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Abstract
The Internet of Things has grown by an enormous amount of devices over the later years.
With the upcoming idea of the Internet of Everything the growth will be even faster. These
embedded devices are connected to a central server, e.g. the Cloud. A major task is to send
the generated data for further analysis and modelling to this central collection point. The de-
vices’ network and deployed system are constrained due to energy, bandwidth, connectivity,
latency, and privacy. To overcome these constraints, Edge Computing has been introduced
to enable devices performing computation near the source.

With the increase of embedded devices and the Internet of Things, the continuous data trans-
mission between devices and Central Locations reached an infeasible point in which effi-
cient communication and computational offloading are required. Edge Computing enables
devices to compute lightweight algorithms locally to reduce the raw-data transmission of the
network. The quality of predictive analytics tasks is of high importance as user satisfaction
and decision making depend on the outcome. Therefore, this thesis investigates the ability
to perform predictive analytics and model inference in Edge Devices with communication-
efficient, latency-efficient, and privacy-efficient procedures by focusing on quality-aware
results.

The first part of the thesis focuses on reducing data transmission between the device and the
central location. Two possible energy-efficient methodologies to control the data forwarding
are introduced: prediction-based and time-optimised. Both data forwarding strategies aim to
maintain the Central Location’s quality of analytics by introducing reconstruction policies.

The second part provides a mechanism to enable edge-centric analytics towards latency-
efficient network optimisation. One aspect shows the importance of locally generated ana-
lytical models in Edge Devices embracing each device’s data subspace. Furthermore, two
possible ensemble-pruning methods are introduced that allow the aggregation of individual
models at the Central Location towards accurate query predictions.

The conclusion chapter presents the importance of privacy-efficient local learning and ana-
lytics in Edge Devices. With the aid of Federated Learning, it is possible to train analytical
models for privacy-preserving data locally. Furthermore, for continuous changing environ-
ments, the parallel deployment of personalisation and generalisation for quality-aware pre-
dictions is highlighted and demonstrated through experimental evaluation.
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Chapter 1

Introduction

1.1 Motivation & Challenges

The development from traditional client-server architecture towards more advanced dis-
tributed systems, including small devices such as cars, smartphones, and other Internet of
Things, has been grown in the last years. Gartner predicted 5.8 billion devices to be con-
nected and deployed, just in the enterprise and automotive industry [1]. These devices con-
tinuously monitor the environment through sensor technology, permitting the collection of
valuable data. This data enables applications to perform highly personal and customised an-
alytics to the needs of the user. The variety of assembled applications using the Internet of
Things increased over the years, from automotive self-driving cars, smart cities, or health-
care deployments to intelligent stores, smart homes, or even manufacturing with Industry 4.0
deployments.

With the increase of applications, the considerable amount of data collected from these de-
vices evoked multiple constraints, such as bandwidth, storage, and energy. The need for
efficient methods to overcome those constraints has precipitated performing analytics, infer-
ence, and learning as close as possible at the data source. In the last years, the hardware
size decrease enabled the devices to become extremely powerful and perform computational
tasks directly inside themselves. Edge Computing is the research area that empowers the
capability of devices to perform computation inside the devices and therefore near the gen-
erated data. This closeness to the data source tries to overcome the issue of transferring
enormous amounts of data over the network and enable real-time decision making. Using
Edge Computing as a proxy to combine machine learning and analytics can create knowledge
and insights from the environment and people in real-time.

Several challenges emerge in Edge Computing when focusing on performing analytics and
machine learning in devices. Most devices are operated on batteries emphasising an efficient
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usage of these resources when deploying analytical functions, especially when these devices
are deployed in unreachable locations. The most energy consumption’s critical part is send-
ing the measured data via the network connection to a central collection point. Therefore
a significant research area of Edge Computing uses the computational power of devices to
enable intelligent decision making in delaying or selecting the data forwarded to this Cen-
tral Locations. The constraints of devices in this environment is, besides the battery, also
limited storage and computational power. These additional constraints restrict the usage of
low complex algorithms and machine learning models inside the device. The environment
the devices are placed in is mostly changing and continuously evolving. Therefore, algo-
rithms and models using continuous learning and inference are of considerable importance.
Deploying inference and learning at the device allows personalised real-time analytics and
inference and the ability to adapt immediately to rapidly changing environments. This thesis
is consequently contributing to very fast, continuously sensing and changing environments
or applications. Crucial for most applications deployed is the accuracy and reliability of the
analytical outcome as decisions on behaviour and user satisfaction are made based on the
prediction outcome. Emerging over the last years as a crucial aspect in the machine learning
area is data protection and privacy. As devices are applied in user personal environments,
most of the collected data require privacy protection.

Based on these highlighted constraints and emerging areas, this thesis adds towards using
Edge Devices’ capacity to selective forwarding and delaying data transmission. Data transfer
reduction has been encountered using low complex mathematical and statistical algorithms to
allow selective intelligent forwarding by maintaining qualitative analytics at the central col-
lection location. Moreover, using the possibility to place intelligence at Edge Devices and
adapt to changing environments motivated the work to enhance the research on locally de-
ployed analytics for real-time decision making by using personalised local models instead of
generalised central. A model retraining and forwarding methodology is proposed, as the de-
ployment of local models inside devices must be efficient and energy balanced. Additionally,
the problem of combining multiple learners (each device is a local learner) through ensemble
pruning using quantisation and similarity of the data space is explored and evaluated. The
introduced local learning emphasised exploring the necessity of privacy through local, per-
sonalised model deployment in devices. Personalised and local learning allows transferring
parameters instead of raw data. In the thesis, a methodology is proposed that uses privacy
and efficient local learning for continuous changing environments to qualitatively select the
best model inside the device to predict future behaviour.
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1.2 Thesis Statement

Performing analytical tasks and machine learning over data from Edge Devices, such as the
Internet of Things experience latency, bandwidth, and privacy constraints due to communi-
cation overhead and data processing at a Central Locations. This thesis provides a commu-
nication, latency, and privacy-efficient methodology through enabling analytics at the source
of the data - the edge. Intelligent decision-making mechanisms combined with collaborative
intelligence between the edge and the Central Locations are presented to reduce the com-
munication and empower local learning. This thesis further concentrates on the quality of
analytics in privacy-preserving environments with real-time local learning and inference.

Therefore this thesis is researching the following three Hypotheses:

Hypothesis 1: Pushing computational intelligence of advanced decision-making in
data forwarding to the edge of the network will overcome energy and bandwidth con-
straints due to the deployment of efficient communication methodologies. Combining
this with intelligent reconstruction at a collection point leads to highly accurate ana-
lytical tasks and reconstruction of the imputed values.

Hypothesis 2: Enabling machine learning and predictive analytics locally at Edge De-
vices will empower real-time applications that can adapt intelligently to concept drifts
and changes of the continuous data arriving. These locally learned (trained) models
can be selected through qualitative model selection methodologies at central coordina-
tors, e.g., Cloud.

Hypothesis 3: Generalised models over privacy-preserved data by only transferring
analytical model parameters over the network will not provide qualitative results in
constantly changing and heterogeneous environments. Using the prospect of locally
learning models with an intelligent model selection and weighting mechanism for per-
sonalisation and generalisation in Edge Devices enables data privacy and qualitative
prediction results.
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1.3 Contributions

The research contributions in this thesis are structured based on the specific chapters where
the contribution is placed. Generally, this thesis presents methodologies for advancing the
quality of analytical tasks performed at Edge Devices by focusing on efficiency regarding
energy and bandwidth. To this end the following aspects are contributed:

Chapter 3 Contributions:

1. A comprehensive evaluation of state-of-the-art prediction-based data forwarding
strategies with the identical deployment of models in sensors and Edge Devices
(collection point) to minimise the communication overhead and the ability to
reconstruct the missing data.

2. Exploring the computational ability of sensors by introducing a quality-efficient
prediction based forwarding strategy inside them with investigating the upper
bound of the given threshold to minimise the quality difference towards recon-
struction.

3. Introducing a time-optimised data forwarding strategy based on Optimal Stop-
ping Theory (OST) [2], to find the optimal time to send the measurements based
on historical decisions and a defined rewarding function.

4. Extensive experimental evaluation on actual data to evaluate the trade-off be-
tween reconstruction and analytical functions regarding their quality by reduc-
ing communication through the implemented intelligence mechanism and recon-
struction methods at the collection point.

Chapter 4 Contributions:

1. Evaluation of research gaps in edge-centric localised analytics and model for-
warding strategies combined with the absence of model selection criterion in
edge environments.

2. Introducing a computational and communication efficient model retraining and
forwarding approach based on familiarity and degree of change for edge environ-
ments with resource constraints to aim for qualitative predictions at the Central
Locations.

3. Developing an efficient ensemble pruning strategy for model selection over lo-
cally generated models provides highly accurate results for query-driven user
requests based on input/error-space quantisation and similarity-based clustering.
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4. Real data set evaluation and extensive experiments of latency-efficient model re-
training, forwarding and selection using the proposed techniques and approaches
to identify the trade-off between accuracy and efficiency.

Chapter 5 Contributions:

1. A complete assessment of current research in private-efficient local learning over
resource constraint environments regarding personalisation and continuously evolv-
ing data, mainly focusing on Federated Learning concepts which provides more
privacy by design.

2. Exploring the ability to perform local model training inside devices to incorporate
the heterogeneity of environments and provide qualitative predictive analytics
inside the device and centrally.

3. Introducing the importance of balancing personalisation and generalisation in
changing environments, such as the Internet of Things, focusing on adaptive
weighting and optimising the time of swapping with low complex deployments
for efficient implementations inside the devices.

4. Experiments and evaluation on a real dataset to show the improvements of local,
personalised Federated Learning with the introduced strategies over edge envi-
ronments.
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1.4 Publications

The research presented in this thesis is entirely the author’s own work. This thesis exploits
only the parts of these papers that are directly attributed to the author. The following publica-
tions are related to the results and the work presented in this thesis. Especially, some proofs
and mathematical concepts have already been presented in the peer-reviewed published work
and only re-adjusted for this thesis:

• Natascha Harth, Hans-Joerg Voegel, Kostas Kolomvatsos and Christos Anagnostopou-
los. ”Local Learning at the Network Edge for Efficient & Secure Real-Time Predictive
Analytics” arXiv preprint arXiv:2109.12375, 2021 [3]

• Natascha Harth, and Christos Anagnostopoulos. ”Edge-centric efficient regression
analytics.” IEEE International Conference on Edge Computing (EDGE 2018). San
Francisco, CA, USA, July 2018, pp. 93-100 [4]

• Natascha Harth, and Christos Anagnostopoulos. ”Quality-aware aggregation & pre-
dictive analytics at the edge.” In: IEEE International Conference on Big Data (IEEE
Big Data 2017). Boston, MA, USA, Dec.2017, pp. 17-26 [5]

• Natascha Harth, Christos Anagnostopoulos, and Dimitrios Pezaros. ”Predictive intel-
ligence to the edge: impact on edge analytics”. Evolving Systems, 9(2), Aug. 2017,
pp. 95-118. DOI:10.1007/s12530-017-9190-z [6]

• Natascha Harth, Kostas Delakouridis, and Christos Anagnostopoulos. ”Convey in-
telligence to edge aggregation analytics.” New Advances in the Internet of Things.
Springer, Cham, June 2017. pp. 25-44. DOI: 10.1007/978-3-319-58190-3 2 [7]
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1.5 Organisation of the Thesis

The structure of this work is presented as follow:

Chapter 2 presents an extensive literature review of relevant work in distributed sys-
tems, machine learning and Edge Computing. This chapter starts with the evolving
from client-server architecture to the current distributed systems, including the Internet
of Things and Ubiquitous Computing. The chapter further highlights the different ma-
chine learning types and current research topics of machine learning over continuous
and distributed data processing. Finally, the combination of distributed systems and
machine learning in Edge Computing is illustrated with the current work and con-
straints this deployment has.

Chapter 3 introduces efficient and quality-focused communication reduction of data
between sensing devices and Edge Devices. Current state-of-the-art research of in-
telligent decision making using predictive forwarding are characterised. Besides one
additional intelligent data-forwarding method using prediction-based forwarding, an
additional data-forwarding strategy of time-optimisation is introduced in this chapter.
Furthermore, different reconstruction policies towards qualitative imputation of non-
forwarded values will be accentuated.

Chapter 4 enhances the intelligence of Edge Devices by introducing latency-efficient
model forwarding strategies. This chapter emphasised the edge device capabilities
of locally performing analytics, inference and machine learning tasks. The data-
forwarding mechanisms of Chapter 3 are enhanced in this chapter by introducing fa-
miliarity based model-forwarding methodologies. Moreover, ensemble pruning tech-
niques for model selection based on input/error quantisation and similarity-based are
introduced. The introduced strategies will enable efficient communication between
the Edge Device and Edge Gateway and improve real-time action and decisions over
changing environments.

Chapter 5 departs from the efficient latency-efficient model-forwarding and selection
of Chapter 4 towards data privacy concern in Edge Computing. A methodology of
privacy-efficient and qualitative local learning over continuous evolving environments
is presented in this chapter. A model selection method to enable personalised learning
while maintaining a global generalisation using the fundamentals of Federated Learn-
ing is highlighted throughout the chapter.

Chapter 6 provides an overview of the conducted work in this thesis with revising the
thesis statement and hypotheses, highlighting future work and some limitations that
have not been considered for this thesis.
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Chapter 2

Literature Review

2.1 Chapter Overview

The area of Edge Computing and analytics in which this thesis is placed has its fundamentals
in two parts: distributed systems and machine learning. This literature review introduces
these two main fields with their definitions and currently deployed techniques relevant for
edge analytics.

Distributed systems evolved from essential technologies such as client-server architecture
to the area of Pervasive Computing. The first part of this chapter (Section 2.2) highlights
the evolution of distributed systems and introduces the terminology used throughout the
presented work. The main focus is on Ubiquitous or Pervasive Computing, which aims to
generate context-aware and real-time systems using everyday objects, including the Internet
of Things (IoT) and Wireless Sensor Network (WSN). From the enormous increase of ap-
plications, the need emerged to perform computation and analytics nearer the data source.
In this section, the possibility is highlighted to use different data-processing levels within
distributed systems, such as Cloud Computing and the emerging technology of Edge Com-
puting.

Besides the system perspective, the thesis employs techniques and methods of the area of
machine learning and predictive modelling to enable the use of edge learning and analyt-
ics. Therefore, the second part of this chapter (Section 2.3) introduces the definition and
rationale of machine learning with all required formulations. It further presents the different
variations existing and the usage in deployed applications. In real-time distributed systems,
machine learning is deployed under unique characteristics. Especially in small computing
devices, analytics and machine learning require unique distributed and continuous learning
techniques to be deployed efficiently and scalable. Therefore, this chapter highlights the
current work in these areas and explains the underlying techniques, such as window-based
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learning and model selection over distributed learning.

The last section of this chapter (Section 2.4) focuses on combining the fundamentals of ma-
chine learning and distributed systems towards Edge Computing and analytics. It highlights
machine learning challenges in Edge Device (ED) and their benefits towards real-time and
low latency applications. Finally, currently deployed methodologies for edge inference and
learning are introduced, which are fundamental work this thesis builds on.

2.2 Distributed Systems and Evolution

2.2.1 Definitions and Characteristics

Computer systems arise in the 1950s in which all applications and computations are designed
to function on a centralised system, meaning one computer processes and operates indepen-
dently. Centralised computer systems tend to be large and powerful but also expensive. The
evolving nature of personal computers and workstations and the invention of network tech-
nologies such as the Local Area Network (LAN) distinguished the need to share resources
such as printers, data, software, or storage with multiple personal computers. With this de-
mand, the research area of distributed systems emerges. A centralised system perspective is
defined as everything is stored and processed on a single machine. In comparison to this, a
distributed system should be “a collection of independent computers that appears to its users
as a single coherent system” [8]. Additionally, a distributed system should be a system “in
which hardware or software components located at networked computers communicate and
coordinate their actions only by passing messages” [9]. It is essential to accentuate that tra-
ditional distributed systems are autonomous components that do not share any memory and
do not have a global clock or time synchronisation. Therefore independent failures occur,
but also concurrent tasks are possible.

From these definitions of distributed systems, seven main characteristics and challenges can
be derived [8, 10]:

1. Resource Sharing is the primary impulse and means that within the system, all re-
sources should be available to every user or component at any time, e.g., hardware,
software, or data;

2. The challenge of heterogeneity in distributed systems defines that components vary
throughout the system in the form of operating systems, programming language, hard-
ware or software;

3. The characteristic of openness of a system identifies that the system should be acces-
sible to add new components anytime to the network;
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4. The importance of concurrency derives from the previous characteristics, an emphasis
that the system has to guarantee, even with resource sharing, that the underlying data
or service is consistent at any time;

5. Scalability is a characteristic and challenge, which relates to the openness of the sys-
tem, intending to highlight that with the increase of added components, the perfor-
mance should not decrease;

6. The ability of fault tolerance highlights that with the failure of one component, the
system is still running and ideally, the user should not notice that one component is
not working so that the characteristic of continuous availability is guaranteed;

7. The last challenge is transparency accentuates that the communication between the
components is not visible for the user, which is the main point of defining a distributed
system.

Inside a distributed system, different entities are connected to communicate with each other
forming a network [11, 12]. These entities are called nodes, expressing any device inside a
network [13, 14]. A network is how components interact and communicate with each other to
share resources. The crucial difference between a computer network and a distributed system
is that the user is exposed to the actual machines without any attempt to use transparency.
Therefore a computer network is the underlying infrastructure of a distributed system without
the software that will provide non-transparency of the framework for the user.

A distributed system can be designed using an architecture model defining the autonomous
components’ structure, order, and interaction. Therefore a system architecture can be seen
as a formal representation of a system with the components, interactions, and functionalities
ordered.

Distributed Computing is often associated with the term distributed system. However, the
definition of a distributed system differs slightly from the computing paradigm. Distributed
Computing means to solve an algorithm, software, or program using a distributed system
[15, 16, 17]. Modern distributed systems are primarily implemented to perform Distributed
Computing tasks.

2.2.2 Contemporary Distributed Systems

Nowadays, deployed distributed systems are of complex order and often include sub-systems.
Understanding the underlying architecture is key to master the current deployed distributed
systems. A distributed system architecture can be divided into two classical components rep-
resenting a centralised and decentralised structure of the autonomous components [9, 18]:
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1. Client-Server: this type of centralised architecture is deployed when each entity (client)
is connected to a central server that does the computation, coordination, or service,
whereas the client is just requesting this service.

2. Peer-to-Peer: this type of decentralised architecture allows each entity to act as a client
and as a server. Each entity of the system is interconnected; no central coordination or
computation exists.

The two classical architecture models expand over time towards more complex system archi-
tectures of combinations between a peer-to-peer and client-server model. This combination
of architecture styles results in a hybrid model and the deployment of systems in systems.
With the complexity of the systems, the client-server model itself evolved. This architecture
model has been branched into a logical functionality orientated architecture and a physical
tiered orientated architecture. The logical architecture is mainly divided into three or four
main functionalities represented in most current distributed systems [19, 20]: perception
level, network layer, processing level, and application level. The physical architecture intro-
duces tiers that allow multiple components to deploy, acting as either server or client. Most
commonly implemented is a three-tier architecture, in which each of the tiers is dedicated
to one specific logical functionality. Modern distributed systems are merging the levels into
multiple tiers to provide an optimal and efficient system.

Perception Level Network Layer Processing Level Application Level

Figure 2.1: Example architecture of a contemporary distributed system.

In Figure 2.11, an overview of a complex distributed system is displayed using the four-level
architecture style. This illustration makes it possible to identify a complex contemporary
distributed system’s main functionalities and perspectives. The first applicable level is the

1Some illustration icons used from [21]
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perception or device level, typically collecting data through sensors that monitor the environ-
ment. These sensor systems and networks can form a peer-to-peer sub-system to interact and
communicate with each other. The following logical functionality perspective is the process-
ing and computation level. This level is responsible for storing, analysing, and performing
any computation and processing of the data. The third perspective and its functionality illus-
trated in this figure is designed for the user or application. This level presents the user, the
data analysis, or any other application. Finally, all of the above levels are connected through
a transport or network perspective [22, 23, 24]. The network layer is responsible for for-
warding the generated data and connecting the devices using any communication technology
appropriate for the range, such as WiFi, Bluetooth, or 5G.

2.2.3 Application Perspective

Modern distributed system applications and use cases are gigantic and diverse. In the previ-
ous section (Section 2.2.2), one broadly used modern system design focusing on data-driven
and context-aware applications [25, 26] has been highlighted. The generated data by sen-
sors and devices deployed everywhere can be processed using the distributed system infras-
tructure to make the user’s application outcome visible. These applications require different
communication types between the devices and the processing or application level [27]. These
communication types can be divided into three categories (note that this thesis is focusing on
continuous data):

1. Continuous: the devices are constantly reporting towards the central service after re-
ceiving or sensing the measurements. This constant transmission can be periodically
or permanently.

2. Sporadic: the device reports the data at any time a connection can be established or
if a certain level of energy is reached at the node. At these times the connection is
established and the data is transmitted from the device to the processing level.

3. On-Demand, this communication type is further divided into:

Event-Based: the devices and sensors only report data to the processing level
after locally or collaboratively identifying a pre-defined event.

Query-Based: the devices only report data after a user or the system is centrally
requesting the data in the form of a query arriving at the device level.

Considering a type of contemporary system, the applications and use cases deployed can
be classified into seven categories. These categories evolved from simple monitoring using
sensor networks [28, 29, 30, 31] towards intelligent and smart applications acting based on
the generated data using an IoT infrastructure. These seven application categories are:
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1. Home: home applications can include smart grid and energy applications with smart
meters providing an intelligent system for monitoring or regulating energy usage, or
applications for securing the house such as intruder detection or children monitoring
and alerting, or towards personalised entertainment such as music, television, gaming,
or applications towards simplifying daily life tasks such as shopping [32, 33, 34].

2. Health: applications implemented for health vary from health monitoring [35, 36, 37,
38] for treatments or prevention towards elderly-care. Health applications can be for
patients, hospitals, insurances, or physicians with many possible use cases [39].

3. Cities: application deployed for smart cities [40, 41] can vary from monitoring build-
ings or infrastructure [42, 43] towards smart traffic, pollution control [44, 45] or intel-
ligent waste management.

4. Mobility: its movement characteristic mainly defines an application’s belonging to
the category of mobility, including aeroplanes [46], cars [47], public transportation,
emergency services, or unmanned vehicles.

5. Environmental: in this category, applications such as general environmental monitor-
ing such as habitat monitoring [48], fire detection [49], agriculture [50, 51], volcano
monitoring [52], or underwater monitoring are included [53].

6. Industry: applications for industry use cases are primarily deployed for machine-to-
machine communication and the usage of Industry 4.0 [54, 55] areas such as smart
production, supply chain management, retailing, logistics, and many more.

7. Military: military applications could be the usage of unmanned vehicles, or applica-
tions combining environmental monitoring, health monitoring for people, or vehicle
monitoring (ships, cars, planes) to identify attacks, crime, or optimise processes [56].

2.2.4 Device and Perception Perspective

2.2.4.1 Pervasive and Ubiquitous Computing

The previous section has identified that modern distributed systems evolved from simple
clients represented by personal computers towards objects that can interact as autonomous
components with a server. The area of distributed systems emerges from architecture and
components designed for a stable network and connection approaching unstable connection
and mobile components. The technology evolution of Local Area Networks (LANs) to Wide
Area Networks (WANs) using wireless communication technologies, as well as the down-
sizing of computational devices results in the possibility of embedding computation into
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physical objects. These objects allow the mobile use of computers. This research area of
distributed embedded systems is also known as ubiquitous or pervasive systems [57, 58, 15].
Departing from the classical distributed system in which the nodes or components are stable
in a wired connection and fixed at a specific location, pervasive systems are mobile and rely
on a wireless connection, which is unstable. Ubiquitous Computing has been introduced by
Weiser et al. [59]. The authors elaborate their vision of embedded devices into physical
objects and how their interaction with users should be invisible. The following requirements
can characterise ubiquitous and pervasive systems [60]: (1) Human interaction should be
hidden and reduced as much as possible so that entities operate autonomously; (2) The sys-
tem should be context-aware and able to adapt and act based on the sensed surrounding using
intelligent decision-making or other forms of intelligence.

2.2.4.2 Sensor Networks

In the previous section (Section 2.2.4.1), the research field of Pervasive or Ubiquitous Com-
puting as part of a distributed system has been introduced and defined. This research area
emphasised that devices are embedded in objects able to sense their surrounding environ-
ment. Implementing these concepts, the infrastructure of sensor networks appeared. Sensor
networks can be divided into wireless or wired connected setups. This chapter focuses on
Wireless Sensor Networks (WSNs) [61, 62, 63], as they are widely used in contemporary
distributed systems. A WSN is organised by several sensor nodes called Sensing and Actu-
ating Nodes (SANs). These nodes are embedded computing devices capable of sensing their
surrounding environment and translating this information into data. They can vary in size
but are mostly small and of low cost. In most WSNs, hundreds or even thousands of nodes
are positioned.

Figure 2.2: Example of hardware components used for Wireless Sensor Network devices
[64].

The build-in components of these nodes can change depending on the price and the appli-
cation. However, they are equipped with a power unit (battery), a sensor, a processing unit
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containing storage and a processor, and a transceiver with an antenna to communicate with
other nodes. Some of these nodes can also have Global Positioning System (GPS) units to
identify their location or a power generator for additional power or even some kind of mo-
biliser to move the node to a different location. In addition, different types of sensors are
deployed to collect a variety of environmental data. These sensor types can be thermal such
as temperature or humidity, visual such as lightning, acoustic for noise level, infrared, radar
for vehicle movements, magnetic for flaw detection in industry, and seismic for motion in-
truder detection. An overview of a typical sensor node deployed in WSNs with its hardware
components is illustrated in Figure 2.2.

As highlighted, SANs are deployed to collect data and forward this input to the base station.
The base station, sink node, or collection point usually has computational power and energy
and can perform aggregation of the collected data it received from all connected sensing
nodes. Another responsibility made to the base station is forwarding this aggregated infor-
mation to a Central Location (CL) such as a database, server, or Cloud. At this Central
Location, further processing and analysis of the data is carried out. Figure 2.3 shows a typ-
ical network architecture of a WSN in which the sensor nodes are ordered in a tree network
[65]. This results that SANs deliver the data first to the base station, which can communicate
with the Internet to forward the data to a processing location.

Figure 2.3: Representative Wireless Sensor Network architecture [66].

Even though the possibilities of deploying such low budged sensors in a distributed system
network using wireless connections seem to be infinite, some key features and challenges
need to be considered while designing a WSN as they provoke problems and limitations
[64, 27, 29, 67]. It should be noted, that these features are relevant for many deployed
applications but not for all or in different magnitude.

As the number of SANs can be thousands, the high scalability is the first and critical feature
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of a WSN. SANs can either be deployed in an organised way or at random. New devices
should be able to join the network at any given time. This flexibility results in the next
feature, the high heterogeneity of hardware, software, and resulting performance. Not only is
it possible to position different sensor types, processing units, or power units, but also during
the lifetime, heterogeneity can occur if one node performs more processing than another node
so that the energy is lower than of the other peer nodes. This heterogeneity of sensing nodes
is a significant challenge, but also a huge opportunity. An already stated critical feature
of WSNs is the power consumption. The constraints prevail as mostly small batteries are
used as energy components, or the devices are deployed in unreachable locations, so it is
impossible to recharge them easily. Therefore its lifetime has to be maximised with energy-
efficient operations. Not only do sensor nodes have low energy resources but they are also
constraint in computation. The embedded processing units can compute some functions, but
they have to be of low complexity. The transmission unit faces constraints in its range of
sending and receiving messages. Primarily deployed are radio waves such as Bluetooth or
WLAN, resulting in limited data throughput and possible disconnections. All of the above-
mentioned critical features of WSNs, resulting in high node failures, highlighting another
aspect of consideration while designing a WSN.

2.2.4.3 Internet of Things

Ashton [68] introduced the expression of Internet of Things (IoT) in 1999. IoT has emerged
from the Ubiquitous Computing paradigm in which everyday objects should be enriched
with embedded computational power towards monitor the environment without any user in-
teraction. IoT systems aim to monitor everyday objects in real-time and over the Internet
to collect, process, and analyse the data to generate knowledge [69]. In particular, Cloud
Computing for analysis and further processing is used as the primary Central Location for
IoT systems [70]. The physical world should be digitised with the usage of IoT. The IoT
paradigm is developed with the emergence of Cloud Computing and the already existing
technology of WSNs and Radio-frequency Identification (RFID) chips that allow identifica-
tion, tracking, and monitoring objects over the Internet [30, 71, 72]. Summarised the three
key components of IoT are [73]:

• Each device is identifiable through RFID or any other digital name;

• Devices need to communicate among themselves and over a network;

• Devices need to interact with the environment using sensors and should act based on
the knowledge generated
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WSNs can be part of IoT systems, but not vice versa. To include WSNs into IoT systems,
they can be enriched with a gateway or other computational device that can communicate,
process, and send the data over the Internet to a Central Location for further processing [74,
75]. Comparing the IoT and WSNs, the critical difference is the size of deployed devices.
In a WSN, thousands of devices are usually connected, whereas, in IoT networks, billions of
devices are expected to be connected [69]. These devices can be wired or wireless, and they
have to be connected to the Internet. In a WSN, these devices are external sensing devices
attached or placed to monitor the environment mainly. In contrast, IoT devices are physical
objects with embedded sensors, such as a fridge or other home appliances, a watch, or a
vehicle that is not only to be there to monitor, but further to analyse the data and act based
on the knowledge generated. IoT devices are equipped with the ability to communicate,
compute, store, and sense data.

2.2.5 Network and Transportation Perspective

Continuing from Figure 2.1 detailing the layers of a contemporary system, the network layer
connects the device level with the processing level and application level using leading tech-
nologies for communication in modern distributed systems and networks such as NFC, Blue-
tooth, ZigBee, WLAN, and 5G. Depending on the range of communication and throughput
rate, one of the mentioned technologies can be chosen. However, the higher the throughput
and broader the range, the more energy the communication requires from the device that
performs the transmission. Figure 2.4 shows an overview of the different wireless technolo-
gies and their capacities with throughput clustered into four categories. The authors in [76]
provide a good overview of technologies and challenges for IoT environments.

Figure 2.4: Overview of wireless communication technologies sorted by their range and
throughput grouped in categories.
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The network layer’s key aspect is forwarding the data in the form of raw sensed data, rep-
resentations of the data, or decisions. Facilitating this responsibility, establishing a network
topology of how the nodes in a network are connected is essential. Topology describes how
the nodes are arranged to interact and communicate with each other in a network. The most
deployed network topologies are [22, 23, 24]: bus, star, ring, mesh, tree, and other hybrid
forms. In Figure 2.5, an overview of the different topologies is illustrated, in which a circle
represents an individual node in a network, e.g. a SAN.

Figure 2.5: Overview of example network topologies.

Given the design of the network topology, it is possible to define the compatible routing
protocol. A routing protocol contains information of the delivering path of the data or infor-
mation transported and communicated from one node to others or the Central Location. It
mostly takes the constraints of the network, system, and device constraints into considera-
tion, enabling intelligent routing mechanisms with advanced technologies.

2.2.6 Computation and Data Processing Perspective

2.2.6.1 Cloud Computing

In the last 20 years, data centre deployment costs increased, especially when companies try
to maintain the newest technology. The increase of data collection and the need to perform
analysis, requires storage and computational power during the run time. This computational
power is not needed afterwards, enabling the need for on-demand storage, computation, and
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software. The terminology of Cloud Computing is defined as: “a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction”
[77]. As the definition states, Cloud Computing is an enabler to allow access to resources
everywhere and anytime. Resources can be software, infrastructure, or a platform that can be
used as a service. Thus, Cloud Computing is a form of Utility Computing that allows users
or companies to use resources based on their needs.

Two leading Cloud technologies are currently deployed [78, 79]: the Private Cloud and
the Public Cloud. As the names are already projecting, the Public Cloud is a pay-as-you-go
service for every user that needs some service organised and managed by the Cloud provider.
Private Cloud systems are specially designed for companies that need their infrastructure and
data to be secure without any other person, company or system accessing it. Therefore, the
resources are build and provided only for a specific company without any sharing or access
from outside the allowed circle. It should be noted that there is also the possibility of hybrid
or community Cloud technologies, representing a merge of Public and Private Cloud systems
in the form of different magnitudes of accessibility.

When connecting Cloud Computing and distributed systems, it is possible to place Cloud
Computing’s system infrastructure towards Grid Computing or Cluster Computing [80, 81].
Grid and Cluster Computing aims to distribute tasks that require high computational re-
sources towards a cluster of computing devices or server. They are formed dynamically over
a network able to share the resources needed to compute the given task. In traditional Grid
Computing, the infrastructure is owned by a company. In contrast, Cloud Computing is man-
aged centrally by an external provider and is service-oriented. Distributing a specific task by
forming a cluster of computing resources is also given in Cloud Computing, which involves
different servers clustered to perform the user’s service. Thus, Cloud Computing uses a
different business model than traditional Grid Computing systems by having an extensive
infrastructure and renting it to users by their needs.

Overall, Cloud Computing [82, 83] has the advantage from a user perspective of using only
needed resources and extending and reducing these resources anytime without high costs
and time for installation. Further, the payment is usage-based and straightforward, allowing
increased flexibility. Not only is the reliability guaranteed by the provider, but it also allows
a manageable and mobile use of the services, only using the Internet, resulting in having
access anywhere and anytime. However, besides the advantages of Cloud Computing, it also
faces significant disadvantages such as security, bandwidth, and latency.
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2.2.6.2 Edge Computing

Edge Computing is a terminology that arose in the last years with a strong relation to the dis-
advantages of Cloud Computing and the enormous increase of IoT devices. Most deployed
IoT architectures are of centralised order [84], resulting in transmitting all the generated
and sensed data towards the Cloud to process, analyse, and develop knowledge. However,
with the expansion of IoT devices [69], this transmission with processing and storing at a
centralised system is infeasible, even for Cloud systems. The main limitation of a Cloud
system can be highlighted by applications and systems that require low latency and real-
time actuating. The need emerge to overcome these issues and perform and act instantly
in IoT devices. Not only is latency an essential accelerator for device-located processing,
but also the limitation of bandwidth resulting from transmitting all generated data from all
IoT devices. As devices tend to monitor sensitive data to enable context-aware applications,
privacy concerns about the data occur with the need and regulations to limit data transmis-
sions towards the Cloud and centralised systems. Therefore, it is essential to increase the
computation by pushing intelligence towards the edge of the network [85, 86, 87], forming
decentralised processing of the data.

Different technologies in the research community have proposed to achieve this push of
computation and intelligence to the edge (device level). One of them is cloudlets, a localised
Cloud Computing server [88]. It is sometimes referred to as a micro data centre. Cloudlets
aim to introduce a small Cloud server more localised to enable a lower latency but still pro-
vide a reasonable amount of computational power. This localisation can be made applicable
by the following example. Instead of using the USA’s cloud system for a service performed
on in Germany deployed devices, one cloudlet can be implemented in Germany as a layer
between device and cloud (in the USA) to pre-process the data. Fog Computing [89, 90, 91]
aims to process the data another layer down and even closer to the device level than cloudlets
or micro data centres. A fog server would be deployed in each city in the previous example,
whereas a cloudlet would be countrywide. Fog Computing and cloudlets are very similar by
deploying the computation and data processing even nearer to the device by introducing an-
other tier or level of pre-processing and computation. In some literature, Fog Computing and
Edge Computing are merged into one. However, for this thesis, Edge Computing is defined
as processing the data at the IoT-device level. Not anticipating a WSN but the gateway con-
nected to the Internet, the smartphone, the car, or any other computational equipped devices
capable of processing data.

In Figure 2.62, the relationship between Cloud, Fog, and Edge Computing combined with
IoT devices and a WSN is illustrated. It should be noted that the fog/cloudlet server is in
this figure only one level, but this can be extended towards multiple levels or tiers, getting a

2Some illustration icons used from [21]
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Figure 2.6: Example architecture of Edge Computing using Internet of Thingss and Wireless
Sensor Networks.

complex hierarchy of the architecture. Also, highlighted in this figure moving processing and
computation further towards the devices level, the latency, the computational power, and the
storage decreases. The opposite applies to bandwidth, privacy, and responsiveness. These
features increase with pushing the intelligence and processing towards the devices instead
of the central server. However, enabling computation, decision making, and intelligence at
the devices leads to multiple challenges: energy constraints, privacy, latency, reliability, and
computational power are only the main. Section 2.4 highlights and introduced more towards
Edge Computing and the benefits and constraints.

2.3 Data-driven Predictive Modelling

The previous section (Section 2.2) highlighted that modern distributed systems collect mas-
sive amounts of data through devices deployed in everyday objects. This enormous collection
of data can provide individualisation/customisation (e.g. personal profile for driving assis-
tance), optimisation (e.g. demand forecasting for car sharing), or event/anomaly detection
(e.g. predictive maintenance) in services and applications to identify risks, profitable pos-
sibilities and increase customer satisfaction. However, this has to be done automatically as
the volume of data can not be processed and analysed by a human anymore. Therefore it
requires processing the generated data with data analytics, pattern recognition, or machine
learning techniques. This section is introducing the definitions, types, and methods related to
data-driven predictive modelling. These fundamentals are used in the thesis as experimental
implementation and baselines for edge-centric analytics and learning.
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2.3.1 Definition and Rationale

Data processing describes a collection of methods that enable the creation of knowledge
from the collected data. This collection of methods is known as data analysis with cleaning,
transforming, and modelling the data. Data Analysis can also be named data mining when
referring to Big Data and databases, or sometimes data analysis is referred to as Knowledge
Discovery in Database (KDD) [92]. Their difference prevails in the volume of data on which
the methods are used [93, 94].

Data analytics is using statistical models and algorithms to model and generate information
from the data. “An algorithm is a sequence of instructions that are carried out to transform
the input to the output” [95]. With respect to data analysis, data analytics can be seen as
the modelling part of the data analysis process and can be divided into three categories:
descriptive, predictive, and prescriptive. Descriptive analytics uses the history of the data
applying statistics to identify insights and patterns for reporting and exploring. Predictive
analytics is additionally trying to model the future based on historical data. Prescriptive
analytics is even further a method to provide recommendations and decisions based on the
data.

Machine learning techniques are part of predictive analytics, but these methods and tech-
niques can also be used for descriptive analytics. If the instruction or the transformation from
the input to the output is unknown, it is possible to use data to learn this transformation by
approximating. This approximation of learning from data is defined as machine learning: “a
set of methods that can automatically detect patterns in data, and then use the uncovered pat-
terns to predict future data, or to perform other kinds of decision making under uncertainty”
[96]. The key functionality of machine learning is to train a model that can then predict
future data. It is essential to differentiate between learning and inference. The inference is
applying the trained model to generate information and perform the prediction. In contrast,
learning is the process to develop the machine learning model by using the underlying data
and train the algorithm.

Machine learning and data analytics are aiming to generate knowledge and intelligence from
the data. Knowledge can be defined as understanding and information gain through learning
[97]. Intelligence, on the other hand, is defined as acting based on learning and achieved in-
formation [98, 99]. This thesis is not contributing towards the intelligence part on how to act
based on the analytical findings. The presented work focus only on providing methodologies
to enable intelligence.
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2.3.2 Machine Learning Methodology

To generate knowledge and intelligence, machine learning algorithms learn from data a
model to make predictions. This data can be categorised into two types: quantitative and
qualitative [93]. Data classified as quantitative is mostly numeric with either continuous or
discrete values. The qualitative data can be nominal or ordinal, representing a description
of the data in an ordered or unordered group (e.g., hair colour, grade, or cloth size), also
sometimes referred to as categorical. Besides these primitive data types, complex data types
can also be used for machine learning, such as text, speech, video, image, graph, or time
series [96]. Independent on the kind of data, the dataset should be divided into at least two
but sometimes required three different datasets (train, validate and test) to perform a machine
learning algorithm [98]. This splitting of the data will support the identification and evalu-
ation of the learned model’s actual performance. The majority of values should be inside
the training dataset, on which the model is learned and parameters fitted. The validation
dataset can be used to tune the model’s parameters that minimise the error or select the best
model. The final performance of the generated model can be obtained by using a test set.
This test dataset is an independent and unseen selection of data to evaluate the learned model
using different performance metrics. The rationale behind separating the data into blocks is
to generate a generalisation of the model, preventing over-fitting or under-fitting and provid-
ing a measurement of its certainty. Over-fitting is a term which characterise a model that
is learned and adapted to close to the underlying data and cannot predict unseen data well.
In contrast to over-fitting is under-fitting, in which the model cannot capture the underlying
data structure accurately [93, 96].

Figure 2.7: Overview of different machine learning algorithms clustered by type and usage.
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Machine learning techniques can be classified into three different model types supervised,
unsupervised, and reinforcement learning [98, 100, 101]. Figure 2.7 shows an overview
of the classes and the comprised algorithms separated into continuous and categorical data.
Neural networks are applicable over all types and all data categories.

2.3.2.1 Supervised Learning

In supervised learning, the algorithm processes data during the training of the model, in
which the outcome is already known in advance given a label. The most commonly used
supervised learning models are classification and regression. The input data from an input
space X is defined in supervised learning as x ∈ X that contains one or multiple attributes,
variables, or features resulting in xT ∈ [x1, ..., xd] with d representing the input data dimen-
sion. The output data from the output space Y is defined as y ∈ Y and is in supervised learn-
ing known to the model while training. The goal is to find a model or function f ∈ F that
can map the input data x to the output data y so that f : X → Y . If the output of the function
f(x) is nominal, then the used algorithm is a classification; else, if the output is numeric, the
model used is a regression. To find the model f ∈ F a training set of data is needed. The
training set D of length Ncontaining input-output pairs D = {(xi, yi)}Ni=1 ⊆ X × Y that
are forming an unknown probability distribution of p(x, y). During the learning period the
algorithm is trying to minimise a objective function J which contains a loss function L and
a regularisation term R(w). The objective function J can be defined as the expected risk of
a function f :

J (w) = E[L(x, y;w) +R(w)] =

∫
L(x, y;w)p(x, y)d(x, y) +R(w) (2.1)

The regularisation term R aims to avoid over-fitting. Commonly used is the L2 with R(w) =
λ
2
‖w‖2

2 or the L1 with R(w) = λ‖w‖. The loss function, also named error function, cost
function, or utility function, calculates the discrepancy between the real output value y and
the fitted value of f(x) on the training dataset D over a set of parameters w ∈ ω, with
ω represents the parameter space. Depending on the supervised learning model, the loss
function L can be defined for classification using either the logistic loss L = log(1+e−yf(x))

or the hinge loss L = max{0, 1 − yf(x)}. For regression, the loss function can be defines
as the absolute loss L = |f(x) − y|, squared loss L = (f(x) − y)2, or ε-insensitive loss
L = max{0, |f(x)− y| − ε}. Summarised in supervised learning aim is to find the optimal
parameters w∗ that minimise the objective function J (see Equation 2.2) [102, 96].

w∗ = arg min
w∈F
J (w) (2.2)
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As the distribution of p(x, y) is unknown, only an approximation of the expected risk using
the method of calculating the empirical risk is possible to use. Using Empirical Risk Min-
imisation (ERM) [103] over the training’s set D of length N , the approximate J (w) can be
defined as:

J (w) ≈ ĴN(w) =
1

N

N∑
i=1

L(xi, yi;w) +R(w) (2.3)

2.3.2.2 Unsupervised Learning

Unsupervised differs from supervised learning in the sense that no target values are known,
and the model has to identify patterns based on the relation of the variables. The formulation
of the training data is defined as D = {xi}Ni=1. Models for unsupervised learning are cluster-
ing, density estimation, dimension reduction (e.g., principal component analysis). The loss
function L in unsupervised learning can be defined as L(x, f(x)).

2.3.2.3 Reinforcement Learning

In reinforcement learning, an agent interacts with the environment and learns with rewards
based on its feedback. Each time the agent has to decide his action based on maximising
its reward. Reinforcement learning is related to game theory and is often associated with
artificial intelligence and deep learning [104]. The basic approach of reinforcement learn-
ing can be modelled using a Markov decision process, in which the assumption of complete
knowledge of the environment is made [98]. Also, evolutionary algorithms are part of rein-
forcement learning.

2.3.3 Learning under Continuous Data

Performing learning on continuous data or streaming data has gain attention over the last
years. The massive increase of data provoking storage and processing issues characterised
by the ability to frequently generating new data has led to developing techniques on learning
over data that continuously arrive. The presented machine learning techniques in the previous
section rely on one-time learning in which access to the entire training data D is assumed. In
distributed machine learning introduced in Section 2.3.4, the information is split into subsets.
Still, one-time learning with access to this subset is adopted, resulting in batch learning for
each subgroup. One area of continuous data is streaming data, in which the training dataD is
only available at arrival as only limited storage for historical data is available. Moreover, in
some continuous data streams, a temporary or entirely temporal dependency exists between
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historical data points. In general, continuous data is defined as data vectors x generated from
an input space X over a discrete-time sequence of t ∈ T = {1, . . . , t, . . . , T}. A new data
vector xt is generated at each time instance.

2.3.3.1 Time Series Analytics

Time series and sequential data analytics are a particular form of continuous data analyt-
ics. The input variables xt depend on the previously received variables xt−j with j =

{1, 2, ..., t − 1}. Most relevant for time series analysis is modelling this dependency be-
tween adjacent observations and forecasting upcoming observations based on their history
[105, 106, 107]. Time series can be stationary and non-stationary. Time series is stationary
if the joint probability distribution of any two time sequences is the same. This probability
distribution is defined by its mean µ, variance σ, and autocorrelation values. Meaning that
the distribution is not changing if the modelling horizon is shifted backwards or forwards in
time. Most commonly for stationary time series is modelling the underlying observations by
performing the Autoregressive (AR) process. AR assumes that the current value at a time t
can be expressed with a relationship of the p previous values and a random white noise a,
resulting in the following equation:

xt =

(
1−

p∑
i=1

wi

)
µ+ w1xt−1 + ...+ wpxt−p + at (2.4)

Another modelling method widely used is the Moving-Average (MA), which models the
current value xt by the mean µ and the randomly generated noise at over the last q period,
so that the predicted value using MA can be defined as:

xt = µ+ at − w1at−1 − ...− wqat−q (2.5)

MA and AR are both assuming a stationary series. In real data, the stationary of a series is
not always applicable. Mostly, time series appears with a trend or some seasonality, resulting
in a non-stationary series. If the underlying data is non-stationary, it is possible to integrate
(I) the series by performing a difference of an order g of the values with:

xt = ∇gxt (2.6)

Combining the different methods of MA, AR and I results in Auto-Regression Integrated
Moving Average (ARIMA), the most frequent modelling and forecasting method for time
series analysis. ARIMA can be defined with the parameters p for AR, q for MA, and g for I,
deriving into the notation ARIMA(p, q, g).
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Besides the well-established statistical modelling and forecasting method of ARIMA, other
machine learning techniques for especially time-dependent series have been introduced in
the last years. The algorithm is mainly based on similarity measurements or entropy val-
ues when comparing multiple time series. The similarity measurements can be divided into
shape-based, feature-based, edit-based, and model-based. Widely used are only shape-based
and model-based similarity measures. Clustering, classification, segmentation, anomaly de-
tection, and prediction are the most commonly used learning tasks [108, 109].

2.3.3.2 Online Machine Learning

Online machine learning rests on the assumption that the data is not accessible for the algo-
rithm so that training must be performed at each instance t when the data occur. Incremental
learning is related to online learning; their difference relies on the exception that some data
buffer is available to train the algorithm. Online machine learning is an algorithm specially
developed for continuous data and Big Data applications with the inability to access and
process the data in memory [110, 111, 112]. The described time series analysis assumes that
modelling the data and forecasting is based on a distribution drawn from the data with or-
dered values. In online machine learning, the assumption of a prior distribution and ordered
values is not made. However, online machine learning can be applied to time series data if
the order is guaranteed from the underlying system. Multiple machine learning algorithms
have been introduced for online or incremental use in recent years, such as clustering, clas-
sification, decision trees, or regression [113, 114, 115, 116]. Generally, in supervised online
machine learning, a new input vector xt with the corresponding output label yt is observed
at each time instance t. At each time, the already fitted model ft(x) is using inference to pre-
dict the value yt. The error or loss can be calculated by comparing the expected ft(xt) = ŷt

with the actual yt using a loss function L. The aim is to minimise the regret between the
sequentially defined model loss and the loss fitting over the entire data. The regret is defined
as the difference between the cumulative sum of the loss function L for each time up to the
current time t and the loss function at hindsight up to this time [117, 118, 119].

Regret(w) =
T∑
t=1

L(xt, yt;wt)−
T∑
t=1

L(xt, yt;w) (2.7)

In online learning, the minimisation of the regret and loss function is only possible by ap-
proximation. The most widely implemented approximation method to find the parameters w
of Equation (2.2) is Gradient Descent (GD). GD is an iterative optimisation algorithm that
tries to find the minimum of the approximate objective function ĴN(w) by estimating w at
each iteration k. GD is possible to apply if the function f is differentiable and convex. The
derivatives of the optimisation function J for the parameter vector w of the function f is
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∇J (w) = ( ∂J
∂w1

, ..., ∂J
∂wd

). In GD, the algorithm calculates for each iteration k over the entire
training’s data the new gradients and updates the function parameters [95, 102, 120]. As ap-
plicable in Equation (2.8) at each iteration k, the gradients are weighted with a learning rate
η and then subtracted from the previously estimated function parameters wk. The learning
rate η is critical to define as it converges very slowly to the global minimum of the convex
function or jumps around without any convergence [121].

wk+1 = wk − η∇ĴN(wk) (2.8)

As GD is of high computational complexity because of the iteration over the entire data,
other forms of GD emerged. Stochastic Gradient Descent (SGD) [122] uses only a subset of
lengthB of the available dataN to calculate the gradient. Depending onB, either performed
on a batch if B > 1, or online if B = 1, using a single data point for the gradient [123]. The
computational complexity of GD can be improved from O(NdT ) up to O(d), with B = 1.
In Equation (2.9), the SGD is defined for the following parameter at iteration k + 1.

wk+1 = wk − η∇ĴB(wk) (2.9)

Besides SGD, other optimisation algorithms are introduced using GD [124]. A detailed
comparison is provided in [125]. Even though the assumption on independent and identically
distributed (i.i.d.) exists (stationary), current research has revealed that SGD is also effective
on non-i.i.d. data [126].

2.3.3.3 Window-Based Learning and Concept Drifts

Window-based learning is a possible method to handle continuous data with a temporary
temporal dependency or non-stationary data. Machine learning using windowing can be de-
ployed by either a timestamp-based window or a Sliding Window (SLW) [127]. Generally,
a window is a temporary storage of historical data. In a timestamp-based window, a certain
sequence of time instances is considered between two timestamps. In contrast, in a sliding
window, the newly arrived observation decays the oldest observation stored in the window.
In many applications, this type of deployed analytics and machine learning is used. A SLW
W of size M > 0 at time t is able to store t −M recent observations. With a new obser-
vation, the oldest observation will be discarded in favour of the new observation. The SLW
W is defined at time t asWt = (xt−M ,xt−M+1, . . . ,xt−1). Extensions on SLW approaches
such as adaptive size regularisation [128] or multiple windows of parallel or distributed data
[129], or recurrent windowing [130] exist, but are not relevant for this thesis. Most applica-
tions with windowing usage answer a query or monitor statistics (e.g., MIN, MAX, or AVG)
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over a continuous data stream [111, 131]. When dealing with continuous data and temporal
dependencies, window-based learning is the most used technique of handling this.

Traditional online learning techniques assume or work best under the stationary assumption.
However, in real-world data and time-dependent data, this assumption can not be made. This
issue can be overcome by using the window-based learning approach for concept drifts or
non-stationary data. In some applications identifying this concept drift and acting based on it
is of high importance. A concept drift is broadly defined as a learned function f that changes
over time. Formally is a concept drift defined for supervised learning with input variables x
and target variables y, that the joint probability distribution at a time t and time t+ 1 are not
identically pt(x, y) 6= pt+1(x, y) [132]. In the literature, several ways of how this change can
occur are classified. Overall, four types of concept drifts can be categorised: sudden/abrupt,
incrementally gradual, and reoccurring. An illustration of these different types is shown
in Figure 2.8. It is important to differentiate a concept drift from an outlier or anomaly.
Considerable research on handling concept drifts has been proposed in the literature, mostly
relying on window-based machine learning [133, 134, 135, 136].

Figure 2.8: Examples of existing concept drifts types in online learning environments [132].

2.3.4 Distributed Machine Learning

The introduced machine learning models in Section 2.3.2 are engineered on centralised data
collection assumption. The learned algorithm is considered to run once using supervised or
unsupervised approaches on centrally stored data that fit during the computation and calcu-
lation of the model into the memory. It is important that all data is available at the training
time inside the Central Location. The enormous increase of IoT devices and the continuous
collection of data highlights the limitations regarding the storage and computational capaci-
ties of standard machine learning methods. Algorithms cannot be performed on centralised
data and through one-time learning. Possible approaches to distribute a machine learning
algorithm is either using data distribution or model distribution. A machine learning algo-
rithm based on data distribution is performed by deploying a model on separate parts of the
datasets resulting in multiple trained models. In contrast, the model distribution is learning
on the same data but separate parts of the model [137]. Both approaches aim to train a central
model, usually done by one-shot or one-time learning. These two approaches of distributed
machine learning are illustrated in Figure 2.9.
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Figure 2.9: Overview of distributed machine learning types.

2.3.4.1 Data Distribution

As highlighted above, data distribution is one possible method of solving large-scale learning
by using different datasets to train a model. This training can be performed in a centralised
or decentralised fashion. The centralised approach aims to have a central coordinator that
merges the separated model related to the server-client model architecture from a distributed
system perspective [138]. In contrast, the decentralised approach works in a peer-to-peer
way. All clients are connected without any global knowledge or coordination [139]. Gener-
ally, the data normally stored on a central server denoted as D is distributed into k subsets
of equal size so that D ≡ {D1, D2, ..., Dk}. Each distributed system member performs over
this data subset the minimisation of the loss function by finding the parameters w of the
model. All members are using the same model so that Di ⊥ Dk|w,∀i 6= k. In a centralised
way, the model is communicated to the coordinator or parameter server. In the decentralised
deployment, the circulation is through peer-to-peer communication. The training to find the
minimisation of the loss function over multiple subsets of data can be achieved by deploying
online, batch, and incremental learning techniques. SGD has been introduced in the previ-
ous section (Section 2.3.3.2) and is suitable for distributed machine learning on distributed
data. Long-established is the parallel SGD and other convex optimisation algorithms for it-
erating over data subsets [140, 141]. Multiple platforms in Big Data rely on the distributed
data machine learning technique with advanced success, e.g., Hadoop Spark or Tensorflow
[142, 143].
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2.3.4.2 Model Distribution

The second possible distribution of machine learning is using a model distribution. In this
method, the model parameters w are split across the system members. Each learner has full
access to the datasetD but trains only certain parts of the overall model so that the final model
parameters are w ≡ {w1, ...wk}. Each trained model on a learner can be defined as wi 6⊥
wk|D, ∃(i, k). The model parameters’ training can be achieved again by performing online,
batch, or incremental machine learning with convex optimisation algorithms such as SGD.
The difficulty of distributed model deployment is to combine the independent generated
models with a central model. Combining or selecting models has been extensively studied in
research by introducing ensemble learning techniques. Most notable are bagging, boosting,
and stacking [144]. The relation behind each of these methods is training ’weak learner’ and
combining their results in a strong learner.

In bagging or bootstrap aggregating [145], each model is trained in parallel on an individual
learner. The Central Location or parameter server then combines each model by averaging
each learner’s predictions or parameters towards the final prediction or model. For the clas-
sification task, a majority voting mechanism is used for selecting the final decision. More
formal bagging is defined as f(x) = 1

k

∑k
i=1 fi(x).

Boosting or the more commonly known AdaBoost [146, 147] algorithm differs from the
bagging method by not running in parallel on each learner. Instead, the algorithm is training
the model sequentially, nourishing the pre-trained model towards the next learner so that
boosting can be defined as the weighted sum of all models with f(x) =

∑k
i=1 αifi(x).

Stacking extends the bagging and boosting method by introducing heterogeneous learners
[148]. In boosting and bagging, the assumption is made that each learner uses the same
algorithm to train the data. In stacking, multiple algorithms are trained in parallel and feeding
a meta-learner that aims to minimise the generalisation error based on its inputs.

2.3.5 Optimal Stopping Theory

The problem of choosing and identifying the best time to make a decision or perform an
action is the research area of Optimal Stopping Theory (OST) [2]. The fundamentals are
highlighted in this section and used in detail throughout Chapter 3 and Chapter 5. The aim
of OST is to minimise an expected cost or maximise an expected revenue to find the best time
to take action or stop the process while observing a sequence of random variables. The most
famous application is the secretary problem or similar the discounted secretary problem,
which has been researched well [149, 150, 151]. The aim is to identify the best candidate
for a single open position given a number of applicants. Their qualification can rank all
applicants in order from best to worst. The order in which they are interviewed is random.
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The observance is sequential with a number of finite elements N , with N known in advance.
Sequentially defines that one candidate or element is observed at a time. Each time a new
element (candidate) is observed or in the secretary problem interviewed, the decision has to
be made immediately on accepting or rejecting the candidate. In some implementations, the
decision can be reconsidered with a discounted value added. However, the classical approach
is that accepting or rejecting the candidate is irrevocable. After the element is observed, the
decision is made by ranking the just seen element based on the previously seen ones. The
aim is then to select the candidate with the highest probability of being the best of all. It
has been shown and well known that the optimal time to select a candidate is tending to a
probability of approximately 1

e
[152]. Therefore, the approach is simple in interviewing the

first m ≈ N
e

candidates and then hiring the next applicant that exceeds the best of the first
m candidates. Multiple other extensions have improving the N

e
probability [153, 154].The

privacy aspect is implemented in FL by using the data of the ED only on the device itself
and train the global model by sharing only the updated model weights over the network. The
basis FL deployment does, however, allow possible security and privacy-related attacks. Not
only is it possible to insert through a malicious user some data to poison the trained algorithm
[155], but also to identify user data from the model updates sent over the network [156, 157].
Research on advancing the basic FL with security and privacy-enhancing techniques is an
ongoing field [158, 159, 160]. Important FL can only provide complete security and privacy
over any attacks when used with additional security, e.g. the encryption as mentioned earlier.

2.4 Machine Learning at the Edge

The continuously massive data volume generated from Edge Devices, such as smartphones,
cars, or the Internet of Things, enables data-driven decisions and prediction by using ma-
chine learning. However, to analyse and draw conclusions from this data, most applications
transfer the data to a Central Location using Cloud or Fog Computing. This approach allows
high computational power at the central server but restrains the application with a delay of
the central calculated inference from the learned algorithm. Additionally, issues of trans-
ferring massive amounts of data concerning bandwidth, privacy, and storage arise. Edge
Computing provides the ability to perform machine learning in Edge Devices close to the
data source, allowing to build low-latency and location-aware applications with keeping the
privacy of the data as highlighted in Section 2.2.6.2 [161]. The following section highlights
machine learning deployments in Edge Devices with their general constraints and advan-
tages enabling intelligence. Edge intelligence can be performed by inference or training on
devices, both are elaborated in the following section. Generally, the data from Edge Devices
and the gained intelligence through machine learning can be used to either support and im-
prove the underlying infrastructure and management or to enable applications and services
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[162] on devices. An overview of the different possibilities to use the generated data of Edge
Devices by performing machine learning is highlighted in Figure 2.103. This figure shows
the development of edge inference to edge training in contrast to the centralised procedure
of current implemented applications.

Figure 2.10: Overview of different levels for computation and model training in using edge
inference and edge learning.

2.4.1 Constraints & Challenges Leading to Efficiency

Deploying machine learning with inference or training on Edge Devices is limited through
multiple constraints. Illustrated in Section 2.2.4, Edge Devices rely primarily on batteries
as power sources. With respect to the battery lifetime, the limited energy highlights the sig-
nificant restraint of all analytics, machine learning, or computational tasks performed at the
devices. Additionally, through the device’s nature of being a small physical item, the compu-
tational capability in terms of storage, memory, and processing power is a constraint [163].
However, in the field of Internet of Things (IoT), the devices occur in different variations
causing heterogeneity in computational capabilities, memory and processing power. Con-
sidering a car or smartphone, it is clear that these devices can perform more computation,
having more memory and storage than a simple device placed inside a fridge or television.
Nevertheless, in all IoT energy and resource-efficient deployment of computational tasks are
critical as they are all function on batteries. Additionally, with the increase of the IoT, the
enormous data collection and the unreliable and bounded network become a critical chal-
lenge for deploying intelligence in Edge Devices [76]. Even with the deployment of 5G, the

3Some illustration icons used from [21]
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restriction on uploading and downloading, when transferring all raw data towards a Cloud or
central server and waiting for the inferred results, will increase latency and, therefore, delay
intelligence and decisions. Also, 5G and other wireless wide area network technologies are
costly. Integrating Edge Devices and sensors into everyday objects to generate Ubiquitous
Computing raises concerns about personal data that these devices collect and analyse. The
topic of privacy connected to the machine learning of Edge Device data and collection is one
of the hottest topics nowadays and created legalised regulations, such as General Data Pro-
tection Regulation (GDPR) [164] or California Consumer Privacy Act (CCPA) [165], that
challenge the current deployments of centralised machine learning.

Performing machine learning on data coming from Edge Devices can be used to either over-
come hardware constraints and supporting infrastructure and management limitations but
also to enable applications and services for customised and real-time predictions [162]. Key
component is efficiency when deploying learning or inference on devices. Efficiency with
respect to use the resources of the devices in a light-weight manner to reduce communi-
cation, bandwidth, storage, computation and energy. Efficiency of resources has not only
gained interest in edge environments but also on data centre level as resources tend to be
limited with the tremendous increase of continuous data [166]. Latency and communication
is the major issue from the management perspective of deploying machine learning. Over-
coming these issues has been proposed by deploying intelligent clustering mechanisms, data
forwarding strategies in devices [167, 168], or data reconstruction models [169] as possible
solutions. Widely implemented for efficient communication reduction and resolving latency
involves performing machine learning algorithms to cluster the devices. From the clustering
algorithm results, Cluster Heads (CHs) can be assigned to generate a hierarchical structure
of the network [170, 171]. These implemented and deployed structures and architecture
generated through machine learning and analytics are the baselines for deploying edge intel-
ligence towards an application and service perspective. Efficiency is implemented through
local inference and training at the device level. However, advanced analytics in Edge De-
vices performing services towards user behaviour or customisation with the aim to overcome
the constraints mentioned above can lead to latency issues when inefficient implemented al-
gorithms are used and not updated for changing environments.

2.4.2 Benefits of Edge Intelligence

Limitations and the importance of efficient machine learning and analytics at the Edge De-
vice level have been elaborated on in the previous paragraph. Efficiency is the key factor
when deploying machine learning to overcome resource limitations such as computational
power, storage, memory, and energy. Machine learning on Edge Device data enables enor-
mous advantages and possibilities. The main benefit is the ability to derive autonomous
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decision-making and knowledge creation without latency effects. Pushing analytics and ma-
chine learning towards the edge facilitates the application to perform real-time decisions
and actions. Significant is this advantage to time-sensitive critical applications and services.
The most gained application using Edge Computing with machine learning techniques are
autonomous driving services and use cases. The transmitted data exceeds the network’s
possible bandwidth and the ability to perform inference or learning on a Central Location.
Each car generates terabytes of information in a single day. Services and applications of
autonomous vehicles rely on real-time decision-making and intelligence to guarantee the ve-
hicle’s safe and correct driving behaviour [172]. Edge intelligence is an enabler to provide
these services in time-sensitive use cases as latency and bandwidth constraints are elimi-
nated. The locally performed inference and training further benefits from improving data
privacy of the users. Especially when using Edge Device data to customise and personalise
applications and services, local training and inference enable the possibility to overcome
legal restrictions to provide such a service. Highlighted in Section 2.2.4, deployment of het-
erogeneous sensors and diverse IoT application devices is generally seen as a constraint and
challenge. When empowering edge-centric machine learning, this disadvantage is changing
to an advantage. Combining the data of the different sensing devices with their given con-
textual information and their location-awareness enables tremendous information gain for
services and applications. The combined data of all heterogeneous systems connected can,
especially by using advanced machine learning algorithms, provide highly accurate and cus-
tomised prediction models. Accuracy of the deployed models in changing environments is
essential, as wrong decisions and predictions can decrease customer satisfaction or induce
serious disturbance. Most devices collect and generate continuous data of their surround-
ing environment, which not only changes over time but can also lead to concept drifts. In
Section 2.3.3.3, the definition of concept drifts has been highlighted and the importance to
continuously learn and update the machine learning model. Edge intelligence can be benefi-
cial to provide and perform these updates and identify concept drifts.

Summarised Edge Device intelligence’s benefits towards services and applications are location-
aware, privacy-sensitive, and real-time performance.

2.4.3 Edge Inference

Edge intelligence’s benefits are highlighted in the previous paragraph, and the importance
of efficiency towards the deployed algorithms and techniques has motivated the following
section. Inference of trained machine learning models in Edge Devices is one possible solu-
tion to enable real-time action and decision making. Most applications and deployed Edge
Computing paradigm are considering the usage of edge inference [173, 174]. Training the
machine learning model is done in a Central Location, e.g., the Cloud or Fog. The gener-
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ated model is then distributed towards the Edge Devices. The device performs intelligence
in real-time by applying the received model locally on the newly sensed and received data.
Only the output of the model alongside some meta-data is sent towards a Central Location.
In there, the model can be updated and retrained. The retrained model can then be again
distributed towards the Edge Devices.

Deploying machine learning models that require excessive memory on performing the infer-
ence is not feasible on Edge Devices. Not only can the memory lead to resource constraints
when deploying the algorithm locally, but storage is also one of the bottlenecks as the size
of the model can exceed the device’s capacity. Recent research investigates the ability to
deploy deep learning with neural network at Edge Devices [175, 176]. Current implemen-
tations consider pruning or compression of the model as a possible solution to overcome
the limitations mentioned earlier of memory, processing, and storage in Edge Devices. It is
possible to further calculate the energy and time to be used performing the inference locally
in comparison to the offloading the task towards other devices, server, or micro-data centre
to optimal schedule computing tasks in terms of efficiency [177, 178].

Edge inference is limited with the possible delay towards updating the algorithm to new data
due to the retraining at a Central Location. This can result in less accurate predictions and
wrong decisions of the service. Not only does this method require additional communica-
tion resulting in overhead but also in massive latency towards adapting of concept drifts.
Additionally, edge inference requires raw data transfer towards a Central Location during
the model training period. Especially when privacy is essential for the considered applica-
tion, edge inference can not provide the necessary data protection. Therefore, some services
use the pre-trained model from the Central Location to deploy locally at the device and use
online learning methods to retrain and update the model continuously.

2.4.4 Edge Training

Departing to advance the Edge Devices with further intelligence, training on Edge Devices
has become an increased research area in recent years. The deployment and training of
intelligence through deep learning has especially gained interest [179, 180, 181]. Training
can be implemented using the mechanism elaborated in Section 2.3.4 of online learning and
distributed machine learning. The implementation can be done using a central coordinator
or only peer-to-peer training [182]. However, one of the advantages and constraints of using
machine learning in Edge Device environments is their highly heterogeneous nature. This
heterogeneous nature of devices results in non-independent and identically distributed (i.i.d.)
data and occurs as devices either sense different features, are placed in environments with
diverse behaviour or different geo-locations. Most algorithms assume an i.i.d. of the data
when learning on distributed datasets, which is in environments such as the IoT not realistic.
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However, solutions working with non-i.i.d. [126, 183, 184] have already been proposed, as
mentioned in Section 2.3.3.2. The most notable work of edge training in a heterogeneous
environment called Federated Learning (FL) [185] has been recently proposed and shows
promising directions [186, 187, 157].

Federated Learning has been introduced within the context of Edge Computing, aiming to
solve edge learning under privacy sensitive, non-i.i.d., and unbalanced data generated from
massively distributed devices using the technique of machine learning highlighted in Sec-
tion 2.3.4. Federated Learning is defined as: ”a machine learning setting where multiple
entities (clients) collaborate in solving a machine learning problem, under the coordination
of a central server or service provider. Each client’s raw data is stored locally and not ex-
changed or transferred; instead, focused updates intended for immediate aggregation are
used to achieve the learning objective” [188].

Each device or client is defined as k, holding a subset Dk with a length of nk of the overall
training data D with length n. Federated Learning aims to minimise the central objective
function defined in Equation (2.1). This optimisation is made by minimising each client’s
objective function Jk over its subset of data Dk. Each client k sends its local model param-
eters to the Central Location, which performs an aggregation over the received parameters
using FedAvg [189, 190]. Each client k, gets randomly selected from the pool of connected
devices. After the selection, a download of the current central model to the device is in-
duced. The local training of the model using online SGD or similar optimisation methods is
performed over batch or streaming data. Then the updated model parameters are uploaded
to the Central Location. The centralised aggregation of individual objective functions can be
defined as:

J (w) =
k∑
i=1

ni
n
Ji(w) (2.10)

The primary aggregation of FedAvg and FedSGD has been improved in recent years to dif-
ferent techniques optimising the communication between the Central Location and Edge
Device [191] and providing other security mechanisms to ensure the privacy of the uploaded
models [158].

2.5 Chapter Summary

In this section, distributed systems’ evolution has been highlighted with the corresponding
different perspectives (application, device, network and processing). The application per-
spective shows the diversity of deployed systems clustered into seven areas and their three
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different communication types. The devices and perception perspective of distributed sys-
tems gave an overview of sensor networks and the IoT. The network layer introduced the
technologies of transporting the data and the possible routing strategies. The data process-
ing and computation layer of contemporary distributed systems have been introduced by the
techniques of Cloud Computing and Edge Computing. Having the foundation of distributed
systems of Section 2.2, fundamentals of machine learning, and data analytics have been
elaborated in Section 2.3. Starting with highlighting machine learning and definitions, the
section focused on distributed machine learning and continuous data analytics. This sec-
tion’s remainder shows machine learning in Edge Devices connecting the fundamentals of
both introduced research fields, machine learning and data analytics and modern distributed
system, particularly IoT and Edge Devices. Performing analytics in devices is limited to
constraints, such as computation, memory, storage, and energy. The critical element of ma-
chine learning in Edge Devices is the efficiency of using these limited resources. However,
Edge Computing enables possibilities, including privacy, real-time decision-making, person-
alisation, reduced network load and data transfer. The newly introduced research areas of
inference and learning on devices has shown promising methods to stimulate local learning
and overcome limitations and constraints of currently deployed centralised methods. This
thesis contributes to efficient machine learning in these highly distributed systems of IoT
and Edge Devices. The goal is to maintain the quality of the performed analytics while
efficiently using the device’s local resources.
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Chapter 3

Quality-Efficient Data Forwarding

3.1 Chapter Overview

IoT applications and Pervasive Computing become part of our daily lives, aiming to use the
ability of the generated data from battery-powered sensors and devices towards analytical
tasks. Machine learning and predictive analytics emerge to acquire knowledge, essential
for applications introduced in Section 2.2.3. The introduction and literature review sections
emphasised efficient energy consumption usage as an important aspect for sensors and sink
nodes. Most of these devices rely on batteries or are deployed in unreachable locations.
The input data on which the analytics is performed must be of good quality but not draining
the sensor’s lifetime through continuous sensing. Studies have been shown that data trans-
mission and reception drains the maximum of power and energy from a battery, while data
processing inside a sensor can be neglected [64]. Considering that most of the energy is used
to transmit the generated data to a Central Location (CL), communication reduction can be
seen as energy-efficient.

Therefore, the coming chapter introduces a quality-aware and communication-efficient data
forwarding mechanism implemented in Wireless Sensor Networks (WSNs) to reduce the en-
ergy consumption of sending data. First, in this chapter is the state-of-the-art quality and
energy-efficient data forwarding strategies highlighted, followed by presenting intelligent
decision-making methodology in sensing nodes and reconstruction ability inside sink nodes.
Reconstruction is needed as implementing a communication reduction of the transferred
data induces missing values at the collection point. These missing values are not random and
known to the sink node. The first introduced methodology highlights the current deployment
of prediction-based forwarding mechanisms. This implementation is improved by com-
bining sensors’ and sink nodes’ computational capabilities towards a quality-efficient data
forwarding strategy. Departing from the classical instantaneous decision making (IDM), a
time-optimised forwarding strategy will be imposed for quality-aware data forwarding from
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sensors to sink nodes. The thesis distinguishes from the current research by introducing
quality-aware data forwarding strategies not only on focusing on investigating the recon-
struction ability of selective forwarding but also on analytical tasks and their quality. There-
fore, this chapter’s remainder conducts a comparative assessment of state-of-the-art methods
with the newly introduced quality-efficient and time-optimised data forwarding strategies.
Overall, this chapter contributes to the first hypothesis defined in Section 1.2:

Hypothesis 1: Pushing computational intelligence of advanced decision-making in
data forwarding to the edge of the network will overcome energy and bandwidth con-
straints due to the deployment of efficient communication methodologies. Combining
this with intelligent reconstruction at a collection point leads to highly accurate ana-
lytical tasks and reconstruction of the imputed values.

3.2 State-of-the-Art on Data Forwarding Strategies

Wireless Sensor Networks (WSNs) are facing significant constraints of limited energy and
bandwidth. Their primary function is to sense and monitor the environment. This sensing
results in a constant data transfer from the sensing device towards a central location where
the raw data analysis is performed. The majority of the energy is used for the transmission of
data. Therefore, research on energy-efficient data forwarding strategies in routing protocols
has been introduced in the research community [65, 192, 193, 194]. Routing protocols design
the communication path between the source of information and the target, meaning between
the sensor and the gateway or sink node. The aim of routing protocols is to extend the sensor
network’s lifetime by reducing the transmission range or throughput towards the sink node.

Routing Protocols for WSNs are divided into six categories: location-based, data-centric,
hierarchical, mobility, multipath, and Quality of Service (QoS). Besides these six categories,
the simplest routing method instructs each sensing node to deliver the data towards the sink
node directly. This address-centric approach is the baseline for comparison for all energy-
improved routing protocols listed in the six categories. Besides these categories, consider-
ation must be made if the sensors are placed in a stationary or non-stationary environment
considering particular mobility routing protocols. In this chapter, only static and stationary
sensors are considered. The location-based methods of routing protocols use GPS signals to
generate the closest path by grouping the sensors based on their minimal distance. On the
other hand, data-centric protocols are mostly query-based, coherent-based, or negotiation-
based protocols in which the sink node sends queries to the sensors and waits for the re-
quested data. QoS protocols in WSNs aim to find the optimal path within the network to-
wards the best throughput, being fault-tolerant and having high reliability. Related to the
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QoS protocols is also the multipath protocol which splits the data from the sensors towards
the k-shortest path for transmission.

With the increase of WSNs connected via the Internet, the hierarchical network structure
became standard. Therefore, the deployment of different inter-domain and intra-domain
routing protocols or topologies become unavoidable. Intra-domain topologies consider the
overall network structure and deployment of a routing protocol throughout all hierarchy lev-
els. Inter-domain, on the contrary, structures the protocol for only one single level of the
hierarchy. The hierarchical routing protocol clusters the sensor nodes using their range of
transmission, their types of sensors, their energy levels, or their geographical location. The
most popular method, and first using a hierarchical routing, is LEACH [195]. The WSN gen-
erates Cluster Heads (CHs) that coordinate the data collection of surrounding sensor nodes
and forward the fused and aggregated data towards a higher layer of the cluster or the sink
node directly. This type of protocol does not need any global knowledge of the network, but
requires a setup phase for generating the CH. Based on LEACH, further developed protocols
are introduced, such as PEGASIS [196], HEED [197], TEEN [198], and APTEEN [199].
LEACH can be declared as proactive network routing, whereas TEEN is reactive. As al-
ready stated in Section 2.2.3, different type of applications are existing. Proactive networks
require continuous data transmission, whereas reactive networks only send data by an event
or query. APTEEN is combining LEACH and TEEN towards a hybrid protocol. However,
most routing protocols deal only with one type of transmission, either reactive or proactive.

Alongside computational power upgrading at sensor nodes and the rapid deployment of
WSNs, ideas of supplementary energy-efficient strategies appear. Three relevant aspects
are introduced, in-network processing, data aggregation, and compression. Compression
reduces the size of the transmitted data by different techniques and has been extensively
studied [200, 201]. Nevertheless compression techniques are out-of-scope for this thesis but
they can additionally applied on the proposed methods. The idea of in-network processing
and data aggregation is mostly deployed by using prediction-based data reduction method-
ologies, which have been reviewed in [202] and [203]. The prediction-based approach aims
to forecast and predict the future measured value with an implemented function in either
the sensor, the CH, or both. The application or user is pre-defining a certain threshold used
as forwarding decision making of a measurement. If the predicted value exceeds that pre-
defined threshold, a transmission of the measurement to the CH or sink node is made. Be-
sides the prediction-based data reduction, a delay-tolerant approach has been introduced in
the literature, primarily by reducing the frequency or using aggregation of the data [204].
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3.3 Definition and Architecture

The abstracted architecture is based on Figure 2.6 introduced in Section 2.2.6.2. Gener-
ally, each Edge Device (ED) monitors through Sensing and Actuating Nodes (SANs) the
environment. The SANs and EDs are forming a WSN using a tree-like topology. Most
communication-efficient routing protocols utilise the implementation of clusters, in which
one SAN is selected as a CH. Their tasks are to collect its surrounding SANs measurements
and to forward the aggregation of all data towards a higher hierarchy in the network. The
proposed architecture uses the notation of a CH as ED with further hierarchy orders below
and above. However, any level of cluster tree-like topology can apply the later proposed
architecture and methods.

In the later sections, different data forwarding strategies are introduced. At this point, an
overview of the rationale and architecture across all methods is given. Each SAN k measures
contextual data of its surrounding environment continuously each time instance t over a d-
dimensional space. A discrete-time domain of t ∈ T = {1, 2, ...} is defined with t = 1, .., T

and T ∈ T and used throughout the complete thesis. At each time t, this sensing generates
into each SAN k a contextual raw-data vector xt = [x1t, ..., xdt] ∈ Rd. The vector xt is then
sent to the ED i, receiving overall K contextual data-vectors of each SAN k at each instance
t. Each SAN k is connected to a unique ED i so that the set of SANs is defined as Ki =

{1, . . . , k, . . . , K} with k ∈ Ki.The EDs can then decide on aggregate or merely forwarding
the information to a Central Location (CL) or an in-between deployed Edge Gateway (EG).
In using prediction-based forwarding or other routing mechanisms, each SAN k is equipped
with a function f(x), generating a prediction of the next to be seen value x̂t+1. Based on the
predicted value x̂ and the real sensed value x, the SAN is tolerating a predefined error bound
of θ in which it is deciding not to send the observed values. The ED i is deployed with a
function g(u) that can reconstruct the missing value calculating x̃t+1 = g(ut−1, ...,ut−M).
Depending on the decision in SAN k, u can be defined as:

ut =

{
xt Case 1 with θ > error bound,
x̃t Case 2 with θ ≤ error bound.

(3.1)

Figure 3.1 shows the highlighted architecture for both cases over multiple SANs and the
transmission to one ED.
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Figure 3.1: Architecture of the introduced selective data forwarding strategy and reconstruc-
tion.

3.4 Prediction-Based Decision Forwarding

Highlighted in the previous section, in-network processing using predictions is one solu-
tion towards quality efficient data forwarding in edge networks such as WSN. In prediction-
based data forwarding, a function is used to impute missing or predict future measurements
of SANs. The function depends on the prediction method that is implemented and used to
compute the values. It relies mostly on other sensed values forming a regression, aggre-
gated values, or weighted historical values. Related work [202] highlights two predominant
implemented prediction-based data forwarding methods, either a Single Prediction Design
(SPD) or a Dual Prediction Design (DPD). This thesis proposes another implementation
of prediction-based data forwarding based on the advantages of SPD by using resource effi-
cient forwarding strategies and DPD by eliminating its disadvantages of communication and
training overhead. The proposed method is further noted as Quality-Efficient Prediction
Design (QEPD).

3.4.1 Single Prediction Design

The first method for prediction-based data forwarding is the SPD and relies on deploying a
prediction function in the SAN or the ED (it can be the CH as well if multiple hierarchies
exist). Only one single function is used to impute or predict values, either f(x) at the SAN
or g(x) at the ED. Suppose the function is deployed in the ED, more computational power
and resources are available. In that case, the functions are mostly deployed to answer queries
without asking the SANs for the current values, design a network topology using a grouping
of SANs with similar measurements, or analyse the quality of the received sensed measure-
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ments [205, 206]. Deploying a prediction function at the SAN and not at the ED can be used
for communication reduction in deciding when to send the measurements. This communica-
tion reduction is mostly incorporated with comparing the values sensed with neighbours, and
therefore a peer-to-peer communication is assumed [202]. SPD’s advantage is that no com-
munication and synchronisation between ED and SAN is required to deploy the prediction
function. Each SAN or ED can independently decide to deploy a prediction function or not.
However, suppose the prediction function is only deployed at the SAN. In that case, a quality
reduction in accuracy at the ED is provoked, as the ED cannot reconstruct the value. Compar-
ing to deploy a prediction function at the ED, it is only useful for query-driven applications
and can provoke missing crucial information if the prediction function is too accurate.

3.4.2 Dual Prediction Design

Resolving the limitations of SPD, the second possible prediction-based data forwarding
method is the DPD, in which the SAN and ED deploy each of them identical functions.
There are three possible learning strategies to achieve the DPD. The first strategy is to gen-
erate the model in the SAN and transmitted it to the ED. The second strategy is the model
construction at the ED and distributing it to the SANs. The last possibility is to generate
it inside the SAN and ED in parallel. If the model is set up in the SAN, this will require
further computation from the sensors during the learning period and limit the use to only low
complex algorithms. Additionally, the model needs to be shared with the ED for synchro-
nisation, which requires additional bandwidth and energy consumption for the SAN. The
deployment of the same function in SAN and ED using a parallel or ED setup procedure
is only possible throughout an initialisation or training phase. During this time, all mea-
surements are transmitted from the SANs to the ED. After the initialisation period, the dual
function implementation has identical functions in the ED and the SAN. After the training
period, DPD aims to reduce the transmission of measurements from the SANs and to be able
to reconstruct the SANs values through the known error at the ED using the same function.
Compared to the SPD, the DPD can provide a trade-off between the quality of measurements
and energy consumption that can be pre-defined at the setup using an upper error bound.

Relaying on related work of DPD and SPD, most algorithms and techniques using time
series forecast methods such as MA, AR, ARIMA, and EWMA [207, 208] (see the following
paragraph for more details on EWMA and Section 2.3.3.1 for ARIMA). The authors in [209]
compared the different methodologies in DPD and identified as most appropriate the EWMA
and the naive method for archiving the best results. The naive method is a particular case
of EWMA with α = 1 and means that the predicted value x̂t = xt−1. Despite time series
forecast methods, other machine learning methods for online learning are proposed in the
literature too [161].
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3.4.3 Quality-Efficient Prediction Design

Departing from the SPD and DPD, this thesis aims to achieve a high quality of reconstructed
measurements and analytical tasks while efficiently using as little energy and bandwidth as
possible. The following work has been partly published in [6, 7]. The idea behind DPD
techniques is used as a selective data forwarding strategy, improved with the advantages
of an SPD deployment to reduce the communication overhead and enable the capacity and
power at each level. In QEPD, intelligence and decision making is divided into SAN and ED.
Contrary to DPD, their intelligence is independent of each other. However, QEPD requires a
short initialisation period, equivalent to the DPD. During this time, an upper bound of error
tolerance is defined by the system or user by expressing a threshold θ.

3.4.3.1 Sensor Node Intelligence

The sensor node intelligence is integrated by implementing at each SAN k besides the ability
to receive and sense the environment a function f(x) to predict a data vector. This prediction
function’s main focus is on efficiency, which reduces communication and focuses on other
aspects, such as energy and storage. Therefore, only functions of low complex, light compu-
tational power and using as little storage as possible can be considered to implement inside
the SAN as a prediction model. The QEPD method can be defined in more detail, that at
each time t inside the SAN the actual data vector xt is collected, and a predicted data vector
x̂t is computed through the function fk(x). After computing the predicted data vector x̂t and
receiving the actual data vector xt, a discrepancy in the form of the local prediction error et
is calculated as:

et = d−0.5 ‖ xt − x̂t ‖ (3.2)

The assumption of the data space is that all values in xt are normalised so that x ∈ [0, 1]d.
Ensuring the same scalability of et, a normalised factor of d−0.5 has been added in Equation
(3.2) to generate et ∈ [0, 1]. The prediction function fk(x) is deployed inside each SAN k to
generate the decision to forward the data vector xt based on the calculated prediction error
et. Given the calculated local prediction error, each SAN k is deciding to send if:

Case 1: the predicted data vector x̂t differs from the actual sensed xt concerning a
decision threshold θ ∈ [0, 1], i.e., et > θ, then the SAN k sends the real xt to the ED i.

Case 2: Otherwise, i.e., et ≤ θ, the SAN k does not send xt to the ED. In this case, the
ED i is responsible for reconstructing the vector locally for further processing.
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For the proposed QEPD, the prediction function fk(x) inside each device is based on the
Exponentially Weighted Moving Average (EWMA), also known as Exponential Smoothing,
making a one-step-ahead prediction. Using EWMA as a prediction function inside the SAN
k is leading to the computational complexity of O(d), and further only requires to store the
current data vector x̂t inside each device. Using EWMA as prediction model inside SAN k

leads to the following prediction at time t for the upcoming t+ 1:

x̂t+1 = (1− α)
∞∑
τ=0

ατxt−τ = (1− α)xt + αx̂t (3.3)

The parameter α with α ∈ [0, 1] represents the relationship between the historical measured
data and the current data. The higher the value of α is, the more influence is given to the
historical values. Besides the EWMA, another classical time series forecasting model is
Auto-Regression Integrated Moving Average (ARIMA). Substituting in Equation (3.3) the
local prediction error et of Equation (3.2) leads to:

xt − et = (1− α)xt−1 + α(xt−1 − et−1),

. The change in times series is expressed by

∆xt = et − αet−1. (3.4)

By taking et to be a time series of independent N (0, σ2
eI) variables, the adopted EWMA

recursion in (3.3) is deduced from the ARIMA with only one past vector, p = 1. Performing
ARIMA with p > 1, the computational complexity inside the SAN increases to O(d2p), and
data vectors over the past p times has to be stored. Aiming for the most efficient implemen-
tation in terms of scalability, storage, and computational complexity, the QEPD method is
proceeding with EWMA as prediction function fk(x) inside the SAN k.

3.4.3.2 Edge Device Intelligence

In a DPD setup, the function deploy in SAN k and ED i is identical f(x) = g(u). In this
thesis proposed QEPD, the assumption of identical functions in SAN and ED is not made.
Further, in QEPD the capability of EDs is used for a more advanced reconstruction func-
tion improving the quality of imputed values. In contrast, the SAN function is deploying
an energy-efficient method to focus on quality-efficient communication reduction. The re-
construction function deployed at the ED should also be light in computational complexity
being energy efficient, even though it is not as limited as inside the SAN. In the abstracted
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application system, a network of SANs that are sending each time t its raw-data vector xt

towards the ED is considered. Therefore the frequency of the send data is known by the ED.
At time instance t, the ED is either receiving a data vector xt or nothing from an individual
SAN k. If the ED receives the actual data vector, it saves xt and computes its analytics with
the received measurements. If the SAN k decided not to send the value, the ED is equipped
with a reconstruction function g(u), with ut representing the ED data vector. Specifically,
the data vector ut either contains the received data vector xt of SAN k or function’s g(u)

reconstructed vector x̃t, highlighted in Equation (3.1).

The QEPD deployment is leading to different prediction errors in SAN and ED. The fol-
lowing should present the relationship between the local prediction error et (see Equation
(3.2)) at the SAN k and the ED’s performed reconstruction function g(u). The implemented
functions causing a reconstruction error at the ED with respect to the elaborated cases of
SANs decision on sending or not sending, see Equation (3.1). This decision is leading to the
reconstruction error r value inside the ED of :

rt =

{
0 Case 1,
‖xt − x̃t‖ Case 2.

(3.5)

Aiming to analyse the local conditional expectation of the prediction error E[et|et ≤ θ]

conditioned on event (Case 2): {et ≤ θ} and its relation with the expected reconstruction
difference E[rt]. By identifying the association of the reconstruction policies and the local
prediction in the SAN k, it is possible to adapt the different policies based on the knowledge
for quality improvements towards the analytical task performed at the ED.

First, concentrate on the SAN k using the prediction function fk(x) and the corresponding
ED with the reconstruction function g(u) = x̃. Based on this derived data vector, it is
possible to monitor the evolution of the errors generated at the SAN k with the prediction
x̂t and the centralised prediction x̃t. Constructing a time series representing the difference
between these predicted values based on the decision the SAN k made, given a dependency
on θ, the threshold to decide on sending the actual value xt or not to the ED, the following
Equation can be derived:

ξt =

{
0, et > θ

‖x̂t − x̃t‖, et ≤ θ
(3.6)

As shown from Equation (3.6), two cases of this time series can be identified, both relying on
θ and the condition if et ≤ θ or not. A detailed explanation of both cases and their relation
to the errors at the SAN and ED will be shown in the following paragraph.

Case A: x̂t = x̃t. In this case, the predicted data vector at SAN k is the same as the ED’s
reconstructed vector. This occurs when SAN and ED are adopting the same algorithms for
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prediction and reconstruction. The DPD is performing this implementation, as explained in
Section 3.4.2 with f(x) = g(u). If the DPD is implemented, then the ED’s expected recon-
struction difference E[r] is bounded by the expected prediction error E[e] at the SANs, i.e.,
E[r] ≤ E[e]. The proof of the expected reconstruction difference E[r] of the reconstruction
difference in Equation (3.5) is bounded to E[e] of Equation (3.2) can be defined as:

E[r] = E[‖x− x̃‖|e ≤ θ]P (e ≤ θ)

= E[‖x− x̂‖|e ≤ θ]P (e ≤ θ)

= E[e|e ≤ θ]P (e ≤ θ)

=

∫ θ

0

epi(e)de ≤ E[e] (3.7)

In Equation (3.7) is P (e ≤ θ) the probability of Case 2, where no data vector is delivered
from SAN k to the ED, w.r.t., θ. Further is pi(e) defined as the probability distribution of
the local prediction error at SAN k. As proven above, the predicted vector at SAN k is the
same as the reconstruction vector at ED for Case A. Therefore, the expected reconstruction
difference E[r] is bounded by the expected prediction error E[e]. This demonstrates that
the evolution of the reconstructed data vectors at the ED is known to the SAN k. If the
SAN k produces those vectors from its local predictor fk(x), it knows the upper bound
of the expected reconstruction error that the ED will experience. This enables the SAN
to adjust the decision threshold θ towards satisfy the accuracy needs of the launched IoT
analytics application. The expected prediction error E[e] can be adjusted at the SAN k by
incrementally approximating the error mean ẽt as: ẽt = ẽt−1 + 1

t
(et− ẽt−1) for a large t > 0.

Case B: x̂t = x̃t + ρt, where ρt is the vector discrepancy of the predicted vector and the
reconstructed vector, given that et ≤ θ at SAN k, with E[‖ρ‖] < ∞. In this case, the
expected reconstruction difference E[r] at the ED is bounded by the expected prediction
error E[e] at SAN and the expectation of ξ (see Equation (3.6)), i.e., E[r] ≤ E[e] + E[ξ].
This bound of the expected reconstruction difference E[r] in Equation (3.5) for Case B can
be proven as follow:

E[r] = E[‖x− x̃‖|e ≤ θ]P (e ≤ θ) = E[‖(x− x̂) + (x̂− x̃)‖|e ≤ θ]P (e ≤ θ)

≤ E[‖x− x̂‖|e ≤ θ]P (e ≤ θ) + E[‖ρ‖
∣∣e ≤ θ]P (e ≤ θ)

=

∫ θ

0

epi(e)de+ E[‖ρ‖
∣∣e ≤ θ]P (e ≤ θ)

≤ E[e] + E[‖ρ‖
∣∣e ≤ θ]P (e ≤ θ). (3.8)

Inferred from this, the expected reconstruction difference is bounded at least by the expected
prediction error, known at SAN k, and the conditional expectation discrepancy E[‖ρ‖

∣∣e ≤
θ]P (e ≤ θ) derived by the intrinsic difference of the reconstructed and predicted vectors.
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This conditional expectation refers to the expected value E[ξ] of the time series ξt defined in
Equation (3.6) to this:

E[ξ] = E[‖x̂− x̃‖|e ≤ θ]P (e ≤ θ) = E[‖ρ‖
∣∣e ≤ θ]P (e ≤ θ) (3.9)

The times series evolution ξt can be monitored in a training phase where the ED sends the
reconstructed vectors x̃t to the SAN k. After this training phase, the SAN k is aware of the
expected discrepancy by approximating the time series’s mean ξ̃t = ξ̃t−1 + 1

t
(ξt − ξ̃t−1).

Based on this learned evolution of the time series ξ, the SAN k knows the upper bound of
the expected reconstruction error that the ED will experience and can adjust the application-
specific decision threshold θ. Moreover, during this training phase, the SAN k can send the
pairs (xt, x̂t) to the ED to locally approximate both the expected prediction error and the
expected discrepancy. In this context, the ED can adjust the current reconstruction policy
(Policy 1, 2, 3, 4, or 5) by selecting the policy that corresponds to the minimum E[r].

The proposed methodology of QEPD introduces five possible reconstruction functions g(u)

defined as policies, which can recreate the ED’s missing values. The Algorithm 1 highlights
the different policies for QEPD towards reconstructing the values that the SANs decided not
to send based on their predictive error tolerance.

Policy 1: The first policy is to replace the missing data vector with the previously received
values of a specific SAN k as the current data vector, i.e. ut = ut−1. This leads to the
possibility that the last seen actual data vector is duplicated multiple times and used for
analytics over a long period.

Policy 2: The second policy uses the average value of previously received values over a
time horizon M to generate the missing data vector ut, leading to a reconstruction of ut =
1
M

∑t−1
i=t−M ui. Using the average data vector is requiring a computational complexity of

O(Md).

Policy 3: The third reconstruction function is of light computational complexity requiring
only O(d). It is an efficient variation of reconstructing time series, as proof has been given
in the previous section (Section 3.4.3.1); Exponential Smoothing is used to replace xt with
the calculated value that is considering the historical data and most recent measurement in
weighting. This influencing of past and current is leading to the calculation of the smoothed
value st with st = αxt + (1 − α)st−1. If the data vector xt has not been sent to the ED, the
function g(ut) is using Exponential Smoothing so that x̃t = st−1.

Policy 4: Departing from a function with low complexity and computational power, such
as EWMA, towards a more advanced algorithm to reconstruct the missing data vector. The
fourth policy is using adaptive filtering with the Least-mean-squared (LMS) method based
on the work of [210]. LMS is used as it requires the least computational power of all other
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adaptive filter methods and generates good prediction values. LMS requires storing the last
M values and a vector of weights w for the last M values. These weights are updated based
on the calculated error each time t. Therefore its computational complexity is O(2M + 1)

for multiplication, O(2M) for addition, and O(M) for memory. The predicted value x̃t =∑M
i=1 wixi. For more details on adaptive filter implementation, see [211, 212].

Policy 5: ARIMA is of high complexity depending on p; however, the deployment inside
the ED is more feasible than inside the SAN. Therefore, the fifth policy is reconstructing the
missing values by deploying an ARIMA function inside the ED.

Algorithm 1 Overview algorithm for reconstruction policies.
Data: Collected data in ED from each SAN k
Result: Reconstruction of data vector at CL for each connected ED i

1: for SAN k do
2: if et > θt then
3: SAN k sends xt to ED
4: ut = xt
5: else
6: Reconstruction using Policy 1
7: ut = ut−1

8: Reconstruction using Policy 2
9: ut = 1

M

∑t−1
k=t−M uk

10: Reconstruction using Policy 3
11: st−1 = αxt−1 + (1− α)st−2

12: ut = s′t−1

13: Reconstruction using Policy 4
14: ut = LMS(xt−1) =

∑M
i=1 wixi

15: Reconstruction using Policy 5
16: ut = ARIMA(xt−1)
17: end if
18: end for

3.5 Time-Optimised Decision Forwarding

In the previous section, the prediction-based data forwarding strategies imply an instanta-
neous decision making (IDM) approach at the SAN. These methods implemented through
DPD and QEPD only considers the current local prediction error to decide on forwarding the
data vector xt or not. In this section, time-optimised decision making is presented that in-
corporates the past local prediction errors into the forwarding decision. The presented work
in this section has been published in [5]. Using the IDM even with advanced intelligence
at the SAN causes major drawbacks at the ED. The following section will highlight and
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define these drawbacks by proposing an optimisation at the SAN decision making using a
time-optimised quality-efficient forwarding intelligence.

3.5.1 Limitations of Prediction-Based Forwarding

Using IDM inside the SAN results in two possible drawbacks. The first drawback occurs
if the prediction function implemented at the SAN is generating very accurate predictions.
This results in low local prediction errors and a continuously non-sending of the data vector
xt towards the ED. Even though this is drastically reducing the communication, the ED faces
the issue of not reconstructing the values accurately. Moreover, the ED is unable to follow
the data stream and distribution of the measurements. The second drawback occurs if only
outliers and novel data are sent to the ED. This appears if the SAN is only sending values
that excessively exceed the threshold θ. These outliers and novel data are then interpolated
into the reconstruction function g(u) at the ED. On the other hand, the ED models the data
with only or many outliers, which results in low accuracy of the reconstructed and imputed
values and therefore minimises the quality of analytical tasks.

Figure 3.2 highlights these two drawbacks of IDM implementations, e.g. the presented DPD
and QEPD, showing the actual sensed data at the SAN and the predicted and reconstructed
data from the ED. This figure shows that IDM can have significant drawbacks that result into
low qualitative analytical tasks and tremendous information loss at the ED.

Figure 3.2: Examples of drawbacks using IDM at the ED.

3.5.2 Optimal Stopping Time Forwarding Strategy

Under consideration of the defined drawbacks of instantaneous decision making (IDM) with
the introduced methodologies of Dual Prediction Design (DPD) and Quality-Efficient Pre-
diction Design (QEPD) as presented in Section 3.4, the hereinafter section is solving the
drawbacks mentioned above. The coming paragraphs introduce the strategy of optimal time
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forwarding. This approach uses Optimal Stopping Theory (OST) [2] to identify the opti-
mal time t∗ at the SAN k to forward the vector xt towards the ED. The fundamentals of
OST and its assumptions have been highlighted and introduced with the secretary problem
in Section 2.3.5. This theory of problem is used as basis for this chapter. In the proposed
optimal-time forwarding strategy, the past decisions of forwarding are considered for the
upcoming decision. The decisions are relying on a prediction-based data forwarding mech-
anism similar to the IDM methodologies. A strategy is developed that generates a trade-off
between communication to the ED and quality of the analytical tasks by maximising the
delay tolerance.

As proven in Equation (3.8), the SAN prediction error’s conditional expectation is an upper
bound of the expected reconstruction error at the ED. Based on this, it is possible to define
the stochastic indicator Zt whose value depends on et = ‖xt − x̂t‖:

Zt =

{
λθ if et > θ,

et if et ≤ θ.
(3.10)

In the DPD and QEPD methodology, the indicator Zt is developed at each time and if et > θ,
the measurement at time t is directly sent without any consideration of Zt−1. Incorporating
the history of Zt values the cumulative sum of the generated Zt, with τ < t, can be defined
as

St =
t∑

τ=0

Zτ . (3.11)

The quantity of St provides information to the SAN to decide if it is best to delay further or
send. This can be summarised in a reward function Yt with β ∈ (0, 1) indicating the delay
tolerance level and discount factor:

Yt = βtSt = βt
t∑

τ=0

Zτ , (3.12)

As the events of St and consequently Zt are random, the SAN tries to find the optimal time
t∗ to forward the measurements to the ED by maximising the expectation of Yt,E[Yt] with a
fixed β and θ. This is formally defined as finding the supremum of the expectation of Yt:

sup
t≥0

E[Yt]. (3.13)

Proofing that the optimal time t∗ exists at SAN can be shown using the fundamentals of
OST. Two conditions need to be satisfied: (C1) lim supt Yt ≤ Y∞ = 0 is surely true and
(C2) E[supt Yt] < ∞. C1 implies that with the elapse of time (t → ∞), the reward should
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go to zero, i.e., Y∞ = 0. Since no delivery of a data vector over an indefinite horizon is
useless due to extremely high reconstruction error at ED, Y∞ = 0 represents the reward of
an endless non-delivery phase. The supremum limit of Yt is notated by lim supt Yt, i.e., the
limit of supt Yt as t→∞ or limt→∞(sup{Yj : j ≥ t}). As Zt is non-negative and using the
strong law of numbers (1

t

∑t
j=1 Zj)→ E[Z] it is possible to derive:

Yt = tβt(St/t) = tβt(1/t)
t∑

j=1

Zj ∼ tβtE[Z]
a.s.→ 0, (3.14)

This results to limt→∞ supt Yt = 0. As Y∞ = 0 is by definition true, it is possible to declare
C1 as satisfied. C2 implies that the expected reward under any policy is finite. Therefore, C2
can be shown as:

sup
t
Yt = sup

t
βt

t∑
j=1

Zj ≤ sup
t

t∑
j=1

βjZj ≤
∞∑
j=1

βjZj. (3.15)

This results into satisfying C2 with,

E[sup
t
Yt] ≤

∞∑
j=1

βjE[Z] = E[Z]
β

1− β
<∞. (3.16)

As both conditions are satisfied and proven, it can be shown that the optimal time t∗ for
forwarding the measurements in Equation (3.13) exists.

Proofing of the existence of the optimal time t∗ desires to find that optimal time inside the
SAN which enables it to decide on forwarding the measurement by maximising the trade-off
between communication and accuracy.

Since Yt is non-negative, the Equation (3.13) is monotone [213] so that the optimal time t∗

is obtained by the one-stage look-ahead optimal rule (1-sla):

t∗ = inf{t ≥ 1|Yt ≥ E[Yt+1]}. (3.17)

The adoption of 1-sla is optimal since supt Yt has a finite expectation (equal to E[Z] β
1−β )

and lim supt Yt = 0, as proved in Equation (3.14). Consequently, t∗ is estimated through the
principle of optimality. Presume St = s when a SAN decides that it is optimal to forward a
vector. Then, the current reward of βts is at least as large as any expected E[( β

1−β )t+τ (s +

Sτ )], which means that: s(1 − E[( β
1−β )τ ]) ≥ E[( β

1−β )τSτ ] for all times τ . This must hold
true for all s′ ≥ s, so that the optimal time t∗ for some s0 must be of the form t∗ = inf{t ≥
1|St ≥ s0}. Especially when the SAN forwards at the first time t for which St ≥ s0, then the
tolerance for forwarding s0 must be the same as the tolerance for continuing using the 1-sla,
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therefore the sum of tolerances is positive. That is, s0 must satisfy the equation

s0 = E[(
β

1− β
)τ (s0 + Sτ )], (3.18)

with τ = inf{t ≥ 1|Sτ > 0}. Since Y is non-negative, it is possible to obtain τ ≡ 1 and
Sτ ≡ Y [213] and then replacing with s0 = β

1−βE[Y ]. This will finally result in the definition
of the optimal time t∗ to forward the measurement to the ED with:

t∗ = inf{t ≥ 1|
t∑

k=1

Zk ≥
β

1− β
E[Z]}. (3.19)

Given the Equation (3.19), it is possible to observe the events {et ≶ θ}, which evaluates
Zt and St at the SAN each time t. Whenever Equation (3.19) holds true, the SAN forwards
xt to the ED and resets the sum to zero, starting a new optimal time forwarding period.
However, to prompt Equation (3.19) it requires the knowledge of E[Z] at the SAN, which is
associated with the conditional expectation of the prediction error E[e|e ≤ θ] as discussed in
Section 3.4.3. E[e|e ≤ θ] is known to the SAN as proven in Equation (3.8). Estimating with
an incremental mechanism E[Z] based on the SAN’s expected prediction error, it is possible
to obtain that

E[Z] =E[Z|e > θ]P (e > θ) + E[Z|e ≤ θ]P (e ≤ θ) (3.20)

= λθ −
∫ θ

0

(λθ − e)p(e)de = λθ − I(θ),

where I(θ) =
∫ θ

0
(λθ − e)p(e)de and p(e) is the Probability Density Function (PDF) of the

prediction error in the SAN. Note, I(θ) ≤ λθ because
∫ θ

0
ep(e)de ≤

∫ θ
0
λθp(e)de ≤ λθ. The

criterion (3.19) is based on the estimation of I(θ), which involves the estimation of p(e). The
approximation of p(e) at time t, notated by p̂(t)(e), is based on incremental Kernel Density
Estimation (KDE) from the sequence e1, . . . , et:

p̂(t)(e) =
1

t

t∑
j=1

Kh(e− ej), (3.21)

whereKh(u) is a kernel function, unimodal, symmetric, non-negative that centers at zero and
integrates to unity while the window h controls the degree of smoothing of the estimation.
The PDF of e is then estimated incrementally as:

p̂(t)(e) =
t− 1

t
p̂(t−1)(e) +

1

t
Kh(e− et) (3.22)

with p̂(1)(e) = Kh(e− e1). The integral I(θ) can be then incrementally estimated based on
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p̂(t−1)(e) and et at t > 1 based on the recursion:

I(t)(θ) =
t− 1

t
I(t−1)(θ) +

1

t

∫ θ

0

(θ − u)Kh(u− et)du (3.23)

When the SAN obtains et, only the evaluation of q(t)(e) = 1
t

∫ θ
0

(θ − u)Kh(u − e)du is
needed to check the Equation (3.19) with an initial I(1)(θ) = q(1)(e1) at time t = 1. There
are specific kernelsKh that can be adopted here, e.g., epanechnikov and gaussian kernel. The
gaussian kernel is mostly used due to its convenient mathematical properties and, especially
when dealing with PDF estimation. Therefore, this thesis adopts the gaussian Kh(u) =

1√
2πh

e−
1
2

(u
h

)2 where the optimal value of h is h∗ = 1.06σ̂T−
1
5 [214], where σ̂ is the standard

deviation of e, and T is the number of training error values. Based on Kh∗ , SAN easily
calculates q(t)(et) as follow:

q(t)(et) =
1√
2πt

[c(et − θ)

(erf(

√
2

2h∗
(et − θ))−erf(

√
2

2h∗
et))

h∗(exp−
1
2

(
et−θ
h∗ )2+exp−

1
2

(
et
h∗ )2)],

(3.24)

with c = 1.25331 and erf(u) is the error function. The SAN can then evaluate Equation
(3.19) for time-optimised forwarding in O(1) through I(θ) in (3.23). Please note, using a
training phase during deployment, it is possible to compute the optimal time t∗ given the
above introduced formula.

3.5.3 Time-Optimised Forwarding Deployment

The deployment of the introduced time-optimised data forwarding strategy is based on two
variants, which are depending on the value of λ in Equation (3.10). The following paragraph
introduces the Time-Optimised Forwarding Strategy (TOFS) based on λ = 1 and the Hybrid-
Time-Optimised Forwarding Strategy (HTOFS) with λ = 0.

With applying λ = 1, adoption of the Time-Optimised Forwarding Strategy (TOFS) is de-
ployed. This variant uses θ as the upper bound value if the tolerance level exceeds et. In
TOFS, the cumulative sum St as in Equation (3.11) continuously increases, even if the pre-
diction function fk in SAN generates an accurate forecast w.r.t. θ or not. This strict de-
ployment takes into consideration even the relatively small prediction errors for deciding
on data forwarding. Figure 3.3 (b) shows the TOFS decision tree. Comparing the previous
prediction-based deployments of DPD and QEPD representing instantaneous decision mak-
ing (IDM) as shown in Figure 3.3 (a), TOFS is purely based on St, and a forwarding decision
is triggered w.r.t. Equation (3.19).
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When using λ = 0, the Hybrid-Time-Optimised Forwarding Strategy (HTOFS) version is
adopted. The deployment of HTOFS imposes a penalty towards St only when the prediction
function fk(x) in SAN k forecasts the expected measurement with et < θ. If the predic-
tion error exceeds θ, HTOFS immediately sends the measurement to the ED. In this case,
St does not always monotonically increase. HTOFS combines both the TOFS in the case
where {et < θ}, and the IDM in the case where the current prediction error exceeds θ. Using
the TOFS by accumulating only the tolerances of St it is possible to address the first lim-
itation highlighted in Section 3.5.1 (dealing with long absences of sending). Incorporating
the IDM decision making into HTOFS, it is possible to capture immediately any significant
event/outlier/novelty values resulting in resolving the other limitation introduced in the pre-
vious section. Figure 3.3 (c) shows the HTOFS decision tree represented by fusing decisions
of TOFS and IDM.

Not Send
et <

θ

Send
et ≥ θ

(a) IDM

Not Send(3.19)=false

Send
(3.19)=true

(b) TOFS

Send
(3.19)=true

Not Send
(3.19)=false

et <
θ

Sendet ≥ θ

(c) Hybrid TOFS

Figure 3.3: The decision trees for IDM and variants TOFS and HTOFS. TOFS is triggered
based on (3.19); HTOFS combines both decision trees of IDM and TOFS.

3.6 Performance Evaluation

3.6.1 Experimental Setup

Two real datasets (DSs) are used for evaluation to assess the performance of the introduced
prediction-based and time-optimised data forwarding methodologies. The first dataset (DS1)
has been made available through the Intel Berkeley Research Lab [215]. The DS1 contains a
collection of k = 54 SANs measuring a d = 4-dimensional space of temperature, humidity,
light, and voltage. The data has been collected every 31 seconds over 36 days, resulting
in a dataset size of N = 2, 300, 000. However, some sensors show a high degree of miss-
ing values, so these sensors have been discarded during the experiments, leaving the DS1
with k = 21 SANs. Additionally, as the voltage dimension is relatively constant, only
a 2-dimensional context vector x is considered throughout the experimentation containing
temperature and humidity. The second dataset (DS2) contains 415 weather stations around
the United Kingdom (UK) measuring the surrounding environment’s contextual data. This
data has been collected over the time horizon of December 2017 till March 2018 using the
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API of Wunderground [216]. Each weather station represents a SAN (k = 415), which mea-
sures a 9-dimensional vector x containing temperature, dew point, humidity, wind-speed,
wind-gust, wind direction, pressure, wind chill, and precipitation. For comparison, only a
2-dimensional data vector containing temperature and humidity are considered throughout
the experiments. The data collected frequency is by every 5 minutes over the time horizon of
87 days, resulting in a dataset size of N = 9, 044, 683 with assembling roughly 250 values
measured per SAN per day.

Independent on the dataset, each SAN is equipped with a function fk(x) to generate the
prediction-based data decision forwarding or time-optimised forwarding. This function fk(x)

is further deployed in the ED i, noted as g(u), as a dual prediction deployment is consid-
ered. For simplicity, during the experiments, only one ED is set as a central collection point.
However, this can be further expanded and is flexible and independent of the results. Guar-
anteeing a consistent behaviour of the functions fk(x) at the SAN and g(u) at the ED, an
initialisation or training period is required. DS1 uses an initialisation period of 8,000 mea-
surements (t = [0, 8000]) and a testing period of over 36,000 (t = [8000, 44000]). In DS2, the
time instance for training is set to t = [0, 3000] and the testing period to t = [3000, 38000].
After the initialisation period, the methodologies explained in Section 3.6.3 will be carried
out inside the SAN and ED.

The experiments using normalised data and is implemented so that each SAN k normalises
and scales its context vectors, i.e., each parameter x ∈ R is mapped to x−µ

σ
with mean value

µ and variance σ and scaled in [0,1], thus vector x ∈ [0, 1]d.

3.6.2 Performance Metrics

The performance of the introduced methodologies will be evaluated with different metrics
to provide an extensive comparison. These metrics can be divided into three distinct groups:
sensitivity, accuracy, and communication metrics.

The quality or similarity of two given time series, one being the actual data and the other
a reconstructed input, can be analysed through the sensitivity. The metrics used to measure
the sensitivity in this section are (1) Kullback-Leibler (KL) divergence, (2) Coefficient of
Variation (CV), (3) Euclidean Distance, and (4) Dynamic Time Warping (DTW). These four
sensitivity metrics compare the actual data x measured in the SAN k with the reconstructed
data x̃ at the ED i for each of the introduced methodologies of DPD, QEPD, TOFS, and
HTOFS summarised in Section 3.6.3.

An advanced metric for the sensitivity analysis is the Coefficient of Variation (CV), also
known as relative standard deviation. CV is a standardised measure of the dispersion of the
probability distribution p(xt) of the time series xt. It is expressed as the ratio of the standard
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deviation σx to the absolute mean value |µx|, i.e.,

CV (x) =
σx
|µx|

. (3.25)

In this thesis, CV (x) is adopted for the sensitivity analysis because the standard deviation
σx of the time series xt must be understood in the context of the mean of the time series
compared with the CV (x̃) of the reconstructed time series at the ED, i.e., σx̃

|µx̃| . This thesis
uses CV for comparing both the mean and the variance of the reconstructed time series in
ED i with the actual time series in SAN k data. The CV’s value is independent of the unit,
i.e., it is a dimensionless number. The rationale behind investigating the sensitivity of the
introduced mechanisms w.r.t. the CV is that many natural processes indeed show a corre-
lation between the average value and the variation around it. By observing the coefficients
of variation CV (x̃) and CV (x) of the reconstructed and actual time series, respectively, the
discrepancy of the reconstructed time series at ED i w.r.t. the true time series at SAN k due
to the adoption of specific mechanisms and decision threshold θ can be assessed. Ideally,
the reconstructed mean and variance of the times series in ED i follows the actual mean and
variance of the exact time series in SAN k.

Another baseline sensitivity metric is the Kullback-Leibler (KL) divergence. KL divergence
from p(x) to p(x̃) denotes the information loss when attempting to reconstruct time series
x̃ for the actual time series x, using p(x̃) and p(x) as the probability distribution functions,
respectively. KL is defined as:

KL(p(x̃)‖p(x)) =

∫ 1

0

p(x̃) log
p(x̃)

p(x)
dx. (3.26)

In this thesis, KL indicates the amount of information lost when ED i approximates the actual
time series at SAN k based on the proposed methodologies. Ideally, p(x̃) should be as close
to the genuine p(x) given certain reconstruction functions.

Further to the metrics mentioned above, analysing the real data’s sensitivity towards the
reconstructed data can be done by calculating the distance between them. This distance
calculation can be done by the simplest form using Euclidean distance or L2-norm. Euclidean
distance (L2-norm) calculates the distance between two time series x = (x1, x2, ..., xt)

T and
x̃ = (x̃1, x̃2, ..., x̃t)

T by the length of the line of each of any two points in a plane. Both
given time series have to be of the same length t. The distance dist between each of the
points inside the time series is then defined as:

L2-norm = dist(x, x̃) =
√

(x2
1 − x̃2

1) + ...+ (x2
t − x̃2

t ) (3.27)

The Euclidean distance requires both time series lengths to be equal and compares only the
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points at one time instance with each other. As many time series occur to have the same dis-
tribution and being highly similar but, e.g., shifted by a time instance, a more dynamic metric
allowing the flexibility has been introduced as similarity measurement of time series, named
Dynamic Time Warping (DTW) [217, 218]. DTW calculates the similarity of the original
data stream x = (x1, x2, ..., xg, ..., xn)T and the reconstructed x̃ = (x̃1, x̃2, ..., xh, ..., x̃m)T

based on finding the optimal wrapping path P by generating a distance matrix using a dis-
tance function, e.g. dist = |xi − x̃j|, for each data-point. The optimal path P with P =

p1, p2, ..., pr, ..., pR containing for element r an optimal point alignment with pr = (g, h)r.
The optimal path P can be found by minimising under certain criteria (more details in Sec-
tion 4.5.2) the cumulative distance for each path leading to:

dtw(x, x̃) = min
p

(
R∑
r=1

dist(pr)) (3.28)

Besides the knowledge about quality and similarity using sensitivity metrics, the perfor-
mance in terms of accuracy using the reconstructed data stream’s errors is of importance.
The metrics used to assess the performance in terms of accuracy are: (1) Root-Mean-Squared-
Error (RMSE), (2) Mean absolute error (MAE), and (3) Symmetric mean absolute percentage
error (SMAPE).

The RMSE is showing the average deviation of the reconstructed time series x̃ from the real
values of time series x over a time horizon t,

RMSE =

√√√√ 1

T

T∑
i=1

(xi − x̃i) (3.29)

Whereas the RMSE is giving higher penalty towards larger errors, the MAE does not. There-
fore, in this experiment both metrics are considered for evaluation. The MAE is defined as:

MAE =
1

T

T∑
i=1

|(xi − x̃i)| (3.30)

SMAPE is used as accuracy metric through its unbiased properties [219] and the ability to
represent the difference in a percentage value [0, 100] defined with the equation:

SMAPE =
100

T

T∑
t=1

‖x̃t − xt‖
‖xt‖+‖x̃t‖

(3.31)

The last group of metrics is analysing the communication. The communication is measured
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as the number of times the transmission of data occurs from g SAN to the ED.

c(T ) =
T∑
t=1

g∑
k=1

Ik,t (3.32)

Equation (3.32) shows the metric for communication with Ik,t = 1 if SAN k sends its sensed
value to the ED; otherwise Ik,t = 0. Evidently, the overall communication of g SANs over
T sensed values, in the baseline method is T · g, since Ik,t = 1,∀k, t.The percentage of
communication is then c(T )

Tg
.

3.6.3 Comparative Assessment

The assessment of the data forwarding strategies can be divided into predictive-based data
forwarding and time-optimised. Starting with the prediction-based strategies introduced in
Section 3.7.1. Related work of dual prediction-based (DPD) data forwarding has been in-
troduced with the proposed extension of quality-efficient strategies using different functions
inside the SAN and ED. Based on the introduced methodologies, the experiments are struc-
tured in comparing different DPD methods with the proposed QEPD. Overall the following
methods are evaluated for the decision on forwarding based on the prediction x̂t and the
reconstructed value at the ED for ut using the following functions:

1. The baseline of all experiments is the NAIVE method. This method does not require
much storage or computational power as just the last measured value xt−1 is used as a
replacement value inside the ED or value for deciding on forwarding inside the SAN.

2. The MEAN function is also of low complexity and computation and uses as x̂t or u
the mean over all values inside a Sliding Window (SLW) of size M .

3. The next method of predicting future measurements has been extensively studied us-
ing the ARIMA model [220]. Already stated in Section 3.4.3, ARIMA requires a
computational complexity of O(d2p).

4. The EWMA method is representing a special form of ARIMA and uses the theory of
simple exponential smoothing (st = αxt + (1− α)st−1). Resulting in the complexity
of O(d).

5. A more adaptive and continuous relearning method is by using LMS [210]. Result-
ing in the computational complexity of O(2N + 1) for multiplication and O(2N) for
addition (see for more details Policy 5 of Section 3.4.3).
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Given the list of methods, it is possible to construct a matrix of combinations based on the
methodologies in Section 3.4.2 and 3.4.3. Table 3.1 gives an overview of the combinations
tested in the followed assessment section over different datasets. As the QEPD methods
aiming to use the least possible computational complexity function inside the SAN, only
NAIVE and EWMA are used inside the SAN, whereas the ED deploys all possible five
introduced policies and functions.

ED
NAIVE ARIMA EWMA MEAN LMS

NAIVE DPD-N QEPD-NA QEPD-NE QEPD-NM QEPD-NL
ARIMA - DPD-A - - -
EWMA QEPD-EN QEPD-EA DPD-E QEPD-EM QEPD-EL
MEAN - - - DPD-M -

SAN

LMS - - - - DPD-L

Table 3.1: Overview of comparative assessment models for prediction-based data forward-
ing.

Based on the prediction-based data forwarding and the different introduced methods, the
Time-Optimised Forwarding Strategy (TOFS) decides independently inside the SAN on the
defined error bound θ when to forward the measurement. The methods using the prediction
of x̂ inside the SAN are based on the introduced functions above for DPD and the proposed
QEPD. They form the baseline to compare against different methods of time-optimised de-
cision forwarding. This results in the combination for Time-Optimised Forwarding Strategy
(TOFS) shown in Table 3.2. Similar combining the five policy and functions towards the
Hybrid-Time-Optimised Forwarding Strategy (HTOFS) results into the combinations high-
lighted in Table 3.3.

ED
NAIVE ARIMA EWMA MEAN LMS

NAIVE TOFS-N TOFS-NA TOFS-NE TOFS-NM TOFS-NL
ARIMA - TOFS-A - - -
EWMA TOFS-EN TOFS-EA TOFS-E TOFS-EM TOFS-EL
MEAN - - - TOFS-M -

SAN

LMS - - - - TOFS-L

Table 3.2: Overview of comparative assessment models for optimal-time data forwarding
strategies.

3.6.4 Parameter Configuration

The experiments performed in this chapter require different parameter settings for the intro-
duced prediction-based forwarding strategy (DPD and QEPD) and the time-optimised for-
warding with TOFS and HTOFS. In Table 3.4 an overview shows the setting of these param-
eters for DS1. Most influencing parameters are the values of θ, highlighting the upper error
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ED
NAIVE ARIMA EWMA MEAN LMS

NAIVE HTOFS-N HTOFS-NA HTOFS-NE HTOFS-NM HTOFS-NL
ARIMA - HTOFS-A - - -
EWMA HTOFS-EN HTOFS-EA HTOFS-E HTOFS-EM HTOFS-EL
MEAN - - - HTOFS-M -

SAN

LMS - - - - HTOFS-L

Table 3.3: Overview of comparative assessment models for hybrid optimal-time data for-
warding strategies.

bound for forwarding the measurements, set to be θ = {0.001, 0.003, 0.008, 0.01, 0.02, 0.03}.
Deploying the time-optimised forwarding strategies inside the SANs, the delay tolerance
level β has to be set to β = {0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The functions im-
plemented for f(x) and g(u) require the setting of parameters for the EWMA policy using
the weighting factor α = 0.7 and the ARIMA to be (1, 1, 4). The Sliding Window (SLW)
W size the aggregation analytics is performed on is set to M = 300 and for the precitive
analytics task is a learning rate η for SGD used with η = 0.0001.

θ β α ARIMA (p,q,g) SLWW SGD η

Parameters
[0.001, 0.003,
0.008, 0.01,
0.02, 0.03]

[ 0.05, 0.08,
0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7]
[0.7,1] (1,1,4) 300 0.0001

Table 3.4: Overview of the parameter setting for the data forwarding strategies.

3.6.5 Performed Analytical Tasks in Edge Computing

The reconstruction of the real data is of utter importance as otherwise the data can not be used
for analysis or decision making in central locations and qualitative results are impossible to
generate. This reconstruction discrepancy is focused on most of the related work mentioned
in the previous sections. This thesis departs from this work by highlighting the importance
of the quality of the performed analytics using reconstructed data. As EDs become more
powerful and able to perform analytics inside the network, close towards the data collection,
the impact of using reconstruction and data forwarding strategies towards analytical tasks
is of high interest. In this section, analytical tasks performed inside a WSN at the ED will
be presented. In particular, aggregation analytics and predictive analytics. As highlighted
in Section 2.3.3.1 time series analysis is mostly performed on a Sliding Window, which is
specified by a fixed size M > 0 and appends new context vectors by discarding older ones
based on their appearance. At each time t, a Sliding Window (SLW)W is a sequence of all
context vectors observed from t−M to t, i.e.,Wt = (xt−M ,xt−M+1, . . . ,xt).
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3.6.5.1 Aggregation Analytics

The aggregation functions used for the analytics tasks of a window W can be classified
based on [221] into three categories: distributive, algebraic, and holistic. Let W , W1, and
W2 be windows. An aggregation analytics function h : W → Rd is distributive if h(W1 ∪
W2) can be computed from h(W1) and h(W2) for all W1, W2. An aggregation analytics
function h is algebraic if a synopsis function σ for all W , W1, and W2 exists so that: (1)
h(W) can be computed from σ(W); (2) σ(W) can be stored in constant memory; and (3)
σ(W1 ∪W2) can be computed from σ(W1) and σ(W2). An aggregation analytics function
h is holistic if it is not algebraic. The standard aggregates MAX and MIN are distributive,
AVG is algebraic, since it can be computed from a synopsis containing SUM and COUNT.
The aggregates QUANTILE and MEDIAN are representatives of holistic functions. The AVG
and MAX analytics functions can be defined as: havg(W) = 1

M

∑t
j=t−M xj and hmax(W) =

[max{x1j}, . . . ,max{xdj}]tj=t−M , respectively.

These aggregation analytics functions leading to build-in continuous analytics queries for-
mulated inside the ED.

Example 1: The aggregation analytics query ’every minute find the average temperature and
the maximum humidity over context streams ’temperature’ and ’humidity’ collected during
the past hour’, is formulated in Continuous Query Language [222, 223] involving AVG and
MAX operators over a sliding windowW ,M = 60min as follows:

SELECT AVG(temperature), MAX(humidity)

FROM Context Streams [RANGE 60 MINUTES SLIDE 1 MINUTE]

Dynamic aggregates like SUM, MIN and AVG require a constant time O(1) computation per
value. However, more advanced aggregation analytics functions like outliers detection or
concept drift detection in a sliding window W require multiple scanning of the W . Be-
sides the classical queries issued towards the ED, aggregation analytics functions can also
be combined to infer certain events that might trigger decision making towards sending or
acting inside the ED.

Example 2: The evaluation of a localised event stream, processing the past ten minutes as
activation of a rule associated with AVG and MAX aggregation analytics functions over ’tem-
perature’ and ’wind-speed’ using a sliding window from two corresponding SANs:

EVENT := IF AVG(temperature) ≥ 90 AND MAX(wind-speed)

∈ [10,20] WITHIN 10 minutes THEN ACTION is ’warning’
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The aggregation analytics function h is running on each ED i for each sliding window W
containing M received and/or reconstructed context vectors from the SAN k ∈ Ki depend-
ing on whether the data is sent from SAN to ED or not. Recall, in prediction-based data
forwarding data is send only when the predicted value of the deployed function f(x) differs
above a threshold θ otherwise it is reconstructed at the ED with the function g(u) = x̃. In
time-optimised forwarding, the prediction errors are accumulated and only when the optimal
time of forwarding based on the rewarding function in Equation (3.19) is reached the actual
measurements are sent. In the meantime the ED is reconstruction the values using as well
g(u) = x̃.

Using an aggregation analytics function inside the ED on either prediction-based or time-
optimised data forwarding, the importance is identifying the discrepancy between the recon-
structed data inside the ED using the aggregation analytics function and the actual sensed
data. Consider an ED i and its SAN k ∈ Ki. The aggregation analytics difference δi between
the analytics result on ED i derived from aggregation function h over the windowW in the
ED i and the actual analytics result derived from h over the window W∗, which contains
only the actual context vectors from SAN k to ED i (ground truth) is:

δi = ‖h(W)− h(W∗)‖. (3.33)

The aggregation analytics difference δi denotes how much the aggregation results over the
window W on ED i with context vectors u differ from the aggregation results over the
window W∗ with context vectors x. Should SAN k have sent all context vectors to ED i,
then δi = 0,∀i ∈ Ki. Since the proposed methodologies allow SAN k to decide on sensing
context vectors w.r.t. θ and ED i being able to reconstruct undelivered context vectors, then
δi ≥ 0. The aim is to identify how the quality of analytics change in light of communication.

3.6.5.2 Predictive Analytics

Besides the aggregation analytics functions, further performing predictive analytics on ED
can lead to knowledge and real-time decision making. One of the most essential models for
predictive analytics is the multivariate linear regression approximation [224]. Highlighting
the importance of using predictive analytics inside the ED, two examples will be introduced
later. The first example focuses on using data from one SAN, whereas the second introduces
the ability to combine multiple SANs for analysis.

Example 4: Consider SAN k with context vector x = [x1, x2, x3] referring to the contextual
parameters humidity, wind speed and temperature. The corresponding ED i is responsible for
learning the statistical dependency wi between temperature (dependent variable yout = x3)
with humidity and wind speed (independent variables xin = [x1, x2]).



3.6 Performance Evaluation 65

Example 5: Consider the SAN k and SAN ` with k, ` ∈ Ki sensing context vectors xk =

[xk1, xk2] and x` = [x`1, x`2, x`3], respectively. The ED i is responsible, e.g., for learning the
linear dependency yout = xk2 and xin = [x`1, x`2] between the contextual parameters from
those SANs in Ki.

These two illustrations show the case when all data is send to the ED i. However, using
the introduced selective data forwarding methodologies of this section, it can be seen that in
each SAN k a vector xt = [xint , y

out
t ] ∈ Rd is produced, represented as input-output pairs

(xin1 , y
out
1 ), . . . , (xinT , y

out
T ) ∈ Rd−1 × R, T > 0. At the ED i these pairs are either received

if the condition of forwarding is fulfilled, or reconstructed by using one of the methods
manifest earlier. Overall, ED i has the context vector of ut = [uint , z

out
t ] ∈ Rd, based on the

Cases in Equation (3.1).

In Section 2.3 machine learning has been introduced with the aim to minimise a objective
function J (w) as in Equation (2.3). Using the linear regression analytics function inside the
ED i is leading to the task of estimating the coefficient vector wi ∈ Rd. This vector interprets
the dependencies between uint and zoutt . The approximation of the coefficient vector wi inside
the ED i using the Equation (2.3) is leading to the following objective function:

J (wi) = min
wi∈Rd

1

T

T∑
t=1

(
zoutt − (uint )>wi

)2
+ λ‖wi‖2 (3.34)

This objective function has to be locally computed inside the ED by a lightweight com-
putational algorithm. Introduced in Section 2.3.3.2, SGD is the most common method to
minimise the objective function and finding the coefficient vector wi in an iterative and low
computational complex manner. Not only is the introduced reconstruction difference and
aggregation difference of interest when using intelligent decision forwarding mechanisms
inside the SAN and reconstruction inside the ED. Also, the regression analytics difference
between the real coefficient vector w∗i if all measurements are transferred to the ED and the
approximated wi using the methods summarised in Section 3.6.3. The regression analytics
difference γi is defined as the absolute difference of εi derived from the approximated regres-
sion line (coefficient vector wi) and ε∗i derived from the actual regression line using the actual
coefficient vector w∗i trained by the actual SAN k’s context vectors. εi and ε∗i can be calcu-
lated with one of the accuracy metrics introduced above in Section 3.6.2 (mostly RMSE).

Using the RMSE for illustration, it is possible to define εi =
(

1
M

∑M
m=1(youtm − ẑoutm )2

)1/2

and ε∗i =
(

1
M

∑M
m=1(youtm − ŷoutm )2

)1/2

over a SLWW of sizeM , so that regression analytics
difference γi is defined as:

γi = |εi − ε∗i |. (3.35)
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3.7 Performance Assessment

3.7.1 Prediction-Based Performance

Using the mentioned DS1 and DS2 over the given models in Table 3.1 with the relevant
parameter settings in Table 3.4, the latter section shows the results obtained and highlights
key findings of the data forwarding strategies DPD and the improved QEPD. The following
section is divided into first comparing the models’ sensitivity and reconstruction ability, sec-
ondly investigating the quality of performing aggregation analytics on the reconstructed data
analytical tasks presented in Section 3.6.5, and last the predictive analytics quality on the
selective data forwarding methodologies. Please note that the results of DS2 can be found in
Appendix A.

3.7.1.1 Sensitivity Analysis and Reconstruction Assessment

The ability to reconstruct the data stream at the ED when using the different DPD and QEPD
models as data forwarding strategies are highly influenced by the application defined error-
bound θ. Increasing θ → 1 results in less communication between ED and SAN, as the SAN
only sends outliers and novel data.

This dependency over the DPD models, in which SAN and ED deploy the same model for
prediction-based forwarding and reconstruction is highlighted in Figure 3.4 (a). The figure
shows that with increasing the θ-value the remaining communication decreases between ED
and SAN, measured with the metric of the percentage using c(T ) of Equation (3.32). The
opposite effect is represented in Figure 3.4 (b), which shows that with increasing the θ-
value, the CV defined in Equation (3.25) divergence towards the real data rises, indicating
an increase of dissimilarity between µ and σ. As θ positively influences the sensitivity and
communication, the trade-off has been highlighted in Figure 3.4 (c) and (d). These two
figures show that increasing communication results in higher similarity and less information
loss from the reconstructed stream to the real data stream; each point represents a different
θ-value.

From these four figures in Figure 3.4, it is shown that communication, sensitivity, similar-
ity, and θ-value are highly connected. It further demonstrates the different models for DPD
compared to their efficiency. At this point, it should be noted that throughout all experi-
ments, the proposed MEAN methodology resulted in poor results far away from the others.
Therefore the following figures only compare the other four reconstruction policies. The
model of DPD-L using LMS inside SAN and ED shows the best efficiency in the trade-off
between information loss and communication, as presented in Figure 3.4 (c). Closely fol-
lowed by the DPD-A using ARIMA as a prediction and reconstruction model. The worst
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(d) Trade-off using the L2-norm metric and com-
munication over all DPD methods.

Figure 3.4: Evaluation of DPD methodology and the influence of θ and trade-off for evalu-
ating the efficiency with information loss and similarity towards reduced communication.

trade-off results in the DPD-E, which uses a simplistic version of ARIMA. In the middle is
the NAIVE model, which is using the last seen measurement as prediction and reconstruc-
tion. Interestingly, when looking into the similarity metrics such as L2-norm or DTW, and
not the information loss metric CV and KL, it is derivable in Figure 3.4 (d) that the order
of efficiency is nearly reverted. This effect occurs as the similarity metrics focus on each
point of the time series and their distance between each other, while the metric of KL is
investigating the Probability Density Function (PDF) over the data. Overall it is possible to
observe from the figures that using one of the DPD methods decreases the communication
to just 10% while being able to reconstruct the data stream to be nearly the same as the real
data. This is true for both information loss and similarity. None of the models is showing
any comparable behaviour above a 10% communication value. Therefore the range of ob-
servation for comparing the proposed models in their efficiency is set to be between 1% and
10% for c(T ) the remaining communication between SANs and EDs.
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(d) Comparison of the trade-off using the KL di-
vergence metric and remaining communication
using the EWMA function inside the SAN.

Figure 3.5: Evaluation of the trade-off between communication and sensitivity metrics
KL/DTW using the QEPD methods in compare to the DPD equivalent method.

Continuing towards the evaluation of our proposed quality-efficient prediction based method-
ology, noted as QEPD. Figure 3.5 shows the results of QEPD with a comparison to the DPD
models. It is possible to see that using independent models inside the SAN and ED is results
in a much better efficiency towards sensitivity and communication trade-off than identical
models. The models used inside the SAN is reduced to the NAIVE and the EWMA models
as the aim is to limit the computational complexity towards a minimum for energy usage,
and this is only fulfilled with NAIVE and EWMA implementations. From the analysis in
Figure 3.5 above, it was possible to identify that the NAIVE method in DPD is the most
efficient method for generating similar time series. However, illustrated in Figure 3.5 (a), it
is possible to see that using the proposed QEPD-NL compared to the DPD-N, an improve-
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ment in the trade-off between communication and reconstruction similarity has been made,
represented by the DTW metric. Figure 3.5 (b) shows the results for using EWMA as a
decision method in the SAN. These results identify that using QEPD improves the trade-off
as well, not with LMS inside the ED but with the NAIVE approach. From both figures,
it is possible to conclude that using the QEPD reduces communication by around 1% with
the same similarity of the datastreams. Departing from the similarity of the datastreams to-
wards its information loss represented by the KL divergence metric. Figure 3.5 (c) shows the
effects of QEPD and indicates that using the NAIVE prediction-based forwarding strategy
inside the SAN and the LMS for reconstruction in the ED generates a communication im-
provement of up to 7% with the same information loss as using DPD-N. Similar behaviour is
seen in Figure 3.5 (d) for the EWMA implementation. For EWMA, all models improve the
information loss, whereas the LMS is the most efficient in terms of communication reduc-
tion with the same gain of information. Generally, achieving a reduction of communication
with the same accuracy level using the QEPD strategy can validate that enabling the usage
of a light prediction-based algorithms inside the SAN, while using the full capacity of the
ED for more advanced reconstruction results, leads to good results and higher reconstruction
performance. Even advanced methods are possible to implement inside the ED, involving
machine learning models that could combine multiple SANs or further data analysis func-
tions to reconstruct missing data with even less communication required between SAN and
ED.

3.7.1.2 Aggregation Analytics Assessment

Besides the reconstruction assessment and the evaluation of the sensitivity, the main focus
is on how the reconstruction is influencing the ability to make high-quality analysis inside
the ED. Therefore, all three categories of aggregation function are investigated: algebraic,
distributive and holistic. For this AVG, MAX and Median have been use respectively. In
Figure 3.6, an overview is illustrated of the assessment with the accuracy metrics MAE,
SMAPE, and RMSE for generating the aggregation discrepancy in Equation (3.33). The
figure shows the three mentioned aggregation categories for the different models of DPD
and QEDP over DS1. The assessment for DS2 can be found in Appendix A, along with the
reconstruction results. Further should be noted that the abscissa (x-coordinate) values have
been shifted for better illustration of the difference between the comparable models as the
graphs perform an asymptotic behaviour towards a certain value.

Generally, the highlighted results for reconstruction evaluated in Section 3.7.1.1 can be found
in the aggregation analytics results as well. Examine the results of the AVG aggregation func-
tion in detail, Figure 3.6 (a) shows all DPD models are compared with their ability of trading
communication and accuracy using MAE as discrepancy metric for δ. The order of the best
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(d) Trade-off using the RMSE metric and re-
maining communication using the EWMA
function inside the SAN over the aggrega-
tion function AVG.
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function inside the SAN over the aggre-
gation function MEDIAN.
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tion function MAX.

Figure 3.6: Evaluation of the trade-off between communication and accuracy metrics
(RMSE, SMAPE, MAE) over the aggregation functions for the QEPD and DPD methods.
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trade-off model is similar to the results of Figure 3.4 (c) of the reconstruction and sensitiv-
ity analysis in Section 3.7.1.1. The figure indicates DPD-L and DPD-A as most accurate
and DPD-E as the least accurate for the aggregation analytic function. However, when per-
forming QEPD, the assessment for aggregation shows significant improvement inefficiency.
These results are highlighted in Figure 3.6 (b), indicating that QEPD-NL is the most accurate
while saving the most energy by limiting communication. Figure 3.6 (c) inspects using the
SMAPE metric on how DPD-N is improved by the different QEPD model implementations.
This figure further highlights that using QEPD-NE results in no improvement towards the
DPD-N. In contrast, all other QEPD methods perform better with a significant decrease of
communication and the same accuracy using the NAIVE method in the SAN. In Figure 3.6
(d), the results for deploying the EWMA inside the SAN using the QEPD models is illus-
trated. For the QEPD using NAIVE inside the SAN, only the EWMA function inside the
ED results in less accurate aggregations than the DPD methods. Contrary to the EWMA
implementation inside SANs using QEPD, the LMS and ARIMA perform less accurate than
the corresponding DPD method. However, as already seen in the reconstruction, using the
NAIVE model in the ED with the EWMA in the SAN is greatly improving the DPD-E de-
ployment. Showing the similarity towards the other two aggregation function categories,
Figure 3.6 (e) is illustrating the assessment for the holistic function MEDIAN on the RMSE
as an accuracy metric. Figure 3.6 (f) shows the results obtained from the distributive function
MAX with the metric SMAPE. Both figures highlight that QEPD is improving the accuracy
of aggregation discrepancy in trade-off with communication reduction considerably. Best
results are realised by QEPD-NL.

3.7.1.3 Predictive Analytics Assessment

Similar to the conducted results of aggregation analytics and reconstruction, the predictive
analytics performs with the same behaviour for DPD and QEPD. Using the real data to
perform the prediction on temperature using humidity as an input variable results in a MAE
of 0.012944163, a RMSE of 0.028857876, and a SMAPE of 6%.

Figure 3.7 represents the use of the DPD and QEPD methods showing the difference of
Equation (3.35) for the metric SMAPE and RMSE. The ARIMA model performs the best
over all DPD models, which is illustrated in Figure 3.7 (a). Comparing the NAIVE methods
of QEPD and DPD, the SMAPE shows in Figure 3.7 (b) the impact using QEPD and its
reduction of communication overhead while improving the accuracy. The best model is the
QEPD-NL for predictive analytics. QEPD only improved the trade-off for LMS and ARIMA,
whereas the EWMA and MEAN decrease the trade-off compared to the DPD method.
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QEPD methods with NAIVE.

Figure 3.7: Evaluation performance of DPD and QEPD methods using the metrics RMSE
and SMAPE for trade-off in predictive analytics over DS1.

3.7.2 Time-Optimised Performance

The previous section showed the results of the experiments performed using prediction-based
data forwarding. The following section presents the results of the introduced methodology
of time-optimised data forwarding as introduced in Section 3.5. Setup for the evaluation
is given by Table 3.2 and Table 3.3, as well as the parameters presented in Table 3.4. The
following figures showing the improvements towards DPD and QEPD using TOFS and the
hybrid version HTOFS. Similar to the assessment of the prediction-based data forwarding
strategies, this section is divided into evaluating the reconstruction ability, the quality of
using aggregation analytics, and finally, the predictive analytics performance. The results of
DS2 can be found in Appendix A.

3.7.2.1 Sensitivity Analysis and Reconstruction Assessment

The ability to reconstruct the real datastream is highly dependent on the chosen β of TOFS
and HTOFS from Equation (3.19). Compared to the DPD and QEPD in which θ is primarily
influencing the accuracy and communication, in the time-optimised data forwarding β and
not θ is essential. Increasing the value of β → 1 decreases the communication and, therefore
the reconstruction ability of the ED. The value of β is indicating the delay tolerance of the
SAN to forward the data based on the calculated prediction error. The similarity between the
real data and reconstructed is measured during the experiments using DTW. The information
loss and distribution reconstruction ability is measured by the KL divergence.

In Figure 3.8, these metrics are used to show the trade-off between communication reduction
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Figure 3.8: Evaluation of the trade-off between communication and sensitivity metrics
KL/DTW using the TOFS/HTOFS methods in compare to the DPD/QEPD equivalent meth-
ods.

and similarity for deploying the EWMA and the NAIVE method inside the SAN. Figure 3.8
(a) indicates that using the DPD with the NAIVE method inside the SAN and ED generates
a lot more communication than using the TOFS with a NAIVE prediction method in the
SAN and ED. The same holds true when using the improved QEPD-NL method and the
corresponding TOFS-NL. TOFS is improving the similarity considerably towards the real
data with the same or less communication. As an example, with 4% of communication, using
the TOFS strategy, the same similarity as QEPD-NL and DPD-N with over 6% is generated.
Similar results are applicable in Figure 3.8 (b) for using EWMA inside the SAN. The hybrid
version of TOFS marked with HTOFS inside Figure 3.8 shows an improvement towards the
similarity in comparison to TOFS when reaching a communication below 3%. Otherwise, it
is behaving analogue towards the TOFS for both methods, NAIVE and EWMA. Additionally
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analysed from the assessment shown in the figures, using different methods inside the ED,
such as the QEPD deployed model variations, does not improve the trade-off using the TOFS
or HTOFS methodology. It can be stated that using NAIVE in ED and SAN results in the
same similarity as NAIVE and LMS using the time-optimised forwarding strategy. This
highly differs from the assessment of DPD towards implementing QEPD.

Figure 3.8 (c) considers the assessment of the information loss using the KL divergence
metric. Differing to the DTW metric, the improvement using TOFS only applies towards the
DPD-N method, whereas the DPD-L and QEPD-NL show much less information loss than
any TOFS and HTOFS implementations. Moreover, it can be seen in this figure that using
the deployment of different models in SAN and ED is improving the trade-off, as shown for
TOFS-NL in comparison to TOFS-N. In this figure the method of DPD-L is generating a
jump below a 5% communication resulting in lower values for KL divergence. This jump
might occur through generalisation and better fitting with less data and outlier reduction by
identifying only relevant data with higher thresholds. It appears that only LMS is sensitive
towards this. In Figure 3.8 (d), the EWMA deployment in SAN is illustrated, and contrary
towards the NAIVE method, here a gain using TOFS is presented with improving the trade-
off by 5% in compare to the DPD strategy.

3.7.2.2 Aggregation Analytics Assessment

Investigating the behaviour of the aggregation discrepancy in Equation (3.33) for the time-
optimised data forwarding strategies (TOFS and HTOFS), in Figure 3.9 the results for the
assessment are illustrated.

Figure 3.9 (a) shows the impact of TOFS for the algebraic aggregation analytics function
AVG. All methods performed on a time-optimised data forwarding strategy are greatly im-
proving the efficiency of the previous prediction-based methods. As already shown in Fig-
ure 3.6, the QEPD-NL method improves the DPD-N variant by up to 3%. Using the TOFS
implementation of TOFS-NL, the QEPD-NL can be further improved by having 5% less
communication with the same accuracy towards aggregation analytics as highlighted in Fig-
ure 3.9 (a). Figure 3.9 (b) illustrates the results for the distributive aggregation function MAX.
In this figure, the TOFS is enhancing the efficiency by being qualitative equivalent towards
DPD-N. Further on this figure, the effect of using HTOFS is illustrated. Similar to the recon-
struction similarity and information loss assessed in Section 3.7.2.3, the impact of HTOFS
only applies below 3% of communication. Below this communication level, the accuracy-
efficiency trade-off tends towards better results towards the HOFTS. This effect is also seen
in Figure 3.9 (c) for the holistic aggregation analytics function MEDIAN. In Figure 3.9 (d),
the SMAPE of the AVG function using NAIVE is presented. In this figure, it is shown that in
some cases, the HTOFS does not improve the TOFS, even in lower communication ranges.
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Figure 3.9: Evaluation of the trade-off between communication and accuracy metrics
(RMSE, SMAPE, MAE) over the aggregation functions using the TOFS/HTOFS methods
in compare to the DPD/QEPD equivalent methods.

Overall, for TOFS deploying the NAIVE method inside the SAN with LMS inside the ED
for reconstruction generates the best aggregation analytics accuracy while being efficient in
communication overhead. TOFS is improving this trade-off considerably across all aggre-
gation functions and all accuracy metrics. HTOFS only improve the trade-off below 3% of
communication and only for algebraic and distributive aggregation functions.

3.7.2.3 Predictive Analytics Assessment

For the predictive analytics task, the results using TOFS and HTOFS over the predictive
analytics discrepancy δ of Equation (3.35) are similar to the conducted results for the ag-
gregation analytics tasks. The TOFS is generally improving the DPD and QEPD strategy
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greatly. The HTOFS in comparison only improves with a lower communication percentage
than the TOFS. Overall the TOFS-NL performs best as model implementation inside SAN
and ED. These results are illustrated in Figure 3.10 with Figure 3.10 (a) showing the re-
sults for comparing the DPD-N, QEPD-NL, and the corresponding TOFS implementations
against each other. Figure 3.10 (b) shows the influence of HTOFS over the implemented
EWMA function in SAN with the same deployment inside the ED and the NAIVE inside the
ED.

0.032 0.034 0.036
0

1

2

3

4

5

RMSE

%
C

om
m

un
ic

at
io

n

DPD-N
QEPD-NL
TOFS-N
TOFS-NL

(a) Trade-off using the RMSE and remain-
ing communication over the predictive function
for all methods with NAIVE function inside
the SAN.

12.2 12.3 12.4 12.5 12.6 12.7 12.8
0

1

2

3

4

5

SMAPE

%
C

om
m

un
ic

at
io

n

TOFS-E
TOFS-EN
HTOFS-E
HTOFS-EN

(b) Trade-off using the SMAPE metric and re-
maining communication over the predictive func-
tion for all methods with EWMA function inside
the SAN.

Figure 3.10: Evaluation of the trade-off between communication and accuracy metrics
(RMSE and SMAPE) over predictive functions using the TOFS/HTOFS methods in com-
pare to the DPD/QEPD equivalent methods.

3.8 Chapter Summary

In this section, an extensive evaluation of current prediction-based data forwarding strategies
represented by the Dual Prediction Design (DPD) models has been carried out. Embarrassing
the computational abilities of SANs and EDs, the deployment of different models inside them
has been proposed by the Quality-Efficient Prediction Design (QEPD) strategy. It has been
shown, that this considerably improves the reconstruction and analytics quality. Departing
from the instantaneous decision making (IDM) on a threshold or error-bound at a certain time
t, this chapter introduced a time-optimised data forwarding methodology (including Time-
Optimised Forwarding Strategy (TOFS) and Hybrid-Time-Optimised Forwarding Strategy
(HTOFS)) to overcome the limitations of the prediction-based by using Optimal Stopping
Theory (OST). The history of decisions is incorporated whenever the SAN decides on for-
warding the data. From the extensive evaluation, it has been seen that the performance of
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TOFS improves greatly the quality of reconstruction, aggregation and prediction analytics
inside the ED with comparison to the IDM strategies. However, the HTOFS can show no
significant improvement to the TOFS methodology. The shown experiments have only be
performed on a special type of contextual data (weather data) and over a limited time hori-
zon. The results presented in the performance assessment section sometimes show only small
improvements or differences to the current implementation of DPD. Nonetheless, using other
continuous data streams and contextual data over an infinity time, the improvements made
in this chapter with using TOFS or QEPD can greatly increase towards the current research
of DPD.

To sum up, using the intelligence of SANs by implementing a time-optimised data forward-
ing decision strategy and an advanced reconstruction function inside the ED, enables to re-
duce the data transmission to a minimum, while maintaining high-quality aggregation and
predictive analytics results.
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Chapter 4

Latency-Efficient Edge-Centric
Analytics

4.1 Chapter Overview

Chapter 3 introduced quality-efficient data forwarding from sensing devices towards Edge
Devices or sink nodes. Methodologies of prediction-based and time-optimised data forward-
ing have been proposed to considerably improve communication reduction through selective
data forwarding. The influence of the proposed methods towards qualitative aggregation and
prediction analytical tasks at the Edge Device and its impact was highlighted. In the fol-
lowing chapter, the research is departing from data forwarding strategies to qualitative and
efficient edge-centric analytics. The coming chapter aims to improve latency by deploying
machine learning and analytics at Edge Devices. Latency is defined by the computational
time an algorithm needs to run or retrained, the network transfer of the data to the central
collection point, and the transfer of the responding output from the central location back to
the device. With Edge Computing and analytics, the latency can be reduced by eliminating
the network transfer towards the central location and backwards to the device, which has
been proven in other studies [225, 180, 226]. Therefore, with the introduced training and
inference of analytics at the edge of the network, the latency can be by definition reduced in
comparison to a centralised implementation and is consequently seen as a latency-efficient
method. Chapter 2 discusses concepts of online learning and distributed machine learning
and the usage of machine learning in Edge Devices. In this chapter, the importance of energy-
efficient implementation of analytics and algorithms in EDs is highlighted as most of these
devices are constrained by resources (e.g. battery, computation). Moreover, in Chapter 2
the importance of continuous retraining and adaption of machine learning models to concept
drifts has been highlighted as essential for changing environments providing real-time (low
latency) decision making. The following sections will introduce efficient model retraining
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and forwarding concepts at Edge Devices to preserve the devices resources and model selec-
tion of distributed learning at the Edge Gateways (EGs) for qualitative query-analytics. The
attention lies in a qualitative and efficient implementation of edge-centric analytics to enable
real-time analytics at the edge for evolving environments. Most of the research conducted
in the following section has been published in [4]. Overall, this chapter contributes to the
second defined research question in Section 1.2:

Hypothesis 2: Enabling machine learning and predictive analytics locally at Edge De-
vices will empower real-time applications that can adapt intelligently to concept drifts
and changes of the continuous data arriving. These locally learned (trained) models
can be selected through qualitative model selection methodologies at central coordina-
tors, e.g., Cloud.

4.2 State-of-the-Art on Edge-Centric Analytics

Centralised trained machine learning models are widely implemented in current Internet of
Things (IoT) applications. Highlighted in Section 2.4, these models are distributed towards
Edge Devices (EDs) to perform inference in real-time directly on the incoming data. Training
is conducted over the entire data, so a continuous data transfer between devices and the
Central Location (CL) is required. Edge Computing aims to push analytics and intelligence
further towards the device (the data source), enabling the possibility to train machine learning
models locally [227]. This local training or inferring of global initialised models inside EDs
has gained interest and can be defined as the field of edge analytics and training. Recent
work introduced approaches of edge-centric analytics that enable local computation in each
EDs by using the available resources to perform model updates [185, 228, 229, 230, 231,
232]. All of these distributed methods focus on distributed estimation and minimisation of
a global objective function aiming to archive the same performance as having all data at
the centralised location. Retraining and updating the model at the CL is done through a
periodical frequency or a request from the Central Location, which requires extra techniques
and communication to synchronise the EDs and CL. Training an algorithm local requires
additional resources of energy but also reduced the transmission of bandwidth through only
transmitting analytical models. However, in an Edge Computing environment, only data
forwarding and selection has been considered in the literature, which has been highlighted
in the previous chapter. Efficient model retraining and forwarding has only very recently
become of interest in the research area. Besides the most straightforward way of performing
the model retraining by using a periodic or online method (each time a new input arrives),
also complex algorithms to detect anomalies or changes in the data distribution have been
widely implemented to trigger a model retraining. The work of [233] and [234] focus on
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model forwarding and retraining by extending the prior published work [4] of this chapter
with time-optimised model forwarding strategies based on accumulating error of prediction
values.

The approach of current implemented edge analytics applications lack real-time retraining
and adapting towards changing environments, which is in IoT applications of high impor-
tance (highlighted in Section 2.3.3.3). As primarily a minimisation of one single central
model is considered inside the ED for inferring or training, the local adaptation to the data
and the individualisation of the data subspaces is neglected. The local model training and
resulting diversity has not been studied in the context of edge analytics. However, as men-
tioned in Section 2.3.4, ensemble learning is mainly used to combine these models towards
one single central prediction model when distributing machine learning models over dif-
ferent datasets. Model selection has been an ongoing research field, mostly focusing on
selecting different orders and features of one model using accuracy metrics as selective cri-
teria [235, 236]. Ensemble learning has been primarily used for classification tasks but has
been considered recently in regression as well [237]. In the introduced theory of ensemble
learning, all individual learners contribute towards the final prediction. However, especially
in regression tasks, this approach is resolving into low accuracy. Therefore ensemble prun-
ing aims to minimise the number of individual learners while maximising the accuracy of the
prediction tasks [238]. It has been shown that selecting only a subset of individual learners
results in more accurate results than using all [239]. Ensemble pruning emerged to reduce
the computation cost of involving all learners and storing the data accordingly [240]. Prun-
ing evolved into a method to efficiently selecting a subset of machine learning models that
can be equal or higher in their accuracy as involving all models. Ensemble pruning can be
classified into three categories [241]:

Ordering: this category is aiming to order the ensemble of models via a particular
criterion (e.g. error) and selecting the top-k models for the final ensemble prediction;

Clustering: the ensemble of models are clustered into groups which are then used as
selection to perform the prediction task;

Optimisation: the ensemble of models is treated as an optimisation task using an algo-
rithm to minimise an objective function (e.g. genetic algorithm [242]).

Exploring the local model diversity of each ED, a highly distributed training of models in
energy and resource constraint devices has to be considered. This raises the need for ef-
ficient training and forwarding of the models and model consolidation or selection at the
central location using ensemble pruning methodologies of low-computational complexity
and resource-efficient in ED and EG to answer user queries.
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4.3 Rationale & Problem Fundamentals

In the previous section, it has been highlighted that centralised predictive analytics increases
the latency and cannot adapt to generate real-time decision making. Further, with the natural
appearance of concept drifts, locally trained and updated machine learning and analytics
models emerge. For example, considering an application with two EDs, each of them has its
locally generated data. When performing a centralised model over the entire data, inaccurate
predictions inside each ED will occur. Presenting a visual example of this, Figure 4.1 shows
the influence of locally trained and individualised models at each ED, noted as f1 and f2,
compared to a global generated function fG.
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Figure 4.1: (Left) Local linear models f1 and f2 built over dataX1 andX2 from ED1 and ED2,
respectively, global model fG build over X = X1 ∪ X2, and average model fAV G = f1+f2
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(right) Regression planes for local f1, f2 and global fG models (fAV G is not shown for
readability) [4].

Based on the importance of local models enabling latency-efficient analytics in ED, this
section abstracts the architecture as illustrated in Figure 4.2. In applications that require
edge analytics, time series and continuous data for predictions are mainly used. Highlighted
in Figure 2.7, using a regression algorithm is a possible solution for continuous data. Re-
gression analytics can be performed over parametric and non-parametric algorithms. The
non-parametric approaches require to store the entire input space X to generate predic-
tions. As EDs are limited with storage and computational capacity this implementation is
infeasible for edge-centric learning. On the other hand, parametric regression investigates
the dependency between the input space X and the output space Y by adopting a function
y = f(x) : x ∈ Rd. Aim is to find the optimal model parameters w of the data X that
minimise the loss function L. This thesis section focuses on parametric regression analytics
in a (d + 1)-dimensional data space (x, y) ∈ Rd+1 over a continuous discrete time series
with t ∈ T = {1, . . . , t, . . . , T} and T ∈ T. The input variable xt at time t is defined as
xt = [x1, . . . , xd]

T with the corresponding output yt.
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In the abstracted edge-centric analytics architecture each ED i learns online the regression
model y = fi(x) over the input-output pairs {(x, y)i} ∈ Rd+1. Each EG o is connected to s
EDs with S = {1, ..., i, ..., s}. This local learning introduces two problems: one assigned to
the ED the other one to the EG. The first problem is placed at the device itself. The challenge
on EDs is first to decide when to retrain and update the local model fi and secondly when
to forward the local models fi to the EG. This forwarding methodology has to trade-off
the quality of the performed analytics at the EG and the communication overhead through
sending the model update over the network. The EG o caches the local models of each ED
i inside its memory as f oi . The second problem of performing edge-centric analytics lies in
ensemble the locally trained models cached in the EG defined as F = {f o1 , . . . , f os }. In a
centralised setup, the application or user can issue a regression query represented as the point
q ∈ Rd. It is possible to explore the behaviour of f(x) around q and provide the prediction
ŷ = f(q) with prediction error e(q) = y − f(q). The EG has the challenge to find the best
subset of F that maximises the given query’s q accuracy.
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Figure 4.2: Physical world is divided in geographical units where IoT devices are deployed.
Edge-centric regression analytics involve EGs, EDs, and SANs delivering cached models &
sufficient statistics [4].

The idea to overcome the problems is to split the intelligence into Edge Device decision
making towards retraining and forwarding and the Edge Gateway intelligence to aggregate
and combine the locally generated regression models. Therefore, the following two cases
can be defined as:

Edge Device Intelligence: Each ED i decides whether the pair (x, y)t notably changes
the prediction performance of the current local fi or not. If this is the case, the ED i
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appends (x, y)t to the Sliding Window (SLW)Wi and discards the oldest pair. Further
the ED retrains fi based on the updatedWi. If the input data is familiar and will not
change the prediction performance, it forgets the measurements and does not retrain
the model f(x)i. In the case that the model is retrained, the ED i has additionally the
task to decide if forwarding the updated model f(x)i towards the EG is necessary.

Edge Gateway Intelligence: Inside the EG the intelligence lies in deciding from the
ensemble of locally trained models F = {f o1 , . . . , f os }, which subset of models F ′ ⊆
F to select towards maximising the accuracy. The aim is to be as accurate as of the
global model fG, which has been built over all collected data.

4.4 Retraining and Model Forwarding

The previous paragraph evaluated the importance of locally trained models inside Edge De-
vices (EDs). However, as highlighted, these devices are constrained in computational capac-
ity and energy supply. Therefore, efficient retraining and model-forwarding of these local
edge-centric analytics functions are of high interest. Moreover, the need of adapting the
model not just based on time, but also on the quality of the performed predictions using a
continuous evolving method is challenging, especially in an energy and resource constraint
environment. Performing analytics on EDs to adapt to concept drifts and learn on continuous
data streams can be achieved using window-based analytics as possible efficient implemen-
tation (highlighted in Section 2.3.3.3). This concept is designed to store the recent local data
over a Sliding Window (SLW) Wi = {(x, y)t−M+1, . . . , (x, y)t}: Wi consists of the most
recent M observed input-output pairs (x, y). Given the architecture setup presented in Fig-
ure 4.2 a locally learned parametric regression model fi(x), e.g., fi(x) = w>i (x) in each
ED i. The data of the SLWW is used to build the local model fi with its corresponding pa-
rameters wi. The collected models at the EG of each ED i are defined as f oi with the model
parameters wo

i . The ED i only sends the parameters wi towards the EG and not any raw data
or measurements.

The decision on adjusting and sending the model has to be taken in real-time by sequentially
observing input-output pairs. Each ED i captures at time t a new input-output pair (x, y)t.
Simultaneous at this time t the ED i has to make a decision if the input-output pair (x, y)t

considerably changes the prediction accuracy of the current local fi, or not. If it does not
change the performance of the local model, it discards the pair and waits for the new time
t + 1, in which a new pair arrives. If the new pair at time t is notably changing the current
model, the ED does update the local fi. Each ED i is responsible for updating the EG when-
ever there is a significant discrepancy of the prediction performance between the local fi and
cached f oi at the EG. Each ED i has a copy of f oi locally stored to derive the decision mak-
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ing of updating the local model fi and sending the updated model to the EG. Based on the
prediction performance towards the EG cached model f oi the ED decides to send the updated
model. This decision of retraining and adapting the local model fi is proposed by assess-
ing the familiarity and novelty of input-output pairs measurements (x, y)t. This familiarity
evaluation is done by an online methodology using an incremental adaption to the change of
the incoming input-output pairs and the ability to react to possible concept drifts. The idea
proposed in this section is to partition the input space of the values and associate a prediction
error and performance measure to it. More formally, the input space of an individual ED i

is quantised into K subspaces with k = 1, . . . , K. The number of subspaces is generated
throughout the runtime dynamically and is unknown a-priory at the ED i. Each subspace is
represented by an input prototype bk ∈ Rd, k ∈ [K]. The input prototypes bk is mapped to
an error prototype uk ∈ R; k ∈ [K]. This error prototype uk is defined as the prediction error
of the specific input prototypes bk so that e(x) = y− fi(x) : k = arg mink∈K‖x−bk‖. The
intention of clustering the input space represented by bk and associating the local prediction
error represented by uk with each other gives knowledge about the expected accuracy and
allows fast action if these do not lie in the tolerance and therefore represents a novel input
pair. Illustrating this quantisation of the input space, Figure 4.3 highlights the association of
new input pairs towards the expected prediction error of the local model fi and its novelty or
familiarity.
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Figure 4.3: Statistics Ci: association of input prototypes bk with error prototypes uk in input-
error space determining the familiarity of (x, y) and (x′, y′).

The proposed fast and incremental input-error space quantisation at ED i with unknown
number of prototypes K is an objective joint optimisation function that minimises the con-
ditional Expected Quantisation Error (EQE) and the conditional Expected Prediction Error
(EPE). The EQE is calculated through learning the best input prototypes bk, whereas the
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EPE us based on the best error prototypes that capture the local model fi accuracy perfor-
mance. Overall, the condition of EQE and EPE has to be minimised based on the input/error
prototypes Ci = Bi ∪ Ui, with Bi = {bk} and Ui = {uk}. This results into minimising the
joint objective function of EQE and EPE with:

J ({bk, uk}) = E
[
λ‖x− bk‖2 + (1− λ)|e(x)− uk|

∣∣Ak] (4.1)

In Equation (4.1) is Ak defined as Ak ≡ {k = arg minl∈[K]‖x − bl‖2}, e(x) = |y −
fi(x)| representing the absolute prediction error, and λ ∈ [0, 1] is a regularisation factor
for weighting the importance of the input-error space quantisation. Defining λ = 1, refers
to the known EQE [243], λ → 0 indicates pure prediction-error based quantisation. The
expectation is taken over input-error pairs (x, e(x)) ∈ Rd × R. Aim is to minimise the
objective function given in Equation (4.1), using the prototypes (bk, uk) ∈ Ci that need to
be adapted and updated given a pair (xt, yt). This adaption of bk and uk each time t can be
performed by the following Equation (4.2) with αt ∈ (0, 1) representing the learning rate:∑∞

t=1 αt = ∞ and
∑∞

t=1 α
2
t < ∞, et = |yt − fi(xt)|, and sgn(·) is the signum function.

The prototypes (bk, uk) ∈ Ci converge to the centroid (mean vector) of inputs x and to the
median of the absolute prediction error in the k-th input-error subspace.

∆bk = αtλ(xt − bk) ∆uk = αt(1− λ)sgn(et − uk) (4.2)

The number of prototypes K is unknown to the ED i. Therefore the algorithm has incre-
mentally to decide, based on the novelty of the input value and the local model performance,
to add a new input-error prototype. The proposed evolving algorithm, which minimises the
joint optimisation function presented in Equation (4.1), is summarised in Algorithm 2. This
nature of evolving the prototypes during runtime allows the algorithm to be used without a
training phase. However, to have a basis a training period is recommended.

At the initial start at time t = 1, the algorithm generates for K = 1 an input/error prototype
pair (b1, u1) based on the first input values (x1, y1). For the duration of the application
run time, two thresholds are defined that allow the algorithm to calculate the familiarity
and novelty of a new input data xt. The algorithm’s first threshold is defined as ρI , which
indicates the closeness of the input prototype bk to the new input xt. The second threshold ρO
relates to the dynamically changing error tolerance for the current error e(xt) = y − fi(xt).
After the initialisation of the first prototype-set, the algorithm uses the familiarity threshold
ρI to indicate if the new value x has a corresponding input prototype bk. Suppose there is
a bk that is within the boundary of ρI . In that case, the new input xt is classified as familiar
if and only if the associated error prototype uk and the resulted prediction error e are within
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Algorithm 2 Online Local Algorithm at ED i.

Input: new pair (x, y)
Output: familiarity; updated prototypes Ci

1: familiarity← FALSE

2: closest input prototype k = arg min`∈[K]‖x− b`‖
3: model prediction: ŷ = fi(x); absolute error e = |y − ŷ|
4: if (‖x− bk‖≤ ρI) then
5: prototype adaptation: ∆bk = αλ(x− bk)
6: prototype adaptation: ∆uk = α(1− λ)sgn(e− uk)
7: if e > ρO then
8: ρO = max(1

2
ρO, ρ

∗
O); adapt model fi w.r.t. (x, y)

9: else
10: familiarity← TRUE

11: end if
12: else
13: novelty (new prototype): K = K + 1, bk = x, eK = e
14: if e ≤ ρO then
15: ρO = max(1

2
ρO, ρ

∗
O); familiarity← TRUE

16: else
17: adapt model fi w.r.t. (x, y)
18: end if
19: end if

their tolerance ρO. If the error is within the range, the new input xt is discarded, and the ED
i waits towards the following input at time t + 1. Both prototypes, bk and uk, are adapted
towards the new input value as applicable in lines 5 and 6 of the algorithm. If the error of the
input at time t is outside the range of ρO, this tolerance ρO decreases, denoting less tolerance
in the error space for future inputs and triggers retraining of the local model fi at the ED
i. If the new input xt is outside the range of the familiarity threshold ρI , a new prototype
bk is generated. Afterwards, a check regarding the error tolerance of ρO is made. If the
error is within the range of ρO, ρO decreases, denoting less tolerance in the error space for
future inputs. Still, the input xt will be classified as familiar without retraining the model.
Otherwise, if the input is outside the range of the closest bk and the range of the associated
error prototype uk, direct retraining and updating of the local model fi is triggered.

In short, the Algorithm 2 presents the intelligence of the ED i by highlighting the three main
tasks of: (1) optimally quantising the input-error space by minimising Equation (4.1), (2)
online deciding whether (x, y) is novel or not and used for triggering model adaptation and
cache model update to the EG, and (3) incrementally evolving to identify new prototypes in
Ci. The outcome of the Algorithm 2 is the identification if a given pair (x, y) at time t is
novel or familiar and if retraining of the local model is necessary.

The introduced algorithm of quantising the input/error space can lead to many prototypes
that the ED is unable to store and handle for efficient computation. In avoiding this risk,
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multiple possible techniques can be used. One possible solution is applying a function that
deletes or merges unused and old prototypes with the nearest. This function allows for con-
tinuous updating of the prototype space and keeps it to the only frequently used prototypes.
Moreover, with the introduced parameters ρO and ρI , the radius and consequently the num-
ber of prototypes can be regulated. Furthermore, quantisation of the space can be difficult
when dealing with high dimensions at the ED, overcoming this problem, multiple methods
of dimensional reduction highlighted in related research can be applied before using the pre-
viously introduced method [244, 245]. One possible method is using Principal Component
Analysis (PCA) to reduce the dimensions [246]. However, these methods are out of scope
for this thesis.

The ED i has instantaneously to determine whether the new pair (x, y) is drawn from the
input-output subspace defined by the pairs in the Sliding Window (SLW) Wi or not. If
the new pair is interpolating within the current input-output data subspace, the values are
considered as familiar and indicates that the current model fi is expected to provide a good
prediction ŷt = fi(xt) given the tth input xt. If the ED i does not need to retrain the local
model as the accuracy of the model is not changing, so |yt − ŷt| ≤ ε for some accuracy
threshold ε > 0, then no communication between EG and ED occur. Whenever the input at
time t is considered novel and some updating of the local model fi is triggered, the decision
to send the update to the EG or not has to be made at the ED. The parameter adaptation wi

upon a novel pair (x, y), is possible to deploy either a window-based batch retraining of fi
over window Wi, or using the online Stochastic Gradient Descent (SGD) to incrementally
update wi. In linear regression the use of a window-based batched updating can be formulate
with the adapted parameters as wi = (

∑N
l=1 x

>
l xl)

−1(
∑N

l=1 xlyl) if a novelty pair (x, y) is
inserted inWi w.r.t. ordinary least squares optimisation. Comparing the adaption of wi using
the online and incrementally updating through SGD, the adaption of the parameters would
be ∆wi = −η(y − fi(x))x; η ∈ (0, 1).

Generally, three different cases are proposed to prompt the new local model fi towards the
EG. All of these strategies rely on the threshold θ which acts as tolerance and communi-
cation reduction measurement between ED and EG for the model update frequency. More
specifically, the updated local model fi is sent to the EG:

1. whenever the prediction performance of the local model fi at the ED i shows a
significant discrepancy towards the cached f oi model at the EG,

2. when the fitting of the input values stored in the SLWWi towards the local model fi
compared to the cached model f oi shows a significant discrepancy,

3. or when the model parameters of the local model fi show a significant discrepancy
to the cached model f oi .
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The first forwarding decision is based on the discrepancy of the prediction performance
defined by the absolute difference of the prediction errors of fi and f oi . The local prediction
error is calculated with ei(xt) = |y − fi(x)|, whereas the prediction error of the cached
model is calculated with eoi (xt) = |y − f oi (x)|. The error difference of the local prediction
error ei and the cached model error eoi is defined as |ei(xt) − eoi (xt)|. If the error difference
exceeds a threshold θe > 0, then ED i updates the EG with the new model fi and the locally
stored cached model on the ED and EG is updated to f oi = fi. If the difference of the
performance predictions between both models is not exceeding the threshold θe, the models
can be considered as similar and no update between EG and ED is required. Therefore the
models of ED and EG can be seen as the equivalent in terms of prediction performance and
the corresponding tolerance θe. The prediction performance forwarding decision method
is highlighted in the Algorithm 3 as exemplary for the decision making of forwarding the
updated model fi to the EG.

Algorithm 3 Local Decision Making at ED i.

Input: input-output observed pair (x, y)
1: get pair (x, y) familiarity from Algorithm 2
2: if (x, y) is novel (not familiar) then
3: append (x, y) in windowWi; adapt/retrain model fi
4: model prediction error: ei(x) = |y − fi(x)|
5: cached model prediction error: eoi (x) = |y − f oi (x)|
6: if |ei(x)− eoi (x)| > θ then
7: update EG with the new model fi
8: update cache model f oi ← fi
9: end if

10: end if

The second possible forwarding decision is proposed by the discrepancy of the model fit-
ting towards the new input values in the SLW Wi of length M and the respective cached
model. For this the R2 is calculated using the local retrained model fi resulting into R2

i =∑M
i=1(yi−fi(x))∑M
i=1(yi−ȳ)

and the EG cached model f oi resulting into R2
o =

∑M
i=1(yi−foi (x))∑M
i=1(yi−ȳ)

. If the absolute
difference of R2

i and R2
o exceeds the pre-defined threshold θr2 > 0, then ED i updates the

EG with the new model fi and the locally stored cached model on the ED and EG is updated
to f oi = fi. If the difference of the fitting between both models is not exceeding the threshold
θr2, the models can be considered as similar and no update between EG and ED is required.
In this case both models can also be seen as equivalent in terms of fitting the values to the
model and the corresponding tolerance θr2.

The last possible discrepancy measurement of deciding to update the EG model is based
on the absolute difference of the model parameters w between the local model fi and the
cached model f oi . The difference of parameters between these two models can be calculated
by |wi − woi |. If the error difference exceeds a threshold θw > 0, then ED i updates the EG
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with the new model fi and the locally stored cached model on the ED and EG is updated to
f oi = fi. Suppose the difference of the model parameters between the local wi and cached
model wo

i is not exceeding the threshold θw. These models can be considered similar in that
case, and no update between EG and ED is required. Then these models can be seen as
equivalent in terms of model parameters concerning the corresponding tolerance θw.

4.5 Qualitative Model Selection

The previous paragraph introduced local model training at Edge Devices (EDs) using a fa-
miliarity and novelty incremental algorithm to retrain the model efficiently. Moreover, a
selective model forwarding and updating strategy based on predictive, fitting, and parameter
differences with respect to the Edge Gateway (EG) model has been presented. As stated
earlier, the use of edge-centric learning and adaption leads to an ensemble of models col-
lected at the EG. This is caused by the forwarding of each ED i generated local model fi
towards the EG. Applications in an IoT environment require a centralised knowledge for an-
swering queries from a user or an application. Solving the problem of having an ensemble
F = {f o1 , . . . , f os } of cached local models on the EG is proposed by model selection tech-
niques in this section. The aim is to define a model selection scheme that approximates the
best subset of models F ′ ⊆ F , which are as accurate as the global model fG, built over all
collected data. In this section, two possible model selection methods are introduced. The
first one is based on the familiarity calculations performed in the proposed ED intelligence
for retraining the local model. The selection of the subset of models is performed by the
input-error quantisation given from each ED. The second is based on the similarity of each
local ED model using Dynamic Time Warping (DTW) as measurement and some clustering
algorithm. Generalised, the first model selection strategy can be placed into ordering ensem-
ble pruning. The second proposed methodology can be placed into the clustering pruning
methods, which has been introduced in Section 4.2.

4.5.1 Input/Error-Space Quantisation

In Section 4.4, the usage of input-error space quantisation as a decision metric of retraining
and adapting the local model in EDs has been highlighted. It has been shown that the ED
i uses an online learning method to generate statistics over the received input values in the
form of prototypes. Each of the input data prototypes, noted as bk, is associated with an
error prototype, noted as uk, that shows the prediction performance of the local model fi.
These two prototypes are represented inside the statistics Ci. These statistics are generated
inside each ED and can be sent along with the updated model parameters wi towards the
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EG. Each ED i decides independently of the other EDs on forwarding its local model fi to
the EG. This results into different up-to-date models inside the EG. Further, due to the local
learning of each ED i, the EG stores s independent models in F = {f o1 , . . . , f oi , . . . , f os }.
The main tasks of the EG, as it is connected towards the Cloud (see architecture illustration
in Figure 4.2), is to answer queries q ∈ Rd coming from users or the application itself. So
the main challenge of the EG is to select from the variety of models stored the best subset
to answer the user queries q ∈ Rd. The answer to the query is needed in real-time and
as accurate as possible, which discards the possibility of asking the EDs for an update of
the local models. The proposed model selection inside the EG, is not only based on the
parameters of the models from each ED i but also on the statistics Ci containing the input
prototypes bk and the associated error prototypes uk of each ED i. These statistics can be
used to guide the EG in selecting the appropriate subset of local models F ′ ⊆ F to generate
an ensemble prediction ŷ towards the given query q. This prediction ŷ has to be of high
quality concerning accuracy as applications derive decisions and actions from them. The
ensemble model selection aims to generate the accuracy and prediction performance as close
as possible towards the global function fG, which would have been generated when all raw
data would be available at the EG.

The proposed model selection inside the EG is based on the elaborated method of bagging
(see Section 2.3.4), in which each learner’s prediction is aggregated towards the final pre-
diction, using majority voting or averaging. In the designed architecture continuous data
prediction is assumed, which leads to the advanced modified bagging methodology shown
in Equation (4.3). The ensemble prediction ŷ of the EG is therefore made by the weighted
sum of the individual predictions ŷi = f oi (q) from the cached models:

ŷ =
s∑
i=1

f oi (q)βi(q). (4.3)

The weight βi(q) in Equation (4.3) shows a function of q that can be interpreted as impor-
tance factor of the local model f oi at the EG to find the optimal subset of models F ′ ⊆ F . In
the following paragraphs, three possible implementation and weighting strategies are intro-
duced and highlighted to optimise selecting the best subset of local models.

Simple Model Aggregation (SMA): The first proposed method on aggregating and ensem-
ble pruning the cached model inside the EG is without exploiting the statistics Ci from the
EDs. The updated model fi will be send from ED to EG based on the in Section 4.4 defined
novelty and updating mechanism highlighted in Algorithm 2. In the model selection strategy
SMA the EG simply aggregates the individual predictions ŷi = f oi (q) for deriving the final
prediction ŷ. The weighted function βi(q) is set to βi(q) = 1/s. In this case the ensem-
ble subset F ′ ≡ F so that the EG places an equal importance towards each local model fi
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into the final prediction of ŷ to answer the query q. This methodology is equivalent to the
introduced bagging methodology of Section 2.3.4. Overall the formula to find the ensemble
prediction using the SMA model selection strategy can be defined as:

ŷ = fAV G(q) =
s∑
i=1

ŷi
1

s
(4.4)

Input-space Aware top-K Model (IAM): The second presented model selection strategy
is incorporating the statistics Ci send from each ED i towards the EG. The EG is using
these statistics to decide on the best K subset of local models fi for a given query q. More
specifically IAM is using the input prototypes bi,k over all cached models. Explaining the
procedure of the IAM, first the value of K is set to K = 1, representing the best top-1 model
for generating the ensemble prediction ŷ. The selected model can be defined as f ∗ with
f ∗ ∈ F so that the subset of the models only contain one single model, F ′ = {f ∗}. The
selected model with using the strategy of IAM is based on the `-th input prototype b∗` that is
the closest to query q compared to all input prototypes in B = {{b1,k}k1k=1∪· · ·∪{bs,k}

ks
k=1}

from all s models:

b∗` = arg min
b∈B
‖q− b‖ (4.5)

The from the EG selected best model f ∗ is considered to be the closest or most familiar to
the given query q based on the input subspace (represented by b∗` ) and should therefor be
providing the best prediction. Therefore, with using IAM it is important that each ED i is
updating and sending it’s statisticsCi towards the EG. Otherwise the EG can not discriminate
which model’s input subspace is the most familiar with the given query point. In Equation
(4.3) the ensemble prediction ŷ is calculated through the prediction of the selected model f ∗

and some weighting factor βi(q). The function responsible for weighting each cached model
f oi , highlighted in Equation (4.3), can be defined in IAM as:

βi(q) =

{
1 if ∃bi,k ∈ Bi : bi,k = b∗`
0 otherwise.

(4.6)

Given the definition in Equation (4.6), βi(q) is defined to be 1 if the closest distance of q
to the selected b∗` exists, otherwise it is set to be 0. In the case of K = 1 for IAM the EG
only selects one model f ∗ with the closest input prototype for prediction so that ŷ = f ∗(q).
After highlighting the approach using K = 1, the approach needs to be generalised when
K > 1. In this case the EG ranks all prototypes b ∈ B with respect to their distance towards
the query q. Those models f ∗1 , . . . , f

∗
K ∈ F ′ ⊂ F whose closest input prototypes are ranked
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in the top-K closest distances are used for the ensemble prediction, which is then:

ŷ =
K∑
i=1

f ∗i (q)β∗i (q) (4.7)

The weighting factor β∗i (q) is normalised to [0,1] with respect to the top-K inverse distances:

β∗i (q) =
e−‖q−b

∗
i,`‖2∑K

l=1 e
−‖q−b∗l,`‖2

. (4.8)

The influence of the distance ‖q− b‖, i.e., the closer to q the higher the weight importance,
is achieved by the exponential inverse squared distance weighting e−‖q−b‖2 . For K = S,
the Weighted SMA (WSMA) is obtained, where the normalised weights reflect the (inverse)
distance of q to the local closest input prototypes from each model.

Input/Error-space Aware top-K Model (IEAM): The last possible selection strategy for
finding the optimal subset of models F ′ ⊂ F is using not only the input prototype bi,`

of the statistics Ci,∀i but also the associated performance reflected by the error prototype
ui,`. So the model selection of IEAM selects the best top-K models from F , which are
not only familiar to the queried input but also effective for providing accurate predictions
based on their local prediction performance. This prediction performance is given through
the error prototype ui,` connected to the closest input prototype bi,`. Using a combination
of both directions, input space familiarity and associated prediction performance, allows the
EG to generate a more sophisticated model selection. Similar to the IAM model selection
the ensemble prediction ŷ is generated with the prediction of the selected models and some
weighting factor. The weight βi(q) for IEAM represents a degree of model closeness to an
issued query taking into consideration the (inverse) closest input distance bi,` ∈ Bi and the
associated median of the absolute prediction error ui,` around this subspace. Specifically,
βi(q) interprets the relative closeness of model fi to query q and can therefore be defined as:

βi(q) =
e−‖q−bi,`‖

2
(1− ūi,`)∑K

l=1 e
−‖q−bl,`‖2(1− ūl,`)

, (4.9)

In Equation (4.9) is ūi,k =
ui,k∑
u∈U u

showing the normalised median of the prediction error
of model fi over the k-th input/error subspace among all error medians U = {{u1,k}k1k=1 ∪
· · ·∪{us,k}ksk=1} from all s models. Using the weighting factor of Equation (4.9) for the final
prediction outcome ŷ, IEAM with K ≥ 1 generates a ranking of the models from F with the
top-K having the highest degree of closeness by βi(q). So that ŷ =

∑K
i=1 fi(q)βi(q) where

βi(q) is provided in (4.9).
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4.5.2 Similarity-Based Clustering

In the previous section, the top-K best models close to the input space bk or the input/error
space using both statistics in Ci have been used to generate a selection of models to provide
an ensemble prediction ŷ towards a query q. These methods belong to the methodology of
ordering ensemble pruning techniques. In the following paragraph, this strategy is advanced
by introducing a similarity clustering-based pruning approach for model selection inside the
EG.

In Section 3.6.2, the metric of Dynamic Time Warping (DTW) [218, 217] for highlighting
time series similarity has been introduced. In dynamic environments such as IoT applica-
tions with EDs, the ability to have data streams of the exact same time length is infeasible.
Therefore, using Euclidean distance (L2-norm) as a similarity metric results in poor results
as it only compares the points at time t of each time series with each other. Euclidean dis-
tance does not consider that two time series can have the same distribution but might be a
shift by a specific time horizon. In Figure 4.4, the visual difference of DTW and L2-norm as
time series comparison metric is highlighted.

Figure 4.4: Comparison of DTW and L2-norm for finding similarity in time series [218].

DTW calculates in an univariate data dimension setup the similarity of one input data stream
x = [x1, x2, ..., xg, ..., xn]T with another data stream z = [z1, z2, ..., zh, ..., zm]T . Aim is
finding the optimal wrapping path P which minimises the distance between these two data
streams by aligning the elements of each data stream. The distance can be expressed by a
function dist(g, h) for the elements at point g of the datastream x and h of the data stream z.
The most popular distance functions are: (i) dist(g, h) = |xg−zh|, using the absolute differ-
ence between two points or the magnitude; (ii) dist(g, h) = (xg−zh)2, for the squared of the
difference. Based on the calculated distances an n-by-m matrix is generated, in which each
element (g, h) corresponds to the distance between point dist(xg, zh). Given this distance
matrix, it is possible to define a warping pathP withP = (p1, p2, ..., pr, ..., pR),max(m,n) ≤
R < m+ n− 1. The warping path is constraint to the following three conditions:

• Boundary conditions: The warping path has to start at p1 = (1, 1) and end at pR =

(m,n);

• Continuity: The steps are restricted to the neighboring points. If warping path pr =

(g, h), then pr−1 = (g′, h′), where g − g′ ≤ 1 and h− h′ ≤ 1.
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• Monotonicity: The points in the warping path must be monotonically ordered. Given
pr = (g, h), then pr−1 = (g′, h′), with g − g′ ≥ 0 and h− h′ > 0.

Element r of the warping path P is defined as pr = (g, h)r. The optimal path P can be found
by minimising the cumulative distance for each path (see Equation (4.10)). Therefore, the
DTW measure can be defined as:

dtw(x, z) = min
p

(
R∑
r=1

dist(pr)) (4.10)

To calculate the minimum warping path of Equation (4.10), dynamic programming is used
with the following recurrence of Equation (4.11). This equation defines the cumulative dis-
tance γ(g, h) as the distance dist(g, h) of the current element and the minimum of the cu-
mulative distances of the adjacent elements, resulting into the following equation:

γ(g, h) = dist(xg, zh) + min{γ(g − 1, h− 1), γ(g − 1, h), γ(g, h− 1)} (4.11)

In applications of deployed EDs, the most common measurements and values are occurring
in a multidimensional space. Using the DTW as a measurement for the similarity between
different EDs, the DTW calculation must be adjusted towards a multidimensional usage.
Several DTW extensions towards multidimensional space have been proposed in the litera-
ture [247, 248, 249, 250, 251]. Most common is the use of a p-norm of each dimension. It is
important to normalise and scale the data of each dimension with a mean of zero. In Equa-
tion (4.12), the formula of the MD-DTW is highlighted. Each dimension can be weighted
with λn towards its importance and influence. If λ = 1 for all dimensions d, each dimension
is set to equal importance.

dist(g, h) = |
d∑

n=1

λn(xg,n − zh,n)p|
1
p (4.12)

As this thesis contributes towards efficient and edge-centric data analytics over continuous
data streams, it should be noted that the calculation of DTW can be extended by scaling the
algorithm of DTW [252], introducing online and streaming DTW [253], or by performing
piecewise calculations of DTW measurements [254]. It is out of scope for this thesis to
evaluate these different methods and rather point the reader to the cited literature.

The introduced MD-DTW can be used as similarity measure inside the EG to group the
cached local models F = {f o1 , . . . , f oi , . . . , f os } of all connected EDs s. Performing the
grouping using the MD-DTW, a reconstruction of the actual multidimensional data stream
of each ED i is required to extract in the EG. This requires additional computation from the
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ED by performing an additional model hi(x) that represents the input data of ED i over a
time-horizonM using a Sliding Window (SLW)Wi at the EG. Therefore, the ED i is sending
additionally to its local model fi, a model hi that represents the input data. Highlighted
in Section 2.3.3.1, ARIMA is one possible solution to model a time series. However, the
authors in [255] show a communication efficient and qualitative approach of reconstructing
the data of a node in a centralised location without transmitting data. The function hi is
cached inside the EG so a collection of H = {ho1, . . . , hoi , . . . , hoj , . . . , hos} of reconstruction
models is available. The EG is able to generate the distance measurement DTW for each
ED i and ED j using the reconstruction functions hoi . A normalisation of this dtw value has
to be performed to guarantee a possible comparison metric needed for further evaluation.
Therefore, the dtw(hoi , h

o
j) will be divided by the length of each ED i and j dataset, resulting

in the metric of Normalised Dynamic Time Warping (N-DTW) as presented in Equation
(4.13).

ndtw(i, j) =
dtw(hoi , h

o
j)

|hoi |+ |hoj |
(4.13)

Given the ndtw value matrix of each combination of the EDs s, it is possible to perform
grouping based on their similarity. Most commonly used for clustering over continuous data
or grouping similarity-based time series [256] are the algorithms already presented in Fig-
ure 2.7. These can be hierarchical clustering, k-means, and density-based clustering with e.g.
DBSCAN. The proposed grouping algorithm inside the EG is fundamental for the selection
of the subset F ′ ⊆ F of stored models from each ED i. In this thesis, the hierarchical clus-
ter algorithm performs the grouping based on the ndtw matrix. Not only is this algorithm
parameter-free and deterministic, but also it is easy to interpret and understand. Primarily
when further actions are performed based on the draw insights of the given groups, a hi-
erarchical implementation allows easier exploring. Moreover, the architecture in IoT and
edge-centric applications is mostly ordered over different communication levels, allowing
this chosen cluster algorithm to be adapting this network architecture. The result of the
hierarchical clustering is a dendrogram, showing the grouping over different levels, an ex-
ample is visualised in Figure 4.5. Important is that after constructing this dendrogram, a cost
threshold st has been defined to select the level of grouping.

Hierarchical clustering can be divided into two possible methods: divisive and agglomer-
ative. The agglomerative clustering is using a bottom-up grouping method, in which each
member (ED) is placed in one cluster. Then the most similar members are grouped together
based on the given linkage function. In this thesis the members would be each ED i with its
distance metric of the ndtw (see Equation (4.13)). This results into starting with A-cluster
withA = s and s represents the number of EDs that are connect to the EG. The used linkage
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Figure 4.5: Dendrogram example for hierarchical clustering.

functions [96] available in the literature are:

• Single, grouping the members with the lowest (closest) distance and therefore dissim-
ilarity. This is defined as: dist(x, z) = mini∈x,j∈z dist(i, j)

• Complete, grouping of the members with the highest (furthest) distance and therefore
dissimilarity: dist(x, z) = maxi∈x,j∈z dist(i, j)

• Average, grouping by using the average distance between two members: dist(x, z) =
1
|x||z|

∑
i∈x
∑

j∈z dist(i, j)

Divisive clustering is using the approach of top-down by splitting the already grouped mem-
bers based on their dissimilarity. Therefore, this method is starting with A = 1 cluster and
split towards A = s cluster or until some dissimilarity threshold is reached.

This thesis aims to propose a latency-efficient edge-centric analytic strategy that will not
send any raw data over the communication channel from ED i to EG but instead only meta-
data and model parameters wi of the locally updated model fi. In the previous section, the
statistics Ci of each ED are sent to the EG alongside the model parameters wi. These statis-
tics are used to select the top-K best models to answer a query q. The similarity-based model
selection inside the EG receives besides Ci and fi the data reconstruction function hi from
the EDs. The EG performs the calculation of ndtw (see Equation (4.13)) and the agglomer-
ative hierarchical cluster with an average linkage function based on a cost threshold st. This
results into a cluster group A = {A1, . . . , Aa} mapping each ED i into a group Aa ∈ A. So
that the each of the ensemble models in the EG is mapped as: F = ∪ai=1Ai and Ai∩Aj = ∅
for i 6= j. Issues the application or user now a query q to the EG, the query q is finding the
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closest K = 1 input data prototype b∗` that minimised the distance as defined for the IAM
using Equation (4.5). Then the cluster group A of the associated ED i is identified and all
members n of this group A are selected for f ∗1 , . . . , f

∗
n ∈ F ′ ⊆ F . The ensemble prediction

of Equation (4.3) for using the similarity-based model selection inside the EG over the best
selected subset is defined as:

ŷ =
n∑
j=1

f ∗j (q)β∗j (q) (4.14)

The weighted factor β∗j (q) is defined using the SMA with 1/n.

4.6 Performance Evaluation

4.6.1 Experimental Setup

The dataset (DS) used in this chapter has been already introduced in Section 3.6. It contains
415 weather stations deployed around the United Kingdom (UK). Each of these stations rep-
resents an Edge Device (ED) that measures the surrounding environment’s contextual data.
This data has been collected over the time horizon of four-month (December 2017 till March
2018), using the API of Wunderground [216]. For simplicity only 30 stations from the over-
all 415 has been selected randomly to show the methodology of this chapter. It should be
noted, that another dataset and the effectiveness has been published in previous work [4] and
in related work advancing the introduced methodologies [233]. An overview of the location
of the chosen weather stations can be found in Appendix B. Each weather station represents
an ED i with an overall of s = 30 stations, each measures a 9-dimensional vector x contain-
ing temperature, dew point, humidity, wind-speed, wind-gust, wind direction, pressure, wind
chill, and precipitation. The data collected frequency is every 5 minutes over the time hori-
zon of 87 days, resulting in a dataset size of N = 650, 683, assembling roughly 250 values
measured per ED per day. All data is normalised and scaled, i.e., each parameter x ∈ R is
mapped to x−µ

σ
with mean value µ and variance σ and scaled in [0,1], thus vector x ∈ [0, 1]d.

The experiments perform a parametric regression analytics over a d = 9 dimensional datas-
pace x, y). Each ED i is evolving a function fi(x) to generate a multivariate Linear Regres-
sion Model (LM) to learn the dependency between input x and output y. The input variables
for the dataset representing x are the measurements: dew point, humidity, wind-speed, wind-
gust, wind direction, pressure, wind chill, and precipitation. Furthermore, we aim to predict
the output-variable y representing the temperature. This LM y = fi(x) = wix

T is dis-
tributed by only the constructed model-parameters wi ∈ Rd over the network towards the
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EG. Along with the regression function fi(x) the ED is equipped with a time series recon-
struction function hi(x) that is able to represent each dimension for reconstruction. Both
functions are evolving and learned over a Sliding Window (SLW) Wi with a time-horizon
M . The setup for the experiments are a training time period of t = 3, 000 and a testing period
of t = 35, 000. After the initialisation period, the methodologies explained in Section 4.6.3
will be carried out inside the ED and EG.

Assessing the accuracy of the methodologies, a type of cross-validation has been deployed
to guarantee independent validation of the results. Randomly 24 time-points have been se-
lected. At selected time the methodology implemented is stopped and the next M values of
each station is used as query inputs q at the EG to analyse the performance of the differ-
ent model selection strategies. More specific, the following time points have been chosen:
2018-01-02, 2018-01-05, 2018-01-12, 2018-01-22, 2018-01-25, 2018-01-29, 2018-02-01,
2018-02-05, 2018-02-07, 2018-02-08, 2018-02-09, 2018-02-11, 2018-02-14, 2018-02-16,
2018-02-17, 2018-02-18, 2018-02-19, 2018-02-20, 2018-02-21, 2018-02-22, 2018-02-23,
2018-02-24, 2018-02-25, 2018-02-26.

4.6.2 Performance Metrics

The conducted performance metrics rely on the already introduced metrics in Section 3.6.2.
This chapter uses the Kullback-Leibler (KL) divergence to identify the information loss pri-
marily used for the sensitivity measurement of the conducted analysis. The definition has
been introduced in Equation (3.26). Further, to compare the predictive results, the accuracy
metrics of MAE, RMSE and SMAPE are used. The calculation can be found in Equation
(3.30), (3.29), and ( 3.31), respectively. Besides the information loss and accuracy, the meth-
ods presented rely on the importance of efficiency concerning communication reduction and
energy saving. Therefore, the same calculation of communication as introduced in the previ-
ous chapter is used. The communication is measured as the number of times the transmission
of data occur from the ED i over all EDs s to the EG.

c(T ) =
T∑
t=1

s∑
i=1

Ii,t, (4.15)

The presented Equation (4.15) is defined with Ii,t = 1 if ED i sends its sensed value to the EG
and Ii,t = 0 otherwise. Evidently, the overall communication of s EDs over T sensed values
can be presented as baseline method and requires T · s communication, since Ii,t = 1, ∀i, t.
The percentage of communication is then c(T )

T ··· when applying the proposed methodologies.
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4.6.3 Comparative Assessment

Evaluating the performance of the latency-efficient edge-centric analytics strategies intro-
duced in this chapter, the evaluation must be split into the model-retraining and model-
forwarding procedures implemented inside the ED and presented in Section 4.4. This ED
strategy of efficiency is mainly using the idea of familiarity and input-error space quantisa-
tion as decision mechanism to forward the model to the EG. Based on this idea, the following
forwarding mechanism can be defined and tested in the following sections:

1. the first model-forwarding method relies on the prediction error tolerance, deciding
to forward the model parameters wi if the error between the current cached model at
the EG and the updated model at the ED differs above a given threshold (θe);

2. the second decision to forward the model parameters to the EG, is based on the fitting
of the model with respect to the data. The fitting is measured using the R2 metric over
the EG cached model and local updated model over a time horizonM . If the difference
between them exceeds a threshold (θr2), the model is sent to the EG;

3. the last model-forwarding decision method is based on the divergence of the parame-
ters wi of the newly trained local model and the parameters of the cached model inside
the EG. The divergence is measured by the angle between them represented with a de-
gree value. If this degree is exceeding a certain value (θw), the local model is sent to
the EG.

This chapter aims not only to reduce communication by deciding on when to forward the
model from the ED to the EG, but also to enable edge analytics for real-time prediction.
Therefore, the second evaluation focus is on qualitative model selection methodologies intro-
duced in Section 4.5. The aim is to assess these methods based on their ability to qualitative
predict a given query inside the EG. Overall the following methods are compared with each
other in the assessment analysis:

1. The global method is representing the baseline with sending all raw data to the EG
and generating a single function;

2. Simple Model Aggregation (SMA) introduces the method of aggregating all individ-
ual functions fi generated by each ED at the EG by weighting the importance of each
ED equally;

3. Input-space Aware top-K Model (IAM) represents the method of using the input
space quantisation with the given prototypes bk as a selection mechanism to find the
optimal subset of the models to perform the ensemble query prediction at the EG;
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4. Input/Error-space Aware top-KModel (IEAM) is extending the IAM methodology
by further using the error-space. Therefore the entire statistics Ci are used to generate
the ensemble query prediction inside the EG;

5. Similarity-based selection Model (SBSM) is introducing the method of clustering the
EDs based on their similarity of the input data using DTW as metric and the hierar-
chical clustering to group the most similar EDs. The ensemble prediction for a certain
query is generated by selecting the closest input prototype bk and the EDs belonging
in the same cluster.

4.6.4 Parameter Configuration

The previous methods and strategies highly depend on the defined parameters. In the fol-
lowing Table 4.1 all parameter configurations are listed. The threshold ρI for identifying
the familiarity of the newly measured value xt has been normalised for the input domain
[0, 1]d, i.e., ρI√

d
∈ (0, 1). If the value of the familiarity threshold is close to 1, fewer pro-

totypes of the input-space are generated with a broader quantisation. Whereas the value is
towards 0 more prototype clusters are generated with a more detailed quantisation of the
input space. The other threshold for deciding on model retraining given the previous input-
space familiarity identification is ρO, which shows the familiarity with respect to the pre-
diction ability. This parameter is set to be a portion of the MEDi, the median of the error
differences |ei(x) − eoi (x)| resulting into ρO = γMEDi for the initial value setting (high-
lighted in Algorithm 2). The final forwarding decision based on three parameters (θe, θr2,
θw), depending on the chosen method. The values for θe decides on forwarding the model
from the ED to the EG based on the predictive divergence of the models. The decision
is made by choosing γMEDi. The value ranges for fitting and model parameter diver-
gence as decision mechanism to forward the model is shown in the parameter setting with
θr2 = {0.0000001, 0.0001, 0.001, 0.01} and θw = {0.01, 0.1, 0.5, 1} respectively. For model
selection inside the EG, the top-K parameter setting given with the values K = {3, 5, 7}
are of importance. Further, the similarity-based clustering with using the linkage of average
given the cost threshold values of st = {0.0017, 0.002, 0.0022, 0.0033}.

Model-Retraining Model-Forwarding Model-Selection
Input-

prototype
Threshold

Error
Tolerance
Prototypes

Sliding
Window

Size

Learning
Rate

Threshold
Predictive

Error

Threshold
Fitting

Threshold
parameter

Cluster
Size

Hierarchical
Cluster

threshold
Notation ρI γ SLWW α θe θr2 θw K st

Value /
Range

[0.01,
0.05,
0.1,
0.2]

[0.001,
0.005,

0.01, 0.05,
0.1]

[250,
500,
750,
1000]

[0.1]

[0.01,
0.001,

0.0001,
0.00001]

[0.0000001,
0.0001,
0.001,
0.01]

[0.01,
0.1,
0.5,
1]

[3,5,7]

[0.0017,
0.002,
0.0025,
0.0033]

Table 4.1: Parameter Setting for model forwarding and selection strategies
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4.7 Performance Assessment

In the following section, the performance of the introduced methods and strategies is eval-
uated towards efficiency in terms of communication reduction and accuracy performance
using the parameter settings and metrics presented above. This evaluation is divided into
two assessments, the model-forwarding and settings at the ED i and the model-selection
strategies at the EG over a given query q with the resulting prediction performance. The
assessment is using the presented DS and cross-validation method of the randomly selected
24 time-points.

4.7.1 Model Forwarding Strategy

Section 4.4 highlights the model-forwarding strategies, which are analysed with respect to
its performance in details throughout this section. The hypothesis of using a familiarity
based retraining decision making that is based on input-space prototype quantisation inside
the ED is analysed towards reducing communication and accuracy of prediction at the EG.
Before comparing the model-forwarding mechanisms a sensitivity analysis is needed for the
influence concerning the parameters and their impact on communication and accuracy.

In Figure 4.6 (a), increasing the radius of ρI/
√
d to decrease the number of input-space

prototypes bk is presented. This figure shows that a value of ρI/
√
d = 0.1 results into

approximately 500 input-space prototypes, whereas a value of ρI/
√
d = 0.05 increases the

input-space quantisation towards k = 3, 000. The value is the average number of prototypes
per ED i in the introduced DS of 30 weather stations. Following this inside, Figure 4.6 (c)
analyses the ratio of training the model inside the ED using the introduced familiarity based
strategy and the number of times the model parameters wi are sent to the EG using the error
prediction forwarding method with threshold θe. This figure shows that the parameter ρ0 and
θe control the ratio between training and communication. Decreasing the threshold increases
the ratio towards the optimum of 1. This optimum of 1 expresses that each time the model
is retrained inside the ED based on the novel algorithm, it is also sent towards the EG. This
avoids unnecessary retraining without sending.

In Figure 4.6 (c), the importance of small θ-values is shown to guarantee a balanced ratio of
training and sending and the significance of the value of ρ0. Higher values with ρ0 ≥ 0.1 lead
to less retraining and faster ratio convergence. This effect is further highlighted in Figure 4.6
(b). In this figure, the behaviour of ρ0 represented by γ as ρ0 = γMEDi shows the impact
towards the amount of times the model is retrained inside the ED. It highlights that even with
a small value of γ, the model’s training can be decreased by 20%. The convergence towards
no training inside the ED can be seen when γ tends towards 0.1 of the MEDi.
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Figure 4.6: Evaluation of influence of different parameter settings at the ED i according to
communication and retraining as well as its effect on accuracy for using SMA at the EG.
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The impact of accuracy at the EG when using different values for the parameter settings of
θe, ρI and γ is shown in Figure 4.6 (d). The accuracy for the chosen parameters are only
considered for the SMA as model selection method inside the EG. All following figures in
this subsection use SMA as model selection strategy measuring the accuracy of the model-
forwarding methods. Further analysis between the different model-selection mechanisms can
be found in the subsection that follows. In Figure 4.6 (d) the communication is controlled by
γ with a fixed ρI and θe. Choosing the parameter for controlling the number of prototypes
ρI to be small and using a small model-forwarding prediction error tolerance θe results in
the best trade-off between communication and accuracy for considering only SMA as the
model-selection method. However, choosing the value of ρI = 0.01 is developing an average
number of prototypes bk per ED of k = 8, 000 whereas ρI = 0.1 only generates k = 500.
Increasing the number of prototypes is require more storage capacity inside the ED and EG.
Additionally, Figure 4.6 (d) shows that using a small threshold θe for model forwarding
results in better accuracy than the larger values. Besides the value of γ, also the value for
model-forwarding threshold θ is controlling the number of communication. This has been
shown by the ratio training and sending in Figure 4.6 (c) but is further evaluated in Figure 4.6
(e). In the latter figure, the communication is fully controlled by the model-forwarding
tolerance θe, in which the parameters of ρI and γ are fixed. The main insight of this figure
is that θe is not influencing the accuracy at the EG. It is possible to have the same level
of accuracy at the EG with 50% of remaining communication and the same with just 10%.
This figure concludes that each θe, ρI and γ pair generates an upper-bound of accuracy
level, which is independent of the communication frequency. Therefore, further analysis
is assessed using the best training-sending ratio and controlling the communication by the
value of γ with fixing θe to be small.

The last parameter influencing the communication and the accuracy is the size of the Sliding
Window (SLW) Wi. In Figure 4.6 (f), the influence of the size M towards the communi-
cation and accuracy is highlighted. The results of this figure are based on the parameter
settings of ρI = 0.1 and using SMA as a model selection strategy. This illustration indicates
that increasing the size of the SLW is improving the trade-off between communication and
accuracy. More precisely, using 40% of communication with an SLW size of M = 1000

is resulting in a SMAPE of 1.28, whereas the SLW size of M = 250 is resulting in 1.6 for
the SMAPE. The assumption of using large SLW sizes to improve the accuracy should be
considered with the aspect of the storage capacity inside the ED to provide an appropriate
efficiency towards battery and lifetime.

The setting and evaluation of the parameter values and their corresponding influence have
been highlighted above. Choosing these settings, the proposed model-forwarding strategies
are analysed. Given the three different model-forwarding strategies of prediction, fitting and
parameters divergence as decision mechanism inside the ED, the aim is to identify which
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racy using the metric MAE.
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(c) Trade-off between communication and
accuracy using the metric RMSE.
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(d) Trade-off between communication and infor-
mation loss using the metric KL divergence.

Figure 4.7: Evaluation of the proposed model-forwarding strategies at the ED and its influ-
ence on communication accuracy trade-off at the EG using SMA as selection method and
the performance metrics SMAPE, RMSE, MAE and KL divergence.

methods prove to be most efficient by analysing the trade-off between communication re-
duction and quality of predictive results at the EG. At this point, only the forwarding mech-
anisms inside the EDs are investigated with respect to their performance, so that the model
selection of SMA has been used for comparison only. Figure 4.7 shows the comparison of
the three highlighted strategies using prediction, fitting and parameter divergence over the
four performance metrics MAE, RMSE, SMAPE and KL. The setting of the parameters for
the following analysis results is based on the previous of Figure 4.6. The size of the SLW
Wi is set to be M = 250, due to limited storage capacity assumption and ρI = 0.1 for the
retraining ratio. The error-prediction forwarding strategy is marked inside the illustrations
with (1), the model-fitting with (2) and the model-parameter divergence strategy with (3).
Comparing the three different strategies of model-forwarding, it can be seen in Figure 4.7 (a)
that with respect to SMAPE, the model-forwarding method of error-prediction and model-
parameter divergence generate similar results. The model-fitting method achieves with more
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communication the same accuracy and generates a lower trade-off consequently. Figure 4.7
(b) with the metric of MAE is equivalent to the results of the previous figure with SMAPE.
In Figure 4.7 (c), with the performance metric of RMSE, the error prediction generates better
results than the model-parameter divergence when increasing the remaining communication
above 30%. Similar is the trade-off efficiency evaluation shown in Figure 4.7 (d) with the
information loss represented by the KL divergence. The error-prediction model-forwarding
strategy generates the n model-forwarding strategy.

Based on the analysis of the model-forwarding parameter settings and methodologies, com-
parison in the following performance assessment towards the model-selection at the EG is
based on the error-prediction strategy using θe, and a relative small SLW size of M = 250

as the storage capacity is limited in IoT devices. Further, it should be noted that the values
of ρI = {0.05, 0.1} will be used and the communication reduction is controlled by γ only,
using a fixed θe. This has been shown to generate the highest ratio between training and
sending inside the ED with good accuracy results towards query predictions.

4.7.2 Qualitative Model Selection

The assessment of model-forwarding strategies inside the ED regarding the influence of pa-
rameter settings and accuracy level has been discussed in the previous section. The central
focus of this section is to evaluate the qualitative model selection methodologies inside the
EG towards efficient and qualitative query prediction. Efficiency is defined here with low
communication overhead while maintaining or improving the accuracy level. The summary
of comparative models has been highlighted in Section 4.6.3. The baseline for all introduced
model selection strategies is the centrally generated model using the entire raw-data. Even
though this is not an efficient and latency enabling methodology, the aim is to compare the
methods against the accuracy of the central model for a full assessment. The comparison of
all model selection strategies is against the Simple Model Aggregation (SMA), which means
a simple aggregation of all models generated at the ED at time t, introducing the input-
error space quantisation with the Input-space Aware top-K Model (IAM) and Input/Error-
space Aware top-K Model (IEAM) and the extended similarity-based clustered method of
Similarity-based selection Model (SBSM).

The methodologies of IAM, IEAM and SBSM require the setting of parameters that highly
influence the accuracy-efficiency level. Therefore, in Figure 4.8 and Figure 4.9, the influence
of the similarity threshold st for SBSM and selected cluster size K for IAM and IEAM are
evaluated in detail. Figure 4.8 (a) shows the output of the dendrogram generated from the
hierarchical cluster using Normalised Dynamic Time Warping (N-DTW) as the similarity
function of each ED i. Based on this dendrogram, the similarity threshold st can be defined
for generating the groupA = {A1, . . . , Aa} in which each EDs i is mapped to a cluster. The
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detailed dendrogram in Figure 4.8 (a) indicates the range of the chosen similarity threshold
of st = [0.0017, 0.002, 0.0025, 0.0033]. Highlighted is the strong dissimilar between ED
i = 2, 6, 10, 22 towards all other EDs. Using the value of st = 0.0017 generates an overall of
a = 20 cluster, using st = 0.002 only 15, with st = 0.0025 overall 11 and with st = 0.0033

the cluster size is reduced to 8. Connecting the information summarised in Table 4.2 with
the dendrogram of Figure 4.8 (a) and the presented geographical information in Appendix B
will provide an insight into the EDs relation. Overall it is accentuated from the dendrogram
that some EDs are highly connected and similar in their measured input data x. However, 4
to 5 evident visible groups can be seen from Figure 4.8 (a) with a very strong dissimilarity
so that a value of a ≥ 4 is appropriate.

Station ID i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0.0017 1 14 20 11 3 3 17 3 10 8 18 2 10 12 5 10 9 13 9 15 8 10 19 4 16 10 6 7 8 10
0.002 1 9 15 6 3 3 12 3 5 5 13 2 5 7 4 5 5 8 5 10 5 5 14 3 11 5 4 4 5 5

0.0025 1 5 11 2 2 2 8 2 2 2 9 1 2 3 2 2 2 4 2 6 2 2 10 2 7 2 2 2 2 2
st

0.0033 1 2 8 1 1 1 5 1 1 1 6 1 1 2 1 1 1 2 1 3 1 1 7 1 4 1 1 1 1 1

Table 4.2: Cluster allocation for different similarity thresholds st for each ED i at time
instance t =′ 2018− 02− 05′

Based on the information provided from the dendrogram, the communication-accuracy trade-
off using SBSM over the selected four different similarity-thresholds st in comparison to
SMA as model selection can be seen in Figure 4.8 (b). This figure shows a clear improve-
ment with any selected value of st in contrast to SMA using as accuracy metric SMAPE.
This figure is based on the model-forwarding strategy of the prediction-error threshold θe.
Similar results are obtained with the other two model-forwarding methods but not shown
due to limited space. Additionally, it is visible that choosing a small similarity threshold st
with less EDs per group A results in better accuracy than using a larger number of EDs in
one group indicated with higher values of st. This is seen for st = 0.0017 and a remaining
communication of 40% in opposit to st = 0.0033 and the same amount of communication
between ED and EG. The smaller st-value generates an improvement towards the accuracy
of 0.5 in relation to the larger st-value. The best trade-off between accuracy and communi-
cation is seen for st = 0.0017. Therefore this similarity threshold is selected for all further
performance assessments and model selection comparisons.

The assessment for the model selection methods IAM and IEAM depend on the parameter
setting of the selected modelsK. Figure 4.9 assess the performance between different values
for K over the methods of IAM and IEAM. Figure 4.9 (a) highlights the impact of changing
K on IEAM using the accuracy metric SMAPE. The results are compared against SMA using
the parameter settings identified in the previous section. In this figure, it is possible to see that
choosing the value ofK = 3 for IEAM improves the overall accuracy in contrast to the SMA
model selection method. The values for K = {5, 7} only improve the accuracy below 50%
of communication with respect to SMA. Figure 4.9 (b) uses the KL divergence as a metric
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Figure 4.8: Assessment for the similarity-bases model selection showing the dendrogram
and cost-threshold st influencing the cluster group size a towards accuracy using SMAPE.

to identify the information loss between the different settings of K for IAM and the SMA.
In this figure, the information loss for SMA is independent of the communication reduction
and nearly constant at a value of 0.004. The information loss for IAM deviates considerably
between the different values of K and a communication of more than 20%. Mainly, IAM
with a value of K = 3 shows immense information loss when the communication increases
above 30%. The only value of K that improves the performance of SMA permanently is
K = 7. Interpreting these results as more EDs are used to generate the ensemble prediction
for answering the query q the more information is lost, but higher accuracy is gained. For
the remaining of the assessment, the value of K = 3 is chosen for all accuracy metrics and
K = 7 for the information loss comparison. Dependent on the application, the focus can be
shifted between accuracy or information loss.

After identifying the setting of the parameters for the SBSM, IAM and IEAM, the compari-
son between these methodologies and SMA as well as the global raw-data transferred model
implementation is presented in the following figures. All following evaluations are based on
the predictive error model-forwarding strategy with θe using ρI = 0.1 or ρI = 0.05, which
has been identified as the best parameters in the previous assessment (see Section 4.7.1).
Figure 4.10 shows the performance assessment over all four metrics, SMAPE, MAE, RMSE
and KL divergence, using the selected model selection strategies.

Figure 4.10 (a) shows the impact between communication reduction and accuracy of all
model selection methods with the metric of SMAPE. It is clearly visible that the global model
using the raw-data results in the worst trade-off. All other proposed ensemble pruning model
selection methodologies perform even with the same communication levels less than half
of the prediction error. Overall the SBSM outperforms all other model selection strategies.
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showing the efficiency trade-off using SMAPE.

Figure 4.9: Influence of cluster size setting K for input-error space quantisation model se-
lection IAM and IEAM towards accuracy-efficiency trade-off using SMAPE.

Followed by IEAM and IAM. If the communication is below 40%, the SMA outperforms
the two model selection methods, IEAM and IAM.

In Figure 4.10 (b) the trade-off between communication reduction and information loss using
the KL divergence metric is highlighted. Noticeable is that the global model generates less
information loss than any model selection method introduced in this chapter, except the
SBSM. The SBSM method is developing a lower information loss when the communication
falls below 40%. SMA is causing the most loss of information, followed by IAM and IEAM.
The global model performs well in the KL metric as it transmits raw-data and can therefore
capture relevant details of the data.

The trade-off with respect to the MAE for all model selection methodologies is shown in
Figure 4.10 (c). Observable from this figure is when the communication is reduced below
60%, all model selection strategies proposed in this chapter perform better than the global
generated model with raw data. The IEAM model generates less error with the same com-
munication than the SMA. The IAM, however, only performs better than SMA when the
communication is reduced below 40%. SBSM greatly outperforms all other model selection
strategies. This method reduces with the same communication the MAE nearly four times
compared to the other selection methods.

In the last Figure 4.10 (d), the trade-off for RMSE over all methods is compared. In this
figure, the SMA can be defined as the worse model selection method. The global model out-
performs all other strategies above a remaining communication of 50%. This turning point
shows the improvement of SBSM, IAM and IEAM in comparison to the global model. All
these proposed model selection strategies generate less RMSE with the same communica-
tion level than the global model. The ranking of the best trade-off is lead by the SBSM,



4.7 Performance Assessment 109

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

SMAPE

%
C

om
m

un
ic

at
io

n
SMA

IAM (3)

IEAM (3)

SBSM (0.0017)

Global

(a) Communication-Accuracy trade-off for
SMAPE over all model selection methods
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(b) Communication-Information loss trade-off for
KL divergence over all model selection methods
using ρI = 0.1.
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(c) Communication-Accuracy trade-off for
MAE over all model selection methods
using ρI = 0.05.
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RMSE over all model selection methods using
ρI = 0.05.

Figure 4.10: Evaluation of all qualitative model selection methodologies at the EG assessing
the trade-off between communication and accuracy using the model-forwarding strategy of
prediction-error.

followed by the IAM and IEAM. Both of these models generate similar trade-off results.
SMA produces the highest RMSE with the same communication as all other methods.

Generally, in all of these four illustrations of Figure 4.10, the inaccuracy increases with
more communication between ED and EG. The possible explanation of this is by assuming
that with more communication, more variety of model updates is presented in the EG and
therefore, outliers and fault measurements can place more importance on them. However,
the global model with raw-data transfer stays constant while reducing the frequency of data
forwarding.
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4.8 Chapter Summary

In this chapter, the focus has been moved from simple data-forwarding strategies developed
in Chapter 3 towards edge-centric analytics with intelligent model retraining and forward-
ing decision making in Edge Devices. Different strategies of model-forwarding methods
based on prediction, parameter divergence and the fitting discrepancy have been evaluated
in Section 4.7.1, showing the possibility to maintain accuracy at the EG while reducing the
retraining and sending of model parameters and therefore communication overhead. More-
over, this chapter contributed to investigating the ability of EG to select from individual
models collected the best subset to provide a qualitative ensemble prediction for a given
query q. Four different methods have been introduced and evaluated in Section 4.7.2. Given
the performance assessment of this chapter, SBSM clearly outperforms all other models in
terms of accuracy and information loss. IEAM only slightly improves the IAM strategy by
the accuracy efficiency trade-off. SMA in contrast to the other three methods, only performs
better for a communication level above 50%. The global model mainly generates higher er-
rors with the same communication than all different model selection strategies. Therefore, it
can be concluded that it is possible to enable local learning with model selection strategies
at the central coordinator to intelligently adapt to concept changes and provide qualitative
analytics, while reducing the communication and bandwidth by only transmitting model pa-
rameters and meta-data statistics.
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Chapter 5

Privacy-Efficient Learning at the
Edge

5.1 Chapter Overview

In the previous Chapter 4, edge-centric analytics at Edge Devices (EDs) is considered under
the assumption that data can be shared between devices and Central Location (CL), e.g. the
Edge Gateway (EG) or Cloud. Performing local analytics was adopted to overcome the issue
of latency in continuously changing environments by performing real-time analytics at the
ED. This enables the ED to adapt to concept drifts without relying on the central coordina-
tor to notify or update the device. However, in the previous chapter, the input/error space
prototypes representing the data is shared. With the assumption of data sharing, nowadays,
applications are restricted by regulatory bodies. This prevents sharing data with other de-
vices or forwarding data to a CL. Therefore, privacy enabling analytics involving EDs local
machine learning ability is the fundamental motivation of this section. The previous section
focused on real-time query-analytics from a user towards the CL, without considering the pri-
vacy of the data coming from the EDs. In this chapter, the focus is on keeping the data at the
ED to preserve privacy by not sharing metadata, summaries about the data, or raw data over
the network. Generally, this thesis aims on performing qualitative analytics and predictive
modelling in edge networks while being efficient in terms of energy, storage, and bandwidth.
Therefore in the continued chapter, a privacy-enhancing methodology in EDs is proposed
that ensures qualitative and efficient local learning. Continue the research from the previ-
ous chapter on continuous evolving data coming from EDs, the following chapter enhances
current privacy-preserving edge learning techniques ( in concrete Federated Learning (FL)).
Focus is using the advantages of personalisation discussed in Section 4.3 and the importance
of generalisation in concept drift occurrences to introduce a weighting and selecting of a dual
model implementation inside each ED. The following sections do not explicitly focus on the
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latency, but the described latency-efficiency from the previous chapter is also given with the
introduced dual model implementation including the privacy aspect. It should be noted that
the work presented in this chapter has been submitted as journal [3]. This chapter aims to
answer the third hypothesis formulated in Section 1.2:

Hypothesis 3: Generalised models over privacy-preserved data by only transferring
analytical model parameters over the network will not provide qualitative results in
constantly changing and heterogeneous environments. Using the prospect of locally
learning models with an intelligent model selection and weighting mechanism for per-
sonalisation and generalisation in Edge Devices enables data privacy and qualitative
prediction results.

5.2 State-of-the-Art on Privacy-Efficient local learn-

ing at the Edge

Privacy-preserving of user data has recently gained interest due to laws and regulations
emerging, most popular are General Data Protection Regulation (GDPR) [164] and Califor-
nia Consumer Privacy Act (CCPA) [165]. Data security and privacy over Edge Computing
environments have been summarised with open issues and topics by Zhang et al. [257]. The
problem of transmitting raw data over the network has been engaged from a security perspec-
tive by applying different edge deployable encryption algorithms to the system. The aspect
of efficient privacy-preserving techniques for resource-constrained devices has been high-
lighted as an essential issue for further research. The following chapter does not contribute
to encryption or other security-related technical topics but contributes to efficient privacy-
preserving machine learning and analytics techniques in edge networks. The focus relies on
enabling edge device learning and training to preserve users’ sensitive data from transmitting
over the network to be centrally analysed. The aim is to keep the data at the location where it
has been generated. This local learning and predictive analytics inside Edge Devices (EDs)
can be seen as a possible solution towards efficient privacy-preserving analytics for sensible
user data in edge environments.

Presented in Section 2.4, the methodology of Federated Learning (FL) has evolved as a
possible strategy to engage EDs to learn a global machine learning function without revealing
any data towards other devices or the Central Location (CL). For IoT applications, FL has
been studied extensively using supervised learning and neural networks. FL aims to learn
a global function located at a CL by pushing the training towards the device itself. The CL
aggregates all locally trained models’ gradients together into a new global function using
FedAvg [189, 190]. This form of distributed learning provides the possibility to use the
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computational power of devices and their locally generated data, creating beneficial aspects,
such as privacy, real-time actuation, and robustness. FL can be performed on massively
distributed, non-i.i.d., and unbalanced data with fast convergence of the global trained model.
The privacy aspect is implemented in FL by using the data of the ED only on the device itself
and train the global model by sharing only the updated model weights over the network. The
basis FL deployment does, however, allow possible security and privacy-related attacks. Not
only is it possible to insert through a malicious user some data to poison the trained algorithm
[155], but also to identify user data from the model updates sent over the network [156, 157].
Research on advancing the basic FL with security and privacy-enhancing techniques is an
ongoing field [158, 159, 160]. Important FL can only provide complete security and privacy
over any attacks when used with additional security, e.g. the encryption as mentioned earlier.

In many applications, generating a global model that is generalising the data is of utter impor-
tance. However, in many IoT systems, the generated data is non-independent and identically
distributed (i.i.d.). This non-i.i.d. provokes personalised and local models to outperform the
generalised global model mainly. This effect and the importance of local model deployment
has been shown in the previous chapter (Chapter 4). Additionally, the authors in [188] ar-
gue that one of the open research questions is when to choose the global model, providing
generalisation over the local, providing individuality, and vice versa. The following use case
should emphasise the importance of having a global and an individualised model at the ED.
A possible use case can be the function inside a vehicle to identify a speech command of
a driver using audio data. The generalised model to identify the command needs constant
improvement to new driving situations, languages and dialects. However, as each person is
pronouncing and using the order of words differently, a local and personalised model will
provide more accurate predictions than the generalised model. However, considering the
event in which the driver is rapidly changing (car-sharing) or the voice has changed due to
sickness of the driver. The in these cases, the generalised model will provide more accurate
predictions than the local personalised model.

A focus on personalisation using the methodology of FL has only recently found attention
in the research community, which the authors in [258] are summarising. The authors in
[259, 260, 261, 262] show the impact of personalisation in FL environments and its signifi-
cant improvement towards qualitative prediction results. The research in [259, 260, 261, 262]
design a fully decentralised architecture in which no global server coordinates the commu-
nication or has knowledge about the model gradients or the overall generated global model.
The architecture is arranged so that EDs collaborate with each other to share information and
to improve their local model through other devices. This idea of decentralised personalised
FL assumes complete connectivity between the different devices, which can not be assumed
or realised in most IoT applications. Other methods proposed for personalised quality and
privacy-efficient learning using FL rely on a hierarchical system order with a central coor-
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dinator performing the model merging. One of these related work is presented by Liang et
al. [263]. The authors use representation learning over the data features at each individual
learner (ED). Their work provides individuality and personalisation through having neural
networks with a lower-level global model locally enriched by a personalised representation
layer. Meta-learning for FL as a possibility to overcome the issue of heterogeneous data has
been introduced by the authors in [264, 265]. They show the improvement in accuracy using
personalised models in non-i.i.d. environments. The authors Hanzely et al. [266] proposed
a FL optimisation that merges locally train models to a global model providing a specialised
gradient update procedure. Moreover, the authors Deng et al. [267] present a combination
of a globally learned model and a locally fine-tuned model. Deng et al. [267] introduced
an adaptive parameter in controlling the relationship between global FL and local fine-tuned
model. In the authors’ proposed strategy, each device stores three models, the global, the
local, and the personalised model. All of them have to be updated in each round of com-
munication. Their adaptive parameter is calculated by the difference between the local and
global model with respect to their gradient divergence.

The presented work of personalised and privacy-efficient local FL only considers stationary
environments in which the model converges towards its optimum is true and reached over
a short training period. Highlighted in Section 2.3.3.1, concept drifts and non-stationary
environments, which are common in IoT deployments, require continuous learning and re-
training of the model. Performing FL on developing data is still an open research question,
and little to no research has been presented. The closest related work is from the authors
in [268], proposing an online asynchronous version of FL. Their research suggests a con-
vergence strategy of locally updating the FL model using feature representation learning at
the CL and balancing with coefficients the relationship of previous gradients and current.
Nevertheless, this work does not consider efficiency and resource-constrained environments.
This aspect is considered in the work of Wang et al. [269]. They show the importance of
local distributed learning in resource-constrained edge networks. The implementation of FL
in a resource-constrained environment is presented in the work of Sattler et al. [184]. They
contribute to efficient FL by providing a communication efficient compression technique.
The most recent work of Li et al. [270] considers the essential requirement of using efficient
communication methods in resource-constrained environments and the importance of per-
sonalisation in a combined implementation. Yet again, the previous two mentioned methods
assume the global convergence of a model without concept drifts in their work. The later
work of Li et al. [270] only improves communication by compression, sending fewer layers.
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5.3 Rationale & Problem Fundamentals

Federated Learning (FL) can be seen as a distributed machine learning optimisation problem
in a network of Edge Devices (EDs). The aim is to locally optimise an objection function
J as defined in Equation (2.3) over distributed datasets as highlighted in Section 2.3.4. A
network of k ∈ {1, . . . , k, . . . , K} EDs is designed with each holding a local subset of data
Dk so that D = {D1, . . . , Dk, . . . , DK}. This dataset Dk is generated through Sensing and
Actuating Nodes (SANs) sensing continuously contextual data in form of a d-dimensional
vector xt with x ∈ Rd and t ∈ T = {1, . . . , T} with T ∈ T. Each time t a new contex-
tual vector xt is received at the ED. In centralised learning this data is forwarded to a CL
that minimises the objective function J over the entire dataset D. The optimisation of the
loss function L(x, y;w) can be approximated by exploring the Empirical Risk Minimisation
(ERM) instead of the expected risk. Therefore, an approximation of Ĵ over a training set
D of size N using a set of models f ∈ F with represented parameters w ∈ ω. ω describes
the parameter space, can find the optimal solution for the ERM. This has been highlighted in
Equation (2.3) and is summarised in the following equation:

arg min
w∈F
J (w) ≈ ĴN(w) =

1

N

N∑
i=1

L(xi, yi;w) (5.1)

In FL the optimisation of the function J is performed by locally optimising a objective
function Jk in each ED k over the local dataset Dk with length nk so that

∑K
k=1 nK = N .

The CL is aggregating the local generated objective functionsJk as shown in Equation (2.10)
so that:

J (w) =
K∑
k=1

nk
N
Jk(w) =

K∑
k=1

nk
N

1

nk

∑
i∈Dk
L(xi, yi;w) (5.2)

The loss function L(xi, yi;w) or local optimisation function Ji(w) can be also noted as
ji(w). One algorithm to solve the problem of Equation (5.2) is using the previous introduced
Stochastic Gradient Descent (SGD). Each iteration t the ED k aims to converge towards the
minimum loss function L over its local data Dk at time t given a new datapoint xt. This is by
adapting the model parameters wt

k with some factor η, called learning rate, and the gradient
to the previous model parameters∇jk(wk). Each ED k is performing the following equation
at time t:

wt+1
k ← wt

k − η∇jk(wt
k) (5.3)

After multiple iterations, the updated model parameters of each ED k are sent to the CL.
The introduced FedAVG [189] algorithm aggregates the received model parameters inside
the central coordinator towards the new generalised model. This averaging is summarised in
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Equation 5.4.

wt+1 =
K∑
k=1

nk
N

wt+1
k (5.4)

After merging the local gradients of each ED k at the CL, the final federated model is dis-
tributed to the EDs and used locally for inference. Each ED k is selected at a random time
epoch s with s = {1, . . . , s, . . . , S} to update the distributed federated model fFL with its
local data stored in a Sliding Window (SLW) W t

k and send the updated model parameters wk

back to the CL.

Highlighted in the State-of-the-Art section, the basic implementation of FL introduces multi-
ple problems. The first issue is the adaption of the generalised model to constantly changing
environments, in which the assumption of converging to a global minimisation of the ob-
jective function J does not hold. The second problem arises as the ED always overwrites
the locally adapted model f̂FL with a newly received generalised model fFL. The issues
of generalised models of non-i.i.d. data have been highlighted in Section 4.3, showing the
importance of personalisation for qualitative analytics at CLs. Therefore, this chapter intro-
duces the dual model deployment inside the ED k. Each ED k implements an evolving per-
sonalised model fk in parallel to the generalised federated model fFL locally. An overview
of the constructed network architecture can be seen in Figure 5.1.

Figure 5.1: Architecture of the dual model deployment inside the ED k with a local person-
alised model and a generalised federated model.

The major challenge inside each ED k with the deployed dual model methodology is choos-
ing the correct model for the prediction ŷ with either ŷ = fFL(x) or ŷ = fk(x). The ED
is limited with their resources, which does not allow complex algorithms to be implemented
for decision making locally. Therefore, in the following sections, lightweight methods for
balancing the personalised and generalised federated model inside each ED for qualitative
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analytical results are presented. Moreover, current deployed and tested FL methodologies
consider a supervised learning environment. In many applications, e.g. autonomous cars or
smart homes, the label to check the performance of the supervised learning algorithm is not
provided. Therefore, systems and algorithms using continuous data prediction or forecasting
with a FL deployment are of high interest in industrial implementation.

5.4 Personalised Privacy-Efficient Learning at the Edge

Highlighted in the State-of-the-Art section above, personalising Federated Learning (FL)
models inside the Edge Device (ED) has gained tremendous interest in the last years to
overcome the problems of heterogeneous non-independent and identically distributed (i.i.d.)
data. The open issues of continuously changing data and concept drift adaption have been
tried to overcome by using a local evolving personalised model inside the ED. In Chapter 4,
the importance of local models inside EDs with selecting from an ensemble of models at
the Central Location (CL) has been proven to generate qualitative and efficient analytics for
query-driven predictions. Using local personalised models inside the ED and performing
ensemble pruning strategies, as highlighted in Chapter 4, is due to restrictions of sharing
user-specific models or meta-data to the CL impossible. The introduced general method of
FL presented in Section 2.4 and Section 5.3 shows the process of generating a model on
the CL by training on distributed datasets without accessing the raw data on each ED, so
having the privacy of the data by design. However, the drawback of generalised models
implemented in the FL setup can be overcome by local build models. This results in the
problem that by only having a local personal model at the ED, the adaptation towards unseen
data induced by concept shift will generate inaccurate and wrong predictions. Therefore
the following work focuses on using the combined power of generalisation using the FL
model and the advantage of the personalisation model inside each ED. This should provide
qualitative prediction over changing environments in edge networks while being resource-
efficient and reducing the communication and complexity. The basic implementation of FL
has a complexity inside the EDs with O(nk(d+ 1)) and at the CL with O(k + d+ 1).

Having a parallel model deployment of the federated model and a personalised model inside
the EDs requires first defining how and when to update both models and second which model
to choose from for qualitative predictions at the ED. As presented in Section 5.3 at epoch
s, the ED k is selected to receive the current generalised federated model fFL from the
CL. Then, the ED performs over its locally stored data in a SLW Wk the model gradient
updates using Equation (5.3). These updates are forwarded to the CL and used into the new
model fFL combining all selected k EDs model parameter updates with FedAVG, as shown
in Equation (5.4). All EDs receive the updated federated model after the merging and can
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use this as a model to perform the predictive analytics locally.

The personalised model fk is set to be at t = 0 the centrally received federated model
fFL. The choice of using a pre-build model as starting point lies in the theories of transfer
learning, [271, 272] which highlights that using a baseline model for retraining is generating
an earlier convergence and higher accuracy than starting from scratch. In the majority of
IoT or edge environments, SANs continuously measures the surrounding. The ED receives
this data from the SANs at each time t with t ∈ T = {1, . . . , t, . . . , T} and T ∈ T. Each
time t a d-dimensional data vector xt is collected and stored in the local window storage
Wk of size M . Only at the selected epoch s this data is used to update the newly received
model fFL. If the ED needs to perform a prediction, it is using the previous cached model.
The local model fk is in compare updated and retrained each time t at the ED using the
local SGD process presented in Section 2.3.3.2. The retraining methodology of Chapter 4
is additionally possible to use for energy-efficient retraining inside the ED but is not further
considered in this section.

The aim is to present privacy-efficient federated learning methodologies improving the cur-
rent work by deploying personalised aspects and balancing strategies inside the continuous
changing environment of EDs. Therefore, in the following, the five strategies are illustrated
contributing to personalised adaptive privacy-efficient learning in edge networks.

Evolving Federated Model (EFM):

The first method of incorporating personalisation into a privacy-preserving edge environment
is advancing on the basic implementation of FL. The EFM introduces a communication-
efficient strategy that discards the updating communication from the CL to the ED after
generating the new generalised model fFL. The ED k received at the selected epoch s the
model fFL and updates the model parameters using Equation (5.3), then it communicates
these updated model parameters to the CL. Instead of receiving the new merged model fFL,
the ED keeps the updated model as fk and continuously evolves the model each time t a
new measurement xt is collected. If the ED k is selected at another epoch s, the model fk
is replaced with the new fFL. In this strategy, the communication is reduced, and the ED
can adapt to the evolving data and concept drifts by continuously learning and retraining the
generalised model to its personalised environment.

Local Federated Model (LFM):

The second introduced privacy-efficient FL based methodology is limiting the communica-
tion further between the ED and the CL. The concept is to initialise at time t = s = 0, the
local model fk with the received federated model, so that fk = fFL inside each ED k. The
ED is then continuously updating the model using SGD, see Equation (5.3). Instead of the
CL requesting each epoch s the update of the distributed fFL, the ED is regularly sending the
local, model fk to the CL. Inside the CL the model parameters of each fk are merged into a
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global model fFL. This can be distributed if the divergence is too large or if new devices join
the network as the initial model. This type of personalised local FL has been partly intro-
duced in the related work of [263]. The authors train local representatives of higher network
layers and merging them centrally with the original deeper layers. No distribution of merged
models is required anymore.

Adaptive Smoothing Model (ASM):

The following method of privacy-efficient personalised local learning introduces the combi-
nation of keeping two models in parallel inside the ED. As LFM and EFM only store one
model and continuously retraining it, the ASM methodology supports the generalised model
fFL and the local model fk inside each ED k. The importance of keeping both models inside
the ED is mainly to overcome the issue of losing generalisation and the adaption to unseen
data by only deploying personal models. Moreover, the previously unknown relationship
between the devices in evolving systems can be changing from an i.i.d. to a non-i.i.d. data
relationship. This cannot identify at the start of the application deployment and can cause
better accuracy to the generalised model or personalised model depending on the connection.
Using a balancing mechanism of the generalised and personalised model inside each ED can
provide the benefits of both data relations towards qualitative prediction results. The first in-
troduced this strategy are the author in [267]. However, their balancing of both models relies
purely on the gradient difference between these two models. Not including previous predic-
tions or any considering of adapting to changing environments. As this adaptation is of high
importance to most time series analytics in IoT and edge environments, the ASM contributes
to the research gap of using a reward system to weigh the local and federated model into a
combined prediction ŷ. The final prediction ŷ is calculated locally in each ED k by using the
local personalised function fk and the FL-function fFL with a adaptive balancing weight α.

The adaptive weight is calculated through multiple steps. First, whenever the ED receives
from the SANs a new contextual vector xt at time t, the prediction error εk for the local,
personalised model fk with respect to the actual prediction yt and the prediction error εFL
for the federated model fFL is calculated as shown in Equation (5.5) and (5.6) respectively.

εL = |yt − fk(xt)| (5.5)

εFL = |yt − fFL(xt)| (5.6)

Given these two errors of Equation (5.5) and (5.6) inside each ED k, it is possible to generate
a reward value θ that is used as the source for balancing the two models fk and fFL. So in
each ED k at each time t based on εFL and εL the reward θ is set to 0 if the local model
is performing better than the generalised and θ = 1 if the generalised model fFL performs
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better predictions. This reward setting can be found in the following equation:

θt =

0, εFL > εL

1, εFL ≤ εL
(5.7)

As shown in Equation (5.7), a positive reward is given to the federated model fFL if the
absolute error εFL is smaller than the absolute error of the local model fk εL. As the reward
system deployed inside the ED should not only incorporate the current performance of fk
and fFL but also the historical performance, the reward-values θ at each time t are stored in
a Sliding Window (SLW) Ok with size U for the last t − U times. The SLW is defined in
Equation (5.8) and contains just zeros and ones.

Otk = {θt−U , . . . , θt} (5.8)

The deployment of a SLW is chosen based on the literature and State-of-the-Art towards
lightweight methods for handling continuous evolving data and adaptation to changing en-
vironments able to act immediately on concept drifts. This has been highlighted in Sec-
tion 2.3.3.3. The SLW Ok consists of the most recent U rewards of θ ∈ {0, 1}. At each
time t, the SLW of rewards is used as a reference to generate a ratio that represents the per-
formance of both models over the time horizon t − U . This ratio is defining the adaptive
weighting value α. The computation of α can be seen in Equation (5.9) and represents the
historical performance of both models inside the ED.

α =
1

U

U∑
i=1

θi (5.9)

Each time the ED is performing a prediction, the two model predictions of fk and fFL are
weighted to the final prediction ŷ. The adaptive value α is used to combine the federated
model fFL and the local personalised model fk towards ŷ using the theory of exponential
smoothing [273]. The balancing of these two models is defined as shown in Equation (5.10):

fASM = αfFL + (1− α)fk (5.10)

The value range of α is between 1 and 0. Setting α −→ 1 more influence towards the FL
model predictions coming from fFL, whereas a value of α −→ 0 places more importance
on the locally generated model fk predictions. The proposed adaptive model selection im-
plementation is highlighted in the Algorithm 4, showing the steps of calculating the reward
θ and ratio α, which is used to combine the generalised model fFL and local personalised
model fk towards a weighted and more accurate analytical model inside each ED.
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Algorithm 4 Adaptive Smoothing Model.
Central Location:

1: initialise w0

2: for each round s = 1, 2, ... do
3: i = random subset of K
4: for each ED i in parallel do
5: ws+1

i ← ED(i,ws)
6: ws+1

i ←
∑K

i=1
nk
N
ws+1
i

7: end for
8: end for

Edge Device: //Run on each Edge Device k
9: fFL ← (received from CL at t = 0)

10: for each round t = 1, 2, ... do
11: contextual vector xt is received
12: fk ← updated via Equation (5.3)
13: εL ← |yt − f tk(xt)|
14: εFL ← |yt − f tFL(xt)|
15: θ ← calculated as in Equation (5.7)
16: Ot ← θ
17: α← calculated as in Equation (5.9)
18: if ŷ is needed then
19: fASM ← calculated as in Equation (5.10)
20: end if
21: if s = t and ED i = k then
22: fFL ← updated as in Equation (5.3) or use∇fk
23: return updated w to CL
24: end if
25: end for

Smoothing Model (SM):

Relying on the methodology of ASM, the next proposed privacy-efficient strategy inside the
ED is SM. SM performs the balancing between local model fk and general model fFL using
a fixed value of α. This value is not adapting based on historical predictions and does not
change over the system’s run time. It is, however, possible to define different α values for
each ED. Based on the related work of exponential smoothing, the value is set to α = 0.3 for
more importance to the personal or α = 0.7 with more significance to the generalised model.

Time-Optimised Switching Model (TOSM):

The method of ASM already introduced the idea of rewarding historical performance values
towards balancing the local model fk and generalised federated model fFL by weighting
the two predictions towards the final prediction ŷ. Relying on the concept of incorporat-
ing historical decisions with respect to the performance, the TOSM introduces the concept
of Optimal Stopping Theory (OST). The design of TOSM is to overcome the problem of
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selecting between the two models fk and fFL inside the ED. Instead of weighting the predic-
tions, just one model is chosen for the prediction ŷ by identifying the optimal model at this
time t.

The main concept of TOSM is to calculate inside each ED k at time t for each local model
fk and federated model fFL the prediction error εL and εFL as defined in Equation (5.5) and
(5.6) respectively. At time t = s = 0 the chosen model inside the ED is the fFL. Given the
two prediction errors εL and εFL, the idea is to decide when the best time t∗ is to switch from
the federated model fFL to the local model fL inside the ED. In Section 3.5.2, the theory
of OST has been used through the reconstruction error difference for finding the optimal
time to forward the raw data from the SAN to the ED. For TOSM the fundamental idea of
Section 3.5.2 is used and performed on the prediction error εFL and εL as performance value.
Each time t the two prediction error of fk and fFL are compared and rewarded as binary
value Z. The binary variable Z is introduced as highlighted in Equation (5.11).

Zt =

{
0 if εL > εFL,

1 if εL ≤ εFL.
(5.11)

Zt is defined as 0 if the local model fk is generating a higher prediction error than the
federated model. If the local model is, however, generating a lower prediction error εL in
comparison to the federated model fFL, the value of Zt is set to be 1. Suppose the ED is
deciding instantly based on the given comparison between εFL and εL at time t to switch
the model. In that case, no historical behaviour is incorporated towards this decision. As
previous behaviour and prediction quality are of importance to most applications, the values
of the cumulative sum of comparison, including the history divergence of these two mod-
els, are used as switching decision. The instruct history of rewarded prediction performance
comparison is then calculated by the cumulative sum of Zt defined as Rt and introduced in
the following equation:

Rt =
t∑
i=0

Zi (5.12)

In Section 3.5.2, proof has been given that by defining the reward function Yt, it is possible
to construct the optimal delay-tolerant level between SANs and EDs to forward data. In the
previous chapter, the accumulated sum of reconstruction errors has been used as the reward
function Yt. Adopting this concept, the accumulated sum of Zt defined as Rt is used to find
the optimal time to decide when to switch from the federated model fFL to the local model
fk. Therefore the reward function for switching fFL to fk is defined in Equation (5.13) using
the quantity of Rt. The value of β indicates the delay tolerance level with β ∈ (0, 1). If
β → 1 the delay is increased.



5.4 Personalised Privacy-Efficient Learning at the Edge 123

Yt = βtRt = βt
t∑
i=0

Zi (5.13)

Finding the optimal time t∗ the reward function Yt as in Equation (5.13) is used by maximis-
ing the expectation of Yt with E[Yt] having a fixed delay tolerance of β. Formally, this can be
described as finding the supremum of the expectation of Yt as, given the following equation:

sup
t≥0

E[Yt]. (5.14)

Proof that an optimal time t∗ exists has been given in Section 3.5.2 with the Equations (3.15)
to (3.19). Based on this proof, the optimal time t∗ for switching from the federated model
fFL to the local model fk can be defined as:

t∗ = inf{t ≥ 1|
t∑
i=1

Zi ≥
β

1− β
E[Z]}. (5.15)

The expectation E[Z] can be calculated with the formulation of Zt in Equation (5.11) to the
summation of the expectation E[Z|εL > εFL] and E[Z|εL ≤ εFL] presented in the following
equation:

E[Z] =E[Z|εL > εFL]P (εL > εFL) + E[Z|εL ≤ εFL]P (εL ≤ εFL) (5.16)

As the expectation of Z is given Equation (5.11) set to E[Z|εL > εFL] = 0 and E[Z|εL ≤
εFL] = 1, so the overall expectation of E[Z] can be defined as:

E[Z] =P (εL ≤ εFL) = P (εFL ≥ εL) (5.17)

= 1− P (εL < εFL) = 1− FεL(εFL)

During a training period for the application the Probability Density Function (PDF) of εFL
and εL can be obtained, which leads to generate the optimal time t∗ for switching the feder-
ated model fFL to the local model fk to:

t∗ = inf{t ≥ 1|
t∑
i=1

Zi ≥
β

1− β
(1− FεL(εFL)}. (5.18)
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The introduced methodology of TOSM is further considering the reverse switching from the
local model fk to the generalised model fFL. Therefore, once the model is switched from
the federated model to the local model, the time value of R is set to 0. Then the concept of
finding the optimal time t∗ to switch back to the federated model with using the same concept
as previous is starting inside the ED. The optimal time to switch from the local model fk to
the generalised model fFL is made through the variable Q in which the prediction errors ε
for both models are monitored. Similar to the variable Zt, Qt is calculated as:

Q =

{
0 if εFL > εL,

1 if εFL ≤ εL.
(5.19)

From Equation (5.19), the expectation of Q using the ideas of Equation (5.17) and (5.18)
from lead to:

E[Q] =E[Q|εFL > εL]P (εFL > εL) + E[Q|εFL ≤ εL]P (εFL ≤ εL) (5.20)

= P (εFL ≤ εL) = P (εL ≥ εFL)

= 1− P (εFL < εL) = 1− FεFL(εL)

From the given expectation of Q in Equation (5.21), it is possible to derive the optimal
time t∗ to switch from the local fk back to the generalised fFL. Only the Probability Density
Function (PDF) of the error values ε of the models fk and fFL is needed and can be generated
through a training period of the application inside each ED. In Equation (5.21), the optimal
time t∗ for the switch is defined. Once the model is switched back to the generalised fFL,
the summation of values of Q is reset, and the Z accumulation is starting. This method is
performed until a new federated model fFL is sent from the CL, replacing the old one. This
provokes a reset and a starting of using Z with the current chosen model fFL.

t∗ = inf{t ≥ 1|
t∑
i=1

Qi ≥
β

1− β
(1− FεFL(εL)}. (5.21)

5.5 Performance Evaluation

5.5.1 Experimental Setup

The experiments for this section are based on the already introduced dataset (DS) in Sec-
tion 3.6.1 and Section 4.6.1. Overall 415 weather stations are selected over a time horizon
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of around 87 days (December 2017 till March 2018). Each weather station represents a
Edge Device (ED) k with k ∈ K = {1, . . . , k . . . , K} so that K = 415. Each time t with
t ∈ T = {1, 2, . . .} the ED received a d-dimensional input data vector xt. The DS provides a
9-dimensional data in form of (x, y) each time t including temperature, dew point, humidity,
wind-speed, wind-gust, wind direction, pressure, windchill, and precipitation. The value for
y is set with the DS’s measurement of temperature, while the remaining measurements are
used for x. The data collection frequency is every 5 minutes over the time horizon of 100
days, resulting in a dataset size ofN = 9, 044, 683, assembling roughly 250 values measured
per ED per day. All data is normalised and scaled, i.e., each parameter x ∈ R is mapped to
x−µ
σ

with mean value µ and variance σ and scaled in [0,1], thus vector x ∈ [0, 1]d.

Similar to the edge analytics task in Chapter 4, the setup for the federated learning is the
introduced multivariate Linear Regression Model (LM) for f(x). A training period of 1
month is considered before testing the proposed methods of this section. This splitting of DS
of size N = NT + NM results in NT = 1, 500, 000 data points for the training period and
leaves around NM = 7, 500, 000 data points for performing the proposed privacy-efficient
approaches. Converting this into a percentage, only 15.8 % of the collected values are used
during the training period to overcome the cold-start problem using transfer learning, and
over 84% is used for testing the different approaches. The starting date is located on the 1st
of January 2018 and presents the time t = s = 0. During the training period, each ED k

generates a local model fk. At time t = 0 each ED sends its local model fk towards the CL.
Inside the CL, these models are merged using FedAVG as defined in Equation (5.4) towards
the first generalised central model fFL. At time t = s = 0 this generated fFL is distributed
to the EDs as first federated model fFL.

5.5.2 Performance Metrics

The performance for the presented DS is evaluated with the performance metrics intro-
duced in detail throughout Section 3.6.2. More specifically, the metric Root-Mean-Squared-
Error (RMSE), Mean absolute error (MAE) and Symmetric mean absolute percentage error
(SMAPE) are used for accuracy performance evaluation. For analysing the information loss
between each of the proposed methodologies, the metric of Kullback-Leibler (KL) diver-
gence is used in performance evaluation. In comparison to the previously used communi-
cation metric, the communication is constantly independent of the parameter settings and is
given with the introduced methodology in this chapter.
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5.5.3 Comparative Assessment

A baseline for comparison is needed to evaluate the performance of the privacy-efficient
analytics methodologies proposed in this chapter. Therefore, during the assessment, the
performance of the Global Model (G) with transmitting raw data to the CL from each ED at
each time t is used as a comparison model towards the others. Concentrating on the privacy
aspect of local machine learning and analytics, further methods are the basic deployment of
Federated Learning represented during the assessment with Federated Model (FM). The
contrary is the other deployment of using just the local model Local Model (L) without any
usage of the central coordinator or generalised model. The local model is built from stretch
without any previous model coming from the CL.

Given these three baseline methods, they are compared against the in this chapter introduced
methodologies of personalised privacy-efficient learning:

1. The Evolving Federated Model (EFM) uses as initial local model fk the at time t = 0

received generalised model fFL. At each selected epoch s, the CL requests the local
model and merges the generalised fFL over them. Only the model fk is stored inside
the ED.

2. The Local Federated Model (LFM) is extending the EFM by updating the generalised
model fFL locally at each time t until the new update from the CL is sent at epoch s.

3. The Adaptive Smoothing Model (ASM) introduces a dual parallel model implemen-
tation inside each ED. A local model fk is set to fk = fFL at s = t = 0 and con-
tinuously updated each time t. The generalised model fFL is received and updated as
the FM. The final prediction is generated through a reward function with respect to the
historical performance of each model and balancing the fk and fFL model through the
parameter α.

4. The Smoothing Model (SM) is based on the same concept as the ASM but with a
fixed value for the balancing weight α.

5. The Time-Optimised Switching Model (TOSM) provides a selecting mechanism of
the optimal model for this time. The fundamental concept is based on finding the
optimal time t∗ to switch between the two models fk and fFL and vice versa using
Optimal Stopping Theory (OST).

5.5.4 Parameter Configuration

Assessing the accuracy, multiple parameters for the different introduced methods and ED
storage capacities have to be set. After the starting point at t = 0 each time t, the models of
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EFM, LFM, L are updated using SGD. The values for θ are inserted into the SLW O each
time t for the proposed ASM strategy. The adaptive weighting α is generated through the
ratio over this SLW O of size U . In the assessment U is set to U = {50, 100, 250, 500}.
Moreover, for the TOSM method, the Zt and Qt values are defined each time t and the
respective current optimal model flagged inside each ED k. The delay tolerance level for the
TOSM strategy is defined with β and set to be β = {0.1, 0.3, 0.5, 0.7, 0.9}. If the CL requests
at epoch s an update of the FM, the values inside the SLW W are used for the SGD. The
assessment parameters for the SLWW of size M is set to be the previous day and the time
since the last update was requested, so M = {250, 500, 1000}. The request epoch s is set for
the assessment to be every day, every other day and every fourth day so that S = {74, 37, 18}
and at the times t = {s · 250, s · 500, s · 1000} respectively.

Assessing the overall performance of each proposed method, a type of cross-validation has
been deployed to guarantee independent validation of the results. Similar to the validation
method of Section 4.6.4, the application is stopped at 24 random time points t. At the se-
lected time t the methodology implemented is stopped and the next 250 values (representing
one day) of each ED k is used as prediction input to analyse the performance of the dif-
ferent privacy-efficient analytics strategies. In detail, the following time points have been
chosen: 2018-01-02, 2018-01-05, 2018-01-12, 2018-01-22, 2018-01-25, 2018-01-29, 2018-
02-01,2018-02-05, 2018-02-07, 2018-02-08, 2018-02-09, 2018-02-11, 2018-02-14, 2018-
02-16,2018-02-17, 2018-02-18, 2018-02-19, 2018-02-20, 2018-02-21, 2018-02-22, 2018-
02-23,2018-02-24, 2018-02-25, 2018-02-26, 2018-03-03, 2018-03-07.

In the previous sections, the importance of deploying a parallel model setup in EDs having
the generalised model fFL and a personalised model fk both running towards quality-aware
predictive modelling has been argued based on the possible concept drifts and evolving na-
ture of IoT environments. To assess this behaviour and show the effectiveness of having both
models and certain techniques to weigh or select the optimal model is made in the perfor-
mance evaluation through using the above mentioned time points and chosen at random data
from another weather station (ED) to perform the predictions using the different approaches
introduced. This artificial concept drift can provide insights into each model’s behaviour
towards unseen and unfamiliar data coming from another weather station.

5.6 Performance Assessment

5.6.1 Personalised Privacy-Efficient Learning

The assessment of the previously introduced methods is highly dependent on the parameter
settings explained in Section 5.5.4. This section starts with analysing the behaviour of α in-
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dicating the weighting between local model prediction using fk and the generalised federated
model fFL for the weighted prediction ŷ using the proposed method of ASM.The influence
of s (epoch of CL request and updates the fFL model) and U ( SLW O size of considered
rewards θ) to the model weighting parameter α using the introduced performance metrics
are illustrated in Figure 5.2.

0 500 1000 1500 2000 2500 3000 3500 4000
Time t

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Av
er
ag

e 
α 
va

lu
e

(a) Average value of α over time t.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Average α value per ED

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

(b) Histogram of average α in EDs.
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(c) Histogram of average α in EDs depending on
the setting of the federated update frequency s.
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(d) Histogram of average α in EDs depending on
the setting of SLW O of different length U .

Figure 5.2: Parameter setting influence on α for the Adaptive Smoothing Model (ASM).

In Figure 5.2 (a) the average value of α over all EDs K until t = 4000 is presented. It can be
seen that the value of α is greatly changing over time but lies in the range of α ≥ 0.18 and
α ≤ 0.32. This figure has been using the setting of U = 50,M = 1000, and s to be every day
with S = 74. The same settings are used for the frequency analysis and α distribution over
each ED k ∈ K illustrated in Figure 5.2 (b). This figure shows the distribution of average
α values for each ED and can be identified as a normal distribution with the mean around
α = 0.3. This correlates with the findings of Figure 5.2 (a) for the average α-values per time
instance t over the entire EDs K lying in the highlighted range. To identify the influence of
s and U towards the weighting parameter α, Figure 5.2 (c) and Figure 5.2 (d) highlight this
respectively. In Figure 5.2 (c), the setting of s = {1, 2, 4} indicating the update frequency of
the federated model fFL to be each day, every second day, and every fourth day. From this
figure, the influence of the update frequency s towards the model weighting α indicated that
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increasing the frequency is decreasing the mean of α and increases the variance. In opposite
to the influence of U to α, illustrated in Figure 5.2 (d). In this figure, an increase of the mean
is presented by increasing the SLW size of rewards to be considered. The rise of U is only
influencing the mean but not the variance for the value α in each ED k.

The next proposed model in which the parameters have to be first analysed is the TOSM.
Introducing the value of β for the delay tolerance of switching the models fk and fFL to
use the optimal model at the prediction time. This value of β is analysed in Figure 5.3
with the number of model switches that occur during the runtime. In Figure 5.3 (a), the
influence of switching the models dependent on β with increasing the update frequency of s
is illustrated. In this figure, no difference between the variation of s can be seen influencing
the model switching of the TOSM strategy. However, a decrease of average switches can
be seen when the value of β ≥ 0.7. Similar results are highlighted in Figure 5.3 (b). This
illustration shows the influence of increasing the SLWW size M with respect to β and the
number of times the model is switched inside the ED. Figure 5.3 (c) shows the distribution
of β = 0.1 and the number of switches inside each ED and the distribution of β = 0.9 with
delaying the switching. In β = 0.9, the variation of average switches is higher than with
β = 0.1 in which the density is around the mean of 500. In Figure 5.3 (d), the distributions
of β = 0.1 using different values of M are presented. Already shown in Figure 5.3 (b), no
change of the frequency by differing the size of M can be seen.

In Figure 5.4, the performance for RMSE, MAE, SMAPE and KL divergence over the dif-
ferent possible β values is analysed. Highlighted in the previous figure, increasing the delay
of switching between the models fk and fFL inside the ED indicated through the value of β
shows that β → 1 increases the tolerance and less often the model is switched.

In Figure 5.4 (a), the analysis of the performance of RMSE with respect to the update fre-
quency s is illustrated. It can be seen that the update frequency of s is only slightly increasing
the error represented by the metric RMSE. Similar results have been generated using MAE
and SMAPE, but these results are removed to space limitations. Moreover, in this figure,
the behaviour of s towards the accuracy is illustrated. Using s = 1 indicating an update
frequency of the fFL model every day and results in the lowest accuracy error. However, as-
suming that increasing the frequency is rising the error does not hold as the performance of
s = 4 (update frequency every fourth day) generates lower prediction errors than s = 2. The
information loss metric KL divergence highlighted in Figure 5.4 (b) indicate a clear decrease
of information loss by increasing the update frequency s. Additionally, the influence of β
towards the information gain shows that using more frequent switching of models results in
higher entropy, presented by the KL metric, inside the ED.

Figure 5.4 (c) and Figure 5.4 (d) investigate the behaviour of increasing the SLWW of size
M representing the data used for performing SGD on at time t = s for updating the fFL to
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(a) Average switching time for different β and
federated update frequency s.
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(c) Histogram of average switching time for
β = {0.1, 0.9} using M = 250.
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(d) Histogram of average switching time for β =
{0.5} using M = {250, 500, 1000}

Figure 5.3: Parameter setting influence on β for the Time-Optimised Switching Model
(TOSM).

the CL. In Figure 5.4 (c), the influence is presented by the metric MAE. Increasing the size
M to M = 1000 is decreasing the error. The dependency of β with respect to the accuracy
over different SLW sizes M does show a slight increase of the MAE when increasing the
delay tolerance of β → 1. In Figure 5.4 (d), similar behaviour and dependency are illustrated.
Raising β → 1 is increasing the SMAPE and increasing the SLWW of sizeM toM = 1000

is decreasing the prediction error.

In Figure 5.5, the performance of all models introduced in Section 5.5.3 and the influence of
the parameters s and M is illustrated for assessment. In Figure 5.5 (a), the metric of RMSE
for M = 250 and U = 250 over all epoch selection variables s is highlighted. In this figure
the influence of s towards the models FM, ASM, SM and TOSM is illustrated. The models
G, L, EFM, and LFM do not change their performance by changing the the parameters of M
or s as their learning and adaptation to the data input is continuously and independent of the
FM. Increasing the frequency of s is increasing the prediction error for the method SM and
ASM. Whereas the accuracy is increasing for the FM method. The TOSM approach is as
indicated in Figure 5.4 only slightly increasing and performing worst for s = 2, representing
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(b) Average KL for different β and update fre-
quency s.
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Figure 5.4: Comparison of influence of delay tolerance β for TOSM using different s and M
towards the performance metrics KL, RMSE, MAE, and SMAPE.

updating every other day. Further, this figure shows that the G generates the best accuracy,
but the TOSM strategy provides accuracy closest to the G. In Figure 5.5 (b) the information
loss over changing update frequencies s over all models is highlighted. Using the setting
of M = 1000 and U = 50 with the performance metric KL divergence, the results show
that for the models depending on these parameters (FM, ASM, SM and TOSM ) the KL
is increasing with the increase of the update frequency s. A greater information loss can be
seen for all four affected methods comparing s = 1 and s = 4 with each other. Moreover, the
information loss is smallest when transmitting raw data and generating a centralised model
(G).

Figure 5.5 (c) and Figure 5.5 (d) highlight the performance towards changing the SLW W
sizeM and the corresponding behaviour of each model. Setting the parameters for Figure 5.5
(c) with s = 1 and the SLW O size U = 50 using the metric SMAPE shows the following
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(a) Performance for RMSE divergence using
U = 250 and M = 250.
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(b) Performance for KL divergence using U = 50
and M = 1000.
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(c) Performance for SMAPE using U = 50
and s = 1.
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(d) Performance for MAE using U = 250 and
s = 4.

Figure 5.5: Performance evaluation over all proposed models using different settings for s
and M using the performance metrics KL, RMSE, MAE, and SMAPE.

results. Over all dependent models, the increase of the training dataset size in the SLWW
inside each ED k for SGD presented by M is decreasing the accuracy error. In Figure 5.5
(d), similar behaviour is illustrated with the update frequency of s = 4 and U = 250 using
the MAE performance metric.

After identifying the influence of the SLWW of sizeM , the SLWO of lengthU for the ASM
approach, and the central defined update frequency s, towards the models proposed in this
chapter (see Section 5.5.3) with respect to their performance the following best settings have
been used over the four performance metrics KL divergence, RMSE, MAE, and SMAPE and
illustrated in Figure 5.6. Figure 5.6 uses the setting of M = 1000 as shown in Figure 5.5
performing lowest of prediction error over all models, U = 50 as highlighted in Figure 5.2
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for minor variance in the average α value, s = 1 indicating an update of the FM of each day
with S = 74, and β = 0.3 analysed in Figure 5.4 and Figure 5.3 to be the most accurate
value with respect to the used metrics.
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(d) Performance with best parameter setting on
KL divergence.

Figure 5.6: Comparison of using the best parameter settings towards the performance metrics
KL, RMSE, MAE, and SMAPE.

In Figure 5.6 (a), the metric of SMAPE over all assessed methods is compared using the
best settings. From this figure, the aim is to identify what approach is closest to the G with
respect to their performance. Even though the G is in privacy-preserving IoT applications
not feasible, the aim is to have quality-aware and efficient models inside the ED performing
as accurate as of the G. Having this aspect in mind, the strategy of TOSM using the Optimal
Stopping Theory (OST) to identify the optimal time to switch between the local generated
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model fk (L) and the generalised model fFL (FM) shows the best performance. However, the
introduced method of TOSM still increases the error by 1%. The second best with regards
to the performance metric SMAPE is the approach of ASM. The other methods do not show
a great difference. Figure 5.6 (b) does the analysis using the metric of RMSE. In this figure,
the proposed approaches differ more from each other. Highlighted in this figure is the great
performance of TOSM with RMSE error very close to the G. Moreover, the prediction ac-
curacy performance of the FM is better than that of the L. ASM provides next to TOSM the
best accuracy for predictive analytics in privacy-preserving environments. Figure 5.6 (c) and
Figure 5.6(d) illustrate these findings for the performance metrics MAE and KL divergence
. Especially, for the presented KL divergence metric showing the information loss inside the
ED by deploying the proposed mechanism, offer a great improvement to the FM by deploy-
ing a dual model strategy inside the ED and using either adaptive weighting with ASM or
optimal selecting using TOSM.

5.6.2 Behaviour on Concept Drifts

This chapter argues the importance of deploying adaptive and evolving learning inside EDs
to support qualitative predictive analytics and modelling. Assessing this hypothesis, the fol-
lowing section is introducing an artificial constructed concept drift to test the ability of each
proposed method towards changing environments and quality-aware predictions. In Fig-
ure 5.7, the performance over all four metrics KL divergence, RMSE, MAE, and SMAPE is
illustrated using the identified best settings of Figure 5.6. The values are compared against
each other, showing the change of accuracy and information loss with concept drift appear-
ance towards regular predictive tasks.

Figure 5.7 (a) illustrates the performance with respect to the metric SMAPE. The illustration
shows a clear improvement of the FM performance when concept drift occurs. However, the
adaptive and parallel model adaption of ASM and TOSM perform equal or better than the
FM. This indicates the ability to adapt to changing environments when using the generalised
model and incorporating the local individualised model towards a prediction. Moreover,
it should be noted that the models of L, EFM, and LFM highly increase their error. In
Figure 5.7 (c), the same behaviour towards the approaches is illustrated using the MAE
performance assessment metric. Figure 5.7 (b) shows the RMSE during the concept drift
appearance and highlights the good adaptation of ASM with similar performance than the
presented values in Figure 5.6 (b) for familiar data inputs inside the ED k. The FM and
ASM generate similar prediction results that indicate that the adaptive parameter α places
more importance on the FM as the L can not adapt that fast to concept drifts. In Figure 5.7
(d) provides insights into the information loss by presenting the performance metric KL
divergence. The value of the KL divergence of the FM approach is improving through the
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(d) Performance on KL.

Figure 5.7: Comparison of using the best parameter settings and artificially construct a con-
cept drift towards the performance metrics KL, RMSE, MAE, and SMAPE.

concept drift, showing the importance of generalisation inside EDs. Some improvement
of the information loss value is given for the ASM method also, as it highly depends on
the accuracy of the FM or L (depending on the weighting factor α). However, the method
of TOSM provides constantly low information loss independent of the occurrence of the
concept drift or not.

5.7 Chapter Summary

In this chapter, the focus on privacy-efficient analytics in resource constraint environments
has been investigated. It has been shown through related work on privacy-preserving local
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edge learning, that Federated Learning (FL) introduced local learning and privacy of data by
design. The newly developing research community leaves open research questions towards
quality and efficiency of FL. In this chapter two strategies have been proposed that enable
the ability to centrally learn a predictive model and enhancing the quality of local inferred
and predictive results. Quality of analytical results through enabling the local individuality
of heterogeneous devices provided the fundamentals of these approaches. The first model,
Adaptive Smoothing Model (ASM), uses the local model and generalised model to provide
a new prediction outcome by weighting these two models based on historical rewards. The
second strategy introduces the optimisation to find the best time to switch between local
model and generalised federated model by using Optimal Stopping Theory (OST). Through
real data evaluation the effectiveness of both methods have been shown. Further it was
possible to provide evidence, that a mixture or switching strategy between models inside
EDs enables qualitative privacy-preserving predictive analytics for continuous changing and
evolving environments (including concept drifts).
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Chapter 6

Conclusion

6.1 Chapter Overview

The thesis introduced in Section 1.2 the following statement:

Performing analytical tasks and machine learning over data from edge devices such as
the Internet of Things experience constraints in latency, privacy, and bandwidth due
to communication overhead and data processing at a central location. This thesis pro-
vides a communication, latency, and privacy-efficient methodology through enabling
analytics at the source of the data - the edge. Intelligent decision-making mechanisms
combined with collaborative intelligence between the edge and the central location are
presented to reduce the communication and empower local learning. This thesis fur-
ther concentrates on the quality of analytics in privacy-preserving environments with
real-time local learning and inference.

The presented chapters of this thesis supported the statement above and contributed to-
wards the defined hypotheses. Chapter 3 provided methods towards communication and
bandwidth-efficient data forwarding in edge systems. Chapter 4 introduced edge-centric
analytics with intelligent model retraining and forwarding mechanism to overcome latency
issues in real-time IoT applications. Chapter 5 focused on the aspect of qualitative and
privacy-efficient learning in energy constraint environments for continuously evolving data.
This chapter will provide a revisit of the defined hypotheses in Section 1.2, summarise the
contributions made to the research community by this thesis and presents limitations and
future work. Finally, some concluding remarks to quality-aware predictive modelling and
inferential analytics at the network edge is given.
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6.2 Revisit of Hypotheses

Hypothesis 1:

Pushing computational intelligence of advanced decision-making in data forwarding
to the edge of the network will overcome energy and bandwidth constraints due to the
deployment of efficient communication methodologies. Combining this with intelli-
gent reconstruction at a collection point leads to highly accurate analytical tasks and
reconstruction of the imputed values.

This hypothesis is investigated throughout Chapter 3. It has been shown that combining
the individual computational capacity of Sensing and Actuating Nodes (SANs) and Edge
Devices (EDs) into intelligent data forwarding decision making and reconstruction methods
leads to highly accurate reconstruction functionalities. While deploying a light-weighted
algorithm inside the SANs to reduce the data transmission, the ED can use more complex
but still efficient reconstruction models for data imputation. This enables the ED to perform
quality-aware analytics for aggregation and predictive modelling while reducing the required
resources of SANs with respect to energy and battery lifetime. Further, the reduced data
transfer induces a bandwidth reduction through the deployed low complex communication
reduction mechanism inside the SANs. Therefore, this hypothesis can be accepted and stated
as true with respect to the findings of Chapter 3.

Hypothesis 2:

Enabling machine learning and predictive analytics locally at edge devices will em-
power real-time applications that can adapt intelligently to concept drifts and changes
of the continuous data arriving. These locally learned (trained) models can be selected
through qualitative model selection methodologies at central coordinators, e.g., Cloud.

In Chapter 4, this hypothesis has been studied. Enabling the ED to perform edge-centric
local analytics and learning require resource-efficient retraining strategies. In this thesis,
a light weighted novelty identification mechanism has been proposed to allow retraining
only for unfamiliar data measurements. Based on the prediction performance, model fitting,
or model parameter divergence, the decision on forwarding the locally trained model to a
Central Location (CL) has been made. This method has proven to be adaptive to changing
environments and reduce communication while maintaining the accuracy performance of
query-driven predictions. Answering the application requested prediction queries, multiple
model-selection methodologies inside the Edge Gateway (EG) have been proposed to solve
the distributed learning problem. These model-selection strategies considerably improved
related work with respect to accuracy and communication efficiency by only transmitting
model parameters and statistics.
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Hypothesis 3:

Generalised models over privacy-preserved data by only transferring analytical model
parameters over the network will not provide qualitative results in constantly chang-
ing and heterogeneous environments. Using the prospect of locally learning models
with an intelligent model selection and weighting mechanism for personalisation and
generalisation in edge devices enables data privacy and qualitative prediction results.

The third hypothesis is investigated in Chapter 5. This chapter focuses on the privacy of
data generated by EDs and the importance of embracing local individuality towards model
training. Using the fundamentals of Federated Learning (FL) in which no sharing of the local
data is required, the work of this thesis proposes personalisation and mechanism to balance
or swap between the generalised federated model and the individualised model. It has been
proven that combining or selecting the optimal model provides qualitative predictive results
in heterogeneous and continuously changing environments. The importance of relying on
individualised and personalised models is highlighted through the significance of adapting
to the evolving data in which generalisation is improving the quality of results compared
to the fine-tuned local model. Therefore, the hypothesis has been accepted that balancing
or intelligently deciding which model is optimal for inference and prediction can provide
quality-aware and privacy-efficient performance for analytics in edge networks.

6.3 Contributions

A detailed list of the contributions concerning each chapter has been presented in Section 1.3.
Summarised, the contributions of this thesis should provide theoretical and experimental
improvement towards quality-aware edge networks for the aspects bandwidth, latency and
privacy.

Explicitly, Chapter 3 contributes with bandwidth and energy-efficient data forwarding mech-
anism by exploring the computational capacity of resource constraint devices (e.g. SANs
and EDs). A significant improvement has been shown by extending current energy-efficient
routing strategies, which missed quality-aware reconstruction and analytics functionalities,
towards a qualitative-efficient prediction design based on time series algorithms inside SANs
and EDs. Exploring the game-theoretical method of Optimal Stopping Theory (OST) inside
SANs enabled these resource constraint devices to perform intelligence by incorporating his-
torical decisions towards a quality-aware forwarding of measurements. The assessment of
the strategies has considered the reconstruction ability of the imputed values and the per-
formance evaluation of the predictive and analytical aggregation tasks. In an extensive ex-
perimental evaluation, the effectiveness and improvement of the proposed methodologies
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have been presented with a great reduction of communication in light of low-complex and
quality-aware intelligence algorithms in SANs and EDs.

In Chapter 4, a novel methodology has been proposed towards latency-efficient model re-
training and forwarding in resource-constrained devices by enabling local edge-centric ana-
lytics. The deployment of familiarity-based input data classification by using quantisation of
the input space through cluster connected with the associated predictive error has been shown
to improve greatly qualitative retraining of the locally generated models. Adapting efficient
retraining and model forwarding in resource constraint devices provides sustainable capacity
usage by reducing the bandwidth and communication (only model parameters and statistics
are forwarded). Moreover, with local predictive modelling implemented in changing and
continuously evolving environments, devices can react in real-time without any communi-
cation delay to the Central Location (CL). A possible solution towards the issue of selecting
from the ensemble of models at the CL transmitted from each individual learner (EDs) has
been presented in Chapter 4. It has been shown, through comprehensive experiments, that
similarity-based clustering is notably improving the accuracy in comparison to a simple av-
eraging of model predictions. The forwarded input data statistics can be used as valuable
information for query-driven analytics. Introducing this quality-efficient low complex lo-
cal edge-centric methodology improves the EDs ability to perform real-time analytics and
the CL to perform qualitative query-driven analytics without communication overhead (e.g.
requesting model updates over the network).

Finally, Chapter 5 provides a privacy-focused analytical methodology by enabling the lo-
cal computational capacity of each ED to perform personalised Federated Learning (FL). In
some Internet of Things (IoT) application environments, the collected data requires privacy-
preserving techniques while providing qualitative and resource-efficient analytics. The de-
ployment of FL introduces privacy by design and enables local real-time privacy-preserving
data analytics in resource constraint devices. However, the new research area still requires
optimisation towards more accurate and qualitative focused analytics over non-independent
and identically distributed (i.i.d.) data and changing environments. Therefore, the thesis
contributes to providing a novel personalisation FL methodology in identifying how to best
balance a local individualised model and a generalised federated model inside each individ-
ual learner. The two proposed methods greatly improve the current deployed related work.
The first approach is to incorporate both models towards a balanced weighted new predic-
tion. The second technique is through identifying the best time to switch between the two
given models. Both strategies explore the local data space of the ED to build prediction
models locally using a low-complex computational process for providing accurate forecasts
while being efficient concerning the given resource constraints.
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6.4 Limitations and Future Work

The presented work in this thesis is limited to multivariate linear regression models for Edge
Computing environments using contextual data. This leads to future work in advancing the
proposed methodologies to advanced analytic functions, including neural networks. How-
ever, using more complex algorithms in resource constraint devices enables the need to prove
the required resources for transmitting data compared to performing local training and ana-
lytics. In the presented work, the used resources are efficiently balanced in which the local
learning enables sustainable energy usage, as low computational complexity algorithms are
deployed and used. This work did not provide a one-size-fits-all model for a specific use
case but instead explores strategies towards efficient and quality-aware local analytics to al-
ready introduced analytical use cases. This leads to further extending the methodology to use
cases towards smart homes or autonomous cars deploying video and image data alongside
the sensor data and contextual data.

The topic of privacy-efficient analytics in edge networks is currently one most required ar-
eas in the research and industrial community. The governmental requirements and user-
requested privacy of the collected data lead to future work in performing analytics over
highly distributed, unbalanced and heterogeneous data sets. The deployment of Federated
Learning (FL) to overcome law regulations is one possible solution, as highlighted. However,
combining other privacy mechanisms and comparing the accuracy towards, e.g. differential
privacy, can be seen as a future research direction. In some future work, we already presented
the use of IoT with Blockchain [274]. This can be further explored by enabling analytics in
this environment or in combination using FL [275, 276]. The presented work of FL is us-
ing usually supervised learning methods for their applied use cases [277, 278, 279]. Many
applications are semi-supervised or unsupervised in industrial environments. Labelling the
data manually is for most use cases infeasible. Therefore, the usage of FL in unsupervised
machine learning environments is an excellent direction for further research [280].

Interestingly, there is also the aspect of fully decentralised FL [188, 281] in combination
with a centralised coordinator but allowing the exchange and learning from the surrounding
devices. This leads to the most promising area of providing a cluster-based FL method-
ology that identifies similar devices, maybe using the proposed approach of Section 4.5.2.
Given these clusters, it is possible to perform the federated model aggregation on the group
to have different hierarchies of federated models. This, in combination with the proposed
personalisation strategy in Chapter 5, can lead to more quality-aware analytical results.
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6.5 Concluding Remarks

The increase of deployed Internet of Things (IoT) devices and their computational capacity
enables the use of local edge-centric intelligence and analytics. The importance of efficiency
with extending the battery lifetime or reducing the bandwidth and communication is the pri-
mary aspect in these applications. Only low complex and sustainable algorithms or strategies
can be deployed in these devices. The performed analytical tasks and calculated predictions
result in decisions that can sometimes lead to critical consequences to the user, the envi-
ronment or the application. Therefore providing qualitative predictive and inferential results
while being sustainable with the given resources in edge networks has motivated this thesis.

This thesis has focused on providing a communication-efficient data forwarding strategy
for applications with enormous and frequent data collection applications, especially for low
computational capacity devices. In environments providing more computational power of
devices and having real-time requirements over evolving data, the presented work in this
thesis enabled local efficient retraining and forwarding of only model parameters. More-
over, qualitative model-selection strategies for central query-driven analytics combined with
reduced communication and transmission of the local individualised models have shown to
provide quality-aware prediction performance in latency constraint networks. To fulfil the
necessity of quality-aware analytics in resource-constrained and constantly changing envi-
ronments, data privacy under this aspect has been highlighted in this thesis. It has been
shown that enabling personalisation combined with generalised federated models can lead to
qualitative prediction results while keeping the data secure and unshared in EDs. The aspects
of bandwidth, latency, and privacy regarding efficient resource usage and quality-aware ana-
lytical results have been presented with the proposed strategies in this thesis to advance the
current State-of-the-Art knowledge within the research community.
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Appendix A

Quality-Efficient Data Forwarding
Evaluation Additional Dataset
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Figure A.1: Evaluation of DPD trade-off Communication and KL, DTW for DS2.
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Appendix B

Latency-Efficient Edge-Centric
Analytics Dataset Information

Figure B.1: Map of 30 randomly selected
stations representing each an ED i
for model retraining and forwarding
strategies highlighted in Chapter 4.

Station ID Lat Lon

IABERDEE40 29 57.29 -2.4

IABERDEE58 8 56.9 -2.21

IACHARAC3 1 56.7 -5.57

IANGUSDU2 26 56.53 -3.07

IANSBREC2 2 56.73 -2.67

IBLACKIS2 25 57.57 -4.17

IDUNDEE10 12 56.46 -3.03

IEDINBUR82 9 55.95 -3.23

IENGLAND499 5 51.53 0.03

IENGLAND570 23 51.66 -0.39

IFIFE16 27 56.21 -3.03

IGLASGOW1 18 55.78 -4.42

IGREATER38 7 51.61 -0.34

IHIGHLAN4 15 57.36 -4.2

IHIGHLAN8 14 57.59 -4.43

IINVERCL8 22 55.9 -4.87

ILONDON658 24 51.58 -0.41

IMACDUFF2 6 57.67 -2.49

IMIDDLES2 4 51.46 -0.37

ISCOTLAN68 13 57.12 -2.1

ISCOTLAN175 3 57.48 -2.17

ISCOTLAN189 20 58.9 -2.89

ISCOTLAN367 0 55.94 -3.07

ISOUTHLA5 16 55.76 -4.18

ISTAUSTE2 10 50.33 -4.75

ISTIRLIN5 21 56.12 -3.95

ISTJUSTI3 17 50.15 -5.67

IUNITEDK50 11 50.06 -5.67

IUNITEDK397 19 57.81 -4.32

IWISHAW4 28 55.8 -3.96

Table B.1: Mapping of name, ID and geo-
graphical information of stations.
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[191] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
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