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Abstract

In recent years, new mobile devices and applications with different functionalities and uses,
such as drones, Autonomous Vehicles (AV) and highly advanced smartphones have emerged.
Such devices are now able to launch applications such as augmented and virtual reality, inten-
sive contextual data processing, intelligent vehicle control, traffic management, data mining
and interactive applications. Although these mobile nodes have the computing and commu-
nication capabilities to run such applications, they remain unable to efficiently handle them
mainly due to the significant processing required over relatively short timescales. Addition-
ally, they consume a considerable amount of battery power. Such limitations have motivated
the idea of computation offloading where computing tasks are sent to the Cloud instead of
executing it locally at the mobile node. The technical concept of this idea is referred to as
Mobile Cloud Computing (MCC). However, using the Cloud for computational task offload-
ing of mobile applications introduces a significant latency and adds additional load to the
radio and backhaul of the mobile networks. To cope with these challenges, the Cloud’s re-
sources are being deployed near to the users at the Edge of the network in places such as
mobile networks at the Base Station (BS), or indoor locations such as Wi-Fi and 3G/4G ac-
cess points. This architecture is referred to as Mobile Edge Computing or Multi-access Edge
Computing (MEC). Computation offloading in such a setting faces the challenge of deciding
which time and server to offload computational tasks to.

This dissertation aims at designing time-optimised task offloading decision-making algo-
rithms in MEC environments. This will be done to find the optimal time for task offloading.
The random variables that can influence the expected processing time at the MEC server are
investigated using various probability distributions and representations. In the context being
assessed, while the mobile node is sequentially roaming (connecting) through a set of MEC
servers, it has to locally and autonomously decide which server should be used for offloading
in order to perform the computing task. To deal with this sequential problem, the considered
offloading decision-making is modelled as an optimal stopping time problem adopting the
principles of Optimal Stopping Theory (OST).

Three assessment approaches including simulation approach, real data sets and an actual
implementation in real devices, are used to evaluate the performance of the models. The
results indicate that OST-based offloading strategies can play an important role in optimising
the task offloading decision. In particular, in the simulation approach, the average processing
time achieved by the proposed models are higher than the Optimal by only 10%. In the real
data set, the models are still near optimal with only 25% difference compared to the Optimal
while in the real implementation, the models, most of the time, select the Optimal node for
processing the task. Furthermore, the presented algorithms are lightweight, local and can
hence be implemented on mobile nodes (for instance, vehicles or smart phones).
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Chapter 1

Introduction

1.1 Overview

Mobile-Edge Computing (MEC) is a computing paradigm that optimises the Cloud’s re-
sources by bringing applications and content closer to users at the Edge of the network within
the Radio Access Network (RAN) [1]. MEC involves deploying small servers or data centres
in places like Road Side Units (RSUs), Base Stations (BSs) and access points. MEC servers
can be an advantage for various types of mobile nodes and their applications including com-
putation offloading for intensive applications such as augmented reality [2, 3]. Further, MEC
servers can be an intermediate data-processing layer for data offloaded by mobile nodes [4].

As proposed in [5, 6], MEC servers can be deployed within RSUs, and it is expected to pro-
vide computing resources for tasks offloaded by mobile nodes as mobile nodes pass by. The
mobile node may be either a passenger on board who is running different applications or it
can be the smart vehicle itself. As an example, MEC servers within the RSUs can play an
important role in enabling performance improvements for mobile vehicular terminals such
as Autonomous Vehicles (AV) [7]. The AV can run intelligent vehicle control, traffic man-
agement and interactive applications using the built-in computation units. AVs are equipped
with a massive number of sensors that collect contextual data for different types of appli-
cations such as transportation systems and navigation applications [5]. The AVs can collect
and sense contextual data and apply different algorithms for data analytics tasks. An au-
tonomous driving vehicle, for example, produces and consumes approximately 40 terabytes
of data per eight driving hours (e.g., a city’s High Definition (HD) map is approximately
1.5TB) [8]. However, despite AVs typically include on-board units, they have small-scale
computing and storage capabilities and hence are dependent on other computational servers
[9]. Also, such applications may require significant computation resources and constrained
time delays [5]. Similarly, mobile devices such as smartphones, tablets, and netbooks run ad-
vanced applications, such as gaming, virtual reality, and natural language processing, which
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do not match the capabilities and battery power of these mobile devices [10]. Therefore,
the mobile node then would be required to offload such tasks to one of the MEC servers to
enhance its resource capabilities and to meet the applications’ requirements.

When offloading, the key problem is the offloading decision by which the mobile node selects
an Edge server to offload the computing task to as the MEC servers’ load have large variation.
In particular, in MEC environments, it is expected that sometimes there is a large number of
users concurrently using the same server, whereas some other times only a few users are
connecting [11, 12]. In other words, the workload of such servers may be different over
time [6, 11, 12]. The selection of where (which MEC server) and when (time) to offload
has a significant impact on satisfying the requirements of the offloaded tasks [9, 13, 14].
Meanwhile, computing tasks or data gathered by mobile nodes (for instance AVs) tend to
have strict timeliness requirements which may result in the data becoming out-of-date [15].
Further, the existing studies in the area of computation offloading have mainly focused on
the decision of whether the computing task should be offloaded or executed locally and a
few studies have considered the selection of where a task should be offloaded as in [6, 16].
It is, therefore, vital to define rules by which the mobile node can select a suitable MEC
server to be utilised for task offloading. When the task cannot be executed locally and as the
mobile node moves, should the mobile node offload immediately or would rather delay the
offloading in order to find a superior MEC server in terms of computing performance?

As an example, in the AV or in ultra-dense network use cases and in a naive centralised of-
floading method, the mobile node would request information from a centralised server about
all the available MEC servers that could be used to offload [6, 17, 18, 19]. The centralised
server would be connected to the MEC servers by wired network connectivity and can be
located in the Cloud [6, 18]. However, such an architecture is not visible because it may
introduce load on the network as the number of mobile nodes increases [6]. In AV use case,
another solution would be using Vehicle to Vehicle communication (V2V) as discussed in
[5], where a vehicle can send tasks to the MEC server (routed via vehicles) that it will pass
by at the time the computational task finishes. However, this solution is dependent on other
vehicles being present en route at all times, which is not guaranteed. If the mobile node
only knows about the MEC server it is observing and previous methods are not available,
the challenge is therefore to identify how to optimise the choice of MEC server, particularly
if the mobile node has incomplete information and lacks global information about all the
potential MEC servers that could be used for task offloading.

Two pivotal factors should be considered that could delay offloading until a better MEC
server is found. First, mobility and speed could be considered beneficial in terms of optimis-
ing the decision of which MEC server to offload to as there is a greater likelihood of finding
a better server. In other words, as the speed of the vehicle increases, the probability of hav-
ing better MEC server with low workload increases [20]. Second, since the computational
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task usually has a given deadline, the decision maker can use the time before the deadline
to investigate offloading options and delay the offload until a better MEC server is found
[6, 21].

In this thesis, the problem of deciding which server to offload to (or a time to offload at)
is modelled as an Optimal Stopping Theory (OST) problem. An OST problem involves
deciding when to carry out an action on the basis of a random variable that is observed in
sequence for the purpose of increasing the expected payoff or reducing the expected cost
[22]. Best Choice problem, the Odds sum algorithm, the House Selling problem or the Fair
Coin Problem are some of well-known OST problems [22]. A variety of OST-based models
is adopted in the task’s offloading decision in order to make the offloading decision in an
efficient way and to optimally select when to offload in an independent manner.

Two essential objectives are studied: maximising the probability of choosing the best server
or time to offload, and minimising the processing time. While both objectives seem to have
similar outcomes, as we shall see in later chapters, they are different in terms of performance
and independence. This thesis advocates the idea that a mobile node can make an indepen-
dent offloading decision in a standalone manner without relying on another mobile node or a
centralised server. Moreover, this research builds on pre-existing models by designing cus-
tomised algorithms that consider the requirements of the task to be offloaded. The proposed
models can, for example, take the task deadline into account, or look at the quality of the data
to be offloaded in a data-oriented task. Furthermore, this work provides a detailed evaluation
of these methods by using different approaches, including numerical simulation, real data
sets and an implementation of the models in real devices. In general, the proposed models
show near-optimal results compared to other offloading methods. Such an evaluation allows
the behaviour of the models to be understood in different settings. It also helps to show how
such models can be applied to real world scenarios.
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1.2 Thesis Statement

Offloading decisions in MEC have recently attracted attention, since they affect Qual-
ity of Service (QoS) and resource consumption for new and emerging mobile appli-
cations. A key problem when offloading computing tasks is deciding which server
to select and when the offloading should begin giving the load variance for Edge
servers over time. This research asserts that, by exploiting the mobility of mobile
nodes in MEC environments and the deadline of the task, the decision of where and
when to offload can be optimised and can be made independently as a standalone
decision-making model. To optimise such a decision, this work presents a lightweight
framework using the concept of OST to be deployed in the mobile node in order to
have lower processing time compared to the immediate offloading and the Random
offloading methods.

1.3 Contributions

The contributions of this thesis are:

• The design of a time-optimised model to maximise the probability of offloading to the
optimal server.

• The design of a time-optimised model to minimise the expected processing time when
offloading. In this model, the number of observations is used as an input, and the
model generates a threshold for each observation (time) which is compared with the
observed random variable.

• The enhancement of the Odds OST algorithm with a timeliness function; the optimal
decision probabilities (Odds) depend on the freshness of data collected and the current
expected processing time of the Edge servers.

• The design of a cost-based time-optimised model to minimise the expected processing
time when offloading to an Edge server. Rather than having the number of observations
as an input, this model considers the cost of observations and generates a threshold for
a given cost.

• A comparative assessment and extensive sensitivity analysis of the proposed models
with other offloading methods using numerical simulation, real data sets and an imple-
mentation of the models on real devices.
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1.4 Publications

The work described in this thesis has been published in the following papers:

• Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. ”Optimized
Contextual Data Offloading in Mobile Edge Computing”. In: IFIP/IEEE International
Symposium on Integrated Network Management (IM 2021), Bordeaux, France, 17-21
May 2021, (Accepted for Publication).

• Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. ”Data quality-
aware task offloading in Mobile Edge Computing: An Optimal Stopping Theory ap-
proach.” Future Generation Computer Systems (2020).

• Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. ”On the Op-
timality of Task Offloading in Mobile Edge Computing Environments,” 2019 IEEE
Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp.
1-6.

• Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. Delay-Tolerant
Sequential Decision Making for Task Offloading in Mobile Edge Computing Environ-
ments. MDPI Information 2019, 10, 312.

• Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P Pezaros. ”Time-Optimized
Task Offloading Decision Making in Mobile Edge Computing,” 2019 Wireless Days
(WD), Manchester, United Kingdom, 2019, pp. 1-8 - Recipient of the Best Paper
Runner Up Paper.

1.5 Organisation of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 presents a technical background of the studied area and a review on the
related literature. It starts by describing the traditional architecture of the Cloud and
moves to emerging architectures at the Edge of the network. The Chapter presents
some examples of Edge applications and use cases, and discusses the concept of com-
putation offloading by giving a background and a review of previous studies related to
it.

• Chapter 3 presents two OST-based models for sequential decision-making computa-
tion offloading focusing on the objective of maximising the probability of offloading
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to the best server. The second model can be considered as an extension of the first one
considering a data quality indicator that represents how stale the data is. The Chapter
presents, for each model, a brief mathematical background, derives the optimal of-
floading rules to be used by the mobile node, and a numerical analysis for a number
of cases in the context of the considered random variable. It concludes by providing a
summary of the models and how they can be used in real world scenarios.

• Chapter 4 extends Chapter 3 by focusing on the objective of minimising the process-
ing time when executing a task in a MEC server. The Chapter presents two models,
the first one is modelled as a finite horizon OST-based problem. The second one over-
comes the limitations of the first model by relaxing the assumption that the number of
observations has to be known in advanced. Similar to Chapter 3, the Chapter presents
the brief mathematical background for each model, derives the optimal offloading rules
to be used by the mobile node, and a numerical analysis of the random variable for dif-
ferent probability distributions.

• Chapter 5 presents a comprehensive evaluation of the OST-based offloading frame-
works. First, through numerical simulation, the frameworks and solution methods are
evaluated to determine the optimality of solutions compared to other offloading meth-
ods considering different probability distributions. Then, it extends the evaluation by
using real data sets including mobility trace and real servers’ utilisation. Furthermore,
the Chapter presents the results when implementing and deploying the models in a real
environment. After a comprehensive evaluation for the proposed models, the Chapter
discuses important aspects of the proposed models when applied in the real world.

• Chapter 6 gives a summary of the contributions and findings of this work. It revisits
the thesis statement and explores potential research directions and future work. Finally,
it summarises and highlights important concluding remarks. The main chapters of the
thesis and their main sections are depicted in Figure 1.1.
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Chapter 2

Background and Related Work

2.1 Overview

Over the last decade, there have been huge developments in mobile computing with new
forms of mobile nodes being used as a computing platform for different types of applications.
In addition to traditional smartphones, examples of these forms are wearable devices, drones,
and smart and self-driving cars. Such developments are accelerated by advancements in the
wireless communication system with high Internet speed such as 4G and 5G. However, with
the appearance of a new spectrum of applications, such as augmented and virtual reality,
gaming and data analysis for big data (which have high computing resource demands), these
mobile nodes still encounter challenges in terms of processing and power capabilities.

The idea of computation offloading was realised from early generations of mobile devices
as far back as 2002 with the concept of Cyber Foraging [23]. The main goal of Cyber For-
aging is to preserve mobile devices’ processing power and battery life by executing their
tasks in nearby servers. Due to the introduction of the Cloud computing paradigm and its
infinite resources, the development of iPhone and Android smartphones, and the proposal
of the Cloudlet [24], the concept of computation offloading has been improved upon and
extensively researched. The Cloud was mainly used as the destination for tasks offloaded by
mobile devices. Figure 2.1 shows key breakthroughs towards the development of computa-
tion offloading.

However, as suggested by early work in computation offloading [24, 25], in order to make
computation offloading beneficial, it is advised to offload tasks to nearby servers instead of
using distant data centers (for example the public Cloud). Several studies have proposed
new designs to deliver Cloud services to mobile nodes with different names such as Edge
computing, Cloudlet, Fog computing and Mobile Edge Computing or Multi Access Edge
Computing (MEC). Contrasting other proposals for Edge architecture, MEC servers are to
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Figure 2.1: Key breakthroughs towards the computation offloading

be integrated with the current mobile network. Moreover, as the environment of MEC is
dynamic and complex (in terms of mobility and the finite resources of Edge servers), re-
source management and decision-making over such an environment become more difficult.
Therefore, different methods of optimisation have been employed to deal with the challenges
involved in such an environment [26].
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Figure 2.2: Chapter 2 outline.

In this Chapter, an outline of the related work and background of the computation offloading
decision in MEC environment are presented. As this work combines MEC architecture with
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computation offloading, the Chapter starts with a background on the development of MEC.
It then discusses the concept of computation offloading by giving a background and review
of previous studies related to it. Figure 2.2 visualises the main sections of the Chapter.

2.2 Cloud Computing to Edge Paradigm

Over the last few years, Cloud computing and its associated services have developed rapidly.
These developments are widespread and comprehensive, including architectural design and
infrastructure location in addition to the provision of services and resources. The Cloud is
a parallel and distributed system that has a number of inter-connected and virtualised com-
puters. These resources are provisioned and presented as one or more computing resources
based on service-level agreements created through agreements between the service provider
and consumers [27]. Cloud computing was proposed initially to provide reliable, customised
and QoS guaranteed computing and dynamic resources for end-users of dedicated computer
and storage resources located in large and distant data centres [28]. More specifically, the
Cloud allow users to exploit infrastructure (e.g. servers, networks, and storage), platforms
(e.g. middleware services and operating systems), and software (e.g. application programs)
provided by a Cloud service providers (e.g. Google and Amazon) at an economical cost
[29]. The concepts of virtualisation and the Software Defined Network (SDN) and their
developments have resulted in advancements in the area of Cloud computing. The original
Cloud architecture relied on service providers setting up large data centres in fixed locations.
These fixed locations may be in a different country to the point of origin of the end user’s
data and applications [28]. Cloud advantages are not limited to business applications; the
applications of Cloud extend to serve the resource constrained devices such as mobile nodes
and the Internet of Things (IoT) and their applications.

Meanwhile, mobile devices (e.g. smartphones and tablet PCs) have become an essential
element of our lives, providing access to effective communication not limited by time or
place. In the past decade, the demand for mobile devices and the expanding growth of mo-
bile Internet traffic have been driving massive improvements in wireless communications
and networking [30]. Mobile devices have more computing and communication capabilities
than ever before. For example, mobile devices have been embedded with a vast number of
hardware and sensors such as cameras, Global Positioning System (GPS) and accelerometers
with the higher data transmission rates utilising 4G, 5G and WiFi technologies [31]. Addi-
tionally, mobile vehicular terminals such as drones and smart vehicles are developing and
improving adding new functionalities. Smart vehicles use features such as cameras, radar,
and GPS to collect diverse information from the surrounding environment [32]. Generally,
the developments in mobile nodes, including smartphones, drones and smart vehicles, have
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made such nodes good platforms for hosting and executing resource-intensive applications.
Examples of such applications include augmented reality, virtual reality, self driving vehicu-
lar applications [26], road safety applications, traffic efficiency applications, Mobile Crowd
Sensing (MCS) [32, 33] and data collection and delivery [34].

Nevertheless, the resources of mobile nodes are still limited and constrained and they can-
not satisfy such applications. This is due to the fact that these applications require higher
computation and storage resources and have strict delay requirements. Due to current hard-
ware design resulting in limited battery capacity and insufficient computing and storage re-
sources, only fairly uncomplicated computation tasks can be completed using local comput-
ing [4, 13, 32, 26, 17, 35, 36, 37]. Such limitations have led to the concept of computational
offloading where a mobile device’s computing tasks are sent to the Cloud. Running mobile
nodes’ applications with the support of the Cloud has emerged as an initial solution for en-
hancing the resources capacity of the mobile nodes’. In the literature, utilising the remote
Cloud by mobile nodes is referred to as Mobile Cloud Computing (MCC).

Figure 2.3: MCC architecture.

2.2.1 Mobile Cloud Computing

As shown in the previous section, one of the most critical challenges in mobile computing
is to deal with the conflict between the growing complexity of mobile nodes’ applications
and the limitations of mobile nodes’ resources. A feasible idea to deal with such a chal-
lenge is to utilise the MCC idea and run the mobile nodes’ computing tasks remotely in the
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Cloud. MCC is a computing paradigm that utilises the Cloud’s resources to deal with the
storage and processing issues of mobile nodes’ computational tasks. [38] defines the MCC
as an integration of Cloud computing technology with mobile devices to make the mobile
devices resource-full in terms of computational power, memory, storage, energy, and context
awareness. The overall architecture of the MCC is shown in Figure 2.3. In MCC, the mobile
node can access Cloud resources using a mobile network (BSs) or access points (Wi-Fi). The
mobile node is then connected to the Internet and can access Cloud services [38]. As it can
be seen from Figure 2.3, in MCC, the traffic has to pass through several networks including
the mobile network (when using 4G for example), backhaul network and Internet which can
add extra delay [30]. Using the Wi-Fi for accessing Cloud resource might have less delay
as the mobile node will be connected to the Internet without having to go over the mobile
network [38]. In contrast, using 4G for example to access Cloud resources might introduce
higher delay as this connection has to go over several networks. In both cases, it is going to
be higher delay compared to the case when we have the server just one hop away from the
mobile node.

MCC was not perfectly capable of handling the mobile nodes applications for several rea-
sons. The potential high number of IP hops between mobile nodes and the Cloud data centres
results in longer delay when offloading [30, 39]. Such delay is critical for mobile node ap-
plications. Also, the MCC also places a further load on the radio and the backhaul of mobile
networks [13]. Additionally, large data centres are mainly focused on serving enterprise
users; i.e., high volume workloads, using virtualised resources such as virtual machines. Us-
ing the same strategy to serve mobile applications, no matter how small the workload is,
will incur an overhead for the overall virtual resources provisioning and management due to
the large number of mobile applications to be served [11]. This situation creates a further
need to look at the MCC architecture with a view to improvements that would serve the mo-
bile nodes in a better and an efficient way. To deal with this challenge, several studies have
proposed new designs to deliver Cloud services to mobile nodes [24, 40, 41]. The common
feature between these studies is an architecture designed to deploy small data centres at the
Edge of the network.

2.2.2 Edge Computing

As outlined in the previous subsection, utilising large and distant Cloud data centres is not
beneficial for enhancing mobile nodes’ computational capabilities. To overcome such limi-
tations, the idea of deploying small data centres at the Edge of networks has been introduced,
under the umbrella term of Edge computing. Edge computing, as a new form of Cloud com-
puting, brings services close to end users, and thus reduces the response time and minimises
the load on the network [42]. The main objectives of Edge computing are high bandwidth,



2.2. Cloud Computing to Edge Paradigm 13

ultra-low latency, real-time access, and its key characteristics include geographical distribu-
tion, mobility support, location awareness, proximity and context-awareness [42].

There are several different models for Edge computing in the literature. [43] summarises
three main types of Edge models. In the first model, the Edge servers are deployed to provide
computing and storage services to a variety of devices such as sensors and mobile nodes. In
this instance, the servers may refer to real servers machine or Raspberry Pi devices as long
as these devices provide a minimum computing and storage capacity for other devices. The
second approach, the Edge Cluster, uses multiple devices in coordination together to perform
certain tasks, as seen in a smart home scenario. The third type of Edge model is the layered
approach, where Edge devices are layered based on increasing resource capabilities or by
location, as seen in smart cities [43].

Edge computing, in general, has been defined in the literature in varying ways. One of the
most common Edge architecture is the MEC system which has become one of the most
utilised architecture in the literature as the system is increasingly used for executing new
mobile applications [26]. The MEC architecture is intended to be integrated with the mobile
networks. This implies more opportunities for mobile nodes for new applications and use
cases. This also implies that the MEC will be adopted by the mobile network operators,
which will result in faster development of such a concept. As the work in this thesis is
mainly designed for mobile nodes at the Edge and so is the MEC, the MEC term will be
mainly used throughout the thesis. The following subsections attempt to offer an overview
of the Edge terms while narrowing the focus on the term to that considered in this work i.e.,
MEC.

Distance Cloud on 

Internet

Coffee shop 

Cloudlet

Mobile devices

Low-latency high-bandwidth 

wireless network

Figure 2.4: Cloudlet concept [24].
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2.2.2.1 Cloudlet

Early work which suggested that smartphone users would benefit from Cloud resources at
the Edge of their networks referred to the Cloudlet concept [24]. The Cloudlet concept
involves local (one wireless hop) computing infrastructure that may be utilised by mobile
devices. Cloudlets thus act as decentralised data-centres, and they may be placed at various
places, such as coffee shops, to be located closer to the mobile users allowing their compute
cycles and storage resources to be leveraged by nearby mobile users. A Cloudlet, which
requires a gigabit internal networking and wireless LAN, can be seen as a cluster of multi-
core computers [24]. As it can be seen from Figure 2.4, the Cloudlet provides computing
resources for resource-constrained mobile devices via wireless LAN which tends to have
higher bandwidth and lower latency. The Cloudlet may be monitored and supported by
third-party distant data centre on Internet. The deployment of the Cloudlet was envisioned
to be just like the deployment of the Wi-Fi access points.

One disadvantage of the Cloudlet, in its initial proposal, is that it is supposed to be accessed
via mobile devices through a Wi-Fi connection as the mobile technologies (for instance 3G)
at that time were not able to provide the required bandwidth and latency for such a proposal
[24]. Each time a user wants to access the Cloudlet, they must thus switch from their mobile
network to Wi-Fi to exploit Cloudlet services [13]. The other key disadvantage is that QoS
is not guaranteed, as the Cloudlet is not part of a mobile network and a mobile device can
easily move out of the coverage of the Cloudlet [13]. Further, the Cloudlet itself is dependent
on a robust and uninterrupted Internet connection [39].

2.2.2.2 Fog Computing

Another early architecture proposed for Edge computing was the Fog computing [40]. Fog
computing was proposed in 2012 by Cisco to provide a platform for Internet of Things (IoT)
and big data applications [40]. In Fog computing, task processing is mainly carried out in
the local area network and in an IoT gateway or a Fog node [39]. Fog is most suitable
for applications that require low latency as in gaming applications; location awareness, as in
augmented reality, geo-distributed and large number of nodes as in sensor networks [40]. Fog
computing has some disadvantages due to its dependency on wireless connections, however,
as these must be live in order for any processing to be performed. The location of data is also
an issue, as data is kept within the local network rather than being distributed on the mobile
network [40].
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2.2.2.3 Mobile Edge Computing (MEC)

QoS and Quality of Experience (QoE) for mobile nodes are not guaranteed by either Cloudlet
or Fog computing, as these architectures are not integrated into the mobile network [13].
Thus, a new Edge computing architecture, Mobile Edge Computing or Multi-Access Edge
Computing (MEC), has been proposed to be deployed and integrated with mobile networks.
This type of integration allows the service providers to deliver local and fast services from
aggregation sites such as BSs [41]. It also allows mobile nodes to access services easily with
higher chance of being inside the coverage of services.

In general, MEC, Cloudlet and Fog computing are overlapping terminologies and used inter-
changeably but they are different in several ways [30, 39]. For example, MEC and Cloudlet
provide resources mainly to mobile nodes, whereas Fog computing relies on the hardware
designed by Cisco that possesses computational capabilities along with the normal function-
ality of the device such as router and switches [42]. The MEC term and its related archi-
tecture are the main architecture and term used in this thesis, but many aspects discussed
are also applicable to Cloudlet and Fog Computing. The next section thus offers further
background to the development and use of MEC.

2.3 MEC Overview

MEC overcomes many of the limitations of MCC by bringing Cloud resources (processing
and storage) to the Edge within the RAN [39]. MEC, based on the concept of integrating
Edge computing into mobile network architecture, was developed in 2014 by the Indus-
try Specification Group (ISG) within the European Telecommunications Standards Institute
(ETSI) [41]. The standardisation of MEC was supported by mobile operators such as DO-
COMO, Vodafone, and TELECOM Italia, and manufacturers such as IBM, Nokia, Huawei,
and Intel [13]. According to ETSI [41], MEC is defined as follows: “Mobile Edge Comput-
ing provides an IT service environment and Cloud computing capabilities at the Edge of the
mobile network, within the RAN and in close proximity to mobile subscribers”. The main
features that distinguish MEC from the Cloud, are listed below [44].

Proximity being close to the source of information makes it easier to capture big data for an-
alytics tasks. This is also beneficial for computation-hungry applications such as augmented
reality and video analytics.

Lower Latency as MEC nodes are deployed closer to end users, this considerably reduces
latency and provides higher bandwidth.

Location Awareness low-level signalling information for Edge devices can be utilised for
local services, allowing the development of new use cases and new services.
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2.3.1 Architecture of MEC

A generic architecture of a MEC system is shown in Figure 2.5 [39]. As illustrated, the over-
all architecture consists of three main layers: mobile nodes, MEC servers and distant Cloud
data centres. In the lowest layer, the different types of mobile nodes include smartphones,
wearable devices and smart vehicles, all of which can benefit from the resources in the upper
layers, represented by the MEC servers. In terms of the second layer, the MEC servers are
usually deployed within the mobile network in BS or RSU. The mobile nodes then connect
to the MEC server utilising the RAN. At the core of the network are the large data centres
that may be utilised by the MEC servers during high volume workloads. The MEC servers
are connected to the Cloud via fibre links [6, 45] and they may also be connected to each
other, whether by means of a wired network or via X2 link [45].

Cloud

Mobile nodes

MEC

Core

Edge

Figure 2.5: MEC architecture.

A detailed reference architecture for the MEC system is provided by ETSI in [46] and vi-
sualised in Figure 2.6. It considers the architecture of the MEC system from the position of
the provider. According to the proposed framework, MEC will enable the implementation of
MEC applications as software-only entities that run on top of a virtualisation infrastructure.

The virtualisation infrastructure is a physical server on which the VMs run and is located in
or close to the network Edge [46]. The framework for MEC contains the following entities:
system level management, server level management and network level management. These
entities have functional elements that handle a user request from the initiation of the request
until the termination of the request.

For example, the functional elements in the host include platform, application and virtuali-
sation infrastructure. These elements provide compute, storage, and network resources for
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Figure 2.6: MEC framework proposed by ETSI [46] .

the applications. Within the system-level management, the MEC orchestrator is the core
function which is responsible for maintaining an overall view of the MEC system based on
deployed hosts, available resources, and available services. In MEC host level management,
there is a mobile Edge platform and a virtualisation platform managers. The mobile Edge
platform deals with the life cycle of the applications, application rules and service authorisa-
tion, and traffic rules. The virtualisation platform manager is responsible for the allocation,
management and release of the virtualised computation/storage resources provided by the
virtualisation infrastructure located within the MEC server.

2.3.2 MEC Servers Deployment Options

There is no specific definition of where an MEC server should be, and the server locations
in the system are not specified [30]. Such a problem is named in literature as MEC servers
placement, MEC servers deployment or MEC sit selection. However, there are some pro-
posals which suggest where the MEC servers should be deployed. The deployment option
depends on the use case [1].

There are many deployment (possible) scenarios for the MEC servers such as in mobile
network BSs, or indoor locations such as enterprise buildings (i.e. access points). These
deployment options (as discussed in [44]) give the MEC servers the ability to cover and
provide different types of services and applications. As mentioned earlier, a use case that can
benefit from MEC servers’ resources is the technology involved in vehicular networks, where
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vehicles equipped with computation communication units offload tasks such as intelligent
vehicle control, traffic management, and interactive applications to MEC servers. In such an
application, RSU is a candidate location to deploy the Edge servers [5, 6, 9, 20, 32, 45].

2.3.3 MEC Application Scenarios

MEC offers multiple benefits to various stakeholders including the service providers and
mobile nodes users [13]. From a service provider perspective, the MEC provides a mean of
tools to improve the QoS of the users. An intuitive solution is to utilise the Edge to improve
the content delivery caching [39]. For example, as the MEC servers are deployed at the
city level, a popular video for a city can be cached in the MEC server providing better QoS
and reducing the load on the mobile network. Another example is when using the MEC to
provide real-time information about the radio/backhaul network’s traffic requirements. Traf-
fic management applications then reroute traffic as required [13], based on the information
provided by the MEC.

Mobile nodes in MEC environments can profit from the MEC mainly by computation of-
floading, which enables the running of new emerging applications [13]. In the following
subsections, several use cases for the computation offloading are presented. Generally, these
use cases can be divided into two main categories graphical-based applications and data-
oriented applications.

2.3.3.1 Graphical Applications

MEC can be used to improve the QoS of users in graphical applications including augmented
and virtual reality and video gaming. These applications are considered to be latency-
sensitive applications. An example for augmented reality apps is where the mobile node
captures an image of a place of interest and shows it on screen [47] or recognises historical
monuments (e.g., tourist attractions) and accordingly receives an introductory video about
these locations [48]. The results from the performance evaluation in [47] show that the of-
floading of the augmented reality app from a mobile device to an Edge server deployed closer
to the user provides significant reduction of latency up to 88 % and energy consumption can
be decreased by up to 93%. The need for powerful and extra resources in this case is proved
by the fact that the mobile node resources cannot cope with CPU-hungry applications, as in
the majority of circumstances these applications implement machine learning models.

The concept of the ultra-dense network has been researched and proposed as a new MEC-
based architecture. It has a large number of low-power small cells with small coverage
which are installed inside a single macro base station [49]. Having a number of small cells
with computing resources in each of them can improve the capacity of network, computing
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resources and network coverage thus enhancing user experience when using augmented re-
ality apps [49, 50]. Due to the shorter distance between the mobile node and the serving
cells, it will be an opportunity for the mobile node to exploit multi servers for computation
offloading.

Therefore, with multiple MEC servers deployed within small cells closer to the users, com-
putation offloading will be more practical as such deployment is expected to improve the
QoE of the mobile nodes when dealing with augmented reality [51]. Meanwhile, due to the
large number of potential places for offloading augmented reality apps, the decision of where
the task should be sent (or simply which server should be selected) is a problem that needs
to be looked at carefully [51].

2.3.3.2 Data Aggregation

Another important use case for the MEC is where the MEC servers act as an intermediary
data-processor for large data sensed and collected by mobile nodes for data analysis tasks
instead of routing all the data from mobile nodes to the Cloud [52]. The results of the
data analysis offloaded to the MEC server are either directed to the mobile node itself or
transmitted to other systems. Real-time network data collected by the mobile node can also
be utilised by service providers for managing resources such as the number of users in one
area.

A potential use case of the MEC servers deployed in RSU deals with the fast evolution of
sensory technologies in vehicular networks. In particular, AVs are to be equipped with many
sensors such as cameras, LiDARs and radars. Such sensors discern the surroundings to
make sure the autonomous system works [53]. It is challenging to process such data due to
the huge amount of sensory data and the limited computation ability of onboard computing
and storage units. Therefore, MEC servers can be helpful in enhancing the ability of the AV
as a place for aggregating different types of data and for further analysis. An outline of the
existing work dealing with such a scenario is provided in the following paragraphs.

BEGIN was proposed in [15] as a big data enabled EnerGy-efficient vehicular Edge com-
puting. BEGIN mainly consists of two domains: the computing domain and the big data
domain. The computing domain consists of a Cloud layer, which has a SDN controller and
the Edge layer. The big data collected and processed in the data domain are used to provide
energy efficient Edge computing. RedEdge [54] is another big data processing architecture
that incorporates a mechanism which facilitates the processing of big data streams at the
Edge near to the user. The RedEdge considers mobile devices to be a main platform for data
processing. However, in the case of the unavailability of computational and battery power
resources, it offloads data streams to local mobile Edge devices or to the Cloud. In RedEdge,
however, the Edge nodes refer to a set of mobile devices which are connected in an ad hoc
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network. The idea of having the MEC servers as a platform for data analytics was also pro-
posed in [55]. The proposed MEC architecture is for a MCS service. The MCS refers to a
human-driven IoT service to which people send their observations of different phenomena in
their surroundings by sharing their sensor data while on the move. The authors proposed an
MEC architecture for the MCS by distributing MCS tasks to multiple MEC servers deployed
at the Edge of the network [55]. The work in [56] proposed a decentralised traffic manage-
ment system to minimise the average response time caused by traditional centralised traffic
management. The system contains a Cloud layer, a Cloudlet layer, and a Fog layer. The
Cloud layer is always far from vehicles and formed by trust third authorities. The Cloudlet
is a server which can be installed in each region of the city and can be accessed via the RSU.
Fog nodes are formed by vehicles (parked and moving) within the communication ranges
of RSUs. In short, the scenario in this work is that vehicles can upload sensed events (e.g.,
traffic jams, car accidents, and road surface damages) to a nearby RSU. When an RSU re-
ceives a message, it will send the message to Cloudlet or Fog nodes for processing. Then,
the extracted information will be uploaded to traffic management system for further actions.

The work in [57] puts forward a strategy of computation offloading for a specific data mining
application, namely, activity recognition for mobile devices. As the user moves, data is ob-
tained from various places and is held in storage on the mobile device. This data is examined
so that a choice can be made as to whether to offload to an Edge server or the Cloud, or to
carry out the process on the device. Should it be decided that offloading to an Edge server
takes place, the device’s communication interface obtains a list of Edge servers and connects
to the best server. However, during the movement of the mobile device, e.g., in AVs use
case, a better server could be present and accessible, which is however not picked up by the
communication interface whilst the device’s communication interface scanning. Therefore,
with regards to execution delay, it is possible that a better MEC server is available as the
mobile node moves. This opportunity is taken into consideration in the proposed schemes in
this thesis. Another use case involving data offloading is the case where Unmanned Aerial
Vehicles (UAVs) collects data for different systems and offload it to an Edge server for third
party. For example, the use case considered in the work [58].

To sum up, the studies described above do not address the site and time selection problem
in task offloading. They were primarily concerned with whether a task should be performed
locally or offloaded. Moreover, the task offloading decision in these proposals is based on
complete information gathered by either the mobile node as in [57] or by centralised con-
troller as in [15, 54]. More importantly, the work presented in this thesis can be used to
support such use cases. It supports these scenarios by optimising how the mobile node
chooses an Edge server (or time) for data offloading. For example, it helps when many Edge
servers are available for offloading. When one Edge server is available, the mobile node can
observe the offloading control variable, e.g., the processing time, in a time-slotted manner,
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where the time is divided into equal small intervals and each interval represents one decision
slot. Table 2.1 provides a summary of these studies and how the OST-based models can be
used in such use cases.

Application scenario Motivation for an OST-based model
Ultra-dense network [49, 50] where mul-
tiple MEC servers deployed within small
cells closer to the users.

Due to the large number of potential places
for offloading augmented reality apps, the
decision of where the task should be sent
(or simply which server should be selected)
is a problem that needs to be looked at
carefully [51].

Using big data analytics to provide effi-
cient, programmable, scalable, and flexible
framework to manage vehicular edge com-
puting, e.g., BEGIN [15].
Employing the Edge node for big data pro-
cessing offloaded by Edge devices as in
RedEdge [54] and MCS [55].

In this type of application, one important
source of data is mobile nodes such as
vehicle sensors. Thus, the proposed models
can be utilised in this use case to optimise
the way mobile nodes offload the data to an
Edge servers, e.g., time and server selection
taking into account the data quality, e.g.,
the timeliness of data.

Task offloading for data mining applica-
tions such as activity recognition task as in
[57].

The proposed models can be used in
this use case to provide server and time
selection decision-making in sequential
manner without having to gather all the
servers information, i.e., make a decision
based on incomplete information.

Table 2.1: A summary of some MEC applications and the motivation for using an OST-based
model when offloading.

2.4 Computation Offloading

Computation offloading generally refers to sending resource-intensive computing tasks to an
external server in order to enhance the efficiency of a mobile node’s application. In line with
the ongoing development of Cloud and Edge computing paradigms, computation offload-
ing has been adopted as a solution to augment the computing resources of mobile devices.
The underlying concept that developed into current forms of computation offloading was
that of Cyber Foraging, as proposed by Satyanarayanan in [59]. This involves dynamically
enhancing the computing resources available to a wireless mobile node by exploiting wired
hardware infrastructure. This idea has received much wider attention with the introduction
of Cloud computing by Amazon and Google and the advances in mobile nodes driven by
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iPhones and Android devices in the mid-2000s. These developments led to the idea of utilis-
ing Cloud resources to support mobile devices, leading to the creation of MCC as described
previously.

The idea of computation offloading was further supported by the work done by Satya-
narayanan in [24] which introduced the concept of the Cloudlet. There are generally two
main approaches towards remote execution [25]. The first one occurs when the application
programmer defines which parts of an application should be remotely executed based on
the resources required by the relevant component. The second approach is when the entire
application is offloaded in the form of a virtual machine or container. Further background
about the computation offloading concept, followed by a review of key work relating to this
concept is offered below.

2.4.1 Offloading Process

Computation offloading consists of a transmission phase, a remote execution phase, and re-
sults being sent to the mobile node [14]. The offloading computational time for an offloaded
task is therefore measured as the sum of the time required to send the data to the MEC
servers, the time it takes to process the data at the relevant MEC server, and the time required
to send the results of the computations back to the mobile node. Given these stages, there
are several different random variables involved in the process that may be used as control
variables or decision variables.

The process inside the mobile node starts by deciding either to offload or do the task locally.
This might involve decision-making algorithm to optimise such a decision. If offloading the
task beneficial for the mobile node, the next step is to look for the offloading site where the
task will be executed. Depending on the available options, the mobile node selects the ap-
propriate site for offloading. The work presented in this thesis deals the decision of selecting
an appropriate site for offloading mainly in multi Edge servers scenarios. Figure 2.7 shows
the decision-making process done by the mobile node.

2.4.2 Offloading Metrics

Several previous studies have utilised a range of metrics to examine overall performance in
computation offloading [26]. Such metrics include energy, latency and cost. They either
have been considered together and separately.

Energy When offloading, a mobile node consumes energy in order both to transmit the data
and to receive the data from the Edge server. The transmission power, the size of data packets
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Figure 2.7: Process of offloading in the mobile node [26, 38].

transmitted and received, and the bandwidth of the wireless channel are thus the main factors
affecting the energy consumption for computation offloading.

Delay The delay in computation offloading is measured as the total time required to send the
task and the related data to the Edge server added to the execution time in the server and the
time required for results to be returned from the Edge server. The bandwidth of the wireless
channel and the processing time, including the overall load on the MEC server, all affect
such delay.

Cost Some studies within the literature have considered the fact that most of these metrics
can be represented by cost. This might refer to the cost of transmission time or processing
time in the Edge server, for example [26]. Although many factors play a big role in overall
system performance, the focus of this thesis is on processing time in the MEC server.

2.4.3 Decision-Making in Computation Offloading

Several different types of decisions must be taken during the process of computation offload-
ing, and many of these have been considered in the literature [43, 14]. The decision-making
is not limited to the decision of performing tasks locally at the mobile node or offloading
them to an Edge server, but also includes the decision-making of the other possible actions
involved during the process of offloading. The survey in [14] identified the actions that
require a decision-making during the offloading process, which are summarised in the fol-
lowing page.
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Executing Locally or Offloading The mobile node first needs to decide if it is worth it
offloading a given task to external server.

Server Selection If the result of the previous decision is to offload, then the selection of an
appropriate Edge server is important when multiple servers are available.

Wireless Resource Allocation The quantity of wireless resources, including the frequency
that should be allocated for offloading, must be determined.

Power Setting The appropriate transmission power level should be set for offloading.

Computation Resource Allocation Computation resources must be allocated to the task in
the form of CPU cycles or a virtual machine.

In this thesis, the decision of selecting an appropriate server when multiple MEC servers
are available is considered. Such a consideration can be also generalised to the decision of
selecting an appropriate time for offloading. The selection of a server for offloading generally
occurs in scenarios of one to many offloading [14]. In this case, many Edge servers are
available for the mobile for offloading. In addition to the decision of whether to offload, the
mobile node must also decide which server the task should be offloaded to.

2.4.4 Early Frameworks for Computation Offloading

Early frameworks for computation offloading include MAUI [25], CloneCloud [60] and
ThinkAir [61]. These frameworks were proposed between 2010 and 2012 when the Cloud
was the main attractive means to provide the necessary resources for mobile nodes. In addi-
tion, the frameworks were proposed in conjunction with the initial proposal of the Cloudlet
concept, which was discussed in Section 2.4. These studies cover important design features
as well as key findings that were the foundation for most of the task offloading research. A
review of these frameworks is provided in the following paragraphs.

MAUI’s main objective is to minimise the power consumption considering the latency con-
strains, and it allows developers to produce an initial partitioning of their applications and
thus to define what parts of those applications should be offloaded. In the smartphone side,
the MAUI has an interface to the decision engine, known as a proxy, which handles con-
trol and data transfer for offloaded methods and a profiler, which instruments the program
and collects measurements of the program’s energy and data transfer requirements. On the
server side, MAUI has four components: the profiler and the server side proxy, the decision
engine, and the MAUI coordinator, which handles authentication and resource allocation for
incoming requests.

Determining which methods should be executed locally or executed remotely is done by
the MAUI solver. This problem is formulated as integer linear programming problem. To
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save energy, the optimisation solver runs on the MAUI server side and not in the mobile
node. The work was evaluated under different connectivity types including Wif-Fi and 3G
with different Round Trip Time (RTT). The results showed that the less the RTT, the better
the performance the mobile node gets in terms of the power consumption and the execution
time. Important aspects related to the remote execution such as the portability of the code are
those considered in this work. This work does not consider the state of the external server to
be used for the offloading decision; instead, only the device and the network characteristics
are used to drive the offloading decision. This work, i.e., MAUI, supports that idea that
offloading to distant data centres (Cloud) is not a good idea, suggesting that remote execution
should be done by nearby servers (Edge), such as those proposed in the Cloudlet concept.

ThinkAir [61] is a framework that helps developer migrate mobile device applications to
the Cloud. Setting aside the aims of MAUI, the authors of ThinkAir argued that, due to in-
creases in the connectivity capabilities of mobile nodes with less round trip time, the Cloud
offers a more attractive solution for the mobile node constraints. ThinkAir consists of three
components: the execution environment (mobile node side), the application server (server
side) and profilers. An execution controller decides whether to offload execution of a par-
ticular method or to allow it to continue locally on the phone based on data collected by the
profilers about the current environment. Beginning with the development stage of a mobile
application, the programmers can thus define which processes need to be offloaded to the
Cloud. The main goal of ThinkAir is to make decisions about which parts of the application
should be offloaded. ThinkAir was evaluated under different connectivity scenarios utilising
different types of mobile applications. The results demonstrate the benefits of ThinkAir with
the ability of on-demand VM resource scaling and exploiting parallelism. ThinkAir focuses
more on scalability issues and parallel execution of offloaded tasks in the Cloud.

CloneCloud [60] is another offloading framework that aims to automatically determine which
parts of an application should be sent to the Cloud. The relevant high level architecture in-
cludes profilers on both sides, a partition analyser in the Clone VM side, and a Manager
on each side for offloading process management. The partitioning of an application oper-
ates utilising three components: a static analyser, a dynamic profiler and an optimisation
solver. The partition aims to minimise an objective function based on the overall cost of
each operation (computation cost and migration cost). The output of this optimisation is
then assigned to binary decision variables for every process in the application to determine
whether it should be run locally or remotely.

These frameworks have defined the fundamentals of computation offloading in terms of the
components that should be deployed in mobile nodes and in the server side, e.g., the Cloud.
They also focus on the technical aspects of mobile applications, such portability and the
partitioning of applications. Further, their focus on making decisions as to whether there is
a need for offloading or whether execution should actually be performed locally.
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The concept of network profiling is also another important point discussed in these studies
that can be used in any offloading decision-making in the mobile node. In MAUI, for exam-
ple, each time MAUI offloads a method, the profiler obtains a more recent estimate of the
network characteristics such as latency and bandwidth. The same idea was used in ThinkAir
and CloneCloud. Such a concept can be also extended to gather other information such as
the server load or the execution time. This information can be then used for decision-making
models deployed in mobile nodes. In the proposed work in this thesis, the mobile node is
required to observe the current status of the random variable to be optimised; thus, the pro-
posed decision-making can be combined with computing and network profiling concept to
offer the present state (value) of the observed random variable.

2.4.5 Summary of Offloading Decision Work

Building on the early frameworks, recent and various pieces of research have been carried
out to deal with the issues of offloading data and computing tasks to an Edge node. The
majority of which have emphasised if there should be local processing of the data or task,
or whether it should be offloaded externally, for example, to an Edge server or to a public
Cloud.

In the following paragraphs, an outline of the recent research work is presented and com-
pared to the work presented in this thesis. We start by discussing recent papers with different
approaches then focusing on the common method that has been used extensively in the com-
putational offloading, i.e, reinforcement learning.

The work in [62], for the purpose of reducing the latency of task execution as well as energy
consumption, presents the idea of collaborative MEC. This work focuses on UAV appli-
cations that uses photos and videos for tasks like object identification or obtaining traffic
information. The captured photos/videos are then offloaded to an Edge server. When the
task is generated by the UAV, a system orchestrator should determine which server should
be selected, what data rate ought to be adopted to transmit data to the selected server and
how much workload each server (cooperator) should be allocated. This work [62] is based
on the assumption that the system orchestrator makes this choice. However, in our work, the
decision is autonomously made by the mobile node itself as in some situations, there might
be heterogeneous or different operators for the MEC servers.

A context-sensitive offloading system using machine learning classification algorithms was
proposed in [63]. The proposed system integrates middleware, machine learning classifica-
tion algorithms, and a robust profiling system. The authors considered whether a task should
be done locally or at the Edge node. Our proposed work can help such a system to decide
which server to be used and what time the offloading should occur once the decision is made
by such algorithms.
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The work in [36] presents an intelligent computation offloading based on Mobile-Edge Cloud
computing architecture. The considered architecture consists of three layers: mobile nodes,
Edge servers and a remote Cloud. Optimised task offloading and migration rules based on
a prediction of tasks’ features using Long Short Term Memory are presented (LSTM). In
this work, three approaches can be used for tasks processing: locally in the mobile devices,
in an Edge server, partially offloading (local and external at the Edge server). The task’s
feature to be predicted in this study is the data size for the task because the total delay of
computation offloading is related to data size as argued by the authors. Thus, the objective
is to minimise the total delay given the predicted data size. Similarly, for the migration
process, the objective is to minimise the migration delay based on the data size prediction
for the task to be migrated. The authors did not explicitly define where the prediction model
will be executed as the model needs some training based on historical data, which might be
resources usage cost. Also, the migration prediction-based was not utilised in the experiment
to show the effectiveness of the proposed model. More importantly, the offloading decision
here is about whether a task should be offloaded or executed locally in the mobile device,
which is different from the sequential decision-making algorithm proposed in this thesis.

In [37], an autonomous computation offloading strategy in MEC focusing on a multiple-user
multiple-server environment with heterogeneous services and Edge-Cloud platforms is pro-
posed. The authors utilise the concept of Monitoring, Analysing, Planning and Executing
(MAPE-k) loop to take a decision of whether the task should be executed locally or offload
to an external server. The objectives are to minimise the execution delay and power con-
sumption. Deep Neural Network (DNN) is used to solve the optimisation problem. Also, a
Hidden Markov Model (HMM)-based model is used to select the transmission media when
offloading. While the study adopted powerful algorithms for the decision-making process,
the proposed framework may introduce an overhead during the decision-making process and
require more resources to be implemented. In addition, the mobile node is dependent on
other nodes on which some components of the framework will be deployed.

The work in [64] proposed an offloading decision algorithm for vehicles. The proposed
algorithm decides which part of the application should be done locally or in the Cloud-
based on the task requirements. A heuristic mechanism for partitioning and scheduling the
application between the vehicular and the Cloud is proposed. This work is designed for
Cloud-based architecture and focused on the decision regarding which part of the application
should be offloaded.

The work in [65, 66] investigated a multi-sites offloading decision based on Analytical Hier-
archy Process (AHP) multi-criteria method. The multi-sites include the mobile device, near
by mobile devices, Cloudlet (Edge server) and too far Cloud server. This study also con-
tributed with the design and development of an Android offloading enabled framework that
can be adopted by developers to build MEC applications. The assumption in this work is that
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the mobile devices will have to collect the offloading devices’ information and based on such
information the decision is made. Different from this work, in our work, the mobile node
is not required to collect all the Edge devices’ information. In other words, in our setting,
the mobile node is observing the Edge nodes (sequentially) and does not need all the Edge
servers’ information in advance for the decision-making.

The work in [20] considered the computation offloading in Vehicular Fog Network (VeFN).
The authors provide a review of the offloading decisions work in VeFN. According to the
authors, the offloading decision in the VeFN can be classified into three major modes: vehicle
to vehicle, vehicle to RSU and pedestrian to vehicle offloading. This work provided two use
cases: the first one is learning-based task offloading applying Multi-armed bandit (MAB)
focusing on vehicle to vehicle offloading. The other use case is a delay-constrained task
replication exploiting vehicle mobility where RSU collects task by vehicle and pedestrian
and offload it to nearby Fog vehicle. An interesting point considered by the authors in this
work is that mobility is not always an obstacle and can be a supportive factor to help in
finding better resources for offloading. This is an important aspect we build our model on
where we allow the mobile node to explore the MEC servers with the objective of finding a
better resource.

The work in [67] proposed a distributed and context-aware task assignment algorithm in
MEC environment. The task assignment in this work refers to the decision of where a task
should be offloaded. The problem is formulated as an one-to-many matching problem by
taking into account the devices’ and MEC servers’ computation capabilities, wireless channel
conditions, and delay constraints. The main objective of this work is to reduce the overall
energy consumption while satisfying task owners’ heterogeneous delay requirements. The
proposed work is compared with the Random matching scheme where tasks and Edge nodes
are randomly paired together, the scheme where the Edge nodes with higher computational
capability has a higher priority to accept tasks and the centralised method, i.e., a centralised
authority with complete information searches through all possible combinations to find the
optimum solution. The proposed solution was the closest one to the centralised method in
terms of energy consumption and the average utility. Even though the authors’ main idea
in this work is to make a distributed tasks assignments, still, the nodes including the Edge
nodes and the mobile nodes are required to collect information from all the neighbors devices
before making the decision of offloading which is different from our work, where the mobile
node proceeds sequentially for decision-making without having to know about all the Edge
nodes in advance.

Similarly, matching problem was also utilised in [68] where MEC system with multiple
servers and mobile devices (users) is considered. Each user comes with a computation task
that needs to be offloaded to a MEC server for execution. The task offloading part adopts
the method of matching theory and the transmit power allocation part adopts a heuristic
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idea. In particular, the work proposes sub-optimal algorithm for joint task offloading and
transmit power allocation. The task offloading is divided into two sub-problems: server
allocation and channel allocation. These two sub-problems are being modelled as user-
resource one to one matching problem. The work is evaluated in terms of system delay and
energy expenditure and compared with a many-to-one matching and a one-to-one matching,
the nearest MEC server and the random approach where the task offloading decision of each
user is chosen randomly. The experimental results show that the proposed model cannot
only obtain less delay, but also generate less energy consumption when the data amount of
tasks is the same but the workload is random in the MEC system. The proposed algorithm
requires the information of the MEC servers and the users around these servers as inputs
which makes it different from the method proposed in this thesis. In Table 2.2, a summary
of the work discussed above is provided. The main difference between the work proposed in
this thesis and these studies lies in the type of decision that was taken into account (mainly
executing locally or offloading) and the requirements for a global view of the Edge servers.

Papers Key difference
[62] This work is based on the assumption that

the system orchestrator (control station)
makes the offloading decision.

[63] The authors considered whether a task
should be done locally or at the Edge node.

[36] The authors considered whether a task
should be done locally or at the Edge node.

[37] The mobile node is dependent on other
nodes in which some components of the
framework will be deployed.

[64] Focused on the decision regarding which
part of the application should be offloaded.

[65, 66] The mobile device is required to have the
offloading sites’ information.

[20] Focused on the benefits of utilising the
mobility using online learning and task
replication.

[67] Mobile nodes are required to collect in-
formation from all the neighbors devices
before making the decision of offloading.

[68] The proposed algorithm requires the infor-
mation of the MEC servers and the users
around these servers as inputs.

Table 2.2: A summary of related work.
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2.4.5.1 Reinforcement Learning Based Solutions

In general, reinforcement learning is concerned with how an agent acts in an environment in
order to maximise a cumulative reward. In reinforcement learning, the agent learns by inter-
acting with the environment. The decision-making process is then taken through the feed-
back received from such an environment. A reinforcement learning model includes a state,
an action, and a reward for each action. Examples of the reinforcement learning techniques
are Q-learning, Deep Q-Learning (DQL) and Deep Q-Network (DQN) [26]. Reinforcement
learning is a common method that has been used to deal with decision-making problem in
computation offloading [26]. The recent studies that have used reinforcement learning tech-
niques in computation offloading decision-making are reviewed in the following paragraphs.

A spatial and temporal computation offloading decision algorithm, ST-CODA [69], is related
to the work presented in this thesis. This work considers the decision-making of the mobile
device in terms of the time and location for offloading tasks by considering the computation
nodes and the transmission costs in Edge Cloud-enabled heterogeneous network. Our work’s
objective and policy differ from ST-CODA because the time-optimised sequential decision
only offloads tasks to the Edge servers and not further to the Cloud. In [69], the temporal
decision refers to deferring the offloading decision until a low cost network is found, e.g.,
Wi-Fi network. In our approach, we defer the offloading decision until a lightly loaded server
is founded.

The authors in [70] proposed a code offloading framework for offloading in a mobile Fog
environment. The proposed method determines which part of the application should be
offloaded and takes an offloading decision considering the current state of the Edge node
resource by modelling the problem as Markov Decision Processes (MDP) and training it us-
ing the Q-learning approach [71]. Also, their algorithm supports the mobility of the user by
migrating the offloaded part from one node to another. Their main objective was to minimise
the delay of the offloaded applications. In this work, the feasible sites for offloading are: the
mobile Fog in close proximity, the adjacent mobile Fog, or the remote public Cloud. In our
OST-based approach, we assume that the mobile node can only offload to an Edge server
(potentially the most appropriate one with high probability) and there are a set of feasible
MEC servers to offload.

The authors in [72] consider offloading decision and resource allocation in the MEC en-
vironment by applying a Reinforcement-Learning-based State-Action-Reward-State-Action
(RL-SARSA) algorithm. The main goals are to balance the processing delay and the energy
consumption when offloading, to define where to offload the task, and to provide efficient
resource allocation in the MEC servers. This study takes the advantage of adjacent Edge
servers as well as remote execution to improve the decision of where to offload the task. In
particular, four sites are considered for offloading the task: local execution, nearest Edge
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server, adjacent Edge server, and remote execution in the Cloud. The proposed RL-SARSA
was compared with the Reinforcement Learning-based Q-Learning (RL-QL) and the results
show the superiority of the RL-SARSA over RL-QL. The limitation of this work is that the
proposed model is more centralised and it is executed through an Edge computing controller
in each region as indicated by the system model within the paper. This is different from the
proposed approach in this thesis where we try to make the mobile nodes more dependent and
run the decision-making algorithm locally at the mobile nodes.

The authors in [73] proposed an adaptive computation offloading resource allocation strat-
egy in MEC environment. The objectives of this work are to decide whether a task needs
to be offloaded or executed locally in the mobile node. Also, the algorithm helps decid-
ing which node should be selected. The proposed algorithm uses the Deep Reinforcement
Learning (DRL) based on DQL. The results of this work show that the proposed algorithm
outperforms the traditional Q-learning, the weighted round robin algorithm, the Random and
when executing the task locally in different scenarios including different data sizes, different
numbers of mobile node and base stations. There is no much information about the exper-
iment platform. One concern arises here is the space and time complexity of the proposed
algorithm as there was no analysis about this aspect.

Similarly, the work in [45] employed DRL in a MEC environment for joint server selection,
cooperative offloading and handover problem. The contributions of this work are collab-
orative offloading mechanism between MEC servers and centralised Cloud, a Q-learning
algorithm as a baseline solution, and DQL-based algorithm for the considered problem. The
possible decisions on the considered setting are executing the tasks locally or at the MEC
server, forwarding the tasks to another BS, handover the user to other MEC server, or offload
tasks to the Cloud. If the offloaded task cannot be executed by the selected MEC server,
the BS might forward (or handover) the task to other BS. The authors in this work tried to
overcome the limitation of Q-learning, which cannot deal with high-dimensional and con-
tinuous state and action spaces, for obtaining the optimal policy of the modelled problem by
adopting a DQN. The work is evaluated using simulation approach and it is compared with
a Q-learning-based algorithm, server (optimal) and local computation. The performance
metrics include delay, task success rate, energy consumption and ratio of offload tasks. In
general, the proposed model was the closest one to the server computation method where all
the users’ tasks are offloaded to the MEC servers or the Cloud. The assumption in this work
is that the MEC servers belong to the same network operator so that the computational data
can be split and forwarded among the MEC servers for collaborative execution. Moreover,
the proposed model is to be implemented on each MEC server with collaborative model in
sharing network of computation resource with other MEC servers or on each MEC server.
In other words, it is different from the work presented in this thesis as the mobile node is
dependent on other nodes, i.e. MEC servers and network controller.
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The paper in [19] utilises the DQL method for optimising the offloading system in MEC-
enabled vehicular network in an urban area. The main goal is to determine the optimal target
server and the transmission mode selection schemes in order to maximise the utilities of of-
floading under given delay constrained. Also, to cope with transmission failure in vehicular
networks, an efficient redundant offloading algorithm, which also ensures offloading relia-
bility while improving the gained utilities, has been proposed. The problem is transferred
into a utilisation function with the aim of maximising the difference between the maximum
delay tolerance of a task and the total time cost for offloading task. The system is modelled
as a MDP and the optimal offloading strategies are obtained utilising DQL method. The
paper also presents redundant offloading schemes to achieve reliable transmission between
the mobile node and the target MEC server when utilising V2V and vehicle to RSU. The
work is evaluated using real data sets for taxi movements. The work was compared against
best transmission path, best MEC server, a greedy algorithm, and a game theoretic approach.
The proposed model has the highest offloading utility. This work assumes that the proposed
algorithms are to be implemented in a control center which collects the state information
from the mobile nodes in the road through cellular networks.

The OST was adopted in [16] for the objective of deriving a good balance between the
gain of choosing the best Edge device and the accumulated cost of deep resource probing.
The authors in [16] try to enhance the ability of an OST-based model by utilising layered
learning mechanism to define the OST thresholds and the sequence of the Edge nodes used
for offloading. However, such enhancement results in significant computational overhead
and battery consumption for the mobile nodes as it implements DNN and DQN. Also, in
their applications, the assumption is that the mobile node will have a list of Edge devices
once a task is generated and then the mobile node will define which Edge node makes a
good balance between the cost of probing and the execution delay of the task in advance.

Table 2.3 highlights the key differences between the proposed methods in this thesis and
the reinforcement learning-based solutions in task offloading decisions. As reinforcement
learning-based solutions, in general, require more computing resources for their execution;
we note that, in some of these studies, mobile nodes remain dependent on external servers or
control in the decision-making process.
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Papers Key difference
[69] This research investigates whether to

postpone task processing in order to find
a low-cost network, e.g., Wi-Fi, to offload
to the Edge, process the task by itself, or
offload the task to an external Cloud.

[70] This work looks at how to deploy some
blocks of the applications in a mobile Fog
node in close proximity, an adjacent mobile
Fog, or a remote public Cloud to support
parallelism.

[72] The proposed work is a centralised method
where and the selection for an offloading
site is executed through an Edge computing
controller in each region.

[73] The proposed algorithm decides whether
a task needs to be offloaded or executed
locally in the mobile node with a selection
of an Edge node.

[45] The proposed solution is to be implemented
on each MEC server with collaborative
model. As a result, the mobile node is
dependent on other nodes, i.e., MEC
servers and network controller.

[19] The proposed algorithms will be imple-
mented in a control centre that gathers state
information from mobile nodes on the road
via cellular networks, i.e., the mobile node
is dependent on the control centre on the
decision-making process.

[16] Built on the assumption that the mobile
node will have a list of Edge devices once
a task is generated.

Table 2.3: A summary of reinforcement learning-based solutions.

2.4.6 MEC Server Selection

Deciding which server to use for offload has been first considered in the MCC environments.
For example, the work in [74] considers the problem of energy minimisation for a MCC
system. In this work, the MCC system consists of a group of mobile devices and a set of
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servers in the data center. Each mobile device runs an application and tries to upload a portion
of its application to one of the servers. The offloading strategy involves two decisions, (1) the
amount of computation to be offloaded, and (2) the destination of offloading. In particular,
given a number of mobile devices and a number of servers, for each device, find a server
for computation offloading, such that the overall MCC system energy is minimised while
the performance constraint is satisfied. The problem is modelled as a game theory where
each mobile device is a player and his strategy is to select one of the available servers. The
proposed algorithm finds the Nash equilibrium for the energy minimisation problem defined
above. Nash equilibrium is a concept used in game theory and refers to the state in which no
player can benefit by changing its strategy. The proposed model was compared against the
Random where randomly assigns the mobile devices to a Cloud server. The proposed Nash-
overall policy could achieve large energy savings compared to the Random policy. The
proposed algorithm is for MCC architecture and is to be executed in the dedicated server,
e.g., the utilised virtual machine.

The authors in [5] considered an architecture where the MEC servers are deployed at the
Edge of networks with the support of RSUs to provide services to passing vehicles. Vehicles
may pass by several RSUs with their connected MEC servers during the task/data offloading
process. These vehicles can offload their computational tasks to any MEC server they can
access. The authors introduced a predictive off-loading framework in vehicular networks.
Two communication methods relaying via the dedicated short-range communication (DSRC)
were proposed: Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V). For the first
method, when a vehicle generates a task, the vehicle sends the required data through the
roadside unit, and obtains the results from another predicted roadside unit, which will be
near the user when the result is ready. For the second method, when a task is generated, a
vehicle sends the required data through other vehicles on the road. The data is submitted to
the roadside unit, which the user is more likely to connect to when the result is ready. For
the first method, the task is always submitted to the first MEC. In our work, we delayed the
decision in light of connecting to a better MEC server by applying the concept of OST. Our
work fits such a scenario and can be implemented in the mobile node (i.e. the vehicles) to
decide which server should be selected for the offloading and when the offloading should
start considering the existing offloading framework.

The work in [17] proposes a framework of task offloading for MEC utilising SDN in ultra
dense network. Ultra-dense network is proposed for 5G to cope with the high demand on
wireless. Ultra-dense network includes small cell BSs and macro cell BSs. The Edge Clouds
are equipped at each BS. This work proposes deploying controller at macro cell BS to have
a global information about the mobile devices, base stations and MEC servers load. Thus,
the mobile node is advised for the optimal offloading decision. The paper focuses on the
decisions of (1) whether the task should be offloaded or executed locally, (2) which Edge
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Cloud should be used for offloading and (3) decide how much computing resource of Edge
cloud should be allocated to each task. These problems are formulated as a mixed integer
non-linear program. The authors then transform this optimisation problem into two sub-
problems, i.e., task placement sub-problem and resource allocation sub-problem. This work
is an example of the centralised method where the decision-making of selecting an Edge
server for offloading is made by another node (i.e. SDN controller in this case) which is
different from the work presented in this thesis.

The authors in [6] proposed a decentralised management scheme for Edge servers and an
offloading approach in the MEC environment. The proposed idea is based on the Peer to
Peer (P2P) networking architecture where peers (MEC servers and moving vehicles) have
equal privileges. The idea is based on Edgecoin virtual currency where MEC servers and
vehicles can store the entire history of the Edgecoin transactions (every transaction by every
vehicle), and every workload update transaction by every online MEC server. Based on the
previous architecture, two algorithms were proposed. The first one is for the generation of all
candidate MEC server(s) in the vehicle moving direction. The output of the first algorithm is
the set of MEC servers to be utilised based on their service ranges. An R-tree was constructed
to generate the set of MEC servers that are good enough to be used by the moving vehicle.
The second algorithm is for determining the optimal MEC server from the generated list
to be used by the moving vehicle. Different from this study, in our work, we are trying to
make the mobile node more independent with respect to the offloading decision-making. The
work requires the mobile node (vehicle) to be involved in P2P network which might not be
available for the mobile node all the time.

The authors in [75] proposed a framework for joint network and virtual machine selection in
a Cloudlet environment. The authors of this work considered the Cloudlet architecture and
the QoS of a face recognition application as an input for the proposed system. While the user
is trying to offload in corporate and campus networks, many Wi-Fi access points might be
available during the offloading sessions. Thus, the objective is to select the appropriate net-
work along with VM resources that guarantee the quality of access to the Cloudlet resources.
This work assumes that all access points with their information are available to the mobile
node, which is a different setting from ours. The main differences between the proposed
methods in this thesis and server selection methods from the literature are summarised in
Table 2.4. While these studies have mostly focused on the decision of which Edge server to
use for offloading, it is important to note that the mobile node is unable to make this decision
on its own.
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Papers Key difference
[74] Designed mainly for Cloud environments.

[5] Focused on predictive off-loading frame-
work to predict which MEC server the
mobile node will be used to receive the
results of tasks when uing V2V communi-
cation methods.

[17] The decision-making process is made by
an external node, SDN controller in this
work.

[6] It requires the mobile node to involve in
P2P network.

[75] Complete information about the Edge
servers is required to make the selection.

Table 2.4: A summary of server selection proposals.

2.4.7 Mobility Management

In the earlier mobile cellular system, the mobility of nodes is managed by handover operation
when users change the connected cell as nodes roam between the cells to guarantee the
service continuity and QoS [13]. Similarly, in a MEC environment, there is a need for
keeping the continuity of the provided service. In such a situation, there can be two types of
mobility: low and high mobility [13]. An example for the low mobility is when the user is
roaming in a building or a campus. Vehicular networks technology, on the other hand, is an
example of higher mobility.

2.4.7.1 Low Mobility

Regarding low mobility, previous work has considered the power control in the Small Cell
Cloud (SCC) setting when offloading a computing task as in [76], [77]. The basic concept
behind this approach is to add computational and storage capacities to small cells like mi-
crocells, picocells, and femtocells [77]. In such a setting, for some applications and service,
there is a delay constrain in which the request has to be satisfied by the current connected
cell. As a result, it is not worth it to migrate or handover the service to another cell as the user
moves. This is due to the delay constrains as well as the low mobility of the user by which
increasing the transmission power of the cell can be a solution. In addition, the density of
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the deployed server or cell can cause a lot of handover or sometimes outage of the cells, and
this is due to the interference between the cell.

The work in [76] and [77] depart from the mentioned problems in the previous paragraph.
In [76], a power control algorithm, Cloud-aware Power Control (CaPC), was proposed to
avoid handover and outage situation when the channel quality between the mobile user and
the connected cell changes. This algorithm is to guarantee that the mobile user is able to
receive results of data computed by the Cloud on time by increasing the coverage of the
connected cell. The CaPC is composed of coarse and fine setting. The purpose of coarse
setting is to find the optimal default transmission power. The fine setting is based on short
term adaptation of transmission power when the mobile user can not receive request from
the Cloud due to the low Signal plus interference to noise ratio.

Two performance metrics were used to evaluate CaPC: number of undelivered requests and
amount of data not served by the SCCs. When compared to more traditional power control
systems, simulation results show that the amount of undelivered requests back to the mobile
node can be greatly reduced. This work was extended in [77] to adaptively set the time
instant when the CaPC is triggered. As a result, this will reduce the inference between cells
and additional delay of delay sensitive tasks. According to the simulation evaluation, the
number of applications that were successfully delivered increased by 98%.

2.4.7.2 High Mobility

In the high mobility scenario, migration is needed if the user moves away far from the con-
nected MEC server. The studies in [78, 79, 80, 81, 82, 83, 84, 85, 86, 87] considered the
problem of migration between the MEC servers with various objectives. In a situation where
a huge amount of data must be migrated, the migration become inefficient, therefore path
selection was considered in the studies [88, 89]. As the focus of this work is to select an
Edge server for offloading, it is assumed that there exists a mobility management method to
keep the mobile node connected to the selected server in case the mobile node moves out of
the range of that server. The mobility scenario will be analysed further in Chapter 5.

2.5 Optimal Stopping Theory (OST)

In general, OST involves making a decision as to whether a given action should be taken
based on a random variable that is sequentially observed, with the aim being to increase the
expected payoff or to reduce the expected costs. The optimal stopping problem applies if the
decisions are taken in stages and the result of each decision is not fully predictable, but can
be estimated in certain ways prior to the next decision [90]. A key feature of such a situation
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is that decisions can not be evaluated alone, but must be weighed against the need for low
current costs and the undesirable of high future costs. The key difficulty in any optimal
stopping problem is not which options to select, but how many options to explore [91]. In
other words, in any optimal stopping problem, we try to define the optimal rule by which the
decision-maker can take a decision to minimise or maximise an ultimate objective.

In principle, stopping problems are defined by two main objects: (1) a sequence of random
variables, X1, X2, ..., whose joint distribution is assumed to be known, and (2) a sequence
of real-valued reward (or cost) functions [22]. Usually, therefore, the objective is the min-
imisation (or maximisation) of the defined function or the observed random variable itself.
Stopping problems can be categorised based on the knowledge of the number of observations
into finite horizon problem and infinite horizon problem.

The following subsections provide a preliminary introduction to the original models used in
this thesis, their fundamental solutions and the motivation of using such models. Expanded
explanation of the models’ principles of each OST-based method adopted in this thesis and
their applications to the considered problem will be presented in the following chapters.

2.5.1 Best-Choice Problem

In the Best-Choice Problem, the decision-maker is observing a sequence of objects which
can be ranked from best to worst. The aim of the decision maker is to select a stopping rule
that maximises the chance for the best object to be picked [22]. In a simple form, the solution
of such a problem is to reject a proportion 37% of the objects and select the best object seen
so far [22]. The motivation of adopting such a model in our case is that the model does not
require a lot of information being available to the decision-maker in order for the decision to
be made. In other words, the decision maker knows nothing about the observations other than
how they compare to one another [91]. As a result, there are no requirements to store any
information about the observations. Furthermore, the probability of choosing the best (e.g.,
the minimum processing time) is always at least 0.36% which is the highest rate of success
one can achieve in such a setting, i.e., when no previous information about the observed
random variable is available [22].

2.5.2 Odds Algorithm

The Odds algorithm deals with a sequence of independent events. The decision maker ob-
serves these events and categorises them as ”success” or ”failure” [92]. Similar to the case of
the Best Choice problem, the decision-maker observes these events one by one and wants to
decide which event should be taken. The decision maker cannot return to the rejected event.
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The objective of the Odds algorithm is to find stopping rules that maximise the probability
of picking the last success. The Odds for each observation refers to the probability of the
success of the event divided by the probability of the failure of that event. Generally, the
solution of this problem is to sum the Odds from the last the observation until the value 1.
From that index, the decision-maker should start looking for a success. The Odds algorithm
looks at applications where the last observation tends to have considerably more interests to
the decision maker. The motivation for using the Odds is that, in our case, delaying the selec-
tion gives the decision-maker a better chance of improving the decision by exploring more
options. In addition, based on the probability distribution of the random variable, it becomes
easy to estimate the Odds of each observation. Further, the algorithm’s performance still
unaffected when integrating some factor (e.g., quality indicator) [92] as we shall see later in
Chapter 3. The performance of the Odds algorithm is the same lower bound that is achieved
by the Best-Choice model, i.e., there is at least around 1/e probability of choosing the last
best observation [93].

2.5.3 Selling Asset Problem

In this problem, an individual, for example, has an asset for which he is offered an amount
of money from period to another. The objective of this problem is to find a stopping rule
that maximises the revenue of the person [90]. The assumption in this problem is that the
offers are random, independent and identically distributed with known distribution. Also,
the decision has to be made within pre-defined number of observations, i.e, finite horizon
problem. An extension of this problem is where there is a cost with each observation and
the stopping problem is infinite horizon, i.e., the decision-maker is only required to provide
a cost for each observation. We still have the same assumption that the random variable to
be optimised is independent and identically distributed with known distribution.

In principle, in these two problems, the solution is obtained by the method of the dynamic
programming applying the principle of optimality and the optimality equation [22]. The
dynamic programming, proposed by Richard Bellman back in 1952, divides a problem into
sub-problems, and then combines the solutions for the sub-problems to get the overall solu-
tion [94]. The principle of optimality states that if the future optimal decisions are known,
then one can obtain the optimal solution for the current stage, and compare it with the future
decisions. For example, in the finite horizon stopping problem, the problem can be solved
by the method of backward induction. Since we must stop at at the last stage, say n, we
first find the optimal rule at stage n− 1. Then, knowing the optimal rule at stage n− 1, we
find the optimal rule at stage n − 2, and so on back to the initial stage (stage 0) [22]. In the
infinite horizon stopping problem, the optimal rules can obtained by comparing the current
value with the estimated value in the next step. The motivation of using such an approach,
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i.e., selling asset problem, is the assumption that the decision maker will be able to obtain
more statistical information about the observed random variable, resulting in significantly
improved performance. In other words, having such information will make a significant dif-
ference in terms of achieving the desired objectives. Also, in this case, beside the ability to
achieve the main objective, one can also take into account a delay factor for the decision or
the cost of observations.

To sum up, in this thesis, the models presented above have been utilised and applied to the
context of computation offloading in MEC environment. The core objective of this work is
to make mobile nodes independent and to take offloading decisions without having to rely on
a central controller or additional information about potential offloading sites. In general, the
OST makes time-optimised decisions statistically in cases where no information or incom-
plete information is available, which makes it appropriate for independent and standalone
decision-making with regard to selecting the best time or server for offloading and allowing
easier implementation in mobile nodes. In particular, the OST models are simple to imple-
ment and only requires a linear search over the observations with time complexity of O(n)
in the worst case scenario, i.e., when the decision maker picks the last option.
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2.6 Summary

This Chapter places the thesis in the context of existing efforts on the concept of computation
offloading. As described in Section 2.2, the Cloud may add additional costs to mobile node
applications, and the trend now is thus towards the adoption of Edge computing. The latest
proposals within the Edge computing paradigm include the concept of MEC computing,
where Edge servers are deployed and integrated within mobile networks in order to provide
a variety of services to mobile nodes while improving the general QoS. While Cloud servers
can provide infinite and powerful centralised resources for mobile nodes, enhancing their
processing power and battery lives, having Edge servers in place for task offloading makes
computation offloading more practically beneficial than the use of traditional distant Cloud
methods.

Accelerated by recent advances in terms of wireless communications and new mobile ap-
plications, the MEC paradigm is expected to host and implement multiple different types of
applications. Examples of such applications include virtual and augmented reality and data
analytic tasks focused on the large quantities of data generated by users in such complex
environments. It is also expected that multiple deployment options will be used for MEC
servers, such as base stations, small cells, and RSUs.

As described in Section 2.4, the point of offloading is to enhance mobile nodes’ capabilities.
Extensive efforts to deal with the problems related to the task offloading have been made, and
examples of early frameworks include MAUI, ThinkAir and CloneCloud. These frameworks
also coincided with the introduction of the Cloudlet, supporting the idea of task offloading
to nearby resources.

Due to its dynamic nature, the MEC environment can be very challenging; in particular,
several different types of decision-making are required during the offloading process. There-
fore, as described in Section 2.4.5, different advanced optimisation methods have thus been
utilised to deal with this, including, but not limited to, reinforcement learning. Some studies
have considered the problem of selecting a server for offloading, while other recent studies
have dealt with decision-making as a centralised method combined with decision-making
dealing with other problems. This centralised method is generally considered to be at a dis-
advantage, however, not only due to it making the mobile node more dependent, but also
because it introduces more load to the mobile network.

OST-based decision-making, which includes various different methods, is considered to of-
fer lightweight algorithms that lead to optimal or near-optimal solutions for many decision-
making problems. While some OST-based models require additional information to be avail-
able to the decision maker, this work argues that it is not difficult for a mobile node to obtain
such information either by itself or with the help of the MEC service provider.
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Table 2.5 identifies the main context of the thesis from different perspectives.

Aspect Position
Edge computing concept MEC
Edge server deployment RSU and small cell deplyment

Offloading decision Server (time) offloading selection
Offloading Metric Processing time at the Edge server, load

Solution Optimal Stopping Theory

Table 2.5: Scope of this thesis.

Based on the review presented in this Chapter, the main direction for this thesis is thus
identified as follows:

• Recent offloading decision-making studies with respect to server or time selection have
not been focused on making this decision-making autonomous in terms of being made
by the mobile node itself in an independent manner. Therefore, utilising the character-
istics of the OST-based models mainly the optimality and the dependability, this work
presents a spectrum of the OST-based decision-making algorithms and how they can
be applied to the task offloading decision as well as their performance evaluations.

In the next Chapter, the thesis presents the main design and the considerations for a lightweight
and an optimal OST-based task offloading framework.
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Chapter 3

Maximising the Probability of
Best-Server Offloading

3.1 Overview

As outlined in Chapter 2, the MEC servers are envisaged to be deployed in RSUs in order
to enhance mobile nodes by utilising computation task offloading. The MEC servers are
equipped with storage and computing units [95]. This configuration can be seen in vehicular
network applications, as studied in [5] and [6], where smart vehicles perform different types
of tasks. For instance, a mobile node can offload contextually collected data to perform data
analytics tasks on one of the MEC servers. A mobile node may refer to a smart vehicle or
smartphone in the vehicle used by the passenger. The mobile node can access the RSUs via
V2I mode utilising DSRC communication.

Furthermore, as discussed in the previous Chapter, existing studies on the decision-making
of selecting an offloading site are either dependent on other nodes, in need of complete
information of network and servers’ status or implemented on the server side as a result
of the complexity to obtain the global optimisation. Also, there are some proposals for a
decision-making engine to be implemented in the mobile nodes. However, such implementa-
tions might be an extra overhead for the mobile node during the offloading decision-making
process. These proposals might conflict with the main goal of offloading where we try to
enhance the mobile node’s resources capabilities without incurring any additional cost.

Moreover, because the MEC servers operate at the Edge within the RAN with the help of
the RSUs, their coverage areas may be limited by the radio coverage of the RSUs [5]. Thus,
the mobile node only knows about the current MEC server, i.e., the server in the range of
that node. Unlike the centralised architecture, this work concerns the case where there is no
centralised controller or server to assist the mobile node to make the decision. The mobile
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node is responsible for making the offloading decision autonomously and locally. Thus, the
proposed model is to be built on the top of an offloading decision framework implemented in
the mobile node from previous work, which provides the entity of network and Edge servers
profilers as observed in [25, 75]. Such profilers are adopted to provide information about the
current load and or the experienced processing time of MEC servers.

In the context of this architecture and in order to deal with the aforementioned limitations,
this Chapter presents two lightweight sequential offloading decision-making algorithms, the
objective of which is to maximise the probability of offloading to the server with the best
processing time. Section 3.2 presents the system model and the assessed setting, whilst
Section 3.3 proposes a general model for task offloading decision-making. This model is
inspired and based on the Best Choice Problem (BCP). In addition, in Section 3.4, data-
quality based offloading decision model is proposed utilising the theory of Odds within the
context of the OST.

3.2 System Model

A setting where there exists a finite set of MEC servers deployed along mobile nodes’ paths
on the move as shown in Figure 3.1 is considered. The mobile node is moving in One
Dimensional (1D) mobility model and observes the MEC server sequentially (for instance, in
one way road) as considered in [5]. Let Xk be the random variable indicating the processing
time of k-th observed MEC server. Xk can indicate different random variables, e.g., the
current load of the MEC server which affects the processing time of the task, the transmission
time coupled with the computational workload of a MEC server or the time it takes the MEC
server to broadcast the results to other system, e.g., real time information for transportation
system. For simplicity, we call it processing time throughout the thesis unless otherwise
specified.

Once a task1 is locally generated and needs to be offloaded, then, at each time, within the
number of observed MEC servers n, the mobile node checks the value of Xk for each MEC
server k it passes by using network and server profilers. The mobile node needs to decide
whether to offload to the current k-th server or continue observing another server. To keep
the continuity of task processing, we assume that there is a mobility management entity in
the server [13] which implements a mobility management algorithm, such as path selection,
power control algorithms [13, 89] or predictive model as in [5]. For example, if the task
involves getting some results from the MEC servers and the mobile node is out of the range
of that MEC server, then the selected MEC server should be transmitting the results through

1Unless stated otherwise, the terms data offloading and task offloading are used interchangeably.
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Figure 3.1: MEC servers and mobile node settings.

the next MEC server using high bandwidth wired connection [6]. In Table 3.1, we provide
the key notations used in this Chapter.

Notation Explanation
X the random variable to be optimised
k the index of the observed MEC server
n the number of MEC servers or the number of observations
rn the optimal cutoff within the BPC model is taken by rn − 1, rn can also refer to the Odds in the observation n

P ∗n(rn) the maximum probability of ending up with the best server when applying the BCP policy
rk the Odds for observation k
Pk the probability of having Xk less than or equal to a threshold within the Odds model
f data quality indicators (timeliness)
s the stopping threshold in the Odds model from which we start check a MEC server

P ∗s (rs) the maximum probability of ending up with a server meeting the required threshold when applying the Odds policy
Rs the sum of the Odds from n until we reach or exceed the value 1
Qs the product of the complementary probability (1− Pkfk) from n until s
θ the threshold required within the Odds model
δ the probability of having less than or equal to θ

Table 3.1: Key notations used in Chapter 3.

3.3 Best-Choice Problem Based Task Offloading

The first model deals with the case that the number n > 0 of the available MEC servers,
which are candidates for task offloading, is known to a mobile node. Now, the goal is to
optimise the decision on when to offload the computational task to an available server. For-
mally, our objective is to maximise the probability of offloading to the optimal server. The
mobile node is on-line observing a sequence of candidate MEC servers, which are locally
ranked in the node from the best to the worst w.r.t. a performance criterion, i.e., the current
processing time X . At each observation, the mobile node should decide whether to choose
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the current available candidate MEC server or not. In the latter case, as the mobile node is
moving in 1D mobility model, the node cannot recall its decision, i.e., if a candidate MEC
server is rejected for selection, it cannot be recalled.

The challenge now is that the mobile node desires to define an offloading policy (rule) which
maximises the chance of choosing the best MEC server w.r.t. the ranking seen so far. Every
MEC server is relatively ranked based on the previous observed MEC servers and can only
be checked sequentially and in a random order. Once a MEC server is relatively ranked and
rejected, this choice cannot be re-called. The mobile node should maximise the probability
to select the candidate among the n candidates, which is globally ranked best. This is cast
as a Best-Choice Problem (BCP). In the adopted BCP, the goal is to find the offloading rule
that maximises the probability P ∗n of selecting the best of all n servers and the corresponding
probability of that success.

3.3.1 Problem Formulation

Let us call the k-th server candidate, if it is relatively best in terms of Xk, k = 1, . . . , n. We
then define a positive integer rn ∈ {1, . . . , n}, defined as:

rn = min{r ≥ 1 :
1

r
+

1

r + 1
+ · · ·+ 1

n− 1
≤ 1}, (3.1)

for n ≥ 2. Based on the BCP, the optimal policy is to reject the first rn − 1 servers and
then select the first candidate, if any, to offload the tasks. For reasons of completeness, we
provide Theorem 1 and Theorem 2 2, where the optimality of the BCP model is based on.

Theorem 1. The maximum probability of selecting the best candidate in the BCP in (3.1) is

given by:

P ∗n(rn) =
rn − 1

n

n∑
k=rn

1

k − 1
(3.2)

Proof. The probability of offloading to the best server is
1

n
for r = 1, and, for r > 1,

P (r) =
n∑

k=rn

P (server k is selected and server k is the best)

=
n∑

k=rn

(
1

n

)(
rn − 1

k − 1

)
=
rn − 1

n

n∑
k=rn

1

k − 1

2For more information about Theorem 1 and Theorem 2 see [22] and [96].
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Theorem 2. For a small value of n, the optimal rn can be computed using (3.1). When n→
∞, we obtain the well-known Secretary Problem where the optimal number of observations

one should reject is
1

e
and the probability of success tends to be

1

e
.

Proof. Let n → ∞,
1

k − 1
as

1

x
and x as

rn − 1

n
, the probability function P (r) can be

approximated by the integral: P (r) = x
∫ n
r−1

1

x
dx = x ln

1

x
= −x ln(x). By finding the

derivative of P (x) with respect to x and set it to 0, we have− ln(x)−1 = 0, and ln(x) = −1,

and by taking the exponent for both sides, we have x =
1

e
.

3.3.2 Optimal Task Offloading Rule

BCP-based Optimal Task Offloading Rule: The mobile node observes the first random
n/e MEC servers and ranks them immediately w.r.t. their processing time provided
by each of them upon request. Then, the mobile node offloads their task/data to the
first t-th MEC server with k > dn/ee which is ranked as the relatively best server
compared to the previously observed servers.

Based on this optimal offloading policy, the node is guaranteed to maximise the probability
of offloading the task/data to the best MEC server. If no offloading decision is made after
observing the n MEC servers, the node offloads the task/data to the n-th MEC server, since
no recall is allowed.

3.3.3 Analysis

Let us consider an example with a finite small n, e.g., n = 3. That is, there are 3 MEC
servers in the mobile node’s path. These servers have different processing times. We refer to
the MEC server with the minimum processing time ranked with the number 1, and the server
with the highest processing time ranked with the number 3. The MEC servers might come in
different order. Thus, we have 6 permutations (3!). One policy is to reject the first server and
take it as baseline and then accept the first relatively best server after that. If we follow such
policy, 50% of time, we select the best one. In other words, there is 50% chance of offloading
to best. If we increase the number of MEC servers by only 1 and follow the same policy,
the chance of offloading to the best becomes close to 45%. As the number of MEC servers
gets larger, the chance of offloading to the best gets smaller. Therefore, such policy does not
work well with larger number of MEC servers and does not give the maximum probability
which decreases with the number of MEC servers involved. Moreover, if the mobile node
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Figure 3.2: The probability of offloading to the best (left) and the value of r − 1 (right) for
different numbers of MEC servers n [91].

is offloading randomly to one of the encountered servers for e.g., n = 10 MEC servers, we
have only 10% chance of offloading to the best server.

In Figure 3.2, we show the (desired maximum) probability of offloading to the best (left)
and the value of r − 1 (right) for different numbers of MEC servers n. We observe that
as the number of MEC servers grows, we end up with the 36% chance of offloading to the
best [91]. In reality, we expect the mobile node to have a number of MEC servers less than
10, thus, following the BCP’s rule, we have a probability of offloading to the best ≥ 39%.
Moreover, the BCP model only requires the number of observations n the mobile node is
willing to observes. The number of observations can be defined and fed to the BCP model
by the mobile node itself. Therefore, the decision-making algorithm in this model is very
independent and does not require relatively a lot of information.

Nevertheless, in the MEC environment, we expect that there will be other information, avail-
able to the mobile node, in addition to the number of MEC severs n. Such information can
be utilised to adopt and apply an advanced model within the context of OST. Moreover, it
is possible to consider other requirements with a better performance in the decision of task
offloading. Therefore, in the following section, motivated by the BCP model and aiming to
achieve and optimise the same objective, i.e., maximising the probability of offloading to the
MEC server with the minimum processing time, we provide an advanced decision-making
algorithm where the mobile node can provide more information in order to have better re-
sults.

3.4 Quality-aware Contextual Data Offloading

In this section, we study the case that arises when a mobile node desires to offload contextual
data to a MEC server and performs data analytics task while on the move. The data analytics
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task can be data correlation analysis, inferential and predictive analytic [97], statistical learn-
ing models building, model selection [98, 99] or data for HD maps as in [95]. The data can
be gathered via different applications such as a MCS or vehicular crowd-sensing [55, 100].
For example, in vehicular crowd-sensing applications, vehicles sense data from surrounding
environment, process them and send the processed results within a specific deadline to a cen-
tralised application manager for further processing [100]. In this use case, beside the main
objective (maximising the probability of offloading to the best server), the mobile node wants
to offload contextual data to perform an analytic task before the data turns obsolete (stale).
To deal with this quality of analytics problem, we elaborate on the the Odds algorithm within
the context of the OST enhanced with a data quality indicator in the task offloading decision.

The Odds algorithm is an OST algorithm for computing optimal stopping rules in order to
maximise the probability of stopping at the last observation which satisfies a specific criterion
[101]. We call an observation that satisfies the defined criterion a success. Specifically, the
traditional Odds-algorithm applies to a class of problems called last-success-problems. The
objective is to maximise the probability of identifying in a sequence of sequentially observed
independent events the last event satisfying a specific criterion.

3.4.1 Problem Formulation

Let f : T = {1, 2, . . .} → [0, 1] represent how stale the data is, which is a non-increasing
function adopted from [102]:

• f is non-increasing in T,

• f0 = 1, where k = 0 is the start time before collecting the first data,

• fn = 0, for k ≥ n.

A linear timeliness function f is as follows:

fk =

1− k
n+1

, 1 ≤ k < n.

0, k ≥ n.
(3.3)

To get more insight on the Odds algorithm, let us consider a mobile node that is sensing
data while on the move. The mobile node is trying to offload the data to a MEC server that
has a processing time less than or equal to a desired threshold θ defined by the application
launched on the mobile node. The Odds of the observed server k denoted by rk is defined as
the ratio of the probability Pk of having the MEC server with a processing time X less than
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or equal to θ divided by its complementary probability 1−Pk [92]. Specifically, the Odds at
time k is defined as follows:

rk =
Pk

1− Pk
, Pk < 1 (3.4)

In each observation k, we take into account the Odds r1, . . . , rk as well as the timeliness
f1, . . . , fk of the collected data by evaluating the function in (3.3). Hence, we obtain that:

rk =
Pkfk

1− Pkfk
, (3.5)

where the Odds rk depends now on how stale the data are at time instance k. Let Pk =

P (Xk ≤ θ) denoted by δ, then we have:

rk =
δfk

1− δfk
(3.6)

(3.3) can be reformed as:

fk = 1− k

n+ 1
=
n+ 1− k
n+ 1

(3.7)

Then, we can substitute (3.7) for fk in (3.6):

rk =
δ n+1−k

n+1

1− δ n+1−k
n+1

(3.8)

(3.8) can be simplified as:

rk =
δ(n+ 1)− δk

(1− δ)(n+ 1) + δk
. (3.9)

Note that the Odds rk changing with the time (k) as a non-linear function of the observa-
tion k reflecting the constraints of the data timeliness while engaging the application specific
threshold δ = P (Xk ≤ θ) for assessing the appropriateness of the k-th MEC server. Fig-
ure 3.3 shows the evolution of the Odds rk against observation k for different δ values in
{0.3, 0.5, 0.8} with n = 10. The Odds values decrease as we approach the end of (candi-
date) MEC observations, while a high application threshold δ = P (Xk ≤ θ) increases the
Odds at the beginning of the selection process (being optimistic due to a relatively high δ).
However, as k → n, the Odds shrink to a very low value to enforce the decision of offloading
to be taken, thus, avoiding offloading stale data (at k = n with fn = 0).

Let us now elaborate on the modified Odds algorithm that takes into consideration the data
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Figure 3.3: The Odds rk against observation k for different δ values; n = 10.

timeliness indicator fk in the optimal task offloading decision. In our context, we aim at
maximising the probability of offloading to the last MEC server with Pk = P (Xk ≤ θ) for a
given θ threshold such that Pk is higher than all preceding probabilities Pl, l = 1, . . . , k − 1

seen so far. And, this decision must be taken at the time of observation. Hence, the very
last MEC server with the above-mentioned criterion is the highest bid. Maximising the
probability of offloading on the last k-th MEC server with P (Xk ≤ θ) therefore means
maximising the probability of offloading to the best MEC server w.r.t. θ.

In the context of the computation offloading, the Odds might be unknown but it can be esti-
mated based on the probability distribution function of the random variable to be optimised.
According to Odds theorem [92], in the case where the Odds is unknown, the problem still
makes perfect sense as long as rk can be estimated. For example, when Pk is of the form
Pk = Pfk where fk is known. In the proposed quality-aware data offloading, we principally
add the timeliness indicator fk to the Pk, thus, now rk represents the Odds of the k-th event
turning out to be candidate for data offloading.

The Odds-algorithm sums up the Odds in reverse order:

rn + rn−1 + rn−2 + · · · ,

until this sum reaches or exceeds the value 1 for the first time. Let us denote that this happens
at observation s, i.e., the corresponding sum Rs exceeds 1 with

Rs = rn + rn−1 + rn−2 + · · ·+ rs. (3.10)

If Rs does not reach 1, then we set s = 1. Also, at the same time we compute the product:

Qs =
n∏
k=s

(1− Pkfk). (3.11)
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As we will see in the following subsection, and based on the Odds-algorithm in [92], the
sum Rs and the product Qs are required to calculate the optimal win probability, i.e., the
probability of offloading to the optimal server. Based on the Rs and Qs, we then apply the
Odds algorithm to determine the optimal strategy for offloading to the best MEC server.

3.4.2 Optimal Task Offloading Rule

Quality-aware Odds Optimal Task Offloading Rule: The mobile node observes the
MEC servers one after the other and decides to stop on the first MEC server from time
s onwards (if any), where s is the stopping threshold such that Rs ≥ 1.

This strategy is optimal, that is, it maximises the probability of stopping on the last best MEC
server. And, this is happening with the maximum probability which equals to:

P ∗s (rs) = QsRs : Rs ≥ 1. (3.12)

Note that P ∗s (rs) is always at least 0.368 and this lower bound is best possible, which is
achieved by the BCP policy with a very large number of MEC servers n [93]. It is also
worth mentioning that the Odds-algorithm computes the optimal strategy and the optimal
probability P ∗s (rs) at the same time. Also, the number of operations of the Odds-algorithm
is sublinear in n.

In practice, the mobile node should reject the observations (MEC servers) from k = 1 until
s and from the observation s, the mobile node starts checking each observation (candidate
MEC server). If it is a success, i.e., Xk ≤ θ for k > s, then, the mobile node should offload
the data to the k-th MEC server, otherwise it continues observing until fn, i.e., where the
data must be offloaded since fn = 0.

3.4.3 Analysis

As an example, assume that MEC processing time X follows normal distribution with mean
50 ms, a standard deviation of 10 ms (X ≈ N (50, 10)) for a specific data size and analytics
tasks and the data on the mobile node must be offloaded within the next n = 10 observations.
The timeliness of the data can be specified by the task application (it can be the number of
time intervals or it can be the number of MEC servers the mobile node should observe before
fn = 0). If we assume that the mobile node will have n = 10 observations and the mobile
node is looking for a MEC server with processing time less than θ = 50, then, based on the
Odds algorithm enhanced with fk timeliness indicators, the strategy suggests to start looking
for a MEC server to offload from k = 5 and onward. By doing this, there is ≈ 42% chance
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of offloading to the (last) best MEC server , which is the maximum that can be achieved. The
probability here refers to the situation where we end up with a MEC server with processing
time less than 50, thus, satisfying our criteria.

In real world scenarios and in the long run of a mobile node application, the MEC servers’
provider can provide the probability distributions of the random variable Xk of the MEC
servers based on the locations of the mobile node. Alternatively, the mobile node itself can
use the historical data of the task offloading to learn the probability distribution. Once we
can estimate the probability distribution of the processing time, the mobile node can estimate,
based on the model above, where it should start checking the performance criterion in order
to maximise the probability of offloading to a MEC server that meets the defined condition.
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3.5 Summary

In this Chapter, two optimal task offloading rules are derived based on the principle of the
OST: the BCP-based and the Odds-based models. To review the proposed models, they are
being visually described in the Figures 3.4 and 3.5. As shown in Figure 3.4, the BCP model
takes the number of observations n as an input and outputs the numbers of servers that should
be rejected before considering a MEC server for offloading. The mobile node should offload
if the processing time Xk is the best seen so far, otherwise, the mobile node should continue
observing until the server n. By that time, the mobile node must offload to server n.

Decision maker

Input Output

Actions

Figure 3.4: BCP.

Decision maker

Input Output

Actions

Figure 3.5: Quality-aware Odds Model.

The proposed data quality-aware Odds model, shown in Figure 3.5, takes the probability
distribution function, a timeliness function (indicator) fk and a defined threshold as inputs
and outputs the numbers of servers s < n that should be rejected before considering a MEC
server for offloading. The mobile node then starts evaluating the condition based on the
required threshold θ. If the condition is true, then, the mobile node should offload, otherwise,
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the mobile node should continue observing until fn = 0. By that time, the mobile node must
offload before the data turns obsolete.

Overall, the proposed models’ principle presented in this Chapter will enable mobile nodes
to make a decision on the selection of the MEC server to be used for offloading exploiting
the mobility and the deadline for the task (for instance, timeliness of the data) locally and
independently, while minimising the need for a centralised server to help in the offloading
decision process. In the following Chapter, the objective of minimising the processing time
is considered.
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Chapter 4

Minimising the Processing Time

4.1 Overview

Offloading to the optimal server, i.e., the server with the minimum expected processing time,
is not an easy task. Following an offloading policy to minimise the expected processing
time might be more beneficial with a better performance. Now, the challenge is to find an
optimal policy with the objective being the minimisation of the expected processing time.
This is different from the previous policy presented in Chapter 3 (maximising the probabil-
ity of offloading to the server with the minimum processing time), since now we care for
minimisation of the sequentially observed processing time values.

Similar to previous Chapter, the case where the mobile node is moving in 1D mobility model
and passing by a set of MEC servers is studied. The mobile node connects to the RSUs via
V2I communication mode using DSRC. The mobile node is to make the selection of the
MEC server locally and independently. Network and Edge servers profilers are utilised to
check the processing time of the MEC servers.

This Chapter presents two sequential offloading decison-making algorithms with the objec-
tive of minimising the processing time. First, a Delay-tolerant Task Offloading (DTO) is
proposed in Section 4.3. This model considers the case where the number of observation n
is known in advanced. In Section 4.4, however, a Cost-Based Task (COT) model is proposed
where the assumption of having the number of observation available to the mobile node is
dropped. Instead, the mobile node provides a cost per observation. For each model, the
problem is formulated and the optimal offloading rule is obtained.



4.2. System Model 57

Notation Explanation
X the random variable to be optimised
k the index of the observed MEC server
n the number of MEC servers or the number of observations
zk system state at time k
r delay factor for the decision maker in the DTO model
ak the threshold value at observation k in the DTO model
an the threshold value at observation n in the DTO model
c the cost per observation in the COT model
V ∗ the optimal threshold in the COT model

Table 4.1: Key notations used in Chapter 4.

4.2 System Model

Similar to previous Chapter, a MEC system as shown in Figure 4.1, where a mobile node
can offload data to perform a computing task on a specific MEC server, is considered1. The
offloaded tasks can be perception tasks, computing tasks over offloaded data e.g., image
recognition, image processing, data correlation analysis, inferential and predictive analytics
[97], statistical learning models building and/or models selection [98], [99]. The mobile
node can be a smart vehicle as proposed in [5] or smart phone used by the passenger of the
vehicles. For each MEC server, at each time instance, there is a temporal load associated
with it which affect the processing time X . Xk can indicate different random variables, e.g.,
the transmission time coupled with the computational workload of a server or the time it
takes the MEC server to broadcast the results to other system, e.g., real time information for
transportation system. For each observation k, there is a cost c the mobile node pays. For
example, this can be a time cost, connection cost or delaying cost. A summary of notations
used in this Chapter is shown in Table 4.1.

Figure 4.1: MEC in vehicular network.

1The models presented in Chapters 3 and 4 can also be generalised to other use cases such as the small cells
deployment where multiple MEC servers are available to the mobile node.
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4.3 Delay-Tolerant Task Offloading

This model also deals with the case that the number n > 0 of the available MEC servers,
which are candidates for task offloading, is known to the decision maker, i.e., the mobile
node. Similar to the previous Chapter, the goal is to optimise the decision on when (or
which server) to offload the tasks to an available server. However, instead of focusing on the
objective of maximising the probability of offloading to the best, in this model, the objective
is to minimise the processing time X . The problem is modelled as a finite horizon OST
problem.

In general, in the proposed models, including the models proposed in Chapter 3, the case
where the expected processing time at the MEC server is lower than the expected processing
time when executing the tasks locally on the mobile device is considered. In other words,
the mobile node wishes to offload tasks and data for processing to a MEC server as it does
not have the computational capabilities to do so and (or) sufficient energy for such tasks.
Initially, the mobile node is observing the processing time for each server and it can either
offload or postpone the offloading in light of having a minimised processing time.

4.3.1 Problem Formulation

The mobile node should find the best time instance k∗ (server) such that the expected pro-
cessing time E[Xk] is minimised, i.e., the optimal stopping time k∗ such that the following
infimum is attained:

ess inf
k
E[Xk] (4.1)

In general, the essential infimum refers to the greatest lower bound of a function. More
specifically, the definition of essential infimum is as follows [22]:

Let Xk, for k ∈ n , be a collection of random variables. We say that a random variable G is
an essential infimum of (Xk)k∈n and write G = ess infk∈nXk , if

• P (G ≤ Xk) = 1 for all k ∈ n, and

• if G′ is any other random variable such that P (G′ ≤ Xk) = 1 for all k ∈ n , then
P (G′ ≤ G) = 1.

Hence, the expected minimum processing time is E[Xk ] with k = inf{k : Xk < E[Xk+1]}.
The problem here is a finite horizon stopping problem similar to the problem presented in
subsection 2.5.3.
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A discrete-time dynamic system, which expresses the evolution of a scalar variable, here-
inafter referred to as the system’s “state” zk, under the influence of decisions made at dis-
crete instances of time associated with the kth observation is defined. A state zk summarises
past information that is needed for future optimisation. By writing that the system is at state
zk = X∗k−1 at k ≤ n, we mean that the decision maker has not offloaded the data to a MEC
server. By writing that the system is at state zk = zT , we mean that the decision maker has
already offloaded the data to a MEC server, k ≤ n, where zT is defined as the terminating
state. We take z1 = 0 (a fictitious state). With these conventions (adopted from [90] and
applied in [103]), the system equation (the mechanism by which the system is updated) has
the form:

zk+1 =

zT , if zk = zT (stop).

zk, otherwise (continue).
(4.2)

Let Jk(zk) be the optimal server to offload data to. The Bellman’s equation for this system
is then:

Jn(zn) = zn (4.3)

for k = n, and
Jk(zk) = min

[
(1 + r)n−kzk,E[Jk+1(X

∗
k)]
]

(4.4)

for k = 1, ..., n− 1.

Note that E[Jk+1(X
∗
k)] = E[Jk+1(zk+1)]. The r ∈ [0, 1] parameter is a delay factor, which

prompts the decision maker to delay its optimal decision. In our model, a smaller r value
denotes that the decision maker will skip a relatively small number of observations before
proceeding with a offloading decision. The term (1 + r)n−kzk in 4.4 denotes the risk if the
offloading happens at k and E[Jk+1(X

∗
k)] denotes the expected risk if the decision maker

continues the observation process. Hence, it is optimal to stop at stage k if

zk ≤ ak =
E[Jk+1(X

∗
k)]

(1 + r)n−k
(4.5)

else, it is optimal to continue.

4.3.2 Optimal Task Offloading Rule

The optimal stopping rule is determined by the scalar values a1, a2, . . . , an through which
the mobile node decides either to offload or not. Specifically, the optimal offloading rule of
the mobile node is:
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Optimal Task Offloading Rule: stop the observation and offload the data at the k-th
MEC server if zk ≤ ak; otherwise continue the observation if zk > ak.

In our context, the optimal stopping rule states that the offloading decision (stopping) should
happens right after receiving the k-th observation for which the expected processing time
Xk ≤ ak.

The scalar variable ak values are calculated as shown in Lemma 1.

Lemma 1: The scalar values a1, a2, . . . , an can be calculated once through the method of
backward induction for k = n to 1 from 2

ak =
1

1 + r

(
ak+1(1− F (ak+1)) +

∫ ak+1

0

xdF (X)

)
(4.6)

an =
1

1 + r

∫ 1

0

xdF (X) =
1

1 + r
E[X] (4.7)

where F (X) = P (X∗ ≤ X) is the cumulative distribution function of X∗.

Proof. Consider the function:

Fk(zk) =
Jk(zk)

(1 + r)n−k
, zk 6= zT

and then E[Fk+1(X)] =E[Jk+1(X)]/(1+r)n−k−1 = ak/(1+r)
−1 or ak = (1+r)−1E[Fk+1(X)].

Hence, we have Fn(zn) = Jn(zn) = zn and by placing E[Jk+1(X)] with E[Fk+1(X)](1 +

r)n−k−1in 4.4, for k = 1, . . . , n− 1, we get

Fk(zk) = min
[
zk, (1 + r)−1E[Fk+1(X)]

]
= min(zk, ak)

The ak value is recursively calculated as follows:

ak = (1 + r)−1E[Fk+1(X)]

= (1 + r)−1E[min(X, ak+1)]

=
1

1 + r

(∫ ak+1

0

xdF (X) +

∫ 1

ak+1

ak+1dF (X)

)
=

1

1 + r

(
ak+1(1− F (ak+1)) +

∫ ak+1

0

xdF (X)

)
2This solution is when X uniformly distributed in [0, 1]. Thus, the value of ak in 4.5 is obtained based on

the probability distribution function.
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The scalar values a1, a2, . . . , an can be inductively obtained for k = n down to 1, and the
terminal condition is an = 1

1+r
E[X].

4.3.3 Solution Principle

Before calculating the offloading rule, the probability distribution of the random variable
(processing time Xk in our case ) has to be known or estimated. For example, if the process-
ing time Xk is uniformly distributed, the agent (mobile node) would first get the cumulative
distribution using:

F (c ≤ X ≤ d) =

∫ d

c

f(x)dx =
1

b− a
dx =

d− c
b− a

(4.8)

with a ≤ c < d ≤ b. After that, we calculate the expected processing time using:

E(X) =

∫ b

a

f(x)dx =

∫ b

a

x

b− a
dx =

b− a
2

, (4.9)

were a ≤ X ≤ b.

When the random variable is normally distributed with known mean and standard deviation,
the mobile node follows the same steps in the uniform distribution in order to get the a values.
The cumulative distribution function of the normal distribution can be calculated using:

F (X) =

∫ x

−∞
f(x)dx =

1

σ
√
2π
e−(x−µ)

2/2σ2

(4.10)

When the random variable is exponentially distributed with known mean, the mobile node
follows the same steps in the above distributions in order to get the a values. The cumulative
distribution function of the exponential distribution can be calculated using:

F (X) =

∫ x

0

f(x)dx = λe(−λx) (4.11)

4.3.4 Analysis

For example, if the mobile node is having an idea that the Xk in a specific time interval is
uniformly distributed between a = 1 and b = 20 seconds (or milliseconds) by studying the
previous Xk of the same servers at similar time, it starts obtaining the scalar variable an and
ak by the backward induction method using equations (4.6) and (4.7).

The scalar decision values {ak}nk=1 are illustrated in Figure 4.2. Now, it is optimal to offload
at time k, i.e., on the k-th MEC, if the processing time Xk ≤ ak; otherwise, continue. In
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other words, it is optimal to stop if the value ofXk is under the curve shown in Figure 4.2. By
doing this, we are minimising the expected processing time. Figure 4.3 shows the a values
when the random variable, i.e., X , is normally distributed and Figure 4.4 shows the a values
when the random variable, i.e., X , follows exponential distribution.

0 5 10 15 20

0

2

4

6

8

10

Observation

a
V

al
ue

r = 0
r = 0.25
r = 0.5
r = 1

Figure 4.2: The values of the decision scalars {ak}nk=1 for n = 20 observations based on a
uniform distribution of X for different delay factors r.
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Figure 4.3: The values of the decision scalars {ak}nk=1 for n = 20 observations based on a
normal distribution of X for different delay factors r.
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Figure 4.4: The values of the decision scalars {ak}nk=1 for n = 20 observations based on an
exponential distribution of X with mean of 50 for different delay factors r.
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As an example, Figure. 4.5 shows the values of {ak}50k=1 with the expected processing time
Xk following normal distribution for µ = 50 and σ = 10 when n = 50; it is optimal to
offload when k = 27 as it is the first time the condition x27 < a27 holds true. After we
obtain the values of ak, the value of xk is checked. If xk ≤ ak, the mobile node selects the
MEC server k for data offloading, otherwise, it continues to the next available MEC server.
At k = n, if the mobile node has not yet offloaded the data, it offloads the data to the first
available MEC server (n-th MEC server).
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Figure 4.5: The decision values {ak}50k=1 (black points) and simulated server delay or load
Xk (blue points) vs. observations k for horizon n = 50; the optimal data offloading time
when k = 27, 29, 46, 47, 48 and 50 where X < a.

4.4 Cost-Based Task Offloading

In section 4.3, we dealt with the processing time minimisation with the assumption that the
number of the servers n is known to the mobile node. We now drop this assumption and
contribute with an optimal policy for processing time minimisation where the number of
servers (observations) is unavailable to the mobile node. Instead, the mobile node pays a
cost c for each observation. Therefore, in this model, there will be a threshold for each cost.
In general, the representation of the cost value depends on the application as we shall see
in the next subsections. This problem is an infinite horizon optimal stopping problem as
discussed in subsection 2.5.3.
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4.4.1 Problem Formulation

Let Xk be the random variable denoting the processing time the node is observing for the
k-th server at time k. We desire to find when to offload and which server that minimises
the expected E[X]. However, the node pays c cost units per observation when it has not
yet offloaded the task. The cost can be application specific e.g., the rate the gathered data
turn obsolete before being processed, a degree of urgency for task computation, the cost for
requiring access to a server to ask for its current load.

We then define the cost function Yk at time k including the defined cost up to k and the
processing time Xk of the k-th server as:

Yk = Xk + ck. (4.12)

The target is to find the optimal offloading time k∗ = argmink≥1 E[Yk] to decide to offload
task to the k∗-th server such that up to k∗ the expected cost E[Yk∗ ] in (4.12) is minimised.

4.4.2 Optimal Task Offloading Rule

Optimal Task Offloading Rule: The node minimises the expected cost in (4.12) by
offloading at the first k-th server such that:

k∗ = min{k > 0 : Xk ≤ V ∗} (4.13)

where the V ∗ is the solution of:∫ ∞
V ∗

(x− V ∗)dF (x) = c. (4.14)

where F (x) =
∫
p(x)dx is the Cumulative Density Function (CDF) of the processing

time X .

4.4.3 Solution Principle

The node offloads the task to the first server whose Xk ≤ V ∗, where the V ∗ value is the
solution of (4.14). For instance, given a uniformly distributed load X ∈ [0, 1], i.e., F (x) = x

and thus dF (x) = dx, we obtain for V ∗ ∈ [0, 1]:∫ 1

V ∗
(x− V ∗)dF (x) = (1− V ∗2)/2
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while for V ∗ < 0: ∫ 1

0

(x− V ∗)dF (x) = 1/2− V ∗

Hence, based on the optimal task offloading rule in subsection 4.4.2,

V ∗ = 1− (2c)(1/2)

for c ≤ 1/2, and:
V ∗ = −c+ (1/2)

for c > 1/2.

After calculating V ∗ for a given cost c, the node starts off the load observation (or processing
time) per server, one at a time: If it is less than V ∗, the node offloads the task; otherwise, it
continues checking for a better load before a pre-defined deadline. When the node has not
yet offloaded its task after the deadline, the node has to offload to the last observed server.

4.4.4 Analysis

Figure 4.6 shows the V ∗ optimal threshold vs the cost associated for a processing time fol-
lowing uniform distribution F (x) = 1

b−a in [0, 1]. Figure 4.7 show the V ∗ optimal thresh-
old vs the cost associated for a processing time following normal distribution F (x) =

0.5(1 + erf(x−µ√
2σ
)) with a mean µ = 50 and standard deviation σ = 20; erf() is the error

function. In addition, Figure 4.8 shows the V ∗ optimal threshold vs the cost associated for a
processing time following exponential distribution F (x) = λe(−λx) with a mean µ = 50. A
lower cost c indicates accepting higher processing time, whereas higher cost means a high
demand for a small processing time. Also, when we choose a low cost, then the offloading
will happen very early at the beginning of the offloading process as the optimal threshold V ∗

is high.
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Figure 4.6: The V ∗ values when X is uniformly distributed in [0, 1] vs. cost c ∈ [0, 0.5].
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Figure 4.7: The V ∗ values when X is normally distributed for µ = 50 and σ = 20 vs. cost
c ∈ [0, 50].
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Figure 4.8: The V ∗ values whenX is exponentially distributed for µ = 50 vs. cost c∈ [1, 50].

4.5 Generalisation

It should be noted that the offloading decision-making proposed in Chapters 3 and 4, includ-
ing the BCP, Odds, DTO and the COT, can be also applied to a situation where the mobile
node is moving within the range of one MEC server and tries to choose a time instance
(within a specified time horizon n) with minimised processing time. In such case, the hori-
zon n can be divided into time slices of the same length on the scale of seconds and then
we obtain the offloading rules based on the procedure of each model. The decision (which
server or which time instance) is based on the mobility of the mobile node as well as on
the density of the MEC servers deployment. For example, in AV scenario as considered in
[5] and [6], we could go for MEC server selection especially if there is high mobility and
high density deployment of the MEC servers. On the other hand, if the mobile node is not
moving or moving in the low mobility mode, then the horizon n can be divided into decision
instances with specified time horizon based on the deadline of the task to be offloaded.
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4.6 Summary

In this Chapter, the objective of minimising the expected processing time is examined. Two
sequential decision-making models are proposed. The optimal offloading strategies for both
models are derived. To review the models, they are summarised in the Figures 4.9 and
4.10. The DTO model presented in section 4.3 and shown in Figure 4.9, takes the number
of observations n and the probability distribution function p(Xk) as inputs and outputs a
scalar decision threshold ak for each server k = 1, . . . , k. The mobile node should offload
if the observed processing time/load Xk ≤ ak, otherwise, the mobile node should continue
observing until server n. By that time, the mobile node must offload to server n.

The COT model presented in section 4.4 and shown in Figure 4.10, takes the probability
distribution function p(Xk) and a cost per observation (probing cost) c as inputs and outputs a
threshold V ∗ for each cost c. The mobile node should offload if the observed processing time
Xk ≤ V ∗, otherwise, the mobile node should continue observing until a defined deadline.
By that time, the mobile node must offload to the first observed server.

Decision maker

Input Output

Actions

Figure 4.9: DTO.

Decision maker

Input Output

Actions

Figure 4.10: COT.
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Chapter 5

Evaluation

5.1 Overview

The evaluation presented in this Chapter is to show the most important performance aspects
of the proposed models in Chapters 3 and 4 and will combine simulation results, real mobility
trace with real servers’ data sets, and real implementation of the proposed models on real
machines.

Section 5.2 shows the performance benefits of the OST-based models by generating a simu-
lated continuous random variable based on three probability distributions, namely uniform,
normal and exponential distributions. In Section 5.3, to simulate the considered environ-
ment, the two real data sets of mobility trace and real servers’ CPU utilisation are combined.
In Section 5.4, four machines are setup for the experiment, each of which represents a MEC
server. The mobile node was represented by a process running in the machine with the
highest resources.

For all the settings, an offloading decision is made based on the OST-based offloading models
namely BCP (section 3.3), the quality-aware Odds model (section 3.4), DTO (section 4.3)
and COT (section 4.4), the Random selection model (Random), and the p-stochastic model
(p-model); which will be discussed later. The results from all models are compared with the
ground truth, i.e., the Optimal model, in which the server with the minimum processing time
for each offloading session is selected. The closer a model is to the Optimal, the better the
model performs in terms of the task offloading decision. In the following sections, the details
and the results of each setting are presented.
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5.2 Simulation Based Evaluation

In this section, the proposed offloading rules are evaluated based on simulated random vari-
able following normal, uniform and exponential distributions. The main goal of this evalu-
ation is to see the behaviour of the models in different probability distributions. Therefore,
the models and their results can be generalised to different QoS parameters with respect to
the computational offloading.

5.2.1 Simulation Settings and Parameters

In the simulation evaluation, the probability distribution of the random variable X , e.g., the
processing time, will be known in advance. We used Simpy in Python [104]; Simpy is a
process-based discrete-event simulation framework. Each MEC server k is modelled as a
resource that advertises its processing time Xk each time during the simulation. The mobile
node is modelled as a process that passes by the MEC servers in 1D mobility model and
checks the processing delay advertised by each MEC server. We first consider five MEC
servers, i.e., n = 5. The processing time X is drawn from normal distribution with µ = 50

ms and σ = 10 ms, uniform distribution in [0, 1] and exponential distribution with µ =

50. These random variables are generated using Python function that generates random
numbers following a specified distribution. Each time, a mobile node (e.g., a vehicle) starts
checking the MEC servers in sequential manner. It starts with server number 1 and applies
the proposed models presented earlier to select a MEC server for offloading.

It should be noted that the processing time has been named in the literature with different
terms including total delay [13], latency [47] or waiting time [6]. Also, the range of the
processing time varies according to the application types. As an example, it is being ranged
from 0.1 seconds to ≈ 800 seconds in [105] and in the range of 10 ms to ≈ 30 ms as in [6].
Therefore, different values or scales of X can be used with the proposed models generating
similar results as we will see in the real data set experiment. Table 5.1 shows the parameters’
values and range in the simulation experiment.

5.2.2 OST-Based Offloading

In the BCP, the rule when n = 5, based on Figure 3.2 (right), is to reject the first two servers,
take the best among them as a baseline and start looking for a server that is better than the
baseline. If server 5 is reached without offloading, we then must offload to server 5. In the
quality-aware Odds model, we first define θ = 50 (we start with the normal distribution) as
a threshold. Thus, based on the proposed model, the model suggests to start from server 2
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Parameter Value / Range
X N (50, 10) & U(0, 1) & exp( 1

50
)

Number of mobile nodes 1000
n {3, 5, 10}
r {0, 0.25, 0.5, 1}
θ {30, 40, 50, 60} & {0.3, 0.4, 0.5, 0.6} & {20, 30, 40, 50, 60}
c {1, 2, 3, 4, 5, 20, 30} & {0.1, 0.3, 0.4} & {1, 10, 15, 20, 30, 40}

p for the p-model 0.8

Table 5.1: Simulation experiment parameters’ values.

(s = 2) and pick the server that has a processing time less than or equal to θ = 50. Note that
as n is set to 5, we calculate the indicators f1, . . . , f5.

In the DTO, each server k is compared with the decision threshold ak as proposed in Section
4.3. If the processing time Xk is less than the threshold ak, the mobile node should offload,
otherwise, it continues till it reaches the last server, and then it must offload to the last server.
We first set the delay factor r = 0, later, the performance is shown for different r values. In
the COT model (Section 4.4), there is a unique solution for V ∗ for each value c > 0. For
example, in the normal distribution case, we obtain the threshold values V ∗ for each cost
value c ∈ [1, 50]. As plotted in Figure 5.1, we can see that the generated threshold V ∗ values
are around the mean when c ≤ 10. In our modelling, the value of the cost c is interpreted
as the need for a lower processing time, but different interpretations can be obtained based
on the application requirements. As a result, we can see from Figure 5.1 that low costs
have higher thresholds and thus it will accept higher processing time. In contrast, higher
costs have less thresholds and thus it will look for less processing time. Once the value of
c is defined, the value of V ∗ can be obtained as shown in Section 4.4. For example, in the
normal distribution case, we start by defining the cost to be c = 4, and later, we show the
performance for different values c. Starting from server 1, if the processing time Xk is less
than that threshold V ∗, we offload to that server. If we reach server 5 without offloading, we
then must offload to server 5.
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Figure 5.1: The V ∗ value for the processing time used in the experiment vs. cost c when X
is normally distributed.

5.2.3 Baseline Models

The main approach that is being used in the literature (when dealing with offloading site
selection) is the comparison with the Optimal as in [20], the Random [16, 17, 74], the nearest
server (immediate offloading) as in [6, 36], and to a method belongs to the same family of
the proposed algorithms in the same work as in [5, 16, 20, 45]. Similarly, in this thesis, the
evaluation was limited to the comparison between the different OST models along with the
Random and a probabilistic model, which we call here the p-model. These algorithms are
then compared against the Optimal selection in which we select the server or time with the
minimum value, e.g., processing time or CPU utilisation as we shall see in the next sections.

The reasons for taking a similar approach in this thesis are as follows: first, the core of
this work is about adopting the OST in the data and task offload decision. In addition, the
nature of the OST algorithms is different from other algorithms in the area. In particular,
the OST algorithms are applied when incomplete information is available for the decision
maker. Therefore, approaching the optimality would be a main analysis one can use when
evaluating these algorithms. The optimality is a representative solution in a scenario when
all the servers’ information is available to the decision maker. In such a scenario, the mobile
node would select the best place for offloading. Finally, these algorithms are applied in a
sequential fashion which makes such algorithms difficult to compare with other algorithms.

In the considered setting in this thesis, without utilising the OST-based offloading rules,
the mobile node is more likely to select the first encounter MEC server, i.e., the immediate
offloading. Also, for the Edge computing offloading, such an offloading method is the most
intuitive method to offload the computation tasks [36]. Thus, for this case, we utilise the
p-model method as an offloading method. In the p-model, for each server, a probability
of offloading is assigned; in this setting, the value of p is set to p = 0.8. In each user’s
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movement, each server has probability p = 0.8 of being selected for task offloading. More
specifically, when increasing the value of p, as we do in this experiment, the probability
of each server being selected for offloading is very high. As a result, the first server is
more likely to be selected and is thus chosen for offloading. The p-model, therefore, is a
simulation for a scenario where the mobile node offloads at the first encountered servers (the
nearest Edge servers) because there is higher probability, i.e., p = 0.8, as we will see later in
the real data set evaluation. If a server is selected, the process is stopped and the server (at
that time) is selected for offloading. If there was no server selected, the last server is selected
for offloading. In the Random selection model, for each user, a server, uniformly at random,
is selected to offload the task. The Random is also a common method in the literature to
study the algorithms performance, i.e., from an analytical point of view.

The results from all models are compared with the ground truth, i.e., the Optimal model, in
which the server with the minimum processing time for each offloading session is selected.
The closer a model is to the Optimal, the better the model performs in terms of the task
offloading decision. The Optimal model was captured at each offloading session by selecting
the server with the minimum processing time.

5.2.4 Results

The results of the experiment in the case whereX is normally distributed are shown in Figure
5.2. We can observe that there is a noticeable overlapping between the Optimal and the OST
based models (the DTO, the COT and the quality-aware Odds) as shown in Figures 5.2b,
5.2c and 5.2d, respectively. This overlapping decreases in the BCP, the Random and the
p-model as it can be seen from the Figures 5.2a, 5.2e and 5.2f. However, the BCP model
is achieving lower expected processing time (µ = 46) than the Random (µ = 49) and the
p-model (µ = 50). This is clear in Figure 5.3 as the difference between the Optimal and the
OST based models including (BCP, DTO, COT, Odds) is significantly less than the Random
and the p-model models.

It should be noted that, in general for the DTO and the COT models, the optimal thresholds
generated by each model for each observation k is close to the mean of the processing time,
i.e. 50. For example, in the DTO, the generated threshold values {ak}nk=1 for n = 5 are
{40, 42, 43, 46, 50}. As we can see, the values are close to the mean of the processing time.
This also applies to the COT model. Based on these optimal thresholds, we first set the
threshold value θ = 50 for the Odds, and later we show the performance for different θ
values.
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(b) DTO and the Optimal selections.
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(c) COT and the Optimal selections.
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Figure 5.2: Simulation results for all the models when X normally distributed.

As it can be seen from the Figures, we had a good performance in the Odds. This good
performance is due to the fact that we have around 42% probability of picking a server with
processing time less than 501. Therefore, a lesson learnt here is that setting a threshold
value close to the mean value achieves less processing time. We had better performance in
the BCP model than the Random and the p-model as the BCP offloading policy has higher
probability of offloading to the minimum processing time than the Random and the p-model
as we observed earlier in Section 3.3. This higher probability is translated into less expected
processing time than the Random and the p-model. We should note that, we have similar

1This probability is calculated using equation (3.12).
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probability of offloading the best in the BCP and the Odds, but having a defined threshold
θ when checking the MEC server has increased the performance in the quality-aware Odds
model.
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Figure 5.3: Confidence interval in the simulation experiment whenX is normally distributed.

In the previous experiment, the random variableX to be observed and optimised is following
normal distribution. Now, X is uniformly distributed scaled in [0, 1]. This can refer to the
server utilisation, i.e., the CPU utilisation [106]. For example, 0.5 indicates that 50% of
servers’ CPU is utilised. The same steps, as in the previous experiment for all the models,
are followed. In the DTO model, the delay factor is first set to r = 0, and later we show the
results for the rest of r values. In the COT model, the optimal threshold V ∗ values for each
cost value c ∈ {0.1, 0.2, 0.3, 0.4} are obtained. The results when c = 0.2, where the optimal
threshold V ∗ ≈ 0.36, is firstly shown. Later, the performance for the rest of the values c
will be presented. The interpretation for the cost is similar to the situation when we have
X normally distributed, i.e., higher cost (small threshold V ∗) means high demand for less
processing time. In the quality-aware Odds model, the threshold θ is set to θ = 0.5, thus,
there is around 42% chance of offloading to a server with X ≤ θ = 0.5. Although we have
the same probability in the BCP model, but again, it turns out that setting a threshold can
improve the performance of the Odds model. In general, we can see from the results shown
in Figure 5.4 and Figure 5.5 that the models performance is similar to the results we obtain
when X is following normal distribution. We still have the DTO, COT models perform the
best, and in general, the OST based models are closer to the Optimal than the Random and
p−model.
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(b) DTO and the Optimal selections.
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(c) COT and the Optimal selections.
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(e) Random and Optimal selections.

0.0 0.2 0.4 0.6 0.8 1.0
Processing time

0

25

50

75

100

125

150

D
en

si
ty

 P-model P =0.8, µ = 0.52, σ = 0.29 
Optimal µ = 0.17, σ = 0.14 

(f) P -model and Optimal selections.

Figure 5.4: Simulation results for all the models when X uniformly distributed.
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Figure 5.5: Confidence interval in the simulation experiment when X uniformly distributed.

In addition to the normal and uniform distributions, the exponential distribution is considered
in this experiment with µ = 50. The steps that were carried out in the previous distributions
are also followed in this experiment. In the DTO model, the delay factor is first set to r = 0,
and later we show the results for the rest of r values. The values of {ak}nk=1 are obtained
as shown in Figure 4.4. In the COT model, the optimal threshold V ∗ values for each cost
value c ∈ [1, 50] are obtained as shown in Figure. 4.8 presented earlier in Chapter 4. We first
consider the case where c = 20 where the optimal threshold V ∗ ≈ 45.81 as it achieves the
lowest expected simulated X among other V ∗ values. Later, the performance for different
values c will be presented. The interpretation for the cost is similar to the situation when
we have X normally and uniformly distributed, i.e., higher cost (small threshold V ∗) means
high demand for less processing time. In the quality-aware Odds model, the threshold θ is
set to θ = 50, thus, there is around 44% chance of offloading to a server with X ≤ θ = 50.
In general, we can see from the results shown in Figure 5.6 and Figure 5.7 that the models
performance is similar to the results we obtain when X is following normal and uniform
distributions. We still have the DTO model performs the best, and in general, the OST based
models are closer to the Optimal than the Random and p−model. However, the performance
of the BCP decreases as it can be seen in Figure 5.6a and the difference between the Optimal
and the BCP is higher than the case of the normal and the uniform distributions.
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(a) BCP and the Optimal selections.
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(b) DTO and the Optimal selections.
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(c) COT and the Optimal selections.
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(d) Odds and the Optimal selections.
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(e) Random and Optimal selections.
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(f) P -model and Optimal selections.

Figure 5.6: Simulation results for all the models when X exponentially distributed.
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Figure 5.7: Confidence interval in the simulation experiment when X exponentially dis-
tributed.

5.2.5 Sensitivity Analysis (Simulated Environment)

In this subsection, the models’ results for different parameters values are investigated further.
This includes: the results of the BCP model (Section 3.3) for different values of n, the DTO
model (Section 4.3) for different delay factors r, the COT model (Section 4.4) for different
costs c, and the quality-aware Odds model (Section 3.4) with different θ values.

5.2.5.1 BCP Model Analysis

We observe that when n is small, the difference between the BCP and the Optimal decreases.
For normally distributed X , the difference was 5.24, and 9.07 for n = 3 and n = 10 respec-
tively as shown in the Figures 5.8a and 5.8c. This is also true when X uniformly distributed:
the difference was 0.16, and 0.22 for n = 3, n = 10 respectively as shown in the Figures
5.8b and 5.8d. These results support Figure 3.2 (left), i.e., the probability of offloading to the
best decreases and approaches 36% as n increases.
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(a) BCP when n = 3 and X normally dis-
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(c) BCP when n = 10 and X normally
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(d) BCP when n = 10 and X uniformly
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Figure 5.8: BCP models for different values n.

5.2.5.2 DTO Model Analysis

In the DTO model, a higher value r generates small thresholds {ak}nk=1. As a result, in the
case of higher values r, the model will delay the offloading trying to find processing time
less than very small thresholds ∈ {ak}nk=1. On the other hand, when r is small, the model
generates higher values of {ak}nk=1 (close to the mean); which enforce the decision maker to
offload earlier than the case when r higher. These cases can be seen in Figure 4.2, 4.3 and
4.4 in Chapter 4. In general, the performance of the DTO was the best when r = 0. We see
from Figure 5.9 that as we increase the value of r, the model tends to have higher difference
compared to the Optimal selection for the all the considered distributions.
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(a) Confidence interval when X normally
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(b) Confidence interval when X uniformly
distributed.

Optimal r = 0 r =0.25 r=0.5 r=10

5

10

15

20

Pr
oc

es
sin

g 
Ti

m
e

(c) Confidence interval when X exponen-
tially distributed.

Figure 5.9: Confidence interval in the DTO for different r values.

5.2.5.3 COT Model Analysis

In our modelling, high value c will generate small threshold V ∗. This can be interpreted as
the high demand for small value ofX . On the other hand, small value of cwill generate large
threshold V ∗. Therefore, when we set the cost to a small value, then, it implies we are tolerant
to expect higher valueX . Figure 5.10 shows the confidence interval and the average process-
ing time achieved by the COT model for different c values when X is normally distributed
(Figure 5.10a), when X uniformly distributed (Figure 5.10b), and when X is exponentially
distributed (Figure 5.10c). In the normal distribution case, we can see from the results that
the processing time achieved by the COT is higher when c = 1, c = 20, c = 30. When c = 1,
V ∗ is high, thus, the mobile node offloads at the firs server. When c = 20, c = 30, V ∗ is very
small, thus, it delays the offloading and in fact the mobile node did not find a server with
processing time less than V ∗. Therefore, the mobile node has to offload to the last server.
The value of V ∗ was around the mean when c = 3, 4, 5. Thus, we had a closer processing
time to the Optimal. This is also true for the uniform distribution, when c = 0.1, the value
of the V ∗ was 0.5. Therefore, in the case of the normal and uniform distributions, we ob-
serve that when the threshold V ∗ is close to the expected value (mean), the COT performs
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better. When X is exponentially distributed, however, we had different behaviour for the
COT model. The model performs better when c = 30 with V ∗ value of ≈ 26 which is not
that close to the mean. There is a good performance when we have c = 15 and c = 40 with
values of V ∗ = 60, 11 respectively.
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(a) Confidence interval when X normally
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Figure 5.10: Confidence interval in the COT for different cost c values.

5.2.5.4 Odds Model Analysis

Figure 5.11 shows the confidence interval and the average processing time achieved by the
quality-aware Odds model for different θ values when X is normally distributed (Figure
5.11a), when X is uniformly distributed (Figure 5.11b), and when X is exponentially dis-
tributed (Figure 5.11c). As discussed in Chapter 3, a main component of the proposed Odds
model is to define a threshold (the mobile node is looking for less than this threshold) which
is then compared with each observation. This might refer to different types of requirements,
e.g., processing time or load. In the normal distribution case, the model manages to meet the
threshold when θ = 50, but it fails in the rest of the thresholds. The overall performance was
similar to the COT model; we observe that when θ is close to the mean, the model performs
better. As mentioned earlier, when θ = 50, we have around 42% chance of offloading to a
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server with processing time less than or equal to 50. This is also true when θ = 60, i.e., we
have around 42% chance of offloading to a server with processing time less than or equal to
60. However, due to the higher value of the threshold, i.e., 60, we had higher processing time
than the processing time when we set θ to 50. Setting the value of θ to 40 had an accept-
able performance. We had higher processing time when θ = 30 as we have small chance of
offloading to a server with the specified threshold.
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(c) Confidence interval when X exponen-
tially distributed.

Figure 5.11: Confidence interval in the quality-aware Odds for different θ values.

The model manages to meet all thresholds when X is uniformly distributed. However, the
overall performance was different in this case. When θ = 0.4, 0.5 and 0.6, we have a higher
chance of offloading to a server meeting the specified thresholds, i.e., > 40%. However, the
performance was not good when θ = 0.6. The reason for having a higher processing time is
because of the higher value of threshold (0.6), and thus, the mobile node will accept a server
with a higher processing time. We had an improvement when θ = 0.4 over the case when
θ = 0.5. The reason for this improvement is that the model when θ = 0.4 starts the search
at index 1, i.e., s = 1 2, thus, this index allows the model to have a larger search space over

2The value of s is the index where the Odds reach or exceed the value of 1 for the first time, please see
subsection 3.4.1 for more details.
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the case when θ = 0.5 as the model starts at index s = 2. The model manages to meet all
thresholds when X is exponentially distributed. The minimum processing time was when
θ = 20, 30 which is less than the mean by more than 10.

Therefore, the main observation for the Odds model when X is N (50, 10) or U(0, 1) is
that setting the threshold θ to the expected value or less by ≈ 10 achieves less processing
time. In contrast, when X is exponentially distributed, the minimum processing time was
when θ = 20, 30 which is less than the mean by more than 10. In this case, the probability
of meeting all the thresholds are still higher than 40%, but, again, it turns out that setting
smaller thresholds results in less X . Also, the value of s (the index of where the mobile
should start accept server for offloading) has an impact in the overall performance.

Based on this observation, there is an upper limit and a lower limit for the threshold θ to be
closer to the Optimal. For example, the upper limit when X is U(0, 1) has been tested, i.e.,
when the value of θ = 0.6. When compared to the Optimal, the difference is significant,
indicating that if you try a higher threshold value, e.g., θ > 0.6 , the performance would
decreases, therefore there is no need to test higher thresholds. For the lower limit, we have
started testing the threshold by testing θ = 0.4 and we noticed that there is an improvement
over θ = 0.5 and thus we continue comparing till we observed that when θ = 0.3, the
performance is not getting improved and therefore, trying for example less threshold (θ =

0.2) is going to be worst than the case when θ = 0.3 and θ = 0.4.

In general, the interpretation for this is that when the threshold is high, there is a high chance
of accepting higher observation and thus resulting in a higher selected processing time. On
the other hand, when the threshold is small, the model will not find an observation meeting
the very small threshold. Thus, the model will keep looking for a value and it will lead to
pick the last one as the chance of finding a small value for the random variable is small. In
other words, the model will always take the last observation and that is why we had higher
processing time in the case of θ = 0.3, for example, in the uniform distribution. We should
note that each θ value has different stopping index s based on model presented in Section 3.4.
As an example, when X is normally distributed and θ = 30, 40, s = 1, and when θ = 60,
s = 3. When X is uniformly distributed, e.g. when θ = 0.3, s = 1, and when θ = 0.6,
s = 2. When X is exponentially distributed and θ = 60, 40, for example, s = 2, and when
θ = 30, 20, s = 1.

To summarise, in general, the models DTO, COT and the Odds are showing a good perfor-
mance and their selection are higher than the Optimal by 10% in the normal distribution,
≈ 35% in the uniform and ≈ 68% in the exponential distribution. The BCP model is still
performing better than the first selection and the Random model.
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5.3 Real Data Sets Based Evaluation

In this section, real data sets to evaluate the proposed models are also utilised. The purpose
of this evaluation is to see how the OST-based models perform when dealing with real data
sets. The random variable in this evaluation is represented by CPU utilisation and the aim is
to offload to a server that has less CPU utilisation.

5.3.1 Data Sets

To simulate the movements of the mobile nodes, first, the real data set of taxi cabs’ move-
ments in Rome [107] is used. The data set contains GPS coordinates of 320 taxis collected
over 30 days. Each row in this data set has the cab-id, date/time and GPS coordinates of
the current location. It is worthwhile to mention that the use of mobility trace here is not
for studying the mobility of users. It is used in this experiment to use each time movement
as location or time to check for a server or a time to offload. In other words, each move-
ment is modelled as an observation or connection to a MEC server. Figure 5.12 shows the
movements of the cars in Rome map.

Figure 5.12: Taxis trajectories in Rome.

The processing time is represented in this experiment by real servers’ utilisation (the CPU
utilisation) obtained from [108]. In the servers’ data set, there are around 150 servers’ data
(more than 1 billion rows). Thus, for each movement, the car picks a server from the servers’
data set, checks that server utilisation and takes a decision of whether the car should offload
at that time or continue observing based on the decision suggested by the model as explained
earlier in the simulation evaluation section. The movements of over 5 days (5000 rows of
movements) are used in the experiment. An offloading decision was taken for each minute.
Thus, we have more than 1000 offloading decisions. This will ensure to see the behaviour of
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the proposed models for a long time. Figure 5.13 shows the probability distribution of the
servers’ utilisation for the all servers in the data set. We can see that the servers’ utilisation in
general follows normal distribution with µ = 36 and σ = 16. Also, for illustrative purposes,
an example of one offloading decision session is shown in Table 5.2. In Table 5.3, we show
the key parameters’ values in this experiment.

Figure 5.13: The distribution of the servers’ CPU utilisation.

Cap id Movement time Location Machine name CPU utilisation
156 2014-02-05 00:11:01 (41.8911, 12.49073) m 1939 (51)
156 2014-02-05 00:11:11 (41.89905,12.4899) m 1936 (47)
156 2014-02-05 00:11:22 (41.8994,12.48940) m 1941 (20)
156 2014-02-05 00:11:31 (41.8994,12.489401) m 1941 (37)

Table 5.2: A sample of the data set used in the experiment.

Note that, as the server utilisation is approximately following normal distribution, when we
apply the OST models, we have to feed the models (Odds, DTO and COT) with the mean and
the standard deviation. In this experiment, the mean and the standard deviation were taken
once at the beginning of the experiment for the whole servers’ utilisation data set. In other
words, the models are not applied with the mean and the standard deviation of the observed
utilisation during the experiment. Instead, this information is only taken once when the
experiment starts. This is an important aspect of conducting this experiment as in real world
scenario, the mobile node does not know the mean and the standard deviation of a specific
MEC server, but can obtain this information from historical data for the MEC servers in one
area in specific time with the help of MEC servers operators.

Similar to the simulation setting, the results from all models are compared with the ground
truth, i.e., the Optimal model, in which the server with the minimum CPU utilisation for each
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Parameter Value / Range
X real servers CPU utilisation in N (36, 16)

Number of movements 5000 movements
Number of offloading decision > 1000

n 5
r {0, 0.25, 0.5, 1}
θ {20, 30, 40, 50, 60}
c {1, 2, 3, 4, 5, 20, 30}

p for the p-model 0.8

Table 5.3: Real data set experiment parameters’ values.

offloading decision session is selected. For example, the Optimal in Table 5.2 is to offload
at 00:11:22 with CPU utilisation of 20%. The closer a model is to the Optimal, the better
the model performs in terms of the task offloading decision. All models are applied on each
minute (offloading decision session) for evaluation. In short, each minute consists of around
5 movements. Each model selects a server for offloading as suggested by that model. Then,
the average server utilisation achieved by each model in all offloading decision session is
taken.

5.3.2 Results

Figure 5.14 shows the average server utilisation suggested by each model. We can see that
the OST models are the closest models to the Optimal. The DTO performs better than the
rest of the models with absolute difference, compared to the Optimal of 5 and it is higher
than the Optimal by 23% as shown in Figures 5.15a and 5.15b.
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Figure 5.14: Average CPU utilisation and average offloading times suggested by each model.

In reality, the mobile node would normally offload to the first server or in the first time. A
simulation for such case is the p-model with p = 0.8. This is clear in Figure 5.14 where the
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Figure 5.15: Difference between the Optimal and all models.

p-model has the lowest offloading times (offload earlier than other models). We can see from
the results that the p-model is too far from the Optimal. In other words, our results show
that going with the first server (time) or (immediate server) is not a good idea. Moreover,
which server or time is the Optimal is not known and not provided to the mobile node. In
other words, in the considered environment, the Optimal is not available to the mobile node
so having the OST-based model implemented in the mobile node can achieve near-Optimal
server utilisation.
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Figure 5.16: Confidence interval for the the real data sets experiment.

5.3.3 Sensitivity Analysis (Real Data Sets)

To further investigate the difference between the proposed models and the Optimal, the confi-
dence intervals (95% confidence limits) for the results obtained by each model are plotted in
Figure 5.16. We can see that the difference is more significant with the Random and p-model.
Furthermore, the difference between the server utilisation achieved by the Optimal and the
server utilisation achieved by the BCP is greater than the rest of the models (DTO,COT, and
Odds). The DTO model, on the other hand, is the closest model to the Optimal.
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5.3.3.1 DTO Model Analysis

In the DTO model, a higher value r produces small thresholds {ak}nk=1, just as it did in
the simulation experiment. As a consequence, when r is large, the model will postpone the
offloading in order to find processing time below very small thresholds {ak}nk=1. When r is
small, however, the model produces higher values of {ak}nk=1 (close to the mean), forcing
the decision-maker to offload sooner than when r is higher. Similar to the situation we had in
the simulation experiment, in general, the performance of the DTO was the best when r = 0.
We see from Figure 5.17 that as we increase the value of r, the model tends to have higher
difference compared to the Optimal selection.
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Figure 5.17: Confidence interval in the DTO for different r values.

5.3.3.2 COT Model Analysis

Figure 5.18 shows the V ∗ optimal threshold for the COT model vs the associated cost for the
server utilisation used in the experiment. Similar to simulation experiment, a lower cost c
indicates accepting higher server utilisation, whereas higher cost means a high demand for
small server utilisation.
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Figure 5.18: The V ∗ value for the server utilisation used in the experiment vs. cost c.

Figure 5.19 shows the confident interval and the average CPU utilisation achieved by the
COT model for different cost c values. We observe that the server utilisation is closer to the
Optimal when c = 3, c = 4 and c = 5. The V ∗ optimal threshold values when c = 3, c = 4

and c = 5 are 42, 39 and 37 respectively which are around the mean of the server utilisation.
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Figure 5.19: Confidence interval in the COT for different cost c values.

5.3.3.3 Odds Model Analysis

Similarly, Figure 5.20 shows the confident interval and the average server utilisation achieved
by the Odds model for different θ values. As discussed in the simulation experiment, a
main component of the proposed Odds model is to define a threshold (the mobile node is
looking for less than this threshold) which is then compared with each observation. In this
experiment, this refers to the requirement for a server with CPU utilisation less than specific
threshold. Different values of the threshold θ are being tested, i.e., θ ∈ {20, 30, 40, 50, 60}.
As it can be seen from Figure 5.20, the model manages to have server utilisation less than the
specified thresholds except the case when θ = 20. We also observe that when the threshold is
close to the mean (µ ≈ 36), the server utilisation gets closer to the Optimal. This is a result of
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these values being closer to the mean (µ = 36) with higher probability of success. When the
θ = 30, the model performs better than the rest. The interpretation for this is that this value
is close to the mean and also the index s in which the mobile node should start accepting
MEC server is s = 1, which gives the model higher chances to improve the performance.
When θ = 40, however, the value of s is s = 2 which has less search space than the case
when θ = 30. When θ = 20, the model will not find an observation meeting the very small
threshold. The model will keep looking for a value and it will lead to pick the last one as the
chance of finding small value for the random variable is small. As a result, the model will
always take the last observation and that is why we had high value in this case. When the
threshold is high as the case when θ = 60, the model keeps the server utilisation less than 60,
but the performance was less than the rest of the model. The interpretation for this case is
that as the threshold is high, there is higher chance of accepting the first observation and thus
resulting in a higher selected value. This supports our findings in the simulation experiment.
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Figure 5.20: Confidence interval in the Odds model for different θ values.

5.3.3.4 Number of Successful Offloading

In addition to the average server utilisation as an performance metric, we use the number of
successful offloading for each model. The number of successful offloading refers to num-
ber of offloading decisions, suggested by each model, that meets specific requirements. To
have an idea about the number of successful offloading metric for each model, let’s first as-
sume that we have 3 different MEC applications x, y and z. Each of which has a specific
requirement. For example, application x requires a CPU utilisation less than 10, application
y requires a CPU utilisation less than 20 and application y is tolerant to offload to a server
with CPU utilisation less than 30. Now, if an offloading happens to server with utilisation
less than 10, we then consider that a successful offloading for application x.

Figure 5.21 shows the number of successful offloading for different resource requirements
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for all the models. For an application that requires, ≤ 10% CPU utilisation, the Optimal
achieves 102 successful offloadings, i.e., 102 times the Optimal selects a server with a util-
isation less than 10%. In the second requirements, ≤ 20%, the Optimal had 463 successful
offloadings. For the first and the second requirements, the Odds model was the best among
the other models. In the third requirement, ≤ 30%, the Optimal had 887 successes. Again,
the Odds model was the closest one to the Optimal in the number of successful offloading
with 797 success.
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Figure 5.21: The number of successful offloadings for each model based on different thresh-
old values.

5.4 Real Environment Evaluation

In this section, the proposed offloading rules are implemented in real machines with a focus
on the processing time (execution time) of a real world computing task. The set-up of the
experiment, including the machines used and the computing task, are described, followed by
the results for each model.

5.4.1 Machines

Recall that, in our setting, there is a set of servers and a client (a mobile node). To emu-
late such a setting, three machines and one virtualised machine are used, equivalent to four
servers acting as a place to offload the computing task. The client was emulated as a process
in one of these machines. Each machine runs a server Python socket code and waits for the
client to connect if that machine is selected. A client Python code is also executed in the
client machine. The details of the machines are shown in Figure 5.22.

Clearly, there are differences in terms of the devices’ capabilities in terms of the CPUs and
RAMs, and these differences can be a representation for the servers having different loads
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Figure 5.22: Machines used in the experiment.

over time. Each machine is assigned with a number, i.e., (1) for MacBook Pro1, (2) for
MacBook Pro2, (3) the virtualised machine and (4) the Raspberry Pi, based on the average
execution time for each machine, and these numbers are stored in a list [1, 2, 3, 4]. The
random variable used to take the decision is the average execution time for the task over the
long run (when running the task more than 1000 times) as shown in more detail below.

For the considered setting in this thesis, the mobile node is moving and observing these
servers. Therefore, at each time or each decision episode, the order of the list is shuffled
using the shuffle function in Python [109] so that the mobile node is trying all differ-
ent combinations of order. Then, based on the average execution time for the task in each
machine, the decision is made. For example, in the simplest model, i.e., the BCP model pre-
sented in Section 3.3, the machines are initially listed as [1, 2, 3, 4]; the list is then shuffled
and the process of selecting a machine for offloading begins.

As an example, say the list is [2,1,3,4] after shuffling, then the first selection (here it is 2 ==
MacBook Pro 2) as a baseline which is then compared with the rest. The selection, based
on the BCP model, is to take the second option as it is better than the baseline; i.e., the
average execution time of 1==MacBook Pro 1 is better than that of the 2==MacBook Pro 2
as shown in Figure 5.23a and Figure 5.23b. In the threshold OST based models, i.e., DTO
and COT, each selected average execution time is compared with the threshold generated by
the model. The probability distribution of each machine with the average execution time for
the task (explained below) are shown in the Figures 5.23a, 5.23b, 5.23c and 5.23d.
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(c) Virtual machine.
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(d) Raspberry Pi machine.

Figure 5.23: The distribution of the execution times for the machines used in the experiment.

5.4.2 Task

The task to be offloaded is an image recognition task in which the client has an image that
must be identified. The client sends the image to the server which then does the recog-
nition (prediction) and returns a list of string of the possible answers with probabilities
being assigned to each prediction. A machine learning Python-trained library (imageai
Prediction) has been adopted [110].

5.4.3 Metrics and Analysis

The execution time is the time between the connection being established (when the client
starts sending the image) to the point at which the client receives the results from the server,
and the experiment is to see if this time can be minimised by applying the OST-based models.
As the devices are connecting to the same router, the effect of the network link is negligible.
This was checked by running the client code in the Raspberry pi machine , and this generated
similar results to running the client from MacBook Pro 1 as shown in Figure 5.23d and 5.24.
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Figure 5.24: The distribution of the execution time when both the server and the client in the
raspberry pi 4 device.

5.4.4 Results

The probability distributions, the average execution times and the standard deviations for the
BCP, DTO, COT, Odds, Random and the First option are shown in Figure 5.25. It can be
seen that the DTO, COT and Odds models are all Optimal and pick the best server (MacBook
Pro 1) as the generated thresholds for these models are in the range of [0.2,0.3]. Therefore
the MacBook Pro 1, which has an execution time less than these thresholds is selected for
offloading each time. The next best model in terms of expected execution time is the BCP
model.
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Figure 5.25: The distribution of the execution times for all the models.

5.5 Mobility Scenarios

As the mobility of the mobile node plays a key role in task offloading within the MEC
environment, it is important to consider its effects when applying the OST-based decision-
making. Therefore, we simulate a mobile node (smart vehicle) that moves in one direction
with different speed values uniformly distributed in [1, 5] meters per second and it passes by
a set of MEC servers. The communication range of the MEC servers is 100 meters. Five
MEC servers over a distance of 1000 meters were deployed, i.e., one server each 200 meters.
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Figure 5.26: Mobility simulation.

Figure 5.26 shows such a setting. As it can be seen from the Figure, the car selects server
3 for offloading. The green line shows that the car was within the communication range of
server number 3. Now we define the traveling time T to be the time it takes the car from
the first point of the green line till the last point of the green line. The car offloads data to be
processed before going out of the range. Having such settings, the mobile node will face one
situation from two.

First, when we have a processing time less than the traveling time. This case can arise
when the load of the MEC server is light, e.g., due to the density of the vehicles being low
[5] or the speed of the mobile node is not high. In this case, the OST models have higher
probability to select a MEC server that finishes the task before the mobile node gets out of
the range of that MEC server with minimised processing time. To check this, a speed ∈ [1, 5]

that generates traveling time higher than the processing time has been used. The processing
time are assumed to follow normal distribution, i.e., X N (50s, 10s). The results show that
the difference between the processing time and the traveling time when applying the OST
models is higher than the other models: the Random and the first selection as shown in Figure
5.27. The higher the difference the more reliability the model has. This indicates that the
OST based offloading is more reliable offloading than the other offloading methods as the
proposed models ensure the task finishes before going out of the range of the communication.
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Figure 5.27: Absolute difference between the processing time and the traveling time T .

Second, when the processing time is higher than the time the mobile node spends within the
communication range, i.e., X > T . In this case, we need a mobility management algorithm
that handles such a mobility. Examples of such algorithms are power control for low mo-
bility, and path selection or task migration for high mobility as stated in [13]. The adoption
of the OST based selection in such scenario can be benefit. For example, in each method of
the mobility algorithms, the first step is to make a selection for an Edge server to offload to.
Therefore, it is not difficult to consider the proposed models for this kind of scenario, but
this is left for future work and out of the scope of this thesis.

5.6 Discussion

5.6.1 Deployment Environment

The proposed models can be integrated with the current offloading architectures and frame-
works. For example, considering the existing work in offloading decision framework in
the smartphones devices, in general, the main components for the offloading framework
are decision engine or code offloader, network, Edge servers and application profilers, e.g.,
[14, 25, 63, 66, 70]. The previous components are envisaged to be implemented on a middle-
ware on top of the smart-devices operating system to perform code offloading decision [70].
The offloading engine, in general, is fed with the current state information (e.g., network’s
state and servers’ load) collected by profilers. In the case of smart vehicles, for example,
beaconing and resource discovery phase where beacon messages between the smart vehicle
and RSUs is used to obtain the required information for the decision-making as presented in
[7]. Based on the collected information, the decision engine is expected to give a decision
of whether the task should be offloaded or run locally on the mobile device. Our models can
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utilise such information and can be implemented on top of existing decision engine compo-
nents, and it can be triggered whenever the output of the decision is to offload to an Edge
server.

5.6.2 Computational Complexity

Regarding the time and space complexity of our models, in general, time complexity in the
worst case is O(n). The mobile node is going to observe n servers if the condition for each
model is met at the server number n. For the models DTO, COT and the Odds, there is
one step before the observation which is the generation of the thresholds, i.e. {ak}nk=1, V ∗

and s. We assume that this step is to be done once by the services provider outside the
mobile node, but it is also not difficult to implement such a step in the mobile node. For
example, in the DTO model, we need O(n) if we calculate the threshold in the mobile node.
This is also true for the Odds model. We require more time for calculating the threshold
for the COT model, but this depends in the probability distribution. For example, in the
uniform distribution, we only perform one operation as shown in Section 4.4. In the normal
probability distribution, we calculate and estimate the integration with time complexity no
more thanO(n2). For the space complexity, in the BCP model, we do not need extra space to
store any data, thus, the space complexity isO(1). This is also true for the rest of the models
if we assume that the training phase is done outside of the mobile node. In the case where we
do the training phase locally in the mobile node, we only need to store the parameters of the
probability distribution. When X is uniformly distributed, we need to store the maximum
and the minimum values. When X is normally or exponentially distributed, we need the
mean and the standard deviation.

5.6.3 Local & Autonomous Decision-Making

It is important to mention that we can achieve full independence for the models DTO, COT
and the Odds. For example, in most of the existing offloading framework, e.g., [70] [63]
[66], the decision engine is supported by a database where information about the offloading
history can be stored. The challenge now is how to estimate the probability functions based
on the stored data so we can apply the proposed models. Such estimation can be done using
Kernel Density Estimation (KDE) [111]. KDE is a non-parametric method of estimating
the probability density function of a continuous random variable. The term kernel refers to a
special type of probability density function with the properties: nonnegative and integrates to
one. One can estimate the density function f̂X(x) of a random variable X in an incremental
manner at observation k + 1 using the following equation:
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f̂k+1(x) =
k

k + 1
f̂k(x) +

1

k + 1
Kh(

x−Xk+1

h
). (5.1)

where Kh(·) is a kernel function and h > 0 is a smoothing parameter called the bandwidth.
Gaussian kernel function K(x) = 1√

2π
e−0.5x

2 of width h > 0, is widely adopted in the KDE.
A simple method for choosing the value of h is the Sliverman’s rule-of-thumb width estima-
tor which is h ≈ 1.06σt−1/5 [112]. Once the probability distribution function is estimated,
we then calculate the thresholds for each model based on the steps and the equations for each
models.

5.6.4 Overall Performance and Application Domain/Use Cases

Table 5.4 gives a summary of the models in terms of their performance and examples for
tasks to be offloaded for each model taken from the literature. From the results, we noticed
that the more information we provide to the model the better results we get. This is clear in
the DTO, the COT and the Odds models. In the BCP, however, the random variable X was
higher, but we have to consider that we only feed the model with the number of observations.
In other words, this model is fully independent, it is very light to be run in the mobile node
and performs better than the Random and the p-mode.

In the BCP and the DTO, we generally aim to minimise the random variable without defining
further parameters. In the COT and Odds, on the other hand, there are parameters within the
models that can be exploited to characterise the model based on the task to be offloaded.
In the COT model, the parameter c can be used to define the demand of the task. As an
example, we manage to select a server with less processing time (Section 5.2) and less CPU
utilisation (Section 5.3) by adjusting the value of c. Therefore, the COT can be used to
manage offloading resource-intensive or delay constrained tasks. Moreover, the Odds model
can be utilised in the data analytics task offloading where the mobile node collects and senses
data with the aim of offloading them to an Edge server for further analysis.

In general, the proposed models can be utilised in applications where there is a deadline by
which the task has to be finished. The deadline can be either a hard deadline, in which the
computing task must be completed before the deadline or the results would be useless, or a
soft deadline, in which some tasks can be completed after the deadline [30]. For example,
the use case involving video stream analysis for computation-intensive and delay tolerant
service where mobile nodes can upload their video for further processing as the case in
recognition applications, e.g., vehicular license plate recognition, face recognition, and home
security surveillance [30, 113]. In this type of applications, the time between submitting the
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Model Performance Applications
BCP Section 3.3 Better than the p-model and the Random Delay-Tolerant task offloading [18]
DTO Section 4.3 Near Optimal Delay-Tolerant task offloading [18]
COT Section 4.4 Near Optimal Resource-intensive and delay constrained tasks [113]
Odds Section 3.4 Near Optimal Data analytics task offloading [55, 100, 114]

Table 5.4: Lessons to be drawn from this work.

computing task and the deadline can be used to explore more options in terms of times or
servers selection.

Another example is where mobile nodes offload contextual information gathered by various
types of sensors installed on the mobile nodes. Sensors in smart vehicles, for example,
can collect environmental information such as navigation services, temperature, behaviour
detection, and images. Offloading such large amounts of data to Edge servers in order to
create accessible, trustworthy, and distributed environments can be beneficial for smart city
applications [114]. In this case, the deadline can be based on the data to be offloaded and
timeliness for such data. It’s also worth mentioning that a situation like this can be used to
optimise other random variables like the amount of energy used for task offloading, which is
heavily influenced by wireless channel conditions [30].

5.7 Summary

This Chapter has presented the most important characteristics of the developed solutions to
optimise the task offloading decision. Three evaluation approaches have been used to show
the effectiveness of the proposed models. These are;

• a simulated random variable, drawn from three well-known probability distributions
(Section 5.2);

• two real data sets are combined to see how the models deal with a real random variable
based on the servers’ CPU utilisation (Section 5.3); and

• the models are deployed and implemented in real machines (Section 5.4).

In all of these approaches, the proposed models are compared with the Random and the first
server selection. All the models are then compared to the Optimal. As mentioned earlier, the
Optimal will not be available to the mobile node in the assessed setting, but is used here to
assess the performance of the proposed models.

In the simulation approach, the key point is that the proposed models are, in general, near
Optimal in that the distributions of the expected processing times are close to the Optimal
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solution. Indeed, the proposed models, including the DTO, COT and Odds, are higher than
the Optimal by only 10%. In this experiment, the probability distribution of the random
variable is known in advance and the goals is to see how the models perform with the normal,
the uniform and the exponential distributions.

In the real data sets, however, after studying the whole data set, it is assumed that the prob-
ability distribution of the servers’ CPU utilisation is approximately following a normal dis-
tribution. With that assumption, the models are still near optimal with only around 25%
difference compared to the Optimal.

In the real environment assessment, the OTS-based models including the DTO, COT and
Odds are all Optimal in selecting a node for offloading. This is due to the small number
of devices, making it easier to have the statistical information for the random variable to
be optimised. Such an assessment shows how easy it is to adopt the OTS-based models
for deployment in the mobile nodes. Table 5.5 summaries the three experiments and their
findings.

Experiment Random Variable Representation Main Objective Key findings

Simulation
N (50, 10)
U(0, 1)
exp( 1

50
)

Studying different probability
distribution functions Near-optimal processing time

Server utilisation CPU utilisation
How OST-based models

deal with real-world random variable Near-optimal CPU selection

Real implementation Task execution time Applying the models in real scenario Optimal task execution

Table 5.5: A summary of the evaluation Chapter for all the experiments.

The Chapter concludes with a discussion on important aspects of the models including com-
putational complexity, decision-making requirements and the models domain. In general,
time complexity in the worst case is O(n). The mobile node is going to observe n servers if
the condition for each model is met at the server number n. Full independence for the models
can be achieved by estimating the statistical properties of the random variable. Finally, the
proposed models can be utilised in applications where there is a deadline by which the task
must be completed.
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Chapter 6

Conclusions & Future Work

6.1 Overview

This Chapter outlines and concludes this thesis. It starts with Section 6.2 where a summary of
the contributions of this thesis is presented. In Section 6.3, the thesis statement is revisited.
Section 6.4 presents some future use cases inspired by the work presented in this thesis.
Section 6.5 presents a number of directions for future work derived from the limitations and
the possible extensions to the current work. Finally, concluding remarks are summarised in
Section 6.6.

6.2 Contribution Summary

This thesis has addressed the issue of task offloading decision-making in Mobile Edge Com-
puting (MEC) environments adopting the principles of Optimal Stopping Theory (OST). The
focus of recent research has been on the offloading decision relating to whether the mobile
node should offload or not in the single MEC server setting. This thesis, however, focuses on
the sequential decision-making relating to selecting an appropriate resource (MEC server)
or time when offloading a computation task in the emerging MEC settings when multiple
servers are available for offloading. The work demonstrates the benefits of utilising the opti-
mality found in the context of the OST by designing autonomous and standalone offloading
framework to be implemented in the mobile nodes. It starts by providing a theoretical frame-
work of the adopted OST-based models before covering the application of the models in the
MEC environments and finishing with a comprehensive evaluation of the models.
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The contributions of this thesis are summarised in the following points:

• A review of Edge computing development and computation offloading
This thesis began by reviewing recent development in Edge computing with specific
focus on the concept of MEC and its use cases. In addition, the thesis provides a de-
tailed overview of computation offloading and its rules on the emerging architectures.
It illustrates the rise of computation offloading applications in MEC environments and
how this motivated the need for effective offloading decision-making.

• Best-Choice Problem based task offloading rule
This thesis proposes a time-optimised OST-based model to maximise the probability
of offloading to the Optimal server (Section 3.3). The theoretical background of the
adopted model, i.e., the Best Choice Problem (BCP), is first presented. The optimal
offloading rule is then defined for different numbers of observations. This model only
requires the number of observations to make a selection decision, and it outperforms
the Random and the immediate offloading. For example, as seen in Section 5.3, the
average server CPU utilisation achieved by the BCP model is 40% higher than the
average server CPU utilisation achieved by the Optimal whereas the first selection (P-
model) and the Random are higher than the Optimal by more than 70%. While this
model does not require any information rather than the number of observations, which
can be easily obtained, the existing proposed offloading decision frameworks, which
included storage resources for past offloading decisions, can hold the past offloading
decision data. This stored data can be used for more advanced models that achieve less
processing time when offloading.

• Quality-aware contextual data offloading rule
Focusing on the same objective, i.e., maximising the probability of offloading to the
best server, a data-quality aware offloading rule is proposed in Section 3.4. The model
is based on the optimality of the Odds model; another OST-based model. However,
contrast to the Odds original model, a non-increasing function representing the stale-
ness of the data to be offloaded is integrated into the model. In addition to the data-
quality indicator, the Odds-based model takes the probability distribution function and
a requirement threshold as inputs. It outputs the number of servers that should be re-
jected before considering an MEC server for offloading. The probability of offloading
to the best server is always at least 0.368, which is achieved by the BCP policy with
a very large number of MEC servers. Along with the ability to include a data-quality
indicator, the average execution time (Section 5.4) achieved by the Odds was around
0.10 seconds while the average execution time achieved by the BCP was 0.29. This
selection is Optimal, i.e., it selects the Optimal node for offloading most of the time.
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• Delay-tolerant task offloading rule
Moving to the objective of minimising the processing time at the Edge server, a time-
optimised model to minimise the expected processing time when offloading is pro-
posed. This model is a threshold-based model where a threshold based on the distribu-
tion of the considered random variable, i.e., the processing time, is generated for each
time (observation). Three well-known probability distributions that the processing
time may follow in the real world scenarios were considered for the threshold gen-
erations process including the normal, the uniform and the exponential distributions.
The optimal offloading rules were then obtained and analysed for the three distribu-
tions. This model has the lowest difference compared to the Optimal in most of the
considered random variables. The average processing time (Section 5.2) achieved by
this model was around 42 which is higher than the Optimal by only 10%. In the real
data set experiment (Section 5.3), the average server CPU utilisation was around 26

compared to the Optimal which has an average of 21.45. In Section 5.4, the aver-
age execution time achieved by this model was 0.11 seconds which is Optimal, i.e., it
selects the Optimal node for offloading most of the time.

• Cost-Based task offloading rule
In addition, the thesis proposes a cost based model that minimises the expected pro-
cessing time when offloading to an Edge server. The model considers a function which
consists of the considered random variable (e.g., processing time) and a cost that can
be defined based on the application requirements. In this model, instead of having
to define the number of observations as we did in the previous models, this model is
only fed with a cost and it generates a threshold for each cost. The threshold is then
compared with each observation. The mobile node can stop the observation process at
any point based on the deadline of the task to be offloaded. Similar to the model in the
previous contribution, the uniform, the normal and the exponential distributions were
considered and analysed. The optimal offloading rules were then obtained and anal-
ysed. This model maintains the same level of optimilty achieved by the DTO model.
More specifically, the average processing time (Section 5.2) achieved by this model
was around 42 which is higher than the Optimal by only 10%. In the real data set ex-
periment (Section 5.3), the average server CPU utilisation was around 28 compared to
the Optimal which has an average of 21.45. In Section 5.4, the average execution time
achieved by this model was 0.11 seconds which is Optimal, i.e., it selects the Optimal
node for offloading most of the time.

• Comparative assessment and extensive sensitivity analysis
Following the presentation of the OST-based models, the thesis then provides compar-
ative assessment and extensive sensitivity analysis of the proposed models with other
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offloading methods using numerical simulation, real data sets and an implementation
of the models in real devices. Based on the proposed theoretical framework for each
model, the offloading rules were tested under different random variables. The distribu-
tion of the selections made by each model along the expected value and the standard
deviation were presented. The variables for each model were tested for different val-
ues. The results show that the OST-based offloading rules are either near-optimal or
reach the optimality in some models. In particular, the expected values of the consid-
ered random variables selected by the proposed models were near-Optimal (or equal
sometimes) to the Optimal (the minimum values) for each offloading decision.

6.3 Thesis Statement Revisited

In this section, the thesis statement is repeated from Section 1.2, while the remainder of this
section indicates how it has been addressed. The thesis statement is restated as follows:

This research asserts that, by exploiting the mobility of mobile nodes in MEC environ-

ments and the deadline of the task, the decision of where and when to offload can be

optimised and can be made independently as a standalone decision-making model. To

optimise such a decision, this work presents a lightweight framework using the con-

cept of OST to be deployed in the mobile node in order to have lower processing time

compared to the immediate offloading and the Random offloading methods.

This thesis starts with a description of the need for computation offloading for certain ap-
plications in the mobile node. Following this, the role of future networks architecture in the
provision of low-latency, context-aware, and personalised applications services for mobile
nodes is presented, and the limitations of current research are outlined.

In order to optimise the performance of computation offloading, including the processing
time required for tasks or the utilisation of more resources when offloading, the idea of using
the task’ deadline and mobility to delay the offloading in order to secure preferable resources
has been considered and evaluated. After understanding some of the fundamentals of the
OST-based models, selecting an offloading time based on such models has been applied and
evaluated. Multiple well-known probability distributions with real world applications and
implementation have been used in the evaluation.

The idea of exploring more options for offloading when it is available in combination with an
intelligent decision-making (OST-based models) results in higher performance. Specifically,
the results show that the models are either near-Optimal or Optimal with better performance
than both the immediate offloading and the Random selection. This thesis shows that it is
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very simple to implement the OST-based models in the mobile node, and it is equally easy
to manage offloading decisions by gathering the statistical information about the random
variable to be optimised. In particular, as the time complexity of the proposed algorithms
in the worst scenario equals the number of observations, which is predicted to be relatively
small in real-world use cases, the proposed techniques can be implemented and integrated
with the current offloading frameworks independently in the mobile node eliminating the
need to implement them in an external node, such as a centralised server or controller.

6.4 Use-Cases

This section presents visionary use cases inspired by the work that has been done in this
thesis. In high level, these use cases can be divided into three main categories: the ex-
pected need for user-oriented computational offloading decision-making, the application of
the OST-based models in the Delay Tolerant Computing (DTC) and the need for Optimal
Stopping Theory for decision-making problems in future computing paradigms.

6.4.1 User-Oriented Computational Offloading

This thesis envisions a future where MEC servers are deployed in many places similarly to
how Wi-Fi access points are today. Such a vision is motivated by the fact that most of the
computing and networking functions will be software-oriented instead of hardware-oriented.
In other words, it becomes easier now to deploy services on different places (devices) in
the network without having to add new components (hardware) to the existing infrastruc-
ture. This vision is derived by the trends on SDN and virtualisation technologies. As an
example, one can utilise virtualisation technologies (e.g., VMs or docker) to deploy services
on low-cost devices (e.g., home routers) [115]. Moreover, utilising software approaches for
providing more resources to end users, as the case in task offloading in Edge computing,
has many strengths over the hardware approaches (e.g., enhancing the mobile node with
designed on-device application-specific integrated circuits) [116]. Examples of the advan-
tages of using software deployment options are speed, cost and flexibility in the deployment
(e.g., using Google Play and Apple App stores can help developer introducing new Edge
applications rapidly with low cost) [116].

Furthermore, as observed in Chapter 2 that the vast of the task offloading decision studies
assume a central control which is in charge of optimising the task offloading and resource
management decisions. Such assumption implies a single operator scenarios, i.e., the net-
work and computing resources are managed and owned by one provider. However, large-
scale service deployments would necessitate the use of several providers’ computing and
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network resources [117]. In such a scenario, it is expected that heterogeneous computing
and network resources will be pervasive.

Meanwhile, the different forms and usages of mobile nodes are increasing rapidly. Such
nodes are required to manage highly advanced applications with a large volume of data col-
lected from a range of sensors and stored in resource-constrained mobile nodes. As a result,
the computation offloading roles increase in importance and it is anticipated that the mobile
node will become dependent on such a method for task processing and power consumption
issues. For example, the main issue that is noticeable by smartphones and wearable devices
users today is the power consumed by such devices.

Therefore, the computation offloading for mobile devices should be implemented in the mo-
bile node and the decision-making should be done in an independent manner. For example,
when the batteries of mobile nodes are low, it should be possible to opt to offload computing
task though the mobile app without relying on other nodes.

In view of the independence offered by the OST-based approaches, this thesis is envisioned
to provide a generic framework for such an implementation. As mobile node movements
are predicted and normally follow specific patterns, the statistical information fed to the
OST-based models becomes visible and easier to obtain. For example, service providers can
train OST models using an area’s spatial and temporal characteristics and offer these models
to mobile nodes as a service (executed in the mobile node) to assist in the task offloading
decision-making. Also, developers of Edge applications can also use such models while
creating their applications if task offloading is required.

Moreover, as discussed elsewhere in this thesis, the time of execution and the space required
by the proposed model in the worst case linearly depend on the number of observations. As
the number of observations is not expected to be very large number, the models do not require
excessive amounts of resources to run, which renders them smart solutions for user-oriented
computational offloading decision-making.

6.4.2 Delay Tolerant Computing

DTC [118] is a concept that refers to the need for agile customised support for applications
that can tolerate large delays, yet are important enough to be completed. The argument
behind such a paradigm is that other factors such as cost, privacy, and network load, will
guide where computational tasks should be offloaded. The tolerant delay given for such
applications provides opportunities to choose where such tasks should be offloaded with the
aim of improving other dimensions apart from the delay and the power consumption. The
term ’computational reliability’ has been used in the DTC proposal to refer to other types of
parameters that the resource-constrained users might want to optimise, e.g., stability, privacy,
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availability, computational capacity and cost [118]. For example, the cost may refer to the
task execution, bandwidth, and privacy represents the extent to which data that is being
transmitted is sensitive. Figure 6.1 shows the overall idea of the DTC as presented in [118].
It shows the location options of where offloading can occur, along with the expected DTC
applications according to the above-mentioned parameters.

Figure 6.1: The envisioned DTC [118].

As the aims of DTC is to match delay tolerant applications to a wider spectrum of computing
opportunities, this work is expected to provide an effective selection of locations where a
task should be offloaded based on the envisioned DTC concept. For example, the parameter,
computational reliability, can be modelled using OST-based methods, as has been done with
different parameters presented in the thesis, e.g., processing time or CPU utilisation. In other
words, these parameters can be represented as random variables, which might be following a
specific probability distribution. The OST method can then be used to optimise (maximising
or minimising) the considered random variable.

6.4.3 OST for Smart Decision-Making

One of the use cases for the MEC paradigm can be used by service providers (network and IT
providers) to place their own applications and services on the Edge of the network. Examples
of such applications and services include AVs applications, such as those related to safety,
convenience, and driving assistance, in addition to applications such as big data and data



6.4. Use-Cases 109

User-
Oriented
Offload

• As the importance of
Edge offload increases
with more accessible
resources, the OST
methods provide a stan-
dalone and a lightweight
decision-making in
resource-constrained
mobile nodes.

DTC

• Different types of
parameters can be
modelled using the
OST-based models, e.g.,
privacy, availability,
computational capacity
and cost.

Smart
Decision-
Making

• The OST-based models
can be utilised by the
network operators for
other types of deci-
sions such as resources
managements.

Figure 6.2: Visionary use cases for an OST-based models.

analytics [13]. With the real-time information of such environment in hand, which can also
be provided by utilising MEC server [13], service providers need to take many decisions
based on this information to optimise the relevant services, as the decision to reshape the
traffic per application or to re-route traffic, as required [13].

Through the adaption of the OST demonstrated in this thesis, it appears that such models
can be adopted for the purposes of intelligent decision-making for different problems in the
MEC environment. This work has considered different statistical information for the compu-
tational offloading decision-making. However, the offloading rules and the evaluation pro-
vided through the thesis can be extended for application to different problems. Furthermore,
there are other forms of the OST-based models (discussed in [22]) that may be suitable for a
wide range of problems in such environments. Figure 6.2 summarises possible use cases for
an OST-based decision-making system.
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6.5 Future Directions of Research

This thesis has highlighted the potential of adopting lightweight OST-based offloading rules
in the MEC environment in order to support emerging, resource-intensive mobile node ap-
plications. The following paragraphs outline some possible scenarios which could be re-
searched further.

6.5.1 Competitive Scenarios

The models proposed in this thesis work is to be implemented in a single setting, i.e., each
mobile node will run the models without taking into consideration other mobile nodes’ con-
texts when offloading. In other words, each mobile node will offload based on the sugges-
tions from the model implemented in that node. As a result, with a large number of mobile
nodes, there will be a high probability of different mobile nodes offloading at the same time.
Therefore future research should explore the competitive scenario, i.e., what will happen
if there is a high probability of the same offloading rules being given to multiple users at
the same time. Such a situation could be transferred from a single mobile node to multiple
mobile nodes problem. This scenario could also be related to Edge server load balancing.

6.5.2 Different Probability Distribution

Another interesting research direction is the situation where each MEC server has a different
probability distribution function. In our experiment, and specifically in the simulation exper-
iment, it is assumed that the processing times for the MEC servers have the same probability
distribution functions. However, it could have been interesting to explore whether one can
apply the OST based models when there is big difference in terms of the probability distri-
bution functions for the processing time of MEC servers. This might also be related to the
probability density estimation method described in Section 5.6. Thus, an interesting research
direction would be to explore and experiment this option when there is no information about
the probability density function of the random variables to be optimised.

6.5.3 Different Random Variables

This thesis mainly concentrates on the processing time of a computing task in the MEC
server. However, the offloading process involves other random variables that need to be
optimised. For example, one could study the channel selection and power consumption
required for an optimised transmission time and rate based on the data or tasks that need
to be offloaded and derived by the probability distribution function of those variables. One
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could also combined all the random variables involved in the offloading process. Studies
exploring this directions of research should start by analysing the random variable before
applying the OST models for optimised selection.

6.5.4 Prediction in Task Offloading Decisions

Another promising research direction is to combine predictive techniques with the proposed
models. Predictions can be made in terms of mobility or the load on MEC servers. The pro-
posed models, as discussed throughout the thesis, require some input from the mobile nodes,
such as the probability distribution function of the random variable to be optimised. With
the user mobility patterns in hand, e.g., the driving habits, one can utilise such information
to predict the expected locations of mobile nodes. Combining mobility and load prediction
algorithms with the proposed methods can be another source for such inputs. For example,
if we have an idea about the expected location of a mobile node along with the expected load
of Edge servers deployed in that location, one can obtained the optimal offloading rules in a
proactive manner.

6.6 Concluding Remarks

The growth in the number of mobile nodes including smartphones, drones and AVs, and the
advances in their applications have brought new challenges to the traditional Cloud archi-
tecture. In response to these developments, the Cloud, with its powerful resources, has been
offering services to these mobile nodes in order to solve the limitations of these devices.
Both academia and industry professionals have proposed several frameworks for moving
computing task processing closer to the mobile nodes in order to make the Cloud a more
efficient solution. Computation offloading where mobile nodes offload data and tasks to an
Edge server is a good way to enhance mobile nodes resources.

This thesis focused on the application of OST approaches in the task offloading decision-
making in MEC environments. Derived from the literature, a selection method to be used by
the mobile nodes for the MEC servers when offloading is put forward. A detailed assessment
of the effectiveness of applying and adopting the OST in the task offloading decision in MEC
environments is provided. The experimental evaluation shows that the OST-based models
perform better than the other offloading methods, can be used efficiently in the mobile node,
and do not require excessive resources.

In particular, the OST-based models are either near-Optimal, with an increase between 40−
10% over the Optimal, or approach optimality, i.e., the proposed models choose the mini-
mum execution time when implementing them in real machines. Furthermore, the proposed
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algorithms have a time complexity of O(n), where n is the number of observations, and
space complexity of O(1); making them inexpensive to implement by the mobile node.

This work has proved the hypothesis that the offloading decision regarding the selection of
an appropriate server can be optimised by exploiting (1) mobility; (2) expected deployment
of the MEC server at the Edge of the network; and (3) the deadline of the computational
task to delay the offloading in anticipation of finding better resources. This type of decision
was formulated as an optimal stopping problem and solved by applying different OST-based
models using the optimality of such models in achieving optimal and near optimal offloading
resource selection. The OST based model is suitable for situations where the mobile nodes
need to make local and independent decisions within the MEC environment. This thesis has
shown that we can obtain the required information when making the decision with the aid of
the MEC service providers.
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