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Abstract

The development of a single drug from discovery to approval is a long and expensive process.
Often, many potential drugs that appear promising in preclinical studies are subsequently elim-
inated during human clinical trials. In recent years, there has been a move away from animal
testing in favour of cell-based in vitro methods, so to improve the correlation between the out-
come of preclinical studies and clinical trials, and therefore to increase the efficiency of the drug
development process, it is essential that in vitro tests provide physiologically relevant results.
There have been great advances in the development of in vitro cell culture techniques, from the
traditional static monolayer to the advent of flow-based bioreactor devices, and a common ap-
proach is to combine conventional cell culture methods with sophisticated systems that expose
cells to conditions that are more representative of their native environment. One of the draw-
backs associated with the advancement of in vitro techniques is that there is a lack of knowledge
and understanding of the physical and chemical environment generated within complex cell cul-
ture systems. To overcome this obstacle, mathematical models can be employed to characterise
the conditions to which cells are exposed within novel in vitro devices. Mathematical analy-
sis can offer insight to aid in the effective tailoring of operating parameters and interpretation
of experimental results, as well as providing estimations of quantities that can be difficult or
impossible to obtain experimentally.

The aim of this thesis is to use mathematical models to describe the environment within static
and dynamic in vitro cell culture systems, with the aim of highlighting the relationships between
key model parameters and, ultimately, guiding the design and set-up of experiments. Mathe-
matical models of varying complexity are developed, ranging from 1D diffusion-reaction partial
differential equations to coupled 3D models of fluid flow and solute transport. A variety of
mathematical techniques are employed to solve each model: in Chapter 2, analytical approaches
are used to derive approximations to the numerical solutions, and the models in Chapter 3 are
solved using the finite element method, implemented via commercially available software. In
each chapter, simple expressions are derived from the governing equations to provide informa-
tion on how to adjust experimentally controllable operating parameters such that the desired
cell culture conditions can be achieved. In Chapter 4, the main goal of the thesis is realised by
applying the models developed in Chapter 3 to help determine the optimal configuration of a
commercially available bioreactor device for two different applications.
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Chapter 1

Introduction

The development of drugs is a lengthy and expensive process; on average, bringing a single
drug from initial research to market costs billions of pounds and takes over a decade to com-
plete. These costs are exacerbated by the development of potential drugs that are later deemed
unsuccessful, so it is vital that each stage of the drug development process is as efficient as
possible so that unlikely drug candidates can be eliminated at the earliest opportunity. The key
stages of the drug development process are illustrated in Fig. 1.1, and a detailed description of
each stage is provided in [4].

Before the drug development process can begin, a target for the potential drug must be de-
termined: this is typically a protein that has been identified as causing or leading to the disease
of interest. The conventional approach to the discovery stage involves screening thousands of

Time

N
um

be
r 

of
 c

om
po

un
ds

Thousands of compounds are screened 
against the drug target to find 'lead' 

compounds that have the potential to 
become drug candidates

Cell- and animal-based tests are 
performed on hundreds of compounds 

to ensure their safety and efficacy

A few potential drug candidates are 
tested on humans

One drug is approved for marketing

Discovery

Preclinical

Clinical Approval

Figure 1.1: Schematic drawing illustrating the key stages of the drug development process.
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CHAPTER 1. INTRODUCTION 2

compounds to establish those that interact with the drug target. Traditionally, the compounds
are extracted from natural materials which have been collected for this purpose, then screened
manually. Clearly this is highly inefficient, but advancements in robotics have led to the devel-
opment of high-throughput screening, allowing this process to be automated in order to reduce
the time and costs associated with screening thousands of compounds using traditional labora-
tory techniques. Further technological advancements have led to a more modern approach to
drug discovery whereby computer simulations are utilised to design a potential drug based on
knowledge of the molecular structure of the drug target. This approach significantly improves
the likelihood of obtaining a successful drug and reduces unnecessary costs associated with the
further development of potential drugs that are likely to fail.

A small number of promising compounds progress to the preclinical stage of drug develop-
ment where the pharmacokinetics, pharmacodynamics and toxicity of potential drugs are eval-
uated using in vitro and in vivo methods. Cell-based techniques are employed to study phar-
macokinetics and pharmacodynamics, which provide information about the action of a potential
drug on the body and the target, respectively. Toxicity studies, essential for demonstrating the
safety of a potential drug before it can progress to human clinical trials, are traditionally per-
formed using animal models.

Many of the potential drug candidates that pass the preclinical stage of development ulti-
mately fail in clinical trials, where it is not uncommon for previously unknown adverse effects
to be discovered. The primary reason for this is that animal models can be poor predictors of
the human response: species differences in key metabolic processes, such as the way in which
chemicals are absorbed, altered and excreted from the body, mean that a drug deemed safe dur-
ing animal studies may induce toxic effects when administered to humans [5, 6]. The disparity
between preclinical and clinical data is one of the major barriers for clinicians and pharmaceuti-
cal companies who wish to gain approval for carrying out human clinical trials; since this stage
of the drug development process is expensive and time-consuming, it is necessary to provide
statistically robust evidence from preclinical studies that indicates the trial is likely to succeed.
Therefore, it is vital that new techniques are developed in order to improve the physiological
relevance of the results acquired in the preclinical stage of development.

In order to obtain a realistic representation of the effects of a drug on humans, it is impor-
tant to achieve a balance between using human cells in an artificial in vitro environment and
performing experiments in animals, which are poorly predictive of the human response but pro-
vide complex natural surroundings within which to monitor drug metabolism. The key cellular
processes involved in the breakdown of a compound are greatly influenced by physiological fea-
tures such as fluid flow and the interactions between 3D tissue structures composed of various
cell types. Thus, it is important to assess the effect of a drug under experimental conditions that
accurately reflect the complexity of the in vivo environment. Whilst this is one advantage of an-
imal models, their poor predictivity coupled with their associated expense and ethical concerns
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Figure 1.2: The advancement of in vitro cell culture methods.

is leading to their gradual replacement in favour of novel in vitro methods [6, 7]. In recent news,
the Wellcome Sanger Institute announced the closure of their animal research facility in May
2019, a move only made possible by the emergence of sophisticated cell-based techniques. The
advancement of cell culture methods (Fig. 1.2) means it is now possible to incorporate important
features of the physiological environment (such as 3D cellular structure and fluid flow) within
in vitro devices, helping to bridge the gap between traditional cell-based assays and the benefits
provided by controversial animal models.

Traditional 2D cell culture methods have been employed for over a century and remain one
of the most popular techniques in drug screening and toxicity studies, due to their ease of use
and reproducibility [8, 9]. Typically, cells of a single type are cultured in a monolayer within a
glass or polystyrene petri dish, and are immersed in culture medium. The uniform distribution
of nutrients that these conditions provide results in cells that are more flattened and stretched
than their native state [10]. However, the development of micropatterning technologies allows
for greater control over cell shape by enabling the modification of cell culture surfaces, whilst
the use of sandwich culture, where cells are placed between layers of collagen or extracellular
matrix (ECM), aids in the retention of physiological morphology [8].

Despite these advances, the simplicity of 2D cell culture fails to adequately represent the
complexity of the in vivo environment. The absence of gradients (of, for example, waste or nu-
trients) across the surface of the monolayer creates homogeneous conditions that poorly mimic
the physiological milieu where concentration gradients may be observed [9, 11]. In reality,
cells are surrounded by ECM, a 3D network of extracellular molecules that offer structural and
biochemical support. The physical stresses exerted on the cells by the ECM play a role in the
maintenance of normal cell morphology, so a lack of ECM can impact the efficiency of drug
binding due to the non-physiological organisation of receptors on the surface of the cells [12].
Furthermore, mechanical and chemical cues between the ECM and the cells are vital for reg-
ulating important cellular functions, including proliferation and differentiation, as well as gene
and protein expression, so the artificial nature of the 2D environment has the potential to affect
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how the cells respond to drugs. Therefore, it is crucial that more sophisticated in vitro cell cul-
ture systems are developed in order to better replicate the conditions that are present within the
human body.

Since cells are the building blocks of 3D tissues and organs, a number of techniques have
been established for culturing 3D structures of cells [8, 9, 11, 12]. One common method in-
volves the use of a scaffold, where cells are cultured within a natural or synthetic material to
promote spheroid formation and the development of a more physiologically relevant ECM. A
popular choice of scaffold are hydrogels, selected for their ease of use and tissue-like proper-
ties. Scaffold-free methods allow 3D aggregates of cells, known as spheroids, to grow freely
by preventing the adhesion of cells to a culture surface. Examples of such techniques are the
hanging drop method, where the generation of spheroids is controlled by gravity and occurs
within hanging droplets of culture medium, and the magnetic levitation method, which involves
injecting cells with magnetic nanoparticles before exposing them to an external magnet that can
be used to control the formation of the spheroid. Another approach which does not require the
use of a scaffold and has the potential to allow for co-culture of multiple cell types is to create
3D structures by stacking thin layers of cells known as cell sheets.

The 3D architecture of spheroids gives rise to cells that are at different stages of the cell
cycle: cells in the outer layers of the spheroid are in direct contact with the nutritious culture
medium and so are viable and tend to proliferate, compared to cells located at the core of the
spheroid where a lack of oxygen (O2) and nutrients induces a state of hypoxia and leads to
necrosis. The presence of a mixture of cells and the fact that the 3D structure allows cells to
retain their native morphology leads to interactions between the cells and the ECM that are more
representative of the in vivo environment than in traditional 2D culture [9, 11]. A comparison of
some of the key features of 2D and 3D cell culture systems [9, 12] is provided in Fig. 1.3.

Whilst 3D techniques offer more physiologically relevant cell culture conditions than con-
ventional 2D methods, there are some obstacles associated with these new approaches. Using
standard imaging methods which work well in 2D cultures can be challenging due to the com-
plex architecture of 3D cell structures, and for some assays it is necessary to use enzymes to
break down spheroids into a cell suspension in order to perform the analysis, often ending the
experiment prematurely [12]. The existence of a wide array of approaches to 3D cell culture,
each of which provide their own benefits, means that different cell types will perform better
under the use of different methods. Thus, standardisation of 3D techniques proves challenging
which leads to a lack of reproducibility and compatibility. Furthermore, 3D cell culture meth-
ods tend to be more expensive than their 2D counterparts and can be more time consuming to
implement [8, 9]. Thus, 2D cell culture methods are still highly valuable and widely used due
to their simplicity and convenience, but the benefits provided by culturing 3D structures of cells
remain desirable.

One of the most significant limitations of both 2D and 3D cell culture techniques is a lack
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Figure 1.3: Comparison of some key features of 2D and 3D cell culture systems, where green and red
represent advantages and limitations, respectively.

of fluid flow; traditional static conditions in vitro provide an unrealistic representation of the in

vivo environment where cells are continuously nourished by the flow of blood and interstitial
fluid. Cells lining blood vessels (e.g. endothelial cells) are typically exposed to high levels of
shear stress, induced by perfusion speeds ranging from approximately 10−5 to 10−2 m s−1 [13],
whereas cells embedded in tissue experience slower interstitial flow speeds of approximately
10−7 to 10−6 m s−1 [14]. The ability of cells to sense and respond to changes in their surround-
ings is vital for the regulation of physiological functions, such as cell growth, proliferation,
differentiation and apoptosis, so precise control over the mechanical and chemical properties
of the in vitro environment is crucial [15–17]. Therefore, a number of flow-based technologies
have been developed, including dynamic bioreactors, microfluidic devices and organ-on-a-chip
systems [18, 19].

A dynamic bioreactor is an in vitro device that has the ability to provide physiologically
relevant cell culture conditions through the application of fluid flow. The flow environment
generated within a dynamic bioreactor system enables the supply of O2 and nutrients within
3D structures of cells, overcoming the mass transfer limitations that are often observed under
static conditions [16, 20]. By exercising fine control of the fluid flow, as well as other important
parameters such as mechanical stimulation, temperature, pH and solute concentration, dynamic
bioreactors have proven to be an effective solution to bridging the gap between traditional static
cell culture methods and animal models. Dynamic bioreactor systems can be used for a variety of
applications, such as in drug discovery, where they can be used to perform in vitro tests on drugs
to reduce the number of animal studies that are required, in the study of disease progression,
where they can be used to develop models of diseased animal and human tissues, and in tissue
engineering, where they can be used to generate artificial tissues for human transplantation [16].
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There are two main types of dynamic bioreactors: mixed vessels and perfusion systems.
Within these devices, various methods can be used to generate a flow field, providing cells with
different flow environments and mass transfer rates [20, 21]. Examples of mixed vessels include
spinner flasks, wave bioreactors and rotating-wall bioreactors. Cellular scaffolds suspended in
spinner flasks are exposed to turbulent flow generated by a central magnetic stirrer, and wave
bioreactors use rockers to induce turbulent fluid mixing to facilitate solute transport. Whilst the
presence of fluid flow is beneficial for cell proliferation, turbulence prevents homogeneous cell
growth. Uniform cell distribution can be achieved in rotating-wall bioreactors where a rotating
cylinder filled with culture medium exposes cells to laminar flow. Perfusion systems offer a
higher degree of control over solute transport compared with mixed vessels, and these types of
devices often seek to mimic the vascular system by driving fluid directly through 3D structures
of cells. Examples of perfusion systems include column and hollow-fibre bioreactors, where
culture medium is distributed through cellular scaffolds that are packed within a column, and
through hollow fibres within which cells reside, respectively.

Whilst they provide benefits over static cell culture techniques, there are a number of limita-
tions associated with the operation of dynamic bioreactors [16]. The fine control over operating
parameters that is provided by these sophisticated devices can be difficult to achieve and often
requires manual optimisation through a process of trial and error. As well as being time consum-
ing and inefficient, this provides opportunities for contamination and variability, thus affecting
the reproducibility of the systems. These issues can be overcome by introducing automation at
stages such as cell seeding and replenishment of the culture medium, but this can be difficult to
implement due to the complex geometry of most devices. Another major drawback associated
with dynamic bioreactors is the inability for the majority of systems to incorporate real-time
sensing devices, but challenges such as this can be addressed by employing microfluidics to
produce scaled-down versions of large bioreactor devices.

Microfluidic technology allows for the precise control of small volumes of fluid within de-
vice geometries on the sub-millimetre scale [17, 22]. The miniaturisation of larger bioreactor
systems provides a number of benefits: the small footprint of microfluidic systems saves space
and reduces costs associated with the materials required for fabrication of the device, and less
reagents (such as cells or culture medium) are required since experiments can be performed us-
ing only a small volume of fluid [17, 22–24]. Additionally, microfluidic systems can be used
to apply mechanical stimulation to the cells with less force and higher precision than larger
bioreactor devices, which is crucial for maintaining cell viability, and the smaller dimensions
of microfluidic systems provide a more relevantly sized environment within which to recreate
physiological flow profiles [17]. A summary of some other advantages offered by microfluidic
systems [17, 22–24] is provided in Fig. 1.4.

A wide variety of microfluidic devices have been developed, including concentration gra-
dient generators, paper-based devices and slip-driven flow systems where the culture medium
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Generation of laminar flow

The relatively simple geometry of microfluidic devices allows for the generation of laminar flow which is ideal for providing
cells with a continuous supply of oxygen and nutrients whilst minimising flow-induced damage such as shear stress.

Fine control of solute concentrations

Stable concentration gradients can be generated, providing cells with a more physiologically relevant culture environment,
and solute concentrations can be adjusted over time to meet the requirements of the cells at different stages of the experiment.

Multiple solute concentrations can be tested simultaneously which increases throughput and reduces costs. Since this can be
performed using one batch of cells, variability is also reduced.

Useful for clinical applications, thresholds can be determined by testing over a continuous range of drug concentrations, and
combination therapies can be developed by monitoring the effects of multiple drugs simultaneously.

Co-culture of multiple cell types

Direct co-culture: different cell types can be cultured together within the same device.

Indirect co-culture: cells can be cultured within a conditioned medium that has been enriched with chemicals released by
another cell type, or different cell types can be cultured in-line within the same device, e.g. in different cell culture chambers 
that are connected by the fluid flow.

Real-time sensing
The simplicity of microfluidic systems enables the incorporation of real-time sensing devices to allow for continuous
imaging, monitoring and measuring of parameters of interest.

Figure 1.4: Some advantages of microfluidic cell culture systems.

is manipulated by the simple movement of two parallel plates [23]. Additionally, microfluidic
techniques can be used to generate droplets for use as independent reaction vessels for drug
testing. Typically, each droplet encapsulates a drug, the drug target and a fluorescent marker in-
dicating the viability of the target, with the fluorescence of the droplet changing when the target
is sensitive to the drug [23, 24].

Developments in the field of microfluidics have led to the emergence of organ-on-a-chip
devices, systems which aim to simulate functional human tissues and organs by providing cells
with a highly regulated, physiologically relevant culture environment [22–25]. The ultimate goal
of this technology is to develop so called ‘human-on-a-chip’ systems which integrate multiple
organ models in a single microfluidic device [25]. Such systems would provide insight into how
different organs interact with each other, and would be highly useful for studying the effect of
drugs at the level of the whole organism [22]. Since organ-on-a-chip devices have the ability
to mimic the complex in vivo environment, these systems are able to better predict the human
response compared to traditional cell culture methods, and provide a potential future alternative
to animal studies [22, 23]. For a recent review of several organ-on-a-chip systems, including
liver-, lung-, kidney- and heart-on-a-chip devices, the reader is referred to [25].

Clearly, significant progress has been made in the advancement of in vitro cell culture sys-
tems, from simple 2D static techniques to the most recent breakthrough of organ-on-a-chip tech-
nology. However, as cell-based methods increase in sophistication, the environment to which
cells are exposed becomes more complex. A good understanding of the cell culture conditions
within novel devices is essential for their optimal design and set-up, so that the in vitro environ-
ment is suitable for the cells of interest.
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One of the most critical design considerations for in vitro cell culture systems are solute
transport limitations, particularly in relation to O2 levels, since an adequate supply of O2 is
fundamental for the physiological function of all cells [20]. Another important factor to consider
in the design of in vitro devices is the application of shear stress induced by fluid flow. The
presence of shear stress has a significant effect on the regulation of key cellular functions such
as gene expression, but unnaturally high levels can be detrimental to the survival of the cells
[15, 20]. Therefore, it is crucial to gain insight into the relationships between, for example, O2

supply and consumption, or fluid flow and shear stress, in order to ensure that cultured cells are
subjected to the appropriate conditions for maintaining their viability and function.

A number of experimental methods exist for quantifying key features of the cell culture en-
vironment, including flow patterns, shear stress levels and O2 concentrations. For example, the
velocity field of the fluid can be characterised via particle image velocimetry (PIV), where the
fluid is seeded with small particles that are traced using cameras, lights and lasers [26], whilst
shear stress levels and O2 concentrations can be measured using probes and sensors [27, 28].
However, in practice, there are significant limitations to implementing these measurement tech-
niques due to the growing complexity of in vitro devices. PIV requires the use of specialised
equipment that can be expensive and may be incompatible with certain bioreactor systems, since
this visual method relies on the device possessing good optical properties. Furthermore, probes
and sensors are highly sensitive so can be difficult to calibrate, and it may be impossible to incor-
porate these instruments within bioreactors without interfering with the flow field. Therefore,
rather than performing experiments that can help to describe the physical features of the cell
culture environment, it is more common to infer this information by assessing the response of
the cells to their surroundings. Typical parameters such as cell viability and protein expression
are often measured via destructive techniques, where the cell population is broken down into a
suspension on which assays are performed; this means results are presented on an average basis,
and whilst this is an effective tool for gaining insight into the overall behaviour of the cells, no
detailed spatiotemporal information can be obtained using these methods.

Mathematical modelling is an invaluable tool for achieving a greater understanding of the
conditions generated within complex cell culture devices. Models can be employed to char-
acterise important features of the in vitro environment that are often difficult to measure ex-
perimentally, such as the flow velocity and streamlines, shear stress levels, pressure gradients,
solute concentrations and reaction kinetics [16, 20, 29, 30]. Systems of equations can be de-
veloped to describe the fluid flow, solute transport and biochemical reactions within specific
device geometries following two main approaches [31]. Discrete mathematical models use sets
of rules to describe the behaviour of individual cells, so this approach can be useful if it is
desirable to track population dynamics at a single cell level; however, these types of models
generally need to be solved numerically, often at a high computational cost. Since experimental
measurements are not routinely performed on a per cell basis, it is often appropriate to model
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the cell population as a continuum where partial differential equations can be used to describe
processes such as proliferation on an average basis. Using a continuum approach can allow for
the derivation of analytical solutions that provide more insight into relationships between key
system parameters than purely numerical solutions. In order to reap the benefits of both discrete
and continuum modelling, multiscale techniques can be used to incorporate discrete effects into
continuum models [30], and a hybrid approach can be adopted where some processes modelled
as discrete are coupled with others that are modelled as continuous [32].

Although one of the main advantages of mathematical models is that they provide insight
into the features of in vitro cell culture systems that are challenging to quantify experimentally,
this means that there is often a lack of experimentally measured data with which to validate
mathematical models. In order to overcome this issue, good communication is required between
modellers and experimentalists to ensure that model validation can be completed, which is nec-
essary if mathematical models are to be utilised in a predictive capacity. Once validated, models
may be used to confidently predict the outcome of specific experiments to aid in the determina-
tion of optimal device design and configuration, thus reducing the time and resources spent on a
trial-and-error experimental approach.

The aim of this thesis is to develop mathematical models that describe the fluid flow and
solute transport within static and dynamic in vitro cell culture systems, with the objective of
using analytical and numerical techniques to derive simple relationships between important sys-
tem parameters. Such relationships would allow researchers from an experimental background
to gain insight from the mathematical models, without requiring a deep understanding of the
mathematics itself. The primary goal is to use these mathematical models to guide experimental
design and set-up in order to achieve desirable in vitro cell culture conditions.

The remainder of this thesis is dedicated to the derivation and solution of mathematical
models of various experimental set-ups. Chapter 2 describes a mathematical model of solute
transport in a static in vitro cell culture system, whilst in Chapter 3, mathematical models are
developed to describe the fluid flow and solute transport within a dynamic bioreactor device.
In Chapter 4, the models described in Chapter 3 are employed in a practical setting to deter-
mine the configuration of a commercially available bioreactor system in collaboration with two
experimental groups, each working in different areas of research.



Chapter 2

Modelling solute transport in a static in
vitro cell culture system

As described in Chapter 1, the requirement for more physiologically relevant in vitro cell culture
conditions has led to the development of a vast array of techniques, advancing from the tradi-
tional static monolayer to more sophisticated 3D and flow-based methods. Whilst the ultimate
goal is to eventually replace all simple in vitro cell culture systems with more complex devices
that better replicate the in vivo environment, traditional 2D methods are still widely used today,
both alone and in conjunction with more advanced cell culture systems. For example, multiwell
plates are commonly utilised to culture cells to a desired confluency prior to being transferred
to flow-based devices like perfusion bioreactors. In other cases, such as with organ-on-a-chip
devices, the technology is still in the early stages of development and is not yet widely imple-
mented, so static monolayer culture remains the ‘gold standard’ in many areas of research [33].
Therefore, it is of interest to mathematically model the static cell culture environment to gain
insight into some commonly asked questions, such as:

• How much solute has been metabolised at each stage of the experiment?

• How long does it take for the solute concentration to reach steady-state?

• How can the experiment be configured to ensure that the solute remains above a desired
concentration for a certain amount of time?

Understanding the key features of the in vitro environment through the use of mathematical
modelling is important for efficiently tailoring experimental conditions so that the desired cell
culture environment is achieved. This chapter describes the development of a mathematical
model of solute transport and metabolism within a static in vitro cell culture system. Solutions
to the governing equations are derived using both analytical and numerical techniques, and the
key results are discussed in the context of aiding in the set-up of experiments where specific
conditions are desired.

10
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2.1 Existing models from the literature

The diffusion equation forms the basis of a large number of mathematical models existing across
a wide range of application areas, including (but not limited to) the energy sector [34], geochem-
istry [35, 36], tumour growth [37] and drug delivery [38]. Most relevant to the work presented
in this thesis are diffusion problems derived in the context of cell culture, and several mathe-
matical models exist that characterise solute transport and metabolism within traditional static
experimental set-ups.

Various studies in the literature use diffusion and Michaelis-Menten (M-M) kinetics to de-
scribe the transport and metabolism of oxygen (O2), respectively. For example, mathematical
models containing these equations have been solved numerically to estimate the O2 concentra-
tions within a cell-seeded hydrogel submerged in culture medium [39], and within a cell-seeded
scaffold placed at the base of a static cell culture system [40]. Of particular relevance to the mod-
els that will be developed in this chapter are those that characterise O2 transport and metabolism
within a petri dish containing a monolayer of cells. A computational model provided by Przek-
was et al. [41] was used to predict the O2 concentrations within such a set-up, for various depths
of culture medium. Also describing the diffusion of O2 throughout a petri dish, Burova et al.
[42] and Yarmush et al. [43] use a flux boundary condition to represent the metabolism of O2 by
a layer of cells. With a focus on cell growth, the former mathematical model is solved numeri-
cally and parameterised by comparing experimental and simulated data, whilst the latter study
considers only steady-state, and so the resulting system of differential equations can easily be
solved analytically to provide an expression for the O2 concentration at the cell surface.

Although it is clear that mathematical models of solute transport and metabolism within
static cell culture systems already exist in the literature, the selection of studies outlined above
have all been solved numerically (with the exception of [43], which as discussed, only considers
the steady-state solution). Whilst computational methods can produce visual results that are
useful for predicting the outcome of a specific set-up, they provide little information on the
dependence of the solution on the underlying model parameters, so there is often limited scope
for generalising the results to account for variations in experimental configuration. Furthermore,
solving a model computationally can be time-consuming and provides only an approximation
to the true solution, whereas analytical methods offer the exact solution to a set of governing
equations. Therefore, where possible, an analytical approach should be adopted to allow for
the derivation of mathematical expressions that clearly highlight the relationships between key
parameters in the model; as well as enabling further insight into the interplay between the various
processes in the system, this also means that the solution can easily be adapted to account for
any modifications to experimental design, such as a change of cell type or solute.
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2.2 The mathematical model

Consider a typical static in vitro experimental set-up, as illustrated by the schematic drawing in
Fig. 2.2.1. Here, the base of a petri dish is lined with a single layer of cells and the dish is filled
to a depth d with fluid which contains a solute.

cell layer

or

Figure 2.2.1: Schematic drawing illustrating a typical static in vitro experimental set-up (not to scale).

In the following equations,∇ denotes the gradient operator in a 3D cylindrical polar co-ordinate
system. Transport of the solute through the fluid is described via diffusion, i.e.

∂c

∂t
= D∇2c,

where c(r, θ, z, t) (mol m−3) is the solute concentration and D (m2 s−1) is the constant isotropic
diffusion coefficient. Initially, the concentration of the solute within the fluid is assumed to be
constant and equal to c0, i.e.

c = c0 at t = 0.

For solutes that have purposefully been added to the fluid, such as drugs or nutrients, the initial
concentration is usually known. However, for solutes (more specifically, gases) that are naturally
present in the fluid, such as O2, the initial concentration is calculated using Henry’s law (see page
13).

The boundary condition at the surface of the fluid will differ depending on the type of solute
under consideration. For solutes which cannot cross the fluid-air interface (e.g. drugs/nutrients),
the flux across this boundary is zero, i.e.

−D∇c · n = 0,

where n is a normal in the positive z direction. However, for solutes which can cross the fluid-air
interface (e.g. O2), the flux across this boundary is non-zero. Since solutes diffuse from areas
of high to low concentration, the flux at the fluid-air interface is proportional to the difference
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Henry’s law [44, 45]

Henry’s law describes the relationship between the concentration of the solute in the fluid
and the partial pressure of the solute in the air via the following equation:

c =
P

KH

,

where c (mol m−3) is the solute concentration in the fluid, P (atm) is the partial pressure
of the solute in the air and KH (atm mol−1 m3) is Henry’s constant, the value of which
depends on the solute, the fluid and the temperature. Put simply, P and KH describe the
likelihood of the solute entering and leaving the fluid, repsectively.

Michaelis-Menten kinetics [45–47]

As illustrated in Fig. 2.2.2, M-M kinetics describe the relationship between the solute
concentration and the rate of the reaction: as the concentration of the solute increases, the
reaction rate also increases before approaching a maximum for higher solute concentra-
tions.

Solute concentration

R
ea

ct
io

n 
ra

te

Figure 2.2.2: Schematic drawing illustrating the behaviour of M-M kinetics.

Note that a solute may be metabolised by more than one process; for example, APAP is
broken down in the body via three metabolic pathways, namely glucuronidation, sulpha-
tion and oxidation [48], each of which may be described by M-M kinetics [49]. Therefore
a general M-M reaction term has the following form:

m∑
i=1

Vmax,i c

Km,i + c
,

where m denotes the number of metabolic pathways.
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between the solute concentration in the air and the solute concentration in the fluid, i.e.

−D∇c · n = K(c0 − c),

where K (m s−1) is the mass transfer coefficient. It is noted that, when using Henry’s law to
calculate c0, it is inherently assumed that the solute concentrations in the fluid and the air are
equal, so here, the solute concentration in the air is given by c0.

At the base of the petri dish, it is assumed that the cell population is fixed: cellular processes
such as proliferation and apoptosis are neglected since these typically take place over a much
larger timescale than diffusion. It is further assumed that the thickness of the cell layer is sig-
nificantly smaller than the depth of the fluid. Thus, diffusion through the cell layer is negligible,
and the interaction between the solute and the cells can be described by a flux boundary condi-
tion, the right-hand side of which may be modified to represent any type of reaction mechanism.
Here, M-M kinetics (see page 13) are used to describe solute metabolism; this is a common
approach in the literature [29], particularly when the solute is O2 or a drug such as paraceta-
mol (APAP). Hence, the loss of solute due to metabolism by the cells can be described by the
following boundary condition applied at the base of the petri dish:

−D∇c · n =
Vmaxc

Km + c
,

where Vmax (mol m−2 s−1) is the maximum metabolic rate and Km (mol m−3) is the M-M
constant. Although only one metabolic pathway is considered in the derivation of the solutions
in subsequent sections, it may readily be shown that the solutions can be extended to account for
m pathways (see Appendix A). It should be highlighted that the overall rate of solute metabolism
is dependent on the total number of cells. Typically quantified on a per cell basis, Vmax is often
provided in units of mol s−1. The dependence on cell density is incorporated by multiplying
this parameter by the cell number and dividing by the area covered by the cells to obtain the
appropriate units for applying M-M kinetics on the base of the petri dish (mol m−2 s−1). It
is noted that M-M kinetics may also be applied within a cell layer, where the cell density is
given by the number of cells divided by the volume of the layer, and Vmax is defined in units
of mol m−3 s−1. Finally, assuming that the outer wall of the petri dish is impermeable, the flux
across this boundary is zero.

In general, it would be necessary to solve this type of model using 3D cylindrical polar co-
ordinates. Since the interaction between the solute and the cells is described via M-M kinetics,
metabolism of the solute depends on the concentration to which the cells are exposed. Typically,
this means that solute metabolism has a spatial dependence and could be non-uniform across the
base of the petri dish. However, due to the form of the initial and boundary conditions coupled
with the simple geometry of the petri dish, it may be shown that, here, c is independent of
r and θ. Since the initial solute concentration is uniform throughout the petri dish, which is
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assumed to be of a uniform shape with impermeable walls, all cells are exposed to the same
solute concentration and so metabolism is uniform across the base of the petri dish. Thus, a
concentration gradient is generated in only the vertical direction, and the governing equations
for the corresponding 1D problem are as follows, where x denotes the spatial co-ordinate:

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t), 0 < x < d, t > 0,

c(x, 0) = c0, 0 < x < d,

−D∂c

∂x
(0, t) =

{
0, t > 0, or

K
[
c0 − c(0, t)

]
, t > 0,

−D∂c

∂x
(d, t) =

Vmaxc(d, t)

Km + c(d, t)
, t > 0.

As previously described, the two options for the boundary condition at x = 0 describe the cases
where the solute cannot, or can, cross the fluid-air interface, respectively. Note that only one of
these conditions may be applied at any one time, with the choice depending on the behaviour of
the solute under consideration.

The solutions to these governing equations will depend on D, K, Vmax and Km, the values
of which must be obtained experimentally. However, whilst these parameters are of interest
mathematically, processes such as diffusion are often not the main focus of experiments and so
are not routinely quantified. Where experimental measurements of such parameters do exist, it
is not uncommon to find discrepancies in the available data due to variations in measurement
techniques and experimental set-up. Therefore, it can be difficult to obtain a reliable and accu-
rate estimate of important parameter values for use in mathematical models. To overcome this
barrier, a common technique is to remove the physical dimensions from the system of governing
equations by replacing all variables with suitably scaled quantities. The scalings are typically
chosen in such a way that allows for the formation of common non-dimensional parameters that
highlight relationships between different processes in the system, making it easier to spot pa-
rameter regimes for which the model can be simplified. By performing non-dimensionalisation,
the governing equations can be solved in a general sense whilst still gaining insight into the
relationships between the underlying system parameters. Using the scalings

c = c0c
∗, t =

d2

D
t∗, x = dx∗,

yields the following non-dimensionalised equations (stars omitted for convenience):

∂c

∂t
(x, t) =

∂2c

∂x2
(x, t), 0 < x < 1, t > 0, (2.2.1)

c(x, 0) = 1, 0 < x < 1, (2.2.2)
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∂c

∂x
(0, t) =

{
0, t > 0, (2.2.3A)

−µ
[
1− c(0, t)

]
, t > 0, (2.2.3B)

∂c

∂x
(1, t) = − αc(1, t)

1 + βc(1, t)
, t > 0, (2.2.4)

where the non-dimensional parameters µ, α and β are defined as

µ =
Kd

D
, α =

Vmaxd

DKm

, β =
c0

Km

.

Here, µ is the ratio of the rate of mass transfer across the fluid-air interface and the rate of
diffusion. In the limit as µ → 0, (2.2.3B) reduces to (2.2.3A), i.e. the flux of solute across the
fluid-air interface is equal to zero, but as µ → ∞, (2.2.3B) is equivalent to a constant source
of solute. The second non-dimensional parameter, α, is a Damköhler number comparing the
rate of reaction with the rate of diffusion. For small values of α, the rate of reaction is much
smaller than the rate of diffusion so the limiting process is the interaction between the solute and
the cells. Conversely, for large values of α, the rate of reaction is much larger than the rate of
diffusion so the limiting process is the diffusion of the solute to the cells. Finally, β is the ratio
of the initial solute concentration and the M-M constant, and it is noted that the right-hand side
of (2.2.4) can be reduced to the following linear kinetics:

∂c

∂x
(1, t) ≈


−αc(1, t), β � 1

−α
β
, β � 1

,

when this parameter is either small or large.
In subsequent sections, two cases (A and B) are considered which relate to the different

types of solute under investigation: solutions to (2.2.1) - (2.2.4) are derived, using (2.2.3A) and
(2.2.3B) in turn. Although each set of governing equations may be solved directly using a nu-
merical scheme such as finite differences, this would give rise to a purely numerical solution that
offers little insight into the interplay between the various model parameters; for this reason, an
analytical approach is adopted. A number of mathematical techniques exist for solving systems
of partial differential equations depending on the form of the initial and boundary conditions.
A common choice for linear diffusion problems, here the method of Laplace transforms is em-
ployed to solve each model. It is noted that since the boundary condition at x = 1 is nonlinear, a
closed-form solution can only be obtained by linearising the M-M kinetics for β � 1 and β � 1

(see Appendix B). For the full nonlinear M-M kinetics, convolution gives rise to a Volterra inte-
gral equation (VIE) that describes the concentration of the solute at the cell surface. Although it
is necessary to solve the VIEs numerically, these equations allow for further analytical progress
where approximate solutions are derived under certain parameter regimes.
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2.3 Method of Laplace transforms

For a more detailed description of the theory in this section, the reader is referred to [50]. The
Laplace transform of a function f(t) is an expression of the form

L{f(t)} = f̄(s) =

∫ ∞
0

e−stf(t) dt.

This formal definition may be used to compute the Laplace transform of any admissable function
f(t), but most standard Laplace transforms can be found in tables. The Laplace transform is
particularly useful for solving initial-boundary value problems. A partial differential equation
(PDE) can be transformed into a simpler ordinary differential equation (ODE) by taking Laplace
transforms of the derivatives:

L
{
∂u

∂t
(x, t)

}
= sū(x, s)− u(x, 0),

L
{
∂2u

∂x2
(x, t)

}
=
d2ū

dx2
(x, s).

The resulting ODE is then solved and the solution of the initial-boundary value problem is
obtained by taking the inverse Laplace transform using the complex inversion formula.

Complex inversion formula

If f̄(s) is the Laplace transform of a function f(t), then L−1{f̄(s)} is given by

f(t) =


1

2πi

∫ γ+i∞

γ−i∞
estf̄(s) ds, t > 0,

0, t < 0,

where γ is a real number.

The right-hand side of the above equation is typically evaluated by making use of the Bromwich
contour, a closed curve composed of the lineAB and the arcBJKLA of a circle of radiusR (see
Fig. 2.3.1). Note that the real number γ must be chosen such that all singularities of f̄(s) lie to
the left of the line s = γ, but otherwise the choice is somewhat arbitrary. Types of singularities
include branch points (where the ‘branches’ of a multi-valued function come together) as well
as poles and essential singularities. The latter can be classified via the Laurent series expansion
of a function f(s) around a point a: if the principle part of the expansion has a finite number of
terms, say m, then the singularity at s = a is a pole of order m, whereas if the principle part has
an infinite number of terms, the singularity at s = a is an essential singularity.
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Figure 2.3.1: Schematic drawing of the Bromwich contour, C.

The integral over the Bromwich contour, C, can be split into two parts as follows:

1

2πi

∮
C

estf̄(s) ds =
1

2πi

{∫ γ+iT

γ−iT
estf̄(s) ds+

∫
Γ

estf̄(s) ds

}
,

where Γ denotes the arc BJKLA. In cases where the only singularities of f̄(s) are poles, the
above equation may be simplified by employing the residue theorem.

Residue theorem

If a function g(s) is analytic within a simple closed contour Ω, except for a finite number
of singular points which are poles, then∮

Ω

g(s) ds = 2πi×
∑

(residues of g inside Ω).

Thus, it follows that

1

2πi

∫ γ+iT

γ−iT
estf̄(s) ds =

∑
(residues of estf̄(s) inside C)− 1

2πi

∫
Γ

estf̄(s) ds.

Taking the limit as R→∞ (and therefore as T →∞) gives

f(t) =
∑

(residues of estf̄(s) inside C)− lim
R→∞

{
1

2πi

∫
Γ

estf̄(s) ds

}
.
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Now, it can be shown that if there exist constants M,k > 0 such that on Γ

|f̄(s)| < M

Rk
,

then the integral over Γ of estf̄(s) approaches zero as R→∞, i.e.

f(t) =
∑

(residues of estf̄(s) inside C).

The residues are calculated as follows, where a is a pole of order m:

Res
s=a

=
1

(m− 1)!
lim
s→a

{
dm−1

dsm−1

{
(s− a)mestf̄(s)

}}
.

To summarise, Laplace transforms may be used to solve an initial-boundary value problem using
the following method:

1. Take Laplace transforms to convert the PDE into an ODE.

2. Solve the resulting simpler ODE problem.

3. Take the inverse Laplace transform to obtain the solution to the original problem, using
the residue theorem where applicable.

In this chapter, the convolution theorem will be used extensively when inverting the Laplace
transforms.

Convolution theorem

If f(t) and g(t) are functions with Laplace transforms f̄(s) and ḡ(s), respectively, then

L−1{f̄(s)ḡ(s)} = (f ∗ g)(t),

where the symbol ∗ denotes convolution, an operation that, when given two functions
f(t) and g(t), returns another function (f ∗ g)(t) according to the formula

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ.

This gives rise to VIEs, which are integral equations of the form

y(t) = x(t) +

∫ t

0

k(t, u)y(u) du,

where x(t) and k(t, u) are known. Although in general it is necessary to proceed numerically to
obtain the solution of these types of equations, the VIEs may be used to derive further (semi-)
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analytical solutions under certain parameter regimes, thus providing additional insight into the
behaviour of the models.

2.4 Solutions for case A

In this case, it is assumed that the solute cannot cross the fluid-air interface so the boundary
condition at x = 0 is given by (2.2.3A). An example of such a solute is a drug (e.g. APAP)
which is dissolved in the fluid and can only leave by being metabolised by the cells. Fig. 2.4.1
displays the 1D domain and the equations that will be solved in this section, where x = 0 and
x = 1 represent the fluid-air interface and the base of the petri dish (i.e. the cell surface),
respectively.

Figure 2.4.1: Schematic drawing illustrating the 1D domain and non-dimensional equations for case A.

2.4.1 Deriving the VIE

Using the method of Laplace transforms and defining L{c(x, t)} = c̄(x, s), (2.2.1) is solved
subject to the initial condition (2.2.2) to obtain

c̄(x, s) = a(s) cosh(
√
sx) + b(s) sinh(

√
sx) +

1

s
.

By applying (2.2.3A), it may be deduced that b(s) = 0 so

c̄(x, s) = a(s) cosh(
√
sx) +

1

s
.

Differentiating, applying (2.2.4) and re-arranging gives

a(s) = − 1√
s sinh(

√
s)

αc̄(1, s)

1 + βc̄(1, s)
,

so it follows that

c̄(1, s) =
1

s
− k̄A(s)

αc̄(1, s)

1 + βc̄(1, s)
, (2.4.1)
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where

k̄A(s) =
cosh(

√
s)√

s sinh(
√
s)
. (2.4.2)

By taking the inverse Laplace transform of (2.4.1) and using the convolution theorem, the fol-
lowing VIE is obtained:

c(1, t) = 1− α
∫ t

0

kA(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (2.4.3)

where

kA(t) = L−1

{
cosh(

√
s)√

s sinh(
√
s)

}
. (2.4.4)

Now, given that no branch points exist, the residue theorem may be employed to evaluate (2.4.4);
by writing cosh(

√
s) and sinh(

√
s) in their series expansion forms, it is clear that there are no

branch points. It may readily be shown that there is a simple pole at s = 0 and infinitely many
simple poles at sn = −n2π2 for n ∈ N. Using L’Hôpital’s rule to calculate the residues yields

Res
s=0

= lim
s→0

{√
s cosh(

√
s)est

sinh(
√
s)

}
= 1,

Res
s=sn

= lim
s→sn

{
s− sn

sinh(
√
s)

}
lim
s→sn

{
cosh(

√
s)est√
s

}
= 2e−n

2π2t.

Thus, applying the residue theorem gives

kA(t) = Res
s=0

+
∞∑
n=1

Res
s=sn

= 1 + 2
∞∑
n=1

e−n
2π2t.

2.4.2 Approximate solutions

In this section, perturbation theory and other analytical techniques are used to derive approxi-
mations to the full solution of the VIE that are valid within specific parameter regimes. Using
an analytical approach can highlight the dependence of the solution on the chosen parameters,
providing information that is often not attainable via a fully numerical approach.

Recall that when the non-dimensional parameter β is either small or large, the M-M kinetics
are approximately linear. Since β clearly has an important effect on the interaction between the
solute and the cells, the behaviour of the solution will be investigated for β � 1 and β � 1.
Note that for each of these parameter regimes, the first terms in the approximate solution should
be equivalent to the full solution of the model where the nonlinear M-M term is replaced by
the appropriate linear kinetics. Another important parameter is t, and since experiments can be
both short- and long-term, it is of particular interest to monitor the behaviour of the solution
for early and late times. Therefore, approximate solutions are derived when t � 1, where the
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leading-order term should return the initial condition, and for the solution as t → ∞, simple
analytical techniques are used to solve the steady-state problem.

Perturbation theory

When it is not possible to directly solve the full problem analytically, perturbation the-
ory may be employed to approximate the full solution by ‘perturbing’ the solution of a
simpler, related problem which can be solved analytically. Using this technique, the full
solution is approximated by a series expansion about a small parameter, say ε, i.e.

f = f0 + εf1 + ε2f2 + · · · ,

where f0 is the solution to the simpler problem. Since successive terms in the series
are smaller, higher-order terms provide a less significant contribution to the approxima-
tion and so it is usually only necessary to derive the leading- and first-order terms in the
expansion.

Small β solution for case A

Here, assume β � 1 and consider the following perturbation expansion:

c(1, t) = c0(1, t) + βc1(1, t) +O(β2). (2.4.5)

Substituting this expression into (2.4.3) gives

c0(1, t) + βc1(1, t) +O(β2)

= 1− α
∫ t

0

kA(t− τ)
c0(1, τ) + βc1(1, τ) +O(β2)

1 + β
[
c0(1, τ) + βc1(1, τ) +O(β2)

] dτ
= 1− α

∫ t

0

kA(t− τ)
[
c0(1, τ) + βc1(1, τ) +O(β2)

][
1− βc0(1, τ) +O(β2)

]
dτ,

by taking a series expansion of(
1 + β

[
c0(1, τ) + βc1(1, τ) +O(β2)

])−1

about β = 0. Multiplying out the brackets and equating powers of β yields

c0(1, t) = 1− α
∫ t

0

kA(t− τ)c0(1, τ) dτ, (2.4.6)

c1(1, t) = −α
∫ t

0

kA(t− τ)
[
c1(1, τ)− c0(1, τ)2

]
dτ. (2.4.7)

First, (2.4.6) may be solved to obtain an analytical expression for c0(1, t). Taking Laplace



CHAPTER 2. STATIC MODEL 23

transforms, using the convolution theorem and re-arranging results in

c̄0(1, s) =
1

s
[
1 + αk̄A(s)

] .
Using (2.4.2) and taking inverse Laplace transforms gives

c0(1, t) = L−1

{
sinh(

√
s)

√
s
[√
s sinh(

√
s) + α cosh(

√
s)
]} .

After verifying that no branch points exist, the residue theorem may be used to evaluate this
inverse Laplace transform where the poles are given by

√
s = 0 and

√
s sinh(

√
s) + α cosh(

√
s) = 0.

For convenience, setting
√
s = iκ in the transcendental equation gives

κ sin(κ)− α cos(κ) = 0. (2.4.8)

There is a simple pole at s = 0 and infinitely many simple poles at sn = −κ2
n for n ∈ N, where

κn are the roots of (2.4.8). After a trivial calculation, it is clear that the residue at s = 0 is equal
to zero. The residue at s = sn is obtained by employing L’Hôpital’s rule, and it follows from
the residue theorem that

c0(1, t) =
∞∑
n=1

2 sin(κn)e−κ
2
nt

κn cos(κn) + (α + 1) sin(κn)
. (2.4.9)

This expression for c0(1, t) may be substituted into (2.4.7) which can then be solved numerically
to obtain c1(1, t). Thus, from (2.4.5), the solution when β � 1 is given by

c(1, t) =
∞∑
n=1

2 sin(κn)e−κ
2
nt

κn cos(κn) + (α + 1) sin(κn)
+ βc1(1, t) +O(β2). (2.4.10)

It is verified in Appendix B that, to leading-order, the solution when β � 1 is equivalent to the
solution obtained from solving the full model with the nonlinear flux boundary condition (2.2.4)
replaced by

∂c

∂x
(1, t) = −αc(1, t).

.
Large β solution for case A

The solution when β is large may be derived by adopting a similar approach to the case when β is
small. Note that in this case, it is possible to derive expressions for all terms in the approximate
solution, so higher-order terms are included in the expansion to demonstrate this. Here, assume
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β � 1 and let ε = 1/β. Then, consider the following perturbation expansion about the small
parameter ε:

c(1, t) = c0(1, t) + εc1(1, t) + ε2c2(1, t) + ε3c3(1, t) + ε4c4(1, t) +O(ε5). (2.4.11)

Substituting this expression into (2.4.3) and taking a series expansion of(
1 + ε−1

[
c0(1, τ) + εc1(1, τ) + ε2c2(1, τ) + ε3c3(1, τ) + ε4c4(1, τ) +O(ε5)

])−1

about ε = 0 gives

c0(1, t) + εc1(1, t) + ε2c2(1, t) + ε3c3(1, t) + ε4c4(1, t) +O(ε5)

= 1− α
∫ t

0

kA(t− τ)
[
c0(1, τ) + εc1(1, τ) + ε2c2(1, τ) + ε3c3(1, τ) + ε4c4(1, τ) +O(ε5)

]
×
{

ε

c0(1, τ)
− ε2

c0(1, τ)2

[
c1(1, τ) + 1

]
+

ε3

c0(1, τ)3

[
(c1(1, τ) + 1)2 − c2(1, τ)c0(1, τ)

]
− ε4

c0(1, τ)4

[
(c1(1, τ) + 1)3 − c2(1, τ)c0(1, τ)(2c1(1, τ) + 1) + c3(1, τ)c0(1, τ)2

]
+O(ε5)

}
dτ.

Multiplying out the brackets and equating powers of ε yields

c0(1, t) = 1,

c1(1, t) = −α
∫ t

0

kA(t− τ) dτ, (2.4.12)

c2(1, t) = α

∫ t

0

kA(t− τ) dτ = −c1(1, τ),

c3(1, t) = −α
∫ t

0

kA(t− τ)
[
c1(1, τ) + 1

]
dτ,

c4(1, t) = α

∫ t

0

kA(t− τ)
[
c1(1, τ) + 1

]2
dτ,

...

cn(1, t) = (−1)nα

∫ t

0

kA(t− τ)
[
c1(1, τ) + 1

]n−2
dτ. (2.4.13)

Note that (2.4.12) may be solved analytically: taking Laplace transforms, using the convolution
theorem and re-arranging gives

c̄1(1, s) = −αk̄A(s)

s
.

Using (2.4.2) and taking inverse Laplace transforms results in
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c1(1, t) = −αL−1

{
cosh(

√
s)

s3/2 sinh(
√
s)

}
.

Again, it may readily be shown that no branch points exist and so the residue theorem can be
employed to calculate this inverse Laplace transform. The poles are given by

s3/2 = 0 and sinh(
√
s) = 0.

There is a pole of order 2 at s = 0 and infinitely many simple poles at sn = −n2π2 for n ∈ N.
Using L’Hôpital’s rule to calculate the residues gives

Res
s=0

= lim
s→0

{
∂

∂s

{√
s cosh(

√
s)est

sinh(
√
s)

}}
= t+

1

3
,

Res
s=sn

= −2e−n
2π2t

n2π2
.

Then, it follows from the residue theorem that

c1(1, t) = −α

(
t+

1

3
− 2

∞∑
n=1

e−n
2π2t

n2π2

)
.

This expression for c1(1, t) may be substituted into (2.4.13) which can then be solved numer-
ically to obtain cn(1, t) for n ≥ 2. Thus, from (2.4.11), the solution when β � 1 is given
by

c(1, t) = 1− α

β

(
t+

1

3
− 2

∞∑
n=1

e−n
2π2t

n2π2

)

+
∞∑
n=2

(−1)nα

βn

∫ t

0

kA(t− τ)
[
c1(1, τ) + 1

]n−2
dτ.

(2.4.14)

It is verified in Appendix B that, to first-order, the solution when β � 1 is equivalent to the
solution obtained from solving the full model with the nonlinear flux boundary condition (2.2.4)
replaced by

∂c

∂x
(1, t) = −α

β
.

.
Small t solution for case A

In order to derive a solution for c(1, t) at early times, it is necessary to first examine the behaviour
of kA(t) for t� 1. Recall that

kA(t) = 1 + 2
∞∑
n=1

e−n
2π2t.
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1 3 2 1 3 2 

Figure 2.4.2: Schematic drawing illustrating the area under the curve e−x
2/t and an approximation to

this area using lower (left) and upper (right) Riemann sums.

For the following analysis, it is desirable for t to appear on the denominator of the exponent so
that the exponential term decays as t → 0. Using result (5) in [51], kA(t) may be re-written in
the following more convenient form:

kA(t) =
1√
πt

(
1 + 2

∞∑
n=1

e−n
2/t

)
. (2.4.15)

A lower and upper bound for kA(t) may be obtained by using Riemann sums to approximate the
area under the curve e−x2/t. From Fig. 2.4.2, it is clear that∫ ∞

1

e−x
2/t dx <

∞∑
n=1

e−n
2/t <

∫ ∞
0

e−x
2/t dx.

Using the substitution u = x2/t to evaluate the integrals yields

√
πt

2
erfc

(
1√
t

)
<
∞∑
n=1

e−n
2/t <

√
πt

2
,

and from (2.4.15), it follows that

1√
πt

+ erfc

(
1√
t

)
< kA(t) <

1√
πt

+ 1.

For t� 1,

erfc

(
1√
t

)
=

√
t√
π
e−1/t

(
1− t

2
+ · · ·

)
≈ 0,

since the exponential term dominates and rapidly decays. Thus, for small t
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1√
πt

< kA(t) <
1√
πt
,

i.e.

kA(t) ∼ 1√
πt

as t→ 0. (2.4.16)

Now, consider the following expansion in t:

c(1, t) = a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2). (2.4.17)

Substituting this expression into (2.4.3), using (2.4.16) and taking a series expansion of(
1 + β

[
a1 + a2τ

1/2 + a3τ + a4t
3/2 +O(t2)

])−1

about τ = 0 gives

a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2)

= 1− α√
π

∫ t

0

(t− τ)−1/2
[
a1 + a2τ

1/2 + a3τ + a4τ
3/2 +O(t2)

]
×
[

1

a1β + 1
− a2β

(a1β + 1)2
τ 1/2 +

(a2
2 − a1a3)β2 − a3β

(a1β + 1)3
τ +O(τ 3/2)

]
dτ.

Multiplying out the brackets gives

a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2)

= 1− α√
π

[
a1

a1β + 1
I1 +

a2

(a1β + 1)2
I2 +

a3 + β(a1a3 − a2
2)

(a1β + 1)3
I3 + · · ·

]
,

(2.4.18)

where

I1 =

∫ t

0

(t− τ)−1/2 dτ = 2t1/2,

I2 =

∫ t

0

(t− τ)−1/2τ 1/2 dτ =
π

2
t,

I3 =

∫ t

0

(t− τ)−1/2τ dτ =
4

3
t3/2,

are easily evaluated using simple integration, substitution and integration by parts, respectively.
Substituting these expressions into (2.4.18) and equating powers of t gives

a1 = 1,

a2 = − 2α√
π(β + 1)

,



CHAPTER 2. STATIC MODEL 28

a3 =
α2

(β + 1)3
,

a4 = − 4α3(π − 4β)

3π3/2(β + 1)5
.

Thus, from (2.4.17), the solution when t� 1 is given by

c(1, t) = 1− 2α√
π(β + 1)

t1/2 +
α2

(β + 1)3
t− 4α3(π − 4β)

3π3/2(β + 1)5
t3/2 +O(t2). (2.4.19)

.
Steady-state solution for case A

For this case, where the solute cannot cross the fluid-air interface, it is clear that c(x, t) → 0

as t → ∞, since without replenishment, the solute will fully deplete due to metabolism by the
cells. To derive this trivial solution, the steady diffusion equation is solved subject to (2.2.3A)
and (2.2.4) to obtain c(x,∞) = 0, as expected.

2.4.3 Numerical method for solving the VIEs

In order to obtain the solution of the VIE given by (2.4.3), product integration methods are
applied to derive an implicit numerical scheme for solving this equation. It is noted that a sim-
pler explicit Euler scheme could be derived instead; however, due to the form of this numerical
method, it is necessary to significantly decrease the time step, ∆t, as α increases in order to
obtain sufficient accuracy. This in turn greatly increases the computational cost, and since in
subsequent sections the value of α will be varied, in this instance an implicit method is prefer-
able. Using kA(t) as defined in (2.4.15), recall that the VIE is given by

c(1, t) = 1− α√
π

∫ t

0

1√
t− τ

(
1 + 2

∞∑
n=1

e−n
2/(t−τ)

)
c(1, τ)

1 + βc(1, τ)
dτ.

Replacing t by ti = i∆t, where i = 1, 2, . . . , T such that T∆t is the final time of interest, the
integral can be re-written as a sum of integrals over smaller intervals:

c(1, ti) = 1− α√
π

i−1∑
j=0

∫ tj+1

tj

1√
ti − τ

(
1 + 2

∞∑
n=1

e−n
2/(ti−τ)

)
c(1, τ)

1 + βc(1, τ)
dτ.

Now, assuming that(
1 + 2

∞∑
n=1

e−n
2/(t−τ)

)
c(1, τ)

1 + βc(1, τ)
≈

(
1 + 2

∞∑
n=1

e−n
2/(t−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)

over [tj, tj+1] gives
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c(1, ti) ≈ 1− α√
π

i−1∑
j=0

(∫ tj+1

tj

1√
ti − τ

dτ

)(
1 + 2

∞∑
n=1

e−n
2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
.

Performing the integration with tj = j∆t yields∫ tj+1

tj

1√
ti − τ

dτ = 2
√

∆t
(√

i− j −
√
i− j − 1

)
,

so then

c(1, ti) ≈ 1−2α
√

∆t√
π

i−1∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n
2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
.

Note that

i−1∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n
2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)

=
c(1, ti)

1 + βc(1, ti)
+

i−2∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n
2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
,

so an approximation to c(1, ti) may be obtained by finding the roots, ci, of the following implicit
equation:

ci +
2α
√

∆t√
π

ci
1 + βci

= 1− 2α
√

∆t√
π

i−2∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n
2/(ti−tj+1)

)
cj+1

1 + βcj+1

.

In order to obtain the small β solution to first order, an additional VIE must be solved. In the
next section, the accuracy of the small β solution will be highlighted for decreasing values of β,
with the value of α arbitrarily fixed at 1; therefore, since α is not large, an explicit Euler scheme
is sufficient for solving (2.4.7). Recall that the first order term from the small β solution is given
by

c1(1, t) = −α
∫ t

0

kA(t− τ)
[
c1(1, τ)− c0(1, τ)2

]
dτ,

where c0(1, t) is given by (2.4.9). Replacing t by ti and re-writing the integral as a sum of
integrals over smaller intervals gives

c1(1, ti) = −α
i−1∑
j=0

∫ tj+1

tj

kA(ti − τ)
[
c1(1, τ)− c0(1, τ)2

]
dτ.
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Then, using the argument of Riemann sums yields

c1(1, ti) ≈ −α∆t
i−1∑
j=0

kA(ti − tj)
[
c1(1, tj)− c0(1, tj)

2
]
.

The accuracy of these numerical solutions depends on ∆t, the spacing between consecutive time
points, and N , the finite number of terms at which the infinite sums are truncated. It should be
noted that the optimal choice for ∆t and N may vary depending on the values of other model
parameters that also influence the behaviour of the solution. Thus, it is necessary to perform a
sensitivity study across a range of parameter values to determine the choice of ∆t and N that
provides the best balance between computational cost and an acceptable level of accuracy.

To optimise the time spacing for the implicit method, the numerical solution was computed
for various values of ∆t, using the highest and lowest values of α and β considered in the next
section. The percentage error between the numerical solutions was calculated for consecutive
values of ∆t, and the value of ∆t was considered to be sufficient when this error was less than
1%. In all cases, ∆t = 1 × 10−3 was chosen as the optimal value. Since the infinite sum that
appears in the implicit method is a decaying exponential, successive terms will provide a smaller
contribution to the overall solution. Therefore, the number of terms in the infinite sum may be
truncated as long as the solution is of an acceptable accuracy, and the choice of N = 100

was deemed sufficient in all cases. These values of ∆t and N were also found to provide an
acceptable level of accuracy for the explicit method.

2.4.4 Comparing the solution of the VIE with the approximate solutions

In order to demonstrate the dependence of the solutions on the values of the non-dimensional pa-
rameters and to illustrate the validity of the approximate solutions derived in §2.4.2, the solution
of the VIE is compared with the approximate solutions over the following parameter ranges:

α = 0.01, 0.1, 1, 10, 100,

β = 0.01, 0.1, 1, 10, 100.

First, the solution of the VIE given by (2.4.3) is generated for various values of α. Recall that
α is the ratio of the reaction rate and the diffusion rate, so as α increases, the reaction rate also
increases; this is reflected in the solutions illustrated in Fig. 2.4.3. As expected, for the smallest
value of α and therefore for a negligible rate of solute metabolism, the solution decreases from
the initial condition extremely slowly. In contrast, for the largest value of α and therefore for
a significant rate of solute metabolism, the solution rapidly drops to zero. It is clear from Fig.
2.4.3 that as t→∞, the steady-state solution of zero is approached at different rates depending
on the value of α.
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Figure 2.4.3: Solution to the VIE from case A for various values of α with β = 1, showing the depen-
dence of the solute concentration at the cell surface, c(1, t), on the non-dimensional parameter α.
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Figure 2.4.4: Comparing the solution to the VIE from case A and the small β solution for various values
of β, with α = 1.
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Figure 2.4.5: Comparing the solution to the VIE from case A and the large β solution for various values
of β, with α = 1. Note that when β = 1, the large β solution to second order is equal to 1, i.e. the large
β solution to leading order, so the red and blue lines in the upper plot are overlapping.
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Figure 2.4.6: Comparing the solution to the VIE from case A and the small t solution for 0 ≤ t ≤ 1,
with α = β = 1. The inset plot highlights the good agreement between the solutions for 0 ≤ t ≤ 0.1.
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Figs. 2.4.4 and 2.4.5 compare the solution of the VIE with the small and large β solutions,
respectively, for various values of β. Recall that the small β solution is valid when β � 1

so, as expected, the agreement between this approximate solution and the solution of the VIE
improves as β decreases. When β = 1, the agreement between the solution of the VIE and the
large β solution is somewhat poor, and non-physical values of c(1, t) are generated. However, it
is noted that this is no cause for concern since the large β solution is only valid when β � 1,
and the agreement between this approximate solution and the solution of the VIE does improve
as β increases. As expected, for all values of β, the approximations become more accurate as
higher order terms are added to the solutions.

Fig. 2.4.6 compares the solution of the VIE with the small t solution for 0 ≤ t ≤ 1. It is
noted that, since the approximate solution is only valid when t � 1, the agreement between
the solution of the VIE and the small t solution deteriorates as t increases. However, within
the region of validity, the agreement is excellent as demonstrated by the inset plot, where the
solutions are shown for 0 ≤ t ≤ 0.1.

2.5 Solutions for case B

In this case, it is assumed that the solute can cross the fluid-air interface so the boundary con-
dition at x = 0 is given by (2.2.3B). An example of such a solute is O2 which is present in
both the fluid and the air and may pass freely between both regions. Fig. 2.5.1 displays the 1D
domain and the equations that will be solved in this section, where x = 0 and x = 1 represent
the fluid-air interface and the base of the petri dish (i.e. the cell surface), respectively.

Figure 2.5.1: Schematic drawing illustrating the 1D domain and non-dimensional equations for case B.

2.5.1 Deriving the VIE

As in case A, (2.2.1) is solved subject to the initial condition (2.2.2) to give

c̄(x, s) = a(s) cosh(
√
sx) + b(s) sinh(

√
sx) +

1

s
.
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By applying (2.2.3B), it may be deduced that

b(s) =
µa(s)√

s
,

and so

c̄(x, s) = a(s) cosh(
√
sx) +

µa(s)√
s

sinh(
√
sx) +

1

s
.

Differentiating, applying (2.2.4) and re-arranging gives

a(s) = − αc̄(1, s)[√
s sinh(

√
s) + µ cosh(

√
s)
][

1 + βc̄(1, s)
] ,

so it follows that

c̄(1, s) =
1

s
− k̄B(s)

αc̄(1, s)

1 + βc̄(1, s)
, (2.5.1)

where

k̄B(s) =

√
s cosh(

√
s) + µ sinh(

√
s)

√
s
[√
s sinh(

√
s) + µ cosh(

√
s)
] . (2.5.2)

By taking the inverse Laplace transform of (2.5.1) and using the convolution theorem, the fol-
lowing VIE is obtained:

c(1, t) = 1− α
∫ t

0

kB(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (2.5.3)

where

kB(t) = L−1

{ √
s cosh(

√
s) + µ sinh(

√
s)

√
s
[√
s sinh(

√
s) + µ cosh(

√
s)
]} . (2.5.4)

Similarly to case A, there are no branch points and so (2.5.4) can be evaluated by employing the
residue theorem. The poles are given by

√
s = 0 and

√
s sinh(

√
s) + µ cosh(

√
s) = 0,

and, for convenience, setting
√
s = iλ in the transcendental equation gives

µ cos(λ)− λ sin(λ) = 0. (2.5.5)

There is a simple pole at s = 0 and infinitely many simple poles at sn = −λ2
n for n ∈ N, where

λn are the roots of (2.5.5). After a simple calculation, it may be shown that the residue at s = 0

is equal to zero. The residue at s = sn is obtained using L’Hôpital’s rule and then, by the residue
theorem, it follows that
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kB(t) =
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λn cos(λn) + (µ+ 1) sin(λn)
.

2.5.2 Approximate solutions

Using similar methods as in §2.4.2, the VIE given by (2.5.3) is now used to derive further
(semi-) analytical solutions under certain parameter regimes, namely β � 1, β � 1, t� 1 and
t→∞. Note that the VIEs from both case A and case B are of the following general form:

c(1, t) = 1− α
∫ t

0

f(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ,

where f(t) is replaced by kA(t) and kB(t) in cases A and B, respectively. Furthermore, it may
be shown that in the limit as µ→ 0, the VIEs from both cases are equivalent. Thus, the approxi-
mate solutions derived here are of a similar form to the approximate solutions derived in §2.4.2.

Small β solution for case B

Here, assume β � 1 and consider the following perturbation expansion:

c(1, t) = c0(1, t) + βc1(1, t) +O(β2). (2.5.6)

Substituting this expression into (2.5.3) and equating powers of β gives

c0(1, t) = 1− α
∫ t

0

kB(t− τ)c0(1, τ) dτ, (2.5.7)

c1(1, t) = −α
∫ t

0

kB(t− τ)
[
c1(1, τ)− c0(1, τ)2

]
dτ. (2.5.8)

First, an analytical expression for c0(1, t) is obtained by solving (2.5.7). Taking Laplace trans-
forms, using the convolution theorem and re-arranging yields

c̄0(1, s) =
1

s
[
1 + αk̄B(s)

] .
Using (2.5.2) and taking inverse Laplace transforms results in

c0(1, t) = L−1

{ √
s sinh(

√
s) + µ cosh(

√
s)

√
s
[
(s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s)
]} .

Again, no branch points exist and therefore the residue theorem may be used to evaulate this
inverse Laplace transform where the poles are given by

√
s = 0 and (s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s) = 0.
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For convenience, setting
√
s = iξ in the transcendental equation gives

(αµ− ξ2) sin(ξ) + ξ(α + µ) cos(ξ) = 0. (2.5.9)

There is a simple pole at s = 0 and infinitely many simple poles at sn = −ξ2
n for n ∈ N, where

ξn are the roots of (2.5.9). Using L’Hôpital’s rule, the residues are given by

Res
s=0

=
µ

αµ+ α + µ
,

Res
s=sn

=
2
[
µ cos(ξn)− κn sin(ξn)

]
e−ξ

2
nt

(αµ+ α + µ− ξ2
n) cos(ξn)− ξn(2 + α + µ) sin(ξn)

,

and applying the residue theorem gives

c0(1, t) =
µ

αµ+ α + µ
+
∞∑
n=1

2
[
µ cos(ξn)− ξn sin(ξn)

]
e−ξ

2
nt

(αµ+ α + µ− ξ2
n) cos(ξn)− ξn(2 + α + µ) sin(ξn)

. (2.5.10)

This expression for c0(1, t) may be substituted into (2.5.8) which can then be solved numerically
to obtain c1(1, t). Thus, from (2.5.6), the solution when β � 1 is given by

c(1, t) =
µ

αµ+ α + µ
+
∞∑
n=1

2
[
µ cos(ξn)− ξn sin(ξn)

]
e−ξ

2
nt

(αµ+ α + µ− ξ2
n) cos(ξn)− ξn(2 + α + µ) sin(ξn)

+ βc1(1, t) +O(β2).

(2.5.11)

It is verified in Appendix B that, to leading-order, the solution when β � 1 is equivalent to
the solution obtained from solving the full model with the nonlinear boundary condition (2.2.4)
replaced by

∂c

∂x
(1, t) = −αc(1, t).

.
Large β solution for case B

Here, assume β � 1 and let ε = 1/β. Then, consider the following perturbation expansion
about the small parameter ε:

c(1, t) = c0(1, t) + εc1(1, t) +O(ε2). (2.5.12)

Substituting this expression into (2.5.3) and equating powers of ε gives

c0(1, t) = 1,

c1(1, t) = −α
∫ t

0

kB(t− τ) dτ, (2.5.13)
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cn(1, t) = (−1)nα

∫ t

0

kB(t− τ)
[
c1(1, τ) + 1

]n−2
dτ, n ≥ 2. (2.5.14)

Note that (2.5.13) may be solved analytically: taking Laplace transforms, using the convolution
theorem and re-arranging yields

c̄1(1, s) = −αk̄B(s)

s
.

Taking inverse Laplace transforms and using (2.5.2) gives

c1(1, t) = −αL−1

{ √
s cosh(

√
s) + µ sinh(

√
s)

s3/2
[√
s sinh(

√
s) + µ cosh(

√
s)
]} .

Again, it may readily be shown that no branch points exist and so the residue theorem can be
used to calculate this inverse Laplace transform. The poles are given by

s3/2 = 0 and
√
s sinh(

√
s) + µ cosh(

√
s) = 0.

Note that this is the same transcendental equation that appears in the derivation of the VIE, and
as before, setting

√
s = iλ gives rise to (2.5.5), i.e.

µ cos(λ)− λ sin(λ) = 0.

There is a pole of order 2 at s = 0 and infinitely many simple poles at sn = −λ2
n for n ∈ N,

where λn are the roots of (2.5.5). Using L’Hôpital’s rule, the resulting residues are

Res
s=0

= 1 +
1

µ
,

Res
s=sn

= −
2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

] .
Then, applying the residue theorem gives

c1(1, t) = −α

(
1 +

1

µ
−
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

]) .
This expression for c1(1, t) may be substituted into (2.5.14) which can then be solved numer-
ically to obtain cn(1, t) for n ≥ 2. Thus, from (2.5.12), the solution when β � 1 is given
by

c(1, t) = 1− α

β

(
1 +

1

µ
−
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

])

+
∞∑
n=2

(−1)nα

βn

∫ t

0

kB(t− τ)
[
c1(1, τ) + 1

]n−2
dτ.

(2.5.15)
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It is verified in Appendix B that, to first-order, the solution when β � 1 is equivalent to the
solution obtained from solving the full model with the nonlinear flux boundary condition (2.2.4)
replaced by

∂c

∂x
(1, t) = −α

β
.

.
Small t solution for case B

In order to derive a solution for c(1, t) at early times, it is necessary to first examine the behaviour
of kB(t) for t� 1. Recall that

kB(t) =
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λn cos(λn) + (µ+ 1) sin(λn)
.

Similarly to case A, the current form of this expression is not desirable for the following analysis
since t appears on the numerator of the exponent. Thus, using the corollary and lemma shown
on page 41, the governing equations are re-characterised such that a new, more convenient form
of the VIE may be obtained. From the governing equations, it is clear that

f(x) = 1,

φ1(t) = c(0, t),

φ2(t) = c(1, t),

F (t, c(0, t)) = −µ(1− c(0, t)),

G(t, c(1, t)) = − αc(1, t)

1 + βc(1, t)
.

Now, θ(x, t) is calculated for x = 0 and x = ±1:

θ(0, t) =
1√
4πt

(
1 + 2

∞∑
m=1

e−m
2/t

)
=

1

2
kA(t),

θ(±1, t) =
1√
4πt

(
2e−1/4t + 2e−9/4t + 2e−25/4t + · · ·

)
= g(t),

where

g(t) =
1√
πt

∞∑
m=1

e−(2m−1)2/4t. (2.5.16)

Thus, using Corollary 2.1 and Lemma 2.2, the following coupled VIEs are derived:

c(0, t) = 1 +

∫ t

0

µkA(t− τ)
[
1− c(0, τ)

]
− 2g(t− τ)

αc(1, τ)

1 + βc(1, τ)
dτ, (2.5.17)

c(1, t) = 1 +

∫ t

0

2µg(t− τ)
[
1− c(0, τ)

]
− kA(t− τ)

αc(1, τ)

1 + βc(1, τ)
dτ. (2.5.18)
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Corollary 2.1 (Corollary 7.3.2 from [52])

For piecewise-continuous f and for continuous F and G, the solution u of the problem

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

∂u

∂x
(0, t) = F (t, u(0, t)), t > 0,

∂u

∂x
(1, t) = G(t, u(1, t)), t > 0,

has the form

u(x, t) = w(x, t)− 2

∫ t

0

θ(x, t− τ)F (τ, φ1(τ)) dτ + 2

∫ t

0

θ(x− 1, t− τ)G(τ, φ2(τ)) dτ,

where

w(x, t) =

∫ 1

0

[
θ(x− ζ, t) + θ(x+ ζ, t)

]
f(ζ) dζ,

θ(x, t) =
∞∑

m=−∞

K(x+ 2m, t),

K(x, t) =
1√
4πt

e−x
2/4t,

if and only if φ1(t), φ2(t) are piecewise-continuous functions that satisfy

φ1(t) = w(0, t)− 2

∫ t

0

θ(0, t− τ)F (τ, φ1(τ)) dτ + 2

∫ t

0

θ(−1, t− τ)G(τ, φ2(τ)) dτ,

φ2(t) = w(1, t)− 2

∫ t

0

θ(1, t− τ)F (τ, φ1(τ)) dτ + 2

∫ t

0

θ(0, t− τ)G(τ, φ2(τ)) dτ.

Lemma 2.2 (Lemma 2.2 from [53])

For 0 ≤ x ≤ 1 and t ≥ 0,

w1(x, t) =

∫ 1

0

θ(x− ζ, t) + θ(x+ ζ, t) dζ = 1.
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1 3  1 3 5 5

Figure 2.5.2: Schematic drawing illustrating the area under the curve e−x
2/4t and an approximation to

this area using lower (left) and upper (right) Riemann sums.

Note that (2.5.18) is an alternative form of the VIE given by (2.5.3), and in this new form, it is
particularly clear that the VIEs from cases A and B are equivalent in the limit as µ→ 0.

Now, (2.5.17) and (2.5.18) are used to derive a solution for c(1, t) at early times. Recall that
in case A, Riemann sums were employed to deduce that kA(t) ∼ 1/

√
πt as t → 0. Here, a

similar approach is used to examine the behaviour of g(t) for t � 1. A lower bound for g(t)

may be obtained by using lower Riemann sums to approximate the area under the curve e−x2/4t

(Fig. 2.5.2, left):

2
∞∑
n=1

e−(2n−1)2/4t >

∫ ∞
1

e−x
2/4t dx.

Using the substitution u = x2/4t to evaluate the integral gives

2
∞∑
n=1

e−(2n−1)2/4t >
√
πt erfc

(
1

2
√
t

)
,

and it follows from (2.5.16) that

g(t) >
1

2
erfc

(
1

2
√
t

)
. (2.5.19)

To obtain an upper bound for g(t), the area under the curve e−x2/4t is approximated using upper
Riemann sums (Fig. 2.5.2, right):

e−1/4t + 2
∞∑
n=2

e−(2n−1)2/4t <

∫ ∞
0

e−x
2/4t dx =

√
πt,

by using the substitution u = x2/4t to evaluate the integral. Adding e−1/4t to both sides of this
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equation and re-arranging yields

g(t) <
1

2

(
1 +

1√
πt
e−1/4t

)
. (2.5.20)

Now, (2.5.19) and (2.5.20) can be combined to obtain

1

2
erfc

(
1

2
√
t

)
< g(t) <

1

2

(
1 +

1√
πt
e−1/4t

)
.

For t� 1,

erfc

(
1

2
√
t

)
=

2
√
t√
π
e−1/4t (1− 2t+ · · · ) ≈ 0,

since the exponential term dominates and rapidly decays. Thus, for small t

0 < g(t) <
1

2
,

and using the upper bound,

g(t) ∼ 1

2
as t→ 0.

Now, consider the following expansions in t:

c(0, t) = a1 + a2t
1/2 + a3t+ a4t

3/2 + a5t
2 +O(t5/2), (2.5.21)

c(1, t) = b1 + b2t
1/2 + b3t+ b4t

3/2 + b5t
2 +O(t5/2), (2.5.22)

where higher-order terms (compared with case A) have been included in order to demonstrate
the dependence of the solution on µ. First, (2.5.21) and (2.5.22) are substituted into (2.5.17).
Using the simplified expressions for kA(t) and g(t) and taking a series expansion of(

1 + β
[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
])−1

about τ = 0 gives

a1 + a2t
1/2 + a3t+ a4t

3/2 + a5t
2 +O(t5/2)

= 1 +

∫ t

0

µ√
π

(t− τ)−1/2
[
1− a1 − a2τ

1/2 − a3τ − a4τ
3/2 − a5τ

2 −O(τ 5/2)
]

− α
[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
]

×
[

1

b1β + 1
− b2β

(b1β + 1)2
τ 1/2 +

(b2
2 − b1b3)β2 − b3β

(b1β + 1)3
τ +O(τ 3/2)

]
dτ.

Multiplying out the brackets yields
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a1 + a2t
1/2 + a3t+ a4t

3/2 + a5t
2 +O(t5/2)

= 1 +
µ√
π

[
(1− a1)I1 − a2I2 − a3I3 − a4I4 − · · ·

]
− α

[
b1

b1β + 1
I5 +

b2

(b1β + 1)2
I6 +

(b1b3 − b2
2)β + b3

(b1β + 1)3
I7 + · · ·

]
,

(2.5.23)

where

I1 =

∫ t

0

(t− τ)−1/2 dτ = 2t1/2,

I2 =

∫ t

0

(t− τ)−1/2τ 1/2 dτ =
π

2
t,

I3 =

∫ t

0

(t− τ)−1/2τ dτ =
4

3
t3/2,

I4 =

∫ t

0

(t− τ)−1/2τ 3/2 dτ =
3π

8
t2,

I5 =

∫ t

0

1 dτ = t,

I6 =

∫ t

0

τ 1/2 dτ =
2

3
t3/2,

I7 =

∫ t

0

τ dτ =
1

2
t2,

are easily evaluated using simple integration, substitution and integration by parts. Substituting
these expressions into (2.5.23) and equating powers of t gives

a1 = 1,

a2 = 0,

a3 = − αb1

b1β + 1
, (2.5.24)

a4 =
2α(2µb2

1β + 2µb1 −
√
πb2)

3
√
π(b1β + 1)2

. (2.5.25)

Now, similarly, (2.5.21) and (2.5.22) are substituted into (2.5.18) to obtain

b1 + b2t
1/2 + b3t+ b4t

3/2 + b5t
2 +O(t5/2)

= 1 +

∫ t

0

µ
[
1− a1 − a2τ

1/2 − a3τ − a4τ
3/2 − a5τ

2 −O(τ 5/2)
]

− α√
π

(t− τ)−1/2
[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
]

×
[

1

b1β + 1
− b2β

(b1β + 1)2
τ 1/2 +

(b2
2 − b1b3)β2 − b3β

(b1β + 1)3
τ

−(b2
1b4 − 2b1b2b3 + b3

2)β3 + 2(b1b4 − b2b3)β2 + b4β

(b1β + 1)4
τ 3/2 +O(τ 2)

]
dτ,
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and multiplying out the brackets yields

b1 + b2t
1/2 + b3t+ b4t

3/2 + b5t
2 +O(t5/2)

= 1 + µ
[
(1− a1)I5 − a2I6 − a3I7 − · · ·

]
− α√

π

[
b1

b1β + 1
I1 +

b2

(b1β + 1)2
I2

+
(b1b3 − b2

2)β + b3

(b1β + 1)3
I3 +

(b2
1b4 − 2b1b2b3 + b3

2)β2 + 2(b1b4 − b2b3)β + b4

(b1β + 1)4
I4 + · · ·

]
.

Substituting the expressions for I1 to I7 and equating powers of t gives

b1 = 1,

b2 = − 2α√
π(β + 1)

,

b3 =
α2

(β + 1)3
,

b4 = − 4α3(π − 4β)

3π3/2(β + 1)5
,

b5 =
α4(π − (4 + 3π)β + 6β2) + αµπ(β + 1)6

2π(β + 1)7
.

Then, from (2.5.24) and (2.5.25), it follows that

a3 = − α

β + 1
,

a4 =
4α(µ(β + 1)2 + α)

3
√
π(β + 1)3

.

Thus, from (2.5.21) and (2.5.22), the solutions when t� 1 are given by

c(0, t) = 1− α

β + 1
t+

4α(µ(β + 1)2 + α)

3
√
π(β + 1)3

t3/2 −O(t2),

c(1, t) = 1− 2α√
π(β + 1)

t1/2 +
α2

(β + 1)3
t− 4α3(π − 4β)

3π3/2(β + 1)5
t3/2

+
α4(π − (4 + 3π)β + 6β2) + αµπ(β + 1)6

2π(β + 1)7
t2 −O(t5/2).

(2.5.26)

As expected, the solute concentration depends on µ, although this dependence is relatively weak
with µ first appearing in the third and fourth terms of the solutions at x = 0 and x = 1, re-
spectively. Intuitively, the dependence on µ is slightly more significant at x = 0 since this is
where mass transfer takes place across the fluid-air interface. Also, it is noted that the solution
at x = 1 is identical to the small t solution derived in case A, up to and including the t3/2 term,
thus implying that the models are equivalent for t � 1. Since the initial condition is the same
for each model and the generation of a concentration gradient at x = 0 is limited by the rate of
diffusion, for early times the rate of mass transfer at x = 0 will be approximately zero and, as
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previously described, the models are equivalent in the limit as µ→ 0.

Steady-state solution for case B

For this case, where the solute can cross the fluid-air interface, it is clear that the solution as
t→∞ will be a function of x, since the solute is replenished as it is metabolised and therefore
will not fully deplete. To derive this non-trivial solution, the steady diffusion equation is solved
subject to (2.2.3B) and (2.2.4). Integrating the steady diffusion equation twice with respect to x
and then applying (2.2.3B) results in

c(x,∞) = Ax+
A

µ
+ 1, (2.5.27)

where A is a constant of integration. Applying (2.2.4) gives a quadratic equation in A which
may be solved using the quadratic formula to obtain

A =
−µ(β + 1)− α(µ+ 1)±

√[
µ(β + 1) + α(µ+ 1)

]2 − 4αβµ(µ+ 1)

2β(µ+ 1)
,

where either the positive or negative root should be chosen such that c(x,∞) > 0.

2.5.3 Numerical method for solving the VIEs

As in case A, product integration methods are applied to derive an implicit numerical scheme
for solving (2.5.3). Recall that the VIE is given by

c(1, t) = 1− α
∫ t

0

∞∑
n=1

σne
−λ2n(t−τ) c(1, τ)

1 + βc(1, τ)
dτ,

where σn is a constant defined as

σn =
2
[
λn cos(λn) + µ sin(λn)

]
λn cos(λn) + (µ+ 1) sin(λn)

.

With the approximation

c(1, τ)

1 + βc(1, τ)
≈ c(1, tj+1)

1 + βc(1, tj+1)

over [tj, tj+1], and replacing t by ti = i∆t, where i = 1, 2, . . . , T such that T∆t is the final time
of interest, the VIE can be re-written as follows:

c(1, ti) ≈ 1− α
i−1∑
j=0

(∫ tj+1

tj

∞∑
n=1

σne
−λ2n(ti−τ) dτ

)
c(1, tj+1)

1 + βc(1, tj+1)
.
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Performing the integration with tj = j∆t yields∫ tj+1

tj

∞∑
n=1

σne
−λ2n(ti−τ) dτ =

∞∑
n=1

σn
λ2
n

(
e−λ

2
n∆t(i−j−1) − e−λ2n∆t(i−j)

)
,

so then

c(1, ti) ≈ 1− α
i−1∑
j=0

[
∞∑
n=1

σn
λ2
n

(
e−λ

2
n∆t(i−j−1) − e−λ2n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)
.

Note that

i−1∑
j=0

[
∞∑
n=1

σn
λ2
n

(
e−λ

2
n∆t(i−j−1) − e−λ2n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)

=

[
∞∑
n=1

σn
λ2
n

(
1− e−λ2n∆t

)] c(1, ti)

1 + βc(1, ti)

+
i−2∑
j=0

[
∞∑
n=1

σn
λ2
n

(
e−λ

2
n∆t(i−j−1) − e−λ2n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)
,

so an approximation to c(1, ti) may be obtained by finding the roots, ci, of the following implicit
equation:

ci + α

[
∞∑
n=1

σn
λ2
n

(
1− e−λ2n∆t

)] ci
1 + βci

= 1− α
i−2∑
j=0

[
∞∑
n=1

σn
λ2
n

(
e−λ

2
n∆t(i−j−1) − e−λ2n∆t(i−j)

)] cj+1

1 + βcj+1

.

Similarly to case A, in order to obtain the small β solution to first order, the VIE given by (2.5.8)
must be solved. Derived using the same method as in §2.4.3, the following explicit Euler scheme
can be used to provide an approximation of the first order term from the small β solution:

c1(1, ti) ≈ −α∆t
i−1∑
j=0

kB(ti − tj)
[
c1(1, tj)− c0(1, tj)

2
]
.

As in case A, a sensitivity study was performed to determine the optimal values of ∆t, the
spacing between consecutive time points, and N , the finite number of terms at which the infinite
sums are truncated, using the highest and lowest values of α, β and µ considered in the next
section. For both the implicit and explicit numerical methods, ∆t = 1 × 10−3 and N = 100

were found to provide an acceptable level of accuracy.
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2.5.4 Comparing the solution of the VIE with the approximate solutions

Similarly to case A, the solution of the VIE is compared with the approximate solutions derived
in §2.5.2 over the following parameter ranges:

α = 0.01, 0.1, 1, 10, 100,

β = 0.01, 0.1, 1, 10, 100,

µ = 0.01, 0.1, 1, 10, 100.

First, the solution of the VIE given by (2.5.3) is generated for various values of α, as illustrated
in Fig. 2.5.3. As in case A, the rate at which the solution decreases from the initial condition
increases with increasing α. In this case, the steady-state solution varies depending on the rate
at which the solute is both supplied and metabolised. Using α = 10, β = 1 and µ = 1 as an
example, Fig. 2.5.4 confirms that the solution of the VIE does indeed approach the steady-state
solution.

Next, the solution of the VIE is generated for various values of µ. Recall that µ is the ratio
of the rate of mass transfer across the fluid-air interface and the rate of diffusion, and in the limit
as µ → 0, the solution from case B is equivalent to the solution from case A. From Fig. 2.5.5,
it is clear that the solution of the VIE is not heavily dependent on the value of µ at early times,
in agreement with the small t solution given by (2.5.26). As µ increases, and the boundary
condition at x = 0 behaves more like a constant source of solute, the steady-state value that the
solution approaches also increases.

Figs. 2.5.6 and 2.5.7 compare the solution of the VIE with the small and large β solutions,
respectively, for various values of β. As in case A, the agreement between the solution of the
VIE and the small β solution improves as β decreases, and the agreement between the solution
of the VIE and the large β solution improves as β increases. As expected, for all values of β the
approximations become more accurate as higher order terms are added to the solutions.

Fig. 2.5.8 compares the solution of the VIE with the small t solution for 0 ≤ t ≤ 1.
It is unsurprising that, as t increases, the agreement between the solution of the VIE and the
approximate solution deteriorates, since the latter is only valid when t � 1. Note that when
α = β = µ = 1, the small t solution given by (2.5.26) is equal to

c(1, t) = 1− 0.5642t1/2 + 0.1250t+ 0.0064t3/2 + 0.2447t2 −O(t5/2).

Thus, for these parameter values, the contribution of the t2 term is larger than that of the previous
two terms, explaining the dramatic difference in the behaviour of the approximate solution when
this term is included. The inset plot highlights that the agreement between the solution of the
VIE and the small t solution is very good within the region of validity, where the solutions are
shown for 0 ≤ t ≤ 0.1
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Figure 2.5.3: Solution to the VIE from case B for various values of α with β = µ = 1, showing the
dependence of the solute concentration at the cell surface, c(1, t), on the non-dimensional parameter α.

Figure 2.5.4: Comparing the solution to the VIE from case B and the steady-state solution, with α = 10
and β = µ = 1.
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Figure 2.5.5: Solution to the VIE from case B for various values of µ with α = β = 1, showing the
dependence of the solute concentration at the cell surface, c(1, t), on the non-dimensional parameter µ.
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Figure 2.5.6: Comparing the solution to the VIE from case B with the small β solution for various values
of β, with α = µ = 1.



CHAPTER 2. STATIC MODEL 52

Figure 2.5.7: Comparing the solution to the VIE from case B with the large β solution for various values
of β, with α = µ = 1. Note that when β = 1, the large β solution to second order is equal to 1, i.e. the
large β solution to leading order, so the red and blue lines in the upper plot are overlapping.
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Figure 2.5.8: Comparing the solution to the VIE from case B with the small t solution for 0 ≤ t ≤ 1,
with α = β = µ = 1. The inset plot highlights the good agreement between the solutions for 0 ≤ t ≤ 0.1.
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2.6 Discussion

In this section, some limitations of the model developed in this chapter are addressed and the
utility of the model is discussed, with simple but useful relationships being derived to aid in the
set-up of experiments.

2.6.1 Model limitations

It is important to acknowledge that, whilst the results in this chapter provide valuable insight
into the relationships between various model parameters, these results are only relevant to the
specific conditions that are described by this particular model. Therefore, the application of these
results is somewhat limited by the number of assumptions that are made during the development
of the mathematical model, and in order to represent different experimental conditions, it would
be necessary to redefine the model equations and revisit the analysis outlined in this chapter.

In this model, it is assumed that solute transport is governed solely by diffusion, but it should
be noted that not all experiments are performed under completely static conditions; for example,
fluid movement could be introduced through the use of shakers, rockers or stirrers. In such cases,
there would also be an advective component to solute transport and so the governing equations
would need to be adjusted to account for this.

Initially, it is assumed that the solute is uniformly distributed throughout the fluid, since typ-
ically the solute is mixed with the cell culture medium prior to the beginning of the experiment.
However, if the solute was to be added to the fluid at the start of the experiment, the solute would
not yet be evenly dispersed and so the initial condition would need to be amended to account for
this.

In this chapter, it is assumed that the thickness of the cell layer is significantly smaller than
the depth of the fluid, so solute metabolism is represented by a flux boundary condition at the
base of the petri dish. This is only valid if the cell region has a negligible volume, as is the case
when the cells are in a monolayer formation. However, if the petri dish contained a 3D structure
of cells, such as within a scaffold or spheroid, it would be more appropriate to represent the cell
region as a separate domain within the model. Furthermore, it is assumed that the cells occupy
the entire base of the petri dish; however, if the cells were only present on a portion of the base
of the dish, the one-dimensionality of the model would no longer be viable.

It is also assumed that solute metabolism is governed by M-M kinetics, but there are a vast
array of mechanisms by which the cells might interact with the solute, depending on the cell
type and solute under consideration; for example, rather than being metabolised by the cells via
M-M or other kinetics, the solute may instead bind to receptors on the surface of the cells. To
represent such interactions, the boundary condition at the base of the petri dish would need to
be adjusted by replacing the M-M reaction term with an appropriate expression relating to the
kinetics of interest.
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In this model, it is assumed that the solute does not interact with the walls of the petri dish,
which are further assumed to be impermeable. In reality, the walls of the petri dish may be
permeable to gases such as O2, and may be fabricated from a material that facilitates absorption
or adsorption (surface binding) of the solute. To represent such interactions, additional boundary
conditions would need to be implemented at the walls of the petri dish and it would be necessary
to solve the model in a higher dimension.

Finally, it is reiterated that the semi-analytical small and large β solutions that are derived
in §2.4.2 and §2.5.2 are only applicable under the specific conditions on β, and should not be
applied in general.

2.6.2 Utility of the model

Whilst the full solutions for cases A and B may be found by solving the VIEs (2.4.3) and (2.5.3)
numerically using the implicit methods outlined in §2.4.3 and §2.5.3, respectively, these so-
lutions alone would not provide a detailed insight into the relationships between key model
parameters. The approximate solutions derived in §2.4.2 and §2.5.2 highlight the dependency
of the cell surface solute concentration on the non-dimensional parameters α, β and µ, and can
be used to provide useful information about the cell culture environment without requiring the
implementation of complicated numerical techniques; this would be particularly useful for ex-
perimental researchers with a limited understanding of the mathematical methods used in this
chapter.

In cases where it is known that β is either small or large, the semi-analytical solutions given
by (2.4.10) and (2.4.14) for case A, or (2.5.11) and (2.5.15) for case B, may be used to quickly
provide information about the solute concentration at the cell surface. In cases where the solute
concentration at early stages of the experiment is of importance, the small t solutions given by
(2.4.19) for case A, or (2.5.26) for case B, may be used to infer how changes in key parame-
ters influence the solution at early times. Similarly, in cases where the non-zero steady-state
solute concentration is of interest, the solution given by (2.5.27) for case B may be used to eas-
ily compute the steady-state solute concentration, given that the values of the non-dimensional
parameters α, β and µ are known.

In order to fulfil the aim of aiding in the set-up of experiments, the results presented in this
chapter may be used to answer the following key questions:

• How much solute has been metabolised at each stage of the experiment?

• How long does it take for the cell surface solute concentration to reach steady-state?

• How can the experiment be configured to ensure that the solute concentration at the cell
surface remains above a desired concentration for a certain amount of time?
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In dimensional parameters, the total amount of solute that has been metabolised in a given time
may be calculated by integrating the M-M reaction term as follows:

M(T ) = A

∫ T

0

Vmaxc(d, t)

Km + c(d, t)
dt, (2.6.1)

whereM(T ) (mol) is the total amount of solute that has been metabolised in the time of interest,
T (s), andA (m2) is the area covered by the cells. In order to make use of the solutions presented
in this chapter, it is necessary to non-dimensionalise (2.6.1) using the scalings

c = c0c
∗, t =

d2

D
t∗,

to obtain

M∗(T ∗) =

∫ T ∗

0

αc∗(1, t∗)

1 + βc∗(1, t∗)
dt∗, (2.6.2)

whereM∗(T ∗) = M(T )/Adc0 is the non-dimensional amount of solute that has been metabolised
in the non-dimensional time of interest, T ∗ = TD/d2. Generally, M∗(T ∗) is calculated first by
numerically computing c∗(1, t∗) and then performing the integration. However, recall that when
β is either small or large, the M-M term can be reduced to linear kinetics, so under these condi-
tions (2.6.2) may be approximated as

M∗(T ∗) ≈


∫ T ∗

0

αc∗(1, t∗) dt∗, β � 1∫ T ∗

0

α

β
dt∗, β � 1

.

When β � 1, M∗(T ∗) may be evaluated by replacing c∗(1, t∗) by the small β solutions (2.4.10)
and (2.5.11), for cases A and B, respectively, and performing the integration to obtain

M∗(T ∗) ≈ α

(
∞∑
n=1

2 sin(κn)
[
1− e−κ2nT ∗]

κ2
n [κn cos(κn) + (α + 1) sin(κn)]

+O(β)

)
, (2.6.3)

for case A, and

M∗(T ∗) ≈ α

(
µT ∗

αµ+ α + µ

+
∞∑
n=1

2
[
µ cos(ξn)− ξn sin(ξn)

][
1− e−ξ2nT ∗]

ξ2
n

[
(αµ+ α + µ− ξ2

n) cos(ξn)− ξn(2 + α + µ) sin(ξn)
] +O(β)

)
,

(2.6.4)

for case B. When β � 1, solute metabolism is approximately constant and equal to

M∗(T ∗) ≈ α

β
T ∗, (2.6.5)
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for both cases A and B. Thus, the non-dimensional amount of solute that has been metabolised
may be approximated by (2.6.3), (2.6.4) and (2.6.5), under certain parameter regimes. These
expressions can easily be re-dimensionalised to provide an approximation for the number of
moles of solute metabolised by simply multiplying by Adc0, i.e.

M(T ) = Adc0M
∗(T ∗),

recalling that d (m) is the depth of the fluid and c0 (mol m−3) is the initial concentration of the
solute within the fluid.

In non-dimensional parameters, the time taken for the solute concentration at the cell surface
to reach a desired concentration, cD(d, t) (mol m−3), may be obtained via

c∗(1, t∗) = c∗D(1, t∗), (2.6.6)

where c∗D(1, t∗) = cD(d, t)/c0 is the non-dimensional desired cell surface solute concentra-
tion. Generally, this equation would be solved by first numerically computing c∗(1, t∗), but if
it is known that β is either small or large, c∗(1, t∗) may be replaced by the approximate so-
lutions derived in §2.4.2 and §2.5.2, for cases A and B, respectively. Thus, the approximate
non-dimensional time taken to reach a desired cell surface solute concentration may be deter-
mined by solving (2.6.6) for t∗, with c∗(1, t∗) replaced by (2.4.10), (2.4.14), (2.5.11) or (2.5.15)
depending on the parameter regime under consideration. The time in seconds can then be easily
obtained by re-dimensionalising t∗ by simply multiplying by d2/D.

Note that to calculate how long it takes for the cell surface solute concentration to reach
steady-state, c∗D(1, t∗) may be replaced by the cell surface solute concentration as t → ∞. In
case B, this may be calculated via (2.5.27), but recall that in case A, where the solute cannot
cross the fluid-air interface and is therefore not replenished, the steady-state solute concentration
is simply zero. In this special case, the time taken to reach steady-state may be calculated by
solving

c∗(1, t∗) = 0,

or equivalently,

M∗(T ∗) = 1,

since the solute will be fully depleted when the amount of solute metabolised is equal to the
initial amount of solute.

Finally, in order to ensure that the cell surface solute concentration remains above a desired
amount for a specified duration of time, the model parameters must be chosen such that the
following inequality is satisfied:

c∗(1, t∗) > c∗D(1, t∗). (2.6.7)
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To summarise, the results presented in this chapter may be used to answer commonly asked
questions as follows:

• How much solute has been metabolised after a certain amount of time?

→ Use (2.6.3), (2.6.4) or (2.6.5) to approximate M∗(T ∗), then multiply by Adc0.

• How long does it take for the cell surface solute concentration to reach a desired amount?

→ Use (2.4.10), (2.4.14), (2.5.11) or (2.5.15) to approximate c∗(1, t∗), solve (2.6.6) for
t∗, then multiply by d2/D.

• How can the experiment be configured to ensure that the cell surface solute concentration
remains above a desired amount for a certain length of time?

→ Use (2.4.10), (2.4.14), (2.5.11) or (2.5.15) to approximate c∗(1, t∗) and ensure that
(2.6.7) is satisfied by adjusting the values of α, β and/or µ accordingly.

The simple relationships derived in this section may readily be used to guide the design of ex-
periments by providing researchers with information on how to tailor experimentally controlled
parameters, such as initial solute concentration and fluid depth, in order to achieve a certain cell
culture environment. For example, understanding the rate of depletion of the solute could aid in
the selection of the initial solute concentration or help to determine the optimal time points at
which to replenish the solute, if this were necessary. This information would be invaluable in
streamlining the set-up of experiments in terms of both time and use of resources.



Chapter 3

Modelling fluid flow and solute transport
in a dynamic in vitro cell culture system

Whilst static cell culture methods remain an important tool for in vitro experimentation, the
inclusion of fluid flow is essential for accurately representing the in vivo environment. As de-
scribed in Chapter 1, a wide variety of bioreactor systems have been developed that incorporate
fluid flow with the aim of providing cells with more physiologically relevant culture conditions.
However, the addition of fluid flow invites new challenges, particularly in relation to shear stress
levels and solute transport limitations. In their native environment, cells that are exposed to fluid
flow will be subject to some level of shear stress, i.e. the tangential force imposed on the cells
by the flow of the fluid. This is often essential for regulating key cellular functions, but if arti-
ficially high levels of shear stress are generated in in vitro devices, this can be damaging to the
cells. Also vital for maintaining a healthy cell culture is an adequate supply of oxygen (O2) and
nutrients, as well as the presence of realistic concentration gradients. Thus, in order to control
the in vitro environment such that cells are cultured under the most appropriate conditions, it is
imperative to gain an understanding of the fluid dynamics and solute transport within flow-based
cell culture systems. Mathematical models can be useful for characterising quantities of inter-
est that are often difficult to obtain experimentally, and can provide insight into how the device
should be configured in order to obtain the desired cell culture environment.

This chapter begins with a brief summary of a selection of studies available in the literature
that use mathematics to describe the conditions within various in vitro cell culture systems. A
description of the mathematical equations that are required to characterise the fluid flow and so-
lute transport within a flow-based device is then provided. These equations are used to develop
a computational model of the environment within a commercially available bioreactor system,
and the results of the model are presented for a range of input parameter values. Finally, sim-
ple relationships are derived to predict solute concentrations prior to experimentation, with the
aim of allowing researchers with a limited knowledge of mathematics to use the results of the
computational model to set up their experiments in an optimal manner.

59
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3.1 Existing models from the literature

There are an increasingly large number of mathematical and computational models available
in the literature that describe different cell culture techniques and the environment to which
cells are exposed within in vitro systems. Many reviews can be found detailing models that
have been developed for a wide range of applications, including characterising cell growth in
monolayer and 3D formations [54], modelling cell seeded scaffolds under static and dynamic
conditions [30], describing the cell culture environment within microfluidic devices [29], and
using modelling techniques to aid in toxicity testing [55]. Of particular relevance to the work in
the remainder of this thesis are models that characterise the fluid flow and solute transport within
perfusion bioreactors; here, a few examples are briefly discussed, although it is acknowledged
that this does not represent a comprehensive or extensive selection of models of this type.

One of the greatest advantages of mathematical modelling is that it can aid in the design of
experimental set-up. In order to provide a strategy for determining an optimal cell culture envi-
ronment, Shipley et al. [56] developed a mathematical model of fluid flow and O2 transport in a
hollow fibre bioreactor. Valid for all O2 concentrations, a numerical model of O2 uptake by the
cells provides graphical results that can be interpreted in order to select the geometrical features
and operating conditions of the bioreactor that allow the required O2 levels to be maintained. In
the special case when O2 concentrations are high, an analytical approach yields equations that
offer a greater insight into the relationships between O2 concentration and bioreactor set-up.
The analytical results were validated against the numerical model with strong agreement within
the regions of applicability, and case studies were presented to demonstrate how the results of
the mathematical model may be utilised to create an optimal culture environment for cell types
with a high or low O2 requirement.

Mathematical modelling is also useful in predicting quantities that are difficult or even im-
possible to measure experimentally. Allen et al. [57] developed a mathematical model to de-
scribe O2 transport and uptake in a simple parallel-plate perfusion bioreactor system, designed
to enable the formation of steady-state O2 concentration gradients. The mathematical model
was used to predict the formation of such gradients for a range of input flow rates and inlet O2

concentrations, with analytical and numerical techniques being employed to describe O2 uptake
for high and low concentrations, respectively. The model predictions were found to be in good
agreement with experimental measurements of outlet O2 levels.

A further benefit of mathematical models is their ability to provide insight into the transport
of multiple solutes over an extended time period, as illustrated by Hsu et al. [58]. Here, a
mathematical model was developed to simulate a three day experiment in a cylindrical perfusion-
based cell culture chamber that was designed to provide control over shear stress levels and
improve solute transfer to the cells. The model was used to investigate the effects of cell surface
O2 concentrations and shear stress levels on the production of albumin and ammonia, and the
consumption of glucose and glutamine. Experimental measurements of albumin concentration
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were found to be in good agreement with model predictions.
In addition to predicting concentration gradients, mathematical models can be used for the

optimisation of bioreactor geometry prior to experimentation. Vozzi et al. [59] designed a
gradient-generating microfluidic bioreactor system for the purpose of toxicity testing. The sys-
tem consists of two inlets followed by a serpentine-shaped circuit of microchannels that facil-
itate fluid mixing, with the channels converging to connect the flow circuit to the cell culture
chamber. Prior to fabrication of the device, a computational model was developed to optimise
the geometry of the flow circuit such that smooth concentration gradients would be established
in the cell culture chamber. The model was then used to estimate these gradients for various
diffusion coefficients and a fixed input flow rate. Using a different coloured dye in each inlet,
experiments were performed to visualise the generation of a concentration gradient in the cell
culture chamber, the results of which correlated well with model predictions.

Mathematical modelling can also be used to design a novel bioreactor device, as demon-
strated by Mazzei et al. [60]. With the aim of producing a generic perfusion system that can be
used with existing cell culture protocols, the modular chamber featuring an inlet and an outlet
has dimensions based on the size of a standard microwell. Prior to fabrication of the device,
a mathematical model was developed to study the fluid dynamics and O2 transport within the
chamber, for various chamber heights. Upon analysing the cell surface O2 concentrations and
shear stress levels, an optimal chamber height was chosen as the best compromise between
lowering shear stress-induced damage to the cells and ensuring a sufficient supply of O2. A
prototype was then manufactured to test the performance of the system, and it was found that a
build-up of air bubbles caused turbulent flow within the chamber, leading to unpredictable lev-
els of shear stress. To eliminate these issues, the bioreactor was redesigned with a sloping roof
and larger outlet to facilitate the removal of bubbles. The mathematical model was then used to
calculate the O2 concentrations, shear stress levels and flow speeds at the cell surface for various
input flow rates. The bioreactor developed here (the MCmB) is an early prototype version of the
commercially available Kirkstall cell culture systems.

With the aim of investigating the relationships between bioreactor geometry, O2 delivery to
the cells and flow-induced shear stress, Mattei et al. [61] developed mathematical models of fluid
flow and O2 transport within three devices. As well as the MCmB, two simple parallelepiped
channels of different heights were considered, with the height of the channel varied over an
order of magnitude to compare the environment within microfluidic and millifluidic cell culture
systems. A cell-seeded hydrogel was included at the base of each device, the size of which
was based on calculations to determine the minimum volume and density of a physiologically
relevant 3D cell structure. The mathematical models were solved computationally to evaluate
the flow profiles and O2 concentrations within each of the bioreactors in order to assess if it is
possible to achieve a balance between suitable shear stress and sufficient O2 supply so that cell
viability can be maintained.
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Most relevant to this study, Pedersen et al. [62] also developed mathematical models of fluid
flow and solute transport within three perfusion bioreactor systems: an internally developed
device consisting of a cell culture compartment housed between two fluid channels, and the
commercially available RealBio and QV900 devices. Model predictions of O2 concentrations
and shear stress levels at the cells, as well as the time taken for the distribution of a test solute
to reach steady-state, were used to determine which bioreactor was most suitable for the culture
of cell-seeded alginate beads. After further investigations to test a range of input flow rates and
inlet O2 concentrations, the QV900 was identified as the most successful system.

Even from this small selection of studies from the literature, it is evident that a diverse array
of perfusion bioreactors exist for use across a wide range of applications. A common approach is
for mathematics to be employed alongside experimentation, where models are often developed
under a limited set of input parameters that describe an individual study. Whilst there is no doubt
that this can provide invaluable information for optimising or predicting the specific situation
at hand, there is typically little scope for generalisation of the model results. An alternative
approach, and one that may prove useful to a wider audience, is to develop a mathematical
model under a more comprehensive set of conditions; if multiple parameter combinations are
tested, patterns and trends should emerge to provide a general overview of the behaviour of the
device. This could promote a more widespread utilisation of the mathematical model, since the
results could be interpreted and adapted to suit a range of experimental set-ups. It is important
to remember that the goal of this type of modelling is ultimately to aid experimental researchers
who likely have limited expertise in the field of mathematics. Thus, the accessibility of the
models must be considered, and where possible, simple equations should be provided that allow
experimentalists to make use of the results without requiring an in-depth understanding of the
complicated underlying mathematics.

3.2 Modelling fluid flow and solute transport in an arbitrary
bioreactor device

In this chapter, mathematical models are developed to characterise the environment within a
specific bioreactor device for a variety of input parameters. However, in theory, the governing
equations used to describe the fluid dynamics and solute transport should be applicable in any
flow-based cell culture system; these equations are presented here.

3.2.1 Fluid dynamics

In vitro cell culture is typically performed using a culture medium consisting of multiple compo-
nents, such as nutrients or growth factors, which may vary depending on the desired experimen-
tal conditions. In the literature, it is widely assumed that this medium has properties consistent



CHAPTER 3. DYNAMIC MODEL 63

with water, i.e. it is considered to be an incompressible Newtonian fluid with constant density
and viscosity [29]. Under this assumption, the flow velocity and pressure within a bioreactor
device can be described via the continuity equation and Navier-Stokes equations, namely

∇ · u = 0, (3.2.1)

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u, (3.2.2)

where u (m s−1) is the velocity field, ρ (kg m−3) is the fluid density, p (Pa) is the pressure and
µ (Pa s) is the dynamic viscosity.

3.2.2 Solute transport

As well as the fluid dynamics, it is also of interest to characterise the transport of solutes that are
present in the culture medium. Solutes can be naturally occurring within the fluid, or manually
added to fulfil the purpose of the experiment; examples of commonly considered solutes include
O2, vital for maintaining healthy cells, or drugs such as paracetamol (APAP), widely used for
in vitro toxicity studies. Applicable to solutes present in culture medium, a common approach
in the literature is to adopt the dilute assumption, where it is assumed that if a fluid contains
multiple solutes, their concentrations are sufficiently low such that the presence of one solute
does not affect the transport of another [29]. Under this assumption, solute transport in a flow-
based bioreactor system can be described by both convection and diffusion via

∂cj
∂t

+ (u · ∇) cj = Dj∇2cj, (3.2.3)

where cj (mol m−3) is the concentration of solute j and Dj (m2 s−1) is the isotropic diffusion
coefficient associated with solute j. Note that (3.2.3) assumes no interaction between the solute
and other components of the culture medium (e.g. proteins), but if necessary,Dj may be adjusted
to account for this process [63].

3.2.3 Interaction between the solute and the cells

Depending on the specific bioreactor design, cells may be cultured in various configurations,
such as in a monolayer or within 3D cellular structures. In either case, the cells will occupy some
volume within the bioreactor device, and where transport through the cell region is important,
this volume may be modelled as a separate domain. Fluid flow within the cell region, either in
the interstitium between cells in a monolayer, or through the pores of a 3D cellular structure,
can be characterised using Darcy’s law. This equation states that fluid flow through a porous
region is driven by differences in pressure, and is related to the permeability of the region and
the viscosity of the fluid. However, since the cell region is typically much wider than it is tall,
the pressure gradient in the vertical direction is negligible and so the presence of fluid flow in
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this domain is commonly neglected. In this case, transport of the solute and the interaction
between the solute and the cells within a 3D cell region may be described via the following
reaction-diffusion equation:

∂cj
∂t

= Dcell
j ∇2cj −R3D

j , (3.2.4)

where Dcell
j (m2 s−1) is the isotropic diffusion coefficient associated with solute j within the cell

region, and R3D
j (mol m−3 s−1) describes the bulk reaction between solute j and the cells. Note

that (3.2.4) assumes that the diffusion coefficient is constant throughout the cell region, but more
generally, Dcell

j may be replaced by a diffusivity tensor to account for any heterogeneity.
In certain cases, it is unnecessary to consider the cell region as a separate domain; for exam-

ple, when transport within the region is not considered important (an appropriate assumption if
the height of the cell region is negligible in comparison to its width, as is common in many cell
culture applications) or when the reaction of interest occurs only at the surface of the region, the
volume of this domain can reasonably be neglected. Instead, the interaction between the solute
and the cells may be represented by a flux boundary condition of the following form:

n · (−Dj∇cj + ucj) = R2D
j , (3.2.5)

where n is an outward facing normal and R2D
j (mol m−2 s−1), describing the surface reaction

between solute j and the cells, can be obtained by adjusting the components of the bulk reaction
term, R3D

j , to account for the reduction from a 3D cell region to a boundary. It should be noted
that both (3.2.4) and (3.2.5) do not account for cell proliferation, but these equations may be
amended to incorporate this process if it is considered to be of importance [30].

3.2.4 Solving the model

The governing equations for fluid flow and solute transport, coupled with appropriate initial and
boundary conditions, can be solved using a wide range of mathematical techniques. It may be
possible to take an analytical approach in cases where the bioreactor design is relatively sim-
ple; however, since many flow-based cell culture systems have complex geometries, it is often
necessary to proceed numerically. Whilst programming platforms may be used to implement
a variety of numerical methods, there are many commercially available software packages that
provide a user-friendly interface for solving systems of differential equations.

The mathematical models developed in this chapter are solved using the finite element
method, implemented via COMSOL Multiphysics®. This method is a popular choice for solving
problems where the computational domain is complicated, and involves discretising the original
domain into smaller parts called elements. The original equations, typically partial differential
equations, are approximated on each element by either algebraic equations or ordinary differen-
tial equations for steady-state or time-dependent problems, respectively. The simple equations
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from each element are then assembled into a system of equations that can readily be solved to
provide an approximate solution to the original, more complicated, problem. For further details
on the mathematics behind this method, the reader is referred to [64].

COMSOL Multiphysics® [65] offers a straightforward workflow for setting up and solving
sophisticated models using the finite element method. Once the geometry has been created or
imported, the governing equations and initial and boundary conditions can be applied using
the built-in physics-based modules or by manually defining mathematical expressions using
the equations-based interface. Then, the computational domain is discretised by generating an
automated or customised mesh to provide the elements on which the model equations will be
solved. Based on the model set-up, the software provides optimised solver settings as a default,
but these can be manually adjusted to suit the requirements of the user. The various settings used
to set-up and solve the models developed in this chapter will be discussed in a later section.

3.3 Modelling fluid flow and solute transport in the Kirkstall
QV900

In this section, the equations detailed in §3.2 are applied to describe the fluid flow and solute
transport within the QV900 cell culture system, shown in Fig. 3.3.1. This commercially avail-
able device is part of the Quasi Vivo® family of bioreactors developed by Kirkstall Ltd. (York,
UK) and is designed to provide cells with a physiologically relevant culture environment. Six
self-contained culture chambers reside within each QV900 tray, whose standard footprint al-
lows for easy integration with existing experimental techniques and equipment. Using flexible
tubing, the chambers may be connected together in various configurations, offering the option
to run experiments in series, enabling co-culture of different cell types, or in parallel, which
makes it possible to produce multiple replicates simultaneously within one experiment. At the

Figure 3.3.1: The Kirkstall QV900 cell culture system [1].
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base of each chamber, cells can be cultured in a 2D array on a cover slip, or alternatively 3D
structures of cells can be incorporated directly within this system. The modular design of the
QV900 makes this a versatile device where the user can easily adjust the set-up to generate tai-
lored conditions that satisfy the requirements of a wide range of experiments. Thus, in order to
demonstrate the full potential of this system, it is essential to gain an understanding of the cell
culture environment under different configurations; here, models are developed to describe the
fluid flow and solute transport within both single and connected chambers.

3.3.1 Single chamber models

By consulting the technical drawings of the QV900 system (supplied by Kirkstall Ltd.), a com-
putational representation of a single chamber was created in COMSOL Multiphysics® 5.3. For
the purpose of solving the models developed in this section, only the areas in which fluid can
flow are of interest and so a few simplifications were made in order to avoid generating an un-
necessarily complicated geometry. In reality, each chamber is comprised of a well covered by
a lid, but rather than including each of these as separate components, the computational geom-
etry simply represents the internal volume enclosed by the well and the lid. Additionally, the
chamber is not perfectly cylindrical, with the diameter marginally decreasing with decreasing
height, but this was assumed to be negligible and the diameter of the chamber is taken to be
constant. Furthermore, the cultured cells are supported by several pillars located at the base of
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Figure 3.3.2: Idealised 3D representation of a single QV900 chamber generated in COMSOL
Multiphysics® 5.3, showing the orientation of the x-, y- and z- axes with the origin located at the centre
of the base of the chamber (indicated by the red dot). Note that length scales on the axes are in metres.
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the chamber which are not included in the computational geometry. Assuming that the diameter
of the cell region is equal to that of the chamber, and since fluid flow within the cell region is
neglected as described in §3.2.3, it was assumed that no flow can occupy the volume beneath
the cell region and therefore the height of the pillars is subtracted from the total height of the
chamber. It is noted that, as a result of applying these assumptions and excluding the thickness
of the solid outer walls of the chamber, the external measurements of the device differ from
those of the geometry illustrated in Fig. 3.3.2, whose dimensions relate to the computational
domain only.

Since the QV900 chambers are designed to support cells cultured in both 2D and 3D forma-
tions, two models are developed to demonstrate different types of interaction between the solute
and the cells; the cell region is first represented by a separate domain (Model 1), and then by
a flux boundary condition applied at the base of the chamber (Model 2). For both methods of
modelling the cell region, the fluid dynamics and solute transport within the main body of the
chamber are described using the governing equations detailed in §3.2.1 and §3.2.2.

The fluid dynamics within the chamber are described using the continuity equation and
Navier-Stokes equations given by (3.2.1) and (3.2.2), where initially the fluid velocity is equal
to zero (u = 0). A steady parabolic velocity profile of the form u(r) = C(a2 − r2) is imposed
at the inlet, where a is the radius of the inlet and r is the radial distance. The experimentally
prescribed flow rate, Q, is used to derive the magnitude, C, of the inlet velocity profile:

Q = 2π

∫ a

0

u(r) r dr =⇒ C =
2Q

πa4
,

by performing the integration and rearranging. Zero normal stress (−pI+µ(∇u+(∇u)T )n = 0)
is prescribed at the outlet, and no slip and no penetration conditions (u = 0) are applied on the
chamber walls, meaning that the flow velocity on the walls of the chamber is equal to zero and
the fluid cannot pass through the chamber walls. When the cell region is modelled as a separate
domain where fluid flow is neglected, these conditions also apply to the interface between the
cell region and the main body of the chamber.

The transport of solute within the chamber is described using the convection-diffusion equa-
tion given by (3.2.3), where initially the solute concentration is equal to zero (cj = 0) in
the chamber, and where applicable, the cell region. At the inlet, a constant supply of solute
(cj = cinj ) is provided, and a convective flux (−n · Dj∇cj = 0) is applied at the outlet so
that the solute is driven out of the chamber via the fluid flow. Finally, a zero flux condition
(n · (−Dj∇cj + ucj) = 0) is imposed on the walls of the chamber which are assumed to be
impermeable.

The interaction between the solute and the cells is described differently depending on whether
the cell region is represented by a separate domain or by a flux boundary condition. As well as
demonstrating two methods for modelling the cell region, the reaction terms, R3D

j and R2D
j , in

the governing equations from §3.2.3, are replaced by two common reaction mechanisms in order
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to showcase how the models may be used to characterise different types of interaction between
the solute and the cells.

When the cell region is represented by a separate domain within which solute transport
is important, continuity of concentration is assumed at the interface between the cell region
and the main body of the chamber. The transport of solute within the cell region is described
using a reaction-diffusion equation of the form of (3.2.4), where the reaction term is replaced by
nonlinear saturable binding kinetics. This reaction mechanism is commonly used to characterise
the effect of drugs whose mode of action is governed by ligand-receptor interactions, and the
following equations enable tracking of the concentration of free and bound drug within the cell
region:

∂cj
∂t

= Dcell
j ∇2cj − kfj cj(Bj − bj) + krj bj, (3.3.1)

∂bj
∂t

= kfj cj(Bj − bj)− krj bj, (3.3.2)

where cj and bj (mol m−3) are the concentrations of free and bound drug, respectively, Bj

(mol m−3) is the local density of binding sites, and kfj (mol−1 m3 s−1) and krj (s−1) are the
forward and reverse reaction rates, respectively.

When the cell region is represented by a flux boundary condition applied at the base of
the chamber, the interaction between the solute and the cells is described by (3.2.5), where the
reaction term is replaced by Michaelis-Menten (M-M) kinetics:

n · (−Dj∇cj + ucj) =
m∑
i=1

V i
j cj

Ki
j + cj

, (3.3.3)

where m is the number of metabolic pathways involved in the reaction, Ki
j (mol m−3) is the

M-M constant for solute j and pathway i, and V i
j (mol m−2 s−1) is the maximum reaction rate

for solute j and pathway i. Recall from Chapter 2 that M-M kinetics are commonly used to
characterise the metabolism of O2 (via one metabolic pathway) or drugs such as APAP (via
three metabolic pathways).

For clarity, the governing equations, boundary conditions and initial conditions are sum-
marised for each single chamber model on pages 71 and 72 alongside a schematic drawing of
each computational geometry, where the cell region is represented by a separate domain (Fig.
3.3.4) and by a flux boundary condition (Fig. 3.3.5).

3.3.2 Connected chamber model

As well as characterising the cell culture environment in a single QV900 chamber, it is also
important to describe the fluid flow and solute transport in connected chambers (Model 3), and
in particular, to investigate the effect of metabolism on the solute concentration profiles observed
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Figure 3.3.3: Idealised 3D representation of two connected QV900 chambers generated in COMSOL
Multiphysics® 5.3, showing the orientation of the x-, y- and z- axes with the origin located at the centre
of the base of the first chamber (indicated by the red dot). Note that length scales on the axes are in
metres.

in downstream chambers. To create a computational representation of six chambers connected
in series, the existing geometry for a single chamber was duplicated and simple tubes were
generated to connect the chambers together; as an example, the computational domain for two
connected chambers is provided in Fig. 3.3.3.

As in §3.3.1, the computational domain represents a simplified version of the true QV900
device. In reality, a QV900 tray consists of two rows of three chambers that can be connected
together using flexible tubing (see Fig. 3.3.1). The complex arrangement of the connecting
tubes is difficult to replicate computationally and may vary from user to user, so for simplicity,
the chambers are instead arranged side by side and connected by a short straight tube of de-
creasing diameter. The length of the connecting tube was chosen to equal the distance between
two chambers on the QV900 tray (obtained from the technical drawings) but it is noted that,
in practice, the flexible tubing is longer than this and its length may differ between chambers
depending on the chosen order of connection. Furthermore, in the computational domain, it is
necessary for the connecting tube to vary in diameter since the diameter of the chamber outlet is
larger than that of the inlet. In reality, the connecting tube has a constant diameter since, with the
inclusion of the solid outer walls of the chamber, the outer diameters of the inlet and the outlet
are equal. Due to the various elements of choice regarding the geometry of the connecting tube,
a sensitivity study was conducted to ensure that the tube length and diameter would not signifi-
cantly impact the results; simulations were performed using connecting tubes with constant and
varying diameter of length 5 mm and 100 mm, and it was verified that altering these features
had a negligible effect on the quantities of interest.
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To develop a model of fluid flow and solute transport in six connected chambers, the same
governing equations, boundary conditions and initial conditions as described in §3.3.1 are ap-
plied to the connected chamber geometry. It is noted that, here, the inlet refers only to the
inlet of the first chamber and the outlet to that of the last chamber, and continuity of flux and
concentration is assumed at the interfaces between each chamber and the connecting tubes. In
connected chambers, it is of interest to monitor the depletion of the solute as the number of
chambers in the series increases, so here, the interaction between the solute and the cells is de-
scribed by M-M kinetics and the cell region in each chamber is represented by a flux boundary
condition. Using two chambers as an illustrative example, the governing equations, boundary
conditions and initial conditions as applied to chambers connected in series are summarised
on page 73, alongside a schematic drawing of the computational geometry for two connected
chambers (Fig. 3.3.6).

3.3.3 Numerical implementation

The fluid flow and solute transport parameters used for each model are provided in Table 3.1.
Simulations were performed over a range of input flow rates in order to gain an understanding
of the cell culture environment under various conditions, and for each model, representative
parameter values were chosen for appropriate solutes and cell types to illustrate the effects of
the different reaction mechanisms.

Although the fluid density and viscosity may vary depending on the composition of the cul-
ture medium, here it is assumed that the fluid is water and the values of ρ and µ have been
chosen accordingly. Recall that in Model 1, the diffusion coefficient within the cell region
is not necessarily the same as the diffusion coefficient in the main body of the chamber, but
here, for simplicity, it is assumed that the rates of diffusion in these domains are equal (i.e.
Dcell
j = Dj). Model 1 was used to describe the action of sirolimus on smooth muscle cells,

an immunosuppressant commonly used to coat arterial stents, whilst Model 2 was used to de-
scribe the metabolism of both APAP and O2. APAP is the most commonly used solute for liver
toxicity studies, and the parameter values relating to this solute were acquired from an in vivo

study carried out in humans. Since an adequate supply of O2 is vital for the majority of cell
cultures, metabolism of this solute was described for four different cell types commonly used in
in vitro studies: rat cardiomyocytes, human cardiomyocytes, rat hepatocytes and HepG2 cells.
Model 3 was used to describe the metabolism of O2 by rat cardiomyocytes only. Note that to
obtain the maximum metabolic rates in appropriate units, it was necessary to adjust the values
from the literature by multiplying the O2 parameters by the cell density, d, and dividing the
APAP parameters by the cell area, A.
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Model 1: Single chamber with cell region represented by a separate domain

Figure 3.3.4: Schematic drawing of the computational geometry for a single QV900 chamber
where the cell region is represented by a separate domain (not to scale). Here, Ω and Γ are used
to label domains and boundaries, respectively.

∇ · u = 0 in Ω1,

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u in Ω1,

∂cj
∂t

+ (u · ∇) cj = Dj∇2cj in Ω1,

∂cj
∂t

= Dcell
j ∇2cj − kfj cj(Bj − bj) + krj bj in Ω2,

∂bj
∂t

= kfj cj(Bj − bj)− krj bj, in Ω2,

with the following boundary conditions

u(r) =
2Q

πa2

(
1− r2

a2

)
on Γ1,

−pI + µ(∇u + (∇u)T )n = 0 on Γ2,

u = 0 on Γ3, Γ6,

cj = cinj on Γ1,

−n ·Dj∇cj = 0 on Γ2, Γ4, Γ5,

n · (−Dj∇cj + ucj) = 0 on Γ3,

and initial conditions

u = 0 in Ω1 at t = 0,

cj = 0 in Ω1, Ω2 at t = 0.
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Model 2: Single chamber with cell region represented by a flux boundary condition

Figure 3.3.5: Schematic drawing of the computational geometry for a single QV900 chamber
where the cell region is represented by a flux boundary condition. Here, Ω and Γ are used to label
domains and boundaries, respectively.

∇ · u = 0 in Ω1,

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u in Ω1,

∂cj
∂t

+ (u · ∇) cj = Dj∇2cj in Ω1,

with the following boundary conditions

u(r) =
2Q

πa2

(
1− r2

a2

)
on Γ1,

−pI + µ(∇u + (∇u)T )n = 0 on Γ2,

u = 0 on Γ3, Γ4,

cj = cinj on Γ1,

−n ·Dj∇cj = 0 on Γ2,

n · (−Dj∇cj + ucj) = 0 on Γ3,

n · (−Dj∇cj + ucj) =
m∑
i=1

V i
j cj

Ki
j + cj

on Γ4,

and initial conditions

u = 0 in Ω1 at t = 0,

cj = 0 in Ω1 at t = 0.
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Model 3: Connected chambers

Figure 3.3.6: Schematic drawing of the computational geometry for two connected QV900 cham-
bers where the cell region is represented by a flux boundary condition. Here, Ω and Γ are used to
label domains and boundaries, respectively.

∇ · u = 0 in Ω1,

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u in Ω1,

∂cj
∂t

+ (u · ∇) cj = Dj∇2cj in Ω1,

with the following boundary conditions

u(r) =
2Q

πa2

(
1− r2

a2

)
on Γ1,

−pI + µ(∇u + (∇u)T )n = 0 on Γ2,

u = 0 on Γ3, Γ4,

cj = cinj on Γ1,

−n ·Dj∇cj = 0 on Γ2,

n · (−Dj∇cj + ucj) = 0 on Γ3,

n · (−Dj∇cj + ucj) =
m∑
i=1

V i
j cj

Ki
j + cj

on Γ4,

and initial conditions

u = 0 in Ω1 at t = 0,

cj = 0 in Ω1 at t = 0.
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All models
Parameter Description Value Ref.

ρ Density of fluid 9.94× 102 kg m−3 [66]

µ Dynamic viscosity of fluid 6.89× 10−4 Pa s [66]

N Total number of cells 1.00× 105 ∗
A Area covered by the cells 2.01× 10−4 m2 †

Model 1 (solute = sirolimus, cell type = smooth muscle cells)
Parameter Description Value Ref.
Vcell Volume of a smooth muscle cell 1.50× 10−14 m3 [67]

h Height of cell region 7.46× 10−6 m ‡
DS Diffusion coefficient for sirolimus 2.50× 10−10 m2 s−1 [68]

cinS Inlet concentration for sirolimus 5.00× 10−3 mol m−3 ∗∗
kfS Forward reaction rate 2.00 mol−1 m3 s−1 [68]

krS Reverse reaction rate 5.20× 10−3 s−1 [68]

BS Density of binding sites 3.63× 10−1 mol m−3 [68]

Model 2 (solute = paracetamol, cell type = human liver cells)
Parameter Description Value Ref.
DAPAP Diffusion coefficient for APAP 6.00× 10−10 m2 s−1 [69]

cinAPAP Inlet concentration for APAP 0.40 mol m−3 [49]

K1
APAP Michaelis-Menten constant for pathway 1 6.89 mol m−3 [49]

K2
APAP Michaelis-Menten constant for pathway 2 9.70× 10−2 mol m−3 [49]

K3
APAP Michaelis-Menten constant for pathway 3 3.03× 10−1 mol m−3 [49]

V 1
APAP Maximum metabolic rate for pathway 1 8.86× 10−2 mol m−2 s−1 [49]

V 2
APAP Maximum metabolic rate for pathway 2 1.02× 10−3 mol m−2 s−1 [49]

V 3
APAP Maximum metabolic rate for pathway 3 3.41× 10−4 mol m−2 s−1 [49]

Model 2 and Model 3 (solute = oxygen, cell type = various)
Parameter Description Value Ref.

d Cell density 4.97× 108 m−2 ††
DO2 Diffusion coefficient for O2 3.00× 10−9 m2 s−1 [60]

cinO2
Inlet concentration for O2 0.21 mol m−3 [60]

KO2
Michaelis-Menten constant 6.60× 10−4 mol m−3 [60]

VO2

Maximum metabolic rate for human cardiomyocytes 9.81× 10−8 mol m−2 s−1 [70]

Maximum metabolic rate for rat cardiomyocytes 4.01× 10−8 mol m−2 s−1 [70]

Maximum metabolic rate for rat hepatocytes 2.39× 10−8 mol m−2 s−1 [71]

Maximum metabolic rate for HepG2 cells 1.17× 10−8 mol m−2 s−1 [71]

Table 3.1: Parameter values. ∗Representative cell number chosen following discussions with experi-
mental researchers. †Area covered by the cells calculated by assuming the cells occupy the entire base of
the chamber. ‡Height of cell region calculated by multiplying the total number of cells by the volume of
a smooth muscle cell, then dividing by the area covered by the cells (h = NVcell/A). ∗∗Nominal value
chosen for inlet sirolimus concentration. ††Cell density calculated by dividing the total number of cells
by the area covered by the cells (d = N/A).
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After inputting the parameter values, the governing equations, boundary conditions and ini-
tial conditions for fluid flow and solute transport were applied using the COMSOL built-in
‘Laminar Flow’ and ‘Transport of Diluted Species’ modules, respectively. To ensure that turbu-
lent effects could be neglected, a range of typical Reynolds numbers were calculated via

Re =
ρUL

µ
,

where U (m s−1) and L (m) represent a typical flow speed and length scale, respectively. Taking
U as the maximum inlet velocity across a range of input flow rates, and taking L as a range
of values from the inlet diameter to the height of the chamber to account for the various length
scales in the system, Re ≈ 3−600. Thus, given that the typical Reynolds numbers are relatively
low, the assumption of laminar flow was found to be appropriate. Similarly, to anticipate the
dependency of the fluid dynamics on the effects of both convection and diffusion, a range of
typical Péclet numbers were obtained via

Pe =
UL

D
.

Again, considering a range of input flow rates and length scales, this parameter was found to
vary from O(103) to O(105). Therefore, since the typical Péclet numbers are large, the solute
transport is expected to be convection-dominated.

Following preliminary simulations that indicated symmetric solutions, each geometry was
simplified by implementing a symmetry boundary condition on the y, z plane passing through
the origin; this approach significantly reduced computation time since it required solving only
half of the original problem to obtain the same results. Each simplified geometry was then
discretised using the built-in mesh settings available in COMSOL.

To determine the optimal mesh density in terms of computation time and solution accuracy,
a sensitivity study was conducted using the connected chamber geometry from Model 3. Sim-
ulations were performed with an input flow rate of Q = 100 µl min−1 using each of the nine
built-in mesh settings, and the quantities of interest were calculated and compared for consecu-
tive meshes. Here, the quantities of interest were identified as the shear stress and O2 concen-
tration profiles at the cell surface, as well as mass flux, both overall and within each chamber.
The solutions were deemed of sufficient accuracy when the difference between the results for
consecutive meshes was less than 1%, and of the nine available settings, three were found to be
suitable for producing accurate solutions under this metric: ‘Finer’, ‘Extra fine’ and ‘Extremely
fine’ (see Table 3.2). Where cell surface shear stress and O2 concentration profiles are the quan-
tities of most interest, any of these mesh settings are considered acceptable. However, where
flux calculations are of importance (as will be demonstrated later in this chapter), the preferred
mesh settings are ‘Extra fine’ or ‘Extremely fine’ since the percentage difference is 3 orders of
magnitude lower than the difference between ‘Finer’ and ‘Extra fine’.
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Mesh setting Cell surface shear Cell surface O2 Flux at inlet
‘Finer’ to ‘Extra fine’ 0.11 0.83 0.82

‘Extra fine’ to ‘Extremely fine’ 0.30 0.08 7.43× 10−4

Table 3.2: Percentage difference in cell surface shear stress, cell surface O2 concentration and mass flux
at the inlet when comparing results between consecutive mesh settings. These results have been provided
for chamber 1 as an example, with similar errors calculated for the remaining chambers.

For each model, ‘Extremely fine’ was chosen as the final mesh setting for discretising the
main body of the chamber(s), inlet and outlet tubes, and where applicable in Model 3, the con-
necting tubes. Recall that the geometry for Model 1 contains an additional domain to represent
the cell region, and due to its aspect ratio, it was appropriate to generate an additional swept
mesh to discretise this domain. For each model, the final number of mesh elements and the
typical time taken to perform a single simulation are listed in Table 3.3.

Each model was solved using the optimised solver settings provided by COMSOL, since
the software is designed to automatically select the most robust and least computationally inten-
sive settings as default. For each model, a segregated approach was used to divide the problem
into two steps that were solved sequentially: first, the fluid flow equations were solved using
the iterative generalised minimal residual method (GMRES) in combination with the algebraic
multigrid preconditioner, then the solute transport equations were solved using the iterative GM-
RES solver.

Whilst each model can be used to produce time-dependent solutions, the results presented
in this chapter relate only to steady-state, since many experiments span over the course of
several days to allow for the establishment of equilibrium. To obtain an indicative timescale
for this, time-dependent simulations were performed using the single chamber geometry from
Model 2 with rat cardiomyocytes as an example cell type, for input flow rates of Q = 100 and
1000 µl min−1. Patterns of fluid flow and O2 distribution as well as the cell surface shear stress
and O2 concentration profiles were compared at different time points, and it was found that for
the fluid flow, steady-state was achieved within one minute for both input flow rates, whereas
the time taken for the O2 transport to reach steady-state was more variable, ranging from 5 to
20 hours for the highest and lowest input flow rates. It is stressed that the timescales mentioned
here are specific to the input parameters under which these simulations were performed, and that
the time taken to achieve equilibrium will vary from model to model.

Model Number of mesh elements Typical simulation time
1 2,155,540 21 mins

2 2,152,947 23 mins

3 11,861,343 2 hrs 24 mins

Table 3.3: Number of mesh elements and typical simulation time for each model using a quad core
Intel® Core™ i7-6700 CPU @ 3.40GHz.
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3.4 Results

In this section, results are shown for various input flow rates from Q = 100− 1000 µl min−1 to
represent a range of typical operating speeds offered by commonly used pumps. The fluid flow
and solute transport results are discussed in turn, and are displayed on pages 82 to 88, and 89 to
94, respectively. First, the fluid dynamics are characterised by describing the streamlines, flow
speeds and cell surface shear stresses in single and connected chambers, and the relationships
between input flow rate and cell surface flow speed and shear stress are investigated. Then,
the distributions and concentrations of the solutes of interest are described both throughout the
chamber and at the cell surface in single and connected chambers, and the relationship between
input flow rate and cell surface solute concentration is investigated. To be clear, ‘cell surface’
does not refer to the surface of a single cell; when the cell region is represented by a separate
domain, this refers to the surface of the cell region, i.e. Γ6 in Fig. 3.3.4, and when the cell
region is represented by a flux boundary condition, ‘cell surface’ refers to the surface on which
this condition is imposed, i.e. the base of the chamber, Γ4 in Fig. 3.3.5.

3.4.1 Fluid dynamics

Figs. 3.4.1 - 3.4.5 illustrate the flow environment within a single chamber, showing the stream-
lines, flow speed and cell surface shear stress for each input flow rate. Each streamline represents
a typical path that a particle may follow as it travels through the chamber (upper plots). These
are coloured by the magnitude of the flow velocity, but since the flow speeds at the inlet and out-
let are considerably higher than those observed elsewhere in the chamber, the scale of these plots
proves unhelpful for determining how the flow speed varies with chamber depth. To demonstrate
this more clearly, the flow speed is also shown on a logarithmic scale (middle plots). The lower
plots show the flow-induced shear stress on the cell surface, calculated by multiplying the shear
rate by the dynamic viscosity of the fluid, i.e.

τ = µ

(
∂u

∂z
+
∂v

∂z

)
.

.
Streamlines

For the lowest input flow rate of Q = 100 µl min−1, small recirculation zones can be ob-
served at the periphery of the base of the chamber. Similar streamlines are generated for
Q = 200 µl min−1, with an additional small recirculation zone appearing just beneath the
inlet; referred to as lip vorticity, this flow separation is analogous to solutions of the classical
problem of flow over a backward-facing step [72]. This is more prominent for larger input flow
rates of Q = 300− 500 µl min−1, where the flow patterns begin to change dramatically. For
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Q = 300 µl min−1, the streamlines are similar to those for the lowest flow rates, but for Q =

400 µl min−1, the recirculation zone below the inlet is larger and another large zone of recircula-
tion zone can be observed near the base of the chamber. Upon increasing to Q = 500 µl min−1,
it appears that all recirculation zones have merged together to form one large zone of recircula-
tion. For the highest input flow rates of Q = 600 − 1000 µl min−1, the flow patterns are more
predictable, with one large recirculation zone taking up the majority of the chamber; in particu-
lar, the streamlines do not appear to change substantially from Q = 700 µl min−1 onwards. For
these input flow rates, the emergence of a dividing streamline seems to drive the recirculation of
fluid in the main body of the chamber, and the flow patterns are comparable to those generated
in the classical lid-driven cavity problem [73].

Flow speed

The pattern of the recirculation zones influences the ‘distribution’ of the flow speed, as illus-
trated in the logarithmic scale plots. For each input flow rate, the maximum flow speed is
located at the inlet, and the flow speeds throughout the remainder of the chamber decrease with
increasing chamber depth. Due to the no slip and no penetration conditions imposed on the
chamber walls and base, the flow speeds are equal to zero around the periphery of the chamber.
As expected, the maximum flow speed increases as input flow rate is increased.

Cell surface shear stress

For each input flow rate, the cell surface shear stress profile is governed by the flow patterns.
For the lowest input flow rates of Q = 100 − 200 µl min−1, the magnitude of the shear stress
across the cell surface increases from all sides of the chamber towards the maximum value lo-
cated at the centre. For Q = 300 µl min−1, where the flow patterns begin to differ considerably,
the distribution of shear stress across the cell surface is more complex with the maximum value
located near the centre, surrounded by an area of low shear stress, further surrounded by an area
of high shear stress. For Q = 400 µl min−1, the cell surface shear stress profile resembles those
observed for the lowest input flow rates, with the magnitude reaching a maximum value near
the centre of the cell surface and decreasing towards the chamber walls. Further increasing the
input flow rate does not appear to substantially alter the distribution of shear stress across the
cell surface, but the magnitude tends to increase as input flow rate is increased.

Relationship between input flow rate and cell surface flow speed and shear stress

Fig. 3.4.6 shows the nonlinear relationships between input flow rate and the maximum flow
speed (upper plot) and shear stress (lower plot) observed at the cell surface. As previously
described, due to the application of the no slip and no penetration conditions, the flow speed on
the cell surface is necessarily zero. Therefore, the ‘cell surface’ flow speed was calculated just
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above the cell surface at a height of z = h, the parameter used for the height of the cell region in
Model 1. It is clear that, in general, as input flow rate is increased, the maximum flow speed and
shear stress at the cell surface also increase, where the rate of increase is higher for higher input
flow rates. The exception to this trend is a dip observed atQ = 300 µl min−1, the input flow rate
where the flow patterns begin to change dramatically. These relationships could prove useful for
determining the required input flow rate for experiments in which the desired cell surface flow
speed or shear stress is known.

Connected chambers

Finally, Fig. 3.4.7 illustrates the streamlines (upper plots), flow speed (middle plots) and cell
surface shear stress (lower plots) in six connected chambers; as an example, these results are
shown for Q = 100 µl min−1, but similar trends can be observed for the remaining input flow
rates. The flow environment does not appear to change substantially from one chamber to the
next, so the results from the first chamber are applicable in all downstream chambers. Thus, if
the fluid dynamics are the quantity of most interest, it is only necessary to simulate the fluid flow
in a single chamber which is less computationally intensive.

3.4.2 Solute transport

First, results are discussed for the case where the interaction between the solute and the cells
is described by nonlinear saturable binding kinetics. It is noted that the graphical data obtained
from these simulations is omitted as it does not provide additional insight due to the triviality
of the results. For each input flow rate between Q = 100 − 1000 µl min−1, the distribution
of sirolimus is uniform; throughout the chamber, the concentration of free drug is equal to the
inlet concentration, i.e. cS = 5.00× 10−3 mol m−3, and the concentration of bound drug takes
the value bS = 0.24 mol m−3 throughout the cell region. This highlights that, for this type of
reaction kinetics, the steady-state solute concentration profile is not dependent on the choice of
input flow rate, and therefore this parameter will influence only the fluid dynamics and the time
taken for the system to reach equilibrium.

Results corresponding to the cases where the interaction between the solute and the cells is
described by M-M kinetics are displayed on pages 89 to 94. It is noted here that the scale on
each legend is not consistent across all figures: different scales were used for the purpose of
highlighting variations between each set of results that may not be discernable if the plots were
displayed on the same scale.
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Effect of input flow rate on solute distribution

Figs. 3.4.8 to 3.4.10 show the distribution of APAP throughout a single chamber (left plots)
and the cell surface APAP concentration profiles (right plots) for each input flow rate. Note
that although these results are specific to APAP, the trends are also applicable to other solutes;
since solute transport is dominated by convection, the distribution of solute is largely governed
by the fluid dynamics and so similar patterns can be observed for O2. For each input flow rate,
as the depth of the chamber increases, the solute concentration decreases from the maximum
value (equal to the inlet concentration) located at the top of the chamber. For the highest input
flow rates of Q = 700 − 1000 µl min−1, the distribution of solute throughout the majority of
the chamber is practically uniform, with the majority of the chamber exposed to high solute
concentrations.

It is perhaps surprising that the solute concentrations are so high for input flow rates of
Q = 700− 1000 µl min−1, given the flow patterns illustrated in Figs. 3.4.4 and 3.4.5. It seems
that a dividing streamline emerges, separating the fluid travelling from the inlet to the outlet and
the fluid recirculating in the main body of the chamber, and no streamlines appear to carry fluid
(containing solute) from the inlet into the recirculation zone. However, since the concentrations
in the majority of the chamber are high for these input flow rates, solute must cross the dividing
streamline. One explanation for this is that there may in fact exist streamlines that transport
solute directly from the inlet to the main body of the chamber, but the resolution used to display
the flow profiles is not sufficient to capture this. It is further noted that the streamlines are
illustrated on only the y, z plane through the centre of the chamber, and there could be 3D
effects that allow solute to enter the recirculation zone. Finally, although the system is strongly
convective, there will exist some level of diffusion, however small, that could account for some
solute crossing the dividing streamline.

The flow patterns also influence the distribution of solute across the cell surface. For low
input flow rates of Q = 100− 300 µl min−1, the maximum cell surface solute concentration is
located close to the inlet side of the chamber. Upon increasing to Q = 400 µl min−1, approxi-
mately half of the cell surface is exposed to the maximum cell surface solute concentration. For
Q = 500 µl min−1, the maximum cell surface solute concentration is located close to the outlet
side of the chamber, and further increasing the input flow rate does not appear to substantially
alter the distribution of solute across the cell surface. Whilst the distribution of solute is similar
for many of the input flow rates, the magnitude of the concentration profiles tends to increase
as input flow rate is increased. Clearly, for different solutes, the magnitude will also vary due to
differences in metabolism. Here, specific to APAP, the cell surface concentration is very low for
all input flow rates due to the high metabolic rates associated with this solute.
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Effect of metabolic rate on solute concentration

Fig. 3.4.11 shows the O2 concentration profiles throughout a single chamber (left plots) and at
the cell surface (right plots) for four different cell types. These results are shown for an input
flow rate of Q = 100 µl min−1 only, since the purpose here is to demonstrate the effect of
different rates of metabolism on the magnitude of the solute concentration. The distribution of
solute throughout the chamber and at the cell surface does not vary significantly between cell
type, since as previously discussed, this is largely governed by the fluid dynamics. However,
the magnitude of the concentration profiles does vary due to differences in the metabolic rates
exhibited by the various cell types. As expected, the solute concentration increases as the rate of
metabolism decreases, from human cardiomyocytes with the highest metabolic rate, to HepG2
cells with the lowest metabolic rate.

Relationship between input flow rate and cell surface solute concentration

Fig. 3.4.12 shows the relationships between input flow rate and the mean APAP concentration
(upper plot) and O2 concentration (lower plot) observed at the cell surface. For both solutes and
all cell types, it is clear that as input flow rate increases, the mean cell surface solute concen-
tration tends to increase. Corresponding to the input flow rates where the flow patterns change
considerably, an exception to this trend is observed forQ = 300−400 µl min−1 where the mean
cell surface solute concentration declines. These relationships could be utilised when configur-
ing the input flow rate for experiments in which the desired cell surface solute concentration is
known.

Connected chambers

Finally, Fig. 3.4.13 illustrates the distribution of O2 (upper plots) and the cell surface O2 con-
centration profiles (lower plots) in six connected chambers, for Q = 100 µl min−1. As shown
in §3.4.1, the fluid dynamics do not vary significantly between chambers, so as expected, the
distribution of solute throughout the chamber and at the cell surface is not substantially different
from one chamber to the next. However, the magnitude of the concentration in downstream
chambers decreases as chamber number increases due to metabolism of the solute by the cells.
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Figure 3.4.1: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots), magnitude of velocity through the centre of the chamber in a log scale (y, z plane, middle plots)
and magnitude of shear stress at the cell surface (y, x plane), for Q = 100− 200 µl min−1.
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Figure 3.4.2: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots), magnitude of velocity through the centre of the chamber in a log scale (y, z plane, middle plots)
and magnitude of shear stress at the cell surface (y, x plane), for Q = 300− 400 µl min−1.
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Figure 3.4.3: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots), magnitude of velocity through the centre of the chamber in a log scale (y, z plane, middle plots)
and magnitude of shear stress at the cell surface (y, x plane), for Q = 500− 600 µl min−1.
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Figure 3.4.4: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots), magnitude of velocity through the centre of the chamber in a log scale (y, z plane, middle plots)
and magnitude of shear stress at the cell surface (y, x plane), for Q = 700− 800 µl min−1.
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Figure 3.4.5: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots), magnitude of velocity through the centre of the chamber in a log scale (y, z plane, middle plots)
and magnitude of shear stress at the cell surface (y, x plane), for Q = 900− 1000 µl min−1.
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Figure 3.4.6: Relationships between input flow rate and maximum flow speed at the cell surface (upper
plot) and maximum shear stress magnitude at the cell surface (lower plot), with the inset plots highlighting
each relationship for Q = 100 − 400 µl min−1. Note that since the velocity is equal to zero on the cell
surface, the flow speed is evaluated just above the cell surface at a height of z = h.
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Figure 3.4.8: APAP concentration profiles through the centre of the chamber (y, z plane) and at the cell
surface (y, x plane), for Q = 100− 300 µl min−1 and cinAPAP = 0.4 mol m−3.
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Figure 3.4.9: APAP concentration profiles through the centre of the chamber (y, z plane) and at the cell
surface (y, x plane), for Q = 400− 600 µl min−1 and cinAPAP = 0.4 mol m−3.
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Figure 3.4.10: APAP concentration profiles through the centre of the chamber (y, z plane) and at the
cell surface (y, x plane), for Q = 700− 1000 µl min−1 and cinAPAP = 0.4 mol m−3.
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Figure 3.4.11: O2 concentration profiles through the centre of the chamber (y, z plane) and at the cell
surface (y, x plane) for different cell types, for Q = 100 µl min−1 and cinO2

= 0.21 mol m−3.
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Figure 3.4.12: Relationships between input flow rate and mean APAP concentration at the cell surface
(upper plot) and mean O2 concentration at the cell surface (lower plot), for cinAPAP = 0.4 mol m−3 and
cinO2

= 0.21 mol m−3, respectively.
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3.5 Discussion

In this section, both the advantages and challenges associated with mathematical modelling are
discussed. In particular, the utility of the results presented in this chapter is highlighted, with
simple but useful relationships being derived to predict solute concentrations with the aim of
guiding experimental set-up.

3.5.1 Utility of the models

One of the main advantages of mathematical modelling is that it can provide a prediction of the
outcomes of different experimental configurations so that devices may be set up efficiently, re-
ducing the need for a trial and error approach and thus saving time and resources. By providing
an understanding of how the input parameters impact the fluid dynamics and solute concentra-
tion profiles throughout the chambers, the mathematical models developed here offer insight
that would not be uncovered by experimentation alone. Analysis of the results shown in §3.4
highlights key observations that could prove useful when choosing the operating parameters for
the device. For example, it is clear that the choice of input flow rate is critical for controlling
the fluid environment within the chambers, since this parameter significantly influences the flow
patterns and speeds, as well as the cell surface shear stress profiles. The non-uniform distribu-
tion of these quantities throughout the chambers suggests that the spatial location of the cells
within the chamber could also be an important factor in designing experimental set-up. The
relationships between input flow rate and the quantities of interest observed at the cell surface,
including flow speed, shear stress and solute concentration, give an indication of the effect of
the choice of input flow rate on the conditions to which the cells are exposed. In particular,
the nonlinear behaviour displayed in Figs. 3.4.6 and 3.4.12 is not intuitive and is unlikely to
have emerged without the use of mathematical modelling. Furthermore, the results of the model
highlight that the rate of metabolism of the solute by the cells plays a vital role in determining
the solute concentration observed within the chamber, and it is apparent from Fig. 3.4.13 that
in connected chambers, the solute depletes as chamber number increases. This has important
implications for experimental configuration, suggesting that the metabolic capacity of the cells,
as well as the number of chambers, must be considered carefully if, for example, a minimum
solute concentration is to be maintained throughout the experiment.

Whilst there is no doubt that mathematics can help to provide invaluable information regard-
ing the environment within cell culture systems, the majority of researchers carrying out the
experiments, and who would therefore most benefit from this information, likely do not possess
the level of expertise required to develop and interpret a mathematical model. With this in mind,
it is helpful to highlight simple relationships that can be derived from the complicated mathe-
matics, that can be used independently of understanding how the model was developed. This
would allow experimentalists to gain some of the insight that mathematical modelling provides
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without requiring an in-depth knowledge of the mathematics itself. One of the major challenges
associated with maintaining a healthy cell culture is the adequate supply of nutrients, such as O2.
Therefore, the ability to quickly and easily predict cell surface solute concentrations would be
instrumental in effectively tailoring the inlet solute concentration in order to achieve the desired
experimental conditions. For each of the models considered in this chapter, simple mathematical
relationships that are applicable under certain conditions have been derived from the governing
equations for this purpose.

Predicting concentrations of free and bound drug in a single chamber

Here, equations are presented to provide information on how the drug partitions between the
free and bound states. This could prove useful in situations where it is important to find out how
much of the drug has bound to the cells; in an experimental setting, limitations of measurement
devices and techniques often dictate that only the total concentration of drug present within
the sample is acquired, rather than assessing the free and bound drug concentrations separately.
Therefore, expressions that account for the partitioning of the drug could provide additional
insight into quantities that may be impossible to obtain experimentally.

As discussed in §3.4.2, the steady-state concentrations of free and bound drug are constant,
with the free drug concentration equal to the inlet concentration, i.e.

cj = cinj . (3.5.1)

To derive an expression for predicting the steady-state bound drug concentration prior to ex-
perimentation or simulation, recall from (3.3.2) that the concentration of bound drug is tracked
via

∂bj
∂t

= kfj cj(Bj − bj)− krj bj.

At steady-state, the time derivative is equal to zero and rearranging this equation gives

bj =
Bjcj
kdj + cj

, (3.5.2)

where kdj = krj/k
f
j is the equilibrium dissociation constant. Thus, provided that the density

of binding sites and the rates of binding and unbinding are known, (3.5.1) and (3.5.2) may be
used to quickly calculate the concentrations of free and bound drug, respectively, at steady-state.
Clearly, the total concentration of drug, Tj , can be obtained by simply summing up the free and
bound drug concentrations, i.e.

Tj = cj + bj. (3.5.3)

If it is of interest to determine drug concentrations outwith steady-state, (3.5.3) can be used
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to derive expressions for predicting how the drug partitions between the free and bound states
prior to the establishment of equilibrium. First, it is assumed that binding occurs rapidly; this is
appropriate in cases where the rate of the reaction is significantly faster than the rate of diffusion
[74]. In this limit of rapid binding, a quasi-equilibrium is achieved between the free and bound
drug concentrations, where the concentration of bound drug can be approximated by

bj ≈
Bjcj
kdj + cj

. (3.5.4)

Substituting this expression into (3.5.3) and rearranging yields a quadratic equation in cj that
can be solved to obtain

cj ≈ −
1

2
(kdj +Bj − Tj) +

1

2

√
(kdj +Bj − Tj)2 + 4kdjTj. (3.5.5)

Thus, given that the density of binding sites and the rates of binding and unbinding are known,
(3.5.5) and (3.5.4) may be used to estimate how the drug partitions between the free and bound
states prior to equilibrium, provided that the total drug concentration has been either predicted
via simulation or experimentally measured. To predict the total drug concentration, the gov-
erning equations from §3.3.1 can be adapted to derive a reduced model in Tj . Recall that the
coupled partial differential equations for tracking the concentrations of free and bound drug are
given by

∂cj
∂t

= Dcell
j ∇2cj − kfj cj(Bj − bj) + krj bj,

∂bj
∂t

= kfj cj(Bj − bj)− krj bj.

Then, since Tj = cj + bj , combining these equations gives

∂Tj
∂t

= Dcell
j ∇2cj

= Dcell
j

(
∂2cj
∂x2

+
∂2cj
∂y2

+
∂2cj
∂z2

)
= Dcell

j

[
∂

∂x

(
∂cj
∂x

)
+

∂

∂y

(
∂cj
∂y

)
+

∂

∂z

(
∂cj
∂z

)]
= Dcell

j

[
∂

∂x

(
dcj
dTj

∂Tj
∂x

)
+

∂

∂y

(
dcj
dTj

∂Tj
∂y

)
+

∂

∂z

(
dcj
dTj

∂Tj
∂z

)]
= Dcell

j ∇ ·
(
dcj
dTj
∇Tj

)
= ∇ · (D∗j∇Tj),

where

D∗j = Dcell
j

dcj
dTj
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is an effective concentration-dependent diffusion coefficient. Substituting (3.5.4) into (3.5.3)
and differentiating with respect to cj yields

dTj
dcj
≈ 1 +

Bjk
d
j

(kdj + cj)2
,

and so the coupled equations for cj and bj may be replaced by the following single partial
differential equation in Tj:

∂Tj
∂t

= ∇ · (D∗j∇Tj), D∗j ≈
Dcell
j

1 +
Bjkdj

(kdj +cj)2

, (3.5.6)

where cj is given by (3.5.5). Here, the role of binding is accounted for through a reduced diffu-
sion coefficient, and it is noted that (3.5.6) simplifies to a simple diffusion equation for tracking
the concentration of free drug in the case of no binding. The solution to this reduced model
provides the total drug concentration which can then be used to predict the concentrations of
free and bound drug via (3.5.5) and (3.5.4), respectively.

Predicting steady-state cell surface solute concentrations in a single chamber

Here, an equation is presented to provide information on how varying the inlet concentration
will impact the solute concentration at the cell surface. Based on knowledge of the cell surface
solute concentration for a given inlet concentration, the cell surface solute concentration may be
predicted for a new inlet concentration, without the need for further simulations or experimen-
tation. This could be useful in situations where a researcher from an experimental background
wishes to use the results of a mathematical model to predict the outcome of an experiment, but
the results are presented using a different inlet concentration. Rather than having to adapt the
model, the proposed equation could be used to indicate how the results may have varied if a
different inlet concentration was used. Furthermore, such an equation could also prove useful
in situations where an experiment has been performed, but the solute concentrations observed
at the cell surface were not found to be appropriate. Then, rather than starting the experiment
again with different operating parameters, the proposed equation could be used to indicate how
the available experimental results may differ if the inlet concentration is changed.

The two main features of the cell surface solute concentration profile are the distribution
of solute, and the magnitude of the concentration. Clearly, the magnitude is governed by both
metabolism of the solute by the cells and the inlet concentration. As previously established, the
distribution of solute is largely influenced by the choice of input flow rate, but solute metabolism
also plays a role here. The cell surface solute concentration profile is only predictable when the
distribution of solute does not change, i.e. when both input flow rate and metabolic rate are
fixed. Recall from (3.3.3) that M-M reaction kinetics are described by the following nonlinear
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term:

Rj =
m∑
i=1

V i
j cj

Ki
j + cj

.

Clearly, the rate of metabolism is dependent on the concentration of solute available at the cell
surface. As shown in §3.4.2, the distribution of solute across the cell surface is not uniform and
so metabolism is variable, with cells at different locations metabolising the solute at different
rates. This means that the metabolic rate is not fixed, and the distribution of solute across the
cell surface will vary as inlet concentration is varied. However, if the same amount of solute
is metabolised across the entire cell surface, the distribution of solute will not vary as inlet
concentration is varied, as long as the input flow rate is fixed. It is noted that, if the cell surface
solute concentration is above a certain threshold (cj � Ki

j), it may be shown that the rate of
metabolism is approximately constant and equal to the maximum metabolic rate, i.e.

Rj ≈
m∑
i=1

V i
j when cj � Ki

j.

If this condition is satisfied, then varying the inlet concentration results in a variation of only the
magnitude of the concentration, with the distribution of the solute remaining unchanged. Since
the only variable is the inlet concentration, the change in magnitude must correspond to the
change in this parameter. Therefore, under the criteria that both input flow rate and metabolic
rate are fixed, if the cell surface solute concentration profile is known for a given cinj , the cell
surface solute concentration profile for any cin∗

j may be predicted via the following equation:

c∗j(y) ≈ cj(y) + ∆cinj , ∆cinj = cin
∗

j − cinj , (3.5.7)

where y is the axis through the centre of the cell surface from the inlet side to the outlet side
of the chamber. Here, c∗j(y) and cj(y) are the solute concentration profiles across the centre
of the cell surface corresponding to inlet concentrations of cin∗

j and cinj , respectively. Note that
this equation may be generalised to predict the solute concentration profile across the entire cell
surface, but for simplicity, only the profile across the centre of the cell surface is considered.

In theory, (3.5.7) could be used to predict the cell surface concentration profile of any solute
whose metabolism is approximately constant. For the parameters presented in Table 3.1, cj �
Ki
j is not satisfied for APAP, so in order to demonstrate the utility of (3.5.7), results are illustrated

for O2 only, using rat cardiomyocytes as an example cell type. When the solute is O2, the use
of (3.5.7) remains valid given that cO2 � KO2 , i.e. KO2/cO2 � 1. Fig. 3.5.1 shows the values
of KO2/cO2 calculated over a range of inlet concentrations for the lowest and highest input flow
rates of Q = 100 and 1000 µl min−1, where cO2 is taken to be the mean O2 concentration
across the cell surface. Here, it is noted that although KO2/cO2 � 1 is not satisfied for the
lowest inlet concentrations, especially for the lowest input flow rate, this condition is met for the
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Figure 3.5.1: Values of KO2/cO2 calculated over a range of inlet concentrations from cinO2
= 0.01 −

0.10 mol m−3 (left) and from cinO2
= 0.15− 1.00 mol m−3 (right), for the lowest and highest input flow

rates of Q = 100 and 1000 µl min−1.

majority of the parameter combinations. In particular, as previously discussed, the cell surface
O2 concentration increases with increasing input flow rate, so it follows that the assumption
of KO2/cO2 � 1 is more accurate as input flow rate increases. Therefore, based on these
calculations, it is expected that (3.5.7) will provide good predictions of the cell surface O2

concentration profile for most of the parameter values under consideration.
For an input flow rate of Q = 100 µl min−1, Fig. 3.5.2 compares the original simulated cell

surface O2 concentration profile for cinO2
= 0.21 mol m−3, and a new simulated cell surface O2

concentration profile when the inlet concentration is increased to cin∗
O2

= 0.30 mol m−3. Here, it
is clear that the distribution of O2 across the cell surface is indeed unchanged as inlet concentra-
tion is increased, but the magnitude of the cell surface O2 concentration varies by approximately
the change in inlet concentration. A prediction of the new cell surface O2 concentration profile
was made using (3.5.7) and displays excellent agreement with the simulated result, as shown by
the dashed line.

A metric by which to define the strength of the predictions can be obtained by integrating
(3.5.7) with respect to y over the diameter of the cell surface (−r < y < r). Performing the
integration and rearranging gives γ ≈ 1, where

γ =

∫ r
−r c

∗
j(y) dy −

∫ r
−r cj(y) dy

2r∆cinj
, (3.5.8)

and the proximity of γ to one indicates how accurate the prediction is. Fig. 3.5.3 shows the val-
ues of γ calculated over a range of new inlet concentrations from cin

∗
O2

= 0.01 − 1.00 mol m−3

for the lowest and highest input flow rates of Q = 100 and 1000 µl min−1, using cinO2
=

0.21 mol m−3 as the original inlet concentration. For the majority of these cases, γ ≈ 1, demon-
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Figure 3.5.2: Comparison between simulated cell surface O2 concentration profiles for the original
inlet concentration (cinO2

= 0.21 mol m−3) and a new inlet concentration (cin
∗

O2
= 0.30 mol m−3), for

Q = 100 µl min−1. The prediction obtained from (3.5.7) is illustrated by the dashed line.

Figure 3.5.3: Values of γ calculated over a range of new inlet concentrations from cin
∗

O2
= 0.01 −

1.00 mol m−3 for the lowest and highest input flow rates of Q = 100 and 1000 µl min−1, using cinO2
=

0.21 mol m−3 as the original inlet concentration.



CHAPTER 3. DYNAMIC MODEL 102

strating that (3.5.7) is valid for predicting the cell surface O2 concentration profile for various
combinations of input parameters. As expected, the strength of the predictions is weakest for
the lowest inlet concentrations where cO2 � KO2 is less likely to be satisfied, and is strongest
for the higher input flow rate where the assumption of cO2 � KO2 is more accurate.

As well as predicting the solute concentration profile across the cell surface, (3.5.7) can also
be used to predict the mean cell surface solute concentration by replacing cj(y) by c̄j , i.e.

c̄∗j ≈ c̄j + ∆cinj , ∆cinj = cin
∗

j − cinj , (3.5.9)

where c̄∗j and c̄j are the mean solute concentrations at the cell surface corresponding to inlet
concentrations of cin∗

j and cinj , respectively. Fig. 3.5.4 compares the simulated and predicted
mean cell surface O2 concentrations for cin∗

O2
= 0.01− 1.00 mol m−3, cinO2

= 0.21 mol m−3 and
Q = 100 and 1000 µl min−1. It is clear that (3.5.9) can be used to make accurate predictions
of the mean O2 concentration at the cell surface for parameters that satisfy cO2 � KO2 , and the
linear relationship between inlet concentration and mean cell surface O2 concentration within
the region of validity is highlighted.

Figure 3.5.4: Comparison between simulated and predicted mean cell surface O2 concentrations for
Q = 100 µl min−1 (left) and Q = 1000 µl min−1 (right).

Predicting steady-state cell surface solute concentrations in connected chambers

Here, an equation is presented to provide information on how the solute concentration varies at
the cell surface in connected chambers. As shown in §3.4.2, the solute concentration depletes
as chamber number increases as a consequence of metabolism of the solute by the cells. Since
an adequate supply of solute is often a limiting factor in the success of experiments, it would be
beneficial to obtain a relationship between the cell surface solute concentration profiles across
connected chambers. For this purpose, (3.5.7) is adapted to enable the prediction of the cell
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surface solute concentration in chamber n, based on knowledge of the cell surface solute con-
centration in chamber 1. This could be useful in situations where the solute concentration at the
cell surface has already been simulated or experimentally measured in a single chamber. Then,
rather than having to repeat perhaps difficult measurements in multiple chambers, or having to
perform further simulations using a more computationally intensive connected chamber geom-
etry, the proposed equation could be used to easily predict the cell surface solute concentration
in downstream chambers.

As demonstrated by (3.5.7), a known cell surface solute concentration profile can be used
to predict a new cell surface solute concentration profile when the inlet concentration is varied.
This concept can also be applied to chambers connected in series; assuming that metabolism
is approximately constant, the cell surface solute concentration profile in chamber n may be
predicted via the following equation:

cnj (y) ≈ c1
j(y) + ∆cinj , ∆cinj = cin

n

j − cin
1

j , (3.5.10)

where cnj (y) and c1
j(y) are the solute concentration profiles across the centre of the cell surface in

chamber n and chamber 1, respectively, and cinn

j and cin1

j are the inlet concentrations in chamber
n and chamber 1, respectively. The key difference between (3.5.7) and (3.5.10) is that, here,
the ‘new’ inlet concentration, i.e. the concentration at the inlet to a downstream chamber, is not
manually adjusted and is instead determined by the rate of metabolism. Therefore, in order to
make use of (3.5.10), a method for estimating cinn

j must first be derived.
At steady-state, as a consequence of mass conservation, the amount of solute leaving a cham-

ber must be equal to the difference between the amount of solute that entered the chamber and
the amount of solute that was metabolised by the cells. Considering the mass fluxes (mol s−1)
in chamber 1, the mass flux at the outlet must be equal to the mass flux at the inlet minus the
mass flux at the cell surface, i.e.∫

Aout

n ·
(
−Dj∇cout

1

j + uout
1

cout
1

j

)
dAout

=

∫
Ain

n ·
(
−Dj∇cin

1

j + uin
1

cin
1

j

)
dAin − α,

(3.5.11)

where cout1j and cin
1

j (mol m−3) are the solute concentrations at the outlet and inlet faces of
chamber 1, respectively,Aout andAin (m2) are the areas of the outlet and inlet faces, respectively,
and α represents the mass flux at the cell surface, i.e. the moles of solute that are metabolised
per second. Here, since metabolism is assumed constant,

α ≈
∫
Acells

m∑
i=1

V i
j dAcells = Acells

m∑
i=1

V i
j , (3.5.12)

where Acells (m2) is the area of the cell surface. Also at steady-state and due to conservation of
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mass, the amount of solute leaving one chamber must be equal to the amount of solute entering
the next chamber. Thus, the mass flux leaving chamber 1 must be equal to the mass flux entering
chamber 2, i.e. ∫

Aout

n ·
(
−Dj∇cout

1

j + uout
1

cout
1

j

)
dAout

=

∫
Ain

n ·
(
−Dj∇cin

2

j + uin
2

cin
2

j

)
dAin,

(3.5.13)

where cin2

j (mol m−3) is the solute concentration at the inlet face of chamber 2. Now, with α
given by (3.5.12), combining (3.5.11) and (3.5.13) gives∫

Ain

n ·
(
−Dj∇cin

2

j + uin
2

cin
2

j

)
dAin

≈
∫
Ain

n ·
(
−Dj∇cin

1

j + uin
1

cin
1

j

)
dAin − α.

(3.5.14)

A few simplifications can be made to (3.5.14) so that cin2

j may be quickly estimated. Firstly,
assuming the inlet concentrations are constant, the gradient of the solute concentration across
the face of each chamber inlet is equal to zero, i.e.

∇cin1

j = ∇cin2

j = 0.

This suggests that the diffusive components of the fluxes may be neglected, an appropriate as-
sumption in a convection-dominated system. Thus, (3.5.14) simplifies to

cin
2

j

∫
Ain

uin
2 · n dAin ≈ cin

1

j

∫
Ain

uin
1 · n dAin − α. (3.5.15)

Now, since the fluid dynamics do not vary substantially between connected chambers (as estab-
lished in §3.4.1), it is reasonable to assume that the velocity profiles at the inlet to each chamber
are the same, i.e. uin1

= uin
2 , and hence∫
Ain

uin
1 · n dAin =

∫
Ain

uin
2 · n dAin.

Then, (3.5.15) becomes

cin
2

j ≈ cin
1

j −
α∫

Ain
uin1 · n dAin

= cin
1

j −
α

Q
,

where Q is the input flow rate in m3 s−1. By repeating this process, it may readily be shown that
for n chambers,

cin
n

j ≈ cin
1

j −
(n− 1)α

Q
. (3.5.16)
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Therefore, the inlet concentration in chamber nmay be estimated using (3.5.16), and substituting
this expression into (3.5.10) gives

cnj (y) ≈ c1
j(y)− (n− 1)α

Q
. (3.5.17)

Thus, given that the cell surface solute concentration profile in chamber 1 is known, metabolism
is approximately constant, the diffusive fluxes at the inlet to each chamber are negligible and
the velocity profiles at the inlet to each chamber are the same, (3.5.17) may be used to predict
the cell surface solute concentration profile in chamber n. It is noted that this equation may
be generalised to provide a prediction of the solute concentration profile across the entire cell
surface, but for simplicity, only the profile across the centre of the cell surface is considered
here.

To demonstrate the utility of (3.5.17), results are presented for O2 using rat cardiomyocytes
as an example cell type, since it has already been established that the assumption of constant
metabolism is valid for a wide range of parameter values for this solute and cell type. Fig.
3.5.5 illustrates that the remaining assumptions are valid for an example input flow rate of Q =

100 µl min−1, and it has been verified that similar trends may be observed for other input flow
rates. First, the values for the total flux and the convective flux at the inlet to each chamber are
compared (Fig. 3.5.5, left). Since these values are not significantly different, it is reasonable
to assume that the diffusive component of the flux provides a minimal contribution to the total
flux and can therefore be neglected. Next, the velocity profiles at the inlet to each chamber
are compared (Fig. 3.5.5, right), and as expected, the fluid dynamics do not differ dramatically
between chambers.

Figure 3.5.5: Comparison of the total and convective fluxes at the inlet to each chamber (left) and
the velocity profiles along the diameter (from bottom to top) of each chamber inlet (right), for Q =
100 µl min−1.
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With all assumptions satisfied, (3.5.17) may now be used to provide predictions of the O2

concentration profiles at the cell surface in downstream chambers. For an inlet concentration of
cinO2

= 0.21 mol m−3, Fig. 3.5.6 displays the simulated cell surface O2 concentration profiles in
each chamber for a selection of input flow rates. Results beyond Q = 700 µl min−1 are omitted
since, as previously shown, increasing the input flow rate beyond this value does not substan-
tially alter the distribution of the solute. It is further noted that, although the amount of solute
metabolised in each chamber is the same across all input flow rates, the depletion of O2 reduces
as input flow rate increases as a consequence of more O2 being delivered to downstream cham-
bers. Thus, since the cell surface O2 concentration profiles do not vary considerably between
connected chambers for the higher input flow rates, the use of (3.5.17) may be more valuable
in cases where the depletion of solute is more apparent, such as for the lower input flow rates.
Predictions of the cell surface O2 concentration profiles in chambers 2 to 6 were made using
(3.5.17), as illustrated by the dashed lines in Fig. 3.5.6. For all input flow rates, agreement with
the simulated results is excellent, with the strongest predictions observed for the higher input

Figure 3.5.6: Comparison between simulated (solid lines) and predicted (dashed lines) cell surface O2

concentration profiles for cinO2
= 0.21 mol m−3 and Q = 100 µl min−1 (upper left), Q = 300 µl min−1

(upper right), Q = 500 µl min−1 (lower left) and Q = 700 µl min−1 (lower right).
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flow rates where the assumption of constant metabolism is more accurate. It has also been ver-
ified that, in a similar way to (3.5.9) for a single chamber, (3.5.17) allows for the prediction of
the mean cell surface O2 concentration in downstream chambers (data not shown).

Equations (3.5.7) and (3.5.17) may potentially be used in conjunction with one another, thus
increasing their usefulness. For example, a situation could arise where the cell surface solute
concentration in chamber 1, c1

j(y), has been simulated or experimentally measured for a given
inlet concentration. As demonstrated above, (3.5.17) can be used to obtain predictions of the
cell surface solute concentration in the remainder of the connected chambers. If the predicted
concentrations are found to be inappropriate for the purposes of the given experiment, it may be
necessary to alter the inlet concentration in the first chamber. In this scenario, (3.5.7) can be used
to predict how the cell surface solute concentration will vary in chamber 1 if the inlet concen-
tration is adjusted. This will provide a new c1

j(y) that can be used in (3.5.17) to obtain estimates
of the cell surface solute concentration in downstream chambers for the new inlet concentration,
without requiring any extra simulations or experimentation. Using this approach could greatly
reduce the amount of trial and error that is required to optimally configure experiments for which
the desired cell surface solute concentration is known.

3.5.2 Challenges associated with mathematical modelling

Although mathematics is clearly a valuable asset for aiding in the set-up of experiments, there are
also a number of challenges associated with modelling, namely in relation to parameter values
and model validation. The models presented in this chapter, as well as the simple relationships
derived in §3.5.1, depend on the knowledge of reliable parameter values that relate to physical
processes such as diffusion, binding and metabolism. Whilst such parameters are of key interest
from a mathematical perspective, they are rarely the main focus of experiments, so processes
such as diffusion are not often routinely measured. This means that limited data exists for
use in mathematical models, and it is common to find discrepancies in parameter values since
these are typically obtained from a variety of data sets where different measurement techniques
have been used under different experimental conditions. It is important to have confidence in
the accuracy of the input parameters, particularly if the model is to be used in a predictive
sense, since quantitative results will be affected by the values of parameters such as diffusion
coefficients and metabolic rates.

Intrinsically linked to the challenge of obtaining accurate parameter values is the problem
of model validation. In order to confidently use the mathematical model in a predictive ca-
pacity, the results must be validated by comparison with experimental data, but as alluded to
above, it is common that the quantities predicted by the mathematical model are not typically
measured in an experimental setting. This means there is a lack of data with which to make a
like-for-like comparison between simulation and experimentation, which is essential for verify-
ing that the model accurately captures the cell culture environment. Therefore, interdisciplinary
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communication is vital for ensuring that, not only are models developed with the needs of the
experimental researcher in mind, but also that relevant quantities are experimentally measured
so that model validation can be completed.

Whilst inconsistencies in model parameters can present an obstacle, this does not negate the
usefulness of mathematical models. In particular, the results discussed in this chapter show that
the same general trends can be observed even if key parameter values vary; for example, there is
a similar relationship between input flow rate and cell surface solute concentration, regardless of
cell type. Furthermore, although the limited availability of experimental data somewhat hinders
the model validation process, it also highlights one of the main advantages of mathematical
modelling, in that insight can be provided into quantities that are either difficult or impossible to
obtain experimentally, such as flow patterns or concentration gradients.



Chapter 4

Informing experimental set-up in the
Kirkstall QV900 for two different
applications

Arguably one of the greatest advantages of mathematical modelling is that it can be used as part
of a multidisciplinary approach to drive scientific advances across a broad range of applications.
Here, the research area of interest is cell culture, where mathematics can be used to predict the
outcome of experiments a priori and provide insight into key parameters that are challenging
to obtain empirically. In cases where the desired cell culture conditions are known, this allows
for the more efficient tailoring of experimental set-up since multiple combinations of input pa-
rameters can be trialled computationally before the final configuration is chosen. Furthermore,
the information provided by mathematical modelling is often supplementary to the results of
experimental assays which are typically performed to assess cellular behaviour and function,
with little attention paid to the environment to which those cells are exposed. This is an area that
mathematics excels in, offering insight into features such as flow patterns and shear stress levels
that can be used to interpret and gain a deeper understanding of the experimental results.

The work presented in this chapter makes use of the mathematical models developed in
Chapter 3 to guide the experimental configuration of the Kirkstall QV900 bioreactor system.
The first section reminds the reader of the model equations described in detail in Chapter 3, and
outlines how the model may be adapted to match the experimental conditions proposed by two
groups of collaborators, who each used the device for different applications. In their respective
sections (§4.2 and §4.3), a short introduction to each research area of interest is provided, fol-
lowed by a description of the mathematical modelling and experimentation undertaken for each
project. Briefly, the first group, led by Parveen Sharma of the University of Liverpool, sought
to replicate the phenomenon known as liver zonation in an in vitro environment, whereas the
second group, headed by Simon Croft of the London School of Hygiene and Tropical Medicine,
aimed to study the effect of fluid flow on the process of parasite infection.

109
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4.1 Overview of the mathematical modelling

In this chapter, the aim of the mathematical modelling is to determine how the Kirkstall QV900
system should be configured so that the desired cell culture conditions can be achieved for each
set of experiments. The most intuitive way of controlling the environment within the cham-
bers is to adjust the input flow rate and/or the inlet concentration; however, for the applications
mentioned in this chapter, the choice of input flow rate was somewhat limited by the settings
available on the equipment, and the inlet O2 concentration was restricted to being fixed at at-
mospheric levels, as is common in many in vitro experiments. Since the results from Chapter
3 indicate that the flow patterns and speeds vary with chamber depth, and the solute concentra-
tions observed throughout the chamber are not uniformly distributed, in this chapter the spatial
placement of the cells within the chamber is explored as an additional means of controlling the
environment to which the cells are exposed. Specifically, the depth at which the cells reside is
investigated as an option for tailoring the cell culture conditions to meet the requirements of the
experiment at hand. Practically, this can be achieved by placing custom-built inserts (fabricated
via 3D printing) at the base of the chamber, effectively reducing the chamber depth and thus
raising the position of the cells.

For each application, the computational geometry described in Chapter 3 was adapted to
match the experimental conditions. Briefly, in both cases, the base of the chamber was altered
to account for the cells being cultured on a cover slip. To incorporate the presence of a depth-
reducing insert within the chamber, the geometry was adjusted by simply decreasing the overall
height of the chamber by h, the height of the insert, assuming that no fluid can occupy the
volume beneath the insert. A detailed illustration of the computational geometry used for each
application will be shown in subsequent sections.

Simulations were performed in COMSOL Multiphysics® to characterise the fluid flow and
solute transport over a range of h values. For a full description of the governing equations,
initial conditions and boundary conditions, the reader is referred back to Chapter 3. To recap,
the fluid dynamics are described via the continuity equation and steady Navier-Stokes equations.
Initially, the fluid velocity is equal to zero. A parabolic velocity profile is applied at the inlet,
zero pressure is prescribed at the outlet, and no slip and no penetration conditions are imposed
on the walls of the chamber. In this chapter, the solute of most interest is O2, and its transport
is described via steady convection and diffusion. Initially, the O2 concentration is equal to zero
within the chamber. A constant supply of O2 is provided at the inlet, a convective flux is imposed
at the outlet, and a zero flux condition is applied on the chamber walls. Here, the interaction
between the O2 and the cells is represented by a flux boundary condition imposed on the area
covered by the cells, with the metabolism of O2 described via one Michaelis-Menten (M-M)
reaction term. For clarity, the governing equations, boundary conditions and initial conditions
are summarised on page 111, alongside a schematic drawing of the computational geometry.
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Figure 4.1.1: Schematic drawing of the computational geometry for a single QV900 chamber
where the cells reside on a cover slip at the base of the chamber. Here, Ω and Γ are used to label
domains and boundaries, respectively.

∇ · u = 0 in Ω1,

ρ (u · ∇)u = −∇p+ µ∇2u in Ω1,

(u · ∇) cO2 = DO2∇2cO2 in Ω1,

with the following boundary conditions

u(r) =
2Q

πa2

(
1− r2

a2

)
on Γ1,

p = 0 on Γ2,

u = 0 on Γ3, Γ4,

cO2 = cinO2
on Γ1,

−n ·DO2∇cO2 = 0 on Γ2,

n · (−DO2∇cO2 + ucO2) = 0 on Γ3,

n · (−DO2∇cO2 + ucO2) =
VO2cO2

KO2 + cO2

on Γ4,

and initial conditions

u = 0 in Ω1 at t = 0,

cO2 = 0 in Ω1 at t = 0.
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4.2 Application to liver zonation

As discussed in Chapter 1, the development of a new drug involves several stages, and all com-
pounds must undergo a series of tests designed to prove efficacy and safety prior to approval for
use in humans. The traditional approach was to perform animal testing as a precursor to clinical
trials, but it is now widely accepted that animal studies are poorly predictive of the human re-
sponse due to species differences in vital processes such as absorption, distribution, metabolism
and elimination [18, 75]. Thus, modern research in the pharmaceutical industry has been di-
rected towards improving the preclinical stage of drug development, with particular focus on
producing more physiologically relevant results through the use of in vitro studies.

Despite recent advances in this area, only a small proportion of potential drugs are granted
approval, and it is not uncommon for ‘safe’ drugs to be subsequently withdrawn from the market
due to the presence of previously unknown adverse effects [18, 75]. This can be attributed
to the fact that many standard in vitro methods fail to adequately emulate the native in vivo

environment, providing a misleading understanding of long-term drug safety and toxicity. Drug-
induced liver injury is responsible for the majority of drug recalls [75] and poses a major human
health concern, with an associated mortality rate of around 10% [76]. As the primary organ
for the metabolism of foreign substances, it is essential that the role of the liver is accurately
represented in vitro.

The liver has a highly complex architecture: repeating units of cells, or lobules, surround a
central vein that is supplied with blood from the hepatic artery and portal vein by vessels called
sinusoids [18, 77]. As illustrated in Fig. 4.2.1, the sinusoid can be split into three main zones:
periportal, central and perivenous. Hepatocytes located along the length of the liver sinusoid
are exposed to varying concentrations of O2, nutrients, hormones and metabolites, contributing
to a phenomenon known as liver zonation [18, 77, 78]. In particular, it is believed that the O2

gradients generated as a result of the dynamic environment within the liver give rise to variations
in the metabolic functionality of hepatocytes located in different zones of the sinusoid [57, 78].

Existing studies in the literature have modelled liver zonation within hollow fibre bioreac-
tors [79] and spheroids [80, 81], aiming to improve upon standard cell culture methods where
hepatocytes are often considered as a homogeneous cell population, with traditional static con-
ditions and a lack of concentration gradients resulting in a loss of zone-specific functionality
[33, 75]. Here, the aim of this study was to generate a more physiologically relevant cell culture
environment by introducing fluid flow via the QV900 bioreactor system. Cells were cultured
in three separate chambers and exposed to varying concentrations of O2 in order to represent
the three main zones of the liver sinusoid, and several tests were performed to confirm the ex-
istence of zonation. Prior to experimentation, the mathematical model was used to predict the
O2 concentrations at the cell surface within chambers containing inserts of various heights, and
a recommendation for the insert heights that should be used to generate a realistic O2 gradient
across the three chambers was provided to the experimental team.
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Figure 4.2.1: Zonation of liver metabolism. High oxygen exposure of hepatocytes in the periportal
region compared to low exposure in the perivenous zone. Glucose production carried out through gluco-
neogenesis in the periportal zone. Glucose utilisation carried out by glycolysis in the perivenous zone.
[2]

4.2.1 The mathematical model

For this work, the mathematical model was employed to simulate the O2 transport within QV900
chambers that had their depth modified by the addition of an insert. An estimation of the cell
surface O2 concentration was provided for each chamber depth and compared with the O2 gradi-
ent expected to arise in the human liver. Whilst there are some minor discrepancies in the values
reported in the literature (e.g. [61, 78, 82, 83]), it is generally accepted that the O2 concentration
varies from approximately 0.04 − 0.15 mol m−3 [60]. Based on these values, the final insert
heights were chosen such that a physiologically relevant gradient of O2 was created from the
first chamber, designed to represent the periportal zone where the O2 concentration is highest,
to the third chamber, designed to represent the perivenous zone where the O2 concentration is
lowest.
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Computational geometry

The computational geometry was created by modifying the existing single chamber geometry
(shown in Fig. 3.3.2) to align with the proposed experimental conditions. Here, the cells were
to be cultured on a cover slip of diameter 13 mm, so an additional circular area was added to
the base of the chamber to account for this, as illustrated in Fig. 4.2.2. The first simulations
were performed assuming that no insert was present, thus using the original chamber height.
For subsequent simulations, the computational geometry was altered by decreasing the overall
height of the chamber in 1 mm increments to represent the reduction in chamber depth due to
the addition of an insert of height h.
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Figure 4.2.2: Idealised 3D representation of a single QV900 chamber generated in COMSOL
Multiphysics® 5.3, showing the orientation of the x-, y- and z- axes with the origin located at the centre of
the base of the chamber (indicated by the red dot). Here, Hin and Hout denote the height of the chamber
at the inlet side and the outlet side, respectively, and h is the height of the insert. Note that length scales
on the axes are in metres.

Numerical implementation

The governing equations, boundary conditions and initial conditions shown on page 111 were
implemented in COMSOL Multiphysics® using the built-in ‘Laminar Flow’ and ‘Transport of
Diluted Species’ modules to characterise the fluid flow and O2 transport, respectively. As in
Chapter 3, the computational geometry was simplified by imposing a symmetry boundary con-
dition on the y, z plane passing through the origin in order to reduce computation time. For
each insert height, the geometry was then discretised using the built-in ‘Finer’ mesh setting, in
line with the results of the mesh sensitivity study described in §3.3.3. A stationary solver was
employed to provide the steady-state solution to the model equations, with the solver settings
automatically optimised by COMSOL (refer to §3.3.3 for details). Table 4.1 lists the number of
mesh elements and the typical simulation time for each value of h.
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Insert height (mm) Number of mesh elements Typical simulation time
0 314,827 3 mins 21 secs

1 355,072 4 mins 38 secs

2 337,419 4 mins 23 secs

3 363,633 4 mins 43 secs

4 333,817 3 mins 44 secs

5 277,906 3 mins 54 secs

6 299,429 3 mins 54 secs

7 303,725 3 mins 14 secs

Table 4.1: Number of mesh elements and typical simulation time for each insert height using a quad
core Intel® Core™ i7-6700 CPU @ 3.40GHz.

The parameter values used in the simulations are listed in Table 4.2. The properties of the
culture medium are assumed to be consistent with those of water, so the values of the fluid
density, ρ, and dynamic viscosity, µ, were chosen to reflect this, using a temperature of 37°C
to match the experimental conditions. The values of Q and cinO2

were fixed to represent the in-
put flow rate and inlet O2 concentration used in the experiments. The maximum rate of O2

metabolism, VO2 , relates to the chosen cell type, primary rat hepatocytes, and it is noted that for
this parameter, it was necessary to adjust the value reported in the literature by multiplying the
metabolic rate by the cell density, d. The cell density refers to the ratio of the total cell number
to the area covered by the cells: it was advised by the experimental team that the cell number,
N , should be equal to 20% of the total number of cells seeded during the initial cell culture,
and the area covered by the cells, A, was calculated by assuming that the cells occupy the entire
circular cover slip of diameter 13 mm.

Parameter Description Value Ref.
ρ Density of fluid 9.94× 102 kg m−3 [66]

µ Dynamic viscosity of fluid 6.89× 10−4 Pa s [66]

DO2
Diffusion coefficient for O2 3.00× 10−9 m2 s−1 [60]

Q Input flow rate 150 µL min−1 ∗
cinO2

Inlet concentration for O2 0.21 mol m−3 [60]

VO2 Maximum metabolic rate for rat hepatocytes 7.20× 10−8 mol m−2 s−1 [71]

KO2
Michaelis-Menten constant 6.60× 10−4 mol m−3 [60]

N Total number of cells 2.00× 105 †
A Area covered by the cells 1.33× 10−4 m2 ‡
d Cell density 1.50× 109 m−2 ∗∗

Table 4.2: Parameter values. ∗Input flow rate used in experiments. †Cell number chosen assuming 20%
of 1 million hepatocytes attach to the cover slip during cell culture. ‡Area covered by the cells on a
13 mm diameter cover slip. ∗∗Cell density calculated by dividing the total number of cells by the area
covered by the cells (d = N/A).
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Results

Based on the observations made in Chapter 3, where the results for solute distribution indicate
that concentration decreases as chamber depth increases, it is expected that a shallower chamber
should give rise to higher cell surface concentrations. From Fig. 4.2.3, it is clear that the O2

concentration to which the cells are exposed does indeed increase as chamber depth decreases,
or equivalently, as insert height increases. The simulations performed with no insert, i.e. h =

0 mm, provide a baseline from which the cell surface concentration can only increase. With a
minimum O2 concentration of approximately 0.04 mol m−3, this configuration was selected to
represent the perivenous zone in correspondence with the lower limit of the desired O2 range.

Evident from the profiles displayed in Fig. 4.2.3, the O2 concentration at the cell surface
is not uniform: a gradient of O2 is generated within the chamber for each insert height, with a
variation of approximately 0.06 mol m−3 observed across the cell surface for all values of h. In
order to estimate the average availability of O2 to the cells, the mean cell surface concentration
was calculated for each insert height (see Table 4.3) and these values were then used to determine
the configuration for the remaining chambers. Providing a mean cell surface O2 concentration
of 0.15 mol m−3, an insert height of h = 7 mm was selected as the best option for representing
the periportal zone, whilst an intermediary insert height of h = 4 mm was deemed appropriate
for representing the central zone.

It is important to acknowledge that using an insert to amend the depth of the chamber has
a significant impact on not only the O2 concentrations, but also the fluid dynamics observed
within the chamber. As shown in Table 4.3, the shear stress to which the cells are exposed

Figure 4.2.3: Simulated cell surface O2 concentration profiles for each value of h. For each insert height,
the concentration profiles are plotted across the diameter of the cover slip from the inlet to the outlet side
of the chamber (left to right).
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Insert height (mm) Mean cell surface O2 (mol m−3) Max. cell surface shear stress (Pa)
0 0.06 9.02× 10−8

1 0.07 1.96× 10−7

2 0.09 3.63× 10−7

3 0.10 6.23× 10−7

4 0.12 1.01× 10−6

5 0.13 1.57× 10−6

6 0.14 2.38× 10−6

7 0.15 3.50× 10−6

Table 4.3: Mean O2 concentration and maximum shear stress observed at the cell surface for each insert
height.

increases with increasing insert height. Like most cell types, hepatocytes are highly sensitive
to mechanical stimuli in their environment, and retention of optimal cell health and function
depends on appropriate levels of shear stress. It has been reported that hepatocytes can continue
to function under shear stress levels of the order of 10−5 Pa, whilst cells overlayed with collagen
can tolerate much higher shear stress levels of the order of 10−2 Pa [33]. Here, for each insert
height, the cell surface shear stress values are estimated to be of the order of 10−6 Pa or lower,
so it is not expected that the flow environment will damage the cells.

An illustration of the predicted O2 concentration gradient that could be achieved across three
chambers under the recommended configuration is shown in Fig. 4.2.4, using insert heights of
h = 7, 4 and 0 mm to represent the periportal, central and perivenous zones, respectively. It is

Figure 4.2.4: Simulated O2 concentration profiles across the centre of the cell surface for h = 7 mm
(periportal), h = 4 mm (central) and h = 0 mm (perivenous), illustrating the estimated O2 gradient that
could be achieved across three QV900 chambers.
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noted that due to the complex fluid environment within each chamber, it is impossible to gen-
erate a perfectly linear concentration gradient from exactly 0.04 − 0.15 mol m−3, a range of
values whose true magnitude is somewhat uncertain in the literature. Thus, the aim here was not
to accurately predict the specific quantity of O2 at the cell surface, but rather, the true purpose
of the mathematical model was to demonstrate that it is possible to manipulate the experimental
set-up such that different cell culture conditions can be created within each chamber. The final
recommendation for the height of the inserts was made with the anticipation that this configura-
tion would elicit a more physiologically relevant response from the cells than that observed in a
standard static environment; this was tested by the experimental team.

4.2.2 The experiments

Primary rat hepatocytes were cultured in a sandwich formation on 13 mm cover slips at a density
of 1 million cells per well in a standard 24-well plate. The cover slips were then transferred to
three separate QV900 chambers configured to represent the periportal, central and perivenous
zones (illustrated in Fig. 4.2.5), as recommended by the mathematical model. After running
the flow system for 72 hours, a series of assays were conducted to determine the health and
metabolic function of the cells in each chamber, and to ascertain whether any zone-specific
behaviour was achieved. Here, the results of each assay are discussed, with the reader directed
to [2] for a comprehensive overview of the methods used to carry out each procedure.

Adenosine triphosphate (ATP), a source of energy found in all living cells, is an established
biomarker of cell viability, where ATP concentration positively correlates with the number of
healthy cells. Therefore, ATP levels were measured to determine the viability of the cell culture
in each chamber, with a higher expression of ATP being observed in the periportal chamber
when compared to the perivenous chamber (see Fig. 4.2.6A). It is noted that the estimated shear
stress levels provided by the mathematical model suggest that the fluid environment should

Figure 4.2.5: Schematic setup on the inside of the QV900 wells. [2]
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Figure 4.2.6: Functional analysis of primary rat hepatocytes in each zone compared to standard 2D static
conditions. After 48 h under flow conditions or static conditions functional parameters were assessed (A)
ATP (n = 4), (B) Albumin secretion (n = 4). Both were normalised to protein concentration calculated
using a Bradford assay, and (C) Cytotoxicity of shear stress analysed by LDH assay. Data shown as LDH
released (in media)/Total LDH (present in cells + media). [2]
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be suitable for maintaining a healthy cell population, but to account for the possibility of cell
loss, either from apoptosis or due to cells being swept away by the flow, ATP concentrations
were normalised with respect to protein count. This means that the variation in ATP levels
observed between the chambers must be due to differences in the metabolic functionality of the
cells, rather than cell loss, pointing to the achievement of zone-specific behaviour.

To further assess the health of the cells, albumin production was evaluated in each chamber
(see Fig. 4.2.6B). Synthesised by healthy liver cells, low levels of this protein serve as an
indicator of potential cell damage. A marked increase in albumin production was observed in
each of the flow chambers when compared to the static culture, verifying that the cells remained
healthy and functional when subjected to fluid flow.

To confirm that the flow-induced shear stress did not harm the cell population, lactate de-
hydrogenase (LDH) levels were measured in each chamber (see Fig. 4.2.6C). Analysis of this
biomarker of liver damage is a standard method for evaluating cell death, and it was found that
no additional LDH was released by the cells in each of the flow chambers when compared to
the static culture. This indirectly validates the shear stress predictions provided by the mathe-
matical model: although specific shear stress values were not quantified experimentally, the lack
of an increase in LDH release suggests the cells remained stable, implying that the shear stress
to which the cells were exposed was of an acceptable level, in agreement with the conclusions
drawn from the mathematical model.

A Western blot analysis was carried out to measure the expression of various markers of
zone-specific functionality and metabolism, where the visibility of each band reflects the de-
tected levels of the protein of interest (see Fig. 4.2.7, left). It is clear that glutamine synthetase
and CYP3A4 were more highly expressed in the perivenous chamber, whereas carbamoyl phos-
phate synthetase 1 and arginase 1 were more highly expressed in the periportal chamber. Mea-
sured as a control, β-actin was present in consistent levels across all three chambers as expected.
The results of this assay demonstrate differential metabolic function across the three chambers
that is representative of the in vivo environment.

Finally, paracetamol (APAP) was introduced to the flow system in order to monitor the ef-
fects of this known zone-specific toxin on the cells in each chamber (see Fig. 4.2.7, right).
As expected, APAP elicited a toxic response from cells in both the perivenous and the peri-
portal chambers, with normalised ATP levels decreasing after cells were exposed to the drug.
The difference in ATP production between undosed and dosed cells was most significant in the
perivenous chamber; this is in line with evidence that, in vivo, cells in the perivenous zone of the
liver sinusoid are known to generate high levels of the enzyme that produces the toxic metabo-
lite associated with the breakdown of APAP, leading to greater cell death. The considerable
difference in the effect of APAP on the cells in each chamber verifies that a zone-specific drug
response has been achieved in this flow system.
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Figure 4.2.7: Left: Verification of zonation. Western blot analysis of zone specific protein markers.
Right: Confirmation of zone specific metabolism. Cells were dosed with 50 mM paracetamol for 48
h. Viability (calculated using ATP assay) was normalised to protein concentration calculated using a
Bradford assay. n = 3, student’s test used for statistical analysis. ∗p < 0.05. [2]

4.2.3 Summary

In this study, it has been demonstrated that the mathematical model can be used to help configure
the QV900 chambers such that hepatocytes remain viable under flow and retain zone-specific
functionality. Here, the goal was to generate a physiologically relevant O2 concentration gra-
dient that would give rise to zonation, so it was essential to gain an understanding of the O2

concentrations to which the cells would be exposed. Measurement of this key parameter is
challenging, so in order to avoid a lengthy trial-and-error approach to optimise experimental
design, the mathematical model was employed to estimate the cell surface O2 concentrations.
Experiments were performed using the recommended configuration provided by the mathemat-
ical model, and a series of assays evaluating cell health and metabolic function were used to
confirm that a zone-specific cell response was achieved in the QV900 chambers.

4.3 Application to parasite infection

Transmitted to humans via the bite of sandflies, leishmaniasis is the name given to a group of in-
fectious diseases caused by the parasite Leishmania. Parasites are transferred from the sandfly to
the human host as extracellular promastigotes which become internalised by host macrophages.
Within the host cell, the promastigotes transform into intracellular amastigotes which can mul-
tiply and subsequently infect additional host cells. There are two main types of leishmaniasis:
the potentially fatal visceral form, and the more common cutaneous form. Endemic in over
70 countries, hundreds of millions of people worldwide are at risk from infection of cutaneous
leishmaniasis; this form of the disease causes painful skin lesions that can persist for many
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months, usually resulting in permanent disfiguration or even disability. The standard treatment
for cutaneous leishmaniasis involves an invasive course of injections, and the recommended
drugs are associated with serious side effects including renal failure and hepatotoxicity, which,
if present, necessitate further medical attention. The cost of the initial drugs coupled with the
expense of any additional healthcare means that few patients successfully complete their course
of treatment. Therefore, it is vital that research is undertaken to improve the affordability and
accessibility of treatment options, with a focus on developing new drugs that do not induce
harmful side effects [84].

The majority of existing in vitro studies within the Leishmania field of research are per-
formed using traditional static cell culture methods [85–87] which do not realistically represent
the environment within the human body. Even within the skin, cells are exposed to slow-moving
interstitial flow that occurs due to plasma leaking from blood vessels into the extracellular matrix
[14]. These dynamic conditions promote the transfer of O2 and nutrients, as well as facilitating
interactions between the parasite and the host cell. Thus, the presence of fluid flow could ulti-
mately have an impact on the infection process, so its inclusion is essential for increasing the
relevance of results obtained from cell-based assays carried out during the preclinical stage of
drug development.

The aim of this study was to assess the effect of fluid flow on the infection of macrophages
by Leishmania parasites. In order to subject the cells to a physiologically relevant flow rate,
the mathematical model was first used to estimate the flow speeds within QV900 chambers
containing inserts of various heights. Based on these results, experiments were performed in
six connected chambers under varying flow conditions, and tests were carried out to evaluate
infection levels and monitor cell function. Using a computational representation of the final
experimental set-up, a second set of simulations were performed to characterise the environment
generated within the chambers, providing additional insight and possible explanations for the
outcomes of the experiments.

4.3.1 The mathematical model

For this study, the first role of the mathematical model was to determine the insert height that
would give rise to cell surface flow speeds corresponding to that of interstitial flow. The fluid
dynamics within a single chamber were simulated for various h values, and the insert height
was deemed suitable when flow speeds fell within the range of interstitial flow speeds reported
in the literature; whilst the flow speeds to which infected cells are exposed remains unknown, it
is widely accepted that 0.1 − 2 µm s−1 is representative of the flow speeds experienced within
healthy skin [14]. The secondary purpose of the mathematical model was to predict the flow
patterns, shear stress levels and O2 concentrations within a computational geometry matching
the chamber configuration used in the experiments.
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Computational geometry

For the initial simulations performed in a single chamber, the computational geometry (see Fig.
4.3.1) is almost identical to that used in §4.2.1, except in this case, the cover slip has a diameter
of 12 mm. To obtain a baseline for the cell surface flow speeds, the first simulations were
performed using the original chamber height (i.e. assuming that no insert was present). The
results of these simulations indicated that, under this configuration, the flow speeds to which the
cells were exposed are much too low to be representative of interstitial flow. Therefore, rather
than increasing the height of the insert incrementally from a starting point of h = 0 mm (as in
§4.2.1), here an initial insert height of 5 mm was chosen, with the value of h then increasing in
1 mm increments for the remainder of the simulations.
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Figure 4.3.1: Idealised 3D representation of a single QV900 chamber generated in COMSOL
Multiphysics® 5.3, showing the orientation of the x-, y- and z- axes with the origin located at the centre of
the base of the chamber (indicated by the red dot). Here, Hin and Hout denote the height of the chamber
at the inlet side and the outlet side, respectively, and h is the height of the insert. Note that length scales
on the axes are in metres.

In the experiments, the QV900 system was to be configured such that all six chambers were
connected in series, with the first three chambers remaining unmodified and the final three cham-
bers containing an insert, the height of which was to be recommended by the results of the initial
mathematical modelling. After an appropriate insert height was determined, an additional com-
putational geometry was created to represent the final experimental set-up in order to provide
a visualisation of the flow environment and concentration profiles within the final configura-
tion. The connected chamber geometry (see Fig. 4.3.2) was generated by duplicating the single
chamber geometry shown in Fig 4.3.1 using the method described in §3.3.2, and then adjusting
the depth of the final three chambers to account for the presence of the inserts.
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Figure 4.3.2: Idealised 3D representation of the final experimental configuration of six connected
QV900 chambers generated in COMSOL Multiphysics® 5.3, showing the orientation of the x-, y- and z-
axes with the origin located at the centre of the base of the first chamber (indicated by the red dot). Note
that length scales on the axes are in metres.

Numerical implementation

The fluid flow in a single chamber, and the fluid flow and O2 transport in connected chambers,
are described by the governing equations, boundary conditions and initial conditions shown on
page 111. As described in Chapter 3, when these equations are applied to the connected chamber
geometry, the inlet and the outlet refer only to the inlet of the first chamber and the outlet of the
last chamber, and it is assumed that flux and concentration are continuous across the interfaces
between each chamber and connecting tube. As in §4.2.1, the ‘Laminar Flow’ and ‘Transport
of Diluted Species’ modules were used to implement the fluid flow and O2 transport equations
in COMSOL, respectively. Again, each computational geometry was simplified by applying a
symmetry boundary condition on the y, z plane, and the built-in ‘Finer’ mesh setting was then
used to discretise both the single and connected chamber domains. In each case, the steady-state
solution was obtained by solving the system using a stationary solver, the settings of which were
automatically optimised by COMSOL. For a single chamber, the number of mesh elements and
typical simulation time is listed in Table 4.4 for each insert height. The final number of mesh
elements in the connected chamber geometry was 2,018,537 with a typical simulation time of
19 mins 25 secs.

Insert height (mm) Number of mesh elements Typical simulation time

0 263,139 2 mins 37 secs

5 277,334 2 mins 39 secs

6 299,072 2 mins 39 secs

7 303,648 2 mins 41 secs

8 308,106 2 mins 49 secs

9 297,381 2 mins 47 secs

Table 4.4: The number of mesh elements in a single chamber and the typical simulation time for each
insert height using a quad core Intel® Core™ i7-6700 CPU @ 3.40GHz.
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Table 4.5 provides the parameter values used in the simulations. The values of ρ and µ refer
to the density and dynamic viscosity, respectively, of water at 34°C, matching the temperature
used in the experiments. The input flow rate and inlet O2 concentration were also chosen to
reflect the experimental conditions, and the maximum metabolic rate for the chosen cell type,
macrophages, is given by VO2 . In order to obtain this parameter in appropriate units, the value
reported in the literature was multiplied by the cell density, d, which was calculated by dividing
the total cell number, provided by the experimental team, by the area covered by the cells,
computed by assuming the cells occupy the entire 12 mm diameter cover slip.

Parameter Description Value Ref.

ρ Density of fluid 9.95× 102 kg m−3 [66]

µ Dynamic viscosity of fluid 7.32× 10−4 Pa s [66]

DO2 Diffusion coefficient for O2 3.00× 10−9 m2 s−1 [60]

Q Input flow rate 360 µL min−1 ∗
cinO2

Inlet concentration for O2 0.21 mol m−3 [60]

VO2
Maximum metabolic rate for macrophages 3.54× 10−9 mol m−2 s−1 [88]

KO2
Michaelis-Menten constant 6.30× 10−3 mol m−3 [89]

N Total number of cells 4.00× 105 †
A Area covered by the cells 1.13× 10−4 m2 ‡
d Cell density 3.54× 109 m−2 ∗∗

Table 4.5: Parameter values. ∗Input flow rate used in experiments. †Number of cells used in experiments.
‡Area covered by the cells on a 12 mm diameter cover slip. ∗∗Cell density calculated by dividing the
total number of cells by the area covered by the cells (d = N/A).

Results

The initial simulations in a single chamber were used to estimate the mean cell surface flow
speeds for each insert height. As described in Chapter 3, the flow speed on the cell surface is
equal to zero due to the application of the no slip and no penetration conditions on this boundary.
Therefore, it is noted that the ‘cell surface’ flow speed was calculated just above the cell surface
at a height of 1.77 × 10−5 m, corresponding to the height of a single layer of cells where the
volume of a macrophage is given by 5 × 10−15 m3 [67]. From Table 4.6, it is clear that cell
surface flow speed increases as insert height increases; this was expected based on the obser-
vations made in Chapter 3, where it was shown that flow speeds within the chamber decrease
with increasing chamber depth. Here, it was found that an insert of height h = 9 mm provides
a flow speed within the desired range of 0.1 − 2 µm s−1. Corresponding to an increase in flow
speed, the shear stress observed at the cell surface also increases as insert height increases. For
this study, a range of acceptable shear stress levels for macrophages could not be sourced in the
literature, so whilst the recommended insert height provides the desired cell surface flow speed,
it cannot be guaranteed that the levels of shear stress to which the cells are exposed under this
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Insert height (mm) Mean ‘cell surface’ flow speed (m s−1) Max. cell surface shear stress (Pa)
0 1.33× 10−9 1.04× 10−7

5 1.80× 10−8 2.82× 10−6

6 3.05× 10−8 4.54× 10−6

7 5.01× 10−8 7.06× 10−6

8 7.77× 10−8 1.08× 10−5

9 1.17× 10−7 1.60× 10−5

Table 4.6: Mean flow speed just above the cell surface and maximum shear stress at the cell surface in a
single chamber for each insert height.

configuration will not affect the functionality of the cells.
With an insert height of h = 9 mm, additional simulations were performed using the con-

nected chamber geometry shown in Fig. 4.3.2, matching the proposed experimental config-
uration. Fig. 4.3.3 illustrates the flow environment in the first chamber (left) and the fourth
chamber, i.e. the first modified chamber (right). Recall from Chapter 3 that the fluid dynamics
do not change substantially between identical connected chambers; therefore, the results shown
for chamber 1 are representative of the environment within the first three chambers in the series,
whilst the results shown for chamber 4 are representative of the environment within the final
three chambers in the series.

The upper plots in Fig. 4.3.3 show the streamlines, colour coded by the magnitude of the
fluid velocity, through the centre of each chamber. For chambers containing no inserts (left),
recirculation zones are observed at the base of the chamber as well as beneath the inlet, with a
mean cell surface flow speed of approximately 1.45 × 10−9 m s−1. In contrast, for chambers
containing inserts (right), the only zone of recirculation appears below the inlet, and the mean
cell surface flow speed is two orders of magnitude higher at approximately 1.23× 10−7 m s−1.

Due to the dramatic variation in the flow profiles, the shear stress patterns observed at the
base of chambers with and without inserts are considerably different, as shown by the lower plots
in Fig. 4.3.3. For chambers containing no insert (left), shear stress levels rise from the periphery
of the chamber to a region of high shear stress, with a maximum value of the order of 10−7 Pa,
that surrounds an area of low shear stress near the centre of the base of the chamber. The shear
stress profiles in chambers containing inserts (right) are less complex, with the magnitude of the
shear stress increasing from the periphery of the chamber to a maximum value of the order of
10−5 Pa at the centre of the base of the chamber.

Fig. 4.3.4 displays the O2 concentration profiles across the base of each chamber. It should
be stressed that O2 metabolism occurs only where the cells reside on the cover slip, namely
from a distance of 2 − 14 mm, giving rise to higher O2 concentrations at the edges of the
base of each chamber. As expected, the concentration of O2 decreases between consecutive
identical chambers due to metabolism, but since the metabolic rate for this cell type is low, the
concentration of O2 remains high in all chambers. Within chambers containing an insert, cells
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Figure 4.3.3: Streamlines and magnitude of velocity through the centre of the chamber (y, z plane, upper
plots) and magnitude of shear stress at the base of the chamber (x, y plane, lower plots), for chamber 1
containing no insert (left) and chamber 4 containing a 9 mm insert (right).

Figure 4.3.4: Simulated O2 concentration profiles at the base of chambers 1, 2 and 3 containing no
inserts (left) and chambers 4, 5 and 6 containing 9 mm inserts (right). Note that the concentration
profiles are plotted across the diameter of the base of each chamber from the inlet to the outlet side of the
chamber (left to right).
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are exposed to elevated concentrations of O2 due to their increased proximity to the chamber
inlet, with a mean cell surface O2 concentration of approximately 0.208 mol m−3 observed in
the final three chambers, compared with 0.204 mol m−3 in the first three chambers.

4.3.2 The experiments

Mouse peritoneal macrophages (PEMs) were cultured on 12 mm cover slips at a density of
4 × 105 cells per well in a standard 24-well plate. Cells were infected with different concen-
trations of L. major parasites prior to being transferred to six connected QV900 chambers. The
first three chambers contained no inserts to represent so-called ‘low flow’ conditions, with the
mathematical model predicting cell surface flow speeds of the order of 10−9 m s−1. With the
aim of generating physiologically relevant cell surface flow speeds of the order of 10−7 m s−1,
so-called ‘high flow’ conditions, the final three chambers contained inserts of height 9 mm

as recommended by the initial mathematical modelling. After running the flow system for 72
hours, levels of parasite infection and proliferation were evaluated and compared to the static
control, and two key cellular functions were assessed. A brief description of the results of each
assay is provided here, with the reader referred to [3] for a detailed account of the methods used
to carry out each set of experiments.

Parasite infection levels were assessed by using microscopic techniques to count the number
of infected cells for the three flow conditions (static, ‘low’, and ‘high’ flow) over a range of
parasite to macrophage infection ratios. Whilst it was to be expected that higher infection ratios
led to higher levels of infection, the results shown in Fig. 4.3.5 highlight that the presence of
flow plays an important role in the infection process: with the exception of the highest infection
ratio, the percentage of infection significantly decreased with increasing flow speed.

The visualisations of the flow patterns within the QV900 chambers provided by the math-
ematical model could help to explain why the infection levels are reduced under ‘low’ flow
conditions, and further reduced under ‘high’ flow conditions. After the infected macrophages
were transferred to the flow system, it is likely that some extracellular parasites remained on
the cover slips. The addition of fluid flow would have carried the parasites away from the cells,
leading to a lower rate of infection than that observed in the static case. The streamlines shown
in Fig. 4.3.3 suggest that in chambers containing an insert, the parasites would be swept directly
out of the chamber at an increased flow speed when compared to chambers containing no in-
serts, where the flow speed is slower and the zones of recirculation at the base of the chamber
could encourage entrapment of the parasites, promoting increased contact with the cells and thus
increasing infection levels.

To determine the rate of parasite proliferation within the host cells, a fluorescently labelled
DNA base (EdU) was added to the culture medium. This base can be used by dividing parasites
to create the DNA required for cell multiplication, and so the fluorescent label provides a means
of tracking the generation of new parasites. An imaging kit was used to measure the incor-
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Figure 4.3.5: Box and whisker diagram showing the percentage of infected cells over a range of different
infection ratios, of parasite:macrophage number, and different flow conditions. Significance tested using
a two tailed t-test p < 0.01 =∗∗ p < 0.0001 =∗∗∗∗ ns = not significant N = 6. [3]

Figure 4.3.6: Bar graph showing percentage of L. major amastigotes that incorporated the EdU marker
into DNA at the three different conditions, static (0 m/s), low flow (1.45 × 10−9 m/s) and high flow
(1.23× 10−7 m/s). ∗ = p < 0.05 N = 3. [3]
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poration of EdU (indicating that parasite replication has occurred) by counting the number of
fluorescent parasites inside each macrophage. Fig. 4.3.6 shows that the percentage of parasites
that incorporated EdU significantly reduced as cell surface flow speed increased, i.e. increasing
flow speed leads to a reduction in parasite proliferation within the host cell. This provides an-
other possible explanation for the lower infection levels observed as flow speed increases: since
a successful infection process requires both parasite internalisation and multiplication, if the rate
of proliferation is decreased within host cells maintained under flow conditions, then it follows
that the level of infection will also decrease.

The metabolic function of the macrophages was assessed by evaluating phagocytosis and
macropinocytosis. Respectively, these internalisation processes, initiated by ligand-receptor in-
teractions, essentially describe the ‘eating’ and ‘drinking’ of extracellular particles and fluids by
the host cell. Phagocytosis was quantified by the internalisation of fluorescent latex beads by
infected macrophages, and similarly, macropinocytosis was evaluated by measuring the concen-
tration of dextran (a fluorescent dye) within the host cells. From Fig. 4.3.7 and Fig. 4.3.8, it is
clear that both internalisation processes decreased as cell surface flow speed increased. The sig-
nificantly higher rate of phagocytosis observed in cells cultured without flow could be explained
by the static environment allowing for sedimentation of the latex beads, and similarly, cells cul-
tured under static conditions will be exposed to uniform concentrations of dextran; in both cases,
this could promote an increased rate of internalisation. Furthermore, it is well established that
cells are highly sensitive to changes in their microenvironment, so the reduction in phagocytosis
and macropinocytosis in the flow system could be due to changes in cellular behaviour in re-
sponse to increased levels of shear stress, which could influence the strength of ligand-receptor
binding. Since parasite internalisation plays an essential role in the infection process, these
results complement the decreased levels of infection observed under flow conditions.

4.3.3 Summary

In this study, the mathematical model was used to determine an appropriate configuration for the
QV900 chambers such that the parasite infection process could be monitored under physiologi-
cally relevant flow speeds. Accurate calculations of cell surface flow speeds are difficult, or even
impossible, to obtain experimentally, so here, the mathematical model was employed to provide
estimations of this. Based on these predictions, experiments were performed using an insert of
height 9 mm with the aim of generating flow speeds consistent with that of interstitial flow. As-
says evaluating parasite infection and proliferation within the host cells confirmed that fluid flow
plays an important role in the infection process, with percentage infection levels decreasing for
increasing flow speeds. Additional results provided by simulating the final QV900 configura-
tion provided insight into features of the flow system that could not be quantified experimentally,
such as flow patterns and shear stress levels, allowing for a more in depth interpretation of the
experimental results.
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Figure 4.3.7: Phagocytosis of fluorescent latex beads (2µm) by infected PEMs in the three culture
systems (static, slow flow rate 1.45 × 10−9 m/s and fast flow rate 1.23 × 10−7 m/s). Phagocytosis is
significantly higher in static that in flow system (p < 0.05 by one-way ANOVA). The data are means ±
standard deviations (SD), N = 3. Infection rate > 80%. [3]

Figure 4.3.8: Macropinocytosis of pHrodo Red dextran by infected PEMs in the three culture systems
(static, slow flow rate 1.45 × 10−9 m/s and fast flow rate 1.23 × 10−7 m/s). Macropinocytosis is
significantly higher in static that in flow system (p < 0.05 by one-way ANOVA). The data are means ±
standard deviations (SD), N = 3. Infection rate > 80%. [3]
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4.3.4 Conclusions

As evidenced by the work presented in this chapter, mathematical modelling is an invaluable
tool for not only guiding experimental set-up, but also for gaining a deeper understanding of
experimental results. Here, it was shown that, in the case of liver zonation, the cell culture con-
ditions generated by the recommended chamber configuration led to a physiologically relevant
cellular response, whereby zone-specific functionality of hepatocytes was retained in the in vitro

system. In the case of parasite infection, it was shown that the flow environment induced by the
recommended experimental set-up led to a significant reduction in the infection of macrophages
by Leishmania parasites. Moreover, the mathematical model was used to offer information about
features of the flow environment that would have otherwise remained unknown, such as stream-
lines and shear stress profiles, providing additional insight that aided in the interpretation of the
experimental results.

It is becoming increasingly evident that there is a growing need for mathematical and exper-
imental teams of researchers to work in collaboration with one another. As in vitro cell culture
techniques continue to advance in pursuit of more physiologically relevant results, the utility
of mathematical modelling will continue to be made apparent as cell culture devices grow in
complexity. Novel in vitro systems tend to be more expensive to source and maintain com-
pared to their traditional static counterparts, so a lengthy trial-and-error approach for choosing
the optimal experimental configuration should be avoided. Furthermore, the generation of more
sophisticated cell culture conditions, such as concentration gradients and flow patterns, can be
difficult to investigate without the help of mathematics due to challenges associated with de-
vice geometry and integration with standard measurement equipment. By estimating quantities
that cannot be obtained experimentally, mathematical models greatly benefit experimental re-
searchers by providing them with information that they would otherwise be unable to obtain.
However, whilst this is an advantage of mathematical modelling, it is directly linked to its great-
est challenge: validation. In order to prove accuracy, and to confidently use the mathematical
model in a truly predictive sense, it is essential that model results are compared like-for-like
with experimental measurements. The obtainment of experimental data with which to validate
models must be pursued in order to increase the relevance of predictions made by mathematical
modelling.

Although a lack of validation could be considered a major drawback, it should be noted
that the qualitative results of unvalidated mathematical models, such as general trends, are
still relevant. For example, in the case of liver zonation, the final experimental configura-
tion was chosen with the aim of generating an O2 concentration gradient from approximately
0.04− 0.15 mol m−3 across three QV900 chambers. The concentration of O2 was never explic-
itly measured by the experimental team, so there is no guarantee that the mathematical model
accurately predicted these quantities. However, the results of the experimental assays did con-
firm that the cells exhibited a response in line with that expected of cells in the native liver, i.e.
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cells that are believed to be exposed to an O2 gradient of approximately 0.04 − 0.15 mol m−3.
This indicates that the cell culture conditions must have been appropriate for representing the in

vivo environment, and therefore indirectly provides a degree of confidence in the mathematical
predictions.



Chapter 5

Conclusions and future work

The drug development process consists of four key stages: discovery, where potential drugs are
identified; preclinical, where the safety and efficacy of potential drugs are tested using in vitro

and animal-based methods; clinical, where potential drugs are tested on humans; and finally,
marketing and approval. Due to a poor correlation between the human response and the results
of simplistic in vitro assays and non-representative animal studies, the majority of potential drugs
that reach the clinical stage of development are eliminated. In order to increase efficiency, and
therefore to reduce the expense of drug development, it is vital that the techniques employed
during the preclinical stage are improved upon so that seemingly promising potential drugs
are not carried through to the final stages of development, only to fail at the final hurdle. In
addition to ethical concerns, it is also now well understood that animal-based studies do not
provide a reliable prediction of the human response; in recent years, the reduction and even the
replacement of animal testing has been made possible due to the advancement of in vitro cell
culture methods.

Conventional in vitro cell culture techniques typically involve culturing cells in a petri dish
containing culture medium. Whilst there are disadvantages associated with static conditions that
do not fully capture the complexity of the in vivo environment, these traditional methods remain
a popular choice and are still considered to be the ‘gold standard’ in many areas of research.
A good understanding of the key features of the in vitro environment allows for the effective
customisation of cell culture conditions, reducing the time and cost associated with obtaining
the desired outcome via a trial-and-error approach.

In Chapter 2, mathematical models were developed to describe the transport and metabolism
of two different types of solute within a traditional static in vitro cell culture system. The method
of Laplace transforms was used to derive a Volterra integral equation (VIE) for each model,
and under certain parameter regimes, approximations to the full solution were obtained using
further analytical techniques. For each type of solute, the approximate solutions were found
to be in good agreement with the numerical solution of the VIE. Thus, within each parameter
regime, the approximations to the full solution may be employed to quickly estimate the solute

134
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concentration to which the cells are exposed. Although a purely numerical approach could have
been used to solve each model directly, the use of analytical methods allowed for additional
insight into the dependencies of the solution on key model parameters. It was found that the cell
surface solute concentration depends on the rate of diffusion of the solute through the culture
medium, the rate of solute metabolism by the cells, the initial solute concentration and, where
applicable, the rate of solute transfer across the fluid-air interface. Furthermore, the approximate
analytical solutions derived for each model were used to obtain simple mathematical relation-
ships that, when satisfied, provide information on how to adjust controllable parameters (e.g.
the depth of the fluid or the initial solute concentration) such that a desired set of cell culture
conditions can be achieved; this information could prove useful for determining optimal experi-
mental configuration.

Whilst traditional static cell culture methods remain an important tool in in vitro experimen-
tation, it is widely acknowledged that they do not provide an accurate representation of the in

vivo environment. Rather than using these techniques in isolation, a common approach is to em-
ploy standard cell culture methods in conjunction with more advanced systems; for example, the
initial cell culture is often carried out in petri dishes prior to transferring the established cells to
more sophisticated devices that incorporate fluid flow, such as perfusion bioreactors. In order to
bridge the gap between simplistic static cell culture and the true in vivo environment, flow-based
devices have been designed with the aim of providing cells with more physiologically relevant
culture conditions, thus improving the relevance of the results of in vitro studies. As cell cul-
ture systems continue to increase in complexity, it is important to gain a good understanding of
the conditions to which cells are exposed so that in vitro devices may be configured efficiently,
and so that experimental results may be interpreted in relation to the features of the cell culture
environment.

In Chapter 3, the governing equations for describing fluid flow and solute transport in a
dynamic cell culture system were provided, and subsequently applied to the commercially-
available Kirkstall QV900 bioreactor device [90]. Mathematical models were developed to
characterise the environment within single and connected cell culture chambers, where the in-
teraction between the solute and the cells was described by two common reaction mechanisms.
COMSOL Multiphysics was used to implement the finite element method to solve each model,
and results were presented for a variety of input parameters. Analysis of the mathematical
results provided valuable insight into the influence of the experimental configuration on the
environment generated within the chambers. It was found that the fluid dynamics and solute
distribution within the chamber change dramatically depending on the choice of input flow rate,
and in particular, this parameter influences the cell surface flow speed, shear stress and solute
concentration. The non-uniformity of the flow patterns and solute distributions throughout the
chamber implies that the environment to which the cells are exposed could be modified by ad-
justing their spatial location. Intuitively, it was also found that the metabolic capacity of the
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cells plays a role in dictating the cell surface solute concentration, and in downstream connected
chambers, the solute concentration depletes due to metabolism by the cells. Finally, for each
reaction mechanism, simple relationships were derived from the governing equations to further
aid in the configuration of the system.

• When the interaction between the solute and the cells was described by nonlinear saturable
binding, equations were provided for predicting the concentration of free and bound drug,
both at steady-state and prior to the establishment of equilibrium.

• When the interaction between the solute and the cells was described by Michaelis-Menten
kinetics, an equation was provided for estimating the cell surface solute concentration
profile in a single chamber when the inlet concentration was varied, subject to certain
conditions. Similarly, for chambers connected in series, an equation was provided for
predicting the cell surface solute concentration profile in downstream chambers.

The main purpose of deriving these equations was to provide a method for obtaining useful
information without requiring an in-depth knowledge of the underlying mathematical model,
and to reduce the number of simulations and/or experiments needed to gather this information.
It is important that mathematical models are developed with experimental researchers in mind;
in order to maximise the utility of the model, it is essential to highlight simple relationships
between key parameters so that researchers from different areas of expertise are empowered to
make use of the mathematical results. In this way, mathematical modelling can be a effective
tool in in vitro cell culture, for configuring equipment, providing valuable information that may
be impossible to obtain experimentally, and interpreting results.

One of the primary goals of this thesis was to develop mathematical models of the environ-
ment within in vitro cell culture systems with the aim of guiding experimental set-up, and this
was achieved by working in collaboration with two different groups of researchers [2, 3]. In
Chapter 4, the mathematical models developed in Chapter 3 were employed to aid in the config-
uration of the Kirkstall QV900 chambers. By providing estimations of the cell surface oxygen
(O2) concentrations and flow speeds, a recommendation was provided to each experimental team
regarding the insert height that should be used to modify the depth of the QV900 chambers such
that the desired cell culture conditions could be generated. For the application to liver zonation,
experiments confirmed the achievement of a zone-specific cell response, suggesting that physio-
logically relevant O2 levels were generated within the chambers. For the application to parasite
infection, fluid flow was found to have a significant effect on the parasite infection process, and
the mathematical model was used to aid in the interpretation of the experimental results.

There is much scope for the work presented in this thesis to be extended, and a brief discus-
sion of some ideas for future research is provided here. A number of assumptions were made
during the development of each mathematical model, one of which was that the cells do not pro-
liferate; this decision was made based on information provided by experimental collaborators
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who advised that the cell types under consideration do not tend to reproduce in standard culture
medium. However, there will undoubtedly be applications where cell proliferation does occur
and is an important feature of the experiment, and in such cases, the mathematical models could
be adapted to incorporate this process.

For each model, it was also assumed that the initial solute concentration and the supply of
solute was constant, and furthermore, only one solute was considered at any one time. Discus-
sions with a group of experimental researchers from the University of Dundee (who are working
to develop new drug treatments for tropical diseases) highlighted that as animal testing continues
to be replaced by cell-based studies, it is necessary to develop in vitro methods for determining
optimal dosage and for studying the effect of different drug combinations. In such experiments,
the cells could be exposed to multiple solutes simultaneously, and the supply of solute may have
a time-dependency; for example, drug could be added to the cell culture periodically, or could
be diluted over time. In order to widen the applicability and utility of the models developed in
this thesis, a possible next step could be to explore various combinations of solutes and their
method of supply.

Another way to expand upon the work carried out this thesis could be to combine the math-
ematical models presented here with models that describe the fluid flow and solute transport
within 3D cell structures, such as spheroids and scaffolds. Since the relevance of in vitro stud-
ies improves as the level of complexity grows, it will become increasingly common to combine
fluid flow with more sophisticated cellular arrangements. Within such cell structures, it is impor-
tant to have a good understanding of the local fluid dynamics and solute concentration profiles,
particularly since one of the main drawbacks associated with 3D cell culture (most notably, in
spheroids) is the development of a necrotic core due to solute transport limitations. Therefore,
it could be useful to develop a mathematical model that characterises not only the global cell
culture conditions, but also the local environment generated within 3D cell structures.

There is also potential for the projects undertaken in Chapter 4 to be extended to various
application areas and cell types. One example that could be explored is nanokicking, where
the differentiation of stem cells can be manipulated by applying mechanical stress. Recall that
in Chapter 4, the elevation of the cover slip was investigated as a means of controlling the
conditions to which the cells were exposed, namely the O2 concentrations and flow speeds. In
a similar way, the shear stress induced on cells cultured at various heights within the chambers
could be examined as a means of guiding the evolution of a population of stem cells that respond
to different levels of stress. The ability to control the generation of specialised cells could one
day revolutionise organ transplantation as well as the treatment of many diseases.

Finally, it is noted that the work carried out in Chapter 4 has led to the creation of a new
PhD project, in relation to the effect of fluid flow on parasite infection levels. Although analysis
of the flow patterns provided by the mathematical model helped to offer explanations for the
behaviour observed in the experiments, it was decided that further investigation is required in
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order to fully understand the process of parasite internalisation under flow. Thus, at present,
mathematical models are being developed to characterise the process of phagocytosis, with the
ultimate goal of combining this with the models presented here.



Appendix A

Solutions of the multiple pathway models
from Chapter 2

In this appendix, the VIE and approximate solutions to the governing equations from §2.2 are
derived where solute metabolism is described by multiple M-M pathways, i.e. where (2.2.4) is
replaced by

∂c

∂x
(1, t) = −

m∑
i=1

αic

βi + c
, (A.1)

and the non-dimensional parameters αi and βi are defined as
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, βi =
c0

Km,i

.

A.1 Solutions for case A

Recall that from §2.4.1, (2.2.1) is solved subject to (2.2.2) and (2.2.3A) to obtain
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and taking the inverse Laplace transform gives
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√
sx)
}
.

Now, applying (A.1) gives rise to the following VIE:

c(1, t) = 1−
∫ t

0

kA(t− τ)
m∑
i=1

αic(1, τ)

1 + βic(1, τ)
dτ, (A.1.1)

where kA(t) is defined as before. Note that this equation takes the same form as the VIE derived
when m = 1, with α and β replaced by αi and βi, respectively.

139
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Small β solution for case A

Assuming βi � 1 for i = 1, 2, . . . ,m, consider the following perturbation expansion about the
small parameter βj where j ∈ [1, 2, . . . ,m]:

c(1, t) = c0(1, t) + βjc1(1, t) +O(β2
j ).

Substituting this expression into (A.1.1) gives

c0(1, t) + βjc1(1, t) +O(β2
j )

= 1−
∫ t

0

kA(t− τ)
m∑
i=1

αi
[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
]

1 + βi
[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
] dτ.

Now, assuming that βi is of the same order as βj , this becomes

c0(1, t) + βjc1(1, t) +O(β2
j )

= 1− ᾱ
∫ t

0

kA(t− τ)

[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
]

1 + βj
[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
] dτ,

where

ᾱ =
m∑
i=1

αi.

Note that this expression is equivalent to the expression derived when m = 1, with α replaced
by ᾱ. Thus, when βj ∼ O(βi), and βi � 1 for i = 1, 2, . . . ,m, the solution is given by

c(1, t) =
∞∑
n=1

2 sin(γn)e−γ
2
nt

γn cos(γn) + (ᾱ + 1) sin(γn)
+ βjc1(1, t) +O(β2

j ),

where γn are the roots of γ sin(γ)− ᾱ cos(γ) = 0.

Large β solution for case A

Assuming βi � 1 for i = 1, 2, . . . ,m and defining εi = 1/βi, consider the following perturba-
tion expansion about the small parameter εj where j ∈ [1, 2, . . . ,m]:

c(1, t) = c0(1, t) + εjc1(1, t) +O(ε2
j).

Substituting this expression into (A.1.1) gives

c0(1, t) + εjc1(1, t) +O(ε2
j)

= 1−
∫ t

0

kA(t− τ)
m∑
i=1

αi
[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
]

1 + ε−1
i

[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
] dτ.
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Similarly to the case when βi � 1, assuming that εi is of the same order as εj , this becomes

c0(1, t) + εjc1(1, t) +O(ε2
j)

= 1− ᾱ
∫ t

0

kA(t− τ)

[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
]

1 + ε−1
j

[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
] dτ.

Note that this expression is equivalent to the expression derived when m = 1, with α replaced
by ᾱ. Thus, when βj ∼ O(βi), and βi � 1 for i = 1, 2, . . . ,m, the solution is given by

c(1, t) = 1− ᾱ

βj

(
t+

1

3
−
∞∑
n=1

2e−n
2π2t

n2π2

)
+
∞∑
n=2

(−1)nᾱ

βnj

∫ t

0

kA(t− τ)
[
c1(1, τ) + 1

]n−2
dτ.

.
Small t solution for case A

Recall that kA(t) ∼ 1/
√
πt for t� 1 and consider the following expansion in t:

c(1, t) = a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2).

Substituting this expression into (A.1.1) and taking a series expansion of(
1 + βi

[
a1 + a2τ

1/2 + a3τ + a4τ
3/2 +O(τ 2)

])−1

about τ = 0 gives

a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2)

= 1− 1√
π

∫ t

0

(t− τ)−1/2

m∑
i=1

αi
[
a1 + a2τ

1/2 + a3τ + a4τ
3/2 +O(τ 2)

]
×
[

1

a1βi + 1
− a2βi

(a1βi + 1)2
τ 1/2 +

(a2
2 − a1a3)β2

i − a3βi
(a1βi + 1)3

τ +O(τ 3/2)

]
dτ.

= 1− 1√
π

m∑
i=1

αi

[
a1

a1βi + 1

∫ t

0

(t− τ)−1/2 dτ +
a2

(a1βi + 1)2

∫ t

0

(t− τ)−1/2τ 1/2 dτ

+
a3 + βi(a1a3 − a2

2)

(a1βi + 1)3

∫ t

0

(t− τ)−1/2τ dτ + · · ·
]

= 1− 1√
π

m∑
i=1

αi

[
2a1

a1βi + 1
t1/2 +

a2π

2(a1βi + 1)2
t+

4(a3 + βi(a1a3 − a2
2))

3(a1βi + 1)3
t3/2 +O(t2)

]
.

Equating powers of t gives

a1 = 1,

a2 = −
m∑
i=1

2αi√
π(βi + 1)

,
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a3 =
m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

,

a4 = − 4

3
√
π

(
m∑
i=1

m∑
j=1

m∑
k=1

αiαjαk
(βi + 1)2(βj + 1)2(βk + 1)

−
m∑
i=1

m∑
j=1

4αiβiα
2
j

π(βi + 1)3(βj + 1)2

)
.

Note that these expressions are equivalent to those derived when m = 1. Thus, the solution
when t� 1 is given by

c(1, t) = 1−
m∑
i=1

2αi√
π(βi + 1)

t1/2 +
m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

t

− 4

3
√
π

(
m∑
i=1

m∑
j=1

m∑
k=1

αiαjαk
(βi + 1)2(βj + 1)2(βk + 1)

−
m∑
i=1

m∑
j=1

4αiβiα
2
j

π(βi + 1)3(βj + 1)2

)
t3/2 +O(t2).

.
Steady-state solution for case A

As in the case when m = 1, it is clear that c(x, t) → 0 as t → ∞ when solute metabolism is
described by multiple M-M pathways. To derive this trivial solution, the steady version of the
governing equations from §2.2 are solved with (2.2.4) replaced by (A.1).

A.2 Solutions for case B

Recall that from §2.5.1, (2.2.1) is solved subject to (2.2.2) and (2.2.3B) to obtain

c̄(x, s) = a(s) cosh(
√
sx) +

µa(s)√
s

sinh(
√
sx) +

1

s
.

and taking the inverse Laplace transform gives

c(x, t) = 1 + L−1

{
a(s)

[
cosh(

√
sx) +

µ√
s

sinh(
√
sx)

]}
.

Now, applying (A.1) gives rise to the following VIE:

c(1, t) = 1−
∫ t

0

kB(t− τ)
m∑
i=1

αic(1, τ)

1 + βic(1, τ)
dτ, (A.2.1)

where kB(t) is defined as before. Note that, as in case A, this equation takes the same form as
the VIE derived when m = 1, with α and β replaced by αi and βi, respectively.
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Small β solution for case B

Assuming βi � 1 for i = 1, 2, . . . ,m, consider the following perturbation expansion about the
small parameter βj where j ∈ [1, 2, . . . ,m]:

c(1, t) = c0(1, t) + βjc1(1, t) +O(β2
j ).

Similarly to case A, substituting this expression into (A.2.1) and assuming that βi is of the same
order as βj gives

c0(1, t) + βjc1(1, t) +O(β2
j )

= 1− ᾱ
∫ t

0

kB(t− τ)

[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
]

1 + βj
[
c0(1, τ) + βjc1(1, τ) +O(β2

j )
] dτ.

Note that this expression is equivalent to the expression derived when m = 1, with α replaced
by ᾱ. Thus, when βj ∼ O(βi), and βi � 1 for i = 1, 2, . . . ,m, the solution is given by

c(1, t) =
µ

ᾱµ+ ᾱ + µ
+
∞∑
n=1

2
[
µ cos(ξn)− ξn sin(ξn)

]
e−ξ

2
nt

(ᾱµ+ ᾱ + µ− ξ2
n) cos(ξn)− ξn(2 + ᾱ + µ) sin(ξn)

+ βjc1(1, t) +O(β2
j ).

where ξn are the roots of (ᾱµ− ξ2) sin(ξ) + ξ(ᾱ + µ) cos(ξ) = 0.

Large β solution for case B

Assuming βi � 1 for i = 1, 2, . . . ,m and defining εi = 1/βi, consider the following perturba-
tion expansion about the small parameter εj where j ∈ [1, 2, . . . ,m]:

c(1, t) = c0(1, t) + εjc1(1, t) +O(ε2
j).

As in case A, substituting this expression into (A.2.1) and assuming that εi is of the same order
as εj gives

c0(1, t) + εjc1(1, t) +O(ε2
j)

= 1− ᾱ
∫ t

0

kB(t− τ)

[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
]

1 + ε−1
j

[
c0(1, τ) + εjc1(1, τ) +O(ε2

j)
] dτ.

Note that this expression is equivalent to the expression derived when m = 1, with α replaced
by ᾱ. Thus, when βj ∼ O(βi), and βi � 1 for i = 1, 2, . . . ,m, the solution is given by
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c(1, t) = 1− ᾱ

βj

(
1 +

1

µ
−
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

])

+
∞∑
n=2

(−1)nᾱ

βnj

∫ t

0

kB(t− τ)
[
c1(1, τ) + 1

]n−2
dτ,

where λn are the roots of µ cos(λ)− λ sin(λ) = 0.

Small t solution for case B

As in the case when m = 1, the governing equations may be re-characterised using Corollary
2.1 and Lemma 2.2 to obtain the following coupled VIEs:

c(0, t) = 1 +

∫ t

0

µkA(t− τ)
[
1− c(0, τ)

]
− 2g(t− τ)

m∑
i=1

αic(1, τ)

1 + βic(1, τ)
dτ, (A.2.2)

c(1, t) = 1 +

∫ t

0

2µg(t− τ)
[
1− c(0, τ)

]
− kA(t− τ)

m∑
i=1

αic(1, τ)

1 + βic(1, τ)
dτ. (A.2.3)

Now consider the following expansions in t:

c(0, t) = a1 + a2t
1/2 + a3t+ a4t

3/2 + a5t
2 +O(t5/2), (A.2.4)

c(1, t) = b1 + b2t
1/2 + b3t+ b4t

3/2 + b5t
2 +O(t5/2). (A.2.5)

Recalling that kA(t) ∼ 1/
√
πt and g(t) ∼ 1/2 for t � 1, substituting (A.2.4) and (A.2.5) into

(A.2.2) and taking a series expansion of(
1 + βi

[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
])−1

about τ = 0 gives

a1 + a2t
1/2 + a3t+ a4t

3/2 + a5t
2 +O(t5/2)

= 1 +

∫ t

0

µ√
π

(t− τ)−1/2
[
1− a1 − a2τ

1/2 − a3τ − a4τ
3/2 − a5τ

2 −O(τ 5/2)
]

−
m∑
i=1

αi
[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
]

×
[

1

b1βi + 1
− b2βi

(b1βi + 1)2
τ 1/2 +

(b2
2 − b1b3)β2

i − b3βi
(b1βi + 1)3

τ +O(τ 3/2)

]
dτ

= 1 +
µ√
π

[
(1− a1)

∫ t

0

(t− τ)−1/2 dτ − a2

∫ t

0

(t− τ)−1/2τ 1/2 dτ − a3

∫ t

0

(t− τ)−1/2τ dτ

−a4

∫ t

0

(t− τ)−1/2τ 3/2 dτ − · · ·
]
−

m∑
i=1

αi

[
b1

b1βi + 1

∫ t

0

1 dτ +
b2

(b1βi + 1)2

∫ t

0

τ 1/2 dτ

+
(b1b3 − b2

2)βi + b3

(b1βi + 1)3

∫ t

0

τ dτ + · · ·
]
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= 1 +
2µ(1− a1)√

π
t1/2 −

(
m∑
i=1

αib1

b1βi + 1
+
µ
√
πa2

2

)
t−

(
m∑
i=1

2αib2

3(b1βi + 1)2
+

4µa3

3
√
π

)
t3/2

+O(t2).

Equating powers of t gives

a1 = 1,

a2 = 0,

a3 = −
m∑
i=1

αib1

b1βi + 1
,

a4 =
m∑
i=1

2αi(2µb
2
1βi + 2µb1 −

√
πb2)

3
√
π(b1βi + 1)2

.

(A.2.6)

Now, similarly, (A.2.4) and (A.2.5) are substituted into (A.2.3) to give

b1 + b2t
1/2 + b3t+ b4t

3/2 + b5t
2 +O(t5/2)

= 1 +

∫ t

0

µ
[
1− a1 − a2τ

1/2 − a3τ − a4τ
3/2 − a5τ

2 −O(τ 5/2)
]
− 1√

π
(t− τ)−1/2

×
m∑
i=1

αi
[
b1 + b2τ

1/2 + b3τ + b4τ
3/2 + b5τ

2 +O(τ 5/2)
][ 1

b1βi + 1
− b2βi

(b1βi + 1)2
τ 1/2

+
(b2

2 − b1b3)β2
i − b3βi

(b1βi + 1)3
τ − (b2

1b4 − 2b1b2b3 + b3
2)β3

i + 2(b1b4 − b2b3)β2 + b4βi
(b1βi + 1)4

τ 3/2

+O(τ 2)

]
dτ

= 1 + µ

[
(1− a1)

∫ t

0

1 dτ − a2

∫ t

0

τ 1/2 dτ − a3

∫ t

0

τ dτ − · · ·
]
− 1√

π

m∑
i=1

αi

×
[

b1

b1βi + 1

∫ t

0

(t− τ)−1/2 dτ +
b2

(b1βi + 1)2

∫ t

0

(t− τ)−1/2τ 1/2 dτ

+
(b1b3 − b2

2)βi + b3

(b1β + 1)3

∫ t

0

(t− τ)−1/2τ dτ +
(b2

1b4 − 2b1b2b3 + b3
2)β2

i + 2(b1b4 − b2b3)βi + b4

(b1βi + 1)4

×
∫ t

0

(t− τ)−1/2τ 3/2 dτ + · · ·
]

= 1−
m∑
i=1

2αib1√
π(b1βi + 1)

t1/2 +

(
µ(1− a1)−

m∑
i=1

αi
√
πb2

2(b1βi + 1)2

)
t

−

(
2µa2

3
+

m∑
i=1

4αi
[
(b1b3 − b2

2)βi + b3

]
3
√
π(b1βi + 1)3

)
t3/2

−

(
µa3

2
+

m∑
i=1

3αi
√
π
[
(b2

1b4 − 2b1b2b3 + b3
2)β2

i + 2(b1b4 − b2b3)βi + b4

]
8(b1βi + 1)4

)
t2 +O(t5/2).
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Equating powers of t gives

b1 = 1,

b2 = −
m∑
i=1

2αi√
π(βi + 1)

,

b3 =
m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

,

b4 = − 4

3
√
π

(
m∑
i=1

m∑
j=1

m∑
k=1

αiαjαk
(βi + 1)2(βj + 1)2(βk + 1)

−
m∑
i=1

m∑
j=1

4αiβiα
2
j

π(βi + 1)3(βj + 1)2

)
.

Then, from (A.2.6), it follows that

a1 = 1,

a2 = 0,

a3 = −
m∑
i=1

αi
βi + 1

,

a4 =
4

3
√
π

(
m∑
i=1

αiµ

βi + 1
+

m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

)
.

Note that these expressions are equivalent to those derived when m = 1. Thus, from (A.2.4) and
(A.2.5), the solutions when t� 1 are given by

c(0, t) = 1−
m∑
i=1

αi
βi + 1

t+
4

3
√
π

(
m∑
i=1

αiµ

βi + 1
+

m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

)
t3/2 −O(t2),

c(1, t) = 1−
m∑
i=1

2αi√
π(βi + 1)

t1/2 +
m∑
i=1

m∑
j=1

αiαj
(βi + 1)2(βj + 1)

t

− 4

3
√
π

(
m∑
i=1

m∑
j=1

m∑
k=1

αiαjαk
(βi + 1)2(βj + 1)2(βk + 1)

−
m∑
i=1

m∑
j=1

4αiβiα
2
j

π(βi + 1)3(βj + 1)2

)
t3/2 +O(t2).

.
Steady-state solution for case B

As in the case whenm = 1, the solution as t→∞ is derived by solving the steady version of the
governing equations from §2.2 with (2.2.4) replaced by (A.1). Integrating the steady diffusion
equation twice with respect to x and applying (2.2.3B) results in

c(x,∞) = Ax+
A

µ
+ 1,
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where A is a constant of integration. Then, applying (A.1) gives the following expression for A
which may be solved numerically:

A = −
m∑
i=1

αi

(
A+ A

µ
+ 1
)

1 + βi

(
A+ A

µ
+ 1
) .



Appendix B

Solutions of the linear models from
Chapter 2

In this appendix, solutions to the governing equations from §2.2 are derived where (2.2.4) is
replaced by

∂c

∂x
(1, t) =

−αc(1, t), β � 1, (B.1)

−α
β
, β � 1. (B.2)

For cases A and B, each linear boundary condition is applied in turn and the resulting solutions
are shown to be equivalent to the small and large β solutions derived in §2.4.2 and §2.5.2.

B.1 Solutions for case A

Recall that from §2.4.1, (2.2.1) is solved subject to (2.2.2) and (2.2.3A) to obtain

c̄(x, s) = a(s) cosh(
√
sx) +

1

s
, (B.1.1)

and taking the inverse Laplace transform gives

c(x, t) = 1 + L−1
{
a(s) cosh(

√
sx)
}
. (B.1.2)

Now, (B.1) and (B.2) are applied in turn.

Small β solution for case A

Differentiating (B.1.1) and applying (B.1) gives

a(s) = − α

s
[√
s sinh(

√
s) + α cos(

√
s)
] ,

148
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so it follows from (B.1.2) that

c(x, t) = 1− αL−1

{
cosh(

√
sx)

s
[√
s sinh(

√
s) + α cosh(

√
s)
]} . (B.1.3)

After verifying that no branch points exist, the residue theorem is used to evaluate this inverse
Laplace transform. The poles are given by

s = 0 and
√
s sinh(

√
s) + α cosh(

√
s) = 0,

and, for convenience, setting
√
s = iγ in the transcendental equation gives

γ sin(γ)− α cos(γ) = 0. (B.1.4)

Hence there is a simple pole at s = 0 and infinitely many simple poles at sn = −γ2
n for n ∈ N,

where γn are the roots of (B.1.4). After a trivial calculation, it is clear that

Res
s=0

=
1

α
,

and, using L’Hôpital’s rule, the residue at s = sn is given by

Res
s=sn

= − 2 cos(γnx)e−γ
2
nt

γn
[
γn cos(γn) + (α + 1) sin(γn)

] .
Then, applying the residue theorem, it follows from (B.1.3) that

c(x, t) =
∞∑
n=1

2α cos(γnx)e−γ
2
nt

γn
[
γn cos(γn) + (α + 1) sin(γn)

] .
Re-arranging (B.1.4) to obtain α cos(γn) = γn sin(γn) and choosing x = 1 results in

c(1, t) =
∞∑
n=1

2 sin(γn)e−γ
2
nt

γn cos(γn) + (α + 1) sin(γn)
,

the small β solution from case A, given by (2.4.10), to leading-order.

Large β solution for case A

Differentiating (B.1.1) and applying (B.2) gives

a(s) = − α

β
[
s3/2 sinh(

√
s)
] ,

so it follows from (B.1.2) that
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c(x, t) = 1− α

β
L−1

{
cosh(

√
sx)

s3/2 sinh(
√
s)

}
. (B.1.5)

After verifying that no branch points exist, this inverse Laplace transform is evaluated using the
residue theorem. The poles are given by

s3/2 = 0 and sinh(
√
s) = 0,

i.e. there is a pole of order 2 at s = 0 and infinitely many simple poles at sn = −n2π2 for
n ∈ N. The residues are calculated by using L’Hôpital’s rule to obtain

Res
s=0

=
x2

2
+ t− 1

6
,

Res
s=sn

=
2 cos(nπx)e−n

2π2t

(−1)n+1n2π2
.

Then, applying the residue theorem, it follows from (B.1.5) that

c(x, t) = 1− α

β

(
x2

2
+ t− 1

6
+ 2

∞∑
n=1

cos(nπx)e−n
2π2t

(−1)n+1n2π2

)
.

Noting that cos(nπ) = (−1)n and choosing x = 1 results in

c(1, t) = 1− α

β

(
t+

1

3
− 2

∞∑
n=1

e−n
2π2t

n2π2

)
,

the large β solution from case A, given by (2.4.14), to first-order.

B.2 Solutions for case B

Recall that from §2.5.1, (2.2.1) is solved subject to (2.2.2) and (2.2.3B) to obtain

c̄(x, s) = a(s) cosh(
√
sx) +

µa(s)√
s

sinh(
√
sx) +

1

s
. (B.2.1)

and taking the inverse Laplace transform gives

c(x, t) = 1 + L−1

{
a(s)

[
cosh(

√
sx) +

µ√
s

sinh(
√
sx)

]}
. (B.2.2)

Now, (B.1) and (B.2) are applied in turn.
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Small β solution for case B

Differentiating (B.2.1) and applying (B.1) gives

a(s) = − α
√
s
[
(s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s)
] ,

so it follows from (B.2.2) that

c(x, t) = 1− αL−1

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

s
[
(s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s)
]} . (B.2.3)

After verifying that no branch points exist, the residue theorem is used to evaluate this inverse
Laplace transform. The poles are given by

s = 0 and (s+ αµ) sinh(
√
s) +

√
s(α + µ) cosh(

√
s) = 0,

and, for convenience, setting
√
s = iξ in the transcendental equation gives

(αµ− ξ2) sin(ξ) + ξ(α + µ) cos(ξ) = 0. (B.2.4)

Hence there is a simple pole at s = 0 and infinitely many simple poles at sn = −ξ2
n for n ∈ N,

where γn are the roots of (B.2.4). Using L’Hôpital’s rule to calculate the residues gives

Res
s=0

=
µx+ 1

αµ+ α + µ
,

Res
s=sn

=
2
[
ξn cos(ξnx) + µ sin(ξnx)

]
e−ξ

2
nt

ξn
[
(αµ+ α + µ− ξ2

n) cos(ξn)− ξn(2 + α + µ) sin(ξn)
] .

Then, applying the residue theorem, it follows from (B.2.3) that

c(x, t) = 1−α

(
µx+ 1

αµ+ α + µ
+
∞∑
n=1

2
[
ξn cos(ξnx) + µ sin(ξnx)

]
e−ξ

2
nt

ξn
[
(αµ+ α + µ− ξ2

n) cos(ξn)− ξn(2 + α + µ) sin(ξn)
]) .

Re-arranging (B.2.4) to obtain −α
[
ξn cos(ξn) + µ sin(ξn)

]
= ξn

[
µ cos(ξn) − ξn sin(ξn)

]
and

choosing x = 1 results in

c(1, t) =
µ

αµ+ α + µ
+
∞∑
n=1

2
[
µ cos(ξn)− ξn sin(ξn)

]
e−ξ

2
nt

(αµ+ α + µ− ξ2
n) cos(ξn)− ξn(2 + α + µ) sin(ξn)

,

the small β solution from case B, given by (2.5.11), to leading-order.
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Large β solution for case B

Differentiating (B.2.1) and applying (B.2) gives

a(s) = − α

βs
[√
s sinh(

√
s) + µ cosh(

√
s)
] ,

so it follows from (B.2.2) that

c(x, t) = 1− α

β
L−1

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

s3/2
[√
s sinh(

√
s) + µ cosh(

√
s)

}
. (B.2.5)

After verifying that no branch points exist, this inverse Laplace transform is evaluated using the
residue theorem. The poles are given by

s3/2 = 0 and
√
s sinh(

√
s) + µ cosh(

√
s) = 0,

and, for convenience, setting
√
s = iλ in the transcendental equation gives

µ cos(λ)− λ sin(λ) = 0. (B.2.6)

Hence there is a pole of order 2 at s = 0 and infinitely many simple poles at sn = −λ2
n for

n ∈ N, where λn are the roots of (B.2.6). The residues are calculated by using L’Hôpital’s rule
to obtain

Res
s=0

= x+
1

µ
,

Res
s=sn

= −
2
[
λn cos(λnx) + µ sin(λnx)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

] .
Then, applying the residue theorem, it follows from (B.2.5) that

c(x, t) = 1− α

β

(
x+

1

µ
−
∞∑
n=1

2
[
λn cos(λnx) + µ sin(λnx)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

] ) .
Choosing x = 1 results in

c(1, t) = 1− α

β

(
1 +

1

µ
−
∞∑
n=1

2
[
λn cos(λn) + µ sin(λn)

]
e−λ

2
nt

λ2
n

[
λn cos(λn) + (µ+ 1) sin(λn)

]) ,
the large β solution from case B, given by (2.5.15), to first-order.



Bibliography

[1] https://www.kirkstall.com. Accessed: Jan-2021.

[2] L. Tomlinson, L. Hyndman, J. W. Firman, R. Bentley, J. A. Kyffin, S. D. Webb, S. McGinty,
and P. Sharma. In vitro Liver Zonation of Primary Rat Hepatocytes. Front Bioeng Biotech-

nol, 7:17, 2019. doi: 10.3389/fbioe.2019.00017.

[3] A. O’Keeffe, L. Hyndman, S. McGinty, A. Riezk, S. Murdan, and S. L. Croft. Development
of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS

One, 14(7):e0219985, 2019. doi: 10.1371/journal.pone.0219985.

[4] R. Ng. Drugs: From Discovery to Approval. John Wiley & Sons, Hoboken, NJ, 3rd edition,
2015. ISBN 978-1-118-90727-6.

[5] R. Greek and L. A. Kramer. The Scientific Problems with Using Non-Human Animals
to Predict Human Response to Drugs and Disease. In Animal Experimentation: Working

Towards a Paradigm Change. Brill, 2019. ISBN 978-90-04-39119-2.

[6] K. Archibald, R. Coleman, and T. Drake. Replacing Animal Tests to Improve Safety for
Humans. In Animal Experimentation: Working Towards a Paradigm Change. Brill, 2019.
ISBN 978-90-04-39119-2.

[7] M. Wilkinson. The Potential of Organ on Chip Technology for Replacing Animal Testing.
In Animal Experimentation: Working Towards a Paradigm Change. Brill, 2019. ISBN
978-90-04-39119-2.

[8] K. Duval, H. Grover, L.-H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, and Z. Chen. Mod-
eling Physiological Events in 2D vs. 3D Cell Culture. Physiology, 32:266–277, 2017. doi:
10.1152/physiol.00036.2016.

[9] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang. Three-Dimensional Cell Culture
Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. ASSAY

Drug Dev Technol, 12(4):207–218, 2014. doi: 10.1089/adt.2014.573.

153



BIBLIOGRAPHY 154

[10] S. Silvani, M. Figliuzzi, and A. Remuzzi. Toxicological evaluation of airborne particulate
matter. Are cell culture technologies ready to replace animal testing? J Appl Toxicol, 39:
1484–1491, 2019. doi: 10.1002/jat.3804.

[11] A. G. Souza, I. C. C. Ferreira, K. Marangoni, V. A. F. Bastos, and V. A. Goulart. Advances
in Cell Culture: More than a Century after Cultivating Cells. J Biotechnol Biomater, 6(2):
1–4, 2016. doi: 10.4172/2155-952X.1000221.

[12] C. Jensen and Y. Teng. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front

Mol Biosci, 7:33, 2020. doi: 10.3389/fmolb.2020.00033.

[13] M. Thiriet and K. H. Parker. Physiology and pathology of the cardiovascular system: A
physical perspective. In Cardiovascular Mathematics: Modeling and simulation of the

circulatory system. Springer Milan, Milano, 2009. ISBN 978-88-470-1152-6.

[14] M. A. Swartz and M. E. Fleury. Interstitial Flow and Its Effects in Soft Tissues. Annu Rev

Biomed Eng, 9:229–256, 2007. doi: 10.1146/annurev.bioeng.9.060906.151850.

[15] J. Shemesh, I. Jalilian, A. Shi, G. H. Yeoh, M. L. K. Tate, and M. E. Warkiani. Flow-
induced stress on adherent cells in microfluidic devices. Lab Chip, 15:4114–4127, 2015.
doi: 10.1039/C5LC00633C.

[16] A. Ravichandran, Y. Liu, and S.-H. Teoh. Review: bioreactor design towards generation
of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med, 12:
e7–e22, 2018. doi: 10.1002/term.2270.

[17] G. Mestres, R. A. Perez, N. L. D’Elía, and L. Barbe. Advantages of microfluidic systems
for studying cell-biomaterial interactions-focus on bone regeneration applications. Biomed

Phys Eng Express, 5:032001, 2019. doi: 10.1088/2057-1976/ab1033.

[18] U. Marx. Trends in cell culture technology. In New Technologies for Toxicity Testing.
Springer, New York, NY, 2012. ISBN 978-1-4614-3054-4.

[19] Y. Wen, X. Zhang, and S.-T. Yang. Medium to high throughput screening: microfabrication
and chip-based technology. In New Technologies for Toxicity Testing. Springer, New York,
NY, 2012. ISBN 978-1-4614-3054-4.

[20] N. Salehi-Nik, G. Amoabediny, B. Pouran, H. Tabesh, M. A. Shokrgozar, N. Haghighipour,
N. Khatibi, F. Anisi, K. Mottaghy, and B. Zandieh-Doulabi. Engineering parameters in
bioreactor’s design: a critical aspect in tissue engineering. Biomed Res Int, 2013:762132,
2013. doi: 10.1155/2013/762132.



BIBLIOGRAPHY 155

[21] P. Godara, C. D. McFarland, and R. E. Nordon. Design of bioreactors for mesenchy-
mal stem cell tissue engineering. J Chem Technol Biotechnol, 83:408–420, 2008. doi:
10.1002/jctb.1918.

[22] S. Damiati, U. B. Kompella, S. A. Damiati, and R. Kodzius. Microfluidic Devices for Drug
Delivery Systems and Drug Screening. Genes, 9:103, 2018. doi: 10.3390/genes9020103.

[23] J. Sun, A. R. Warden, and X. Ding. Recent advances in microfluidics for drug screening.
Biomicrofluidics, 13:061503, 2019. doi: 10.1063/1.5121200.

[24] P. Cui and S. Wang. Application of microfluidic chip technology in pharmaceutical analy-
sis: A review. J Pharm Anal, 9:238–247, 2019. doi: 10.1016/j.jpha.2018.12.001.

[25] Q. Wu, J. Liu, X. Wang, L. Feng, J. Wu, X. Zhu, W. Wen, and X. Gong. Organ-on-a-
chip: recent breakthroughs and future prospects. BioMed Eng OnLine, 19:9, 2020. doi:
10.1186/s12938-020-0752-0.

[26] M. D. Atkins. Velocity Field Measurement Using Particle Image Velocimetry (PIV). In
Application of Thermo-Fluidic Measurement Techniques. Butterworth-Heinemann, 2016.
ISBN 978-0-12-809731-1.

[27] P. K. Panigrahi. Shear Stress Sensors. In Encyclopedia of Microfluidics and Nanofluidics.
Springer, New York, NY, 2015. ISBN 978-1-4614-5491-5.

[28] C. B. Allen, B. K. Schneider, and C. W. White. Limitations to oxygen diffusion and
equilibration in in vitro cell exposure systems in hyperoxia and hypoxia. Am J Physiol Lung

Cell Mol Physiol, 281:L1021–L1027, 2001. doi: 10.1152/ajplung.2001.281.4.L1021.

[29] J. F. Wong, C. A. Simmons, and E. W. K. Young. Modeling and Measurement of Biomolec-
ular Transport and Sensing in Microfluidic Cell Culture and Analysis Systems. In Modeling

of Microscale Transport in Biological Processes. Academic Press, 2017. ISBN 978-0-12-
804595-4.

[30] R. D. O’Dea, H. M. Byrne, and S. L. Waters. Continuum Modelling of In Vitro Tissue
Engineering: A Review. In Computational Modeling in Tissue Engineering. Springer,
Berlin, Heidelberg, 2013. ISBN 978-3-642-32563-2.

[31] S. L. Waters, L. J. Schumacher, and A. J. El Haj. Regenerative medicine meets mathemat-
ical modelling: developing symbiotic relationships. npj Regen Med, 6(24):1–8, 2021. doi:
10.1038/s41536-021-00134-2.

[32] R. J. Shipley, A. F. Smith, P. W. Sweeney, A. R. Pries, and T. W. Secomb. A hybrid
discrete–continuum approach for modelling microcirculatory blood flow. Math Med Biol,
37:40–57, 2019. doi: 10.1093/imammb/dqz006.



BIBLIOGRAPHY 156

[33] T. Sbrana and A. Ahluwalia. Engineering Quasi-Vivo® in Vitro Organ Models. In New

Technologies for Toxicity Testing. Springer, New York, NY, 2012. ISBN 978-1-4614-3054-
4.

[34] W. Zhao, Y. Cheng, Z. Pan, K. Wang, and S. Liu. Gas diffusion in coal particles: A
review of mathematical models and their applications. Fuel, 252:77–100, 2019. doi:
10.1016/j.fuel.2019.04.065.

[35] R. Dohmen and R. Milke. Diffusion in Polycrystalline Materials: Grain Boundaries, Math-
ematical Models, and Experimental Data. Rev Mineral Geochem, 72:921–970, 2010. doi:
10.2138/rmg.2010.72.21.

[36] P. Baveye and A. Valocchi. An evaluation of mathematical models of the transport of
biologically reacting solutes in saturated soils and aquifers. Water Resour Res, 25(6):
1413–1421, 1989. doi: 10.1029/WR025i006p01413.

[37] P. Tracqui. From passive diffusion to active cellular migration in mathematical models of
tumour invasion. Acta Biotheor, 43:443–464, 1995. doi: 10.1007/BF00713564.

[38] S. Wang, S. Mahali, A. McGuiness, and X. Lou. Mathematical models for estimating
effective diffusion parameters of spherical drug delivery devices. Theor Chem Acc, 125:
659–669, 2010. doi: 10.1007/s00214-009-0649-2.

[39] J. Demol, D. Lambrechts, L. Geris, J. Schrooten, and H. Van Oosterwyck. Towards a
quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels.
Biomaterials, 32:107–118, 2011. doi: 10.1016/j.biomaterials.2010.08.093.

[40] F. Zhao, P. Pathi, W. Grayson, Q. Xing, B. R. Locke, and T. Ma. Effects of Oxygen
Transport on 3-D Human Mesenchymal Stem Cell Metabolic Activity in Perfusion and
Static Cultures: Experiments and Mathematical Model. Biotechnol Prog, 21:1269–1280,
2005. doi: 10.1021/bp0500664.

[41] A. Przekwas and M. R. Somayaji. Computational pharmacokinetic modeling of organ-on-
chip devices and microphysiological systems. In Organ-on-a-chip. Academic Press, 2020.
ISBN 978-0-12-817202-5.

[42] I. Burova, C. Peticone, D. De Silva Thompson, J. C. Knowles, I. Wall, and R. J.
Shipley. A parameterised mathematical model to elucidate osteoblast cell growth in a
phosphate-glass microcarrier culture. J Tissue Eng, 10:2041731419830264, 2019. doi:
10.1177/2041731419830264.

[43] M. L. Yarmush, M. Toner, J. C. Y. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins.
Hepatic Tissue Engineering: Development of Critical Technologies. Ann N Y Acad Sci,
665:238–252, 1992. doi: 10.1111/j.1749-6632.1992.tb42588.x.



BIBLIOGRAPHY 157

[44] R. Chang and J. Overby. Chemistry. McGraw-Hill Higher Education, New York, NY, 13th
edition, 2019. ISBN 978-1-259-91115-6.

[45] P. Atkins, J. de Paula, and J. Keeler. Atkins’ Physical Chemistry. Oxford University Press,
Oxford, UK, 11th edition, 2018. ISBN 978-0-19-876986-6.

[46] K. A. Johnson and R. S. Goody. The Original Michaelis Constant: Translation
of the 1913 Michaelis-Menten Paper. Biochemistry, 50(39):8264–8269, 2011. doi:
10.1021/bi201284u.

[47] D. B. Northrop. On the Meaning of Km and V/K in Enzyme Kinetics. J Chem Ed, 75(9):
1153–1157, 1998. doi: 10.1021/ed075p1153.

[48] L. L. Mazaleuskaya, K. Sangkuhl, C. F. Thorn, G. A. FitzGerald, R. B. Altman, and
T. E. Klein. PharmGKB summary: Pathways of acetaminophen metabolism at the
therapeutic versus toxic doses. Pharmacogenet Genomics, 25(8):416–426, 2015. doi:
10.1097/FPC.0000000000000150.

[49] D. Reith, N. J. Medlicott, R. K. De Silva, L. Yang, J. Hickling, and M. Zacharias. Si-
multaneous Modelling of the Michaelis-Menten Kinetics of Paracetamol Sulphation and
Glucuronidation. Clin Exp Pharmacol Physiol, 36:35–42, 2009. doi: 10.1111/j.1440-
1681.2008.05029.x.

[50] M. R. Spiegel. Schaum’s outline of theory and problems of Laplace transforms. McGraw-
Hill Book Co., New York, NY, 1965. ISBN 978-0-07-060231-1.

[51] B. Jumarhon, S. McKee, and T. Tang. The proof of an inequality arising in a reaction-
diffusion study in a small cell. J Comp App Math, 51:99–101, 1994. doi: 10.1016/0377-
0427(94)90092-2.

[52] J. R. Cannon. The One-Dimensional Heat Equation. Cambridge University Press, Cam-
bridge, UK, 1984. ISBN 978-0-521-30243-2.

[53] B. Jumarhon and S. Mckee. On the Heat Equation with Nonlinear and Nonlocal Boundary
Conditions. J Math Anal App, 190:806–820, 1995. doi: 10.1006/jmaa.1995.1113.

[54] B. D. MacArthur and R. O. C. Oreffo. From Mathematical Models to Clinical Reality.
In Principles of Tissue Engineering (Fourth Edition). Academic Press, Boston, MA, 2014.
ISBN 978-0-12-398358-9.

[55] J. C. Lipscomb, S. Haddad, T. Poet, and K. Krishnan. Physiologically-Based Pharmacoki-
netic (PBPK) Models in Toxicity Testing and Risk Assessment. In New Technologies for

Toxicity Testing. Springer, New York, NY, 2012. ISBN 978-1-4614-3054-4.



BIBLIOGRAPHY 158

[56] R. J. Shipley, A. J. Davidson, K. Chan, J. B. Chaudhuri, S. L. Waters, and M. J. Ellis. A
strategy to determine operating parameters in tissue engineering hollow fiber bioreactors.
Biotechnol Bioeng, 108(6):1450–1461, 2011. doi: 10.1002/bit.23062.

[57] J. W. Allen and S. N. Bhatia. Formation of steady-state oxygen gradients in vitro: applica-
tion to liver zonation. Biotechnol Bioeng, 82(3):253–262, 2003. doi: 10.1002/bit.10569.

[58] M. N. Hsu, G.-D. S. Tan, M. Tania, E. Birgersson, and H. L. Leo. Computational fluid
model incorporating liver metabolic activities in perfusion bioreactor. Biotechnol Bioeng,
111(5):885–895, 2014. doi: 10.1002/bit.25157.

[59] G. Vozzi, D. Mazzei, A. Tirella, F. Vozzi, and A. Ahluwalia. Finite element mod-
elling and design of a concentration gradient generating bioreactor: application to bio-
logical pattern formation and toxicology. Toxicol In Vitro, 24:1828–1837, 2010. doi:
10.1016/j.tiv.2010.05.010.

[60] D. Mazzei, M. A. Guzzardi, S. Giusti, and A. Ahluwalia. A low shear stress modular
bioreactor for connected cell culture under high flow rates. Biotechnol Bioeng, 106(1):
127–137, 2010. doi: 10.1002/bit.22671.

[61] G. Mattei, S. Giusti, and A. Ahluwalia. Design Criteria for Generating Physiolog-
ically Relevant In Vitro Models in Bioreactors. Processes, 2:548–569, 2014. doi:
10.3390/pr2030548.

[62] J. M. Pedersen, Y.-S. Shim, V. Hans, M. B. Phillips, J. M. Macdonald, G. Walker, M. E.
Andersen, H. J. Clewell, and M. Yoon. Fluid Dynamic Modeling to Support the Develop-
ment of Flow-Based Hepatocyte Culture Systems for Metabolism Studies. Front Bioeng

Biotechnol, 4:72, 2016. doi: 10.3389/fbioe.2016.00072.
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