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Abstract 

The control of peptide conformation is crucial to facilitate further understanding of peptide 

and protein folding and activity. This thesis focuses on the control and mimicry of peptide 

secondary structure through two strategies: the design of conformational switching systems 

and the mimicry of β-turns through chemical ligation. 

Chapter 1 describes the forces that determine protein structure and the conformations 

adopted by these biological systems. Strategies towards the design of β-hairpins, including 

β-turn mimics and their applications are described, followed by a survey of the current state 

of the literature regarding bioconjugation and ligation strategies. 

Chapter 2 focuses on the design of tertiary amide-based conformational switches actuated 

through disulfide formation. The sequence Ac-GWPQG-NH2 was studied through a double 

mutant cycle, making use of nuclear magnetic resonance (NMR) to evaluate the cis Pro 

content of the sequences and the cooperativity between the Trp and Gln residues. This 

information was then used to design two generations of disulfide-actuated switches, the 

conformations of which were studied through NMR. 

Chapter 3 explores the design of novel β-turn mimics installed through chemical ligation. 

Hydrazide formation was employed in the design of three mimics, which are synthesised 

through a reductive amination step that allows the use of two unprotected peptide partners 

and mild conditions. The mimics were implemented in tripeptides and within the Tryptophan 

Zipper β-hairpin. NMR and circular dichroism (CD) analysis showed that the tripeptide 

systems adopted a turn-like conformation in solution, and that the full-sized conjugates 

successfully mimicked the β-turn and β-hairpin conformation in the control system. 

Chapter 4 details the design, synthesis and evaluation of a cyclic peptide inhibitor of the 

MDM2/p53 protein-protein interaction, which contains one of the β-turn mimics designed 

in Chapter 3 and is synthesised by means of a ligation step that cyclises the peptide. The 

activity of the peptide was evaluated through surface plasmon resonance (SPR) assays, 

which showed an improvement in comparison to the control system, which contains a (D-

Pro)-(L-Pro) β-turn. 
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Chapter 5 explores oxime ligation as a strategy to install β-turn mimics within β-hairpin 

backbones. One of the targets explored contained a β-turn mimic based on a meta-substituted 

aromatic ring, which afforded one stereoisomer that adopted a largely unfolded 

conformation, while the other showed successful mimicry of the turn and hairpin structure 

through CD analysis. An aliphatic oxime linkage was also explored, and although it provided 

less preorganisation it gave rise to two stereoisomers that successfully mimicked the 

conformation of the control system. The reduction of the oxime to generate an N-alkoxy 

amine junction was also studied through CD, which showed a higher degree of folding and 

stability in comparison to its oxime precursor. 
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1 Introduction 

1.1 Numbering and naming conventions 

The residues in a peptide sequence are numbered from N- to C-terminus. Where a specific 

residue is considered the reference point, it is referred to as i. Subsequent residues are 

numbered i+1, i+2, etc., and preceding residues are numbered i-1, i-2, etc. 

Undefined residues are referred to as Xaa, Yaa. Positions following and preceding a residue 

Xaa are referred to as Xaa+1 or Xaa-1, respectively. 

The nomenclature recommended by the International Union of Pure and Applied Chemistry1 

has been adopted to identify the atoms in each residue for NMR analysis. Relevant examples 

are presented in Figure 1. 

 

Figure 1. Nomenclature of relevant residues for NMR analysis. 

1.2 Forces determining protein structure 

The stability of a protein’s three-dimensional structure is defined by the difference between 

the free energies of the folded and unfolded states (Equation 1). The native protein will be 

stable if the free energy necessary to unfold the protein (ΔGU) is positive.2 

Δ𝐺𝑈 = 𝐺𝑢 − 𝐺𝑓 

Equation 1. Change in free energy necessary to unfold a native protein (ΔGU), where Gu is 

the free energy of the unfolded state and Gf that of the folded state. 

The individual free energies are composed of enthalpic and entropic terms (Equation 2), the 

latter being the major force favouring the unfolded state, as it provides more conformational 

freedom than the native folded protein. 
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Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 

Equation 2. Change in Gibbs free energy, where H is enthalpy, T the temperature and S the 

entropy of the studied system. 

A protein’s folded state is only marginally more stable than the unfolded protein, with the 

ΔG of unfolding typically being 20 to 80 kJ/mol.3 Folding is a cooperative process that takes 

place through the formation of many non-covalent interactions that are weak individually, 

but their summation creates the necessary difference in free energy so that the folded state 

will be favoured. 

In this section, the forces that determine protein structure will be discussed, from the amide 

bonds that form the primary sequence and the post-translational disulfide bridges, to the non-

covalent interactions that favour the folded state. 

1.2.1 Thermodynamics: from folding to switching 

Protein folding is a cooperative process, which means that intermediate conformations are 

not substantially populated and there are two distinct states at equilibrium (Figure 2).4 The 

equilibrium constant for the folding process can be expressed as Equation 3, using the 

concentrations of the native and unfolded states that are present. 

 

Figure 2. Co-operative, two-state folding transition between the native (N) and unfolded (U) 

states. Adapted with permission from ref.4 

𝐾𝑒𝑞 =
[𝐹]

[𝑈]
 

Equation 3. Equilibrium constant for the folding process, where [F] is the concentration of 

the native folded state and [U] that of the unfolded state. 
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The stability of the folded native protein (ΔG°
F, Equation 4) can be measured from the free 

energies of the folded and unfolded states: 

Δ𝐺°
𝐹 = 𝐺°

𝐹 − 𝐺°
𝑈 = 𝑅𝑇𝑙𝑛𝐾𝑒𝑞 

Equation 4. Net stability of the folded state (ΔG°
F), where G°

F is the free energy of the native 

state, G°
U that of the unfolded state, R is the gas constant (8.31 JK-1mol-1) and T the 

temperature (K). 

The same analysis can be applied to two-state systems, for example the binding or unbinding 

of a substrate, two distinct folded conformations as well as a two-state switch. In the latter 

case, for example a peptide with cis and trans configurations, the population of said states 

at equilibrium is defined by the Boltzmann distribution (Equation 5), which dictates that the 

most populated state will be the one with the lowest energy and therefore most stable. 

𝑁𝐴

𝑁𝐵
= 𝑒−(

𝛥𝛥𝐺
𝑅𝑇

)
 

Equation 5. Boltzmann distribution, where NA and NB are the number of particles in each 

state, R is the gas constant, 8.31 JK−1mol-1, T is the temperature in K and ΔΔG the Gibbs 

free energy in J. 

If ΔG ~kBT, the energetic difference between both states is small and the population will be 

evenly distributed between them. Therefore, the distribution of particles is defined by the 

Gibbs free energy, which can be related to the equilibrium constant between states through 

Equation 6: 

𝛥𝐺° = −𝑅𝑇𝑙𝑛𝐾𝑒𝑞 

Equation 6. Relationship between ΔG° and the equilibrium constant (Keq), where R is the gas 

constant, 8.314 JK-1mol-1, and T is the temperature in K. 

In order for switching to take place, enough energy needs to be provided to overcome the 

energy difference between states and invert the distribution of the population. For example, 

to invert a population from 9:1 to 1:9, the difference in energy is 5.4 kJ/mol. Therefore an 

energy of 10.8 kJ/mol needs to be provided for the population inversion to take place. In the 

case of switching from a trans peptide bond to the cis state, the ΔΔG between states is 

approximately 10 kJ/mol (Figure 3).5 The preference for one state over another can be biased 

through the introduction of a new feature into the system6 – for example, the formation of a 

disulfide bridge or the phosphorylation of a residue could provide enough energy for a 

peptide to switch to the cis configuration. 
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Figure 3. General energy diagram for the isomerisation of a peptide bond. The typical 

difference in energy between the cis and trans states is represented in blue. 

The strength of non-covalent pairwise interactions in peptides can be measured through 

double mutant cycles (DMC), utilising the relationship between the population of states and 

the Gibbs free energy.7 DMCs are based on introducing two mutations into the system under 

study, which creates a thermodynamic cycle that allows for the calculation of the free energy 

of interaction between residues. The ΔG associated to a structural property of the protein can 

be calculated at every step of the cycle, therefore if the ΔG upon a double mutation is 

different than the sum of the ΔGs after single mutations, the residues are coupled.8 These 

mutations can be a change in residues as well as the protonation of the system or a change 

in conditions such as pH. 

The introduction of more than one mutation is necessary in order to cancel the secondary 

effects caused by the interaction of a residue with other parts of the protein. These cycles 

also require a two-state folding behaviour, that is a distinct folded and unfolded state, or two 

distinct conformations in order to use them in folding systems like peptides.9 

DMCs have been widely used to measure the strength of non-covalent interactions between 

residues in peptides: from cross-strand interactions in beta hairpins10,11 to quantifying 

electrostatic12 and hydrophobic interactions.13 Focusing on the mutation of two residues in a 

peptide system, the DMC can be expressed as: 
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Figure 4. General double mutant cycle showing the ΔΔG for each mutation. 

Usually the reference state consists of the residues studied being replaced by Ala in order to 

minimise the formation of new side chain interactions. Therefore, the ΔΔG of the interaction 

between residues X and Y can be expressed as:8 

ΔΔ𝐺𝑖𝑛𝑡 = ΔΔ𝐺𝐴𝐴→𝑋𝐴 − ΔΔ𝐺𝐴𝑌→𝑋𝑌 = ΔΔ𝐺𝐴𝐴→𝐴𝑌 − ΔΔ𝐺𝑋𝐴→𝑋𝑌 

Equation 7. Calculation of ΔΔG of the interaction between both mutated residues. 

Where the free energy for each mutation corresponds to the subtraction of the ΔG of both 

states, therefore: 

ΔΔ𝐺𝑖𝑛𝑡 = Δ𝐺𝐴𝐴 − Δ𝐺𝑋𝐴 − Δ𝐺𝐴𝑌 + Δ𝐺𝑋𝑌 

Equation 8. Calculation of the ΔΔG of interaction using the individual ΔG terms for each 

mutant. 

ΔΔGint measures the coupling between both residues studied: if its value is not zero, then the 

residues are coupled. If ΔΔGint is positive, negative cooperativity is taking place and if it is 

negative, the residues have positive cooperativity in stabilising the same conformation.14 

1.2.2 The amide bond 

Proteins and peptides are composed of amino acids linked through peptide bonds. These 

bonds can be formed through a condensation reaction between the carbonyl carbon of the 

residue being added to the chain and the NH of the following residue (Scheme 1), but under 

standard biochemical conditions and at physiological pH this reaction does not occur, as the 

hydroxyl group is a poor leaving group.15 
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Scheme 1. Condensation reaction that generates an amide bond. 

In cells, proteins are synthesised through transcription and translation from DNA, but 

smaller-sized peptides can be chemically synthesised. In a synthetic setting, peptides can be 

made through the activation of the acid by introducing an electron withdrawing group on the 

acyl carbon prior to the attack by the amino group (Figure 5). Many methods have been 

developed for this purpose,16,17 which involve the use of diverse coupling reagents 

sometimes in combination with additives in order to prevent epimerisation. 

 

Figure 5. General pathway for peptide coupling. 

The hydrolysis of a peptide bond is worth from -2 to -17 kJ/mol in free energy;18 this value 

depends on which specific amino acids are involved as well as the neighbouring amino acids 

and the pH of the solution. 

The delocalisation of the lone pair of the nitrogen atom that takes place along the peptide 

bond confers a partial double bond character to it (Figure 6). This causes the rotation about 

the amide bond to be restricted and therefore the Cα and C=O of residue Xaa as well as the 

NH and Cα of residue Xaa+1 are coplanar. Another consequence of resonance is the length 

of the peptide bond (on average 1.32 Å), which is in between that of a C-N bond (1.45 Å) 

and a C=N bond (1.25 Å).3           
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Figure 6. Left: peptide chain showing the dihedral angles in blue. The amide bond is 

represented in red. Right: planes that describe the dihedral angles. Reproduced with 

permission from ref.19 

1.2.3 Disulfide bridges 

Disulfide bridges are the second most common covalent link between two residues in 

proteins, which form through an oxidation reaction between the sulfur atoms in two cysteine 

residues (Scheme 2). The redox potential for this reaction in proteins is of -0.25 V.20 

Disulfide bridges often take place between residues widely separated in the primary 

sequence, although local ones are also observed linking loops with positive β-turn 

potential.21 

 

Scheme 2. Formation of a disulfide bridge. 

Disulfides are comprised of the Cα-Cβ-Sγ-S’γ-C’β-C’α atoms, where the S-S distance is 2 Å,22 

and they are defined by the dihedral angles χ1, χ2 and χ3 (Figure 7). Rotation can take place 

about the S-S bond (the χ3 dihedral angle), which defines two types of disulfides: left-

handed, with an average of χ3 = -87°, and right-handed, with χ3 = +97°.23 
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Figure 7. Disulfide bridge showing the dihedral angles in blue and the relevant atoms in red. 

The folding kinetics of proteins are affected by the location of the disulfide bridge relative 

to the folding nucleus (the folding nucleus is a region of the transition state where specific 

residues have come into contact so that the protein has overcome its free energy barrier, and 

will rapidly fold into its native conformation24). If the bridge is near or in the folding nucleus, 

it will stabilise the intermediate folding states and therefore accelerate folding. But if it 

connects elements of secondary structure that fold late in the process, the disulfide can slow 

folding considerably and it will not provide additional stability until the protein is completely 

folded.25,26 This was applied in a β-hairpin as a strategy to populate a folding transition state 

in order to study the folding pathway and kinetics of the system.27 The authors found that 

including a disulfide crosslink near the β-turn region increased the folding rate by an order 

of magnitude. 

Disulfides are also thermodynamically coupled to the folding process – studies by Tidor et 

al.28 as well as Pace et al.29 showed that each bridge contributes 10.5 kJ/mol to 21.3 kJ/mol 

to the thermodynamic stability of the protein. They stabilise the folded conformation by 

reducing the conformational fluctuations of the unfolded state, therefore decreasing its 

entropy and making it less favourable compared to the native folded protein.21 The degree 

of stabilisation provided by a disulfide bridge depends on two factors: the size of the loop 

created and the location of the bridge. The increase in stability provided to the native 

structure is directly proportional to the number of residues between the bridged cysteines,26,30 

and, as found by Matsumura et al.,31 a disulfide will be most stabilising if it is located in a 

flexible region. 
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Disulfide bridges are required for folding and stability, which directly impacts the activity 

of many proteins. Narhi et al.32 studied a growth factor protein which contains three 

disulfides and synthesised mutated analogues that lacked one, two or all bridges. They found 

that if all disulfides were removed, the protein was unfolded and became inactive. If one or 

two of the disulfide bridges were present, a compact but partially folded state was formed 

and some biological activity was observed, although lower than in the native protein. 

Disulfides can also be directly implicated in biological functions30 and are classified as 

catalytic and allosteric. Catalytic disulfides are present in enzyme active sites like 

oxidoreductases and they participate in many cysteine-based redox-systems, including thiol-

disulfide exchange reactions, which maintain the redox balance in cells through the 

glutathione/glutathione disulfide redox-couple.33,34 Allosteric disulfides35 regulate protein 

function by triggering conformational changes. They are labile disulfides that have high 

torsional strain as well as a more stretched sulfur-sulfur bond compared to non-labile ones: 

database studies22 have shown that the mean S-S bond length for all disulfides in the PDB is 

2.046 Å, whereas it is 2.055 Å for labile disulfide bridges. 

Disulfide bonds are a widely used tool in protein engineering36 as well as in the development 

of new peptide-based therapeutics. Cyclisation using this strategy can lock the peptide into 

its bioactive conformation and thus improve its potency and selectivity.30 

1.2.3.1 Vicinal disulfides 

In early studies vicinal disulfides were thought to belong to a list of ‘forbidden’ regions 

which could not form a disulfide bond. These regions were described by Thornton21 in 1981 

and they included regions both in the primary and secondary structure which generated too 

much strain in the protein conformation. Nowadays it has become clear that these regions 

are indeed populated by disulfide-bridged cysteines37 and although rare, vicinal disulfides 

do occur in proteins. 

Vicinal disulfides are formed between two adjacent cysteine residues in the primary 

sequence. Although there is a strong preference for a trans peptide bond between the 

cysteines involved in a vicinal disulfide, cis peptide bonds are also observed (Figure 8). The 

formation of the disulfide bridge causes significant distortion to the backbone conformation, 

thus a trans Cys peptide bond adopts an average ω angle of 171°. Cis bonds suffer less 

distortion and usually have ω close to 0°.38 
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Figure 8. Vicinal disulfide bridges with cis (left, PDB 3HOL) and trans (right, PDB 2QC1) Cys. 

Although they are scarce, vicinal disulfides have been found to be conserved motifs in 

proteins and they are usually located in tightly packed domain interiors or in relatively 

mobile loops.39 Many of them undertake structural roles and some examples have been 

shown to be necessary for activity,40 including their participation in redox reactions.37 An 

interesting example is the Microcin C7 self-immunity protein (MccF), a serine peptidase that 

cleaves linkages between amino acids and nucleic acids and is responsible for breaking down 

the antibiotic Microcin C. MccF has a catalytic triad composed of Ser-His-Glu which is 

preceded by two consecutive Cys residues. In its active state, the Cys in MccF are in the 

reduced thiols form, but upon formation of a vicinal disulfide between them, with a cis C-

terminal Cys, the backbone conformation is altered significantly. This causes MccF to 

become inactive.39 

The frequent reduction of vicinal disulfides and oxidation of the free thiols as well as the 

pronounced difference in conformation between both states has led to an interest in whether 

these systems could be used as a switch. This has been observed in naturally occurring 

peptides,41 but no designed systems have been yet reported. 

1.2.4 Van der Waals interactions 

Van der Waals interactions arise from the fluctuation of the charge density in an atom’s 

electron cloud, which creates a temporary dipole in the atom. If another atom is close enough, 

that dipole will induce an opposite transient dipole in the nearby atom, and a weak attraction 

will take place. As both partners get closer together, the interaction will become stronger 

until they reach the Van der Waals contact distance (Figure 9). At this point, the attraction 

between dipoles is balanced by the repulsion between the atoms’ electron clouds. The Van 

der Waals radius of an atom defines how close another atom can approach it before 

experiencing repulsion.15 
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Figure 9. Diagram of the energy of a Van der Waals interaction as a function of the 

interatomic distance. 

The energy of these interactions is described by the Lennard-Jones potential, and it depends 

on the difference between the attractive (r-6) and the repulsive (r-12) terms (Equation 9). The 

energy for this interaction per atom pair usually ranges from 2 to 4 kJ/mol.42 

𝐸𝑉𝑑𝑊 = ∑ 𝐸 [(
𝑟𝑚

𝑟
)

12

− 2 (
𝑟𝑚

𝑟
)

6

] 

Equation 9. Energy of a Van der Waals interaction (EVdW), where rm is is the minimum energy 

interaction distance, E is the depth of the potential well and r is the interatomic distance. 

The repulsive term refers to the electronic repulsion between the interacting atoms and the 

attractive term encompasses three different contributions: the strongest is the orientation 

effect, or the interaction between permanent dipoles, which depends on the relative 

orientation between the participating atoms. The induction effect is the interaction between 

permanent and temporary dipoles and it varies depending on the polarisability of the 

molecules involved. Lastly, the London force or dispersion effect, which refers to the 

constant shifting of dipoles and arises from the induction of a complementary dipole in a 

nearby molecule by a temporary dipole.3 

1.2.5 Electrostatic interactions 

Electrostatic interactions arise from the attraction or repulsion between charged species. 

There are many types depending on the groups involved, as they can take place between 

permanently charged atoms, dipoles and quadrupoles. They will all be introduced in the 

following sections. 
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Electrostatic interactions are defined by Coulomb’s law (Equation 10) and they are the non-

covalent forces that act over the longest distance, as can be observed by their distance 

dependence: for the classic ion-ion interactions the distance dependence is of r-1, whilst for 

ion-dipole interactions it is of r-2. 

𝐸 =
𝑄1 ∗ 𝑄2

4𝜋𝜀 ∗ 𝑟
 

Equation 10. Coulomb’s law for an ion-ion interaction, where Q1 and Q2 are the magnitudes 

of the charges, ε is the electric constant and r the distance between the charges. 

These interactions can play a role in protein stability by the establishment of specific charge 

interactions (or salt bridges, discussed in the next section) and through non-specific long-

range interactions.43 In the latter case, repulsions between partially charged atoms can take 

place. In proteins the groups that participate in electrostatic interactions can be residue side 

chains as well as the terminal groups. These are usually found on the protein surface, where 

their charges can interact with the solvent due to solvation.44 The net charge of a protein also 

plays a role in stability: if a protein is in an extreme pH environment, the native protein can 

be destabilised due to the greater charge density present in the folded protein over the 

unfolded state.43 

Electrostatic interactions play a key role in promoting the right-handed twist in β-hairpins. 

Although there is an intrinsic bias for a right-handed twist that arises from the residue side 

chains steric hindrance and intra-strand interactions,45 that is an energetically small 

contribution. The dominant driving forces for the twist are inter-chain interactions that are 

mainly electrostatic and Van der Waals forces.46 

1.2.5.1 Ion-ion interactions: salt bridges 

Ion pairing interactions take place between permanently charged molecules or ions, for 

example Na+ and Cl-. This Coulombic attraction can also take place between charged 

residues in proteins, in which case they are referred to as salt bridges. 

Salt bridges are a pH-dependent, attractive interaction that takes place between oppositely 

charged residues that are within ~5 Å of each other (Figure 10). The negatively charged side 

chain can be Asp, Glu, Tyr, Cys and the C-terminal carboxylate group and the positively 

charged partner can be Lys, Arg, His and the N-terminal amino group. These interactions 
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can be found buried within the protein core or on the surface, they can be accompanied by a 

hydrogen bond between the partners, and they can also be networked, in which case at least 

one of the participating residues establishes another salt bridge with a different residue in 

the protein. In a database study, Kumar et al.47 found that 34% of all salt bridges were buried, 

8% of them were networked, and that most of them were formed between residues close in 

the primary sequence. 

 

Figure 10. The most stabilizing salt bridge in the database by Kumar et al.47 between E27 

and R387 in the PDB accession code 1SMD. The distances between atoms are shown in Å. 

Many approaches to calculate the contribution of salt bridges to a protein’s stability have 

been designed,2 which have shown that salt bridges contribute from 4.2 kJ/mol to 16.7 

kJ/mol in free energy48 depending on whether they are found on the protein’s surface or if 

they are buried, respectively. 

Salt bridges are composed of two energetic contributions: the Coulombic interaction 

between opposite charges constitutes the direct effect, which is a favourable contribution. 

This attraction is counterbalanced by the indirect effects, which tend to be unfavourable and 

include the desolvation cost and the background interactions between the charges and 

dipoles in their immediate environment. This balance between contributions defines whether 

a salt bridge will contribute to folding or destabilise a conformation.2 In general, there is a 

large desolvation cost but this is compensated for by the stronger electrostatic interactions 

that take place within the protein core: in a database study, Kumar et al.47 showed that 85.6% 

of all salt bridges were stabilising. Kumar et al.47 also found that 86% of all salt bridges 

contained a hydrogen bond between their side chains, highlighting how hydrogen-bonded 

salt bridges establish stronger interactions and contribute towards folding. 

Salt bridges have been shown to contribute to the stability of α-helices49 and β-hairpins.13 

For example, Ciani et al.50 substituted two cross-strand residue pairs in a β-hairpin by Glu-

Lys salt bridges and found that the individual mutations contributed -1.2 to -1.3 kJ/mol to 
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hairpin stability. The introduction of both mutations at the same time contributed -3.6 kJ/mol 

to the free energy, which showed a cooperative behaviour between them. 

1.2.5.2 Ion-dipole interactions 

Ion-dipole interactions take place between a charged atom and another which bears a 

permanent dipole. A classic example is solvation, or the interaction between ions like sodium 

chloride and water (Figure 11). The strength of these interactions varies depending on the 

magnitude of the dipole and charge involved as well as their relative orientation. 

  

Figure 11. Example of an ion-dipole interaction: solvation of a sodium ion in water. 

For these interactions to take place in proteins, the ion has to be completely desolvated and 

buried in the protein core and it interacts only with neutral dipoles: the Ser, Thr, Asn, Gln, 

Tyr and Trp side chains as well as the backbone NH and carbonyl groups. The partner dipole 

often establishes other secondary interactions that favour a more rigid binding geometry.51 

The ion-dipole interaction encompasses more specific interactions like charge-neutral 

hydrogen bonds and coordination. In proteins these interactions play a wide variety of roles, 

from binding substrates to participating in catalysis or coiled-coil stabilisation.51 

1.2.5.3 Dipole-dipole interactions 

Hydrogen bonding 

Hydrogen bonds arise from the electrostatic attraction between two dipoles, one which has 

a hydrogen atom covalently bound and acts as a hydrogen bond donor, and another with a 

partially negative charge that acts as the acceptor (Figure 12). The distance between heavy 

atoms in C=O···NH hydrogen bonds in proteins is 3 Å on average.52 They are very 

directional: the strongest interaction takes place when the dipoles are aligned with each 

other, although misalignment is common in proteins due to strong geometrical constraints. 

The tolerated deviation is usually of +/- 40°.3 
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Figure 12. Hydrogen bond interaction (in red), showing the donor (in blue) and acceptor (in 

pink). 

Hydrogen bonds are relatively weak, with energies for a main chain C=O···NH hydrogen 

bond of 15 to 20 kJ/mol.44 In proteins, about 90% of all internal polar groups participate in 

hydrogen bonds,53 which shows how they are key in determining protein structure. These 

interactions mainly take place between the main chain amide NH and carbonyl groups 

(Figure 13), but they can also occur between side chains, between a side chain and the main 

chain, as well as with water molecules within the protein core. 

 

Figure 13. Hydrogen bond (in red) between two main chain amides, showing the distance 

between heavy atoms. 

The energy of hydrogen bonds is not completely described by electrostatic interactions, as 

there is also the contribution of orbital interactions.54 The formation of a hydrogen bond (X-

H···Y) often causes an elongation of the X-H bond, and these interactions also show angular 

constraints that are greater than the expected for purely electrostatic interactions.55 This 

suggests that an orbital overlap is taking place and that these bonds have a partial covalent 

character. This effect is caused by the donation of charge from the n orbital in the acceptor 

atom (Y) into the X-H σ* orbital, which causes an increase of the latter’s antibonding 

character and results in a weakening and lengthening of the X-H bond.56 Although this is 

seen as evidence for the covalent character of hydrogen bonds, a consensus on the amount 

of covalency in these interactions is still missing.54 

α-Helices and β-sheets are greatly stabilised by hydrogen bonds. In α-helices, main chain 

hydrogen bonds that stabilise the helical conformation take place between the carbonyl 

oxygen of residue i and the amide NH group of residue i+4. They are generally ~3 Å between 

heavy atoms3 and lie parallel to the helical axis (Figure 14). 
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Figure 14. α-Helix structure, showing the backbone hydrogen bond pattern in yellow. PDB 

accession code 3IEE. 

Adjacent β-strands in β-sheets are associated through inter-strand hydrogen bonds, which 

take place between the backbone carbonyl and NH groups. Strands can align in a parallel 

and antiparallel manner (Figure 15), each of which has a specific hydrogen-bonded pattern. 

  

Figure 15. Antiparallel (left) and parallel (right) β-sheets, showing the backbone hydrogen 

bonding pattern in red lines.  

n to π* interaction 

The n to π* interaction takes place between a carbonyl group and a  nucleophile, which is 

usually another carbonyl group. In this interaction, the carbonyl group acting as the 

nucleophile donates lone pair electron density into the other group’s empty π* orbital (Figure 

16).57 

5.4 Å 

(3.6 residues) 
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Figure 16. n to π* interaction between two carbonyl groups and overlap of the n and π* 

orbitals (in blue). Reproduced with permission from ref.58  

Although this interaction was initially described as a purely dipole-dipole interaction, recent 

research has shown that is not its only component. It is composed of a Coulombic 

contribution between the partial charges in the carbonyl groups, the dipolar interaction 

between permanent dipoles, and a donor-acceptor interaction which involves the donation 

of electron density.57 

The strength of the individual interactions is relatively weak, ranging from 1.3 to 2.9 

kJ/mol,57 but their overall impact in protein structure is significant due to carbonyl groups 

being ubiquitous. A search of the PDB performed by Bartlett et al.59 showed that 34% of 

residues had the right orientation to participate in an n to π* interaction. The authors also 

performed DFT calculations to find out what dihedral angles give rise to these interactions 

and compared them to the angles from the residues found in the PDB. This confirmed that 

those 34% of residues engage in said interactions and highlights the relevance of this 

interaction in folded proteins. 

The n to π* interaction between two carbonyl groups in a Xaa-Pro peptide bond is related to 

the conformation of the Pro residue, as the orbital overlap between the lone pair of the Xaa 

residue and the π* orbital can only take place when the peptide bond is in the trans 

configuration.60 

1.2.5.4 Ion-quadrupole interactions 

Two types of ion-quadrupole interactions can take place: the most widespread and most 

studied is the cation-π interaction, although in recent years the anion-π interaction has 

received more attention61 and it has also been recognised as an important non-covalent 

interaction in protein structure. 

Anion-π interactions take place between a negatively charged ion or residue and an electron-

deficient π system. An analysis of the PDB by Lucas et al.62 showed that 61.3% of all 
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structures present these interactions, and that the most common partners involved are Glu 

and His (16.7% of the interactions). Glu and Asp were the most frequent anionic partners, 

interacting through a parallel orientation between the carboxylate group and the π-system 

(Figure 17). 

                

Figure 17. Left: Asp-π interaction (PDB accession code 1URN). Right: Glu-π interaction 

(PDB accession code 1WC7). Reproduced with permission from ref.62 

Smith et al.63 performed the mutation of two positions in a WW domain (small protein 

domain with two conserved Trp residues that folds into a triple-stranded β-sheet) that are 

brought close together by the reverse turn into Asp and Phe, and found that the anion-π 

interaction generated contributed -5.4 kJ/mol to the protein’s stability. 

Cation-π interactions take place between an aromatic side chain (Phe, Tyr, Trp or His) and 

a positively charged partner (Lys, Arg or protonated His), and arises from the electrostatic 

attraction between the cation and the electron-rich face of the quadrupole in the π-system 

(Figure 18). 

 

Figure 18. Cation-π interaction between lysine and a π-system, showing its quadrupole 

character. 
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Cation-π interactions were originally considered a weak interaction without a major role in 

folding, but in the late 1990s more studies were performed that recognised them as one of 

the most important non-covalent interactions in protein stability. Gallivan et al.64 performed 

a database search to analyse the frequency with which each amino acid was involved in a 

cation-π interaction (His was excluded from this study). 70% of all Arg side chains were 

located near an aromatic residue, indicating a strong preference over Lys as the cationic 

partner. Trp was the preferred aromatic partner, with 26% of all Trp in the PDB being 

involved in an energetically relevant cation-π interaction, and Arg-Trp was the most 

commonly observed amino acid pair (40%). 

Ma et al.65 expanded the definition of the cation-π interaction as an ‘amino-aromatic 

interaction’ in biological systems and divided it into two classes: one where a positively 

charged side chain is involved (Arg, Lys and protonated His) and another with a neutral 

nitrogen-containing side chain (Asn and Gln). The first class is stronger (with interaction 

energies between -1.7 and 10.0 kJ/mol66) and can also take place through the CH2 adjacent 

to the positively charged group, whereas the latter class establishes weaker interactions that 

can only take place through the NH2 group. 

Two kinds of geometries can take place: one with a perpendicular arrangement where the N-

H points towards the face of the aromatic ring and another with a parallel arrangement 

(Figure 19). 

 

Figure 19. Possible geometries of a cation-π interaction between Lys and Tyr. 

1.2.5.5 Dipole-quadrupole interactions: CH-π interactions 

CH-π interactions are a weak hydrogen bond that takes place between a CH donor and an 

aromatic π-acceptor. Many groups can act as those partners, but the most prominent 
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interactions take place between an aliphatic or aromatic CH donor and an aromatic π-

acceptor. In those cases, the energy of the interaction ranges from 6.3 to 10.5 kJ/mol.67 They 

have a dual nature in that they are composed of two energetic terms:68 the electrostatic 

component, which defines the orientation of the C-H bond towards the face of the aromatic 

ring, and a dispersion component, which is the major source of the attraction between both 

partners.69 

Brandl et al.70 examined the PDB to analyse the frequency with which these interactions 

occur, what types exist and residue preferences. They found that CH-π interactions are 

ubiquitous in proteins and classified them into 12 different classes depending on the 

donor/acceptor groups involved. On the donor side, the CH group can be aliphatic, aromatic 

or a Cα-H; the authors observed a preference for aromatic (Tyr Cδ2-H 4%) and aliphatic 

donors, some of the preferred residues being Lys (Cγ-H 3%), Met (Cγ-H 2.7%), Arg (Cγ-H 

2.7%) and Pro (Cδ-H 3%, Cβ-H 2.8%, Cα-H 2%). On the acceptor side, it can be an amide, 

carboxylate, guanidinium or aromatic side chain. A preference was observed for the latter 

class, with Trp being the most frequently observed (71.7% frequency, interacting through 

either ring). About 40% of the interactions were found to take place between residues 

separated by nine residues or fewer in the primary sequence. 

The CH-π interaction has a key role in the stabilisation of protein secondary structures: in 

antiparallel β-sheets, Pro-aromatic and Gly-aromatic pairs are overrepresented67 due to their 

involvement in cross-strand CH-π interactions (Figure 20). In the case of Pro, the Hα and Hδ 

have a partially positive charge,71 which causes the polarisation of the CH bond that favours 

the interaction with the partially negative π-face of the aromatic ring. 
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Figure 20. CH-π interaction between Gly and Phe (in red) along an antiparallel β-sheet. The 

hydrogen bonds are represented in grey.67 

Aromatic residues are favoured in the i+1 position in type VI β-turns, as they favour the 

occurrence of a cis Pro in the i+2 position. This stabilisation of the reverse turn is mediated 

by a CH-π interaction between the Hα or Hδ atoms in the Pro ring and the preceding aromatic 

residue (Figure 21). 

 

Figure 21. CH-π interaction between Trp and Pro (PDB accession code 1OAC). 

1.2.5.6 Quadrupole-quadrupole interactions 

The effect of quadrupole-quadrupole (or π-π) interactions in protein folding and stability can 

be considered through two components: the hydrophobic effect and local π-π interactions. 

These interactions are weak individually, but in conjunction they represent the most 

important contribution to the stability of the protein’s folded state. In this section, π-π 

interactions are described, while the hydrophobic effect is discussed in Section 1.2.6.1. 

Local π-π interactions can take place between a wide range of functional groups, using 

multiple points of contact and in multiple geometries. They are widespread in nature, with a 

classic example being DNA base pair stacking.72 Their role in protein stabilisation was first 

analysed by Burley and Petsko,73 who were the first to propose that aromatic-aromatic 
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interactions were the last non-bonding interaction key in protein folding. They found that 

the free energy of formation for each pair was -2.5 to -5.4 kJ/mol and proposed that these 

interactions could act as nucleation sites during folding, as they only found them in ordered 

regions of the protein. In antiparallel β-sheets, cross-strand hydrophobic side chain-side 

chain interactions are vital for sheet formation,74 Trp-Trp pairs conferring the greatest 

stability to β-hairpins.75 

The interaction between two aromatic systems is ubiquitous in proteins: on average, 60% of 

the aromatic residues in a protein participate in a π-π interaction.66 The strength of the 

interaction was measured by Hunter et al.,76 who have done a great amount of work in this 

area. They used the double mutant cycle approach to measure the magnitude of an edge-to-

face interaction in a molecular zipper complex and found that if different substituents were 

introduced in the ring, the free energy was affected. The values for the interaction energy 

ranged from +1.0 kJ/mol to -4.9 kJ/mol, the unsubstituted interaction being worth –1.4 

kJ/mol. Even though the magnitude of one π-π interaction is weaker than a hydrogen bond, 

the presence of many can have a considerable effect in the structure of a protein. 

π-π interactions are made up of two components, namely electrostatic and Van der Waals 

interactions. The electrostatic component defines the orientation and geometry of the 

interaction, whilst the Van der Waals component is larger in magnitude and therefore the 

main source of attraction.69,77 

There are very strong geometrical requirements for these interactions to be favourable, which 

arise from the fluctuation of the electrostatic attraction depending on the angle with which 

both rings stack and the offset between them. Hunter and Sanders78 explored this and found 

that the face-to-face arrangement was unfavourable, whilst the edge-to-face geometry and 

the parallel stack with an offset were favoured conformations. Their results can be 

interpreted though the graph in Figure 22. 
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Figure 22. Orientation of the quadrupoles in π-systems as a function of orientation. The y 

axis indicates the angle of anti-clockwise rotation about the central positive charge of the 

upper atom, while the x axis represents the offset towards the right-hand side of the 

diagram. Reproduced with permission from ref.79 

It can be observed how the face-to-face geometry (with a 0° angle and 0 Å offset) causes 

repulsion. In the case of the edge-to-face conformation, where the rings are rotated by up to 

90° relative to the other, and the offset stacked geometry, where they are laterally displaced 

from each other, π-σ attraction dominates, which means that they fall in the attractive band. 

Studies on the effects of polarisation in these interactions have also been performed. In the 

case of stacked aromatic rings, if an electron-donating substituent (EDG) is present in one 

of the π-systems the electron density in the ring is increased, which in turn favours a stronger 

π-repulsion. In the case of an electron-withdrawing group (EWG), the electron density is 

removed from the ring, which decreases the π-repulsion between the systems. This favours 

a stronger interaction.79 

In the case of edge-to-face interactions, the strongest attraction can be generated when an 

EWG is placed on the ring that contains the interacting proton (as it causes it to have a higher 

partially positive charge) and an EDG is present on the interacting π-system, which increases 

its basicity.66 

π-π interactions play an important role in determining protein structure and stability. In β-

hairpins, diagonal pairs (i to j-2 in Figure 23) can interact through more than one geometry, 

while cross-strand pairs (i to j in Figure 23) interact through an edge-to-face conformation.75 
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The cross-strand edge-to-face interaction between a Phe-Phe pair contributes -2.3 kJ/mol to 

the ΔG.66 Cross-strand Trp-Trp pairs, also in an edge-to-face geometry, provide the greatest 

stability to β-hairpins – this was used by Cochran et al. to design the Tryptophan Zipper 

peptide.80 

 

Figure 23. Cross-strand (i, j) and diagonal (i, j-2) interactions between side chains in a β-

sheet.  

1.2.6 Desolvation 

Desolvation, or the removal of solvent from the protein structure, plays an important role in 

the folding process and also has an effect on the individual interactions that form the folded 

protein state. Theoretical studies have shown that there are desolvation barriers during the 

protein folding process (Figure 24) which are associated to the simultaneous expulsion of 

water from the protein core and the formation of new internal interactions. For proteins with 

60-130 residues, the energetic effects from desolvation and solvation have been found to be 

in the order of 100 kJ/mol.81 

 

Figure 24. Solvation and desolvation barriers to protein folding and unfolding. The surfaces 

in blue in the native (N), unfolded (U), and transition (TS) states are exposed to the solvent, 

whereas the ones depicted in red represent broken internal contacts that are not solvated. 

Reproduced with permission from ref.81 
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One of the main driving factors of protein folding, the hydrophobic effect, takes place 

because of desolvation (discussed in Section 1.2.6.1). Cheung et al.82 performed molecular 

dynamics simulations of the folding and unfolding of an SH3 protein and compared them to 

experimental values. They found that most of the folding process took place before water 

was removed from the hydrophobic core, and that a near-native intermediate was formed 

which contained a partially solvated core. The intermediate then underwent a cooperative 

desolvation step to remove the water and generate the native folded protein. 

All non-covalent interactions in solution are influenced by desolvation. For example, this 

effect influences the energy of charge-charge interactions or salt bridges.51 The free energy 

change upon formation of a salt bridge in a protein is made up of three components: 

ΔΔGbridge, the favourable contribution due to the formation of the salt bridge, ΔΔGprotein, 

which arises from the electrostatic interactions of the salt bridge with the rest of the protein, 

and finally the ΔΔGdesolvation, which is the unfavourable contribution from the desolvation of 

a buried salt bridge. It has been found that the ΔΔGdesolvation for a buried salt bridge is of 54 

kJ/mol, whereas for an exposed salt bridge it is of 16 kJ/mol.47 This highlights how the 

stability of a salt bridge is highly dependent on how buried it is within the protein interior.2 

For most salt bridges the desolvation cost is balanced by the electrostatic interactions 

between salt-bridging residues, but some have been found to be destabilising because of this 

effect.83 

The formation of hydrogen bonds during folding is also connected to desolvation, as the 

hydrogen bonds between water and the backbone NH and CO groups as well as side chains 

have to be broken before new hydrogen bonds between residues can be formed.84 Fernández 

et al.85 studied the desolvation patterns of backbone hydrogen bonds in native proteins and 

found that as proteins fold, a simultaneous structuring and exclusion of water surrounding 

backbone hydrogen bonds takes place. This was proposed by the authors to compensate for 

the desolvation penalty of backbone polar groups. Although it has been proven that solvent-

exposed hydrogen bonds stabilise folding, there is still controversy around whether buried 

ones are also favourable.84 

The relationship between hydrogen bonding and desolvation was studied by Hunter,86 who 

described the hydrogen bond interactions between a solute and a solvent as a function of two 

parameters denominated α and β. These parameters describe the hydrogen bond donating (α) 

and accepting (β) properties of functional groups on the solute as well as on the solvent (αS 
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and βS). When α and β are plotted, four quadrants are generated which describe the 

competition between solute–solute, solvent–solvent, and solute–solvent interactions (Figure 

25). The red quadrants represent the case where hydrogen bonding interactions take place 

between solute and solvent, and therefore the interactions between solutes are unfavourable. 

In the blue quadrants solute-solute interactions predominate: the top right section 

corresponds to interactions between the most polar functional groups, while in the bottom 

left quadrant solute-solute interactions are favoured due to the solvophobic effect. 

 

Figure 25. General profile for hydrogen bonding interactions between neutral functional 

groups in solution. Reproduced with permission from ref.86 

The partitioning of the quadrants is different depending on the functional groups of the solute 

and the solvent. In the case of water, the values of αS and βS lie approximately in the middle 

of the scale, and therefore all quadrants are equal. This shows how both solute-driven and 

solvophobic interactions are important in this solvent. This model also describes the 

formation of a cage around non-polar solutes in water, which takes place to minimise the 

weak solvent–solute interactions in favour of the stronger solvent–solvent interactions.86 

1.2.6.1 The hydrophobic effect 

The hydrophobic effect is a special case of solvophobic effect that arises from the formation 

of clusters of hydrophobic residues in order to minimise their unfavourable contact with 

solvent water. Hydrophobic clusters can form in the core of proteins, where hydrophobic 

side chains are in close proximity and protected from the aqueous solvent, as well as on the 

protein surface.87 In the latter case, the system rearranges for the non-polar side chains to be 

closer together, interact and reduce the area of the interface between them and water. A 
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driving force for the hydrophobic effect is the tendency for water molecules to hydrogen 

bond with each other, which takes place around non-polar residues and provides order to the 

system.3 

1.3 Proteins and peptides 

Proteins are one of the major components in all living systems, where they control biological 

activity. Peptides are relevant in a biological context, both in nature and in a design context, 

as they are being sought as therapeutics to solve issues encountered with resistance to small 

molecule drugs. 

Proteins and peptides are polymers composed of amino acids linked by amide bonds. Each 

atom in a residue’s backbone is labelled as Cα and Hα for the carbon and proton in between 

the NH and carbonyl groups, Cβ and Hβ for the following atoms in the side chain, etc (Figure 

26). 

 

Figure 26. Designation of the side chain atoms in Trp. 

The backbone of a polypeptide chain is described by the dihedral angles ϕ [C(=O)-N-Cα-

C(=O)], ψ [N-Cα-C(=O)-N] and ω [Cα-C(=O)-N-Cα] (Figure 6, Figure 27). The accessible 

regions for the dihedral angles ϕ and ψ are rather restricted due to the steric interactions that 

take place during rotation. These regions were described by Ramachandran88 and they are 

usually represented through a ϕψ-map or Ramachandran plot (Figure 27). The two most 

populated regions correspond to the right-handed α-helix (near -60°, -60°) and the β-sheet 

(near -90°, +120°). 
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Figure 27. Left: dihedral angles ω, ϕ and ψ in a peptide. Right: Ramachandran plot for 

collagen (PDB accession code 1BKV), generated using MolProbity.89,90 

The amide bond’s partial double bond character restricts the available energy minima for the 

ω angle to two, therefore it can only adopt cis (ω = 0°) and trans (ω = 180°) conformations 

(Figure 28; this nomenclature will be used in the context of the peptide bond hereinafter). 

These two states are separated by a rotational barrier corresponding to a high energy state of 

ω = 90°.91 

 

Figure 28. Cis and trans isomers of a secondary amide peptide bond. 

In secondary amide bonds the trans configuration is the most favoured because repulsion 

between the Cα atoms is minimised. This causes the energetic difference between the two 

conformers (ΔG) to be approximately 10 kJ/mol, with a rotational barrier (ΔGA) of 84 kJ/mol 

(Figure 29).5 Of all canonical amino acids, proline is the only one that establishes a tertiary 

amide bond, the prolyl bond. In this case both conformers meet a comparable steric 

hindrance, which causes the energy difference between them to be smaller, approximately 2 

kJ/mol (with a rotational barrier of 54 kJ/mol).5,92 
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Figure 29. Energy diagram for the isomerisation in Xaa-Pro (blue) and Xaa-nonPro peptides 

(black). The energy barrier (ΔGA) as well as the energetic difference between the cis and 

trans states (ΔG) is smaller for Xaa-Pro peptides. 

1.3.1 Secondary structure 

Proteins are arranged in space by forming secondary, tertiary and quaternary structures. The 

secondary structure is the local conformation of the chain and the two latter correspond to 

the overall folding of the polypeptide and the formation of subunits, respectively. 

There are three main secondary structures in proteins: the α-helix, β-sheet and reverse turns. 

In an α-helix residues adopt set values for their dihedral angles, which induces a pitch along 

the helix (vertical distance between consecutive turns, Figure 30). This means that the 

residues are offset from each other and 3.6 residues are found per turn in a regular right-

handed helix. The structure is hydrogen bonded and these interactions take place between 

the carbonyl oxygen of residue i and the NH of residue i+4. α-Helices compose over 30% 

of the protein secondary structures present in nature:93 for example, they form coiled-coils 

in keratins and triple helices in collagen.3 They are also involved in protein-protein 

interactions and have therefore been an attractive target for the development of mimetics94 

of this secondary structure. 
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Figure 30. Left: general structure of an α-helix (PDB accession code 111L). Right: α-helix 

showing the hydrogen bonding pattern in yellow and the distance between atoms (PDB 

accession code 3IEE). 

The β-strand is a more extended conformation with a smaller pitch than helices (0.7 nm). 

The lack of stabilising interactions within the structure causes a single β-strand to not be 

stable, the β-sheet being a more commonly observed motif. β-Sheets are formed by two or 

more β-strands that are hydrogen bonded to each other (Figure 31), which confers much 

more stability to the structure. The orientation of the strands can be parallel, antiparallel or 

mixed. These structures play key structural roles in fibrous proteins, like silk,95,96 and they 

also participate in DNA-protein interactions97 (for example gene regulation processes98) and 

protein-protein interactions (PPIs).99 

         

Figure 31. Hydrogen bonding pattern in parallel (left) and antiparallel (right) β-sheets.  

Parallel β-sheets are formed by β-strands parallel to each other, with the termini pointing in 

the same direction, and antiparallel sheets contain β-strands in opposite directions (Figure 

32). The two dispositions differ in the backbone dihedral angles adopted as well as the 

5.4 Å 

(3.6 residues) 
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hydrogen bonded pattern between strands. Completely antiparallel sheets are more 

commonly observed than parallel ones, as the latter are only formed if four or more strands 

are present. Conversely, antiparallel β-sheets formed by only two strands are often observed 

– the most simple motif is the β-hairpin, where two antiparallel β-strands are joined by a 

reverse turn (Figure 32). 

              

Figure 32. Parallel and antiparallel β-sheets (left, PDB accession code 1WCJ), and β-hairpin 

(right, PDB accession code 1LE0). 

Reverse turns are key elements of secondary structure because they allow the polypeptide 

chain to change direction. They are usually found on the surface of proteins100,101 and are 

therefore implicated in molecular recognition processes.100,102 Turns also nucleate folding in 

β-hairpins103–105 and can be involved in the rate-determining step of folding in larger 

proteins.106 The stability of these motifs greatly affects the stability of the ‘'larger’' protein 

conformation.107,108 The different types of turn are classified according to the number of 

residues present and which ones are hydrogen bonded, as well as the dihedral angles ϕ and 

ψ of the central residues. 

There are many kinds of reverse turns: the smallest are δ-turns, which are composed of two 

residues hydrogen bonded from NH(i) to CO(i+1) and γ-turns, which involve three residues 

with a hydrogen bond between CO(i) and NH(i+2). β-Turns involve four residues and are 

usually hydrogen bonded from CO(i) to NH(i+3), although 25% of them have been found 

to not contain the hydrogen bond (Figure 33).109,110 A more general definition for β-turns111 

uses the distance between Cα(i) and Cα(i+3), which is always smaller than 7 Å. α-Turns are 

formed by five residues and have a distance smaller than 7 Å between Cα(i) and Cα(i+4). 

Like in β-turns, the hydrogen bond between i and i+4 is not always present. Lastly, the 

loosest reverse turns are π-turns, which are composed of six residues and contain a hydrogen 

bond between i and i+5.112 
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π-turn: 16-membered ring hydrogen bond: NH (i+5) → CO (i) 

α-turn: 13-membered ring hydrogen bond: NH (i+4) → CO (i) 

β-turn: 10-membered ring hydrogen bond: NH (i+3) → CO (i) 

γ-turn: 7-membered ring hydrogen bond: NH (i+2) → CO (i) 

Figure 33. Types of reverse turns (left) and representation of a β-turn (right). 

1.4 β-Turns 

β-Turns are secondary structure elements that were first recognised and described by 

Venkatachalam in 1968.113 Out of all turn types, the β-turn is the most thermodynamically 

favourable and most common in proteins. They are key motifs in protein folding108,114 

because they cause the polypeptide chain to fold back on itself by nearly 180° (Figure 34), 

which provides a change in direction. Their role as nucleation sites is observed in β-hairpins, 

where a β-turn connects the two strands of an antiparallel β-sheet and promotes folding. 

They are also important elements in protein function as they are frequent sites for molecular 

recognition.100,101 

These turns comprise four consecutive residues, i to i+3, and are generally defined by a 

hydrogen bond being present between the carbonyl of residue i and the amide NH of residue 

i+3 (Figure 34).110,111 25% of β-turns are open,109 in which case the distance between the 

Cα(i) and Cα(i+3) is always less than 7 Å. These turns are commonly found connecting other 

secondary structure elements like β-hairpins. 
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Figure 34. Left: β-hairpin containing a β-turn, showing the chain reversal. PDB code 1LE0. 

Right: general scheme of a β-turn, showing the dihedral angles (in blue, for further 

definition of the dihedral angles see Figure 6), the residues i to i+3 and indicating the 

hydrogen bond from i to i+3 (red). 

There are many types of β-turns, which are defined by the dihedral angles phi ϕ and psi ψ of 

the backbone residues i+1 and i+2. β-Turn types were originally described by 

Venkatachalam113 and their classification has since then evolved to include 12 different 

turns109,110 – the mean dihedral angles corresponding to all types are presented in Table 1. 

Table 1. Turn types with the ϕ and Ψ dihedral angles for the i+1 and i+2 residues.115 

Turn type i+1 i+1 i+2 i+2 

I -60° -30° -90° 0° 

I' +60° +30° +90° 0° 

II -60° +120° +90° 0° 

II' +60° -120° -90° 0° 

III -60° -30° -60° -30° 

III' +60° +30° +60° +30° 

V -80° +80° +80° -80° 

V' +80° -80° -80° +80° 

VIa1 -60° +120° -90° 0° 

VIa2 -120° +120° -60° 0° 
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Table 1. Turn types with the ϕ and Ψ dihedral angles for the i+1 and i+2 residues.115 

Turn type i+1 i+1 i+2 i+2 

VIb -135° +135° -75° +160° 

VIII -60° -30° -120° +120° 

 

Type VI β-turns stand out from the other types because the residue i+2 is always a cis proline 

(Figure 35) and therefore the angle ω(i+1) is 0° instead of 180°. The presence of a cis peptide 

bond is unique in this kind of turn and it is a relevant motif in protein folding and function:116–

118 they have been found to mediate protein-protein interactions119,120 and are recognition 

elements for protein receptors.100 

 

Figure 35. Type VI β-turn containing a cis Pro at the i+2 position. 

1.5 β-Hairpins 

β-Hairpins are the simplest antiparallel β-sheet and one of the most basic structural motifs 

adopted by peptides in aqueous solution. These supersecondary structure motifs are 

composed of two antiparallel β-strands that are hydrogen-bonded throughout the backbone 

and connected by a loop region (Figure 36). In most systems this region adopts β-turn 

topologies. 
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Figure 36. General structure of a β-hairpin. The hydrogen bonds are represented in red, and 

the hydrogen-bonded positions are in red boxes. The non-hydrogen bonded positions are 

shown in blue boxes. The β-turn residues are labelled in blue. 

Although types I and II are the most common β-turn conformations, they are rarely observed 

in β-hairpins. This is due to the incompatibility between the left-handed twist in the turn and 

the right-handed twist that takes place in β-hairpins.74 Instead, the mirror image turn types 

I’ and II’ have dihedral angles that are complementary to the twist in β-hairpins, thus they 

are almost exclusively found in these systems.121 Gellman et al.122 proved this in peptides of 

the sequence MQIFVKSxxKTITLKV-NH2, where xx was (L-P)-(L-A), (D-P)-(L-A), (D-P)-

(D-A), (D-P)-G, and (L-P)-G. They showed that replacing L-Pro with D-Pro changed the turn 

type from I or II to the opposite I’ or II’, which made the turn compatible with the hairpin 

twist and therefore stabilised the system. 

Turn sequence also has a strong influence in defining hairpin conformation: it has been 

shown that using proteinogenic amino acids, Asn-Gly turns are one of the most effective at 

inducing β-hairpin formation,121 as they favour type I’ β-turns. The (D-Pro)-Gly motif is also 

widely used to nucleate β-hairpin formation, and it has been shown to be a stronger promoter 

of folding,123 forming better-defined structures than Asn-Gly turns for smaller β-hairpin 

peptides. 

The stability of β-hairpins is attributed to the interplay of both interstrand hydrogen bonding 

and hydrophobic interactions. These two components were used by Cochran and co-workers 

to plan one of the most successful β-hairpin designs to date, the tryptophan zipper80 (Figure 

37). This motif is based on a pattern of polar residues in the hydrogen-bonded positions and 

tryptophan residues in the non-hydrogen bonded positions. This causes the formation of two 
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faces in the system, including a cross-strand tryptophan stacking pattern, which confers 

substantial stability to the system. 

     

Figure 37. Left: TrpZip1 structure showing the hydrogen bonded positions in red. Right: 

NMR structure showing the Trp residues in red and hydrophilic residues in green. 

Various studies have been performed to elucidate the impact of hydrophobic interactions in 

the stability of hairpin systems,124,125 which have shown the key role played by the coupling 

of cross-strand hydrophobic residues. It has been observed that Trp-Trp interactions have a 

bigger impact than interactions between other residues, and that they are additive and have 

a geometrical aspect. 

The effect of disulfide bridges on hairpin stability has also been studied – Santiveri et al.126 

found that their contribution to stability is dependent on their placement in the β-hairpin. If 

the bridged cysteines are placed at non-hydrogen bonding positions, the disulfide favours 

folding and it can contribute to the system’s conformational stability by 4-5 kJ/mol. Its 

closeness to the turn region will modulate the stabilising effect. Conversely, forming a 

disulfide bridge between Cys residues at hydrogen-bonding positions between antiparallel 

strands is not geometrically favourable, which causes strain in the system. This causes the 

disulfide’s contribution to stability to be small or even destabilising. 
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β-Hairpins are very interesting structures as they have varied roles in biological processes: 

they are involved in molecular recognition events,127 protein-protein interactions128,129 and 

protein-DNA interactions,130 and have been found key in some T-cell activation processes.131 

1.6 Designed β-hairpins 

Tools to induce and stabilise β-turns are being sought for as peptides with this motif, 

especially β-hairpins, have a wide range of applications, from the synthesis of new 

therapeutic agents132,133 to using them as scaffolds in the design of switchable peptides.134,135 

The design of β-turn and β-hairpin mimics is not unique, as the mimicry of other elements 

of protein secondary structure has also attracted attention.136 One of the most explored and 

significative is the mimicry of α-helices.94 Completely unnatural α-helix backbones have 

been designed,137,138 and stapling139 and hydrogen bond surrogate140 strategies are commonly 

used to stabilise the helical backbone. 

β-Hairpin and β-turn stability can be improved through various strategies:141 using a 

hydrogen bond or peptide bond surrogate, employing macrocyclisation or introducing a non-

natural turn moiety. 

1.6.1 Hydrogen bond surrogate approach 

The hydrogen bond surrogate (HBS) approach was originally developed to stabilise α-

helices,142 and has been widely used in this field. In this strategy, a main chain hydrogen 

bond is replaced by a covalent linker that can be of various kinds, from olefins, disulfide 

bridges, to functionalities accessed through ligation chemistry like hydrazones or oximes. 

Arora et al.143 were the first to apply this strategy to β-hairpin backbones, where they 

replaced the N- to C-terminus cross-strand hydrogen bond with a covalent HBS linker. 

Hydrocarbon, thioether and disulfide surrogates (Figure 38) were studied, to find that the 

two latter give better hairpin stabilities. The biggest benefit of this strategy is that all side 

chains along the β-sheet are unmodified, as only one main chain hydrogen bond is replaced 

with a covalent linkage at the termini.  
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Figure 38. β-Hairpins designed by Arora et al.143 containing a hydrocarbon (left), thioether 

(middle) and disulfide (right) HBS linkage, in blue. The hydrogen bonds across the hairpins 

are represented in red. 

1.6.2 Peptide bond surrogates 

A wide variety of systems can act as peptide bond surrogates144 – these range from 

thioamides, esters and alkenes to triazoles145 (Figure 39) as well as Schiff bases. 

 

Figure 39. Thioamide, alkene and triazole-based peptide bond surrogates. 

Vanderesse et al.146 used hydrazide, oxime, amidoxy and N-alkoxy amine moieties as 

surrogates to induce a γ-turn. These functionalities were introduced as amide bond surrogates 

between positions Xaa and Yaa of dipeptides of the formula RCO-Xaa-Yaa-NHR’. The 

authors observed that the oxime-linked sequences could form an extended conformation, 

arising from the E-stereoisomer, or a β-like conformation, adopted by the Z-stereoisomer. 

The N-alkoxy amine dipeptides were found to be quite flexible, existing in equilibrium 
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between an open and a folded conformation. Finally, they found that the amidoxy and 

hydrazide linkages were very similar amide surrogates, as they stabilised analogous γ-like 

folded structures. 

These dipeptides were accessed through the synthesis of the N-alkoxy amine-containing 

unnatural amino acid, followed by a ligation and reductive amination to generate the oxime- 

and N-alkoxy amine-containing peptides, respectively (Scheme 3). 

 

Scheme 3. Synthesis of the oxime and N-alkoxy amine peptides.146 

Longer hexapeptides were also studied (Figure 40), containing the amidoxy, oxime and N-

alkoxy amine linkers, which were synthesised through fragment condensation between the 

N-alkoxy amine-containing peptide and the aldehyde-containing fragment. These peptides 

were evaluated as potential activity inhibitors of human leukocyte elastase. 

Ala-Ala-Pro-link-Val-Ala-Ala-NHiPr 

Ala-Ala-Pro-Val-link-Ala-Ala-NHiPr 

Figure 40. Hexapeptide sequences studied by Vanderesse et al.146 

1.6.3 Macrocyclisation 

The stabilisation of β-hairpins can be achieved through covalent crosslinks that do not 

replace a hydrogen bond. The crosslink can be introduced as a head to tail macrocyclisation 

as well as a local staple. Local aliphatic staples (Figure 41), for example, have been used to 

stabilise a β-turn147 and to promote a cis configuration in tripeptides of the sequences Pro-

Leu-Pro-NH2 and Pro-Pro-Pro-NH2.
148 
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Figure 41. β-Turns stabilised with aliphatic staples by Miller and Grubbs147 (left) and Vartak 

et al.148 (right). 

Some of the most useful crosslinks are introduced between residue side chains along the β-

hairpin strands. Some of the crosslinks, like disulfide bridges, require to be placed at non-

hydrogen bonding positions in the strands in order to be stabilising, whereas others, like 

triazoles, are more flexible in their placement.149 Disulfide bridges can be introduced 

between two cross-strand Cys residues at any non-hydrogen bonding position along the 

hairpin, although they are most stabilising when cyclising between the C- and N-

termini.150,151 

1,4-Disubstituted 1,2,3-triazoles have also been widely used to stabilise β-hairpins, both 

between the C- and N-termini152 and at other positions along the strands (Figure 42).153,154 

These linkages are accessed through a copper(I)-catalysed azide-alkyne cycloaddition 

between two amino acids containing an azide and an alkyne moiety. Usually this reaction is 

performed in solution, but Holland-Nell and Meldal have shown how two triazole bridges 

can be introduced on solid support.155 

 

Figure 42.  Triazole-bridged β-hairpin studied by Celentano et al.154 
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1.6.4 β-Turn mimics 

The development of β-turn mimics is one of the most explored strategies to control folding 

and provide a higher stability to β-hairpins. Many turn mimics have been developed along 

the years, from the initial use of D-amino acids to the introduction of partial and completely 

unnatural fragments in the turn region.156–158 This strategy provides a very useful tool for the 

study of protein conformation as well as the development of potential therapeutic agents,141 

to develop new antimicrobial peptides159 as well as protein-protein interaction inhibitors.160 

The dipeptides (D-Pro)-(L-Pro)161 and (D-Pro)-Gly122 are two of the most widely used β-turn 

mimics162 due to their straightforward introduction in the peptide sequence. They stem from 

the Pro-Xaa bond (where Xaa = Pro, Gly or Asn), which is a sequence commonly found in 

β-turns in natural proteins. These dipeptides contain a D-Pro instead of L-Pro at the i+1 

position, which changes the turn conformation from a type I or II to a I’ or II’ β-turn. This 

makes the turn more compatible with the right-handed twist in a β-hairpin and provides more 

stability. 

Other turn mimetics comparable to the (D-Pro)-Xaa dipeptides in β-hairpin stabilisation are 

δ-ornithine163 and the (D-Phe)-2-Abz motif (Figure 43),164 which fuses the ring from 2-

amino benzoic acid into the backbone. 

                       

Figure 43. Left: δ-ornithine β-turn. Right: (D-Phe)-2-Abz turn. The hydrogen-bonded 

positions are shown in red. 

δ-Ornithine has also been employed in combination with Hao, a tripeptide β-strand mimic, 

to generate stable, folded cyclic β-sheets in aqueous medium (Figure 44).165 The two δ-

ornithine moieties at each end of the hairpin form β-turns and nucleate folding, whilst Hao 

has a planar geometry that orients the hydrogen bond donors and acceptors in a favourable 

way. 
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Figure 44. β-sheet containing δ-ornithine and Hao, studied by Woods et al.165 

The Aib motif (α-aminoisobutyric acid) has also been widely used to nucleate β-hairpin 

formation. It was developed by the Balaram group, who showed it forms a type I’ β-turn 

when in combination with D-Ala in the solid state.166 Since that first finding, the Aib-(D-

Ala) motif has been shown to form β-turns in water167 and Aib has been used as a β-turn 

inducer in combination with other amino acids like D-Pro as well as Gly.168 

Mimics of type VI β-turns have also been developed using a 1,5-

disubstituted[1,2,3]triazole,145 which eliminates the possibility of cis/trans isomerisation and 

acts as a surrogate for cis Pro. 1,4-Disubstituted[1,2,3]triazoles have also been used in 

tetrapeptides, where various linker lengths have been explored to find that three methylene 

units provide the most stable β-turn (Figure 45).169 

       

Figure 45. Left: Asn-1,5-triazole-Ala as a cis Pro surrogate.145 Right: 1,4-triazole with a 3-

carbon linker.169 

The 1,4- disubstituted[1,2,3]triazole systems are accessed by means of a copper(I)-catalysed 

cycloaddition (Scheme 4): 
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Scheme 4. Synthesis of 1,4-triazole β-turn mimics,169 where n = 1-4. 

Peptidomimetics based on a semicarbazide (Aza) as well as a α-amino-γ-lactam moiety (AgI 

and HgI) have been developed (Figure 46), which inspired the design of the Aid and Nai 

residues by Lubell et al.170 Tetrapeptides synthesised with the Aid residue form compact β-

turns with geometries of both type II and II’ being observed. 

 

Figure 46. Semicarbazide and α-amino-γ-lactam-based peptidomimetics. Bottom: Aid-

containing peptide studied by Lubell et al.,170 showing the β-turn hydrogen bond in red. 

Longer peptides containing the Aid residue can be synthesised via solid-phase peptide 

synthesis (SPPS, Scheme 5).171 This residue is accessed through the coupling of a hydrazone 

onto the peptide sequence, followed by a bisalkylation, deprotection and standard solid phase 

peptide synthesis. 
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Scheme 5. Synthesis of Aid-containing peptides.171 

Fink et al.172 have designed a type I β-turn mimic through covalently attaching the positions 

i+1 and i+2 in the turn (Figure 47) – this constrains the ϕ and ψ angles to within 30° of the 

ideal angles for this type of turn. The mimic has been evaluated within tetrapeptides, which 

are synthesised by means of a ring closing metathesis to generate the turn unit, followed by 

solution-phase peptide synthesis. 

 

Figure 47. β-Turn mimic designed by Fink et al.172 

Bicyclic systems that replace the i+1 and i+2 residues in a β-turn are a common way of 

designing β-turn mimics. One of the first bicyclic β-turn mimics was designed by Nagai and 

Sato173 and it has recently been improved upon by Eckhardt et al.,174 who introduced two 

hydroxyl groups into the mimic (named Hot=tap) to enhance its turn-inducing properties 

(Figure 48). 
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Figure 48. β-Turn mimics designed by Nagai et al.173 (left) and Eckhardt et al.174 (right). 

Hot=tap has been used in the two turn sites within cyclic hexapeptides as well as in various 

sites within a fibritin-foldon miniprotein, in both cases showing successful mimicry of the 

β-turns. This mimic is introduced in the peptide sequence through standard SPPS, which 

requires the synthesis of the unnatural amino acid (Scheme 6). 

 

Scheme 6. Synthesis of Hot=tap. 

Other bicyclic systems are in the literature, like the dipeptide designed by Godina et al.175 

based on an azabicyclo[5.3.0]alkanone skeleton (Scheme 7), but most of these systems 

involve a multi-step synthesis, which limits their utility in peptide and protein science. 

 

Scheme 7. Synthesis of the general scaffold of the β-turn mimic designed by Godina et 

al.,175 where X = Fmoc or Boc and R = Me, Et, iPr, Ph or H. 

All in all, the development of β-turn mimics is a widely explored field, with numerous and 

diverse strategies having been developed previously. Many of them require multi-step 
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synthetic routes to synthesise the unnatural unit or to install it on a peptide backbone, thus 

the most commonly used motifs in the literature are D-Pro in combination with L-Pro, Gly 

or Asn as well as the unnatural amino acid ornithine. 

1.7 Applications of β-turn mimics 

β-Hairpin peptides that contain unnatural β-turn mimics have a wide range of applications, 

from their use in conformational studies to utilising them as therapeutic agents.156 These 

units provide control over the conformation of a peptide and facilitate the stabilisation of 

structures that would otherwise not have a defined conformation. The ability to synthesise 

systems that are smaller than proteins but still fold in a defined manner makes β-turn mimics 

a useful tool to model aspects of protein structure. Selected examples of the applicability of 

these mimics are presented in this section. 

1.7.1 β-Turn mimics to understand protein folding 

The effect that using different residues in a β-turn can have in the stability of the β-hairpin 

has been widely explored in the literature, and it has been shown how some amino acids 

favour the formation of a turn more than others. Cochran et al.80 studied the thermal 

stabilities of designed tryptophan zipper peptides (TrpZip, Table 2) and found that the 

melting temperatures increased when using an Asn-Gly turn in comparison to a Gly-Asn 

turn. The thermal stability increased even further when a D-Pro was introduced at the i+1 

position of the turn, generating a (D-Pro)-Asn turn. 

Table 2. Tryptophan zipper peptides studied by Cochran et al.80 and their melting 

temperatures. 

 Peptide sequence Melting temperature (K) 

TrpZip1 SWTWEGNKWTWK 323.0 ± 0.3 

TrpZip2 SWTWENGKWTWK 345.0 ± 0.1 

TrpZip3 SWTWE(D-Pro)NKWTWK 351.8 ± 0.2 

 

Building on the knowledge that different amino acids affect the stability of β-hairpin 

systems, unnatural β-turn units can be introduced to understand how folding takes place. 

Nowick et al.176 used homodimers of peptides containing the Orn(iPrCO-Hao) unit (Figure 
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49) to measure the interaction differences between various amino acid side chains, in order 

to understand how molecular recognition takes place between β-sheets. They found that 

when a Thr-Thr and a Val-Val pair were established, the stability of the homodimers was 

2.5 kJ/mol higher than when two Thr-Val pairs took place. In addition, when a Ser-Ser pair 

and a Val-Val pair were established, the stability increased by 1.7 kJ/mol compared to when 

two Ser-Val pairs took place. This demonstrated how pairing in β-sheets is sequence 

selective, and suggested that hydrogen bonding with Thr and Ser side chains might cause 

the selectivity in the dimerisation of these peptides. 

 

 

Figure 49. Homodimers synthesised by Nowick et al.,176 including the amino acid pairs 

studied.  

1.7.2 Therapeutic applications 

Peptides containing unnatural β-turn mimics have been employed as therapeutics for a wide 

variety of applications, from the modulation of protein-protein interactions (PPIs)177 to 

preventing amyloid aggregation,178 among others. A few representative examples of their 

application within PPI inhibitors as well as within antimicrobial peptides are presented in 

this section. 

1.7.2.1 Protein-protein interaction inhibitors 

Protein-protein interactions are involved in most biological processes, and they are 

promising candidates in drug development. These interactions are challenging to inhibit with 

small molecules because their interfaces take place over a large surface and they involve a 

few hot-spot residues. In addition, many proteins are dynamic, undergo a conformational 
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change upon binding, or contain disordered regions. This has shifted the focus of much 

research towards designing PPI inhibitors based on their secondary structure.93 

Many unnatural systems have been used to inhibit PPIs, namely cross-linked peptides and 

stapled systems, macrocycles containing hydrogen bond surrogates, among others.136 

Although most of the PPI inhibitors in the literature have α-helix conformations, a few β-

hairpin-based PPI inhibitors have been reported which contain β-turn mimics. This approach 

can alter the conformation of the peptide structure, but depending on the mimic used this can 

be a positive effect as the desired conformation can be stabilised. Another potential benefit 

of using a β-turn mimic is the introduction of properties that improve the pharmacokinetic 

properties of the peptide. 

The (D-Pro)-(L-Pro) template is one of the most widely used within cyclic β-hairpin 

peptides. It has been employed by Davidson et al.179 to inhibit the interaction between the 

HIV-1 Tat protein and its transactivation response RNA, and by Fasan et al.160 to inhibit the 

MDM2/p53 interaction. In the latter case the hairpin used acted as a mimetic of an α-helix, 

which held the relevant residues in the correct positions for interaction (Figure 50). This 

approach inspired the design of a family of cyclic β-hairpins that mimic the binding of the 

α-helical HIV-1 Rev protein to the Rev Response Element RNA.180 

 

Figure 50. Superimposition of the p53 helical peptide (in red) and the β-hairpin mimic 

(yellow) designed by Fasan et al. Reproduced with permission from ref.160 

Other β-turn mimics have been used in the literature – for example, Morse et al.181 

implemented ornithine within a cyclic β-hairpin to inhibit the interaction between the CDI 

toxin and an immunity protein (Figure 51). Rosenström et al.182 introduced a bicyclic 

benzodiazepine-based β-turn mimic within the structure of angiotensin II and synthesised 

three different analogues that showed high binding affinity to the AT2 receptor (Figure 51). 

In this case, the tyrosine side chain was introduced on the aromatic ring in the mimic, which 

seemed to increase binding. 
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Figure 51. Top: ornithine-containing β-hairpin designed by Morse et al.181 Bottom: peptide 

designed by Rosenström et al.182 containing a benzodiazepine β-turn. 

1.7.2.2 Antimicrobial peptides 

The modification of β-turns has been exploited for the development of antimicrobial 

peptides.162 Shankaramma et al.159 used the (D-Pro)-(L-Pro) unit (Figure 52) and a xanthene-

based template to synthesise new antimicrobial peptides based on the scaffolds of protegrin, 

polyphemusin and tachyplesin, three naturally occurring β-hairpin antimicrobial peptides. 

For this, they removed the disulfide bridges present in the native peptides and instead 

introduced one of the non-natural templates at one of the β-turns. The authors discovered a 

family of mimetics containing the (D-Pro)-(L-Pro) turn that showed potent broad spectrum 

antimicrobial activity. 

 

Figure 52. Representative structure of the family of mimetics synthesised by Shankaramma 

et al.159 

The (D-Pro)-Gly turn unit has been used by Xu et al.,133 who introduced it within a β-hairpin 

scaffold based on the tryptophan zipper motif. This gave rise to a family of five peptides 

with different lengths, out of which the 14-residue analogue presented the best antimicrobial 

activity. 
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1.8 Bioconjugation and ligation strategies 

Bioconjugation refers to the site-specific covalent modification of biomolecules, which 

allows the incorporation of a new moiety that confers desirable properties to a protein. This 

strategy can take place between native amino acids and an unnatural moiety, as well as 

between two unnatural fragments. Bioconjugation is an area with a wide range of 

applications, from modifying peptide and protein therapeutics183 to installing small molecule 

units that can act as probes to report on ligand binding, or as FRET reporters.184 

There are three main requirements185,186 that come into play when a bioconjugation method 

is being developed: firstly, the reaction should be biorthogonal. Secondly, the reaction 

conditions should be mild, ideally performed in aqueous media in order to preserve the 

integrity of the biomolecule. And thirdly, the bond generated should be stable under 

physiological conditions. 

Many strategies186 have been previously developed that use the side chains in native amino 

acids or the C- and N-termini as the bioconjugation site for a small molecule. These include 

the use of N-hydroxysuccinimide (NHS) esters on Lys residues (Figure 53) and the reductive 

amination between Lys and an aldehyde moiety, the use of maleimides (Figure 53) to react 

with Cys residues (to generate antibody-drug conjugates,187 for example) as well as disulfide 

formation and exchange, among others. 

 

 

Figure 53. Top: bioconjugation between an NHS ester and a Lys residue in a protein. 

Bottom: bioconjugation between a maleimide-containing unnatural unit and a Cys residue in 

a protein. Reproduced with permission from ref.186 
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One of the key developments in the area was the native chemical ligation (NCL) by Dawson 

et al.,188 where two peptides containing an N-terminal Cys and a C-terminal thioester can be 

ligated to generate a native peptide bond through an S→N acyl shift (Scheme 8). One of the 

main advantages of this strategy aside from its chemoselectivity is that the ligation site is a 

peptide bond, and no non-natural residual functionality is present in the final conjugate. 

Since its development, many variations on the synthesis have been introduced,189,190 which 

include the acceleration of the ligation step by using thiol additives, the desulfurisation of 

Cys to generate an Ala residue after ligation and the use of selenocysteine. This is a versatile 

strategy that has found wide applications in the synthesis of peptides and proteins, peptide-

oligonucleotide conjugates, as well as for the introduction of fluorescent probes onto 

proteins.191 

 

Scheme 8. Mechanism of the native chemical ligation. 

The use of canonical amino acids as the bioconjugation site has clear advantages, namely 

not having to modify the native peptide or protein prior to ligation. But there are limitations 

associated with this strategy, in particular the selectivity of the ligation step when more than 

one of the target amino acids are present. This has shifted the focus onto new ligation 

strategies (Scheme 9) where unnatural moieties are used on both ligation partners. Some of 

the most used strategies are click-type chemistries, like the copper(I)-catalysed azide–alkyne 

cycloaddition (CuAAC), and ligation chemistries that involve an aldehyde or ketone 

handle.185 
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Scheme 9. Copper(I)-catalysed azide–alkyne cycloaddition and oxime and hydrazone 

ligations. 

1.8.1 Hydrazone and oxime ligation 

Hydrazone and oxime ligations (Scheme 10) are condensation reactions that take place 

between a ketone or an aldehyde and an α-nucleophile, namely a hydrazide, hydrazine or an 

N-alkoxyamine moiety, respectively. These are attractive reactions for bioconjugation as 

they take place in aqueous solution and involve a carbonyl functionality, which is not present 

in native proteins. Oxime ligation was first used for the synthesis of proteins by Rose in 

1994.192 

 

Scheme 10. Formation of imines, hydrazones and oximes from a carbonyl moiety. 

These ligations are faster at above millimolar-range concentrations and at a pH of 4.5 (see 

mechanism in Scheme 11). The nature of the carbonyl moiety also affects the speed of the 

ligation: in general, the carbonyl group of an aldehyde is more electrophilic and reactive than 

that of a ketone, therefore ligations involving aldoximes tend to be faster and in consequence 

have been more explored in the literature than ketoximes.193 Although the use of an acidic 

pH and an aldehyde can accelerate a ligation, in general these reactions are still slow. This 

has sparked interest in the development of nucleophilic catalysts to improve the reaction 

rates.194,195 
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Scheme 11. Mechanism of oxime and hydrazone ligation. 

The stability of oximes and hydrazones is higher than that of imines due to the α-effect 

caused by the additional heteroatom, but these systems can undergo hydrolysis when they 

are in an acidic medium (Scheme 12). Kalia and Raines196 studied the reaction rates of the 

hydrolysis of isostructural alkylhydrazones, acylhydrazones and an oxime at pH of 5 to 9 

through 1H NMR and found that oximes are much more stable than hydrazones due to the 

higher electronegativity of oxygen. This inductive effect reduces the basicity of the imine-

like nitrogen, which in turn disfavours the collapse of the hemiaminal intermediate, which 

is the rate-determining step at the pH range under study.  

 

Scheme 12. Mechanism of hydrolysis of oximes and hydrazones. 

The stability of these systems can be enhanced by reducing the C=N bond with a reducing 

agent like sodium cyanoborohydride in order to generate the more stable hydrazide or N-

alkoxy amine. 

Oxime and hydrazone ligations have found multiple applications in the literature, from the 

cyclisation of peptides197,198 to their use in dynamic combinatorial libraries.193 Importantly, 

they have been used as mimics of structural elements: in the case of hydrazones, as peptide 

bond surrogates in dipeptides199 and as hydrogen bond surrogates for an i to i+4 hydrogen 

bond in an α-helix.142 In the case of oximes, they have been used in the stabilisation of α-

helices by means of oxime side-chain cross-links in collagen triple helices (Figure 54)200 and 

a dimeric coiled-coil,201 in both cases showing an increased stability of the system. They 

have also been employed as staples with i to i+4 and i to i+3 spacings in α-helices, which 

increased their stability compared to the control peptide.202 
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Figure 54. Oxime cross-linked triple helices designed by Hentzen et al. Reproduced with 

permission.200 

1.9 Thesis aims 

Proline isomerisation causes crucial structural changes within proteins that impact folding, 

conformation and ultimately function (see Section 1.4, topic further introduced in Chapter 

2). The fact that proline and tertiary amide isomerisation more generally can initiate major 

conformational changes highlights how this scaffold has great potential to be used as the 

basis for a switch. 

Although many switching systems have been previously designed, as introduced in Chapter 

2, these are based on either small molecules or larger secondary structure changes. It was 

proposed that a switching system could be designed, which would exploit tertiary amide 

isomerisation in order to effect a conformational change within a short peptide backbone. 

The design of β-turn mimics is an area that has been widely explored (introduced in Section 

1.6.4), as they are a useful tool to control folding, provide higher stability and introduce new 

functionalities into a peptide. The most widely used β-turn mimics are based on D-amino 

acids, ornithine or triazole-containing systems, as they are easy to introduce in the peptide 

sequence, but these units lack structural preorganisation. The β-turns composed of 

completely unnatural units that have been previously reported do provide preorganisation, 

but they require the use of multi-step synthetic routes either to access the unnatural amino 

acids or to install the turn unit, which limits their applicability. 
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Furthermore, ligation chemistry is a promising strategy that has been successfully used in 

the bioconjugation and stabilisation of peptide systems (see Section 1.8.1). One of the 

drawbacks of ligation strategies is that, apart from the native chemical ligation reaction, the 

residual functionality at the ligation junction is left behind and serves no further purpose. 

Although oxime and hydrazone linkages have been proposed to act as peptide bond mimics, 

these units have not been used as mimics of elements of protein secondary structure yet. 

With this in mind, β-turn mimics were to be designed which would be accessed through one 

chemoselective ligation step, and that would incorporate the residual ligation functionality 

as part of the mimic unit. 

The central aims of this thesis are: 

- To understand the factors that influence conformational switching in small peptides 

containing proline and N-methylated alanine. 

- To use hydrazide and oxime ligation as a means to install novel β-turn mimics within 

β-hairpin backbones and learn about their conformation and stability. 

- To implement one of the designed β-turn mimics within a biologically relevant cyclic 

peptide. The possible changes in activity would be assessed and the applicability of 

the ligation strategy in cyclic systems would be evaluated. 
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2 Tertiary amide-based conformational switches 

The work presented in this chapter has been performed in collaboration with Dr Drew 

Thomson and Miss Bethany Atkinson. Dr Drew Thomson generated the database and 

performed searches, and Miss Bethany Atkinson performed the molecular dynamics 

simulations. 

2.1 Tertiary amide isomerisation and switching 

2.1.1 The prolyl switch 

Prolyl isomerisation has a considerable biological significance. It can be a rate-limiting step 

in protein folding,116,203 which is slowed down by the rotation around the C-N bond and the 

formation of a twisted transition state. It has been found that isomerisation to the cis form in 

proteins alters a network of hydrogen bonds that is essential for folding to occur, which 

dramatically affects folding kinetics. It is also relevant in the regulation of protein 

function,6,118,204,205 as its isomerisation results in various structural changes that can be local 

but also extend along the protein backbone;206 and in signalling pathways,207 for example in 

transmembrane signalling.208 

The energetic difference between the cis and trans states for the prolyl bond is smaller than 

that for secondary amide bonds. In cis secondary amide bonds, the Cα atoms are very close 

to each other (about 3 Å, as found in a database survey by Jabs et al.209), which imposes a 

higher steric strain than in the trans configuration. This causes cis secondary amide bonds 

to only be found in 0.028% of the Xaa-nonPro bonds (where Xaa is any amino acid) in the 

PDB. Conversely, in prolyl bonds the two states have a similar steric strain and therefore the 

cis configuration is more commonly observed (5.2% of the Xaa-Pro bonds in the PDB).92 

2.1.1.1 Local sequence effects 

The occurrence of a cis prolyl bond is highly influenced by the local sequence.5 This has 

been explored by several database screenings and experimental projects, which aimed to 

elucidate what sequence-based rules determine the conformation of a prolyl bond. 

An experimental study by Reimer et al.210 focused on peptides of the sequence Ac-Ala-Xaa-

Pro-Ala-Lys-NH2 through NMR and found that the amino acids that caused a higher fraction 
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of cis Pro were Trp (37.7%), Tyr (42.0%) and Phe (23.0%). Notably, a correlation was 

observed between the presence of a cis prolyl bond and the occurrence of a type VI β-turn.211 

Pal et al.5 screened a set of non-redundant proteins from the PDB and found that 5.7% of 

Xaa-Pro bonds were cis, of which more than 10% had a Trp in the Xaa position. The authors 

proposed the formation of a CH-π interaction with the Hα or Hδ of Pro as an explanation for 

the high occurrence of aromatic residues preceding it. Indeed, Tóth et al.68 found that 68.3% 

of Xaa–(cis)Pro fragments in the PDB contained CH–π interactions, compared to only 16.8% 

of the Xaa–(trans)Pro fragments. 

Other screenings of the PDB71 have confirmed that aromatic-Pro sequences are the most 

likely to adopt a cis bond, and analyses of the geometries between both residues have shown 

that the Pro Hα, Hβ and Hδ are commonly under the aromatic ring, confirming the presence 

of a CH-π interaction. Chakrabarti et al.212 continued their studies on this interaction and 

found that unlike the CH-π interaction between two aromatic rings, where the edge to face 

geometry is required, Pro can stack onto an aromatic ring while getting involved in the CH-

π interaction through the Hα or Hδ position (Figure 55), in a face to face geometry. This way, 

the aromatic-Pro interaction is stabilised by both the CH-π interaction and the hydrophobic 

effect. 

 

Figure 55. C-H···π interaction between Pro Hδ and Trp.  

Although the most influential position is Pro-1 (the residue preceding Pro), positions Pro-2 

and Pro+1 (the residue following Pro) can also affect isomerisation. These were examined 

by Zondlo et al.213 for xyPz peptides and they found that although most residues in the Pro-

2 position had a moderate effect on isomerisation, aromatic residues relatively disfavoured 

the cis configuration. In the Pro+1 position, aromatic residues as well as Asn, Ala, Val and 

Pro promoted the cis configuration. This is commensurate with previous observations that 

the second Pro in Pro-Pro-aromatic sequences also has a high propensity to adopt a cis prolyl 

bond.214,215 
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2.1.2 N-methylated residues 

N-methylated residues are another interesting moiety that could be used in the construction 

of a switch. Like proline, N-methylated residues cause the energy difference between the cis 

and trans isomers to be small, so cis peptide bonds are also frequently observed. Peptides 

with this modification are very important in the regulation of biological functions, from 

targeting the cell membrane to binding DNA and RNA.216 Recent research has put the 

spotlight on N-methylated amino acids in the area of medicinal chemistry as a means to 

increase the metabolic stability,217 affinity and selectivity of bioactive peptides.218,219 

Although N-methylation has been widely explored in drug development, far fewer studies 

have been performed around its effects on peptide conformation. The studies to date in this 

area have focused on introducing N-methylation within cyclic peptides and in combination 

with D-amino acids in order to favour the formation of a β-turn. For example, Laufer et al. 

found that, in combination with D-Ala, (N-Me)-Ala could serve as a substitute for Pro within 

cyclic poly-Ala pentapeptides.220 

The effects of N-methylation on backbone conformation have two components: the removal 

of its hydrogen-bonding capability and the steric hindrance generated.216 This causes its 

impact on conformation to be long-range, not only affecting the modified residue but 

neighbouring amino acids as well. In larger peptides the hydrogen bond donor component 

becomes more important, whereas the steric component is more prominent in smaller 

systems. Steric hindrance takes place about the N-methylated peptide bond but also between 

the methyl group and the amino acid’s side chain, which affects cis/trans configuration. The 

influence of the N-methylated residue’s side chain in conformation was studied by Laufer et 

al.221 in the peptides c(RGD(D-F)K), c(RGD(D-F)(N-Me)-K) and c(RGD(D-F)(N-Me)-V). 

They found that the non-methylated parent peptide contained all trans amide bonds, while 

(N-Me)-K introduced 15% of cis configuration and (N-Me)-V introduced no cis 

configuration at all. This proved the important role of the side chain in defining backbone 

conformation, and showed how β-branched amino acids introduce more steric hindrance in 

the cis isomer. 

Lahiri et al.107 used N-methylation as a strategy to design stable β-hairpins through 

modification of the turn sequence. They synthesised two libraries of peptides, with β-turns 

composed of a D-residue in position i+1 and an L-N-methylated residue at position i+2. The 

first library was a D-residue scan with an (N-Me)-Ala in position i+2 and the second was an 
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(N-Me)-residue scan using D-Ala in position i+1. They found that the β-hairpin resulting 

from the combination of the best residues from each library (a (D-V)(N-Me)-R turn) was 

exceptionally stable. This confirmed that the two positions in the turn act in synergy to 

modulate folding and that both residue side chains and the steric hindrance from N-

methylation are important factors in defining backbone conformation. 

2.1.3 Disulfide bridges: two-state behaviour 

Two-state behaviour has been observed in peptides containing disulfide bridges. For 

example an antimicrobial peptide called Bactenecin forms a type I β-turn in the disulfide-

bridged form but when it is in the reduced form its conformation varies depending on the 

environment lipophilicity.222 In addition, disulfide-bridged peptides have a tendency to form 

β-turns and many contain proline within the ring.223,224 This has led to an interest in the study 

of proline isomerisation within disulfide-bridged peptides. 

Rabenstein et al.225  studied the reduced and oxidised forms of peptides of the sequences Ac-

Cys-Gly-Pro-Cys-NH2 and Ac-Cys-Pro-Xaa-Cys-NH2 (where Xaa = Phe, His, Tyr, Gly and 

Thr, Figure 56) and characterised the kinetics of Pro isomerisation. They found that the cis-

trans isomerisation rates were faster in the disulfide-bridged sequences than in the free thiol 

ones by a factor ranging from 4 to 13. This suggested that the presence of Pro in the disulfide 

ring brought an unusual conformational flexibility to the system. Molecular mechanics 

calculations indicated the mechanism for this rate acceleration, whereby the disulfide 

constrains the backbone and facilitates the formation of a hydrogen bond between the NH 

proton of the Pro-Xaa bond to the proline nitrogen lone pair in the transition state. This 

lowers the energy barrier to access the transition state from the cis configuration by 5.86 

kJ/mol. 

 

Figure 56. Transition state of the cis-trans isomerisation of Pro in the Ac-Cys-Pro-Xaa-Cys-

NH2 peptide studied by Rabenstein et al.225, where the Pro-Xaa peptide bond is represented 

in blue and the hydrogen bond in red. 
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Further work by Rabenstein et al.226 focused on the cis configuration content in peptides of 

the sequence Ac-Cys-Pro-(Xaa)n-Cys-NH2 (where n = 0-4), both in the dithiol and disulfide 

forms (Table 3). It was observed that at pH 3 the cis configuration population was 10-20% 

for the dithiol sequences, but for the disulfide peptides the population varied over a wider 

range, namely 9% to 77%. 

Table 3. Peptides studied by Rabenstein et al.,226 including their cis Pro content. 

Peptide sequence % cis Pro 

Ac-Cys-Pro-Cys-NH2 

Ac-Cys-Pro-Cys-NH2 disulfide bridged 

10.3 

21.7 

Ac-Cys-Pro-Phe-Cys-NH2 

Ac-Cys-Pro-Phe-Cys-NH2 disulfide bridged 

12.0 

9.3 

Ac-Cys-Pro-Phe-Ala-Cys-NH2 

Ac-Cys-Pro-Phe-Ala-Cys-NH2 disulfide bridged 

14.9 

59.5 

Ac-Cys-Pro-Phe-Ala-Ala-Cys-NH2 

Ac-Cys-Pro-Phe-Ala-Ala-Cys-NH2 disulfide bridged 

13.3 

12.2 

Ac-Cys-Pro-Phe-Ala-Ala-Ala-Cys-NH2 

Ac-Cys-Pro-Phe-Ala-Ala-Ala-Cys-NH2 disulfide bridged 

20.4 

76.9 

 

Interestingly, a dependence was observed between the cis content and the size of the 

disulfide-bridged ring formed. The cis content increased compared to the free thiol peptide 

in disulfide rings with an odd number of amino acids, whereas it decreased when the ring 

contained an even number of residues. This is the first report showing that the conformation 

distribution in Pro-containing disulfide-bridged peptides can be controlled through loop size, 

and raises the question of whether these systems could be used to promote switch-like 

behaviour. 

2.2 Designed peptide-based conformational switches 

Molecular switches are key in many biological processes, from the control of translation and 

transcription to signal transduction227. Recently, synthetic molecular switches have been at 

the forefront of chemical biology due to their great potential to be used as sensors and 
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regulatory elements. Many switchable proteins have been designed227 to obtain control of 

various cellular signalling processes and also to engineer complex synthetic signalling 

networks. Smaller systems have also been developed, which encompass both small 

molecule-based switches as well as peptide-based secondary structure changes. Larger scale 

secondary structure changes are the most widely studied types of peptide switches,228 as they 

include α-helix to β-sheet transitions and folded to unfolded state changes. 

One of the key elements in the design of a switch is its method of actuation.  In this section, 

peptide-based conformational switches in the literature will be reviewed according to their 

control element. 

2.2.1 Ligand binding 

The use of a ligand to induce conformational switching upon binding is a common way of 

actuation, which can include binding to a receptor as well as a metal. For example, Mueller 

and Grossmann229 have described a conformational switching system composed of two 

coiled-coil helices. When the peptide is unbound it adopts a closed conformation, but upon 

binding to a receptor through the helix-connecting region it forms an open conformation 

(Figure 57). 

 

Figure 57. Hairpin to open conformation switch by Grossman et al. Reproduced with 

permission from ref.229 
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2.2.2 Phosphorylation 

Phosphorylation is a post-translational modification that plays an important part in signal 

transduction events. Phosphorylated Ser/Thr-Pro motifs act as binding surfaces for many 

proteins,230 including Pin1, a prolyl isomerase.231 

Phosphorylation was used as a stimulus for a conformational switch in a system designed by 

Signarvic et al.,232 where an unstructured monomer switches into an antiparallel four-helix 

bundle upon phosphorylation (Figure 58). The introduction of the post-translational 

modification stabilises the helical conformation by establishing new interactions within the 

tertiary structure, which causes the energy gap to be bigger between the two states, therefore 

making the switch viable. 

 

Figure 58. Four-helix bundle studied by Signarvic et al. Reproduced with permission from 

ref.232 

2.2.3 Photo-switches 

Photo-controlled peptide switches have especially been explored within both linear233,234 and 

cyclic235 β-hairpin backbones, with the use of azobenzene as the switching moiety134,236 

being the most widespread. This linker is usually introduced in place of the original turn 

sequence in order to control the formation of an ordered structure. One particular example 

is the photo-controlled β-hairpin designed by Dong et al.,135 which is based on the 

introduction of an azobenzene-based moiety in place of the turn sequence in a TrpZip β-

hairpin designed by Cochran et al.80 (Figure 59). When the chromophore is in the trans state 

the peptide has a disordered, irregular structure. Upon isomerisation into the cis 
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configuration the azobenzene unit induces folding of the peptide into a β-hairpin structure, 

therefore acting as a β-turn mimic. 

 

Figure 59. Photo-controlled β-hairpin designed by Dong et al.135 in the cis configuration. 

2.2.4 pH changes 

There are various examples in the literature of designed conformational switches actuated 

by a change in pH. For example, Anderson and Andersen237 designed the β-turn sequence 

HPATGK, which acts as a pH switch within a β-hairpin backbone. When at pH 2.5, the 

sequence is unstructured but at pH 8 it becomes highly structured and stable. The use of this 

turn sequence within a WW domain protein showed that depending on where the sequence 

is introduced in the protein, it will affect the system’s stability to a different extent. When 

placed in the nucleating β-hairpin, the effect of the turn sequence is global, whereas if placed 

in another region, the effect will be limited to a local region (Figure 60). This effect is caused 

by the protonation of a His residue within the turn sequence, therefore most of the loss in 

stability takes place at pH from 3 to 6.5. 

 

Figure 60. Left: global pH switch induced by the turn sequence being placed at the 

nucleating β-hairpin. Right: local pH switch. Reproduced with permission from ref.237 
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2.2.5 Solvent changes 

Conformational switching induced by solvent changes has been explored, where most 

systems rely on the hydrogen-bonding capability of the solvent. Awasthi et al.238 designed 

an 8-residue peptide with an Aib-Gly β-turn motif that adopts a β-hairpin conformation when 

in hydrogen-bonding solvents like DMSO and methanol due to the solvation of the backbone 

C=O and NH groups. When dissolved in non-hydrogen bonding solvents, the peptide adopts 

a helical conformation. Similar results are observed in the work by Balamurugan et al.,239 

where a heterochiral peptide containing non-natural amino acids adopts a helical 

conformation in chloroform and an extended conformation in DMSO. 

2.2.6 Redox systems 

One of the earlier studies regarding redox switches was performed by Gellman et al.240 They 

explored the oxidation of methionine residues as the stimulus for a conformational change 

in an 18-residue peptide, which adopts an α-helical conformation when reduced and a β-

strand conformation upon oxidation. 

Disulfide formation has been explored by Woolfson et al.,241 who designed a system with a 

monomeric helical hairpin structure in the disulfide-bridged form. Upon reduction of the 

disulfide, the system switches to a coiled-coil dimer, although it is a one-way switch and it 

cannot return to its starting conformation. 

A more subtle conformational change is induced in the cyclic peptidomimetic designed by 

Jiang et al., (Figure 61)242 which contains a thioether that adopts a type I β-turn structure 

upon oxidation to the sulfone form, due to the formation of a hydrogen bond between 

NH(i+2) and O=S. 

 

Figure 61. Analogues studied by Jiang et al.242 The hydrogen bond between NH(i+2) and 

O=S is shown in red. 
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The formation of a disulfide bridge has been shown to promote β-turn formation in CxxC 

motifs243 and a switching system has been observed in a native antimicrobial peptide,222 

where a type I β-turn is formed in the oxidised form but no turn is observed in the reduced 

form. Similar observations apply for vicinal disulfides: Carugo et al.38 performed a database 

search and found that the presence of a vicinal disulfide correlated with the formation of a 

tight turn in the protein. They also observed that very different conformations were adopted 

in the reduced and oxidised states. Vicinal disulfides have been used to modulate the 

enzymatic activity of Ribonuclease A by mutating cysteine residues into the native sequence, 

so that when the disulfide bridge is formed the system’s activity is decreased and it can be 

recovered upon reduction.244 

2.3 Hypothesis and chapter aims 

There are many molecular switches in nature that control biological processes. These 

systems have inspired the design of a wide variety of switchable proteins to further 

understand the biological process of interest and how switching takes place,232 as well as to 

act as biosensors.245 Most of these systems are based on either small-molecule scaffolds or 

larger, protein secondary structure changes, with very few of them utilising a smaller peptide 

scaffold. 

The prolyl switch is central to the control of folding, function and signalling in proteins118 

and proline isomerisation has been proven to cause significant conformational changes (see 

Sections 1.4 and 2.1). Hence there was an opportunity to design a switching system based 

on a short peptide backbone that would make use of proline isomerisation and undergo a 

conformational change. 

With this in mind, there was potential for the design of smaller switching systems where 

tertiary amide isomerisation could be exploited. A system was envisioned where tertiary 

amide isomerisation would act as the conformational difference between two states. A 

backbone of the type Xaa-Pro-Yaa was devised, where the effects of residues Xaa and Yaa 

on proline conformation were to be evaluated. N-Methylated alanine was to be explored as 

well, as an alternative to proline. This would provide information that would aid the design 

of a switching system actuated through disulfide formation. 
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To accomplish this design, the following aims were defined: 

- Study of the local sequence dependence of proline conformation within the backbone 

of interest, in particular the cooperativity between the x and y residues. 

- Replacement of proline by N-methylated alanine, in order to evaluate the difference 

in cis and trans populations. 

- To design disulfide-actuated switches. 

- Assessment of the switches through NMR spectroscopy. 

2.4 Xaa-Pro-Yaa double mutant cycle 

When designing a conformational switch it is key to choose a backbone where both 

conformations are energetically accessible. Proline-containing sequences are known to adopt 

cis and trans configurations (this nomenclature will be used in the context of tertiary amides 

hereinafter), but the occurrence of the more sterically hindered cis configuration is highly 

dependent on local sequence, causing its population to vary considerably. In this section, a 

database was searched to identify potential switching loops with the motif Xaa-Pro-Yaa and 

their cis conformer content. The chosen unconstrained sequence was to be studied through 

a double mutant cycle (DMC), using NMR to identify the conformations adopted and their 

populations.  

2.4.1 Database screening and sequence selection 

Computational methods were used in this project as a fast and pragmatic way of exploring 

the protein sequence space in order to select target sequences for experimental evaluation. 

A database was generated by Dr Drew Thomson which contained high-resolution, non 

redundant protein crystal structures. This database was then filtered to extract all the loop 

regions in proteins that were flanked by regions of secondary structure. This was based on 

the idea that, unlike other regions of proteins where the local conformation can be affected 

by non-local interactions, the conformation of a loop should be dominated by local 

interactions. This loop subset was used to identify Xaa-Pro-Yaa motifs and their cis 

conformer content, in order to study the influence of local sequence on the occurrence of cis 
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Pro. This search was performed considering a cis Pro if the ω angle for the prolyl bond was 

0 ± 20° and trans if ω was 180 ± 20° (Figure 6, Figure 62). 

 

Figure 62. Omega dihedral angle in Pro. 

A list of the loops containing this motif was generated, which included the sequence and cis 

content for the Pro residue. A heat map showing the cis Pro content for all possible 

combinations of Xaa and Yaa in Xaa-Pro-Yaa is presented in Figure 63. It was observed that 

the sequences with the highest cis content featured an aromatic residue in the position 

preceding Pro, had an aromatic amino acid in both Xaa and Yaa positions, or contained a 

Pro-Pro motif. 

 

Figure 63. Heat map showing the results from the database search for Xaa-Pro-Yaa 

sequences, with the cis Pro content values (%) for each combination of amino acids. The 

residue combinations that had a total number of hits lower than 50 are marked with red 

boxes, and the combinations with less than 20 hits are not included (coloured grey). The 

results circled in black correspond to the sequences chosen for analysis. 
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Inspired by these results, the sequence Ac-GWPQG-NH2 1 was chosen for experimental 

evaluation. The reasons for this were twofold: firstly, aromatic residues preceding Pro have 

been shown to stabilise the cis configuration, and secondly, a polar residue was preferred in 

the Yaa position in order to improve the solubility of the peptide. The peptide was to be 

flanked by Gly residues and capped in both termini to avoid end-effects, as the free charged 

N- and C-termini could establish additional interactions and therefore affect the 

conformation adopted by the peptide.246 The sequence chosen did not have the highest cis 

Pro content observed in the database search – this was in order to be able to observe a change 

in the proportion of cis Pro present upon mutation. There is a balance between finding a 

sequence for which the cis configuration is accessible, and one where the cis content is so 

high that a mutation will not cause an observable change. 

This sequence was to be studied through a double mutant cycle (DMC), where two mutations 

would be introduced in order to calculate the free energy of interaction between Trp and Gln 

(Figure 64). Alanine was chosen as the non-mutated residue and therefore, the four 

sequences Ac-GWPQG-NH2 1, Ac-GAPAG-NH2 2, Ac-GWPAG-NH2 3 and Ac-GAPQG-

NH2 4 were selected for experimental evaluation. 

 

Figure 64. Double mutant cycle for Ac-GWPQG-NH2, using Ac-GAPAG-NH2 as the non-

mutant sequence. 

The individual ΔG° between cis and trans states for every peptide could be calculated using 

Equation 11, which in turn would be used to obtain the ΔΔG° for the double mutant cycle 

(Equation 12).79 

ΔG° =  − RTlnK 

Equation 11. Calculation of the free energy for each sequence, where R is the gas constant 

(8.31 JK-1mol-1), T is the temperature (298 K) and K is the equilibrium constant. 
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ΔΔG° =  ΔG(00) −  ΔG(0j) −  ΔG(i0) +  ΔG(ij) 

           =  ΔG(APA) −  ΔG(APQ) −  ΔG(WPA) +  ΔG(WPQ) 

Equation 12. Calculation of the free energy for the DMC. 

The absolute error arising from the ΔΔG° calculation could be calculated using Equation 13,  

which would account for inaccuracies in the integration of the NMR signals: 

𝜀𝑎(𝑎 + 𝑏 + 𝑐 + 𝑑) = √𝜀𝑎(𝑎)2 + 𝜀𝑎(𝑏)2 + 𝜀𝑎(𝑐)2 + 𝜀𝑎(𝑑)2 

Equation 13. Calculation of the absolute error (εa) for ΔΔG°, where a to d correspond to the 

individual ΔG° for each peptide. 

Where: 

𝜀𝑎(𝐺) =
𝑅𝑇

𝐾
𝜀𝑎(𝐾) 

Equation 14. Calculation of the individual absolute errors of the ΔG° for each peptide. 

2.4.2 Molecular dynamics simulations 

Metadynamics simulations were run on the chosen DMC by Miss Bethany Atkinson, in order 

to predict the behaviour of the selected peptides regarding proline isomerisation. 

Metadynamics is a powerful enhanced sampling technique that attempts to improve the 

timescale problem of MD. In this technique, the system is described by collective variables 

(CVs), which are parameters chosen to describe the system’s coordinates in space. In order 

to describe Pro isomerisation, ψ and the improper dihedral angle ζ were chosen as the CVs 

for these simulations (Figure 65). 

 

Figure 65. Proline ψ and ζ angles. 
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The simulations were run for the four peptides (at 298 K), which afforded the cis Pro content 

for each sequence as well as the energy difference between the cis and trans states (Table 

4). 

Table 4. Cis/trans ratio, cis content and free energy difference between the cis and trans 

states for the four peptides studied. 

Sequence Cis/trans ratio Cis content (%) ΔG° (kJ/mol) 

Ac-GWPQG-NH2, 1 0.46 31.6 1.87 

Ac-GAPAG-NH2, 2 0.09 8.2 5.85 

Ac-GWPAG-NH2, 3 0.39 27.9 2.36 

Ac-GAPQG-NH2, 4 0.1 8.7 6.13 

 

These models showed that the sequences with a tryptophan in the position preceding proline 

had a substantially higher occurrence of the cis configuration, which was in accordance with 

the literature.5,210 The ΔΔG° for the double mutant cycle was calculated as shown in Equation 

15, and the value of -0.07 kJ/mol was obtained. The negative value of the ΔΔG° indicated 

that there was positive cooperativity taking place between tryptophan and glutamine. This 

finding was evaluated against experimental studies. 

ΔΔG° =  ΔG(APA) −  ΔG(APQ) −  ΔG(WPA) +  ΔG(WPQ) 

Equation 15. Calculation of the free energy for the DMC. 

2.4.3 Peptide synthesis and NMR studies 

The peptides were synthesised via standard microwave-assisted SPPS, using the Fmoc/tert-

butyl (tBu) strategy and HCTU activation on TentaGel S RAM resin (0.24 mmol/g) in order 

to obtain amidated C-termini. The N-terminus of the peptides was acetyl capped using acetic 

anhydride to avoid end-effects. 

The sequences were studied through NMR, which allows the identification of both 

conformations as prolyl isomerisation is slow compared to the NMR time scale. Intending 

to choose conditions that mimicked physiological conditions, experiments were initially run 

in PBS buffer, but the peptides were found to precipitate gradually from solution due to the 
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buffer’s high salinity. Instead, potassium phosphate (20 mM, at pH 7.4) was used for the 

samples, which were at concentrations of 100 or 200 μM in 5% D2O (at 298 K). 

Two-dimensional NOESY experiments were used to identify both conformers: the 

diagnostic NOE cross peaks for the cis configuration take place between Hα(Pro-1) and 

Hα(Pro), whilst the ones for the trans configuration are between Hα(Pro-1) and Hδ(Pro) 

(Figure 66). The two-dimensional NMRs for 4 were analysed, and it was confirmed that the 

major conformation corresponded to the trans. As all the sequences in the double mutant 

cycle were very similar, it was assumed that the trans configuration was the major one for 

the remaining three peptides. This extrapolation was backed by the literature, as there have 

been previous studies of sequences of the type Ac-GxPG-NH2 that have shown that the trans 

configuration is the most populated.211 

 

Figure 66. Diagnostic NOE signals for the cis (left) and trans (right) conformations. 

The population of each conformation was determined through integration of the peaks that 

had clear signals for both conformers in the 1H NMR experiments. This provided a cis/trans 

ratio, which can be considered equivalent to the equilibrium constant between states in 

equilibrium. The values found are presented in Table 5. 
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Table 5. Cis/trans NMR ratios (at 298 K) and ΔG° for the four sequences in the DMC, as well 

as ΔΔG° for the system. 

Sequence 

NMR cis/trans 

ratio Cis content (%) ΔG° (kJ/mol) 

Ac-GWPQG-NH2, 1 0.35 26% 2.60 ± 0.07 

Ac-GAPAG-NH2, 2 0.09 8.3% 5.71 ± 0.12 

Ac-GWPAG-NH2, 3 0.43 30% 2.09 ± 0.06 

Ac-GAPQG-NH2, 4 0.08 7.4% 6.26 ± 0.01 

ΔΔG° (kJ/mol) - 0.04 ± 0.16 

 

The sign of the ΔΔG° obtained indicated that the cooperativity between Trp and Gln was 

slightly positive, which meant that both residues stabilised the cis configuration to a greater 

degree than they did individually. The significance of this cooperativity effect might not be 

large, especially when comparing the small value of the ΔΔG° to the uncertainty of the 

measurement. 

Another interesting observation was that there was a difference of an order of magnitude 

between the cis content of Trp-containing sequences and non-aromatic ones. The higher 

population of the cis configuration could be explained by the presence of a stabilising 

interaction between the Pro pyrrolidine ring and the Trp indole, namely a CH-π interaction 

involving the Pro Hα or Hδ.68,212 This interaction was observed in the MD models, which 

took place when 3 and 1 adopted the cis Pro conformation (Figure 67). When in the trans 

configuration, a more extended conformation was observed, where Trp was in closer 

proximity to the backbone instead of the pyrrolidine ring. 
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Figure 67. MD models for 1 with cis Pro (left) and trans Pro (right). The prolyl bond dihedral 

is represented in pink. 

The values of ΔG° and cis content for each peptide obtained from the MD simulations were 

comparable to the ones from the NMR studies, which validated metadynamics as a method 

to choose sequences for experimental evaluation and predict their behaviour. The biggest 

difference between values was for 1: this could be caused by a poor representation of the 

side chain interactions between tryptophan and proline in the simulations. The AMBER 

forcefield used in these simulations represents atoms as point charges, and therefore does 

not account for the resonance and the quadrupole moment of π systems.247 This could have 

a significant effect on the conformations predicted, as the accuracy of the force field becomes 

very important in smaller systems.248 

This double mutant cycle study confirmed that the presence of an aromatic residue preceding 

proline favours the occurrence of the cis configuration in unconstrained peptides and 

highlighted the cooperativity between residues in the local sequence. This established a 

foundation on which a switching system could be based. 

2.5 N-methylated analogue 5 

N-methylated residues are an interesting alternative to proline, as they are also tertiary 

amides but they provide more flexibility to the system, which might favour a higher 

population of the cis configuration. The peptide Ac-GW(N-Me)AQG-NH2 (5, Figure 68) 

was studied in order to compare its cis configuration content with its proline equivalent, 1. 
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Figure 68. Energy-minimised cis (left) and trans (right) conformers of 5. The atoms involved 

in the ω dihedral angle are shown in orange. 

5 was synthesised through standard microwave-assisted SPPS, using the Fmoc/tBu strategy 

and N,N'-diisopropylcarbodiimide (DIC)/Oxyma activation on an Fmoc-Rink Amide AM 

resin (0.74 mmol/g). A double coupling was performed for the tryptophan following the N-

methylated residue, as the higher steric hindrance on the secondary amine causes the 

coupling to be more difficult. 

The N-methylation step was performed using o-nitrobenzenesulfonyl chloride (o-NBS) 

activation followed by methylation using dimethyl sulfate and DBU (Scheme 13). This 

protocol was adapted from the strategy initially described by Miller and Scanlan,249 which 

was later optimised by Chatterjee et al.219,250 In this work, instead of collidine, triethylamine 

was used as the base in the o-NBS protection step, and DMF was used as a solvent instead 

of NMP during the o-NBS deprotection. 

 

Scheme 13. Synthetic route towards 5. 
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This sequence was studied by NMR (1 mM, in potassium phosphate buffer 200 mM, both 

in 5% D2O and 100% D2O at 298 K) to find that the cis/trans ratio was 0.66 (40% cis 

content). The identity of the major and minor conformations was confirmed through NOE 

cross peaks (Figure 69), where an NOE between Hα((N-Me)-Ala-1) and the N-Me group 

indicated a trans configuration, and one between Hα((N-Me)-Ala-1) and Hα((N-Me)-Ala) 

indicated a cis configuration. It was found that the major conformation corresponded to the 

trans form of the peptide. The experiments in 100% D2O were used to visualise the Hα and 

the trans configuration NOE. In addition, a cross peak between the N-methyl groups in both 

conformations with the opposite sign of the NOE cross peaks was observed, confirming that 

exchange between conformations was taking place. 

 

Figure 69. Expected diagnostic NOE cross peaks for the cis and trans configurations in 5. 

Comparing to its proline equivalent, 1, the cis content for the N-methylated peptide was 

higher (40% for 5 and 26% for 1). This was consistent with the literature: Marraud et al.251 

found that N-methylated Ala favoured the cis configuration more than Pro in dipeptides. The 

authors suggest that this could be due to the higher flexibility of the N-methylated residue, 

which is less restricted along the ϕ dihedral angle and therefore allows the system to access 

more geometries compared to its Pro counterpart. This could favour the formation of a CH-

π interaction between (N-Me)-Ala and Trp, which could stabilise the cis configuration. An 

alternative explanation could be the polarisation of the N-methyl group in (N-Me)-Ala: if the 

partial charge on the methyl group was more positive than the equivalent Hδ position in 

proline, that would establish a stronger CH-π interaction. 

The NOESY experiments were examined to find more information: for the major 

conformation, cross peaks were observed between the Ala N-methyl group and Trp Hε3/Trp 

Hζ3 and Trp Hδ1. For the minor conformation they were observed between the Ala N-methyl 

group and Trp Hδ1. This could indicate the presence of a stabilising CH-π interaction in both 

conformations. 
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Energy minimisation experiments were run using the GAFF forcefield and a conjugate 

gradients method for 5 and 1, both in the cis and trans configurations. The models showed 

that (N-Me)-Ala or Pro were in close proximity to Trp only when the peptides adopted the 

cis configuration. Namely, the Hα for (N-Me)-Ala in 5 was at 2.3 Å from the indole ring 

(Figure 70) and the Hα for Pro in 1 was at 2.2 Å from it, suggesting that a CH-π interaction 

could take place. 

 

Figure 70. Energy-minimised model of 5 with cis N-Me-Ala, showing the possible CH-π 

interaction between (N-Me)-Ala Hα and Trp. 

2.6 Disulfide-actuated switches 

Intramolecular disulfide formation was chosen as a potential actuation mechanism for the 

design of an initial switching system based on Pro isomerisation. The conformation of Pro 

has been shown to be affected by disulfide formation,252 and CxyC tetrapeptides have been 

shown to promote β-turn formation in the oxidised form (where x and y were Ala or Gly).243 

A system was envisioned with a sequence of the type CxPC (Figure 71), where an open 

conformation would exist in the resting state, with reduced cysteines and trans Pro. Upon 

oxidation, enough energy would be provided for the isomerisation to cis Pro to take place, 

which would give rise to a closed peptide conformation. This was inspired by the type VI β-

turn geometry, where a cis Pro is present at the i+2 position. Because the cooperativity 

between Trp and Gln in the series of peptides studied in Section 2.4 was not very significant, 

it was hypothesised that Gln could be substituted by one of the Cys residues. Gly residues 

were added to frame the peptide, in order to avoid end-effects and resemble a longer protein 

environment. Proline was to be tested initially, and (N-Me)-Ala would be explored if the 

designs were successful. 
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Figure 71. Trans (left) and cis (right) Pro rotamers corresponding to the open and closed 

conformations in a CxPC system, respectively. 

 

The sequences Ac-GCWPCG-NH2 (6) and Ac-GCAPCG-NH2 (7) were chosen for study by 

analogy with the double mutant cycle from Section 2.4. Energy minimisation models were 

generated for both cis and trans configurations of the reduced peptides, which showed that 

an open conformation was adopted by both peptides with a trans Pro. With a cis Pro a more 

compact conformation was observed where the Cys thiol groups were in close proximity, 

which could facilitate the formation of the disulfide bridge (Figure 72). 

 

Figure 72. Trans (left) and cis (right) conformations of 6. The ω dihedral angle is 

represented in pink. 

Both sequences, in the reduced and oxidised forms (Figure 73), would be synthesised and 

analysed through NMR to ascertain how cis Pro content changes as a function of the Cys 

oxidation states, whilst comparing the effects of Trp and Ala in equivalent systems. 

Pro Pro 

Trp Trp 
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Figure 73. The four sequences chosen for evaluation. 

2.6.1 Database search 

A database search was performed by Dr Drew Thomson to explore in what contexts disulfide 

bridges are present and how these could be used as an actuation method for a CxPC-type 

switch. To this end, the loop database introduced in Section 2.4.1 was filtered to obtain 

sequences of the type CxPC, the omega (ω) angle of Pro as well as information on the 

oxidation state of the Cys residues. Only ten sequences were found, therefore not much 

information could be extracted regarding the relationship between Pro conformation and the 

oxidation state of the cysteines. Thus, the chosen systems would be evaluated experimentally 

to ascertain if the formation of the desired i to i+3 disulfide bridge is coupled to a geometry 

change. 

2.6.2 Synthesis 

6 and 7 were synthesised through standard microwave-assisted SPPS, in order to obtain good 

coupling efficiency,253 using the Fmoc/tBu strategy and HCTU activation on a TentaGel S 

RAM resin (0.24 mmol/g) to afford the C-terminal amide. In order to prevent epimerisation, 

cysteine was coupled using a method at 50°C. The peptides were purified through RP-HPLC 

and the disulfide formation was then performed in solution. 

A method that didn’t result in oligomerisation was sought for the disulfide formation 

reaction. An initial oxidation test performed on 6 using conditions by Calce et al.254 (2.5 mM 

peptide in NH4HCO3 0.1 M, with air bubbled through the sample) caused a white solid to 

precipitate during the reaction. When the sample was analysed by LCMS no product or 

oligomer mass could be observed, suggesting that the high concentration caused 

intermolecular disulfide formation and precipitation. A second air oxidation test was 

performed using a peptide concentration of 0.1 mM (entry 1, Table 6), which was close to 
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completion after 43 h (92% yield estimated by LCMS) and afforded the desired disulfide-

linked peptide as the major product, although minor dimer formation was observed (5% by 

LCMS). 

In order to decrease the reaction time, three more tests were performed on 6 at 0.1 mM 

concentration. Following conditions by Albericio et al.,255,256 a test was performed using N-

chlorosuccinimide (entry 2, Table 6), which can accelerate disulfide formation when used in 

slight excess in aqueous solution. The starting material was consumed in 15 minutes but the 

reaction showed 10% conversion to the dimer (estimated yield by LCMS) and it was very 

time sensitive, as if left for a longer time the product disappeared and instead, other 

unidentified by-products were generated.  

A further reaction test was performed using 15% volume of DMSO in NH4HCO3 0.1 M 

(entry 3, Table 6), which reached completion in 6 h by LCMS but generated 10% of the 

dimer. Dipyridyl disulfide was explored as well (entry 4, Table 6), employing 3 equivalents 

of DPDS in MeOH/ NH4HCO3 0.1 M (conditions by Maruyama et al.257). The reaction was 

complete within an hour by LCMS analysis and only generated traces of dimer. 

Table 6. Oxidation methods screened for 6. All reactions were performed at room 

temperature. The yields were estimated via LCMS. For entry 1, 3% of starting material was 

left unreacted. Decomposition was observed for entry 2 if the reaction was left for longer 

than 0.25 h. For entry 3, 2% of starting material was left unreacted. Complete conversion 

was observed for entry 4 after 1 h. 

 

Entry 
Oxidation 

method 
Solvent 

Reaction 

time 

Estimated 

yield of 

product 

Estimated 

yield of dimer 

1 Air oxidation 
NH4HCO3 

0.1 M 
43 h - 5% 

2 NCS MeCN/water 0.25 h 90% 10% 

3 DMSO 
NH4HCO3 

0.1 M 
6 h 90% 10% 

4 DPDS 
NH4HCO3 

0.1 M 
1 h 95% Traces  

 



94 

 

It was determined that the DPDS-mediated oxidation was the most efficient, as it proceeded 

in short reaction times and did not cause significant dimerisation. After performing the 

oxidation using the chosen conditions and purifying the peptides via RP-HPLC, 8 was 

obtained in a 56% yield and 9 in a 50% yield. 

2.6.3 NMR analysis 

For the reduced-Cys sequences, two-dimensional NMR experiments (COSY, TOCSY, 

NOESY, ROESY) were run at 1 mM concentration in potassium phosphate buffer (200 mM 

at pH 7.4) and 5% D2O, at 298 K. To the samples was added 1 mM DTT-d10 in order to keep 

the cysteines in the reduced form. The cis and trans configurations were identified as minor 

and major, respectively, through the NOE cross peaks between the Pro Hδ and Trp or Ala Hα 

(for trans) and the cross peak between the Pro Hα and Trp or Ala Hα (for cis). 

1H NMR experiments were run for the disulfide-bridged peptides in the same conditions, 

without DTT and at 100 (for 9) and 200 μM (for 8) concentrations due to limited material. 

The NMR experiments for the reduced peptides were also run at these lower concentrations 

and showed no difference from the 1 mM concentration. This indicated no concentration-

dependent change in conformation or aggregation. 

Two sets of signals corresponding to the cis and trans Pro configurations were observed for 

the disulfide-bridged peptides. The chemical shifts of the bridged peptides were comparable 

to the non-bridged ones, thus the major conformation was identified as the trans Pro by 

analogy. This was necessary because the peptides tumbled in between regimes, which caused 

the appearance of NOE cross peaks to be limited. This prevented the complete assignment 

of the peptide backbone. The closely related sequence Ac-CAPC-NH2 has been studied in 

the literature,252 for which the trans was the major conformation observed as well. No 

additional sets of signals were observed arising from the disulfide bridge diastereomers, 

which could be due to them fast exchanging or due to the presence of only one diastereomer. 

The cis Pro content was calculated for the four peptides from the integrals obtained in the 

1H NMR experiments (Table 7). 
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Table 7. Cis/trans ratio and cis content for the four peptides. 

Sequence Cis/trans ratio 
Percentage of cis 

configuration 

Ac-GCWPCG-NH2 thiol, 6 0.43 30% 

Ac-GCWPCG-NH2 disulfide, 8 0.49 33% 

Ac-GCAPCG-NH2 thiol, 7 0.26 21% 

Ac-GCAPCG-NH2 disulfide, 9 0.34 25% 

 

Although a 3-4% increase in the occurrence of cis Pro was observed, this was not a 

significant magnitude, therefore indicating that the formation of the disulfide bridge did not 

force the system into the cis configuration. This showed that the system was not working as 

the intended conformational switch. 

Consistent with the literature and what was observed in Section 2.4, the Trp-containing 

peptides had ~10% more cis Pro, highlighting the role of this residue in stabilising that 

conformation. 

Similar sequences have been studied by Sui and Rabenstein252 to explore the occurrence of 

cis and trans Pro in a wide range of disulfide-bridged peptides and their corresponding 

dithiol equivalents. Among others, the tetrapeptide Ac-CAPC-NH2 was investigated, for 

which a cis content of 46% was found as the disulfide-bridged sequence and an 8% cis as 

the free thiol form. These values differ from the ones found for 7 and 9, which could be due 

to the Gly flanking the peptides but could also be affected by the different conditions used 

to run NMR experiments (a pH of 3 was used by Sui et al. whereas pH 7 was used in this 

work). 

2.7 Vicinal disulfide systems 

2.7.1 Hypothesis and database searches 

A new switch design was envisioned where the formation of a vicinal disulfide would confer 

a constraint that would induce conformational switching. Significant conformational 

changes caused by vicinal disulfides have been previously observed in native proteins, as 

introduced in Section 1.2.3.1. A Yaa-Xaa-Pro-Cys-Cys system was devised, where the Xaa 



96 

 

position would be a cis Pro-inducing amino acid, like Trp. In the reduced state a cis Pro 

would take place, which would induce the formation of a closed conformation (similar to a 

type VI β-turn). Upon formation of a vicinal disulfide bridge, an open conformation would 

be adopted with a trans Pro as the major isomer (Figure 74). The formation of the disulfide 

bridge would be incompatible with the presence of a cis Pro due to the increased strain in 

the backbone. 

 

Figure 74. Two states of the Yaa-Xaa-Pro-Cys-Cys switch envisioned, with a trans (left) and 

cis Pro (right). 

It was envisioned that only cis Pro would accommodate the formation of a closed 

conformation, while the constraint introduced by the vicinal disulfide would cause the trans 

Pro state to adopt an open conformation. Energy-minimised models of the sequence Ac-

TWPCC-NH2 showed that the Cys side chains in the cis Pro state pointed in opposite 

directions (Figure 75), which would make the formation of the vicinal disulfide bridge more 

difficult than in the trans Pro state. 

 

Figure 75. Energy-minimised model of Ac-TWPCC-NH2 with reduced Cys and cis Pro. 

This pronounced difference between states was also observed by Carugo et al.,38 who 

performed a search for all sequences containing vicinal disulfides in the PDB and found that 

Pro 

Cys 

Cys 
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very different conformations were adopted in the oxidised and reduced states. In the first 

case, a turn conformation took place and the Cys side chains pointed towards the same side. 

In the latter, an extended backbone was observed while the Cys side chains were on opposite 

sides of the main chain. 

Sequences of the type xPCC were searched for in the loop database introduced in Section 

2.4.1 by Dr Drew Thomson, but not much information could be obtained due to the low 

number of hits. Therefore, a rational design approach was adopted to choose the peptides for 

study. The first sequence chosen was Ac-TWPCC-NH2 (10). Tryptophan was introduced 

preceding Pro because of the analogy to the other sequences studied in this chapter, as well 

as its proven ability to stabilise the cis Pro conformation. Thr was introduced as a polar 

amino acid, and because it could potentially aid the NMR assignment due to the 

characteristic high chemical shift of the Hβ and the presence of the Hγ signals. The peptide 

Ac-TW(N-Me)ACC-NH2 (11) was also chosen as a target for study due to the higher cis 

content observed for (N-Me)-Ala, as demonstrated in Section 2.5. 

2.7.2 Synthesis and NMR studies 

10 and 11 were synthesised through standard microwave-assisted SPPS, using the Fmoc/tBu 

strategy and DIC/Oxyma activation on an Fmoc-Rink Amide AM resin (0.74 mmol/g). 

Cysteine was coupled using a method at 50°C to prevent epimerisation. The peptides were 

purified and the disulfide formation was then performed in solution. 

Disulfide formation was performed with the conditions used for the CxPC sequences 

(Section 2.6) but at 50°C, as vicinal disulfides are more constrained systems. This afforded 

12 and 13 in a 43% and a 22% yield after purification, respectively. 

Two-dimensional NMR experiments (COSY, TOCSY, NOESY) were run for each peptide 

at 1 mM concentration with 1 mM DTT-d10 for 10 and 11, in potassium phosphate buffer 

(200 mM, pH 7.4) and 5% D2O, at 298 K. For both peptides the major conformation was 

identified as the trans through the NOE cross peaks between Pro Hδ and Trp Hα for 10 and 

between Trp Hα and Ala N-Me for 11 (Figure 76). 
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Figure 76. Diagnostic cis (left) and trans (right) NOE cross peaks (in green) for 10 and 11. 

The spectra for the disulfide-bridged 12 and 13 were more complex than initially expected, 

as more than the expected two conformations were observed. In the case of 13, five different 

NH signals were present in the Trp Hε1 region at 298 K (Figure 77). This could be due to the 

disulfide rotamers, which could be exchanging slowly and therefore become visible in the 

NMR timescale. Another possibility could be the occurrence of a cis amide bond in the C-

terminal cysteine (as has been observed previously in the literature258). 
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Figure 77. 1H NMR of 13 showing the multiple conformations for Trp Hε1 at 298 K, and 

labelling of the Trp protons. 1H NMR experiment performed at a 1 mM peptide concentration, 

in potassium phosphate buffer (200 mM, pH 7.4) and 5% D2O, at 298 K on a 600 MHz 

spectrometer. 

Temperature-dependent 1H NMR experiments were run for 13 from 298 K to 278 K every 5 

degrees to ascertain whether the conformations were interconverting and facilitate 

assignment. As the temperature decreased the backbone amide NH exchange with solvent 

was slowed down259 and new signals appeared, although the Trp Hε1 signals stayed the same. 

Therefore it was unlikely that the conformations observed were in exchange within the NMR 

timescale (Figure 78). 

 

Figure 78. From bottom to top: 298, 293, 288, 283 and 278 K experiments for 13. 1H NMR 

experiments performed at a 1 mM peptide concentration, in potassium phosphate buffer 

(200 mM, pH 7.4) and 5% D2O on a 600 MHz spectrometer. 

 

Decreasing 

temperature 
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In order to facilitate assignment, experiments were run in DMSO-d6. It was hoped to obtain 

a solubility improvement and clearer spectra, as water suppression would not be an issue. 

1D 1H NMR experiments were run at 298, 303, 308 and 313 K, heating up the sample instead 

of cooling it down due to the viscosity of DMSO (Figure 79). The experiment at 303 K 

showed the best peak resolution for the Trp Hε1 protons, although a slightly different pattern 

was observed compared to the experiments in buffer: in this case, five different 

conformations were still observed, but a different proportion of the signals and an overlap 

between two of the peaks took place. 

 

Figure 79. From bottom to top: 298, 303, 308 and 313 K experiments for 13 in DMSO-d6 (1 

mM peptide concentration, 600 MHz spectrometer). 

A ROESY experiment was used for assignment instead of a NOESY at 303 K, as the latter 

showed only exchange cross peaks of the opposite sign to the diagonal. The ROESY 

experiment confirmed the exchange peaks observed and showed more correlations in the 

aliphatic to backbone NH region. Assignment for this system was very complex, as all 

conformations overlapped considerably in chemical shift. The α, β, δ1 and ε1 signals for the 

tryptophan residue in all five conformations were assigned, which allowed the identification 

of the cis or trans configuration of the system and associate that with the five Hε1 signals 

(Figure 80) for integration. 
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Figure 80. 1H NMR of 13, showing the Trp Hε1 region at 303 K. Experiment performed at a 1 

mM peptide concentration, in DMSO-d6, on a 600 MHz spectrometer. 

Integration of the peaks showed a relatively even distribution of the five conformations 

(Table 8). Two of the conformations (with Trp Hε1 at 11.06 and 11.07 ppm) were identified 

as trans through an ROE between Trp Hα and Ala N-Me. Although a complete assignment 

of the backbone was not achieved, an ROE between the methyl group and the Hα in (N-Me)-

Ala was observed, which confirmed that the methyl group was part of the alanine residue. 

One of the conformations with Trp Hε1 11.11 ppm showed an ROE cross peak from the Trp 

Hα to a signal at 4.39 ppm, which would match the chemical shift for an Ala Hα. This could 

indicate a cis configuration, but this could not be verified as the assignment for the Ala Hα 

could not be confirmed. The remaining two conformations could not be identified as cis or 

trans, as no through-space cross peaks were observed. 
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Table 8. Trp Hε1 chemical shifts in DMSO-d6 for the five conformations observed, including 

the integral, conformation and content for each one. 

Trp Hε1 chemical 

shift (ppm) 
Integral Conformation 

Conformation 

content 

11.04 1.1 Unidentified 18% 

11.06 1.1 Trans 19% 

11.07 1.1 Trans 19% 

11.11 1.5 Possible cis 26% 

11.16 1 Unidentified 17% 

 

It was attempted to assign the cysteine residues to determine the origin of the additional 

conformations, but this could not be achieved as the signals were significantly overlapped 

in chemical shift and not enough through space cross peaks were present. 

In the case of 12, experiments were run in potassium phosphate buffer at 298 K. A slight 

distortion of one of the Trp Hε1 signals was observed, which could indicate the presence of 

another conformation. Temperature-dependent experiments were run from 278 to 298 K, 

which at 278 K showed the distorted Trp Hε1 signals more clearly (Figure 81). 
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Figure 81. Left: temperature-dependent 1H NMR for 12. From top to bottom: 278, 283, 288, 

293 and 298 K. Right: close-up of the Trp Hε1 signals at 278 K. The experiments were 

performed at a 1 mM peptide concentration, in potassium phosphate buffer (200 mM, pH 7.4) 

and 5% D2O on a 600 MHz spectrometer. 

Assignment was performed at 298 K, where three different conformations could be observed 

based on the Trp Hε1 signals (Figure 82). The two conformations with Trp Hε1 at 10.03 and 

10.02 ppm were identified as trans through an NOE cross peak between Pro Hδ and Trp Hα. 

      

Figure 82. Left: COSY cross peaks between Trp Hε1 and Trp Hδ1 for the three conformations. 

The letters ε and δ are represented as e and d, respectively. Right: corresponding 1H NMR 

signals for the Trp Hε1 protons. The experiments were performed at a 1 mM peptide 

concentration, in potassium phosphate buffer (200 mM, pH 7.4) and 5% D2O, at 298 K on a 

600 MHz spectrometer. 
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The conformation with Trp Hε1 at 10.11 ppm was identified as cis through an NOE between 

Pro Hα and Trp Hα. In order to confirm this cross peak, the full assignment of the Pro residue 

was carried out. Unlike the other two Pro residues, a separate COSY cross peak between the 

Pro Hα and Hβ was not observed for this conformation. Instead, the Hα resonance was 

overlapped with one of the Hδ protons (Figure 83). 

 

Figure 83. Overlapped COSY (in orange and blue) and TOCSY (green) spectra, in the Pro 

side chain region for the cis configuration. The COSY between Pro Hα and Hβ is circled in 

red. The letters β, δ and γ are represented as b, d and g.The experiments were performed at 

a 1 mM peptide concentration, in potassium phosphate buffer (200 mM, pH 7.4) and 5% D2O, 

at 298 K on a 600 MHz spectrometer. 

The assignment of the cysteine residues was attempted. Correlations between α and β protons 

were found which allowed the identification of five Cys residues, but due to the backbone 

NH protons being in exchange with solvent it was not possible to identify which sets of 

signals corresponded to 4Cys or the C-terminal 5Cys, nor which conformation they belonged 

to. It was therefore not possible to determine the difference between the two trans 

conformations observed. The content of each conformation observed was as follows: 
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Table 9. Trp Hε1 chemical shifts for the three conformations observed, including the integral, 

conformation and content for each one (at 298 K). 

Trp Hε1 chemical 

shift (ppm) 
Integral 

Pro 

conformation 

Conformation 

content 

10.11 1 Cis 35.7% 

10.03 0.5 Trans 17.9% 

10.02 1.3 Trans 46.4% 

 

The cis Pro content found for all the peptides studied is shown in Table 10. The occurrence 

of the cis configuration increased by 10% when Pro was substituted by N-methylated Ala, 

which is consistent with the findings from Section 2.5. This suggests that the increased 

flexibility of the N-methylated Ala residue allows the peptide to adopt more geometries in 

comparison to the more constrained Pro-containing sequence. 

Table 10. Cis/trans ratios and cis content for each peptide at 298 K. 

Sequence Cis/trans ratio Cis percentage 

Ac-TWPCC-NH2 reduced cysteines, 

10 
0.56 36% 

Ac-TWPCC-NH2 disulfide bridged, 12 0.56 36% 

Ac-TW(N-Me)ACC-NH2 reduced 

cysteines, 11 
0.85 46% 

Ac-TW(N-Me)ACC-NH2 disulfide 

bridged, 13 
- - 

 

The two systems studied did not show a two-state switching behaviour upon disulfide 

formation, but instead generated multiple conformations that could be due to the presence of 

a cis cysteine residue and the disulfide bridge rotamers. 
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2.8 Conclusions and future work 

A double mutant cycle based on the WPQ-containing sequence 1 was used to evaluate the 

effects of local sequence on Pro conformation. It was found that an aromatic residue 

preceding proline increased the cis Pro conformation content by an order of magnitude 

compared to alanine, and that positive cooperativity existed between Trp and Gln. 

A database search and MD simulations were used to choose the sequences for experimental 

evaluation and to predict their behaviour. A comparison between the cis content estimated 

by these methods, as well as the values found experimentally by NMR analysis, are 

presented in Table 11. As it can be observed, the cis content for the sequences that do not 

contain an aromatic residue was more closely predicted by the MD and the database search. 

In contrast, the predictions for 1 and 3 differed more from the values obtained via NMR. In 

the case of the MD simulations, this could be due to a poor representation of the Trp side 

chain. The database results could be different because the sequences screened form part of a 

larger protein structure, whereas the peptides under experimental study lack that additional 

environment. 

Table 11. Comparison of the cis Pro content (%) predicted by the database search, the MD 

simulations and the experimental values obtained through NMR. 

 Peptide 

Cis Pro % 1 2 3 4 

Database 19 8 23 7 

MD 31.6 8.2 27.9 8.7 

NMR 26 8.3 30 7.4 

 

The N-methylated peptide 5 was studied in order to compare the occurrence of the cis 

configuration in a sequence containing (N-Me)-Ala with its Pro counterpart 1, and it was 

observed that this peptide adopted a higher amount of cis (40% for 5 and 26% for 1). This 

highlighted the potential of (N-Me)-Ala as a substitute for Pro in switching systems based 

on tertiary amide isomerisation. 

The information obtained from the aforementioned studies was used to design a switching 

system actuated through disulfide formation. Oxidation conditions that yielded the product 
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in a short reaction time with no dimerisation were screened, which identified a method 

utilising DPDS as the most suitable. The sequences were studied through NMR, which 

showed that the peptides containing Trp preceding Pro had ~10 % more cis Pro than the 

peptides containing Ala. The reduced and oxidised peptides did not adopt different Pro 

conformations and therefore the system did not behave as a conformational switch. 

A further design was investigated, where the formation of a vicinal disulfide would function 

as the actuation method. NMR studies showed that the (N-Me)-Ala sequence contained 10% 

more cis configuration in comparison to the Pro-containing system in the reduced cysteines 

state, and that neither of the peptides behaved as a switching system. Instead, the disulfide-

bridged peptides 12 and 13 adopted three and five different conformations respectively, 

which could be caused by the presence of a cis C-terminal cysteine as well as two disulfide 

bridge rotamers. Future work would involve the assignment of the unidentified 

conformations in 13. Changing the pH or the solvent of the NMR sample could reveal more 

NOE or ROE cross peaks that would allow the identification of a cis or trans N-methylated 

Ala. It could also be attempted to change the tumbling regime of the peptide in order to 

observe more through space correlations. 

The cause of the additional conformations adopted by 12 and 13 could be identified by 

confirming the cis or trans configuration of the cysteine residues and analysing the disulfide 

rotamers. The occurrence of a cis C-terminal Cys could be confirmed by a ROESY cross 

peak between the Hα protons in the two cysteine residues260 and the disulfide rotamers could 

potentially be identified using differences in chemical shifts and exchange cross peaks.261 A 

3D NMR structure of the peptide could be obtained, which would allow the measurement of 

the χ dihedral angles in the disulfide bridge. 

Although a switching system has not been accessed in this work, information has been 

gained about the backbone of interest. In a future design, (N-Me)-Ala could be exploited to 

access a higher amount of cis configuration, in combination with another actuation method. 

For example, phosphorylation could be employed, which in turn could allow for the transfer 

of a working system into a biological context. In this setting, a switching peptide could be 

employed as a biosensor, which for example could allow the detection of kinase activity 

through the use of a FRET pair. 
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The backbone of the switch could be improved by drawing inspiration from β-hairpin 

structures in two ways: firstly, if one or two more amino acids were added to frame the Xaa-

Pro-Yaa scaffold, there would be more possibilities to confer stability to the system in the 

two desired conformations. And secondly, the wide amount of information available about 

the types of turn that occur in hairpins could be utilised to fine tune the design of a switch 

that would change from one type of turn to another. 
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3 β-Turn mimics through hydrazide ligation  

The work presented in this chapter was performed in collaboration with Dr Drew Thomson 

and Dr Albane Neckebroeck. Dr Drew Thomson performed the molecular dynamics 

simulations. The NMR experiments of the control sequences and their preliminary 

assignment were performed in collaboration with Dr Albane Neckebroeck. 

The design, synthesis and evaluation of 14 in comparison to TrpZip1 has been published 

elsewhere.262 

3.1 Hydrazones and hydrazides in ligation 

Hydrazones are attractive moieties for ligation, especially since the development of 

nucleophilic catalysts like aniline that significantly improve reaction rates. They have been 

frequently used as ligation anchors in the cyclisation of peptides197,198 and as peptide bond 

surrogates,199 although their use as a stable linkage is limited due to their instability against 

hydrolysis.196 This reversibility has been taken advantage of in bioconjugation strategies, as 

it allows the installation of a linker and its exchange to a new functionality thereafter. For 

example, Dirksen et al.263 used hydrazone linkers to reversibly tag proteins with biotin 

(Figure 84). Using this method, the biotin label can be exchanged for a new tag for further 

analysis and the protein can be recovered capped or not capped for further functionalisation. 

 

Figure 84. Possible strategies for use with the reversible hydrazone linker designed by 

Dirksen et al. Reproduced with permission.263 
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In addition, this reversibility has been utilised in antibody-drug conjugates to release the 

active drug below pH 5,264 to label proteins with fluorescent tags265 and as a linker to attach 

a fluorophore onto an enzyme active site. This linker can then be removed through hydrazone 

exchange to restore enzymatic activity.266 

Conversely, hydrazides are much more stable against hydrolysis, but their use as a ligation 

handle in bioconjugation is limited as an additional step is required to reduce the C=N bond. 

The most widely used application of these moieties is in a variation of the native chemical 

ligation reaction, which utilises a hydrazide instead of the C-terminal thioester (Figure 85). 

This methodology developed by Fang et al.267,268 allows the use of an unprotected peptide 

hydrazide, which is converted into a thioester through oxidation followed by reaction with a 

thiol. This activated species undergoes native chemical ligation with a Cys-containing N-

terminal peptide, which generates a peptide bond. 

 

Figure 85. Native chemical ligation of peptide hydrazides. 

The stability of the hydrazide linkage has been exploited to install a permanent tag on DNA 

by Wilkinson et al. (Figure 86).269 In this strategy, DNA is labelled with a bifunctional 

chemical handle that contains a hydrazone and an azide. This azide is used to introduce a tag 

by means of an azide-alkyne cycloaddition, which can then be removed by hydrazone 

exchange. This allows the installation of a new tag by a further hydrazone exchange step, or 

the permanent tagging of DNA with a hydrazide linkage through the reaction with an N-

hydroxysuccinimide ester. 

 

Figure 86. DNA tagging and untagging method developed by Wilkinson et al. Reproduced 

with permission from ref.269 
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3.2 Hydrazone and hydrazide-containing β-turn mimics 

Hydrazide and hydrazone linkages have been used as components of mimics of protein 

structure in the literature, but the vast majority of examples are used as hydrogen bond 

surrogates142 within α-helices and as peptide bond surrogates199,270 within short peptide 

backbones. An example of the latter is the work by Zerkout et al.,271 who substituted Pro for 

its hydrazino analogue in tripeptides of the sequence Boc-Gly-Pro-Gly-NHiPr and compared 

the in-solution and crystal structures of both analogues. They found that the peptide 

containing Pro adopted a type II β-turn, whereas the analogue containing hydrazino-Pro 

adopted a different folded conformation. In the analogue with hydrazino-Pro, a bifurcated 

hydrogen bond took place (Figure 87) between the carbonyl in 1Gly, the hydrazino-Pro Nα 

and the 3Gly NH. The authors suggested that this ‘hydrazino fold’ acted as a β-turn mimic. 

 

Figure 87. Hydrazino-Pro-containing tripeptide studied by Zerkout et al.271 The bifurcated 

hydrogen bond is depicted with a red dashed line. 

Lubell et al.170,272 have made use of the hydrazide-containing residues Aza, Aid and Nai 

(Figure 88) as β-turn mimics in the peptide N-4-bromobenzoyl-Aid-Phe-N’-iso-

propylamide. Although a hydrazide linkage is present in the unnatural unit, ligation 

chemistry is not used to install that moiety – instead, an acylation step is required. 
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Figure 88. Top: from left to right: Aza, Aid and Nai peptidomimetics. Bottom: synthesis of N-

4-bromobenzoyl-Aid-Phe-N’-iso-propylamide by Lubell et al.170 

The only example in the literature of a hydrazide turn generated through a ligation step is by 

Vanderesse et al. (see Section 1.6.2),146,273 who used this linkage as well as an oxime, 

amidoxy and a reduced amidoxy moiety as amide surrogates to induce γ-turns in dipeptides 

and hexapeptides (Figure 89). 

Ala-Ala-Pro-link-Val-Ala-Ala-NHiPr 

Ala-Ala-Pro-Val-link-Ala-Ala-NHiPr 

[CH=N-O] Oxime 

[CH2-NH-O] Reduced amidoxy 

[CO-NH-NH] Hydrazide 

[CO-NH-O] Amidoxy 

 

Figure 89. Peptide sequences (left) used by Vanderesse et al.146,273 to test the different 

peptide bond surrogates (right), and chemical structure of one of the hexapeptides. 
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3.3 Chapter aims 

The modification of β-turns has received considerable attention in the literature (as has been 

described in Section 1.6.4), as mimicking this secondary structure provides a useful tool in 

a wide variety of areas, from understanding protein folding to targeting diseases. But 

although numerous β-turn mimics have been previously designed, these are either accessed 

through multistep organic syntheses (like Hot=tap174) or they are based on simple building 

blocks which lack structural preorganisation (like ornithine163). This significantly limits their 

possibilities for application in peptide and protein science. 

The aim of this work was to design new β-turn mimics that would provide the necessary 

preorganisation without the need for a multistep organic synthesis. This would be achieved 

through the use of ligation chemistry as a means to install the mimic structure. To this end, 

two peptides with unnatural modifications would be used as the ligation partners and the β-

turn mimic would be generated in situ, utilising the ligation junction functionality. 

The aims of this chapter were as follows: 

- Design of the β-turn mimic scaffolds. 

- Synthesis of the β-turn mimics within the β-hairpin backbone chosen as well as in 

small peptides. 

- Development of efficient ligation conditions. 

- Synthesis of the chosen model system, a tryptophan zipper (TrpZip). 

- Evaluation of the β-turn mimics using CD and NMR to compare their conformation 

and thermal stability with the control systems. 

3.4 Choice of model system and design 

The β-hairpin TrpZip1, designed by Cochran et al.,80 has been used as the model system for 

these studies (Figure 90). TrpZip1 is a designed 12-residue tryptophan zipper (for the 

complete sequence see Section 7.12) that folds into a soluble, monomeric hairpin structure 

in solution, containing a type II’ β-turn. The 3D structure of this peptide has been extensively 
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characterised through NMR, and data on the thermodynamics of its folding are available. In 

addition, it has been shown that the modification of the β-turn in TrpZip1 can alter the 

stability of the peptide fold. Therefore, this peptide was an ideal base structure to use for the 

investigation of the conformational and thermodynamic effects of modifying the β-turn. A 

further control peptide was used in these studies, namely TrpZipGG, where the turn 

residues i+1 and i+2 were substituted by Gly-Gly in order to compare to an achiral turn 

(Figure 90). 

 

Figure 90. NMR structure of TrpZip1 (left, PDB 1LE0) and TrpZipGG (right, generated 

through PyMol mutation and energy minimised). The i+1 and i+2 residues in the turn are 

represented in red. 

The β-turn mimics in study were to be installed in place of the i+1 and i+2 residues in the 

turn through the chemoselective ligation of two peptide fragments. This would take 

advantage of the functionality in the ligation junction to generate the β-turn in the hairpin. A 

hydrazide linkage was envisioned, which would be generated by a reductive amination step 

between two peptide partners. The designed β-turn scaffolds consisted of an ortho-

substituted aromatic ring, which would favour the formation of the hydrogen bond between 

the positions equivalent to i and i+3 in the native peptide. Three β-turn mimics would be 

studied, one with a methylene unit in the benzylic position (unsubstituted β-turn mimic, U-

Gly Gly Gly Asn 
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BTM) and the two isomers arising from the presence of a methyl substituent on the benzylic 

position ((S)-BTM and (R)-BTM) (Scheme 14). 

 

Scheme 14. TrpZip1 control and hydrazide-linked β-turn mimics studied. 

The peptide substrates for the ligation would consist of an N-terminal fragment with a 

hydrazide moiety at the C-terminus (16) and a C-terminal fragment modified with the 

carbonyl-containing aromatic unit in the N-terminus (Scheme 15). Two options were to be 

explored for the C-terminal peptide: one with an aldehyde in the benzylic position (17) and 

another containing a ketone (18). 

 

Scheme 15. N-terminal and C-terminal peptide substrates for the ligation. 

This strategy would provide a straightforward manner to install the mimic, which would be 

compatible with unprotected peptide substrates. This property would be novel within the 

literature, as other mimics reported involve more complex synthetic routes, and it could be 

useful in the study of β-hairpin structures and protein folding more generally. 

In addition to the peptide conjugates, tripeptide systems containing the β-turn mimic 

scaffolds flanked by two alanine residues would also be studied. These systems would be 
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used to aid the NMR assignment of the β-hairpin conjugates, and their conformation would 

also be compared to the full peptide structures to ascertain if they fold in solution. 

3.5 Molecular dynamics simulations 

Molecular dynamics simulations were run by Dr Drew Thomson on both the small peptide 

systems and the peptide conjugates in order to evaluate the potential of the turn units to 

function as β-turn mimics. For this, position restrained energy minimisation was performed 

for each peptide, followed by an MD simulation over 100 ns. 

The models obtained for the peptide conjugates (Figure 91) showed a similar secondary 

structure to TrpZip1, exhibiting a hydrogen-bonded β-hairpin conformation with the same 

aromatic stacking pattern and polar face. In the case of (S)-15 and (R)-15, both isomers 

adopted similar conformations. 

  

Figure 91. Models obtained from the MD simulations, showing only the peptide backbones. 

Left: 14 (red) overlayed with TrpZip1 (blue), and right: (S)-15 (magenta) and (R)-15 (green). 

Importantly, the β-turn-like hydrogen bond between the residues preceding and following 

the β-turn mimic was maintained in all peptide conjugates (Figure 92). The distance between 

the oxygen in the carbonyl of the residue preceding U-BTM and the proton in the amide NH 

of the residue following U-BTM was calculated along the MD trajectory for 14, in order to 

compare it to the same distance between i and i+3 in TrpZip1. 



117 

 

 

Figure 92. Distances between the i and i+3 residues (in blue) measured using MD (in red) in 

TrpZip1 (left) and 14 (right). 

The histograms of the distances obtained are depicted in Figure 93. The distance between 

the atoms was smaller than 3 Å for 90% of frames during the trajectory of 14, compared to 

63% of frames for TrpZip1. This indicated that the hydrogen bond in 14 was more stable 

during the simulation in comparison to the hydrogen bond in the chosen control. The same 

analysis was performed for (S)-15 and (R)-15, which showed an analogous behaviour to 14 

(see Sections 7.3.2.1 and 7.3.2.2). All in all, these simulations strongly supported the 

potential of U-BTM, (S)-BTM and (R)-BTM to function as β-turn mimics. 

  

        Mean = 2.92 

        SD = 0.74 

        Mean = 2.26 

        SD =0.85 

Figure 93. Histograms and corresponding distances (in Å) between the oxygen in the C=O(i) 

and the proton in NH(i+3) for TrpZip1 (left) and 14 (right). 

Models were also generated for the tripeptide systems (Figure 94), which consisted of the 

sequence Ac-Ala-turn-Ala-NH2, where turn = U-BTM (19), (S)-BTM or (R)-BTM (20a, 

20b). These models did not show a folded conformation during the majority of the 

simulation, but also adopted open conformations. 



118 

 

 

  

Figure 94. Selected frames from the MD simulation of 19, showing a folded and open 

conformation. 

The distance between the atoms involved in the β-turn-like hydrogen bond was measured 

for the three analogues in order to ascertain whether the β-turn would be present in systems 

with a very short β-hairpin sequence in comparison to the full-scale conjugates. As it can be 

observed in Figure 95, the distances were larger than what would be expected for a hydrogen 

bond, and therefore indicated that no persistent structure was taking place for any of the 

analogues. The lack of structure would be confirmed through experimental models, which 

would also be used to explore ligation conditions and to facilitate the NMR assignment of 

the full-scale conjugates. 
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Figure 95. Histograms and corresponding distances between the C=O and NH extracted 

from the MD simulations for the β-turn-like hydrogen bond in the small peptide systems. 

Distances are presented in Å. 

3.6 Tripeptide systems 

3.6.1 Synthesis of 19, 20a and 20b 

The turn mimics flanked by two alanine residues were to be synthesised in order to compare 

their conformation to the full peptide structures. The synthetic route proposed consisted of a 

reductive amination between the carbonyl and the hydrazide-containing fragments, 

equivalent to the one to be performed with the peptide conjugates. The carbonyl-containing 

fragment (21 and 22) was to be accessed through a coupling step starting from the 

commercially available 2-formylphenoxyacetic acid and 2-acetylphenoxyacetic acid, while 

A) Analogue 19 B) Analogue 20, (S)-diastereomer 

Mean = 6.76 

SD = 1.72 

Mean = 6.56 

SD = 1.70 

C) Analogue 20, (R)-diastereomer 

Mean = 6.41 

SD = 1.73 
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the hydrazide-containing fragment 23 was to be generated through multiple steps from acetyl 

alanine (Scheme 16). 

 

Scheme 16. Retrosynthetic analysis for the generation of the turn mimic. 

3.6.1.1 Synthesis of the carbonyl fragments 21 and 22 

Solution-phase conditions were tested using EDCI·HCl (1.5 equiv.), Oxyma Pure and 

DIPEA (Scheme 17), which afforded 21 in a 30% yield and 22 in a 2% yield. When removing 

the base 21 and 22 were obtained in a 31% and 6% yield, respectively. 

 

Scheme 17. In-solution coupling conditions tested for 21 and 22. 

In search for better yielding conditions, DIC was tried as the coupling agent, as well as less 

equivalents of base, but no improvement was observed. Conditions on-resin were to be tested 

next, in order to find a protocol that could be applied to the larger peptide systems (Scheme 

18). For this, Fmoc-Rink Amide AM Resin (0.51 mmol/g loading) was used. Fmoc-Ala was 

coupled using standard coupling conditions with DIC/Oxyma Pure at room temperature for 

2.5 h, and after deprotection 2-acetylphenoxyacetic acid or 2-formylphenoxyacetic acid were 

coupled using the same conditions. Cleavage from the resin was performed using only water 



121 

 

as the scavenger to prevent the reduction of the aldehyde by TIPS. This synthetic strategy 

afforded 21 in a 67% overall yield and 22 in a 45% overall yield. Interestingly, the yields 

significantly improved in comparison to the solution-phase synthesis – this could be due to 

the change of coupling agent and the use of more equivalents in the on-resin procedure (4.5 

equiv. of DIC). 

 

Scheme 18. Solid phase strategy for the synthesis of 21 and 22. 

3.6.1.2 Synthesis of the hydrazide fragment, 23 

The initial strategy proposed for the synthesis of 23 started with an SN2 reaction between 

acetyl alanine and benzyl bromide, which furnished the pure product after work-up in an 

81% yield (Scheme 19). With 24 in hand, the hydrazide was generated through a reflux with 

hydrazine hydrate in ethanol. It was attempted to purify 23 through column chromatography 

using literature conditions,274 using DCM/MeOH 80:2, but the product could not be 

recovered from the column. Conditions to induce the precipitation of 23 were then sought: 

for this, acetyl chloride and methanol were used, followed by trituration in cold acetonitrile, 

which afforded the HCl salt 25 in a 76% yield. 

 

Scheme 19. Initial synthetic route towards 25. 

During the characterisation step of this compound, it was noticed that the mass weighed for 

NMR analysis did not correspond with the very weak signals observed in the spectrum. 

However, no additional peaks were observed in the 1H NMR nor 13C NMR spectra. It was 
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proposed that, although concentration under vacuum was performed in between steps, 

residual hydrazine·HCl could be co-precipitating with the desired product. 

A second synthetic plan was then pursued (Scheme 20), which was a one-pot strategy 

consisting of the formation of the acyl chloride with SOCl2, followed by a reflux in ethanol 

and finally a nucleophilic substitution with hydrazine to yield 23. The expected benefit of 

this strategy was a facile purification after the second step, which would provide pure 

product after the hydrazide formation. 

 

Scheme 20. One-pot synthetic strategy towards 23. 

The conditions tested involved performing the first step in dry conditions and adding 1.2 

equivalents of SOCl2 to the reaction mixture at 0 °C. TLC monitoring after the reaction was 

left overnight at room temperature showed product formation, although there was leftover 

starting material. The reaction crude was then refluxed in EtOH immediately, as the acyl 

chloride could be unstable. NMR analysis of the reaction crude after this step showed 

product formation, although the spectrum was complex and a considerable amount of 

material was lost after work-up (30 mg obtained from 300 mg of starting material). A 

possible explanation for such a loss in material could be that the first step was performed in 

DMF, which could potentially react with thionyl chloride. 

The second attempt was performing the first step neat and under reflux, while keeping the 

same conditions for the second step – this showed no product mass by LCMS analysis after 

the ester formation. 

The third and final strategy considered to access the modified alanine fragment was to 

perform a coupling between acetyl alanine and tert-butyl carbazate (Scheme 21). Using 

conditions by Lascano et al.,275 26 was obtained in a 54% yield. Subsequent deprotection of 

the hydrazide using 20% TFA in DCM afforded 23 in quantitative yield. Due to the facile 

purification of this compound, this was the strategy chosen for synthesis. 
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Scheme 21. Final synthetic strategy towards 23. 

3.6.1.3 Reductive amination 

The reductive amination between 23 and 21 or 22 was performed in MeOH/AcOH 1:1 and 

using an excess of sodium cyanoborohydride as the reducing agent (Scheme 22). This 

afforded compounds 20a and 20b, which were named as such according to the order in which 

they are eluted from the column during RP-HPLC analysis. 

 

Scheme 22. Reductive amination towards the Ala-flanked turn mimics. 

HPLC monitoring was performed for these reactions: for 19 (Figure 96), it was observed 

that the reaction reached completion in 30 min. Interestingly, a broad peak (at 10.5 min) was 

observed at the start of the reaction, which was consumed when the reducing agent was 

added. This was identified as the hydrazone-linked compound, which could be pre-formed 

when mixing the starting materials. The broadening of the peak may be due to exchange 

between the Z- and E-hydrazone configurations. A side product was generated during this 

reaction (at 12 min), which could not be identified. 
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Figure 96. HPLC monitoring of the reductive amination reaction towards 19. 

HPLC monitoring of the reductive amination towards 20a and 20b was also performed 

(Figure 97), which showed that the reaction was slower in this case, reaching completion 

after 3 h. 

 

Figure 97. HPLC monitoring of the reductive amination reaction towards 20a and 20b. 

Two by-products were also generated during this step (at a retention time of 11 min), which 

were identified as the product of the reduction of the ketone moiety in 21 to an alcohol 

(Scheme 23). 
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Scheme 23. By-product generated during the reductive amination reaction towards 20a and 

20b. 

3.6.2 NMR analysis 

The Ala-flanked turn mimics were evaluated through NMR in AcOH-d4 buffer (10 mM, pH 

5.5), in 5% D2O and using 3-(trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt (DSS) 

as the internal standard, at 288 K and at concentrations of 14 mM (19), 5 mM (20a) and 12 

mM (20b). 

Complete assignment of all signals was achieved using COSY, TOCSY, NOESY as well as 

ROESY through-space experiments, the hydrazide (number 7 in Figure 98) and hydrazinium 

(8) protons being the only ones to not appear on the spectrum due to exchange with the 

solvent. The most relevant through-space correlations observed are shown in Figure 98. 

 

Figure 98. Key through-space NOE and ROE cross peaks found for 19 (left), 20a (centre) and 

20b (right). The cross peaks used for structure confirmation are shown in black and other 

through-space interactions in red. 

The connectivity of the structure of 19 was confirmed through the cross peaks between the 

CH2 number 9 and the aromatic ring, as well as between the aromatic ring and the CH2 16. 

The equivalent was observed for 20a and 20b, as well as a cross peak between the CH3 

number 10 and the aromatic ring. 
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Correlations were observed that indicate a stable spatial conformation: for 19, an NOE was 

present between CH2 9 and NH 18, equivalent to CH 9 and NH 19 for 20a and 20b. In 

addition, for 19, cross peaks between 3 and 20 and between 5 and 18 were observed, which 

were also present in the other two analogues. This indicated proximity between the two Ala 

residues, confirming that a somewhat folded conformation was taking place. Interestingly, 

no cross peaks involving the Hα were observed, possibly pointing towards a β-hairpin-like 

conformation where the Ala Hβ would be closer to the NH in the opposite strand than the 

Hα, the latter pointing out towards the sides of the structure. If this were the case, a hydrogen 

bond could be taking place between the two Ala residues in the compound. Indeed, a cross 

peak was observed for 20b between NH 3 and NH 19, which was diagnostic for a hydrogen 

bond taking place between the carbonyl 6 and the NH 19. This cross peak was also observed 

for 20a, although very weak in comparison. All in all, these NOE and ROE correlations 

suggested that although these are dynamic systems, the Ala-flanked turn unit was adopting 

a turn conformation in solution some of the time. 

An attempt was made to identify the two diastereomers in 20a and 20b, but this could not 

be achieved as the cross peaks from CH 9 and CH3 10 to the aromatic ring were equivalent 

for both compounds, and no further through space interactions involving those protons were 

present. The purpose of these sequences was to determine whether they adopted folded 

conformations in solution and to facilitate the NMR assignment of the full-sized peptide 

conjugates. The first aim was achieved, with all three analogues adopting stable 

conformations and the i to i+3 like hydrogen bond being present in 20b and possibly 20a. 

The lack of through space NOE correlations with the CH 9 and CH3 10 in 20a and 20b meant 

that not much additional information could be obtained to use in the full-sized peptide 

conjugates, and therefore the assignment of the diastereomers was not pursued further. 

3.7 Synthesis of the control peptides 

Two control sequences were to be synthesised, namely TrpZip1 and TrpZipGG, the latter 

containing Gly-Gly instead of Gly-Asn in the i+1 and i+2 positions of the β-turn. 

TrpZipGG was selected as an additional control in order to compare the behaviour of the 

peptide conjugates to an achiral turn. The synthesis of the two control sequences was 

performed in collaboration with Dr Albane Neckebroeck. 
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TrpZip1 and TrpZipGG (Figure 99) were synthesised through standard microwave-

assisted SPPS, using the Fmoc/tBu strategy.  DIC/Oxyma Pure activation was employed on 

a 0.1 mmol scale on TentaGel S RAM resin (loading 0.24 mmol/g). Cleavage from the resin 

was performed using 95% TFA, 2.5% H2O and 2.5% TIPS for 2 h. After purification through 

RP-HPLC, TrpZip1 was obtained in a 14% yield and TrpZipGG in an 18% yield. 

 

Figure 99. Sequences of the control peptides, TrpZip1 and TrpZipGG. 

3.8 Synthesis of the peptide conjugates 14, (S)-15 and 

(R)-15 

The three target peptide conjugates had the same sequence as TrpZip1, where the residues 

Gly-Asn in the β-turn were to be substituted by the β-turn mimic units (Figure 100). 

 

Figure 100. Sequences of the target peptide conjugates. 

These sequences were to be accessed through a reductive amination between two peptide 

substrates, which would generate a hydrazide linkage (Scheme 24). The N-terminal fragment 

was modified with a hydrazide moiety in the C-terminus (16) and the C-terminal fragment 

contained a non-natural aromatic unit in the N-terminus, either with an aldehyde (17) or a 

ketone moiety (18). 
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Scheme 24. Disconnection to generate the target peptide conjugates. 

3.8.1 Synthesis of the N-terminal and C-terminal fragments 

The N-terminal fragment was synthesised on 2-Cl-trityl chloride resin (0.74 mmol/g loading) 

on a 0.1 mmol scale (Scheme 25). The hydrazide modification was introduced by treating 

the resin with a solution of 3% hydrazine hydrate in DMF for 30 min, and repeating that 

process. The capping of any unreacted resin was then performed, using 10% MeOH in DMF 

for 30 min. Subsequently, the first amino acid in the sequence was coupled with HATU for 

2.5 h at room temperature and the rest of the sequence was synthesised through standard 

microwave-assisted SPPS using DIC/Oxyma Pure activation. Cleavage from the resin was 

performed using 95% TFA/2.5% water/2.5% TIPS. This afforded 16 in a 20% overall yield 

after purification. 

 

Scheme 25. Synthetic route to access 16. 

The two C-terminal fragments were synthesised on a TentaGel S RAM resin (0.24 mmol/g 

loading) on a 0.05 mmol scale (Scheme 26). The synthesis was performed through standard 

microwave-assisted SPPS using DIC/Oxyma Pure activation until the final Lys deprotection 

step. At that stage, the unnatural unit (2-acetylphenoxyacetic acid for 18 and 2-

formylphenoxyacetic acid for 17) was coupled using DIC/Oxyma Pure at room temperature 

for 2.5 h. Cleavage from the resin was performed without the use of TIPS to prevent the 
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reduction of the aldehyde and ketone moieties. This afforded 17 in an 11% yield and 18 in a 

41% yield after purification via RP-HPLC. 

 

Scheme 26. Synthetic route to access 17 and 18. 

3.8.2 Reductive amination 

The strategy to access the peptide conjugates consisted of a chemoselective ligation step, 

namely a reductive amination between the two peptide fragments (Scheme 27). 

 

Scheme 27. Reductive amination strategy for the synthesis of the hydrazide mimics. 

Preliminary experiments were performed in order to generate the hydrazone-linked peptide. 

When using aqueous buffers at pH 6 or 7 heating at 50 °C was required, which showed 20% 

conversion after one day by HPLC. Multiple buffers were tested, as well as aniline catalysis, 

but none of the strategies showed complete conversion to the product. The fastest ligation 

conditions found were in water at 50 °C or in MeOH/AcOH 1:1 at room temperature, both 

of which showed 50% conversion after one day. When it was attempted to purify the 

hydrazone-linked product, hydrolysis was observed – this could be due to the prolonged 

exposure to the acidic pH of the buffers. In order to drive the reaction to completion and to 

increase the stability of the conjugate, it was decided to change the ligation step to a reductive 

amination and generate a hydrazide linkage instead of the acid-labile hydrazone. 
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Following on from the ligations performed with the small peptide analogues, the reductive 

aminations between both peptide fragments were performed in MeOH/AcOH 1:1, in a 

concentration of 1.5 mM, and with 10 equivalents of NaBH3CN. This afforded 14 in a 36% 

yield and (S)-15 and (R)-15 in a 43% total yield after purification (the assignment of the 

diastereomers is presented in Section 3.10.3). The reactions were monitored by HPLC, 

which in the case of 14 showed complete consumption the aldehyde-containing peptide 

fragment 17 after only 15 minutes (Figure 101). 

 

Figure 101. HPLC monitoring at 280 nm of the reductive amination to generate 14. 

The HPLC monitoring of the reductive amination towards (S)-15 and (R)-15 (Figure 102) 

showed that product formation stopped after 10 minutes. In this case, the conversion of the 

ketone-containing peptide fragment 18 was of 40% after that time. 
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Figure 102. HPLC monitoring at 280 nm of the reductive amination to generate (S)-15 and 

(R)-15. 

If the reaction was left for longer than 10 min, two by-products were formed instead (peaks 

at 26.0 and 26.2 min). Subsequent addition of reducing agent further induced the formation 

of the by-products and not of the desired compounds. Both by-products generated had a m/z 

of 925.9, which corresponded to the reduction of the ketone in the starting material 18 to 

generate an alcohol moiety (Scheme 28). 

 

Scheme 28. By-product generated during the reductive amination reaction towards (S)-15 

and (R)-15. 

Interestingly, this by-product was not generated during the reductive amination to form 14. 

This could be due to the aldehyde starting material 17 reacting faster than 18, as was 

observed in the reductive aminations to synthesise the small peptide systems (19, 20a and 

20b). The slow reaction of 18 to form the hydrazide product could compete with its reduction 

to an alcohol. 

The fact that the two diastereomers (S)-15 and (R)-15 were formed in unequal quantities 

suggests that there could be scope for the development of asymmetric conditions for this 

ligation. 
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3.9 Circular dichroism analysis of the peptide conjugates 

The peptide conjugates were characterised through circular dichroism (CD) in order to 

determine their secondary structure and thermal stability. CD is a spectroscopic technique 

that allows the identification of the folding pattern of a peptide by examining the chirality of 

its 3-dimensional structure. The far UV absorption spectrum gives information on the 

secondary structure of the peptide under study, while the near UV spectrum reports on the 

tertiary structure. The latter further enables the identification of the orientation adopted by 

aromatic residues, like an edge to face stacking arrangement of Trp residues. In addition, the 

thermal stability of a construct can be evaluated by following the change in CD as a function 

of temperature. Although CD provides detailed information on the folding of a peptide, and 

it can report on the chiral orientation of aromatic residues, it does not report on other specific 

interactions that take place, like hydrogen bonds. For this reason, NMR analysis has also 

been employed for the characterisation of these novel systems (see following section). 

The CD experiments were run in both the near UV and far UV, with the same conditions 

that Cochran et al.80 used for the biophysical characterisation of TrpZip1: potassium 

phosphate buffer (20 mM) at pH 7. The concentrations used were 1 mg/mL (0.5 mM) for 

near and 0.05 mg/mL (22 μM) for far UV. 

The far UV CD (Figure 103, MRE was calculated as described in Section 7.12.2) showed 

that all the peptide conjugates adopted the same conformation as the controls. The negative 

band at 212 nm was indicative of a β-strand structure, and the positive band at 228 nm was 

indicative of tryptophan stacking, which confirmed the hairpin conformation.141,276 
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Figure 103. Far UV CD for all the peptide systems in study. 

Interestingly, (S)-15 and (R)-15 were not directly superimposable (Figure 104), which 

showed that the difference in the new chiral centre was causing a slight change in 

conformation. 

 

Figure 104. Far UV CD of (S)-15 and (R)-15. 

In the near UV spectra (Figure 105), minima arising from the tryptophan residues were 

observed at 285 and 295 nm. This confirmed that a defined organisation of the aromatic side 

chains was taking place. Analogous to what was observed in the far UV CD, both peptides 

(S)-15 and (R)-15 showed different intensities in their minima, (R)-15 also presenting 

shallower minima in this case. The same samples were used to run the near and far UV 

experiments, and their concentrations were measured in the same cell used for CD before 

and after their thermal denaturation on a UV-Vis spectrometer. Therefore, it was concluded 
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that the differences between the folding curves of the two diastereomers were not caused by 

a variation in concentration. 

 

Figure 105. Near UV CD for all the peptide systems in study. 

All in all, the CD spectra for the three peptide conjugates was directly comparable to that of 

the parent TrpZip1 and TrpZipGG peptides, confirming that the β-hairpin structure was 

maintained. 

The thermal stability of the peptide conjugates was assessed by monitoring their change in 

CD upon gradual heating. The change in mean residue ellipticity (MRE) was monitored at 

228 nm as a function of temperature, from 5 °C to 80 °C (Figure 106). 

The pre- and post-melt spectra at 5°C were fully superimposable for all peptides, which 

indicated that the thermal unfolding was completely reversible. The melting curves for the 

peptide conjugates (Figure 106) were comparable to those of the control peptides, and in 

comparison to TrpZip1 the curves were slightly shallower, indicating a slightly higher 

stability. 
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Figure 106. Far UV thermal denaturation experiments at 228 nm for all peptides in study. 

Although thermal denaturation curves are typically sigmoidal in proteins, as they fit a two-

state folding model, none of the peptides under study showed a clear transition midpoint 

from the first or second derivatives of the curve (Figure 107). 

  

Figure 107. First and second derivatives of the melting curves for TrpZip1 (blue) and 14 

(orange). 

The melting temperatures (Tm) for these compounds were therefore calculated using the 

fraction of folding. This was calculated using a two-state unfolding equilibrium (Equation 

16): 
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𝛼 =
[𝐹]

[𝐹] + [𝑈]
=

(𝜃𝑡 − 𝜃𝑈)

(𝜃𝐹 − 𝜃𝑈)
 

Equation 16. Calculation of the fraction folded (α), where [F] and [U] are the concentrations 

of the folded and unfolded forms, respectively. θt is the ellipticity at a specific temperature, 

θU is the ellipticity of the unfolded form and θF is the ellipticity of the folded form.277 

The shapes of the melting curves indicated that the peptides did not reach a completely 

unfolded state at 80°C, therefore an MRE of zero was adopted as the endpoint for the 

unfolding process. The MRE values for each peptide at 5 °C were adopted as the fully folded 

state. The fraction of folding curves obtained for all peptides are presented in Figure 108. 

 

Figure 108. Fraction of folding for all peptides in study. 

The calculated Tm were as follows: 

Table 12. Tm calculated for the peptides in study. 

Sequence Tm (°C) 

TrpZip1 57 

TrpZipGG 66 

14 62 

(S)-15 70 

(R)-15 57 
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The Tm found for TrpZip1 was comparable to that calculated by Cochran et al.80 of 50°C. 

The difference between values could be due to the use of a different method to fit the thermal 

denaturation data, as the same conditions were used for the thermal denaturation experiments 

(20 μM peptide concentration in 20 mM potassium phosphate buffer at pH 7). In their work, 

Cochran et al. fit the thermal denaturation curves to a two-state unfolding equilibrium model, 

allowing the thermodynamic parameters ΔCp, ΔHm and ΔSm to vary. The melting curve of 

an equimolar mixture of the Trpzip1 half peptides (SWTWEG and NKWTWK) was 

recorded and used as the unfolded reference for the fitting. 

It was observed that 14 and (S)-15 had an enhanced stability in comparison to the control 

TrpZip1, while (R)-15 maintained the same stability. In addition, (S)-15 also presented a 

higher stability than the control TrpZipGG. Interestingly, the change in conformation of 

one chiral centre between (S)-15 and (R)-15 caused a considerable difference in stability 

between the two systems. This could be due to the increased steric hindrance present in the 

(R)-system, which could have a substantial influence in stability in a constrained system like 

an ortho-substituted aromatic ring. 

Overall, the β-turn mimics favoured the same folding as the control sequences and the 

conjugates had a higher stability of the β-hairpin structure compared to the Gly-Asn and Gly-

Gly turns of TrpZip1 and TrpZipGG. 

3.10 NMR evaluation of the peptide conjugates 

Although it is a more time-consuming technique, NMR analysis was utilised in addition to 

CD because it allows the obtainment of more detailed conformational information. In 

particular, through-space NOESY experiments enable the confirmation of the hydrogen 

bonding pattern of the β-hairpin, as well as the disposition of the residue side chains in space. 

By using this technique, the presence of the i to i+3 like hydrogen bond would be confirmed 

in the mimic-containing conjugates, and the disposition of the β-turn mimic unit would be 

studied more closely. In addition, the identity of the (S)-15 and (R)-15 diastereomers would 

be confirmed. 
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3.10.1 Control peptides 

All resonances were assigned for the two control peptides using 2D COSY, TOCSY, 

NOESY and HSQC spectra. The experiments were run using the conditions from Cochran 

et al.,80 at 2 mM and 1 mM peptide concentrations, in an AcOH-d4 buffer (10 mM, pH 5.5) 

with 5% D2O and using DSS as an internal standard, at 288 K. The NMR experiments of the 

control sequences and their preliminary assignment were performed in collaboration with Dr 

Albane Neckebroeck. 

The residue connectivity was established using the sequential NOEs between Hα(Xaa)–

NH(Xaa+1), which are very strong in antiparallel β-sheets.278,279 The β-hairpin conformation 

was confirmed via cross-strand NOEs between Hα protons in non-hydrogen bonded positions 

and between NH protons in hydrogen bonded positions (Figure 109). 

 

Figure 109. Cross-chain NOEs found for TrpZip1 (left) and TrpZipGG (right). The NH to NH 

cross peaks are represented in red. 

The turn conformation was confirmed for both peptides (Figure 110): most importantly, the 

i to i+3 hydrogen bond was confirmed with an NOE between 5Glu NH and 8Lys NH. In 

addition, cross peaks were observed between the NH and Hα protons within the turn, 

demonstrating their close proximity. 
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Figure 110. Selection of in-turn NOEs observed for TrpZip1 (left) and TrpZipGG (right). The 

key cross peaks for determining the conformation are depicted in red. 

The edge to face stacking between Trp residues was observed for both peptides. NOEs were 

present between the aromatic protons in 4Trp and the Hα in residues 6 and 7, confirming that 

said tryptophan was behind the β-turn. An extreme upfield shift was observed for the Hε3 

protons in 4Trp and 11Trp (5.5 and 5.4 ppm for TrpZip1 and 5.7 and 5.3 ppm for 

TrpZipGG), which was caused by their contribution to the edge to face stacking.280 This 

effect is explained by the ring current field that takes place in aromatic rings (Figure 111), 

which is generated by the electrons that circulate in the π system. This causes the protons 

that are within that ring current to be more shielded and experience an upfield shift.281 

 

Figure 111. Ring current field generated by benzene. The blue double-cone represents the 

shape of that field, while the dashed lines are the magnetic field. The minus signs indicate 

that the atoms located inside of the cone in the protein structure are shifted upfield, 

whereas the atoms outside the cone are shifted downfield (plus signs). 

As it can be observed in the 3D NMR structure of TrpZip1 calculated by Cochran et al.80 

(Figure 112), the tryptophan residues stack in an edge to face manner, where the Hε3 protons 

in 4Trp and 11Trp act as the ‘edge’ component in the interaction. They point towards the 

centre of the subsequent tryptophan indole ring, therefore experiencing its ring current, 

which causes the upfield shift of their Hε3 protons. 
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Figure 112. 3D NMR structure of TrpZip1 (PDB 1LE0), where the Trp residues are 

represented in red. From the hairpin termini to the turn, the stacking order is 

11Trp/2Trp/9Trp/4Trp. The interactions between the Hε3 protons in 4Trp and 11Trp and the 

subsequent Trp indole are represented in grey. 

Because the chemical shifts for the 4Trp Hε3 and 11Trp Hε3 protons in TrpZipGG were 

comparable to those in TrpZip1 and the same cross peaks between side chains were 

observed, it could be inferred that the same edge to face stacking pattern of the tryptophan 

residues was taking place. All in all, both control peptides adopted the same β-hairpin 

structure, with the same turn and side chain conformations. 

3.10.2 NMR analysis of 14 

2D NOESY, COSY and TOCSY spectra were used to assign all resonances in 14, at both 

278 and 288 K. Experiments were run at a 1 mM concentration, in AcOH-d4 buffer (10 mM, 

pH 5.5) with 5% D2O and using DSS as the internal standard. The connectivity of the U-

BTM unit to the rest of the backbone was confirmed (Figure 113) by the presence of NOE 

cross peaks between both protons in {1} and {2}(a, b) as well as between both protons in 

{3} and{2}(c, d). In this nomenclature the spin systems are indicated in braces, and the 

resonances within the spin system are indicated in parentheses. Both protons in the spin 

systems {1} and {3} were diastereotopic and related by a COSY cross peak. The protons in 

{3} also correlated to 7Lys NH through an NOE cross peak. Interestingly, an NOE 

correlation was observed between both protons in {3} and one of the protons in {1}, 

indicating a compact structure. This matched what was observed in the MD simulations 

11Trp 

2Trp 

9Trp 

4Trp 
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(Figure 113), where one of the protons in {1} was closer to the spin system {3} than the 

other. 

 
 

Figure 113. Left: NOE correlations observed within the U-BTM unit in 14. Right: frame from 

the MD simulation showing the distances between the protons in {1} and {3}. 

The differentiation and assignment of 7Lys and 11Lys (Figure 114) was complex, as their 

chemical shifts were very similar. Experiments at 278, 283 and 288 K were run in order to 

confirm the presence of the 7Lys NH proton (Figure 115). It was observed that as the 

temperature increased, the distortion of the doublet (11Lys NH) decreased and a new, 

broadened signal appeared, corresponding to 7Lys NH. In addition to confirming its 

presence, these experiments also highlighted how the amide proton in 7Lys was exchanging 

with solvent more than that of 11Lys, which indicated that the structure was dynamic and a 

weaker hydrogen bond was taking place with this residue. 

Another difference between the lysine residues lay in their side chains – the β, γ, δ and ε 

protons in 11Lys were diastereotopic, indicating a constrained conformation. On the 

contrary, the side chain protons in 7Lys were all degenerate, suggesting a free moving side 

chain. 
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Figure 114. Structure of 14, showing 7Lys and 11Lys in red. 

 

Figure 115. Temperature-dependent 1D 1H NMR experiments for 14. From bottom to top, the 

temperatures are 278, 283 and 288 K. 1H NMR experiments performed at a 1 mM peptide 

concentration, in AcOH-d4 buffer (10 mM, pH 5.5), in 5% D2O on a 600 MHz spectrometer. 

 

7Lys NH 

11Lys NH 
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The β-hairpin structure was confirmed by the presence of intense Hα(Xaa)–NH(Xaa+1) cross 

peaks as well as the chemical shifts of the NH and Hα protons, which were commensurate 

with a β-strand secondary structure.278,279 NOE cross peaks were observed between amide 

NH groups (Figure 116), highlighting the cross-sheet hydrogen bonded structure. Most 

importantly, the through-space interaction between the 5Glu NH to 7Lys NH confirmed the 

presence of the β-turn-like hydrogen bond. Experiments in 100% D2O were used to identify 

the Hα to Hα NOEs, which showed that those interactions were evident for the non-hydrogen 

bonded positions. 

 

Figure 116. Across-chain NOEs found for 14. The NH to NH cross peaks are represented in 

red. 

The dispositions of the side chains were conserved between 14 and the control sequences, 

and the same ordering of side chains was observed within the aromatic stack. The chemical 

shifts of the Hε3 protons in 4Trp and 10Trp were considerably shifted upfield (5.9 and 5.4 

ppm, respectively), confirming their participation in an edge-to-face stacking interaction and 

consistent with what was observed in the control peptides. 
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3.10.3 NMR analysis of (S)-15 and (R)-15 

Initial experiments were run at 288 K for (S)-15, consistent with the other sequences under 

study, but the Hα protons as well as the 7Lys NH could not be identified at this temperature 

and therefore the main chain connectivity could not be confirmed. Therefore, 1D 1H NMR 

experiments were run at different temperatures (Figure 117). These experiments showed 

broadening of the NH and Hα signals at lower temperatures, which could indicate the flipping 

of side chains between different orientations. The resolution of the NH and the Hα region 

was improved at 298 K, and therefore the 2D experiments were run at this temperature, at a 

0.7 mM concentration (in AcOH-d4 buffer 10 mM, pH 5.5, 5% D2O/DSS). Experiments in 

100% D2O were also used at this temperature to reveal the Hα to Hα NOE cross peaks. 

 

      

Figure 117. Temperature-dependent 1D 1H NMR experiments for (S)-15. The NH region is 

shown on the left and the Hα region on the right. 1H NMR experiments performed at a 0.7 mM 

peptide concentration, in AcOH-d4 buffer (10 mM, pH 5.5), in 5% D2O on a 600 MHz 

spectrometer. 

In the case of (R)-15, NMR experiments were run at a concentration of 0.6 mM in AcOH-d4 

buffer (10 mM, pH 5.5), 5% D2O/DSS and at 288 K. 

The connectivity of the turn unit to the rest of the chain in both peptides was confirmed by 

NOE cross peaks between the aromatic system {2} and the diastereotopic CH2 {3}, as well 

as between {2} and the CH3 ME and CH HA in spin system {1} (Figure 118). 
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Figure 118. In-turn NOEs for (S)-15 (left) and (R)-15 (right). 

Regarding the β-hairpin structures, cross-sheet NH to NH cross peaks were observed, which 

confirmed the presence of the β-turn-like hydrogen bond (Figure 119). Hα to Hα NOEs were 

also observed between non-hydrogen bonding positions – in the case of (R)-15, the 4Trp Hα 

to 8Trp Hα NOE was not observed due to those signals being under the solvent peak. In 

addition, intense Hα(Xaa)–NH(Xaa+1) cross peaks took place and the chemical shifts of the 

NH and Hα protons corresponded to a β-strand secondary structure. 

 

Figure 119. Cross-chain NOE cross peaks for (S)-15 (left) and (R)-15 (right). NH to NH cross 

peaks are represented in red. 
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The same side chain disposition in space was observed for these conjugates as in the control 

sequences. The edge-to-face stacking between the Trp residues was confirmed by the NOE 

pattern as well as the upfield shift of the Hε3 protons in 4Trp and 10Trp (5.90 and 5.48 ppm 

for (S)-15 and 6.45 and 5.39 ppm for (R)-15, respectively). 

In order to identify which diastereomer corresponded to (S)-15 and (R)-15, the distances 

between spin system {1} and neighbouring groups were used. To this end, the presence or 

absence of an NOE was compared to the average distance extracted from the MD simulations 

(Figure 120). The distances between {1}ME and {3} and between {1}ME, HA and 4Trp 

were chosen for comparison (NOE cross peaks between {1}HA and {3} were not observed 

for either system). 

 
 

Figure 120. Representative frames from the MD simulations of (S)-15 (left) and (R)-15 (right), 

showing the close proximity of {1}ME,HA to 4Trp. 

The average distances extracted from the MD simulations and the presence or absence of 

NOE cross peaks for each contact are presented in Table 13. It was observed that although 

the MD simulations predicted a significant difference in distance between {1}ME and spin 

system {3}, an NOE cross peak was present in both peptides. The key contacts for 

assignment were between 4Trpη2 and 4Trpε1 to {1}HA, as an NOE cross peak was observed 

between the two pairs for (S)-15, but not for (R)-15. This constituted strong evidence that 

(S)-15 corresponded to the (S)-diastereomer. 
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Table 13. Average distances from MD simulations and presence or absence of NOE cross 

peaks for each contact. 

Average distances extracted from MD trajectories (Å) NOE cross peaks 

(S)-15 (R)-15 (S)-15 (R)-15 

{1}ME (carbon) – {3}pro-R 

3.3, {3}pro-S 4.4 

{1}ME (carbon) – {3}pro-R 

5.3, {3}pro-S 5.1 
Observed Observed 

{1}ME (carbon) – 4Trpε1 

3.5 

{1}ME (carbon) – 4Trpε1 

3.7 
Observed Observed 

4Trpη2 – {1}HA 6.7 4Trpη2 – {1}HA 7.9 Observed Not observed 

4Trpε1 – {1}HA 3.4 4Trpε1 – {1}HA 3.8 Observed Not observed 

 

Further confirmation of the assignment was sought from the peak heights for the NOE cross 

peaks observed (Table 14). The peak heights corresponding to the NOE between {1}ME and 

the two protons in {3} were consistent with the MD distances predicted for (S)-15, as one of 

the cross peaks had a higher intensity than the other. Regarding (R)-15, the two peak heights 

between {1}ME and {3} had similar values to each other, which was in accordance with the 

MD distances, but the peak intensities were similar to those of (S)-15. This contradicted 

what was expected, as the longer distance between {1}ME and {3} in (R)-15 would have 

caused the peak height to be lower. 

More information was obtained by analysing the peak heights between {1}ME and 4Trpε1. 

Although both diastereomers showed an NOE cross peak between them, their intensities 

were significantly different: the MD simulations predicted a difference in the average 

distances of 0.2 Å, but the peak heights differed by an order of magnitude. This further 

supported that (S)-15 corresponded to the (S)-diastereomer and indicated that the MD 

simulations underestimated that distance. 
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Table 14. Peak heights of the NOE cross peaks observed for (S)-15 and (R)-15. 

 (S)-15 (R)-15 

{1}ME – {3} 33325.5, 40796.8 35534.5, 35675.6 

{1}ME – 4Trpε1 177445.5 22720.3 

4Trpη2 – {1}HA 30209.8 Not observed 

4Trpε1 – {1}HA 248162.5 Not observed 

 

3.11 Conclusions and future work 

Three β-turn mimics have been rationally designed and evaluated as Ala-flanked tripeptides 

as well as within a β-hairpin backbone. The tripeptides were used to explore suitable 

reductive amination conditions, and to compare the β-hairpin conjugates to a system that 

would be unfolded without the presence of a turn-inducing unit. 

A ligation protocol has been established to install the β-turn mimic unit at the same time as 

ligating together two peptide fragments under mild conditions, which allows the use of 

unprotected peptide substrates. CD analyses have shown that the hairpin structure is 

maintained in the peptide conjugates, and that the thermal stability of the conjugates is 

slightly higher than that of the original TrpZip1 control. NMR evaluation of the mimics 

further confirmed that the conformation adopted by the conjugates was the same as that of 

the control sequences, indicating that the key hydrogen bond and subsequent geometry of a 

β-turn were present. Overall, the β-turn mimics operate as designed, resulting in a hydrogen 

bonded β-turn-like structure that does not perturb either the backbone or side chain 

conformations. 

Future work could involve the development of asymmetric conditions for the reductive 

amination step, as the diastereomers (S)-15 and (R)-15 are formed in unequal quantities and 

they also have different thermal stabilities. Another direction would be to adapt the ligation 

protocol to perform the reductive amination in aqueous buffers, in order to widen its 

applicability to proteins that would need to be kept in folding conditions. 
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Another possibility would be the use of this ligation protocol in larger systems, in order to 

evaluate what effects the introduction of a mimic unit could have in a system where contacts 

between residues that are far apart in the sequence take place. 
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4 Design of an MDM2/p53 interaction inhibitor 

The work presented in this chapter was performed in collaboration with Prof Danny Huang’s 

group at the Beatson Institute. Dr Mads Gabrielsen performed the SPR assays. 

4.1 Protein-protein interactions 

Protein-protein interactions (PPIs) regulate nearly all cellular functions, with thousands of 

them having been characterised in humans. They mediate many regulatory pathways, and 

are therefore involved in the development of many diseases.282 Due to their role in the 

development of disease, and in particular of cancer, these interactions have attracted 

substantial attention as targets for inhibitor development. PPIs are difficult to target because 

they take place over large surface areas (of 1000 to 4000 Å2, Figure 121) and because they 

are dynamic due to conformational changes that take place upon association. 283,284 

 

Figure 121. PPI between the Bcl-xL protein and the BIM peptide. PDB code 1PQ1. 

PPIs take place through ‘hot spot’ residues which contribute the majority of the binding 

affinity and specificity to the interaction. Due to the contact area being large, small 

molecules usually have low affinity for these interactions and medium-sized inhibitors are 

better suited scaffolds for competitive inhibition.285 This has focused the attention on 

peptides, which offer advantages such as the direct similarity to protein fragments, ease of 

synthesis and lower toxicity upon degradation in comparison to small molecule inhibitors, 

as they degrade into amino acids.286 Although these are attractive targets, peptides have 

certain disadvantages, mainly their low proteolytic stability due to the susceptibility to 

hydrolysis of the peptide bonds caused by proteases,287 and also their low conformational 

stability in short, linear peptides. In order to overcome these drawbacks, non-natural 
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modifications can be used. These include the modification of the peptide backbone through 

the use of peptoids, β-amino acids and D-amino acids, as well as cyclisation techniques, 

which include the use of hydrogen bond surrogates, stapling strategies and cyclic β-

hairpins.282 

A significant number of PPIs involve α-helices,93 and many inhibitors have been designed 

that adopt this secondary structure288 or mimic it.94 One particular strategy for the mimicry 

of these structures is the use of a β-hairpin template, which displays the key interacting 

residues in the correct orientation for binding. Most of the hairpin backbones used are cyclic 

and contain turn-inducing units, which increase their conformational stability.282 The most 

commonly used β-turn unit is the (D-Pro)-(L-Pro) motif,160,179,180 although ornithine181 and 

other unnatural units like benzodiazepine182 (Figure 122) and trans-pyrrolidine-3,4-

dicarboxamide289 scaffolds have also been used. 

 

Figure 122. β-Hairpin containing a benzodiazepine-based β-turn mimic (in blue) which 

inhibits the angiotensin II receptors.182 

4.2 The MDM2/p53 interaction 

p53 is a tumour suppressor that prevents cells from malignant transformation by inducing 

cell cycle arrest or apoptosis when DNA damage or cellular stress occurs. The murine double 

minute 2 (MDM2) and its human homologue HDM2 protein are ubiquitin E3 ligases that 

regulate p53 levels by means of a PPI that neutralises the activity of p53. In healthy cells the 

p53 levels are kept low and are downregulated by MDM2, but in tumours loss of activity of 

the p53 protein can happen due to the overexpression of MDM2. This is a major contributor 

to cancer development,290 and therefore significant efforts have been made to develop 

inhibitors of the MDM2/p53 interaction to recover p53 activity.  
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The MDM2/p53 interaction takes place between the α-helical domain of p53 and a 

hydrophobic pocket on the MDM2 surface (Figure 123).291 There are three hot spot residues 

in p53 that are essential for binding, namely 19Phe, 23Trp and 26Leu, which insert into the 

MDM2 cleft.292 

 

Figure 123. Crystal structure of the HDM2 protein (in blue) bound to the α-helical domain of 

p53 (in green). The hot spot residues in p53 are represented as sticks. PDB code 1YCR. 

Many inhibitors of this interaction have been previously developed, which include 

peptoids,293 α-helices stabilised with hydrogen bond surrogates,294 mini proteins295 and 

stapled α-helices.292,296,297 The latter is the most explored approach, as it highly stabilises the 

α-helical structure of the inhibitor and therefore helps overcome the usually low proteolytic 

resistance of small peptide therapeutics. For example, Baek et al.298 have designed an α-

helix which contains an all-hydrocarbon staple between two non-natural residues that are 

seven residues apart (Figure 124). They found that the peptide oriented the three hot spot 

residues in the correct geometry, and in addition the staple interacted with the protein, which 

the authors suggested enhanced the binding affinity. Interestingly, it was observed that one 

of the hot spot residues, 26Leu, adopted a slightly different conformation, which might 

suggest that the structure was too constrained. 
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Figure 124. Crystal structure of the stapled inhibitor designed by Baek et al.298 (in green) 

bound to MDM2 (in blue). The hot spot residues are represented in orange. PDB code 3V3B. 

4.3 Inhibition of the MDM2/p53 interaction using a β-

hairpin 

One of the few examples of PPI inhibitors with a β-sheet structure was designed by Fasan et 

al.,160 who used the protein epitope mimetic approach127 to graft the hot spot residues in p53 

onto a β-hairpin backbone (Figure 125). The authors hypothesised that the hot spot residues 

could be oriented in the correct conformation by a hairpin scaffold, as the distances between 

the Cα atoms of 19Phe and 23Trp and that of two i and i+2 residues along a β-hairpin strand 

were very similar. 

 

Figure 125. Superimposed α-helical domain of p53 (red) and a model β-hairpin (yellow). 

Reproduced with permission from ref.160 
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A cyclic β-hairpin was used as the scaffold, with a (D-Pro)-(L-Pro) turn in order to stabilise 

the conformation further. A library of peptides was synthesised, where various amino acids 

along the sequence were altered, including an alanine scan. The best hit found using natural 

amino acids along the β-hairpin strand had an IC50 of 0.53 ± 0.06 μM, and when the Trp 

residue was substituted by (6-Cl)-Trp (27, Figure 126) the IC50 improved to 0.14 ± 0.06 μM. 

 

Figure 126. Lead mimetic identified,299 containing a (6-Cl)-Trp residue and the (D-Pro)-(L-Pro) 

turn (in blue). The hydrogen bonds are represented in red. 

A subsequent study by the same group focused on an SAR, which confirmed that the 

previously identified (6-Cl)-Trp-containing hairpin 27 was the most active inhibitor.299 A 

crystal structure of the inhibitor bound to HDM2 was obtained (Figure 127, top), which 

confirmed that binding was taking place through 1Phe, 3(6-Cl)-Trp and 4Leu. It was also 

observed that the side chain of (6-Cl)-Trp pointed deep into the hydrophobic HDM2 binding 

pocket (Figure 127, bottom) and established a non-covalent interaction with 86Phe in 

HDM2, which caused the increase in binding affinity. On the other β-hairpin strand, an edge 

to face interaction was observed between 6Trp, 8Phe and 55Phe in HDM2, while the 2Glu 

and 7Glu side chains were in solvent-exposed positions. Interestingly, the amino acids in the 

unnatural turn unit were found to not participate in binding. 
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Figure 127. Top: crystal structure of inhibitor 27 (in green and hot spot residues in orange) 

bound to HDM2 (in blue). Bottom: Close-up of the interactions established by 3(6-Cl)-Trp. 

PDB code 2AXI. 

Fasan et al. identified the higher stability of the β-hairpin structure as one of the reasons for 

the increased affinity of this inhibitor in comparison to other mutants in the library. But 

questions have since been raised on whether more rigidity will always equate to a higher 

affinity. Danelius et al.300 performed NMR analyses on this inhibitor and compared it to 

three β-hairpin mutants containing a (D-Pro)-Gly turn and various residue mutations along 

the hairpin strands. They found that the inhibitor designed by Fasan et al. was the most 

flexible system (with 24% hairpin in solution by NMR Analysis of Molecular Flexibility in 

Solution, NAMFIS), and that the activity decreased for more constrained β-hairpins (with 

61% hairpin in solution). This highlighted how an increased molecular flexibility correlates 

with an increase in inhibitory activity in this system. 
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Considerable progress has been made in developing and optimising these β-hairpin 

mimetics, but questions remain unanswered about the cell-permeating properties of these 

compounds as well as their inhibition specificity.299 

4.4 Hypothesis 

It was envisioned that the (D-Pro)-(L-Pro) turn in the inhibitor designed by Fasan et al. could 

be substituted by the designed β-turn mimic unit U-BTM (28, Figure 128). The sequence 

chosen for modification, 29, was the same as the inhibitor with the best IC50 values, with all 

native amino acids. The sequence containing the (6-Cl)-Trp residue was not synthesised in 

this work due to the limited availability of this amino acid. 

 

Figure 128. Structures of the control peptide 29 with a (D-Pro)-(L-Pro) turn (left), and the 

modified system containing the U-BTM unit instead, 28 (right). The i to i+3 hydrogen bond is 

represented in red. 

From the crystal structure of 27 bound to MDM2 available (Figure 129) and based on 

previous studies300 as previously mentioned, it can be observed that the residues in the turn 

do not participate in binding. Therefore, the introduction of a β-turn mimic should not 

negatively affect the affinity of the inhibitor. A possible additional interaction that could be 

established by the mimic would be an aromatic interaction with 66Tyr, which is in close 

proximity to the L-Pro residue in the inhibitor 27. 
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Figure 129. Close-up of the binding between MDM2 (in blue) and the inhibitor 27 (depicted in 

orange). PDB code 2AXI. 

4.5 Aims 

The aims defined for this chapter were as follows: 

- Synthesis of the control sequence and of the mimic analogue, the latter containing a 

non-natural β-turn instead of a (D-Pro)-(L-Pro) turn. 

- Evaluation of the ligation step as a means to cyclise the peptide. 

- Evaluation of the inhibition affinity of both sequences via Surface Plasmon 

Resonance (SPR) assays. 

4.6 Synthesis of the control sequence, 29 

In the papers by Fasan et al.160 where these inhibitors are described, the synthesis described 

is performed on 2-Cl-trityl chloride resin using standard microwave-assisted SPPS followed 

by cleavage from the resin with 1% TFA in DCM, which keeps the protecting groups on the 

amino acid side chains. The cyclisation is performed in solution using HATU/HOAt 

activation, and then the peptide is deprotected through treatment with 95% TFA, 2.5% H2O 

and 2.5% TIPS. In this work on-resin cyclisation was attempted instead, to obtain the desired 

66Tyr 

D-Pro 

L-Pro 
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peptide directly upon cleavage and to prevent the loss of material that could occur if the 

cyclisation was performed in solution. 

The control peptide 29 containing the (D-Pro)-(L-Pro) turn was synthesised on Wang resin 

preloaded with side chain-linked glutamic acid (Fmoc-Glu(Wang)-OAll, loading 0.44 

mmol/g) on a 0.1 mmol scale (Scheme 29). The chain was elongated through standard 

microwave-assisted SPPS using DIC/Oxyma Pure activation, and then the allyl-protected C-

terminus was deprotected using palladium(0) tetrakis(triphenylphosphine) and phenyl 

silane.301,302 The head to tail on-resin cyclisation was performed using PyBOP and DIPEA303 

for 2.5 h and the peptide was then cleaved from the resin using standard conditions. After 

lyophilisation, the crude purity obtained was of 69%. Once purified via RP-HPLC, 29 was 

obtained in a 7% overall yield. 

 

Scheme 29. Synthesis of the control peptide 29. 

4.7 Synthesis of the mimic sequence, 28 

The analogue containing the β-turn mimic, 28, was synthesised on 2-Cl-trityl chloride resin 

(0.8 mmol/g loading) on a 0.1 mmol scale (Scheme 30). When hydrazine hydrate was used 

directly to modify the resin very low loadings were observed, which could be caused by 

hydrolysis of the resin. Therefore SOCl2 was used to re-activate the resin, following 

conditions previously developed within the group. A solution of 3% SOCl2 in DCM was 

added to the resin and shaken for 30 min. This step was repeated. A solution of 3% hydrazine 

hydrate in DMF was then added to the resin for 30 min, a step which was also repeated. 

After the hydrazine loading, a capping step was performed with 10% MeOH in DMF for 30 

min. Peptide elongation to introduce the native amino acids was then performed through 

standard microwave-assisted SPPS, using DIC/Oxyma Pure activation. 

2-Formylphenoxyacetic acid was coupled at room temperature, using DIC/Oxyma Pure and 

DIPEA in DMF for 2.5 h. Cleavage from the resin was performed using TFA and water as 
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the scavenger, without the use of TIPS to prevent the reduction of the aldehyde. It was 

initially expected to obtain the linear aldehyde-containing peptide after cleavage, which 

would then be subjected to a reductive amination in order to cyclise the peptide in solution, 

but the cyclic hydrazone 30 was generated instead. It was therefore decided to isolate this 

intermediate and perform the reduction in solution after purification. 30 was obtained with 

a crude purity of 78%, and the overall yield after purification via RP-HPLC was of 3%. 

 

Scheme 30. Synthesis of 30. 

The reduction of the hydrazone to yield 28 (Scheme 31) was performed in MeOH/AcOH 

1:1, using 10 equivalents of NaBH3CN. 

 

Scheme 31. Reduction step for the synthesis of 28. 

HPLC monitoring showed that the reaction reached completion after 15 minutes, with full 

conversion to the hydrazide being observed (Figure 130). After purification, the mimic 
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analogue was obtained in an 18% yield. This confirmed the potential of the U-BTM unit and 

the ligation step to be used as an efficient peptide cyclisation strategy. 

 

Figure 130. HPLC monitoring of the reduction to generate 28. 

4.8 Surface Plasmon Resonance assays 

Surface Plasmon Resonance (SPR) is one of the most used in vitro techniques to study 

protein-protein interactions. This method is based on the detection of changes in the 

refractive index of the medium in close proximity to a metal surface. The most common 

configuration for SPR (Figure 131, left) consists of a light source which shines polarised 

light through a prism, a chip with a metal surface where the light is reflected, and a detector. 

The intensity of the reflected light will vary depending on the angle of incidence of the 

polarised light on the metal chip (Figure 131, right). There is a particular angle of incidence 

at which the light will excite the electrons in the sensor chip (surface plasmons) and cause 

their resonance, which results in a loss of intensity of the light. The angle at which the 

maximum loss of intensity is observed is called the resonance angle or SPR-dip.304 
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Figure 131. Schematic representation of the SPR assay set up (left)305 and representation of 

the change in the intensity of the reflected light as a function of the angle of incidence (φ) 

(right). Reproduced with permission from ref.304 

The SPR-dip changes as a function of the refractive index of the metal surface on the chip 

and its immediate environment. Thus, when a protein is accumulated on the surface the 

refractive index is altered, which causes a shift in the shape and location of the SPR-dip. 

This fluctuation can be used to gain real-time information about the sensor surface. 

When an SPR assay is being set up, a ligand is immobilised on the surface of the chip and 

the binding partner or analyte is dissolved in the running buffer, which is flowed across the 

surface. Monitoring of the shift in the SPR-dip generates a sensogram, which allows the 

identification of the different stages of the assay (Figure 132). 

In the first stage, and once the ligand has been immobilised on the chip surface, the surface 

is conditioned by flowing the running buffer over it. Once a stable baseline is achieved the 

analyte is injected, which initiates its association with the ligand. As more analyte binds to 

the ligand, the SPR response increases. At this stage the association rate constant (ka) can be 

calculated. This continues until equilibrium is reached, where the association and 

dissociation rates become equal. The last stage of the assay is the injection of buffer, which 

causes the dissociation of the analyte. This allows for the calculation of the dissociation rate 

constant (kd) and leaves the surface ready for a new injection cycle.304,306 
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Figure 132. Schematic representation of the sensogram of an SPR assay, showing the 

different phases of the analysis. 

When the system is in equilibrium, the equilibrium dissociation constant (KD) can be 

calculated, which gives information on the affinity of the biomolecular interaction. It can be 

expressed by the concentrations of the species involved as well as the rate constants 

(Equation 17). A high KD value indicates a low stability of the analyte-ligand complex, which 

means that there is a small binding affinity between partners.304 

 

𝐾𝐷 =
[𝐴][𝐿]

[𝐴𝐿]
=

𝑘𝑑

𝑘𝑎
 

Equation 17. Calculation of the equilibrium dissociation constant, where [A] is the 

concentration of the analyte, [L] the concentration of the ligand and [AL] the concentration 

of the complex. The units for KD are mol L-1. 

4.9 Evaluation of the binding affinity using SPR 

SPR assays on the control and mimic peptides were performed by Dr Mads Gabrielsen, 

working in Prof Danny Huang’s group at the Beatson Institute. The MDM2 p53-binding 

domain (residues 1 to 109) was tagged with a glutathione S-transferase (GST) tag, and it was 

then bound onto a GST-antibody which was coupled on the chip surface. The peptide in 

study was then diluted into the running buffer and flowed across the chip at different 

concentrations. Seven concentrations were used, increasing from 0 to 50 μM and vice versa, 

and a control with only GST was also run. All repeats were reproducible. The data points 
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were then fitted using a single-site binding model in PRISM, which generated a binding 

curve from where the KD was estimated. 

The sensogram and fitted data for the control sequence 29 are presented in Figure 133: 

   

Figure 133. Left: binding curve for 29. Right: sensogram for 29. The different lines in the 

sensogram correspond to all the concentrations tested. 

The sensogram and fitted data for the mimic 28 are presented in Figure 134. As it can be 

observed for both peptides, an increase in response units takes place as the peptide binds to 

the anchored protein with increasing concentrations. Looking at the binding curves, in the 

case of 28 the same concentration gives rise to a higher response in comparison to 29, which 

indicates higher binding. 

    

Figure 134. Left: binding curve for 28. Right: sensogram for 28. The different lines in the 

sensogram correspond to all the concentrations tested. The error bars presented 

correspond to the standard deviation of the mean between two repeats for each 

concentration. 

The KD obtained for 29 was 65.6 ± 6.3 μM, and that of 28 was 30.3 ± 3.5 μM (the 

uncertainties for these values arise from the standard deviation of repeats). This not only 

showed maintenance of the affinity of the inhibitor when the turn was substituted by the 
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unnatural U-BTM unit, but a two-fold improvement in binding for the mimic peptide. The 

previously mentioned study by Danelius et al.300 showed that an increased molecular 

flexibility in β-hairpin-based inhibitors like 29 correlated to an increased p53/MDM2 

inhibitory activity. The increased affinity of 28 could be due to the higher flexibility of the 

turn mimic in comparison to the (D-Pro)-(L-Pro) turn, which is conferred by the sp3-

hybridised nitrogen and carbon atoms on the hydrazide linkage as well as the CH2 unit on 

the phenoxyacetyl-like centre. 

Another reason for the increased affinity could be the establishment of additional 

interactions between the U-BTM unit and the MDM2 binding pocket. As mentioned 

previously (see Figure 129), the crystal structure of the previously reported inhibitor bound 

to MDM2 shows that the residue 66Tyr in MDM2 is in close proximity to the (D-Pro)-(L-

Pro) turn of the inhibitor. When introducing the U-BTM unit an aromatic interaction could 

take place with that residue, possibly with an edge-to-face geometry, which would improve 

the affinity to the protein. Another possibility is the presence of an additional hydrogen 

bonding interaction between the hydrazide unit in U-BTM and 59Gln or 62Met in MDM2, 

which in the crystal structure appear to be close to the (D-Pro)-(L-Pro) turn. 

The binding for the control peptide used in this work, 29, has been previously evaluated by 

Fasan et al. although only as an IC50 value. In contrast, the binding of the sequence 

containing a (6-Cl)-Trp residue has been quantified both as an IC50 and as a KD (Table 15). 

In comparison to the KD obtained by Danelius et al., the value obtained in this work for 29 

is two orders of magnitude weaker, a difference most likely caused by the change to a native 

Trp residue. 
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Table 15. Binding affinities found for previously reported inhibitors as well as the systems 

studied in this work. 

 Sequence KD IC50 

Fasan et al.160 
c[WLDWEF(D-Pro)-(L-Pro)FE]  0.53 μM 

c[(6-Cl)-WLDWEF(D-Pro)-(L-Pro)FE]  0.14 μM 

Danelius et 

al.300 
c[(6-Cl)-WLDWEF(D-Pro)-(L-Pro)FE] 127 nM 2.86 μM 

This work 
29, c[WLDWEF(D-Pro)-(L-Pro)FE] 65.6 μM  

28, c[WLDWEF(U-BTM)FE] 30.3 μM  

 

After careful evaluation of the SPR assays set up and samples that were used, our 

collaborators at the Beatson Institute found that the MDM2 construct that was employed was 

unstable due to the sequence being too short. This was affecting the binding affinities that 

were measured, and therefore the experiments will need to be repeated. These experiments 

are currently being performed, using a longer protein construct to ensure its stability. This 

will provide KD values closer to those previously reported and will ensure their 

reproducibility. 

4.10 Conclusions and future work 

A novel inhibitor of the MDM2/p53 interaction has been designed, which contains a non-

proteinogenic β-turn mimic instead of the (D-Pro)-(L-Pro) turn present in the previous 

inhibitors reported.160 The (D-Pro)-(L-Pro) control and the mimic peptide have been 

synthesised, and the ligation protocol has been validated as a strategy for its use on cyclic 

systems. SPR assays have been run by collaborators, which not only showed that inhibitory 

affinity was maintained upon introduction of the unnatural turn unit, but a two-fold 

improvement was observed for the mimic with respect to the control. This confirmed the 

potential of the designed U-BTM mimic to be used within biologically relevant targets. This 

system is the first β-hairpin inhibitor of the MDM2/p53 interaction that contains a 

completely non-natural β-turn mimic, and one of the first ones in the inhibition of PPIs more 

generally.136 
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The SPR assays will be repeated by Prof Danny Huang’s group with a more stable MDM2 

construct, in order to obtain more accurate KD values. It would also be interesting to evaluate 

whether these cyclic peptides are cell-penetrant, and if so to quantify their activity in this 

context. Cell-based assays will be performed by Prof Danny Huang’s group, which will 

quantify the activity of the peptides described in this chapter within cells. 

If the peptides are not cell-penetrant, their overall charge could be altered to achieve this. 

The charge of 28 at physiological pH is -2, as the U-BTM unit introduces a positive charge 

at the hydrazinium nitrogen, but usually a positive charge is required for peptides to enter 

cells. To achieve this, the Asp and Glu residues could be exchanged for Lys, Arg or His. 

Another strategy to favour cell penetration would be the modification of the U-BTM unit: 

the aromatic ring could be functionalised further to introduce charged groups or motifs like 

a poly-Arg sequence, and the flexibility of the hairpin could also be altered. If necessary, the 

ligation junction could also be changed to an oxime linkage for example, in order to remove 

the charge. 

Future work could also involve the synthesis of the mimic sequence with the (6-Cl)-Trp 

residue instead of native Trp, as previous work by Fasan et al.160 has shown that the 

inhibitory activity is considerably improved when using this non-natural amino acid. 
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5 β-Turn mimics through oxime ligation 

The work presented in this chapter was performed in collaboration with Dr Drew Thomson, 

who performed the molecular dynamics simulations. 

5.1 Oxime ligation 

Oxime ligations are chemoselective reactions that have attracted considerable interest for a 

wide range of applications in peptide and protein science. Although oxime formation is slow, 

this conjugation strategy provides a junction with a higher stability against hydrolysis at 

physiological pH in comparison to hydrazones.307 These properties have made oxime 

ligation an attractive strategy for the synthesis of cyclic peptides,308 proteins,309 as staples to 

promote helicity202 and in bioconjugation.310 

5.1.1 Synthesis of oximes 

Oximes are the product of a condensation reaction between an aminooxy and a carbonyl 

fragment (Scheme 32). Oxime ligations are relatively slow at physiological pH, but they can 

be accelerated if performed at a pH of 4-5 or if nucleophilic catalysts are employed. The 

nature of the aminooxy311 and the carbonyl fragment also has a considerable effect on the 

reaction rate as well as on the stability of the ligated product.193 Aldehydes are usually more 

reactive than ketones due to steric effects, which is why aldoximes have been more studied 

than ketoximes.310 Aliphatic aldehydes react more rapidly than aromatic ones,312,313 but the 

latter provide a higher stability of the oxime product.314 In contrast to aldehydes, aliphatic 

and aromatic ketones have been found to react at similar rates,312 and their reactivity depends 

on the stability of the ketonium carbocation formed under acidic conditions.315 

 

Scheme 32. Mechanism of oxime ligation. 

The fact that ketoximes have an additional substituent at the ligation junction could allow 

for the tuning of the properties of the oxime bond as well as providing a better mimicry of 

native peptide sequences316 through the inclusion of groups that would mimic amino acid 
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side chains. Although this is an advantage over aldoximes, most applications of the oxime 

bond utilise aldoximes instead of ketoximes due to the slow reactivity of the latter. Aliphatic 

and phenyl-substituted ketoximes were used by Guthrie et al.316 to mimic parallel β-sheets, 

and these linkages have also been employed in the synthesis of cyclic peptides,317 but the E- 

and Z-oxime isomers have not been identified in most of these studies. Lamping et al.318 

characterised the ketoxime stereoisomers in oxime-ligated hexapeptides which contained 

two β-turns, one with a Pro residue and another with the oxime linkage (Figure 135). 

Although four conformations were expected due to the E/Z-oxime isomerism and the 

cis/trans isomerism of Pro, they found that two conformations were adopted (arising from 

the Pro cis/trans isomers, Figure 135) and that the E-ketoxime was the only stereoisomer 

present. This could indicate a higher stability of the E-stereoisomer in this system. However, 

the isomerism and stability of the ketoxime stereoisomers and their impact on peptide 

structure and conformation has been scarcely explored in the literature. 

 

 

Figure 135. Conformations adopted by the hexapeptides synthesised by Lamping et al. 

Reproduced with permission from ref.318 

Many strategies are available to introduce the required functionalities into the ligation 

partners. The aminooxy moiety is usually introduced by means of an unnatural amino acid 

like aminooxyacetic acid (Aoa, see Figure 136). Aoa can be protected with a 

propargyloxycarbonyl (Proc)319 or Boc protecting group309 to prevent its reaction with 

acetone or ambient traces of aldehydes like formaldehyde. The carbonyl fragment can be 

introduced into the peptide sequence by coupling ketoacids like levulinic or pyruvic acid 

(Figure 136), as well as by using modified amino acid side chains.307 Aldehyde masking 
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strategies can be used to prevent undesired side reactions, for example by introducing an 

unnatural amino acid with a thiazolidine320 or a diol moiety which is later reacted to unmask 

the aldehyde.321 In addition, oximes can also be obtained by oxidative coupling processes in 

which a carbonyl moiety is not required.316 

 

Figure 136. Building blocks used to generate the oxime ligation partners. 

5.1.1.1 Nucleophilic catalysis 

Oxime ligations are fastest at a pH of 4.5 and at above millimolar-range concentrations,194 

but in general these reactions are still slow, taking days to reach completion. In order to 

improve the reaction rates, especially at physiological pH, multiple catalysts have been 

developed, which are referred to as nucleophilic catalysts. One of the first catalysts 

introduced and one of the most used is aniline (Scheme 33): Dirksen et al.195 found that the 

reaction rate of an oxime ligation between two unprotected peptides (at 1 mM concentration 

for each peptide) could be accelerated 40-fold at neutral pH (in 0.1 M sodium phosphate  

buffer) using 10 mM aniline, and 400-fold at a pH of 4.5 (in 0.1 M ammonium acetate buffer) 

using 100 mM aniline. 

 

Scheme 33. Mechanism of aniline catalysis in an oxime ligation. 

Other catalysts have also been explored, which utilise substitutions on the aniline ring to 

enhance its catalytic efficiency.322 To this end, Wendeler et al.323 studied substituted anilines 
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and found that catalysts containing an electron donating amino, hydroxy or methoxy group 

at the para- position of the aniline ring were all superior to aniline at neutral pH. In contrast, 

the ortho- and meta- isomers of these compounds were much less effective. The most 

efficient catalyst found was p-phenylenediamine (p-PDA, Figure 137), which was superior 

to aniline in the pH range of 4 to 7: a rate enhancement of 4 to 19-fold was observed in 

comparison to the aniline-catalysed ligations, with the greatest difference occurring at higher 

pH values. A 10 mM concentration of the catalyst was used in the ligations (with a 

concentration of 90 μM for the aldehyde-containing partner and 450 μM for the N-alkoxy 

amine-containing partner, in sodium citrate buffer 100 mM), but when p-PDA was tested at 

a 2 mM concentration the same rate enhancement was observed. 

 

Figure 137. Structures of nucleophilic catalysts aniline and p-PDA. 

Although aniline and p-PDA are suitable catalysts for aldehyde substrates, their efficiency 

towards ketone substrates is limited.324 This has prompted the exploration of other strategies 

to accelerate the reaction rates of ketoxime formation. The catalysis of transimination by 

acid and base buffers was first recognised by Jencks in 1977,325,326 and acetic acid is 

commonly used in oxime ligations as it has been shown to improve the solubility of the 

substrates as well as accelerate the reaction rates. Chelushkin et al.307 reported that using 

neat acetic acid and peptide concentrations over 2.5 mM afforded over 95% conversion to 

the ligated product in 1.5-2 h.  

Wang et al.324 found that using 1 M acetic acid during a ketoxime ligation caused a reaction 

rate increase of 4.3-fold in comparison to the uncatalysed reaction, and that using 1 M acetic 

acid as a co-catalyst with aniline (100 mM) increased the reaction rate 11-fold (these 

ligations were performed in citrate buffer 1 mM, with 10 mM ketone component and 1 mM 

N-alkoxy amine component). The authors suggested that this acceleration was caused by the 

establishment of hydrogen bonds between the ketone substrate and the acid, as well as 

between key intermediates and the acid. It was further suggested that the presence of these 

hydrogen bonds favoured the formation of the oxime product. Attenuated total reflectance 

Fourier transform infrared spectroscopy showed that when using acetic acid in the absence 

of aniline (Scheme 34), hydrogen bonds formed between the catalyst and the ketone 
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substrate, which would enhance the electrophilicity of the carbonyl centre and therefore 

favour the nucleophilic attack of the N-alkoxy amine partner. These experiments also 

showed that hydrogen bonds took place between the catalyst and the hemiaminal 

intermediate, which would favour the key dehydration step. 

 

Scheme 34. Acetate-catalysed ketoxime formation. Hydrogen bonds are represented in blue. 

When acetic acid is used as a co-catalyst with aniline, the increase in the reaction rate is even 

higher due to the formation of hydrogen bonds with the anilinium intermediate (Scheme 35). 

 

Scheme 35. Acetate and aniline-catalysed ketoxime formation. Hydrogen bonds are 

represented in blue. 

Other catalysts have been explored to improve the reaction rates of ketoxime formation. For 

example, Larsen et al.312 found that for the reaction between phenylhydrazine and 

acetophenone, 1 mM 2-(aminomethyl)-5-methoxybenzimidazole provided a 5.4-fold 

increase of the reaction rate in comparison to the noncatalysed ligation. 

5.2 Applications of oximes 

The fact that oxime ligations take place under mild conditions, are stable to hydrolysis, and 

the N-alkoxy amine and carbonyl moieties are easy to access makes oximes a versatile 

linkage that has found a wide range of applications.308 
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Oximes have been used in the synthesis of cyclic peptides, both employing a head to tail 

strategy318 as well as cyclising through residue side chains.198 An example of the latter is the 

peptide synthesised by Pallin et al.327 (Scheme 36), who used a modified Lys residue to 

generate a glyoxylyl group on the C-terminus and introduced the N-terminal N-alkoxy amine 

through the coupling of aminooxyacetic acid. Generation of the aldehyde from the glyoxylyl 

moiety using NaIO4 at pH 7 initiated the ligation process, which afforded the cyclised 

peptide in a 90% yield. 

 

Scheme 36. Oxime-cyclised peptide synthesised by Pallin et al.327 

The stabilisation of α-helices is another area where oxime linkages have been utilised. Haney 

et al.202 developed unnatural amino acids containing an aminooxy and a 1,2-aminoalcohol 

group and introduced them within α-helical backbones with i to i+3 or i to i+4 spacings. 

After treatment with sodium periodate, the aldehyde was generated on the 1,2-aminoalcohol 

residue and the oxime crosslink was formed at pH 7. It was found that the crosslink stabilised 

the helical conformation, with the i to i+4 spacing providing a better folding than i to i+3, 

and that both E- and Z-oxime stereoisomers took place and were interconverting at neutral 

pH. The authors have subsequently used this strategy in the stabilisation of dimeric coiled-

coils201 and in the synthesis of α-helical peptides stapled with small molecule linkers, which 

can be used to generate libraries of cyclic peptides.328 

One of the most interesting uses of oxime ligation is in the field of bioconjugation, due to its 

biorthogonality with the native amino acid side chains, the variety of strategies available for 

carbonyl incorporation and the possibilities for catalysis.329 Bi et al.320 used this strategy to 

site-specifically label a peptide and a recombinant protein (Scheme 37). To accomplish this, 

the peptide and protein were synthesised with a C-terminal thiazolidine-containing amino 

acid. After unmasking the aldehyde with silver acetate, an oxime ligation was performed 

with the aminooxy-containing partner (a biotinylated peptide) in sodium acetate buffer at a 

pH of 4.5. 
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Scheme 37. Strategy used by Bi et al.320 to synthesise the labelled peptide analogue through 

oxime ligation. 

Successive oxime ligations can be used in the stepwise synthesis of bioconjugates by 

sequential unmasking of the aldehyde or aminooxy moieties.308 For example, Lelièvre et 

al.330 employed this approach to synthesise a branched peptide (Scheme 38). To this end, the 

two carbonyl-containing peptide partner was synthesised with one aldehyde masked as an 

acetal, and the other masked as a 2-amino alcohol on a Lys residue acylated with Ser. The 

acetal-masked aldehyde was deprotected with TFA and the first oxime ligation was 

performed in an acetate buffer at pH 4.6 with an aminooxy-containing peptide partner. The 

aminooxy unit was introduced by coupling aminooxyacetic acid on the N-terminus. Once 

the first ligation was complete, the second aldehyde was unmasked by means of NaIO4 

oxidation and the final ligation step was performed with another aminooxy-containing 

peptide with a different peptide sequence. 

 

Scheme 38. Synthetic route towards the branched peptide by Lelièvre et al.330 
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5.2.1 Oximes in the mimicry of peptide secondary structure 

Vanderesse et al.146 studied oxime moieties as peptide bond surrogates within dipeptides of 

the sequence Piv-Pro-[CH=NO]-Gly-NHiPr, and found that the E-oxime stereoisomer 

adopted an extended, flexible conformation, whereas the Z- stereoisomer formed a turn-like 

conformation. 

Ketoxime linkages were used by Guthrie et al.316 to mimic parallel β-sheets (Figure 138). 

The ligation was performed at pH 7 and under an oxygen atmosphere, which afforded three 

different ketoxime-bound conjugates, two of which contained a phenyl-functionalised 

junction. These structures could give rise to turn-like conformations, but their folding was 

not characterised in this work. 

 

Figure 138. Ketoxime-linked parallel β-sheets synthesised by Guthrie et al.316 

A ketoxime was employed by Lamping et al.318 to cyclise a hexapeptide from head to tail 

(Scheme 39). This afforded a macrocycle that adopted two distinct conformations, the minor 

one containing a cis and the major a trans Pro. In both cases the ketoxime was present as the 

E- stereoisomer, and the Z-oxime was not observed. Importantly, the main conformer had a 

well-defined conformation that was equivalent to that of native double β-turn cyclic 

hexapeptides, which confirmed the potential of oximes to form part of a β-turn structure. 
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Scheme 39. Oxime ligation to generate the cyclic hexapeptide synthesised by Lamping et 

al.318 

Similar to oximes, aminooxy groups have been used as part of peptidomimetics (named α- 

and β-aminooxypeptides, Figure 139). These moieties provide more rigid structures than 

natural analogues due to the repulsion between the lone pairs in the heteroatoms, which 

facilitates the establishment of hydrogen bonds between adjacent residues. These hydrogen-

bonded structures adopt reverse turn conformations which are named N-O turns (Figure 

139).331 

 

Figure 139. α- And β-aminooxypeptides, and structure of the N-O turns adopted by the 

former (the hydrogen bonds are represented in red). 

5.3 Chapter aims 

Oxime formation is an attractive ligation strategy that provides a junction with higher 

hydrolytic stability than hydrazones. Although it has found a variety of applications in 

bioconjugation, the synthesis of cyclic peptides and the stabilisation of α-helical structures, 

only a few examples exist where oximes have been employed to mimic elements of protein 

secondary structure. 

In this chapter novel β-turn mimic scaffolds would be designed, which would be accessed 

through an oxime ligation step between two peptide fragments, one containing a carbonyl 

and the other an N-alkoxy amine moiety. Two types of scaffolds were to be explored: firstly, 

an aromatic-ring based linker, and secondly, an aliphatic one, the comparison of which 

would allow for the evaluation of the level of preorganisation required for a β-turn geometry 
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to be adopted. The mimics would be implemented within the control β-hairpin TrpZip1, 

introduced in Chapter 3. 

The aims of this chapter were the following: 

- To design the oxime-based β-turn mimics to achieve a suitable reverse turn 

geometry. 

- To develop suitable oxime ligation conditions and synthesise the β-hairpin 

conjugates. 

- To evaluate the conformation and thermal stability of the conjugates through CD 

experiments and ascertain whether the β-hairpin structure is maintained. 

5.4 Ortho-substituted oxime mimic 

The first target designed consisted of an ortho-substituted aromatic ring (Figure 140), which 

was expected to provide a suitable geometry for the mimicry of the β-turn (as it was 

confirmed with the β-turn mimics explored previously in Chapter 3). 

 

Figure 140. Comparison between the GN turn of TrpZip1 (left), the hydrazide-linked turn of 

14 (middle) and the oxime-ligated turn in mimic 31 (right). 

This structure would be analogous to that of the hydrazide-linked 14, (S)-15 and (R)-15 

systems (see Chapter 3), but with the functionality in the peptide fragments being inverted. 

In this case, the carbonyl unit would be coupled on the N-terminal peptide, 32, whereas the 

C-terminal peptide 33 would provide the N-alkoxy amine functionality. The target β-hairpin 
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would be accessed through a ligation step between the fragments that would generate an 

oxime junction (Scheme 40). 

 

Scheme 40. Oxime-linked target, 31, and the two peptide substrates for the ligation.  

Energy minimisation experiments were performed for the two stereoisomers in the mimic 

system to obtain preliminary information on whether the β-hairpin and turn conformation 

would be maintained. The models showed that both conjugates had a distance of 3 Å between 

the oxygen in the carbonyl of the residue preceding the mimic and the following nitrogen. 

Although the system with the E-oxime seemed to have a less ideal hydrogen bond geometry 

(Figure 141), both systems appeared to maintain the β-hairpin conformation. 

                

Figure 141. Energy minimisation models obtained for Z-31 (left) and E-31 (right), showing 

the backbone atoms only and the i to i+3 like hydrogen bond in yellow. 
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5.4.1 Synthesis of the C-terminal fragment 33 

The synthesis of 33 started with microwave-assisted SPPS using DIC/Oxyma Pure activation 

to couple the native amino acids onto Rink Amide resin (0.51 mmol/g loading) in a 0.1 mmol 

scale. It was initially attempted to couple bromoacetic acid (5 equiv.) on the peptide using 

DIC (4.5 equiv.) and Oxyma Pure (4.5 equiv.) at room temperature for 2.5 h (Scheme 41). 

 

Scheme 41. Initial synthetic route for the synthesis of 33. 

A test cleavage was performed on a small amount of resin after the coupling using TFA, 

H2O and TIPS (95/2.5/2.5%), which was incubated for 45 min. After evaporation of the TFA 

under a stream of nitrogen, the sample was re-dissolved in H2O/MeCN and analysed by 

LCMS, which showed that the Oxyma adduct (Figure 142) was generated at the α-carbon. 

 

Figure 142. Oxyma adduct generated upon coupling of bromoacetic acid. 

To overcome this undesired reactivity, a different coupling strategy was sought. The 

coupling agent CITU332 is synthesised through the reaction between an N-

hydroxyphthalimide centre and tetramethyluronium chloride to generate an uronium centre 

(Scheme 42). Its resemblance to a DIC-activated coupling inspired the idea to use N-

hydroxyphthalimide as a substitute for Oxyma Pure in order to achieve the coupling of the 

phthalimide and the acid in one step. 

 

Scheme 42. Synthesis of CITU.332 
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To achieve this, the resin-bound peptide was treated with 9.5 equiv. N-hydroxyphthalimide, 

bromoacetic acid (5 equiv.), DIC (4.5 equiv.) and DIPEA (6 equiv.) in DMF for 3 h at room 

temperature (Scheme 43). Analysis via a cleavage test and LCMS showed complete 

conversion to the product. The synthesis was continued with the deprotection of the N-

hydroxyphthalimide with hydrazine hydrate (80% in DMF) to generate the N-alkoxy amine 

moiety, followed by cleavage from the resin using TFA and water (95/5%). This afforded 

33 in a 7% overall yield after purification. 

 

Scheme 43. Synthesis of the C-terminal fragment, 33. 

After storing a sample of 33 in a plastic tube, it was observed that an adduct with a mass 40 

Da over the product was generated. This was identified as an acetone-like adduct on the 

oxime (Figure 143) by mass spectroscopy. It has previously been observed that N-alkoxy 

amines are very reactive towards ambient traces of solvents like acetone and formaldehyde, 

as well as softeners in plastic tubes.319,333 In fact, Duflocq et al.319 have recently reported the 

use of propargyloxycarbonyl-protected N-alkoxy amine moieties for oxime ligation, which 

requires a Pd(II)-catalysed deprotection step before ligation but prevents the formation of 

undesired oxime bonds. In this case, it was found that if glassware was used for all 

manipulation of the peptide after cleavage and if the presence of acetone was avoided, only 

minor fractions of the undesired oxime were observed. 

 

Figure 143. Proposed undesired adduct generated upon storage of 33 in plastic containers. 
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5.4.2 Synthesis of the N-terminal fragment 32 

The synthesis of 32 was started on 0.1 mmol of Fmoc-Glu(Wang)-OAll resin (0.44 mmol/g 

loading). Standard microwave-assisted SPPS with DIC/Oxyma Pure activation was used to 

couple the native amino acids, with the N-terminus being left Fmoc-protected (Scheme 44). 

After deprotection of the allyl group using phenyl silane and palladium (0) 

tetrakis(triphenylphosphine), the coupling of 2-aminobenzaldehyde (1 equiv.) was attempted 

using DIC (1.2 equiv.) and Oxyma Pure (1.2 equiv.) in DMF, at room temperature for 3.5 h 

(Table 16, entry 1). A test cleavage was then performed, but this only showed the presence 

of uncoupled peptide. 

 

Scheme 44. Synthetic route towards the N-terminal fragment, 32. 

It was proposed that the low nucleophilicity of the amine in 2-aminobenzaldehyde could be 

the cause for no product being observed. Coupling conditions using HATU in DMF were 

also tested (Table 16, entry 6), as this coupling agent generates a more reactive intermediate 

which could favour the nucleophilic attack, but only an unidentified by-product was 

generated. Other coupling conditions were tested which are presented in Table 16. 

Table 16. Conditions tested for the coupling of 2-aminobenzaldehyde. 

Entry 
Coupling 

conditions 
Solvent Temperature Time 

Equiv. of 2-

amino 

benzaldehyde 

Product 

after test 

cleavage 

1 
DIC/Oxyma 

1.2 equiv.  
DMF rt 3.5 h 1 

Starting 

material 

2 
DIC/Oxyma 

10 equiv. 
DMF rt 24 h 5 

Starting 

material 

3 
DIC/Oxyma 

1.2 equiv. 
DMF 50 °C 3.5 h 1 

Starting 

material 

4 
DIC/Oxyma 

10 equiv. 
DCM rt 24 h 5 

Unknown 

by-

products 
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Table 16. Conditions tested for the coupling of 2-aminobenzaldehyde. 

Entry 
Coupling 

conditions 
Solvent Temperature Time 

Equiv. of 2-

amino 

benzaldehyde 

Product 

after test 

cleavage 

5 

Microwave-

assisted 

coupling on 

synthesiser, 

DIC/Oxyma 

5 equiv. 

DMF 90 °C 3 min 5 
Starting 

material 

6 

HATU 1.2 

equiv., 

DIPEA 2.5 

equiv. 

DMF rt 3.5 h 1 

Starting 

material 

and 

unknown 

by-

products 

7 

BOP 1.2 

equiv., 

Et3N
334 

DMF rt o/n 1 

Unknown 

by-

products 

8 

EDCI 1.1 

equiv., 

DMAP 

10%335 

DCM rt 24 h 1 
Starting 

material 

9 
EEDQ 10 

equiv. 
DMF rt 24 h 5 

Starting 

material 

10 
EEDQ 10 

equiv. 
DCM rt 24 h 5 

Starting 

material 

 

None of the tested conditions furnished the coupled product. This could be due to the low 

nucleophilicity of the amine or side reactions taking place with the aldehyde functionality. 

Protection of the aldehyde as an acetal was to be tested next, which would prevent potential 

side reactions from taking place during the coupling. 

5.4.2.1 Acetal protection of the aldehyde 

The initial strategy explored for the protection involved the use of ethylene glycol (dry, 1.5 

equiv.) and catalytic p-toluenesulfonic acid (p-TSA) (0.1 equiv.) in toluene under a nitrogen 

atmosphere, to furnish the acetal-protected 34 (Scheme 45).336,337 After reflux overnight no 
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product mass was observed, and instead high-resolution mass spectrometry analysis revealed 

the presence of a mass of 371 Da, which corresponded to more than double of the mass of 

the desired product (165 Da). These conditions were tested again, this time with 0.2 equiv. 

of p-TSA and 5 equiv. of ethylene glycol, but the same undesired product was observed. It 

was suggested that p-TSA could be protonating the amine and causing side reactions, or that 

the formation of adducts prevented the formation of the desired acetal product. 

 

Scheme 45. Initial strategy for the protection of the aldehyde. 

Different conditions were then tested, using boron trifluoride etherate (1.5 equiv.) and 4 

equiv. of ethylene glycol in DCM from 0 °C to room temperature overnight (Scheme 46),338 

but only starting material was recovered. 

 

Scheme 46. Second strategy for the aldehyde protection. 

In order to prevent the protonation of the amine, the acetal protection was then tried on 2-

nitrobenzaldehyde (Scheme 47). Using 0.2 equiv. of p-TSA and 10 equiv. of ethylene glycol 

in toluene afforded a quantitative yield of the desired product 35. 

  

Scheme 47. Synthesis of the acetal-protected 35, followed by its reduction to 34. 
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5.4.2.2 Reduction of 35 

Acid-free reducing conditions were then sought for the synthesis of 34 – the conditions tested 

are presented in Table 17. Using Pd/C and H2 (entry 1) did not generate any product, and 

starting material was left unreacted. NMR analysis showed that a by-product with the 

deprotected aldehyde was generated (12% conversion), although its structure could not be 

identified. The selective reduction of nitro groups in presence of a carbonyl is often difficult 

– therefore indium and iron powder were also tested (entries 4 and 5 respectively). These 

conditions have been shown to be efficient in this context with good functional group 

tolerance,339 but in this case the aldehyde was deprotected and 2-aminobenzaldehyde was 

recovered instead (100% conversion for entry 5 and 18% for entry 4, where 82% of the 

conversion afforded another aldehyde-containing by-product). 

Table 17. Conditions tested for the reduction of 35. 

 

Entry Reduction conditions Base Solvent 
NMR conversion 

to 34 

1 H2, 10% Pd/C337 Et3N 
Iso-propyl 

alcohol (IPA) 
0% 

2 HSiCl3
340 DIPEA MeCN 0% 

3 Na2S
341 Et3N EtOH Quantitative 

4 In339 NH4Cl EtOH 0% 

5 Fe342 NH4Cl EtOH 0% 

 

The most suitable conditions found used sodium sulfide, which afforded quantitative 

conversion to 34 by NMR. When it was attempted to scale up the reaction, the crude purity 

worsened, therefore the reaction was performed under a nitrogen atmosphere. This afforded 

34 in a 65% yield after purification.  
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5.4.2.3 Coupling of 34 onto the resin-bound peptide 

With acetal-protected 34 in hand, conditions for its coupling to the resin-anchored peptide 

were investigated (Scheme 48, Table 18). A test cleavage was performed after coupling 

using 95% TFA, 5% H2O to evaluate the success of the reaction. 

 

Scheme 48. Coupling of 34 onto the resin-linked peptide. 

Conditions using DIC/Oxyma Pure in DMF or DCM with heating did not show product 

formation, and product traces were observed when performing the coupling at room 

temperature for 24 h (Table 18, entry 2). Other coupling agents and the use of a microwave 

synthesiser did not improve the conversion. Other resin-compatible non-polar solvents were 

to be tested next in order to prevent hydrogen bond formation between the amine and the 

solvent – it was hoped that this would favour the nucleophilic attack of the amine. Traces of 

product were observed when using DIC/Oxyma Pure under reflux in dichloroethane and 

toluene (entries 7 and 8). 

Table 18. Conditions explored for the coupling of 34. 

Entry Coupling conditions 
Product after test 

cleavage 

1 DIC/Oxyma 10 equiv., DMF, 50 °C 24 h - 

2 DIC/Oxyma 10 equiv., DCM, rt 24 h Trace 

3 DIC/Oxyma 10 equiv., DCM, 40 °C 24 h - 

4 
Microwave-assisted coupling on CEM 

synthesiser, DIC/Oxyma 5 equiv., DMF 
- 

5 HATU 10 equiv., DIPEA, DMF, rt 24 h - 

6 EEDQ 10 equiv., DMF, rt 24 h - 

7 DIC/Oxyma 10 equiv., DCE, 80 °C 24 h Trace 

8 DIC/Oxyma 10 equiv., toluene, 90 °C 24 h Trace 

 



185 

 

No sufficiently high-yielding conditions were found using this strategy, therefore a new 

protection strategy for the aldehyde was sought. 

5.4.2.4 Oxime protection of the aldehyde 

A different strategy for the protection of the aldehyde was investigated, namely the use of 

an oxime bond. 36 was obtained in a 43% yield through the reaction between 2-

aminobenzaldehyde and O-tBu-hydroxylamine hydrochloride (2 equiv.) in EtOH, at 50 °C 

for 6 h (Scheme 49).343 

 

Scheme 49. Synthesis of 36. 

5.4.2.5 Coupling of 36 onto resin-bound peptide 

The coupling of 36 was attempted using various conditions (Scheme 50, Table 19). 

DIC/Oxyma Pure activation in DMF at room temperature (entry 1) showed consumption of 

the carboxylic acid-containing peptide starting material, but no coupled product. The use of 

DCM as the solvent and reflux conditions showed no improvement. 

 

Scheme 50. Coupling of 36 on the resin-anchored peptide. 

Other coupling agents, namely HATU and EEDQ were also tested (entries 3 and 4 in Table 

19), but no product formation was observed. The carboxylic acid-containing peptide starting 

material was not consumed either, and no coupling agent adducts were observed. 
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Table 19. Conditions tested for the coupling of 36. All reactions were performed for 24 h. 

Entry Coupling conditions Solvent Temperature 

Product 

after test 

cleavage 

1 DIC/Oxyma 10 equiv. DMF rt - 

2 DIC/Oxyma 10 equiv. DCM 40 °C - 

3 HATU 10 equiv., DIPEA DMF rt - 

4 EEDQ 10 equiv. DMF rt - 

 

The very low yields of these coupling reactions were attributed to the low nucleophilicity of 

the amine in the small molecule building block. Therefore a different substitution of the 

aromatic ring was to be explored next. 

5.5 Meta-substituted oxime mimic 

The second target pursued consisted of a meta-substituted aromatic ring instead of the ortho-

substituted ring, which would hopefully improve the nucleophilicity of the amine while still 

providing a good geometry for the generation of the turn. Due to 3’-aminobenzaldehyde not 

being available, it was decided that 3’-aminoacetophenone would be used instead to generate 

the ketoxime-containing conjugate (Scheme 51). 

 

Scheme 51. Oxime-linked target and the two peptide substrates for the ligation. 

Molecular dynamics simulations were run on both stereoisomers by Dr Drew Thomson, 

which showed that the Z-oxime maintained the β-hairpin structure (Figure 144). Conversely, 

the E-oxime appeared to break the TrpZip structure, giving rise to an almost completely 

unfolded system. 
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Figure 144. Left: Overlay of a frame extracted from the MD simulation of the Z-oxime (in 

blue) and of the NMR structure of TrpZip1 (in magenta, PDB 1LE0). Right: frame extracted 

from the MD simulation of the E-oxime. 

The potential difference in folding between the stereoisomers was further confirmed by the 

distances between the oxygen in the C=O(i) and the proton in NH(i+3) that were extracted 

from the MD trajectories. The average distance along the simulation for the Z-oxime was of 

2.0 Å, whereas for the E-oxime it was of 7.2 Å (Figure 145). This further suggested that the 

system containing the Z-oxime β-turn mimic would adopt a β-hairpin conformation with the 

required hydrogen bond, whereas the conjugate with the E-oxime mimic would not adopt a 

folded conformation. 

            

Figure 145. Histograms of the distances between the oxygen in the C=O(i) and the proton in 

NH(i+3) for the Z-oxime (left) and the E-oxime (right). 
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5.5.1 Synthesis of the peptide fragments 33 and 38 

The synthesis of the C-terminal fragment 33 was performed as described in Section 5.4.1. 

The synthesis of the N-terminal fragment, 38, was performed on Fmoc-Glu(Wang)-OAll 

resin (0.44 mmol/g loading). The synthesis was started as described in Section 5.4.2, using 

microwave-assisted SPPS followed by removal of the allyl protecting group (Scheme 52). 

 

Scheme 52. Synthetic route towards the N-terminal fragment 38. 

The coupling of 3’-aminoacetophenone was then attempted (Table 20). The first conditions 

tested employed DIC/Oxyma Pure in both DMF and DCM, using a high number of 

equivalents as well as an extended reaction time, at room temperature (entries 1 and 2 in 

Table 20). This afforded some conversion to the desired product, although traces of the non-

coupled starting material were still present. Conditions using HATU activation were then 

tested, but no product formation was observed. 

Table 20. Coupling conditions tested for the coupling of 3’-aminoacetophenone on the 

resin-bound peptide. 

 

Entry Coupling conditions 
Product after test 

cleavage 

1 DIC/Oxyma 10 equiv., DMF, rt 24 h 50% conversion 

2 DIC/Oxyma 10 equiv., DCM, rt 24 h 75% conversion 

3 HATU, DIPEA 10 equiv., DMF, rt 24 h No product formation 

4 DIC/Oxyma 10 equiv., DCE, 80 °C 24 h 95% conversion 
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More forcing conditions were then sought: analogous to the coupling of 34 described in 

section 5.4.2.3, it was reasoned that a non-polar solvent would favour the nucleophilic attack 

of the amine. The reaction was performed under reflux in dichloroethane (Table 20, entry 

4), which provided 95% conversion to the desired product. Because these conditions 

involved a high temperature and extended reaction time, an additional product, possibly due 

to racemisation of the C-terminal amino acid was observed (Figure 146), but this was a minor 

product and could be separated from the desired peptide. 

 

 

Figure 146. LCMS trace of the test cleavage after coupling of 3’-aminoacetophenone and 

Fmoc deprotection. The top trace is the UV-Vis chromatogram, and the bottom corresponds 

to the mass spectrum. The peak at 10.75 min was identified as the racemisation product 

whilst the peak at 10.95 min corresponds to 38. 

The synthesis was then continued by the Fmoc deprotection of the N-terminus and cleavage 

under standard conditions (Scheme 53), which afforded 38 in a 6% overall yield. 

 

Scheme 53. Final steps in the synthesis of 38. 

38 

Racemisation 
product 
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5.5.2 Oxime ligation towards 37a and 37b 

The ligation between the peptide partners to generate 37a and 37b (Scheme 54) was 

attempted at a concentration of 1 mM under four different conditions. Firstly, conditions in 

aqueous buffer were explored: a NH4OAc buffer was used (Table 21, entry 1), which 

provided an acidic pH that should favour the reaction. The solubility of the peptides was 

limited, thus 10% of DMF was added. After monitoring the reaction via HPLC for a week, 

25% of product was observed. The low conversion could be due to the slow reaction rate of 

ketoxime formation, but also because of the limited solubility of the peptides in the buffer. 

 

Scheme 54. Ligation between 38 and 33 to produce 37a and 37b. 

Nucleophilic catalysis was then employed to try to improve the reaction rates (Table 21). 

Two strategies were tested, one using 10 equiv. of aniline and another using p-

phenylenediamine (p-PDA), both in NH4OAc buffer. When using aniline (entry 2), 17% of 

product was generated, not providing an improvement in comparison to the non-catalysed 

conditions. When p-PDA was used (entry 3) 12% of product was generated, but a significant 

amount of a by-product (58%) was formed. This by-product had a molecular weight of 859, 

which could correspond to an acetone-like adduct on the N-alkoxy amine-containing starting 

material (Figure 147). The purity of the N-alkoxy amine-containing peptide was confirmed 

and no adduct was present before the ligation reaction. The p-PDA used was analysed as 

well, but no acetone traces were observed. This adduct was also observed in the other ligation 

tests but only traces were present. 

 

Figure 147. Proposed acetone-like adduct on 33. 
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New ligation conditions were thus sought, turning to MeOH/AcOH 1:1 as the solvent system 

(Table 21, entry 4). This solvent greatly improved the solubility of the starting materials, 

leading to good conversion to the desired products in 3 days, with 70% of 37a and 37b being 

generated in total by HPLC. Therefore these were the chosen conditions for this ligation. 

37a and 37b have been named as such according to the order in which they are eluted from 

the column during RP-HPLC purification. 

Table 21. Conditions tested for the ligation to generate 37a and 37b. 

Entry 
Substrate 

concentration 
Solvent 

Equiv. of 

catalyst 

Product 

generated in 

HPLC trace 

1 1 mM 
NH4OAc buffer 0.1 M 

pH 4.5, 10% DMF 
- 25% 

2 1 mM 
NH4OAc buffer 0.1 M 

pH 4.5, 10% DMF 

10 equiv. 

aniline195 
17% 

3 1 mM 
NH4OAc buffer 0.1 M, 

pH 4 

10 equiv. p-

PDA323 
12% 

4 1 mM MeOH/AcOH 1:1 - 70% 

 

HPLC monitoring of the ligation using MeOH/AcOH as the solvent system showed 

complete consumption of 33 after 3 days (Figure 148). After that time, only more 37b was 

generated, which could be due to the isomerisation of 37a. The proportion between the 

stereoisomers after 6 days was of 23% 37a and 77% 37b. 
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Figure 148. HPLC monitoring of the ligation towards 37a and 37b. 

5.5.3 Isomer interconversion tests in TFA 

During purification of the ligated product it was observed that although the isolated fractions 

showed one isomer peak on the RP-HPLC, HPLC analysis once lyophilised showed that a 

fraction of the other stereoisomer was present. This could be caused by the 0.1% TFA present 

in the solvent system, which could cause the isomerisation of the oxime bond. Multiple 

mechanisms have been identified as possible routes for the acid-catalysed isomerisation of 

imine derivatives. One proposed pathway proceeds via hydrolysis followed by 

recondensation, while another suggests the rotation of the C=N bond after protonation of the 

nitrogen to the iminium form.344,345 The appearance of the other stereoisomer during 

purification was only observed to take place with the first eluting stereoisomer, 37a, but not 

with the second, 37b. To confirm that isomerisation was taking place, a sample of each 

stereoisomer was re-dissolved in H2O/MeCN 1:1 with 0.1% TFA and monitored through 

HPLC. 

In the case of the first eluting isomer, 37a, 50% of interconversion to 37b was observed after 

2 days, with almost complete conversion after 8 days (Figure 149). An unknown by-product 

was also generated, with a retention time of 14.3 min. 
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Figure 149. Interconversion test of 37a. 

When the same test was performed with 37b, no interconversion took place (Figure 150). 

This indicated that the stereoisomers were under thermodynamic control (oxime isomers are 

known to equilibrate under acidic conditions317,345) and that 37b is the thermodynamically 

stable product, which could point towards 37a corresponding to the Z-oxime stereoisomer 

and 37b to the E-oxime. 

 

Figure 150. Interconversion test of 37b. 
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5.5.4 Circular dichroism analysis of 37a and 37b 

In order to evaluate the secondary structure and thermal stability of the conjugates, circular 

dichroism experiments were performed. These experiments were run in the far UV using 

analogous conditions to those used in Chapter 3: in sodium phosphate buffer (20 mM) at pH 

7, with a peptide concentration of 0.05 mg/mL (30 μM). The folding of the conjugates was 

compared to that of the TrpZip1 control. It was attempted to run experiments in the near 

UV at a 1 mg/mL peptide concentration, but the solubility of the peptides was very limited 

and precipitation was observed. The peptides were also dissolved in HEPES buffer (10 mM, 

pH 7), expecting the lower ionic strength to aid solubility, but the solubility was still low. 

Therefore only experiments in the far UV region were used to evaluate the folding and 

thermal stability of these constructs. 

The far UV CD showed that both stereoisomers adopted β-hairpin structures, with the 

characteristic negative band at 212 nm being present as well as the 228 nm positive band 

indicative of tryptophan stacking (Figure 151).141,276 Interestingly, although 37b was the 

thermodynamically stable product it was considerably less folded than 37a. In order to 

confirm that this difference did not arise from a variation in concentration or precipitation of 

the peptide, the CD experiments were repeated in HEPES buffer and the concentration was 

measured before and after the experiment through UV-Vis absorbance. This provided the 

same folding curves as in the sodium phosphate buffer. In addition, no rise in high tension 

(HT) was observed at low wavelengths, which would be indicative of scattering – this further 

confirmed that no precipitation was taking place. 



195 

 

 

Figure 151. Far UV folding of 37a and 37b, in comparison to TrpZip1. 

The thermal stability of the conjugates was evaluated by monitoring the change in CD upon 

gradual heating. For this, the MRE was monitored at 228 nm every 1 °C, from 5 to 80 °C 

(Figure 152). The folding curves before and after heating were superimposable for both 

constructs, showing that the unfolding was a reversible process. The denaturation curves for 

37a and 37b had lower MRE values than that of TrpZip1, and were shallower in shape. In 

particular, the melting curve of 37b had low MRE values and resembled the end of a sigmoid, 

confirming the low degree of folding of this peptide even at low temperatures. The shape of 

the curve of 37b also indicated that the transition point was at lower temperatures than 5 °C, 

and therefore a melting temperature for this sequence could not be measured. This further 

emphasised the low stability of this construct, and suggested that 37b could correspond to 

the E-oxime by comparing to the MD simulations. 
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Figure 152. Thermal denaturation experiments for all peptides in study. The black dashed 

line indicates an estimation of the midpoint of the curve for TrpZip1 and the point at which 

37a adopts the same degree of folding. 

The thermal denaturation curves of 37a and TrpZip1 were different in MRE values, with 

37a being more unfolded at the same temperature. To illustrate this, if the midpoint of the 

curve for TrpZip1 is estimated (by finding the halfway point between the maximum MRE 

value and zero, black dashed line in Figure 152), at 57 °C, 37a would adopt the same degree 

of folding at 34 °C, a temperature 23 °C lower. 

The thermal denaturation curves of 37a and TrpZip1 were not sigmoidal and a clear 

transition midpoint could not be observed from the first derivative of the curves (Figure 153), 

therefore the fraction of folding was used to estimate a melting temperature. 

 

Figure 153. First derivatives of the melting curves for 37a and TrpZip1. 
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The fraction of folding was calculated277 for the two peptides by adopting an MRE of zero 

as the unfolding process endpoint and the MRE value of TrpZip1 at 5 °C as the fully folded 

form, as 37a appeared to be more unfolded than the control at that temperature. This afforded 

the fraction of folding curves presented in Figure 154, which confirmed that 37a was 

considerably less folded than the control sequence. 

 

Figure 154. Fraction of folding for all peptides in study. 

The Tm estimated from the fraction of folding curves indicated that the stability of 37a was 

lower than that of TrpZip1 by 22 °C (Table 22). 

Table 22. Tm calculated for the peptides under study. 

Sequence Tm (°C) 

TrpZip1 57 

37a 35 

 

The identity of the two stereoisomers was inferred by comparing the CD data with the 

information obtained from the MD simulations. The simulations predicted that the E-oxime 

would induce an almost unfolded conformation, a behaviour observed by CD analysis for 

37b. On the other hand, 37a behaved as predicted for the Z-oxime, adopting a folded β-

hairpin conformation. 
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Overall, this design afforded two stereoisomers with completely different behaviours: one 

with a Z-oxime which successfully mimics the β-turn and maintains the β-hairpin structure 

albeit with a lower stability than the control, and another with an E-oxime that adopts a 

largely unfolded β-hairpin. 

5.6 Phenyl-functionalised oxime mimic 

A different target was pursued, which was based on a ketoxime with a phenyl substituent. 

This system was chosen because it would provide less preorganisation in comparison to the 

aromatic ring-containing analogues, therefore it would be interesting to compare the turn-

inducing properties of both systems. Two stereoisomers would be generated upon oxime 

ligation, of which the E-oxime would favour the turn geometry (Scheme 55). In addition, 

this system would provide a versatile backbone onto which more functionalisation could be 

added. 

 

Scheme 55. Ligated target, 39, and the two peptide substrates for the ligation. 

Energy minimisation experiments were performed for the two stereoisomers in the system, 

which showed maintenance of the β-hairpin structure (Figure 155). The distance between 

the oxygen in the carbonyl of the residue preceding the mimic and the following nitrogen 

was of 4.0 Å for both stereoisomers, suggesting a slight distortion in the turn. 



199 

 

  

 

Figure 155. Energy minimisation models obtained for Z-39 (left) and E-39 (right), showing 

only the backbone atoms and the i to i+3 like hydrogen bond in yellow. 

5.6.1 Synthesis of the peptide fragments 33 and 40 

The synthesis of the C-terminal fragment 33 was performed as described in Section 5.4.1. 

The N-terminal fragment, 40, was synthesised on Fmoc-Glu(Wang)-OAll resin (0.44 

mmol/g loading). The synthesis was started as described in Section 5.4.2, using microwave-

assisted SPPS to install the native amino acids followed by removal of the allyl protecting 

group (Scheme 56). 

 

Scheme 56. First stage towards the synthesis of 40. 

The ketone fragment required for coupling was synthesised through the Délepine reaction, 

following conditions described by Yang et al. (Scheme 57).346 For this, hexamine was added 

onto 2-bromo-acetophenone under dry conditions and the reaction mixture was stirred at 60 

°C for 4 h. After the acid hydrolysis of the salt generated, 41 was obtained in a quantitative 

yield without need for purification. 
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Scheme 57. Synthetic strategy towards 41. 

Compound 41 was then coupled onto the resin-bound peptide using DIC/Oxyma Pure 

activation in DMF, at room temperature for 2.5 h (Scheme 58). However, LCMS analysis of 

a test cleavage sample showed that the starting material was still present in a 1:1 ratio to the 

desired product – therefore a double coupling was performed. This afforded complete 

conversion to the coupled product 40. 

 

Scheme 58. Coupling of 41 onto the resin-linked peptide to generate 40. 

After Fmoc deprotection and cleavage using 95% TFA and 5% H2O, 40 was obtained in a 

36% yield after purification. 

5.6.2 Ligation step towards 39 

The ligation between the two peptide partners 33 and 40 to furnish 39 was initially attempted 

under the conditions that were used for the other mimics, in MeOH/AcOH at a concentration 

of 0.75 mM (Scheme 59, entry 1 in Table 23). However, this did not result in product 

formation after two days. Aniline (10 equiv.) was then added in order to accelerate the 

reaction, but no product formation was observed. A screening of different conditions was 

then performed, which are presented in Table 23. All reactions were performed at room 

temperature and using a 1:1 ratio between the peptide fragments unless specified. DMF (5% 

of the volume of the solution) was added for all tests done in aqueous buffers, as solubility 

issues were observed for 40. 
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Scheme 59. Ligation between 40 and 33 to generate 39. 

A control ligation was performed in NH4OAc buffer (entry 3) at a pH of 4.5 and without a 

nucleophilic catalyst, which only showed traces of product after 5 days of reaction. Catalysed 

conditions were then explored, using 10 equiv. of aniline (entry 4) and p-phenylenediamine 

(entry 5), but no improvement was observed. The poor catalytic ability of aniline in ketoxime 

ligations has previously been observed in the literature319,324 – it was therefore decided to 

explore p-PDA further. 

Table 23. Conditions tested for the ligation between 33 and 40 to furnish 39. 

Entry 
Ligation 

solvent 

Buffer 

concentration 
Catalyst 

Peptide 

concentration 

Product by 

LCMS 

analysis 

1 
MeOH/AcOH 

1:1 
- - 0.75 mM 

No product 

formation in 

2 days 

  

After 2 

days 10 

equiv. 

aniline 

 

No product 

formation 

after o-n 

2 
MeCN/H2O 

7:3, 1% TFA309 
- - 1 mM 

Product traces 

after o-n 

3 

NH4OAc buffer 

pH 4.5, 5% 

DMF 

0.1 M - 1 mM 
Product traces 

after 5 days 

4 

NH4OAc buffer 

pH 4.5, 5% 

DMF 

0.1 M 
10 equiv. 

aniline195 
1 mM 

Product traces 

after 5 days 

5 
NH4OAc buffer 

pH 4, 5% DMF 
0.1 M 

10 equiv. 

p-PDA323 
1 mM 

Product traces 

after 4 days 
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Table 23. Conditions tested for the ligation between 33 and 40 to furnish 39. 

6 
NH4OAc buffer 

pH 4, 5% DMF 
0.1 M 

10 equiv. 

p-PDA323 

3.5 mM, 1.3 

equiv. of 33 to 

1 equiv. of 40 

40% 

conversion of 

40 after 6 

days 

7 

Potassium 

phosphate 

buffer pH 7.4, 

5% DMF 

20 mM 
10 equiv. 

p-PDA323 
1 mM 

No product 

formation 

8 

Potassium 

phosphate 

buffer pH 4.5, 

5% DMF 

20 mM 

200 equiv. 

Sc(OTf)3 

and p-

PDA347 

0.5 mM 
Product traces 

after 6 days 

 

It was attempted to ligate the peptide fragments in a ratio of 1.3:1 of 33 to 40, as well as 

employing a higher concentration of 3.5 mM of each peptide (entry 6), which showed 40% 

conversion of 40 to 39 after 6 days. This highlighted how a higher concentration could favour 

the reaction, and that an excess of the N-alkoxy amine-containing fragment could be 

advantageous for these ligations. Formation of the previously mentioned acetone-like adduct 

was observed in all of the ligation tests performed (30-40% of the conversion of 33), but it 

was a minor by-product in this test. It is possible that some of 33 was being consumed to 

generate the acetone-like adduct instead of remaining available for reaction, and that a higher 

concentration and more equivalents prevent this from taking place. 

A study performed by Wendeler et al.323 showed that p-substituted anilines have increased 

catalytic activity at pH 7 for oxime ligations, and thus a ligation was performed in a 

potassium phosphate buffer with 10 equiv. p-PDA (entry 7). However, this did not generate 

the desired product. 

Cistrone et al. have shown that Sc(OTf)3 used as a co-catalyst with o-PDA in oxime ligations 

increased the reaction rate up to one order of magnitude compared to o-PDA alone.347 A test 

in potassium phosphate buffer was performed, using an excess of Sc(OTf)3 and p-PDA 

(entry 8), but this did not provide an improvement. 

Although one set of conditions was found that provided 40% conversion (entry 6), this was 

still a slow reaction. Ligation tests between the peptide partners and small molecules were 
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to be performed next, in order to confirm that the fragments could react to generate the oxime 

bond and to ascertain why the conjugation was slow. 

5.6.3 Ligation tests with small molecules 

In order to study the behaviour of the two peptide partners, ligation tests were to be run 

between each peptide substrate and a small molecule equivalent to its partner. The first test 

performed was between 40 and O-tBu-hydroxylamine (8 equiv.), in a NH4OAc buffer (0.1 

M) at pH 4.5 without a catalyst (Scheme 60). HPLC monitoring of the reaction showed that 

after 5 days 40% of 40 was consumed to generate the ligated product. 

 

Scheme 60. Ligation test between 40 and O-tBu-hydroxylamine. 

The second test was between 33 and acetophenone (8 equiv.), which was also performed in 

a NH4OAc buffer (0.1 M, pH 4.5) (Scheme 61). This showed complete product formation in 

the first 3 h. After this time, a small fraction of 33 was remaining, which was consumed to 

generate an unknown by-product. 

 

Scheme 61. Ligation test between 33 and acetophenone. 

These ligation tests confirmed that the carbonyl-containing peptide fragment was causing 

the slow reactivity. This could be due to the carbonyl substrate being a ketone (as they 

usually have slower reaction rates in comparison to aldehydes312) but also due to it being 

bound to the peptide chain. Due to the explored ligation conditions not being sufficiently 

fast and the lack of a suitable catalyst, a new mimic structure was to be designed. This new 

target would contain an aldehyde moiety in order to favour reactivity. 
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5.7 Aliphatic oxime mimic 

In order to increase the speed of the ligation reaction, the modified design would contain an 

aldehyde moiety on the N-terminal fragment (Scheme 62). This would remove the phenyl 

functionality present in 39, which would afford a more flexible system with less 

preorganisation. 

 

Scheme 62. Aliphatic oxime-containing target, 42a and 42b, and the two peptide substrates 

for the ligation. 

Molecular dynamics simulations were run on both stereoisomers by Dr Drew Thomson, 

which showed that both conjugates maintained the β-hairpin structure in TrpZip1 (Figure 

156). 

 

Figure 156. Overlay of a frame extracted from the MD simulation of the Z-oxime (in green) 

and of the NMR structure of TrpZip1 (in magenta, PDB 1LE0). 

The distances between the oxygen in the C=O(i) and the proton in NH(i+3) were extracted 

from the trajectories, which were found to be a mean of 4.7 Å for the Z-oxime and a mean 

of 5.2 Å for the E-oxime (Figure 157). These were longer than the distances expected for a 
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hydrogen bond. By observing the simulations performed, it was found that the Z-oxime 

established and maintained the hydrogen bond towards the end of the trajectory. The E-

oxime did not establish the hydrogen bond at any point and instead adopted a bulge-like 

geometry at the turn. 

  

  

Figure 157. Top: frames extracted from the MD simulations of the Z-oxime (green) and the E-

oxime (blue), showing the distance measured in yellow. Bottom: histograms of the 

distances between the oxygen in the C=O(i) and the proton in NH(i+3) for the Z-oxime (left) 

and the E-oxime (right). 

5.7.1 Synthesis of the peptide fragments 33 and 43 

The synthesis of the C-terminal fragment 33 was performed as described in Section 5.4.1. 

The synthesis of the N-terminal fragment was performed using Fmoc-Glu(Wang)-OAll resin 

(0.44 mmol/g loading). The synthesis was started as described in Section 5.4.2, using 
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microwave-assisted SPPS to install the native amino acids followed by removal of the allyl 

protecting group. 

Ethanolamine was initially considered as the starting material to install the aldehyde 

functionality (Scheme 63), but the material was volatile upon oxidation to 

aminoacetaldehyde and could not be isolated. In addition, aliphatic aldehydes are quite 

reactive, and therefore the acetal-protected 44 was used as the building block instead 

(Scheme 64). 

 

Scheme 63. Initial strategy towards the coupling of the aldehyde moiety. 

44 was initially coupled using DIC/Oxyma Pure in DMF, but deprotection of the N-terminal 

Fmoc group was observed. The coupling was therefore performed in DCM, with 10 equiv. 

of DIC and Oxyma Pure and 8 equiv. of 44 (Scheme 64). A test cleavage was performed, 

which showed complete conversion to the coupled product and maintenance of the Fmoc 

group through LCMS analysis. Interestingly, the product that was observed in the test 

cleavage was not the acetal-protected analogue but the deprotected aldehyde. Therefore, 

after Fmoc deprotection of the N-terminus, the cleavage of the peptide was performed in 

85% TFA and 15% H2O. This afforded the aldehyde-containing peptide 43 in a 2.5% yield 

after purification. The purification of this peptide was difficult, therefore ligation reactions 

were conducted with 83% pure material. 

 

Scheme 64. Synthetic route towards 43. 
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5.7.2 Ligation towards 42a and 42b 

The ligation between the two peptides 33 and 43 to afford 42a and 42b (Scheme 65) was 

performed using the conditions employed for the other mimics: at a peptide concentration of 

1 mM, in AcOH/MeOH 1:1 and at room temperature. 42a and 42b have been named as such 

according to the order in which they are eluted from the column during RP-HPLC 

purification. 

 

Scheme 65. Ligation between 33 and 43 to generate 42a and 42b. 

HPLC monitoring of the ligation step (Figure 158) showed complete product formation after 

24 h. Although the starting materials did not reach complete consumption, no more product 

formation was observed after that time. After purification, 42a and 42b were isolated in a 

54% total yield. 

 

Figure 158. HPLC monitoring of the ligation towards 42a and 42b, showing three timepoints: 

t = 0 of 43 in solution before the addition of 33, t = 0 after the addition of 33 and after 24 h of 

reaction. 

During RP-HPLC purification of the ligated products, interconversion between 

stereoisomers was observed. In an analogous manner to what was observed for 37a and 37b, 

acid-catalysed isomerisation of the oxime bond was likely taking place due to the 0.1% TFA 
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present in the solvent system. This isomerisation could take place through a hydrolysis-

recondensation mechanism or the rotation of the C=N bond when in the iminium form (as 

discussed in Section 5.5.3).344,345 In order to confirm that isomerisation was taking place, 

isomer interconversion tests were performed next. 

5.7.3 Isomer interconversion tests 

Isomer interconversion tests were performed for each stereoisomer in H2O/MeCN 1:1 with 

0.1% TFA, and the samples were monitored through HPLC. In the case of 42a (Figure 159), 

interconversion was observed during the first day, after which time the proportion between 

stereoisomers was constant at a 70:30 ratio between 42a and 42b, respectively. 

 

Figure 159. HPLC monitoring of the interconversion test for 42a. 

Regarding 42b (Figure 160), interconversion to 42a was also observed during the first day 

and interestingly, the 70:30 proportion between stereoisomers was maintained after that 

time. This highlighted the higher thermodynamic stability of 42a. In comparison to the other 

two oxime-linked mimics under study, 37a and 37b, this interconversion was extremely fast 

and afforded a ratio between stereoisomers instead of only one product. 
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Figure 160. HPLC monitoring of the interconversion test for 42b. 

5.7.4 Circular dichroism analysis of 42a and 42b 

The high rate at which the stereoisomers interconverted caused the separation of both 

products to be difficult, hence the purity of the samples used for CD analysis was of 80% 

for each stereoisomer (with the remaining 20% corresponding to the other stereoisomer). CD 

experiments in the far UV were run for both analogues, and their folding was compared to 

that of the control sequence TrpZip1. A peptide concentration of 0.05 mg/mL (30 μM) was 

used, in a sodium phosphate buffer (20 mM) at pH 7 for 42a. In the case of 42b, when the 

same buffer was used precipitation of the sample took place. Therefore the experiments for 

this analogue were run in a HEPES buffer (10 mM) also at pH 7, under which conditions 

precipitation did not occur due to the lower ionic strength of this buffer. It was attempted to 

run experiments in the near UV using a 1 mg/mL concentration, but the low solubility of the 

conjugates did not permit this. 

The far UV folding curves (Figure 161) showed that the two conjugates adopted β-hairpin 

conformations, with the characteristic minima at 212 nm and the maxima at 228 nm 

indicating β-strand structure and tryptophan stacking, respectively.141,276 Although the 

difference in thermodynamic stability observed by HPLC analysis indicated a higher 

stability of 42a, a significant difference in folding was not observed. 
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Figure 161. Far UV folding curves for the peptides in study. 

In order to evaluate the thermal stability of the peptides, the change in MRE was monitored 

every 1 °C at 228 nm, from 5 to 80 °C. The folding curves before and after heating were 

superimposable for all analogues, indicating a reversible unfolding process. The 

denaturation curves obtained are presented in Figure 162. 

 

Figure 162. Thermal denaturation curves for the peptides in study. The black dashed line 

indicates an estimation of the midpoint of the curve for TrpZip1 and the point at which 42a 

and 42b adopt the same degree of folding. 

Analogous to what was observed in the previous mimic system, 37a and 37b, the thermal 

denaturation curves of 42a and 42b showed a lower degree of folding in comparison to 

TrpZip1 at equal temperatures. If the midpoint of the curve for TrpZip1 is estimated, at 57 
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°C (black dashed line in Figure 162), the conjugates would adopt the same degree of folding 

at 55 °C for 42a and at 45 °C for 42b, 2 and 12 °C below the control, respectively. 

As previously observed, a clear transition midpoint could not be obtained from the first or 

second derivatives of the denaturation curves (Figure 163). Therefore the fraction of folding 

calculation was used to obtain the melting temperatures.277 

 

Figure 163. First derivatives of the melting curves for 42a and 42b. 

As described for 37a and 37b (Section 5.5.4), the fraction of folding was calculated using 

an MRE of zero as the unfolding process endpoint and the MRE value of TrpZip1 at 5 °C 

as the fully folded reference, due to the peptide conjugates being more unfolded than the 

control at that temperature. The curves obtained (Figure 164) showed a lower degree of 

folding of the conjugates in comparison to the control hairpin, with the three systems 

reaching the same unfolded point at 80 °C. 
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Figure 164. Fraction of folding curves relative to TrpZip1 for the peptides in study. 

The Tm estimated for the systems in study (Table 24) showed that the melting temperature 

for 42a was 2 °C lower than that of TrpZip1, whilst that of 42b was lower by 12 °C. The 

difference in thermal stability between stereoisomers was relatively small, but it might 

indicate a correlation between the lower thermal stability of 42b and the 70:30 ratio of 42a 

to 42b observed by HPLC analysis (Section 5.7.3). Comparing this information to the 

molecular dynamics simulations suggests that 42a could correspond to the Z-oxime and 42b 

to the E-oxime, as the latter was predicted to not establish the i to i+3 like hydrogen bond 

and therefore would most likely be less folded than the Z-stereoisomer. 

Table 24. Tm calculated for the peptides under study. 

Sequence Tm (°C) 

TrpZip1 57 

42a 55 

42b 45 

 

Due to the high rate of interconversion between the stereoisomers under some conditions, it 

was necessary to confirm whether isomerisation occurred under the conditions used for CD 

analysis (a neutral pH buffer and a high temperature). To this end, the samples used for CD 

analysis were analysed via HPLC before and after performing the thermal denaturation 

experiments (Figure 165). This showed that no interconversion had taken place. 
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Figure 165. HPLC traces of the CD samples before and after the thermal denaturation 

experiments for 42a (left) and 42b (right). 

In comparison to the meta-substituted aromatic ketoxime analogues (Figure 166), the folding 

of 42a and 42b was equivalent to that of 37a, thus highlighting how a system with less 

preorganisation still favoured the adoption of a β-turn conformation. In addition the thermal 

stability was increased, from 35 °C for 37a to 45 °C for 42b and 55 °C for 42a, possibly due 

to the higher constraints present in the aromatic ring-containing system. 

 

Figure 166. Comparison of the far UV folding between the meta-aromatic ketoxime 

analogues and the aliphatic aldoxime analogues. 

All in all, the aliphatic conjugates designed adopted the same β-hairpin conformation as the 

control system and maintained an adequate stability. This showed how a β-turn mimic unit 

with less preorganisation could still favour β-hairpin formation and, in contrast to 37a and 
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37b, the fewer constraints introduced by this system allowed both stereoisomers to adopt 

stable β-hairpins. 

5.8 N-Alkoxy amine mimic 

A mimic containing an N-alkoxy amine linkage was to be explored next, to ascertain whether 

the change to sp3 centres at the ligation junction would have an effect in the folding and 

stability of the peptide. The aliphatic oxime-containing system, 42a and 42b, was chosen to 

perform this modification on. To this end, a reduction of the oxime bond would be performed 

(Scheme 66). 

 

Scheme 66. Reduction of 42a and/or 42b to furnish the N-alkoxy amine-bound mimic, 45. 

Molecular dynamics simulations were run by Dr Drew Thomson, which showed that the N-

alkoxy amine-bound conjugate maintained the β-hairpin conformation (Figure 167). The 

distance between the carbonyl oxygen and the amide proton in the i to i+3 like hydrogen 

bond was extracted from the trajectory, which was found to be a mean of 1.9 Å. This 

suggested that the reduced linkage would establish a more tightly bound hairpin in 

comparison to its oxime-linked precursor (Figure 157). 
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Figure 167. Left: representative frame extracted from the MD simulation of 45. Right: 

histogram of the distance between the oxygen in C=O(i) and the proton in NH(i+3). 

5.8.1 Synthesis of 45 

The reduction of the oxime bond to the N-alkoxy amine linkage was performed by dissolving 

a sample of 42a (80% pure, with the remaining 20% corresponding to 42b) in MeOH/AcOH 

1:1, and adding 10 equiv. of sodium cyanoborohydride as the reducing agent (Scheme 67). 

 

Scheme 67. Reduction of 42a to afford 45. 

HPLC monitoring of the reduction reaction (Figure 168) showed that product formation was 

complete in 3 h, with 75% conversion of the starting material. Longer reaction times and 

addition of more reducing agent led to the formation of unidentified by-products instead of 

the desired compound. After purification, 45 was obtained in a 28% overall yield. 
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Figure 168. HPLC monitoring of the reduction towards 45. 

5.8.2 Circular dichroism analysis of 45 

The CD experiments for the N-alkoxy amine-linked conjugate were performed in the far UV 

at a 0.05 mg/mL concentration (24 μM), using a HEPES buffer (10 mM, pH 7) in order to 

prevent the solubility issues observed with the oxime-linked analogue 42b. The far UV 

folding curve for 45 (Figure 169) showed successful mimicry of the β-turn, which gave rise 

to a well-folded β-hairpin showing the characteristic minimum and maximum. In 

comparison to TrpZip1 and the analogous oxime-bound conjugates, the more pronounced 

peak and trough for 45 suggested it adopted a more tightly folded structure. 

 

Figure 169. Far UV folding curves. 
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The folding of 45 was equivalent to that of TrpZipGG (Figure 170). The increase in folding 

observed when changing from an oxime to an N-alkoxy amine linkage in the conjugates, as 

well as from a Gly-Asn to a Gly-Gly turn in the controls, suggests that a higher flexibility in 

the β-turn results in a more stable hairpin structure for this system. 

 

Figure 170. Far UV folding curves for 45 and both peptide controls. 

The thermal denaturation curve at 228 nm was obtained for this analogue as described 

previously, and the folding curves in the far UV were superimposable after this process. The 

denaturation curve (Figure 171) had higher MRE values than those of the other conjugates, 

suggesting a higher stability, and its endpoint was at a higher point, indicating that a 

complete unfolding of the hairpin was not achieved in the temperature range used. 
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Figure 171. Far UV thermal denaturation curves for the peptides in study. 

As observed with the other analogues under study, the derivative of the melting curve did 

not provide a clear transition midpoint (Figure 172). 

 

Figure 172. First derivative of the melting curve for 45. 

In order to estimate the melting temperature for 45, the fraction of folding was calculated for 

each temperature step. For this, the same strategy was used as described previously (Section 

5.7.4), where TrpZip1 was used as the folded reference and an MRE of zero was adopted 

as the unfolded value. These references were chosen for consistency, for the purpose of 

comparing the data. The curve obtained for 45 is presented in Figure 173, in comparison to 

those for 42a, 42b and TrpZip1. As it can be observed, the fraction folded for 45 at 5 °C 
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was higher than one, which indicated that the conjugate was more folded than the reference 

peptide. 

 

Figure 173. Fraction of folding curves relative to TrpZip1 obtained for the peptides in study. 

The melting temperature estimated for 45 (Table 25) was the same as that of TrpZipGG 

and higher than that of TrpZip1 by 9 °C. In comparison to its oxime-linked precursor, the 

Tm of 45 was higher than that of 42a by 11 °C. The Tm obtained for these peptides are 

dependent on the references adopted, and as highlighted previously when 45 was analysed 

it was found that TrpZip1, adopted as the fully folded reference, was not fully folded. 

Changing this reference point would cause the Tm values to vary, but the relative behaviour 

of the peptides is still represented by the analysis with TrpZip1 as the reference. 

Table 25. Melting temperatures obtained from the fraction of folding curves. 

Sequence Tm (°C) 

45 66 

42a 55 

42b 45 

TrpZip1 57 

TrpZipGG 66 
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The increased folding and thermal stability observed upon reduction to the N-alkoxy amine 

linkage could be due to the increased flexibility provided by the sp3 centres in comparison 

to the sp2 centres present in the oxime-bound conjugates. 

5.9 Conclusions and future work 

Novel oxime-linked β-turn mimic scaffolds have been designed. The first two targets used 

an aromatic ring to provide the right orientation for the reverse turn to take place. The ortho- 

substituted analogue 31, analogous to the mimics explored in Chapter 3, could not be 

synthesised due to the low reactivity of the aromatic building block, which could not be 

coupled on the peptide fragment. Attention was thus shifted to a meta-substituted analogue, 

which showed successful mimicry of the β-turn. Two oxime stereoisomers were obtained 

which adopted different degrees of folding and thermal stabilities. 37a, the Z-oxime, adopted 

a β-hairpin conformation analogous to that of the control whereas 37b, the E-oxime, was 

largely unfolded. 

Once an aromatic ring-based mimic was achieved, aliphatic oxime-based analogues were 

explored in order to evaluate if a less preorganised system would still favour the β-turn 

conformation. The ligation towards the initial target pursued, 39, containing a phenyl 

substituent, was considerably slow. This was found to be due to the ketone-containing 

fragment and therefore the design was modified to contain an aldehyde moiety instead. The 

ligation towards 42a and 42b was significantly faster and afforded two peptides with 

different oxime stereoisomers that maintained the β-turn and β-hairpin conformation. In 

contrast to 37a and 37b, both aliphatic stereoisomers presented similar degrees of folding, 

and their thermal stabilities were 10 and 20 °C higher than that of the aromatic analogue 

37a. 

An N-alkoxy amine-linked analogue 45 was explored, accessed by reduction of the oxime-

bound 42a. This peptide showed a higher degree of folding and stability in comparison to 

TrpZip1 and its oxime precursors, likely due to the increased flexibility of the N-alkoxy 

amine centre. The folding of 45 was equivalent to that of TrpZipGG, showing that the 

folding and thermal stability is improved when reducing the oxime to an N-alkoxy amine 

linkage in the conjugates, and also when changing the native turn from Gly-Asn to Gly-Gly. 

This suggests that a higher flexibility in the β-turn provides a better folded hairpin 

conformation for this tryptophan zipper system. 
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All in all, three novel β-turn mimic scaffolds have been designed and synthesised through a 

chemoselective oxime ligation. The mimics operate as designed and adopt a turn 

conformation that maintains the hydrogen-bonded β-hairpin structure observed in the control 

system. The comparison between an aromatic ring and an aliphatic oxime-containing 

scaffold indicated that systems with more conformational freedom can still favour a β-turn 

conformation, and the analysis of an N-alkoxy amine-bound analogue suggested that a higher 

linker flexibility could be correlated with better folding and thermal stability. This is a 

significant result, as it shows that opting for highly preorganised systems, although they 

provide the advantage of potentially inducing β-turn formation, is not always necessary. The 

remarkably high folding and stability of 45 opens the door to new possibilities in two ways. 

Firstly, a wide diversity of functionalities could be introduced within the β-turn scaffold in 

45 that would enable the use of this system in a variety of contexts without altering the turn 

geometry (as described below). Secondly, other β-turn mimics analogous to 45 could be used 

within this system, and if the flexibility was maintained they would potentially still form the 

desired β-turn. 

Future work could involve the introduction of additional functionality on the scaffolds 

presented in this chapter. For example, a different ketoxime structure could be pursued 

instead of the methyl-substituted 37a and 37b and the phenyl-substituted 39, or additional 

substituents could be placed on the phenyl group of the latter in order to accelerate its ligation 

rate (this has been explored previously for aldoxime formation194). Another possibility 

would be the introduction of fluorescent groups on the oxime junction to be able to report 

on structure, function or binding to a target. In general, further functionalising the ketoxime 

linkages could be key in the development of new applications for these mimic systems. 

Another strategy for future work could build on peptide 45 and focus on the study of the 

relationship between flexibility of the β-turn mimic and β-turn formation. Some possibilities 

that could be explored include modifying the number of methylene groups in the linker, 

altering the position of the oxime unit, or utilising a ketone instead of an aldehyde partner 

and investigating different substitutions. 

The reversibility of the oxime linkage in acidic media also offers the opportunity to perform 

strand exchange experiments (Scheme 68). If a mixture of an oxime-bound peptide and a 

better suited N-alkoxy amine-containing peptide partner were allowed to reach 

thermodynamic equilibrium, the most stable product would ultimately be generated through 
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dynamic covalent exchange. This could find applications in dynamic covalent libraries,314 

where the pH could be tuned to initiate the exchange in an acidic medium, and stop it in a 

basic medium.348 This control would allow for the isolation of the exchange products. 

Dynamic oxime exchange could also be exploited to identify novel PPI modulators by 

introducing the protein of interest as a template. The use of dynamic hydrazone exchange to 

generate novel peptide-small molecule hybrids that modulate PPIs has recently been 

reported.349 

 

Scheme 68. Hypothetical strand exchange experiment. If an oxime-bound peptide with a 

suboptimal strand pairing and a better suited N-alkoxy amine-containing partner were 

mixed, the most stable product would ultimately be generated via exchange. 
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6 Conclusions 

In this thesis, the control of peptide conformation has been explored through the design of 

conformational switching systems based on tertiary amide isomerisation as well as the 

mimicry of β-turns through chemical ligation. 

Firstly, the study of 1 through a double mutant cycle (Figure 174) showed the presence of 

positive cooperativity between the Trp and Gln residues framing Pro. A sequence analogous 

to 1 with (N-Me)-Ala in place of Pro, 5, was then studied through NMR. This showed a 14% 

increase in cis content, which could be caused by the establishment of a CH-π interaction 

between (N-Me)-Ala and Trp due to the high flexibility of the former. 

 

Figure 174. Double mutant cycle peptides (in blue box) and N-methylated Ala sequence 

studied in Chapter 2. 

Disulfide-actuated switches were then designed using this information (Figure 175). The 

first generation was based on a CxPC sequence, which explored Trp (6) and Ala (7) 

preceding Pro. Conditions for the disulfide formation were sought, which identified the use 

of DPDS as the most suitable strategy. The study of the disulfide-bridged peptides 8 and 9 

through NMR did not show a switching behaviour, with an increase of 3-4% cis Pro being 

observed upon oxidation. The second generation of switches made use of vicinal disulfide 

bridges and explored both Pro (10) and (N-Me)-Ala (11). Although a 10% increase in cis 

configuration was observed when substituting Pro by (N-Me)-Ala, the systems did not 

behave as a switch upon oxidation and instead adopted up to five different conformations. 

This could be due to the C-terminal Cys adopting a cis configuration and the presence of two 

disulfide bridge rotamers. 
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Figure 175. Disulfide-actuated switch designs explored in Chapter 2. 

In Chapter 3, novel β-turn mimics installed through a reductive amination step were studied. 

The Tryptophan Zipper TrpZip1 was used as the control system, where the mimics would 

be installed instead of the Gly-Asn turn. Two β-turn mimic scaffolds were designed, based 

on an ortho-substituted aromatic ring, and they were implemented within tripeptide 

backbones as well as the full-sized TrpZip β-hairpin. A reductive amination protocol was 

developed to ligate two unprotected peptide fragments, which utilised sodium 

cyanoborohydride in MeOH/AcOH 1:1 and provided full conversion to the ligated peptides 

in 15 min. The tripeptide systems 19, 20a and 20b were analysed through NMR, which 

showed that a turn-like conformation was adopted in solution. The β-hairpin systems 14, 

(S)-15 and (R)-15 (Figure 176) were evaluated through CD and NMR. CD analysis showed 

that 14 and (S)-15 had an increased thermal stability in comparison to TrpZip1, and that 

(S)-15 and (R)-15 had different stabilities, with (S)-15 being the more stably folded 

diastereomer. NMR analysis showed successful mimicry of the β-turn, with the i to i+3 like 

hydrogen bond being present in the three conjugates, and maintenance of the hydrogen 

bonded hairpin as well as of the side chain conformations. The diastereomers in (S)-15 and 

(R)-15 were identified by comparing the strength of the NOE cross peaks to the distances 

extracted from MD simulations. 
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Figure 176. Original TrpZip1 sequence, TrpZipGG and unnatural β-turn units explored in 

Chapter 3. 

The aim of Chapter 4 was to design a cyclic inhibitor of the MDM2/p53 interaction. To this 

end, the (D-Pro)-(L-Pro) turn in 29 was substituted by the U-BTM β-turn mimic designed in 

Chapter 3, giving rise to the conjugate 28 (Figure 177). The control sequence was accessed 

using an on-resin head to tail cyclisation procedure. The conjugate 29 was synthesised using 

analogous conditions to the ones developed in Chapter 3, which afforded the hydrazone-

linked cyclic peptide 30 upon cleavage. Reduction to access the hydrazide-bound 28 was 

performed using sodium cyanoborohydride. Initial SPR assays were performed, which 

showed a two-fold improvement in the binding affinity of the peptides upon introduction of 

the non-natural β-turn. This was postulated to be a result of the higher flexibility of the mimic 

peptide in comparison to the (D-Pro)-(L-Pro) turn, or due to the establishment of additional 

interactions between the MDM2 binding pocket and the β-turn scaffold. These results were 

positive yet preliminary, and would need to be confirmed by repeating the SPR assays with 

a more stable protein construct. 

 

Figure 177. Control sequence (left) and conjugate (right) studied in Chapter 4. 

 



226 

 

Lastly, oxime-bound β-turn mimics were designed (Figure 178), which were implemented 

within the TrpZip β-hairpin. The initial target, 31, was a mimic based on an ortho-substituted 

aromatic ring. This system could not be accessed due to the low reactivity of the aromatic 

building block, which prevented the synthesis of the N-terminal fragment 32. The design 

was then adapted to a meta-substituted aromatic ring, 37a and 37b. Ligation conditions were 

investigated, and it was found that employing MeOH/AcOH 1:1 provided the fastest reaction 

rate and a higher yield. CD analysis of both stereoisomers showed that 37a successfully 

mimicked the turn and hairpin structure present in the control, while 37b was largely 

unfolded. By comparison to MD simulations, 37a was proposed to be the Z-oxime and 37b 

the E-oxime. A further design was then explored, containing a phenyl-substituted oxime 

linkage. Although the peptide fragments could be synthesised, the ligation to access 39 was 

extremely slow due to the ketone-containing peptide fragment 40, and therefore the design 

was modified. An aliphatic oxime linkage was then investigated (42a and 42b), and both 

stereoisomers were found to mimic the β-hairpin conformation successfully by CD. By 

comparison to the MD models, 42a was proposed to be the Z-oxime and 42b the E-oxime. 

The aliphatic oxime system was reduced, and the N-alkoxy amine-bound analogue 45 was 

studied through CD. This showed that 45 had a higher degree of folding and stability in 

comparison to the other conjugates studied in this chapter, as well as in comparison to the 

native control. These studies suggested that in this system, less preorganised mimics can still 

replicate the β-turn conformation, and that an increased linker flexibility provides a higher 

degree of folding and stability. 
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Figure 178. Oxime-bound β-turn mimics studied in Chapter 5. 

In comparison to the hydrazide-linked mimics introduced in Chapter 3 (Figure 179), the 

meta-substituted 37a and the aliphatic oxime system 42a and 42b shared equivalent degrees 

of folding, which were slightly lower than that of 14 and the control TrpZip1. Their thermal 

stabilities in comparison to TrpZip1 were also lower, with the preorganised 37a being the 

least stable conjugate. This highlights how in this case, the meta-substituted aromatic ring 

did not favour the turn conformation as much as the ortho- system used in 14. In contrast, 

the N-alkoxy amine-bound 45 was the most folded analogue and it had one of the highest 

thermal stabilities of all peptides under study, 66 °C. This was only surpassed by the 

hydrazide-linked conjugate (S)-15 with a Tm of 70 °C. This showed how the flexibility of 

the aliphatic N-alkoxy amine linker provided a similar folding and stability as the (S)-

diastereomer in the more constrained conjugate (S)-15 for this hairpin system. In comparison 

to 14, it favoured a more suitable turn geometry than the preorganised ortho-substituted 

aromatic ring. 
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Figure 179. Comparison of the folding in the far UV for the mimics under study. 

Overall, in this work the control of peptide conformation has been explored via different 

approaches. Tertiary amide isomerisation has been shown to be an attractive backbone onto 

which switching systems can be designed, with (N-Me)-Ala providing higher cis contents in 

comparison to Pro. The cooperativity between residues framing the tertiary amide has been 

confirmed, and the design of disulfide-based switches has been attempted. Thus, this work 

has set the foundations for new and improved switches to be designed. Building from the 

non-vicinal disulfide systems, (N-Me)-Ala could be exploited in order to facilitate the access 

to higher cis tertiary amide contents, and different disulfide placements could also be 

investigated. Inspiration could be drawn from β-hairpins and β-turns, as disulfide bridges 

have been found to stabilise hairpins when placed at non-hydrogen bonded facing 

positions.126 The vicinal disulfide systems showed greater complexity than initially 

expected, but this behaviour clearly indicates the substantial influence of this constraint on 

peptide conformation. This suggests that this disulfide connectivity, although intricate, has 

great potential that could be exploited for the purpose of designing a conformational switch. 

Novel β-turn mimics have been designed, accessed through a reductive amination and an 

oxime ligation step, which closely mimic the conformation of the control β-hairpin. This 

work provides the ability to install a β-turn mimic at the same time as ligating two 

unprotected peptide fragments, using either a reversible or non-reversible linkage, which is 

a tool that could have wide applications in chemical biology. Furthermore, the wide range 

of β-turn units explored compose a toolkit that could find applications in diverse systems, as 

they provide different degrees of folding and stability, functionalisation, flexibility, and 
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installation methods. These β-turn mimics could be used in the synthesis of miniproteins, 

and their further functionalisation could enable the discovery of novel PPI inhibitors. 

Regarding the latter, groups that would improve the affinity to a desired target could be 

added, as well as a poly-Arg chain to improve the cell-penetrating properties of the peptide. 

Fluorescent groups like a FRET donor or acceptor could be inserted in these units in order 

to report on binding and function. Other fluorescent groups could be introduced to facilitate 

live cell imaging, as many of the fluorophores used for this purpose require a coupling step 

to one of the termini of the peptide or a side chain. This would be particularly useful in the 

case of cyclic peptides, in order to preserve the side chain functionality. Finally, and as 

previously discussed, the reversibility of the oxime linkage could be further explored to 

facilitate its use in dynamic combinatorial libraries. 
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7 Experimental 

7.1 Database 

The database was constructed by Dr Drew Thomson using the PISCES server to identify a 

subset of high-resolution, non-sequence redundant protein crystal structures (resolution 2.5 

Å or better, R-factor 1.0 or better, PDB version 28/10/2019). 

A region of secondary structure was defined as having four or more contiguous residues of 

the same secondary structural assignment by DSSP.350 Following this definition, a 'loop' was 

defined as unstructured by DSSP, but they were allowed to contain up to three contiguous 

residues with the same DSSP secondary structural assignment, as well as blocks of mixed 

secondary structures. The condition that a loop needed to be flanked on each side by a region 

of secondary structure was applied, therefore excluding N- and C-terminal unstructured 

regions. Loops were further checked to exclude any in which the loop was discontinuous 

due to missing residues or atoms in the crystal structure. For each of the loops thus identified, 

a database entry was generated containing the 3D coordinates for the loop, as well as the 

four residues of secondary structure on either side. The database entry also contained 

information such as the sequence, DSSP assignment, and vectors representing the end-to-

end separation and orientation of flanking secondary structure for each loop. 

7.1.1 Search for Xaa-Pro-Yaa motifs 

In order to identify the influence of neighbouring sequence on the formation of cis proline 

residues, the database was searched for all 400 possible sequences based on the Xaa-Pro-

Yaa pattern. For each subsequence, the proline was assigned as cis if the ω dihedral angle 

for the amide bond was 0 +/- 20°, and trans if the angle was 180 +/- 20°. Entries were 

discarded for a small number of sequences for which ω fell outside either of these ranges. 

For each subsequence, the percentage of cis was calculated. 

7.2 Energy minimisation models 

Energy minimisation models were built on Avogadro351 software, using the MMFF94 

forcefield and a conjugate gradients method until the energy value was stabilised. 



231 

 

7.3 Molecular dynamics simulations 

7.3.1 Chapter 2 

Simulations were run by Miss Bethany Atkinson using Chimera, and the molecular dynamics 

simulations were carried out using Gromacs 4352 with the Plumed 2.5 plugin.353 N-terminal 

acetyl and C-terminal amide capping groups were used. The peptides were immersed in a 

cubic box of explicit water with a minimum of 1.0 nm between the peptide and the edge of 

the box. A steepest descent algorithm was then used, followed by a four-stage equilibration 

process. First a 50 ps NVT ensemble was carried out followed by a 50 ps NPT ensemble 

both with restraints of 1000 kJ/mol. A second NVT ensemble was then carried out for 100ps 

without restraints. Finally, a 100 ps NPT ensemble without restraints was carried out and the 

trajectory file was then used in the metadynamics simulation. A separate V-rescale 

thermostat was used for both the peptide and the solvent. A Berendsen barostat with an 

isothermal compressibility of 4.5 x 10-5 bar-1 was used for the NPT ensembles and the 

metadynamics simulations. An AMBER-99SB-ILDN force field with tip3p water was used 

and the simulations were carried out at 300 K and 1 bar. For the duration of the simulation 

all bonds to hydrogen atoms were constrained to equilibrium values using a LINCS 

algorithm. Nonbonded interactions (both Lennard-Jones and electrostatic) were truncated at 

1 nm. For long range electrostatics a particle mesh Ewald (PME) with an order of 4 and 

Fourier spacing of 0.12 nm was used. The metadynamics simulations were carried out with 

two collective variables: the ψ dihedral angle of the proline in the peptide, and the improper 

dihedral angle ζ. The simulations were carried out with a timestep of 1 fs using a leapfrog 

algorithm for 100 ns. Gaussian hills of height 0.2 kJ/mol and a sigma value of 0.2 radians 

for ψ and 0.15 radians for ζ, were added every 1 ps. 

To estimate the energy difference between the cis and trans peptide in solution the ψ value 

was integrated out and the free energy as a function of ζ was plotted every 20 ps. An average 

over multiple of these fes files once convergence was reached gave the most accurate 

estimate of the free energy surface of the peptide with changing ζ.354 The difference between 

these two minima was then used as the ΔG value between cis and trans proline in the peptide. 

To obtain the ΔG value between the cis and trans proline, the minimum point between -20 

to 20° was taken as the cis value and the minimum point between below -160 or above 160° 

was taken as the trans minimum. The difference between the two was then calculated by 

taking the trans minimum minus the cis minimum. The difference between the minima 
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energies was then plotted against the time in the simulation which the fes file was taken 

from. After the simulation has reached convergence, the average over all the points plotted 

can be found and used as the ΔG value between the cis and trans Pro states. To determine 

the point at which to start averaging the values, the minimum energy level (Emin) throughout 

the simulation and the value closest to half this minimum value (1/2 Emin) were found (Figure 

180). The time difference between these points was multiplied by 3. Three lengths of time 

after ½ Emin was used as the starting time point for averaging the ΔG values. 

 

Figure 180.  Determination of the point at which the MD simulation for 2 reached 

convergence.
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7.3.1.1 Simulation of 1 

       

Figure 181. ΔG between the cis and trans states along the simulation. 

 

7.3.1.2 Simulation of 2 

 

Figure 182. ΔG between the cis and trans states along the simulation. 
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7.3.1.3 Simulation of 3 

 

Figure 183. ΔG between the cis and trans states along the simulation. 

 

7.3.1.4 Simulation of 4 

 

Figure 184. ΔG between the cis and trans states along the simulation.
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7.3.2 Chapters 3 and 5 

Molecular dynamics simulations were run by Dr Drew Thomson. The simulations were set 

up using AmberTools355 and run using OpenMM.356 Fragment structures for the β-turn 

mimic subunits were parameterised using AmberTools, and starting models were built using 

Avogadro.351 Simulations were set up with a cubic water box, and with compensating sodium 

and chloride ions such that the simulation was charge neutral. Periodic boundary conditions 

were used, and a Monte-Carlo barostat was employed. Simulations were run at 1 atm 

pressure and at a temperature of 300 K. Simulations were run with 2 ps step size for a total 

of 100 ns. The amber ff14SB forcefield was used. Trajectories were analysed using the 

MDanalysis python module.357 

7.3.2.1 Distances extracted from the simulation of (S)-15 

 

{1}ME (carbon) – {3}pro-R 

 

Average 3.3, min 2.6, max 5.6 Å 

 

 

 

{1}ME (carbon) – {3}pro-S 

 

Average 4.4, min 3.7, max 5.4 Å 
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{1}ME (carbon) – 4Trpε1 

 
 

Average 3.5, min 2.4, max 5.3 Å 

4Trpε1 – {1}HA 

 

Average 3.4, min 2, max 5.8 Å 

4Trpη2 – {1}HA 

 

Average 6.7, min 3.7, max 10.4 Å 

C=O (i) – NH(i+3) 

 

Average 2.11, min 1.63, max 6.36 Å 

 

Figure 185. Minimum, maximum and average distances extracted from the MD simulation of 

(S)-15. 
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7.3.2.2 Distances extracted from the simulation of (R)-15 

 

{1}ME (carbon) – {3}pro-R 

 

Average 5.3, min 3.2, max 6.5 Å 

{1}ME (carbon) – {3}pro-R 

 

Average 5.1, min 4.2, max 6.4 Å 

{1}ME (carbon) – 4Trpε1 

 

Average 3.7, min 2.4, max 8.1 Å 

 

 

 

 

4Trpε1 – {1}HA  

 

Average 3.8, min 1.9, max 9 Å 
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4Trpη2 – {1}HA 

 

Average 7.9, min 4.4, max 11.2 Å 

C=O (i) – NH(i+3) 

 

Average 1.9, min 1.61, max 4.09 Å 

 

Figure 186. Minimum, maximum and average distances extracted from the MD simulation of 

(R)-15. 

7.4 SPR assays 

All SPR experiments were performed by Dr Mads Gabrielsen (Prof Danny Huang’s group, 

Beatson Institute) at 25°C on a Biacore T200 with a CM-5 chip (GE Healthcare). GST-

tagged MDM2 1-109 were coupled to CM-5 chips as described previously.358 29 and 28 

were serially diluted in running buffer containing 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 

1 mM DTT and 0.005% (v/v) Tween-20. For experiments performed in the presence of 

control and mimic, both samples were diluted in running buffer with a final concentration of 

10 mM of the peptide. This was used as stock for a 5-fold serial dilution ranging from 100 

μM. Data reported are the difference in signal between GST-MDM2 1-109 variants and 

MDM2 1-109 alone. 

7.5 General information 

All reagents were purchased from commercial sources and used without further purification. 

Dry solvents were purified using a PureSolv 500 MD solvent purification system. Thin layer 

chromatography was performed on Merck alumina plates covered with silica gel 60 F254 and 

visualised using UV light and stained with potassium permanganate, p-anisaldehyde or 

ninhydrin solution. Normal phase column chromatography was performed on a Biotage 

Isolera One 3.0, using prepacked silica Biotage SNAP KP-Sil cartridges. 
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LC-MS analysis was performed on a Thermo Scientific Dionex Ultimate 3000 LC system 

coupled to a Thermo LCQ Fleet quadrupole mass spectrometer using positive mode 

electrospray ionisation (ESI+). The system was equipped with a Dr Maisch ReproSil Gold 

120 C18, 110 Å, 3 µM, 150 x 4 mm column and a solvent system consisting of solution A 

(5% MeCN in H2O + 0.1% TFA) and B (5% H2O in MeCN + 0.1% TFA). Linear gradients 

were run from 0% to 100% buffer B over 10 or 20 min at a 1mL/min flow rate. 

High resolution mass spectrometry (HRMS) was performed by the analytical service of the 

University of Glasgow, either on a Jeol M-Station JMS-700 High Resolution Mass 

Spectrometer using Electron ionisation or Chemical ionisation, or using ESI+ ionisation on 

a Bruker microTOF-Q II High Resolution Mass Spectrometer in positive mode. HRMS data 

are reported as mass to charge ratio (m/z) = observed/MW. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVI 400MHz 

spectrometer (400 MHz for 1H-NMR and 100 MHz for 13C-NMR) or on a Bruker AVANCE 

600 MHz spectrometer equipped with a TCI cryoprobe, at 298 K unless otherwise stated. 

NMR spectra for peptides were analysed using CCPN analysis.359 Chemical shifts (δH) are 

reported in parts per million (ppm) relative to an internal standard (Me4Si, TSP or DSS, 0 

ppm) or the solvent peak (CDCl3: 7.26 ppm, (CD3)2SO: 2.50 ppm, CD3OD: 3.31 ppm, D2O 

δH: 4.79 ppm). δC are reported in ppm relative to the signal of an internal standard (Me4Si or 

TSP, 0 ppm) or the solvent peak (CDCl3: 77.16 ppm, (CD3)2SO: 39.52 ppm, CD3OD: 49.00 

ppm). Proton and carbon chemical shifts were assigned using proton, carbon, Correlation 

Spectroscopy (COSY) and Heteronuclear Single Quantum Coherence (HSQC) experiments. 

Coupling constants (J) are reported in hertz (Hz). Splitting patterns are abbreviated as 

follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (b), or a 

combination of these. 

7.6 General information for peptide synthesis and 

analysis 

Peptides were synthesised on a CEM Liberty Blue or on a Biotage Initiator+ Alstra 

microwave-assisted peptide synthesiser where specified, using the Fmoc/tBu protecting 

group strategy in a 0.1 mmol scale unless otherwise stated. All amino acids are of L-

configuration unless otherwise stated. Compounds were frozen at -78°C and lyophilised on 
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a Christ Alpha 2-4 LO plus freeze dryer at -80°C and <0.5 mBar. Peptide content was 

analysed on a Thermo Scientific NanoDrop One UV-Vis spectrophotometer. 

Peptides were purified on a Dionex P680 semi-preparative HPLC system equipped with 

P680 pumps and a UVD170U UV-Vis detector (monitoring at 214 nm and 280 nm), using 

either a Phenomenex, Gemini C18, 5 µm, 250 x 21.2 mm column at a flow rate of 6 or 8 

mL/min or a Phenomenex, Luna C18(2), 5 µM, 100 Å, 150 x 10 mm column at a flow rate 

of 3 mL/min. Linear gradients were run using a binary solvent system consisting of solution 

A (H2O + 0.1% TFA) and B (MeCN + 0.1% TFA).  

Analytical RP-HPLC was performed on a Shimadzu reverse-phase HPLC system equipped 

with LC-20AT pumps, a SIL-20A autosampler and a SPD-20A UV-Vis detector (monitoring 

at 214 nm and 280 nm). The columns used were a Phenomenex Aeris 5 µm, peptide XB-

C18, 150 x 4.6 mm or a Phenomenex Gemini-NX 5u C18 110Å 150 x 4:60 mm at a flow 

rate of 1 mL/min. Gradients were run using a binary solvent system consisting of solution A 

(5% MeCN in H2O + 0.1% TFA) and B (5% H2O in MeCN + 0.1% TFA) or using 100% 

solutions (A: H2O + 0.1% TFA; B: MeCN + 0.1% TFA) when specified. Two or three 

gradients were used to determine the purity of each peptide: a gradient from 0% to 100% 

solution B over 20 min, a gradient from 0% to 50% solution B over 30 min or a gradient 

from 0% to 100% solution B over 50 min. Analytical HPLC data is reported as column 

retention time (RT) in minutes (min). 

Circular dichroism measurements were performed with a JASCO J-810 circular dichroism 

spectropolarimeter fitted with a Peltier temperature controller, using a cuvette with a 0.1 or 

0.2 cm pathlength. 
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7.7 General procedures for peptide synthesis 

7.7.1 Microwave-assisted SPPS: CEM synthesiser 

7.7.1.1 Resin swelling 

The resin was swelled with 15 mL of DMF for 5 min at room temperature. 

7.7.1.2 Fmoc deprotection 

Fmoc deprotection was performed with 4 mL of a 20% morpholine in DMF solution, at rt 

and 0 W for 5 sec, 78 °C and 100 W for 30 sec, 88 °C and 70 W for 20 sec, and 90 °C and 

25 W for 60 sec, followed by washing. 

7.7.1.3 Coupling 

Coupling of N-α-Fmoc protected amino acids (5 equiv., 0.2 M in DMF) was carried out 

using DIC (5 equiv., 0.5 M in DMF) and Oxyma Pure (5 equiv., 1 M in DMF). The reaction 

vessel was kept at 25 °C at 0 W for 5 sec, and then heated to 80 °C at 100 W for 30 sec, 86 

°C at 70 W for 20 sec and 90 °C at 25 W for 120 sec. A wash was then performed. 

Coupling of Fmoc-Cys(Trt)-OH was carried out without heating at 0 W for 120 sec and then 

at 50 °C at 50 W for 480 sec. The resin was then washed. 

7.7.2 Microwave-assisted SPPS: Biotage synthesiser 

Some peptides (where specified) were synthesised using this synthesiser and methods. 

7.7.2.1 Resin swelling 

The resin was swelled in 4.5 mL DMF (for a 0.1 mmol scale) at 70 °C for 20 min. 

7.7.2.2 Fmoc deprotection 

Fmoc deprotection was carried out in 20% morpholine in DMF, at rt for 30 s followed by 3 

min at 70°C followed by washing with DMF.  
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7.7.2.3 Coupling 

Coupling of N-α-Fmoc protected amino acids (4 equiv., 0.2 M in DMF) was carried out for 

5 min at 75°C, using HCTU (4 equiv., 0.5 M in DMF) and DIPEA (8 equiv., 2 M in NMP), 

followed by washing with DMF. 

Coupling of Fmoc-Cys(Trt)-OH (4 equiv.) was carried out in two cycles, first for 5 min at 

room temperature and then 5 min at 50 °C, followed by washing with DMF. 

7.7.3 Manual resin swelling 

Resins were swelled in 5 mL of DMF/DCM 1:1 for 30 min at room temperature. 

7.7.4 Manual coupling 

Coupling of N-α-Fmoc protected amino acids (5 equiv.) was carried out by dissolving the 

amino acid, DIC (4.5 equiv.) and Oxyma Pure (4.5 equiv.) in DMF (5 mL for a 0.1 mmol 

scale). DIPEA (6 equiv.) was then added. The solution was stirred for 5 min for preactivation 

and then it was added to the resin for reaction at room temperature (2.5 h). 

7.7.5 Manual Fmoc deprotection 

Deprotection was carried out for 15 min at room temperature with 5 mL (for a 0.1 mmol 

scale) of a 20% morpholine in DMF solution. The resin was then washed with DMF. 

7.7.6 Acetyl capping 

Capping of the N-terminus was carried out using acetic anhydride (50 equiv.) and pyridine 

(80 equiv.) for 30 min at room temperature followed by washing with DMF. 

7.7.7 Cleavage test 

A small portion of resin was transferred to a reaction vessel and 1 mL of a solution of 

TFA/H2O/TIPS (95:2.5:2.5) was then added. The reaction was put on a rotary mixer for 45 

min. After filtration, the solution was evaporated using a stream of nitrogen and the peptide 

was dissolved in H2O/MeCN 1:1 and lyophilised. 
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7.7.8 Peptide cleavage 

The resin-bound peptide was washed with DCM and the cleavage and removal of the 

protecting groups was then performed using a cleavage cocktail of 95% TFA, 2.5% H2O and 

2.5% TIPS (5 mL of solution for a 0.1 mmol scale). The reaction was left to progress for 2 

h at room temperature on a mixer. After filtration, the cleavage cocktail was reduced in 

volume using a stream of nitrogen and the peptide was precipitated from solution with ice 

cold Et2O (40 mL) and isolated via centrifugation at 3700 rpm for 5 min. The precipitate 

was washed with ice cold Et2O, then centrifuged again and dissolved in H2O/MeCN 1:1 and 

lyophilised. 

7.7.9 TIPS-free peptide cleavage 

The resin-bound peptide was washed with DCM and the cleavage and removal of the 

protecting groups was then performed using a cleavage cocktail of 95% TFA and 5% H2O 

(5 mL of solution for a 0.1 mmol scale). The reaction was left to progress for 2 h at room 

temperature on a mixer. After filtration, the cleavage cocktail was reduced in volume using 

a stream of nitrogen and the peptide was precipitated from solution with ice cold Et2O (40 

mL) and isolated via centrifugation at 3700 rpm for 5 min. The precipitate was washed with 

ice cold Et2O, then centrifuged again and dissolved in H2O/MeCN 1:1 and lyophilised. 
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7.8 Chapter 2 Xaa-Pro-Yaa double mutant cycle peptides 

Ac-GWPQG-NH2, 1 

 

Scheme 69. Sequence of compound 1. 

1 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for microwave-assisted SPPS on the Biotage synthesiser. After 

purification via RP-HPLC, the peptide was obtained as a white solid in a 7% yield. 

HRMS (ESI+) calcd for C27H36N8O7 [M+Na]+ 607.2599, found 607.2585. HPLC: 10.4 min 

96.6% (20 min gradient), 17.9 min 94.7% (30 min gradient). 

Ac-GAPAG-NH2, 2 

 

Scheme 70. Sequence of compound 2. 

2 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for microwave-assisted SPPS on the Biotage synthesiser. After 

purification via RP-HPLC, the peptide was obtained as a white solid in a 16% yield. 

HRMS (ESI+) calcd for C17H28N6O6 [M+Na]+ 435.1963, found 435.1960. HPLC (run in 

100% buffers): 8.8 min 85.5% (20 min gradient), 12.9 min 86.9% (30 min gradient). 
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Ac-GWPAG-NH2, 3 

 

Scheme 71. Sequence of compound 3. 

3 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for microwave-assisted SPPS on the Biotage synthesiser. After 

purification via RP-HPLC, the peptide was obtained as a white solid in a 9% yield. 

HRMS (ESI+) calcd for C25H33N7O6 [M+Na]+ 550.2385, found 550.2380. HPLC: 10.7 min 

95.2% (20 min gradient), 18.7 min 97.0% (30 min gradient). 

Ac-GAPQG-NH2, 4 

 

Scheme 72. Sequence of compound 4. 

4 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for microwave-assisted SPPS on the Biotage synthesiser. After 

purification via RP-HPLC, the peptide was obtained as a white solid in a 2% yield. 

HRMS (ESI+) calcd for C43H61N11O9 [M+Na]+ 492.2177, found 492.2171. HPLC (run in 

100% buffers): 8.6 min 92.3% (20 min gradient), 13.2 min 94.1% (30 min gradient). 
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Ac-GW(N-Me)AQG-NH2, 5 

 

Scheme 73. Sequence of compound 5. 

5 was synthesised on TentaGel S Ram resin (0.24 mmol/g loading) in a 0.1 mmol scale. The 

first three amino acids in the sequence were coupled using the general procedure for 

microwave-assisted SPPS on the Biotage synthesiser. 

o-NBS protection 

Ortho-nitrobenzenesulfonyl chloride (o-NBS-Cl) (4 equiv.) was dissolved in NMP. 

Triethylamine (10 equiv.) was added to the solution and the mixture was added onto the 

resin. The reaction was left to progress for 15 min at room temperature. 

N-methylation 

After washing the resin with NMP, DBU (3 equiv.) was added to 1 mL NMP and the resin 

was treated with the solution for 3 min. Dimethylsulfate (DMS) (10 equiv.) was added to 1 

mL NMP and the solution was added onto the resin. The reaction mixture was stirred for 2 

min and the resin was then washed with NMP. This procedure was adapted from the 

literature.219,249,250 

o-NBS deprotection 

β-mercaptoethanol (BME) (10 equiv.) and DBU (5 equiv.) were added to 2 mL NMP. The 

resin was treated with the solution for 5 min and it was then washed with NMP. 
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Coupling of Trp on N-methylated Ala 

Fmoc-Trp(Boc)-OH (5 equiv.) and HATU (4.5 equiv.) were dissolved in DMF. DIPEA (6 

equiv.) was then added and the solution was stirred for 5 min. The resin was treated with the 

mixture for 3 h and washed with DMF. 

The Fmoc group was removed following the general procedure for manual Fmoc 

deprotection. The solution was collected to allow for the evaluation of the Fmoc 

concentration. The remaining couplings, acetylation and cleavage were performed following 

the general manual procedures. 

5 was obtained as a white solid in a 1% purified yield. HRMS (ESI+) calcd for C26H36N8O7 

[M+Na]+ 595.2599, found 595.2597. HPLC: 10.7 min 99.5% (20 min gradient), 18.6 min 

99.4% (30 min gradient). 

7.9 Chapter 2 GCxPCG disulfide peptides 

Screening of conditions for disulfide formation 

Disulfide formation conditions were screened on 6 as follows: 

Air oxidation in NH4HCO3, 2.5 mM 

Following the conditions from Calce et al.,254 7.6 µmol of 6 were dissolved in 3 mL of 0.1 

M NH4HCO3 in a vial at a concentration of 2.5 mM. Air was then bubbled through the 

sample for 4 h. The reaction mixture was analysed by LCMS but no product or oligomer 

mass could be observed. 

Air oxidation in NH4HCO3, 0.1 mM 

Using conditions by Annis et al.,360,361 0.5 µmol of 6 were dissolved in NH4HCO3 (0.1 M, 

pH 8) at a concentration of 0.1 mM in a vial and air was bubbled through the sample for 43 

h. A 92% yield for the formation of 8 was estimated by LCMS. 
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NCS-mediated oxidation 

Following the conditions described by Albericio et al.,255,362 a solution of N-

chlorosuccinimide in H2O/MeCN 1:1 was prepared and then added onto 0.5 µmol of 6 (2 

equiv. NCS, peptide concentration 0.1 mM) in a vial. The reaction proceeded for 15 min and 

it was then lyophilised. An estimated yield of 83% for the formation of 8 was found by 

LCMS. 

DMSO-mediated oxidation 

In a vial, 0.5 µmol of 6 were dissolved in NH4HCO3 0.1 M (0.1 mM peptide concentration, 

pH 8) and 15% in volume of DMSO was added.363 The reaction was left to stir for 6 h and 

it was analysed by LCMS. A yield of 88% for the formation of 8 was estimated by LCMS. 

DPDS-mediated oxidation 

In a vial, 0.2 µmol of 6 were dissolved in NH4HCO3 0.1 M (0.1 mM peptide concentration, 

pH 8) and 3 equivalents of 2,2'-dipyridyldisulfide were added from a 1 mM solution in 

MeOH.257 The reaction was left for 1 h and then stopped by acidification with TFA. LCMS 

analysis showed an estimated yield of 95% for the formation of 8. 

Ac-GCWPCG-NH2, 6 

 

Scheme 74. Sequence of compound 6. 

6 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for microwave-assisted SPPS on the Biotage synthesiser. The 

peptide was obtained as a white solid in a 34% yield after purification via RP-HPLC. 

HRMS (ESI+) calcd for C28H38N8O7S2 [M+Na]+ 685.2197, found 685.2194. HPLC: 11.9 

min 98.2% (20 min gradient), 22.2 min 97.7% (30 min gradient). 
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Ac-GCAPCG-NH2, 7 

 

Scheme 75. Sequence of compound 7. 

7 was synthesised on TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale, 

using the general procedure for manual SPPS. The peptide was obtained as a white solid in 

a 31% yield after purification via RP-HPLC. 

HRMS (ESI+) calcd for C20H33N7O7S2 [M+Na]+ 570.1775, found 570.1770. HPLC: 9 min 

99.6% (20 min gradient), 13.4 min 95.3% (30 min gradient). 

Disulfide-bridged Ac-GCWPCG-NH2, 8 

 

Scheme 76. Sequence of compound 8. 

In a vial, 0.2 µmol of 6 were dissolved in aqueous NH4HCO3 (0.1 M, pH 8) at a 0.1 mM 

concentration and 3 equivalents of 2,2'-dipyridyldisulfide were added from a 1 mM solution 

in MeOH.257 The reaction was stirred for 1 h and then stopped by acidification with TFA. 

After purification via RP-HPLC, 8 was obtained as a white solid in a 56% yield. 

HRMS (ESI+) calcd for C28H36N8O7S2 [M+Na]+ 683.2041, found 683.2036. HPLC: 11.3 

min 90.9% (20 min gradient), 20.4 min 88.9% (30 min gradient). 
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Disulfide-bridged Ac-GCAPCG-NH2, 9 

 

Scheme 77. Sequence of compound 9. 

9 was synthesised following the same DPDS-mediated procedure as for 8. After purification 

via RP-HPLC, the peptide was obtained as a white solid in a 50% yield. 

HRMS (ESI+) calcd for C20H31N7O7S2 [M+Na]+ 568.1619, found 568.1601. HPLC: 9.1 min 

97.9% (20 min gradient), 14.2 min 98.2% (30 min gradient). 

7.10 Chapter 2 TWxCC vicinal disulfide peptides 

Ac-TWPCC-NH2, 10 

 

Scheme 78. Sequence of compound 10. 

10 was synthesised on Fmoc-Rink Amide AM resin (0.74 mmol/g loading) in a 0.1 mmol 

scale, using the general procedure for microwave-assisted SPPS. After purification via RP-

HPLC, the peptide was obtained as a white solid in a 33% yield. 

HRMS (ESI+) calcd for C28H39N7O7S2 [M+Na]+ 672.2245, found 672.2238. HPLC: 12.2 

min 97.5% (20 min gradient), 23 min 98.4% (30 min gradient). 
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Ac-TW(N-Me)ACC-NH2, 11 

 

Scheme 79. Sequence of compound 11. 

11 was synthesised on Fmoc-Rink Amide AM resin (0.74 mmol/g loading) in a 0.25 mmol 

scale, using the general procedure for microwave-assisted SPPS. The Trp following the N-

methylated residue was coupled twice. After purification via RP-HPLC, the peptide was 

obtained as a white solid in a 10% yield. 

HRMS (ESI+) calcd for C27H39N7O7S2 [M+Na]+ 660.2245, found 660.2255. HPLC: 12.4 

min 98.9% (20 min gradient), 23.2 min 90.4% (30 min gradient). 

Disulfide-bridged Ac-TWPCC-NH2, 12 

 

Scheme 80. Sequence of compound 12. 

In a microwave vial, 10 (4 μmol, 1 equiv.) was dissolved in NH4HCO3 buffer (20 mM, pH 

7) to a concentration of 0.2 mM. 2,2'-dipyridyldisulfide (3 equiv) was dissolved in MeOH 

(12 mL) and then added onto the peptide solution. The reaction was stirred at 50 °C for 1 h. 

After that time, the reaction was quenched by acidification with TFA until the pH was acidic. 

After purification via RP-HPLC, 12 was obtained in a 43% yield. 

HRMS (ESI+) calcd for C28H37N7O7S2 [M+Na]+ 670.2088, found 670.2069. HPLC: 12.1 

min 99% (20 min gradient), 22.6 min 98.5% (30 min gradient). 
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Disulfide-bridged Ac-TW(N-Me)ACC-NH2, 13 

 

Scheme 81. Sequence of compound 13. 

13 was synthesised from 11 in a 1 μmol scale, following the same procedure as for 12. This 

afforded 13 in a 22% yield after purification. 

HRMS (ESI+) calcd for C27H37N7O7S2 [M+Na]+ 658.2088, found 658.2074. HPLC: 12 min 

98.2% (20 min gradient), 22.4 min 99.5% (30 min gradient). 

7.11 Chapter 3 tripeptide systems 

Solution synthesis test of (2S)‐2‐[2‐(2‐formylphenoxy)acetamido] 

propanamide, 22 

 

2-Formylphenoxyacetic acid (1 equiv., 1 mmol) and Oxyma Pure (1.5 equiv.) were dissolved 

in DMF (10 mL). H-Ala-NH2·HCl (1.5 equiv.) was then added and the reaction mixture was 

cooled to 0 °C. Once cooled, DIPEA (2.5 equiv.) and EDCI·HCl (1.5 equiv.) were added 

and the reaction was left to stir overnight at room temperature. The reaction mixture was 

concentrated under vacuum and then DCM was added (10 mL) – the organic layer was 

washed with aqueous LiCl 1 M (1 x 10 mL) and aqueous NaOH 1 M (3 x 10 mL) and dried 

over MgSO4. The mixture was then filtered and the solvent was evaporated in vacuo. The 

crude was purified through automated flash chromatography using a 0 to 15% MeOH/DCM 

gradient to furnish 22 as a white solid (4 mg, 2% yield). For the characterisation data, see 

the final procedure. 
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Base-free solution synthesis test of (2S)‐2‐[2‐(2‐formylphenoxy) 

acetamido]propanamide, 22 

 

2-Formylphenoxyacetic acid (1 equiv., 1 mmol), Oxyma Pure (1.2 equiv.) and Ala-NH2·HCl 

(1 equiv.) were dissolved in DMF. The mixture was cooled to 0 °C and then EDCI·HCl (1.1 

equiv.) was added. The ice bath was then removed and the reaction was stirred at rt 

overnight. The reaction mixture was concentrated under vacuum and re-dissolved in DCM 

(10 mL) – the organic layer was washed with aqueous LiCl 1 M (1 x 10 mL) and sat. 

NaHCO3 (3 x 10 mL) and dried over MgSO4. The mixture was then filtered and the solvent 

was evaporated in vacuo. The crude was purified through automated flash chromatography 

using 10% MeOH/DCM to furnish 22 as an orange solid (15.2 mg, 6% yield). For the 

characterisation data, see the final procedure. 

Final on-resin synthesis of (2S)‐2‐[2‐(2‐formylphenoxy)acetamido] 

propanamide, 22 

 

0.3 mmol of Fmoc-Rink Amide AM Resin (0.74 mmol/g loading) were swelled following 

the general procedure. Following the general procedures for manual SPPS, the resin was 

deprotected and Fmoc-Ala-OH·H2O was coupled, followed by Fmoc deprotection. 2-

Formylphenoxyacetic acid (5 equiv.) and Oxyma Pure (4.5 equiv.) were dissolved in DMF 

and then DIPEA (6 equiv.) and DIC (4.5 equiv.) were added. The solution was preactivated 

for 5 min and it was then added for reaction for 2.5 h at rt. Cleavage from the resin was 

performed following the general procedure, using only water as the scavenger. Purification 

was performed through RP-HPLC using a 20 to 60% B gradient. 22 was obtained as a white 

solid (34.1 mg, 45% yield). 

1H NMR (400 MHz, CDCl3) δ 10.16 (s, 1H, 12-H), 8.17 (d, J = 6.0 Hz, 1H, NH), 7.79 (dd, 

J = 7.5, 1.8 Hz, 1H, Ar-H), 7.61 (ddd, J = 8.3, 7.5, 1.8 Hz, 1H, Ar-H), 7.21 (td, J = 7.5, 0.8 

Hz, 1H, Ar-H), 6.94 (br d, J = 8.3, 0.8 Hz, 1H, Ar-H), 6.27 (s, 1H, NHAHB), 5.42 (s, 1H, 
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NHAHB), 4.62 (s, 2H, 5-H), 4.61 – 4.54 (m, 1H, 2-H), 1.56 (d, J = 7.1 Hz, 3H, 3-H). 13C 

NMR (101 MHz, CDCl3) δ 190.43 (CH), 173.77 (C=O), 167.91 (C=O), 157.58 (C), 136.12 

(Ar-CH), 134.56 (Ar-CH), 125.12 (C), 122.26 (Ar-CH), 113.24 (Ar-CH), 67.58 (CH2), 48.51 

(CH), 17.33 (CH3). HRMS (ESI+) calcd for C12H14N2O4 [M+Na]+ 273.0846, found 

273.0846. 

Solution synthesis test of (2S)‐2‐[2‐(2‐acetylphenoxy)acetamido] 

propanamide, 21 

 

In a 25 mL round bottom flask, 2-acetylphenoxyacetic acid (1 equiv., 1 mmol), Oxyma Pure 

(1.5 equiv.) and DMF (10 mL) were added. H-Ala-NH2·HCl (1.5 equiv.) was then added 

and the reaction mixture was cooled to 0 °C. After cooling, DIPEA (2.5 equiv.) and 

EDCI·HCl (1.5 equiv.) were added and the reaction was stirred overnight at room 

temperature. The reaction mixture was concentrated under vacuum and then DCM was 

added (10 mL) – the organic layer was washed with aqueous LiCl 1 M (1 x 10 mL) and 

aqueous NaOH 1 M (3 x 10 mL) and dried over MgSO4. The mixture was then filtered and 

the solvent was evaporated in vacuo. The crude was purified through automated flash 

chromatography using a 0 to 15% MeOH/DCM gradient to furnish 21 as a white solid (79.5 

mg, 30% yield). For the characterisation data, see the final procedure. 

Base-free solution synthesis test of (2S)‐2‐[2‐(2‐acetylphenoxy) 

acetamido]propanamide, 21 

 

2-Acetylphenoxyacetic acid (1 equiv., 1 mmol), Oxyma Pure (1.2 equiv.) and Ala-NH2·HCl 

(1 equiv.) were dissolved in DMF. The mixture was cooled to 0 °C and then EDCI·HCl (1.1 

equiv.) was added. The ice bath was then removed and the reaction was stirred at rt 

overnight. The reaction mixture was concentrated under vacuum and re-dissolved in DCM 

(10 mL) – the organic layer was washed with aqueous LiCl 1 M (1 x 10 mL) and sat. 

NaHCO3 (3 x 10 mL) and dried over MgSO4. The mixture was then filtered and the solvent 
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was evaporated in vacuo. The crude was purified through automated flash chromatography 

using 10% MeOH/DCM to furnish 21 as a yellow solid (82.5 mg, 31% yield). For the 

characterisation data, see the final procedure. 

Final on-resin synthesis of (2S)‐2‐[2‐(2‐acetylphenoxy)acetamido] 

propanamide, 21 

 

0.1 mmol of Fmoc-Rink Amide AM Resin (0.74 mmol/g loading) were swelled following 

the general procedure. Following the general procedures for manual SPPS, the resin was 

deprotected and Fmoc-Ala-OH·H2O was coupled, followed by Fmoc deprotection. 2-

Acetylphenoxyacetic acid (5 equiv.) and Oxyma Pure (4.5 equiv.) were dissolved in DMF 

and then DIPEA (6 equiv.) and DIC (4.5 equiv.) were added. The solution was preactivated 

for 5 min and it was then added for reaction for 2.5 h at rt. Cleavage from the resin was 

performed following the general procedure, using only water as the scavenger. Purification 

was performed through RP-HPLC using a 20 to 60% B gradient. 21 was obtained as a white 

solid (17.8 mg, 67% yield). 

1H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 7.5 Hz, 1H, NH), 7.72 (dd, J = 7.5, 1.7 Hz, 1H, 

Ar-H), 7.45 (ddd, J = 8.3, 7.5, 1.7 Hz, 1H, Ar-H), 7.04 (td, J = 7.5, 1.0 Hz, 1H, Ar-H), 6.87 

(dd, J = 8.3, 1.0 Hz, 1H, Ar-H), 6.29 (s, 1H, NHAHB), 5.34 (s, 1H, NHAHB), 4.54 (s, 2H, 5-

H), 4.50 (q, J = 7.3 Hz, 1H, 2-H), 2.56 (s, 3H, 13-H), 1.47 (d, J = 7.1 Hz, 3H, 3-H). 13C 

NMR (101 MHz, CDCl3) δ 198.90 (C=O), 173.99 (C=O), 168.43 (C=O), 156.28 (Ar-C), 

134.35 (Ar-CH), 131.43 (Ar-CH), 127.23 (Ar-C), 121.79 (Ar-CH), 113.85 (Ar-CH), 67.87 

(CH2), 48.56 (CH), 29.73 (CH3), 17.17 (CH3). HRMS (ESI+) calcd for C13H16N2O4 [M+Na]+ 

287.1002, found 287.1006. 
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Test synthetic route A for the synthesis of N‐[(1S)‐1‐
(hydrazinecarbonyl)ethyl]acetamide, 23 

 

 

Benzyl (2S)‐2‐acetamidopropanoate, 24 

 

N-acetyl-L-alanine (1 equiv., 2.3 mmol), triethylamine (1.2 equiv.) and benzyl bromide (1.2 

equiv.) were dissolved in acetonitrile (25 mL). The reaction mixture was left to stir at room 

temperature overnight. The crude was then concentrated under vacuum and 

chloroform/water 1:1 were added (30 mL). The aqueous layer was then washed with 

chloroform (2 x 15 mL) and the combined organic layers were washed with water (2 x 15 

mL) and a saturated NaCl solution (1 x 15 mL). The organic layers were then dried over 

MgSO4, filtered and the solvent was removed under vacuum to furnish benzyl acetyl-L-

alaninate as a clear oil (352.4 mg, 81% yield). 

1H NMR (400 MHz, CDCl3) δ 7.32 – 7.18 (m, 5H, Ar-H), 6.34 (d, J = 7.6 Hz, 1H, NH), 5.08 

(d, J = 3.7 Hz, 2H, 6-H), 4.59 – 4.52 (m, 1H, 3-H), 1.91 (s, 3H, 1-H), 1.31 (d, J = 7.3 Hz, 

3H, 4-H). 13C NMR (101 MHz, CDCl3) δ 173.07 (C=O), 169.75 (C=O), 135.38 (Ar-C), 

128.61 (2 x Ar-CH), 128.42 (Ar-CH), 128.08 (2 x Ar-CH), 67.07 (-CH2-), 48.14 (CH), 23.02 

(CH3), 18.34 (CH3). HRMS (ESI+) calcd for C12H15NO3 [M+Na]+ 244.0944, found 

244.0944. 

The spectroscopic data was in good agreement with the literature.364 
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[(2S)‐2‐acetamidopropanamido]azanium chloride, 25 

 

24 (1 equiv., 0.18 mmol) and EtOH (2 mL) were added to a sealed microwave vial. 

Hydrazine hydrate (10 equiv.) was then added and the mixture was refluxed at 80 °C for 6 

h. The reaction crude was concentrated under vacuum. In order to make the HCl salt, acetyl 

chloride (10 equiv.) was added dropwise onto MeOH. The mixture was stirred for 10 min 

and it was then added onto the reaction crude. The reaction was stirred for 10 min at rt and 

then the mixture was dried in vacuo. The colourless oil obtained was triturated with cold 

MeCN and filtrated using a Buchner funnel and frit. [(2S)‐2‐

acetamidopropanamido]azanium chloride was obtained as a white solid. The yield was found 

to be 76% (32.6 mg), but this could be lower as residual hydrazine could be co-precipitating 

with the desired product. For this reason, synthetic route A was abandoned and routes B and 

C were to be explored instead. 

1H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H, NH-NH3), 8.29 (d, J = 6.5 Hz, 1H, Ac-NH), 

4.32 – 4.25 (m, 2H, 3-H), 1.84 (s, 3H, 1-H), 1.24 (d, J = 7.2 Hz, 3H, 4-H). 13C NMR data 

could not be obtained due to lack of material. HRMS (ESI+) calcd for C5H11N3O2 [M+Na]+ 

168.0743, found 168.0744. 

Test synthetic route B for the synthesis of N‐[(1S)‐1‐
(hydrazinecarbonyl)ethyl]acetamide, 23 

 

Conditions for the first step at room temperature 

Acetyl alanine (2.3 mmol, 1 equiv.) was dissolved in dry DMF (25 mL) under a nitrogen 

atmosphere. The solution was cooled to 0 °C and then SOCl2 (1.2 equiv.) was added 

dropwise. The ice bath was then removed and the reaction mixture was stirred at rt overnight. 

After that time, the reaction crude was concentrated under vacuum and then re-dissolved in 

EtOH (25 mL). The mixture was refluxed at 80 °C for 2 h. After concentration in vacuo, the 

crude was dissolved in DCM and washed with water (1 x 10 mL), aqueous LiCl 1 M (1 x 10 
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mL) and sat. NaCl (1 x 10 mL) and then dried over MgSO4. After concentration under 

vacuum a brown oil was obtained. 

Conditions for the first step under reflux 

Acetyl alanine (2.3 mmol, 1 equiv.) and SOCl2 (1 equiv.) were mixed and the reaction was 

refluxed at 80 °C for 2 h. After concentration in vacuo, the crude was re-dissolved in EtOH 

(10 mL) and the mixture was refluxed at 80 °C for 2 h. 

Using these conditions no product formation was observed, and therefore this synthetic 

strategy was abandoned. Strategy C was explored instead. 

Final strategy C for the synthesis of N‐[(1S)‐1‐(hydrazinecarbonyl) 

ethyl]acetamide, 23 

 

 

N‐[(1S)‐1‐{N'‐[(tert‐butoxy)carbonyl]hydrazinecarbonyl} ethyl]acetamide, 26 

 

N-acetyl-L-alanine (1 equiv., 5 mmol) and tert-butyl carbazate (1.7 equiv.) were dissolved 

in 10% dry DMF/dry DCM (20 mL). Oxyma Pure (1.4 equiv.) and EDCI HCl (1.1 equiv.) 

were then added and the reaction was stirred at rt for 20 h.275 After concentration in vacuo, 

the crude was purified through column chromatography eluting with 92:6:2 

DCM/MeOH/acetone, which furnished 26 as a yellow oil (0.66 g, 54% yield). 

1H NMR (400 MHz, CD3OD) δ 4.33 – 4.45 (m, 1H, 3-H), 1.97 (s, 3H, 1-H), 1.46 (s, 9H, 8-

H), 1.37 (d, J = 7.2 Hz, 3H, 4-H). 13C NMR (101 MHz, CD3OD) δ 173.33 (C=O), 171.61 

(C=O), 156.16 (C=O), 80.43 (C), 47.47 (CH), 27.13 (CH3), 21.03 (CH3), 16.68 (CH3). 

HRMS (ESI+) calcd for C10H19N3O4 [M+Na]+ 268.1268, found 268.1267. 

The spectroscopic data was in good agreement with the literature.275 
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N‐[(1S)‐1‐(hydrazinecarbonyl)ethyl]acetamide, 23 

 

26 (1 equiv., 1 mmol) was dissolved in DCM (16 mL) and TFA (20% volume) was then 

added. The reaction was stirred for 1 h at rt and the crude was then concentrated under 

vacuum.275 The oil obtained was re-dissolved in Et2O and concentrated under vacuum again 

to afford 23 as a white solid (0.27 g, quantitative yield). 

1H NMR (400 MHz, CD3OD) δ 4.33 (q, J = 7.2 Hz, 1H, 3-H), 1.98 (s, 3H, 1-H), 1.38 (d, J 

= 7.2 Hz, 3H, 4-H). 13C NMR (101 MHz, CD3OD) δ 172.58 (C=O), 172.01 (C=O), 47.80 

(CH), 20.85 (CH3), 16.14 (CH3). HRMS (ESI+) calcd for C5H11N3O2 [M+Na]+ 168.0743, 

found 168.0746. 

The spectroscopic data was in good agreement with the literature.275 

Ac-Ala-(U-BTM)-Ala-NH2, 19 

 

22 (1 equiv., 0.06 mmol) and 23 (1.2 equiv.) were dissolved in MeOH/AcOH 1:1 (40 mL). 

Sodium cyanoborohydride (10 equiv.) was then added and the reaction was stirred for 30 

min at rt. Purification was performed through RP-HPLC using a 20 to 50% B gradient, which 

afforded 19 as a white solid (11 mg, 50% yield). 

1H NMR (400 MHz, CD3OD) δ 7.41 (ddd, J = 8.3, 7.7, 1.7 Hz, 1H, Ar-H), 7.34 (dd, J = 7.7, 

1.7 Hz, 1H, Ar-H), 7.06 – 7.02 (m, 2H, Ar-H), 4.78 (d, J = 1.2 Hz, 2H, 6-H), 4.48 (q, J = 7.2 

Hz, 1H, 15-H), 4.31 (s, 2H, 13-H), 4.25 (q, J = 7.2 Hz, 1H, 3-H), 1.96 (s, 3H, 1-H), 1.42 (d, 

J = 7.2 Hz, 3H, 16-H), 1.26 (d, J = 7.2 Hz, 3H, 4-H). 13C NMR (101 MHz, CD3OD) δ 177.39 

(C=O), 173.47 (C=O), 173.34 (C=O), 171.21 (C=O), 158.10 (Ar-C), 133.74 (Ar-CH), 

132.28 (Ar-CH), 123.07 (Ar-CH), 122.21 (Ar-C), 113.38 (Ar-CH), 68.01 (CH2), 52.15 
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(CH2), 50.02 (CH), 49.21 (CH), 22.30 (CH3), 18.33 (CH3), 17.63 (CH3). HRMS (ESI+) calcd 

for C17H25N5O5 [M+Na]+ 402.1748, found 402.1753. 

Ac-Ala-((S)-BTM)-Ala-NH2 and Ac-Ala-((R)-BTM)-Ala-NH2, 20a and 

20b 

 

21 (1 equiv., 0.06 mmol) and 23 (1.2 equiv.) were dissolved in MeOH/AcOH 1:1 (40 mL). 

Sodium cyanoborohydride (10 equiv.) was then added and the reaction was stirred for 30 

min at rt. Purification was performed through RP-HPLC using a 20 to 50% B gradient, which 

afforded 20a and 20b as white solids in a proportion of 29% 20a to 71% 20b (total 13.3 mg, 

56% overall yield). 

20a 

1H NMR (400 MHz, CD3OD) δ 7.38 – 7.31 (m, 2H, Ar-H), 7.04 (d, J = 7.4 Hz, 1H, Ar-H), 

7.02 – 6.97 (m, 1H, Ar-H), 4.80 (s, 2H, 14-H), 4.77 – 4.74 (m, 1H, 6-H), 4.47 (q, J = 7.2 Hz, 

1H, 16-H), 4.21 (q, J = 7.1 Hz, 1H, 3-H), 1.57 (d, J = 6.9 Hz, 3H, 7-H), 1.43 (d, J = 7.2 Hz, 

3H, 17-H), 1.30 (s, 3H, 1-H), 1.13 (d, J = 7.1 Hz, 3H, 4-H). 13C NMR (101 MHz, CD3OD) 

δ 175.98 (2 x C=O), 171.72 (2 x C=O), 155.99 (Ar-C), 129.82 (Ar-CH), 129.42 (Ar-CH), 

121.73 (Ar-C), 121.66 (Ar-CH), 112.11 (Ar-CH), 66.60 (CH2), 56.65 (CH), 48.65 (CH), 

47.81 (CH), 22.80 (CH3), 16.98 (CH3), 16.31 (CH3), 15.61 (CH3). HRMS (ESI+) calcd for 

C18H27N5O5 [M+Na]+ 416.1904, found 416.1897. 

20b 

1H NMR (400 MHz, CD3OD) δ 7.37 (m, 2H, Ar-H), 7.08 – 6.99 (m, 2H, Ar-H), 4.81 (s, 2H, 

14-H), 4.77 – 4.71 (m, 1H, 6-H), 4.48 (q, J = 7.2 Hz, 1H, 16-H), 4.23 (q, J = 7.2 Hz, 1H, 3-

H), 1.94 (s, 3H, 1-H), 1.59 (d, J = 6.9 Hz, 3H, 7-H), 1.43 (d, J = 7.2 Hz, 3H, 17-H), 1.21 (d, 

J = 7.2 Hz, 3H, 4-H). 13C NMR (101 MHz, CD3OD) δ 175.95 (C=O), 172.00 (C=O), 171.87 

(C=O), 169.75 (C=O), 156.04 (Ar-C), 130.19 (Ar-CH), 129.30 (Ar-CH), 125.53 (Ar-C), 
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121.80 (Ar-CH), 112.29 (Ar-CH), 66.65 (CH), 56.74 (CH2), 48.65 (CH), 47.89 (CH), 20.93 

(CH3), 17.01 (CH3), 16.28 (CH3), 15.25 (CH3). HRMS (ESI+) calcd for C18H27N5O5 

[M+Na]+ 416.1904, found 416.1910. 

7.12 Chapter 3 peptides 

TrpZip1 

 

Scheme 82. Sequence of TrpZip1. 

TrpZip1 was synthesised following the general procedure for microwave-assisted SPPS, 

using TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale. After purification 

via RP-HPLC, TrpZip1 was obtained in a 14% yield. 

HRMS (ESI+) calcd for C78H104N20O18 [M+2H]2+ 804.3913, found 804.3883. HPLC: 12 min 

100% (20 min gradient), 23.7 min 99.4% (30 min gradient). 

TrpZipGG 

 

Scheme 83. Sequence of TrpZipGG. 

TrpZipGG was synthesised following the general procedure for microwave-assisted SPPS, 

using TentaGel S RAM resin (0.24 mmol/g loading) in a 0.1 mmol scale. The peptide was 

obtained as a white solid in an 18% yield after purification using RP-HPLC. 
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HRMS (ESI+) calcd for C76H101N19O17 [M+2H]2+ 775.8806, found 775.8786. HPLC: 12.0 

min 96.2% (20 min gradient), 23.7 min 97.6% (30 min gradient). 

16   

 

Scheme 84. Sequence of compound 16. 

0.1 mmol of 2-Cl-Trityl chloride resin (0.74 mmol/g loading) were pre-swelled following 

the general procedure. The resin was then washed with DMF and treated with 3 mL of a 

solution of 3% hydrazine hydrate solution (~80%) in DMF (20 equiv. hydrazine) for 30 min. 

The resin was washed 4 x DMF and this process was repeated. 

Capping was then performed with 4 mL of a 10 % MeOH in DMF solution for 30 min and 

the resin was then washed 4 x DMF. 

In a 15 mL plastic tube, Fmoc-Glu(tBu)-OH (5 equiv.), HATU (4.5 equiv.) and DMF (3 mL) 

were mixed. Then DIPEA (6 equiv.) was added and the mixture was preactivated for 5 min. 

The solution was added to the resin and left to react on a rotary mixer for 2.5 h. The resin 

was then washed 4 x DMF and put on the peptide synthesiser to continue the synthesis 

following the general procedure for microwave-assisted SPPS. Cleavage from the resin was 

done following the general procedure. 16 was obtained as a white solid in a 20% yield after 

purification using RP-HPLC. 

HRMS (ESI+) calcd for C34H44N9O9 [M+H]+ 722.3257, found 722.3264. HPLC: 22.1 min 

90.8% (30 min gradient), 20.3 min 88.8% (50 min gradient). 
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17 

 

Scheme 85. Sequence of compound 17. 

The synthesis was started following the general procedure for microwave-assisted SPPS, 

using TentaGel S RAM resin (0.24 mmol/g loading) in a 0.05 mmol scale. After deprotection 

of Lys, the resin was removed from the synthesiser and transferred to a 20 mL reaction 

vessel. 

In a 15 mL plastic tube, 2-formylphenoxyacetic acid (5 equiv.), Oxyma Pure (4.5 equiv.) 

and DMF (3 mL) were mixed. DIPEA (6 equiv.) and DIC (4.5 equiv.) were then added and 

the mixture was mixed for 5 min to preactivate. The above solution was added onto the resin 

and it was mixed for 2.5 h. 

The resin was then washed 4 x DMF and 4 x DCM and the cleavage was performed 

following the TIPS-free general procedure. After purification via RP-HPLC, 17 was 

obtained as a white solid in an 11% yield. 

HRMS (ESI+) calcd for C47H61N10O9 [M+H]+ 909.4618, found 909.4582. HPLC: 26 min 

92.2% (30 min gradient), 23.4 min 92.4% (50 min gradient). 
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18 

 

Scheme 86. Sequence of compound 18. 

18 was synthesised following the general procedure for microwave-assisted SPPS, using 

TentaGel S RAM resin (0.24 mmol/g loading) in a 0.05 mmol scale. After deprotection of 

Lys, the resin was removed from the synthesiser and transferred to a 20 mL reaction vessel. 

In a 15 mL plastic tube, 2-acetylphenoxyacetic acid (5 equiv.), Oxyma Pure (4.5 equiv.) and 

DMF (3 mL) were mixed. DIPEA (6 equiv.) and DIC (4.5 equiv.) were then added and the 

mixture was mixed for 5 min to preactivate. The above solution was added onto the resin 

and it was mixed for 2.5 h. 

The resin was then washed 4 x DMF and 4 x DCM and the cleavage was performed 

following the general procedure. After purification via RP-HPLC, 18 was obtained as a white 

solid in a 41% yield. 

HRMS (ESI+) calcd for C48H64N10O9 [M+2H]2+ 462.2423, found 462.2443. HPLC: 13.3 

min 97.7% (20 min gradient), 26.3 min 97.0% (30 min gradient). 
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14 

The conditions for the reductive amination step were adapted from a literature procedure.146 

 

Scheme 87. Sequence of conjugate 14. 

1.7 µmol of 16 and 17 were mixed as aqueous solutions, then lyophilised and re-dissolved 

in MeOH/AcOH 1:1 (1.5 mM) in a microwave vial. 10 equiv. NaBH3CN were then added 

and the reaction was stirred for 15 min. After purification via RP-HPLC, 14 was obtained as 

a white solid in a 36% yield. 

HRMS (ESI+) calcd for C81H105N19O17 [M+2H]2+ 807.8962, found 807.8983. HPLC: 12.7 

min 96.2% (20 min gradient), 25.7 min 97.7% (30 min gradient). 

(S)-15 and (R)-15 

       

Scheme 88. Sequence of conjugates (S)-15 and (R)-15. 

1.7 µmol of 16 and 18 were lyophilised and then dissolved in MeOH/AcOH 1:1 (1.5 mM) 

in a microwave vial. 10 equiv. NaBH3CN were then added and the reaction was stirred for 

10 min. After purification via RP-HPLC, (S)-15 and (R)-15 were obtained as white solids in 

a 43% overall yield, with a proportion of 36% (S)-15 to 64% (R)-15. 
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(S)-15 

HRMS (ESI+) calcd for C82H107N19O17 [M+2H]2+ 814.9041, found 814.9064. HPLC: 12.8 

min 95.8% (20 min gradient), 25.9 min 96% (30 min gradient). 

(R)-15 

HRMS (ESI+) calcd for C82H107N19O17 [M+2H]2+ 814.9041, found 814.9067. HPLC: 12.9 

min 97.3% (20 min gradient), 26.6 min 97.2% (30 min gradient). 
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7.12.1 NMR analysis 

The NMR experiments were performed in AcOH-d4 buffer (10 mM, pH 5.5) with 5% D2O, 

using DSS as an internal standard. The temperature of the experiments for TrpZip1, 

TrpZipGG, 14 and the tripeptide equivalents was of 288 K, and that of (S)-15 and (R)-15 

was of 298 K. WATERGATE was used to suppress the water resonance. COSY, TOCSY, 

NOESY, ROESY and HSQC experiments were used to assign the resonances. Mixing times 

of 100, 200 or 300 msec were used for the NOESY and ROESY spectra. The chemical shifts 

(ppm) for all residues in each peptide are presented in this section. 

7.12.1.1 Tripeptide mimic 19 

Chemical shifts at 288 K: 

 

Resonance Chemical shift (ppm) 

1 1.82 

3 8.08 

4 4.0 

5 1.06 

9 4.64 

11 6.81 

12 7.26 

13 6.92 

14 7.16 

16 4.04 

18 8.62 

19 4.27 

20 1.28 

22 7.55, 6.97 
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7.12.1.2 Tripeptide mimic 20a 

Chemical shifts at 288 K: 

 

Resonance Chemical shift (ppm) 

1 1.76 

3 7.96 

4 3.94 

5 1.0 

9 4.44 

10 1.29 

12 7.24 

13 6.94 

14 7.19 

15 6.8 

17 4.59 

19 8.52 

20 4.27 

21 1.3 

23 7.57, 6.97 
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7.12.1.3 Tripeptide mimic 20b 

Chemical shifts at 288 K: 

 

Resonance Chemical shift (ppm) 

1 1.8 

3 8.02 

4 3.96 

5 1.02 

9 4.51 

10 1.33 

12 7.23 

13 6.94 

14 7.22 

15 6.81 

17 4.6 

19 8.55 

20 4.28 

21 1.29 

23 7.56, 6.97 
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7.12.1.4 TrpZip1 

Chemical shifts at 288 K (ppm): 

 1Ser 2Trp 3Thr 4Trp 5Glu 6Gly 7Asn 

H  8.97 9.58 8.95 8.38 8.2 8.16 

Hα 3.61 5.25 4.05 4.64 4.41 
3.53, 

3.82 
4.03 

Hβ 3.86 3.06, 3.19 4.05 
2.11, 

2.97 
1.80, 1.95  2.82 

Hγ   1.17  2.09, 2.17   

Hδ  7.39  7    

Hε  
7.32, 

10.27 
 

5.54, 

9.85 
   

Hζ  6.62, 7.43  
6.48, 

7.22 
   

Hη  7.14  6.94    

Cα 57.12 57.05  56.32 54.8 46.96 52.98 

Cβ 62.32 30.87 71.49 28.47 30.47  38 

Cγ   20.98  34.25   

Cδ  127.58  126.87    

Cε  124.62  120.15    

Cε  121.94  
113.91, 

121.16 
   

Cη  123.83  124.17    
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 8Lys 9Trp 10Thr 11Trp 12Lys 

H 6.59 8.53 9.75 9.04 7.67 

Hα 4.22 5.19 4.06 4.33 4.2 

Hβ 1.70, 1.78 2.96, 3.30 4.06 2.09, 2.80 1.42, 1.53 

Hγ 1.14, 1.29  1.21  1.16, 1.25 

Hδ 1.65 7.21  6.86 1.55 

Hε  7.49, 9.84  5.39, 10.10  

Hζ  7.12, 7.26  6.62, 7.43  

Hη  7.33  7.14  

Cα 54.99 56.85  56.79 54.09 

Cβ 34.46 30.03 71.61 28.49 33.43 

Cγ 22.83  21.12  24.28 

Cδ 29.08 127.61  127.61 28.62 

Cε  120.04  120.59  

Cε  121.95, 122.43  114.62, 120.35  

Cη  119.83  123.83  

NH2 cap     6.76, 7.47 
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7.12.1.5 TrpZipGG 

Chemical shifts at 288 K (ppm): 

 1Ser 2Trp 3Thr 4Trp 5Glu 6Gly 7Gly 

H  8.98 9.59 8.92 8.51 8.95 7.92 

Hα 4.92 5.27 4.93 4.73 4.42 3.74 
3.23, 

3.84 

Hβ  3.07 4.05 2.10, 3.00 1.86, 1.94   

Hγ   1.17  2.11, 2.17   

Hδ  7.44  6.93    

Hε  
7.12, 

10.36 
 5.73, 9.95    

Hζ  6.63, 7.14  6.60, 7.23    

Hη  7.43  6.98    

Cα  57.01  56.17 55.45 46.65 45.07 

Cβ  30.95 71.51 28.38 32.06   

Cγ   20.98  35.41   

Cδ  127.59  126.98    

Cε  121.89  119.95    

Cε  123.81  
113.59, 

121.35 
   

Cη  121.86  124.54    
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 8Lys 9Trp 10Thr 11Trp 12Lys 

H 6.81 8.67 9.88 9.07 7.66 

Hα 4.28 5.19 4.93 4.29 4.21 

Hβ 1.73 2.95, 3.29 4.08 2.03, 2.77 1.41, 1.52 

Hγ 1.19, 1.27  1.22  1.18, 1.25 

Hδ 1.67 7.28  6.84 1.54 

Hε 3.03 7.44, 9.93  5.31, 10.09 2.81, 2.86 

Hζ 7.58 7.25, 7.44  6.62, 7.13  

Hη  7.32  7.43  

Cα 54.31 57.07  56.7 53.79 

Cβ 35.11 29.67 71.68 28.39 33.3 

Cγ 23.16  20.87  24.27 

Cδ 29.03 127.68  127.61 28.44 

Cε 42.05 120.04  120.51 41.78 

Cε  114.85, 122.42  120.28  

Cη  124.6  114.63  

NH2 cap     6.72, 7.45 
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7.12.1.6 Conjugate 14 

Chemical shifts at 288 K (ppm): 

 1Ser 2Trp 3Thr 4Trp 5Glu 

H  8.95 9.5 8.83 8.69 

Hα 3.57 5.2 4.8 4.73 4.04 

Hβ 3.57, 3.83 3.02 4.04 2.3, 2.82 1.62 

Hγ   1.12  1.88, 2.03 

Hδ  7.42  7.05  

Hε  7.43, 10.33  5.90, 9.96  

Hζ  7.31, 7.37  6.97, 7.03  

Hη  7.24  6.63  

 

 

  6U-BTM 

{1} (a) 3.73 

 (b) 3.33 

{2} (a) 7.33 

 (b) 7.04 

 (c) 7.19 

 (d) 6.82 

{3} (a) 4.56 

 (b) 4.51 
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 7Lys 8Trp 9Thr 10Trp 11Lys 

H 7.7 8.84 9.69 9.01 7.66 

Hα 4.76 5.28 4.95 4.29 4.19 

Hβ 1.88 2.91, 3.3 4.01 2.02, 2.76 1.4, 1.51 

Hγ 1.33  1.18  1.15, 1.23 

Hδ 1.70 7.19  6.83 1.52 

Hε 3.00 7.25, 9.85  5.35, 10.09 2.84 

Hζ  7.02, 7.13  6.63, 7.42  

Hη  7.19  7.13  

NH2 cap     6.73, 7.44 

 

Chemical shifts at 278 K (ppm, used for the assignment of the carbons): 

 1Ser 2Trp 3Thr 4Trp 5Glu 

H  8.92 9.42 8.82 8.64 

Hα 3.47 5.1 4.7 4.62 3.93 

Hβ 3.57, 3.71 2.90 3.94 2.18, 2.70 1.51 

Hγ   1.02  1.76, 1.92 

Hδ  7.33  6.95  

Hε  10.3  7.09, 9.91  

Hζ  7.33  6.93  

Hη  7.2    

Cα 57.04 
under 

water 

under 

water 
under water 54.8 

Cβ 62.27 30.83 71.34 29.17 30.74 

Cγ   20.86  35.58 

Cδ  127.39  126.81  

Cε      

Cε  114.71  113.92  

Cη      
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  6U-BTM 

{1} (a, b) CH2 3.23, 3.64 

 C CH2 52.02 

{2} (a) 7.23 

 (b) 6.93 

 (c) 7.09 

 (d) 6.73 

 C (a) 134.47 

 C (b) 125 

 C (c) 132.57 

 C (d) 115.87 

{3} (a, b) CH2 4.41, 4.48 

 C CH2 71.17 
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 7Lys 8Trp 9Thr 10Trp 11Lys 

H 7.58 8.86 9.67 9.01 7.57 

Hα 4.66 5.18 4.83 4.17 4.07 

Hβ 1.78 2.80, 3.21 3.9 1.86, 2.63 1.29, 1.38 

Hγ 1.22, 1.23  1.08  1.04, 1.12 

Hδ 1.6 7.11  6.71 1.41 

Hε 2.89 7.14, 9.83  5.16, 10.02 2.73 

Hζ 7.56 7.1  6.52, 7.30  

Hη    7.01  

Cα 
under 

water 

under 

water 

under 

water 
56.55 53.85 

Cβ 35.17 30.28 71.47 28.25 33.33 

Cγ 23.73  21.46  24.21 

Cδ 29.04 127.48  127.49 28.45 

Cε 41.79 122.38   41.66 

Cε  114.76  114.42, 120.16  

Cη    123.71  

NH2 cap     6.65, 7.38 
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7.12.1.7 Conjugate (S)-15 

Chemical shifts at 298 K (ppm): 

 1Ser 2Trp 3Thr 4Trp 5Glu 

H  8.96 9.57 8.93 8.53 

Hα 3.6 5.27 4.9 4.71 3.95 

Hβ 3.89 3.12 4.1 2.34, 2.86 1.31, 1.37 

Hγ   1.18  1.83, 1.97 

Hδ  7.5  7.17  

Hε  7.32, 10.37  5.90, 10.24  

Hζ  7.47, 7.53  6.72, 7.45  

Hη  7.39  7.14  

Cα 57.28 57.2 under water under water 56 

Cβ - 30.92 at 288 K 71.46 29.52 30.73 

Cγ   20.87  35.58 

Cδ  127.68  127.01  

Cε  122.55  -  

Cε  
115.04, 

120.20 
 

114.46, 

121.22 
 

Cη  124.72  124.53  
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  6(S)-BTM 

{1} ME 1.48 

 C ME 20.32 

 HA 4.16 

 C HA under water 

{2} (a) 7.45 

 (b) 7.17 

 (c) 7.09 

 (d) 6.76 

 C (a) 131.24 

 C (b) 132.05 

 C (c) 125.53 

 C (d) 116.24 

{3} CH2 4.60, 4.68 

 C CH2 at 288 K 75.68 
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 7Lys 8Trp 9Thr 10Trp 11Lys 

H 7.17 8.9 9.71 8.97 7.74 

Hα 4.72 5.33 5.02 4.38 4.28 

Hβ 1.96 3.03, 3.40 4.07 2.15, 2.87 1.48, 1.60 

Hγ 1.28, 1.37  1.23  1.24, 1.31 

Hδ 1.77 7.36  6.91 1.62 

Hε 3.06 7.45, 10.03  5.48, 10.12 2.92 

Hζ  7.15, 7.33  6.70, 7.5  

Hη  7.25  7.21  

Cα 56.13 56.58 under water 56.85 54.21 

Cβ 35.11 30.77 
at 288 K 

71.50 
28.63 33.6 

Cγ 23.61  21.58  24.45 

Cδ 29.3 127.79  127.76 28.74 

Cε 42.06 -  120.68 41.97 

Cε  
114.97, 

121.98 
 

114.63, 

120.60 
 

Cη  124.44  123.96  

NH2 cap     6.78, 7.44 
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7.12.1.8 Conjugate (R)-15 

Chemical shifts at 288 K (ppm): 

 1Ser 2Trp 3Thr 4Trp 5Glu 

H  8.83 9.15 8.49 8.66 

Hα 3.6 5.06 4.62 4.85 4.09 

Hβ 3.79 2.61, 2.85 3.98 2.43, 2.81 1.68, 1.84 

Hγ   1.03  1.99 

Hδ  7.36  7  

Hε  10.27  6.45, 9.97  

Hζ  7.12, 7.38  6.84, 7.19  

Hη  7.25  7.02  

Cα 54.5 under water 57.7 under water 51.37 

Cβ 59.78 28.35 68.44 26.67 29.45 

Cγ   18.02  33.08 

Cδ  124.63  124.57  

Cε    117.66  

Cε  111.95, 123.15  111.47, 118.86  

Cη  121.78  121.47  
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  6(R)-BTM 

{1} ME 1.36 

 C ME 17.19 

 HA 4.69 

 C HA under water 

{2} (a) 7.4 

 (b) 7.12 

 (c) 7.21 

 (d) 6.86 

 C (a) 127.89 

 C (b) 117.75 

 C (c) 129.21 

 C (d) 114.79 

{3} CH2 4.37, 4.49 

 C CH2 69.18 
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 7Lys 8Trp 9Thr 10Trp 11Lys 

H 8.13 8.99 9.55 8.88 7.6 

Hα 4.74 5.02 4.78 4.15 4.11 

Hβ 1.91 2.82, 3.24 3.95 1.91, 2.68 1.32, 1.44 

Hγ 1.36, 1.38  1.13  1.09, 1.16 

Hδ 1.72 7.02  6.77 1.46 

Hε 3 6.69, 9.61  5.39, 10.03 2.75, 2.80 

Hζ  6.80, 7.14  6.65, 7.38  

Hη  7.08  7.1  

Cα 52.06 under water under water 53.93 51.23 

Cβ 32.02 27.2 69.01 25.65 30.47 

Cγ 21.5  18.22  21.51 

Cδ 26.44 124.79  124.88 25.71 

Cε 39.37 117.59  117.95 39.05 

Cε  
112.08, 

118.71 
 

111.84, 

117.67 
 

Cη  121.61  121.18  

NH2 cap     6.64, 7.27 
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7.12.2 Circular dichroism 

CD experiments were run in potassium phosphate buffer (20 mM, pH 7) at a 0.05 mg/mL 

concentration for far UV (30 μM), and at a 1 mg/mL concentration for near UV (0.60 mM). 

A 0.1 cm cell was used. 

Near UV experiments were run from 320 to 250 nm, at a 20 nm/min speed with 1 sec 

response. Far UV experiments were run from 260 to 185 nm, at a 50 nm/min speed with a 1 

sec response. Thermal denaturation experiments were performed in the far UV from 5 to 80 

°C, monitoring every 5 °C. The CD was also monitored at 228 nm every 1 °C. 

The calculation of the mean residue ellipticity (MRE, deg cm2 dmol-1) was performed as 

previously described:365 

MRE =
100 ∗ 𝜃

𝐶𝑀𝑅 ∗ 𝑙
=

100 ∗ 𝜃

𝐶 ∗ 𝑁 ∗ 𝑙
 

Where θ are the degrees of ellipticity in °, CMR is the mean residue concentration 

(concentration, C, in M * number of peptide bonds, N) and l is the pathlength in cm. 

7.12.2.1 Near UV spectra 
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Figure 187. Near UV spectra for the peptides under study, showing the HT and absorbance 

graphs. Experiments were run at a 1 mg/mL concentration in potassium phosphate buffer 

(20 mM, pH 7), in a 0.1 cm cell. 
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7.12.2.2 Far UV spectra 
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Figure 188. Far UV spectra for the peptides under study, showing the HT and absorbance 

graphs. Experiments were run at a 0.05 mg/mL concentration in potassium phosphate buffer 

(20 mM, pH 7), in a 0.1 cm cell. 

7.12.2.3 Thermal denaturation 

Monitoring in the far UV every 5 degrees, from 5 to 80 °C. 

 

Figure 189. Thermal denaturation for TrpZip1, run at a 0.05 mg/mL concentration in 

potassium phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 
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Figure 190. Thermal denaturation for TrpZipGG, run at a 0.05 mg/mL concentration in 

potassium phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 

 

Figure 191. Thermal denaturation for 14, run at a 0.05 mg/mL concentration in potassium 

phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 
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Figure 192. Thermal denaturation for (S)-15, run at a 0.05 mg/mL concentration in potassium 

phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 

 

Figure 193. Thermal denaturation for (R)-15, run at a 0.05 mg/mL concentration in potassium 

phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 
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Figure 194. Thermal denaturation curves measured at 228 nm for all peptides under study, 

showing the HT and absorbance curves. Experiments were run at 0.05 mg/mL 

concentrations in potassium phosphate buffer (20 mM, pH 7), in a 0.1 cm cell. 

0

20000

40000

60000

80000

100000

120000

5 15 25 35 45 55 65 75

M
R

E
 (

d
eg

 c
m

2
d

m
o

l-1
)

Temperature (°C)

FUV thermal denaturation at 228 nm

TrpZip1

TrpZipGG

14

(S)-15

(R)-15

290

300

310

320

330

340

350

360

370

5 15 25 35 45 55 65 75

H
T

 (
V

)

Temperature (°C)

HT

TrpZip1

TrpZipGG

14

(S)-15

(R)-15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 15 25 35 45 55 65 75

A
b

so
rb

an
ce

 (
A

U
)

Temperature (°C)

Absorbance

TrpZip1

TrpZipGG

14

(S)-15

(R)-15



291 

 

7.13 Chapter 4 peptides 

29 

 

 

Scheme 89. Synthetic route and sequence of compound 29. 

The synthesis of 29 was performed on Fmoc-Glu(Wang)-OAll resin (0.44 mmol/g, 0.1 mmol 

scale), using standard microwave-assisted SPPS. After deprotection of the C-terminal Trp 

residue the allyl group was deprotected: to this end, a solution of PhSiH3 (24 equiv.) in 2 mL 

DCM was added to the resin and stirred for 2 min. Then a solution of Pd(PPh3)4 (0.25 equiv.) 

in 6 mL DCM was added onto the resin and mixed for 30 min. After that time the resin was 

washed 3 x DCM, 3 x DMF, 3 x DCM and the process was repeated. 

A solution of PyBOP (5 equiv.) in DMF (6 mL) with DIPEA (6 equiv) was preactivated for 

5 min and then added on the resin to perform the on-resin cyclisation. The reaction was 

mixed for 2.5 h at rt and the resin was then washed 3 x DMF. Cleavage from the resin was 
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performed following the general procedure. Purification via RP-HPLC afforded 29 in a 7% 

yield. 

HRMS (ESI+) calcd for C70H82N12NaO16 [M+Na]+ 1369.5864, found 1369.5851. HPLC: 

19.2 min 97.9% (20 min gradient), 37.8 min 97.9% (50 min gradient). 

30 

 

 

 

Scheme 90. Synthetic route and sequence of compound 30. 

0.1 mmol of 2-Cl-trityl chloride resin (0.8 mmol/g loading) were swelled following the 

general procedure. A solution of 3 % SOCl2 (15 equiv.) in DCM (3 mL) was added to the 

resin, which was shaken for 30 min. The resin was washed 3 x DCM and this step was 

repeated. 

The resin was then treated with a 3 % hydrazine hydrate solution (~80%, 20 equiv.) in DMF 

(3 mL) for 30 min, after which time the resin was washed 3 x DMF. This process was 
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repeated twice. The resin was then capped using a 10 % MeOH/DMF solution (4 mL) for 30 

min. 

The peptide chain was elongated following the general procedure for microwave-assisted 

SPPS. After deprotection of the C-terminal Phe, a solution of 2-formylphenoxyacetic acid 

(5 equiv.), Oxyma Pure (4.5 equiv.), DIC (4.5 equiv.) and DIPEA (6 equiv.) in DMF (3 mL) 

(preactivated for 5 min) was added to the resin. The coupling was left for reaction for 2.5 h 

at rt. 

Cleavage from the resin was then performed using the TIPS-free general procedure. After 

purification via RP-HPLC, 30 was obtained in a 3% yield. 

HRMS (ESI+) calcd for C69H76N12NaO16 [M+Na]+ 1351.5394, found 1351.5378. HPLC: 

22.2 min 95.3% (20 min gradient), 44.9 min 90.3% (50 min gradient). 

28 

 

Scheme 91. Sequence of compound 28. 

2 μmol of 30 were dissolved in MeOH/AcOH 1:1 (1.5 mM) in a microwave vial. 10 equiv. 

NaBH3CN were then added and the reaction was stirred for 15 min. 28 was obtained in an 

18% yield after purification via RP-HPLC. 
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HRMS (ESI+) calcd for C69H78N12NaO16 [M+Na]+ 1353.5551, found 1353.5525. HPLC: 

17.8 min 97.3% (20 min gradient), 34.8 min 95.4% (50 min gradient). 

7.14 Chapter 5 experimental 

33 

 

Scheme 92. Sequence of compound 33. 

The synthesis was started following the general procedure for microwave-assisted SPPS, 

using Fmoc-rink amide AM resin (0.51 mmol/g loading) in a 0.25 mmol scale. After 

deprotection of Lys, the resin was removed from the synthesiser and transferred to a 20 mL 

reaction vessel. 

N-hydroxyphthalimide (9.5 equiv.), bromoacetic acid (5 equiv.), DIC (4.5 equiv.) and 

DIPEA (6 equiv.) were dissolved in DMF (5 mL) and preactivated for 5 min. The mixture 

was added onto the resin and the reaction was mixed for 3 h. 

After the resin was washed with 3 x DMF, DMF was added (5 mL) followed by hydrazine 

hydrate (80%, 2 equiv.), and the resin was mixed for 2 h. The resin was then washed 3 x 

DMF and 3 x DCM and the cleavage was performed following the TIPS-free general 

procedure. This afforded 33 as a white solid in a 7% yield after purification via RP-HPLC. 

HRMS (ESI+) calcd for C40H59N11O8 [M+2H]2+ 410.7269, found 410.7273. HPLC: 11.13 

min 97.2% (20 min gradient), 20.6 min 96.5% (30 min gradient). 
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2-(1,3-Dioxolan-2-yl)benzenamine, 35 

 

In a 100 mL flask, 2-nitrobenzaldehyde (1 equiv., 6.6 mmol) and p-toluenesulfonic acid 

monohydrate (0.2 equiv.) were dissolved in dry toluene (60 mL) under a nitrogen 

atmosphere. Then, dry ethylene glycol (10 equiv.) was added and the reaction mixture was 

stirred under reflux overnight. After cooling the crude to room temperature, it was dried in 

vacuo and then diluted with DCM and sat. NaHCO3. The aqueous layer was then washed 3 

x DCM and the combined organic layers were dried over MgSO4.
337 After drying in vacuo, 

35 was obtained in quantitative yield as an orange oil. 

1H NMR (400 MHz, CDCl3) δ 7.90 (dd, J = 8.0, 1.4 Hz, 1H, Ar-H), 7.80 (dd, J = 8.0, 1.4 

Hz, 1H, Ar-H), 7.62 (td, J = 8.0, 8.0, 1.4 Hz, 1H, Ar-H), 7.50 (ddd, J = 8.0, 8.0, 1.4 Hz, 1H, 

Ar-H), 6.48 (s, 1H, 7-H), 4.09 – 3.99 (m, 4H, 8-H, 9-H). 13C NMR (101 MHz, CDCl3) δ 

148.88 (Ar-C), 133.21 (Ar-C), 132.87 (Ar-CH), 129.66 (Ar-CH), 127.65 (Ar-CH), 124.43 

(Ar-CH), 99.59 (CH), 65.34 (CH2). HRMS (ESI+) calcd for C9H9NNaO4 [M+Na]+ 

218.0424, found 218.0424. 

The spectroscopic data was in good agreement with the literature.337 

N-(2-(1,3-Dioxolan-2-yl)phenylamine, 34 

 

A solution of 35 (1 equiv., 1.5 mmol) in ethanol was added to a stirred suspension of Na2S 

(2.5 equiv.) in ethanol (5 mL) under a nitrogen atmosphere. The mixture was stirred for 1 h 

and then triethylamine (0.7 equiv.) was added. After stirring for 10 min, the reaction mixture 

was concentrated under vacuum. The residue was diluted in Et2O, Et3N and H2O, the 

aqueous phase was washed with Et2O and the combined organic layers were washed with 

H2O.341 After drying the organic phases over MgSO4 and concentrating them over vacuum, 

34 was obtained in a 65% yield (0.16 g) as an orange oil. 
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1H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 7.6, 1.6 Hz, 1H, Ar-H), 7.15 (td, J = 7.6, 1.6 Hz, 

1H, Ar-H), 6.75 (td, J = 7.5, 1.2 Hz, 1H, Ar-H), 6.68 (dd, J = 8.0, 1.2 Hz, 1H, Ar-H), 5.82 

(s, 1H, 7-H), 4.20 (s, 2H, NH2), 4.13 – 4.03 (m, 4H, 8-H, 9-H). 13C NMR (101 MHz, CDCl3) 

δ 145.26 (Ar-C), 130.01 (Ar-CH), 127.52 (Ar-CH), 121.20 (Ar-C), 117.94 (Ar-CH), 116.47 

(Ar-CH), 103.36 (CH), 64.88 (2 x CH2). HRMS (ESI+) calcd for C9H12NO2 [M+H]+ 

166.0863, found 166.0863. 

The spectroscopic data was in good agreement with the literature.366  

O-tBu-2-aminobenzaldehyde oxime, 36 

 

A mixture of O-tBu hydroxylamine·HCl (2 equiv.) and 2-aminobenzaldehyde (1 equiv., 0.5 

mmol) in ethanol (2.5 mL) was stirred for 10 min and then NaOAc (3 equiv.) was added. 

The suspension was stirred at 50 °C for 6 h. Once cooled to rt, the crude was concentrated 

under vacuum and re-dissolved in DCM. H2O and Et3N were then added, and the aqueous 

layer was washed 3 x DCM. The combined organic phases were washed 1 x sat. NaCl 

solution and dried over MgSO4.
343 After drying in vacuo, 36 was obtained as a yellow oil 

(82.6 mg, 43% yield). 

1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H, 7-H), 7.13 – 7.07 (m, 2H, Ar-H), 6.70 – 6.66 (m, 

2H, Ar-H), 5.56 (br s, 2H, NH2), 1.36 (s, 9H, 9-H). 13C NMR (101 MHz, CDCl3) δ 151.05 

(CH), 146.19 (Ar-C), 132.09 (Ar-CH), 129.88 (Ar-CH), 116.77 (Ar-CH), 115.51 (Ar-CH), 

115.37 (Ar-C), 27.58 (3 x CH3). HRMS (ESI+) calcd for C11H16N2NaO [M+Na]+ 215.1155, 

found 215.1155. 

The spectroscopic data was in good agreement with the literature.367 
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38 

 

Scheme 93. Synthetic route and sequence of compound 38. 

The synthesis was started following the general procedure for microwave-assisted SPPS, 

using 0.1 mmol of Fmoc-Glu(Wang)-OAll resin (0.44 mmol/g loading). The Ser was left 

Fmoc-protected and the resin was transferred to a 20 mL reaction vessel. 

A solution of PhSiH3 (24 equiv.) in 2 mL DCM was added onto the resin and stirred for 2 

min. Then a solution of Pd(PPh3)4 (0.25 equiv.) in 6 mL DCM was added and the mixture 

was shaken for 30 min. The resin was washed 3 x DCM, 3 x DMF and 3 x DCM and the 

process was repeated. 

The resin was suspended in DCE (5 mL) in a sealed microwave vial and DIC (10 equiv.) 

and Oxyma Pure (10 equiv.) were added. After preactivating the mixture for 5 min, 3’-

aminoacetophenone (8 equiv.) was added and the reaction was stirred under reflux for 24 h. 

After this time, the resin was washed 3 x DMF, the Fmoc group was removed and the 

cleavage was performed following the TIPS-free general procedure. 38 was obtained as a 

white solid in a 6% yield after purification via RP-HPLC. 

HRMS (ESI+) calcd for C42H49N8O10 [M+H]+ 825.3566, found 825.3570. HPLC: 14.2 min 

94% (20 min gradient), 29 min 95% (30 min gradient). 
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37a and 37b 

 

Scheme 94. Sequence of compounds 37a and 37b. 

38 (2.3 μmol, 1 equiv.) and 33 (1.1 equiv.) were lyophilised and then dissolved in 

MeOH/AcOH 1:1 (1 mM) in a microwave vial. The reaction was stirred at room temperature 

for 3 days. After purification via RP-HPLC, 37a and 37b were obtained in a 52% overall 

yield, with a proportion of 21% 37a to 79% 37b. 

37a (Z-oxime) 

HRMS (ESI+) calcd for C82H105N19O17 [M+2H]2+ 813.8962, found 813.8960. HPLC: 13.8 

min 98.1% (20 min gradient), 29 min 97.9% (30 min gradient). 

37b (E-oxime) 

HRMS (ESI+) calcd for C82H105N19O17 [M+2H]2+ 813.8962, found 813.8969. HPLC: 14.3 

min 99.3% (20 min gradient), 30.2 min 98.6% (30 min gradient). 

2-Oxo-2-phenylethan-1-aminium chloride, 41 

 

Under a nitrogen atmosphere, hexamine (1.1 equiv.) was added to a solution of 2-bromo-

acetophenone (1 equiv., 5 mmol) in dichloroethane (25 mL). The reaction mixture was 

stirred at 60 °C for 4 h, after which time it was cooled to rt. The crude was filtered and the 

precipitate was suspended in EtOH (10 mL). 5 mL of conc. HCl was then added dropwise, 

and the mixture was stirred at rt for 18 h. The crude was then filtered and the filtrate was 

collected and concentrated under vacuum346 to afford 41 as a yellow solid (1.3 g, quantitative 

yield). 
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1H NMR (400 MHz, CD3OD) δ 8.07 – 8.02 (m, 2H, Ar-H), 7.74 – 7.69 (m, 1H, Ar-H), 7.61 

– 7.55 (m, 2H, Ar-H), 4.61 (s, 2H, 1-H). 13C NMR (101 MHz, CD3OD) δ 191.83 (C), 134.43 

(Ar-CH), 133.65 (Ar-C), 128.80 (2 x Ar-CH), 127.85 (2 x Ar-CH), 44.78 (CH2). HRMS 

(ESI+) calcd for C8H9NNaO [M+Na]+ 158.0576, found 158.0577. 

The spectroscopic data was in good agreement with the literature.368 

40 

 

Scheme 95. Sequence of compound 40. 

The synthesis was started following the general procedure for microwave-assisted SPPS, 

using 0.1 mmol of Fmoc-Glu(Wang)-OAll resin (0.44 mmol/g loading). The Ser was left 

Fmoc protected and the resin was transferred to a 20 mL reaction vessel. 

A solution of PhSiH3 (24 equiv.) in 2 mL DCM was added onto the resin and stirred for 2 

min. Then a solution of Pd(PPh3)4 (0.25 equiv.) in 6 mL DCM was added and the mixture 

was shaken for 30 min. The resin was washed 3 x DCM, 3 x DMF and 3 x DCM and the 

process was repeated. 

The resin was then suspended in DMF (5 mL), and DIC (1.2 equiv.) and Oxyma Pure (1.2 

equiv.) were added. After preactivating for 5 min, 41 (1 equiv.) was added and the reaction 

was mixed at rt for 2.5 h. The resin was then washed 3 x DMF and the process was repeated. 

The Fmoc group was removed and the cleavage was performed following the TIPS-free 

general procedure. After purification using RP-HPLC, 40 was obtained as a white solid in a 

36% yield. 

HRMS (ESI+) calcd for C42H49N8O10 [M+H]+ 825.3566, found 825.3567. HPLC: 13.9 min 

98.1% (20 min gradient), 25.6 min 98.4% (50 min gradient). 
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Ligation tests with small molecules 

 

40 (1 μmol, 1 equiv.) was lyophilised and then dissolved in a NH4OAc buffer (0.1 M, pH 

4.5) and 5% DMF to a 1 mM concentration in a microwave vial. O-tBu-hydroxylamine HCl 

(8 equiv.) was added and the reaction mixture was stirred at rt for 5 days. 

 

33 (1 μmol, 1 equiv.) was lyophilised and then dissolved in a NH4OAc buffer (0.1 M, pH 

4.5) and 5% DMF to a 1 mM concentration in a microwave vial. Acetophenone (8.5 equiv.) 

was added and the reaction mixture was stirred at rt for 1 day. 

43 

 

Scheme 96. Sequence of compound 43. 

The synthesis was started following the general procedure for microwave-assisted SPPS, 

using 0.025 mmol of Fmoc-Glu(Wang)-OAll resin (0.44 mmol/g loading). The Ser was left 

Fmoc protected and the resin was transferred to a 20 mL reaction vessel. 

A solution of PhSiH3 (24 equiv.) in 2 mL DCM was added onto the resin and stirred for 2 

min. Then a solution of Pd(PPh3)4 (0.25 equiv.) in 6 mL DCM was added and the mixture 

was shaken for 30 min. The resin was washed 3 x DCM, 3 x DMF and 3 x DCM and the 

process was repeated. 

The resin was then suspended in DCM (6 mL), and DIC (10 equiv.) and Oxyma Pure (10 

equiv.) were added. After preactivating for 5 min, aminoacetaldehyde dimethyl acetal (8 

equiv.) was added and the reaction was mixed at rt overnight. The Fmoc group was then 
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removed and the cleavage was performed using 85% TFA and 15% H2O. Purification via 

RP-HPLC afforded 43 as a white solid in a 2.5% yield. 

HRMS (ESI+) calcd for C36H45N8O10 [M+H]+ 749.3253, found 749.3246. HPLC: 14 min 

84% (20 min gradient), 28.5 min 82.5% (30 min gradient). 

42a and 42b 

 

Scheme 97. Sequence of compounds 42a and 42b. 

43 (0.9 μmol, 1 equiv.) and 33 (1.2 equiv.) were lyophilised and then dissolved in 

MeOH/AcOH 1:1 (1 mM) in a microwave vial. The reaction was stirred at room temperature 

for 24 h. 42a and 42b were obtained in a 54% overall yield after purification via RP-HPLC, 

in a proportion of 57% 42a to 43% 42b. 

42a (Z-oxime) 

HRMS (ESI+) calcd for C76H101N19O17 [M+2H]2+ 775.8806, found 775.8797. HPLC: 12.5 

min 84.2% (20 min gradient), 25.1 min 81.2% (30 min gradient). 

42b (E-oxime) 

HRMS (ESI+) calcd for C76H101N19O17 [M+2H]2+ 775.8806, found 775.8804. HPLC: 12.8 

min 72% (20 min gradient), 26 min 65.4% (30 min gradient). 

45 

 

Scheme 98. Sequence of compound 45. 
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42a (0.1 μmol, 1 equiv.) was dissolved in MeOH/AcOH 1:1 to a concentration of 1 mM. 

Then NaBH3CN (10 equiv.) was added and the mixture was stirred at rt in a glass vial for 3 

h. This afforded 45 as a white solid in a 28% yield after purification using RP-HPLC. 

HRMS (ESI+) calcd for C76H103N19O17 [M+2H]2+ 776.8884, found 776.8878. HPLC: 12.3 

min 100% (20 min gradient), 24.6 min 98.6% (30 min gradient). 

7.14.1 Circular dichroism 

CD experiments were run at a 0.05 mg/mL concentration (30 μM) in sodium phosphate 

buffer (20 mM, pH 7) for 37a, 37b and 42a. For 42b and 45 a HEPES buffer (10 mM, pH 

7) was used. A 0.1 cm cell was used for 42b and 45, and a 0.2 cm cell was used for 42a, 37a 

and 37b. 

Far UV experiments were run from 260 to 185 nm, at a 20 or 50 nm/min speed with a 2 sec 

response. Thermal denaturation experiments were performed in the far UV from 5 to 80 °C, 

monitoring every 5 °C. The CD was also monitored at 228 nm every 1 °C. 

7.14.1.1 Far UV spectra 
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Figure 195. Far UV spectra for the peptides under study, showing the HT and absorbance 

graphs. Experiments for each peptide were run in the conditions described above. 
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7.14.1.2 Thermal denaturation 

Monitoring in the far UV every 5 degrees, from 5 to 80 °C. 

 

Figure 196. Thermal denaturation for 37a, run at a 0.05 mg/mL concentration in sodium 

phosphate buffer (20 mM, pH 7), in a 0.2 cm cell. 
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Figure 197. Thermal denaturation for 37b, run at a 0.05 mg/mL concentration in sodium 

phosphate buffer (20 mM, pH 7), in a 0.2 cm cell. 

 

Figure 198. Thermal denaturation for 42a, run at a 0.05 mg/mL concentration in sodium 

phosphate buffer (20 mM, pH 7), in a 0.2 cm cell. 
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Figure 199. Thermal denaturation for 42b, run at a 0.05 mg/mL concentration in HEPES 

buffer (10 mM, pH 7), in a 0.1 cm cell. 

 

Figure 200. Thermal denaturation for 45, run at a 0.05 mg/mL concentration in HEPES buffer 

(10 mM, pH 7), in a 0.1 cm cell. 
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Figure 201. Thermal denaturation curves measured at 228 nm for all peptides under study, 

showing the HT and absorbance curves. Experiments for each peptide were run in the 

conditions described above. 
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