V (H)

such that h(x)h(y) À E(H) whenever xy À E(G).

Throughout, given graphs G and H , the notation G±H will denote an injective graph homomorphism from G

to H while the notation GßH will denote a surjective graph homomorphism from G to H . We say that two

graphs G and H are isomorphic (denoted G ˆH) if there is a bijective graph homomorphism between them.

We say that G is a subgraph of H (denoted G ”H) if there is an injective graph homomorphism � : G±H .

Given a graph G and a partition ✓ of its vertex set, we write G_✓ to denote the quotient of G with respect

to ✓; this is defined as the (not necessarily simple) graph obtained from G by identifying all vertices in each part

of ✓ to a single vertex. Notice that ✓ defines a surjective graph homomorphism from G to G_✓; slightly abusing

notation we will write this homomrphism as ✓ : Gß G_✓ .

The clique-number !(G) of a graph G is the maximum-possible n such that there is an injective graph

homorphism of the form Kn ± G. Alternatively !(G) can be defined as the largest-possible clique that can be

found in G as a subgraph.

The chromatic number �(G) of a graph G is the minimum-possible n À N such that there is a surjective

1.1. PRELIMINARIES 19

graph-homomorphism GôKn. Alternatively, �(G) can be defined as the minimum number of colors needed in

order to color every vertex of a graph in such a way that no two adjacent vertices are colored with the same color.

To see why these two definitions coincide, notice that, since we are assuming that Kn has no loop edges, no two

adjacent vertices in G can be mapped to the same color (i.e. vertex in Kn) by a homomorphism.

Given two graphs G and H , we say that G is a minor of H if G can be obtained from H via sequence

of vertex deletions, edge deletions and edge contractions (an edge contraction of an edge e in some graph G is

the operation of modifying G by identifying the two endpoints of e and deleting the resulting loop edge). The

Hadwiger number of a graph G is the maximum n such that G has a Kn-minor.

The last graph-theoretic notion that we will need for now is that of anH-sum of two graphs. The informal

idea is that the H-sum of two graphs G1 and G2 is computed by finding isomorphic copies of a fixed subgraph

H in both of them and then constructing an H-sum of G1 and G2 by identifying the vertices of H in G1 to

the vertices of H in G2 and removing any parallel edges. The formal definition is as follows (alternatively, see

Figure 1.1).

l r

Figure 1.1: A graph C5#K2
K3 (center bottom) constructed according to the injections l :K2 ô C5 (top left)

and r :K2 ôK3 (top right).

Definition 1.1.2 ([55], see also [30]). Given injective homorphisms h1 :H ô G1 and h2 :H ô G2, the

H-sum of G1 and G2 along (h1,h2) is the graph G1#HG2
1defined as

G1#HG2 :=
�
V (G1)€V (G2)_h*11 =h*12

,E(G1)€E(G2)_Ì
�

20 CHAPTER 1. INTRODUCTION

where any two edges h1(w)h1(x) and h2(y)h2(z) in the ranges of h1 and h2 respectively are related under

Ì if the edges wx and yz are equal in H .

For any graph-theoretic notion not defined here, we refer the reader to Diestel’s textbook [30].

Complexity A language over an alphabet ⌃ is a subset ⌃® ” ⌃< of the set ⌃< of all finite words over ⌃ (i.e.

⌃< is the free monoid generated by ⌃ under concatenation). A classical decision problem R is a language over

some fixed alphabet ⌃. We call a string I in ⌃< an instance and in particular we call it a yes-instance if I ÀR

and a no-instance otherwise.

We say that a problem R is in P if it is recognised in polynomial time by a deterministic Turing machine.

Similarly, we say that R is in NP if it is recognised in polynomial time by a non-deterministic Turing machine.

Alternatively, the class NP consists of all problems admitting certificates that are checkable in polynomial time

by a deterministic Turing machine. A problem R is NP-complete if it is in NP and if it is NP-hard (recall that R

is NP-hard if every problem in NP admits a polynomial-time computable reduction to R). We refer the reader to

Garey and Johnson’s textbook [48] for a more in-depth treatment.

Given a problem R, an advice to R is an N-indexed sequence (a1,a2,…) of strings over the alphabet of

R. A Turing machine M (be it deterministic or not) for R is said to compute with advice (a1,a2,…) if, given

any instance I of R, M receives as input both I and the I-th advice string aI (note that aI depends only on

I). We say that a problem R is in P_POLY if it is recognised in polynomial time by a deterministic Turing

machine computing with any advice (a1,a2,…) satisfying the requirement that there is a polynomial p such that

an f p(n) for all naturals n (we will make use of the complexity class P_POLY to state a complexity theoretic

hypothesis in Chapter 2.)

Parameterizations Rather than measuring the running time of (graph) algorithms solely with respect to the

input size, we might also keep track of the dependence on some ‘structural parameter’ of the input (graph). This

approach belongs to the vast field of Parameterized Complexity. We will first convey the rough intuition and defer

formal definitions. The idea is that, given some decision problem Q on a graph and a measurement � : Gô N

which assigns a positive integer value to each finite simple graph, we measure the running time of algorithms on

any given graph G, not only with respect to the input size G, but also with respect to the paramterization �(G).

Of particular interest are algorithms that run in time f (�(G)) � Gc where f is any computable function and c is
1The reader might rightly object that this operation should be written as G1#h1 ,h2G2 since di�erent choices of injective homomorphisms

do indeed yield a di�erent H-sums. We choose to write G1#HG2 in keeping with the notation of both Halin [55] and Diestel [30]. This
notation will only be used in settings in which there is no ambiguity.

1.1. PRELIMINARIES 21

a constant. Notice that algorithms with running times of this kind yield polynomial-time algoritms for Q on any

class of the form {G À G : �(G) f k} for some fixed positive integer k. We state these ideas more formally as

follows.

Definition 1.1.3. Take a fixed alphabet ⌃ and a mapping  : ⌃< ô N called a parameterization. We define

a parameterized decision problem to be a pair (R,) where R ” ⌃< is a language over ⌃. Given any string

I in ⌃<, we call the pair (I ,(I)) an instance of the parameterized problem (R,).

A parameterized problem (R,) is slice-wise polynomial tractable if there exists an algorithm A which,

for any instance (I ,(I)), decides whether I lies in R in time at most f ((I))Ig((I)), where f and g are

computable functions. If g is a constant function, then we call A a fixed-parameter algorithm and we call

any parameterized problem admitting such an algorithm fixed parameter tractable. The class of all slice-wise

polynomial tractable problems is denoted XP and the class of all fixed parameter tractable problems is denoted

FPT.

We say that a parameterized problem (R,) is para-NP-hard if there exists some fixed constant d,

such that it is NP-hard to decide any instance I of R with (I) = d. Notice that, unless P = NP, showing

para-NP-hardness is a way of ruling out the existence of any FPT algorithm for (R,). To see this, notice

that, if we had an algorithm A for the parameterized problem (R,) running in time f ((I))Ic (where f is a

computable function and c a constant), then A would run in polynomial time (to be precise, it would run in time

f (d)Ic) for the class of all instances I with (I) = d. However, this would then imply P = NP.

Another way of providing evidence that FPT-time algorithms for some parameterized problem (R,) are

unlikely to exist is by proving that this problem is ‘hard’ (we leave this undefined for now) with respect to one of

the complexity classes in the so-called ‘W-hierarchy: this is a sequence of nested parameterized complexity

classes W[1] ”W[2] ”W[3] ”5 ”W [P]. Since in this thesis we will only concern ourselves with showing

that a parameterized problem is likely not in FPT, we will not explain the distinction between the classes in

the W-hierarchy (for which we refer the reader to the textbook by Cygan et al. [29]). Instead we will only give

an explanation of what it means for a problem to be W[1]-hard. To do so, we first need a suitable notion of

parameterized reduction (Definition 1.1.4) and a suitable assumption of intractability (Definition 1.1.5).

Definition 1.1.4. Let ⌃ and ⌃® be alphabets over which two parameterized problems (R,) and (R®,®) are

respectively defined. A parameterized reduction from (R,) to (R®,®) is a mapping ⇢ : ⌃ô ⌃® satisfying

the folloiwing three requirements:

22 CHAPTER 1. INTRODUCTION

• ⇢ is computable by an FPT-time algorithm with respect to the parameterization ,

• for any I À ⌃, we have that I ÀR if and only if ⇢(I) ÀR®,

• there is a computable function g : Nô N such that, for all I À ⌃<, we have (®˝⇢)(I) f (g˝)(I).

Given the notion of a parameterized reduction, we can now describe (Definition 1.1.5) a complexity

theoretic hypothesis which can be used to define W[1]-hard problems; this hypothesis states that there is no FPT

algorithm for k-CLIQUE when parameterized by k.

k-CLIQUE

Input: a graph G and an integer k.

Question: does D contain a clique on at least k vertices as a subgraph?

Definition 1.1.5 (Engineer’s Hypothesis). k-CLIQUE parameterized by k admits no algorithm with worst-

case running time of the form f (k)V (G)c (where f is a computable function and c a constant).

Given this hypothesis and the notion of a parameterized reduction, we can finally define W[1]-hard

problems as those problems that are, in the parameterized sense, ‘at least as hard’ as k-CLIQUE parameterized by

k.

Definition 1.1.6. A parameterized problem (R,) is W [1]-hard if there is a parameterized reduction from

k-CLIQUE parameterized by k to (R,).

We refer the reader to either Cygan et. al.’s [29] of Flum and Grohe’s textbooks [43] for other (more

standard) definitions of the W-hierarchy (for example definitions in terms of circuits and their wheft).

1.2 Tree-width

Tree-width is a function tw : Gô N which – at an intuitive level – measures how similar the global

connectivity of a given graph is to that of a tree. For example, forests with at least one edge have tree-width 1

and, for n > 1, n-vertex cliques have tree-width n*1. Rather than defining it immediately, we shall take a step

back and first gain some intuition about why one should expect to be able to solve problems e�ciently on graphs

that are ‘tree-like’ and then we shall see how this intuition relates to the definition of tree-width.

1.2. TREE-WIDTH 23

Exploiting recursive structure As we already mentioned, many NP-hard problems are tractable on classes

of recursively decomposable objects. In fact this intuition was already noticed by Johnson in 1985 in his “16th

NP-completeness column” [62]. There he compiled a list of graph classes for which many NP-complete problems

are polynomial- or even linear-time solvable and observed that the members of many of these classes can be

decomposed (or dually built-up from smaller parts) in a recursive way. Some examples from Johnson’s list are:

trees, chordal graphs, partial k-trees, series parallel graphs, split graphs and co-graphs [62].

Out of Johnson’s list we will single-out chordal graphs. These are often defined as graphs in which all

cycles of length at least 4 have a chord (i.e. an edge connecting two vertices of the cycle, but which is not used

by the cycle itself). So far we have mentioned that chordal graphs have a recursive structure, but this structure is

not apparent from the definition we just gave; thus we will present the following equivalent definition of chordal

graphs which is due to Dirac [34].

Definition 1.2.1 (Dirac’s Theorem for chordal graphs [34]). We define the class of all chordal graphs

recusively as follows:

• every complete graph Kn is a chordal graph

• given two chordal graphs G1 and G2 and any n À N such that G1 and G2 both contain a copy of a

complete graph Kn as a subgraph, any clique-sum of the form G1#KnG2 is a chordal graph.

The recursive structure of chordal graphs can be exploited algorithmically to obtain polynomial- (or

even linear-) time algorithms for many NP-hard problems (we refer the reader to Golumbic’s textbook [51] for

an in-depth treatment). As an example, we show (Example 1.2.2) how to determine the chromatic number of

a chordal graph in polynomial time (in contrast, note that, for any k g 3, the general problem of determining

whether a graph has chromatic number at most k is NP-complete).

Example 1.2.2 (coloring chordal graphs). Notice that, in a chordal graph H , any inclusion-wise maximal

clique in H must be a vertex-separator (meaning that its removal disconnects H).

Thus, since finding an inclusion-wise-maximal clique can be done in polynomial time, either H is

itself a clique, or we can re-write (in polynomial time)H as a clique-sum of the formH =H1#KiH2 where

i is the size of the maximal clique we found and H1 and H2 are two chordal graphs strictly smaller than

H (i.e. V (Hi) < V (H) for i À [2]). This leads us to the following algorithm (we call it f indChrom)

which we describe recursively as follows.

24 CHAPTER 1. INTRODUCTION

f indChrom(H) :=

h
n
n
l
n
nj

V (H) if H is a clique

max{f indChrom(H1), f indChrom(H2)} if H =H1#KiH2.

Since�(Kn) = n, ≈nÀN, the proof of correctness of the f indChrom algorithm follows by induction

by noticing that, for any two graphs (not even necessarily chordal ones) G1 and G2 and any suitable n,

we have �(G1#KnG2) = max{�(G1),�(G2)}. To see why this is, properly color G1, properly color G2 and

then permute the labels of the color classes onG2 so that the colors of the vertices ofKn inG1 match those

of Kn in G2. This must always be possible since, up to permutations of the labels of color classes, Kn has

a unique proper coloring.

Tree-width was introduced independently by many authors [11,55,85] and it has accumulated many equivalent,

but often cryptomorphic definitions each exhibiting di�erent structural correspondences and insights [11, 26, 53,

55, 85]. The choice of which definition to present often boils down to choosing whichever definition is most

convenient for the task at hand. In practice, tree-width is most often defined in terms of the related concept of tree

decompositions (Definition 1.2.3). These are ways of arranging the vertices and edges of a graph in a tree-like

way. One might think of them as auxiliary data structures which can be used to exhibit a recursive pattern in the

graph we are studying in an algorithmically useful way (see Figure 1.2). We will slightly postpone this definition

of tree-width (Definitions 1.2.4) in order to first present an alternative definition in terms of (homomorphisms to)

chordal graphs (Equation 1.1). We do this with the intent of providing the reader with a solid understanding of

tree-width coupled with an intuitive justification of why tree-width should indeed be seen as a measure of how

much the global connectivity of a graph di�ers from that of a tree.

Imagine for a moment that, after hopping in a time machine, it was up to us to come-up with the first

definition of tree-width. Having just studied chordal graphs, we notice that all forests (i.e. disjoint unions

of trees) are chordal graphs since we can build them recursively by starting with the set {K0,K1,K2} and

taking clique-sums along any element of {K0,K1,K2}. It thus makes intuitive sense to think of the set of all

chordal graphs which can be constructed using only elements of {K0,K1,… ,Kn} to be considered more tree-like

(i.e. they have a slimmer tree-like structure) than the corresponding set constructed using only elements of

{K0,K1,… ,Kn}‰{Kn+1}. More formally, this suggests that the clique-number ! might be a good measure of

1.2. TREE-WIDTH 25

how ‘close’ a chordal graph is to being a tree (in particular a chordal graph H is a forest if and only if !(H) f 2).

Naturally, since we would like such a measure of ‘tree-likeness’ of a chordal graph to be 1 (rather than 2) for trees,

one might define such a measure – let’s call it chordal-tree-likeness – as the map H ≠ !(H)*1 associating

each chordal graph to one less than its clique-number.

Now, armed with this notion of chordal-tree-likeness, we seek an analogous notion for any (not neces-

sarily chordal) graph G. We will do so by simply reducing the general case to the chordal case: intuitively, our

approach will be to find a ‘most e�cient’ approximation of G via a chordal graph H and then determine how

‘tree-like’ H is (which, as we just saw, we can do by computing !(H)*1). It turns out that formalizing these

intuitions actually yields the first definition of tree-width that we encounter in this thesis; namely we have

tw(G) :=min{!(H)*1 :G is a subgraph of a chordal graph H} (where ! is the clique-number). (1.1)

The definition we just saw (i.e. Equation 1.1) is due to Halin [55]. Tree-width is, however, most commonly

defined in terms of the related concept of a tree-decomposition which is defined as follows (see also Figure 1.2).

a b c

d f

g h i

A graph G.

{a,b,d} {b,c,f}

{b,d,f}

{d,f ,h}

{d,g,h} {f ,h, i}

A tree decomposition (T , (Vt)tÀT) of G of width 2.

Max bag size is 3.

Figure 1.2: An example of a tree decomposition. The intersection {b,d} = {a,b,d}„{b,d,f} (marked in bold
red) of the two top-leftmost bags {a,b,d} and {b,d,f} of (T ,V) is a vertex-separator in G.

Definition 1.2.3. [11, 55, 88] The pair (T , (Bt)tÀV (T)) is a tree decomposition of a graph (resp. hyper-

graph [1]) H if (Bt)tÀV (T) is a sequence of subsets of V (H) (called bags) indexed by the nodes of the tree

T such that:

(T1) for every edge (resp. hyper-edge) f of H , there is a node t À V (T) such that f ” Bt,

26 CHAPTER 1. INTRODUCTION

(T2) for every x À V (H), the set V(T ,x) := {t À V (T) : x À Bt} induces a non-empty connected subgraph

in T .

Letting the width of a tree decomposition (T , (Vt)tÀT) of the graph (resp. hypergraph) H be defined as one less

than the maximum of the cardinalities of its bags, we have the following definition of tree-width.

Definition 1.2.4. The tree-width tw(H) of any graph or hypergraph H is the minimum possible width of

any tree decomposition of H .

It is a standard exercise (for example see the textbooks by Diestel [30] or Cygan et. al. [29]) to show that

the two definitions we just mentioned (i.e. Equation 1.1 and Definition 1.2.4) do indeed coincide. To see this,

the key intuition is that, given some tree decomposition (T ,V) of G, if we add an edge (unless one is already

present) between any two vertices in G that appear together in some bag in V , then the resulting graph G® must

be chordal (for full details see Diestel’s textbook [30]).

Algorithms on classes of bounded-tree-width As we mentioned earlier, many computational problems

that are NP-hard in general turn out to be tractable on trees and chordal graphs [48,51,62]. Indeed this pattern is

continued more generally when we consider classes of bounded tree-width: there are many NP-hard problems

(e.g. coloring, Hamiltonicity, finding Steiner trees etc. [29]) that are tractable on classes of graphs of bounded

tree-width.

Intuitively, the bags of tree-decompositions play a role largely analogous to that of cliques in Example

1.2.2: given an instance G of some decision problem Q and a tree-decomposition (T ,V) of G, we solve our

problem by brute force on the bags of (T ,V) and then we join the solutions together to obtain a solution for

Q on G. Without going into detail (for which we instead refer the reader to any parameterized complexity

textbook [26, 29, 43, 52]), we highlight that the crucial point is that algorithms of this kind often run in time

f (tw(G))Gc for some computable functions f and constant c. In fact, very often we have c = 1 making these

linear-time algorithms on classes of graphs of bounded tree-width [26, 29, 43, 52].

Perhaps more surprising is the sheer quantity2 of algorithmic applications of tree-width [26, 29, 43, 52].

This abundance of tractability results on classes of bounded tree-width is partially explained by a deep connection

between tree-decompositions, monadic second-order logic and tree-automata which is known as Courcelle’s

Theorem (Theorem 1.2.7). In order to state this theorem, we shall first recall some preliminary definitions from
2As a very rough estimate, a Glasgow University Library search (in May of 2021) for ‘((tree-width) OR (treewidth) OR (tree

decomposition))’ returns about 159’157 results

1.2. TREE-WIDTH 27

logic and finite model theory. We shall follow the notation found in Libkin’s textbook [73] to which we refer the

reader for any definitions in finite model theory not stated here; alternatively, for an introduction to model-theoretic

methods in parameterized complexity theory we refer the reader to Flum and Grohe’s textbook [43].

Logical preliminaries A vocabulary is a collection � of constant symbols c1,c2,… , relation symbolsE1,E2,…

and function symbols f1,f2,… . Each symbol s in � is associated with an element ar(s) of N called the arity of

s and all constant symbols have arity zero. We call � relational if it does not contain any function symbols.

Definition 1.2.5. For a vocabulary �, a �-structure (or model) is a four-tupleM := (V ,{cMi },{EM
i },{fM

i })

consisting of a universe V together with an interpretation (i.e. a pairing) of

• each constant symbol ci from � as an element cMi À V ;

• each k-ary relation symbol Ei from � as a k-ary relation EM
i ” V k on V ;

• each k-ary function symbol fi from � as a k-ary function fM
i : V k ô V .

We call a �-structure finite if its universe is finite and we will call it a relational structure if � is relational. At an

intuitive level, relational structures are just hypergraphs with labels on edges and labels on some distinguished

vertices (corresponding to the constants). For example, taking � to be a relational vocabulary with no constant

symbols and only one r-ary relation symbol E, it is easy to see that r-uniform hypergraphs (where the universe

is their vertex-set) are �-structures. If we take E to be binary, then we have an encoding of graphs as relational

structures. Alternatively, we could encode any graph G as a relational structure with universe V (G)‰E(G)

under a binary incidence relation IG (i.e. we take � = {I}) which records which edges are incident with which

vertices.

Now we define first-order (FO) formulae for relational vocabularies as follows.

Definition 1.2.6. Given a relational vocabulary � and a countably-infinite set of variables x,y,… , we call

any variable and every constant symbol a term. The set FO[�] of first-order formulae over � is defined

inductively as follows:

• if t1 and t2 are terms, then t1 = t2 is an atomic FO-formula over �,

• if t1,… , tk are terms and E is a k-ary relation in �, then E(t1,… , tk) is an atomic FO-formula over

�,

28 CHAPTER 1. INTRODUCTION

• if � and are FO-formulae over �, then so are �· , �‚ , �ô and ¬�,

• if x is a variable and � is a FO-formula over �, then so are «x� and ≈x� (in this case we say that x

is bound by a quantifier).

We call a variable x in a formula � free if it is not bound by an existential or a universal quantifier. We

say that a �-structure M models (or is a model of) a FO[�]-formula � with free variables x1,… ,xk if there are

elements a1,… ,ak in the universe of M such that evaluating � in M under the substitution xi ≠ ai yields a true

statement in FO logic. We use the shorthand �(x1,… ,xk) to denote a formula � with free variables x1,… ,xk

and, for a1,… ,ak À V (M) in the universe of M, we write M Ù �(a1,… ,ak) if the substitution xi ≠ ai witnesses

that M models �. (The notation �(x1,… ,xk) highlights the fact that a FO-formula � with k free variables can

be seen as a function � : V (M)k ô {Ò,Ú} taking k-tuples of elements of the universe of M to either true or

false.)

As we have just seen, when we evaluate FO[�]-formulae (for any �) on any �-structure M, quantification

(and hence also the choice for free variables) ranges over the elements of the universe V (M). However, when

dealing with graphs, one is often interested in defining logical formulae which can reason about subsets of the

universe V (M) as well. This sort of reasoning is captured by second-order logic (where we are allowed to

quantify over both the universe and the relations).

Monadic second-order logic (denoted MSO) is the fragment of second-order logic which allows second-

order quantification only over unary realtions (i.e. subsets of the universe). For graphs, monadic second-order

quantification can mean di�erent things depending on whether we encode graphs as:

1. a universe V (G) of vertices and a binary edge relation EG, or

2. a universe V (G)‰E(G) of vertices and edges and a binary incidence relation IG.

In the first case, MSO quantification allows us only to quantify over vertex-subsets; in the second case, we are

allowed to quantify over both vertex- and edge-subsets (since the universe is V (G)‰E(G) rather than just V (G)).

To distinguish which encoding is assumed, we write MSO1-logic when we allow second-order quantification only

over vertex-sets while we write MSO2-logic when we allow second-order quantification both over vertex-sets

and edge-sets.

We say that a decision problem Q is expressible in FO (resp. MSO1 or MSO2) there exists a formula

�Q À FO (resp. MSO1 or MSO2) such that, for all graphs G, G Ù �Q if and only if G is a yes-instance of Q.

1.3. OVERVIEW OF CONTRIBUTIONS 29

Note that many (NP-hard) decision problems on graphs (such as, for some fixed k, whether the chromatic number

is at most k or whether a given graph admits a Hamiltonian path etc. [29, 43]) are expressible in MSO2-logic.

The relationship between tree-width and MSO-logic for which we have been setting the scene is

described by Courcelle’s Theorem (Theorem 1.2.7). Roughly, this theorem states that, if we are given any

decision problem Q that is MSO2-expressible via a formula �Q, then there is an FPT-algorithm which decides

whether G Ù �Q (i.e. whether G is a yes-instance for Q) when parameterized by both tw(G) and the length of �.

Theorem 1.2.7 (Courcelle’s Theorem, [25]). There is an algorithm which, given a graph G of tree-width

k and an MSO2-formula �, decides whether G Ù � in linear time parameterized by both k and �.

1.3 Overview of contributions

This thesis consists of three main chapters each proposing decomposition methods and their associated width-

measures similar to (and often generalizing) tree decompositions in di�erent settings. We begin with directed

graphs in Chapter 2, then we consider categories in Chapter 3 and finally temporal graphs in Chapter 4.

Directed graphs Since the 1990s researchers have been searching for a notion analogous to tree-width which

describes algorithmically useful recursive structure in directed graphs [68]. Over the past 30 years, a plethora of

subtly di�erent directed analogues of tree-width have been proposed, but, although they were all useful in certain

application domains (and especially in structural settings [49, 63, 68]) they all su�er from significant algorithmic

shortcomings [47, 68]. For example the directed variants of the Hamilton Path and Max-Cut problems are hard

on any such class of ‘bounded width’ [45, 69]. At first glance this is not surprising, since it is known that the

directed variants of most problems tend to be harder than their undirected counterparts [48, 68]. However, there

are cases in which adding directions to the edges can actually make problem instances computationally simpler.

For example, although it is NP-hard to determine if a graph admits a Hamiltonian path, if the input is an acyclic

directed graph, then the problem can be solved in polynomial time. At the same time, though, there are problems

(such as Max-Cut) that remain NP-hard on directed acyclic graphs. These considerations motivate the search for

a truly directed analogue of tree-width that can distinguish cases in which edge-orientations can make problems

tractable. The known directed analogues of tree-width do not capture these subtle points since they are all either

bounded on the class of all directed acyclic graphs (e.g. directed tree-width, DAG-width etc. [68]) or they are

30 CHAPTER 1. INTRODUCTION

lower-bounded by their undirected counterparts (e.g. directed clique-width and directed rank-width [68]). At a

rough, intuitive level, these observations can be read as: ’the known width-measures cannot distinguish cases in

which adding directions to the edges can simplify problem instances’.

In contrast we introduce a new tree-width analogue in Chapter 2 called directed branch-width which

does indeed distinguish many cases in which adding directions to the edges simplifies problem instances. In

fact we find that directed branch-width enjoys many of the algorithmic properties that one might hope for in

a directed analogue of tree-width: in particular we show that many NP-hard problems (including the directed

versions of Hamilton path and Max-Cut) are tractable on digraph classes of bounded directed branch-width.

On the structural side, we prove a characterization of classes of bounded directed branch-width in terms of

the bi-cut-rank-width (roughly this is a measure of decomposability via low-rank cuts) of their corresponding

class of directed line-graphs. Furthermore, we find that, although classes of bounded directed branch-width

need not have bounded underlying tree-width, directed branch-width di�ers from underlying tree-width only on

source and sink vertices. These results allow us to establish a much more general algorithmic meta-theorem

parameterized by directed branch-width. This theorem proves the existence of linear-time algorithms for all

problems expressable in a restricted variant of monadic second-order logic. (Chapter 2 is based on joint work

with Meeks and Pettersson [19].)

An abstract analogue of tree-width Having proposed algorithmically useful decomposition methods for

directed graphs, we move to higher abstractions in Chapter 3 by adopting a category-theoretic perspective which

proposes a meta-answer to the question of obtaining tree-width analogues for objects other than simple graphs.

Our starting point is Halin’s characterization of tree-width as the maximal function sharing certain properties

with the vertex-connectivity number, the Hadwiger number and the chromatic number [55]. Out of the many

cryptomorphic definitions of tree-width [11, 26, 53, 55, 85], Halin’s definition has a much more algebraic flavour

which is ripe for abstraction. In fact, by thinking compositionally, we obtain a vast generalization of Halin’s result

to arbitrary categories by introducing the theory of spined categories and triangulation functors in Chapter 3.

Our algebraic formulation allows for great generality since it can be thought as a black-box which yields the

definition of an appropriate tree-width analogue whenever it is fed as input a class of objects equipped with a

suitable notion of containment. As such, the theory of spined categories provides a blueprint for defining new

tree-width analogues in diverse settings by simply collecting the objects of interest into an appropriate spined

category. (Chapter 3 is based on joint work with Kocsis [17].)

1.3. OVERVIEW OF CONTRIBUTIONS 31

Temporal graphs If the search for good tree-width analogues for directed graphs was challenging, then it is

natural to expect this question to be even harder when we move from the setting of directed graphs to that of

dynamic, evolving or temporal graphs. These are graphs whose edges appear and disappear over time and which

are used to model many real-world phenomena such as disease spread, trade, social contacts etc. [22, 79]. In this

setting traditional notions of tree-width fail to be of much algorithmic use since many computational problems

remain hard even on temporal trees [3,77]. It is thus apparent that, to obtain a useful notion of temporal structure

on temporal graphs, we need notions of temporal connectivity and temporal decomposition that do not depend

solely on the underlying graph-theoretic structure.

In Chapter 4 we determine the computational complexity of some natural edge-exploration problems on

temporal graphs. In particular we prove hardness results yielding further examples of natural problems that are

hard when the underlying graph has a very restricted structure (tree-width at most 2 or vertex-cover number at

most 2). This motivates the development of a parameter unrelated to the treewidth of the underlying graph. To

that end, we introduce a new purely temporal width-measure called interval-membership-width. This measure

depends solely on the temporal structure of the input temporal graph and not on the underlying graph-theoretic

structure and, via a connection to interval graphs, we find it to be reminiscent of the well-known notion of

path-width (where path-width is defined by taking the definition of tree-width and imposing upon it the additional

requirement that the indexing trees of all decompositions must be paths).

Interval-membership-width gives us just enough structural insight to be able to formulate dynamic-

programming algorithms for two problems on temporal graphs (one of which is determining whether a temporal

graph is temporally Eulerian) that remain hard even on temporal graphs whose underlying static graph is a tree

or a cactus graph. Our algorithms run in linear-time on classes of bounded interval-membership-width and we

believe that in the future similar results are likely to follow for other connectivity-based temporal problems as

well (e.g. problems related to spreading processes, reachability or exploration). (Chapter 4 is based on joint

work with Meeks [18].)

33

2 | Directed branch-width: a directed ana-

logue of tree-width

2.1 Introduction

It is often the case that problems on directed graphs are tractable on classes of inputs whose underlying

class of undirected graphs (i.e. ignore edge directions) have bounded tree-width [68]. However, there are situations

in which certain orientations of edges can make some problems tractable even when they are intractable on the

underlying undirected graph classes. For example, the Hamilton Path problem is NP-complete on undirected

graphs but it is polynomial-time solvable on any acyclic orientation of any graph. This motivates the search for a

truly directed analogue of tree-width that can distinguish cases in which edge-orientations can make problems

tractable.

It is not at all obvious how to obtain such an analogue. In fact this question has been an active area of

research since the 1990s and it has stimulated the research community to define numerous directed analogues

of tree-width [68]. All of these digraph width measures (which we shall call ‘tree-width-inspired’ measures,

following the terminology in [68]) were defined by generalizing a characterization of tree-width in terms of

cops-robber games; they include directed tree-width [63], DAG-width [13], Kelly-width [59] and D-width [91]

(see Figure 2.1 for an illustration of the relationships between these measures). Unfortunately, despite being very

useful in some cases, in general all tree-width-inspired measures face considerable algorithmic shortcomings.

For example, they are all bounded on the class of DAGS, a class for which some natural problems remain

NP-complete (e.g. directed Max-Cut [69]). In fact, unless NP ” P_poly, certain algorithmic shortcomings

are unavoidable by any digraph width measure which shares certain properties with any tree-width inspired

34 CHAPTER 2. DIRECTED BRANCH-WIDTH

bounded directed tree-width bounded D-width

bounded DAG-width bounded Kelly-width

ù

ù

ù ù ù

?

Figure 2.1: Implications of boundedness between tree-width-inspired measures (adapted from a diagram of
Kreutzer and Kwon [68]). Legend: dotted (be they directed or bi-directed) arrows and marked with ù, indicate the
failure of the relevant implications. The dashed arrow labeled with a question mark indicates that the existence
of this implication is an open problem. All other arrows indicate implications.

measure (in particular there cannot be a Courcelle-like theorem parameterized by any one of these digraph width

measures) [47].

Another notable class of digraph width measures is that of ‘rank-width-inspired’ measures [68]. Rank-

width is a generalization of tree-width which is bounded on some denser graph classes. For example, while

every class of bounded tree-width has bounded rank-width, cliques and complete bipartite graphs have bounded

rank-width (but unbounded tree-width). There are several directed analogues of rank-width, including clique-

width (defined on digraphs from the start [27]), NLC-width [54] and bi-cut-rank-width [64]. These measures are

unbounded on DAGS and they admit an algorithmic meta-theorem for problems definable in a more restricted

fragment of logic [28]. However, this fragment of logic does not have enough expressive power to describe

all the problems which are tractable on classes of bounded undirected tree-width. In fact the directed versions

of the Hamilton Path and Max-Cut problems (both tractable on classes of bounded underlying tree-width) are

W[1]-hard when parameterized by any tree-width or rank-width-inspired measure [45, 69].

Our contribution We introduce a new digraph width measure called directed branch-width. We obtain this

measure by generalizing Gurski and Wanke’s characterization of graph classes of bounded tree-width in terms

of their line graphs [53]. We show that the Hamilton Path problem and the directed Max-Cut problem are

in FPT parameterized by directed branch-width. This is particularly significant since both of these problems

are W[1]-hard when parameterized by any tree-width-inspired or rank-width-inspired measure [45, 69]. More

generally we show that there exists an FPT-time algorithm parameterized by directed branch-width for the

model-checking problem on a restricted variant of the monadic second-order logic of graphs.

Chapter Outline In Section 2.2 we introduce the necessary directed graph-theoretic notions and we

introduce the concepts of undirected branch-width and rank-width. In Section 2.3 we define directed branch-width

2.2. BACKGROUND 35

and we show that a class of digraphs has bounded directed branch-width if and only if its corresponding class

of directed line-graphs has bounded bi-cut-rank-width. In Section 2.4 we study simple properties of directed

branch-width and its relationship to existing digraph width-measures. In Section 2.5 we consider the algorithmic

applications of directed branch-width. Finally we suggest future research directions in Section 2.6.

2.2 Background

For any vertex x in a digraph D, we shall write N+
D(x) and N*

D(x) to mean the sets {y À V (D) : ôôôíxy À

E(D)} and {w À V (D) : ôôôôíwx À E(D)} respectively of out-neighbors and in-neighbors of x in D. Furthermore,

we shall denote by ND(x) the set N+
D(x)‰N

*
D(x) of neighbors of x. Note that, if the digraph D is clear from

context, then we shall drop the subscripts and simply write N(x), N+(x) and N*(x). Given a directed graph

D, we denote by u(D) the underlying undirected graph of D which is obtained by making all of the edges of

D undirected and removing parallel edges that might appear. We say that a subset A of vertices is complete to

another vertex-subset B (disjoint from A) if every vertex of A is adjacent to every vertex of B.

The line-graph of a graph G was introduced by Whitney [94] and is the graph defined as (E(G),{ef :

e,f À E(G) s.t. e „ f ë Á}). We introduce the concept of a directed line-graph as a directed analogue of

Whitney’s definition. Just as the line-graph of an undirected graph encodes which pairs of edges can occur in

succession in a path, the directed line-graph of a digraph D encodes which edge-pairs can occur in succession in

a directed path.

Definition 2.2.1. The directed line-graph íL(D) of a digraph D is the digraph

íL(D) :=
�
E(D),

�ôôôôíef : «{w,x,y} ” V (D) such that e = ôôôôíwx and f = ôôôíxy
��

.

Now we define the directed vertex and edge separators corresponding to edge and vertex-partitions

respectively.

Definition 2.2.2. Let D be a directed graph, let the ordered pairs (V (D) ‰A,A) and (E(D) ‰B,B) be

respectively partitions of the vertices of D and of the edges of D. We call the sets

SEA := { ôôôíxy À E(D) : x À V (D)‰A and y À A} and

SVB := {y À V (D) : «x,z À V (D) with ôôôíxy À E(D)‰B and ôôôíyz À B}

36 CHAPTER 2. DIRECTED BRANCH-WIDTH

the edge separator and vertex separator corresponding to (V (D) ‰A,A) and (E(D) ‰B,B) respectively.

The directed order of an edge (or vertex) partition is the number of elements contained in the vertex (or

edge) separator associated with that partition (for example the order of (E(D)‰B,B) is SVB ).

Every edge of a tree T partitions the set l(T) of the leaves of T into two sets. Given an edge xy in a tree

T and letting Y be the set of all leaves found in the connected component of T *xy which contains the vertex y,

we call the partition {l(T)‰Y ,Y } the leaf-partition of T corresponding to xy.

For any graph-theoretic notation not defined here, we refer the reader to [30].

2.2.1 Tree-width-inspired measures.

As we already mentioned in Chapter 1, there are several equivalent definitions of tree-width. One unified

way of defining both undirected tree-width and all of the known tree-width-inspired measures for digraphs [68] is

via a family of pursuit-evasion games called cops-robber games which are played on either directed or undirected

graphs. These games are played on any graph (resp. digraph) with two players: the Sheri� and the Villain. The

Sheri� controls a set of cops which each occupy a single vertex and the Villain controls a single robber which

also occupies a single vertex. The Sheri� wins if a cop is ever placed on a vertex occupied by the robber and

looses otherwise. Di�erent cops-robber games can be defined by varying how the cops and the robbers can be

moved and by the information available to each player. Depending on the game variant, undirected tree-width

and each tree-width-inspired width measure can be defined as the number of cops needed to guarantee a win for

the Sheri� [29, 68]. For a formal description of these games, see Section 2.4.3.

2.2.2 Layouts: branch-width and rank-width.

A notion closely related to tree-width, which we use throughout this thesis, is that of branch-width.

Definition 2.2.3 ([87]). A branch decomposition of a graphG is a pair (T ,⌧) where T is a tree of maximum

degree three and ⌧ is a bijection from the leaves of T to E(G). The order of an edge e of T is the number

of vertices v of G such that there are leaves t1, t2 in T in di�erent components of T * e, with ⌧(t1), ⌧(t2)

both incident with v. The width of (T ,⌧) is the maximum order of the edges of T . The branch-width of G

(written bw(G)) is the minimum possible width of any branch-decomposition of G.

It is known that a class of undirected graphs has bounded tree-width if and only if it has bounded

branch-width.

2.2. BACKGROUND 37

Theorem 2.2.4 ([87]). For any graph G, bw(G) f tw(G)+1 fmax{1,3bw(G)_2}.

We note that, if a graph has fewer than two edges, then it has branch-width zero; furthermore, all stars

have branch-width at most 1 and all forests have branch-width at most 2 (this follows by Theorem 2.2.4 since

forests have tree-width at most 1; the bound is tight since the three-edge path has branch-width 2).

A branch-decomposition is a special case of the more general concept of a layout of a symmetric function

which can be applied even to structures which are not graphs. Given sets A and B, a function f : 2A ô B is

symmetric if, for any X ” A we have f (X) = f (A‰X).

Definition 2.2.5. Let U be a finite set and let f : 2U ô Z be a symmetric function. We say that the pair

(T ,�) is a layout of f on U if T is a tree of maximum degree three and � is a bijection from the leaves of T

to the elements of U .

Let xy be an edge in T and let {l(T)‰Y ,Y } be the leaf-partition associated with xy. We define

the order of the edge xy (denoted xyf) to be the value of f (�(Y)). The width of (T ,⌧) is the maximum

order of all edges of T . The layout-f -width of U is defined as the minimum possible width of any layout of

f on U .

Using the concept of a layout, we can now give an alternative definition of the branch-width of a graph

G: the branch-width of G is the layout-f -width of E(G) where f maps any edge subset X of G to the number

of vertices incident with both an edge in E(G)‰X and an edge in X.

Whereas branch-width can be thought of as a global measure of vertex-connectivity, rank-width (originally

introduced by Bouchet [16]1) is intuitively a measure of global neighborhood similarity. All classes of bounded

branch-width have also have bounded rank-width, but the converse is not true, for example the rank-width of any

clique is 1. Given a matrix M over GF (2) whose rows and columns are indexed by some set X, we denote by

rk(M) the rank of M and, for Y ” X, we denote by rk(M[X ‰Y ,Y]) the rank of the sub-matrix of M given

only by the rows indexed by elements of X ‰Y and the columns indexed by the elements of Y . If M is the

adjacency matrix of a graph G and X is a vertex subset of G, then rk(M[V (G)‰X,X]) describes the number

of di�erent kinds of edge-interactions between vertices in V (G)‰X and those in X; layouts can be used to turn

this local notion into a global one by defining rank-width as follows [16, 83].

1note that Bouchet does not call it “rank-width”; the name is instead due to Oum and Seymour [83]

38 CHAPTER 2. DIRECTED BRANCH-WIDTH

Definition 2.2.6 ([16,83]). LetM be the adjacency matrix over GF (2) of a graphG. The rank-width rw(G)

of G is the layout-f -width of V (G) where we define f as the mapping f :X ≠ rk(M[V (G)‰X,X]).

Kanté and Rao generalized rank-width to digraphs by introducing the concept of a bi-cut-rank decompo-

sition [64]. They did so by considering layouts of a function which takes into account the two possible directions

in which edges can point in the directed edge separator associated with a vertex partition.

Definition 2.2.7 ([64]). Given a digraph D and its adjacency matrix M over GF (2), let f (M[X]) be the

function defined as f (M[X]) = rk(M[V (D)‰X,X])+ rk(M[X,V (D)‰X]). The bi-cut-rank-width of a

digraph D (denoted bcrk(D)) is the layout-f -width of V (D).

For completeness we note that rank-width is closely related to a width-measure called clique-width

(defined in [27]).

Theorem 2.2.8 ([54], [83]). A class of undirected graphs has bounded clique-width if and only if has

bounded rank-width.

Gurski and Wanke showed that classes of bounded tree-width can be characterized via the rank-width of

their line graphs [53]. (We note that this result was originally stated in terms of clique-width; by Theorem 2.2.8,

the following formulation is equivalent.)

Theorem 2.2.9 ([53], [81]). A class of undirected graphs has bounded tree-width if and only if the class

of its line graphs has bounded rank-width.

Theorem 2.2.9 is of particular importance since it can be seen as a definition of classes of bounded

tree-width. In Section 2.3 we will prove a directed analogue of Theorem 2.2.9.

2.2.3 Meta-obstructions

The authors of [47] investigate the question of why there are no known digraph width measures that are

as algorithmically successful as tree-width in terms of parameterizations for FPT algorithms. They prove that

unless NP ” P_POLY, it is impossible to obtain an XP algorithm for the the MSO1-model-checking problem

parameterized by any digraph width measure similar to tree-width-inspired measures. Their result (Theorem

2.2.10) mentions a digraph containment relation called directed topological minor relation [47] which we define

formally in Section 2.4.

2.3. DIRECTED LINE GRAPHS OF BOUNDED RANK-WIDTH. 39

Theorem 2.2.10 ([47]). A digraph width-measure � is said to be tree-width bounding if there exists a

computable function b such that for every digraph D with �(D) f k, we have tw(u(D)) f b(k). If � is a

digraph width measure which is:

• not tree-width-bounding and

• closed under taking directed topological minors,

then, unless NP ” P_POLY, there is no XP algorithm for the MSO1-model-checking problem parameter-

ized by �.

We point out that Theorem 2.2.10 excludes the existence of an XP algorithm (defined in Chapter 1): this

is a much stronger claim than excluding fixed-parameter-tractability.

2.3 Directed line graphs of bounded rank-width.

In this section we introduce our new directed width measure, directed branch-width, and use it to

generalize Theorem 2.2.9 to digraphs. Specifically we will prove that a class C of digraphs has bounded directed

branch-width if and only if the class íL(C) of directed line graphs of C has bounded bi-cut-rank-width. Note that

all rank-width-inspired measures [64] are bounded on the same graph classes as bi-cut-rank-width [68], so this

result can also be stated in terms of any one of the rank-width-inspired measures.

a b c

d e f

g h i

ôôôíed ôôôída ôôôíab ôôôíbe

ôôôôígd

ôôôôígh

ôôôíbc

ôôôôífc

ôôôíeh ôôôíih ôôôíif ôôôôífe

⇠

Figure 2.2: An orientation D of a (3ù3)-grid (left) and a directed branch decompositions of this grid (right).
Letting X = { ôôôíeh, ôôôíih, ôôôíif , ôôôôífe}, the edge ⇠ is associated with the edge partitions (E(G)‰X,X) and (X,E(G)‰X).
These partitions are themselves respectively associated with the directed vertex separators {e} and {e,f}.

The definition of directed branch-width relies on the notion of directed vertex-separator. Recall from

40 CHAPTER 2. DIRECTED BRANCH-WIDTH

Definition 2.2.2 that, for any edge-subsetX of a digraphD, SVX andSVE(D)‰X denote the directed vertex-separators

corresponding to (E(D)‰X,X) and (X,E(D)‰X) respectively.

Definition 2.3.1 (Directed branch-width). For any digraph D, let fD be the function fD : 2E(D) ô N

defined as fD(X) = SVX ‰SVE(D)‰X. We call any layout of fD on E(D) a directed branch decomposition

of D (see Figure 2.2). The directed branch-width of D, denoted dbw(D), is the layout-fD-width of E(D).

The rest of this section is devoted to the proof of following result, which generalizes Theorem 2.2.9 to

directed branch-width and bi-cut-rank-width.

Theorem 2.3.2. A class C of digraphs without parallel edges has bounded directed branch-width if and

only if the class of directed line-graphs of C has bounded bi-cut-rank-width. Specifically, for any digraph

D without parallel edges, we have

bcrk(íL(D))_2*1 f dbw(D) f 8(1+2bcrk(íL(D))).

We shall first show (Lemma 2.3.4) that if a class C has bounded directed branch-width then íL(C) has

bounded bi-cut-rank-width. We shall show the converse of this statement in Lemma 2.3.7. To prove these results

we shall make use of an auxiliary notion of consistency between a labeling function and a vertex-partition.

Definition 2.3.3. Let S be a set, (A,B) be a vertex partition in a digraph D and let �A : A ô S and

�B : Bô S be functions. We say that (A,B) is (�A,�B)-consistent if

• given vertices a1, a2 in A with �A(a1) = �A(a2) and a vertex b in B we have that ôôôôôía1b À E(D) if and

only if ôôôôôía2b À E(D) and

• given vertices b1, b2 in B with �B(b1) = �B(b2) and a vertex a in A we have that ôôôôôíab1 À E(D) if and

only if ôôôôôíab2 À E(D).

For clarity we emphasize that the (�A,�B)-consistency of a partition (A,B) only concerns the edges that

emanate from A and enter B. Thus the fact that a vertex-partition (A,B) of a digraph D is (�A,�B)-consistent

does not necessarily imply that (B,A) is also consistent with (�B ,�A).

Oum showed that, ifL(G) is the undirected line-graph of an undirected graphG, then rw(L(G))f bw(G)

[81]. We will now show a directed analogue of this result with a weaker bound: the bi-cut-rank-width of a

directed line graph of some digraph D is bounded by a linear function of the directed branch-width of D.

2.3. DIRECTED LINE GRAPHS OF BOUNDED RANK-WIDTH. 41

Lemma 2.3.4. Let D be a digraph; if dbw(D) f k, then bcrk(íL(D)) f 2(k+1).

Proof. Throughout, let M be the adjacency matrix of íL(D) over GF (2) whose rows and columns are indexed by

E(D). Let (T ,�) be a directed branch decomposition of D of width at most k.

Notice that since E(D) = V (íL(D)) and since the leaves of T correspond bijectively (via �) to the

elements of E(D), it follows that they are also in bijective correspondence with V (íL(D)) (again, witnessed

by �). In particular, this means that (T ,�) can be also seen as a bi-cut-rank-decomposition of íL(D). Thus

it su�ces to show that, if (E(D)‰X,X) is any edge partition of D corresponding to an edge of T , then the

value of rk(M[E(D)‰X,X]) is at most k+1 since then this would imply that, when viewed as a bi-cut-rank

decomposition, the width of (T ,�) is at most 2(k+1).

Now fix a vertex partition (E(D)‰X,X) of íL(D) (recall that edge partitions of D are vertex partitions

of íL(D)) and suppose that it has directed order at most k in D. Furthermore, let �1 : E(D) ‰X ô S and

�2 :X ô S be labeling functions. Notice that, if (E(D)‰X,X) is (�1,�2)-consistent, then it must be that any

two rows of M[V (íL(D))‰X,X] indexed by vertices of V (íL(D))‰X which have the same label under �1 are

identical and hence linearly dependent. In particular this implies that if a vertex partition (E(D)‰X,X) of íL(D)

is (�1,�2)-consistent, then rk(M[E(D)‰X,X]) f S since there are at most S possible labels.

It therefore remains only to construct labeling functions �1 and �2 mapping the edges of D to a set with

at most k+1 elements and show the (�1,�2)-consistency of (E(D)‰X,X).

Let {s1,… ,sr} be the vertex separator associated with the partition (E(D)‰X,X) (note that, since (T ,�)

has width at most k, we have r f k). Define �1 : E(D)‰X ô [r]‰{0} and �2 :X ô [r]‰{0} as:

�1(ôôôíxy) :=

h
n
n
l
n
nj

i if y = si

0 otherwise

and �2(ôôôíxy) :=

h
n
n
l
n
nj

i if x = si

0 otherwise.

Note that an edge ôôôíxy will have label zero if it is inE(D)‰X and does not point towards an element of {s1,… ,sr},

or if it is an element of X and it does not emanate from an element of {s1,… ,sr}.

We claim that (E(D) ‰X,X) is a (�1,�2)-consistent vertex-partition in íL(D) (again recall that edge-

partitions in D are vertex-partitions in íL(D)). To see this, let e1 and e2 be two elements of E(D) ‰X with

�1(e1) = �1(e2) = i. If i = 0, then neither e1 nor e2 points towards a vertex in {s1,… ,sr}. Thus, for all f in

42 CHAPTER 2. DIRECTED BRANCH-WIDTH

X, neither ôôôôôíe1f nor ôôôôôíe2f is an edge in íL(D). Otherwise, if i ë 0, then e1 and e2 both point towards the vertex

si. This means that, for any f À X and j À [2], there will be an edge ôôôôôíejf in íL(D) if and only if f points

away from si. Thus ôôôôôíe1f À E(íL(D)) if and only if ôôôôôíe2f À E(íL(D)). A symmetric argument also shows that

for f1,f2 ÀX and e À E(D)‰X, if �2(f1) = �2(f2), then ôôôôôíef1 À E(íL(D)) if and only if ôôôôôíef2 À E(íL(D)). The

partition (E(D)‰X,X) is therefore (�1,�2)-consistent and the result follows. ∑

Our next goal is to prove the converse of Lemma 2.3.4: given a digraphD such that íL(D) has bi-cut-rank-

width at most k, we shall deduce a bound on the directed branch-width of D. We obtain this result by extending

techniques introduced by Gurski and Wanke in [53] to the setting of digraphs. Once again we shall be using

the concept of consistency with respect to a labeling function as an intermediate step in our results. To do so

we shall first need an auxiliary result giving a bound on the number of labels needed in order to find labeling

functions with which a vertex partition of rank k is consistent.

Lemma 2.3.5. Let (V (D)‰X,X) be a vertex partition of a digraph D and let M be the adjacency matrix

of D over GF (2). If rk(M[V (D) ‰X,X]) f k, then there exists a set S with S f 1+ 2k and labeling

functions �1 : V (D)‰X ô S and �2 :X ô S such that (V (D)‰X,X) is (�1,�2)-consistent.

Proof. Let A be the subset of all vertices in V (D)‰X which have an outgoing edge to an element of X and let

B be the set of all vertices in X which have an incoming edge from an element of V (D)‰X. We define two

equivalence relations ÌA and ÌB on A and B as:

• for all x and y in A, x ÌA y if N+(x)„X =N+(y)„X,

• for all x and y in B, x ÌB y if N*(x)„V (D)‰X =N*(y)„V (D)‰X.

Let {a1,… ,ap} and {b1,… ,bq} be sets of representatives of the equivalence classes of ÌA and ÌB in A

and B respectively. Now we define the labeling functions �1 : V (D)‰X ô [p]‰{0} and �2 :X ô [q]‰{0} as

�1(x) =

h
n
n
l
n
nj

0 if x Ã A

i if x is in the equivalence class represented by ai under ÌA

�2(y) =

h
n
n
l
n
nj

0 if y Ã B

j if y is in the equivalence class represented by bj under ÌB .

2.3. DIRECTED LINE GRAPHS OF BOUNDED RANK-WIDTH. 43

These definitions imply that two vertices in either V (D)‰X or X have the same label under either �1 or �2

if and only if they share exactly the same out-neighbors in X or in-neighbors in V (D)‰X respectively. Thus

(V (D)‰X,X) is (�1,�2)-consistent.

All that remains to be shown is that p and q are both at most 2k. We will argue only for p since the

argument is the same (replacing rows for columns and in-neighborhoods for out-neighborhoods) for the bound

on q. To see that p f 2k, note that two vertices in A have the same out-neighborhood in X if and only if the

row-vectors that they index inM[V (D)‰X,X] are identical. SinceM[V (D)‰X,X] has rank at most k, there are

at most 2k linear combinations with binary coe�cients of the basis vectors of the row-space of M[V (D)‰X,X].

This concludes the proof since p is at most the number of out-neighborhoods in X. ∑

Now, for some digraph D, suppose we have a partition (V (íL(D))‰X,X) of rank k. By Lemma 2.3.5 we

know that there exist functions �1,�2 mapping vertices of V (íL(D))‰X andX to at most l labels (for l f 1+2k).

Our next step is to bound the order of the edge-partition of D corresponding to (V (íL(D))‰X,X) by a function

of l. The following lemma is a generalization of part of the proof of [53, Theorem 9] to the setting of digraphs.

Lemma 2.3.6. Let D be a digraph without parallel edges and (E(D)‰X,X) an edge-partition of D. Let

�1 : E(D)‰X ô S and �2 : X ô S be functions to some k-element set S. If (E(D)‰X,X) is (�1,�2)-

consistent in íL(D), then (E(D)‰X,X) has directed-order at most 4k in D.

Proof. Let ⇠ : S ô 2S be the function mapping any label a in S to the set

⇠(a) := {b À S : «e1 À �*11 (a) and «e2 À �*12 (b) with ôôôôôôíe1e2 À E(íL(D))}

of all labels in S associated by �2 to vertices of íL(D) which are the endopints of a directed edge emanating from

some vertex labeled a by �1 (for clarity, recall that V (íL(D)) = E(D)). For any label a in S, denote by Da the

subgraph of D with V (Da) = V (D) and edge-set

E(Da) = �*11 (a)‰
Õ
bÀ⇠(a)

�*12 (b).

We claim that it will su�ce to show that, for every a À S, the edge-partition (�*11 (a), E(Da) ‰ �*11 (a)) has

directed-order at most 4 in Da. To see this, recall that every element of E(D)‰X is labeled by �1 and every

element of X is labeled by �2. This means that, for any element q in the vertex-separator of D associated with

44 CHAPTER 2. DIRECTED BRANCH-WIDTH

(E(D)‰X,X), there is a label a such that q belongs to the separator associated with (�*11 (a), E(Da)‰�*11 (a)).

Thus, since there are at most k labels (i.e. k choices for a), showing that (�*11 (a), E(Da)‰�*11 (a)) f 4 for every

a À S would also then imply that (E(D)‰X,X) f 4k.

Thus let a be any label in S and, for notational simplicity, denote by (A,B) the partition (�*11 (a), E(Da)‰

�*11 (a)). Recall that, since A and B are edge-sets in D, they are vertex-sets in íL(D). Furthermore, since

(E(D)‰X,X) is (�1,�2)-consistent in íL(D), it follows (by the definitions of consistency and of ⇠) that A is

complete to B in íL(D). In particular, this implies that in Da every element of A is incident with every element

of B.

We will now show that the partition (A,B) of Da has order at most 4. If A contains at most 2 edges, then

they have at most 4 endpoints and the claim is trivially true. So suppose that A has at least 3 edges.

Consider first the case in which A has at least two non-incident edges e = ôôôôíwx and f = ôôôíyz. Since every

edge in B is incident with every edge in A, we can deduce in particular that every edge of B must be incident

with both an element of {w,x} and an element of {y,z}. Thus, since e and f are not incident, no edge of B has

an endpoint outside of {w,x,y,z}. We may therefore conclude that (E(A),E(B)) has order at most 4 in Da.

Otherwise, if A does not have at least two non-incident edges and since it has no parallel edges, then the

elements of A must form a star in Da. Since every edge of B is incident with every edge of A and since A has

more than two edges, it must be that every edge of B is incident with the center of the star formed by A. In fact,

since we are assuming no parallel edges, this implies that every edge of B is incident exclusively with the center

of this star. Thus (A,B) has order most 1. ∑

We emphasize that the requirement in Lemma 2.3.6 for D to not have any parallel edges is in fact

necessary. To see this, consider the case in which A is a star with all edges pointing towards the center and B is

the digraph with V (A) = V (B) obtained from A by reversing the directions of all the edges in A. In this case the

order of (A,B) in the digraph Q := (V (A),E(A)‰E(B)) (which has parallel edges) would be A (which equals

B).

We now use Lemmas 2.3.5 and 2.3.6 to bound the directed branch-width of a digraph D in terms of the

bi-cut-rank-width of its directed line-graph.

Lemma 2.3.7. If D is a digraph without parallel edges with bcrk(íL(D)) f k, then dbw(D) f 8(1+2k).

Proof. Let (T ,�) be a minimum-width bi-cut-rank-decomposition of íL(D) and let M be the adjacency matrix

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 45

of íL(D). Since V (íL(D)) = E(D), we know that (T ,�) is also a directed branch-decomposition of D. Now let e

be any edge in T and let (E(D‰X),X) be the edge-partition of D associated with this edge.

Since bcrk(íL(D)) f k, we know that M[E(D)‰X,X] has rank at most k. By Lemma 2.3.5 we know

that there exist vertex-labeling functions �1 and �2 such that every element of V (íL(D)) (i.e. E(D)) is mapped

to one of at most 1+2k labels and such that (E(D‰X),X) is (�1,�2)-consistent. By Lemma 2.3.6 the (�1,�2)-

consistency of (E(D‰X),X) in íL(D) implies that the directed order of (E(D‰X),X) in D is at most 4(1+2k).

The result follows since the order of e in T is the cardinality of the union of the directed separators corresponding

to (E(D‰X),X) and (X,E(D‰X)). ∑

Theorem 2.3.2 now follows immediately from Lemmas 2.3.4 and 2.3.7.

2.4 Properties of Directed branch-width.

Having introduced directed branch-width in the previous section, here we study some of its properties.

In Section 2.4.1 we will show that classes of bounded directed branch-width need not have bounded underlying

undirected branch-width. Despite this result, we will obtain some relationships between undirected and directed

branch-width which will be useful for our algorithmic applications in Section 2.5. In Section 2.4.2 we study

butterfly minors and directed topological minors (two directed analogues of the minor relation) and we will show

that the directed branch-width is monotone under the first but not under the second. Finally in Section 2.4.3 we

shall show that classes of digraphs that have bounded width with respect to any tree-width or rank-width-inspired

measure need not have bounded directed branch-width.

2.4.1 Relationship to undirected branch-width.

Here we compare the directed branch-width of a digraph and the branch-width of its underlying undirected

graph. We will prove that there exist digraph classes of bounded directed branch-width and unbounded underlying

undirected branch-width. However, despite this result, we will find two ways of relating directed and undirected

branch-width. First we will show that, for any digraph D, the di�erence between the branch-width of u(D)

and the directed branch-width of D is at most the number of sources and in sinks in D. Second we will show

that, given any digraph D, we can obtain, by modifying D only at sources and sinks, a digraph H such that

dbw(D) = bw(u(H)). All of these results will be important for our algorithmic applications in Section 2.5.

46 CHAPTER 2. DIRECTED BRANCH-WIDTH

Towards proving our results here and those in Section 2.4.2 about butterfly and directed topological

minors, we observe that directed branch-width is subgraph-closed.

Lemma 2.4.1. If H is a subgraph of a digraph D, then dbw(H) f dbw(G).

Proof. Let (T ,�) be a directed branch decomposition of D. Let T ® be the inclusion-wise minimal subtree of

T containing the leaves in the set {l leaf in T : �(l) À E(H)}. Notice that, letting �® be the restriction of �

to T ®, the pair (T ®,�®) is a directed branch decomposition of H . Now take any partition (E(D)‰X,X) of D

induced by an edge which is contained in both T and T ®. Since its order when restricted to the edge set of H

(i.e. the partition (E(H)‰X,E(H)„X)) is at most that of (E(D)‰X,X), the width of (T ®,�®) is at most that

of (T ,�). ∑

Now we introduce some more notation which will be convenient for the next results. Let (T ,�) be a

directed branch decomposition of width k of a digraph D. By the definition of (T ,�), every edge e of T is

associated with two edge-partitions (E(D)‰Y ,Y) and (Y ,E(D)‰Y) of order at most k. We associate to every

internal edge e of T three sets: Xe, Xe,Y , Xe,E(D)‰Y . The sets Xe,Y and Xe,E(D)‰Y are the directed separators at

e associated with the partitions (E(D)‰Y ,Y) and (Y ,E(D)‰Y) respectively; we denote the setXe,Y ‰Xe,E(D)‰Y

as Xe and we call it the bidirected separator at e. We point out that, using with this notation, the width of a

directed branch-decomposition (T ,�) is maxeÀE(T) Xe.

In contrast to undirected graphs, in digraphs it is possible to have vertices of high degree (e.g. sources or

sinks) which never appear as internal vertices in directed paths. The following result shows that such vertices

never appear in bidirected separators of directed branch decompositions.

Lemma 2.4.2. Let e and x be respectively an edge and a vertex in a digraph J .

1. If x never appears as an internal vertex of a directed path in J , then x will never appear in a

bidirected separator of any directed branch-decomposition of J .

2. If e never appears in a directed path with at least two edges in J , then dbw(J * e) = dbw(J).

Proof. Note that (1) follows immediately from the definition of directed branch-width; furthermore (1) implies

(2) since the endpoints of e satisfy the conditions of (1). ∑

This result immediately implies that there is an infinite set of digraphs given by acyclic orientations of

the square grids which has bounded directed branch-width. To see this, let � be the set of all square grid-graphs.

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 47

Define í� to be the class of digraphs obtained by orienting the edges of every graph G in � as follows: take a

proper two-coloring of G with colors white and black and then orient every edge towards its black endpoint.

Corollary 2.4.3. Every graph in í� has directed branch-width 0.

Proof. Every vertex of any element D of í� is either a source or a sink. It therefore follows that every bidirected

separator of any directed branch-decomposition ofD is empty (by Lemma 2.4.2) and hence that dbw(D) = 0. ∑

Now we show that the boundedness of directed branch-width does not imply boundedness of underlying

undirected branch-width.

Theorem 2.4.4. There does not exist any function f : Nô N such that, for every digraph D, bw(u(D)) f

f (dbw(D)).

Proof. By Corollary 2.4.3, there is an infinite set í� of acyclic orientations of the square grids which has directed

branch-width zero. However, the (nùn)-grid has tree-width n [30] and hence it has branch-width at least 2n_3

(by Theorem 2.2.4). ∑

In a similar vein to Lemma 2.4.2, we can show show that directed branch-width is invariant under a form

of identifications of sources or sinks which we define now.

Definition 2.4.5. Two vertices x and y of a digraph D are source/sink-identifiable if they are either both

sources or both sinks. We say that a digraph H is equivalent to D under source-sink identification if it can

be obtained from D via a sequence of identifications of pairs of source/sink-identifiable vertices. We say

that a graph D® is a source-sink-split of a digraph D if every source and every sink in D® has degree exactly

1 and if D is equivalent to D® under source-sink identification.

The next result shows that directed branch-width is invariant under source-sink identifications. Note that,

for undirected graphs, where the natural analogue of a source or a sink is a pendant vertex, this does not hold. In

fact, the branch-width of an undirected graph can be increased arbitrarily by repeated identification of pendant

vertices.

Lemma 2.4.6. Let H and D be two digraphs. If H is equivalent to D under source-sink identification,

then dbw(H) = dbw(D).

Proof. Let x and y be two source/sink-identifiable vertices in D and note that it is su�cient to consider the case

in which H is obtained from D by identifying x and y into a vertex � .

48 CHAPTER 2. DIRECTED BRANCH-WIDTH

Let (T ,�) be a directed branch decomposition of D and define the map ! : E(D)ô E(H) as

!(uv) =

h
n
n
n
l
n
n
nj

ôôôí�v if u À {x,y}

ôôôíu� if v À {x,y}

uv otherwise

Clearly the map ⇠ := !˝� from the leaves of T to E(H) is surjective; however, it would fail to be injective if x

and y have a common neighbor. In this case, we can simply remove some duplicate leaves (i.e. leaves mapped

by ⇠ to the same edge) in T so that we can ensure ⇠ is injective. We shall assume that we have done so to (T ,⇠)

if required.

Since x and y are st-identifiable, they never appear as internal vertices of a directed path. Thus, by

Lemma 2.4.2, it follows that neither x nor y will ever appear in any bidirected separator of (T ,�). Furthermore,

we know that � must also be either a source or a sink since identifying two sources or two sinks yields respectively

a source or a sink. Thus � will also never appear in any bidirected separator of (T ,⇠) (again by Lemma 2.4.2). In

particular, letting X be any edge-subset of D, this implies that the order of (E(D)‰X,X) in G is the same as

that of (E(H)‰!(X),!(X)) in H . By the definition of ⇠ this implies that the width of (T ,�) is the same as that

of (T ,⇠). ∑

The following result characterizes bi-directed vertex-separators in a digraphD in terms of vertex separators

in u(D) and the set of sources and sinks in D.

Lemma 2.4.7. Let (E(D)‰X,X) be an edge-partition of D and let S1 and S2 be the directed separators

associated with (E(D) ‰X,X) and (X,E(D) ‰X) respectively. Let U be the set of all vertices incident

both with an edge in E(u(D))‰X and with an edge in X in the underlying undirected graph u(D). If S is

the set of all sources and all sinks in D, then S1 ‰S2 = U ‰S.

Proof. Consider any element x in S1‰S2. By the definition of S1 and S2, there must be two edges eÀE(D)‰X

and f ÀX such that either e = ôôôôíwx and f = ôôôíxy or such that e = ôôôôíxw and f = ôôôíyx. Either way, this implies that x is

neither a source nor a sink and that x À U (since x is incident with both e and f in u(D)). Thus we have shown

that S1 ‰S2 ” U ‰S.

Now consider any element y À U ‰ (S1 ‰S2). Since y is in U , we know that it is incident with at least

two edges; so let g be one such edge. If y is the head of g, then we must have that every other edge incident

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 49

with y has y as its head (since otherwise y would be in S1 ‰S2). Similarly, if y is the tail of g, then every other

edge incident with y must have y as its tail. These observations imply that y is either a source or a sink (i.e. an

element of S). Thus S1 ‰S2 = U ‰S. ∑

Via Lemma 2.4.7 we now find a relationship between directed branch-width of a digraph D and the

undirected branch-width of its underlying undirected graph which depends on the number of sources and sinks

of D.

Corollary 2.4.8. Let D be a digraph; if S is the set of all sources and sinks in D, then bw(u(D))* S f

dbw(D) f bw(u(D)).

Proof. Consider a directed branch-decomposition (T ,�) of D. Letting � : E(D)ô E(u(D)) be the bijection

mapping every directed edge to its undirected counterpart, note that (T ,�˝�) is an undirected branch decomposi-

tion of u(D). Furthermore, observe that, in this way, every undirected branch decomposition can be obtained

from some directed branch decomposition and vice versa.

Let " be any edge in T and suppose that it has order k in (T ,�) and order l in (T ,�˝�). By Lemma 2.4.7,

we know that l* S f k f l. Furthermore, this is true for any choice of ". Thus, since � establishes a bijective

correspondence between the set of all directed branch decompositions of D and that of all undirected branch

decompositions of u(D), it follows that bw(u(D))* S f dbw(D) f bw(u(D)). ∑

Note that, since any bidirected orientation D of an undirected graph G has no sources or sinks, we can

apply Corollary 2.4.8 to deduce the following result.

Corollary 2.4.9. If D is the digraph obtained by replacing every edge xy in an undirected graph G with

the edges ôôôíxy and ôôôíyx, then dbw(D) = bw(G).

We will now show that, given any digraph D, we can obtain, by modifying D only at sources and sinks,

a digraph D® such that the directed branch-width of D equals the underlying undirected branch-width of D®.

Lemma 2.4.10. If H is the source-sink-split of D, then bw(u(H)) = dbw(D).

Proof. By Lemma 2.4.7 we know that the vertex separator in u(H) consists of the elements of the vertex separator

it corresponds to in H as well as possibly some sources and/or sinks. By the definition of H , every source or

sink in H has degree 1. Thus, for any vertex x À V (H) (recall V (H) = V (u(H))), x will appear as an internal

vertex in a directed path in H if and only if it appears as an internal vertex in a path in u(H). But then sources

50 CHAPTER 2. DIRECTED BRANCH-WIDTH

and sinks of H (which, by the definition of H , have degree 1) will never appear in a vertex-separator in u(H)

(by the definition of undirected branch-width) and hence bw(u(H)) = dbw(H). The result follows since, by

Lemma 2.4.6, dbw(H) = dbw(D). ∑

2.4.2 Butterfly minors and directed topological minors.

Two directed analogues of the minor relation are butterfly minors and directed topological minors. The

directed topological minor relation (introduced in [47]) is a less-restrictive variant of the better-known notion

of a butterfly minor which was introduced in [63]. We show that although directed branch-width is not closed

under topological minors, it is closed under butterfly minors.

Definition 2.4.11. The digraph D_ ôôôíxy obtained by contracting an edge ôôôíxy of a digraph D is the digraph

obtained fromD by removing the edge ôôôíxy and the vertices x and y and replacing these with a new vertex vôôíxy

which has in-neighborhood and out-neighborhood equal toN*
D(x)‰N

*
D(y) andN+

D(x)‰N
+
D(y) respectively

in D_ ôôôíxy.

Both directed topological minors and butterfly minors are defined by taking subgraphs and contracting

edges; what distinguishes them is which edges are deemed ‘contractible’. Directed topological minors allow

only the contraction of so-called 2-contractible edges (defined below). These are edges which, when contracted,

do not introduce new directed paths between vertices of degree at least three.

Definition 2.4.12 ([47]). Let D be a digraph and let V3(D) denote the subset of vertices incident with at

least 3 edges in D. An edge a = ôôôíxy is 2-contractible in D if

• {x,y} ’ V3(D)

• ôôôíyx À E(D) or there does not exist a pair of vertices (w,z) in V3(D), possibly w = z, such that x can

reach w in D* ôôôíxy and z can reach y in D* ôôôíxy.

Butterfly minors, on the other hand, only allow the contraction of butterfly edges.

Definition 2.4.13. Let ôôôíxy be an edge in a digraph D. If x has out-degree 1 and y has in-degree 1, then we

call ôôôíxy a butterfly edge.

Note that the contraction of a butterfly edge never creates new directed paths that were not otherwise

present. On the other hand, this might happen when contracting a 2-contractible edge (for example one joining a

source to a sink).

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 51

Having defined these two kinds of edges, we can define directed topological minors and butterfly minors.

Definition 2.4.14 ([47, 63]). Let H and D be digraphs.

• H is a directed topological minor of D if H can be obtained from a subgraph of D via a sequence

of contractions of 2-contractible edges. [47]

• H is a butterfly-minor of D if it can be obtained from a subgraph of D via sequence of contractions

of butterfly edges [63].

The next theorem shows directed branch-width is not closed under directed topological minors. In

contrast, we point out that all the tree-width-inspired measures are indeed closed under directed topological

minors [47].

Theorem 2.4.15. There does not exists any function g : Nô N such that, for every directed topological

minor H of a digraph J , we have dbw(H) f g(dbw(J)).

Proof. We shall construct a set of graphs {Dn : n À N} of bounded directed branch-width and show that there is

a set {�®
n : n À N} of directed topological minors of elements of {Dn : n À N} which has unbounded directed

branch-width.

Define Dn by starting from the n-vertex directed cycle Cn and proceeding as follows:

• add n sources s1,… ,sn, each one adjacent to every vertex of Cn

• add the vertices a1,… ,an and b1,… ,bn and, for each i À [n], add the edges ôôôôôísiai and ôôôôôíbiai (see Figure 2.3).

We will now show that dbw(Dn) f 3. Let D®
n be the source-sink-split of Dn and note that u(D®

n) is a cycle with n

pendant edges at each vertex together with some isolated edges (corresponding to the edges ôôôôôísiai and ôôôôôíbiai). Thus,

by inspection, u(D®
n) has tree-width 2 (since deleting a single vertex from the cycle in u(D®

n) yields a forest). By

Theorem 2.2.4, this implies that bw(u(D®
n)) f 3 which, by Corollary 2.4.8, implies that dbw(D®

n) f 3 and hence,

by Lemma 2.4.6, that dbw(Dn) f 3.

Now we will obtain a set {�n : nÀN} having unbounded directed branch-width such that �n is a directed

topological minor of Dn. Note that each edge ôôôôôísiai is 2-contractible since, for each i, ai has degree 2 and since

the only vertex that can reach ai in Dn* ôôôôôísiai (namely bi) has degree 1. Thus, by contracting every edge ôôôôôísiai, we

construct the digraph �n which is a directed topological minor of Dn. Now consider the digraph �®
n obtained

52 CHAPTER 2. DIRECTED BRANCH-WIDTH

from �n by identifying all of the sources b1,… ,bn into a single source b (see Figure 2.3). By Lemma 2.4.6 we

know that dbw(�®
n) = dbw(�n) so we shall conclude the proof by showing that {�®

n : n À N} has unbounded

directed branch-width. Since u(�®
n) contains the balanced complete bipartite graph Kn,n as a subgraph and since

tw(Kn,n) = n [30], we deduce (via Theorem 2.2.4) that

bw(u(�®
n)) g 2(tw(Kn,n)_3*1) = 2n_3*2.

Finally, since �®
n has at exactly one source and no sinks, we deduce by Corollary 2.4.8 that

dbw(�®
n) g bw(u(�®

n))*1 g 2n_3*3.

Thus we conclude that {Dn : n À N} has bounded directed branch-width and {�®
n : n À N} has unbounded

directed branch-width as required. ∑

x1

x2

x3

s1

s2

s3

a1

a2

a3

b1

b2

b3

x1

x2

x3

s1

s2

s3

b

Figure 2.3: Left: the graph D3 defined in the proof of Theorem 2.4.15 (the relevant 2-contractible edges are
drawn red and dotted). Right: the graph �®

3.

Now we turn our attention to butterfly minors and show that directed branch-width is a butterfly-minor-

closed parameter.

Theorem 2.4.16. If H is a butterfly minor of a digraph D, then dbw(H) f dbw(D).

Proof. Since directed branch-width is subgraph-closed (by Lemma 2.4.1) it su�ces to show that it is not increased

under contractions of butterlfy edges. We will show that, given any directed branch decomposition (T ,�) of D,

we can construct a directed branch decomposition of D_ôôíxy of width at most that of (T ,�).

Let ôôôíxy be a butterfly edge in D and let ! be the vertex of D_ôôíxy created by the contraction of ôôôíxy. Let

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 53

� : E(D)‰{ ôôôíxy}ô E(D_ôôíxy) be the bijection defined for any edge ôôíst in E(D)‰{ ôôôíxy} as:

�(ôôíst) :=

h
n
n
n
l
n
n
nj

ôôôôís! if t = x

ôôôí!t if s = y

ôôíst otherwise.

Note that � is well-defined since x and y are respectively a sink and a source in E(D)‰{ ôôôíxy} (by the definition of

butterfly edge).

We will use � to construct a directed branch-decomposition (U ,�) of D_ôôíxy from (T ,�) as follows. Let

U be the inclusion-wise minimal subtree of T connecting all leaves of T which are not mapped to ôôôíxy by �.

Let � := �˝(�l(U)) where �l(U) denotes the restriction of � to the set l(U) of leaves of U (note that, by the

definition of � , � is a bijection between the leaves of U and the edges of D_ôôíxy).

Let e be an edge in U (and note that e À E(T) also). Let X(T ,�)
e be the bidirected separator at e in (T ,�)

and let X(U ,�)
e be the bidirected separator at e in (U ,�). By the definition of (U ,�), we have that

X(U ,�)
e =

h
n
n
l
n
nj

{!}‰ (X(T ,�)
e ‰{x,y}) if {x,y}„X(T ,�)

e ë Á

X(T ,�)
e otherwise

and hence that X(U ,�)
e  f X(T ,�)

e . Since this is true for any edge e, it implies that dbw(D_ôôíxy) f dbw(D) as

required. ∑

2.4.3 Comparison to other digraph width measures.

All of the “tree-width-inspired” width measures (such as directed tree-width, DAG-width, D-width and

Kelly-width) are bounded on the class of all DAGS [68]. In contrast we show that the class of all DAGS has

unbounded directed branch-width.

Theorem 2.4.17. For any n À N, there exists a directed acyclic graph Dn with dbw(Dn) g n.

Proof. Let  = 3(n+2)_2*1 and Dn be the acyclic digraph obtained by orienting all edges of the  ù grid

54 CHAPTER 2. DIRECTED BRANCH-WIDTH

north-east, i.e. the digraph

Dn :=
⇠
[]2, {ôôôôôôôôôôôôôôôôôí(a,b)(c,d) : (a = c and d = b+1) or (b = d and c = a+1)}

⇡
.

Recall that, since u(Dn) is a square grid, it has tree-width  = 3(n+2)_2*1 [30]. Thus we can invoke Theorem

2.2.4 to deduce that bw(u(Dn)) g n+2. Since Dn has exactly one source and one sink (the south-west and

north-east corners), we know (by Corollary 2.4.8) that dbw(Dn) g bw(u(Dn))*2, so the result follows. ∑

Recall that each tree-width-inspired measure (and tree-width itself) can be defined via some variant of a

cops-robber game played on either a digraph or an undirected graph respectively. Using Theorem 2.4.17, we

will show that none of these games can be used to characterize directed branch-width.

The cops-robber variants that can be used to define the tree-width-inspired measures all have the following

common structure. The Sheri� can chose to add new cops to the board or move some cops that have been

previously placed while the Villain can only move their piece. Each round follows this sequence of events: the

Sheri� announces which cops they intend to move and where they intend to move them to, then they remove any

cops that are involved in this move from the board; before the cops are placed back on the board, the Villain

makes their move; finally the Sheri� completes their previously-announced move.

Playing on a (directed) graph D, the state of the game after round ⇢ is recorded by the pair (C ,r)⇢ where

C ” V (D) is the set of positions of the cops and r À V (D) is the position of the robber. The initial state of the

game is always of the form (Á,r)0 for some vertex r in D and the game terminates when a cop is placed on the

vertex occupied by the robber. The Sheri� loses if the game never terminates and wins otherwise. The width of

a play at time ⇢ is the maximum number of cops that were ever placed at any round up to and including ⇢. We

say that the Sheri� has a k-winning strategy on a (directed) graph D if they can always win on D with a play of

width at most k.

The cops can be moved (or placed) freely from their position to any other vertex in the graph (this is

often conceptualized as the cops being able to move “by helicopter”). Di�erent game variants are distinguished

by the knowledge of the Sheri� or the di�erent ways in which a robber can be moved. The first distinction is

whether or not the Sheri� knows the position of the robber; we call these games visible and invisible-robber-game

respectively. The second important distinction emerges from how the Villain is allowed to move the robber.

For the games used to characterize tree-width-inspired measures, the least restrictive movement pattern for the

2.4. PROPERTIES OF DIRECTED BRANCH-WIDTH. 55

robber is for it to be movable from position r in a (directed) graph G to any vertex r® which is reachable by a

(directed) path from r in G*C , where C is the current vertex-set occupied by cops. This is called the weak

reachability game. We note that we also allow the Villain to pass their turn without moving their piece (this is

referred to as an inert robber game [68]).

The games we have described can be used to characterize both tree-width and any tree-width inspired

measure. An undirected graph G has tree-width at most k if and only if the Sheri� has a (k+1)-winning-strategy

for the visible cops-robbers game on G [29]. A similar statement can be made about any tree-width-inspired

measure �: there exists a cops-robber game �� such that the Sheri� has a k-winning-strategy for �� on a digraph

D if and only if �(D) f k [68].

Note that the most general game variant is the invisible-robber inert-weak-reachability cops-robber game.

This follows since: (1) every strategy playable with a robber that cannot remain inert is also playable with one

that can, (2) if the Sheri� can win the invisible-robber game, then they can also win in the visible version (by

closing their eyes).

Corollary 2.4.18. The Sheri� has a 1-winning strategy for the invisible-robber inert-weak-reachability

cops-robber game on any directed acyclic graph.

Proof. Let D be an acyclic digraph and let v1,… ,vn be a topological ordering of its vertices. The Sheri�’s

strategy on D is to place one cop at v1 and then move it at every round to the next vertex in the topological

ordering. Note that, if the robber is moved at any round ⇢ from some vertex vi to vj , then it must be that j g i.

Thus, since the cop will eventually reach vn, the robber cannot escape indefinitely. ∑

By Theorem 2.4.17, we know that the class of all DAGS has unbounded directed branch-width. Thus

Corollary 2.4.18 implies the following result.

Corollary 2.4.19. There is a family of digraphs of unbounded directed branch-width for which the Sheri�

has a 1-winning strategy for the invisible-robber inert-weak-reachability cops-robber game.

Undirected graph classes of bounded branch-width also have bounded rank-width [24, 82]. We will show

that this is not true for the directed analogues of these measures: boundedness of directed branch-width does not

imply boundedness of bi-cut-rank-width. To do so, we first recall a known result about the rank-width of grids.

56 CHAPTER 2. DIRECTED BRANCH-WIDTH

Theorem 2.4.20 ([61]). The class of all undirected grids has unbounded rank-width.

For directed graphs, the bi-cut-rank-width version of Theorem 2.4.20 follows by the following theorem.

Theorem 2.4.21 ([54, 68]). For any digraph D, bcrk(D) g rw(u(D)).

Thus Theorems 2.4.20 and 2.4.21 allow us to show that boundedness of directed branch-width does not

imply boundedness of bi-cut-rank-width.

Theorem 2.4.22. There does not exist a function g : N ô N such that, for any digraph D, bcrk(D) f

g(dbw(D)).

Proof. By Corollary 2.4.3, there is an infinite set í� of digraphs given by acyclic orientations of the square grids

such that í� has bounded directed branch-width. However, by Theorems 2.4.20 and 2.4.21, we know that í� has

unbounded bi-cut-rank-width. ∑

2.5 Algorithmic aspects of directed branch-width.

In this section we will first show that directed branch-width is computable in FPT-time and then go on

to demonstrate that many problems (such as Directed Hamilton Path and Directed MaxCut) are in FPT when

parameterized by directed branch-width.

2.5.1 Computing directed branch-width

Here we will show that, despite being NP-complete, the problem of determining whether a digraph has

branch-width at most k can be solved in linear time for any constant k.

We begin with a formal statement of the problem.

DIRECTED-BRANCH-WIDTH.

Input: a digraph D and a positive integer k.

Question: does D have directed branch-width at most k?

It is known that deciding whether the branch-width of an undirected graph is at most k is an NP-complete

problem [92]. Since directed branch-width agrees with undirected branch-width on bi-directed orientations of

2.5. ALGORITHMIC ASPECTS OF DIRECTED BRANCH-WIDTH. 57

undirected graphs (Corollary 2.4.9), it follows that DIRECTED-BRANCH-WIDTH is NP-hard. Furthermore, given

a directed branch decomposition (T ,�) of a digraph D, one can check in polynomial time the order of any edge

of T . Since T has O(E(D)) edges, DIRECTED-BRANCH-WIDTH is in NP; thus we have shown the following

result.

Theorem 2.5.1. DIRECTED-BRANCH-WIDTH is NP-complete.

A natural next question is whether computing the directed branch-width of a digraph D is in FPT

parameterized by k. This is known for the undirected case.

Theorem 2.5.2 ([12, 15]). There is a linear-time algorithm which decides for a fixed k whether an undi-

rected graph has branch-width at most k.

We can use Theorem 2.5.2 and Lemma 2.4.10 to show that deciding whether a digraph has directed

branch-width at most k is in FPT parameterized by k.

Theorem 2.5.3. DIRECTED-BRANCH-WIDTH is in FPT parameterized by k.

Proof. Letting D® be the source-sink-split of D, we know (Lemma 2.4.10) that bw(u(D®)) = dbw(D). A source-

sink-split can be obtained in polynomial time: for each source (or sink) x with N(x) = {y1,… ,y⌘}, replace x

with sources (or sinks) z1,… ,z⌘ such that zi is adjacent to yi. Since V (D®) is O(V (D)2), we can use the

FPT algorithm of Theorem 2.5.2 to determine whether the undirected branch-width of u(D®) is at most k and

hence compute whether the directed branch-width of D is at most k in time linear in E(D®) (which equals

E(D)). ∑

2.5.2 Parameterizations by directed branch-width

Our definition of directed branch-width was motivated by the need for a digraph width-parameter that

could be used to devise many FPT-time algorithms. As we mentioned in Section 2.1, despite their great success in

some cases, the tree-width and rank-width-inspired measures still face considerable shortcomings when compared

to the algorithmic power of undirected tree-width. In particular recall that the directed versions of the Hamilton

Path and Max-Cut problems are W[1]-hard when parameterized by any rank-width or tree-width-inspired

measure [45, 69].

58 CHAPTER 2. DIRECTED BRANCH-WIDTH

D-HAMILTON-PATH

Input: a digraph D.

Question: does D contain a directed Hamiltonian Path?

D-MAX-CUT

Input: a digraph D and an integer k.

Question: is there a vertex partition of D of directed order at least k?

We will show that both D-HAMILTON-PATH and D-MAX-CUT are in FPT when parameterized by

directed branch-width. We will do so by first showing some general results providing su�cient conditions which

guarantee that a problem is in FPT parameterized by directed branch-width.

One notion important for our su�cient conditions will be that of invariance under source-sink-identifications.

Definition 2.5.4. We call a decision problem ⇧ source-sink-invariant if, given any two digraphs D and H

equivalent under source-sink-identifications, D is a yes-instance for ⇧ if and only if H also is.

Note that, while problems such as Directed Feedback Vertex Set, Acyclic Coloring and D-MAX-CUT

are source-sink-invariant (see the following lemma for D-MAX-CUT), the D-HAMILTON-PATH problem is not.

To see this, consider the digraph J = ({a,b,c},{ôôôíab, ôôôícb}). Clearly J has no directed Hamiltonian path; however,

after performing all possible source-sink-identifications, it does.

Lemma 2.5.5. D-MAX-CUT is source-sink-invariant.

Proof. We will first show that, in any instance, there is a vertex partition of maximum order with all sources on

the left-hand-side and all sinks on the right-hand-side. Then we will show that identifying the sources or the

sinks in any such partition does not change its order.

Take any vertex partition (V (D)‰X,X) of any digraph D. Recall that the order of (V (D)‰X,X) is the

number of edges in the edge separator SE(V (D)‰X,X) consisting of all edges starting in V (D)‰X and ending in X.

Thus, if there is a source s inX, then no edge incident with s will be in SE(V (D)‰X,X). Hence, letting Y :=X ‰{s},

the order of (V (D)‰Y ,Y) is at least that of (V (D)‰X,X). Furthermore, a symmetric argument shows that

moving all sinks to the right-hand-side of a vertex partition can only increase the order of a partition. Thus we

2.5. ALGORITHMIC ASPECTS OF DIRECTED BRANCH-WIDTH. 59

have shown that, in every digraph D, there exists a vertex partition (V (D)‰Z,Z) of maximum order with all

sources in V (D)‰Z and all sinks in Z.

To conclude the proof, we consider what happens when we identify two sources in D (the proof for

identifications of sinks is symmetric). Let s1 and s2 be two sources in V (D)‰Z and, for i À [2], let Fi be the set

of all edges starting from si and ending in Z. Now consider the digraph D® obtained from D by identifying s1

and s2 into a new source � . Since the set of edges starting from � and ending in Z is precisely F1‰F2, it follows

that SE(V (D®)‰Z,Z) = SE(V (D)‰Z,Z). ∑

We now show that if a source-sink-invariant problem is in FPT parameterized by underlying tree-width,

then it also is when parameterized by directed branch-width.

Theorem 2.5.6. Let ⇧ be a problem which is in FPT parameterized by underlying tree-width and let this

fact be witnessed by an algorithm A which, for a computable function f and constant c, decides ⇧ in

time at most f (tw(u(D®))) � V (D®)c for any digraph D®. If ⇧ is source-sink-invariant, then ⇧ is in FPT

parameterized by directed branch-width. Furthermore, there is an algorithm that decides ⇧ in time at most

f (3dbw(D®)_2))V (D®)c .

Proof. First obtain the source-sink-split D of the input digraph D® and note that this can be done in polynomial

time (recall that V (D) isO(V (D®))). Since bw(u(D)) = dbw(D®) (by Lemma 2.4.10) we know that tw(u(D))f

3dbw(D®)_2 (by Theorem 2.2.4). Since ⇧ is source-sink-invariant, D will be a yes-instance if and only if D®

also is. Thus the result follows since we can apply the FPT algorithm A to solve ⇧ on D. ∑

Theorem 2.5.6 allows us to deduce a algorithmic meta-theorem parameterized by directed branch-width

by leveraging Courcelle’s Meta-theorem for tree-width (Theorem 1.2.7). In particular Theorems 2.5.6 and 1.2.7

imply that the model-checking problem for the subset of source-sink-invariant formulae in the MSO2-logic of

graphs is in FPT parameterized by directed branch-width.

Corollary 2.5.7. Let � be a formula in the MSO2 logic of graphs. If, for any digraph D® equivalent to D

under source-sink identification, we have that D® Ù � if and only if D Ù �, then there is an FPT algorithm

parameterized by dbw(D)+ � which decides whether D models �.

We note that Corollary 2.5.7 does not immediately imply the existence of an FPT algorithm for D-

HAMILTON-PATH since this is not a source-sink-invariant problem. However, notice that this problem is tractable

if the input digraph has more than one source or more than one sink (such a digraph cannot be Hamiltonian).

60 CHAPTER 2. DIRECTED BRANCH-WIDTH

More generally, for problems that are tractable on inputs with more than some constant number of sources or

sinks, we know that either the problem is tractable or we know that the underlying tree-width is bounded in

terms of the directed branch-width. Following this train of thought, the following result shows that, problems

(such as D-HAMILTON-PATH) which are polynomial-time solvable on digraphs with more than � sources or

sinks (for some fixed �) and which are also in FPT parameterized by underlying tree-width, belong to FPT when

parameterized by directed branch-width.

Corollary 2.5.8. Let ⇧ be a decision problem on digraphs which is in FPT parameterized by underlying

tree-width. If there exists a polynomial p and integer � such that ⇧ can be decided in time p(D) on any

digraph with at least � sources or at least � sinks, then⇧ is in FPT parameterized by directed branch-width.

Proof. Let D be a digraph and let S and T be the sets of all sources and sinks of D. Check (in time O(E(D)))

whether S g � or T  g � . If this is the case, then we decide ⇧ in time p(D). Otherwise, by Corollary 2.4.8,

we know that bw(u(D)) f dbw(D)+ S+ T  f dbw(D)+2� . Thus, since the ⇧ is in FPT parameterized by

underlying tree-width and since tw(u(D)) f 3(dbw(D)+2�)_2*1 (by Theorem 2.2.4), the result follows. ∑

Finally we turn our attention to D-HAMILTON-PATH and D-MAX-CUT. Recall that, when parameterized

by underlying tree-width, these problems are in FPT.

Theorem 2.5.9. [29] For any digraph D, D-HAMILTON-PATH and D-MAX-CUT can be solved by algo-

rithms running in time at most f (tw(u(D)))D for a computable function f .

Thus, by Lemma 2.5.5, Theorem 2.5.6 and Corollary 2.5.8 we can the following result that avoids the

tower of exponentials given by an application of Courcelle’s Theorem.

Corollary 2.5.10. For any digraphDwith directed branch-width k, D-HAMILTON-PATH and D-MAX-CUT

can be solved by algorithms running in time at most f (k)D2 for a computable function f .

Proof. D-MAX-CUT is source-sink-invariant by Lemma 2.5.5. Thus we can solve it in time linear in the number

of vertices of the source-sink-split of any input digraph D by Theorems 2.5.9 and 2.5.6. So the result follows

for D-MAX-CUT since the source-sink-split has O(V (D)2) vertices. Now notice that any digraph with more

than one source or more than one sink is a no-instance of D-HAMILTON-PATH. Thus, by Theorem 2.5.9 and

Corollary 2.5.8, the result follows for D-HAMILTON-PATH as well. ∑

Since directed branch-width is not closed under directed topological minors, Theorem 2.2.10 does not

rule out the existence of a stronger algorithmic meta-theorem. Thus it is natural to ask whether it is possible

2.5. ALGORITHMIC ASPECTS OF DIRECTED BRANCH-WIDTH. 61

to strengthen Corollary 2.5.7 to show fixed-parameter tractability of the MSO2-model-checking problem (i.e.

not only for those formulae which are invariant under source-sink identification) parameterized by directed

branch-width. We shall show that this is not possible by demonstrating a problem which is MSO2-expressible

but which is W[1]-hard when parameterized by directed branch-width. For this purpose, we define the Directed

2-Reachability Edge Deletion problem (denoted DRED2). The 2-reach of a vertex x in a digraph D is the set

REACH2(D,x) of all vertices which are reachable from x in D via a directed path with 0, 1, or 2 edges.

DRED2.

Input: a digraph D and two naturals k and h and a vertex s of D.

Question: is there an edge-subset F of D of cardinality at most k such that

V (D)‰REACH2(D*F ,s) g h?

Lemma 2.5.11. Every instance (D,k,h,s) of the DRED2 problem is MSO2-expressible with a formula of

length bounded by a function of k and h.

Proof. We provide an MSO2 encoding of the DRED2 problem via a formula whose length depends only on k

and h. Let (D,k,h,s) be an instance of the DRED2 problem. A digraph D is encoded as a relational structure

with ground set V (D)‰E(D) and a binary incidence relation. We shall write E(x,y) as shorthand to denote

that there is an edge ôôôíxy incident with x and y. For an edge relational variable F and edge-variable ôôôíxy we write

F (ôôôíxy) to denote that ôôôíxy is in the edge-set F .

Note that there is a directed walk from s to some vertex t with 0, 1 or 2 edges none of which intersect a

given edge-set F if and only if at least one of the following formulae holds:

path0(F , t) := s = t or

path1(F , t) := E(s, t)·¬F (ôôíst) or

path2(F , t) := «x E(s,x)·E(x, t)·¬F (ôôôísx)·¬F (ôôíxt).

62 CHAPTER 2. DIRECTED BRANCH-WIDTH

Thus, in a digraph D, a vertex t is in REACH2(D*F ,s) if and only if the following formula holds.

canReach(F , t) :=
À

iÀ{0,1,2}
pathi(F , t) (2.1)

Using Equation 2.1, we determine whether there are at least h vertices which cannot be reached from s in D*F

with a path on 0, 1 or 2 edges; this is encoded as follows:

unreachablegh(F) := «x1…«xh

1fi<jfh
(xi ë xj)

iÀ[h]

¬canReach(F ,xi).

Next we need to establish a formula that determines whether an edge set F contains at least k edges; we do so as

follows:

cardgk(F) := «e1…«ek

1fi<jfk
(ei ë ej)

1fifk

F (ei).

Finally we can use the formulae cardgk(F) and reachgh(F ,s) to encode the DRED2 problem as

«F unreachablegh(F)·¬cardgk+1(F).

Note that the length of unreachableh(F) is quadratically bounded by a function of h and that the length of

cardgk+1(F)) is quadratically bounded by a function of k. Thus the formula-length of the entire encoding

depends quadratically only on k and h, as desired. ∑

We will show that DRED2 is W[1]-hard on graphs of bounded directed branch-width when parameterized

by h and k. Our proof technique is almost identical to that used by Enright, Meeks, Mertzios, and Zamaraev for

an analogous problem in a di�erent setting (temporal graphs) [36]. For completeness, we give full details here.

Theorem 2.5.12 ([36]). On digraph classes of directed branch-width at most one the DRED2 problem

is W[1]-hard when parameterized by the number k of edges which can be deleted and the number h of

non-reached vertices after the edge-deletion.

Proof. We will describe a parameterized reduction from the r-CLIQUE problem (shown to be W[1]-hard in [35])

which asks whether a given undirected graph G contains an r-clique, where r is taken as the parameter. Let

(G,r) be an r-CLIQUE-instance, let n := V (G) and m := E(G). From (G,r) construct a DRED2-instance

2.5. ALGORITHMIC ASPECTS OF DIRECTED BRANCH-WIDTH. 63

(D,r,h,s) by defining:

V (D) := {s}‰V (G)‰E(G) (where s is a new vertex not in G),

E(D) := {ôôôísx : x À V (G)}‰{ôôôíxe : x À V (G) and e À E(G) s.t. x À e},

h := r+
0
r
2

1
.

To see that this is indeed a parameterized reduction, note that r clearly bounds itself, h is a function of r and

V (D) is polynomial in V (G). Finally we claim that dbw(D) f 1. To see this, take a source-sink-split D® of

D and note that u(D®) is a collection of disjoint stars centered at elements of V (G)„V (D); thus, by Lemma

2.4.10 we have dbw(D) = bw(u(D®)) f 1. It remains to be shown that (G,r) is a yes-instance for r-CLIQUE if

and only if (D,r,h,s) is a yes-instance for DRED2.

Note that we can assume r g 3 since otherwise r-CLIQUE is trivial. Similarly, we may assume that

m g r+
�r
2
�

since otherwise there are at most r+3 vertices of degree at least r*1 and hence we could solve

r-CLIQUE on G in time O(r3).

If (G,r) is a yes-instance, then let U be a vertex-set inducing an r-clique in G. Then the edge-set

F = {ôôôísu : u À U} witnesses that (D,r,h) is a yes-instance since

V (D)‰REACH2(D*F ,s) = (U + E(G[U])) (by the definition of F)

= r+
0
r
2

1
= h (since U induces an r-clique).

Conversely, suppose (D,r,h,s) is a yes-instance witnessed by a set F of at most r edges in D such that V (D)‰

REACH2(D*F ,s) g h. Let U be the subset of vertices in V (G)„V (D) which are incident with an edge in F .

Note that U ” V (G) and U  f r by the cardinality of F . Since (D,r,h) is a yes-instance we know that

V (D)‰REACH2(D*F ,s) g (U + E(G[U])) (by the definition of F)

g r+
0
r
2

1
(since (D,r,h,s) is a yes-instance)

and hence that U + E(G[U]) g r+�r
2
�
. Thus U must induce an r-clique in G. ∑

Lemma 2.5.11 and Theorem 2.5.12 show that that, unless FPT = W[1], the MSO2-model-checking

problem is not in FPT on classes of bounded directed branch-width parameterized by formula length.

64 CHAPTER 2. DIRECTED BRANCH-WIDTH

2.6 Conclusion and open problems.

We generalized a characterization of classes of bounded tree-width as classes of graphs whose line-graphs

have bounded rank-width to the setting of digraphs. We did so by introducing a new digraph width measure

called directed branch-width and by proving that the classes of digraphs of bounded directed branch-width are

exactly those classes whose directed line-graphs have bounded bi-cut-rank-width.

From an algorithmic perspective, we showed that the directed analogues of the Hamilton Path, and Max-

Cut problems are in FPT parameterized by directed branch-width. These results are of particular importance

since the directed Hamilton Path and Max-Cut problems are intractable when parameterized by any tree-width

or rank-width-inspired measure [45, 69]. Furthermore we showed that the model-checking problem for a specific

subset of MSO2-formulae is also in FPT parameterized by directed branch-width.

Directed branch-width opens new doors for the study of digraph connectivity which we describe now.

This is partly due to a connection with tangles which are objects allowing one to investigate global connectivity

properties of graphs (see [87] for a definition). It is known that layouts of a symmetric sub-modular function f

over a set S are always dual to f -tangles over S [4, 32, 33, 87]. In particular, it is possible to define a notion of

directed tangle which is dual to directed branch-width.

Tangles and k-blocks (introduced in [20]) have been recently abstracted by Diestel, Hundertmark and

Lemanczyk [31] via the notion of a separation profile. This notion can be applied to graphs, matroids and to

data sets. An interesting open problem is that of developing truly directed analogues of k-blocks and separation

profiles. The fact that directed branch-width can be associated to a directed tangle makes it a promising starting

point for this problem.

To conclude, we point out that Giannopoulou, Kawarabayashi, Kreutzer and Kwon [49] also introduced a

notion under the name of ‘directed tangle’. However, the two notions are completely incomparable: while our

definition of ‘directed tangle’ is defined with respect to a connectivity function that is symmetric and submodular,

the connectivity function that they use is not2. It is thus an interesting avenue for further research to compare our

notion of ‘directed tangle’ to theirs.

2in their notation, a directed separation in a digraph D is a pair (L,R) of vertex subsets of D such that L‰R = V (D) and such that there
is no pair of edges ôôôôôôôíl1r1 and ôôôôôôôír2l2 which ‘cross (L,R) in opposite directions’ in D (i.e. s.t. {l1,l2} ” L and {r,r2} ” R)

65

3 | Spined categories: generalizing tree-

width beyond graphs

3.1 Introduction

Our e�orts in Chapter 2 fit in the broader context of finding algorithmically useful notions of ‘recursive

decomposition’ for objects other than finite simple graphs. In this chapter we propose a category-theoretic

formalism that provides a meta-answer to the question of defining tree-width analogues in new settings.

The challenge Most notions of recursive graph decomposition are defined in terms of the internal structure

of the decomposed object. For example, clique-width decomposition trees – which are used to define the

width-measure known as clique-width – use a formal grammar to specify how to construct a given graph from

smaller ones by adding edges between specific pairs of vertices. For this reason generalizing a given notion of

decomposition to a larger class of objects tends to be an arduous task. In fact, as we mentioned in Chapter 2

(and as Kreutzer and Kwon highlight in their survey [68]) even just for digraphs - which are arguably the most

similar objects to undirected graphs - the search for an algorithmically useful analogue of tree-width has been

an elusive quest that has captivated the research community for the past thirty years. For example, recall from

Chapter 2 the myriad of subtly di�erent tree-width analogues that arise when generalizing tree decompositions

from simple graphs to digraphs [13, 59, 63, 68, 91].

It is thus clear that, if we wish to find notions of ‘recursive decomposability’ for more diverse classes of

objects, then we need radically new ideas.

We take these considerations to heart in this chapter: we will introduce category-theoretic formalizations

66 CHAPTER 3. SPINED CATEGORIES

of the notions of ‘recursive decomposability’, ‘recursive decomposition’ and ‘width measure’ which have so

far been vague, umbrella terms used to describe the many constructions stemming from the very active field of

‘graph width-measures’ [26, 29, 30, 52, 82, 93].

Why category theory It is natural to ask why we should we choose to work in the language of category

theory. We will settle for a very informal answer for now, but we reassure the reader that this answer will become

more concrete already by the end of Section 3.2.

It might be considered a category theorist’s motto that ‘it is not the objects that matter, but the arrows’.

This is to say that definitions, theorems and proofs in category theory are stated in terms of the ‘relationships’

(or ‘mappings’ or ‘homomorphisms’) between objects rather than in terms of the objects themselves. Although

this might seem like an unnecessary complication at first, this change of perspective has lead to advances and the

discovery of deep connections in Mathematics and Computer Science [5, 46, 84]. For example, consider the

applications to topology and abstract algebra originating from Eilenberg and Mac Lane’s work in the 1940s, or

the applications in algebraic geometry stemming from Grothendieck’s work in the 1950s, or the categorification

of logic stemming from Lawvere’s work in the 1960s (just to name a few).

Furthermore, since category-theoretic definitions do not require us to ‘see inside’ the objects, they are

very general and can be applied in a great variety of settings. In fact this will constitute a great strength of our

work in this Chapter: we will introduce an abstract definition of tree-decomposition that is ‘object agnostic’ in

the sense that it is defined in terms of the relations (i.e. morphisms) between the objects we wish to decompose

(i.e. the ‘ambient category’) rather than in terms of the objects that it decomposes. In particular this means that

our work in this chapter opens the doors to finding tree-width analogues for classes of objects that are completely

di�erent from graphs (they might come, for example, from algebra or topology) and which do not have obvious

counterparts to notions such as vertex, edge, cycle or connectivity.

To accommodate readers from di�erent backgrounds, in Section 3.2 we will give a brief introduction to

some standard notions in category theory (such as functors, monomorphisms and pushouts) which we will require

in the rest of this Chapter. However, before we do so, we shall give some more graph-theoretical background in

Section 3.1.1 which will further contextualise the work in this chapter.

3.1. INTRODUCTION 67

3.1.1 Background and high-level overview

As we already mentioned, in this chapter we will show that the di�culty of transferring a given de-

composition notion to a more general setting can be reduced significantly by adopting a category-theoretic

perspective. For our purposes, this will amount to finding a characteristic property of tree-width formulated purely

in category-theoretic terms and independently of any graph-theoretic notions. Such category-theoretic character-

izations have already proven successful in other fields (see e.g. Leinster’s work on categorial characterizations of

ultraproducts [70] and more recently Lebesgue integration [71]).

Towards finding a category-theoretic formalization of tree-width, however, it is sensible to first seek

inspiration from a known definition of tree-width which has a more algebraic flavor compared to – for example –

its typical definition in terms of tree decompositions (Definitions 1.2.3 and 1.2.4).

We find such a definition in a paper by Halin from 1976 [55]. There he obtains a characterization of tree-

width as a maximal element in a point-wise ordered lattice of functions called S-functions. Throughout this chapter

we will gradually build-up a theory of categories having su�cient structure for us to prove (Theorem 3.4.15) a

vast generalization Halin’s characterization.

Before delving into the formal definition of Halin’s S-functions, recall (from Definition 1.1.2) that an

H-sum of two graphs G1 and G2 which share a common subgraph H is defined to be a graph G1#HG2 obtained

by identifying an isomorphic copy of H in G1 with an isomorphic copy of H in G2.

Observe – as Halin did [55] – that the Hadwiger number (the maximum n such that a given graph has a

Kn-minor) satsifies the following properties:

1. n-vertex cliques have Hadwiger number n;

2. if we are given a graph G obtained as a clique sum G ˆ G1#KnG2, then the Hadwiger number h(G) of G

is equal to its maximum over the addends in the clique-sum (i.e. h(G) = max{h(G1),h(G2)});

3. if we are given a graph G which is a minor of a graph H , then the Hadwiger number of G is at most the

Hadwiger number of H .

Halin noticed that many other graph invariants (such as the modified chromatic number1 and the modified

connectivity number2) behaved similarly (in the above sense) to the Hadwiger number and this prompted him to
1The maximum of the chromatic numbers over all minors [55]
2One plus the maximum of the connectivity number over all minors [55]

68 CHAPTER 3. SPINED CATEGORIES

give an axiomatic definition of all functions of this kind. To that end, he defined S-functions: these are mappings

from finite graphs to the natural numbers satisfying the following axioms.

Definition 3.1.1 ([55]). A function f : G ô N is called an S-function if it satisfies the following four

properties:

(H1) f (K0) = 0 (K0 is the empty graph)

(H2) if G is a minor of H , then f (G) f f (H) (minor isotonicity)

(H3) f (G?v) = 1+f (G) (distributivity over adding an apex vertexa.)

(H4) for each nÀN, G =G1#KnG2 implies that f (G) = maxiÀ{1,2}f (Gi) (distributivity over clique-sum).

aRecall from Chapter 1 that a vertex v is an apex if it is adjacent to every other vertx in the graph

The set of all S-functions can be seen to form a poset under the pointwise ordering (i.e. for S-functions f

and g, we write f f g if f (G) f g(G) ≈G À G); in fact it is a very large poset since Halin showed that there are

uncountably many S-funtions [55]. While studying the order-theoretic properties of S-functions, he obtained the

following characterization of tree-width as the maximal S-function.

Theorem 3.1.2 ([55]). The set of all S-functions forms a complete distributive lattice when equipped with

the pointwise ordering. Furthermore, the function G≠ tw(G)+1 is maximal in this lattice.

Before moving on, we take a moment to address the question of what is gained by seeking a generalization

of Halin’s Theorem 3.1.2.

The brief answer is that understanding S-functions tells us much more than simply understanding tree-

width since S-functions describe a large class of graph invariants (including ones such as the modified chromatic

number and the Hadwiger number) that have played central role in many aspects of graph theory and complexity

theory.

For a more concrete answer to why we should seek a generalization of Theorem 3.1.2, first notice that the

pointwise ordering on S-functions can be equivalently stated as an ordering on graph classes. To see this, take

any two S-functions f and g with f f g and observe that any graph G in the class gfn := {G À G : g(G) f n}

must also be an element of the class ffn since f (G)f g(G)f n (because we assumed that f f g in the point-wise

order). In particular this means that f f g if and only if ffn ‘ gfn for all n À N. In the context of Theorem 3.1.2,

these observations imply that a graph class K has tree-width at most k if and only if, letting ⌅ denote the set

3.1. INTRODUCTION 69

of all S-functions, we have K ”
∂
fÀ⌅ffk. These observations thus imply that both Halin’s Theorem 3.1.2

and our generalization thereof (i.e. Theorem 3.4.15) provide us with a very deep understanding of classes of

bounded tree-width: if we wish to show that a graph-class has unbounded tree-width, all we need to do is find

one S-function which is unbounded on that class. This is a powerful observation since there are S-functions that

have a more local nature and which are significantly easier to study compared to tree-width [55].

As we mentioned, our main theorem in this chapter (Theorem 3.4.15) will be a vast generalization of

Theorem 3.1.2 which will result in our abstract characterization of tree-width. To obtain this generalization, we

introduce spined categories which provide a precise, abstract definition of recursive decomposability. Roughly,

spined categories are categories equipped with su�cient additional structure to admit both

• a well-behaved notion of recursive decomposition (which we call pseudo-chordal completions) and

• a categorial generalization of the graph-theoretic notion of tree-width (we call this the triangulation functor

and we construct it in Section 3.4).

Spined categories come equipped with a proxy-pushout operation whose role is largely analogous to that

of the clique-sum operation in Halin’s definition of S-functions (Definition 3.1.1). The role of cliques themselves

is played by the members of a distinguished sequence of objects, called the spine.

Among the structure-preserving mappings (i.e. functors) between spined categories, we find abstract

(and functorial) counterparts to Halin’s S-functions: we call these S-functors (Definition 3.3.7). We shall see

that S-functors are in fact more general than Halin’s notion, even in the case of simple graphs. While every

S-function yields an S-functor over the category of graphs and injective homomorphisms (Proposition 3.3.8), the

converse is not true.

We show that, when appropriately instantiated, the triangulation functors (i.e. our abstract analogues of

tree-width) encompass several tree-width-like invariants such as hypergraph tree-width (Theorem 3.4.17), and

the tree-width of the modular quotient in the category of modular partition functions (Example 3.5.2).

Our uniform construction of triangulation functors allows one to define new tree-width-like parameters

(such as widths for new types of combinatorial objects, or notions of graph width-measures that respect di�erent

notions of structural correspondence than ordinary graph isomorphism) simply by collecting the relevant objects

into a spined category. As such, we shall see that the results in this chapter can bee seen as providing a ‘black-box’

taking as input a spined category (i.e. some class of objects we wish to decompose) and yielding as output an

70 CHAPTER 3. SPINED CATEGORIES

appropriate analogue of tree-width.

The rest of this chapter is structured as follows. First we will give a gentle introduction to all of the

needed category-theoretic notions in Section 3.2. We will then introduce our new notion of a spined category and

investigate its basic properties in Section 3.3. Section 3.4 contains the proof of our main result (Theorem 3.4.13)

on the existence of spined functors called triangulation functors which encompass and generalize several tree-

width-like invariants used in combinatorics. In Section 3.5 we describe a way of constructing new spined

categories from previously known ones and illustrate the applications of such constructions with some examples.

Section 3.6 briefly discusses open questions and directions for future research.

3.2 Category-theoretic preliminaries

Throughout this section we will follow the notation found in Awodey’s textbook [5]. Two other introduc-

tory textbooks that might be more to the reader’s taste (depending on backgrounds) are Riehl’s [84] or Fong and

Spivak’s [46] textbooks (the first is focused on ‘pure’ category theory and draws many examples from topology;

the second focused on applications of category theory).

Definition 3.2.1. A category C consists of:

• a collection of objects: A, B, C… denoted Ob(C) and

• a collection of arrows (or morphisms): f , g, h… denoted Mor(C),

such that:

• every arrow f is associated to two (not necessarily distinct) objects dom(f) and cod(f) called the

domain and codomain of f (we write f : Aô B whenever A = dom(f) and B = cod(f))

• for all pairs of arrows f and g with cod(f) = dom(g), there is an arrow g˝f : dom(f)ô cod(g)

called the composite of f with g (or simply ‘g after f ’),

• for each object A there is an arrow 1A : Aô A called the identity arrow of A

and subject to the following two laws:

3.2. CATEGORY-THEORETIC PRELIMINARIES 71

• associativity of composition: for any three arrows A B C Df g h we haveh˝(g˝f) =

(h˝g)˝f .

• identities are ‘units’ under both the pre- and post-composition operations: for all arrows f : Aô B,

we have f˝1A = f = 1B ˝f .

For any two objects A and B in a category C, we call the collection of all arrows from A to B (i.e. all

arrows f with dom(f) = A and cod(f) = B) the hom-set from A to B and we denote it as Hom(A,B).

We will call a category C small if both its collection of objects and its collection of arrows are sets;

otherwise we say that C is large. Throughout this thesis we will assume all categories to be small unless explicitly

stated otherwise. Furthermore, to aid readability, we will often drop the composition symbol ‘˝’ by simply

writing gf to denote the composite g˝f .

Examples of categories are everywhere. A familiar category is FinSet; it has finite sets as objects and

functions between them as arrows. It is easy to check that every set has an identity arrow and that arrow

composition is associative.

Any poset is an example of a special kind of category called a poset category3: these are categories in

which, for any two objects A and B, there is at most one arrow from A to B. In particular this means that the

usual ordering f on the natural numbers turns the partially-ordered set Nf into a category in which there is an

arrow nô m if and only if n f m. The same is true for the poset N= given by the natural numbers under the

equality relation (i.e. there is an arrow nô m if and only if n = m).

Two other examples of categories are Grhomo and HGrhomo. The first is the category of graphs and

graph homomorphisms (i.e. each arrow f :GôH is a graph homomorphism from G to H). The second is the

category of hypergraphs and hypergraph homomorphisms. We point out that these categories di�er from what

is known as ‘the category of graphs’ in category theory [5]: we will not assume our graphs and hypergraphs to

be reflexive4.

Many more examples of categories are found in familiar mathematical objects and their respective

structure preserving mappings [5, 46, 84]; these include:

• groups and group homomorphisms,
3The converse is not true: although every poset category is easily seen to give rise to a pre-order (sometimes called a quasi-order), there

is no guarantee in general that this will also be a partial order.
4recall that G is reflexive there is a loop-edge from every vertex to itself in G.

72 CHAPTER 3. SPINED CATEGORIES

• topological spaces and continuous mappings, and

• posets and order-preserving maps.

Since all posets are categories (as we mentioned earlier) this last example shows that we can have

categories whose objects are themselves categories. This can be defined more generally via an appropriate notion

of ‘structure-preserving mappings’ between categories: these are called functors. Although we will not make

use of it here, we point out that this notion can be used to define a large category Cat which has small categories

as objects and functors as arrows.

Definition 3.2.2. A functor F from a category C to a category D is a mapping that associates

• to every object W in C an object F [W] in D

• to every arrow f :X ô Y in C an arrow F [f] : F [X]ô F [Y] in D

in such a way that identities and compositions are preserved; formally this amounts to the following

requirements:

• F [1X] = 1F [X] for every object X in C, and

• F [g˝f] = F [g]˝F [f] for all arrows f :X ô Y , g : Y ôZ in C.

Notice that any functor F : C ôD induces mappings

F0 :Ob(C)ôOb(D),

F1 :Mor(C)ôMor(D) and

FX,Y :HomC(X,Y)ôHomD(F [X],F [Y]) (where (X,Y) is any pair of objects in C).

Depending on whether F0, F1 and FX,Y are injective or surjective, we have di�erent notions of ‘injectivity’ and

‘surjectivity’ that are definable for F ; thus we call F :

• injective (resp. surjective) on objects if F0 is injective (resp. surjective),

• injective (resp. surjective) on arrows if F1 is injective (resp. surjective) and

• faithful (resp. full) if FX,Y is injective (resp. surjective) for all pairs (X,Y) of objects in C.

3.2. CATEGORY-THEORETIC PRELIMINARIES 73

Example 3.2.3. A functor that is injective on arrows is also faithful; however the converse is not true. For

example, consider the functor F : C ô D depicted (dashed) below (identities are omitted). It is faithful,

but neither injective on arrows nor injective on objects.

The category C The category D

X A

Y B

Z

f1

F

f2 a=F [f1]=F [f2]
F

F

We say that an arrow f :AôB in any category C is an isomorphism if there exists an arrow f*1 :BôA

called ‘the inverse of f ’ such that ff*1 = 1A and f*1f = 1B . To see that isomorphisms are unique, consider

any diagram of the following form.

A Bf1A

h

g

1B

If fh = 1B and gf = 1A, then g = g1B = gfh = 1Ah = h. In particular, since identities are their own inverses,

they are isomorphisms and hence they are unique.

Note that, although categorical isomorphisms correspond to bijective functions inFinSet, this relationship

to bijections is not true in general: in the category Grhomo of graphs and graph-homomorphisms, there can

be set-theoretic bijections between two non-isomorphic graphs (in contrast, the category-theoretic notion of

isomorphism does indeed coincide with its graph-theoretic counterpart) [5].

Two important notions from set theory are injective and surjective functions. Both of these notions have

category-theoretic generalizations via the notions of mono- and epi-morphisms. We note that, as was the case

with isomorphisms, although monomorphisms and epimorphisms do indeed coincide respectively with injections

and surjections in FinSet, this is not true in arbitrary categories [5].

Definition 3.2.4. We call an arrow f : Aô B in a category C a monomorphism in C (or a monic arrow

in C) if, given any two arrows x,y : Z ô A, we have f˝x = f˝y implies x = y. Similarly, f is an

epimorphism (or an epic arrow) if, given any two arrows x,y : Bô C , we have that x˝f = y˝f implies

x = y. Throughout this text the notation f : A± B always denotes a monomorphism from A to B while

we denote epimorphisms as Aß B.

74 CHAPTER 3. SPINED CATEGORIES

Note that, the definitions of monic and epic arrows are symmetrical in the sense that we can obtain one

from the other by simply ‘reversing the directions of all arrows’ (and changing the order of composition). This is

an instance of the fundamental concept of categorical duality: given any category C, we denote by C
op the dual

or opposite category to C obtained by reversing all arrows in C. For more on categorical duality, we refer the

reader to Awodey’s textbook [5].

A category D is a subcategory of a category C if Ob(D) and Mor(D) are contained in Ob(C) and Mor(C)

respectively (note that this gives rise to the obvious functor Dô C which embeds D into C). One subcategory

that we highlight here is Mono(C) which has Ob(Mono(C)) =Ob(C) and which has as arrows only those arrows

in C which are monomorphisms5.

3.2.1 Universal constructions

The main aspect of ‘the category-theoretic-thinking’ that we will leverage in this thesis is that of

formulating definitions by way of ‘universal constructions’. Roughly these are ways of defining concepts (e.g.

the product of two sets) by speaking only about the arrows in the category (e.g. functions from the product);

definitions by way of a universal construction have the benefit that they can be immediately applied to any other

category (thus generalizing the original notion that they formalized).

This section will review some simple universal constructions such as products, co-products and pushouts.

Note that we will not make direct use of these notions in Chapter 3; however, since knowledge of these notions

will aid in the understanding the constructions in Chapter 3, we take the time to review these concepts here.

We call any pair of arrows g : AôG and h : AôH with the same domain in the category C a span in

C and we call the dual diagram G A Hg h a cospan. A monic (co)span is a (co)span consisting of

monic arrows.

The first universal construction that we shall define is that of a product of two objects in a category.

Definition 3.2.5. The product of two objectsX1 andX2 in a category C is a span X1 P X2
⇡1 ⇡2

in C such that, for any other span of the form X1 Z X2
z1 z2 there is a unique arrow u :Zô P

such that zi = ⇡iu; in other words, the following diagram is required to commutea

5Note that this notation di�ers from certain usages, where Mono(C) instead denotes a specific subcategory of the ‘arrow category’ of C.

3.2. CATEGORY-THEORETIC PRELIMINARIES 75

Z

X1 P X2 (i.e.⇡iu = zi for i À [2]).

z1 z2u

⇡1 ⇡2

aA diagram is said to commute, if every two arrows (including composites) which have the same domain and codomain are equal.
Formally, by diagram of shape J we mean a functor D : J ô C; to aid readability (and to avoid keeping devoting notation to functors
which are only used to define diagrams) we will not state the functor explicitly and instead simply refer to some drawn collection of
arrows (i.e. the directed multi-graph that represents the diagram).

As an example, consider the category FinSet: here categorical products coincide with set-theoretic

products and the maps ⇡1 and ⇡2 correspond to the projection maps from the product of two sets to its factors6 [5].

In fact, to highlight this correspondence, the product object P from Definition 3.2.5 is often denoted as X1ùX2.

Notice that, if C is a partial order, then the product of two objects in C is simply their infimum. In

particular one should observe that, since not all posets have all infima (e.g. any poset isomoprhic to an antichain),

it follows that categories need not have products (i.e. there might be two objects that do not have a product in C).

By duality7, we also have the notion of a co-product of two objects X1 and X2 in C. It is easy to see that,

whenever C is a partial order, the co-product of two objects in C is simply their supremum. Another example of

an instantiation of the notion of a co-product is found in Grhomo: it is not hard to show that the coproduct of two

graphs is given by their disjoint union [5] (in fact this is also true in FinSet).

Another universal construction (similar to coproducts) is given by the notion of a pushout. We point out

that this notion will be of particular use to us in the next Chapter: specifically in our definition of proxy-pushouts

(Definition 3.3.1).

Definition 3.2.6. Consider a span G1 H G2g1 g2
in a category C. We call a cospan of the form

G1 G1 +H G2 G2
g+1 g+2 a pushout of g1 and g2 in C if

1. g+1 ˝g1 = g
+
2 ˝g2, and

2. for any cospan G1 Z G2
z1 z2 such that z1˝g1 = z2˝g2 there exists a unique morphism

m : G1 +H G2 ôZ such that m˝g+1 = z1 and m˝g+2 = z2;

equivalently, we require the following diagram to commute.

6for example, taking the two sets S1 := {1,2} and S2 := {3}, we would have that the projection ⇡1 : S1 ùS2 ô S1 maps (1,3) to 1 and
(2,3) to 2.

7we can simply define the co-product of two objects X1 and X2 to be their product in C
op

76 CHAPTER 3. SPINED CATEGORIES

G1 H G2 (In summary, we require g+1 and g+1 to satisfy g+1 g1 = g
+
2 g2 s.t.

G1 +H G2 ≈z1,z2,«!m satisfying z1g1 = z2g2, s.t. mg+i = zi for i À [2].)

Z

g+1

z1

g1 g2

g+2

z2m

We call G1 +H G2 the pushout object of g1 and g2.

It is easy to show that, if they exist, products, co-products and pushouts are unique.

From a graph-theoretic point of view, pushouts allow us to generalize the notion of an H-sum of two

graphs (i.e. Definition 1.1.2 or, informally: ‘glueing together two graphs along a common subgraph H’).

Proposition 3.2.7 (Folklore). Every monic span in Grhomo has a pushout. In particular, the pushout of a

monic span G1 H G2g1 g2
is the graph given by the following H-sum of G1 and G2

G1 +H G2 := (G1 €G2)_g1=g2 .

Proof. Take the obvious inclusion maps as ◆1 : G1 ± G1#HG2 and ◆2 : G2 ± G1#HG2. We clearly have

◆1˝g1 = ◆2˝g2. Now consider any other cospan G1 Z G2
z1 z2 satisfying the equality z1˝g1 = z2˝g2.

Define the map m : G1#HG2 ôZ on the vertices of G1#HG2 via the equation

m(v) =

h
n
n
l
n
nj

z1(v) if v is in the range of ◆1,

z2(v) otherwise.

To check that m˝◆1 = z1, it su�ces to prove m(◆1(x)) = z1(x) for an arbitrary vertex x of G. Since ◆1(x) = x and

x À G, the first clause of the definition applies, and we have m(◆1(x)) = m(x) = z1(x). A similar proof allows us

to conclude m˝◆2 = z2. The uniqueness of m follows immediately. ∑

We cannot generalize Proposition 3.2.7 much further since the pushout of an arbitrary span of the form

G D Hi j need not exist in Grhomo. Indeed, taking the obvious injection i : K2 ô K2 and the

unique map j : K2 ô K1, we see that no object Z and maps zi : Ki ô Z (where i À [2]) can ever satisfy

z1˝i = z2˝j, since the image of the right-hand side always consists of a single vertex, while the image of the

left-hand side necessarily contains an edge.

3.3. INTRODUCING SPINED CATEGORIES AND S-FUNCTORS 77

3.3 Introducing spined categories and S-functors

In what follows, notice that any functor ⌦ : N= ô C (where N= is the discrete category with an arrow

xô y i� x = y) describes a sequence (⌦[n])nÀN of objects in C. To highlight this fact and to ease readability,

we often drop the brackets and write ⌦n rather than ⌦[n].

Definition 3.3.1. A spined category consists of a category C equipped with the following additional

structure:

• a functor ⌦ : N= ô C called the spine of C,

• an operationP (called the proxy-pushout) that assigns to each span of the form G ⌦n Hg h

in C a distinguished cospan G P(g,h) H
P(g,h)g P(g,h)h

subject to the following conditions:

SC1 For every object X of C there exists a morphism x :X ô⌦n for some n À N.

SC2 For any cospan G ⌦n Hg h and any pair of morphisms g® :GôG® and h® :H ôH ®

there exists a unique morphism (g®,h®) :P(g,h)ôP(g®˝g,h®˝h) making the following diagram

commute:

⌦n G G®

H P(g,h)

H ® P(g®˝g,h®˝h)

h

g g®

P(g,h)g

P(g®˝g,h®˝h)g®˝g

h®
P(g,h)h (g®,h®)

P(g®˝g,h®˝h)h®˝h

One could define proxy pullbacks dually to proxy-pushouts. As the name suggests (and as we shall

prove in Proposition 3.3.2), categories that have pushouts for every span of the form G ⌦n Hg h

always have proxy-pushouts (dually it is easily seen that categories having pullbacks of all diagrams of the

form G ⌦n Hg h
have proxy pullbacks). This observation gives rise to many examples of spined

categories.

78 CHAPTER 3. SPINED CATEGORIES

Proposition 3.3.2. Take a category C equipped with functor ⌦ : N= ô C such that the following hold:

1. for any object X of C there is some n À N and morphism x :X ô⌦n, and

2. every span of the form G ⌦n Hg h has a pushout in C.

The map P that assigns to every span G ⌦n Hg h its pushout co-span turns C into a spined

category.

Proof. We only have to verify Property SC2. Consider the diagram

⌦n G G®

H G+⌦n H

H ® G®+⌦n H
®

h

g g®

◆G

◆®G

h®
◆H

◆®H

We have to exhibit the unique dotted morphism G+⌦n H ô G®+⌦n H
® making this diagram commute. Since

G+⌦n H is a pushout of g and h and since the arrows ◆®G˝g
® and ◆®H˝h® form a co-span which commutes with

the span of g,h8, the existence and uniqueness of the required morphism G+⌦n H ôG®+⌦n H
® follows (by the

definition of a pushout; see Definition 3.2.6). ∑

Since pushouts in poset categories are given by least upper bounds, Proposition 3.3.2 allows us to

construct a simple (but important) first example of a spined category.

Example 3.3.3. Let f denote the usual ordering on the natural numbers. The poset Nf, when equipped

with the spine ⌦n = n (and maxima as proxy-pushouts) constitutes a spined category denoted Nat.

Another easy example is given by the category FinSet.

Example 3.3.4. Take the sequence ({1,2,… ,n})nÀN as the spine (observe that it trivially satisfies Prop-

erty SC1). Since FinSet has all pushouts, by Proposition 3.3.2, we know that it has proxy-pushouts (thus

satisfying Property SC2).

Combining Propositions 3.2.7 and 3.3.2 gives us a first example of a combinatorial spined category, the

category Grmono which has graphs as objects and injective graph homomorphisms as arrows. First consider

a span of the form A X Ba
b in Grhomo. Notice that all arrows are monic in the corresponding

8i.e. the arrows ◆®G˝g
® and ◆®H˝h® form a so-called “co-cone” to g,h.

3.3. INTRODUCING SPINED CATEGORIES AND S-FUNCTORS 79

pushout square. However, given a co-span A Z Ba®

b®
the pushout morphism A+X BôZ can

fail to be injective (i.e. a monomorphism) for instance in the case where the images of a® and b® have non-empty

intersection. To see this, take A ˆ K2 ˆ B and X ˆ K1 (which implies that A#XB ˆ P3). It is easy to see

that we can choose Z ˆK2 and appropriate a® and b® satisfying a®a = b®b; however the unique pushout arrow

A#XBôK2 is clearly not injective. It follows that the clique sum does not give rise to pushouts in the category

Grmono. However, this is not a problem since clique-sums do give rise to proxy pushouts in Grmono.

Proposition 3.3.5. The category Grmono, equipped with the spine n ≠ Kn and clique sums as proxy-

pushouts forms a spined category.

Proof. Property SC1 is evident, but we need to verify Property SC2. Consider the diagram

⌦n G G®

H G#⌦nH

H ® G®#⌦nH
®

h

g g®

◆G

◆®G

h®
◆H

!p

◆®H

in Grhomo. Notice that the arrows ◆G, ◆®G, ◆H , ◆®H are all monic. We have to establish that the morphism p :

G#⌦nH ô G®#⌦nH
® (which is unique since it is a pushout arrow in Grhomo) is monic (this will allow us to

conclude that p is an arrow of Grmono as well). Note that p maps any vertex x in G#⌦nH to (◆®G˝g
®)(x) if x is in

G (i.e. if it is in the range of ◆G) and to (◆®H˝h®)(x) otherwise. Thus, since V (G®)„V (H ®) = V (G)„V (H), we

have that, for any x and y in V (G#⌦nH), if p(x) = p(y) then x = y. Thus p is injective (i.e. it is monic and hence

it is in Grmono). ∑

We will encounter further examples of spined categories below, including:

1. the poset of natural numbers under the divisibility relation (Proposition 3.3.13),

2. the category of posets (Proposition 3.3.11),

3. the category of hypergraphs (Theorem 3.4.17),

4. the category of vertex-labelings of graphs (Examples 3.5.2 and 3.5.3).

Now we introduce the notion of a spined functor as the obvious notion of morphism between two spined

categories: to be spined, a functor has to preserve both the spine and proxy-pushouts.

80 CHAPTER 3. SPINED CATEGORIES

Definition 3.3.6. Consider spined categories (C,⌦C ,PC) and (D,⌦D,PD). We call a functor F : C ôD

a spined functor if it

SF1 preserves the spine, i.e. F˝⌦C =⌦D, and

SF2 preserves proxy-pushouts, i.e. given a proxy-pushout square

⌦C

n G

H PC(g,h)

h

g

PC (g,h)g

PC (g,h)h

in the category C, the image

⌦D

n F [G]

F [H] F [PC(g,h)]

Fh

Fg

FPC (g,h)g

FPC (g,h)h

is isomorphic to a proxy-pushout square inD. Equivalently,F [PC(g,h)]ˆPD(Fg,Fh),FPC(g,h)g ˆ

PD(Fg,Fh)Fg and FPC(g,h)h ˆPD(Fg,Fh)Fh all hold.

Recall the spined category Nat of Example 3.3.3. Using spined functors to Nat, we obtain the following

categorial counterparts to Halin’s S-functions.

Definition 3.3.7. An S-functor over the spined category C is a spined functor F : C ô Nat.

Proxy pushouts in Grmono are given by clique sums over complete graphs, while proxy-pushouts in

Nat are given by maxima. Consequently, given an S-functor F :Grmono ô Nat, Property SF2 ensures us that

evaluating F on a clique-sum (i.e. the proxy-pushout operation in Grmono) is the same as evaluating F on the

addends of the clique-sum and then taking a maximum (i.e. the proxy-pushout operation in Nat); in other words

we have F [G#KnH] = max{F [G],F [H]} (cf. Property (H4) of Halin’s S-functions). This observation allows

us to deduce that every one of Halin’s S-functions gives rise to an S-functor over Grmono.

Proposition 3.3.8. Every S-function f : Gô N gives rise to an S-functor F satisfying F [X] = f (X) for

all objects X of Grmono.

Proof. Take an S-function f :GôN. Take a morphism x :Xô Y inGrmono. Since x is a graph monomorphism,

X is isomorphic to a subgraph of Y , and is therefore a (trivial) minor of Y . Thus, since S-functions are minor

isotone (Property (H2)), we have that f (X) f f (Y) holds. It follows that the map F defined by the equations

3.3. INTRODUCING SPINED CATEGORIES AND S-FUNCTORS 81

F [X] = f (X) and Ff = (F [X]f F [Y]) for each pair of objectsX,Y and each morphism x :Xô Y constitutes

a functor from Grmono to the poset category Nf.

We show that F preserves the spine inductively, by proving F [Kn] = f (Kn) = n for all nÀN. For the base

case, notice that we have F [K0] = 0 by Property (H1). For the inductive case, assume that F [Kn] = f (Kn) = n.

Since Kn?v =Kn+1, we have F [Kn+1] = f (Kn+1) = f (Kn?v) = 1+f (Kn) = 1+n by Property (H3).

Finally, as we observed earlier, the preservation of proxy-pushouts follows immediately by Property (H4).

Hence F is a spined functor as we claimed. ∑

We note, however that the converse of Proposition 3.3.8 does not hold (not even in Grmono). To see this,

consider the clique-number. It is an S-functor in Grmono, since it cannot increase when taking subgraphs (i.e.

it satisfies Property SF1) and the clique-number of any clique-sum G#KnH it given by the maximum of the

clique-numbers of the addends G and H (i.e. !(G#KnH) = max{!(G),!(H)} thus satisfying Property SF2).

In contrast, it is easy to see that the clique-number may increase when taking minors. Thus the lack of minor-

isotonicity shows that, despite being an S-functor, the clique number does not satisfy Property (H2) and hence it

is not an S-function.

Using the natural indexing on the spine given by the functor ⌦ : N= ô C, we can associate the following

numerical invariants to each object of the spined category C.

Definition 3.3.9. Take a spined category (C,⌦,P) and an object X À C. We define the order of the object

X (written X) to be the least n À N such that C has a morphism X ô ⌦n. Similarly, we define the

generalized clique number of the object X (written Ü!(X)) as the largest n À N for which C contains a

morphism ⌦n ôX (whenever such n exists).

It’s clear that a spined category (C,⌦n,P) where ⌦n < n (resp. Ü!(⌦n) > n) does not admit any S-

functors. To see this, suppose by way of contradiction that such a spined category did admit an S-functor F .

By the definition of * , there must be an arrow ⌦n ô ⌦m with m < n (since we are assuming ⌦n < n) and,

since F : C ô Nf is a functor, we must have that F [⌦n ô ⌦m] = (F [⌦n] f F [⌦m]). However, since F is an

S-functor it preserves the spine (Property SC1). Thus we have that F [⌦m] = m and hence F [⌦n] f m < n which

violates Property SC1.

These observations show in particular that the spined category (FinSet, ({1,2,… ,n})nÀN,+) (Exam-

ple 3.3.4) has no S-functors (since every set can be mapped to a singleton set by a function). Similarly, notice

82 CHAPTER 3. SPINED CATEGORIES

that, denoting by GrRhomo the category of reflexive graphs and graph-homomorphisms, there are no S-functors

defined on GrRhomo since every graph has a homomorphism to K1 (since this is a reflexive graph in this category).

However, S-functors may fail to exist even if ⌦n = n (resp. Ü!(⌦n) = n). We construct such an example below.

Lemma 3.3.10. Let (C,⌦,P) be a spined category. If there exists a span ⌦L ⌦m ⌦R
l r in

C such that the proxy-pushout P(l,r) is isomorphic to ⌦n with max{L,R} < n, then there is no S-functor

over (C,⌦,P).

Proof. By way of contradiction, suppose that there exists an S-functor F over (C,⌦,P); then

F [⌦n] = F [P(l,r)] (since P(l,r) is isomorphic to ⌦n)

= max{F [⌦L],F [⌦R]} (by Property SF2)

= max{L,R} (by Property SF1)

< n.

This contradicts the fact that F preserves the spine (i.e. Property SF1 is violated). ∑

Lemma 3.3.10 gives us another way of showing that (FinSet, ({1,2,… ,n})nÀN,+) does not admit any

S-functor; however, it can do much more: it allows us to give an example of a spined category which admits no

S-functor despite satisfying the equation ⌦n = n = Ü!(⌦n) for all n.

Proposition 3.3.11. There exist spined categories (C,⌦,P) satisfying ⌦n = n = Ü!(⌦n) that do not admit

any S-functors.

Proof. Consider the category Posetmono which has finite posets as objects and order-preserving injections as

morphisms. Let ⌦n denote set {m À N m f n} under its usual linear ordering, and let P assign to each span

of the form G ⌦n Hg h the pushout G+⌦n H of the span in Posethomo (note that the category of

posets has all pushouts [5]). We will show that the triple (Posetmono,⌦,P) forms a spined category that does not

admit any S-functors.

Take any poset P on n elements and note that there is a monomorphism from P to ⌦n. This verifies

Property SC1. For Property SC2 consider the following diagram.

3.3. INTRODUCING SPINED CATEGORIES AND S-FUNCTORS 83

⌦n G G®

H G+⌦n H

H ® G®+⌦n H
®

h

g g®

◆G

◆®G

h®
◆H

!p

◆®H

Notice that the arrows ◆G, ◆®G, ◆H , ◆®H are all monic. We have to establish that the morphism p : G+⌦n H ô

G® +⌦n H
® (which is unique since it is a pushout arrow in Posethomo) is monic as well. Notice that p can

be defined piece-wise as the map taking any point x in G+⌦n H to (◆®G˝g
®)(x) if x is in G and to (◆®H˝h®)(x)

otherwise. Since G®+⌦n H
® is obtained by identifying the points in the image of ⌦n under g®˝g with the points

in the image of ⌦n under h®˝h, we have that, by its definition, p must be injective and hence monic.

Now we show that (Posetmono,⌦,P) does not admit any S-functors. Consider the linearly ordered

posets ⌦3 = {a f b f c}, ⌦2 = {d f e}, and ⌦1 = {x} and the span ⌦2 ⌦1 ⌦3
l r given by the

monomorphisms l(x) = d and r(x) = c. By Lemma 3.3.10, this concludes the proof since the proxy-pushout of

f ,g is isomorphic to ⌦4. ∑

Instead of exhaustively enumerating all possible obstructions to the existence of S-functors, we restrict

our attention to those spined categories that come equipped with at least one S-functor. We shall see that the

existence of a single S-functor already su�ces to construct a functorial analogue of tree-width on any such

category.

Definition 3.3.12. We call a spined category measurable if it admits at least one S-functor.

Of course Nat is a measurable spined category (where measurability is witnessed by the indentity functor

1Nat : Nat ô Nat). The measurability of Grmono follows from Proposition 3.3.8 or alternatively by noticing

that the clique number is an S-functor. One might then naturally conjecture the generalized clique number to

always be an S-functor. However, as we prove below, this is not the case.

Proposition 3.3.13. The generalized clique number Ü! need not give rise to an S-functor over an arbitrary

measurable spined category.

Proof. Equip the natural numbers with the divisibility relation, and regard the resulting poset as a category Ndiv.

Equip Ndiv with the spine

⌦n =
«
pfn

pn

84 CHAPTER 3. SPINED CATEGORIES

where p ranges over the primes. The poset category Ndiv has all pushouts: the pushout of objects n,m is given

by the least common multiple of n and m. Let P(xô n,xô m) denote the least common multiple lcm(n,m).

We verify each of the spined category properties in turn:

SC1: Take any n ÀN. Let p be the largest prime appearing in the prime factorization of n and let k be the largest

exponent appearing in the prime factorization of n. Then n divides ⌦pk .

SC2: Immediate from Proposition 3.3.2.

Consider the map ✏ that sends each object n À Ndiv to the highest exponent that occurs in the prime factorization

of n (this is the sequence OEIS A051903 [60]). This map satisfies Property SF1 since the highest exponent that

occurs in the prime factorization of ⌦n =
±

pfn and p prime pn is n. Furthermore ✏ satisfies Property SF2 since the

highest exponent occurring in the factorization of P(xô n,xôm) = lcm(n,m) clearly is max{✏(n),✏(m)}. Thus

✏ is an S-functor on the category (Ndiv,⌦, lcm) (which is therefore a measurable spined category). However, we

claim that the generalized clique-number Ü! is not an S-functor on this spined category.

To see this, consider the objects 16 and 81 in Ndiv. Since ⌦2 = 22 = 4 and ⌦3 = 23 �33 = 216, the largest

n for which ⌦n divides 16 is Ü![16] = 2. Similarly, Ü![81] = 1. However, we have Ü![lcm(16,81)] = Ü![1296] =

Ü![⌦4] = 4 ë 2. ∑

Unlike the generalized clique number, the order map does give rise to an S-functor over the category

(Ndiv, (
±

pfn and p prime pn)nÀN, lcm).

Proposition 3.3.14. The order map is an S-functor over (Ndiv, (
±

pfn and p prime pn)nÀN, lcm).

Proof. First we shall show that * satisfies Property SF2. Since n andm both divide lcm(n,m), if lcm(n,m)= k,

then both n and m would divide ⌦k as well; thus max{n, m} f lcm(n,m). For the other direction, notice that,

if n = n® and m = m® with n® g m® (w.l.o.g.), then both n and m divide ⌦n® =
±

pfn® and p prime pn
® (i.e. it is a

common multiple) and hence lcm(n,m) divides ⌦n® as well (i.e. lcm(n,m) fmax{n, m}). For Property SF1,

since every integer divides itself (and since ⌦n® <⌦n for all n® < n) we have that ⌦n = n, as desired. ∑

In general, however, the order map need not give rise to an S-functor.

Proposition 3.3.15. The order mapX≠ X need not give rise to an S-functor over an arbitrary measur-

able spined category.

3.4. TREE-WIDTH IN A MEASURABLE SPINED CATEGORY 85

Proof. We claim that the order map does not constitute an S-functor over the measurable spined category Grmono.

To see this, note that, if X ≠ V (X) were an S-functor, then it would preserve proxy-pushouts; in particular we

would have 3 = P3 = K2#K1
K2 = max{K2, K2} = 2. ∑

3.4 Tree-width in a measurable spined category

In this section we give an abstract analogue of tree-width in our categorial setting, by proving a theorem in

the style of Halin’s theorem (Theorem 3.1.2). To do so, we must find a maximum S-functor under the point-wise

order. An obvious candidate is the map taking every object to its order (Definition 3.3.9). However, as we just

saw (Proposition 3.3.15), the order need not constitute an S-functor for measurable spined categories. Thus,

rather than trying to define an S-functor via morphisms from objects to elements of the spine, we will consider

morphisms to elements of a distinguished class of objects which we call pseudo-chordal. These objects will be

used to define our abstract analogue of tree-width as an S-functor on any measurable spined category. We will

conclude the section by showing how our abstract characterization of tree-width allows us to recover the familiar

notions of graph and hypergraph tree-width.

Definition 3.4.1. We call an object X of a spined category (C,⌦,P) pseudo-chordal if for every two

S-functors F ,G : C ô Nat we have F [X] = G[X]

Note that, if the spined category is not measurable, then every object is trivially pseudo-chordal.

Proposition 3.4.2. The set Q of all pseudo-chordal objects of a spined category (C,⌦,P) contains all

objects of the form ⌦n, and is closed under proxy-pushouts in the following sense: given two objects

A,B ÀQ and any span A ⌦n Bf g , we always have P(f ,g) ÀQ.

Proof. Given two S-functors F ,G on C, we always have F [⌦n] = n = G[⌦n] since S-functors preserve the

spine (Property SF1). Moreover, by Property SF2, S-functors preserve proxy-pushouts. This means that, since

the proxy-pushout in Nat is the max operator, given any two pseudo-chordal objects A,B À Q and any span

A ⌦n Ba b , we have

F [P(a,b)] = max{F [A].F [B]} (by Property SF2)

= max{G[A].G[B]} (since A and B are pseudo-chordal)

= G[P(a,b)] (by Property SF2).

86 CHAPTER 3. SPINED CATEGORIES

∑

In light of Proposition 3.4.2, it is natural to distinguish the smallest set of pseudo-chordal objects that

contains the spine and which is closed under proxy-pushouts. We call this the set of chordal objects. The name

is given in analogy to chordal graphs, a resemblance that is best seen in the following recursive definition of

chordal objects.

Definition 3.4.3. We define the set of chordal objects of the category spined category C inductively, as the

smallest set S of objects satisfying the following:

• ⌦n À S for all n À N, and

• P(a,b) À S for all objects A,B À S and spans A ⌦n Ba b .

Note that the notions of chordality and pseudo-chordality are well-defined even in non-measurable categories

(since every object is pseudo-chordal if the category in question is not measurable).

Example 3.4.4. Notice that all objects of Nat are spinal and hence they are all also chordal.

Another example of a spined category in which every chordal object is also spinal is given by Ndiv (although, in

contrast to the previous example, not every element of this category is in the spine).

Example 3.4.5. Consider the spined category (Ndiv, (
±

pfn and p prime pn)nÀN, lcm). It is measurable (by

Proposition 3.3.14) and all chordal objects are also spinal since

lcm
⇠ «
pfn and p prime

pn,
«

pfm and p prime
pm

⇡
=

«
pfmax{n,m} and p prime

pmax{n,m}.

Notice, however, that most often the set of chordal objects is a strict superset of the set of all spinal objects. For

example, consider the familiar category Grmono of graphs and injective graph homomorphisms.

Example 3.4.6. By comparing to the Defintion 1.2.1 (i.e. Dirac’s Theorem for chordal graphs), we imme-

diately see that, for any object X in the spined category (Grmono, (Kn)nÀN,P) (recall that P takes spinal

spans to clique-sums), X is chordal (in the sense of Definition 3.4.3) if and only if X is a chordal graph.

As an immediate consequence of Proposition 3.4.2 we have the following result.

3.4. TREE-WIDTH IN A MEASURABLE SPINED CATEGORY 87

Corollary 3.4.7. All chordal objects are pseudo-chordal.

However, note that the converse of Corollary 3.4.7 does not hold; as we shall see, it fails even in Grmono.

Proposition 3.4.8. Pseudo-chordality does not imply chordality.

Proof. We will show that, in the spined category Grmono, there exists a non-chordal object for which every pair

of S-functors agree. To this end, consider, for some n À N, the object Kn#K1
Cn obtained by identifying a vertex

of an n-clique to a vertex of an n-cycle. The graph Kn#K1
Cn is clearly not chordal for n > 3 and hence it is not a

chordal object in this category (recall – by Example 3.4.6 – that the two notions of chordality coincide in this

spined category). We claim, however, that Kn#K1
Cn is pseudo-chordal. To see this, notice that, since Cn is a

subgraph of Kn, we have a sequence of injective graph homomorphisms

Kn ±Kn#K1
Cn ±Kn#K1

Kn.

Thus, for any S-functor F , we have

n = F [Kn] f F [Kn#K1
Cn] f F [Kn#K1

Kn] = max{F [Kn],F [Kn]} = n.

∑

We will use pseudo-chordal objects to define the notion of a pseudo-chordal completion of an object of

a spined category. We point out that the name was given in analogy to the operation of a chordal completion of

graphs (i.e. the addition of a set F of edges to some graph G such that the resulting graph (V (G),E(G)‰F) is

chordal).

Definition 3.4.9. A pseudo-chordal completion of an object X of a spined category (C,⌦,P) is an arrow

� :X ±H for some pseudo-chordal object H . If the pseudo-chordal object H is also chordal, then we

call � a chordal completion.

Recall that, for graphs, one can define the tree-width a graph G as:

tw(G) = min{!(H)*1 :H chordal completion of G}.

88 CHAPTER 3. SPINED CATEGORIES

Notice that this is simply Equation 1.1 restated; ! is the clique number (in the graph-theoretic sense). With this

in mind, observe that the following definition of the width of a pseudo-chordal completion furthers the analogy

between our construction and the tree-width of graphs.

Definition 3.4.10. Let X and F be respectively an object and an S-functor in some measurable spined

category. The width of a pseudo-chordal (resp. chordal) completion � :X ±H of X is the value F [H].

We point out that, in contrast to the case of graphs, we do not define the width of a pseudo-chordal

completion by using the generalized clique number Ü!. This is because Ü! need not be an S-functor in general (by

Proposition 3.3.13). We instead use any S-functor F (for clarity we note that the choice of F in Definition 3.4.10

is inconsequential since – by the definition of pseudo-chordality – every two S-functors agree on pseudo-chordal

objects).

Proposition 3.4.11. Let (C,⌦,P) be a measurable spined category and denote by �[X] and �ch[X] the

minimum possible width of respectively any pseudo-chordal completion of the object X and any chordal

completion of X. Then � and �ch are functors from C to Nf.

Proof. We only prove the claim for � since the argument for �ch is the same. Let F be any S-functor over

(C,⌦,P). We need to verify that, for every arrow f : X ô Y in C, we have �[X] f �[Y]. To this end, for

any such arrow f : X ô Y , take two minimum-width pseudo-chordal completions �X and �Y of X and Y

respectively as in the following diagram.

X Y (where HX and HY are pseudo-chordal)

HX Hy

f

�X �Y

Notice that the composite arrow �Y ˝f is also a pseudo-chordal completion of X. Thus, by the minimality of the

width of �X , we have �[X] = F [HX] f F [HY] = �[Y], as desired. ∑

Definition 3.4.12. Let � and �ch be the functors defined in Proposition 3.4.11. We call � the triangulation

functor and �ch the chordal triangulation functor.

Our goal now is to show that the triangulation functor of a measurable spined category is in fact an

S-functor. Specifically we prove our main theorem which states that both � and �ch are S-functors in any

measurable spined category.

3.4. TREE-WIDTH IN A MEASURABLE SPINED CATEGORY 89

Theorem 3.4.13. Both the triangulation and chordal-triangulation functors are S-functors in any measur-

able spined category.

Proof. Let (C,⌦,P) be any measurable spined category equipped with some S-functor F . We will prove the

statement only for � since the method of proof for the �ch case is the same.

Consider a pseudo-chordal completion c :XôH of a pseudo-chordal objectX. ThenF [X]fF [H], and

so the identity pseudo-chordal completion of X has has minimum width among all pseudo-chordal completions

of X. This proves that �[⌦n] = n and hence that � satisfies property SF1.

For SF2, consider any span A ⌦n Ba b inC. We have to prove that�[P(a,b)] =max{�[A],�[B]}.

Choose a pseudo-chordal completion ↵ : AôHA (resp. � : B ôHB) for which F [HA] (resp. F [HB]) is

minimal. Using property SC2, there is a unique arrow (↵,�) : P(a,b) ô P(↵a,�b) such that the following

diagram commutes.

⌦n A HA

B P(a,b)

HB P(↵a,�b)

a

b

↵

� (↵,�)

Now take a pseudo-chordal completion � :P(a,b)ôH of P(a,b) for which the quantity F [H] is minimal.

Consider the following diagram (recall that we already deduced the existence of the dashed arrow (↵,�) in the

previous paragraph).

90 CHAPTER 3. SPINED CATEGORIES

⌦n A

B P(a,b)

H

⌦n HA

HB P(↵a,�b))

n F [HA] = �[A] F [H] = �[P(a,b))]

F [HB] = �[B] F [P(↵a,�b)]

a

b

id⌦n
↵

�

�

(↵,�)

↵a

�b
P(↵a,�b)↵a

P(↵a,�b)�b

(this diagram is in C)

F�b

F↵a

FP(↵a,�b)↵a

�2

FP(↵a,�b)�b
�1

(this diagram is in Nat)

Note that, since F is an S-functor, the bottom square of the diagram above (which is a diagram in Nat) commutes

and thus

F [P(↵a,�b)] = max{F [HA],F [HB]} (since F satisfies Property SF2)

= max{�[A],�[B]} (by the definition of �).

Consequently, to show that �[P(a,b)] =max{�[A],�[B]} (i.e. to show that � satisfies Property SF2), it su�ces

to show that �[P(a,b)] = F [P(↵a,�b)]. In particular, this amounts to deducing the existence of the dotted

arrows �1 and �2 in the diagram above (recall that, in Nat, an arrow nô n® corresponds to the inequality n f n®).

To show the existence of �1, notice that, since �˝P(a,b)a constitutes a pseudo-chordal completion of

A and since we chose HA so that F [HA] is minimal, we have F [HA] f F [H]. Similarly we can deduce

F [HB] f F [H]. Thus we have

F [P(↵a,�b)] = max{F [HA],F [HB]} f F [H],

which proves the existence of �1.

3.4. TREE-WIDTH IN A MEASURABLE SPINED CATEGORY 91

To show the existence of �2, recall, by Proposition 3.4.2, that we know that the set of pseudo-chordal objects

is closed under proxy-pushouts. Since HA and HB are pseudo-chordal, so is their proxy-pushout P(↵a,�b).

Hence (↵,�) :P(a,b)ôP(↵a,�b) is a pseudo-chordal completion of P(a,b). However, so is H . In fact we

chose H so that F [H] is minimal (since F [H] = �[P(a,b)]). Thus we have F [P(↵a,�b)] g F [H], which

proves the existence of �2. ∑

Surprisingly (especially given the fact that, by Proposition 3.4.8, pseudo-chordality does not imply

chordality) the S-functors � and �ch defined above coincide.

Corollary 3.4.14. In any measurable spined category we have � = �ch.

Proof. Consider any measurable spined category (C,⌦,P) equipped with an S-functor F and let X be an object

in C. Since every chordal object is also pseudo-chordal (Corollary 3.4.7) we know that �[X] f �ch[X]. We

now show that given any minimum-width pseudo-chordal completion � :X ôH of X, we can find a chordal

completion of X of the same width as �.

Let � : H ô Hch be a minimum-width chordal completion of H . Since H is pseudo-chordal, all

S-functors take the same value on H . In particular this means that �[H] = �ch[H] since both � and �ch are

S-functors by Theorem 3.4.13. Thus we have F [H] = �[H] = �ch[H] = F [Hch]. But then �˝� is a chordal

completion of X with width F [Hch] = F [H], as desired. ∑

The triangulation S-functor � satisfies a maximality property broadly analogous to Theorem 3.1.2 (recall

that this theorem states – among other facts – that tree-width is the maximal element out of all of Halin’s

S-functions).

Theorem 3.4.15. Let (C,⌦,P) be any measurable spined category. The set of all S-functors over (C,⌦,P)

is a join semi-lattice under the pointwise ordering with � as its maximum element.

Proof. Let Z be any non-empty (possibly infinite) subset of the set of S-functors over (C,⌦,P). In what follows

we shall first construct the supremum of Z and then we will prove that it constitutes an S-functor.

Define the map FZ : C ô N for any W in C as FZ[W] := maxF ®ÀZF ®[W]. (Note that this maximum

always exists since every object X is mapped by any S-functor to at most the value of X and hence {F ®[X] :

F ® ÀZ} is a bounded set of integers.)

92 CHAPTER 3. SPINED CATEGORIES

We claim that, for any arrow m :Xô Y in C, we have FZ[X] f FZ[Y]. To see this, let Q be an element

of Z such that Q[X] = FZ[X] (by the definition of FZ and since Z is non-empty, such a Q always exists). The

functoriality of Q implies that, if there is an arrow X ô Y in C, then Q[X] fQ[Y]; in particular we can deduce

that

FZ[X] =Q[X] fQ[Y] f max
F ®ÀZ

F ®[Y] = FZ[Y].

Hence there is an arrow g : FZ[X]ô FZ[Y] in Nat, which means that we can (slightly abusing notation) render

FZ a functor by extending the definition of FZ to map any arrow m :X ô Y to the arrow g : FZ[X]ô FZ[Y]

in Nat.

From what we just showed (and given the extension to the definition of FZ that we described above), we

know that FZ is a functor. Now we will show that it is a spined functor. Note that FZ clearly preserves the spine;

furthermore, for any span A ⌦n Ba b , we have

FZ[P(a,b)] = max
F ®ÀZ

F ®[P(a,b)] (by the definition of FZ)

= max
F ®ÀZ

max{F ®[A],F ®[B]} (since F ® is an S-functor)

= max{FZ[A],FZ[B]}.

Thus FZ is an S-functor since it satisfies Properties SF1 and SF2. In particular we proved that the set of all

S-functors over (C,⌦,P) is a join semi-lattice under the point-wise ordering.

To show that � is the largest element of this semi-lattice, we need to prove that, given any S-functor F ,

we have F [X] f �[X] for all objects X. To this end, take any pseudo-chordal completion � :X ôH of some

object X. For any S-functor F , the following diagram commutes (by the functoriality of F).

X H

F [X] F [H]
F

�

F

F�

But since �[X] := F [H], we have F [X] f �[X] and hence – as desired – � is the maximum element of the

join semi-lattice of all S-functors. ∑

Abstract analogue of tree-width We will now given further justification of our claim that the triangulation

functor � constitutes an abstract analogue of tree-width: we will show that, when instantiated on either graphs

3.4. TREE-WIDTH IN A MEASURABLE SPINED CATEGORY 93

or hypergraphs, we recover the appropriate notions of tree-width; i.e. we will show that, in these categories, we

have � = tw+1.

Earlier we showed (Proposition 3.3.8) that every S-function yields an S-functor over Grmono; thus we

already know that tw+1 is an S-functor (since it is an S-function by Theorem 3.1.2). However, we have not yet

shown that � = tw+1; we prove this below.

Corollary 3.4.16. Let � be the triangulation functor of Grmono. Then, for any graph G, we have �[G] =

tw(G)+1.

Proof. Recall that an object of Grmono is chordal if and only if it is a chordal graph (by Example 3.4.6). Hence

we simply compute:

tw(G)+1 = min{!(H) :H is a chordal completion of G} (recall, this is Equation 1.1)

= min{ Ü!(H) :H is a chordal completion of G} (since Ü! and ! agree in Grmono)

= �ch[G] (since Ü! is an S-functor in Grmono)

= �[G] (by Corollary 3.4.14).

∑

Next we consider the category HGrmono of hypergraphs and their injective homomoprhisms which we

describe now. LetH1 andH2 be hypergraphs; a vertex map h : V (H1)ô V (H2) is a hypergraph homomorphism

if it preserves hyper-edges; that is to say that, for every edge F À E(H1), the set h(F) := {h(x) : x À F } is a

hyper-edge in H2. Hypergraph homomorphisms clearly compose associatively, thus we can define the category

HGrmono which has finite hypergraphs as objects and injective hypergraph homomorphisms as arrows.

Theorem 3.4.17. Let ⌦ :N= ôHGrmono be the functor taking every integer n to the hypergraph ([n],2[n])

and let P assign to each span of the form H1 ⌦n H2
h1 h2 in HGrmono the cospan

H1 P(h1,h2) H2P(h1,h2)h1

P(h1,h2)h2

where P(h1,h2) :=
⇠
V (H1) +V (⌦n) V (H2),

�
E(H1)€E(H2)

�
_h1=h2

⇡
(note that V (H1) +V (⌦n) V (H2)

is a pushout in FinSet) and P(h1,h2)hi is the injective hypergraph homomorphisms given by the vertex

94 CHAPTER 3. SPINED CATEGORIES

map V (Hi)± V (H1)+V (⌦n) V (H2) in FinSet (i.e. P(h1,h2)hi is the obvious injective hypergraph homo-

morphism witnessing that Hi is a sub-hypergraph of P(h1,h2)). Then the triple (HGr,⌦,P) is a spined

category.

Proof. Clearly Property SC1 is satisfied, so, to show Property SC2, consider the following diagram in HGrmono

(where, in what follows, we will argue for the existence and uniqueness of the arrow (j1,j2)).

⌦n H1 J1

H2 P(h1,h2)

J2 P(j1h1,j2h2)

h1

h2

j1

P(h1,h2)h1

j2

P(h1,h2)h2

(j1,j2)

We define (j1,j2) :P(h1,h2)ôP(j1h1,j2h2) as

(j1,j2)(x) :=

h
n
n
l
n
nj

j1(x) if x À V (H1)„P(h1,h2)

j2(x) otherwise.

To see that (j1,j2) is the unique injective vertex-map making the diagram commute, consider the forgetful functor

V :Grmonoô FinSet taking every hypergraph to its vertex-set. By our definition of the proxy-pushout HGrmono,

it follows that V maps proxy-pushouts in HGrmono to pushouts in FinSet. Thus, we deduce both the existence

and uniqueness of (j1,j2) from the definition of a pushout (Definition 3.2.6). All that remains to be shown is that

the vertex-map (j1,j2) is a hypergraph homomorphism, but this follows immediately (similarly to the graph case

in Proposition 3.2.7) from the definition of the proxy-pushout in HGrmono. ∑

We will now show that, when instantiated over HGrmono, the triangulation functor agrees with the

map H ô tw(H)+1. Rather than showing this directly (to do this the argument would be the similar to the

one in Corollary 3.4.16), we will prove a more general result will will allow us to also deduce that there are

uncountably-many S-functors over the category HGrmono.

To this end, note that we can construct a spined functor from the spined category HGrmono of hypergraphs

to the spined category Grmono of graphs. We do this by observing that the mapping

G :HGr ôGrmono such that

G :H ≠
�
V (H),{{x,y} ” V (H) : x ë y and «e À E(H) with {x,y} ” e}

�

3.5. NEW SPINED CATEGORIES FROM OLD 95

which associates every hypergraph to its Gaifman graph (sometimes also referred to as ‘primal graph’) is clearly

functorial; we shall refer to G as the Gaifman graph functor.

Proposition 3.4.18. The Gaifman graph functor G :HGr ôGrmono is a spined functor.

Proof. Note that G preserves the spine since G[([n],2[n])] ˆ Kn (i.e. G satisfies Property SF1). Now take

the proxy-pushout P(h1,h2) of some span H1 ⌦n H2
h1 h2 in HGrmono. Recall that P(h1,h2) is

constructed by identifying H1 and H2 along ⌦n := ([n],2[n]). Thus, since G preserves the spine (as we just

showed) we know that the Gaifman graph G[P(h1,h2)] of P(h1,h2) is given by the clique-sum along a Kn of

the Gaifman graphs of H1 and H2. In other words we have G[P(h1,h2)] =G[H1]#G[⌦n]G[H1] which proves

that G preserves proxy-pushouts (i.e. it satisfies Property SF2). Thus G is a spined functor. ∑

Since the composition of spined functors is again a spined functor, by Propositions 3.3.8 and 3.4.18, every

S-functor over Grmono gives rise to an S-functor of the form HGr Grmono NatG . Furthermore,

since every one of Halin’s S-functions gives rise to an S-functor (Proposition 3.3.8) and since there are uncountably

many S-functions [55], we have just proven the following corollary.

Corollary 3.4.19. The spined category HGrmono is measurable; in particular there are uncountably many

S-functors over HGrmono.

Now consider any proxy-pushout P(h1,h2) of a span H1 ⌦n H2
h1 h2 in HGrmono. It follows (in

much the same way as it does for graphs) that the hypergraph tree-width of P(h1,h2) is the maximum of tw(H1)

and tw(H2). Since, by the definition of hypergraph tree-width, we have tw(([n],2[n])) = n*1, it follows that, in

(HGr,�), �(K) = tw(K)+1 for any chordal object K in (HGr,�). Thus we have shown the following result.

Corollary 3.4.20. If � is the triangulation functor of (HGr,⌦,P), then, for any hypergraph H , �(H) =

tw(H)+1.

3.5 New Spined Categories from Old

The spined categories encountered so far came equipped with their “standard” notion of (mono)morphism:

posets with monotone maps, graphs with graph homomorphsims, hypergraphs with hypergraph homomorphisms.

In contrast, for a class S of combinatorial objects decorated with extraneous structure (such as colored or

labeled graphs), the appropriate choice of morphism may be less obvious. In these cases, a “forgetful” function

96 CHAPTER 3. SPINED CATEGORIES

f : S ô C from S to some spined category C allows us to study properties of S by studying properties of its

image in C.

It is straightforward to check that we can define a category Söf – which we call the S-category in-

duced by f – by taking Ob(Söf) := S and, for any two objects A and B in S, setting HomSöf (A,B) :=

HomC(f (A),f (B)).

It will be convenient to notice that – up to categorial isomorphism – f*1(X) (for any object X in the

range of f) consists of only one object in Söf . To see this, suppose f is not injective (otherwise there is

nothing to show) and let A,B À S be elements of the set f*1(X). By the definition of Söf , we know that

1X ÀHomSöf (A,B) since HomSöf (A,B) =HomC(A,B). Thus A and B are isomorphic in Söf since identity

arrows are always isomorphisms.

Note that by the construction of Söf , the function f actually constitutes a faithful and injective (on

objects and arrows) functor from Söf to C. The next result shows that if C is spined and if the range of f is

su�ciently large, then we can chose a spine ⌦S and a proxy-pushout PS on Söf which turns (Söf ,⌦S ,PS) into

a spined category and f : (Söf ,⌦S ,PS)ô (C,⌦,P) into a spined functor.

Theorem 3.5.1. Let (C,⌦,P) be a spined category, S be a set and f : S ô C be a function. If f is

(Söf1) surjective on the spine of C (i.e. ≈n À N,«X À S s.t. f (X) =⌦n) and such that

(Söf2) for every span f (X) ⌦n f (Y)x y in C, there exists a distinguished element Zx,y À S

such that f (Zx,y) =P(x,y),

then we can choose a functor ⌦S : N= ô Söf and an operation PS such that

1. (Söf ,⌦S ,PS) is a spined category and

2. f is a spined functor from (Söf ,⌦S ,PS) to (C,⌦,P)

3. if (C,⌦,P) is a measurable spined category, then so is (Söf ,⌦S ,PS).

Proof. Define ⌦S and PS as follows:

• ⌦S : N= ô Söf is the functor taking each n to an element of f*1(⌦n) (we can think of this as picking a

representative of the equivalence class f*1(⌦n) for each n since, as we observed earlier, all elements of

f*1(⌦n) are isomorphic),

3.5. NEW SPINED CATEGORIES FROM OLD 97

• PS is the operation assigning to each span X ⌦n Yx y in Söf the co-span

X PS (x,y) :=Zx,y Y
P(x,y)x P(g,h)h ,

where Zx,y is the distinguished element whose existence is guaranteed by the second property of f .

Now we will show that (Söf ,⌦S ,PS) is a spined category. Property SC1 holds in (Söf ,⌦S ,PS) since it

holds in (C,⌦,P) and since, for all A,B À S, we have HomSöf (A,B) :=HomC(A,B). To show Property SC2,

we must argue that that, for every diagram of the form

Q À f*1(⌦n) H1 J1

H2 PS (h1,h2)

J2 PS (j1h1,j2h2)

h1

h2

j1

j2
p

(3.1)

in Söf there is a unique arrow p (which is dotted in Diagram (3.1)) which makes the diagram commute.

By the second condition on f (i.e. Condition (Söf2)), we know that f (PS (h1,h2)) = P(fh1,fh2)

and f (PS (j1h1,j2h2)) =P(fj1h1,fj2h2). Thus we have that f maps Diagram (3.1) in Söf to the following

diagram in C.

⌦n f (H1) f (J1)

f (H2) f (PS (h1,h2)) =P(fh1,fh2)

f (J2) f (PS (j1h1,j2h2)) =P(fj1h1,fj2h2)

h1

h2

j1

j2
(j1,j2)

(3.2)

Since (C,⌦,P) satisfies Property SC2, the dashed arrow (j1,j2) in Diagram (3.2) exists, is unique and makes

the diagram commute. But, by the definition of Söf , we have

HomSöf
�
PS (h1,h2),PS (j1h1,j2h2)

�
=HomC

�
P(fh1,fh2),P(fj1h1,fj2h2)

�⇡
,

which means that (j1,j2)ÀHomSöf
�
PS (h1,h2),PS (j1h1,j2h2)

�
. In other words we can simply take p= (j1,j2),

as desired.

98 CHAPTER 3. SPINED CATEGORIES

Now we will argue that f is a spined functor. By the first condition on f (i.e. Condition (Söf1)), we

know that f preserves the spine. As we just argued in Diagrams (3.1) and (3.2) we know that f preserves all (by

the second property of f ; i.e. Condition (Söf2)) proxy-pushouts (i.e. it satisfies Property SF2 as well). Thus f

is a spined functor from (Söf ,⌦S ,PS) to (C,⌦,P).

Finally note that, since f is a spined functor from (Söf ,⌦S ,PS) to (C,⌦,P), it must be that, if there

exists an S-functor G over (C,⌦,P), then the composition G˝f is an S-functor over (Söf ,⌦S ,PS). Thus

(Söf ,⌦S ,PS) is measurable whenever (C,⌦,P) is. ∑

Theorem 3.5.1 allows us to easily define new spined categories from ones we already know. For example,

denoting, for every graph G, the set of all functions of the form f : V (G)ô {1,… , V (G)} as l(G), consider

the set L := {l(G) : G À G} of all vertex-labelings of all finite simple graphs. Let Q : L ô Grmono be the

surjection

Q :
�
f : Gô [V (G)]� G_f

which takes every labeling f : Gô [V (G)] in L to the quotient G_f of the graph G under f defined as

G_f := (V (G)_f ,E(G)_f ‰{xx : x À V (G)}).

Since Grmono is a measurable spined category, we know that LöQ is also a measurable spined category (by

applying Theorem 3.5.1). In particular, the triangulation functor �l of LöQ takes any object f : Gô [V (G)]

in LöQ to the tree-width of G_f plus 1.

This construction might seem peculiar, since it maps labeling functions (as opposed to graphs themselves)

to tree-widths of quotiented graphs. Thus we define the l-tree-width of any graph G, denoted twl(G), as

twl(G) = minfÀl(G)�l[f]. This becomes trivial if we allow all possible vertex-labelings (since we can obtain

a K1 as a quotient of any graph: simply label all vertices with the same label). However, by imposing restrictions

on the permissible labelings, we can obtain more meaningful width-measures on graphs. We briefly consider

two examples to demonstrate this principle.

Example 3.5.2 (Modular tree-width). Recall that a vertex-subset X of a graph G is a called a module

in G if, for all vertices z À V (G) ‰X, either z is adjacent to every vertex in X or N(z)„X = Á. We

3.6. FURTHER QUESTIONS 99

call a labeling function f : V (G) ô [V (G)] modular if, for all i À [V (G)], the preimage f*1(i) of i

is a module in G. Thus, denoting by M the set M :=
�
{� : � is modular labeling of G} : G À G

�
of all

modular labelings, we obtain, as we did above, a spined category MöQ, where Q is the function taking

each modular labeling to its corresponding modular quotient.

Note that the triangualation number of MöQ maps every modular labeling to the tree-width of the

corresponding modular quotient. Thus we can define modular tree-width which takes any graph G to the

minimum tree-width possible over the set of all modular quotients of G.

Example 3.5.3 (Chromatic tree-width). Denote the set of all proper colorings as

col :=
�
{� : � is proper coloring of G} : G À G

�
.

Then, as we just did in Example 3.5.2, we can study the spined category colöQ and its triangulation functor.

Proceeding as before, this immediately yields the notion of chromatic tree-width.

3.6 Further Questions

As we have seen, spined categories provide a convenient categorial setting for the study of classes of

recursively decomposble objects.

Among spined categories, the measurable ones come equipped with a distinguished S-functor, the

triangulation functor of Definition 3.4.12, which can be seen as a general counterpart to the graph-theoretic

notion of tree-width, and which gives rise to an associated notion of completion/decomposition. Moreover,

Theorem 3.4.13 shows that the only possible obstructions to measurability are the generic ones: if there is

no obstruction so strong that it precludes the existence of every S-functor, there can be no further obstruction

preventing the existence of the triangulation functor.

Since most settings have only one obvious choice of structure-preserving morphism (which often fixes

the pushout construction as well), functoriality leaves the choice of an appropriate spine as the only degree of

freedom. This makes spined categories an interesting alternative to other techniques for defining graph width

measures, such as layouts9 (which we used in Chapter 2 to define directed branch-width in Definition 2.3.1 and

which have also been used for defining branch-width [87], rank-width [83], F4-width [64], bi-cut-rank-width [64]
9Sometimes referred to as ‘branch decompositions’ of symmetric submodular functions.

100 CHAPTER 3. SPINED CATEGORIES

and min-width [93]), which rely on less easily generalized, graph-theory-specific notions of connectivity. Finding

algebraic examples of spined categories and associated width measures remains a promising avenue for further

work. In particular, as we move from combinatorial structures towards algebraic and order-theoretic ones,

choosing a spine becomes an abundant source of technical questions. As an example of such as question, we

propose the following concrete direction for future work.

Question. Consider the category Posetoe which has finite posets as objects and order embeddings as mor-

phisms, equipped with the usual pushout construction. Is there a sequence of objects n≠ ⌦n which makes

Posetoe into a measurable spined category?

101

4 | Interval-membership-width: dynamic

programming on temporal graphs

4.1 Introduction

In this chapter we shift our focus to the growing field of temporal graphs. As we shall see in Sections 4.1.1

and 4.1.2, there are salient di�erences between static and temporal graph theory. In fact we will provide many

examples of problems that are polynomial-time solvable for static graphs, but NP-hard of temporal graphs. In

keeping with the theme of this thesis, we will then then study how to cope with algorithmic intractability on

temporal graphs by seeking measures of recursive decomposability that we can exploit algorithmically. As we

shall see, it will not be enough to simply restrict the underlying static structure of temporal graph. In fact this

means that we will not be able to immediately apply the techniques we developed in the previous chapters to

temporal graphs: instead we will need to take a step back to gain some understanding of what algorithmically

exploitable temporal structure might look like. We will do this by studying the complexity of some natural

exploration problems (such as deciding whether a temporal graph is temporally Euelerian) on temporal graphs.

We will then introduce a new temporal width-measure called interval-membership-width which, as we will show,

will be useful for the design of linear-time dynamic-programming algorithms on classes of temporal graphs of

bounded interval-membership-width.

4.1.1 Background on temporal graphs

Temporal graphs crop up naturally when modelling systems such as human and animal proximity

networks, human communication networks, collaboration networks, citation networks, economic networks

102 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

and neuro-scientific networks [22, 56, 79]. Particularly active application areas are biological, ecological and

epidemiological networks [22, 57, 58] (where one might be interested in studying community formation or the

spread of information or disease), distributed computing [22, 79] (for example in the study of delay-tollerant

networks where one tries to ensure properties – such as connectivity – over time) and opportunistic mobility [22]

(where there might be physically moving objects – such as busses, taxis, trains – which transmit information

between each-other at limited distances). We note that, being a young field born form diverse application domains,

it is no surprise that temporal graphs have been re-discovered (or re-defined) many times. This has lead to the

same notion to be known under many di�erent names such as: temporal graphs, temporal networks, dynamic

graphs, evolving graphs and time-varying graphs.

Formal preliminaries A ‘graph that changes with time’ is quite a broad concept and there are many di�erent

perspectives that one might take on what this should mean. For instance, should the edges appear and disappear

over time, or should the vertices be the ones changing with time? Also, should we assume time to be discrete

or should we assume a time-continuum? Addressing these questions, we will introduce two models in what

follows. The first – which we shall refer to as1 T -temporal networks [22] (Definition 4.1.1) – is due to Casteigts,

Flocchini, Quattrocchi and Santoro [22]. The second – which we shall call temporal graphs – is due to Kempe,

Kleinberg, and Kumar [66] (Definition 4.1.2). T -temporal networks are more general than temporal graphs; they

summarise in a single definition many of the di�erent formalisms that have been proposed so far. Although we

will not work with T -temporal networks in this thesis, we take the time to define them because they convey a

succinct impression of the diverse set of questions that the research community is interested in.

Definition 4.1.1. [[22]] Take T to be one of either N or R. A T -temporal (directed) network is a quintuple

(G,⇢e,⌘e,⇢v,⌘v) where G is a (directed) graph and ⇢e, ⌘e, ⇢v and ⌘v are functions of the following types:

⇢e : E(G)ùT ô {Ú,Ò}, ⌘e : E(G)ùT ô T ,

⇢v : V (G)ùT ô {Ú,Ò}, ⌘v : V (G)ùT ô T .

The functions ⇢e and ⇢v of Definition 4.1.1 are called the edge- and vertex-presence functions respectively:

they indicate if an edge or vertex is present at any given time. The functions ⌘e and ⌘v are called the edge- and

vertex-latency functions respectively: they indicate how long it takes – at any given time – to cross any given

active edge (or process information at any given active vertex).
1this is not the terminology used in [22]; we choose it in order to avoid any confusion with Kempe, Kleinberg, and Kumar’s model [66].

4.1. INTRODUCTION 103

a

bc

1,23,5,101

10

Figure 4.1: A temporal graph (K3,⌧) with lifetime 101.

For our purposes, we will only consider the discrete-time case (i.e. take T = N). In fact we will consider

a much more restricted model in which the vertices do not vary with time and in which all notions of latency are

disregarded. For many application domains, this is not a severe restriction since it can still be used to model

many real-world problems ranging from epidemiology [37–39, 90] to social [7, 67] and trade networks [72] and

distributed networks [65]. The formalism that we will adhere to in this thesis originates from the work of Kempe,

Kleinberg, and Kumar [66] which is defined as follows (see also Figure 4.1). Note that, to distinguish it from

N-temporal networks, we will refer to this formalism as a temporal graph.

Definition 4.1.2. A temporal graph is a pair (G,⌧) where G is a graph and ⌧ : E(G)ô 2N is a function

mapping edges of G to subsets of the naturals.

For any edge e in G, we call the set ⌧(e) the time-set of e (for example, given the temporal graph

in Figure 4.1, the time-set of the edge ac is {2,5,101}). For any time t À ⌧(e) we say that e is active at

time t and we call the pair (e, t) a time-edge. The set of all edges active at any given time t À N is denoted

Et(G,⌧) := {e À E(G) : t À ⌧(e)}. The latest time ⇤ for which E⇤(G,⌧) is non-empty is called the lifetime of a

temporal graph (G,⌧) (or equivalently ⇤ :=maxeÀE(G) max⌧(e)). Similarly to the notation employed for directed

graphs, we define the underlying static graph of (G,⌧) to be the static graph u(G,⌧) := (V (G),∑tÀNEt(G,⌧))

given by taking every edge that is ever active in (G,⌧) to be an edge in G. If every edge of G is active at at-least

one time, then u(G,⌧) and G are isomorphic.

There are also other natural restrictions and/or attributes that can be added to the model of a temporal

graph that have been studied in the literature. Two that we mention here are temporal graphs with random

or periodic behaviour (we note that these notions have many natural analogues in the more general setting of

T -temporal networks as well [22]).

Just as in the static setting, random behaviour can be very useful for modelling temporal graphs under

imperfect information [79]. Although we will not consider random temporal graphs in this thesis, we point out

that, similarly to the static setting, exploiting randomness has been e�ective tool for the theoretical study of

104 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

both structural and algorithmic problems on temporal graphs (see, the surveys by Michail [79] or Casteigts et.

al. [22] for more information).

It turns out that periodicity is also a very natural restriction on temporal structure since many real-world-

networks display periodic recurrences of edge-appearences and disappearences. Some well-known examples of

periodic temporal graphs are the public-transportation and other logistical networks [22,79] or low Earth-orbiting

satellite systems [22]. There are di�erent formalisations of what a periodic temporal graph should be (for

example there might be a global period which governs edge-re-appearance or perhaps each edge might have

its own private period). We will not study periodic temporal graphs of this kind; however we point out that

in Section 4.4 we will show that knowledge of some global (i.e. over all edges) upper- and lower-bounds on

successive edge-appearances in temporal graphs can be used to strengthen the algorithmic results that we will

prove in Section 4.3.

4.1.2 The graph theory and complexity theory of temporal graphs

Clearly, any graph theoretic notion that is familiar from the setting of static-graphs can be naïvely applied

to temporal graphs by simply defining it in terms of the underlying static graph. Although this can be sometimes

useful, it is in general too restrictive since it forgets the temporal structure completely. In fact one is often most

interested in truly temporal analogues of standard graph theoretic notions (e.g. connectivity or distance) that

take temporal information into account.

To illustrate this point, notice that there are two natural notions of walk in a temporal graph: one is the

familiar notion of a walk in static graphs and the other is a truly temporal notion where we require consecutive

edges in walks to appear at non-decreasing times. Formally, given vertices x and y in a temporal graph (G,⌧),

a temporal (x,y)-walk is a sequence W = (e1, t1),… , (en, tn) of time-edges such that e1,… ,en is a walk in G

starting at x and ending at y and such that t1 f t2 f5f tn. If n> 1, we denote byW * (en, tn) the temporal walk

(e1, t1),… , (en*1, tn*1). We call a temporal (x,y)-walk closed if x = y and we call it a strict temporal walk if the

times of the walk form a strictly increasing sequence. Consider for example the temporal graph in Figure 4.1. In

this graph, the sequence (ab,1)(bc,10)(ca,101) of time-edges constitutes a temporal cycle in (K3,⌧). Temporal

graphs naturally induce permissible edge-orderings in walks; for example notice that all temporal cycles in the

temporal graph in Figure 4.1 must first visit ab before any other edge.

Two examples of applications in which it might be appropriate to prefer strict or non-strict temporal

4.1. INTRODUCTION 105

walks respectively are train networks or certain epidemiological networks. In the first case, it does not make

sense to consider non-strict walks since we cannot take multiple consecutive train journeys that all depart at

the same time. In contrast, if, in the context of disease transmission, the presence of a time-edge indicates that

two people are close enough for contagion at that time, then non-strict walks may make more sense (since a

connected set of edges all present at the same time might indicate that all of those people are very close to

each-other). Hereafter we will assume all temporal walks to be strict.

Many other standard graph-theoretic notions such as degree, distance and connectivity (to name a few)

have (sometimes many di�erent) temporal counterparts. In some cases defining such a temporal counterpart

is straightforward: consider for example the degree of a vertex v in a temporal graph (G,⌧). Since this might

vary at di�erent time-points, it is natural to distinguish between the underlying degree (or simply degree)

d(v) := du(G,⌧)(v) of any vertex v, the t-degree (or degree at time t) dt(v) := d(V (G),Et(G,⌧))(v) of v and the

temporal total degree dtot(v) :=≥
tÀN dt(v) (which counts the number of time-edges incident with v).

In other cases, it is not as straightforward to determine which temporal analogue is the right one. To

illustrate this point, suppose we wished to define a temporal analogue of distance between two vertices. Should

we define the temporal distance between two vertices u and v to be their distance in the underlying static graph?

Or would it be more meaningful for the distance from u to v to be the length of the shortest temporal path?

Or, then again, should the temporal distance between u and v perhaps represent the minimum possible time

that it takes to travel from u to v via a temporal walk? All of these notions (among others still) have been

considered before and we refer the interested reader to the survey article by Casteigts, Flocchini, Quattrocchi and

Santoro [22] where these topics are discussed at length.

Given these considerations, it should not be a surprise to discover that the temporal analogues of standard

graph-theoretic notions can behave quite di�erently from their static counterparts. For example, consider the

question of finding the strongly-connected-components in directed graphs. This is a prototypical example

of a polynomial-time problem for static graphs, but its temporal analogue (where two vertices are strongly

connected if there are temporal paths connecting them in both directions) was shown to be NP-hard by Bhadra

and Ferreira [14].

Another striking example of this phenomenon is Kempe, Kleinberg and Kumar’s result which shows that

it is NP-hard to determine the maximum-number of internally-vertex-disjoint temporal (s, t)-paths in temporal

graphs [66] (another problem that is well-known to be tractable in the static setting). In particular, the naïve

106 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

s

x

y

z

t

1

5

2

4

6

3

7

Figure 4.2: A counterexample to Menger’s theorem for temporal graphs taken from Michail’s survey article [79]
which was in-turn adapted from a paper of Kempe, Klienberg and Kumar [66]. Notice that, although there are no
two internally-vertex-disjoint temporal paths from s to t, after we remove any one of x, y or z, the vertex s can
still reach t via a temporal walk.

temporal analogue of Menger’s theorem on connectivity fails for temporal graphs. Recall that Menger’s theorem

states that, given any two distinct vertices s and t in any graph G, the minimum number of vertices that we

need to remove in order to separate s from t in G is equal to the maximum number of internally-vertex-disjoint

(s, t)-paths in G (see Diestel’s textbook for a proof [30, Theorem 3.3.1]). In contrast, there exist temporal graphs

in which, given two distinct vertices s and t, the number of vertices that we need to remove in order to destroy

all temporal (s, t)-walks is strictly greater than the maximum number of internally-vertex-disjoint temporal

(s, t)-walks (see Figure 4.2 for an illustration).

There are sometimes instances of graph-theoretic notions that generalize nicely to the temporal setting.

One example of this phenomenon is the edge-version of Menger’s theorem: Berman showed that the minimum

number of edges that one needs to remove in order to destroy all temporal (s, t)-walks (for any two vertices s and

t) is equal to the maximum number of edge-disjoint temporal (s, t)-walks [10]. Furthermore, by considering a

di�erent notion of distjointness of paths (roughly one might think of it in terms of departure time disjointness) a

vertex-centric temporal analogue of Menger’s theorem can indeed be recovered [76].

In general, from a complexity-theoretic perspective, decision problems tend to get significantly harder

on temporal graphs than they are on static graphs [14, 66, 79]. As we already mentioned, the natural temporal

variants of many polynomial-time solvable problems on static graphs become NP-hard. Some examples are:

finding connected components [14], determining the maximum number of internally vertex-disjoint (s, t)-paths

[66], finding maximum matchings [78] or deciding if a graph is temporally Eulerian [18,75]. Generally speaking

(as one would expect) passing from static to temporal graphs does not make NP-hard problems any easier: for

example Michail and Spirakis showed that various temporal analogues of the Travelling Salesman Problem as

well as the Path-packing, Max-TSP and Minimum-Cycle-Cover problems are all NP-hard [79, 80].

Thus, given all of the evidence for computational intractability in the temporal setting, it is natural to seek

structural restrictions on the input that yield islands of tractability. To this end, Enright, Meeks, Mertzios and

4.1. INTRODUCTION 107

Zamaraev showed that parameterizations by underlying tree-width (i.e. the tree-width of the underlying static

graph) together with other parameters can yield tractability results in some cases [37]. Unfortunately, restricting

the underlying static structure is often not enough since there are many decision problems that remain NP-hard

even in the extremely restrictive cases in which the underlying static graph of the input is a cactus graph (as we

shall prove in Section 4.2) or a tree [78] or even a star [3]! In fact, these considerations rule out fixed-parameter

tractability results parameterized by other temporal variants of structural measures on static graphs as well.

Examples of such measures are temporal variants of feedback vertex number [23] or other tree-width analogues

such as layer- or slice-tree-width [44].

4.1.3 Chapter overview

Having introduced some background on temporal graphs, we will now conclude the introduction to this

chapter by giving a more specific contextualization as well as a high-level overview of the technical contributions

of this chapter.

Some of the most natural and most studied topics in the theory of temporal graphs are temporal walks,

paths and corresponding notions of temporal reachability [2, 6, 14, 23, 66, 76, 95, 96]. Related to these notions is

the study of explorability of a temporal graph which asks whether it is possible to visit all vertices or edges of a

temporal graph via some temporal walk.

Temporal vertex-exploration problems (such as temporal variants of the Travelling Salesman problem)

have already been thoroughly studied [3, 40, 80]. In contrast, the rest of this chapter will focus on temporal

edge-exploration and specifically we study temporally Eulerian graphs. Informally, these are temporal graphs

admitting a temporal circuit that visits every edge at exactly one time (i.e. a temporal circuit that yields an Euler

circuit in the underlying static graph).

Deciding whether a static graph is Eulerian is a prototypical example of a polynomial time solvable

problem. In fact this follows from Euler’s characterization of Eulerian graphs dating back to the 18th century [41].

In contrast, we will show in Section 4.2 that, unless P = NP, a characterization of this kind cannot exist for

temporal graphs. In particular we show that deciding whether a temporal graph is temporally Eulerian is NP-

complete even if strong restrictions are placed on the structure of the underlying graph and each edge is active at

only three times.

As we already mentioned in Section 4.1.2, the existence of problems that are tractable on static graphs, but

108 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

NP-complete on temporal graphs is well-known [3,21,77,79]. Furthermore, since there are examples of problems

whose temporal analogues remain hard even on trees [3,77], the known parameters (such as the temporal variants

of feedback vertex number [23] and tree-width [44] which were mentioned in the previous section) will be of

no use to us here since the problems we consider remain NP-complete even when these measures are bounded

by constants on the underlying static graph. To overcome these di�culties, in Section 4.3 we introduce a new

purely-temporal parameter called interval-membership-width. Parameterizing by this measure we find that the

problem of determining whether a temporal graph is temporally Eulerian is in FPT.

Temporal graphs of low interval-membership-width are ‘temporally sparse’ in the sense that only few

edges are allowed to appear both before and after any given time. We point out that this parameter does not

depend on the structure of the underlying static graph, but it is instead influenced only by the temporal structure.

We believe that interval-membership-width will be a parameter of independent interest for other temporal graph

problems in the future.

In Section 4.4 we will show that our study of temporally Eulerian graphs is closely related to a temporal

variant of the Travelling Salesman Problem concerning the exploration of temporal stars via a temporal circuit

which starts at the center of the star and which visits all leaves. Akrida, Mertzios and Spirakis introduced this

problem and proved it to be NP-complete on temporal stars in which every edge has at most k appearances times

for all k g 6 [3]. Although they also showed that the problem is polynomial-time solvable whenever each edge of

the input temporal star has at most 3 appearances, they left open the question of determining the hardness of the

problem when each edge has at most 4 or 5 appearances. We resolve this open problem in the course of proving

our results about temporally Eulerian graphs. Combined with Akrida, Mertzios and Spirakis’ results, this gives a

complete dichotomy: their temporal star-exploration problem is in P if each edge has at most 3 appearances and

is NP-complete otherwise.

As a potential ‘island of tractability’, Akrida, Mertzios and Spirakis proposed to restrict the input to their

temporal star-exploration problem by requiring consecutive appearances of the edges to be evenly spaced (by

some globally defined spacing). Using our new notion of interval-membership-width we are able to show in

Section 4.4 that this restriction does indeed yield tractability parameterized by the maximum number of times per

edge (thus partially resolving their open problem). Furthermore, we show that a slightly weaker result also holds

for the problem of determining whether a temporal graph is temporally Eulerian in the setting with evenly-spaced

edge-times.

4.2. HARDNESS OF TEMPORAL EDGE EXPLORATION 109

4.2 Hardness of temporal edge exploration

Recall that an Euler circuit in a static graph G is a circuit e1… ,em which traverses every edge of G

exactly once. In this section we are interested in the natural temporal analogue of this notion. We point out

that, independently and simultaneously to our work here, Marino and Silva also studied temporal variants of the

problem of deciding whether a graph is Eulerian [75].

Definition 4.2.1. A temporal Eulerian circuit in a temporal graph (G,⌧) is a closed temporal walk (e1, t1),… , (em, tm)

such that e1… ,em is an Euler circuit in the underlying static graph G. If there exists a temporal Eulerian

circuit in (G,⌧), then we call (G,⌧) temporally Eulerian.

Note that if (G,⌧) is a temporal graph in which every edge appears at exactly one time, then we can

determine whether (G,⌧) is temporally Eulerian in time linear in E(G). To see this, note that, since every edge

is active at precisely one time, there is only one candidate ordering of the edges (which may or may not give rise

to an Eulerian circuit). Thus it is clear that the number of times per edge is relevant to the complexity of the

associated decision problem – which we state as follows.

TEMPEULER(k)

Input: A temporal graph (G,⌧) where ⌧(e) f k for every edge e in the graph G.

Question: Is (G,⌧) temporally Eulerian?

As we mentioned in Section 4.1, here we will show that TEMPEULER(k) is related to an analogue of the

Travelling Salesman problem on temporal stars [3]. This problem (denoted as STAREXP(k)) was introduced by

Akrida, Mertzios and Spirakis [3]. It asks whether a given temporal star (Sn,⌧) (where Sn denotes the n-leaf

star) with at most k times on each edge admits a closed temporal walk starting at the center of the star and which

visits every leaf of Sn. We call such a walk an exploration of (Sn,⌧). A temporal star that admits an exploration

is called explorable. Formally we have the following decision problem.

STAREXP(k)

Input: A temporal star (Sn,⌧) where ⌧(e) f k for every edge e in the star Sn.

Question: Is (Sn,⌧) explorable?

110 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

We will now show that TEMPEULER(k) is NP-complete for all k at least 3 (Corollary 4.2.5) and that

STAREXP(k) is NP-complete for all k at least 4 (Corollary 4.2.3). This last result resolves an open problem of

Akrida, Mertzios and Spirakis which asked to determine the complexity of STAREXP(4) and STAREXP(5) [3].

To show that STAREXP(4) is NP-hard, we will provide a reduction from the 3-COLORING problem (see

for instance Garey and Johnson [48] for a proof of NP-completeness) which asks whether an input graph G is

3-colorable.

3-COLORING

Input: A finite simple graph G.

Question: Does G admit a proper 3-coloring?

Throughout, for an edge e of a temporal star (Sn,⌧), we call any pair of times (t1, t2) À ⌧(e)2 with t1 < t2

a visit of e. We say that e is visited at (t1, t2) in a temporal walk if the walk proceeds from the center of the star

along e at time t1 and then back to the center at time t2. We say that two visits (x1,x2) and (y1,y2) of two edges

ex and ey are in conflict with one another (or that ‘there is a conflict between them’) if there exists some time t

with x1 f t f x2 and y1 f t f y2. Note that a complete set of visits (one visit for each edge of the star) which has

no pairwise conflicts is in fact an exploration.

Theorem 4.2.2. STAREXP(4) is NP-hard.

Proof. Take any 3-COLORING instance G with vertices {x1,… ,xn}. We will construct a STAREXP(4) instance

(Sp,⌧) (where p = n+3m) from G.

Defining Sp. The star Sp is defined as follows: for each vertex xi in G, we make one edge ei in Sp while,

for each edge xixj with i < j in G, we make three edges e0ij , e
1
ij and e2ij in Sp.

Defining ⌧. For i À [n] and any non-negative integer À {0,1,2,…}, let ti⇠ be the integer

ti := 2in2 +2 (n+1) (4.1)

and take any edge xjxk in G with j < k. Using the times defined in Equation (4.1) and taking ⇠ À {0,1,2}, we

4.2. HARDNESS OF TEMPORAL EDGE EXPLORATION 111

x1

x2 x3

c

e1 e01,2 e11,2 e21,2

e2 e02,3 e12,3 e22,3e3e01,3e11,3e21,3

t10 t11 t12 t13 t20 t21 t22 t23

r1 r2 r3 r4

g1 g2 g3 g4

b1 b2 b3 b4

⌧(e1): ⌧(e2):

⌧(e012):
⌧(e112):
⌧(e212):

Figure 4.3: Top left: K3; we assume the coloring xi ≠ i*1. Top right: star constructed fromK3. Bottom: times
(and corresponding intervals) associated with the edges e1, e2 and e01,2, e11,2, e21,2 (time progresses left-to-right
and intervals are not drawn to scale). We write r1,r2,r3,r4 as shorthand for the entries of ⌧(e01,2) (similarly, for
i À [4], we write gi and bi with respect to ⌧(e11,2) and ⌧(e21,2)). The red and thick intervals correspond to visits
defined by the coloring of the K3.

then define ⌧(ei) and ⌧(e⇠jk) as

⌧(ei) :=
�
ti0, t

i
1, t

i
2, t

i
3
�

and (4.2)

⌧(e⇠jk) :=
�
tj⇠ +2k*1, tj⇠ +2k, tk⇠ +2j*1, tk⇠ +2j

�
. (4.3)

Note that the elements of these sets are written in increasing order (see Figure 4.3).

Intuitively, the times associated to each edge ei À E(Sp) corresponding to a vertex xi À V (G) (Equa-

tion (4.2)) encode the possible colorings of xi via the three possible starting times of a visit of ei. The three

edges e0ij , e
1
ij and e2ij corresponding to some xixj À E(G) are instead used to ‘force the colorings to be proper’

in G. That is to say that, for a color ⇠ À {0,1,2}, the times associated with the edge e⇠ij (Equation (4.3)) will

prohibit us from entering ei at its ⇠-th appearance and also entering ej at its ⇠-th appearance (i.e. ‘coloring xi

and xj the same color’).

Observe that the first two times in ⌧(e⇠jk) lie within an interval given by consecutive times in ⌧(ej) and

that the same holds for the last two times in ⌧(e⇠jk) with respect to ⌧(ek) (see Figure 4.3). More precisely, it is

immediate that for 1 f j < k f n and ⇠ À {0,1,2}, we have:

tj⇠ < tj⇠ +2k*1 < tj⇠ +2k < tj⇠+1 (4.4)

112 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

Given this set-up, we will now show that G is a yes instance if and only if (Sp,⌧) is.

Suppose (Sp,⌧) is explorable. Define the coloring (to be shown proper) c : V (G)ô {0,1,2} taking

each vertex xi to the color ⇠ whenever ei is entered at time ti⇠ within the exploration of (Sp,⌧) (note that these

are the only possible times at which ei can be entered, since every edge appears at exactly 4 times). We claim

that c is a proper coloring. To see this, suppose on the contrary that there is a monochromatic edge xixj with

i < j of color ⇠ in G. Then, this means that ei was entered at time ti⇠ and exited at time at least ti⇠+1 and similarly

ej was entered at time tj⇠ and exited at time at least tj⇠+1. But then, since all times in ⌧(e⇠ij) are contained either in

the open interval (ti⇠ , t
i
⇠+1) ”R or the open interval (tj⇠ , t

j
⇠+1) ”R we know that e⇠ij cannot be explored (by (4.4)).

This contradicts the assumption that (Sp,⌧) is explorable, hence c must be a proper coloring.

Conversely, suppose G admits a proper 3-coloring c : V (G) ô {0,1,2}. We define the following

exploration of (Sp,⌧) (see Figure 4.3):

• for every vertex xi in G, if c(xi) = ⇠, then visit ei at (ti⇠ , t
i
⇠+1)

• for every edge xixj in G with i < j and every color ⇠ À {0,1,2}, define the visit of e⇠ij as follows: if

c(xi) ë ⇠, then visit e⇠ij at (ti⇠ +2j*1, ti⇠ +2j); otherwise visit e⇠ij at (tj⇠ +2i*1, tj⇠ +2i).

Our aim now is to show that the visits we have just defined in terms of the coloring c are disjoint (and thus

witness the explorability of (Sp,⌧)).

Take any i < j and any ⇠ À {0,1,2}. By our definition of ⌧(ei) and ⌧(ej), we must have max⌧(ei) = ti3 <

2jn2 = min⌧(ej) whenever i < j. Thus we note that there are no conflicts between the visit of ei and the visit of

ej .

Note that, for all (⇠,!) À {0,1,2}2 and all pairs of edges xixj and xkxl in G with i < j and k < l, the

visit (vi,j ,vi,j +1) of e⇠ij is in conflict with the visit (vk,l ,vk,l+1) of e!kl only if xixj = xkxl . To see this, observe

that the visits of e⇠ij and e!kl both consist of two consecutive times where the first time is odd. Thus we would

only have a conflict if vi,j = vk,l which can be easily checked to happen only if i = k and j = l.

Finally we claim that there are no conflicts between the visit of e⇠ij and the visits of either ei or ej . To show

this, we will only argue for the lack of conflicts between the visits of ei and e⇠ij since the same ideas su�ce for the

ej-case as well. Suppose c(xi) = ⇠, then we visit e⇠ij at (tj⇠+2i*1, tj⇠+2i) and then tj⇠+2i*1> tj⇠ > t
i
3 =max⌧(ei)

since i < j and since c is a proper coloring. Similarly, if c(xi) ë ⇠, then we visit e⇠ij at (ti⇠ +2j*1, ti⇠ +2j). As

4.2. HARDNESS OF TEMPORAL EDGE EXPLORATION 113

we observed in Inequality (4.4), we have ti⇠ < t
i
⇠ +2j*1 < ti⇠ +2j < ti⇠+1. Thus, if (u1,u2) is the visit of ei, then

either u2 < ti⇠ or ti⇠+1 < u1. In other words, no conflicts arise.

This concludes the proof since we have shown that the visits we assigned to the edges of Sp constitute an

exploration of (Sp,⌧). ∑

Observe that increasing the maximum number of times per edge cannot make the problem easier: we

can easily extend the hardness result to any k® > 4 by simply adding a new edge with k® times all prior to the

times that are already in the star. This, together with the fact that Akrida, Mertzios and Spirakis [3] showed that

STAREXP(k) is in NP for all k g 0, allows us to conclude the following corollary.

Corollary 4.2.3. For all k at least 4, STAREXP(k) is NP-complete.

Next we shall reduce STAREXP(k) to TEMPEULER(k*1). We point out that, for our purposes within

this section, only the first point of the statement of the following result is needed. However, later (in the proof of

Corollary 4.3.4) we shall make use of the properties stated in the second point of Lemma 4.2.4 (this is also why

we allow any k times per edge rather than just considering the case k = 4). Thus we include full details here.

Lemma 4.2.4. For all k g 2 there is a polynomial-time-computable mapping taking every STAREXP(k)

instance (Sn,⌧) to a TEMPEULER(k*1) instance (Dn,�) such that

1. (Sn,⌧) is a yes instance for STAREXP(k) if and only if (Dn,�) is a yes instance for TEMPEULER(k*1)

and

2. Dn is a graph obtained by identifying n-copies {K3
1 ,… ,K3

n} of a cycle on three vertices along one

center vertex (see Figure 4.4) and such that

max
tÀN

{e À E(Dn) :min(�(e)) f t fmax(�(e))}

f 3max
tÀN

{e À E(Sn) :min(⌧(e)) f t fmax(⌧(e))}.

Proof. Note that we can assume without loss of generality that: (1) every edge in Sn has exactly k-times on

each edge and (2) that all times are multiples of 2. This follows from the fact that we can construct from any

STAREXP(k)-instance (Sn® ,u) another STAREXP(k)-instance (Sn,⌧) so that : (Sn,⌧) is explorable if and only if

(Sn® ,u) also is and every time in (Sn,⌧) satisfies conditions (1) and (2).

114 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

cs

x1

x2 x3

{t1,1, t1,2, t1,3, t1,4}

c

x1,1 x1,2

x2,1x2,2 x1,3 x3,2

{t1,1, t1,2, t1,3} {t1,2, t1,3, t1,4}

{t1,1 +1, t1,2 +1, t1,3 +1}

Figure 4.4: Building (D3,�) from (S3,⌧). The times along edges are drawn only for the edge csx1 in S3 and
for its corresponding 3-cycle cx1,1x1,2 in D3. Since t1,1, t1,2, t1,3 and t1,4 are all multiples of 2, we know that
t1,j < t1,j+1 < t1,j+1 for all j À [3]. Thus the reduction associates the visit (ts, te) of csx1 in the star to exploration
(ts, ts+1, te) of the 3-cycle corresponding to csx1 in D3.

Now we will show how to construct a TEMPEULER(k*1)-instance (Dn,�) from (Sn,⌧) such that (Dn,�)

is temporally Eulerian if and only if (Sn,⌧) is explorable (see Figure 4.4). Throughout, denote the vertices of the

i-th 3-cycle C3
i of Dn by {c,xi,1,xi,2} and let its edges be fi,1 = cxi,1, fi,2 = xi,1xi,2 and fi,3 = xi,2c. For every

i À [n] with ⌧(ei) = {t1,… , tk} where t1 < t2 <5 < tk, define the map � : E(Dn)ô 2N as:

�(fi,1) := {t1,… , tk*1},

�(fi,2) := {t1 +1,… , tk*1 +1},

�(fi,3) := {t2,… , tk}.

Note that �(fi,1)= �(fi,2)= �(fi,3)= k*1. Now suppose (Sn,⌧) is a yes-instance witnessed by the sequence

V of visits V := (x1,y1),… , (xn,yn) of the edges e1,… ,en of Sn and observe that yi < xi+1 for all i À [n*1].

We claim that the sequence of time-edges

(f1,1,x1), (f1,2,x1 +1), (f1,3,y1),… , (fn,1,xn), (fn,2,xn+1), (fn,3,yn)

is a temporal Eulerian circuit in G. To see this, recall that yj < xj+1 (for j À [n*1]) and note that:

1. by definition f1,1,f1,2,f1,3,… ,fn,1,fn,2,fn,3 is an Eulerian circuit in the underlying static graph Dn (i.e.

we walk along each 3-cycle in turn) and

2. xi < xi+1 < yi for all i À [n] since we assumed that xi,yi À 2N.

Conversely, suppose (Dn,�) is a yes-instance and let this fact be witnessed by the temporal Eulerian circuit K.

Recall that a temporal Eulerian circuit induces an Eulerian circuit in the underlying static graph. Thus, since

4.2. HARDNESS OF TEMPORAL EDGE EXPLORATION 115

every Eulerian circuit in Dn must run through each 3-cycle, we know that K must consist – up to relabelling of

the edges – of a sequence of time-edges of the form

K := (f1,1,x1,1), (f1,2,x1,2), (f1,3,y1,3), (f2,1,x2,1), (f2,2,x2,2), (f2,3,y2,3),

…, (fn,1,xn,1), (fn,2,xn,2), (fn,3,yn,3).

It follows immediately from the definition of (Dn,�) that visiting each edge ej in Sn at (xj,1,yj,3) constitutes an

exploration of (Sn,⌧), as desired. ∑

Since TEMPEULER(k) is clearly in NP (where the circuit acts as a certificate), our desired NP-completeness

result follows immediately from Lemma 4.2.4 and Corollary 4.2.3.

Corollary 4.2.5. TEMPEULER(k) is NP-complete for all k at least 3.

As we noted earlier, TEMPEULER(1) is trivially solvable in time linear in the number of edges of the

underlying static graph. Although our proof leaves open the k= 2 case, Marino and Silva closed this gap showing

that TEMPEULER(k) is NP-complete for all k g 2 (thus resolving an open problem from a paper by the author of

this thesis and Meeks [18]).

Observe that the reduction in Lemma 4.2.4 rules out FPT algorithms with respect to many standard

parameters describing the structure of the underlying graph (for instance the path-width is 2 and feedback vertex

number2 is 1). In fact we can strengthen these intractability results even further by showing that TEMPEULER(k)

is hard even for instances whose underlying static graph has vertex-cover number3 2. This motivates our search in

Section 4.3 for parameters that describe the structure of the times assigned to edges rather than just the underlying

static structure.

Notice that this time we will reduce from STAREXP(k) to TEMPEULER(k) (rather than from STAREXP(k+

1) as in Lemma 4.2.4), so, in contrast to our previous reduction (Lemma 4.2.4), the proof of the following result

cannot be used to show hardness of TEMPEULER(3).

Theorem 4.2.6. For all k g 4, the TEMPEULER(k) problem is NP-complete even on temporal graphs

whose underlying static graph has vertex-cover number 2.

2Recall that a feedback vertex set in a graph (resp. directed graph)G is a vertex subset S ” V (G) such thatG*S is a forest (resp. directed
acyclic graph). The feedback vertex number of a graph G is the minimum number of vertices needed to form a feedback vertex set in G.

3Recall that a vertex-cover in a graph G is a vertex-subset S ” V (G) such that every edge in G is incident with at least one vertex in S.
The vertex-cover number of a graph G is the minimum number of vertices needed to form a vertex-cover of G.

116 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

Proof. Take any STAREXP(k) instance (Sn,⌧) and assume that n is even (if not, then simply add a dummy edge

with all appearances strictly after the lifetime of the graph). Denoting by c the center of Sn and by x1,… ,xn its

leaves, let Sc1,c2n be the double star constructed from Sn by splitting c into two twin centers; stating this formally,

we define Sc1,c2n as

Sc1,c2n = ({c1,c2,x1,… ,xn},{cixj : i À [2] and j À [n]}).

Notice that, since n is even, Sc1,c2n is Eulerian and notice that the set {c1,c2} is a vertex cover of Sc1,c2n .

Defining � : E(Sc1,c2n)ô 2N for all i À [2] and j À [n] as �(cixj) = ⌧(cxj), we claim that the temporal

graph (Sc1,c2n ,�) is temporally Eulerian if and only if (Sn,⌧) is explorable.

Suppose that (Sn,⌧) is explorable and let this be witnessed by the sequence of visits (s1, t1),… , (sn, tn).

Then it follows immediately by the definition of � that the following sequence of time-edges is a temporal circuit

in (Sc1,c2n ,�):

(c1x1,s1), (x1c2, t1), (c2x2,s2)(x2c1, t2), (c1x3,s3), (x3c2, t3),… , (c2xn,sn)(xnc1, tn).

To see this, note that this clearly induces an Eulerian circuit in the underlying static graph Sc1,c2n ; furthermore,

since (s1, t1),… , (sn, tn) is an exploration in (Sn,⌧), it follows that s1 < t1 < s2 < t2 <… < sn < tn, as desired.

Suppose now that (Sc1,c2n ,�) is temporally Eulerian and that this fact is witnessed (without loss of

generality – up to relabeling of vertices) by the temporal Eulerian circuit

(c1x1,s1), (x1c2, t1), (c2x2,s2)(x2c1, t2), (c1x3,s3), (x3c2, t3),… , (c2xn,sn)(xnc1, tn).

Then, by the definition of � in terms of ⌧ and by similar arguments to the previous case, we have that

(s1, t1),… , (sn, tn) is an exploration of (Sn,⌧). ∑

4.3 Interval-membership-width

As we saw in the previous section, both TEMPEULER(k) and STAREXP(k+1) are NP-complete for all

k g 3 even on instances whose underlying static graphs are very sparse (for instance even on graphs with vertex

cover number 2). Clearly this means that any useful parameterization must take into account the temporal

4.3. INTERVAL-MEMBERSHIP-WIDTH 117

structure of the input. As we discussed previously, other authors have already proposed measures of this kind

such as the temporal feedback vertex number [23] or temporal analogues of tree-width [44]. However these

measures are all bounded on temporal graphs for which the underlying static graph has bounded feedback vertex

number and tree-width respectively. Our reductions therefore show that TEMPEULER(k) is para-NP-complete

with respect to these parameters. Thus we do indeed need some new measure of temporal structure. To that end,

here we introduce such a parameter called interval-membership-width which depends only on temporal structure

and not on the structure of the underlying static graph. Parameterizing by this measure, we will show that both

TEMPEULER(k) and STAREXP(k) lie in FPT.

To first convey the intuition behind our width measure, consider again the TEMPEULER(1) problem. As

we noted earlier, this is trivially solvable in time linear in E(G). The same is true for any TEMPEULER(k)-

instance (G,⌧) in which every edge is assigned a ‘private’ interval of times: that is to say that, for all distinct

edges e and f in G, either max⌧(f) <min⌧(e) or max⌧(e) <min⌧(f). This holds because, on instances of this

kind, there is only one possible relative ordering of edges available for an edge-exploration. It is thus natural to

expect that, for graphs whose edges have intervals that are ‘almost private’ (defined formally below), we should

be able to deduce similar tractability results.

Towards a formalization of this intuition, suppose that we are given a temporal graph (G,⌧) which has

precisely two edges e and f such that there is a time t with min⌧(e) f t fmax⌧(e) and min⌧(f) f t fmax⌧(f).

It is easy to see that the TEMPEULER(k) problem is still tractable on graphs such as (G,⌧) since there are only two

possible relative edge-orderings for an edge exploration of (G,⌧) (depending on whether we choose to explore e

before f or f before e). These observations lead to the following definition of interval-membership-width of a

temporal graph (see Figure 4.5).

Definition 4.3.1. The interval membership sequence of a temporal graph (G,⌧) is the sequence (Ft)tÀ[⇤]

of edge-subsets of G where Ft := {e ÀE(G) :min⌧(e) f t fmax⌧(e)} and ⇤ is the lifetime of (G,⌧). The

interval-membership-width of (G,⌧) is the integer imw(G,⌧) := maxtÀN Ft.

Note that a temporal graph has unit interval-membership-width if and only if every edge is active at times

spanning a ‘private interval’. Furthermore, we point out that the interval membership sequence of a temporal

graph is not the same as the sequence (Et(G,⌧))tÀN. In fact, although maxtÀN Et(G,⌧) f imw(G,⌧), there

exist classes C of temporal graphs with unbounded interval-membership-width but such that every temporal

graph in C satisfies the property that at most one edge is active at any given time. To see this consider any

118 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

c

w x

y z

1,9 3,5

4,67,8,9

(S4,⌧)

Figure 4.5: A temporal star (S4,⌧) with interval-membership-sequence: F1 = F2 = {cw}, F3 = {cw,cx},
F4 = F5 = {cw,cx,cy}, F6 = {cw,cy} and F7 = F8 = F9 = {cw,cz}.

graph H with edges e1,… ,em and let (H ,⌫) be the temporal graph defined by ⌫(ei) := {i,m+ i}. Clearly

maxiÀN Ei(H ,⌫) = 1, but we have imw(H ,⌫) = m.

Note that the interval membership sequence of a temporal graph (G,⌧) can be computed in time

O(imw(G,⌧) �⇤) by iterating over the edges of G.

Armed with the notion of interval-membership-width, we will now show that both TEMPEULER(k) and

STAREXP(k) are in FPT when parameterized by this measure. We will do so first for TEMPEULER(k) (Theorem

4.3.2) and then we will leverage the reduction of Lemma 4.2.4 to deduce the fixed-parameter-tractability of

STAREXP(k) as well (Corollary 4.3.4).

Theorem 4.3.2. There is an algorithm that decides whether any temporal graph (G,⌧) with n vertices and

lifetime ⇤ is a yes-instance of TEMPEULER(k) in time O(w32w⇤) where w = imw(G,⌧) is the interval-

membership-width of (G,⌧).

Proof. Let (Ft)tÀ[⇤] be the interval membership sequence of (G,⌧) and suppose without loss of generality that

F1 is not empty.

We will now describe an algorithm that proceeds by dynamic programming over the sequence (Fi)iÀ[⇤] to

determine whether (G,⌧) is temporally Eulerian. For each set Fi we will compute a setLi ” F
{0,1}
i ùV (G)ùV (G)

consisting of triples of the form (f ,s,x) where s and x are vertices in G and f is a function mapping each edge

in Fi to an element of {0,1}. Intuitively each entry (f ,s,x) of Li corresponds to the existence of a temporal

walk starting at s and ending at x at time at most i and such that, for any edge e À Fi, we will have f (e) = 1 if

and only if e was traversed during this walk.

We will now define the entries Li recursively starting from the dummy set L0 := {(0,x,x) : «e À

F1 incident with x} where 0 : e À F1 ≠ 0 is the function mapping every element in F1 to 0. Take any (f ,s,y)

4.3. INTERVAL-MEMBERSHIP-WIDTH 119

in F {0,1}
i ùV (G)ùV (G). For (f ,s,y) to be in Li we will require there to be an entry (g,s,x) of Li*1 such that

g(e) = 1 for all e À Fi*1 ‰Fi (4.5)

and such that the one of the following cases holds: either

C1 y = x and f (e) = 1 if and only if e À Fi*1 „Fi and g(e) = 1,

or

C2 there exists an edge xy in G such that:

C2.P1 xy À Ei(G,⌧)‰{e À Fi : g(e) = 1} and

C2.P2 f (e) = 1 if and only if g(e) = 1 or e = xy.

The Cases C1 and C2 correspond to the the two available choices we have when extending a temporal

(s,x)-walk at time i: either we stay put at x (Case C1) or we find some new edge xy active at time i (Case C2)

which has never been used before (Property C2.P1) and add it to the walk (Property C2.P2). Equation (4.5)

ensures that we filter out partial solutions that we already know cannot be extended to a Eulerian circuit. To see

this, note that, if an edge e will never appear again after time i*1 and we have g(e) = 0, then there is no way of

extending the temporal walk represented by the triple (g,s,x) to an Eulerian circuit in (G,⌧) because one edge

will always be left out (namely the edge e).

We claim that the input (G,⌧) is temporally Eulerian if and only if L⇤ contains an entry (1,s,x) with

s = x and such that 1 is the constant all-1 function 1 : y À F⇤ ≠ 1. To show this, we will prove the following

stronger claim.

Claim 4.3.3. For all i À [⇤], Li contains an entry (f ,s,x) if and only if there exists a temporal walk

(e1, t1)…(ep, tp) starting at s and ending at x with tp f i and in which no edge is repeated and such that:

IH1 (F1‰5‰Fi*1)‰Fi ” {e1,… ,ep*1} (i.e. every edge whose last appearance is before time i is traversed

by the walk) and

IH2 for all e À Fi, we have f (e) = 1 if e À {e1,… ,ep} and f (e) = 0 otherwise (i.e. f correctly records

which edges in Fi have been used in a walk).

Proof of Claim 4.3.3. We show this by induction on i. The Claim holds trivially for i = 0, so suppose now that

120 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

we are at some time i > 0 and hypothesise that the Claim holds for time i*1. Furthermore denote by Wi(f ,s,x)

the set of all temporal temporal (s,x)-walks (e1, t1)…(ep, tp) with tp f i which satisfy Properties IH1 and IH2.

(⌃) First we will show that if (f ,s,y) is in Li, then Wi(f ,s,x) is non-empty. By the construction of

Li, we know that, for (f ,s,y) to be in Li, there must have been an element (g,s,x) of Li*1 satisfying Equation

(4.5) from which we built (f ,s,y) according to either Case C1 or Case C2.

Suppose we applied Case C1 to add (f ,s,y) to Li (i.e. we ‘extended’ some walk in Wi*1(g,s,x) by

deciding not to move). Then x = y and we know that f (e) = 1 if and only if g(e) = 1. Notice that any walk

corresponding to (f ,s,y) cannot fail to visit some edge in Ei*1(G,⌧) that will never again be active after time

i*1 since we know that (g,s,x) satisfies Equation (4.5). In particular (f ,s,y) satisfies Property IH1 (since g

does). Furthermore, since f (e) = 1 if and only if g(e) = 1 and since g satisfies Property IH2 (by induction), we

know that f must also satisfy Property IH2. Thus we have shown that, if we applied Case C1 to add (f ,s,y) to

Li, then Wi(f ,s,y) ë Á.

Suppose instead that we applied Case C2 to add (f ,s,y) to Li. In other words suppose we found an edge

xy active at time iwith which we wish to extend some walkW := (e1, t1),… , (ep, tp) inWi*1(g,s,x) which starts

at s and ends at x. Note that we can infer that W ® := (e1, t1)…(ep*1, tp)(xy, i) is a valid temporal (s,y)-walk

with no repeated edges since:

• W has no repeated edges (by the induction hypothesis) and

• xy was not traversed by W (by Property C2.P1) and

• tp f i*1 (since W ÀWi*1(g,s,x)).

Thus the fact that g satisfies equation (4.5) combined with the induction hypothesis implies that every edge whose

last appearance is before time i is traversed by W ® (i.e. W ® satisfies Property IH1). Furthermore f satisfies

Property IH2 since g does and since f (e) = 1 if and only if g(e) = 1 or e = xy (by Property C2.P2). Thus we

have shown that, if (f ,s,y) À Li, then Wi(f ,s,y) ë Á.

(⇧) Conversely, we will now show that, if Wi(f ,s,y) is non-empty, then (f ,s,y) À Li. Let W ® be an

element of Wi(f ,s,y) and let (xy,j) be the last time-edge traversed by W ® (note j f i).

If j < i then, by the induction hypothesis, there exists an entry (g,s,y) À Li*1 with W ® ÀWi*1(g,s,y).

But then by the construction of Li from Li*1 we have that (f ,s,y) À Li.

4.3. INTERVAL-MEMBERSHIP-WIDTH 121

Thus suppose j = i. Then W ® * (xy,j) is a temporal (s,x)-walk ending at time at most i*1 satisfying

Property IH1. Furthermore, by the induction hypothesis, there must be a (g,s,x)ÀLi*1 which satisfies Equation

(4.5) and such that W ® * (xy,j) ÀWi*1(g,s,x). Now note that, since (f ,s,y) satisfies Properties IH1 and IH2,

we have that Properties C2.P1 and C2.P2 hold as well: thus (f ,s,y) À Li. ∑ Claim 4.3.3

Finally we consider the running time of the algorithm. First of all notice that we can compute Li+1 from

Li in time at most (Ei+1(G,⌧)+1) � Li f (Fi+1+1) � Li. To see this, note that we construct the elements

of Li+1 by iterating through the elements of Li and considering for each one the Fi+1+1 ways of taking a next

step in a temporal walk at time i. Since we perform this computation ⇤ times and since Fif imw(G,⌧) =w, the

whole algorithm runs in time O(w⇤maxiÀ⇤ Li). Thus all that remains to be shown to complete the proof is that

Li is O(w22w) for all i. Note that, from its definition, we already know that Li has cardinality at most O(2wn2)

since Li ” F
{0,1}
i ùV (G)ùV (G). To improve this bound, we will show that the following two statements hold:

RT1 there exists a time t such that every temporal Eulerian circuit in (G,⌧) must start with a vertex incident

with an edge in the bag Ft of the interval-membership-sequence of (G,⌧);

RT2 for all i, let Xi ” V (G) be the set of vertices of G defined as Xi := {x À V (G) : (f ,s,x) À Li}; then Xi

has cardinality at most 4w, where w = imw(G,⌧).

To see why it su�ces to prove claims RT1 and RT2, notice that they imply that we not only have Li ”

F {0,1}
i ùV (G)ùV (G) (which was how we defined Li in the first place) but in fact there must always exist a

t À [⇤] and a subset Xi ” V (G) (for all i) such that Li is always of the form

Li ” F
{0,1}
i ùV (Ft)ùXi

where both V (Ft) and Xi are O(w). This would clearly then imply that Li is O(w22w) for all i, as desired.

Proof of Claim RT1. Choose tÀN be greatest possible such that
∑
jÀ[t]Fj ”Ft. Suppose by way of contradiction

that there exists a temporal Eulerian circuit that starts at a vertex s with s not incident with any edge in Ft. Let t®

be the earliest time such that the bag Ft® contains an edge which which s is incident.

Notice that, since t was chosen greatest possible such that
∑
jÀ[t]Fj ” Ft and since s is not incident with

any edge in Ft, it follows that t® > t and that there exists an edge e À Ft ‰Ft® . But then we have a contradiction

122 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

since max(⌧(e)) f t < t® and, by time t®, e has not yet been visited by the temporal Eulerian circuit starting at s

(i.e. any such circuit never vists the edge e). ∑ Claim RT1

Proof of Claim RT2. Seeking a contradiction, suppose Xi g 4w+1. Since Fi fw, the set XÃi of elements

of Xi that are not incident with any edge in Fi consists of at least 2w+1 vertices. Let ⇠ : XÃi ô E(G) be the

map associating to each vertex z in XÃi an edge ⇠(z) incident with z in G such that the last appearance of ⇠(z) is

latest possible.

Pick a vertex z À XÃi such that max⌧(⇠(z)) fmax⌧(⇠(z®)) for any other z® À XÃi. Since XÃi contained

at least 2w+1 elements and since Fmax⌧(⇠(z)) ‰Fi f 2w, there must be an element y À XÃi such that

max⌧(⇠(z)) <min⌧(⇠(y)) <max⌧(⇠(y)) < i.

By the definition of Xi and since z À Xi, there is some (f ,s,z) À Li and, by the previous Claim, there is a walk

W ÀW (f ,s,z). Notice that, since W ends at the vertex z, it must be that the last time we ‘took a step’ on

W was at a time at most max⌧(⇠(z)); in particular this means that we did not move from z at time i. But then,

since max⌧(⇠(y)) < i, y never appears again after time i*1 and hence W never traverses ⇠(y): this contradicts

Property IH1. ∑ Claim RT2

∑ Theorem 4.3.2

As a corollary of Theorem 4.3.2, we can leverage the reduction of Lemma 4.2.4 to deduce that STAREXP(k)

is in FPT parameterized by the interval-membership-width.

Corollary 4.3.4. There is an algorithm that decides whether a STAREXP(k) instance (Sn,⌧) is explorable

in time O(w323w⇤) where w = imw(Sn,⌧) and ⇤ is the lifetime of the input.

Proof. By Lemma 4.2.4, we know that there is a polynomial-time reduction that maps any STAREXP(k) instance

(Sn,⌧) to a TEMPEULER(k*1)-instance (Dn,�) such that

max
t

{e À E(Dn) :min(�(e)) f t fmax(�(e))}

f 3max
t

{e À E(Sn) :min(⌧(e)) f t fmax(⌧(e))}.

4.4. WIN-WIN APPROACH TO REGULARLY SPACED TIMES 123

In particular this implies that imw(Dn,�) f 3w. Thus we can decide whether (Sn,⌧) is explorable in time

O(w323w⇤) by applying the algorithm of Theorem 4.3.2 to (Dn,�). ∑

4.4 Win-win approach to regularly spaced times

In this section we will find necessary conditions for edge-explorability of temporal graphs with respect

to their interval-membership-width. This will allow us to conclude that either we are given a no-instance or that

the interval-membership-width is small (in which case we can employ our algorithmic results from the previous

section).

We will apply this bidimensional approach to a variants of TEMPEULER(k) and STAREXP(k) in which

we are given upper and lower bounds (u and l respectively) on the di�erence between any two consecutive times

at any edge. Specifically we will show that STAREXP(k) is in FPT parameterized by k, l and u (Theorem 4.4.3)

and that TEMPEULER(k) is in FPT parameterized by k and u (Theorem 4.4.4). In other words, these results

allow us to trade in the dependences on the interval-membership-width of Corollary 4.3.4 and Theorem 4.3.2 for

a dependences on k, l, u and k, u respectively.

We note that, for STAREXP instances, the closer l and u get, the more restricted the structure becomes to

the point that the dependence on l and u in the running time of our algorithm vanishes when l = u. In particular

this shows that the problem of determining the explorability of STAREXP(k)-instances for which consecutive

times at each edge are exactly � time-steps apart (for some � ÀN) is in FPT parameterized solely by k (Corollary

4.4.5). This partially resolves an open problem of Akrida, Mertzios and Spirakis [3] which asked to determine

the complexity of exploring STAREXP(k)-instances with evenly-spaced times.

Towards these results, we will first provide su�cient conditions for non-explorability of any STAREXP(k)

instance (Lemma 4.4.1). These conditions will depend only on: (1) knowledge of the maximum and minimum

di�erences between any two successive appearances of any edge, (2) the interval-membership-width and (3) the

maximum number of appearances k of any edge.

Lemma 4.4.1. Let (Sn,⌧) be a temporal star with at most k times at any edge and such that every two

consecutive times at any edge di�er at least by l and at most by u. If (Sn,⌧) is explorable, then imw(Sn,⌧)f

(2(k*1)u+1)_(l+1).

Proof. Let ⇤ be the lifetime of (Sn,⌧), let (Ft)tÀ[⇤] be the interval membership sequence of (Sn,⌧) and choose

124 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

any n À [⇤] such that Fn = imw(Sn,⌧). Let m and M be respectively the earliest and latest times at which

there are edges in Fn which are active and chose representatives em and eM in Fn such that m = min⌧(em) and

M = max⌧(eM).

Recall that visiting any edge e in Sn requires us to us pick two appearances (which di�er by at least

l+1 time-steps) of e (one appearance to go along e from the center of Sn to the leaf and another appearance

to return to the center of the star). Thus, whenever we specify how to visit an edge e of Fn, we remove at

least l +1 time-steps from the available time-set {m,… ,M} at which any other edge in Fn can be visited

(we need one time-step to travel to the leaf incident with e and then - after l time-steps - we return to the

center). Furthermore, since any exploration of (Sn,⌧) must explore all of the edges in Fn, for (Sn,⌧) to be

explorable, we must have Fn(l +1) fM *m+1. This concludes the proof since imw(Sn,⌧) = Fn and

M *mf max⌧(eM)*min⌧(eM)+ max⌧(em)*min⌧(em) (since, by the definition of Fn, n is in the intervals

of any two elements of Fn) which is at most 2(k*1)u+1 (since consecutive times at any edge di�er by at most

u). ∑

Notice that nearly-identical arguments yield the following slightly weaker result with respect to the

TEMPEULER(k) problem.

Lemma 4.4.2. Let (G,⌧) be a TEMPEULER(k) instance such that every two consecutive times at any edge

di�er at most by u. If (G,⌧) is temporally Eulerian, then imw(G,⌧) f 2(k*1)u+1.

The reason that the we can only bound imw(G,⌧) above by 2(k*1)u+1 (rather than (2(k*1)u+1)_(l+1)

as in the STAREXP(k) case of Lemma 4.4.1) is that temporal Euler circuits only visit each edge once (so exploring

each edge only removes exactly one available time).

Lemma 4.4.1 allows us to employ a ‘win-win’ approach for STAREXP(k) when we know the maximum

di�erence between consecutive times at any edge: either the considered instance does not satisfy the conditions

of Lemma 4.4.1 (in which case we have a no-instance) or the interval-membership-width is small enough for us

to usefully apply Corollary 4.3.4. These ideas allow us to conclude the following result. We point out that in the

following Theorems 4.4.3, and 4.4.4 Corollary 4.4.5, we can drop the factor n in the running times if we assume

that the relevant interval-membership-sequences are given.

Theorem 4.4.3. Let (Sn,⌧) be a temporal star with at most k times at any edge and such that every two

consecutive times at any edge di�er at least by l and at most by u. There is an algorithm deciding whether

4.5. DISCUSSION 125

(Sn,⌧) is explorable in time (2O(ku_l) +n)⇤ where ⇤ is the lifetime of the input.

Proof. The algorithm proceeds as follows. First determine imw(Sn,⌧) (this can be done in time O(⇤n) where ⇤

is the lifetime of the input). If imw(Sn,⌧) > (2(k*1)u+1)_(l+1), then (Sn,⌧) is not explorable by Lemma

4.4.1. Otherwise run the algorithm given in Corollary 4.3.4. In this case, since w := imw(Sn,⌧) f (2(k*1)u+

1)_(l+1), we know that the algorithm of Corollary 4.3.4 will run on (Sn,⌧) in time 2O(ku_l)⇤. ∑

Once again arguing by bidimensionality (this time using Lemma 4.4.2 and Theorem 4.3.2) we can deduce

the following fixed-parameter tractability result for TEMPEULER.

Theorem 4.4.4. Let (G,⌧) be a TEMPEULER(k) instance such that every two consecutive times at any

edge di�er at most by u. There is an algorithm deciding whether (G,⌧) is temporally Eulerian in time

(2O(ku) +n)⇤ where ⇤ is the lifetime of the input.

As a special case of Theorem 4.4.3 (i.e. the case where l = u) we resolve an open problem of Akrida,

Mertzios and Spirakis [3] which asked to determine the complexity of exploring STAREXP(k)-instances with

evenly-spaced times. In particular we show that the problem of deciding the explorability of such evenly-spaced

STAREXP(k)-instances is in FPT when parameterized by k.

Corollary 4.4.5. There is an algorithm which, given any STAREXP(k) instance (Sn,⌧) with lifetime ⇤ and

in which every two pairs of consecutive times assigned to any edge di�er by the same amount, decides

whether (Sn,⌧) is explorable in time (2O(k) +n)⇤.

4.5 Discussion

In this chapter we introduced a natural temporal analogue of Eulerian circuits and proved that, in contrast

to the static case, TEMPEULER(k) is NP-complete for all k g 2 (where the k = 2 case – which we had left

open [18] – was proven by Marino and Silva [75]). In fact we showed that the problem remains hard even when

the underlying static graph has path-width 2, feedback vertex number 1 or vertex cover number 2 (Section 4.2).

Along the way, we resolved an open problem of Akrida, Mertzios and Spirakis [3] by showing that STAREXP(k) is

NP-complete for all k g 4. This result yields a complete complexity dichotomy with respect to k when combined

with Akrida, Mertzios and Spirakis’ results [3].

Our hardness results rule out FPT algorithms for TEMPEULER(k) and STAREXP(k) with respect to many

standard parameters describing the structure of the underlying graph (such as path-width, feedback vertex

126 CHAPTER 4. INTERVAL-MEMBERSHIP-WIDTH

number and vertex-cover number). Motivated by these resutls, we introduced a new width measure which

captures structural information that is purely temporal; we call this the interval-membership-width. In contrast

to our hardness results, we showed that TEMPEULER(k) and STAREXP(k) can be solved in times O(w32w⇤) and

O(w323w⇤) respectively where w is our new parameter and ⇤ is the lifetime of the input.

Our fixed-parameter-tractability results parameterized by interval-membership-width can also be lever-

aged via a win-win approach to obtain tractability results for both TEMPEULER(k) and STAREXP(k) parameterized

solely by k and the minimum and maximum di�erences between any two successive times in a time-set of

any edge. These resutls allow us to partially resolve another open problem of Akrida, Mertzios and Spirakis

concerning the complexity of STAREXP(k): we showed that it can be solved in time 2O(k)⇤ when the input has

evenly spaces appearances of each edge and lifetime ⇤. We note, however, that it remains an open problem to

determine the complexity of the evenly-spaced STAREXP(k) problem when k is unbounded.

Finally we point out that all of our hardness reductions hold also for the case of non-strict temporal walks

and, with slightly more work, even our tractability results can be seen to hold for the non-strict case.

127

5 | Future work

This thesis proposed recursive decomposition methods and their associated width-measures in the settings of

directed graphs, spined categories and temporal graphs.

In Chapter 2 we introduced directed branch-width, an analogue of tree-width for directed graphs.

We found that the model-checking problem for a restricted variant of monadic second-order logic is in FPT

parameterized by this measure. In particular, we showed that many NP-hard problems (including the directed

versions of Hamilton path and Max-Cut) are tractable on digraph classes of bounded directed branch-width.

This is particularly relevant since the directed variants of both the Hamilton Path and Max-Cut problems are

NP-hard when parameterized by any of the other known ‘tree-width-inspired’ or ‘rank-width-inspired’ measures.

Furthermore, on the structural side, we established a characterization of classes of bounded directed branch-width

in terms of the rank-width of their line-graphs. This result is thus of independent interest since it provides a

directed analogue of a theorem of Gurski and Wanke for undirected graphs [53].

There are many questions that arise from the introduction of directed branch-width. On the structural

side, a natural question is to enquire whether we can push our method of obtaining new width-measures by

taking iterated line-graphs any further; for example, can we characterize those classes C of digraphs:

• whose associated class íL(C) of directed line-graphs has bounded directed branch-width or

• which are directed line-graphs of classes of bounded bi-cut-rank-width (i.e. C = íL(D) for some class D of

bounded bi-cut-rank-width)?

This seems like a promising direction for further work since the line-graph operator is not too forgetful: for

example it maps small vertex-cuts to cuts of low rank (as we observed in Chapter 2) and it is well-behaved with

respect to spectral properties [50].

128 CHAPTER 5. FUTURE WORK

As we noted in Chapter 2, another direction for future work has to do with the study of the tangles (these

represent regions of high connectivity in a graph) which are dual to directed branch-width. Giannopoulou,

Kawarabayashi, Kreutzer and Kwon [49] also introduced a notion under the name of ‘directed tangle’ which,

as we already noted, is completely distinct from the tangles arising from directed branch-width. It is thus an

interesting avenue for further research to compare our notion to theirs.

On the algorithmic side, our work on directed branch-width alludes to an interesting narrative around the

algorithmic power of width-measures on directed graphs which we will sketch now. Recall that Ganian et. al.

showed [47] (see Theorem 2.2.10) that any directed width-measure which is:

• closed under directed topological minors and

• which is not tree-width bounding

cannot be algorithmically powerful (in the sense that, subject to standard complexity-assumptions, the MSO1-

model-checking problem cannot admit an XP algorithm parameterized by such a measure). This result seems to

paint a hopeless picture for the quest of obtaining algorithmically useful width-measures for digraphs. Yet we

were able to obtain strong – albeit not as strong as what is precluded by Theorem 2.2.10 – algorithmic results

parameterized by directed branch-width. Obviously there is no danger of contradictions here since directed

branch-width is not closed under directed topological minors (Theorem 2.4.15). However, this contrast alludes

(in an intuitive and speculative way) to another answer for why we are able to obtain our results in spite of Ganian

et. al.’s negative algorithmic meta-theorem: directed branch-width is based upon what might be considered the

least-directed of all the directed connectivity functions. In fact, although directed branch-width is not tree-width

bounding, it di�ers from underlying tree-width only at sources and sinks (Corollary 2.4.8). In contrast, although

all of the tree-width-inspired measures make use of weaker connectivity functions (think of weak vs strong

connectivity in digraphs) they su�er algorithmic shortcoming that directed branch-width does not (in fact they are

not algorithmically powerful in the sense of Ganian et. al.’s results [47]). Thus it seems that these considerations

allude to a trade-o� between the ‘degree of directedness’ of the connectivity-notion one chooses to work with

and the algorithmic power of the related width-measure. In this context it would thus be an interesting, but quite

open-ended direction for future work to find ways of formalising the notion of ‘directedness’ of a connectivity

function allowing for a thorough study of the relationships between the choice of a notion of connectivity and

the algorithmic power that the associated width-measures allow us.

In Chapter 3 we introduced the notions of spined categories and spined functors. This allowed us

129

to provide formal, categorical definitions (see diagram below) of the terms ‘class of decomposable objects’,

‘recursive decomposition’ and its associated ‘width measure’ which had so far been used more as informal

umbrella terms.

‘class of recursively decomposable objects’ spined category

‘recursive decomposition’ (pseudo)-chordal completion

‘width measure’ triangulation functor

formalized as

formalized as

formalized as

To do this, we introduced S-functors, which are a vast generalization of Halin’s S-functions. In fact, analogously

to Halin’s result (Theorem 3.1.2), we showed that S-functors form an upper-complete semi-lattice with the

triangulation functor (our abstract analogue of tree-width) as the maximum element in any measurable spined

category (Theorems 3.4.13 and 3.4.15). The study of S-functors over arbitrary spined categories is an interesting

avenue for further enquiry which we believe requires more attention (even just for the case of graphs).

Our categorical characterization of tree decompositions is framed in terms of pseudo-chordal and chordal

completions. Surprisingly, we found that, from the point of view of defining an abstract analogue of tree-width,

the choice between pseudo-chordal and chordal completions is inconsequential since their two associated S-

functors (� and �ch respectively) always coincide. However, we point out that, despite having a complete

understanding of chordal objects in Grmono (recall that these turned out to be chordal graphs; see Example 3.4.6),

even in this familiar category, we do not yet have a characterization of pseudo-chordal objects. This is an

interesting open problem whose solution should also deepen our understanding of S-functors (since all S-functors

agree on pseudo-chordal objects).

We note that our algebraic formulation of tree-width allows for great generality since it can be thought as

a black-box associating to each measurable spined category an appropriate analogue of tree-width. Thus we

expect that it will be useful for defining new tree-width analogues in the future. Of particular interest is the broad

question of finding more algebraic instantiations of spined categories. Can we find good notions of arrow (i.e.

satisfying Property SC1) allowing us to find examples of measurable spined categories over groups or posets or

other algebraic objects? And, if so, what algorithmic applications will their respective triangulation functors

allow?

In the context of this thesis, it is obvious to ask whether we can use the theory of spined categories to

define an algorithmically-useful temporal analogue of tree-width. We will address this question briefly. Note

130 CHAPTER 5. FUTURE WORK

that in general spined categories have a clarifying e�ect on the question of finding an algorithmically useful

tree-width analogue since they reduce this vague question to the following two concrete tasks:

(Q1) finding a containment relation satisfying Property SC1 and

(Q2) finding a suitable proxy-pushout operation satisfying Property SC2.

There are many possible ways of defining containment relations on temporal graphs. However, for any such

notion to be algorithmically useful, we need it to take into account not only the underlying static structure, but

also temporal information. This is indeed a fruitful line for future work, but it is beyond the scope of this thesis

since even the comparatively simple problem of finding a good1 notion of temporal subgraph is a challenging

question that will likely require new theoretical tools and a deeper mathematical and philosophical understanding

of temporal graphs.

In Chapter 4 we introduced a purely temporal width measure called interval-membership-width. This

width measure is related to the path-width of an associated static graph and it is defined via a related decomposition

called the interval-membership-sequence. Interval-membership-width turns out to be algorithmically useful even

for problems that remain hard on instances whose underlying static graph has tree-width at most 2 or vertex-cover

number at most 2. In fact we provide linear-time algorithms parameterized by our new measure for the problems

of: (1) determining whether a temporal graph is temporally Eulerian and (2) determining the explorability of

temporal stars. We found that both of these problems are NP-complete as soon as we allow edges to have

respectively 2 (where Marino and Silva solved the k = 2 case that we left open) and 4 temporal appearances.

Furthermore, recall that these results yield complexity dichotomies since, for fewer allowed-appearances, both

problems are polynomial-time solvable.

We believe that interval-membership-width and interval-membership-sequences will be useful in the

formulation of dynamic-programming algorithms for other problems on temporal graphs. Likely candidates

are decision (or counting) problems related to temporal exploration and/or connectivity. Furthermore, there

are many techniques available in the parameterized complexity literature (e.g. see Cygan et al. [29]) designed

for the improvement of running times of dynamic programming algorithms on tree decompositions. Given the

similarities, it is reasonable to expect for it to be possible to port many of these ideas to the setting of designing

even faster dynamic programming routines running on temporal graphs and their interval-membership sequences.

1Spined categories can help us decide whether we have found a good notion based on how algorithmically powerful the associated notion
of tree-width is.

131

A more open-ended question that is raised from our work on temporal graphs has to do with finding

ways of defining other kinds of temporal structure. Interval-membership-width can be thought of as describing

temporal structure with low temporal connectivity: as we mentioned, we can associate each temporal graph

(G,⌧) to the interval graph

I(G,⌧) = (E(G),{ef : {min⌧(e),… ,max⌧(e)}„{min⌧(f),… ,max⌧(f)} ë Á})

such that the tree-width (or equivalently, since it is an interval graph, the path-width) of I(G,⌧) is tw(I(G,⌧)) =

imw(G,⌧)*1. In this light, it would be interesting to study other mappings (or functors) from (an appropriately

defined category of) temporal graphs to other structures (static graphs, or partial orders ...) which we understand

better. Depending on the structure that is preserved by such mappings, we might be able to more eloquently

define notions of temporal structure which are currently out of our immediate reach. We note for example that

Fluschnik et. al. [44] started exploring ideas of this kind by proposing a temporal analogue of tree-width which is

defined in terms of the underlying tree-width of an associated directed graph (which they call a static expansion).

To the best of our knowledge, this width measure has not been applied further and, in fact, our general idea of

studying the structure of temporal graphs via auxiliary, better understood objects seems to be understudied.

133

Bibliography

[1] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and related hypergraph invariants. European Journal

of Combinatorics, 28(8):2167 – 2181, 2007. URL: https://doi.org/10.1016/j.ejc.2007.04.013.

[2] E. C. Akrida, G. B. Mertzios, S. Nikoletseas, C. Raptopoulos, P. G. Spirakis, and V. Zamaraev. How fast

can we reach a target vertex in stochastic temporal graphs? Journal of Computer and System Sciences,

114:65–83, 2020. URL: https://doi.org/10.1016/j.jcss.2020.05.005.

[3] E. C. Akrida, G. B. Mertzios, and P. G. Spirakis. The temporal explorer who returns to the base. In P. Heg-

gernes, editor, Algorithms and Complexity, CIAC 2019, pages 13–24, Cham, 2019. Springer International

Publishing. URL: https://doi.org/10.1007/978-3-030-17402-6_2.

[4] O. Amini, F. Mazoit, N. Nisse, and S. Thomassé. Submodular partition functions. Discrete Mathematics,

309(20):6000–6008, 2009. URL: https://doi.org/10.1016/j.disc.2009.04.033.

[5] S. Awodey. Category theory. Oxford university press, 2010.

[6] K. Axiotis and D. Fotakis. On the Size and the Approximability of Minimum Temporally Connected Sub-

graphs. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 149:1–149:14, Dagstuhl, Germany, 2016.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.

2016.149.

[7] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks:

Membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’06, page 44–54, New York, NY, USA, 2006. Association

for Computing Machinery. URL: https://doi.org/10.1145/1150402.1150412.

https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.1016/j.jcss.2020.05.005
https://doi.org/10.1007/978-3-030-17402-6_2
https://doi.org/10.1016/j.disc.2009.04.033
https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.1145/1150402.1150412

134 BIBLIOGRAPHY

[8] J. Bang-Jensen and G. Gutin. Classes of directed graphs. Springer, 2018.

[9] J. Bang-Jensen and G. Z. Gutin. Digraphs: theory, algorithms and applications. Springer Science &

Business Media, 2008.

[10] K. A. Berman. Vulnerability of scheduled networks and a generalization of menger’s theorem. Networks:

An International Journal, 28(3):125–134, 1996.

[11] U. Bertelè and F. Brioschi. Nonserial dynamic programming. Academic Press, Inc., 1972. URL: https:

//doi.org/10.1016/s0076-5392(08)x6010-2.

[12] P. Berthomé, T. Bouvier, F. Mazoit, N. Nisse, and R. Pardo Soares. A unified FPT algorithm for width of

partition functions. Research Report RR-8372, INRIA, September 2013. URL: https://hal.inria.fr/

hal-00865575.

[13] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdr�álek. The DAG-width of directed graphs.

Journal of Combinatorial Theory, Series B, 102(4):900–923, 2012. URL: https://doi.org/10.1016/

j.jctb.2012.04.004.

[14] S. Bhadra and A. Ferreira. Complexity of connected components in evolving graphs and the computation

of multicast trees in dynamic networks. In ADHOC-NOW 2003, pages 259–270, Berlin, Heidelberg, 2003.

Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-39611-6_23.

[15] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In International

Colloquium on Automata, Languages, and Programming, pages 627–637. Springer, 1997. URL: https:

//doi.org/10.1007/3-540-63165-8_217.

[16] André Bouchet. Connectivity of isotropic systems. Annals of the New York Academy of Sciences, 555(1):81–

93, 1989. URL: https://doi.org/10.1111/j.1749-6632.1989.tb22439.x.

[17] B. M. Bumpus and Z. A. Kocsis. Spined categories: generalizing tree-width beyond graphs, 2021.

[18] B. M. Bumpus and K. Meeks. Edge exploration of temporal graphs. arXiv preprint arXiv:2103.05387,

2021.

[19] B. M. Bumpus, K. Meeks, and W. Pettersson. Directed branch-width: A directed analogue of tree-width.

arXiv preprint arXiv:2009.08903, 2020.

https://doi.org/10.1016/s0076-5392(08)x6010-2
https://doi.org/10.1016/s0076-5392(08)x6010-2
https://hal.inria.fr/hal-00865575
https://hal.inria.fr/hal-00865575
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/3-540-63165-8_217
https://doi.org/10.1007/3-540-63165-8_217
https://doi.org/10.1111/j.1749-6632.1989.tb22439.x

BIBLIOGRAPHY 135

[20] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. k-blocks: A connectivity invariant for graphs.

SIAM Journal on Discrete Mathematics, 28(4):1876–1891, 2014. URL: 10.1137/130923646.

[21] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks.

In H. Frey, X. Li, and S. Ruehrup, editors, Ad-hoc, Mobile, and Wireless Networks, pages 346–359,

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. URL: https://doi.org/10.1080/17445760.

2012.668546.

[22] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks.

International Journal of Parallel, Emergent and Distributed Systems, 27(5):387–408, 2012. URL: https:

//doi.org/10.1080/17445760.2012.668546, arXiv:https://doi.org/10.1080/17445760.2012.

668546.

[23] A. Casteigts, A.-S. Himmel, H. Molter, and P. Zschoche. Finding Temporal Paths Under Waiting Time

Constraints. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on

Algorithms and Computation (ISAAC 2020), volume 181 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 30:1–30:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2020.30.

[24] D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth. In Andreas

Brandstädt and Van Bang Le, editors, Graph-Theoretic Concepts in Computer Science, pages 78–90, Berlin,

Heidelberg, 2001. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-45477-2_9.

[25] B. Courcelle. The monadic second-order logic of graphs i. recognizable sets of finite graphs. Information

and computation, 85(1):12–75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.

[26] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic: a language-theoretic

approach, volume 138. Cambridge University Press, 2012. URL: https://doi.org/10.1017/

CBO9780511977619.

[27] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. Journal of com-

puter and system sciences, 46(2):218–270, 1993. URL: https://doi.org/10.1016/0022-0000(93)

90004-G.

10.1137/130923646
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
http://arxiv.org/abs/https://doi.org/10.1080/17445760.2012.668546
http://arxiv.org/abs/https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.4230/LIPIcs.ISAAC.2020.30
https://doi.org/10.1007/3-540-45477-2_9
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G

136 BIBLIOGRAPHY

[28] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of

bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000. URL: https://doi.org/

10.1007/s002249910009.

[29] M. Cygan, F. V. Fomin, �. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.

Parameterized algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.

[30] R. Diestel. Graph theory. Springer, 2010.

[31] R. Diestel, F. Hundertmark, and S. Lemanczyk. Profiles of separations: in graphs, matroids, and beyond.

Combinatorica, 39(1):37–75, 2019. URL: https://doi.org/10.1007/s00493-017-3595-y.

[32] R. Diestel and S.-i. Oum. Unifying duality theorems for width parameters in graphs and matroids. In

International Workshop on Graph-Theoretic Concepts in Computer Science, pages 1–14. Springer, 2014.

URL: https://doi.org/10.1007/978-3-319-12340-0_1.

[33] R. Diestel and S.-i. Oum. Tangle-tree duality in abstract separation systems. arXiv preprint

arXiv:1701.02509, 2017.

[34] G. A. Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen Seminar der Universität

Hamburg, volume 25, pages 71–76. Springer, 1961. URL: https://doi.org/10.1007/BF02992776.

[35] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness ii: On completeness

for w[1]. Theoretical Computer Science, 141(1):109 – 131, 1995. URL: https://doi.org/10.1016/

0304-3975(94)00097-3.

[36] J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size of an epidemic

in temporal networks. In P. Rossmanith, P. Heggernes, and J.-P. Katoen, editors, 44th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 57:1–57:15, Dagstuhl, Germany, 2019. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: 10.4230/LIPIcs.MFCS.2019.57.

[37] J. Enright, K. Meeks, G. B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size of an epidemic

in temporal networks. Journal of Computer and System Sciences, 119:60–77, 2021. URL: https://doi.

org/10.1016/j.jcss.2021.01.007.

https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00493-017-3595-y
https://doi.org/10.1007/978-3-319-12340-0_1
https://doi.org/10.1007/BF02992776
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
10.4230/LIPIcs.MFCS.2019.57
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2021.01.007

BIBLIOGRAPHY 137

[38] J. Enright, K. Meeks, and F. Skerman. Assigning times to minimise reachability in temporal graphs.

Journal of Computer and System Sciences, 115:169–186, 2021. URL: https://doi.org/10.1016/j.

jcss.2020.08.001.

[39] Jessica Enright and Rowland Raymond Kao. Epidemics on dynamic networks. Epidemics, 24:88–97, 2018.

URL: https://doi.org/10.1016/j.epidem.2018.04.003.

[40] T. Erlebach, M. Ho�mann, and F. Kammer. On temporal graph exploration. In M. M. Halldórsson,

K. Iwama, N. Kobayashi, and B. Speckmann, editors, ICALP 2015, pages 444–455, Berlin, Heidelberg,

2015. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-662-47672-7_36.

[41] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum

Petropolitanae, pages 128–140, 1741.

[42] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-time decidability. J.

ACM, 35(3):727–739, 1988. URL: https://doi.org/10.1145/44483.44491.

[43] J. Flum and M. Grohe. Parameterized complexity theory. 2006. Texts Theoret. Comput. Sci. EATCS Ser,

2006. URL: https://doi.org/10.1007/3-540-29953-X.

[44] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. As time goes by: Reflections

on treewidth for temporal graphs. In Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L.

Bodlaender on the Occasion of His 60th Birthday, pages 49–77. Springer International Publishing, Cham,

2020. URL: https://doi.org/10.1007/978-3-030-42071-0_6.

[45] F. V. Fomin, P. A Golovach, D. Lokshtanov, and S. Saurabh. Intractability of clique-width parameterizations.

SIAM Journal on Computing, 39(5):1941–1956, 2010. URL: 10.1137/080742270.

[46] B. Fong and D. I Spivak. An invitation to applied category theory: seven sketches in compositionality.

Cambridge University Press, 2019.

[47] R. Ganian, P. Hlin�nỳ, J. Kneis, D. Meister, J. Obdr�álek, P. Rossmanith, and S. Sikdar. Are there any good

digraph width measures? In International Symposium on Parameterized and Exact Computation, pages

135–146. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-17493-3_14.

[48] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness.

W. H. Freeman, San Francisco, 1979.

https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.epidem.2018.04.003
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1145/44483.44491
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-030-42071-0_6
10.1137/080742270
https://doi.org/10.1007/978-3-642-17493-3_14

138 BIBLIOGRAPHY

[49] A. C. Giannopoulou, K i. Kawarabayashi, S. Kreutzer, and O j. Kwon. The canonical directed tree

decomposition and its applications to the directed disjoint paths problem, 2020. arXiv:2009.13184.

[50] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207. Springer Science & Business Media,

2001. URL: https://doi.org/10.1007/978-1-4613-0163-9.

[51] M. C. Golumbic. Chapter 4 - triangulated graphs. In Algorithmic Graph Theory and Perfect Graphs, pages

81–104. Academic Press, 1980. URL: https://doi.org/10.1016/B978-0-12-289260-8.50011-X.

[52] M. Grohe. Descriptive complexity, canonisation, and definable graph structure theory, cambridge university

press, cambridge, 2017, x + 544 pp. The Bulletin of Symbolic Logic, 23(4):493–494, 2017.

[53] F. Gurski and E. Wanke. Line graphs of bounded clique-width. Discrete Mathematics, 307(22):2734–2754,

2007. URL: https://doi.org/10.1016/j.disc.2007.01.020.

[54] F. Gurski, E. Wanke, and E. Yilmaz. Directed NLC-width. Theoretical Computer Science, 616:1–17, 2016.

URL: https://doi.org/10.1016/j.tcs.2015.11.003.

[55] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976. URL: https://doi.org/

10.1007/BF01917434.

[56] F. Harary and G. Gupta. Dynamic graph models. Mathematical and Computer Modelling, 25(7):79–87,

1997. URL: https://doi.org/10.1016/S0895-7177(97)00050-2.

[57] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97–125, 2012. Temporal Networks.

URL: https://doi.org/10.1016/j.physrep.2012.03.001.

[58] Petter Holme. Modern temporal network theory: a colloquium. The European Physical Journal B,

88(9):1–30, 2015. URL: https://doi.org/10.1140/epjb/e2015-60657-4.

[59] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions‚ games‚ and orderings. Theoretical

Computer Science (TCS), 399, 2008. URL: https://doi.org/10.1016/j.tcs.2008.02.038.

[60] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. http://oeis.org/A051903, 2020.

Accessed: 2020-11-08.

[61] Vít Jelínek. The rank-width of the square grid. Discrete Applied Mathematics, 158(7):841–850, 2010.

URL: https://doi.org/10.1016/j.dam.2009.02.007.

http://arxiv.org/abs/2009.13184
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1016/B978-0-12-289260-8.50011-X
https://doi.org/10.1016/j.disc.2007.01.020
https://doi.org/10.1016/j.tcs.2015.11.003
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1016/S0895-7177(97)00050-2
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1016/j.tcs.2008.02.038
http://oeis.org/A051903
https://doi.org/10.1016/j.dam.2009.02.007

BIBLIOGRAPHY 139

[62] D. S. Johnson. The np-completeness column: an ongoing guide. Journal of Algorithms, 6(3):434 – 451,

1985. URL: https://doi.org/10.1016/0196-6774(85)90012-4.

[63] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal of combinatorial

theory. Series B, 82(1):138–154, 2001. URL: https://doi.org/10.1006/jctb.2000.2031.

[64] M. M. Kanté and M. Rao. F -rank-width of (edge-colored) graphs. In International Conference on Algebraic

Informatics, pages 158–173. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-21493-6_

10.

[65] D. Kempe and J. Kleinberg. Protocols and impossibility results for gossip-based communication mechanisms.

In The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages

471–480, 2002. URL: https://doi.org/10.1109/SFCS.2002.1181971.

[66] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal networks.

Journal of Computer and System Sciences, 64(4):820–842, 2002. URL: https://doi.org/10.1006/

jcss.2002.1829.

[67] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network.

In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’03, page 137–146, New York, NY, USA, 2003. Association for Computing Machinery.

URL: https://doi.org/10.1145/956750.956769.

[68] S. Kreutzer and O.-j. Kwon. Digraphs of bounded width. In Classes of Directed Graphs, pages 405–466.

Springer, 2018. URL: https://doi.org/10.1007/978-3-319-71840-8_9.

[69] M. Lampis, G. Kaouri, and V. Mitsou. On the algorithmic e�ectiveness of digraph decompositions

and complexity measures. In International Symposium on Algorithms and Computation, pages 220–231.

Springer, 2008. URL: https://doi.org/10.1016/j.disopt.2010.03.010.

[70] T. Leinster. Codensity and the ultrafilter monad. Theory and Applications of Categories, (28):332–370, 3

2013.

[71] Tom Leinster. The categorical origins of Lebesgue integration. arXiv e-prints, page arXiv:2011.00412,

October 2020. arXiv:2011.00412.

https://doi.org/10.1016/0196-6774(85)90012-4
https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1007/978-3-642-21493-6_10
https://doi.org/10.1007/978-3-642-21493-6_10
https://doi.org/10.1109/SFCS.2002.1181971
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1145/956750.956769
https://doi.org/10.1007/978-3-319-71840-8_9
https://doi.org/10.1016/j.disopt.2010.03.010
http://arxiv.org/abs/2011.00412

140 BIBLIOGRAPHY

[72] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters.

ACM Trans. Knowl. Discov. Data, 1(1):2–es, March 2007. URL: https://doi.org/10.1145/1217299.

1217301.

[73] L. Libkin. Elements of finite model theory. Springer Science & Business Media, 2013. URL: https:

//doi.org/10.1007/978-3-662-07003-1.

[74] L. Lovász. Graph minor theory. Bull. Amer. Math. Soc. 43 (2006), 75-86, 43(1), 2005. URL: https:

//doi.org/10.1090/S0273-0979-05-01088-8.

[75] A. Marino and A. Silva. K\"{o} nigsberg sightseeing: Eulerian walks in temporal graphs. arXiv preprint

arXiv:2103.07522, 2021.

[76] G. B Mertzios, O. Michail, and P. G Spirakis. Temporal network optimization subject to con-

nectivity constraints. Algorithmica, 81(4):1416–1449, 2019. URL: https://doi.org/10.1007/

s00453-018-0478-6.

[77] G. B Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche. Computing maximum matchings

in temporal graphs. arXiv preprint arXiv:1905.05304, 2019.

[78] G. B Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche. Computing maximum matchings

in temporal graphs. arXiv preprint arXiv:1905.05304, 2019.

[79] O. Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics,

12(4):239–280, 2016. URL: https://doi.org/10.1080/15427951.2016.1177801.

[80] O. Michail and P. G. Spirakis. Traveling salesman problems in temporal graphs. In E. Csuhaj-Varjú,

M. Dietzfelbinger, and Z. Ésik, editors, MFCS 2014, pages 553–564, Berlin, Heidelberg, 2014. Springer

Berlin Heidelberg. URL: https://doi.org/10.1016/j.tcs.2016.04.006.

[81] S.-i. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory, 57(3):239–244,

2008. URL: https://doi.org/10.1002/jgt.20280.

[82] S.-i. Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathematics, 231:15–24,

2017. URL: https://doi.org/10.1016/j.dam.2016.08.006.

[83] S.-i. Oum and P. D. Seymour. Approximating clique-width and branch-width. Journal of Combinatorial

Theory, Series B, 96(4):514–528, 2006. URL: https://doi.org/10.1016/j.jctb.2005.10.006.

https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1002/jgt.20280
https://doi.org/10.1016/j.dam.2016.08.006
https://doi.org/10.1016/j.jctb.2005.10.006

BIBLIOGRAPHY 141

[84] E. Riehl. Category theory in context. Courier Dover Publications, 2017.

[85] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of

Algorithms, 7(3):309–322, 9 1986. URL: 10.1016/0196-6774(86)90023-4.

[86] N. Robertson and P. D. Seymour. Graph minors V. Excluding a planar graph. Journal of Combinatorial

Theory, Series B, 41(1):92–114, 8 1986. URL: 10.1016/0095-8956(86)90030-4.

[87] N. Robertson and P. D. Seymour. Graph minors X. Obstructions to tree-decomposition. Journal of Com-

binatorial Theory, Series B, 52(2):153–190, 1991. URL: https://doi.org/10.1016/0095-8956(91)

90061-n.

[88] N. Robertson and P.D. Seymour. Graph minors. iii. planar tree-width. Journal of Combinatorial Theory,

Series B, 36(1):49–64, 1984. URL: https://doi.org/10.1016/0095-8956(84)90013-3.

[89] N. Robertson and P.D. Seymour. Graph minors. xx. wagner’s conjecture. Journal of Combinatorial Theory,

Series B, 92(2):325 – 357, 2004. URL: https://doi.org/10.1016/j.jctb.2004.08.001.

[90] A.-S. Ruget, G. Rossi, P. T. Pepler, G. Beaunée, C. J. Banks, J. Enright, and R. R. Kao. Multi-species

temporal network of livestock movements for disease spread. Applied Network Science, 6(1):1–20, 2021.

URL: https://doi.org/10.1007/s41109-021-00354-x.

[91] M. A. Safari. D-width: A more natural measure for directed tree width. In International Symposium on

Mathematical Foundations of Computer Science, pages 745–756. Springer, 2005. URL: https://doi.

org/10.1007/11549345_64.

[92] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.

URL: https://doi.org/10.1007/bf01215352.

[93] M. Vatshelle. New width parameters of graphs. 2012.

[94] H. Whitney. Congruent graphs and the connectivity of graphs. In Hassler Whitney Collected Papers, pages

61–79. Springer, 1992. URL: https://doi.org/10.1007/978-1-4612-2972-8_4.

[95] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. E�cient algorithms for temporal path computation.

IEEE Transactions on Knowledge and Data Engineering, 28(11):2927–2942, 2016. URL: 10.1109/TKDE.

2016.2594065.

10.1016/0196-6774(86)90023-4
10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(91)90061-n
https://doi.org/10.1016/0095-8956(91)90061-n
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1007/s41109-021-00354-x
https://doi.org/10.1007/11549345_64
https://doi.org/10.1007/11549345_64
https://doi.org/10.1007/bf01215352
https://doi.org/10.1007/978-1-4612-2972-8_4
10.1109/TKDE.2016.2594065
10.1109/TKDE.2016.2594065

142 BIBLIOGRAPHY

[96] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost journeys in

dynamic networks. International Journal of Foundations of Computer Science, 14(02):267–285, 2003.

URL: https://doi.org/10.1142/S0129054103001728.

https://doi.org/10.1142/S0129054103001728

143

Index

(A,B) is (�A,�B)-consistent, 40

2-contractible, 50

2-reach of a vertex x in a digraph D, 61

H-sum, 19

S-category induced by f , 96

W [1]-hard, 22

Grhomo, 71

HGrhomo, 71

l-tree-width of any graph G, 98

FinSet, 71

FPT, 21

T -temporal (directed) network, 102

Cat, 72

W-hierarchy, 21

NP, 20

P, 20

P_POLY, 20

�-structure, 27

XP, 21

k-winning strategy, 54

n-edge walk, 18

n-vertex clique, 17

n-vertex complete graph, 17

n-vertex discrete graph, 18

t-degree, 105

3-COLORING, 110

STAREXP(k), 109

TEMPEULER(k), 109

k-CLIQUE, 22

D-HAMILTON-PATH, 58

D-MAX-CUT, 58

DAG-width, 33

D-width, 33

NLC-width, 34

adjacent, 17

advice to R, 20

apex, 18

arity, 27

arrows, 70

atomic, 27

bags, 25

bi-cut-rank-width, 34, 38

branch decomposition, 36

144 INDEX

branch-width, 36

butterfly edge, 50

butterfly-minor, 51

categorical duality, 74

categorical isomorphism, 73

categorical product, 74

category, 70

chordal completion, 87

chordal graphs, 23

chordal objects, 86

chordal triangulation functor, 88

chromatic number, 18

chromatic tree-width, 99

circuit, 18

classical decision problem, 20

clique-number, 18

clique-width, 34

co-product, 75

complement, 18

complete hypergraph, 17

complete to, 35

compute with advice (a1,a2,…), 20

constant symbols, 27

cops-robber game, 54

cospan, 74

cycle, 18

di�erence, 17

Directed 2-Reachability Edge Deletion problem, 61

directed branch decomposition, 40

directed branch-width, 40

directed graph, 17

directed line-graph, 35

directed order of an edge (or vertex) partition, 36

directed topological minor, 51

directed tree-width, 33

disjoint union, 17, 18

dual category, 74

edge contraction, 19

edge separator, 36

edge-relation, 17

Engineer’s Hypothesis, 22

epic, 73

epimorphism, 73

equivalent to D under source-sink identification, 47

explorable, 109

exploration, 109

expressible, 28

faithful, 72

first-order formulae over �, 27

fixed parameter tractable, 21

fixed-parameter algorithm, 21

full, 72

function symbols, 27

functor, 72

Gaifman graph functor, 95

generalized clique number, 81

graph homomorphism, 18

graphs, 17

INDEX 145

Hadwiger number, 67

head, 17

hom-set, 71

hyperedges, 17

hypergraph, 17

hypergraph homomorphism, 93

identity arrow of A, 70

in conflict, 110

in-neighbors, 35

incident, 17

inert robber game, 55

instance, 20

interpretation, 27

intersection, 18

interval membership sequence, 117

interval-membership-width, 117

invisible-robber-game, 54

is a model of, 28

isomorphic, 18

Kelly-width, 33

large category, 71

layer-tree-width, 107

layout of f on U , 37

layout-f -width of U , 37

leaf-partition, 36

lifetime, 103

line-graph, 35

loop-edge, 17

measurable spined category, 83

minor, 19

model, 27

modular, 99

modular tree-width, 99

module, 98

Monadic second-order logic, 28

monic, 73

monomorphism, 73

morphisms, 70

multi-digraph, 17

multi-graph, 17

no-instance, 20

objects, 70

opposite category, 74

order of the edge, 37

out-neighbors, 35

para-NP-hard, 21

parallel, 17

parameterization, 21

Parameterized Complexity, 20

parameterized decision problem, 21

parameterized reduction, 21

path, 18

poset category, 71

powerset, 17

pre-order, 71

preserves proxy-pushouts, 80

preserves the spine, 80

product object, 75

146 INDEX

proxy pullbacks, 77

proxy-pushout, 77

pseudo-chordal, 85

pseudo-chordal completion, 87

pushout, 75

pushout object, 76

quotient, 18

rank-width, 38

rank-width-inspired, 34

reflexive digraph, 17

reflexive graph, 17

relation symbols, 27

relational, 27

relational structure, 27

S-function, 68

S-functor, 80

simple graphs, 17

sink, 17

slice-tree-width, 107

slice-wise polynomial tractable, 21

small category, 71

source, 17

source-sink-invariant, 58

source-sink-split, 47

source/sink-identifiable, 47

span in C, 74

spine, 77

spined category, 77

spined functor, 80

strict temporal walk, 104

subcategory, 74

subgraph, 18

symmetric, 37

tail, 17

temporal (x,y)-walk, 104

temporal Eulerian circuit, 109

temporal graph, 103

temporal total degree, 105

temporally Eulerian, 109

term, 27

time-edge, 103

time-set, 103

tree decomposition, 25

tree-width, 25, 26

tree-width-inspired, 33

triangulation functor, 88

underlying degree, 105

underlying static graph, 103

underlying undirected graph, 35

universe, 27

vertex separator, 36

vertex-set, 17

visible-robber-game, 54

visit of e, 110

vocabulary, 27

weak reachability game, 55

width of a play at time ⇢, 54

width of a pseudo-chordal completion, 88

yes-instance, 20

	Thesis Cover Sheet
	2021BumpusPhD
	Introduction
	Preliminaries
	Tree-width
	Overview of contributions

	Directed branch-width
	Introduction
	Background
	Tree-width-inspired measures.
	Layouts: branch-width and rank-width.
	Meta-obstructions

	Directed line graphs of bounded rank-width.
	Properties of Directed branch-width.
	Relationship to undirected branch-width.
	Butterfly minors and directed topological minors.
	Comparison to other digraph width measures.

	Algorithmic aspects of directed branch-width.
	Computing directed branch-width
	Parameterizations by directed branch-width

	Conclusion and open problems.

	Spined categories
	Introduction
	Background and high-level overview

	Category-theoretic preliminaries
	Universal constructions

	Introducing spined categories and S-functors
	Tree-width in a measurable spined category
	New Spined Categories from Old
	Further Questions

	Interval-membership-width
	Introduction
	Background on temporal graphs
	The graph theory and complexity theory of temporal graphs
	Chapter overview

	Hardness of temporal edge exploration
	Interval-membership-width
	Win-win approach to regularly spaced times
	Discussion

	Future work

