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Abstract 

Autism Spectrum Disorder is a lifelong neurodevelopmental condition associated 

with large lifetime costs to services, the individuals and their families. To 

develop appropriate support, a unified account of the condition needs to be 

found to provide a framework for research to build on. This thesis focuses on 

testing one of the recently proposed theories – the theory of High Inflexible 

Precision of Prediction Errors in Autism (HIPPEA), which interprets autism 

through a predictive coding perspective. The predictive coding framework 

argues that through experience, the brain forms predictions about the incoming 

sensory information, which it then compares with the actual input. Mismatches 

produce prediction errors which are weighed in comparison to the prediction, 

and if enough weight is assigned to the precision of the prediction error, a 

change in the prediction or the action is enacted. HIPPEA poses that autism 

arises from a difference in the tuning of this general neurocognitive mechanism 

whereby attention leads to the invariably high precision setting of prediction 

errors. This, in turn, leads to the creation of narrow prediction models that are 

based on infrequent contingencies and noise. This PhD aims to contribute 

research results and paradigm designs that investigate precision weight setting 

of prediction errors in autism. 

This thesis presents three behavioural and one neuroimaging experiments, and 

one meta-analysis. Each experiment modulates attention and expectation under 

different experimental paradigms allowing for the investigation of these two 

factors in multiple contexts. Chapter 2 makes use of an established apparent 

motion paradigm. In this chapter, endogenous attention is controlled allowing 

the investigation of the differences in prediction establishment and prediction 

error processing in neurotypical and autistic individuals. Moving forward, to 

establish the viability of using biological motion stimuli as an effective way to 

measure differences between autistic and non-autistic individuals, Chapter 3 

presents a large-scale meta-analysis of behavioural, eye-tracking, EEG and fMRI 

studies investigating biological motion perception and interpretation in autism. 

Chapter 4 presents two studies that look at the effects of autistic traits in a task 

that orthogonally modulates attention and expectation by explicitly instructing 

participants about the statistical regularity of events and by providing implicit 
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cuing using a human point-light kicker or a coherent dot-motion display. Finally, 

Chapter 5 presents a proof-of-concept study, which examines the feasibility of a 

modification in a recently developed EEG paradigm of hierarchical frequency 

tagging of bottom-up and top-down signals using dynamic human biological 

motion. This paradigm allows the investigation of the representation of low- and 

high-level components of the human point-light display, along with their 

integration in the brain while modulating attention and expectation through task 

instruction. 

The results from this thesis indicate that like neurotypical participants, autistic 

individuals can create and benefit from the development of predictions either 

through illusory motion or through the explicit establishment of expectations. In 

line with HIPPEA, this indicates that it is not the establishment of predictions 

that is the cause of the traits observed in autism. Moreover, what we see is that 

unpredictable events are treated differently, suggesting disproportionate 

amplification of unpredictable events, as suggested by HIPPEA. However, we do 

not see support for the ‘inflexible’ part of the HIPPEA theory. Instead, this thesis 

concludes that prediction errors show some special treatment in autism, but 

that is context-dependent. For research to move forward, it is paramount that 

attention is a controlled factor, and that context-dependent precision weight 

setting of prediction errors is incorporated in a reviewed version of the HIPPEA 

theory. 
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 Autism Spectrum Disorders and the 
predictive processing framework 

Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental condition 

characterised by restrictive and repetitive behaviours and social and 

communicative difficulties, which can but do not have to co-occur with language 

difficulty (American Psychiatric Association, 2013). Additionally, one of the new 

additions to autism characterisation in the final updates of both the 

International Classification of Diseases -11 (World Health Organisation, 2020) and 

Diagnostic and Statistical Manual of Mental Disorders – 5 (DSM 5) (American 

Psychiatric Association, 2013) is the presence of hyper- and/or hypo-sensitivities 

or reactivities to sensory information. Prevalence statistics vary between years, 

countries and methodology used to obtain the statistics, which obscures the 

condition’s true prevalence (Fombonne, 2018). Prevalence measures range from 

1.68% in 8-year-olds in the US (Baio et al., 2018), to ~1% in China (Sun et al., 

2019), 1.1% in England (Brugha et al., 2012), between 0.4 – 1.9% amongst 

countries in the European Union (ASDEU, 2018) and 2.64% in South Korea (Kim et 

al., 2011). Overall, it appears that autism prevalence tends to be slightly above 

1% across countries but with a large standard deviation. As the condition is a 

lifelong condition, the lifetime costs to society in the UK range between £1.5 

million and £2.4 million, with 56% of costs accounted for by services, 42% by loss 

of employment and 2% in caregiver costs (Rogge & Janssen, 2019). In the US, 

lifetime social costs (medical and non-medical costs) of the condition are 

approximated to be around $3.6 million in 2019, with the total cost between 

1990-2019 approximated to ~$7 trillion and expected to reach between $11.5 

trillion if the prevalence stays the same and $14.9 trillion if the prevalence 

increases in a similar rate to previous decades (Cakir et al., 2020). However, it is 

argued that some of these costs could be reduced if risk factors and better 

support measures are found (Cakir et al., 2020). To be able to achieve this, a 

reasonable and unified account of the condition is needed to provide a 

framework on which research can build on.  

This thesis focuses on testing one of the recently proposed theories for 

understanding autism, which interprets autism through a predictive coding 

perspective - the theory of High Inflexible Precision of Prediction Errors in 
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Autism (HIPPEA, Van de Cruys et al., 2014). It poses that autism characteristics 

arise from a difference in the tuning of a general neurocognitive mechanism, 

rather than a specific dysfunction. The proposed theory puts autism at one end 

of the spectrum of cognition where life experiences and genetic contributions 

allow for a neurocognitive mechanism that functions efficiently in neurotypicals 

to lead to the presentation of autism. This thesis contributes to the available 

and accumulating evidence investigating this theory through the use of 

psychophysical paradigms along with new conceptual paradigms with clearly 

defined outcomes.  

This chapter will first briefly introduce autism as a condition and then it will 

focus on the applicability of the predictive coding framework to autism. It will 

introduce predictive coding as a general framework and review recent evidence 

for and against two of the main competing theories, justifying the selection of 

one of them as the topic under investigation.  

Throughout this thesis, individuals diagnosed with autism spectrum disorder will 

be referred to with diagnosis-first (i.e., autistic individual) and person-first (i.e., 

individual on the autism spectrum) labelling. As there is no existing consensus 

within the autism community about the use of language (Bury et al., 2020; 

Kenny et al., 2016) the terminology will be used interchangeably. Additionally, 

when discussing participants from the general population – like control 

participants, they will be referred to as neurotypical, rather than typical, 

healthy, or normal. This aims to minimise the stigma often associated with 

autism as unhealthy, abnormal, or atypical. Instead, it emphasises the 

neurodiversity of the two populations and the neurodevelopmental nature of 

autism. 

 What is autism? 

Autism is a lifelong condition characterised by large heterogeneity in 

phenotypical as well as in genetic expression. Individuals on the spectrum can 

vary from needing little to no support, to requiring substantial support due to 

severe impairment in functioning (Masi et al., 2017). Substantial time has passed 

since the first description of autism by Kanner in 1943. Moreover, since autism 

was introduced as a separate diagnostic category three different updates of the 
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Diagnostic and Statistical Manual of Mental Disorders (DSM) have come and gone. 

However, the diagnosis of autism is still based on behavioural characteristics 

(American Psychiatric Association, 2013; World Health Organisation, 2020). This 

is mainly due to the lack of consensus in findings about the underlying cause of 

autism.  

ASD is commonly described as a genetic condition and it is estimated that 

anywhere between 400 and 1000 genes can lead to its development along with a 

wide range of de novo copy-number variants (a genetic mutation or variation, 

that is not inherited, and occurs for the first time in an individual) (Masi et al., 

2017). However, a large amount of the heterogeneity comes after birth during 

the developmental stages, potentially due to higher susceptibility linked to this 

varied genetic make-up (Landrigan, 2010; Masi et al., 2017). In this way, no two 

individuals are the same and there is not a homogenous autism phenotype. Many 

of the characteristics specific to autism are present to various degrees among 

the general population, however, it is the severity to which they occur and 

interact within autistic individuals that leads to impairment in their daily 

functioning (American Psychiatric Association, 2013). In fact, questionnaires that 

measure autism-like characteristics in the general population have been used as 

proxies to observe how varying degrees of these traits can affect task 

performance in the neurotypical population. Autism-like characteristics, as 

measured by the Autism Quotient (AQ, Baron-Cohen et al., 2001), are observed 

to a lesser degree within the general population, however, participants with 

higher scores have been shown to reliably demonstrate performance patterns 

similar to individuals on the autism spectrum (eg. Cribb et al., 2016; Stewart et 

al., 2009).  

Much research has gone into attempts to characterise autism and its phenotype. 

In the perceptual domain, it has been shown that individuals on the autism 

spectrum are more likely to focus on local components as opposed to the global 

picture, which is evident in faster reaction times in tasks that require finding 

smaller patterns within a larger whole (Simmons et al., 2009). However, these 

findings are dependent on the task itself and the makeup of the sample (Van der 

Hallen et al., 2015; Van Eylen et al., 2015). Similar findings have been observed 

in the auditory literature, with better performance on pure-tone detection tasks 

but this performance tends to disappear in complex melodic tasks (O’Connor, 
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2012). Additionally, investigation of global motion perception abilities has 

indicated reduced ability to detect global motion in tasks such as coherent 

motion detection tasks from random-dot kinematograms (Van der Hallen et al., 

2019). Attention research in autism has also suggested a difficulty in the ability 

to respond to rapidly presented cues, reduced divided attention and shifting 

attention abilities, and more spatially narrow focused attention, which is 

suggested to lead to longer response times, rather than complete failure in 

detecting targets (Ames & Fletcher-Watson, 2010). There appear to be no 

difficulties in alerting behaviour, but problems arise at the point of 

disengagement (Orekhova & Stroganova, 2014).  

A significant amount of research has also tried to characterise differences in the 

social domain. Social difficulties are also some of the more pronounced in 

autism, with difficulties in maintaining joint attention, using gaze direction to 

engage in joint activities and figurative language comprehension, reduced 

attention to faces and voices (Kalandadze et al., 2018; Papagiannopoulou et al., 

2014; Volkmar, 2011). Additionally, similar to the findings in the perceptual 

domain, findings concerning the perception and interpretation of human 

biological motion are also dependent on the type of task. However, there 

appears to be a consistent reduced ability to detect and to extract information 

about intentions and emotions from human movement from degraded (point-

light displays) and complete stimuli (Federici et al., 2020; Todorova et al., 2019; 

Van der Hallen et al., 2019). Differences in these areas can, in turn, lead to 

difficulty in forming relationships and feelings of isolation (Muler et al., 2008; 

Sosnowy et al., 2019). 

Restrictive and repetitive behaviours and interests are also an essential part of 

the autism diagnosis. They encompass a variety of behaviours such as repeatedly 

performed movements and sensory behaviours, areas of intense interests and 

insistence on sameness. Repetitive behaviours have been negatively correlated 

with adaptive skills (Szatmari et al., 2006). However, these behaviours appear to 

reduce with age (Barrett et al., 2018). On the other hand, insistence on 

sameness has been shown to be negatively correlated with characteristics in the 

communication and language domains (Szatmari et al., 2006) but it does not 

appear to show a change with age in adults (Barrett et al., 2018). Furthermore, 

the levels of these behaviours differ between the sexes, with males showing 
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heightened stereotyped behaviours and restricted interests, whereas females 

show heightened compulsive, restricted and self-injurious behaviours (Antezana 

et al., 2019; McFayden et al., 2020). Moreover, females tend to demonstrate 

more interests with social content such as animals, activism etc., which can lead 

to interests being missed (McFayden et al., 2020).  

From a neuroscience perspective, a meta-analysis of functional magnetic 

resonance imaging (fMRI) studies on autism shows that there are consistent 

differences between autistic and neurotypical individuals (Philip et al., 2012). 

Some of the findings include reduced activation in visual processing areas, 

reduced activation in areas associated with receptive language processing, areas 

related to face and human form perception, decreased activation in automatic 

attentional networks and networks associated with cognitive control and hypo- 

and hyper-activation in areas related to motor tasks, as well as increased 

activation in areas associated with learning and planning through reward and 

punishment (Philip et al., 2012). Additionally, the differences in brain function 

appear to change with age, indicating that different networks become involved 

with increasing age. This finding is very important, as it is often seen in the 

literature to talk about individuals on the autism spectrum, rather than the 

different developmental stages. As developmental stages play an important role 

in neurotypicals, they should be considered when extrapolating to the condition 

as a whole (see Chapter 3; Crawley et al., 2019; Todorova et al., 2019). 

It is clear that autism is a very diverse condition, with findings in multiple areas 

of functioning. Explaining autism and its characteristics has hence been a large 

area of research with numerous cognitive theoretical accounts of autism gaining 

and losing traction in waves throughout the years (Fletcher-Watson & Happe, 

2019). A few will be briefly described below. This is not an exhaustive list of the 

existing theories about autism but will illustrate some of the most prominent 

ones. 

Attempt to explain ASD have tended to focus on certain components of the 

autism phenotype rather than on the coherent whole. On one hand, the ‘Theory 

of Mind’ account as described by Baron-Cohen (2000) focuses mainly on the 

social component of autism. It is built around the ability to attribute separate 

mental states to oneself and other people. The ‘Theory of Mind’ explanation of 
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autism argues that shortcomings in these mentalising abilities provide an 

account of the social difficulties related to autism, where the reduced ability to 

socially interact with neurotypical individuals and to interpret social cues is due 

to a difficulty in developing mentalising abilities like joint attention (Baron-

Cohen et al., 1992). On the other hand, the theories of Happe and Frith (2006) 

and Mottron et al. (2006) focus mainly on the perceptual characteristics of 

individuals on the autism spectrum - lower susceptibility to illusions, better 

performance on tasks requiring a focus on details over a focus on the global 

context, savant abilities. Whereas the former theory argues for a local bias with 

the cost to global processing, the latter argues for enhanced local processing 

with preserved global. Unfortunately, which one of these arguments best 

represents autistic individuals best is not determined due to many conflicting 

findings (Simmons et al., 2009).  

These theories are not mutually exclusive and although they have had a great 

influence over the way the field develops, they are often unable to explain the 

characteristics that are not central to the theory (Fletcher-Watson & Happe, 

2019). Thus, there is a need for a unifying concept that encompasses all 

components of autism, rather than focusing only on one or a few of the 

condition’s characteristics. There have been some attempts to achieve this by 

explaining the condition with either too high (Simmons et al., 2007, 2009) or too 

low neural noise (Davis & Plaisted-Grant, 2015), with arguments that the low 

endogenous noise theory explains the high global noise in the autistic neural 

system (Simmons & Milne, 2015). However, these theories tend not to provide 

complete explanations of the social aspects of the condition.  

 New theoretical avenues for autism research 

For the past several decades, our understanding of the way people interact with 

the world and the way the brain encodes and perceives it has been driven by the 

understanding that the brain is not just a passive observer and receiver of 

information (Friston et al., 2017). Indeed, the brain encodes a representation of 

our environment and that representation is consistently tested against the 

reality of sensory experiences (Friston et al., 2006). These models are based on 

Bayesian theory and the hierarchical and recurrent nature of the brain 

architecture and present the brain as a predictive system. The predictive 
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processing framework, which is based around this premise, explains human 

behaviour and its variations between individuals as differences in these general 

neurocognitive mechanisms. In this sense, the predictive processing framework 

could provide a unifying framework for numerous phenomena and 

neuropsychological conditions. One of these is autism.  

The rest of this chapter will be structured in the following way. Section 1.2.1 

will provide an overview of predictive processing in general. It is important to 

note that there are different models and propositions that fall under the 

‘predictive processing’ framework like active inferencing as proposed by Friston 

et al. (2017) and the Opposing Processes as proposed by Press et al. (2020). In 

the section, I aim to present a broad overview of what is discussed as predictive 

coding, and it should be kept in mind that there are some differences in the 

specifics between accounts. In Section 1.2.2 and 1.2.3, the application of this 

framework to autism will be discussed by describing the two competing autism 

theories based on the predictive processing framework. Sections 1.2.4 and 1.2.5 

will discuss research that tests the main concepts of the two competing 

theories. The final section 1.3 will bring all the information together, charting 

the purpose of this thesis and the way the rest of the chapters will progress.  

1.2.1 The predictive processing framework 

The cornerstone of the predictive processing framework is the idea that the 

brain attempts to maintain homeostasis and minimise entropy by making 

predictions about the incoming information, as opposed to other learning 

theories like reinforcement learning, where the proposed mechanism is the 

brain’s attempt at maintaining a high-reward state (Friston, 2009; Sajid et al., 

2019).  

When a prediction error is encountered, the system can either update the 

predictive model, rely on the prediction or act out on the environment to 

change it (Friston et al., 2011). In this way, the biological system minimises the 

entropy introduced by prediction errors. In this context, Friston (2010) 

formulates entropy as a measure of uncertainty or the average surprise of 

outcomes. At the simplest level, we can look at the predictive processing 

framework as explained by Friston and colleagues in one of their seminal papers 
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(Friston et al., 2011). In active inference, predictions are formed based on 

specific goals and knowledge about the current state of the environment. 

Actions are executed as a response to those predictions, attempting to attain 

those initial goals. Mismatches between the strong predictions about the state of 

one’s body and the external information received from the body’s movement are 

minimised, up weighting the prediction by engaging reflexes to make sure those 

predictions are attained (Friston, 2010; Yon et al., 2019). On the other hand, in 

perceptual inference, the perceptual input that we get from the environment is 

used to update our predictions and in turn, minimise any future prediction errors 

(Yon et al., 2019). Thus, the brain learns new information about the way the 

world functions using information from the past and predictions about the future 

in combination with prediction errors when those predictions turn out to be 

inaccurate. 

Evidence for the ‘entropy minimisation’ aspect of the brain comes from studies 

that have shown that predicted events reduce the activation in lower-level brain 

areas through modulatory behaviour of higher-order brain areas. Minimising 

activation in lower-level sensory areas in such a way allows the brain to use less 

energy. One example of this pattern of activation is seen in apparent motion 

paradigms, where stimuli that appear on the illusory motion path in time with 

the expected motion elicit lower primary visual cortex (V1) activation in 

comparison with stimuli that appear out of time (Alink et al., 2010). Moreover, 

this specific behaviour appears to be modulated by the activation in higher-order 

brain areas like V5, which are associated with motion perception (Vetter et al., 

2012). Similar behaviour has been observed in cueing paradigms, where a cue 

indicating the location of a stimulus leads to reduced V1 activation when the 

stimulus occurs at the cued location in comparison to when the stimulus occurs 

at a different location (Kok, Rahnev, et al., 2012). Moreover, expectations 

formed about the specific pattern of visual stimulation, have been shown to 

elicit anticipatory activity in V1 after the presentation of the beginning of a 

sequence in the absence of the following stimuli (Ekman et al., 2017). This 

pattern of activation was not observed when the ending of the expected 

sequence was presented. This indicates that the brain creates expectations not 

only about locations but also about patterns that are related in space and time. 

Using more complex stimuli, Muckli et al. (2015) were able to show that in a 
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paradigm where part of a real-life stimulus was absent – a blank quadrant from 

an image - brain activity can be used to decode the missing part of the image. 

More specifically, brain activity in the outer superficial layers of V1 was 

indicative of contextual feedback information, whereas observing the full image 

showed a peak activation in mid-layers of V1. The origin of that contextual 

information is suggested to come from extrastriate visual areas, along with 

higher-order cortical and subcortical regions (Muckli et al., 2015).  

One specific example of entropy minimisation has been provided by Tod and 

Cornwell (2018). They used a paradigm, where participants learnt to expect a 

specific variability of the occurrence of a deviant stimulus within a standard 

stream of tones – either a very small deviation from the standard onset time 

(±10ms) or a large deviation from the standard onset time (±200ms). Using 

mismatch negativity (MMN) they showed that when moving from the more 

precise (10ms) to the less precise (200ms) environment there was a decrease in 

the N2 component in the electroencephalographic (EEG) signal, which 

corresponds to the oddball effect in such tasks. However, the decrease was 

consistent with the reduction of the activation to the standard. Thus, overall, 

the activation difference between the standard and the deviant had not 

changed. The authors attribute this behaviour to the fact that the deviant’s 

onset is less precise – further away from the expected 500ms onset-to-onset 

timing. This creates a noisier environment in comparison to the learned 

variability and the brain should not aim to incorporate the new information into 

the existing model as the already existing predictive model is ‘good enough’ and 

the new prediction errors would be considered noise (Todd & Cornwell, 2018). 

This interpretation would lead to the logical conclusion that the brain allows for 

small variability within the prediction to occur but when the variability becomes 

too large, the brain should not aim to decrease the specificity of the model as 

that would create a noisier prediction. When the participants moved from the 

200ms deviation to the 10ms deviation – i.e., from a less to a more precise 

prediction, Todd and Conrwell (2018) observed an initial increase in the N2 

component, but with time, the component returned to the previous difference 

observed when the expectation was being established. Todd and Cornwell (2018) 

attribute this phenomenon to an increase of precision – the shorter variation in 

onset is more precise than the larger because the difference from the expected 
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onset-to-onset timing is smaller. The change in the expectation leads to initial 

prediction error detection, which is later accumulated into the new prediction. 

In short, the prediction was updated based on encountering an error that 

differed from the expected variation. In summary, Todd and Cornwell (2018) 

aimed to show that when moving from a less to a more precise environment, 

even in a passive task, the brain would respond in a way that would try to 

minimise uncertainty and in this way either lead to updating the prediction and 

learn to expect new variation or to discounting the added uncertainty as noise.  

Paradigms like this provide us with a lot of insight into the way the brain deals 

with prediction errors in a passive environment. Repeating the experiment but 

changing the task to an active one, could also allow us to see how these effects 

will change when there is an action required in the presence of an odd sound. It 

is possible that in that case the 200ms oddball would elicit a larger N2 

component because responding to it would coincide with the goal of the system. 

It would also be interesting to see what would happen if there was variability in 

the presentation of the stimulus – i.e., comparing activation when timing varies 

between 100-200ms and between 10-20ms for example would make the evidence 

of precision more convincing. Further, this study, unfortunately, is not able to 

show what happens if the old conditions return to observe whether the brain has 

indeed updated the old prediction, or what the authors are observing is to an 

extent attributable to repetition suppression. Such changes, however, would 

have complicated the design, reduced the power, and potentially introduced 

noise in the EEG signal. Thus, this paradigm would have to be considered a good 

proxy for the proposed framework.  

Hence, learning in the predictive processing framework occurs only if enough 

weight is given to the incoming information and minimises the uncertainty of the 

environment. However, if the environment does not provide enough information 

for the organism to be able to establish its regularity, a prediction error would 

not have the same amount of precision because the statistical regularity of the 

environment is not strong enough to evoke a high precision prediction error. The 

importance of the regularity of the environment for precision modulation has 

been shown by Southwell and Chait (2018), where a deviant sound in terms of 

pitch was presented in the context of a predictive or a random pattern. In their 

results, the deviant sound in the predictive pattern elicited a larger response in 
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comparison to the deviant sound in the random pattern. In this situation, a 

prediction error in a predictive pattern would be more precise because the 

environment would be less noisy. In the random pattern, a deviant sound in 

terms of pitch would be surprising, however as there is a less specific prediction, 

there would be a larger allowance for prediction errors and would elicit a 

smaller response than the prediction error, which is coming from an environment 

with a narrow prediction. Thus, not every prediction error would be due to an 

inaccurate prediction as it might be caused by noisy stimuli. In these cases, we 

observe increased weighting of the prediction, rather than the prediction error 

in the form of sharpening of the expectation (Kok, Jehee, et al., 2012; Press & 

Yon, 2019).  

Thus, the overall main components of the predictive processing framework are 

the prediction and the prediction error. The balance between these two 

components and the influence that each one has on the neurocognitive system is 

determined by the precision setting of each one. 

1.2.1.1 The hierarchical structure of the predictive processing 
framework 

The underlying concept of the predictive processing framework is based on 

predictions within hierarchical systems. The brain by nature is a hierarchical 

structure, and at each level, there is a generative model that forms a prediction 

about the expected incoming information (Sajid et al., 2019). If we take the 

visual system in the brain, a simple overview will tell us that the information 

from the eyes enters the primary visual cortex (V1), then travels up the 

hierarchy where more and more complicated information about the visual 

stimulus is decoded – i.e., the fusiform face area is suggested to deal with face 

perception, V5/MT with motion perception, parietal place area with houses, etc. 

At each level of the hierarchy, the incoming information is matched against the 

prediction. How a mismatch between the error and prediction is handled is 

dependent on the precision setting of the prediction error. If the new incoming 

information is not ambiguous and/or the task requires a reaction or response – 

i.e., the prediction error is of relevance to the task at hand, then it would be of 

higher precision. Thus, if the prediction error is of high precision, then an 
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attempt will be made to update the prediction to explain away the difference 

between the predicted and the encountered stimulus.  

Such hierarchical structure has been revealed in a cortical coupling paradigm by 

den Ouden et al. (2010), where the probability of a face and a house were 

varied throughout the course of an experimental trial. Specifically, they varied 

the cue-outcome associative contingency by varying the amount to which an 

auditory cue predicted a face or a house image. In this scenario, a prediction 

error would be observing a face, when the specific auditory cue would have 

suggested a house. fMRI results showed that when the stimuli (face/house) were 

not expected i.e., surprising stimuli, higher activation was observed in the 

fusiform face area/parietal place area, respectively. More importantly, the 

putamen showed stimulus-independent activation to prediction errors. Further, 

dynamic causal modelling showed that the putamen was facilitating the strength 

in connection between the premotor cortex and the fusiform face/parietal place 

area. Thus, these areas represent the hierarchical system engaged in the present 

task. The sensory information is decoded by the fusiform face/parietal place 

area. A larger prediction error - i.e., the less expected – the stronger the 

reaction. In this paradigm, when a face was presented but a house was expected 

and the cue-outcome association was strong, the prediction error became more 

relevant, as a motor task (a button press) needed to indicate the perceived 

stimulus. Thus, the putamen would facilitate the propagation of the prediction 

error up the hierarchy to the pre-motor cortex to change the motor command 

that was originally primed by the auditory cue. In this way, the relation between 

the observation of the face, its association with the auditory cue and the 

premotor cortex represent a hierarchical system where prediction errors occur 

at every level. 

1.2.1.2 The role of attention in prediction 

As stated earlier, there are different levels of precision setting of the prediction 

errors and the predictions themselves. The level of estimated precision of each 

of them varies depending on context and the system flexibly adjusts what 

information from the world needs to be learned. The parameters of these 

different levels of precision are called hyperparameters and the prior beliefs 

about them are called hyperpriors (Friston, 2008). These hyperparameters are 
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formed over time when the individual learns in which situation the incoming 

information is noisy and in which the variation from the prediction is caused by a 

change in the rules about the environment. One of the mechanisms through 

which hyperparameters work is suggested to be attention (Feldman & Friston, 

2010; Friston, 2008; Parr & Friston, 2019). According to some predictive 

processing accounts, attention is important in uncertainty estimation and by 

focusing attention on a stimulus this allows an unexpected event to be  

estimated as a more precise prediction error that should be propagated further 

up the hierarchy to update the prediction, rather than explained away at earlier 

stages (Feldman & Friston, 2010). Attention assists in estimating the relevance 

of a stimulus, which leads to giving higher weight to prediction errors when they 

are attended by optimising synaptic gain during hierarchical inference (Feldman 

& Friston, 2010; Parr & Friston, 2019). Under this condition, attention and 

expectation need to be modulated orthogonally to allow investigating both 

attention and expectation separately. Several studies have attempted to achieve 

this, and they will be discussed below. 

In a simple attention cueing paradigm, Kok, Rahnev and colleagues (2012) 

created an expectation in their participants about the consistency of cues 

appearing on the left or right side of the screen. At the same time, they also 

modulated attention by providing a directional cue - left/right, which indicated 

on which stimuli (ones appearing on the left or right side of the screen) 

participants had to perform an orientation judgement task. In this sense, 

expectation and attention were modulated separately. In the primary visual 

cortex (V1), predicted stimuli showed a reduced response. This type of brain 

activation has been observed in other prediction-oriented paradigms such as the 

one by Alink et al. (2010), which was discussed earlier. In Alink et al.’s (2010) 

paradigm, behavioural results indicating better detection of the predictable as 

opposed to the unpredictable stimuli showed that the increased activation for 

the unpredictable stimuli cannot be attributed to attention. Rather the 

activation pattern could be interpreted as a prediction error activation, which 

was not propagated further up the hierarchy as it was not attended (De-Wit et 

al., 2010). More importantly, Kok, Rahnev and colleagues (2012) were able to 

show that this pattern reverses when items are attended to. Specifically, if an 

item was predicted and relevant (attended) then this increased the activation in 
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the primary visual cortex in comparison to the attended but unpredicted 

stimulus. However, if the item was predicted, but it was not relevant (i.e., not 

attended), it led to reduced activation in comparison to the unpredicted stimuli. 

These results describe how attention can have a modulatory effect on the 

relevance or precision of prediction errors. A graphical representation of Kok, 

Rahnev et al.’s (2012) results is shown in Error! Reference source not found.. 

Figure 1. Effect of attention on predicted and unpredicted stimuli (Adapted from Kok, 
Rahnev, et al., 2012). 

 

Similar findings have been observed utilising a new methodology called 

hierarchical frequency tagging. This is a paradigm where using changes in the 

stimuli (flickers or cycling of images in-and-out of noise) can introduce 

entrainment in the neural activity of the brain, which is observed through EEG. 

In a set of experiments, Gordon et al. (2017; 2019) used a high-level 

representative stimulus – house or face, which emerged at a specific frequency 

from a wavelet transformation that scrambles the characteristics of the images 

but keeps the local luminance the same (Koenig-Robert & VanRullen, 2013). This 

allowed them to modulate the high-level representation in the brain. At the 

same time, they created a luminance flicker of the whole display at a different 

frequency thus, modulating the low-level information of the display. These 

changes in the presented stimuli then allowed them to observe the entrained 

brain activity to the changes in the presentation of the high-level semantic 

images while at the same time observing the brain activity with the change of 

the more low-level characteristic changes of the stimulus (luminance). 

Moreover, by modulating the proportion of houses and faces being presented 

(expectation modulation) and focusing attention towards counting the faces or 

the houses, Gordon, Tsuchiya et al. (2019) were able to separately modulate 
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expectation and attention. What they observed was that expectation modulation 

was associated with a decrease of the EEG signal associated with the house/face 

image (Gordon et al., 2017, 2019; but see Coll et al., 2020). More importantly, 

expectation modulated the integration of these two stimuli, as represented by 

changes in the intermodulation (IM) components, which are observed when 

waves at two frequencies are combined. The modulation of these IM components 

was in such direction that expectation leads to an increase in their signal-to-

noise ratio (Gordon et al., 2017). 

To investigate attention, Gordon, et al. (2019) calculated the extent to which 

the IM components’ phase synchronised with the phase of the original stimulus, 

or with the phase of the EEG signal. The authors proposed that these two 

metrics represent the interactions occurring at lower or higher levels of the 

hierarchy, respectively. They observed that the extent to which the IM 

components synchronised with the stimulus (MSPCstim) was affected by 

expectation with an increase of synchronisation with higher expectation. No 

modulation of attention was observed for MSPCstim. The opposite was observed 

for the metric that represented the synchronisation of the IM components with 

the EEG signal (MSPCres). Moreover, with the increase of predictability of the 

occurring image (house or face), MSPCres showed an increase for attended and a 

decrease for unattended images. Gordon and colleagues (2019; 2019) argue that 

the effect of attention increases the integration of low-level and high-level 

information at higher levels of the hierarchy only if the stimuli are attended to. 

These results corroborate the findings of the effect of attention as an important 

modulating factor of precision in Kok, Rahnev et al. (2012). However, it must be 

kept in mind that the use of the MSPCstim and MSPCres is still in its early stages. 

Despite the repeated success in finding similar results with different equipment 

(Gordon, Tsuchiya, et al., 2019), a recent attempt of replicating the result with 

a different set of images (Coll et al., 2020), suggests that not all of the effects 

might be generalisable above and beyond the specific stimulus set. Thus, more 

research is needed to determine the specificity of the proposed methodology.  

It is important to mention, that it is not necessarily clear whether attention 

would increase accuracy or would just act as a gain control mechanism 

increasing the synaptic response irrespective of accuracy (Maunsell, 2015; 

Mehrpour et al., 2020). However, a recent study on rhesus monkeys attempts to 
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provide insight into this (Mehrpour et al., 2020). Mehrpour et al. (2020) observed 

a population of neurons in the brain that are sensitive to directional motion. 

They discovered that for attended stimuli, the directional change in a random 

dot kinematogram produced a larger overshoot in the directional selectivity of 

the neuronal population, than for the unattended stimulus. This behaviour is 

consistent with the proposition that attention will lead to a higher precision 

estimate of new stimuli (Feldman & Friston, 2010) – in this case, the randomly 

occurring direction change in the kinematograms. However, what Mehrpour et 

al. (2020) additionally observed was that the directional selectivity of the 

neurons was increased by more than double when the stimulus was attended 

than when it was unattended. More specifically, with a directional change of 

25°, the directional selectivity of the MT neurons changed to 39° when the 

change occurred in the attended stimuli, whereas it changed only to 32° when it 

was unattended. In this way, the authors argue that attention serves the purpose 

of increasing precision in terms of the importance of a stimulus, favouring a 

reaction, even if it is an exaggerated one. Perhaps this overshoot facilitates the 

stimulus to be decoded as substantially different to the preceding stimuli thus 

initiating a timelier response. 

Together these findings emphasise how attention can overturn the saliency of 

unpredicted stimuli if they were attended and further support the synergic 

existence of attention and prediction (Feldman & Friston, 2010). Thus, if one 

wants to be able to distinguish the effects of attention and expectation at the 

level of both behavioural and neuroscientific results, the two factors need to be 

explicitly modulated.  

1.2.1.3 Critiques of the predictive processing framework 

Although the predictive processing framework possesses a lot of explanatory 

power, it does not come without criticism. In a recently published review by 

Walsh et al. (2020), the authors argue that the framework itself is very difficult 

to falsify, as, in essence, it can accommodate almost every outcome. The 

authors also argue that for a lot of the specific hypotheses such as the existence 

of distinct neural entities that deal with the predictions and the prediction 

error, and the hierarchical organisation of the brain there still is not enough 

supporting research, with studies focusing mainly on the identification of 



Chapter 1  31 

prediction errors rather than on the formation of the predictions themselves. 

Despite some of the controversial findings in the literature pointed out by Walsh 

et al. (2020), their critical review points out that predictive processing provides 

a framework which could give a unifying architecture for multiple neurocognitive 

phenomena, including neuropsychological disorders like schizophrenia (Sterzer 

et al., 2018) and autism (Lawson et al., 2014; Van de Cruys et al., 2014). 

Moreover, the high scientific interest allows for the development of new testing 

paradigms which could provide more insight into the predictive processing 

framework. This refinement of the framework will inevitably lead to a more 

precise exploration of its assumptions and building blocks, which could lead to 

further redevelopment (Walsh et al., 2020).  

One point of debate around predictive processing is the existence and definition 

of prediction errors (Walsh et al., 2020). Prediction errors can sometimes be 

considered as general surprise coming out of neural responses to new stimuli. 

However, there is a suggestion that repetition suppression (the reduced neural 

signals and behavioural responses to repeated stimuli) and expectation 

suppression (the reduced neural activation to expected stimuli as opposed to 

unexpected) occur on two different time scales, with repetition suppression 

occurring at the first 40-60ms and expectation suppression later at the 100-

200ms (Todorovic & de Lange, 2012). Moreover, underlining the fact that 

surprising stimuli are not solely responsible for what is termed prediction errors, 

den Ouden et al. (2009) showed that the brain responds to surprising visual 

omissions as well. Hence, prediction errors are not simply every new stimulus 

that occurs – they are not a product of stimulus adaptation - but the prediction 

error is in relation to prediction. Specifically, den Ouden et al. argue that 

whereas prediction errors in V1 are in effect the surprise of the 

presence/absence of a stimulus in the visual field, cognitive prediction errors 

represent a mismatch at a representational level in higher-order areas. 

Another example of controversial findings in the field, directly relevant to this 

thesis, comes from Garrido et al. (2018). In their task, they instructed 

participants to attend to one of their ears, while white noise was presented in 

both ears. The task was to press a button when a gap in the played white noise 

was present in the attended ear. At the same time, they also incorporated an 

oddball sound procedure on top of the gap detection task. Garrido et al. (2018) 
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found that attention increased activation for both the predicted and the 

unpredicted stimuli arguing against the interaction model between expectation 

and attention observed by Kok, Rahnev et al. (2012) and theoretically expected 

under the descriptions of Feldman and Friston (2010). However, in the paradigm 

by Kok, Rahnev et al. (2012) the predicted and unpredicted stimuli were part of 

the same paradigm. In this way, they were relevant to the task. On the other 

hand, what Garrido et al. (2018) modulated in their predicted and unpredicted 

component of the paradigm was an additional irrelevant distractor stimulus. The 

attention, which was cued by instructing from which ear the gaps should be 

reported, did not apply to the sounds, as they were not relevant regardless of 

whether they were in the attended ear or not. Hence, as the authors themselves 

comment, a direct comparison cannot be made with the findings from Kok, 

Rahnev et al. (2012). However, this is an important distinction that needs to be 

made, as the concept of attention as a way of increasing precision of both 

predictable and unpredictable signals is that it will aid in the performance of a 

prediction, or it will minimise entropy. Attention to the sounds would have not 

aided performance nor minimised entropy, hence the same activation 

modulation should not be given to stimuli that are not relevant to the task. 

Moreover, an earlier study by St. John-Saaltink et al. (2015) showed that if the 

predictable task is irrelevant, expectation suppression is observed for the 

predicted stimuli, but if the interfering task is taxing, that modulation is not 

present. Indeed, this study did not modulate attention separately, thus it is not 

clear how attention would have affected the brain activation in the primary 

visual cortex. However, what St. Jon-Saaltink et al.’s (2015) findings show is 

that the relevance of the stimuli to the task, whose predictability is being 

modulated, matters. These findings are not far from the literature on 

inattentional blindness in the auditory domain. Inattentional blindness literature 

argues for this specific event, whereby directing attention to one task would 

inevitably diminish performance to an unattended task (Jensen et al., 2011). In 

short, the brain would probably not try to waste energy on stimuli that are 

irrelevant as it redirects energy sources to the activity that is relevant at 

present.  
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1.2.1.4 Summary 

In summary, the predictive processing framework provides an appealing 

explanation of the way people interact with their environment. The framework, 

although in its development, has seen a large surge of interest, and there is new 

evidence surfacing constantly that leads to its refinement (Walsh et al., 2020). 

As evidenced from the reviewed literature above, there has been substantial 

research that attempts and to some extent succeeds at providing support for 

some of the major mechanisms on a behavioural and neurocognitive level. There 

are still avenues that need to be tackled and further support to be provided. 

However, as it has been suggested even by the critics of the framework (Walsh 

et al., 2020), predictive processing provides a unifying framework for numerous 

phenomena which makes it appealing for exploration. One of these phenomena 

is neuropsychological disorders.  

1.2.2 The hypopriors theory of autism or the inability to form 
predictions about the world 

In 2012, Pellicano and Burr published an opinion piece that put forward the 

Bayesian perspective of autism. Bayesian theories accommodate two 

components - priors and likelihood. The priors are formed by experience (i.e., 

the predictions) and allow us to predict the incoming sensory information and to 

interpret the ambiguity of the environment. The likelihood is the input that is 

coming into the system from the environment. The combination of the prior with 

the likelihood then produces a posterior, which attempts to interpret the 

environment as accurately as possible. Hence, the aim of the prior is to reduce 

uncertainty. According to Pellicano and Burr (2012), the primary difference in 

autism is that individuals are not forming appropriate priors about the world. 

Instead, they form attenuated priors or hypopriors. According to the authors, 

priors that restrict a person’s ability to deal with uncertainty could lead to 

several problems seen in autism. In fact, problems in dealing with uncertainty 

have been related to increases of anxiety and have been associated with sensory 

over- and under-sensitivity (Neil et al., 2016; Wigham et al., 2015). 

A broader prior will impede individuals’ performance in cases where priors would 

resolve ambiguity but will improve performance in cases where priors would lead 

away from the true state of the environment. Therefore, these predictions of 
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the effect of a hypoprior align with some of the findings in the literature 

(Pellicano & Burr, 2012). The hypopriors theory provides an account for the 

reduced susceptibility to illusions, as individuals with ASD will perceive the 

illusory stimulus as it is since their perceptions will not be affected by prior 

expectations (Mitchell & Ropar, 2004). The theory also provides a compelling 

explanation of theories that advocate for cognitive models that directly contrast 

local and global cognitive styles – i.e., the weak coherence theory (Happé & 

Frith, 2006) and enhanced perceptual functioning (Mottron et al., 2006). 

Specifically, hypopriors will reduce the effect of the context and individuals will 

be able to focus on the individual parts leading to superior performance on tasks 

such as the Embedded Figures Test, which is commonly used to support these 

theories (Van der Hallen et al., 2015). 

 Additionally, the theory attempts to provide an account of the sensory 

sensitivities observed in autism – both hyper- and hyposensitivity. Due to the 

uninformative priors that the individuals create, they will not be able to 

anticipate the incoming sensory information, which would result in 

hypersensitivities (i.e., extreme aversion to the fire alarm at school) or sensory 

seeking behaviours as they constantly produce an unexpected experience. When 

Pellicano and Burr (2012) explain why not all experiences turn into hyper- or 

hypo-sensitivities, they argue that priors are influenced by the frequency of the 

occurring events. This premise implies that to create an aversive 

hypersensitivity, an individual needs to form a specific prior expectation to 

develop the sensory aversion or sensory seeking behaviours.  

Finally, in their opinion paper, they emphasise that Bayesian decision theory 

provides a tool for explaining non-social features of autism. However, they pose 

the question of whether social information could also be explained in terms of 

hypopriors, as social situations are generally complex and ambiguous. They 

briefly mention the applicability of their account to the social domain by 

referencing an earlier study where they showed that ASD individuals do not show 

an adaptation aftereffect to faces (Pellicano et al., 2007). Pellicano and Burr 

(2012) argue that this effect occurs because autistic individuals are less 

influenced by priors. An inability to learn from social situations would lead to a 

lot of uncertainty in social interactions, which could be linked to the high levels 

of anxiety reported by parents of individuals on the autism spectrum (Neil et al., 
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2016). Nevertheless, they do not go into further detail about how their theory 

would explain the social symptoms. 

1.2.3 The theory of inflexible precision given to prediction errors 
in autism or when every new encounter is important 

Pellicano and Burr’s (2012) paper sparked conversation around the 

Bayesian/predictive models of autism. Their opinion piece received numerous 

commentaries. Brock (2012) argued for too narrow priors instead of too broad 

ones. Too narrow priors will allow for exact matching on occasions where the 

prior and environment match, but poor performance in broader contexts. Friston 

et al. (2013) further elaborated on this suggestion. However, they argued that 

the predictive processing implementation of Bayesian theory gives a better 

account of the findings in autism research, where the impact of prior beliefs and 

sensory information is weighted by the amount of precision (or weight) given to 

each one. As briefly discussed in section 1.2.1.2, the parameters of these 

different levels of precision are called hyperparameters and the prior beliefs 

about them are called hyperpriors (not to be confused with the term hypopriors 

used by Pellicano and Burr (2012), which they termed less informative priors and 

is not related to hyperparameters) (Friston et al., 2013). Hence, Friston et al. 

(2013) argue that in ASD it is the hyperpriors that are improper, rather than the 

prediction (the prior in Bayesian terms).  

Following the conversation around Pellicano and Burr’s (2012) paper and the 

responses around it, in 2014, Van de Cruys et al. proposed the theory of High, 

Inflexible Precision of Prediction Errors in Autism (HIPPEA). When individuals 

form a prediction about the environment, their predictions always produce an 

error signal, because they never exactly match the sensory input (Friston, 2009). 

Usually, individuals have good hyperparameters and know which prediction 

errors are worth learning and in what contexts it is more reasonable to rely on 

prediction, i.e., when the incoming information is too noisy (Friston et al., 

2013). According to HIPPEA, ASD individuals are deficient in meta-learning – they 

do not distribute precision accurately between the prediction and the prediction 

error. HIPPEA argues that individuals with ASD give higher precision to bottom-

up information (the prediction errors) relative to the prediction itself. As 

prediction errors are the basis for learning, giving too high precision to 
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prediction errors will lead to learning at every point, forming future predictions 

that are based on noise and infrequent contingencies. In this sense, the 

Pellicano and Burr (2012) hypopriors theory and Van de Cruys et al.’s (2014) 

HIPPEA theory propose almost opposite underlying mechanisms. In a later 

extension to the original paper, Van de Cruys et al. (2017) focus on the 

importance of noise and the uncertainty of the environment. They emphasise 

again that whereas HIPPEA would suggest that inflexibly set precision of 

prediction errors will inevitably lead to more frequent switching in attempting to 

learn the new rule, this would not mean that they cannot learn the original rule 

of association. However, creating a prediction or learning a new rule will take 

longer to establish. What they argue is that in an unstable environment, when 

the rule reverses or it changes completely, individuals with ASD should be more 

willing to switch. They further conceptualise that these individuals cannot 

distinguish between noise and the volatility of the environment, and this is 

where the reliance on prediction errors becomes a problem because individuals 

will not be able to distinguish which new information is relevant and which is 

just noise. 

As mentioned above, accidental variation in the environment will lead to 

learning that is disconnected from the context. Such learning will lead 

to predictions that are too rigid and inapplicable in most circumstances. Thus, 

those predictions will be too specific and will lead to more prediction errors. 

Similar to Pellicano and Burr’s (2012) account, Van de Cruys et al.’s (2014) 

theory provides an interpretation of findings of exceptional abilities as reported 

in Mottron et al. (2013). The predictions formed by ASD individuals under the 

explanation of HIPPEA would allow exact matching, which leads to the superior 

performance described by Mottron et al. (2013). Exact matching would also 

explain exceptional and savant abilities commonly reported in ASD (Meilleur et 

al., 2014). Similarly, research on superior search abilities and the underlying 

research on enhanced perceptual functioning (Mottron et al., 2006) would be 

driven by individuals on the autism spectrum allocating more precision to low-

level sensory information and the mismatch errors produced from them. Thus, 

when the task requires an individual to identify a specific figure, prediction 

errors are highly informative and individuals on the autism spectrum who put 

higher precision on them will have an advantage when matching the searched 
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target to the rest of the distractor stimuli. A good example of these is research 

using local vs global tasks, with the processing style of autistic individuals 

suggested being driven by local-to-global interference (Van de Cruys et al., 

2014; Van der Hallen et al., 2015).  

Unlike Pellicano and Burr’s (2012) account, HIPPEA provides a better explanation 

of hyper- and hyposensitivity. Due to the high precision given to prediction 

errors, accidental events will be learned outside of their ‘accidental’ context 

(Van de Cruys et al., 2014, 2019). Chance aversive experiences will build a very 

inflexible prediction, which will account for future aversion to that stimulus. On 

the other hand, chance positive experiences will lead to increased sensory 

seeking behaviour for that positive experience. Both situations would be 

perceived out of the context of the global situation and thus the positive or 

aversive experience will be associated with the sensory stimulus. Thus, the 

requirement for sameness and repetitive behaviours, as well as hyper- and hypo-

sensitivity are due to learning, as proposed by Pellicano and Burr (2012), but 

HIPPEA provides a better theoretical justification. In repetitive environments, 

where there is little need to estimate the precision of incoming stimuli, the 

overfitted predictions that individuals have created by interfering in the 

environments and setting out the routines work well. In this way, individuals on 

the autism spectrum and their families can minimise the uncertainty about the 

world by introducing structured environments with low variability. 

Finally, unlike Pellicano and Burr’s (2012) paper, Van de Cruys et al. (2014) 

provide a more complete account of social difficulties in ASD. They regard social 

stimuli as all other types of stimuli encountered in the environment, for which 

inferences are made continuously. The numerous accidental occurrences in 

social interactions, where no two situations are the same, along with the rigid 

predictions and learning of accidental incidents, would lead to the highly 

pronounced social problems in ASD (Constant et al., 2020). The higher weighting 

of prediction errors prevents individuals on the autism spectrum to extrapolate 

more global models about the environment, as uncertainty needs to be 

additionally modelled for a successful abstraction. However, deeper models 

about the social world and social interactions require the ability to accurately 

estimate uncertainty and assign it to different components between the words 

that someone says, to the context itself, and to the other individual’s mental 
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states. Being unable to estimate where to assign uncertainty - i.e., knowing 

what needs to be learned, could lead individuals to assign higher level of 

certainty to sensory information of the situation (Constant et al., 2020; Van de 

Cruys et al., 2014, 2017). This in turn would lead autistic individuals to develop 

models about social interactions that are not generalizable. Thus, it would be 

difficult for autistic individuals to use previous social experiences to guide their 

present behaviour. Although with sufficient time better and more generalizable 

models would be formed, it is the case that often these models would have 

limited applicability (Constant et al., 2020; Van de Cruys et al., 2014, 2017).  

1.2.4 The priors versus the prediction errors 

Since the conception of the theories described above, substantial research that 

tests the key assumptions of the hypopriors and HIPPEA theories has been 

conducted. Firstly, the next section will look into research that investigates 

autistic individuals’ ability to form and rely on priors. In the second section, I 

will discuss research that investigates whether there is inflexibly high weighting 

of prediction errors in autism. To do this, I will describe recent research in 

several fields and will discuss their contribution to the debate.  

1.2.4.1 Do autistic individuals form and rely on priors? 

One type of paradigm used to investigate the establishment of priors is the 

adaptation paradigm. It uses continuous presentation of one stimulus, which 

leads to habituation to the given stimulus. In these types of paradigms, the 

perception of an ambiguous stimulus is usually further away from the preceding 

adapting stimulus - i.e., a point-light display (PLD) with a speed profile morphed 

midway between walking and running, will be most likely perceived as running, 

if it was preceded by prolonged exposure to a walking PLD. These adaptation 

effects are described by the tuning of neural populations sensitive to different 

actions (Webster, 2011). In this example, when presented with the morphed PLD 

which contains equal amount of information from the walking and running 

stimulus, the response of the neural population sensitive to the walker will elicit 

a smaller response than the population sensitive to the running PLD. Thus, the 

perceptual experience is in favour of the running PLD. In these tasks, the 

adapting stimulus can be thought of as establishing an expectation and the test 
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stimulus is then perceived as a prediction error that is perceived further away 

from the adaptation.  

In one such paradigm, Turi et al. (2015) found that children who adapted to a 

specific number of dots and were then presented with a second display where 

they had to choose the one with more dots, children on the autism spectrum 

showed less adaptation and were more accurate at choosing the stimulus that 

accurately contained more dots. Similarly, van Boxtel et al. (2016) showed that 

adolescents on the autism spectrum show reduced adaptation to biological 

motion in a paradigm where they had to categorise an ambiguous PLD into 

walking or running after adaptation to one or the other. Likewise, autistic 

children have been observed to not show face identity adaptation aftereffects 

(Pellicano et al., 2007). Thus, the results in children and adolescents on the 

autism spectrum seem to consistently show reduced formation of priors, 

supporting Pellicano and Burr’s (2012) account. However, Van de Cruys et al. 

(2021) showed that children generally form less informative priors irrespective of 

autism diagnosis status. Moreover, R. Cook et al. (2014) showed that autistic 

adults do not show a difference from neurotypical adults (NT) in both facial 

identity and facial expression (angry, happy) adaptation aftereffects. Further, 

Karaminis et al. (2020) were not able to find differences between autistic and 

NT adults in speed detection of a PLD after adaptation. However, the 

differences between Karaminis et al.’s (2020) and van Boxtel et al.’s (2016) 

findings might come from the type of judgement being made. Whereas in van 

Boxtel et al.’s (2016) the choice was between a walker or a runner, the 

identification of whether it is faster or slower might provide a qualitatively 

different task. Thus, although R. Cook et al. (2014) argue, that the effect might 

be only present in children and adolescents, this might not be the whole story.  

The reliance on priors has also been tested in a variety of other paradigms. For 

instance, Van de Cruys et al. (2018) aimed to show that individuals with ASD can 

form and use prior knowledge using Mooney images. To be able to perceive the 

black and white patches of the images as coherent images, prior information is 

required – i.e., seeing the original image in colour. In their study, adolescents 

with ASD did not perform differently from NT individuals. Similarly, in a rubber 

hand illusion experiment, Palmer et al. (2015) found that on an experiential 

level, autistic and NT individuals show the same experience of the rubber hand 
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illusion. However, when the movement of the hand was investigated, NT 

individuals showed large jerks in their motion, indicating an attempt to correct 

their gesture between where they expected their hand to be as driven by the 

illusion and where their somatosensory signals were indicating it was. Autistic 

individuals, on the other hand, showed no jerk differences with and without the 

illusion. Thus, individuals on the autism spectrum were more likely to rely on the 

sensory information that they were receiving, despite the fact that at the same 

time they were able to create the experience of the illusion as established in the 

experiment. Incorporating the arguments made by R. Cook et al. (2014) about 

age, it is possible, that age is not necessarily the main factor, rather the type of 

task, and the type of priors that are being utilised. In either situation, these 

findings suggest that autistic individuals  can create informative priors, whereas 

the Pellicano and Burr (2012) account postulates that the priors would be too 

broad to be informative in these cases. 

Other research utilising recently developed priors – i.e., during the experiment - 

has also shown that individuals on the autism spectrum can learn. A direct 

comparison between autistic and dyslexic participants in a study by Lieder et al. 

(2019) showed that ASD participants showed impairment in quick adaptations 

with a resistance to change but optimal long-term information integration, 

whereas individuals with dyslexia did not adequately integrate information over 

time. Further support for being able to form priors during a familiarisation phase 

is provided by Amoruso et al. (2019). They showed that during the familiarisation 

phase of a task, where participants observed movement kinematics within 

specific predictive contexts, children with and without ASD showed no 

differences in being able to pick the type of the action being observed. Thus, 

both groups were able to learn the associations between the kinematics, the 

context, and the outcome. However, when Amorous et al. (2019) changed the 

length of the videos, classifying this as added noise as it was less informative, 

they showed that NT children relied more on the established prior than autistic 

children whose performance remained stable. A similar observation has been 

made in adults as well by Chambon et al. (2017). In a similar task, they showed 

that the NT and the autistic individuals all relied on picking the more reliable 

option rather than the opposing one, and this reliance increased with the 

increase in noise (reduced length of the video). An additional manipulation that 
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Chambon et al. (2017) added was whether the action that was being observed 

was in a social context (two people’s hands on the screen) or non-social (only 

one person’s hand). With this manipulation, they observed that the reliance on 

the prior – i.e., that one action is more likely than another - was larger in the 

social condition but only for the NT participants. ASD participants, on the other 

hand, did not show a difference in their reliance on the prior between the two 

conditions meaning that the social aspect did not differentially affect the 

performance of the autistic individuals. Van de Cruys et al. (2014) argue that 

such results need to be interpreted in terms of the social context that they fall 

in, as the difference that was observed in individuals on the autism spectrum 

was in the social condition. As mentioned earlier, in social contexts, it is 

possible that individuals on the autism spectrum are more likely to ascribe 

uncertainty to the sensory information and thus ignoring the social component 

(Constant et al., 2020).  

From the discussed evidence it appears clear that individuals on the autism 

spectrum can form predictions/priors about the world and they can learn. 

However, task variability, the type of priors that the study is testing, and the 

developmental stage of the autistic individuals are important factors when 

making generalisable conclusions. 

1.2.4.2 Is there inflexible reliance on prediction errors? 

From the previous section, it is clear that individuals on the autism spectrum can 

create and rely on priors. HIPPEA (Van de Cruys et al., 2014, 2017) predicts 

intact development of priors, albeit slower formation in certain situations and 

lower-level in comparison to more global and higher-order priors like the ones 

that would be needed in social situations (e.g. Chambon et al., 2017). HIPPEA’s 

proposition focuses directly on the inflexible precision given to prediction errors 

(Van de Cruys et al., 2014, 2017). The theory proposes that individuals on the 

autism spectrum are deficient in meta-learning, meaning that they would not be 

able to distinguish noisy signals, from those that indicate a change in the 

environment. Thus, the inflexibly high precision given to prediction errors will 

lead to learning at every opportunity, leading to faster switching when rules are 

reversed. Again, the theory emphasises that with longer periods of time and 

more exposure, development of more generalisable predictions is possible but 
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these models might still be more low-level than those developed by neurotypical 

individuals – based on too many details, where matching between predictions 

and external input is made on lower-level information as opposed to abstract 

regularities.  

Direct results on this topic come from research that focuses specifically on the 

addition of noise to tasks by making stimuli more ambiguous. One example is a 

study performed by Pell et al. (2016). In their study individuals with and without 

autism took part in a task where they had to indicate the eye-gaze direction of a 

stimulus, with increasing levels of noise. The noise was created by decreasing 

the contrast of the pupil to the sclera and by adding fractal noise to the eyes. In 

neurotypicals, the noisier the stimulus, the more likely it is to perceive the eye-

gaze to be directed towards the individual, i.e., straight ahead, rather than to 

one or the other side. It is suggested that when we see others’ eyes, they are 

usually looking at us, therefore with a noisier stimulus, we are more likely to 

rely on the prior/prediction of direct eye contact. Pell et al. (2016) observed 

similar magnitude of the effect between autistic and neurotypical individual. 

Moreover, they also observed that NT individuals with higher autistic traits also 

did not differ from those with lower autistic traits. Similarly, what is noteworthy 

in the study by Chambon et al. (2017) discussed in the previous section 1.2.4.1, 

is the fact that the addition of noise did not seem to show a difference in the 

performance between individuals. In this sense, individuals on the autism 

spectrum were able to recognise that the incoming information was noisier, 

rather than unstable, and relied more on their predictions. This is against the 

predictions made by Van de Cruys et al. (2017), about the inflexible setting of 

the precision of prediction errors leading to a reduced ability to disentangle 

noise from informative signals, as individuals were able to rely more on 

predictions with the increase in noise. However, this interpretation might be too 

simplistic. Firstly, the study by Pell et al. (2016) relies on priors that individuals 

on the autism spectrum could have already developed as HIPPEA argues that 

with sufficient exposure and time, autistic individuals can develop more 

generalisable models of the world. Chambon et al.’s (2017) task on the other 

hand quantified noise as having less information in the used videos. Although 

that could mean that there is less information present to decide, that does not 

make the available information noisier as the associations were already 
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established. Therefore, from these studies, it is difficult to conclude that HIPPEA 

is not an accurate representation of the results. Thus, to carry on forward, it is 

necessary for there to be a clear definition of what constitutes as noise in the 

signal to allow for more specific experimental designs in the future.  

Beyond noise, research has investigated prediction errors of autistic compared to 

NT individuals in situations where they should be modulated based on the 

consistency of the environment. Using a hierarchical oddball task where 

participants had to listen to either five identical or four identical and one 

deviant sound, Goris et al. (2018) observed mismatch negativity (MMN), which is 

considered to reflect sensory prediction errors. In NT, this is attenuated when 

the more frequently occurring deviant sound is observed i.e., higher 

predictability of the oddball sound. Whereas the higher predictability of the 

oddball produced similar results in autistic and neurotypical individuals, the 

condition with the lower probability oddball showed that ASD individuals have a 

smaller MMN signal. This indicates that the autistic individuals are less 

influenced by the context -i.e., less surprised. This is an important finding, as it 

indicates two things: Firstly, the absence of a difference in the more common 

oddball condition between the groups indicates that if the predictability is 

stable autistic individuals can create predictions of the variability of the 

environment. Additionally, Goris et al. (2018) did not find a difference in the 

P3b component in the EEG signal, which is considered to facilitate context 

maintenance and top-down modulation, although there have been consistent 

findings of reduced activation in autism (Keehn et al., 2013). Secondly, the 

smaller effect in the MMN signal in the less common oddball conditions in the 

ASD group indicates less surprise, which is consistent with findings of the 

overestimation of environmental volatility in this population (Lawson et al., 

2017). If individuals have learned to expect more volatility due to inconsistent 

nature of the stimulus (Van de Cruys et al., 2017) – 20% of the time as opposed 

to 80% in the more common oddball condition - then an oddball sound would be 

less surprising, despite still being surprising. In line with the HIPPEA framework, 

this result suggests less flexible weighting of the prediction errors in ASD or 

reduced weighting of prior information. Additionally, a pattern of reduced MMN 

amplitudes has been observed more commonly in passive tasks such as the task 

by Goris et al. (2018), thus it might be the task itself that is introducing the 
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effect. However, reduced MMN amplitudes in passive tasks were most evident in 

adolescents and not in adults (Y.-T. Chen et al., 2018; Schwartz et al., 2018).  

Similar findings of the P3b component have also been observed by Gonzales-

Gadea et al. (2015). However, the equivalent activation of P3b was seen to 

unexpected oddball stimuli – opposite ear, but not for expected ones (same ear). 

To expected oddball stimuli, individuals on the autism spectrum showed even 

higher P3b signal than NT, thus indicating heightened top-down modulation. This 

heightened reaction to expected oddball stimuli could be related to the 

overestimation of the difference between the expectation and the sensory 

stimulus (Van de Cruys et al., 2017). On the other hand, expected oddballs 

showed an equivalent P3a signal, which is related to early deviant detection, but 

reduced to unexpected oddball stimuli. One important distinction between this 

task and the task by Goris et al. (2018) is that in the latter the task was passive, 

whereas the one by Gonzales-Gadea et al. (2015) was an active one. 

Additionally, the unexpected oddball was unexpected because it was in the 

opposite ear. This means that the task itself may be at play here, specifically as 

it has been suggested that active and passive tasks show different results, with 

active tasks eliminating differences in MMN, and passive ones showing a 

difference (Dunn et al., 2008; Keehn et al., 2013). What is evident is that there 

is an imbalance in the way that prediction errors are modulated by top-down 

information. However, it does not appear to be the case that the precision given 

to prediction errors is inflexibly high, but high precision is only evident in active 

tasks.  

Finally, as HIPPEA predicts increased switching behaviour due to reliance on 

prediction errors, a fair amount of literature has attempted to examine the 

applicability of the predictive coding theories in reward-based paradigms. 

Recent research by Goris et al. (2019, 2020) showed that reward-based learning 

provides a different performance profile than simple sensory tasks that do not 

include a reward component. Specifically, in perceptual tasks – musical 

preferential tasks with varying predictability of the sounds and a perceptual 

fluency task in detecting similarity, they found that individuals with higher 

autistic traits show a preference for the more predictable melody and images, 

whose contour was present in the priming image (i.e., an expected image). 

However, within a reward-based gambling task, where one deck was fixed at a 
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higher winning rate, the participants with higher autistic traits did not show a 

different preference for the fixed deck compared to the participants with lower 

autistic traits. Although, individuals with higher autistic traits were faster in 

choosing the more predictable deck of cards. Thus, whereas there is a higher 

preference for predictability in individuals with higher autistic traits, it is not 

directly evident in all contexts – i.e., in reward-based tasks.  

The lack of differences in a reward-based task has been found in other studies as 

well. Manning et al. (2017) set out to test predictions made by the hypopriors 

and HIPPEA theories directly. In a reward-based experiment, children had to 

select a pirate chest, which was randomly associated with a reward value of 

0:100 points. According to Pellicano and Burr (2012), individuals on the autism 

spectrum would not benefit from a stable environment where the ratio of the 

reward between the two chests was kept constant. Whereas according to 

HIPPEA, in a volatile environment where the ratio of 80:20 switches with 20:80 

every 20 trials, autistic individuals should have a higher learning rate. Manning 

et al. (2017) found no difference between ASD children and neurotypically 

developing children or adults in the learning rates. Specifically, in the more 

volatile condition, learning rates were high for both groups. However, in volatile 

conditions, higher learning rates are more favourable because they would lead 

to better performance (Crawley et al., 2019). Although the stable conditions are 

where differences should be observed, the two groups also showed similar 

performance in the stable condition. These results put both the hypopriors and 

HIPPEA theories into question. However, as the authors note, the task might 

have not been challenging enough to make concrete conclusions.  

Other researchers have found different results in reward-based tasks. For 

example, Robic et al. (2015) and Lieder et al. (2019) both found that ASD 

individuals were more likely to maintain their response for longer, even though a 

change in behaviour in response to the change in the rule would be more 

beneficial. Robic et al. (2015) were also not able to find any difference in the 

stable environment. Similar findings were also observed by Sevgi et al. (2020), 

where in the stable environment, there was no difference between individuals 

with high and low autistic traits but when the environment became more 

volatile, individuals with higher autistic traits did not adjust their learning rate 

especially when the cue was a social stimulus -i.e., a gaze. In fact, in their 
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study, individuals with higher autistic traits continued to rely on the gaze even 

when it was not a good predictor, demonstrating a greater persistence and 

reliance on the past than on new information. These later findings directly 

contradict the prediction made by HIPPEA (Van de Cruys et al., 2017) about a 

higher rate of switching and a greater learning rate due to an inflexible reliance 

on prediction errors. The results show a greater reliance on the prediction, and 

a lack of incorporation of the new information particularly in the volatile 

condition. One possible explanation is that after the reversal, the individuals on 

the autism spectrum would experience the change in the rules as a completely 

new situation, which needs to be learned, however, in that case learning should 

not rely on the prediction created when the previous rule was present.  

A later study by Goris et al. (2020) expanded on the reward-based tasks by 

specifically modulating volatility and noise, by having stable environments with 

high and low noise and a volatile condition where the 90/10 probability of one 

set of images providing reward changed every 18 trials. In their paradigm, high 

noise meant that both images had a 60% reward which was stable for 90 trials, 

whereas in the low noise, one set of images had a probability of 70% to produce 

a reward and the other 30%. Goris et al. (2020) found that individuals with more 

autistic traits perform worse in volatile reward-based environments than 

neurotypicals but that difference was not evident in stable environments. 

However, they did not find a correlation with autistic traits in terms of learning 

rate between the stable environments with low and high noise and the volatile 

environment. This is consistent with the findings by Manning et al. (2017). These 

findings also contradict the expectation that individuals on the autism spectrum 

or high autistic traits would not be able to distinguish between noise and the 

volatility of the environment (Van de Cruys et al., 2017).  

Opposite results have been found by a larger-scale study. In a probabilistic 

reversal learning task, Crawley et al. (2019) found that individuals on the autism 

spectrum showed a higher learning rate, which is consistent with the 

expectations from HIPPEA (Van de Cruys et al., 2014, 2017). In stable 

environments, children showed a higher learning rate, although a lower learning 

rate i.e., relying more on past, rather than on recent trial performance would 

have been optimal. This behaviour was also suggestive of a greater sensitivity to 

feedback, which is consistent with the higher rates of lose-switch behaviour 
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across all autism age groups reported in the study. This would be indicative of 

more reliance on prediction errors in comparison to their prediction as suggested 

by HIPPEA. Adolescents with ASD, on the other hand, showed a reduced learning 

rate following reward in comparison to neurotypicals, but no difference in 

learning rate following punishment, which is in accordance with the additional 

reduced value sensitivity in this cohort found in the study. This could be 

suggestive of reduced weighting of positive experiences in adolescents, 

potentially influenced by the higher rates of lose-switch behaviour found in the 

study. Finally, in adults Crawley et al. (2019) observed slower updating of 

behaviour and greater reliance on past experience, but an increased learning 

rate - a hallmark of the HIPPEA account. Most importantly, behaviours seem to 

improve with age in all measures, except perseverative errors, which did not 

show a change in either neurotypical or autistic individuals. Although 

performance never reaches the performance of the neurotypical individuals, the 

slower accumulation of evidence in establishing the optimal learning strategy is 

consistent with HIPPEA.  

Overall, it appears that there is no consistent evidence about the higher 

precision setting of prediction errors in autism. However, as Crawley et al. 

(2019) suggest, this might be due to differences in the task, as well as 

differences in the models used to estimate learning rates, along with the smaller 

samples in general in the autism literature. It is also important to note that 

HIPPEA suggests that positive and negative experiences can lead to the 

development of hyper-sensitivities and sensory-seeking behaviours. Thus, it is 

possible that in reward-based paradigms what we are observing is strong 

associations between behaviours and positive feedback. In this way, obtaining 

rewards in reward-based paradigms leads to seeking to stick to the rewarding 

state and in turn to resistance to change. However, Crawley et al.’s (2019) 

findings bring that reasoning into question, by showing heightened learning rates 

after the change, but at the same time also observed sluggish decay. It is then 

possible that, as Goris et al. (2019) mention, reward-based tasks are simply 

different than other non-reward based tasks. 

Finally, HIPPEA postulates that the effects are caused by high precision setting 

of the prediction error. As mentioned in sub-section 1.2.1.2, attention is one of 

the suggested methods through which precision is modulated. However, almost 



Chapter 1  48 
 

no research has been done specifically looking at attention in the context of 

predictive tasks in autism. One recent EEG study has attempted to look at 

attention and expectation within the same paradigm. Coll et al. (2020) used a 

hierarchical frequency tagging paradigm, such as the one reported in Section 

1.2.1.2. They found that autistic traits modulate the relationship between 

predictability and intermodulation components in the brain, which are suggested 

to be indicative of the incorporation of the sensory stimulus and the prediction. 

The modulation was in such a way that in comparison to participants with higher 

AQ scores, individuals with lower AQ scores showed a steeper slope for the 

strength of the signal with increased predictability. In this way, individuals with 

higher autistic traits needed higher consistency in the predictability of the 

stimulus to reach a situation where the sensory information is incorporated in 

the prediction as suggested by HIPPEA. Coll et al. (2020) also found that the 

integration of low-level and high-level information at higher levels of the 

hierarchy (the MSPCres slopes) was equivalent for the attended stimuli across 

the levels of autistic traits. However, individuals with higher autistic traits had a 

more negative slope in the unattended images than participants with lower 

autistic traits. Like previous studies suggest, unattended information may be 

treated differently in the brain for autistic individuals (Orekhova & Stroganova, 

2014). It should be noted that the SWIFT result of decrease in the signal-to-noise 

ratio with increase of predictability was not replicated from the original studies. 

Thus, although this task and analysis procedure has a high potential to untangle 

the uncertainties about where in the processing hierarchy differences between 

autistic and neurotypical individuals occur, the findings by Coll et al. (2020) 

appear not to support the previously replicated findings and more research is 

needed surrounding the paradigm. Moreover, it is important to further 

investigate the role of attention in autism in such predictive paradigms, as 

active and passive tasks appear to have different effects that can sometimes 

conflict the findings of the literature.  

Based on the research discussed in this section, it is clear that there is evidence 

for higher weighting of prediction errors in autism. However, that is not the case 

in all situations. Contradicting findings have been mostly found in reward-based 

paradigms where higher learning rates and by extension relying more on 

prediction errors have been observed by some researchers (eg. Crawley et al., 
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2019) but not by other (eg. Goris et al., 2020). Additionally, general attention 

allocation differences in autism (Orekhova & Stroganova, 2014) have the 

potential to affect the findings and in turn produce conflicting results as seen in 

passive (Goris et al., 2018) and active tasks (Gonzalez-Gadea et al., 2015). Thus, 

when interpreting results about inflexibly high precision to prediction errors, the 

type of tasks needs to be taken into account. 

1.2.5 Beyond the hypopriors and inflexible prediction errors 

It has been argued that the hypopriors and HIPPEA theories described above 

might be too simplistic in their explanation of autism (Palmer et al., 2017). In 

particular, whereas the Pellicano and Burr’s (2012) hypopriors theory focuses 

explicitly on the more simplistic Bayesian model with a focus on the prior, 

recent studies show that individuals on the autism spectrum can form and rely 

on priors (R. Cook et al., 2014; Karaminis et al., 2020; Tulver et al., 2019; Turi 

et al., 2015; Van de Cruys et al., 2018). The HIPPEA (Van de Cruys et al., 2014) 

theory, on the other hand, takes a more hierarchical approach by emphasising 

that the difference lies with the precision setting of the prediction error, 

irrespective of the context but more pronounced in volatile environments. 

HIPPEA argues that autism is a due to differences in attention allocation and 

meta-learning (when and where to allocate attentional resources for learning), 

not a general inability to learn. Thus, in task-switching paradigms where the 

environment changes from a stable one to a less stable one, or if reversal 

changes happen in the predictability of a cue, individuals on the autism 

spectrum will experience the most difficulty.  

However, Palmer et al. (2017) and Lawson et al. (2017) both argue that 

inflexible weighing of the prediction error will lead to learning at every instance 

– i.e., there will be a higher influence of individual trials and events on the 

predictive models. Consistent and heightened learning rates, however, do not 

appear to be an observable characteristic in autism as seen in Section 1.2.4.2. 

Instead, in the Aberrant precision model of autism Lawson et al. (2014, 2017) 

and later Palmer et al. (2017) propose that it is an issue with overestimation of 

the volatility of the environment that causes the high weighting of prediction 

errors. In this way, if the volatility of the environment is estimated to be high, 

this will lead to the reduced updating of the predictability of events when 



Chapter 1  50 
 

moving to a stable environment. This would make individuals more resistant to 

changing their estimate about the predictability of an event when the state of 

the environment changes. This aligns with findings that show that individuals on 

the autism spectrum show higher resistance to change in the studies by Lieder et 

al. (2019) and Crawley et al. (2019) discussed in section 1.2.4.2. Palmer et al. 

(2017) define the difference between Lawson et al.’s (2014) Aberrant precision 

model of autism and Van de Cruys et al.'s (2014) HIPPEA theory as the difference 

between inferences about the volatility of the environment and inferences about 

causes of changes in the environment. Whereas, Lawson et al. (2014, 2017) 

specifically emphasise the effects of volatility in their research and in defining 

their Aberrant precision model, Van de Cruys et al. (2014) position their theory 

with reference to meta-learning - i.e., the inability to learn which prediction 

errors or infrequent contingencies are to be learned and which ones are to be 

disregarded. Nevertheless, the main premise of the two theories appears to be 

the same – the need to know when the volatility of the environment is useful for 

learning and when it is not. However, since Lawson et al. (2017) found that 

autistic individuals update their belief about how unstable the environment is 

more than neurotypicals, it would be reasonable to conclude that the underlying 

mechanism is not simply about higher precision-weighting of prediction errors as 

HIPPEA proposes. Moreover, the consistently lower surprise in unpredictable 

events in individuals on the autism spectrum as compared to neurotypicals is 

indicative of a more complicated process than an inflexible setting of precision 

of prediction errors to a higher level (Lawson et al., 2017; Palmer et al., 2017). 

Whereas these assumptions are reasonable, Lawson et al.’s (2017) findings also 

suggest that in autism there is a tendency towards overestimation of the 

stability of cue-outcome associations. This is also purported by Van de Cruys et 

al. (2017) who argue that not knowing what information about the environment 

needs to be learned in a frequently changing environment could also lead to 

learning that the uncertainty is unstable. Specifically, they argue that 

uncertainty in itself is a learnable state of the world and putting more weight on 

prediction errors would lead to the same results.  

1.2.6 Overall Summary 

From what can be seen in Sections 1.2.4 and 1.2.5, prediction errors and the 

precision associated with them is the more consistent finding in the literature. In 
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this sense, the argument presented by Pellicano and Burr (2012) about autistic 

individuals developing uninformative or weak priors does not appear to be 

supported and the results appear to be more consistent with the HIPPEA theory 

(Van de Cruys et al., 2014, 2017) and the Aberrant precision model (Lawson et 

al., 2014, 2017) (See Figure 2 for a summary of the theories).  

Figure 2. Summary of discussed Predictive coding/Bayesian theories of autism. 

It appears that the premise about meta-learning in HIPPEA can encompass the 

findings under which the Lawson et al. (2014, 2017) arguments fall. Although 

Palmer et al. (2017) argue that Van de Cruys et al.’s (2014) theory is about 

inferring causes and in that way it misrepresents the value of uncertainty, the 

paper misses out the extent to which the HIPPEA theory emphasises that 

volatility of the environment will play an important part as a parameter that 

needs to be estimated. Nevertheless, as mentioned earlier, the mechanism 

emphasised in both HIPPEA and the aberrant precision model lead to heightened 

precision of prediction errors in autism. For this reason, the present thesis 

focuses on investigating whether there is high precision setting of prediction 

errors.  

• Creating uninformative priors biasing perception towards the sensory
experience

Weak Priors Theory (Pellicano & Burr, 2012)

• Inference about causes and difficulty in meta-learning
• Difficulty inferring what causes the prediction error which leads to

inflexibly high precision of the prediction error
• Uncertainty is a parameter that needs to be estimated

HIPPEA (Van de Cruys et al., 2014, 2017, 2019)

• Inference about the stability in volatility
• Precision setting is dependent on the volatility of the environment

Aberrant precision model (Lawson et al., 2014, 2017; Palmer et al., 2017) 
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 Purpose of the present work 

As discussed in Section 1.2.1.2, attention is a very important mechanism in the 

predictive coding framework. It is the proposed mechanism through which 

precision setting occurs. However, not much research has been done in autism in 

relation to attention within predictive paradigms, where attention and 

prediction have been modulated separately. To be able to talk about precision in 

autism and by extension about the relevance of the HIPPEA theory, attention is a 

perfect target for research. However, the research discussed so far has focused 

specifically on learning paradigms and unstable environments.  

This thesis aims to contribute research results and paradigm designs that can be 

used for the investigation of attention in the predictive processing framework of 

autism. To achieve this aim, this thesis presents three behavioural experiments 

(lab-based and online), one neuroimaging experiment and one meta-analysis. 

Each experiment modulates attention and expectation under different 

experimental paradigms allowing for the investigation of these two factors in 

more than one context. Additionally, the experiments in this thesis use tasks 

that utilise moving stimuli. Although, the use of more simplistic stimuli has its 

advantages, more complex stimuli like motion and biological motion provide 

dynamics above and beyond simple learning paradigms because they require the 

integration of low-level and higher-level generalisable concepts. By using motion 

and biological motion as tools to test the effects of attention in predictive 

contexts, we add on the effects of pre-existing models about the world.  

Firstly, in Chapter 2, I will present an apparent motion paradigm study, which 

looks at the ability of individuals with and without autism to detect predictable 

and unpredictable targets that appear on the illusory motion path of two squares 

that flicker in a frequency that produces apparent motion. This experiment aims 

to explore the simplistic reality of whether there is higher precision associated 

with prediction errors in a task that has shown that unpredictable targets are 

represented in lower visual areas of the brain, but are modulated by higher-

order areas that would be responsible for motion perception (Alink et al., 2010; 

Schwiedrzik et al., 2007). If inflexibly high precision is associated with 

prediction errors, then individuals on the autism spectrum should be able to 

detect unpredictable targets better than neurotypical individuals. Moreover, this 
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experiment controls attention by asking participants to fixate in the centre of 

the screen, while targets capture attention exogenously.  

Next, as social characteristics are some of the most pronounced in autism, I 

utilise a point-light display of human motion as the next experimental tool to 

study the HIPPEA theory. Before proceeding with the development of these 

tasks, however, it was necessary to resolve some of the variability within the 

autism literature about and whether individuals on the autism spectrum struggle 

with the perception and interpretation of biological motion stimuli in general. 

Chapter 3 presents a large-scale meta-analysis of literature investigating the 

biological motion perception and interpretations in autism in behavioural, eye-

tracking, EEG and fMRI studies. At the start of this project, no recent meta-

analysis had been conducted on the topic. By the time of publishing, two other 

groups had started work and published their results at the same time as ours. 

However, whereas one of these meta-analyses focused on the psychophysics of 

the tasks that were used (Federici et al., 2020), and the other focused on global 

motion perception as a whole (Van der Hallen et al., 2019), our meta-analysis 

had set out to investigate the variability associated with the task at hand and 

the variability within the participants. We found that there is a general effect of 

poorer performance in biological motion paradigms for individuals on the autism 

spectrum, however, this was highly dependent on the age of the participating 

groups and whether the task was detection, action recognition or emotion 

recognition (Todorova et al., 2019). Specifically, we found a general decrease in 

differences between autistic and neurotypical participants with the increase of 

age, and generally worse performance for tasks that involved emotion 

recognition, indicating poorer performance with the increase of complexity of 

information that the participants needed to extract (Todorova et al., 2019). 

Following these findings from Todorova et al. (2019) presented in Chapter 3, the 

next two studies focused on using simple biological motion detection in adults, 

as opposed to emotional or interpersonal action recognition. This allowed us to 

minimise the complexity of the biological motion stimuli, but at the same time 

being able to rely on the pre-existing model of human motion.  

The second experimental study presented in Chapter 4 orthogonally modulated 

attention and expectation in two online experiments. This study is a 

modification of Kok, Rahnev et al.’s (2012) design, transformed to be applied 
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within a behavioural paradigm, using a biological motion stimulus as an 

attentional cue. We also developed a second task using coherent dot-motion as a 

cue to allow the distinction between social and non-social cues. This study 

aimed to see whether the effects of autistic traits emphasise the effect of 

attention on unpredictable targets by leading to faster detection of these 

targets with increase in autistic traits as suggested by HIPPEA.  

Next, to better understand the interplay between prediction errors and 

prediction in autism, Chapter 5 presents an EEG paradigm in which a walking 

human point-light display was used as a target within a hierarchical frequency 

tagging paradigm similar to the paradigm presented by Gordon et al. (2017; 

2019). Using EEG data, we aimed to see whether there is a difference in the 

representation of low- and high-level components of the point-light display, 

along with their integration in the brain of individuals with higher autistic traits 

as compared to lower autistic traits when varying expectation and attention. 

The use of moving stimuli in these tagging paradigms has not been done before 

and thus a proof-of-concept was necessary first. Unfortunately, this study was 

stopped due to a state of a global pandemic caused by COVID-19 being declared. 

Thus, only 3 participants’ data were recorded. Although limited, the 

participants’ data is provided as a proof-of-concept, and the task should be 

utilised in the future, as hierarchical frequency tagging presents a promising tool 

for studying the levels of information integration in the brain. 

Finally, Chapter 6 provides a general discussion. The chapter provides a short 

summary of the findings and how they fit together. It also gives a critical 

account of the future of the HIPPEA framework and predictive coding 

frameworks of autism in general and discusses the limitations of the current 

work giving propositions for further research avenues. 
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 Special Treatment of Prediction Errors 
in Autism Spectrum Disorder 

 

 Abstract 

For autistic individuals, sensory stimulation can be experienced as 

overwhelming. Models of predictive coding postulate that cortical mechanisms 

disamplify predictable information and amplify prediction errors that surpass a 

defined precision level. In autism, the neuronal processing is putting an 

inflexibly high precision on prediction errors according to the HIPPEA theory 

(High, Inflexible Precision of Prediction Errors in Autism). We used an apparent 

motion paradigm to test this prediction. In apparent motion paradigms, the 

illusory motion of an object creates a prediction about where and when an 

internally generated token would be moving along the apparent motion trace. 

This illusion facilitates the perception of a flashing stimulus (target) appearing 

in-time with the apparent motion token and is perceived as a predictable event 

(predictable target). In contrast a flashing stimulus appearing out-of-time with 

the apparent motion illusion is an unpredictable target that is less often 

detected even though it produces a prediction error signal. If a prediction error 

does not surpass a given precision threshold the stimulation event is discounted 

and therefore less often detected than predictable tokens. In autism, the 

precision threshold is lower and the same prediction errors (unpredictable 

target) triggers a detection similar to that of a predictable flash stimulus. To 

test this hypothesis, we recruited 11 autistic males and 9 neurotypical matched 

controls. The participants were tasked to detect flashing stimuli placed on an 

apparent motion trace either in-time or out of time (UT) with the apparent 

motion illusion. Descriptively, 66% (6/9) neurotypical and (64%) 7/11 autistic 

participants were better at detecting predictable targets. The prediction 

established by illusory motion appears to assist autistic and neurotypical 

individuals equally in the detection of predictable over unpredictable targets. 

Importantly, 55% (6/11) of autistic participants had faster responses for 

unpredictable targets, whereas only 22% (2/9) neurotypicals had faster 

responses to unpredictable compared to predictable targets. Hence, for autistic 

participants unpredictable targets produce an above threshold prediction error, 

which leads to faster response. This difference in unpredictable target detection 
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can be encapsulated under the HIPPEA theory, suggesting that precision setting 

is aberrant in autistic individuals with respect to prediction errors.  

 Introduction 

The predictive coding framework argues that the mind is constantly predicting 

the outcome of the environment, and errors in our predictions are fed back and 

weighted. Our models about the world are then updated if enough weight is 

given to the error (Friston, 2010). Based on these models we create future 

predictions about incoming sensory information, which help us to navigate our 

environment more efficiently. This is achieved by developing generalisable 

models of the world allowing for some variability in the input. This is done by 

appropriately allocating uncertainty to different parts of the environment – i.e., 

discounting some information as noise, and appropriately emphasizing genuine 

signals indicating a change (Friston, 2010).  

A recent interpretation of autism through the predictive coding framework 

suggests that autistic individuals develop models that are too narrow, turning 

small inconsistencies between their prediction and the environment into an error 

signal (Van de Cruys et al., 2014, 2017). Van de Cruys et al. (2014) argue, that 

the differences in the neurocognitive processes in autism come from difficulties 

with meta-learning – knowing when the variability in the environment and its 

associated uncertainty is a genuine change in the rule and when it should be 

discounted as noise (Van de Cruys et al., 2014, 2017). Following this line of 

reasoning, Van de Cruys et a. (2014) propose the theory of High Inflexible 

Precision of Prediction Errors in Autism (HIPPEA), which postulates that there is 

higher precision-weighting of prediction errors in individuals on the autism 

spectrum than in their neurotypical counterparts. Weighing prediction errors 

consistently high will lead to the development of models that are based on 

infrequent contingencies due to the noisiness of the environment, creating 

narrow models of the world. 

Individuals on the autism spectrum are consistently reported as having a 

perceptual style that focuses more on details than the holistic percept (Simmons 

et al., 2009; Van der Hallen et al., 2015). Having a processing style that focuses 

on the parts instead of the whole will inevitably facilitate the development of 
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narrow models through assigning too much weight to sensory information that 

does not fit the already narrow predictions. Hence, many prediction errors will 

be registered by individuals on the autism spectrum, which will break down the 

perception of holistic information (Van de Cruys et al., 2014). Importantly, the 

HIPPEA theory also argues, that individuals on the autism spectrum can form 

predictions, but those are often low-level. Unless specifically instructed, autistic 

individuals will not automatically direct their attention to holistic 

representations, as low-level features will be easier to predict (Koldewyn et al., 

2013; Van de Cruys et al., 2014). One of the proposed mechanisms through 

which precision-weighting occurs is through attention (Feldman & Friston, 2010) 

and thus, HIPPEA argues that autism is a disorder of attention allocation. 

One way to test whether prediction errors are weighted higher is to utilise an 

already established paradigm, which rests on a predictive context, where the 

amount of sensory information - predictable and unpredictable - is varied and 

attention is controlled. One such paradigm is the apparent motion paradigm as 

described by Alink et al. (2010). The illusion of motion is created when two 

identical objects are flickered in rapid succession, thus creating the illusion of a 

single moving token. This illusory filling-in of the empty frames between the 

flickering objects impairs the detection of stationary targets shown on the 

illusory moving token’s path (Yantis & Nakama, 1998). This motion masking 

effect has been shown to vary in strength with the spatial-temporal 

characteristics of the flashed targets. Targets that appear in-time with the 

illusory motion token are perceived more readily than those presented out-of-

time with it (Alink et al., 2010; Schwiedrzik et al., 2007). The perception of 

these in-time stimuli invokes smaller activation in the primary visual cortex (V1) 

which will be expected if the human brain anticipates incoming visual stimuli 

and thus uses less neural activity to process them (Alink et al., 2010). In 

contrast, out-of-time targets produce larger V1 activation, which would 

correspond to stimuli being unexpected, resulting in the brain allocating 

additional resources to process them (Alink et al., 2010). The behavioural 

results, whereby predictable (in-time) targets are better detected than 

unpredictable (out-of-time) ones, indicate that increased activation for the 

unpredictable targets cannot be attributed to attention and should be viewed as 

prediction error activation (De-Wit et al., 2010). This is further corroborated by 
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transcranial magnetic stimulation (TMS) studies. TMS disruption of motion 

processing brain area V5, before the appearance of the in-time targets, 

eliminates the advantage in their detection when compared to the out-of-time 

targets (Vetter et al., 2015). This disruption would be expected under the 

predictive coding framework as it suggests that higher order areas are 

responsible for the perception of more holistic stimuli – in this case the 

perception of motion, and for feeding forward the predictions about where the 

illusory moving token should be at each point in time.  

The apparent motion paradigm has also been tested on schizophrenic individuals 

(Sanders et al., 2012), which is a condition commonly associated with autism. 

Sanders et al. (2012) found that schizophrenic patients showed the same 

advantage in detecting in-time stimuli as neurotypical individuals and greater 

motion masking than controls – i.e., lower hit rates. These results indicate that 

schizophrenic individuals were able to form and utilise the prediction created by 

the apparent motion and show no differences in the processing of prediction 

errors. Although it has often been suggested that ASD and schizophrenia have a 

similar underlying mechanism, Van de Cruys et al. (2014) make an important 

distinction between the two conditions. They argue that the perceptual-

cognitive style – local vs global processing, is an underlying reason for their 

HIPPEA model. This becomes important in light of findings like those from 

Russel-Smith et al. (2013) where they showed that individuals with high levels of 

schizotypy have a more global focus, whereas those with high autistic traits have 

a more local focus. The global focus in neurotypically developing individuals and 

individuals with high levels of schizotypy would support the similar performance 

in the two groups in Sanders et al.’s (2012) study. Additionally, a study also 

looking at autistic and schizotypy traits showed that in a visual statistical 

learning paradigm, higher autistic traits led to more veridical processing and less 

influence of expectations, which was due to increased weighting of sensory 

representations rather than weaker prior formation (Karvelis et al., 2018). This 

was not true for increase in schizotypy traits. Moreover, Sterzer et al. (2018) put 

forward the idea that in psychosis/schizophrenia the affected component as 

explained by the predictive coding framework is the prior. Whereas substantial 

research is required to tease apart at what levels it is a weak or a stronger prior, 

the argument that Van de Cruys et al. (2014) are making for autism in HIPPEA is 
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that in ASD the prediction error is more heavily weighted, rather than having 

lower/larger weighting on the priors. Thus, we argue that schizophrenic patients 

should show more ‘typical’ performance than ASD participants on account of 

their different processing styles. 

It is important to note that it has been argued that individuals on the autism 

spectrum have difficulty perceiving illusions, although the findings have been 

contradictory (Simmons et al., 2009). Moreover, it has been shown that the 

susceptibility to illusions is dependent on the type of illusion used (Ishida et al., 

2009). Specifically, David et al. (2010) investigated differences in horizontal and 

vertical apparent motion perception in ASD. They used the metastable motion 

quartet, which is a stimulus consisting of two dots alternately presented at four 

locations – the four corners of a hypothetical square, and thus creating apparent 

motion illusions in the vertical or horizontal direction. Autistic participants 

showed reduced horizontal binding in the apparent motion but not reduced 

vertical binding. Furthermore, individuals on the autism spectrum readily 

perceive first-order motion - based on luminance (Bertone et al., 2003). Hence, 

the apparent motion paradigm suggested here should be readily perceived as it 

is dependent on luminance – i.e., flashing lights with a specific frequency.  

Following the discussion above, we propose investigating whether autistic adults 

show the same advantage in detecting predictable targets over unpredictable 

ones, as neurotypical participants and whether autistic participants treat 

prediction errors differently than neurotypicals as proposed by HIPPEA. In this 

experiment, autistic adults and neurotypical individuals pressed a button every 

time they detected a target, which was presented either in-time (predictable) or 

out-of-time (unpredictable) with the illusory motion token’s path created by two 

vertically aligned squares flashing in rapid succession. If prediction errors are 

more highly weighted in autistic individuals as proposed by HIPPEA, then they 

will perceive predictable and unpredictable events with the same rate, or 

unpredictable at a higher rate, whereas neurotypical participants will show an 

advantage for detecting predictable targets. Thus, as attention appears to be 

controlled in neurotypical individuals (De-Wit et al., 2010), this task will also 

allow us to see whether unpredictable targets attract greater levels of covert 

attention in autistic individuals.  
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 Materials and Methods 

2.3.1 Participants 

Twenty participants took part in the present experiment – 9 neurotypical (NT) 

and 11 autistic (ASD). All participants were biologically male. Participants were 

group-wise matched on age. To avoid confounds with cross hemisphere 

communication, we attempted to recruit only right-handed participants, 

however, two ambidextrous participants on the autism spectrum also took part 

in the experiment. Participants were also group-wise matched on Full-Scale IQ 

(FSIQ) as measured by the Wechsler Abbreviated Scale of Intelligence (WASI, 

Wechsler, 1999). NT participants were screened using the Autism-Spectrum 

Quotient (AQ) before taking part in the original experiment as it has been shown 

to provide a good distinction between NT and ASD individuals (Baron-Cohen et 

al., 2001; Ruzich et al., 2015). A score of 26 was used as a cut off for the NT 

participants to account for the larger spread of scores in neurotypical 

populations in Ruzich et al. (2015). Additionally, NT participants needed to have 

no neurological or clinical/psychiatric conditions/diagnoses. This was not 

required for ASD individuals as ASD has been found to show high comorbidity 

with different conditions (Tye et al., 2019). ASD individuals with history of 

epilepsy were excluded as the stimulation involved flickering stimuli which may 

risk inducing seizures. From our sample, one autistic participant reported an 

Anxiety Disorder diagnosis, and another indicated a possible Anxiety Disorder. 

Additionally, one participant reported cerebellar atrophy of vermis and sulci. 

They reported that they do not have a problem with motion perception and 

fixation. They also informed us that they have had surgery to correct for a 

drifting eye. 

All participants’ basic vision capabilities were checked for acuity using the 

Freiburg Vision Test (‘FrACT’) before any further testing (Bach, 2007). We 

attempted to confirm the diagnosis of all autistic individuals using the Autism 

Diagnostic and Observation Schedule (ADOS) by a trained clinical researcher 

(Lord et al., 2000). Due to the researcher’s availability, two individuals did not 

participate in the interview. The clinical researcher did not provide us with 

complete scoring from the ADOS and provided us with a binary classification of 
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the results (would/would not be considered autistic). All individuals reported 

having received an official autism diagnosis; for nine of those, the diagnosis was 

confirmed with the ADOS. 

2.3.2 Measures 

All participants filled in a short demographics and screening questionnaire. It 

inquired about age, sex, eyesight, and neurological/psychological conditions. 

Edinburgh Handedness Inventory (EHI). The EHI (Oldfield, 1971) consist of 10 

tasks/activities which involve using one or both hands. Participants are asked to 

indicate a preference for the right or left hand.  

FrACT. The FrACT is an automated, self-paced measurement of visual acuity 

(Bach, 2007; Brosnan et al., 2012). It consists of a 4-alternate forced choice 

task, where using a button press participants indicate the orientation of the gap 

of a Landolt C (contrast 98%), the size of which depends on the correctness of 

the response. There were 36 trials, where every 6th trial is an ‘easy’ trial. No 

auditory feedback was provided. Participants had to have visual acuity of at 

least 0.5 decimal, which is the legal driving requirement by the Driver & Vehicle 

Licensing Agency of UK (https://www.gov.uk/driving-eyesight-rules).  

AQ. The Autism-Spectrum Quotient was originally developed for investigating 

autistic traits in individuals. It consists of 50 items to which individuals have to 

indicate their agreement (Baron-Cohen et al., 2001). NT individuals with scores 

of or above 26 (Ruzich et al., 2015) were excluded from further testing (N = 3).  

WASI. The WASI (Wechsler, 1999) is an individually administered assessment of 

intelligence and is applied to individuals aged between 6 and 89 years of age. It 

provides composite scores of verbal, perceptual and full-scale IQ. It contains 

four subtests – Vocabulary, Block Design, Similarities, and Matrix reasoning. Both 

the ASD and NT participants undertook the assessment. As we are looking for 

individuals of neurotypical IQ, FSIQ scores of below 70 were not included in any 

further testing. No participants scored below 70. The test was administered 

either by the ADOS administering researcher or the primary researcher. 
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ADOS. The ADOS (Lord et al., 2000) is used to assess and diagnose ASD across 

age and is used for ages between 12 months to adulthood. It takes up to 60 

minutes to administer and it consists of semi-/structured tasks, that assess the 

social and communicative abilities of the individual. A researcher trained to 

score and administer the ADOS interviewed the participants using Module 4 for 

adults.  

Stimuli. The stimuli replicated the paradigm used by Sanders et al. (2012) with 

schizophrenic patients. Stimuli were presented using PsychoPy (v1.84) (Peirce et 

al., 2019) on a CRT monitor (1024x768, 75Hz). The presentation was on a 

uniform grey background (24.1-29.3𝑐𝑑/𝑚ଶ)1 with a white (97.35 – 103.5 𝑐𝑑/𝑚ଶ) 

fixation cross (1.2°x1.2°) displayed in the centre of the screen. The apparent 

motion stimuli consisted of two white squares (2.35°x2.35°), which flashed to 

the right of the fixation cross (eccentricity = 7.72°) and above/below the centre 

fixation cross (Apparent motion trace = 16.45°). The stimuli alternated between 

the two positions, with an inter-stimulus interval equal to the stimuli 

presentation (7 frames). Presentation frequency was 2.68Hz with one cycle 

representing one full bi-directional ‘motion’ - assuming starting from the 

bottom: targetbottom(93ms) + ISI(93ms) + targettop + ISI. This is more clearly 

visualised in Figure 3. Targets were white squares (2°x2°). Predictable targets 

appeared in-time with the illusory motion – i.e., a target appearing closer 

(±4.7°from centre) to the first flashed stimulus after a short delay will be more 

predictable than one appearing at a longer delay. As the apparent motion 

presents a movement of up and then down, this created 4 different target 

presentations: two in-time (one down and one up) and two out-of-time (one up 

and one down). Every target was followed by 4-9 apparent motion cycles without 

a target to maintain the motion illusion. There was a total of 80 predictable and 

80 unpredictable targets. 

 
1 The two values given for the luminance of the background and squares, and the corresponding 

contrast values (0.559 – 0.603) represent the measurements at lights off and lights on. The two 
measures were necessary as sometimes the monitor reflected in participants’ glasses due to 
reflective coating and the eye-tracker calibration was not possible in the dark. 
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Figure 3. Stimuli setup.  

 
Note: Predictable targets appeared in time with the motion – i.e., assuming ‘motion’ starting 
from the bottom moving up, delay 1 at position 1 and delay 2 at position 2. All stimuli were 
presented on the right side of the screen. Modified from Sanders et al. (2012) 

Additionally, one control condition was performed by the participants. The 

control condition used the same stimuli, but it showed simultaneously blinking 

apparent motion stimuli instead of the temporally displaced ones from the 

experimental condition. The control condition kept the timing of the targets. In 

this way, all stimuli appeared at the same locations as before and the targets 

appeared at the same times, but the illusory motion component was removed by 

the simultaneously flashing apparent motion stimuli. 

2.3.3 Power analysis.  

Power calculations were done using the PANGEA (v.02) applet (Westfall, 2016; 

https://jakewestfall.shinyapps.io/pangea/) as it allows one to take into account 

the number of replicates i.e., how many trials each participant has in each 

condition.  

For the between-group comparisons, each participant in each motion condition 

(apparent motion vs no apparent motion) for each predictability level 

(predictable vs unpredictable) will see 80 targets i.e., 80 trials. The sample size 

calculated for the interaction of interest (Group x Condition x Predictability) was 

performed with an estimated effect size of d = 0.45 as recommended by Westfall 

(http://jakewestfall.org/publications/pangea.pdf, 2016) as no other estimate is 
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available. The recommendation is based on the meta-analysis of meta-analyses 

in social psychology by Richard, Bond Jr., and Stokes-Zoota (2003). We were not 

able to find another study that compared an autistic and a neurotypically 

developing population on a similar task. Additionally, although Sanders et al. 

(2012) have used the same paradigm to study schizophrenia, the effect size 

needed was not reported, because the group interaction was not significant i.e., 

Schizophrenic and neurotypical volunteers showed the same predictability 

effect. Moreover, Sterzer et al.(2018) and Van de Cruys et al. (2014) call for 

more research to distinguish between the two conditions, hence, it is not 

appropriate to generalise between these two conditions. Thus, using a moderate 

effect size (d = 0.45) as a guideline, we calculated that with 20 participants in 

each group we will reach power above 0.95.  

Nevertheless, using a smaller effect size of 0.33 found in a meta-analysis of 

overall coherent motion perception difference between ASD and neurotypically 

developing individuals (Van der Hallen et al., 2019), we found that with the 

same number of participants (20 per group) we will still reach a power of ~0.93. 

In terms of replicating previous findings in neurotypical participants, the effect 

of condition consistently shows strong effects - i.e., η2= 0.853/d = 4.8 [N = 8] 

(Schwiedrzik et al., 2007); and η2 = 0.565/d = 2.27 [N = 31 per group] (Sanders 

et al., 2012). For the interaction condition*predictability, effect sizes have also 

been consistently large – i.e., η2 = 0.952/d = 8.9069 [N = 8, 

condition*delay*position interaction or position*delay at the apparent motion 

condition only η2 = 0.816/d = 4.2118 (Schwiedrzik et al., 2007); η2= 0.067/d = 

0.536 for condition*predictability*position [N=31 or η2 = 0.109/d = 0.6995 for 

condition*predictability interaction] (Sanders et al., 2012). When decomposing 

into simple effects, the predictability effect in the apparent motion condition 

has been found to be d = 1.086 [N = 8, only apparent motion condition, one 

target position (bottom)] in Edwards et al. (2017) and d = 0.494 [N = 31, only 

apparent motion condition for neurotypical participants, two target positions 

(top & bottom)] (Sanders et al., 2012). The smallest effect size of 0.494 suggests 

that our initial sample size of 20 participants per group would only reach power 

of 0.719. To reach power of at least .80, a minimum of 25 participants will be 

required.  
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Thus, the sample size for both groups was chosen to be 25 to ensure that we 

could detect the effect in the neurotypically developing group. However, due to 

the COVID-19 pandemic and the national lockdown in Scotland associated with 

it, the study was stopped before the full sample could be reached, and we were 

only able to recruit 11 autistic and 9 non-autistic individuals. Additionally, due 

to the use of the eye-tracker, the ADOS, the WASI and the visual acuity test, the 

experiment could not be transferred online. Therefore, we are publishing this 

work along with all analysis and experiment set up scripts to allow other groups 

to build up on the data we have collected.  

 
2.3.4 Procedure 

Participants performed the FrACT, EHI, AQ, WASI before the beginning of the 

experiment. Participants took part in the ADOS before or after the experimental 

task depending on participant/clinical researcher availability. If participants did 

not meet inclusion criteria on the AQ, WASI or FrACT they did not continue with 

further testing (n=3).  

Afterwards, we seated the participants at a viewing distance of 70 cm and asked 

them to fixate on the fixation cross at the centre of the screen throughout the 

experiment, while allowing for brakes in fixation between trials. The use of the 

eye-tracker allowed us to monitor participants’ fixations and they were told if 

their eyes started to drift to perform a corrective eye-movement. Additionally, 

the eye-tracker allowed us to monitor for blinks, thus removing trials where the 

target appeared at the same time as a blink occurred. We monitored the 

fixations by tracking eye-movements of the right eye of the participant 

throughout the experiment using a remote eye-tracker EyeLink 1000 v4.51 at a 

250Hz sample rate. We presented one block per condition 

(experimental/control), and we counterbalanced the order across participants. 

We calibrated the eye-tracker with a standard 9-point calibration with each 

subject. The participants maintained their head-position throughout the 

experiment with the help of a chin rest. Between the blocks, we encouraged the 

participants to take a break and rest their eyes. We instructed participants that 

they will see a square appearing at the top and at the bottom of the right side of 

the screen, and that they needed to press a button every time they saw a square 
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appear in between those two locations. Participants performed a short practice 

of 12 target presentations at the start of each block. We asked the participants 

to respond as quickly as possible to the perception of the target by pressing the 

space bar on a standard keyboard. A total of 160 targets were presented across 

the two blocks with a 30s break after every 15th target where participants free-

viewed nature scenes presented on the screen, without moving from the chin 

rest. Every response between 150 and ~1500ms (4 apparent motion cycles) after 

target presentation was considered as a hit and everything else as an erroneous 

response. Each block lasted approximately 15 min. 

 
2.3.5 Analysis 

The analysis was carried out in R(v4.0.4) (R Core Team, 2020) using 

RStudio(v1.3.1093) (RStudio Team, 2016) using tidyverse (v1.3.0) and attached 

packages (Wickham et al., 2019).  

 For a target to be coded as detected the keypress should have occurred 

between 150ms and 1500ms after the target onset. This response window was 

selected based on previous research (Sanders et al., 2012; Schwiedrzik et al., 

2007).  

Trials, where the participant performed a blink when the target was presented 

were excluded (N=43 across participants (apparent motion=24, control=19)). 

Additionally, 90 more trials were removed (all from the ASD group) where 

participants either misunderstood the task or there were problems with the eye-

tracking equipment. Despite reporting that they have had corrective surgery for 

their eye, the participant that reported cerebellar atrophy had large shifts in 

their eye movements, for which they performed consistent corrective eye-

movements. For two additional participants, eye-tracker calibration was not 

possible (1- both condition, 1- apparent motion condition only) and a verbal 

reminder was given about maintaining fixation at the beginning of each set of 15 

trials (after the break). For that reason, their eye-movement data is not 

included in the descriptive analysis below in Table 1. 
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Due to the small sample size, the data are presented and interpreted 

descriptively. For completeness, binomial regression (for performance data) and 

gamma regression (for reaction time (RT) data) were also used for fitting the 

data, without the inclusion of random intercepts and slopes. The initial pre-

registered analysis resulted in many convergence failures resulting from too 

many parameters and not enough data points. The analysis here deviates from 

the pre-registered one, to provide complete description of the data. The original 

pre-registered analysis can be found at the project folder at OSF 

(https://osf.io/avsqh/) and analysis scripts and data will be uploaded on 

ReShare. Significance of all effects was done through model comparison of the 

full model, with a reduced model that excluded the effect of interest. 

Initially, to check if we could replicate previous findings in neurotypically 

developing individuals and to confirm the paradigm performed as expected, we 

ran a logistic regression with condition (apparent motion vs no apparent motion) 

and predictability (predictable vs unpredictable) for only the NT group.  

Next, to directly test the hypotheses, logistic regression was used to check for 

the 3-way interaction between condition (apparent motion vs no apparent 

motion), predictability (predictable vs unpredictable) and group (ASD vs NT). 

Finally, the ASD group’s performance only was analysed to investigate any 

potential differences in the control/apparent motion condition.  

As an exploratory measure, reaction time was also explored to tap into any 

processing delays within the ASD population. An analysis was run with reaction 

times (for the detected targets) as the outcome variable rather than the 

responses.  

Finally, we investigated whether Age and FSIQ were significant covariates to the 

model. 

2.3.6 Ethics 

Ethical approval was obtained from the Ethics Committee at the College of 

Science and Engineering, University of Glasgow. All participants provided 

informed consent for taking part in all parts of the study and for their 
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anonymised data to be shared. All participants were allowed to take a copy of 

their scores.  

Results 

2.4.1 Descriptive Statistics 

As seen in Table 1, the two groups were not significantly different on age or FSIQ 

but were significantly different in AQ scores. Percentage of fixations within the 

2° window away from the centre of the screen were compared between the 

groups for each condition. Comparisons were performed using Welch’s Two 

Sample t-tests. 

Table 1. Descriptive Sample Statistics 

Group ASD NT t df p 

Mean Age (SD) 33.73 
(13.84) 

29.78 
(12.74) 0.66 17.71 0.52 

Mean AQ (SD) 35.27 
(7.34) 

12.00 
(5.50) 8.10 17.9 <0.001 

Mean FSIQ (SD) 115 
(14.90) 

118.44 
(12.61) -0.56 17.96 0.58 

Mean % fixations out 
of centre, apparent 

motion (SD) 

15.50 
(14.82) 

4.96 
(3.21) 1.97 7.59 0.09 

Mean % fixations out 
of centre, control 

(SD) 

6.83 
(7.16) 

4.7 
(2.75) 0.83 10.31 0.42 

Table 2 describes the participants’ performance based on condition and 

predictability. Overall, it appears that the control condition was easier than the 

apparent motion condition, which indicates that the apparent motion introduced 

motion masking (see Figure 4). Additionally, the NT participants performed 

better in both conditions. From Table 2 it appears that performance was better 

for the predictable than the unpredictable targets in the apparent motion 

condition for both groups, with 66% (6/9) of NT participants and 64% (7/11) of 

ASD participants detecting more predictable than unpredictable targets. This 

can more clearly be seen in the lower panel of Figure 4. 
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Table 2. Participants' performance by condition and target type for each group 

Condition Target Group 
Mean 

detection 
rate (SD) 

Median 
reaction time 
(ms) (MAD*) 

Apparent 
Motion 

Predictable NT 0.56 (0.5) 478 (152) 
ASD 0.47 (0.5) 510 (200) 

Unpredictable NT 0.52 (0.5) 519 (157) 
ASD 0.44 (0.5) 501 (180) 

Control 
Predictable NT 0.81 (0.39) 418 (83) 

ASD 0.73 (0.44) 416 (95) 

Unpredictable NT 0.79 (0.41) 420 (91) 
ASD 0.74 (0.44) 418 (101) 

Note: *MAD – Median Absolute Deviation 

Figure 4. Average performance per person for each group per condition.  

 
Note: PT - Predictable Target; UPT - Unpredictable Target. Top panel present the overall 
performance per group with individual data points for each participant. Bottom panel shows 
the data as pairs of observations for each participant between target conditions 
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Looking at the RTs, from Figure 5 and Table 2 we can see that NT individuals 

were slower at detecting unpredictable targets, whereas ASD participants were 

faster. The lower panel of Figure 5 more specifically highlights that while 22% 

(2/9) of NT participants had shorter median reaction times for the unpredictable 

targets, more than half of ASD participants (55% - 6/11) had shorter median 

reaction times, indicating faster detection of unpredictable targets in the ASD 

group. It is noteworthy that the variance is rather large for both the 

performance and RTs, thus these observations should be taken with caution. 

Figure 5. Reaction time (ms) for each group per condition 

 
Note: PT - Predictable Target; UPT - Unpredictable Target. Top panel presents violin and 
boxplots of reaction time per target and condition with reaction time point superimposed for 
each participant and trial for each condition. Bottom panel shows the paired median RT for 
each individual between target conditions. 
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2.4.2 Performance analysis 

2.4.2.1 Replicating previous findings in neurotypicals 

In the first instance, the effects only in the neurotypical population were 

analysed. A comparison between the full model and model without the main 

effect of condition (apparent motion vs control) showed that there was a 

significant effect of condition – X2(1) = 220.34, p < 0.001. NT participants were 

able to detect a larger proportion of targets in the control condition 

(MApparent motion =0.540 [SD:0.499], MControl =0.801 [0.399]) where there was no 

apparent motion illusion present. Unfortunately, the interaction effect between 

condition and predictability was not replicated – X2(1) = 0.02, p = 0.88. As the 

simple effect of predictability would not provide us with any information 

because it will be across conditions, the effect was not explored. 

2.4.2.2 Overall analysis 

There was an overall effect of group, indicating that participants on the autism 

spectrum were less likely to detect the targets overall (MASD = 0.596 [0.491], MNT 

= 0.672 [0.470]) - X2(1) = 29.26, p < 0.001. There was no effect of the group and 

condition interaction - X2(1) = 0.03, p = 0.86. This is also evident from Table 2. 

Additionally, there was no three-way interaction between group, condition, and 

predictability - X2(1) = 0.65, p = 0.42. No further effects were looked at. 

2.4.2.3 Performance in the ASD group only 

Finally, as there was not a significant effect in the neurotypically developing 

group for predictability, but most participants detected a higher proportion of 

predictable than unpredictable targets, to maximise power, and to establish any 

effects of predictability in the apparent motion condition for ASD participants 

only, we ran a model that tested the simple effects of predictability for ASD 

participants in the apparent motion condition. However, the simple effect of 

predictability was not significant when comparing the modified model, and the 

same model without the predictability variable - X2(2) = 2.27, p = 0.32.  
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2.4.2.4 Covariates 

There was no significant effect of age in the omnibus model - X2(1) = 0.06, p = 

0.81. However, FSIQ was a significant covariate - X2(1) = 72.21, p < 0.001. This 

indicates that higher IQ was to an extent responsible for higher detection rates. 

2.4.3 Reaction Times 

2.4.3.1 Overall analysis 

There was an overall effect of group, which was driven by NT having faster 

reaction times on average (MNT = 498 [198] (median:442 [114]), MASD = 517 [228] 

(442 [126])) - X2(1) = 1.91, p = 0.01. There was a significant effect of condition - 

X2(1) = 45.58, p < 0.001, indicating faster detection in the control condition 

(MApparent motion = 579 [257] (502 [174]), MControl = 464 [169] (418 [92])). This is also 

evident from Table 2. The group and condition interaction was not significant - 

X2(1) = 0.05, p = 0.56. Additionally, there was no three-way interaction between 

group, condition, and predictability - X2(1) = 0.31, p = 0.15. No further effects 

were explored. 

2.4.3.2 Covariates 

There was not a significant effect of age at the omnibus model - X2(1) = 0.50, p = 

0.07. However, FSIQ was a significant covariate - X2(1) = 9.36, p < 0.001. This 

indicates that higher IQ of individuals was to an extent responsible for faster 

reaction times. 

 Discussion 

This experiment aimed to investigate whether predictable and unpredictable 

targets are detected differently in an apparent motion paradigm between 

individuals with and without autism. According to the HIPPEA theory proposed by 

Van de Cruys et al. (2014), there is high inflexible precision of prediction errors 

higher in autism. Therefore, unpredictable targets should be more easily 

detected by autistic individuals. The results observed in the present experiment 

show that the illusory motion made the task more difficult for both NT and ASD 

groups. This indicates that both groups were able to experience motion masking. 

However, there were no effects of predictability in either group and there were 
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no interactions with group on performance. The only effects of group showed 

that autistic individuals detected fewer targets and were slower in their 

responses. However, a descriptive examination of the data shows that precision 

for prediction errors as represented by unpredictable targets is set differently in 

autistic individuals than in neurotypicals.  

The descriptive results, although incomplete, highlight some important trends in 

the data. By count, it is evident that most of the participants in both groups 

detect more predictable than unpredictable targets. This supports HIPPEA’s 

argument, that individuals on the autism spectrum can form predictions. In the 

present case, the formation of a prediction about the ‘movement’ of the token 

facilitated performance in both groups for the predictable targets and led to a 

decreased ability in detecting unpredictable targets. These results mirror the 

findings from Alink et al. (2010) and Schwiedrzik et al. (2007).  

So far, the results are similar to the finding by Sanders et al. (2012) with 

schizophrenic patients. However, in the present study autistic participants 

additionally showed a descriptively faster detection for the unpredictable 

targets, which could be indicative of the higher precision associated with 

prediction errors as suggested by HIPPEA (Van de Cruys et al., 2014). As Feldman 

and Friston (2010) emphasise, attention will have a spotlight effect on 

prediction errors, assisting in their propagation up the processing hierarchy. 

Thus, although participants on the autism spectrum still experience the motion 

masking effect created by the apparent motion paradigm, and the prediction 

appears to assist them with the detection of predictable over unpredictable 

targets, unpredictable targets appear to be given special treatment. Moreover, 

the fact that overt attention is not modulated in this paradigm (De-Wit et al., 

2010) suggests that attention might be disproportionately affecting prediction 

errors, capturing the covert attention of autistic individuals to a higher degree, 

leading to faster reaction times. 

There are some limitations to this study that need to be considered when moving 

forward. The sample size used here is not appropriate as shown by the power 

calculation. Thus, an appropriate sample size should be recruited and the 

analysis should use design-appropriate models as proposed in the pre-

registration. Above and beyond the insufficient sample size, we only recruited 
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male participants to avoid any interaction effects with sex. It has been shown 

that brains of autistic individuals have differing connectivity between the sexes 

and in comparison to their neurotypical counterparts (Alaerts et al., 2016; 

Lawrence et al., 2020). However, to be able to characterise the complete ASD 

profile, we need to know whether HIPPEA can explain differences in both sexes. 

Samples with only male, only female and comparison between the two are 

necessary to achieve this. Thus, we are making available the analysis and 

experiment scripts along with the pre-registration of the analysis for future 

researchers to add to this dataset. Datasets from multiple sites with diverse 

samples will allow for the establishment of more robust findings. This in turn will 

allow for future research to have a clearer path moving forward when testing 

HIPPEA’s predictions. 

Further, it is noteworthy that there is research suggesting that autistic 

individuals tend to use compensatory brain networks to show similar behavioural 

responses (McKay et al., 2012; Philip et al., 2012). Therefore, our sample of 

autistic males might show similar behavioural performance to the neurotypical 

population because they are using compensatory brain networks. Thus, this task 

may be too simplistic to show differences in the ability of individuals with autism 

to form and utilise predictions to guide their behaviour. Thus, apart from adding 

more data points to this study, it will be important to consider more complex 

stimuli which also control for attention and expectation at the same time. 

The present results weakly suggest that in autism there is special treatment of 

prediction errors as expected under HIPPEA. However, it is important to point 

out that the formation of predictions as seen by the descriptively better 

detection of predictable targets along with the motion masking effects suggest 

that our autistic participants were able to form predictions, which is one of the 

pillars of HIPPEA. These results are promising and the recruitment of a sufficient 

number of participants, as suggested by the power analysis, will be necessary to 

establish how significantly reliable these results are. Nevertheless, the findings 

take us one step closer to finding out whether HIPPEA is a good candidate for 

explaining autism.  
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 Biological Motion Perception in 
Autism Spectrum Disorder: A Meta-analysis2 

 

 Abstract 

Background: Biological motion, namely the movement of others, conveys 

information that allows the identification of affective states and intentions. This 

makes it an important avenue of research in autism spectrum disorder where 

social functioning is one of the main areas of difficulty. We aimed to create a 

quantitative summary of previous findings and investigate potential factors, 

which could explain the variable results found in the literature investigating 

biological motion perception in autism.  

Methods: A search from five electronic databases yielded 52 papers eligible for a 

quantitative summarisation, including behavioural, eye-tracking, 

electroencephalography and functional magnetic resonance imaging studies.  

Results: Using a three-level random effects meta-analytic approach, we found 

that individuals with autism generally showed decreased performance in 

perception and interpretation of biological motion. Results additionally suggest 

decreased performance when higher order information, such as emotion, is 

required. Moreover, with the increase of age, the difference between autistic 

and neurotypical individuals decreases, with children showing the largest effect 

size overall. 

Conclusion: We highlight the need for methodological standards and clear 

distinctions between the age groups and paradigms utilised when trying to 

interpret differences between the two populations.  

Keywords: autism spectrum disorders, biological motion, meta-analysis, age, 

emotion recognition 

 
2 This chapter was published in Molecular Autism: https://doi.org/10.1186/s13229-019-0299-8 
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 Introduction 

Biological motion (BM), namely the movement of other humans, conveys 

information that allows the identification of affective states and intentions 

(Blake & Shiffrar, 2007; Pavlova, 2012; Pollick et al., 2001). BM processing 

specifically, is the ability of individuals to detect, label and interpret human 

movement and to allocate certain emotional states to it. Thus, BM is an 

important component of social perception. Moreover, neurotypically developing 

(NT) individuals have been shown to be able to readily extract socially relevant 

information from sparse visual displays (Blake & Shiffrar, 2007; Pavlova, 2012). 

Specifically, point-light displays (PLDs), which portray BM with points located 

only on the major joints, are readily recognised as depicting differing actions by 

NT (Johansson, 1973).  

Pavlova (2012) argues that an inability to extract socially relevant information 

from BM could have damaging effects on social functioning. In fact, individuals 

with an intellectual disability have been shown to have no problem in identifying 

different types of motion (Klin et al., 2009; Sparrow et al., 1999), whereas 

individuals with social functioning difficulties such as Autism Spectrum Disorder 

(ASD), have shown reduced ability in extracting social information from BM 

(Simmons et al., 2009). Indeed, ASD’s main diagnostic characteristics include 

problems with social interaction and communication as well as repetitive and/or 

restrictive behaviours (American Psychiatric Association, 2013). Thus, the social 

impairment in ASD can, to some extent, be readily related to a reduced ability 

to extract information from BM.  

However, findings on BM in ASD tend to be mixed (Simmons et al., 2009). For 

example, some studies, which investigated the identification or recognition of 

actions from BM (Hubert et al., 2007; P. Murphy et al., 2009; Parron et al., 2008; 

Saygin et al., 2010) did not find significant differences between NT and ASD 

individuals, whereas others have found differences between the two groups 

(Annaz et al., 2010; McKay et al., 2012; Nackaerts et al., 2012). Simmons et al. 

(2009) and McKay et al. (2012) argue that this is because there is variability 

between ASD individuals. Several factors have been suggested to introduce this 

variability.  
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One of these potential factors is age. Specifically, on one hand it appears that 

research in children tends to consistently show an impairment in BM 

interpretation (Annaz et al., 2010; Blake et al., 2003; Klin et al., 2009). Whilst, 

on the other hand, research in adults does not find differences in performance in 

action perception and BM recognition (Hubert et al., 2007; P. Murphy et al., 

2009; Saygin et al., 2010).  

Person characteristics such as sex and IQ have also been suggested to contribute 

to the variability of results. Specifically, IQ has been identified as a predictor of 

performance in some studies (Jones, Swettenham, et al., 2011; Rutherford & 

Troje, 2012) but not in others (A. P. Atkinson, 2009; Hubert et al., 2007; Van 

Boxtel et al., 2016). Furthermore, a recent meta-analysis by Van der Hallen et 

al. (2015) looked at local vs global paradigms, where individuals have to ignore 

the global context to be able to focus and perform a task on the specific parts or 

vice-a-versa. They observed greater differences when the proportion of females 

was higher. Hence, these demographic characteristics of the samples should be 

investigated as potential contributors to the variability in the findings. 

The task at hand has also been considered as a contributing factor. Koldewyn et 

al. (2010) argue that individuals with ASD are able to identify BM presented 

through simple PLDs from noise and classify them, however, it is the extraction 

of higher order information, such as emotional content, that shows the largest 

performance difference. In fact, although Hubert et al. (2007) and Parron et al. 

(2008) did not find differences between NT and ASD in action recognition, they 

found differences in emotion recognition from biological motion for adults and 

children. Additionally, Fridenson-Hayo et al. (2016) found that in children this 

difference in emotion recognition from BM is evident for both basic (e.g. happy, 

sad) and complex emotions (e.g. disappointed, proud) as well as being evident 

cross culturally (Britain, Sweden, Israel). Thus, both children and adults with 

ASD tend to be less sensitive to emotional content.  

It has been suggested that eye-tracking research can inform our understanding 

of the social difficulties in ASD. A review and meta-analysis of eye-tracking 

studies showed that in ASD attention to social versus non-social stimuli may be 

reduced (Chita-Tegmark, 2016). The analysis also found that decreased attention 
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might be given to the eyes and increased attention to the mouth and body 

compared to NT individuals. However, Chita-Tegmark (2016) noted that the 

results were very mixed. This may have been because the authors tried to 

include a large number of studies and thus inevitably included a mixture of more 

than one type of stimuli, including faces, eyes and bodies. Specifically, bodies 

contain vital social information and are perceptually different from faces (de 

Gelder, 2009). Thus, different processes may be involved when looking at these 

different stimuli. Nevertheless, even when looking at eye-tracking studies 

focusing only on biological motion, the same variability is observed. Namely, in 

preferential looking paradigms, children have shown reduced visual orientation 

to biological motion (Annaz et al., 2012; Falck-Ytter et al., 2013; Klin et al., 

2009). This difference between NT and ASD has not been found in adults (Fujioka 

et al., 2016). In contrast, Fujisawa et al. (2014) show that pre-school children 

tend to have a greater preference for upright than inverted BM, which was 

additionally greater than that in NT children. Hence, it is apparent that 

inconsistencies in eye-tracking studies also exist but cannot be simply explained 

by age as a driving factor.  

One study argued that the mixed findings in the BM literature within ASD are due 

to ASD utilising different brain networks which develop later in life. Hence, 

McKay et al. (2012) investigated BM perception between ASD and NT and found 

that the brain areas that communicate with each other in ASD are not the same 

as the ones found in NT. Specifically, functional magnetic resonance imaging 

(fMRI) studies tend to find reduced activation in ASD for areas such as the 

superior temporal sulcus, middle temporal gyrus, inferior parietal lobule. These 

are all areas that have been found to be related to the perception and 

interpretation of human motion and actions (Alaerts et al., 2017; Freitag et al., 

2008; Grèzes et al., 2009). NT individuals, however, show connectivity within 

areas involved with action and human motion observation – such as the inferior 

and superior parietal lobules. On the other hand, individuals with autism have 

been found to have brain networks that involve connectivity with the fusiform, 

middle temporal and occipital gyri, which are all areas considered to be involved 

in more basic level motion perception rather than action recognition (Freitag et 

al., 2008; McKay et al., 2012).  
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Similarly, the mirror neuron network (MNN) has been implied to be related to 

social functioning as it is associated with observing and understanding the 

actions of others. Thus, Kaiser and Shiffrar (2009) argue that the MNN could 

contribute to the impairments seen in ASD. Moreover, Villalobos et al. (2005) 

have shown reduced functional connectivity in the prefrontal mirror neuron area 

in individuals with ASD. The MNN has mainly been investigated in imitation 

paradigms (Oberman et al., 2005; Williams et al., 2006) and indeed, 

dysfunctional activation has been identified in individuals with ASD. However, 

since the MNN is also involved in understanding others’ actions, its activation 

during simple action observation has also been investigated in ASD because 

understanding others’ actions is an integral part of social functioning. Most 

commonly, mu-suppression has been used to assess human mirror activity (Fox et 

al., 2016) and reduced mu-suppression has been found in ASD participants in 

comparison to NT individuals both when performing and observing BM (Oberman 

et al., 2005; Raymaekers et al., 2009). Thus, it appears that the impairment in 

the MNN could be another contributing factor to the social difficulty present in 

BM perception in ASD.  

In order to help bring clarity to the field, there is a need for a quantitative 

review of the research done on BM perception in ASD. Previous literature reviews 

have already argued for reduced ability in interpreting social information from 

BM and about the diagnostic utility of biological motion in ASD (Kaiser & 

Pelphrey, 2012; Kaiser & Shiffrar, 2009). In one such attempt, Van der Hallen et 

al. (2019) conducted a meta-analysis on global motion visual processing 

differences between individuals with ASD and neurotypically developing 

individuals in behavioural paradigms. They included 48 studies – 28 looked at 

coherent movement processing from random dot kinematograms and 20 looked 

at biological motion detection or discrimination of BM from other types of 

motion (i.e., scrambled). Global motion processing in their context refers to 

being able to combine several moving stimuli into a coherent shape (i.e., PLDs) 

or to perceive a coherent direction of the motion of dots despite the existence 

of unrelated distractor noise. Van der Hallen et al. (2019) found overall 

differences between ASD and NT individuals in global motion processing but did 

not find a specific effect for biological motion, rather an effect that indicated a 

general decreased performance in detecting or recognising global motion 
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patterns in perception paradigms. Whilst Van der Hallen et al. (2019) found no 

effect of potential moderators on group differences, they suggest that this may 

have been due to underpowered studies rather than there being no real effect. 

However, they did not include emotion processing paradigms and only compared 

PLDs and random dot kinematograms despite there being other forms of 

biological motion paradigms, such as animated humans and videos of humans. 

Another attempt at summarising the behavioural findings in the field was done 

by Federici and colleagues (2020). They focused on characteristics of PLDs, the 

levels of processing (first-order/direct/instrumental) and the manipulation of 

low-level perceptual features in PLDs. They partially answer the question of the 

effect of the utilised paradigm, showing that when inferring 

intentions/actions/emotions is required in the task and when temporal 

manipulations are made to the stimuli, the effects are larger. Unfortunately, 

their meta-analysis did not focus on the characteristics of the autistic 

individuals, which, as seen above, have also been suggested to introduce 

variability in the findings. Finally, while Van der Hallen et al.’s (2019) and 

Ferderici et al.’s (2020) meta-analyses address the need for a summarisation and 

exploration of the variability in the results in the literature to a certain extent, 

their meta-analyses do not fully answer the questions about participant 

characteristics and their role in the existing findings.  

To be able to understand what could drive potential behavioural differences, it 

is important to also review brain imaging literature for potential answers. There 

have been some previous attempts to summarise this literature. A meta-analysis 

on the fMRI investigation of ASD, which included studies on social perception in 

ASD, found differences between the ASD and NT groups in both basic social tasks 

such as face recognition and biological motion recognition, and in complex social 

tasks – i.e., emotion recognition (Philip et al., 2012). However, within social 

perception, face perception was also included which limits the conclusions that 

can be made for the perception of only human movement. Similarly, a 

systematic review by Hamilton (2013) tried to summarise the EEG literature on 

MNN and autism in BM observation, reporting that experiments probing the 

relationship between MNN and ASD have produced very mixed results. However, 

Hamilton (2013) does not provide a quantitative summary of the analysis, only a 

narrative one.  
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Since there are inconsistencies in previous findings, behavioural, eye-tracking 

and brain imaging evidence will be reviewed to identify whether there is 

substantial evidence for decreased measures of performance in perceiving and 

understanding BM in individuals on the autism spectrum. We choose to focus 

solely on biological motion perception as body movement presents qualitatively 

and perceptually different information from faces and eye-gaze (de Gelder, 

2009). Moreover, we want to minimise any inflation or deflation of the effect 

size of the difference between the two groups, which could be caused by the 

inclusion of faces and eye-gaze information, which in turn could limit the scope 

of interpretation. We include studies which have used videos of real humans 

performing movements, cartoons, which represent humans or human body parts 

(i.e., hands) (collectively termed full-light displays), and PLDs as described 

above. The inclusion of both behavioural and physiological measures will allow 

us to develop a comprehensive understanding of the differences between ASD 

and NT individuals. Where enough data were available (only in behavioural 

studies), we also investigate the effects of different contributing factors such as 

the age, sex and IQ of the participants, the quality of the studies and the effect 

different paradigms might have on the size and direction of the effect sizes. 

 Methods 

3.3.1 Protocol 

Before commencing this meta-analysis an informal protocol was agreed by all 

authors based on PRISMA guidelines (Moher et al., 2015). Following these 

guidelines, the protocol includes details about the methodology and the steps 

taken to collect and analyse the data, which were agreed prior to commencing 

this meta-analysis. Through discussions throughout the meta-analytic process 

and as problems arose, small changes were agreed upon by all authors, such as 

the exact analysis software, publication bias measures, age categories, etc. The 

changes are indicated within the protocol. The protocol is available upon 

request. 
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3.3.2 Study selection 

In order to identify eligible studies, we conducted a systematic literature 

search. The computerised search involved using the following electronic 

databases: Dissertations & Theses A&I (ProQuest), Dissertation & Theses: UK & 

Ireland (ProQuest), Web of Science, PsycINFO (EBSCOhost) and MEDLINE (OVID). 

The following search terms were used ‘autis*’, ‘biological motion’, ‘human 

motion’, ‘asd’, ‘asperger*’, ‘childhood schizophrenia’, ‘kanner*’, ‘pervasive 

development* disorder*’, ‘PDD-NOS’, ‘PDD*’, ‘PLD*’,’point-light display*’, 

“action observation*”, “action observation network*”, ‘AON’. The asterisk 

represents truncation, allowing the search to find items containing different 

endings of the term. Dissertations and Theses databases were searched in order 

to identify unpublished experiments in an attempt to minimise bias. The search 

was limited to results in English. Appendix A shows the search strategies used 

and the number of results the search returned. The search included a wide time 

span as no lower time criterion was imposed on the search engines allowing us to 

access the first available records. Results included records up to and including 

the first week of November 2017. A second search was done in May 2019 for any 

additional records, due to the substantial time that had passed from the initial 

search. 

 The following exclusion/inclusion criteria were then used when screening the 

remaining records’ abstracts and full text: 

1. Published before week one of November 2017(Search 1) and May 2019 

(Search 2);  

2. Published primary empirical articles and theses with non-published results – 

excluding review articles, opinion pieces, correspondences, case studies, and 

meta-analyses;  

3. Participants in the sample must have an ASD diagnosis; 

4. Diagnosis must be confirmed through ADOS, ADI-R or a clinician; 
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4.1. Added during review process: additional diagnostic measures such as the 

3-Di, DISCO; those that are specific to Asperger's disorder, for example

the Gilliam Asperger Disorder Scale (GADS, as cited in Price et al., 2012), 

the Asperger Syndrome (and high functioning autism) Diagnostic Interview 

(ASDI as cited in Price et al., 2012), and the high-functioning Autism 

Spectrum Screening Questionnaire (ASSQ as cited in Price et al., 2012) 

were also accepted as confirmation of ASD diagnosis. Additionally, the 

Chinese/Japanese equivalents of tests were accepted as in Wang et al. 

(2015) and Fujisawa et al. (2014). 

5. Study must contain fMRI, EEG, eye-tracking and/or behavioural designs;

6. An ASD and NT control group must be present and compared;

7. Although human biological motion includes face motion and eye-gaze, only

papers involving human body movement were included to provide a more

focused review. These include full-light displays and PLDs;

8. When stimuli that aim to minimize the availability of structural cues (e.g.,

PLDs) were used, the stimuli must represent human form with a minimum of

two points for PLDs;

9. Studies that used videos of people or cartoons where the face was not

obstructed were not included as faces could confound with the participants’

performance;

10. Papers that focus on imitation of biological motion were not included;

11. If papers focusing on imitation included a separate analysis of BM

observation, solely the BM observation was included where possible;

12. Similarly, if paradigms included additional stimuli, but performance on the

BM paradigm was analysed and could be extracted separately from the other

stimuli, only that analysis was included;
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13. Only papers that included t-statistics, descriptive statistics and/or effects 

sizes were included. Data requests were made to authors, where eligible 

papers did not include the necessary data.  

Two reviewers independently screened the titles, abstracts and full texts against 

the eligibility criteria. Disagreements were discussed and resolved by the two 

reviewers or by consultation with the third author. The final decisions on 

inclusion/ exclusion of the studies were compared between the two reviewers. 

Cohen’s Kappa at the first search was calculated which equated to 64.07%. 

However, since Cohen’s Kappa is sensitive to distribution inequality (Byrt et al., 

1993) and ~92% of the records were classified as false positives, the prevalence 

index (0.816) and the prevalence-adjusted and bias-adjusted kappa (PABAK) of 

inter-rater reliability were calculated (PABAK = 87.98% inter-rater reliability, 

absolute agreement = 93.99%). To minimise effort at the second search, 

inclusion/exclusion was compared at abstract level and then at full-text level 

(Abstract level: Kappa = 70.72%, PABAK = 80.33%; Full-text: Kappa = 69.57%, 

PABAK = 71.43%) 

The references of included records were screened by hand, split between the 

two reviewers. Five further records were identified.  

3.3.3  Coding and data extraction 

Coding of the studies was split between the first and second author. The studies 

were not double coded, however, the studies coded by the second author were 

double-checked by the first author. Papers were coded and data was extracted 

for the following variables:  

 Sample size for each group; 

 Age: Mean and Standard deviation were extracted for both the NT and 

ASD groups and each group was post-hoc classified into one of three age 

groups – children (≤ 13), adolescents (> 13 and ≤ 19) and adult (> 19); 

 Full-Scale IQ: Mean and standard deviation were extracted for both the 

NT and ASD groups; 
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 Non-verbal IQ: Mean and standard deviation were extracted for both the 

NT and ASD groups; 

 Sex ratio: the sex ratio for each group was extracted and transformed into 

the proportion of females present in the sample; 

 Paradigm: the type of paradigm used was extracted and categorised as: 1 

– Detection of biological motion in noise or in comparison to another 

stimulus (usually upside down or scrambled PLD) (Annaz et al., 2010; 

Price et al., 2012; Saygin et al., 2010); 2 – Action and subjective states 

categorisation or recognition (Nackaerts et al., 2012; Van Boxtel et al., 

2016; L.-H. Wang et al., 2015); 3 – Emotional states categorisation (A. P. 

Atkinson, 2009; Fridenson-Hayo et al., 2016; Philip et al., 2010); 4 – 

Passive viewing (only relevant in fMRI, EEG and eye-tracking). What 

category each study falls in can be seen in Table 3 and Table 4. Although 

we initially attempted to separate detection in noise from recognition in 

comparison to other stimuli, the authors later decided that both tasks 

would require a similar process of integrating low level information into a 

coherent human form to perform the task. Thus, to create balanced 

categories and conceptually cohesive categories the two categories were 

combined.  

 Type of stimulus: the stimuli were grouped into two categories: 1 – PLDs; 

2 – Full-light displays – videos of real people or animations.  

 Data on performance in the sense of descriptive statistics, t-values or 

effect sizes (d), were extracted from each paper. Effect sizes for 

thresholds, accuracy, sensitivity indices, error rates and reaction times 

were recorded from the behavioural studies. The areas of activation with 

contrasts of ASD>NT or NT>ASD were recorded from the fMRI studies and 

fixations, or proportion of fixations were collected from the eye-tracking 

experiments. Eye-tracking studies included preferential looking paradigms 

in which percentage fixations were recorded as an indication of 

preference for one display, i.e., BM, over another, i.e., inverted BM. 

Differences in EEG-recorded activation between the NT and ASD groups 
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were extracted from the EEG experiments, along with the specific 

frequencies and electrodes used.  

Additionally, the following variables were extracted to allow for a complete 

account of the included studies and quality assessment: 

 Diagnosis confirmation criteria; 

 Type and number per diagnosis category (where available); 

 Additional diagnoses reported; 

 Verbal IQ and other cognitive abilities that were not measured by a 

complete IQ assessment; 

 Length of presented stimulus; 

 Quality assessment 

Risk of bias for behavioural, eye-tracking and EEG studies was assessed by two 

independent reviewers using the Standard Quality Assessment (SQA) criteria for 

evaluating primary research papers from various fields for quantitative studies 

(Kmet et al., 2004). The checklist contains 14 items. Items 5 (If interventional 

and random allocation was possible, was it described?), 6 (If interventional and 

blinding of investigators was possible, was it reported?), 7 (If interventional and 

blinding of subjects was possible, was it reported?) were not used as they refer 

to the use of interventions which are not applicable for the studies reviewed 

here. Each of the remaining 11 items can receive 2 points if the assessed study 

fulfils the criteria; 1 point if it partially fulfils the criteria and 0 points if it does 

not fulfil the criteria at all. A summary score was calculated for each paper by 

adding the total score and dividing it by the total possible score. The total score 

after excluding the previously mentioned three items is calculated with Equation 

1. One study (Karuppali, 2018) provided only descriptive information of results 

(no inferential statistics) and was judged on fewer items (Q1-4, Q8-9, Q13-14). 

28 − (3[𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠] ∗ 2) = 22  (1) 
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Eight studies were chosen at random to pilot the quality assessment. 

Disagreements were discussed and all papers were re-evaluated. An initial 

comparison was then done between the reviewers’ scores. It was found that 

most disagreements were on item 12 (‘Controlled for confounding?’). This item 

was discussed, and the papers were re-evaluated for that item. Disagreements 

of more than 3 points difference were further discussed on an item-by-item 

basis. Final comparison of all papers resulted in 18 papers upon which the 

reviewers completely agreed on the total score. There was no more than a two-

point absolute difference between the reviewers’ scores for the remaining 

papers. Thus, the scores for these papers were averaged across both reviewers. 

Differences between the two reviewers were mostly in the assignment of full or 

partial points for the items, which was also evident in the original piloting of the 

scales during its development (Kmet et al., 2004). Overall, the disagreement 

between the reviewers in the quality score given to each study was quite low 

with small variability – 0.038(SD = 0.035, min-max [0-0.091]). In total 47 papers 

were evaluated. The overall SQA score given to all papers was medium/high – 

0.792(SD = 0.065, min-max [0.636-0.955]). 

We were unable to locate a standardised quality assessment measure that would 

allow us to assess the quality of fMRI papers. Thus, the assessment was done 

using relevant criteria from the SQA. Specifically, questions related to the 

analysis and results were excluded and the fMRI methodology was assessed for 

robustness. This was done collaboratively by the authors. 

For the fMRI studies, which included an analysis of behavioural performance, the 

fMRI part of the analysis was disregarded initially, and the rest was assessed 

using the standard SQA procedure described above. This was done to provide a 

comparable score across the studies that incorporated behavioural performance 

and to allow for the inclusion of the quality measures as a predictor variable in 

the analysis. Afterwards, their fMRI protocols and analyses procedures were 

assessed for methodological robustness by the third and first author. The 

originally agreed upon score from the SQA was added to the score given for the 

methodological robustness and a new average quality score was calculated. For 

the fMRI papers that did not contain a behavioural paradigm, we used the 

relevant questions from the SQA (Q1-Q4, Q9 & Q12 – Q14). Additionally, their 
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protocols and analyses procedure were assessed for robustness. These scores 

were added and a composite score was given. Thus, it is important to underline 

that the quality scores for the fMRI papers are not directly comparable with the 

rest of the papers. The quality assessment scores for each study are presented in 

Table 3 and Table 4. 

Additionally, in order to evaluate the quality of the evidence included, we have 

further conducted a weight of evidence analyses (Gough, 2007). The majority of 

shortcomings that were identified came from a non-randomised procedure or not 

including all sample characteristics. Details of this analysis is shown in Appendix 

B. It indicates that despite their shortcomings, the included studies provide good 

quality and relevant evidence in support of our conclusions.  

3.3.4 Statistical analysis 

The following analysis procedure was applied to the behavioural, eye-tracking 

and EEG experiments. For each included paper, the descriptive statistics, t-

values or Cohen’s d were used to calculate Hedges’ g as the common 

representation of effect size for all studies. All the calculations and 

transformations were done by firstly calculating Cohen’s d and its variance. A 

correction for small sample size was applied to get the unbiased estimate of 

Hedges’ g. The variance of g was estimated based on the sample sizes of each 

study. All the calculations were done using the R package compute.es (Del Re, 

2013) in R(v3.4.1) (R Core Team, 2019) and RStudio (v.1.1.453) (RStudio Team, 

2016). A precision index was calculated for each study as the inverse of the 

variance (1/variance). Positive Hedges’ g corresponded to higher scores (better 

performance) in NT, when compared to ASD. Five top outlier outcomes were 

identified using a boxplot. An analysis of the initial model with and without the 

outliers showed that without the outliers, the variance between the studies 

reduced by a factor of 1.3 and the residual estimates reduced by a factor of 

five. Thus, all statistical analyses within this paper report the results without 

the outliers.  

Six studies provided RT data. Since a previous meta-analysis (Van der Hallen et 

al., 2015) showed that RT outcomes tap into different processes in comparison 

to the rest of the extracted outcomes they were analysed separately from the 



Chapter 3  89 
 
rest of the behavioural outcomes. Two top and one bottom outlier were 

identified using a boxplot. As above, the variance between the studies reduced 

without the outliers, and the residual estimate reduced by a factor of 3.6. Thus, 

all statistical analyses report the results without the outliers. 

Since papers rarely report only one outcome and/or have only one experiment 

from which an effect size can be extracted, the traditional (two-level) meta-

analysis is not appropriate due to the dependencies that come from using the 

same subjects or having the same researchers conduct the study (Cheung, 2014; 

Van den Noortgate et al., 2013, 2015). Therefore, the analysis was extended to a 

three-level meta-analysis, which takes into account the variance due to the 

variation of the effect sizes included; the variance that occurs within the same 

study and the variance that occurs between the studies (Van den Noortgate et 

al., 2013). Therefore, the three-level analysis estimates these three variance 

elements. The error only linear model with no moderators as given by Cheung 

(2014) is shown in Equation 2: 

𝑔௝௞ =  𝛼଴ + 𝑢௞ + 𝑢௝௞ + 𝑒௝௞  (2) 

Where gjk is the effect size for outcome j from study k and is represented by 

Hedges’ g; α0 is the grand mean of all effect sizes across studies; uk represents 

the deviation of the average effect in study k from the grand mean; ujk is the 

deviation of effect j in study k from the average effect of study k and finally ejk 

is the residual variation not explained by the previously defined variances 

(Cheung, 2014). This random-effects model is then extended by including 

moderators. A series of meta-analyses were conducted to investigate the effect 

of one or a combination of more than one of the following covariates: age, sex 

ratio, full-scale intelligence quotient (FSIQ) and non-verbal intelligence quotient 

(NVIQ) for each group, as well as the paradigm and the stimuli. When 

moderators are added to the analysis, there are two sets of effect sizes that 

need to be kept in mind. The first set of effect sizes is the difference between 

ASD and NT at that level of the moderator (or combination of moderators). 

These are presented in Table 6 and Table 7. The second set of effect sizes are 

the ones which represent the size of the difference between the different 

levels. For example, a positive effect size, will indicate that at the first level of 
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the moderator, the difference between ASD and NT is larger than at the second 

level. Negative effect sizes here represent that there is a larger effect at the 

second/third/etc. level than at the previous level.  

The parameter estimation was done using maximum likelihood, implemented in 

the mixed procedure in the statistical package SAS (release 9.04.01, SAS 

OnDemand for Academics: SAS Studio, n.d.). Due to the imbalance of studies 

when the predictor variables were added, the Satterthwaite method was used to 

calculate the denominator degrees of freedom (Schaalje et al., 2001). 

Additionally, to investigate the effects at each level of the categorical variables, 

a least square means procedure was applied.  

To assess heterogeneity, the I2 statistic (Higgins & Thompson, 2002) was 

calculated. Since we are using a three-level analysis and potential heterogeneity 

can occur at the second or the third level, we used the modified formulas 

provided by Cheung (2014). The I2 statistic was calculated only for the initial 

model, the model with the paradigm as a moderator and the model that 

included both paradigm and age as moderators. This was done because these 

three models contained the same studies and thus the effect of the moderators 

on the heterogeneity could be compared. The calculations for level 2 𝐼(ଶ)
ଶ  and 

level 3 𝐼(ଷ)
ଶ are shown in Equation 3 below. 𝐼(ଶ)

ଶ  and 𝐼(ଷ)
ଶ represent the proportion of 

variation which can be attributed to the between and within studies 

respectively. 

𝐼(ଶ)
ଶ =

௨ෝ(మ)
మ

௨ෝ(మ)
మ ା௨ෝ(య)

మ ା௩ ෥
 (3) 

𝐼(ଷ)
ଶ =

௨ෝ(య)
మ

௨ෝ(మ)
మ ା௨ෝ(య)

మ ା௩ ෥
  (4) 

Where 𝑢ො(ଶ)
ଶ  is the between study variance calculated from the model, 𝑢ො(ଷ)

ଶ  is the 

within study variance calculated by the model and 𝜈෤ is the typical within study 

variance calculated by Equation 5 as suggested by Higgins and Thompson (2002).  

𝑣෤ =
∑ ௪೔(௞ିଵ)

(∑ ௪೔)మି∑ ௪೔
మ
 (5) 



Chapter 3  91 
 
Where 𝑤 is the inverse variance and k is the number of studies. 

Publication bias was assessed with Egger Regression (Egger et al., 1997) and the 

Trim and Fill method (Duval & Tweedie, 2000) using a two-level random effects 

model. The analysis was performed using a SAS macro created by Rendina-

Gobioff and Kromrey (2006).  

3.3.5  ALE analysis of fMRI Studies 

To analyse the fMRI data, activation likelihood estimation (ALE) in GingerALE 

v3.0.2 (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012), was employed. Foci 

from the between group contrasts, which had reached statistical significance, 

were first extracted from the studies and converted where necessary into 

Talairach space using GingerALE. When both whole-brain and region-of-interest 

analyses were performed, and coordinates were available, the ones from the 

whole-brain analysis were used. In ALE, the activation foci are shown as a three-

dimensional Gaussian probability density function, centred at the specified 

coordinates. The spatial overlap of these distributions across the different 

studies and the spatial uncertainty due to inter-subject and inter-experiment 

variability are then computed. This results in activation maps, which can be seen 

as summaries of the results of a specified study after considering the spatial 

uncertainty present. Through the combination of these maps, the convergence 

of activation patterns across studies can be calculated. This is confined to a grey 

matter shell and above chance clustering between the studies is calculated as a 

random-effects factor (Eickhoff et al., 2009). We performed ALE analysis for the 

NT>ASD contrast only, since only two studies found differences at the ASD>NT 

contrast (Jack & Morris, 2014; Koldewyn et al., 2011). Only two studies (Alaerts 

et al., 2013; Grèzes et al., 2009) provided data for emotion 

detection/identification paradigms, thus this was not analysed separately. 

Although, our initial intent was to investigate the effects of age, the small 

number of studies that provided information about the differences between the 

ASD and the NT group, would not allow for a separate investigation, without 

introducing spurious results and further complicating the mixed literature in the 

field. Thus, the readers should keep in mind that the ALE analysis and the output 

produced contains research from both children/adolescents and adults as well as 
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emotion and BM detection/observation paradigms. Using the recommended 

thresholding procedure – cluster defining threshold of 0.001 and cluster-wise 

family-wise error correction of 0.05 we were not able to identify any significant 

clusters. An exploratory analysis is reported where we used an uncorrected p-

value of 0.001 and maximum cluster size of 200mm3. 

Data used for the analysis is deposited in the ReShare data repository: 

https://doi.org/10.5255/UKDA-SN-853277. 

 Results 

The initial (November 2017) study search returned 793 records. The output from 

all databases was combined and duplicates were removed using two strategies. 

Initially, R software was used to remove duplicate records that appeared in the 

same format between the searches. Then, the articles were screened by hand to 

remove additional duplicates. This resulted in a total of 516 records. At the 

second search (May 2019), 124 records were identified and Rayyan software was 

used (Ouzzani et al., 2016). Out of those 45 were identified as duplicates from 

the previous search and 18 were identified as duplicates between the databases. 

This resulted in a total of 61 records.  

The selection process resulted in a set of 47 papers. Five further records were 

identified from the references of the included papers. From these 35 

contributed to the behavioural studies category, five to the eye-tracking 

category, five to the EEG category and 11 to the fMRI category. An overview of 

the inclusion/ exclusion process is shown in the PRISMA flow diagram in Figure 6 

below.  
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Figure 6. PRISMA flow diagram representing the selection/inclusion/exclusion process. 
Adapted from Moher et al. (2009).  

 

Note: The second search did not look into Dissertation and Theses UK & Ireland, as it was 
covered by Dissertation and Theses Worldwide in the previous search. 

The included studies and their descriptive information can be seen in Table 3 

(behavioural, eye-tracking and EEG) and Table 4 (fMRI). The two tables also 

show the effect sizes for each study, their variance and standard error, their 

weight of evidence score and their quality assessment score.  
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 Table 3. Summary of behavioural, eye-tracking and EEG studies. 

Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio 

FSIQ NVIQ N Age 
Sex 
ratio 

FSIQ NVIQ 

Actis-Grosso et 
al. (2015) 

20 22.8 15/5 118.9 / 25 22.3 21/4 / / AR accuracy PLD (13 
strips) 

3 (max 
5 min) 

-0.2 0.09 0.04 8.5 0.71 

Alaerts et al. 
(2015) 

12 12/2 13.8 / 100.3 16 13/3 14.2 / 106.7 ER accuracy PLD (12 
points) 

3 0.78 0.15 0.07 

8 0.73 
12 12/2 13.8 / 100.3 16 13/3 14.2 / 106.7 ER RT 

PLD (12 
points) 

3 4.62 0.52 0.14 

15 15/0 21.7 107.9 105.6 15 15/0 23.3 114.8 109.1 ER accuracy 
PLD (12 
points) 3 4.93 0.53 0.13 

15 15/0 21.7 107.9 105.6 15 15/0 23.3 114.8 109.1 ER RT 
PLD (12 
points) 3 -1.53 0.17 0.08

Alaerts et al. 
(2017) 15 21.7 15/0 107.9 105.6 15 23.3 15/0 114.8 109.1 D d' 

PLD (12 
points) 4 0.66 0.13 0.07 8.5 0.82 

Annaz et al. 
(2010) 

23 8.83 / / / 34 8.25 / / / D d' 
PLD (13 
points) 

1 1.15 0.08 0.04 
8.5 0.8 

23 8.83 / / / 34 8.25 / / / D thresholds PLD (13 
points) 

1 0.89 0.08 0.04 

A. P. Atkinson 
(2009) 

13 30.9 12/1 106.2 105.2 16 26.7 14/2 106.6 108.4 ER accuracy PLD (ns) 
and FLD 

3 1.17 0.16 0.07 8.5 0.84 

Binnerslеy 
(2006) 

14 12.917 14/0 / / 15 / / / / D d' 
PLD (15 
points) 

1 0.22 0.13 0.07 8.5 0.8 

Blake et al. 
(2003) 12 / / / / 9 8.417 / / / D d' PLD 1 1.13 0.21 0.10 8 0.73 

Cook et al. 
(2009) 16 34.1 14/2 114.8 109 16 33.3 14/2 113 113 D thresholds FLD / 2.82 0.24 0.09 9 0.86 

Couture et al. 
(2010) 

36 20.9 29/7 101.3 / 41 22.9 34/7 109.4 / ER accuracy 
PLD (12 
points) 

5-20 0.31 0.05 0.03
8 0.84 

36 20.9 29/7 101.3 / 41 22.9 34/7 109.4 / ER accuracy 
PLD (12 
points) 

5-20 0.75 0.05 0.03

Cusack et al. 
(2015) 

15 16.09 15/0 103.1 / 15 15.54 15/0 104.8 / AR thresholds PLD (13 
points) 

2.5 0.18 0.13 0.07 

8 0.82 18 16.09 18/0 103.1 / 18 15.54 18/0 104.8 / AR thresholds 
PLD (13 
points) 

2.5 -0 0.11 0.06 

18 16.09 18/0 103.1 / 18 15.54 18/0 104.8 / D thresholds 
PLD (13 
points) 1.5 0.3 0.11 0.06 
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Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

15 16.09 15/00 103.1 / 15 15.54 15/00 104.8 / D thresholds PLD (13 
points) 

1.5 -0.4 0.13 0.07 

15 16.09 15/00 103.1 / 15 15.54 15/00 104.8 / D thresholds PLD (13 
points) 

2 -0.4 0.13 0.07 

Edey et al. 
(2019) 

20 41.1 15/5 115.53 / 17 38.76 14/3 118.24 / D d' FLD / -0.05 0.1 0.05 
8.5 0.91 

22 36.77 18/5 111.18 / 24 31.21 23/1 105.46 / D d’ FLD / -0.26 0.08 0.04 
Freitag et al. 

(2008)  

15 17.5 13/2 101.2 93.3 15 18.6 13/2 112.1 106.8 D error rates PLD 1.5 1.21 0.16 0.07 
9 0.84 

15 17.5 13/2 101.2 93.3 15 18.6 13/2 112.1 106.8 D RT PLD 1.5 3.14 0.31 0.10 

Frideson-Hayo et 
al. (2016) 

20 7.45 18/2 / / 22 7.5 19/3 / / ER accuracy FLD 4-24 0.97 0.1 0.05 

8.5 0.95 

20 7.45 18/2 / / 22 7.5 19/3 / / ER accuracy FLD 4-24 1.28 0.11 0.05 
16 8.58 15/1 / / 18 7.8 13/5 / / ER accuracy FLD 4-24 1.15 0.13 0.06 
16 8.58 15/1 / / 18 7.8 13/5 / / ER accuracy FLD 4-24 0.31 0.11 0.06 
19 6.97 15/4 / / 18 7.36 15/3 / / ER accuracy FLD 4-24 0.41 0.11 0.05 
19 6.97 15/4 / / 18 7.36 15/3 / / ER accuracy FLD 4-24 0.46 0.11 0.05 

Hubert et al. 
(2007) 

19 21.5 17/2 83.3 / 19 24.33 17/2 / / ER accuracy 
PLD (5 & 

10 
points) 

5 2.12 0.16 0.06 

7.5 0.64 19 21.5 17/2 83.3 / 19 24.33 17/2 / / AR accuracy 
PLD (5 & 

10 
points) 

5 0.85 0.11 0.05 

19 21.5 17/2 83.3 / 19 24.33 17/2 / / AR accuracy 
PLD (5 & 

10 
points) 

5 1.8 0.14 0.06 

Jones, 
Swettenham et 

al. (2011) 
89 15.5 81/8 82.1 91.4 52 15.5 49/3 88.4 91.8 D thresholds 

PLD (5 & 
10 

points) 
5 0.3 0.03 0.01 8.5 0.77 

Karuppali (2018) 4 5.3 2/2 / / 4 4.625 2/2 / / AR accuracy PLD (15 
points) 

500-
2000 

3.25 1.04 0.36 7.5 0.69 

Koldewyn et al. 
(2010)  

30 15.12 28/2 107.8 104.7 32 15.78 30/2 121.3 114.2 D thresholds PLD (13 
points) 

2 0.82 0.07 0.03 
8.5 0.82  

30 15.12 28/2 107.8 104.7 32 15.78 30/2 121.3 114.2 D RT 
PLD (13 
points) 

2 -0.09 0.06 0.03 

Koldewyn et al. 
(2011) 16 15.4 14/2 110.6 106.7 16 15.6 14/2 118.6 112.6 D 

thresholds 
(75%) 

PLD (13 
points) 2 1.01 0.13 0.06 8.5 0.86 

Krakowski (2014) 35 10.48 31/4 105.4 108.3 46 11.22 24/22 114 108.2 D d' PLD / 0.6 0.05 0.02 8.5 0.84 



 

 

Ch
ap

te
r 

3
 

 
96

 
 

Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

Kroger et al. 
(2014) 

17 11.9 17/0 / / 21 11.63 21/0 / / D accuracy PLD (15 
points) 

1 -0.2 0.1 0.05 
9 0.86 

17 11.9 17/0 / / 21 11.63 21/0 / / D RT PLD (15 
points) 

1 0.21 0.1 0.05 

Kruger et al. 
(2017) 

16 34.7 12/4 / / 16 35 12/4 / / AR accuracy PLD (13 
points) 

4 -0.1 0.12 0.06 8 0.73 

McKay et al. 
(2012) 

10 28.6 10/0 125 / 10 27.9 / 124.8 / AR 
thresholds 

(50%) 
PLD (15 
points) 1 0.34 0.19 0.10 

8.5 0.73 
10 28.6 10/0 125 / 10 27.9 / 124.8 / AR 

thresholds 
(75%) 

PLD (15 
points) 1 0.8 0.2 0.10 

Morrison et al. 
(2019) 

106 24.28 95/11 108.9 / 95 24.17 84/11 116.28 / D d' PLD / 0.06 0.02 0.01 
8.5 0.91 

106 24.28 92/11 108.9 / 95 24.17 84/11 116.28 / ER accuracy PLD 5-10 0.61 0.02 0.01 

Murphy et al. 
(2009) 

16 25.56 13/3 / / 16 26.4 13/3 / / D d' 
PLD (11 
points) 

~6.5 0.23 0.12 0.06 

8.5 0.84 

16 25.56 13/3 / / 16 26.4 13/3 / / D d' 
PLD (11 
points) ~6.5 0.32 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D d' 
PLD (11 
points) ~6.5 0.27 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D d' 
PLD (11 
points) 

~6.5 0.46 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D d' PLD (11 
points) 

~6.5 0.29 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D error rates PLD (11 
points) 

~6.5 0.53 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D error rates PLD (11 
points) 

~6.5 0.45 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D error rates 
PLD (11 
points) ~6.5 0.37 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D error rates 
PLD (11 
points) ~6.5 0.45 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D error rates 
PLD (11 
points) 

~6.5 0.19 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D RT PLD (11 
points) 

~6.5 0.58 0.12 0.06 
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Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

16 25.56 13/3 / / 16 26.4 13/3 / / D RT PLD (11 
points) 

~6.5 0.46 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D RT PLD (11 
points) 

~6.5 0.22 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D RT PLD (11 
points) 

~6.5 0.29 0.12 0.06 

16 25.56 13/3 / / 16 26.4 13/3 / / D RT 
PLD (11 
points) ~6.5 0.27 0.12 0.06 

Nackaerts et al. 
(2012) 

12 34.9 7/5 111.5 105.7 12 31.5 7/5 115.5 115.3 ER accuracy 
PLD (12 
points) 3 1.71 0.22 0.10 

8 0.8 12 34.9 7/5 111.5 105.7 12 31.5 7/5 115.5 115.3 D d' 
PLD (12 
points) 3 1.28 0.19 0.09 

12 34.9 7/5 111.5 105.7 12 31.5 7/5 115.5 115.3 D accuracy 
PLD (12 
points) 

3 1.12 0.18 0.09 

Parron et al. 
(2008) 

23 11.583 20/3 93.7 89 23 12 20/3 / / ER accuracy PLD (10 
points) 

~5 5.51 0.41 0.09 

8.5 0.73 23 11.583 20/3 93.7 89 23 12 20/3 / / AR accuracy PLD (10 
points) 

~5 1.9 0.12 0.05 

23 11.583 20/3 93.7 89 23 12 20/3 / / AR accuracy 
PLD (10 
points) 

~5 3.08 0.19 0.06 

Philip et al. 
(2010) 23 32.5 16/7 101.5 104.4 23 32.4 17/6 111.2 113.4 ER accuracy FLD 5 - 10 1.6 0.11 0.05 9 0.84 

Price et al. 
(2012) 

14 14.14 14/0 / 57.14 16 14.08 16/0 / 52.63 D accuracy PLD 5 1.14 0.15 0.07 
8.5 0.8 14 14.14 14/0 / 57.14 16 14.08 16/0 / 52.63 D d' PLD 5 0.82 0.14 0.07 

14 14.14 14/0 / 57.14 16 14.08 16/0 / 52.63 D d' PLD 5 0.64 0.13 0.07 
Saygin et al. 

(2010) 16 33.75 13/3 112.2 107.2 20 37.75 14/7 113.2 108.6 D thresholds 
PLD (12 
points) 0.583 0.08 0.11 0.06 8 0.73 

Sotoodeh et 
al.(2019) 

20 11.3 17/3 / 77.3 20 11.4 17/3 / 106 AR accuracy 
PLD (13 
points) 

2s (3 
times) 0.85 0.1 0.05 

9 0.82 
20 11.3 17/3 / 77.3 20 11.4 17/3 / 106 AR RT 

PLD (13 
points) 

2s (3 
times) 

1.85 0.14 0.06 

Swettenham et 
al. (2013) 

13 9.583 / / / 13 8.5 / / / AR accuracy 
PLD (13 
points) 

/ 0.39 0.15 0.08 8.5 0.77 

Turi et al. (2017) 19 11.49 16/3 105.9 / 18 11.94 14/4 107.6 / AR d' PLD (23 
points) 

0.90 ± 
0.15 

1.64 0.14 0.06 9 0.8 
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Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

19 11.49 16/3 105.9 / 18 11.94 14/4 107.6 / AR d' PLD (23 
points) 

0.90 ± 
0.15 

0.44 0.11 0.05 

van Boxtel et al. 
(2016) 

16 14.04 12/4 101.5 99.94 17 13.32 13/4 112.2 108.6 AR thresholds PLD 1 0.27 0.12 0.06 9 0.82 

von der Luhe et 
al. (2016) 

16 41.56 12/4 116.9 / 16 36.19 10/6 115.3 / D accuracy PLD 3.6 -
4.3 

0.47 0.12 0.06 
8.5 0.89 

16 41.56 12/4 116.9 / 16 36.19 10/6 115.3 / D accuracy PLD 
3.6 -
4.3 0.53 0.12 0.06 

Wang et. (2015) 21 5.588 17/4 / / 21 4.95 16/5 / / AR accuracy 
PLD (11 
points) 2 1.07 0.11 0.05 8.5 0.8 

Eye-tracking 

Annaz et al. 
(2012) 

17 5.583 / / / 17 5.5 / / / PV % fixations PLD 6 1.19 0.13 0.06 
8.5 0.73 

17 5.583 / / / 17 5.5 / / / PV % fixations PLD 6 1.75 0.16 0.07 
Burnside et al. 

(2017) 
16 5.22 16/0 / / 16 3.98 8/8 / / PV % fixations PLD (13 

points) 
6 0.29 0.12 0.06 8.5 0.82 

Fujioka et al. 
(2016) 

21 27.6 21/0 99.8 96.4 35 25.2 35/0 / / D % fixations PLD 20 0.32 0.08 0.04 8 0.8 

Fujisawa et al. 
(2014) 

15 4.824 12/3 / / 58 4.008 27/31 / / D % fixations PLD 20 -0.2 0.08 0.03 8 0.73 

Nackaerts et al. 
(2012) 

12 34.9 7/5 111.5 105.7 12 31.5 7/5 115.5 115.3 ER 
fixation 

time 
PLD (12 
points) 3 3.27 0.38 0.13 

8 0.8 
12 34.9 7/5 111.5 105.7 12 31.5 7/5 115.5 115.3 AR 

fixation 
time 

PLD (12 
points) 

3 2.58 0.29 0.11 

EEG 

Bernier et al. 
(2007) 14 23.6 0/14 114 107.6 15 26.7 0/15 108.9 105.4 PV 

mu-power 
ratio (8-
13HZ) 

FLD 2.5 - 20 0.88 0.14 0.07 8.5 0.84 

Bernier et al. 
(2013) 

19 6.4 18/1 118.3 112 19 6.9 17/2 95.5 96.3 PV 
mu-power 
ration (8-

13HZ) 
FLD 6 -0.06 0.11 0.05 9 0.77 

Hirai et al.(2014) 
12 15.7 11/1 / / 12 16.5 11/1 / / PV 

amplitude 
N100 

PLD 0.990 -0.21 0.16 0.08 
8.5 0.77 

12 15.7 11/1 / / 12 16.5 11/1 / / PV amplitude 
N100 

PLD 0.990 0.71 0.17 0.08 
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Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

Dumas et al. 
(2014) 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
13HZ) 

FLD 6 3.29 0.26 0.08 

8.5 0.73 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
13HZ) 

FLD 6 2.83 0.23 0.08 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio(8-
13HZ) 

FLD 6 2.76 0.22 0.07 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
13HZ) 

FLD 6 0.05 0.13 0.06 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
13HZ) 

FLD 6 1.95 0.18 0.07 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
13HZ) 

FLD 6 -0.33 0.13 0.06

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 0.17 0.13 0.06 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 0.79 0.14 0.06 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 -0.64 0.13 0.06

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 -0.6 0.13 0.06

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 -0.9 0.14 0.06

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (8-
10HZ) 

FLD 6 -1.31 0.15 0.06



 

 

Ch
ap

te
r 

3
 

 
10

0
 

 

Author (year) 
ASD sample NT sample 

Para-
digm 

Measure Stimuli 
Dura-
tion(s) 

g 
var. 

g 
SE (g) WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (11-

13HZ) 
FLD 6 4.96 0.44 0.10 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (11-

13HZ) 
FLD 6 4.92 0.43 0.10 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (11-

13HZ) 
FLD 6 5.52 0.51 0.11 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (11-

13HZ) 
FLD 6 3.98 0.33 0.09 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio(11-

13HZ) 
FLD 6 -4.33 0.36 0.09 

10 33.9 7/3 / / 30 28.7 14/16 / / PV 
mu-power 
ratio (11-

13HZ) 
FLD 6 1.9 0.17 0.07 

Raymaekers et 
al. (2009) 

20 11.158 18/2 103.2 / 19 
10.71

9 
14/5 112.7 / PV 

mu-power 
ratio (8-
13Hz) 

FLD 80 0.47 0.1 0.05 

9 0.8 20 11.158 18/2 103.2 / 19 10.71
9 

14/5 112.7 / PV 
mu-power 
ratio (8-
13Hz) 

FLD 80 0.48 0.1 0.05 

20 11.158 18/2 103.2 / 19 
10.71

9 
14/5 112.7 / PV 

mu-power 
ratio(8-
13Hz) 

FLD 80 0.91 0.11 0.05 

Note: N - sample size; FSIQ - full-scale IQ; NVIQ - non-verbal IQ; AR - Action Recognition; D - BM detection; ER - emotion recognition; PV – passive 
viewing; FLD – full-light display; PLD - point-light display; d' –sensitivity index; g - Hedges' g; var. g – estimated variance of g; SE(g) - estimated standard 
error of g; WoE - weight of evidence; SQA – standard quality assessment score. ▲ - Papers that only reported performance index (accuracy/RT) or in 
addition to other findings.  
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Table 4. Summary of fMRI studies. 

Authors 
(year) 

ASD sample NT sample 
Para-
digm 

Mea-
sure 

Stimuli 
Dura-
tion 
(s) 

Contrast 
Areas of activation WoE SQA 

N Age 
Sex 
ratio FSIQ NVIQ N Age 

Sex 
ratio FSIQ NVIQ Task Groups 

Alaerts et 
al. (2013) 15 21.7 15/0 107.9 105.6 15 23.3 15/0 114.8 109.1 ER WB 

PLD  
(12 

points) 
3s EM>fix NT>ASD 

L IPL, R MTG-pSTS, L 
MOG, L MTG-pSTS 8 0.7▲▲ 

Alaerts et 
al. (2017) 

15 21.7 15/0 107.9 105.6 15 23.3 15/0 114.8 109.1 ER/D WB 
PLD  
(12 

points) 
4s EM>fix 

NT>ASD 
and 

ASD>NT 
None 8.5 0.79▲▲ 

Bjorndotter 
et al. 
(2016) 

37 

boys: 
11.45 
girls: 
10.73 

27/10 

boys: 
91.33 
girls: 
98.8 

/ 38 

boys: 
11.52 
girls: 
11.51 

25/13 

boys: 
105.46 
girls: 
93.85 

/ PV WB 
PLD  
(16 

points) 
24s BM>SCR NT>ASD 

R FFG, L FFG, L MTG, L 
IFG, L Cerebellum 8.5 0.8▲ 

Freitag et 
al. (2008) 15 17.5 13/2 101.2 93.3 15 18.6 13/2 112.1 106.8 D WB 

PLD (15 
points) 1.5s BM>SCR NT>ASD 

R Calcarine sulcus, R 
Parieto-occipital sulcus, 

R Central 
sulcus/Postcentral 

gyrus, R Postcentral 
gyrus/ Postcentral 

sulcus, R Postcentral 
sulcus/ IPL, R IPL, R 
MTG/STS, R Insula, R 

ACG, R MedFG, R MFG, 
L Central sulcus/ 

postcentral gyrus, L IPL, 
L FFG, L STG, L 

Claustrum, L ACG 

8.5 0.81▲▲ 

Grezes et 
al. (2009) 

12 26.6 10/2 102 / 12 21 12/0 119 / AR/ER WB FLD 3s 

Dynamic 
(fear & 
neutral) 
vs Static 

NT>ASD 

R TPJ/STG, R ITG (MT), 
L ITG, R medSFG, R STG 

(middle part), R 
Precentral gyrus, L IFG, 
R Precaneus, R MFG, R 

ITG (MT), R FFG/ 
Cerebellum 

9 0.85▲ 

Jack and 
Morris 
(2014) 

15 14.2 13/2 110.53 110.33 15 13.8 11/4 112.27 107.6 PV WB FLD 7-9s Hand vs 
baseline 

ASD>NT 

R Transverse Temporal 
Gyrus, L Superior 
Temporal Gyrus, L 

Precaneus, R Anterior 

9 0.9▲ 
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Authors 
(year) 

ASD sample NT sample 
Para-
digm 

Mea-
sure 

Stimuli 
Dura-
tion 
(s) 

Contrast 
Areas of activation WoE SQA 

N Age 
Sex 
ratio 

FSIQ NVIQ N Age 
Sex 
ratio 

FSIQ NVIQ Task Groups 

Cingulate, L Cingulate 
Gyrus 

Jack et al. 
(2017) 

35 14.49 27/8 97.6  62 17.3 26/36 101.61  PV Cereb
ellum 

PLD (15 
points) 

24s BM>SCR 
NT>ASD 

and 
ASD>NT 

None 8 0.78▲ 

Kaiser et 
al. (2010) 

25 11.8 20/5 100.2 98.2 

NT: 
17 
US: 
20 

NT: 
10.9 
US: 
11.3 

NT: 
12/5 
US: 
9:11 

NT: 
114.1 
US: 

115.8 

NT: 
110.1 
US: 

113. 8 

PV WB 
PLD (16 
points) 

~24s BM>SCR NT>ASD 
L vlPC, vmPC, R PTS, R 
Amygdala, R FFG, L FFG 

8.5 0.75▲ 

Koldewyn 
et al. 
(2011) 

  

16 15.4 14/2 110.6 106.7 16 15.6 14/2 118.6 112.6 D WB PLD (13 
points) 

2s BM>COH 
NT>ASD 

R Insula, Bilateral 
Caudate, Bilateral 

Pulvinar; R Intraparietal 
sulcus, R AG, R STS; R 
IFS, R MFG, R IFG; L 

Intraparietal Sulcus, L 
AG, L STS; Anterior 
Cingulate Sulcus and 

Gyrus. 

8.5 0.84▲▲ 

ASD>NT R ITG/IOG (2 clusters) 

Marsh and 
Hamilton 
(2011) 

18 33 / 110.22 104.4 19 32.2 / 113.89 113.4 PV WB FLD 24s 
Hands>sh

apes NT>ASD 

L Middle Cingulate 
extending to 

Supplementary Motor 
Area, L 

Fusiform/Lingual Gyrus 

8 0.73▲ 

Yang et al. 
(2017) 

31 10.86 31/0 98.1 96.65 17 10.92 17/0 104.1 103.7 PV WB 
PLD (16 
points) 

~24s BM>SCR NT>ASD 

R AG, R FFG, R 
Hippocampus, R IOG, R 
MOG, R IPG, R ITG, R 

MTG 

8 0.9▲ 

Note: N - sample size; FSIQ - full-scale IQ; NVIQ - non-verbal IQ; AR - Action Recognition; D - BM detection; ER - emotion recognition; PV – passive 
viewing; WB – whole brain analysis; FLD – full-light display; SCR – scrambled BM; COH – coherent dot motion; PLD - point-light display; WoE - weight of 
evidence; SQA – standard quality assessment score; L – left; R – right; IPL – inferior parietal lobule; AG – angular gyrus; FFG – fusiform gyrus; IOG – 
inferior occipital gyrus; MOG – middle occipital gyrus; ITG – inferior temporal gyrus; MTG – middle temporal gyrus; (p)STS – (posterior) superior temporal 
sulcus; (med)SFG – (medial)superior frontal gyrus; IFG – inferior frontal gyrus; MFG – middle frontal gyrus; vlPC – ventrolateral prefrontal cortex; PTS – 
posterior temporal sulcus; vmPC – ventromedial prefrontal cortex; TPJ – temporo-parietal junction; STG – Superior temporal gyrus; ACG – anterior 
cingulate gyrus; ▲▲ - Score represents the total score obtained from the behavioural quality assessment plus a score given for the fMRI protocol; ▲ - Score 
represents the relevant questions from the quality assessment measure + a score for the fMRI protocol. 
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This meta-analysis examined 52 papers, which contributed 80 (11 RT) 

behavioural effect sizes, seven eye-tracking effect sizes, 25 EEG effect sizes and 

76 fMRI Foci. The sample size for the behavioural sample included 1742 subjects 

(ASD: 867, NT: 875). The complete eye-tracking sample included a total sample 

of 217 participants (ASD: 65, NT: 122). The EEG sample had a total sample of 

170 participants (ASD: 75, NT: 95). The fMRI sample had a total sample of 483 

participants (ASD: 234, NT: 249). Participant characteristics from all studies 

(including studies considered outliers in the analyses) are shown in Table 5.  
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 Table 5. Participant characteristics in each type of analysis. 

 Paradigm 
(number of 

studies) 
Included Studies 

ASD NT 

N Age 
(SD) 

Proport
ion of 

females 
mean 
(SD) 

FSIQ 
mean 
(SD) 

NVIQ 
mean 
(SD) 

N Age 
(SD) 

Proporti
on of 

females 
mean 
(SD) 

FSIQ 
mean 
(SD) 

NVIQ 
mean 
(SD) 

N 

Behavioural 
(N=35) 

(Actis-Grosso et al., 2015; Alaerts 
et al., 2015, 2017; Annaz et al., 

2010; A. P. Atkinson, 2009; 
Binnersley, 2006; J. Cook et al., 

2009; Couture et al., 2010; Cusack 
et al., 2015; Edey et al., 2019; 
Freitag et al., 2008; Fridenson-
Hayo et al., 2016; Hubert et al., 
2007; Jones, Swettenham, et al., 
2011; Karuppali, 2018; Koldewyn 

et al., 2010, 2011; Krakowski, 
2014; Kröger et al., 2014; Krüger 
et al., 2017; McKay et al., 2012; 
Morrison et al., 2019; P. Murphy 
et al., 2009; Nackaerts et al., 

2012; Philip et al., 2010; Price et 
al., 2012; Saygin et al., 2010; 

Sotoodeh et al., 2019; 
Swettenham et al., 2013; Turi et 
al., 2017; Van Boxtel et al., 2016; 
Von Der Lühe et al., 2016; L.-H. 

Wang et al., 2015)  

19.86 
(10.75) 

19.15 
(27.69) 

106.3 
(9.76) 

98.28 
(13.58) 867

19.46 
(10.28) 

23.38 
(23.85) 

111.93 
(7.42) 

105.28 
(15.03) 875 1742
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 Paradigm 
(number of 

studies) 
Included Studies 

ASD NT 

N Age 
(SD) 

Proport
ion of 

females 
mean 
(SD) 

FSIQ 
mean 
(SD) 

NVIQ 
mean 
(SD) 

N Age 
(SD) 

Proporti
on of 

females 
mean 
(SD) 

FSIQ 
mean 
(SD) 

NVIQ 
mean 
(SD) 

N 

RT (N = 6) 

(Alaerts et al., 2015; Freitag et 
al., 2008; Koldewyn et al., 2010; 
Kröger et al., 2014; P. Murphy et 
al., 2009; Sotoodeh et al., 2019)  

16.71 
(5.76) 

9.51 
(8.43) 

105.63 
(3.84) 

96.25 
(11.66) 123 

17.33 
(5.76) 

10.3 
(8.19) 

116.07 
(4.73) 

108.56 
(3.36) 135 258 

Eye-tracking 
(N=5) 

(Annaz et al., 2012; Burnside et 
al., 2017; Fujioka et al., 2016; 

Fujisawa et al., 2014; Nackaerts 
et al., 2012) 

15.63 
(14.5) 

15.42 
(19.89) 

105.65 
(8.27) 

101.05 
(6.58) 

81 14.04 
(13.28) 

36.28 
(24.69) 

115.5 
(0) 

115.3 
(0) 

138 217 

EEG (N=5) 
(Bernier et al., 2007, 2013; Dumas 

et al., 2014; Hirai et al., 2014; 
Raymaekers et al., 2009)  

18.15 
(10.85) 

28.61 
(38.57) 

111.83 
(7.78) 

109.8 
(3.11) 75 

17.90 
(9.6) 

35.49 
(36.45) 

105.71 
(9.05) 

100.85 
(6.43) 95 170 

fMRI (N=11) 

 
(Alaerts et al., 2013, 2017; 

Björnsdotter et al., 2016; Freitag 
et al., 2008; Grèzes et al., 2009; 
Jack et al., 2017; Jack & Morris, 

2014; Kaiser et al., 2010; 
Koldewyn et al., 2011; Marsh & 
Hamilton, 2011; Yang, Allen, et 

al., 2017) 

18.03 
(7.05) 

12.91 
(9.99) 

103.76 
(5.8) 

102.6 
(5.84) 234 

17.54 
(6.60) 

17.76 
(21.99) 

111.73 
(6.41) 

109.57 
(3.34) 249 483 
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3.4.1 Behavioural performance 

3.4.1.1  Overall  

The random effects three-level analysis of the overall sample revealed a mean 

estimated effect size of g = 0.6639 [SE = 0.0923, 95% CIs: 0.4759 – 0.8520] 

t(31.6)=7.2, p < 0.0001, which represents a medium effect (Cohen, 1988). 

Overall, this suggests that ASD participants were less accurate, less sensitive or 

produced more errors when asked to detect or interpret biological motion in 

comparison to NT individuals. The between study variance (uk= 0.1965 

[SE = 0.072], Z = 2.73, p = 0.0032) and the within study variance (ujk= 0.0701 

[SE = 0.07], Z = 1, p = 0.1584) show that variance occurred mostly between the 

studies. The heterogeneity at level 2 is 𝐼(ଶ)
ଶ  = 0.424, which argues for low to 

moderate heterogeneity and at the third level 𝐼(ଷ)
ଶ = 0.0539, which falls under the 

category of low heterogeneity. The variance component was significant only 

between studies, indicating that the results varied more between than within 

studies, which mirrors the heterogeneity measures. It can be seen in Figure 7 

that the effect sizes of the studies and their confidence intervals cluster around 

the estimated effect size from the model, and only a few studies cross the line 

of no difference. Studies included in this analysis are:  (Actis-Grosso et al., 2015; 

Alaerts et al., 2015, 2017; Annaz et al., 2010; A. P. Atkinson, 2009; Binnersley, 

2006; Blake et al., 2003; Couture et al., 2010; Cusack et al., 2015; Edey et al., 

2019; Freitag et al., 2008; Fridenson-Hayo et al., 2016; Hubert et al., 2007; 

Jones, Swettenham, et al., 2011; Koldewyn et al., 2010, 2011; Krakowski, 2014; 

Kröger et al., 2014; Krüger et al., 2017; McKay et al., 2012; Morrison et al., 

2019; P. Murphy et al., 2009; Nackaerts et al., 2012; Parron et al., 2008; Philip 

et al., 2010; Price et al., 2012; Saygin et al., 2010; Sotoodeh et al., 2019; 

Swettenham et al., 2013; Turi et al., 2017; Van Boxtel et al., 2016; Von Der 

Lühe et al., 2016; L.-H. Wang et al., 2015). 
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Figure 7 Forest plot showing the effect sizes (Hedge’s g) from each study and its standard 
error as the error bars of the points.  

 

Note: Different colours/shapes represent the different age categories (red/circle – bellow or 
equal to 13; green/triangle – between 13 and 19; blue/square – older than 19) and the graph 
is split by paradigm. Solid line represents no effect; positive effect sizes represent 
instances where ASD participants performed worse than NT; dot-dashed line represents the 
effect size extracted from the initial model (g = 0.6639). 

3.4.1.2 Quality 

An exploratory meta-analysis was run with the quality given to the studies using 

the quality assessment tool. However, there did not appear to be an effect of 

the quality of the studies on the results – F(1,25.6) = 1.79, p = 0.1932. It has to 

be pointed out that most studies received quite high scores on the quality 

assessment measure, which could potentially explain the absence of an effect. 

However, the inclusion of quality did reduce the variation between the studies 

(uk= 0.1754 [SE = 0.0696], Z = 2.52, p = 0.0058), despite slightly increasing the 
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within-studies variance (ujk= 0.0753 [SE = 0.0767], Z = 0.98, p = 0.1631). For this 

reason, quality scores were added as a covariate within the rest of the analyses 

(Scheepers, 2014). For most cases its inclusion either decreased covariance 

between the studies or had no qualitative effect. All studies from the overall 

analysis were included in this analysis. 

3.4.1.3 Stimuli 

To see whether the type of stimuli – full-light or visually sparse (e.g., PLDs) had 

an effect on participant’s performance, the stimuli type was added as a 

moderator variable. One paper included both full-light displays, and point light 

displays and thus was excluded (A. P. Atkinson, 2009). This reduced the number 

of effect sizes for this meta-analysis only from 64 to 63. The analysis showed 

that there was no overall effect of the type of stimulus used – F(1,24.9) = 0.91, p 

= 0.3493. Additionally, the effects for full-light displays and PLDs were both 

significantly above 0 – g = 0.9055 [SE = 0.3055, 95% CIs: 0.2759 – 1.5351] t(24.7) 

=2.96, p = 0.0066 and g = 0.5842 [SE = 0.1006, 95% CIs: 0.3778 – 0.7905] t(27) 

=5.81, p < 0.0001, respectively. Full-light displays showed larger variance, 

potentially due to a smaller number of studies (N=10).  

3.4.1.4 Paradigm 

There was an overall effect of the type of paradigm used – F(2,61.5) =8.70, p = 

0.0005. There was a significant effect of each paradigm type as shown in Table 

6, indicating that participants with ASD performed worse than the NT in all 

paradigms. More interesting are the pairwise differences in performance 

between the paradigms. The difference in performance between the detection 

of coherent BM and action recognition/categorisation was not significant (g = -

0.0222 [SE = 0.1646, 95% CI: -0.3511, 0.3067], t(63.8) = -0.13, p = 0.8933). 

However, there were significant differences between the detection of BM and 

emotion recognition/categorisation (g = -0.5647 [SE = 0.1373, 95% CIs: -0.8399, -

0.2896], t(55.8) = -4.11, p = 0.0001), as well as between action 

recognition/categorisation and emotion recognition/categorisation (g = -0.5426 

[SE = 0.1922, 95% CIs: -0.9268, -0.1583], t(62.4) = -2.82, p = 0.0064). In both 

situations, ASD participants showed more decreased performance in comparison 

to NT participants in the emotion recognition/ categorisation paradigms than in 
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any of the other two. After the paradigm was added as a moderator the variance 

reduced slightly at the between studies level (uk = 0.1537) and disappeared at 

the within study level (ujk = 0). Similarly, the heterogeneity, decreased from the 

initial model for level 2 and for level 3 (𝐼(ଶ)
ଶ  = 0.3319 and 𝐼(ଷ)

ଶ  = 0). Finally, quality 

scores did not show a significant effect at this stage F(1,29) =3.48, p = 0.0724. 

All studies from the overall analysis were included in this analysis. 

Table 6. Simple effects for each paradigm. 

Paradigm ES g SE Lower CI Upper CI df t p>t 
1 36 0.5041 0.1012 0.2989 0.7093 36.4 4.98 <0.0001* 
2 17 0.5274 0.1476 0.2316 0.8233 54.7 3.57 0.0007* 
3 14 1.0618 0.1422 0.7773 1.3462 60.1 7.47 <.0001* 

Note: 1 - detection of BM in noise and recognition in comparison to other stimuli; 2 - Action 
recognition/categorisation; 3 -Emotion recognition/categorisation. ES - number of effect 
sizes, g - Hedges' g, SE - standard error, df - degrees of freedom. * - significant at 0.05. 

3.4.1.5 Paradigm and age.  

Next, both age and paradigm were included in the analyses and were allowed to 

interact. A meta-analysis with paradigm and age showed no main effects of 

paradigm (F(2, 44.2) = 2.10, p = 0.1348) and no interaction between age and 

paradigm (F(2, 34.3) = 1.44, p = 0.2426). However, there was a significant main 

effect of age (F(2,29) = 3.35, p = 0.0492). Simple effects of each age group are 

reported in Table 7. Visual representation of the effect sizes is shown in Figure 

7, where the graph is separated by paradigm and the different age groups are 

colour/shape coded. Note that only one effect was recorded for adolescents in 

the emotion category.  

There were no significant differences in the effect size of the ASD-NT difference 

between adolescents and adults (g = -0.07848 [SE = 0.2178, 95% CIs: -0.5125, 

0.7517], t(42.4) = -0.36, p = 0.7204). However, there were significant 

differences in the effect size of the ASD-NT difference between children and 

adolescents (g = 0.5313 [SE = 0.2523, 95% CIs: 0.01878, 1.0438], t(34.3) = 2.11, 

p = 0.0426) and between children and adults (g = 0.4528 [SE = 0.1881, 95% CIs: 

0.05998, 0.8457], t(19.7) = 2.41, p = 0.0260). The effects show that in both 

cases if the tested participants were children, the effects sizes were larger.  
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After both age and the paradigm were added as moderators the variance 

between studies reduced even more, with again no variance being attributed to 

the third level (uk = 0.0866 and ujk = 0). Furthermore, the heterogeneity was 

almost completely accounted for by the moderators (𝐼(ଶ)
ଶ  = 0.1363 and 𝐼(ଷ)

ଶ  = 0).  

Additionally, the quality scores showed a significant effect– F(1,30.2) = 8.17, p = 

0.0076, showing that with the increase of the quality of the study, the smaller 

the effects were. All studies from the overall analysis were included in this 

analysis. 

Table 7. Simple effects for each age group. 

Age ES g SE Lower CI Upper CI df t p>t

1 17 0.9528 01463 0.6443 1.2614 17 6.51 <0.0001* 
2 15 0.4215 0.1963 0.02701 0.8160 49 2.15 0.0368* 

3 35 0.5000 0.1089 0.2751 0.7249 23.6 4.59 0.0001* 
Note: Age: 1 - ≤13, 2 - >13 and ≤19, 3 - >19. ES - number of effect sizes, g - Hedges' g, SE - 
standard error, df - degrees of freedom. * - significant at 0.05. 

3.4.1.6 Sex 

The proportion of females in the samples of both ASD and NT participants was 

included as moderator variables in two smaller meta-analyses. Since several 

studies did not report information about sex, only 56 effect sizes from 27 studies 

were included in these analyses. The proportion of females in the ASD sample 

had no effect on the results (F(1, 33.2) = 0.11, p = 0.7454) nor did the 

proportion of females in the NT sample (F(1, 29.7) = 0.61, p = 0.4402). Studies 

included in this analysis are: (Actis-Grosso et al., 2015; Alaerts et al., 2015, 

2017; A. P. Atkinson, 2009; Couture et al., 2010; Cusack et al., 2015; Edey et 

al., 2019; Fridenson-Hayo et al., 2016; Hubert et al., 2007; Jones, Swettenham, 

et al., 2011; Koldewyn et al., 2010, 2011; Krakowski, 2014; Kröger et al., 2014; 

Krüger et al., 2017; Morrison et al., 2019; P. Murphy et al., 2009; Nackaerts et 

al., 2012; Parron et al., 2008; Philip et al., 2010; Price et al., 2012; Saygin et 

al., 2010; Sotoodeh et al., 2019; Turi et al., 2017; Van Boxtel et al., 2016; Von 

Der Lühe et al., 2016; L.-H. Wang et al., 2015). 
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3.4.1.7 Full-Scale IQ 

Similar to sex, there were several studies that did not report FSIQ for one or 

both of the groups. For the ones that did report the FSIQ of both ASD and NT 

participants, FSIQ was also included as a moderator variable in two smaller 

meta-analyses. These included 18 studies and 30 effect sizes. There was no 

effect of FSIQ within the ASD sample (F(1, 15.9) = 0.02, p = 0.8889) nor was 

there an effect of FSIQ within the NT sample (F(1, 30) = 3.98, p = 0.0553). 

Studies included in this analysis are: (Alaerts et al., 2017; A. P. Atkinson, 2009; 

Couture et al., 2010; Cusack et al., 2015; Edey et al., 2019; Freitag et al., 2008; 

Jones, Swettenham, et al., 2011; Koldewyn et al., 2010, 2011; Krakowski, 2014; 

McKay et al., 2012; Morrison et al., 2019; Nackaerts et al., 2012; Philip et al., 

2010; Saygin et al., 2010; Turi et al., 2017; Van Boxtel et al., 2016; Von Der 

Lühe et al., 2016). 

3.4.1.8 Non-Verbal IQ 

Only 14 studies and 18 effect sizes included the NVIQ for both the ASD and the 

NT group. Two smaller meta-analyses were performed using the NVIQ of each 

group as moderator variables, however there were no significant effects neither 

for the ASD NVIQ (F(1,12.1) = 0.15, p = 0.7012) nor for the NT NVIQ (F(1,11.3) = 

0.00, p = 0.9921). Studies included in this analysis are: (Alaerts et al., 2015, 

2017; A. P. Atkinson, 2009; Freitag et al., 2008; Jones, Swettenham, et al., 

2011; Koldewyn et al., 2010, 2011; Krakowski, 2014; Nackaerts et al., 2012; 

Philip et al., 2010; Price et al., 2011; Saygin et al., 2010; Sotoodeh et al., 2019; 

Van Boxtel et al., 2016) 

3.4.1.9 Publication Bias 

To evaluate the possibility of a publication bias, we plotted the behavioural 

effect sizes against their standard error with a funnel plot (see Figure 8) (Egger 

et al., 1997; Sterne & Egger, 2001). As can be seen by their distribution, there is 

a wide variety of observations with similar standard errors. Specifically, there 

appears to be a lack of effect sizes with high standard errors and low effect sizes 

and low standard errors with high effect sizes, which stems from the relatively 

small to moderate sample sizes in the studies. The inverted funnel shape, which 
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extends 1.96 standard errors around the overall estimate should include 95% of 

the studies. However, one of the assumptions for that interpretation is that the 

true effect is the same in each study (Sterne et al., 2011). It is evident from 

Figure 3 that 95% of the studies do not fall within the funnel shape. However, we 

do not make the assumption that the treatment effect is the same in each study. 

Moreover, we show that the effects vary with age and paradigm. Finally, it is 

possible that additional variability is added due to the heterogeneous nature of 

the ASD population. 

Besides visual inspection of the funnel plot, the Egger Regression method (Egger 

et al., 1997) was used to assess the possibility of bias using a random effects 

model. Egger’s regression detected a risk of publication bias – t = 2.5806, p = 

0.0122. Specifically, there is slight asymmetry in the lower end of the funnel 

plot, where larger standard errors produced larger effect sizes. For this reason, 

the Trim and Fill method from Duval and Tweedie (2000) was used. Using a 

standard random effects model, the analysis indicates publication bias in the 

right tail of the funnel plot, indicating that more studies were published with 

large effect sizes and large standard errors. This was mirrored by the direction 

of the effect found in the meta-analysis including the quality assessment scores.  
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Figure 8. Funnel plot for the behavioural studies. 

Note: Displays the effect size – Hedge’s g, plotted against the standard error. The vertical 
line represents the effect size from the overall analysis. 

3.4.2  Reaction time 

The random effects three-level analysis of the overall RT sample revealed a 

mean estimated effect size g = 0.384 [SE = 0.1828, 95% CIs: -0.0375 – 0.8055] 

t(8)=2.1, p = 0.0689, which represents a small effect (Cohen, 1988). Overall, this 

suggests that ASD participants showed non-significantly slower RT in the BM 

paradigms in comparison to NT individuals. There was no between study variance 

(uk= 0) or within study variance (ujk= 0), thus heterogeneity was not calculated. 

With the removal of outliers, there were only 8 effect sizes left, and further 

moderation analyses were not run (Higgins & Green, 2011). Figure 9A shows the 

distribution of effect sizes for the reaction time paradigms. Studies included in 

this analysis are:(Koldewyn et al., 2010; Kröger et al., 2014; P. Murphy et al., 

2009; Sotoodeh et al., 2019). 
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Figure 9. Forest plots showing the effect sizes (Hedge’s g) from each study and its standard 
error as the error bars of the points. 

Note: Different colours/shapes represent the different age categories (red/circle – bellow or 
equal to 13; green/triangle – between 13 and 19; blue/square – older than 19) and the graph 
is split by paradigm. Solid line represents no effect; positive effect sizes represent 
instances where ASD participants performed worse than NT; dot-dashed line represents the 
effect sizes extracted from the initial model. A – Reaction time data (g = 0.384), B – Eye-
tracking data (g = 0.917), C – EEG data (g = 0.642). 

3.4.3 Eye-Tracking 

As there were only five papers that provided enough information to extract data 

about effect sizes in eye-tracking experiments, a meta-regression with 

moderators was not conducted. The five studies contributed a total of seven 

effect sizes. The overall analysis revealed a mean estimated effect size g = 
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0.9172 [SE = 0.4865, 95% CIs: -0.3552, 2.1896], t(4.73)=1.89, p = 0.1214, which 

represents a large effect, but non-significant(Cohen, 1988). Overall, this means, 

that ASD participants showed less preference for biological motion in comparison 

to NT individuals, however it should be noted that it was not significant, which is 

predicated by the broad confidence intervals around the estimate. The between 

study variance (uk = 1.0862 [SE = 0.7841], Z = 1.39, p = 0.083) and the within 

study variance (ujk= 0.0) showed that variance occurred mainly between studies, 

which was expected due to the small number of studies. It is important to point 

out that due to the small number of studies and the large confidence intervals, 

these results should be taken with caution. Figure 9B shows the distribution of 

effect sizes for the eye-tracking paradigms. All studies reported in Table 3 under 

the eye-tracking subheading are included. 

3.4.4  EEG 

There were 25 effect sizes provided by five studies. The overall effect size 

revealed by the analysis was not significant – g = 0.6489 [SE = 0.3271, 95% CIs: -

0.02476, 1.3226], t(25) =1.98, p = 0.0584. Similar to the eye-tracking results, 

this showed a medium effect size but due to the small sample size, and the fact 

that one study contributed 17 of the effect sizes, it is expected that the large 

confidence intervals would overlap with 0. There was no between or within 

study variance- uk = ujk = 0. Figure 9C shows the distribution of effect sizes for 

the EEG paradigms. Due to the variability that is seen in the frequency that is 

used, an exploratory analysis, which looks at frequency as a contributing factor 

to the EEG findings, is reported in Appendix C. All studies reported in Table 3 

under the EEG subheading are included. 

3.4.5 fMRI 

The 11 studies that investigated the difference between ASD and NT participants 

covered emotion recognition and distinguishing between coherent BM PLD and 

scrambled PLD/fixation baseline or coherently moving dots. Due to the small 

sample of studies and the fact that 2 studies did not find any significant brain 

areas, and one study only found difference in the ASD>NT contrast, all studies 

were analysed together for the NT>ASD contrast. Only Koldewyn et al. (2011) 

and Jack et al. (2014) found differences where ASD participants showed 
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significantly higher activated regions when compared to NT. Since these were 

the only two studies to show this contrast, no further analysis was done for the 

ASD>NT contrast. This led to the inclusion of eight studies (62 foci). Due to the 

small number of included studies, we used the uncorrected p-values at a level of 

0.001 and a minimum cluster size of 200mm3. Table 8 and Figure 10 present the 

results from the NT>ASD comparison. Five clusters were identified where the NT 

participants showed greater activation than the ASD participants. In the left 

hemisphere, one cluster peaked at the left uncus, Brodmann area (BA) 20, and 

one at the middle cingulate gyrus (MCG), BA 24. The remaining regions were in 

the right hemisphere, where one region peaked at the middle occipital gyrus 

(MOG) (BA 19), one region at the superior temporal gyrus (STG) (BA 41) and one 

cluster with two peaks at the middle temporal gyrus (MTG) and the Inferior 

Temporal Gyrus (BA 41 and 39 respectively). The resulting map overlays were 

produced on a standardised structural scan using Mango v4.1 (Lancaster & 

Martinez, n.d.)(rii.uthscsa.edu/mango).  
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Table 8. Regions with significantly elevated activation likelihood from the ALE analysis. 

Comparison Cluster Brain 
region BA Volume 

(mm3) 

Talairach 
ALE 

(10-2) 

Range 
Centred at 

x y z 
from to 

x y z x y z x y z 

NT>ASD 

#1 R STG 41 408 44 -32 4 1.69 40 -34 0 48 -28 6 44.1 -31.3 3.1

#2 R MTG 39 312 48 -60 8 1.07 46 -64 4 50 -56 12 49 -62.2 5.1 ITG 50 -68 0 
#3 R MOG 19 264 46 -74 -6 1.20 40 -76 -8 48 -70 -4 44.4 -72.7 -6.2
#4 L Uncus 20 248 -32 -4 -28 1.21 -36 -8 -30 -30 0 -26 -32.7 -4.3 -28.1
#5 L MCG 24 408 -8 -4 46 1.72 -12 -8 42 -4 0 50 -8 -4.5 45.7

Note: BA – Brodmann area; STG - Superior Temporal Gyrus; MTG - Middle Temporal Gyrus; ITG – Inferior Temporal Gyrus; MOG – Middle Occipital Gyrus; 
MCG – Middle Cingulate Gyrus; R – Right; L – Left. 
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Figure 10. Brain area activation from ALE analysis. 

Note: A – Uncus; B – Central Gyrus, C – Superior Temporal Gyrus, D – Middle Occipital 
Gyrus; E – Inferior Temporal Gyrus; F – Middle Temporal Gyrus 

Discussion 

The aim of this meta-analysis was to investigate whether ASD individuals show 

differences in their ability to perceive and interpret biological motion when 

compared to NT individuals. This question has been under discussion for decades 

and contradicting results have continuously appeared in the literature. 

Therefore, a quantitative summary of the results was necessary to allow 

research to move forward in understanding the atypicalities present in ASD. The 

current study investigated several potential factors that could contribute to the 

variable and often mixed results in this field. We explored the possibility of 

different paradigms being a reason for these varied findings and the effect of 

age, sex and IQ on participants’ performance.  

This meta-analysis showed that there is a medium effect indicating an overall 

decreased performance in perceiving and interpreting biological motion for ASD 

individuals. Specifically, the present findings show that individuals with autism 

show lower levels of performance when higher order information, such as 

emotion, is required to be extracted from biological motion. Moreover, age is a 
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significant contributing factor to the variability of the results, as different age 

groups show different degrees of performance decrement. Additionally, we did 

not find a significant effect in reaction time data, suggesting no delays 

responding to stimuli once recognised. Further, the effect size of the eye-

tracking results would argue that autistic individuals do not attend to or orient 

towards BM. However, the small sample of studies and its variability led to a 

non-significant estimated effect size, even though the effect size would be 

constituted as ‘large’. This variability is evident in the distribution of the study 

effect sizes around the average effect size. Thus, the absence of significance in 

the eye-tracking results may possibly be mainly attributed to the small sample. 

A similar pattern is seen from the EEG studies. Finally, the five clusters 

identified in the fMRI ALE analysis to show higher activation for NT than ASD 

individuals provide evidence for a potential neural basis for the difference in BM 

perception abilities. 

3.5.1 Differences in performance increase with the increase in 
task complexity 

Biological motion can convey various types of information. It can provide simple 

information about what others around us are doing, or more complex 

information, for example about the emotional state of others (Blake & Shiffrar, 

2007; Pavlova, 2012). All this information is of great importance in social 

interaction. Although, Koldewyn et al. (2010) argue that individuals with ASD can 

perceive/detect biological motion, we found a generally decreased performance 

in the perception of BM in ASD individuals in all paradigms, including simple BM 

detection. Moreover, there was no difference in performance between BM 

detection and action recognition. This indicates that although biological motion 

detection requires simple integration of motion elements, decreased 

performance at this level already exists, hindering recognition. Furthermore, the 

effect size of the difference between the NT and ASD individuals was about 

twice the size when emotion recognition paradigms were employed. Thus, 

aligned with Koldewyn et al.’s (2010) arguments, there is in fact decreased 

performance when the extraction of emotion information is required but this 

would manifest on top of the already existing decreased performance with 

simple detection of BM. Similar findings were also observed by Federici et al. 

(2020), where inferring higher order information from PLDs showed larger 
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effects. This is an expected finding since ASD is defined with difficulties in social 

interaction and communication. Emotion recognition is a highly social process, 

making it more cognitively demanding than BM identification which would rely 

on perceptual decisions. The effect of paradigm in our meta-analysis may be 

because emotion adds an additional layer of social complexity in comparison to 

simple BM identification or action recognition, making it more difficult for 

individuals with ASD to perform on such tasks. This difference between the two 

groups is true even when simple and complex emotional recognition tasks are 

used (Bal et al., 2010; Dyck et al., 2001; Fridenson-Hayo et al., 2016; Hudepohl 

et al., 2015; but see Jones, Pickles, et al., 2011). One suggested underlying 

mechanism has been the possibility of underlying alexithymia symptoms in 

autism, which are related to reduced ability for individuals to recognise their 

own emotion (Bird & Cook, 2013; R. Cook et al., 2013). This by extension could 

lead to the increased difficulties in recognising emotional states in others. 

Hence, co-occurring alexithymia in the studied samples could to an extent be 

underpinning these results.  

 It is worth noting that we did not find significant effects when reaction time 

was the measured outcome. Even more, the effect size that we found would be 

considered small according to Cohen’s (1988) characterisations. Although, a 

recent meta-analysis has shown that global information integration takes time in 

autism, which is evident in slower reaction times (Van der Hallen et al., 2015), 

this is not evident in biological motion perception. A possible explanation is that 

motion introduces an additional factor, which is suggested by reported higher 

motion thresholds in autism (Annaz et al., 2010; Pellicano et al., 2005). 

Moreover, biological motion perception has longer spatiotemporal integration 

windows than simple motion stimuli, which could make it more difficult to 

detect small differences in reaction time (Neri et al., 1998). Thus, the 

decreased performance in perceiving biological motion is a combination between 

motion and the social factor of human movement, which is more evident in 

interpretation, rather than in time taken for processing.  

This finding, that different paradigms introduce varying effect sizes, emphasizes 

that when the research community is trying to explain differences between NT 

and ASD individuals, it cannot simply talk about biological motion perception as 

a whole. Instead, the nuances that different paradigms bring need to be 
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emphasised. Moreover, the different paradigms are not comparable; instead, 

they provide different levels of understanding of the abilities of individuals with 

ASD.  

3.5.2 Differences between ASD and NT individuals decrease with 
age 

The developmental course of BM perception in ASD is critically important, 

especially since so many contradicting results have been found between 

different age groups (Actis-Grosso et al., 2015; Krüger et al., 2017; McKay et al., 

2012; Parron et al., 2008; Turi et al., 2017; L.-H. Wang et al., 2015). Overall, it 

appears that the size of the difference between the two groups is larger when 

children are investigated. On the other hand, the effect size when adults were 

studied did not differ from the effect size when adolescents were studied.  

Our findings suggest that ASD individuals tend to catch up with age and that 

performance within ASD becomes more aligned with the NT population. This in 

turn corresponds to the general improvement with age observed within NT 

individuals (Ghanouni et al., 2015). Despite this catch up however, the size of 

the differences between the two groups was significant at every age category, 

indicating consistent difference in performance but to a varying degree 

dependent on age. Thus, whilst NT and ASD tend to both improve in their ability 

to detect BM, ASD individuals do so at a slower rate. This implies the existence 

of a developmental delay in the extraction of relevant social information from 

biological motion. It should be noted that Annaz et al. (2010) also did not find a 

relationship with age in children with ASD for non-biological motion coherence 

and form-from-motion paradigms, whereas the effect was present in NT 

individuals. Thus, it appears that there might be a global delay in motion 

coherence sensitivity in ASD. Although, Simmons et al. (2009) argue for 

inconsistency in the literature about motion coherence and ASD, elevated 

motion coherence thresholds have been found by others (eg. A. P. Atkinson, 

2009; Koldewyn et al., 2010). Moreover, Van der Hallen et al.’s (2019) findings 

suggest specifically that there is an overall decreased performance in global 

motion perception in individuals with ASD, for both coherent and biological 

motion. 
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To sum, the variability in the behavioural findings in the literature can be 

explained largely by the fact that ASD participants cannot be put together as a 

single group. As well as talking about the nuances that individual paradigms 

bring, we need to distinguish between the different age groups. Thus, a study 

aiming to investigate performance in adults should not look for effects as large 

as the ones found in children, as they are statistically not comparable.  

3.5.3 No effect of sex, FSIQ and NVIQ on performance on BM 
paradigms 

It has been suggested that ASD is expressed differently in males and females and 

that females could be the source of variability in some of the results related to 

performance in the ASD literature (Van der Hallen et al., 2015). However, we 

did not find any significant effects of the proportion of females in either the NT 

or ASD sample. Furthermore, neither the FSIQ nor the NVIQ of either group 

revealed a significant effect on the overall performance. Although some studies 

have argued for (Jones, Swettenham, et al., 2011; Rutherford & Troje, 2012) 

and against (A. P. Atkinson, 2009; Van Boxtel et al., 2016; Van der Hallen et al., 

2019) the effects of IQ, those that find effects usually have lower IQ scores in 

comparison to the ones that do not find this effect (but see P. Murphy et al., 

2009). The mean FSIQ in the current meta-analysis was also higher – with 

averages in the behavioural, eye-tracking and fMRI designs falling between 103 

and 112. Thus, it is possible that any variability that may be explained from an 

IQ perspective, might not have been captured in this analysis or in studies where 

the IQs are above 100. Thus, the present findings may not necessarily be 

transferable to ASD individuals at the lower end of the IQ distribution. However, 

since research is usually done on individuals of average or above average IQ, this 

nuance would not be captured unless more research is adapted and done with 

individuals on the lower side of the IQ distribution.  

3.5.4 Brain and behaviour  

From a brain imaging perspective, we aimed to investigate both EEG and fMRI. 

This was driven by the fact that it has been suggested that individuals with ASD 

utilise different brain networks when observing biological motion(McKay et al., 

2012).  
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EEG studies, which usually rely on mu-suppression as a proxy for the MNN in ASD, 

argue for an impaired mirror system in autism (Bernier et al., 2007; Oberman et 

al., 2005, 2013; Raymaekers et al., 2009). Specifically, they have consistently 

found reduced mu-suppression in central electrodes. Similar findings have been 

indicated by a meta-analysis conducted by Fox et al. (2016). However, we did 

not find a significant effect for the difference between ASD and NT individuals. 

There are two possible explanations for this result. One possibility is that the 

effect sizes were too small to be considered significantly different from 0. This, 

however, does not seem to be the case, as there is a good distribution of results 

on both sides of the no-difference line. The second possibility is that the small 

sample of studies, did not provide enough data points to allow for a stable 

estimate to be given. This is especially evident by the lower bound of the 95% CI 

for the overall effect size, as it stays very slightly below 0. Furthermore, the 

exploratory analysis, which is reported in Appendix C, showed that depending on 

the frequency used to perform the analysis, the effect size can differ greatly. 

Thus, for some conclusion to be made from the EEG studies, a common analysis 

structure needs to be agreed upon. However, Hamilton (2013) argues that 

support for a difference from these studies is weak and mixed, which also speaks 

for the unreliable findings. Moreover, it has been argued that mu suppression 

findings can be unreliable as they are very much dependent on the baseline that 

is chosen (Hobson & Bishop, 2016). Although some of the studies identified here 

used the same paradigm with the same baseline (Oberman et al., 2005, 2008, 

2013), this was not the case for all of them (Bernier et al., 2007; Raymaekers et 

al., 2009), which makes it difficult to compare the findings. Moreover, a general 

critique has been given on the association of the mu signal with action 

observation and imitation, showing that mu signal is better associated with the 

somatosensory components as opposed to the MNN. Thus, a general standard for 

data analysis, what constitutes as a baseline, and what is it that mu is measuring 

needs to be established before any conclusions can be drawn. 

From an fMRI perspective we investigated the differences in brain activation 

between ASD and NT in biological motion perception and emotion recognition. It 

is noteworthy that emotion perception and BM observation paradigms were 

analysed together, due to the small sample size. Unfortunately, we were unable 

to identify significant clusters that overlapped between the studies. However, 
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the exploratory analysis showed that by using a more relaxed threshold, the 

areas that come up as different between the two groups correspond to the areas 

that have been identified in the biological motion perception literature. 

In short, we found five clusters where NT individuals showed greater activation 

than ASD individuals: the left uncus, left middle cingulate gyrus, right middle 

occipital gyrus and one cluster peaking at the right superior and middle temporal 

gyri. These findings are consistent with literature showing right hemisphere 

dominance in the processing of biological motion (Downing & Peelen, 2011; 

Grosbras et al., 2012). Particularly the right ITG and the right middle temporal 

gyrus (MTG) have been observed to be specifically implicated in the observation 

of human motion (Downing, 2001; Grosbras et al., 2012; Noble et al., 2014). 

Additionally, the ITG has been found to be part of the BM processing network of 

NT in McKay et al.’s (2012) experiment but not in ASD, which corresponds to our 

findings. Similarly, the MTG is related to the perception of human movement. 

Peelen and Downing (2007) argue that the MTG is part of the extrastriate body 

area (EBA) and that its activation during action observation is due to it 

representing the shape and posture of the body rather than the action. 

Additionally, Thompson and Baccus (2012) argue that motion and form make 

independent contributions to the processing of biological motion in the MT 

areas. Specifically, the MT areas respond a lot more to the motion aspects, and 

EBA to the representation of human form. However, since these areas overlap 

(Thompson & Baccus, 2012) and the observed cluster in these results peaked at 

MTG and ITG, it could be expected that the activation is due to an interplay 

between the motion and human form information. This collaborative mechanism 

has previously been suggested by Downing and Peelen (2011). If individuals with 

ASD have problems perceiving the basic human shape and posture, it is 

understandable why there appeared to be consistent differences in behavioural 

performance between ASD and NT individuals in all biological motion paradigms 

investigated here. Moreover, as mentioned earlier, with the increased motion 

thresholds found within individuals with ASD (Pellicano et al., 2005) it could be 

expected that impairments would come from both motion and human form 

detection. 

Interestingly, the superior temporal sulcus (STS) is a region that has been 

implied to be important in biological motion perception (Grosbras et al., 2012; 
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Pavlova, 2012); however, we did not find higher STS activation in NT in 

comparison to ASD. Nevertheless, we did find the superior temporal gyrus (STG) 

to have higher activation in NT. Previous findings (Grosbras et al., 2012; 

Pavlova, 2012; Pelphrey et al., 2011) have argued that the STS is involved in 

social perception, namely it integrates the social context with the actor’s 

actions. Nevertheless, McKay et al. (2012) also did not find the STS to be 

involved in simple biological motion perception. Since their paradigm is similar 

to the paradigms used in the papers, which dominated in the present analysis, it 

fits that we also did not find clear evidence for STS activation. However, the 

proximity of the STG to the STS suggests that there might be some potential 

overlap which could be driven by the inclusion of the emotion related BM 

paradigms in the analysis. In fact, the STG has been found to show activation 

when observing emotional biological motion and in biological motion perception 

paradigms in general (Grosbras et al., 2012; Han et al., 2013; Peelen et al., 

2007).  

Despite both the low number of studies which were included in the ALE analysis 

and the exploratory nature of the results, the brain areas found were consistent 

with BM processing literature. Moreover, differences in these brain areas can 

and do show differences in behaviour. This finding emphasises the connection 

between brain differences and behavioural performance. However, due to the 

small number of studies and the fact that a more constrained threshold did not 

show any significant values, some caution needs to be taken when interpreting 

these results. 

3.5.5 Methodological limitations 

 The quality of a meta-analysis is only as high as the quality of the studies that it 

includes. The studies that we included received a relatively high score on our 

quality assessment measure with little variance between the studies. The major 

methodological issues of the included studies were the small sample sizes and 

the fact that on several occasions there were no corrections for multiple 

comparisons. However, the correction for multiple comparisons should not have 

affected our results as we used the descriptive or test statistics, rather than the 

p values. Nevertheless, it was evident in the behavioural analysis that the 

quality of the studies played a significant role in reducing variability and 
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allowing for better interpretability of the statistical results. This indicates that 

small changes in the quality of a study contributed enough to influence the 

results. Specifically, it appeared that the higher the quality of a study, the 

smaller the effect size was indicating that better controlled studies produced 

smaller effect sizes. The same finding was observed by the publication bias 

analysis, which showed that studies with smaller standard errors produced 

smaller effect sizes. This on its own, is an important discovery about the control 

that is used when developing a study paradigm. It is possible that with a better 

controlled study, larger amounts of variability are controlled, reducing any 

additional external effects. Thus, future autism researchers should aim to 

provide even more methodologically sound results, to allow them to distinguish 

between external heterogeneity and within-ASD heterogeneity.  

Additionally, in our criteria we aimed to include studies that utilised either the 

gold standard (i.e. ADOS plus ADI; see Simmons et al., 2009) or expert clinical 

opinion when confirming the ASD diagnosis of their participants. However, during 

the selection process we realised that a number of studies did not employ the 

gold standard and rather used various diagnostic measures. For that reason, we 

expanded our inclusion criteria to include at least some form of diagnosis 

confirmation. Worryingly, one of the reasons that studies were not included in 

the present analysis was that the diagnosis was not confirmed by any means, let 

alone by using the gold standard. However, the concept of a gold standard is a 

matter of debate (Matson & Neal, 2009) and it has been noted that the scales do 

not always capture individuals that have been diagnosed with Asperger’s 

syndrome (Price et al., 2012). Thus, how ASD participants ought to be identified 

in future studies needs to be explored. 

Furthermore, even though it is argued that a quantitative summary on two 

effect sizes is better than simple counts of positive vs negative effects 

(Valentine et al., 2010), statistical analysis, and the confidence one can give to 

it, is proportionally dependent on its sample size. Although the three-level 

model has allowed us to utilise more than one effect size per study, thus 

increasing the number of cases included, the resulting sample is still small, 

especially for some of the categories of analysis. This is mainly true for the EEG 

analysis, where one study provided most of the effect sizes. Thus, when 

interpreting the results from this meta-analysis, the number of studies in each 
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part needs to be considered. Furthermore, the number of effect sizes that we 

were able to include in some of the analyses (eye-tracking, RT, EEG and fMRI) 

did not allow us to investigate important factors such as paradigm and age. This 

unfortunately limits our ability to interpret the effect of those factors. 

Nevertheless, if we look at the behavioural results, then we can conjecture, that 

these factors will be important and will also need to be considered, when new 

paradigm designs are considered, or when interpreting the overall weight of the 

effects found in the literature.  

Finally, we included studies from unpublished sources, such as dissertations and 

theses in an attempt to reduce the chances of a publication bias. Nevertheless, 

most of these unpublished sources were significant. However, this does not 

exclude the ‘file drawer effect’ where non-significant findings are likely to not 

be published. It is also possible that the Egger Regression method is capturing 

other types of bias, for example the heterogeneity between the studies 

themselves, which is expected due to the ASD population being heterogeneous 

(Sterne et al., 2011). 

3.5.6  Conclusions and Future Directions 

Overall, it appears that individuals with ASD show lower performance measures 

than NT individuals on tasks involving the detection and interpretation of BM. 

However, age and the type of paradigm used have a great influence on the size 

of the difference between ASD individuals’ performance and the performance of 

NT individuals. We show that there is a developmental delay in BM 

understanding, which improves with age within the ASD population and explains 

part of the high variability in the results established in the literature. Moreover, 

autistic individuals show consistently lower performance in paradigms requiring 

the extraction of emotion from BM in comparison to action recognition or simple 

BM detection. This finding is more meaningful, considering that a main 

characteristic of ASD is an impairment in social communication and that 

interaction and emotional portrayal of biological motion has great social 

relevance. Finally, we find that there appear to be differences between ASD and 

NT groups in brain activations when viewing BM and those differences can 

provide an insight to why the behaviour that we observe exists.  
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For the field of research to move forward, methodological standards need to be 

imposed in terms of the age ranges incorporated, and the types of paradigms 

used. However, interpretation standards need to be considered as well. Although 

it appears that there is variability in the literature as to whether and how large 

the effects are, the effects are actually varied due to the combination of various 

factors. For proper interpretation of the field, the paradigm used, and the age 

of the participants need to be considered as segregating factors. This is 

important because a child with autism might have difficulty perceiving biological 

motion, but by the time they reach adulthood, that effect might have subsided. 

Similarly, individuals with autism might find it much more difficult to extract 

emotion information from human movement, but they are much better at 

describing non-affective actions. Finally, as a field, autism research is going to 

find heterogeneous findings, due to the innate variability between autistic 

individuals. However, sound methodological principles when developing studies, 

will reduce that variability and allow for better consistency and easier 

interpretation.  
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 Are the Effects of Attention and 
Predictability Affected by Levels of Autistic Traits? 
Results from Two Dynamic Online Experiments.  

Abstract 

Some predictive coding theories of autism suggest that the difficulties observed 

in the autism phenotype are a product of imbalance of precision-weighting 

between bottom-up and top-down signals. One proposed mechanism for 

precision-weighting is attention. In two online experiments, we assessed the 

effects of attention and predictability using biological (BM) or coherent motion 

(CM) as the attentional cues. Predictability was modulated block-wise by

explicitly instructing participants that 75% of targets will appear on one side of

the screen, or that there is no prediction. Thus, expected targets appeared on

the side congruent with the block-wise cue, and unexpected on the opposite.

Performance was also correlated with scores on the short Autism Quotient (AQ)

questionnaire to observe how the level of autistic characteristics affects

attention and expectation. In the BM experiment (N=70), Attended targets were

detected faster than unattended. Further, expected targets were detected

faster than Unexpected targets, and Unexpected targets were detected slower

than when expectation was set at chance. In the CM experiment (N=72),

predictability effects were the same as in the BM experiment. In both

experiments, there was no interaction between attention and predictability. AQ

did not significantly affect performance in either experiment. Nevertheless,

there were consistent but weak effects of AQ, suggesting special treatment of

unpredictable but Attended targets. These results speak in favour of theories of

autism that suggest that prediction errors are weighted higher, but this is

dependent on the effects of attention.

Introduction 

The predictive coding framework argues that the brain attempts to maintain 

homeostasis and minimise entropy by making predictions about the incoming 

information from the environment (Friston, 2009; Sajid et al., 2019). When a 

prediction error is encountered, the system can either update the predictive 
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model, or act out on the environment to change it. Learning in the predictive 

processing framework occurs only if enough weight is given to the incoming 

information that contradicts the original prediction. Thus, variabilities between 

individuals and in turn in some neurodevelopmental conditions can be seen as 

differences in this general neurocognitive mechanism. Specifically, some 

predictive coding theories of autism suggest that the characteristics observed in 

the phenotype of autism spectrum disorder (ASD) are a product of imbalance of 

precision setting of predictions about the world and the prediction error (Lawson 

et al., 2014; Van de Cruys et al., 2014, 2017).  

Van de Cruys et al. (2014) propose that there is inflexible high precision setting 

of prediction errors in autism leading to the development of very precise 

predictions, which in turn create more prediction errors. They termed their 

theory the High Inflexible Precision to Prediction Errors in Autism (HIPPEA) 

theory. Later research indicates that autistic individuals overestimate the 

volatility of the environment, which could lead to the differences in precision 

setting (Lawson et al., 2017). Under the assumption that individuals with autism 

would learn based on prediction errors, Van de Cruys et al. (2017) argue that it 

is possible that a higher-level prediction is established that creates the 

expectation of a very variable environment. However, as expanded on by Palmer 

et al. (2017), differences in the ability to form a prediction about the 

uncertainty of an environment appear to be one of the more consistent findings, 

where in volatile environments, individuals with autism tend to put more weight 

on prediction errors and the sensory information. Thus, Palmer et al. (2017) 

argue that it is unreasonable to argue that the high precision setting of 

prediction errors is inflexible and consistently set high as proposed by Van de 

Cruys et al. (2014, 2017). Instead, Palmer et al. (2017) argue that precision 

setting is context dependent in autism. This argument is also supported by the 

majority of literature that has investigated predictive coding in autism (Goris et 

al., 2018; Lawson et al., 2017; Robic et al., 2015). Nevertheless, there is 

research that suggests that autistic individuals also show heightened learning 

rates in stable environments (Crawley et al., 2019). Hence, the disagreement 

between Palmer et al.’s (2017) and Van de Cruys et al.’s (2014, 2017) views on 

where in the processing hierarchy the differences between autistic and non-

autistic individuals lies is still to be resolved.  
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It has been suggested that attention is what modulates the precision setting of 

the prediction error in estimating whether the prediction error should be 

discounted as due to noise or not (Feldman & Friston, 2010; Parr & Friston, 

2019). This idea has been supported by neuroimaging research like the one by 

Kok, Rahnev et al. (2012). They cued the attention of participants to one side of 

the screen, while at the same time creating an expectation about the probability 

of that stimulus occurring on either side. fMRI results showed that when an 

Unexpected target was presented at an attended location there was lower 

activation in the primary visual cortex in comparison to when an expected target 

was presented at the attended location. Additionally, they showed that 

attention amplifies the activation to expected stimuli. On the other hand, 

unattended expected stimuli show a decreased activation in comparison to 

unattended Unexpected stimuli, which is consistent with the entropy 

minimisation hypothesis of the predictive processing framework (Friston, 2009). 

In this way, attention reverses the effects of habituation and allocates more 

precision to both the prediction error and the predicted content, as both are 

more relevant and should be acted upon.  

Since precision setting can be associated with attention, it is necessary to 

explore the attentional properties in autism, while orthogonally modulating 

expectation and attention in the same paradigm. However, as in almost every 

other field of research in ASD, attention research shows varying results, which is 

to some extent due to the variety of methodologies used (Ames & Fletcher-

Watson, 2010; T.-C. Chen et al., 2020; Keehn et al., 2013; Orekhova & 

Stroganova, 2014), and potentially due to the variability within ASD itself 

(Boxhoorn et al., 2020; Gargaro et al., 2018). It has been suggested that in 

passive tasks, autistic individuals tend to show a reduced mismatch negativity 

(MMN) component in comparison to neurotypical individuals, indicating lower 

surprise (T.-C. Chen et al., 2020; Dunn et al., 2008; Keehn et al., 2013; Schwartz 

et al., 2018). On the other hand, the reduced activation in neural components 

associated with automatic attentional shifts to novelty (i.e., MMN and P3a 

components) is not seen when the task is active and the stimuli are attended 

(Orekhova & Stroganova, 2014). Therefore, in accordance with St. John-Saaltink 

et al.’s (2015) findings about attentional load and MMN components, it is 

possible that attentional resources are reduced or at least difficult to allocate in 
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autism. Therefore, not spontaneously directing attention to stimuli might be the 

underlying mechanism in individuals with autism, rather than an inability to 

reorient to novel stimuli (Orekhova & Stroganova, 2014).  

Thus, to be able to perform a task and explicitly modulate attention and 

expectation, the stimuli, to which a response is required, must be part of an 

active task to avoid any confounds. A paradigm that can vary expectation and 

attention, is the one used by Kok, Rahnev et al. (2012). Their paradigm is a 

variation of the Posner cuing paradigm, with the incorporation of an expectation 

component. In their task, attention was directed explicitly by telling participants 

to respond only to the left or the right-side appearing stimuli. Whereas this is 

informative in an fMRI design, in a fully behavioural paradigm, this would not be 

informative. If we explicitly direct attention to only some of the stimuli, we 

would not be able to get behavioural response to unattended stimuli. Instead, as 

the HIPPEA theory argues that the prediction error is inflexibly weighted higher 

than the prediction – i.e., the precision is always weighted higher for the 

prediction error - we would expect that covert as opposed to overt attention 

should be the studied mechanism. This would be caused by stimuli in the 

periphery appearing more salient, thus capturing covert attention even when 

overt attention is directed at a different location. If attention is already covertly 

deployed to one or the other side of a screen by the central stimulus, then the 

effect of expectation should provide an additional level of facilitation. However, 

with overt attention, the combination of expectation and attention will not be 

visible if attention is overtly directed at one side of the screen.  

To covertly direct attention, here we modified the paradigm developed by Shi et 

al. (2010) which utilises a biological motion stimulus– i.e., a point-light display 

(PLD). The PLD acted as a covert attentional cue which reflexively directed 

attention to the walking direction. Furthermore, following research by Gervais 

et al. (2010) which showed that implied throwing action through a static image 

best directed attention at short (100ms), medium (300ms) and long (500ms) 

stimulus onset asynchrony (SOA), we used an equally directional stimulus 

(kicking). To further introduce an expectation component, we utilised the 

modification used by Kok, Rahnev et al. (2012). In this sense, participants were 

told where on the screen to expect a target (a Gabor patch) to appear with 

three possibilities: 75% chance of the target appearing on the left, 75% chance of 
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the target appearing on the right, and no prediction, where the target is equally 

likely to appear on the left and on the right of the screen. By introducing the 

expectation explicitly, we would avoid the issue of not all participants picking 

up on the statistical regularity. This arrangement of the paradigm provides us 

with orthogonal modulation of both attention and expectation.  

To avoid potential issues with attention not being properly driven by the 

biological motion in individuals with high autistic traits (M. A. Atkinson et al., 

2018; Orekhova & Stroganova, 2014; Todorova et al., 2019; Y. Wang et al., 

2018), we ran a second experiment, where instead of biological motion we used 

a circle of coherently moving dots as the central attention stimulus. In this way 

we can check whether any effects are caused by the modulation of predictability 

and attention, or by the type of cue.  

The general expectations in this study follow findings by Kok, Rahnev et al.’s 

(2012) but translated for behavioural rather than brain imaging performance 

where unpredictable and unattended events should show slower response time 

than predictable and unattended events. Predictable attended stimuli should 

show faster reaction time than the unpredictable attended ones. This would 

come under the expectation that a prediction will be favoured more, than the 

prediction error, as most of the time – i.e., 75% of the time, the prediction will 

be accurate. We expect to observe two main effects: a main effect of attention, 

where attended stimuli are detected faster, and a main effect of expectation 

where expected stimuli are observed faster.  

With the addition of autistic traits, we would expect a different distribution of 

the responses. Specifically, we would expect the difference between the 

unpredictable and predictable attended stimuli to be smaller if not in the 

opposite direction with higher autistic traits. This will be true, if we accept that 

attention focuses precision on prediction errors to a larger extent in autism. As 

Orekhova and Stroganova (2014) propose that because of limited attention 

allocation in autism, attentional resources would be difficult to direct to uncued 

stimuli, we do not make any specific prediction about the unattended condition 

and the variability within it. However, if attention allocation is not an issue, 

then according to HIPPEA we would expect unattended unpredictable targets to 

also be weighted higher, with faster detection in individuals with high autistic 
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traits than in those with low autistic traits. Unattended and predictable targets, 

however, should not show a difference from individuals with lower autistic 

traits, as numerous studies have shown that learning and the creation and 

utilisation of priors is not affected in autism (Palmer et al., 2017). Finally, in the 

50/50 condition we will also expect to observe the individuals with higher 

autistic traits to show faster reaction times, as in that situation, the uncertainty 

of the environment would encourage individuals to rely more on the incoming 

stimulus (Palmer et al., 2017; Van de Cruys et al., 2014). However, it is 

important to investigate the effect of attention in this state. 

 Methods 

4.3.1 Participants 

A total of 200 participants took part in the online studies. To collect a minimum 

of 40 students for each experiment, data was collected until there were 40 

participants whose data was complete or complied with our data quality criteria 

(see Analysis section). One hundred and nine participants were recruited for the 

biological motion experiment and 91 for the coherent motion one. Forty of these 

participants from each experiment were recruited from Prolific.co and were 

paid £3.25 for their participation. The rest were recruited from the 

undergraduate Psychology population and were given participation credits for 

their time. Ethical approval for the conduct of these experiments was obtained 

from the University of Glasgow College of Science and Engineering Ethics 

Committee. All participants were provided with an information and consent 

screen, to which they had to actively progress through. All participants were 

provided with debriefing information at the end of the experiment. The 

undergraduate students received an extended debriefing sheet to facilitate their 

learning experience. The age range of Prolific participants was set to match the 

age range of the undergraduates for consistency. Participant demographics as 

well as information for the browsers and their operating systems for the samples 

used in the analysis can be seen in Table 9. 
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Table 9. Participant characteristics for the biological motion (BM) and coherent motion (CM) 
experiments 

Exp
erim
ent 

Participant characteristics Operating 
System (N) 

Browser (N) 

Sample N Age 
(SD) 

Sex 
M/F/
Other 

AQ 
(SD) 

Mac
OS 

Win Lin Mozilla 
Firefox 

Google 
Chrome 

Safari Other 

BM 

Prolific 30 
21.9 

(2.32) 20/10 
3.96 

(1.67) 1 29 0 5 23 0 2 

Undergrads 40 18.5 
(1.48) 3/37 3.53 

(1.84) 16 24 0 6 28 2 4 

Total 70 
19.96 
(2.53) 23/47 

3.71 
(1.77) 17 53 0 11 51 2 6 

CM 

Prolific 32 20.44 
(1.81) 

16/16 3.53 
(1.84) 

1 30 1 4 25 0 3 

Undergrads 40 18.75 
(1.24) 

4/35/
1 

3.02 
(1.47) 21 19 0 2 31 2 5 

Total 72 
19.5 

(1.73) 
20/51

/1 
3.25 

(1.65) 22 49 1 6 56 2 8 

 

4.3.2 Stimuli 

Stimuli were created using Psychtoolbox v3.0.16 (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997) through MATLAB R2019b (MathWorks, 2019) 

4.3.2.1 Biological motion  

Biological motion stimuli were created through the Biomotion Toolbox (van 

Boxtel & Lu, 2013). The videos consisted of a kicking PLD represented with white 

dots [RGB: 256, 256, 256], on a grey background [80x80x80]. The 3D motion 

coordinates were taken from an already existing set of PLDs. The original video 

consisted of 360 frames recorded at 30fps. Only the first 120 frames were chosen 

and from those the presentation was down sampled to every 2nd frame creating a 

total of 60 frames at 30 fps in mp4 format. The videos were then cropped to 1s 

representing only the kicking motion (without the preparation for the kick) and 

sped up to twice the speed to create a presentation of 500ms at the most 

common screen refresh rate of laptops of 60Hz using Windows’s Video editor 

application. This resulted in 15 frames at 30 fps. Videos were created at 

512x512pix, however, Windows’ Video editor application resized them to 

540x960pix. Two videos like this were created – one kicking to the left and one 

to the right. 
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4.3.2.2 Coherent motion 

The coherent motion videos consisted of white dots [RGB: 256, 256, 256] in a 

circular aperture [300x300pix], on a grey background [80x80x80]. The dots were 

presented in a 280x280pix circular aperture in the centre of the screen. Dot size 

was 7pix and they were randomly assigned a position. A video with leftward 

moving dots was created with 60 frames at 30fps in mp4 format. The videos 

were cropped to 1s and sped up to twice the speed to create a presentation of 

500ms at the most common screen refresh rate of laptops and home screens of 

60Hz using Windows’ Video editor application. This resulted in 15 frames at 30 

fps. Videos were created at 512x512pix, however, Windows’ Video editor 

application resized them to 540x960pix. The dots were in the centre. Two videos 

like this were created – one with the dots moving to the left and one with the 

dots moving to the right. 

4.3.2.3 Gabor patch 

The Gabor patches were set at 90% contrast with 5 cycles and 0 phase. The 

patch was created on the same grey background as the rest of the stimuli 

[80x80x80]. The images were cropped at 251x251pix, with the Gabor patch in 

the middle at 250x250pix. There were two patches created – one tilted to the 

left by 20deg (counter clockwise CCW) and one to the right by 20deg (clockwise, 

CW). 

4.3.3 Paradigm 

The experiment was created using PsychoPy3 v2020.1.3 (Peirce et al., 2019). A 

graphical representation of the paradigm can be seen in Error! Reference 

source not found.. The experimental set up was created for participants sitting 

60cm from the screen. Background colour was set to match the background of 

the biological/coherent motion and the grating stimuli, which was done using a 

colour matcher and set to [-0.380, -0.380, -0.380] and RGB colour space. All 

instructions were white [1, 1, 1], font Arial, and their size varied based on the 

amount of text to allow it to fit on the screen.  
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Figure 11. Graphical representation of the paradigm. The Biological motion experiment used 
a kicking PLD as the attentional cue (right), whereas the coherent motion experiment used a 
circle of coherently moving dots as the attentional cue (left). 

 

Following the presentation style of Shi et al. (2010), and the trial structure of 

Kok, Rahnev et al. (2012), we utilised the following block structure. Each block 

started with a 2000ms screen indicating what the expectation should be (left, 

right or none). This was followed by a fixation cross [size – w:0.5, h:0.5]3 lasting 

500ms. Then the biological motion stimulus [0.8, 0.5] or the coherent motion 

stimulus [0.8, 0.5] were presented for 500ms, followed by an interstimulus 

interval of 100ms with a fixation cross. Next, a grating [0.1, 0.1] was presented 

on the left or right (x=0, y=± 0.4) side of the screen for ~67ms. Participants had 

to respond as fast as possible to the orientation of the grating stimulus (CW or 

CCW) by pressing either the B or the H keys. This choice of keys was made as we 

observed a Simon effect while designing the experiment, where fast erroneous 

 
3 The native measurement ‘height’ was used to distribute the stimuli across the window on which 

the experiment is open – set to automatically open in full screen. This allowed PsychoPy to use 
the window size and resolution of the participants’ own screens. The sizes of the stimuli 
reported in the paragraph correspond to the measurements given to PsychoPy in ‘height’ unit. 
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responses were made by pressing the key located on the left side of the 

participant when the target appeared to the left, rather than as a response to 

target’s orientation. Thus, choosing the B and H keys allowed some vertical 

separation. The next trial started after the participants’ response or 2000ms 

after the disappearance of the grating stimulus. After 800ms post target 

disappearance, if the participants did not respond, they heard a short – 200ms, 

tone (220Hz – A-tone) prompting them to respond. A new trial was indicated by a 

short screen (300ms) showing the word GO. In previous experiments in our lab, 

participants were showing difficulty in tasks that have continuous trial structure, 

thus the visual break was introduced. 

To maximise participant engagement online we had a total of 30 blocks (no 

longer than 21min total). Each block had 12 trials; a total of 360 trials – 180 

trials per attentional cue level (left/right). At 75% predictability (9/12 congruent 

with block cue), this produced 180 [90/90 attended/unattended] expected trials 

and 60 [20/40 attended/unattended] unexpected. Additionally, there were 120 

[60/60 attended/unattended] trials at the 50/50 condition. The central cue was 

congruent with half of all presentations in each expectation condition, as the 

central cue had a predictability of 50% across blocks.  

4.3.4 Procedure 

Before the task, participants were asked for their age, sex, eyesight, English 

language fluency, as well as their browser and operating system, as these can 

contribute to variability in response times (Anwyl-Irvine et al., 2020; Bridges et 

al., 2020).  

At the Information sheet screen, participants were asked to increase their 

brightness to 100% and to stay approximately at 60cm from their screen. The 

experimental task started by firstly familiarising participants with all the 

components of the task – the Gabor patches at the corresponding response 

buttons; the block cues – left/right/none; the biological/coherent motion 

stimuli. Participants were also asked to adjust their volume, so they can 

comfortably hear the beep. After familiarising themselves with the task, 

participants performed 8 trials with feedback to get them used to the task, 

without a predictive word at the beginning. Participants were informed that 
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they need to respond as fast and as accurately as possible to the orientation of 

the Gabor patch and that if they do not answer within 800ms they will hear a 

beep to prompt them to respond. They were also told that the central cue was 

not predictive of the location of the target. Participants were allowed to take a 

break between the blocks, and they were provided with a counter of how many 

blocks they had left of the task. At the end of the task, participants were asked 

to state what was their task, to make sure that they performed according to task 

instructions. Additionally, they were asked how well they thought they 

performed on the task. Finally, as the task was performed online, sometimes 

refresh rate issues interfered with video presentations. For this reason, we asked 

participants how many kicks they saw per trial for the biological motion video.  

Finally, participants answered 10 questions comprising the short version of the 

autism quotient questionnaire (AQ10, Allison et al., 2012).  

4.3.5 Power 

Since we have only effect size information about the effect of the attention cue 

from Shi et al. (2010) d=1.14, and the effect of expectation from Kok, Rahnev et 

al. (2012) – d=0.79, we used the PANGEA applet with a 

2(attention)x3(expectation) design to estimate sample size for the main effects 

and interactions. As there is variability in the number of trials each condition 

combination gets, we used the smallest number as a representative for all of 

them – 20 trials per participant for the Unexpected Attended condition per 

congruency. Also following suggestions from Brysbaert (2019), the expected 

effect size was lowered to 0.4 as more realistic for both the main effects and 

the interaction. With 40 participants, d= 0.4 for main effects and interaction, 

and 20 replicates, we will get power above 81%. As PANGEA does not provide the 

option for adding a continuous variable to the calculation, we decided to add 

the AQ sores as a categorical variable, with participants nested within the 

variable. We gave this variable 2 levels, with 20 participants per level, assuming 

that the AQ can be split in low and high. Again, with 20 replicates and d=0.4, all 

main effects and interactions indicated power of above 80%, except the main 

effect of AQ, which reaches 69% power and the Predictability*AQ interaction, 

which reaches 57%. However, as we are not going to be splitting participants in 

half, we did not consider the lower power as indicative as splits of continuous 
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variables lead generally to lower power (McClelland et al., 2015) and we were 

going to use the AQ as a continuous variable. Nevertheless, we decided to 

recruit 40 students per study with additional samples recruited from Prolific, 

thus increasing power and the possibility to detect an effect. Whereas Brysbaert 

(2019) shows that for an interaction effect and one post-hoc in a 2x2 design you 

would need ~100 participants, this is related to one observation per participant. 

Although we have an imbalance in the design, the larger number of replicates 

allow us to recruit a smaller sample.  

4.3.6 Analysis  

4.3.6.1 Data quality 

As data were collected online, participants’ performance is sensitive to an 

individual participant’s set up. Thus, the log files were used for accurate timing 

of responses, to identify participants who did not follow the instructions or 

whose set up introduced too long delays in stimuli presentation. Two types of 

criteria were imposed to maintain data quality – response wise and participant 

wise. Response-wise criteria included removal of responses below 300ms or 

above 1500ms after target onset and keeping only the first responses that 

occurred 50ms after target onset. Participant-wise criteria for removal included 

accuracy below 50% (N=10), more than 30% too slow or too fast responses (N=8), 

wrong answer on the comprehension question and an accuracy below 65% (N=7), 

pressed a response button more than twice per trial (to allow for accidental 

button presses) on average (N=0), participants indicated that the PLD was 

presented mostly twice (i.e., two kicks) each trial (for BM study only) (N=5). 

Additionally, due to observed delays in target displays, a window of 50-100ms 

was chosen based on the presentation times in Kok, Rahnev et al. (2012) and Shi 

et al. (2010) – if more than 50% of targets were presented outside this window, 

the participant was removed (N=28).  

If the participants answered incorrectly to an attention check placed in the 

AQ10, their AQ score was not calculated, and was replaced with the mean score 

of the participants from the platform they came. The imputation was done for 

eight participants in the CM experiment and eight for the BM experiment.  

All data, experiment design and analysis scripts will be shared on ReShare.  
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4.3.6.2 Statistical analysis 

We analysed the raw reaction time responses using generalised mixed effects 

models, with participant and target grating (left, right) as random effects.  

All analyses were done using R(v4.0.4) (R Core Team, 2021) and RStudio 

(v1.3.1093) (RStudio Team, 2020). Models were build using the lme4 (v1.1-27) 

package (Bates et al., 2015), post hoc analysis were done using the emmeans 

(v1.6.1) package (Lenth, 2021). All data wrangling was done using tidyverse 

(v1.3.1) and attached packages (Wickham et al., 2019). 

Since we are modelling reaction time (RT) data, which is bound to always have a 

minimum value of zero and is therefore most commonly right-side skewed, we 

used a Gamma identity model family to estimate the coefficients from a 

generalised mixed-effects model. Attention (Attended/Unattended), 

Predictability (Expected, Unexpected, None [50/50 case]), Platform 

(Prolific/student) and AQ were the fixed factors. The former three were 

deviation coded, and the AQ was z-score standardised. The targets – left- and 

right-tilted gratings, participant IDs and their interaction were used as random 

factors. Radom intercepts were estimated for all random factors. Slopes were 

estimated for the main effects and interaction for the participant X target tilt 

random factor, and slopes for the main effects were estimated for the 

participant random factor. This structure was chosen based on principal 

components analysis on the random effect structure, performed to deal with 

singularity as recommended by Bates et al. (2018). Models were compared with 

the maximal model, and no statistical differences were observed 

(p-values > 0.8). 

Main effects and interactions were decomposed. Tukey adjustment was used for 

multiple comparisons of the p-values and the confidence intervals (CI) for the 

Attention factor contrasts and Sidak adjustments for the Expectation factor 

contrasts and pairwise comparisons as recommended by emmeans package. 

The results from the BM experiment were also replicated in a second Prolific 

sample. The results can be found in the Appendix D.  
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 Results 

4.4.1 Biological motion 

Reviewing the summary statistics in Table 10, variations between different 

conditions are small for accuracy, indicating that participants were able to 

perform the task. Further, reaction time (RT) was faster for Expected targets in 

comparison to Unexpected targets. In the None condition, reaction time to 

Attended and Unattended targets are equivalent, although accuracy was higher 

in Attended condition. This difference can also be observed in Figure 12. 

Table 10 Participant accuracy and median reaction time in seconds. 

Attention 
congruency 

Prediction 
congruency 

Mean 
accuracy 

(SD) 

Median RT 
(MAD)* 

Attended 
Expected 0.928 (0.259) 0.502 (0.106) 

None 0.917 (0.277) 0.517 (0.122) 
Unexpected 0.893 (0.309) 0.532 (0.120) 

Unattended 
Expected 0.920 (0.271) 0.519 (0.120) 

None 0.911 (0.286) 0.517 (0.122) 
Unexpected 0.903 (0.296) 0.543 (0.135) 

Note: * MAD = Median absolute deviation 

Figure 12. Reaction time in seconds for accurately detected targets by attention and 
predictability conditions. 
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We also observe a change in performance with change in AQ scores, mainly an 

increase in RT with higher AQ scores (see Figure 13). Consistent with the data 

we see in Table 10, Attended targets elicited shorter RTs than Unattended 

targets, and this difference was consistent with increase in AQ scores. However, 

the difference in RT in Attended and Unattended targets appears to swap with 

increase in AQ when no expectation is set, although that change is very small. 

Interestingly, with the increase of AQ, the difference between Attended and 

Unattended Unexpected targets grew larger (pink solid and dashed lines). Thus, 

Attended but Unexpected targets were closer in reaction time to Unattended 

Expected targets. All of these effects are also seen in the replication Prolific 

sample in Appendix D.  

Figure 13. Changes in RT with AQ scores for Attention (line types) and Prediction levels 
(colours). 

 

These increase in RT with increase in AQ, however do not come out as 

statistically significant. Overall, there was a significant main effect of Attention 

(Χ2(1) = 17.656, p < 0.001) and Predictability (Χ2(2) = 34.239, p < 0.001), 

however, there was no significant interaction between the two variables 

(Χ2(2) = 5.914, p = 0.052). Despite the observed differences in Figure 13, there 

was no significant main effect of AQ (Χ2(1) = 3.244, p = 0.072), and no significant 

2-way interaction with Predictability (Χ2(2) = 0.257, p = 0.879) or with Attention 
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(Χ2(1) = 0.049, p = 0.825). There also was no significant 3-way interaction 

(Χ2(2) = 1.253, p = 0.535). This suggest that the effect of AQ scores were not 

strong and consistent enough to influence participants’ performance. There was 

an interaction between Attention and Platform (Χ2(1) = 4.086, p = 0.043, see 

Table 11 below). No other effects or interactions were significant with Platform 

– all p-values > 0.127, indicating that there were no other differences between 

the different platforms.  

Overall, Attended targets were detected faster than Unattended ones – 

β = 0.039 [SE=0.092, 0.021 – 0.057], z-ratio = 4.202, p < 0.001. Additionally, as 

seen in Table 11, students showed a bigger difference in response time between 

Attended and Unattended targets, in comparison to the participants recruited 

through Prolific. 

Table 11. Simple effects of attention at each platform level 

Contrast Platform estimate SE LCI UCI 
Z-

ratio p-value 

Attended - 
Unattended Prolific 0.021 0.014 -0.011 0.052 1.476 0.260 

Attended - 
Unattended Student 0.057 0.012 0.031 0.084 4.804 <0.001* 

Note: * indicate statistically significant contrast. 

Next, the decomposition of the Predictability effect showed that Expected 

targets were detected faster than None targets, however this difference was not 

significant - β = 0.016[SE=0.010, -0.007 – 0.039], z-ratio = 1.664, p = 0.261. None 

targets, however, were detected faster than Unexpected targets – 

β = 0.068[SE=0.014, 0.035 – 0.101], z-ratio = 4.930, p < 0.001, and Expected 

targets were detected faster than Unexpected targets - β = 0.084[SE=0.015, 

0.050 – 0.119], z-ratio = 5.801, p < 0.001. Thus, as expected, predictability 

assists in participants ability to respond faster to expected targets, however, 

that ability is not significantly modulated by attention or AQ scores. 

4.4.2 Coherent motion 

Moving to the CM experiment, in Table 12 we see that variations between 

different conditions are small for accuracy indicating that individuals were able 

to do this task as well as the BM experiment. Additionally, RT is slightly faster 

for Expected targets in comparison to Unexpected targets. Further, looking at 
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the Unexpected and the None conditions, Attended targets elicited longer 

reaction times in comparison to the Unattended target which is an indication of 

inhibition of return (IOR, Klein, 2000), which was not observed in the BM 

experiment. This can also be observed in Figure 14. 

Table 12 Participant accuracy and median reaction time in seconds 

Attention 
congruency 

Prediction 
congruency 

Mean accuracy 
(SD) 

Median RT 
(MAD)* 

Attended 
Expected 0.924 (0.265) 0.500 (0.102) 

None 0.909 (0.288) 0.508 (0.112) 
Unexpected 0.889 (0.314) 0.533 (0.114) 

Unattended 
Expected 0.918 (0.275) 0.501 (0.107) 

None 0.908 (0.290) 0.500 (0.105) 
Unexpected 0.917 (0.276) 0.528 (0.116) 

Note: * MAD = Median absolute deviation 

Figure 14. Reaction time in seconds for accurately detected targets by attention and 
predictability conditions. 

 

Further, unlike in the BM experiment, AQ scores did not appear to show any 

effects on performance (see Figure 15). Attended targets led to longer RTs, 

however, this was the reverse for Expected targets. Thus, it appears that 

expectation reverses the descriptively observed IOR, by eliciting faster RTs to 

Attended in comparison to Unattended targets. Although this trend stays 

consistent with AQ, similar to the BM experiment, higher AQ leads to shorter RTs 
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for Unexpected Attended targets, and the difference reduces between Attended 

and Unattended targets when no expectation is set. 

Figure 15. Changes in RT with AQ scores for Attention (line types) and Prediction levels 
(colours). 

 

Unlike in the BM experiment and despite the indication of an IOR in the RT data, 

the main effect of Attention was not significant (Χ2(1) = 0.898, p < 0.343). This is 

potentially caused by the observed effects of AQ and expectation seen in Figure 

15. 

Next, similar to the BM experiment there was a significant effect of 

Predictability (Χ2(2) = 56.754, p <0.001). The interaction between the two 

variables was also not significant (Χ2(2) = 0.830, p = 0.660). Additionally, there 

was no significant main effect of AQ (Χ2(1) = 0.059, p = 0.808), and no significant 

2-way interaction with Predictability (Χ2(2) = 0.695, p = 0.706) or with Attention 

(Χ2(1) = 2.694, p = 0.101). There also was no significant 3-way interaction 

(Χ2(2) = 1.667, p = 0.435). This suggest that AQ scores did not significantly 

influence participants’ performance. No other effects or interactions were 

significant with Platform – all p-values > 0.205, indicating that there were no 

differences between the different platforms, unlike in the BM experiment.  



Chapter 4  147 

 

Similar to the results in the BM experiment, Expected targets were detected 

faster than None targets, however this difference was not significant – 

β = 0.012[SE=0.010, -0.013 – 0.037], z-ratio = 1.122, p = 0.598. None targets, 

however, were detected faster than Unexpected targets - β = 0.099[SE=0.015, 

0.064 – 0.134], z-ratio = 6.685, p < 0.001, and Expected targets were detected 

faster than Unexpected targets - β = 0.111[SE=0.015, 0.075 – 0.147], 

z-ratio = 7.331, p < 0.001. Thus, as expected, and despite the potential for IOR, 

predictability assists in participants’ ability to respond faster to Expected 

targets, however, that ability is not modulated by attention or AQ scores.  

  Discussion 

In this study, we aimed to separate the effects of attention and predictability on 

detection speed in two modified Posner paradigms involving BM and CM. Further 

we aimed to see how these effects differ with autistic traits. In the BM 

experiment, we observe a general effect of attention and predictability, which 

indicate faster processing for Attended and for Expected stimuli. More 

specifically, predictability improved performance over situations when there was 

no expectation set (None condition), and hindered it, when the target was 

Unexpected. In the CM experiment, we did not observe a significant effect of 

attention. However, there was an overall effect of predictability. This mirrored 

the effect in the BM experiment showing that Unexpected targets delayed the 

participant’s ability to detect them in comparison to Expected ones. Like in the 

BM experiment, predictability did not significantly improve performance above 

the None condition when comparing it to the Expected condition. Finally, and 

more importantly, autistic traits did not show a statistically significant 

interaction with any of the factors, suggesting that in this paradigm, 

predictability and attention are not significantly affected by the level of autistic 

traits. However, there were descriptive effects that suggest different treatment 

of Attended Unexpected targets with increase in AQ. We also see that unlike in 

the CM experiment, in the BM experiment individuals with higher autistic traits 

had longer RTs suggesting that the task was more difficult (Todorova et al., 

2019). 

In respect to the effects of autistic traits, from the point of view of HIPPEA, we 

would have expected smaller differences in RTs with increase in AQ between 
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Unexpected and Expected targets. We would also have expected this effect to 

be mostly evident in the Attended condition, with attentional resources being 

difficult to allocate in the Unattended condition (Orekhova & Stroganova, 2014). 

Unfortunately, we do not observe any significant interactions with increase in 

AQ. However, we see a trend in the data in both the BM and the CM experiments 

where Attended Unexpected targets are detected faster than the Unattended 

Unexpected targets, bridging closer the Expected and Unexpected Attended 

targets. Thus, we see some support for our prediction of smaller difference 

between Expected and Unexpected Attended stimuli with increase in AQ. This 

suggests that attention focuses precision on the prediction error to a larger 

extent in high AQ individuals, thus providing some descriptive support for the 

HIPPEA theory. However, we do not see Unattended Unexpected targets being 

weighted higher - we see increased RTs for Unattended Unexpected targets. This 

suggests that, as argued by Orekhova and Stroganova (2014), attentional 

resources might be more scarce in autistic individuals, and by extension the 

higher AQ participants in our sample, although these effects might be 

attenuated or qualitatively different in the general population as opposed to 

individuals with an ASD diagnosis. This also suggests that the ‘inflexibility’ part 

of the HIPPEA theory might not hold and although prediction errors might be 

given higher precision, those prediction errors would need to be attended.  

Looking at attention allocation specifically, we observe an interesting pattern 

with the increase of AQ in the two experiments. In the BM experiment, as 

Unattended targets have longer RTs than Attended ones, we can safely say that 

Unattended targets are indeed targets where the attention has been driven to 

the opposite location. Thus, the descriptive decrease in RT in individuals with 

higher AQ for Attended Unexpected targets allows us to assume that attention is 

highlighting the importance of the prediction error to a larger extent for high AQ 

participants. However, in the CM experiment where we descriptively observe 

IOR, we still observe the same decrease in RTs with increase in AQ for Attended 

Unexpected targets. Moreover, this decrease crosses over and improves on the 

RT for Unattended Unexpected targets, which in an IOR circumstance should be 

detected faster. This suggests that attention might be differently allocated in 

individuals with higher AQ traits. To further understand this pattern and taking a 

more speculative look at the descriptive results, we will next examine this 
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effect by reviewing the differences in RT for Attended and Unattended targets 

with increase in AQ in the None condition, where no expectation is set.  

In both the BM and CM experiments, we see a decrease in the distinction 

between Attended and Unattended targets when no expectation is set in the 

None condition. Although it is possible that the BM cue was not producing large 

attentional effects, there appears to be a greater distinction between Attended 

and Unattended targets in the CM experiment for all participants. Thus, since we 

see the decrease in the distinction between the two attention levels with 

increase in AQ in the CM condition as well, it is possible that individuals with 

higher AQ traits are less influenced by the attentional cues in the absence of a 

prediction model in the None condition. On the other hand, in the blocks where 

expectation was set, attention starts to influence the behaviour of individuals 

with higher autistic traits. Interpreting this through the predictive coding models 

of autism, these descriptive results indicate that with the increase in AQ, when 

no expectation is set and in a volatile environment, these individuals tend to 

rely more on the incoming sensory information (Lawson et al., 2014; Van de 

Cruys et al., 2014, 2017). However, when a predictive model is established, that 

model will be used to interpret the environment. Further, in cases of IOR it is 

argued that if high precision is allocated to the volatility of the environment – 

i.e., we expect that the state of the environment could change we are more 

likely to experience shorter IOR (Parr & Friston, 2017). Thus, it is possible that 

our participants with high AQ were overestimating the volatility of the 

environment and thus they were more likely to attend to previously attended 

locations. This latter interpretation is more consistent with Palmer et al.’s 

(2017) and Lawson et al.’s (2017) argument about precision setting being context 

dependent in autism, and more closely related to the volatility estimation, 

rather than being set ‘inflexibly’ high as suggested by HIPPEA. 

As mentioned, these interpretations however are speculative and the effects 

need to be replicated. Hence, the only component that the present results can 

support from the predictive coding perspectives and previous studies is that 

individuals with higher AQ scores are able to use statistical regularities to guide 

their behaviour as well as their lower AQ counterparts (eg., Allenmark et al., 

2020; Chambon et al., 2017; Van de Cruys et al., 2018). Thus, despite the 

predictive coding literature arguing that ASD is a product of imbalance of 
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precision setting (Lawson et al., 2014; Van de Cruys et al., 2014, 2017) and that 

differences will be most pronounced in unpredictable environments (Palmer et 

al., 2017; Van de Cruys et al., 2014), we were not able to provide concrete 

support for these arguments.  

It is also important to note, that in these experiments, our participants were 

individuals from the general population and the conclusions we are making about 

the utility of HIPPEA and the other predictive coding theories of autism are 

based on the participants’ AQ scores. Thus, although autistic traits vary within 

the general population (Ruzich et al., 2015), any effects would not be as strong 

as the ones observed in autistic individuals. The descriptive results that we see 

with the change in AQ, could be more prominent in an autistic sample. This 

becomes evident with the combination of the replication and main samples (see 

Appendix D), where the larger sample size, pushed the effect of AQ over the 

chosen significance threshold. However, it is also possible that we observe a 

qualitatively different result in autistic individuals. For example, we could 

observe that both Attended and Unattended Unexpected events are detected 

faster by autistic individuals and in this way differentiating neurotypical 

individuals with higher autistic traits from those with a diagnosis. In this way the 

inflexible part of HIPPEA might still be an appropriate suggestion. Hence, further 

replication of these results within an autistic sample would be necessary to 

provide more concrete support for the present findings and evidence for or 

against the predictive coding theories of autism.  

From a replication point of view, similar to the results by Kok, Rahnev et al. 

(2012) in the BM paradigm we observed a highlighting effect of attention, where 

attended stimuli were detected faster than unattended for both Expected and 

Unexpected stimuli. These results are also concordant with results showing that 

attention amplifies the neural signal (Mehrpor et al., 2020). However, this was 

not the case for the CM experiment. From a behavioural perspective, we 

observed what descriptively looked like IOR. It has been previously shown that 

BM stimuli are difficult to ignore and they are incidentally processed (Thornton 

& Vuong, 2004), thus potentially capturing attention for longer, rather than 

leading to disengagement with the cued side. However, we believe that the 

descriptively observed IOR at the CM experiment was probably caused by the 

different motion properties of the PLD and the CM stimuli. Whereas in the PLD 
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the action is concentrated at the end of the 500ms (the human first leans and 

then kicks), in the CM stimulus the directional motion is present throughout the 

500ms. Additionally, it has been suggested that it takes longer to integrate the 

information in a BM stimulus than in simple motion stimuli (Neri et al., 1998). 

This could have also contributed to the expected attentional guiding processes in 

the BM experiment in comparison to the CM. A model combining the BM and CM 

experiments (see Appendix D) also shows that indeed the BM was better at 

capturing attention, leading to larger differences between Attended and 

Unattended trials, as opposed to the CM stimulus. Importantly, there was no 

interaction with AQ scores. Due to these differences, we do not believe the 

effects were caused by the type of cue (social/non-social) but by the motion 

properties of the cue.  

Despite the descriptively observed IOR, we also saw that expectation overwrote 

the effects of attention leading to indistinguishable differences in the detection 

of Attended and Unattended Expected targets. This, although non-significant, 

was potentially the reason for the absence of a main effect of attention in the 

CM experiment. This interpretation suggests that predictability can override the 

effects of attention. Kok, Rahnev et al. (2012) argue that attention facilitates 

expectation, thus, since descriptively we observed IOR, RTs for Attended 

Expected targets should have been slower. Instead, by observing the opposite 

(faster RT for Attended Expected targets in comparison to Unattended), we 

argue that attention takes a backseat and expectation drives performance. As 

suggested by Parr and Friston (2017), expectation in this setting could be 

increasing the expectation for the sensory information to change and in this way 

reversing/minimising the IOR effect for participants.  This reversal of attention 

at the expected condition suggests that although attention acts as a highlighter 

of all events regardless of expectation status, expectation acts as a driving 

force, even when attention is actively biasing behaviour in the opposing 

direction. This difference is important, as it reaffirms that predictability is 

salient (Southwell et al., 2017; Yon et al., 2020), despite attentional demands. 

However, it needs to be taken into account that these differences are again not 

significant and that we observed slightly different effects in the student and the 

Prolific samples even in the BM experiment, with Prolific samples descriptively 

showing an IOR when no expectation was set. Thus, it is important for these 
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results to be replicated in studies that investigate attention and prediction not 

only when attention is expected to assist but also when attention is driven away 

from the Expected target. 

The present results and discussion need to be considered with a degree of 

caution due to several methodological caveats. Firstly, the data is collected 

online, which would increase the variability and decrease the sensitivity of the 

results. Specifically, while participants were told to increase the brightness of 

their screen, and to be 60cm away from the screen, we cannot be sure that all 

participants followed these instructions. However, not following these 

instructions would have made the experiment more difficult for the participants, 

and that would have been reflected in lower accuracy and higher RTs, meaning 

they would probably be excluded from the analysis. Secondly, the use of online 

measures introduces large variability in the experimental presentation itself due 

to the different set-ups that participants would have. This is evidenced from the 

largest portion of participants being removed because of delayed presentation of 

the targets. Although, we were able to clean out and deal with some of the 

noise that is introduced in this way, the presentation of the targets and in turn 

the ability of participants to accurately detect the targets is undoubtedly 

affected by these differences. Thus, for future online studies, where timing is 

important, the recruitment of larger samples, where more stringent cleaning can 

be performed is necessary. Next, the definition of attention is somewhat 

conflated with expectation. In attention allocation paradigms, a stimulus driving 

the attention is creating an expectation. The reflexive attention shifts following 

the kick of the PLD are in essence a result of the expectation of something 

occurring on the direction of motion. Thus, attentional modulation not coupled 

with expectation would be necessary to further study the effect of attention and 

expectation separately. Finally, the trials on the Unexpected side are 

unbalanced, which is evident in the larger standard errors around the Attended 

Unexpected lines. Although the uncertainty around this result is larger, the 

consistency between samples suggests an underlying effect that needs to be 

investigated further. 

Taken as a whole, the present findings show that individuals with high autistic 

traits can use explicitly stated regularities of the environment to a similar 

degree as individuals with low autistic traits. Moreover, we do not see a 
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significant indication of enhanced precision for unpredictable events regardless 

of attention level, suggesting no differences in the allocation of attention with 

the increase of autistic traits. Thus, the present findings stand in opposition with 

the main argument of high precision allocated to prediction errors as suggested 

by HIPPEA. However, some of the observed small differences might be amplified 

in individuals who have an official diagnosis. We conclude that the use of 

paradigms that modulate attention and prediction separately and introduce 

different attentional effects might assist in the future.  
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 Hierarchical frequency tagging of 
biological motion processing: a proof-of-concept 

Abstract 

According to the HIPPEA theory, autistic individuals allocate higher precision to 

prediction errors and bottom-up stimuli. One of the proposed mechanisms 

through which HIPPEA suggests this happens is by allocating a disproportionate 

amount of attention to low-level features. One recently suggested methodology 

that could allow the investigation of whether attention influences the 

combination of bottom-up and top-down information in autism is the 

Hierarchical Frequency Tagging (HFT) procedure. The HFT procedure allows 

tagging the processing of information at both the high and low levels of the 

processing hierarchy, along with their combination in the brain, while 

modulating attention and predictability. This is achieved by tagging conceptual 

information at one frequency, bottom-up information at another and 

investigating their combination through their intermodulation components 

observed in the EEG signal. This chapter presents a proof-of-concept EEG study, 

which aims to determine whether the HFT paradigm could be applied to a 

dynamic stimulus – a point-light display walker. We modulated attention by 

instructing participants to count only one direction of walking. We modulated 

prediction by varying the probability of one or the other walking direction. Using 

the data from 3 participants, the results indicate that dynamic stimuli can be 

easily incorporated into the HFT procedure, and that the tagging of higher-level 

information is dependent on the participants’ conscious perception of the 

stimuli. Although some of the intermodulation effects were not replicated in this 

small sample, the overall results suggest that this type of paradigm could be 

used in future work to investigate the combination of bottom-up and top-down 

signals in a dynamic context in autism.  

Introduction 

One of the newly proposed theories of autism views the condition through the 

prism of the predictive coding framework. In this framework, the brain creates 

predictions about the world, which are compared to the actual input (Friston et 

al., 2011). As the input never exactly matches the prediction due to noise in the 



Chapter 5  155 

 

environment and the brain, this comparison produces an error signal. Depending 

on the level of precision associated with the prediction error, e.g., how 

unambiguous, and relevant to current goals it is, the prediction error will lead to 

an update of the prediction, or it will be discounted. In this sense, prediction 

errors are the basis for learning, indicating when the prediction is wrong and a 

new rule about the environment needs to be learned (Friston et al., 2011). 

Following this framework, in 2014, Van de Cruys et al. proposed the theory of 

High Inflexible Precision of Prediction Errors in Autism (HIPPEA). According to 

HIPPEA, individuals diagnosed with Autism Spectrum Disorder (ASD) are deficient 

in meta-learning (i.e., knowing which signals indicate something that should be 

learned) due to higher precision setting of bottom-up information. 

One of the proposed mechanisms through which HIPPEA suggests that weighting 

of prediction errors is affected in autism is by allocating a disproportionate 

amount of attention to low-level features of stimuli – i.e., the individual 

features of the environmental information (Van de Cruys et al., 2014). Too high 

weighting of prediction errors will lead to forming future predictions that are 

based on noise and infrequent contingencies. The HIPPEA framework argues that 

placing more focus on low-level information impedes the formation of a 

generalisable holistic percept. Thus, individuals with ASD form narrow models 

about the world with very specific predictions and even small variations in the 

input will not fit in those predictions and will be categorised as errors (Van de 

Cruys et al., 2014). This contrasts with the broader models created by 

neurotypical individuals that can correctly discard some variation created by 

noise in the environment without leading to the propagation of prediction errors 

higher up in the hierarchy. Furthermore, according to HIPPEA, abnormal sensory 

perception will impede social functioning since autistic individuals will create 

predictions that are grounded in the low-level information instead of the 

abstract generalisable concepts that are necessary for social interactions (Borghi 

et al., 2017; Dove, 2016).  

This difficulty in processing social features and interactions has been seen in 

recent meta-analyses showing that autistic individuals consistently show lower 

performance in detection and interpretation of human movement from both 

simplified point-light displays (PLD) and full-light displays (see Chapter 3; 

Federici et al., 2020; Todorova et al., 2019; Van der Hallen et al., 2019). 
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Specifically, the more complex the biological motion tasks became – from 

detection to emotion interpretation, the larger the differences between NT and 

ASD individuals became (Todorova et al., 2019). Moreover, differences between 

ASD and NT participants have been linked with reduced modulation by higher-

order brain areas responsible for the interpretation of biological motion such as 

posterior Superior Temporal Sulcus (pSTS) (Grosbras et al., 2012; Lestou et al., 

2008; Thurman et al., 2016). Hence, differences in biological motion perception 

could be due to reduced integration at a higher level but could also be linked to 

already present differences in early-on processing stages. 

Research investigating HIPPEA has produced mixed results. Findings point 

towards less influence of context (Goris et al., 2018), higher estimation of the 

volatility in the environment (Lawson et al., 2017), along with higher learning 

rates (Crawley et al., 2019), potentially influenced by a higher weighting of 

prediction errors. However, most findings appear to be only partly in line with 

HIPPEA. For example, Sevgi et al. (2020) showed that in stable environments 

autistic individuals do not differ from neurotypical (NT) individuals. Differences 

between ASD and NT individuals appeared when environments became more 

volatile. This suggests that prediction errors are not weighted inflexibly high. If 

they were, then we would expect that unexpected variations in the stable 

environments would impede performance, as that would impede the creation 

and utilisation of a flexible prediction model. Since high precision setting of 

prediction errors will bring about higher learning rates, differences in 

performance should be more evident in the stable environment as volatile 

environments generally would benefit from higher learning rates (Crawley et al., 

2019). Hence, more work is needed to understand the ability of HIPPEA to 

account for autistic characteristics. Further, the existing literature struggles to 

disentangle where exactly the imbalance in precision setting occurs in autism - 

at the lower level of information processing, at the integration of the prediction 

error and the prediction or at the prediction itself, and instead focuses mostly 

on the outcome in performance. 

One way to investigate whether individuals with ASD weigh prediction errors and 

input higher than top-down information is to tag top-down and bottom-up 

processing, and to investigate their interaction. Additionally, since attention is 

one of the proposed mechanisms for precision-weighting of prediction errors 
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(Feldman & Friston, 2010), it is important that when investigating predictive 

coding theories, attention and predictability are controlled separately to 

distinguish between them.  

Using a Hierarchical Frequency Tagging (HFT) procedure, Gordon et al. (2017) 

investigated the effects of predictability and attention on the integration of the 

two tagging frequencies in the brain. The HFT procedure utilises higher-order 

information processing tagging - Semantic Wavelet-Induced Frequency-Tagging 

(SWIFT) (Koenig-Robert & VanRullen, 2013), and lower-level information 

processing tagging - Steady-State Visually Evoked Potential (SSVEP), and allows 

exploring their intermodulation components (IM). The SWIFT was created by 

alternating between house and face images and their wavelet-transformed 

images and the SSVEP through a flicker of the presentation screen. Attention 

was modulated by asking the participants to count either the houses or the 

faces. Predictability was modulated by controlling the ratio of faces to houses in 

each block. In NT participants, the SWIFT signal is suggested to reduce with 

increasing predictability as less weight is given to the prediction error (Gordon 

et al., 2017; but see Coll et al., 2020). The IM components, on the other hand, 

are frequencies that are produced from the non-linear combination and 

interaction of the two tagging frequencies. The IM signal is considered to reflect 

the efficiency of integration between top-down and bottom-up signals (Gordon, 

Hohwy, et al., 2019). With high predictability the signal-to-noise ratio (SNR) of 

the IM components showed better integration indicating a larger influence of the 

top-down model (Gordon et al., 2017). Importantly, a recent study by Coll et al. 

(2020) replicated some of the original findings by Gordon et al. (2017). Coll and 

colleagues (2020) were not able to find modulation of the SWIFT SNR with the 

predictability of the stimuli, however, they replicated the increase in the IMs 

SNR with increase in predictability. Hence, the modulation of the SWIFT by 

predictability may not be a stable finding. 

To further explore the relationship between the lower and higher levels of 

hierarchical processing, Gordon, Tsuchiya, et al. (2019) used a Multi Spectra 

Phase Coherence (MSPC) methodology. The authors argue that by calculating the 

MSPC driven by the stimulus (MSPCstim) and the MSPC that is driven by the 

resulting EEG response (MSPCres), we can observe the integration of bottom-up 

and top-down signals at different levels of the hierarchy. Gordon, Tsuchiya, et 
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al. (2019), and later elaborated in Gordon, Hohwy et al. (2019), implicated 

MSPCstim as an indication of the online integration of information from top-

down predictions and bottom-up sensory evidence. Thus, with higher 

predictability of the incoming input, the MSPCstim shows a higher correlation 

between the input stimulus phase and the EEG signal. On the other hand, in 

comparison to MSPCstim, MSPCres is argued to be more strongly related to signal 

integration occurring at higher/later levels of the visual hierarchy as attention 

modulation had a greater effect on MSPCres. Specifically, when the stimulus is 

highly relevant/ attended, then the prediction error would be highly weighted 

and have a higher effect on expectations. 

Thus, the HFT procedure provides a potential opportunity to explore the 

integration of bottom-up and top-down signals in the brain, whilst at the same 

time controlling for predictability and attention. However, the paradigm is still 

in its infancy and the division of the Multi Spectra Phase Coherence (MSPC) 

metric into stimulus-driven and response-driven has been used in only two 

studies so far without a control condition (Coll et al., 2020; Gordon, Tsuchiya, et 

al., 2019). Thus, further research is needed to determine its validity.  

Here we want to further investigate validity of the paradigm using different 

stimuli and adding a control condition. We investigate the perception of 

biological motion through PLDs as it could allow us to determine whether 

differences in biological motion perception are due to reduced integration at a 

higher or at a lower level of the hierarchy. Furthermore, the paradigm could 

help us to understand whether attention plays a role in the high precision setting 

of prediction errors in ASD. 

Although the original SWIFT tagging procedure utilised wavelet transformation 

(scrambling) of semantically meaningful images, in the present experiment, a 

global percept - a walking point-light display - is transformed by spatially 

scrambling the position of the dots that make the PLD. Due to the nature of the 

PLD stimuli (made up of dots), there would not have been enough visual 

information to use a wavelet transformation. Thus, we argue that oscillating the 

PLD between its intact and scrambled forms should produce a semantic tagging 

at one frequency, producing a SWIFT-like component observed in the 

electroencephalographic (EEG) signal. In this modification of the paradigm 



Chapter 5  159 

 

attention is modulated by instructing the participants to count one of two 

alternating PLDs which have opposite walking direction. Predictability is 

modulated by adjusting the proportion of one direction to the other across 

blocks. To produce the low-level SSVEP component, the contrast of the dots 

(flickering), which comprise the PLD and the surrounding noise dots, changed at 

a second tagging frequency. 

Beyond adapting the original HFT procedure to use a dynamic stimulus instead of 

static, we also aimed to use the autism quotient (AQ) questionnaire to observe 

how the SSVEP-component, the SWIFT-like component and the IMs vary with the 

change in autistic traits of the participants. Following HIPPEA’s predictions, we 

would expect that in individuals with high AQ, the SWIFT SNR will decrease with 

the increase in predictability, but at lower predictability, it would be more 

easily disturbed by new events. Hence, the volatility of the environment will 

play an important part (Lawson et al., 2017; Palmer et al., 2017). Further, 

results by Coll et al. (2020) show that individuals with higher autistic traits had 

consistently higher SNR for the SSVEP, SWIFT and their intermodulation (IM) 

component signals. This was not investigated by the original authors, but it was 

observable in their graphical representation of the data. Following HIPPEA it 

would be expected that prediction errors should disturb predictions more in 

individuals with high AQ. At high predictability, where the counted stimulus is 

the one presented almost all the time, we would expect to see no difference 

between individuals with high AQ and low AQ. Thus, it would be interesting to 

observe the balance of the SWIFT and SSVEP signals. This is dependent on 

whether the effect of the SWIFT is observable as it was not replicated in Coll et 

al. (2020). Further, if ASD individuals put a lot more weight on prediction errors 

and bottom-up information, with increase of AQ scores we should see a 

reduction of the positive correlation (the slope) of the IM components signals 

with increasing predictability. In fact, Coll et al.’s (2020) findings indicate that 

with higher AQ the positive slope is reduced in comparison with participants with 

lower AQ.  

Finally, if processing in autism happens according to HIPPEA, then we would 

expect to observe different MSPCres slopes with the change in AQ scores. If 

individuals with autism can make predictions, and those predictions are based on 

the narrow band of expectations they form, then the MSPCres slope, which is an 
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indication of the integration of the information at a higher level of the 

processing hierarchy, should be similar between individuals with low AQ and 

those with high AQ for the attended images. However, if at the same time 

autistic individuals put high weight on the precision of the prediction errors, 

then the slope should be either less negative, neutral or tending towards 

positive for the unattended images with the increase of repetition. Effectively, 

the higher precision setting of prediction errors would lead to very similar 

activation of attended and unattended images in the brain. This could be 

inferred from the results by Goris et al. (2018) where local deviants were not 

modulated by expectations but were equally detectable in the EEG signal. 

Similarly, MSPCstim, which is assumed to indicate the integration of information 

at earlier stages of the processing hierarchy, should be in the same direction as 

in the original studies, but since prediction errors would have a higher 

weighting, the slope of the relationship with the increase in predictability should 

also be shallower.  

Due to the COVID-19 pandemic and the national lockdown in Scotland associated 

with it, the study was stopped prematurely. From hereafter, this chapter will 

use the collected data as a pilot and proof of concept for the feasibility of the 

study and the proposed paradigm.  

 Methods 

5.3.1 Participants 

Three participants were recruited to take part in the main experiment. 

Participants were students from the University of Dundee. Two participants were 

to be research assistants in the data recruitment and were not compensated, 

one participant was awarded experiment credits towards their first-year 

undergraduate Psychology degree. None of the participants suffered from 

neurological conditions or had a history of seizures. Participant characteristics 

are shown in Table 13 below.  
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Table 13. Participant characteristics 

Participant Age Sex AQ Eyesight Handedness 
P1 21 Female 18 Corrected Right 
P2 21 Female 11 Normal Left 
P3 18 Female 10 Normal Right 

Since this is a new paradigm and the presentation time of the coherent 

biological motion figure is expected to be very short, two pilot studies were run 

to make sure that the participants can perceive the walking stimulus and its 

direction. These are described in Appendix E. 

5.3.2 Measures and materials 

5.3.2.1 Autism Spectrum Quotient (AQ) 

The Autism-Spectrum Quotient has been originally developed for investigating 

the autistic traits in individuals. It has 50 items, divided into 5 subscales with 10 

items each – communication, social skills, imagination, attention to detail and 

attention switching (Baron-Cohen et al., 2001). Participants were not excluded 

based on their scores of the AQ. 

5.3.2.2 Paradigm characteristics 

Point-light displays 

The main paradigm consisted of a point-light display (PLD) that cycled from 

coherent to scrambled for 30 times within one trial. A PLD represents a human 

figure with light dots at the major joints. The PLD was presented at the centre 

of an LCD screen at a visual distance of ~ 75cm. The visual angle of the coherent 

walker spanned 3.43ᵒ horizontally and 5.5ᵒ vertically. This size was chosen as it 

is the most commonly used in the literature, and it was found that roughly this 

size provides the best signal to noise ratio in behavioural detection paradigms 

(Hiris, 2007). When the walkers were scrambled, the displays spanned 8.76ᵒ 

horizontally and 9.24ᵒ vertically. The larger visual angle of the scrambled display 

allowed for the scrambled PLD to blend in with the noise and to avoid crowding 

in the middle where the coherent PLD would appear.  

The PLD was embedded in noise created by one left wrist joint and one right 

ankle joint from six scrambled copies of the PLD. This type of noise was chosen 
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as it maintained the same motion and energy as the original PLD (also see the 

‘Frames’ pilot in Appendix E). The noise dots were also shifted in phase, to 

minimise distraction based on the simultaneous movement of the dots. Each of 

the six pairs was shifted by 20 frames starting from no shift to 100 frames after 

the presented coherent frame. Additionally, as there is a left walker and a right 

walker that swap which one is the coherent one, there were always two walkers 

present, in such an arrangement that when one of the walkers was coherent, the 

other one was scrambled. This added to the noise background. A sample video 

can be seen at https://figshare.com/s/d6ffd876ce684610349c. 

To avoid EEG artefacts due to brain waves synchronising with the specific type of 

scrambling of the PLDs, three different scrambling versions were chosen for each 

of the two PLDs – left and right walkers. The scrambling variations changed at 

random for each cycle and the change of the scrambling variation happened at 

the point of the coherent walker, to avoid abrupt jumps of light dots, which 

could also create artefacts in the EEG signal.  

In the control condition, the PLDs were inverted, in this way maintaining the 

same movement profile of the light dots. The control condition aimed to make 

sure that any tagging at the SWIFT-like frequency was not due to just the 

movement of the dots towards the centre of the screen but was due to 

recognition. 

Frequency selection 

We imposed several limitations when choosing our frequencies. Firstly, the 

frequencies need to be the product of the refresh rate divided by an integer: F1 

– 604/12 = 5Hz and F2 – 60/90 ~ 0.6667Hz for the SSVEP and SWIFT-like 

frequencies, respectively. Next, the fundamental frequencies, their harmonics 

and combinations, must not coincide with each other. This allowed for a better 

signal to noise ratio. Next, all frequencies – fundamentals, first harmonics and 

 
4 The final study utilised a monitor with a vertical refresh rate of 60Hz. The pilot studies utilised a 

CRT monitor at 120 Hz. The frequency calculations were equivalent for the ‘dots’ pilot and the 
final study: F1 – 120/24 = 5Hz and F2 – 120/180 ~ 0.6667Hz. The SWIFT frequency differed, 
due to the varying length of the presentation of the coherent biological motion. 
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their combination needed to be separated by at least 5 bins of the frequency 

spectrum for our chosen length of the trial – 45s and bin of 0.022ms.  

SSVEP component. To create the SSVEP component of the paradigm, we chose a 

flicker at a frequency F1 = 5Hz. In this way, we were able to avoid the alpha-

band 8-12Hz, and we chose a significantly high-frequency resolution to increase 

the SNR - a 512Hz sampling rate with vertical screen flip of 60Hz.  

SWIFT-like component. Due to the nature of the paradigm - i.e., a moving 

stimulus, it is impossible to create perfect co/sine function presentation of the 

transition between scrambled and coherent walkers, while at the same time 

providing participants with enough information to be able to perceive the 

stimulus. For the representation of a movement, more than one frame is 

necessary. Thus, our presentation for the biological motion presents a sine 

function with a plateau. The frequency for the coherency modulation was 

chosen to be in the lower frequency spectrum – F2 = 0.6667Hz, as it better 

penetrates higher-level processing (Norcia et al., 2015). Moreover, the 

paradigms that have used SWIFT have shown that low frequencies provide a good 

SNR for processing at 1.2HZ, 1Hz and 0.8Hz (Gordon et al., 2017; Gordon, 

Hohwy, et al., 2019; Gordon, Tsuchiya, et al., 2019) 

5.3.2.3 Paradigm 

Participants were asked to count either the walker that appeared to walk to the 

left or to the right on each trial. Predictability (expectations) levels are 

categorised based on the proportion of right and left walkers appearing in each 

trial. This ranged from low predictability, when the left and right are shown 50% 

of the time, to high predictability, when one of them is shown 90% of the time. 

This variability was introduced, to modulate the predictability of the attended 

stimulus. Each trial contained 30 walkers and lasted ~45sec. Thirty-six such trials 

were created. The length of the experimental and the control trials were 

identical, with the experiment lasting ~1h.  

Since the ability to perceive the biological motion is necessary to be able to say 

that we are accurately tagging semantic features (in this case the biological 

motion), we trained our participants to a 65% accuracy criterion. There were 
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two training blocks. In the first one, the coherent walker was coloured red only 

when it was coherent. After each trial (total of 6) participants were asked to say 

how many walkers they saw in the indicated direction. There were two 

possibilities at this stage – the proportions were either 50% or 80% for one of the 

directions. If participants performed at around 65% accuracy or above, then they 

moved to the second training block, where the coherent walker was not 

coloured. In other words, it was identical to the experimental paradigm. If on 

average they performed with 65% accuracy or above across both training blocks, 

they were included in the experiment.  

5.3.3 Procedure 

Participants were seated at ~ 75cm from the screen. They then filled in a brief 

form about demographics and the AQ questionnaire. During each trial, 

participants saw a flickering cloud of dots (at F1) and at specific time points (at 

F2) some of the dots formed the shape of a human figure – a point-light display. 

Participants were asked to mentally count the number of displays that show a 

person walking to the right or left. At the end of each trial, they were asked to 

manually input their response. The times of input were not restricted, and 

participants were encouraged to take a break to rest their eyes during this time, 

to avoid aftereffects. There were two blocks: the experimental block with the 

upright PLDs and a control block with the inverted PLDs. Before the beginning of 

the experiment, participants took part in the training procedure as described 

above. The EEG was fitted to the participants only if they passed the 65% 

training criterion. To maintain the training effects, all participants performed 

the experimental block first.  

5.3.4 EEG data acquisition 

Continuous EEG was acquired with a 64-channel ActiveTwo system (Biosemi). In 

addition to the EEG set-up, additional electrodes were placed around the eyes 

and on the face over facial muscles (measuring electromyography). Electrodes 

were placed according to the international 10/10 system. The vertical and 

horizontal electrooculogram were recorded by electrodes around the right eye 

and at the temples. An active and a passive electrode (CMS, and DRL, 
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respectively) were used as a reference. Data were sampled at 512Hz for all 

participants. 

5.3.5 Analysis procedure 

5.3.5.1 EEG data analysis. 

Data pre-processing was performed using EEGLAB toolbox in MATLAB. Each 

block/condition was pre-processed separately. The pre-processing steps do not 

differ between the two conditions. 

Participant data pre-processing. Data were initially referenced to the central 

channel – Cz, high pass filtered at 0.4Hz, the European power frequency and its 

harmonics were removed [50 & 100 Hz], and the mean of the channels was 

removed. Next noisy channels were identified through visual inspection and were 

replaced with spherical spline interpolation. Initial data cleaning was performed 

through independent components analysis and the number of components was 

reduced to 30 using principal components. Components representing blink and 

muscle artefacts were identified and removed – average removed components: 

15.3 (SD = 4.76; range: 10 – 23). The large number of components being removed 

was caused by participant 2 having a very noisy data as evidenced in Table 14. 

After the identified components were removed, data were re-referenced to the 

average of all channels.  

Next, automated data cleaning was performed based on the procedures reported 

by Coll et al. (2020) and Gordon et al. (2017; 2019). Cycles of the biological 

motion were considered noisy when 2% or more of the sample points were noisy. 

If a cycle was termed noisy, the cycle was replaced on each channel with the 

average signal for that trial. If more than 10% of the cycles in a channel were 

considered noisy, the channel was replaced with spherical spline interpolation. 

Individual trials were excluded if more than 10% of cycles in a trial were termed 

noisy after interpolation. Due to the small number of participants, none were 

excluded based on number of excluded trials (reported in the Results section).  

Spectral analysis. This analysis was done only on the electrodes under 

consideration described below. Firstly, the last few milliseconds of the trials 

were removed to leave trials of equal length - ~44.998s. Power-spectra was 
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extracted at the tagging frequencies - F1 and F2, their first harmonics - 2F1 and 

2F2, and for their second order IMs – F1 + F2 and F2 - F1. This was achieved by 

applying the Fast Fourier Transform (FFT) over the predefined period of the trial 

with zero padding to 45ms to allow for a frequency resolution of ~0.022Hz. We 

implemented a multitaper frequency transformation with a single Hanning taper. 

Frequency band of interests were set between 0.3Hz and 23Hz. Signal-to-noise 

ratio (SNR) was calculated by dividing the amplitude at each frequency by the 

mean amplitude of 10 neighbouring frequencies (five on each side). 

Channels under consideration.  

In previous studies, the FFT and the SNR ratio calculation was performed over all 

of the electrodes in one of the studies (Gordon, Tsuchiya, et al., 2019) and on a 

set of 30 of the 64 electrodes in the following studies (Coll et al., 2020; Gordon 

et al., 2017) - centroparietal, temporo-parietal, parietal, parieto-occipital and 

occipital electrodes CPz, CP1, CP2, CP3, CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, 

P6, P7, P8, POz, PO3, PO4, PO5, PO6, PO7, PO8, Oz, O1, O2, T7, T8, TP7, TP8. 

Thus, these electrodes were used for the analysis. 

Further, biological motion perception has been localised to the parietal and 

temporal regions. Specifically, a network has been identified that involves F7, 

P3 and Pz (Fraiman et al., 2014). These electrodes were able to differentiate 

between biological motion and scrambled motion and clustered together in a 

functional network. Hence, we also looked at F7 as it showed the fastest 

response to the biological motion in Fraiman et al.’s study (2014). Further, since 

biological motion observation is observed in the supplementary motor system, 

electrodes Cz, C3 and C4 were also included (Ulloa & Pineda, 2007). These 

electrodes have also been examined in autism as examples of the mirror neuron 

system (Todorova et al., 2019). As the SSVEP is supposed to invoke lower-level 

visual activation, we expect the occipital electrodes to capture SSVEP signal, 

whereas SWIFT has been originally observed over central electrodes, and any 

effects would therefore be more prominent there (Koenig-Robert & VanRullen, 

2013). 
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5.3.5.2 Analysis 

In the original analysis plan, an LME model with expectation, attention, AQ and 

the combinations of two-way and three-way interactions was going to be 

included as fixed effects. Random effects were going to include a random 

intercept for frequency nested within channels nested within participants and 

random expectation, attention and interaction slopes for each participant. 

However, since we only have three participants, results are interpreted 

descriptively.  

The performance was only considered for trials in which participants showed 

more than 50% accuracy. This cut off affected mostly P3’s data, where the 

SSVEP and SWIFT signals were not artificially pulled down/up by bad 

performance. In the control condition, since the walkers were inverted, the 

accuracy of the participants was meaningless as the assumption was that the 

inversion would interfere with the perception of a coherent walker. 

Nevertheless, P1 shows a higher accuracy than the other two participants. This 

indicates that they might have been able to detect the inverted movement of 

the PLD or used motion cues to infer direction. 

The predictability factor was calculated based on the left walking direction of 

the PLD – i.e., if 90% of the stimuli were right walkers, then 10% were left 

walkers. The attention factor was determined in a similar manner – if 

participants were instructed to count the left walker, then stimuli were 

attended, if they were instructed to count the right walker, they were 

unattended.  

MSPCstim and MSPCres analysis for the 2nd order IM components was performed 

on a within-trial level using an adapted code provided by Noam Gordon. Each 

trial was trimmed to 45s and was divided into 15s epochs, with 1s steps. Phase 

angle differences were calculated between the phase of the IM components 

(4.333 and 5.6667) and the phase of the input frequencies (SWIFT and SSVEP), to 

extract MSPCstim. Phase angle differences were also calculated between the IM 

components’ phase and the phase of the FFT output for the input frequencies to 

extract MSPCres.  



Chapter 5  168 
 

 

For the MSPC analysis, following the procedure in Gordon, Tsuchiya et al. (2019) 

and Coll et al. (2020), we calculated a new attention factor. The factor recoded 

the trials into attended trials - when the walking direction that was counted 

(attended) was the one presented more than 60% of the time, and unattended 

trials, where the walking direction that was counted (attended), was not the one 

that was presented more than 60% of the time. The trials when the left/right 

walking distribution was 50% were excluded.  

As only a descriptive analysis is performed here, all graphs represent the average 

scores for the averaged regions of interest.  

 Results and Discussion 

EEG data quality for all participants for each condition is presented in Table 14. 

Overall, data loss was minimal, except for P2 in the control condition, where 

most of the trials were lost.  

Table 14. Participant EEG quality characteristics 

Participant 
Experimental condition Control condition 

Noisy 
cycle (%) 

Noisy 
channel (N) 

Noisy trials 
(N) 

Noisy 
cycle (%) 

Noisy 
channel (N) 

Noisy trials 
(N) 

P1 0.65 5 0 1.89 4 3  
P2 4.54 5 6 10.65 5 21 
P3 3.13 2 0 3.13 2 1 

5.4.1 Brain activity entrainment 

After cleaning we verified that the frequency-tagging procedure was able to 

entrain the EEG brain activity. Figure 16 shows the result from the FFT averaged 

over the channels of interest and all the trials for each participant. Peaks can be 

seen at the two tagging frequencies – F1 = 5Hz (SSVEP) and F2 = 0.6667Hz 

(SWIFT). A distinguishable peak is also observed at the SWIFT harmonic at 2F2 = 

1.3333Hz. A peak at the SSVEP harmonic at 10Hz was only observable in P2. The 

IMs, however, are not distinguishable from the surrounding frequencies. For the 

IMs, only the SSVEP-SWIFT(4.3333Hz) combination shows a peak, however, that 

peak is not clearly distinguishable from the surrounding frequencies. For 

completeness, the observations will be reported for the IMs as the small peak at 

SSVEP-SWIFT, could become more pronounced in a larger sample, where the 

noise between participants is averaged out. Nevertheless, these observations 

need to be viewed with extreme caution.  
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Figure 16. Frequency spectrum of the experimental condition for the SNR Amplitude for 
each participant. 

Note: the SWIFT and its harmonic are presented in red, the SSVEP and its harmonic are 
shown in blue; the two IMs are shown in green. 

In the control condition the SSVEP is clearly observable at 5Hz, however we 

cannot see any distinguishable peaks at the SWIFT tagging frequency – F2 = 

0.6667Hz. Again, only P2 shows a strong SSVEP harmonic at 10Hz. 
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Figure 17. Frequency spectrum of the control condition for the SNR amplitude for each 
participant. 

 

Note: The location of the SWIFT frequency and its harmonic are marked in red, the SSVEP 
and its harmonic are shown in blue; the two IMs are shown in green. 

5.4.2 Experimental condition 

As seen in Figure 18, the SNR for the SWIFT frequency does not show a trend in 

either direction in the combined plot. This is probably due to the opposing 

trends between participants with a shallow decrease in the signal for P1 and P3 

and a shallow increase for P2. For the SWIFT harmonic, P1 shows a decrease in 

the SNR as predictability increases, whereas P2 and P3 show an increase. The 

SNR for the SSVEP frequency is showing an increase with predictability for P1 

and P3, however, this trend is stronger in P1 than P3. P2 on the other hand, does 

not show a distinguishable pattern in the SSVEP with an increase in 

predictability. The SSVEP harmonic was not evident in P1 and P3 in the spectral 

analysis (see Figure 16). This is also evident in the size of the SNR for these 
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participants in comparison to P2. Nevertheless, an increase in the SNR with an 

increase in predictability is evident in 2/3 participants to various degrees. 

Further, looking at the SNR plots, there is a stronger pattern in one of the IMs 

(SWIFT - SSVEP) where P2 and P3 show an increase in SNR as opposed to P1. In 

the second IM (SWIFT + SSVEP), P1 and P3 show an increase in the SNR. It is 

noteworthy that in the spectral analysis only the SWIFT – SSVEP IM produced a 

peak at the expected frequency, although the SNR was not distinguishable from 

surrounding variability, thus the effects in the IM should be interpreted with 

caution.  

Figure 18. SNR change with predictability level for each participant and their combination. 

 

These results correspond to the original findings by Gordon et al. (2017) and Coll 

et al. (2020) to a small degree. The shallow increase in the SNR with the 

increase in predictability in the SSVEP signal was also evident in the figures from 

both papers (Coll et al., 2020; Gordon et al., 2017). In relation to the SWIFT, 

two of the participants show a small decrease in the SNR for the SWIFT-like 

signal and two of the participants show an increase in one of the IMs. Similarly, 

we see a decrease in the SWIFT signal in the original paper by Gordon et al. 

(2017), but not in Coll et al. (2020). Thus, it could be said that the SWIFT signal 

is in line with the original findings to an extent. The SWIFT harmonic, however, 

shows a slight increase in the SNR with an increase in predictability. This is 

opposite to previous findings. These discrepancies could be one of the reasons 
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why Coll et al. (2020) was not able to find an effect at the SWIFT frequency – 

i.e., a cancellation of the effects between the original frequency and its 

harmonic. Moreover, the slopes are shallower than those in the SSVEP, hence, 

the effects might be very small and sensitive to the stimuli used/participant 

variability.  

From the point of view of the IMs, a peak was found at the predicted combined 

driving frequency SSVEP-SWIFT, but not SSVEP+SWIFT. Its overall pattern of an 

increase in the SNR with an increase in predictability follows the findings from 

Gordon et al. (2017) and Gordon, Tsuchiya, et al. (2019) and Coll et al. (2020). 

This suggests that with the increase in predictability there was an increase in 

the integration of the top-down and bottom-up signal (Gordon et al., 2017). It is 

noteworthy that the previous studies looked at the 2nd and 3rd order IMs and we 

only looked at the 2nd order components, as no consistent peaks were observed 

between participants in the rest. Furthermore, we also did not observe a strong 

signal for the IMs, especially for the SSVEP+SWIFT IM. We also saw substantial 

variability between the three participants. Thus, these effects are more likely to 

be evident within a larger sample. 

5.4.2.1 Effect of attention and predictability 

We also wanted to see how the effects of attention affect the SNR. Thus, the 

trials were separated into attended and unattended with respect to the leftward 

walking PLD. In Figure 19Error! Reference source not found., we can see that 

attention plays a small part in differentiating any effects. The effect at the 

SWIFT frequency seems to suggest that attention leads to a decrease of the 

SWIFT signal, whereas inattention leads to an increase in the SNR with an 

increase in predictability. The SNR at the SWIFT harmonic shows an increase 

regardless of attention level. This difference between the two frequency graphs 

appears to be driven by one very high value by P2. If we consider the SWIFT 

signal as an indicator of top-down processing (Gordon et al., 2017), then the 

decrease in the SNR for attended stimuli with an increase in predictability would 

be indicative of better processing, and reduced activity for stimuli that fit with 

the prediction. On the other hand, the increase in the SNR for unattended 

stimuli could be indicative of an increase in top-down control as the individual 
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must actively disregard the expectation of the more often repeating stimulus to 

perform the task at the attended stimulus. 

Figure 19. SNR change with predictability and attention level for each participant and their 
combination 

 

With respect to the SSVEP, the SNR is larger at the attended level than at the 

unattended. This is driven by participants P1 and P3. The SSVEP harmonic shows 

a different pattern in all three participants. However, the signal strength was 

only easily detectable in P2 (see Figure 16). It is possible that the extra 

processes evoked by the counting could have inadvertently contributed to the 

larger SNR in the attended images. However, as the SSVEP is argued to reflect 

bottom-up processing, which would not depend on higher process (Gordon et al., 

2017; Gordon, Tsuchiya, et al., 2019), neither expectation nor attention should 

affect the signal as the flicker of the dots is not dependent on either. 

Finally, observing the interaction between expectation and attention at one of 

the IM components (SSVEP-SWIFT), an increase in the SNR with an increase in 

predictability was present regardless of attention. For the SSVEP + SWIFT IM, this 

was only present in P2. Further, the SNR of the IMs is much lower in comparison 

to the major frequencies and their harmonics. However, the size of the SNR for 

the IMs was also substantially smaller in the original studies by Gordon et al. 

(2017) and Coll et al. (2020). Thus, any effects would be difficult to distinguish 

within a small number of participants. The original research did not explore the 
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effects of attention on the SNR; therefore, we cannot make a direct comparison 

here. 

5.4.2.2 MSPC analysis 

Moving to the MSPC analysis, we see that the low SNR of the IMs leads to some 

contradictory findings. As seen in Figure 20 the MSPCstim did not show an effect 

of attention. The results for the MSPCstim of SSVEP - SWIFT IM for P1 and P2 

attended and unattended trials showed a decrease in MSRCstim with increase of 

proportion of stimuli per trial and P3 showed an increase for unattended and 

decrease for attended trials. All three participants also showed a decrease in 

MSPCstim with increase in proportion of stimuli per trial. Thus, overall results 

appear to show the opposite effect in comparison to Gordon, Tsuchiya et al.’s 

(2019) and Coll et al.’s (2020) findings. Whereas their data shows an increase in 

the MSPCStim with repetition, the present results show a decrease in MSPCStim. 

The results for the MSPCstim of SSVEP + SWIFT IM however appear to show 

results similar to the results by Gordon, Tsuchiya et al. (2019) and Coll et al. 

(2020). Despite this, since the SSVEP + SWIFT frequency was not distinguishable 

from the surrounding frequencies in the spectral analysis shown in Figure 16, any 

interpretation of this result should be done with caution.  
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Figure 20. MSPCstim for each 2nd order IM for each participant and overall. 

Note: A: Change in MSPCstim values with increase of the proportion of all stimuli in a trial 
each attention level (0.6 – 60% of PLDs in the trial; for the claculation refer back to Section 
5.3.5.2); B: Difference in MSPCstim between the two attention levels. 

Similarly, the MSPCres, also does not appear to show a large distinction between 

attended and unattended trials (see Figure 21). In fact, the results mirror those 

from the MSPCstim. The only difference appears to be that the MSPCres is 

overall lower than MSPCstim. Further, the effects appear opposite to the ones 

found in both Gordon, Tsuchiya et al. (2019)and Coll et al. (2020). In all 

participants, attended trials were more likely to lead to a decrease in spectral 

coherence with the increase of the proportion of attended stimuli per trial. The 

same was true for unattended trials, however with a less steep slope. The 

MSPCres for the SSVEP+SWIFT IM showed an increase for unattended trials.  
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Figure 21. MSPCres for each 2nd order IM for each participant and overall.  

 
Note: A: Change in MSPCres values with increase of the proportion of all stimuli in a trial 
each attention level (0.6 – 60% of PLDs in the trial; for the claculation refer back to Section 
5.3.5.2); B: Difference in MSPCres between the two attention levels. 

5.4.3 Control condition 

In the control condition, the signal appears flat for most of the observed 

frequencies (see Figure 22). As P2 had a large number of removed trials in this 

condition, their results are difficult to interpret. The SWIFT driven SNR, as well 

as the SWIFT harmonic, appear to show an increase with predictability. This 

could be due to the fact that P1 showed a high accuracy within the control 

condition, although there was not a visible indication of high SNR for the SWIFT 

frequency (see Figure 17). Nevertheless, the SWIFT signal is lower than that in 

the experimental condition. Importantly, the SSVEP which is only connected to 

the flicker of the stimuli shows a large SNR, despite the opposing effects in P1 

and P2. However, the overall effect appears to lead to a decrease of SNR with 

predictability, driven by P1. On the other hand, P3 still shows an increase with 

predictability. As in the experimental condition, only P2 showed a large SNR for 

the second SSVEP harmonic, which is evident in the lower SNR for the other 

participants. The SNR for the IM components also appears flat, except the 

SSVEP+SWIFT IM, which shows a shallow increase in SNR with an increase in 

predictability. As expected, neither of these frequencies appeared on the 

frequency spectrum as seen in Figure 17. However, these small effects in the 
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linear combinations suggest that the modulation of predictability can influence 

the overall signal, not only at the tagging frequencies. 

Figure 22. SNR change of predictability level. 

 

5.4.3.1 Effect of attention and predictability 

The additional separation by attention levels in Figure 23 does not provide any 

further insight into the performance. This is expected since the stimulus was not 

supposed to be interpretable. The most distinguishable differences are seen in 

the SSVEP SNR. Unlike the experimental condition, attended stimuli led to lower 

overall SNR, except in P3 for the SSVEP harmonic. The reduction in the SNR with 

increase in predictability for the attended trials in P1 is interesting, as they 

showed high accuracy in the control condition, despite the inverted stimulus, 

and the direction with increase in predictability is in the opposite direction from 

the experimental condition. Thus, it is possible that attention does not play a 

highlighting role and increase the SSVEP SNR as we suggested in the previous 

section.  
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Figure 23. SNR change with predictability and attention level for participant 1 and 3 and 
their combination 

 

5.4.3.2 MSPC analysis 

If the MSPC components reflect the integration of information at the different 

levels of the hierarchy, we should not observe any effects, in the control 

condition. This, however, does not appear to be the case. Looking at the 

MSPCstim in Figure 24, the effects do not appear to differ much from the ones in 

the experimental condition, although, the overall MSPCstim is lower. The main 

difference is seen in P3, where attended stimuli lead to an increase in phase 

coherence with the increase in the proportion of attended stimuli per trial, for 

the SSVEP-SWIFT. This was in the opposite direction for the experimental 

condition.  
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Figure 24. MSPCstim for the 2nd order IMs for each participant and overall.  

 
Note: A: Change in MSPCstim values with increase of the proportion of all stimuli in a trial 
each attention level (0.6 – 60% of PLDs in the trial; for the claculation refer back to Section 
5.3.5.2); B: Difference in MSPCstim between the two attention levels. 

With respect to MSPCres, similar to the experimental condition, the overall 

strength of MSPCres is lower than that for MSPCstim (see Figure 25). MSPCres for 

the SSVEP-SWIFT frequency shows a similar but less negative relationship 

between MSPCres strength and predictability for both attention conditions in 

comparison to the experimental condition. Additionally, unlike in the 

experimental condition, P3 shows an increase in MSPCres with increase or 

predictability for attended trial. For the SSVEP+SWIFT IM, there is an overall 

increase in the MSPCres for attended trials with the increase in the proportion of 

attended stimuli and a decrease for unattended trials. This is however largely 

driven by the P3. In comparison, in the experimental condition we observed a 

general increase for both attention conditions in P1 and P3. 
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Figure 25. MSPCres for the 2nd order IMs for each participant and overall.  

 
Note: A: Change in MSPCres values with increase of the proportion of all stimuli in a trial 
each attention level (0.6 – 60% of PLDs in the trial; for the claculation refer back to Section 
5.3.5.2); B: Difference in MSPCres between the two attention levels. 

 Discussion 

In this proof-of-concept experiment, we aimed to determine 1) whether the 

effects that are observed in the original studies would be replicated, , 2) 

whether the effects are specific to the modulation of the paradigm by the 

inclusion of a control condition and 3) whether the HFT paradigm could be 

applied to dynamic stimuli like a PLD walker.  

As evident by the SNR results for predictability and the interaction with 

attention, we see that the effects observed in earlier papers are present to 

similar degrees in our data. Examining the interaction with attention, we can 

also see that attention overall increased the SNR for the SWIFT and SSVEEP 

frequencies and their harmonics. However, the difference is much smaller 

between the attention levels for the IM components. Nevertheless, these effects 

are certainly encouraging for the use of dynamic stimuli in an HFT paradigm. 

However, the absence of distinguishable IM components is worrying. This is 

especially important considering the controversial findings from the MSPC 

analysis in comparison to the observed trends in previous studies and could 

indicate a problem with the present paradigm, a difference due to the dynamic 
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nature of the stimuli or a lack of specificity of the MSPCstim and the MSPCres. As 

the effects of the SNR analysis appear to follow the earlier findings, it is unlikely 

that the paradigm itself is the cause of this observation. Thus, further research 

into the validity of MSPC analysis is necessary. 

Moving on to the MSPC analysis, as a reminder, the MSPC metrics aim to 

represent the integration of bottom-up and top-down information at a lower-

level (MSPCstim) and a higher-level (MSPCres) of the processing hierarchy. In our 

results, we observe opposing patterns in the participants that do not coincide 

with the original findings. For MSPCres and MSPCstim, in the experimental 

condition all participants show a decrease in coherence with increase in 

predictability for the attended trials which is opposite to the patterns observed 

in Coll et al. (2020) and Gordon, Tsuchiya et al. (2019). For unattended trials, 

there was also a reduction in MSPCres with an increase in the proportion of 

attended stimuli , which was in accordance with the earlier findings. Thus, the 

lack of substantial overlap in the experimental condition and the original 

research findings from Gordon, Tsuchiya et al. (2019) leave the use of MSPC as 

an open question. 

So far, we have discussed the effects observed in the experimental condition. 

However, the mark of a well-working paradigm is its specificity and previous 

research has not included a control condition. Thus, it was necessary to 

investigate if the effects are due to the modulation of attention and prediction, 

or whether the effects would be observed even in the event of no global 

stimulus to drive the SWIFT frequency. When examining the effect of 

predictability in the control condition, the SNR is very weak for the SWIFT and 

the IMs and mostly flat. The strength of the SSVEP, however, stands out. Thus, in 

the absence of a global, contextual modulation, the SSVEP, which is driven only 

by the luminance properties of the dots is still present in the signal. This is an 

indication that the SSVEP is indeed capturing low-level information. The effects 

of attention are difficult to interpret in a meaningful manner. Although P1, 

shows some interaction between predictability and attention, this could be 

related to their ability to detect the direction of walking of the inverted 

stimulus. However, the minimal differences in the rest of the conditions and 

participants are expected. This is because the task – i.e., count a specific PLD 

walking direction, was not meaningful under the assumption that they were not 
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able to detect the PLD. So far, the experimental modulation appears to show 

good specificity. 

Looking at the MSPC results, P3 shows an increase in MSPCres with an increase in 

predictability of the attended targets. Although this is in-line with the original 

findings, the fact that the consistency comes from the control condition where 

the SWIFT was not detected, indicates, that the MSPC analysis may not be 

specific to the existence of the signal integration at the levels of the hierarchy 

suggested by Gordon, Hohwy et al. (2019). Similar to the experimental 

condition, for unattended trials, there was also a reduction in MSPCres with an 

increase in the proportion of attended stimuli. It is important to note that both 

the MSPCstim and the MSPCres are generally weaker in the control condition in 

comparison to the experimental condition. Since Gordon, Hohwy et al. (2019), 

implicated MSPCstim as an indication of the online integration of information 

from top-down predictions and bottom-up sensory evidence, whereas the 

MSPCres as an indication of integration at higher levels of the hierarchy, this 

finding suggests that since there are no IM components in the control condition, 

any MSPC effects will also not be visible to the same extent as when the IM is 

present, as there is not integration occurring. 

Our findings are interesting for two reasons. Firstly, they show that with the 

absence of a contextually interpreted global stimulus which the SWIFT is 

tagging, the SNR values for the IMs and the strength of the MSPCres and 

MSPCstim are reduced. Thus, this validates the role of the SWIFT modulation of 

the signals with the use of a dynamic stimulus, and further for the static stimuli 

part of Gordon et al. (2017; 2019) and Coll et al. (2020). Secondly, these findings 

suggest that the MSPCres and MSPCstim tend to show effects over the IMs 

despite the absence of an effect in the IMs themselves in the control condition. 

This brings into question the specificity of the two measures. If there are no 

effects in the IMs, then we should not expect the MSPC components to indicate 

effects in the control condition. Moreover, the absence of overlap between our 

and the earlier published findings in the MSPC analysis further suggests that the 

effects might be specific to static stimuli, or to the use of faces/houses. Thus, 

the MSPC measure may not be able to extend to the overarching interpretation 

of representing the effects of bottom-up and top-down integration in the brain 

as suggested by Gordon, Hohwy et al. (2019). 
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These interpretations come with several caveats. Firstly, we have only three 

participants, on whom we are basing these conclusions, and the dataset for one 

was very noisy. It is possible, that these participants would be outliers in a 

larger sample. Therefore, these results need to be further expanded upon with a 

larger sample. Secondly, the use of a dynamic, as opposed to static stimuli could 

have introduced an additional component into the task. For example, the 

present task was more difficult than the tasks used by Gordon et al. (2017; 2019) 

and Coll et al. (2020), with participants needing to incorporate several moving 

targets into a whole and separate them from the moving noise in the 

background. Thus, task demands might be masking some of the effects, 

particularly in the MSPC measure. Furthermore, the original paradigm utilises a 

sine wave whereas we utilised a wave with a plateau. This was driven by the 

nature of the stimuli - a dynamic stimulus would require more than one frame to 

be interpreted. Thus, the IMs that we chose to look at, might not represent the 

most appropriate combination of the two tagging frequencies. However, when 

observing the frequency spectrum graphs of all frequencies no other prominent 

frequencies are present. In our ‘Frames’ pilot we discovered that individuals 

were better at detecting biological motion with fewer frames, thus using fewer 

frames might be a reasonable step forward. However, participants’ performance 

was very variable and thus, a reliable choice of frames would be difficult to 

make without a larger sample. 

Nevertheless, the HFT paradigm gives the potential opportunity to investigate 

how the integration of bottom-up and top-down information occurs in individuals 

who have been diagnosed with autism and those with high amounts of autistic 

traits. This would allow finding evidence to provide support for or against the 

HIPPEA theory and other predictive coding models of autism. The recent findings 

by Coll et al. (2020) are an indication of the potential explanatory power that 

this type of paradigm could have in elucidating the effects of autism. They found 

that the MSPCres strength was influenced by attention, expectation and autistic 

traits. Whereas differences were not seen for the attended images, a significant 

effect was seen for unattended images. Specifically, individuals with higher 

autistic traits showed a negative slope in the unattended images whereas the 

rest of the participants showed a positive one. Surprisingly, however, the 

individuals with low autistic traits showed a positive MSPCres slope with 
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increased predictability for unattended images. These MSPCres findings are 

surprising as the individuals with low AQ seem to show the opposite effects to 

the two experiments in the original work by Gordon et al. (2019), where typical 

individuals show a negative slope indicating reduced integration at higher levels 

for unattended images. These results are difficult to interpret, especially in light 

of the non-replicated effect of the SWIFT in the study by Coll et al. (2020).  

The differences in findings between the current study and within previous 

research, necessitate further investigation to elucidate if the same results could 

be found in experiments with different paradigms, such as the one presented 

here. However, before continuing forward, further work needs to be done to 

clarify the specificity of the MSPCstim and MSPCres and their relationship to the 

SWIFT and the SSVEP and the proposed underlying mental processes. For 

example, predictability is confounded with repetition, as with higher 

predictability inevitably one of the stimuli would be repeated several times in a 

row. This could then lead to effects of repetition suppression in the brain which 

might obscure the effects of predictability. Thus, it might be necessary to 

consider an alternative modulation of predictability.  

The HFT paradigm is in its infancy and the division of the MSPC measure into 

stimulus-driven and response-driven has been used in only two studies so far 

with slightly contradictory findings (Coll et al., 2020; Gordon, Tsuchiya, et al., 

2019). The novelty and the potential explanatory power of a paradigm that 

claims to separate the effects of attention and expectation and to investigate 

the integration of bottom-up and top-down information necessitates extensive 

research to determine its validity. Moving forward, our results and the results by 

Coll et al. (2020) need to be confirmed and replicated to provide a clearer 

picture of the present observations. Most importantly, however, is our 

recommendation for future studies to include control conditions to allow them 

to make less equivocal conclusions about the results they are observing. 

Overall, the HFT paradigm has good potential for observing the effects of 

attention and prediction in the brain. Moreover, here we show that using a 

dynamic stimulus is possible and that it can achieve similar results in the main 

parts of the paradigm. Thus, this type of paradigm could be used in future work 

to allow the investigation of the combination of bottom-up and top-down signals 
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in a dynamic context with the investigation of autistic traits and autistic 

individuals.  
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 General Discussion 

This thesis investigated whether the main component of the HIPPEA theory (Van 

de Cruys et al., 2014, 2017) – namely, the invariably high precision setting of 

prediction errors - is a characteristic seen in autistic individuals’ performance in 

motion and biological motion tasks. We investigated this phenomenon under 

different attentional conditions, since attention is considered to be the 

mechanism through which precision is estimated (Feldman & Friston, 2010). In 

this thesis, we used different experimental set-ups to directly assess the 

interplay between attention and response of autistic individuals or individuals 

with high autistic traits with respect to prediction errors as defined by 

unexpected events.  

The findings of this thesis build upon previous and ongoing research investigating 

the predictive coding perspective of autism and provide some clarity to the 

effects of attention and expectation. More broadly, we show that both autistic 

individuals and individuals with autistic traits can form expectations about the 

regularity of events. This is also true when the regularity is explicitly stated. 

Moreover, this ability does not appear to be affected by the use of social stimuli 

such as biological motion. However, the task is more difficult as would be 

expected from previous research in biological motion perception in autism. 

Additionally, we see that there is a special treatment of prediction errors in 

autistic individuals and those with higher autistic traits. These findings can help 

move research forward, by providing insight into the balance of the weighting of 

prediction and prediction error in autism. Specifically, it appears that although 

the use and development of predictions is not affected, prediction errors still 

receive special treatment. Thus, to be able to disentangle these effects, this 

thesis further provides a proof-of-concept study for an EEG paradigm that could 

allow the investigation of predictions and prediction errors in the brain and their 

interplay.  

 Summary of findings  

This section will present a summary of the findings of the discussed chapters and 

will show how each of the findings feed into each other to provide a coherent 
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understanding of the treatment of prediction errors in autism. A summary of 

findings can be seen in the flowchart presented in Figure 26 below. 
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 Figure 26. Schematic representation of the findings in this thesis. 

Note: PE – Prediction Error; BM – Biological motion, CM – Coherent Motion; HAT/LAT – High/Low Autistic Traits; HFT- Hierarchical Frequency Tagging 

•Attention is
exogenous for
Expected and
Unexpected targets

•ASD and NT show
motion masking

•Special treatment of
PE in RT

•Overall slower RT

Chapter 2: Apparent 
motion paradigm

•Autistic individuals
show general reduced
ability to perceive and
interpret biological
motion

•Adults show smallest
difference in
detection of BM

Chapter 3: Biological 
motion perception meta-

analysis
•HAT and LAT show equal
reliance on explicitly
created predictability

•Special treatment of
Unexpected Attended
targets in HAT

•Equivalent effects
between CM and BM but
slower in BM for HAT

Chapter 4: Modulating Attention 
& Expectation orthogonally in BM 

& CM paradigms

•Future research could
use HFT with BM to
disentangle the effect
of attention and
prediction in ASD at
the neural level

Chapter 5: Hierarchical 
frequency tagging paradigm
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In Chapter 2, we used an apparent motion paradigm to test the treatment of 

prediction errors in autistic individuals. As has been shown previously, 

neurotypical individuals tend to experience the flashing squares part of the 

paradigm as a single moving square (Alink et al., 2010; Sanders et al., 2012; 

Schwiedrzik et al., 2007). This percept is assumed to represent a top-down 

model of the brain. Thus, a stimulus that appears on the apparent motion trace, 

with its position consistent with the predicted position of the ‘moving’ square, 

would be more easily perceived because of the expectation of a moving stimulus 

in that location. On the other hand, if a stimulus appears outside of those 

parameters, it would be considered unpredictable – a prediction error - and it 

will be missed more often. We observed that both the NT and autistic 

participants detected fewer targets when the presentation timings of the top 

and bottom flashing stimuli conformed to an apparent motion presentation. At 

the same time, in both groups more participants detected a larger proportion of 

predictable than unpredictable targets. This further supports the hypothesis that 

autistic individuals are able to form and use predictions/top-down models (Van 

de Cruys et al., 2014) and is in opposition to theories suggesting the formation of 

weak or uninformative priors (Pellicano & Burr, 2012). We observe, however, 

that more ASD participants showed faster detection of unpredicted targets than 

NT participants. This falls under the hypothesised  higher weighting of prediction 

errors (Lawson et al., 2014; Palmer et al., 2017; Van de Cruys et al., 2014), as 

unpredictable events appear to exogenously attract attention to a larger extent. 

Although we were not able to recruit the full sample to allow us to say with 

certainty if prediction errors are treated differently, these findings are 

indicative of a difference in the way the autistic brain is treating unexpected 

events. 

As Chapter 2 suggests, the autistic brain appears to treat prediction errors 

differently, although this does not appear to be to the detriment of the 

established prediction. It is possible that motion perception is not ‘stressing’ the 

system enough for any effects to be visible and autistic individuals might be 

utilising alternative strategies to produce the same behavioural effects as 

neurotypicals. One way to increase the complexity of the task, without 

complicating the requirements for the participants is to use more complex 

stimuli such as biological motion. At the same time, we need to be sure that any 
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increase in complexity is not going to obscure the effects of interest. Thus, in 

Chapter 3 we conducted a meta-analysis looking at biological motion perception 

in autistic individuals (Todorova et al., 2019). We investigated different types of 

tasks such as biological motion detection, action perception and understanding, 

and emotion detection from point-light and full-light stimuli. We found that 

there was a consistent difference between NT and autistic groups in the 

accuracy of detection/interpretation of biological motion stimuli across all 

tasks. However, these differences were smaller in the simple detection and 

action perception tasks, whereas the emotion perception tasks proved to be the 

most difficult. Moreover, we observed an effect of age – with the increase in 

age, the difference between autistic and neurotypical individuals decreased. 

These findings then dictated the use of simple biological motion, whose 

interpretation would be less ambiguous in Chapter 4 and Chapter 5 – namely, a 

PLD kicker and a PLD walker, respectively.  

Carrying on from Chapter 2, and informed by the results of Chapter 3, in Chapter 

4 we used a modified Posner paradigm where we independently modulated 

predictability and attention based on the paradigm used by Kok, Rahnev et al. 

(2012). We explicitly instructed participants that in some blocks a target will 

appear on the left or right side of the screen 75% of the time, whereas in other 

blocks we told them that there is no expectation about where the target is going 

to appear. From Chapter 3 we know that simple biological motion stimuli should 

be easily perceived by autistic individuals despite still presenting difficulties. 

Thus, the attentional cue that we used was a PLD of a human performing a 

kicking motion. Chapter 4 also presented results from a second experiment, 

where the attentional cue was a circle of directionally moving dots, instead of 

the PLD. In this way, if the social component of the cue was obscuring any 

effects, we would be able to observe differences in the tasks. We also decided 

to recruit participants from the general population and use their autism quotient 

scores as continuous predictors and a proxy for the effects we would see in 

autistic individuals. This was done because this is a new paradigm set up, which 

would warrant first investigation in a neurotypical population. This also allowed 

us to increase participant numbers from online recruitment and avoid the 

lengthy period of recruitment experiences in Chapter 2.  
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Similar to the autistic individuals in Chapter 2, we saw that individuals with high 

AQ scores were able to use the statistical regularities of the environment – i.e., 

they were able to establish a predictive model that was beneficial for their 

performance. Additionally, as HIPPEA argued, we observed differences, albeit 

non-significant, in the processing of unpredictable cues specifically in the 

attended condition for individuals with high AQ scores. These results were 

similar to the descriptive findings in Chapter 2. The fact that this was true only 

for the attended, but not the unattended unexpected targets puts into question 

the inflexibility of the HIPPEA theory, but it is consistent with arguments about 

reduced attentional capacity in autism (Orekhova & Stroganova, 2014). We also 

descriptively observed weaker effects of attention with increase in AQ, which 

was evident when no expectation was set (None condition). This suggests that 

when the environment was volatile, higher AQ scores led to larger reliance on 

incoming sensory information. However, when an expectation was set, 

individuals with higher AQ did not disregard it and instead used it to produce 

similar performance gains as their lower AQ counterparts. Since we only looked 

at individuals with different AQ scores, these effects then could be more 

pronounced and/or qualitatively different in individuals who have been given an 

ASD diagnosis. This chapter emphasised the importance of investigating 

attention and predictability in the same paradigm when trying to understand the 

relevance of the predictive coding perspective in autism. 

The findings from Chapter 4 appear to contradict the ‘inflexibly high precision’ 

of prediction errors in autism as suggested by HIPPEA (Van de Cruys et al., 

2014), however they do correspond to an extent with the arguments from 

Palmer et al. (2017), who suggest that precision setting is context dependent in 

autism and could be related to the precision associated with volatile 

environments as argued by the aberrant precision model (Lawson et al., 2014). 

Thus, it appears that the interaction between the prediction error and the 

prediction is where the differences in the processing styles between autistic and 

non-autistic individuals lie. However, this difference would be difficult to 

investigate at a behavioural level and could be more evident in differences in 

the neural processing between the two groups. In fact, differences in processing 

networks that produce similar behavioural performance have been previously 

observed in autistic individuals (eg., McKay et al., 2012).  
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Following this, in Chapter 5 we proposed the use of a hierarchical frequency 

tagging (HFT) paradigm, which modulates attention and predictability, and 

investigates the interaction between the prediction error and the prediction at 

both a lower and higher-level of the neurocognitive hierarchy. We provide a 

proof-of-concept study of a modification of Gordon et al.’s (2019) task, where 

we used a PLD walker presented in noise that oscillated between a coherent and 

a scrambled state. We modulated predictability by varying the number of times 

the walker was walking to the left or right direction and we also modulated 

attention by asking participants to count only one of the walking directions. 

Although we only recruited three participants due to COVID-19 restrictions, we 

were able to show that this modification can elicit tagging of the low-level 

information – i.e., the dots forming the PLD - and the higher-level information- 

i.e., the coherent walker. We were also able to show that the effect of the 

higher-level tagging is specific to the participants being able to consciously 

perceive the walker, rather than an artefact of the oscillation of the stimuli. 

This type of paradigm could provide an opportunity to investigate their 

interaction in autism. However, the results from these participants do not allow 

us to fully replicate the effects of interaction between the lower-level and 

higher-level information by looking at the intermodulation components, which 

were found in previous studies (Gordon et al., 2017; Gordon, Tsuchiya, et al., 

2019). Thus, we hope that the development of this paradigm and its initial small 

test will serve as a guide to future research when trying to disentangle the 

effects of both attention and predictability in autism and when trying to 

characterise the differences in the interaction of prediction errors and the 

prediction between neurotypical and autistic individuals.  

Taken together, these studies help to improve our understanding of predictive 

processing in autism and lead to a clear conclusion and future directions. The 

precision-weighing in autism is aberrant in respect to prediction errors. 

However, this does not impede the use or the establishment of predictions in the 

form of statistical regularities in the environment. Instead, it could be the case 

that it is not a trade-off between the precision setting of the prediction error 

and the prediction, rather it is the new events that are particularly salient in 

contrast to the prediction. Moreover, attention appears to play a key role. 

However, this is only the case when expectation is already at play. Using an 
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experimental design like the HFT proposed in Chapter 5 could allow the 

disentanglement of where the differences occur between autistic and 

neurotypical individuals. 

 Implications for predictive coding theories in 
autism 

As stated above, precision setting of prediction errors in autism appears to be 

set differently compared to neurotypical individuals. This is in accordance with 

the HIPPEA theory and its main component of high of prediction errors. It 

appears, however, that the findings are unable to provide support for the 

inflexible part of the HIPPEA theory. This has been echoed by both Lawson et al. 

(2017) and Palmer et al. (2017). Learning at every instance caused by inflexibly 

high precision- of prediction errors will slow down the ability of individuals to 

use already established models. We see this slowing down in the reaction times 

in the BM experiment in Chapter 4 and in published research (eg., Lawson et al., 

2017). However, if the precision setting was inflexibly higher, we should observe 

faster or more accurate responses for unpredictable events regardless of 

attention levels. We see this descriptively in Chapter 2 where attention is 

exogenously captured by the targets themselves, as well as descriptively in 

Chapter 4, where attention is directed endogenously, and the targets themselves 

capture attention exogenously. However, in Chapter 4 we do not see faster 

responses for targets that are unexpected but also unattended. Hence, when 

both attention and prediction are in favour of a particular event, the prediction 

errors are weighted higher, but not when attention is allocated elsewhere. To 

further establish this link, rigorous controlling of attention and prediction needs 

to be adopted when researching the predictive coding perspective of autism.  

It could be argued that the link between attention and predictability is not 

entirely clear due to the descriptively observed IOR effect in the CM experiment 

presented in Chapter 4. However, we also observe that the effects of attention 

are not as large with the increase in AQ. This suggests that with the 

incorporation of expectation, which individuals with autism and high autistic 

traits are clearly able to rely on, attention provides an additional guiding 

mechanism that assists in dealing with information in the environment. Thus, the 

processing of attentional cues would be slowed down, minimising any IOR effect 
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for this population. This could lead to the attentional cue having a facilitatory 

effect when there is extra cognitive load added by the processing of the 

prediction. 

If matching the input to the prediction in autism is based on low-level 

information (Van de Cruys et al., 2014), this process will be more effortful than 

if the matching is done on an abstract level. The different effect cognitive load 

has in autistic in comparison to neurotypical performance has also been 

observed in eye-tracking and neuroimaging studies (Skripkauskaite et al., 2021; 

Wadhera & Kakkar, 2020). Hence it is possible that although predictions assist in 

behavioural performance, they increase the cognitive load for autistic 

individuals. It has also been shown that, in the presence of high perceptual load, 

perceptual sensitivity is reduced in NT individuals, but this reduction is smaller 

in autistic individuals (G. Murphy et al., 2016; Remington et al., 2012). Taking 

these two points together, it is possible that since autistic individuals are better 

at detecting information under larger perceptual load, the cognitive load added 

by the more effortful matching of incoming information to the prediction makes 

them more likely to detect unpredictable targets, but only when they are 

facilitated through attention. This could explain the effects of faster detection 

of unpredictable attended targets in both the CM and the BM experiments in 

Chapter 4. Thus, we see higher weighting of prediction errors, although this is 

only true in specific contexts, which might be dependent on the interplay 

between perceptual and cognitive load introduced in the paradigm (G. Murphy 

et al., 2016; Palmer et al., 2017). 

The discussion above, however, is speculative and it is unlikely to be resolved by 

adding more complexity to the tasks to increase the cognitive load for certain 

experimental paradigms. Instead, observing the interaction between prediction 

errors and predictions on a neural level is necessary. Paradigms and set-ups like 

the one proposed in Chapter 5 could allow us to develop a deeper understanding 

of what effects prediction and attention have on the autistic cognitive and 

perceptual processing pathways. More importantly, the proposed HFT paradigm 

does not rely on the coupling effect of attention and predictability. This is 

because attention is not driven by the task, and instead by the instructions to 

participants to count a certain stimulus. This could potentially go around the 
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questions asked in Chapter 4 of whether attention or prediction drives 

perceptions and behavioural responses.  

Additionally, paradigms that investigate the effects of attention and expectation 

at the auditory level could provide further insight into the interaction of 

prediction errors and the prediction. One example is the paradigm presented by 

Chennu et al. (2013) where participants were presented with auditory sequences 

with a) global standard with two deviant options - type varying sound in same 

ear, or same sound but in opposite ear and b) global standard containing a type 

variant with two deviant options - type varying sound in same ear that matched 

the standard sequence, or same type variant as in the global standard, but in 

opposite ear. In this task participants were asked to either count the rare 

sequences, the deviant tones, or to perform a demanding visual task. The 

authors then investigated the early activated MMN component, the later 

expectation modulated P300 and the contingent negative variation component in 

EEG measurement, which the authors argue indicates the consolidation of salient 

stimuli in consciousness. This paradigm, like the HFT paradigm discussed earlier, 

utilises attentional demands and predictive contingencies to investigate the 

interaction of the two factors in the brain. Hopefully, such paradigms will allow 

researchers to develop a better understanding of the interplay between 

attention and predictability in autism and by extension further test the 

assumption of high precision of prediction errors in autism. 

The predictive coding perspectives of autism provide a new avenue for 

researchers to attempt to understand autistic individuals’ experience. However, 

these theories are still in their infancy (see review by Cannon et al., 2021) and 

the role off attention is still not clear. Thus, it is important that research 

continues to allow for these theories to evolve.  

 Limitations and future directions 

The interpretations in this thesis come with several methodological and more 

general caveats. Firstly, sample sizes are small in this thesis. Chapter 2 provides 

a well-controlled paradigm, however, the study is not sufficiently powered. This 

is not to say that the descriptive findings are not without their merit as they 

present an effect that is also observed in Chapter 4 in respect to the detection 
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of unpredictable events. This makes the findings in Chapter 2 worth replicating 

with a larger sample. However, large samples of individuals diagnosed with 

autism are difficult to obtain, especially for smaller studies like the 

psychophysical ones reported here. In fact, most research in autism uses quite 

small samples (Simmons & Todorova, 2018; Todorova et al., 2019), which is due 

to the difficulty in recruiting participants, and finding matching controls. To 

remedy this, groups of several research labs doing the same study and pooling 

their small sample sizes could improve our understanding of the larger effects in 

autism and provide more rigorous results. As a first step, we are sharing the 

analysis and paradigm set up code, along with the majority of the raw data for 

the studies in Chapter 2 and Chapter 4 with the idea that other researchers will 

could collect more data to add to our understanding of precision setting in 

autism. 

Secondly, the proposed HFT paradigm in Chapter 5 contains only three 

participants, whose results could be outliers in a larger sample. This is further 

indicated by the complete opposite patterns found in the measures of MSPCstim 

and MSPCres – i.e., the two measures that would indicate the interaction of the 

low- and higher-level information in the brain. Nevertheless, we were able to 

replicate the low-level SSVEP and high-level SWIFT tagging in all participants, 

and there were indications of intermodulation components, which due to the 

small number of participants were too noisy to allow for firm conclusions. 

Intermodulation components usually show the smallest SNR (Gordon et al., 2017; 

Gordon, Tsuchiya, et al., 2019), therefore in larger samples where individual 

noise is cancelled out to an extent, these could be more prominent.  

Thirdly, in the experimental part of this PhD thesis, participants were always 

given the task to respond to a target. These active tasks will inevitably tunnel 

attention to ‘achieving’ the required goal (Van de Cruys et al., 2014). If autistic 

individuals are more sensitive to prediction errors, then being provided with a 

task that requires their attention but still leaves enough resources for external 

stimuli to break through would be the way to understand to what extent there is 

high weighting of prediction errors when the prediction errors are not something 

that individuals are actively searching for. In this way, a less relevant task, that 

is not passive but is also not goal-focused, alongside a less demanding goal-

focused task would be one way to investigate these phenomena. This is an 
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important distinction from a completely passive task, where there is no task 

given to the participant (eg., Goris et al., 2018). As discussed in Section 1.2.4.2, 

completely passive tasks show differences that are eliminated in active tasks 

(Dunn et al., 2008; Keehn et al., 2013), which could be caused by differences in 

spontaneous allocation of attention (Orekhova & Stroganova, 2014). Due to these 

potentially confounding factors, effects in fully passive tasks might be difficult 

to interpret.  

It is, however, difficult to study spontaneous attentional shifts without alerting 

the participant to the task. Potential candidate tasks are neuroimaging and eye-

tracking experiments, where the instructions follow the original set up in Kok, 

Rahnev et al. (2012). In their experiment participants were only instructed to 

respond to targets appearing on one side of the screen. Thus, looking at the 

neural activation in the brain to the different categories of stimuli 

(attended/unattended – as driven by the central cue, and predicted/unpredicted 

as driven by the block wise prediction), researchers could in theory observe 

what is the difference in the detection of attended and unattended 

unpredictable targets in autism and whether the differences lie only in the 

processing of events that fall under those attention/prediction categorisations. 

Fourth, as with all research on autism, the sample characteristics need to be 

considered (Simmons & Todorova, 2018; Todorova et al., 2019). In Chapter 2 we 

only recruited autistic males. Although this was done with the attempt to 

minimise heterogeneity, it is important for these results to be replicated and 

extended to female individuals. It is well known that there are not only 

differences in presentation of autism between males and females, but there are 

also differences in the their underlying neuroanatomy, which could lead to 

differences in perception and interaction with the environment (Antezana et al., 

2019; Cummings et al., 2020; Floris et al., 2021; Smith et al., 2019). Hence it 

would be unreasonable and a disservice to the autistic community if observations 

in males are directly extrapolated to females. 

In contrast, Chapter 4 used both male and female individuals. However, we 

relied on participants from the general population, and we used autistic traits as 

a proxy. Although autistic traits show a large spread in the general population 

(Ruzich et al., 2015) and can have a reasonable sensitivity and specificity in 
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respect to autism diagnoses (Brugha et al., 2020; Conner et al., 2019), the 

effects observed in these individuals will inevitably be smaller than those effects 

observed in autistic individuals. Thus, although we observe similar effects 

between the autistic participants in Chapter 2 and the participants with high 

autistic traits in Chapter 4, we should not extrapolate to autistic individuals 

directly, and instead the results should be replicated and extended in autistic 

individuals.  

 Conclusions 

The results presented in this thesis contribute several important findings in 

relation to the predictive coding theories of autism. Firstly, we found that 

autistic individuals are able to form predictions and are able to use explicitly 

stated statistical regularities of the environment to guide their behaviour. In this 

respect, our findings are not consistent with arguments of weak priors in autism 

(Pellicano & Burr, 2012). Secondly, we observe consistent findings of increased 

precision setting of prediction errors as defined by unexpected targets in our 

tasks. This is consistent with arguments about high precision of prediction errors 

as suggested by HIPPEA (Van de Cruys et al., 2014) and by the aberrant precision 

model (Lawson et al., 2014). 

However, despite HIPPEA arguing for inflexible precision setting, we do not see 

an inflexible high weighting of prediction errors, as unattended unpredictable 

targets in Chapter 4 were not detected faster by individuals with higher AQ 

scores. Thus, this part of the HIPPEA theory could not be corroborated. In 

addition, we also cannot corroborate Lawson et al.’s (2017) proposition about 

overestimation of volatility, which would lead to the higher precision of 

prediction errors. Although we speculate a larger reliance on sensory 

information in a volatile setting, the high precision setting of prediction errors is 

also evident in the stable environment (when expectation is set) in Chapter 4. 

To an extent, the findings from this thesis corroborate the contextual 

dependence of precision setting discussed by Palmer et al. (2017).  

Although this thesis had the goal to test whether precision to prediction errors is 

invariably high in autism, our findings did not fully support this hypothesis. 

However, the findings corroborated that in autism higher precision is given to 
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prediction errors in certain contexts, dependent on the task. Although these 

results need to be replicated in larger samples, the findings should be taken as 

evidence against the ‘I’ in the HIPPEA theory. Thus, it is worth reviewing the 

theory in terms of recent findings from this thesis and the general scientific 

community and to incorporate discussions from Palmer et al. (2017).
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Appendices 

Appendix A 

Below are the search strategies used for the extraction of the papers form the 

five electronic databases.  

MEDLINE. An example search strategy for MEDLINE® (1946 to November week 1 

2017 (OVID) is shown below:  

((autis* or asd or asperger* or "childhood schizophrenia" or kanner* or PDD-NOS 
or PDD* or "pervasive development* disorder*") and (PLD* or "biological motion" 
or "human motion" or "point-light display*" or "action observation*" or "action 
observation network*" or AON)).tw. limit 1 to english language  

WEB OF SCIENCE. In Web of Science the following search strategy was used: 

TS = (( autis* or asd or asperger* or "childhood schizophrenia" or kanner* or PDD-
NOS or PDD* or "pervasive development* disorder*") AND ( PLD* or "biological 
motion" or "human motion" or "point-light display*" or "action observation*" or 
"action observation network*" or AON ))  

Timespan: All years.  

Search language=English  

PsycINFO. The search strategy for PsycINFO (EBSCOhost) is shown below: 

TX ( autis* or asd or asperger* or "childhood schizophrenia" or kanner* or PDD-
NOS or PDD* or "pervasive development* disorder*") AND TX ( PLD* or 
"biological motion" or "human motion" or "point-light display*" or “action 
observation*” or “action observation network*” or AON ) TX (autis* or asd or 
asperger* or "childhood schizophrenia" or kanner) and (PLD* or "biological motion" 
or "human motion" or "point-light display*" or “action observation*” or “action 
observation network*” or AON) Limiters – English Search modes – 
Boolean/Phrase  
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Dissertations & Theses A&I (ProQuest) and Dissertations & Theses: UK & 

Ireland (ProQuest). The search strategy for Dissertations & Theses A&I 

(ProQuest) and Dissertations & Theses: UK & Ireland (ProQuest) is shown below. 

all((autis* OR asd OR asperger* OR "childhood schizophrenia" OR kanner* OR 
"pervasive development* disorder*" OR PDD-NOS OR PDD*) ) AND 
all(("biological motion" OR "human motion" OR PLD* OR "point-light display*" OR 
"action observation*" OR "action observation network*" OR AON)) AND 
la.exact("English") 

The number of extracted records from each database can be seen in the Table 

15 below in descending order.  

Table 15. Number of records extracted from each database. 

Database 
Records 
returned 
Search 1 

Records 
returned 
Search 2 

Web of Science  483 102 
PsycINFO (EBSCOhost)  163 1 
MEDLINE® (OVID)  115 19 
Dissertations & Theses A&I (ProQuest) 22 2 

Dissertations & Theses: UK & Ireland (ProQuest) 10 NA 
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Appendix B 

The strength of the body of evidence was assessed on both the study and review 

level using the Weight of Evidence approach developed by the EPPI-Centre 

(Gough, 2007) following the guidelines of Popay et al. (2006). On the study level 

this includes the following four criteria on which each study will be judged (see 

Table 16 below): 

 Weight of evidence A (WOA)– Trustworthiness [taken from the quality

assessment score, score obtained from quality assessment score ranges

from 0 – 1: 0 – 0.333 scored as low, 0.334 – 0.666 scored as medium, 0.667

– 1 scored as high]; For fMRI papers an assessment was done using relevant

criteria from the Standard Quality Assessment. Specifically, questions

related to analysis and results were excluded but the fMRI methodology

was assessed for robustness. This was done collaboratively by the authors.

 Weight of Evidence B (WOB) – appropriateness of the studies’ research

design in terms of the current research question. This reflects the quality

of the eligibility criteria. If the eligibility criteria were specific enough,

then all studies should contribute to the interpretation of the body of

evidence;

 Weight of Evidence C (WOC) – This refers to the focus of the studies and

whether their findings are generalizable to the question in hand;

 Weight of Evidence D (WOD) – This refers to the overall score for each

study, which is sum of the other three components. This is the score that

is given to each study in Table 16 and Table 17 in the main manuscript

referred to as WoE (Weight of evidence).

Results for the overall weight of evidence and the sub-sections are shown below 

in Table 17. 
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Table 16. Weightings for Weight of Evidence C 

Table 17. Weight of evidence average scores and standard deviation (SD) for each element. 

WoA WoB WoC WoD 

Average 2.963 3 2.454 8.417 

SD 0.191 0 0.354 0.398 

Criteria Weightings 
Rationale 

Sample 

3. (high) Fully describes sample (e.g., Diagnosis
criteria (ADOS, ADI-R, clinical diagnosis, 3Di),

Gender ratio, Age (mean, SD), FSIQ/VIQ/PIQ or
other intelligence measures (mean and SD), 

Presence or absence of additional diagnosis was 
specified (TD and ASD), specifies the 

characteristics that TD individuals were matched 
to ASD individuals) 

This will allow to 
determine how 

generalizable the 
findings are to a 
wider population 
of individuals on 

the autism 
spectrum 

2. (medium) Misses or not fully specifies one or
two of the above listed sample characteristics

(excluding diagnosis criteria as this was part of the 
eligibility criteria) 

1. (low) Misses more than two of the above listed
sample characteristics 

Task 

3. (high) Fully describes the paradigm used, the
procedure and the participants’ task during the

experiment; the procedure is 
randomised/counterbalanced 

This will allow us 
to judge specific 
characteristics of 

the task and 
whether they 
could have 

contributed to 
any of the 
findings 

2. (medium) Elements about the paradigm are
missing or participant’s task is not clearly stated. 

1. (low) The paradigm is poorly described;
participants’ task is not specified
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Appendix C 

An exploratory analysis was conducted on EEG studies to investigate the effect 

of the used frequency or measure to evaluate differences between ASD and NT 

individuals. The analysis showed that there was an overall effect of the type 

of frequency or measure used – F(3,25) = 3.1922, p = 0.0411397. If the frequency 

that was used was between 11-13 Hz, the estimated effect was very large – 

g = 2.452 [SE = 0.80788054, 95% CIs: 0.7883932 – 4.115708] t(25) =3.04, 

p = 0.00554], the effects were much smaller, but still large if the frequency was 

8-13Hz g = 0.8652822 [SE = 0.38671, 95% CIs: 0.0702849 – 1.6603794] t(25)

=2.248, p < 0.034115]. If the frequency was 8-10Hz, the effect went in the

opposite direction, with individuals with ASD showing larger but non-significant

mu-suppression (g = -0.4031 [SE = 0.5201185, 95% CIs: -1.474211 – 0.6648] t(25)

=-0.78, p = 0.445542]). Finally, if N100 was measured, the effects were very

small and non-significant (g = 0.2361 [SE = 0.9907878, 95%

CIs: -1.80447984 – 2.27605] t(25) =-0.24, p = 0.81361]). It is noteworthy that only

one study looked at frequency 8-10HZ10Hz, one study looked at 811-103Hz and

one study looked at N100. Thus, these results are unreliable, which can be seen

from the large standard errors and confidence intervals. No further analyses

were performed.
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Appendix D 

Biological motion 

Student sample 

In Table 18 are reported the data for the students. Variations between different 

conditions are small for accuracy indicating that individuals were able to 

perform the task. Additionally, reaction time appears faster for Expected targets 

in comparison to Unexpected targets. Further, Attended targets elicited shorter 

reaction times in comparison to unattended target. 

Table 18 Participant accuracy and median reaction time 

Attention 
congruency 

Prediction 
congruency 

Mean accuracy 
(SD) 

Median RT 
(MAD)* 

Attended 
Expected 0.916 (0.277) 0.515 (0.120) 

None 0.897 (0.304) 0.529 (0.127) 
Unexpected 0.861 (0.346) 0.534 (0.124) 

Unattended 
Expected 0.909 (0.288) 0.534 (0.125) 

None 0.890 (0.313) 0.533 (0.125) 
Unexpected 0.887 (0.317) 0.563 (0.145) 

Note: * MAD = Median absolute deviation. 

The overall results from the models are consistent with the overall effects 

described in the main text, with attention and Predictability being the only 

factors showing significant effects (see Table 19). 

Table 19. Model parameters for the student sample. 

Χ2 df p 
(Intercept) 939.614 1.000 <0.001* 
Attention 21.350 1.000 <0.001* 
Predictability 21.644 2.000 <0.001* 
AQ 3.568 1.000 0.059 
Attention X Predictability 4.238 2.000 0.120 
Attention x AQ 0.216 1.000 0.642 
Predictability x AQ 1.328 2.000 0.515 
Attention x Predictability x AQ 0.975 2.000 0.614 

Note: * indicate statistically significant effects. 

Like in the overall analysis, Attended targets were detected faster than 

Unattended targets – β = 0.059[SE=0.013, 0.034 - 0.083], z-ratio = 4.621, p < 

0.001. Additionally, Expected targets were detected faster than Unexpected 

targets - β = 0.089[SE=0.019, 0.043 – 0.135], z-ratio = 4.652, p < 0.001. When no 

expectation was set, targets were detected faster than when the targets were 
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unexpected - β = 0.072[SE=0.020, 0.024 – 0.121], z-ratio = 3.544, p = 0.001, 

however Expected targets were not detected faster than when no expectation 

was set - β = 0.017[SE=0.014, -0.016 – 0.049], z-ratio = 1.216, p = 0.532. These 

results are consistent with the effects observed in the combined analysis. 

Prolific sample 

In Table 20, we can see that like the full and the student sample, in the Prolific 

sample variations between different conditions are small for accuracy indicating 

that individuals were able to perform the task. Additionally, reaction time 

appears faster for Expected targets in comparison to Unexpected targets. 

Further, looking at the Expected and the Unexpected conditions, Attended 

targets elicited shorter reaction times in comparison to unattended target. The 

opposite was observed in the None condition, where Attended targets elicited 

longer reaction times, which is an indication of potential inhibition of return. 

This difference with attention is not observed at the student sample.  

Table 20 Participant accuracy and median reaction time 

Attention Predictability 
Mean accuracy 

(SD) 
Median RT 

(MAD)* 

Attended 
Expected 0.943 (0.232) 0.497 (0.096) 

None 0.943 (0.232) 0.507 (0.111) 
Unexpected 0.936 (0.245) 0.516 (0.102) 

Unattended 
Expected 0.935 (0.247) 0.502 (0.105) 

None 0.937 (0.243) 0.500 (0.107) 
Unexpected 0.925 (0.264) 0.528 (0.117) 

Note: * MAD = Median absolute deviation. 

The overall results from the models are consistent with the overall effects 

described in the main text, with Attention and Predictability being the only 

factors showing significant effects (see Table 21). Attended targets were 

detected faster than Unattended targets, however the CIs were broader than in 

the other two samples potentially driven by the observed IOR effects in the None 

condition – β = 0.023[SE=0.012, 0.0006 - 0.046], z-ratio = 2.020, p = 0.043. 

Looking at the simple effects of Predictability, the effects mirrored the overall 

and the student samples. There was no significant difference in the speed of 

detection between expected and None targets- β = 0.020[SE=0.012, -0.010 – 

0.049], z-ratio = 1.611, p = 0.288. None targets, however, were detected faster 

than Unexpected targets - β = 0.065[SE=0.013, 0.033 – 0.097], z-ratio = 4.876, p 
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< 0.001, and Expected targets were detected faster than Unexpected targets – 

β = 0.085[SE=0.018, 0.043 – 0.127], z-ratio = 4.809, p < 0.001. 

Table 21. Model estimates for the Prolific sample. 

Χ2 df p 
(Intercept) 879.712 1.000 <0.001* 
Attention 4.078 1.000 0.043* 
Predictability 27.206 2.000 <0.001* 
AQ 0.644 1.000 0.422 
Attention X Predictability 2.750 2.000 0.253 
Attention x AQ 0.535 1.000 0.464 
Predictability x AQ 0.293 2.000 0.864 
Attention x Predictability x AQ 0.439 2.000 0.803 

Note: * indicate statistically significant effects. 

It is noteworthy that while the models for the students was equivalent to the 

model used for the full sample, due to further singularity problems, the gamma 

model for the Prolific sample, contained only intercept for participants and 

intercept for grating direction, however, it maintained the full random effect 

structure for the participant X grating direction. 

Coherent motion 

Student sample 

In Table 22 is reported the data for the student and Prolific samples. Variations 

between different conditions are small for accuracy indicating that individuals 

were able to do the task. Additionally, reaction time appears faster for Expected 

targets in comparison to Unexpected targets. Further, looking at the Unexpected 

and the None conditions, Attended targets elicited longer reaction times in 

comparison to Unattended target, which is an indication of inhibition of return, 

which was not observed in the BM experiment. This difference in attention is not 

present for the Expected condition.  

Table 22 Participant accuracy and median reaction time 

Attention Predictability 
Mean accuracy 

(SD) 
Median RT 

(MAD)* 

Attended 
Expected 0.913 (0.282) 0.502 (0.109) 

None 0.900 (0.300) 0.515 (0.121) 
Unexpected 0.871 (0.336) 0.541 (0.114) 

Unattended 
Expected 0.909 (0.288) 0.502 (0.119) 

None 0.896 (0.305) 0.502 (0.115) 
Unexpected 0.906 (0.292) 0.533 (0.125) 

Note: * MAD = Median absolute deviation. 
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Similar to the combined sample and the Prolific BM experiment samples that 

exhibited IOR in the None condition, there was no significant effect of Attention, 

but the effect of Predictability was retained (see Table 23). Similar to the 

combined CM results and the BM experiment, Expected targets were not 

detected faster than None targets - β = 0.020[SE=0.014, -0.013 – 0.059], z-ratio = 

1.430, p = 0.392. However, targets where no expectation was set were detected 

faster than Unexpected targets - β = 0.097[SE=0.019, 0.052 – 0.143], z-ratio = 

5.107, p < 0.001, and Expected targets were detected faster than Unexpected 

targets - β = 0.117[SE=0.020, 0.068 – 0.166], z-ratio = 5.724, p < 0.001. 

Table 23. Model estimated for the student sample. 

Χ2 df p 
(Intercept) 1002.670 1.000 <0.001* 
Attention 1.202 1.000 0.273 
Predictability 34.193 2.000 <0.001* 
AQ 0.051 1.000 0.822 
Attention X Predictability 0.998 2.000 0.607 
Attention x AQ 2.213 1.000 0.137 
Predictability x AQ 0.013 2.000 0.994 
Attention x Predictability x AQ 2.768 2.000 0.251 

Note: * indicate statistically significant effects. 

Prolific sample 

Observing the data in Table 24, variations between different conditions are 

small for accuracy indicating that individuals were able to do the task. 

Additionally, reaction time appears faster for Expected targets in comparison to 

Unexpected targets. Further, looking at the Unexpected and the None 

conditions, Attended targets elicited longer reaction times in comparison to 

Unattended target, which is an indication of inhibition of return, which was not 

observed in the BM experiment. This difference with attention is also not 

observed at the Expected condition. 

Table 24. Participant accuracy and median reaction time 

Attention Predictability 
Mean accuracy 

(SD) 
Median RT 

(MAD)* 

Attended 
Expected 0.937 (0.243) 0.498 (0.100) 

None 0.919 (0.273) 0.502 (0.106) 
Unexpected 0.912 (0.284) 0.523 (0.112) 

Unattended 
Expected 0.929 (0.256) 0.499 (0.101) 

None 0.922 (0.268) 0.495 (0.104) 
Unexpected 0.931 (0.254) 0.520 (0.106) 

Note: * MAD = Median absolute deviation. 
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Like the student sample and the combined sample, the Prolific sample showed 

no significant main effect of attention, but a significant effect of Predictability 

and no other significant effects or interactions (see Table 25). There was no 

significant difference in the speed of detection between Expected and None 

targets- β = 0.002[SE=0.014, -0.032 – 0.036], z-ratio = 0.161, p = 0.998. The 

targets in the None condition were detected faster than Unexpected targets – 

β = 0.098[SE=0.019, 0.053 – 0.143], z-ratio = 5.239, p < 0.001, and Expected 

targets were detected faster than Unexpected targets - β = 0.101[SE=0.019, 

0.057 – 0.145], z-ratio = 5.412, p < 0.001. 

Table 25. Model estimates for the Prolific sample. 

Χ2 df p 
(Intercept) 1357.793 1.000 <0.001* 
Attention 0.099 1.000 0.753 
Predictability 33.269 2.000 <0.001* 
AQ 0.010 1.000 0.922 
Attention X Predictability 3.543 2.000 0.170 
Attention x AQ 0.659 1.000 0.417 
Predictability x AQ 2.478 2.000 0.290 
Attention x Predictability x AQ 0.502 2.000 0.778 

Note: * indicate statistically significant effects. 

It is noteworthy that unlike the other Prolific samples, the gamma model here 

differed from the model in the main text by only removing the slopes for the 

participant random factor with the rest of the random factor structure identical. 

Biological motion findings replication 

Due to researcher error, a Prolific sample with a limited age of 18 was also 

recruited. As the sample was not representative of the age distribution, the 

analysis of this Prolific sample is only used to show the replicability of the 

findings. We also combined all the participants to further increase power and 

emphasise the stability of the results.  

Combined samples analysis 

After cleaning and combining the 3 samples (1 student and 2 Prolific), we were 

left with 101 participants (Mage = 19.366(SD =2.284), 46 male/ 55 female, AQ = 

3.762 (1.664). In Table 26 are reported the RT and accuracy data for each of the 

factor levels of Attention and Predictability for the whole sample. Reaction time 
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appears faster for Expected targets in comparison to Unexpected targets. 

Further, Attended targets elicited shorter reaction times in comparison to 

Unattended target. However, there appears to be no difference in the None 

condition between attended and Unattended targets, suggesting that the 

attention cuing of the PLD was not sufficient to influence behaviour. These 

effects are more easily observed Figure 27 and Figure 28. However, we can see 

that the observed trends in the data with increase in AQ from the main analysis 

remain. 

Table 26 Participant accuracy and median reaction time 

Attention Predictability 
Mean accuracy 

(SD) 
Median RT 

(MAD)* 

Attended 
Expected 0.925 (0.263) 0.503 (0.106) 

None 0.913 (0.282) 0.518 (0.121) 
Unexpected 0.893 (0.309) 0.533 (0.122) 

Unattended 
Expected 0.914 (0.281) 0.518 (0.121) 

None 0.908 (0.289) 0.518 (0.121) 
Unexpected 0.897 (0.304) 0.543 (0.135) 

Note: * MAD = Median absolute deviation. 

Figure 27. Reaction time for accurately detected targets by attention and predictability 
conditions. 
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Figure 28. Changes in RT with AQ scores for Attention (line types) and Prediction levels 
(colours). 

Overall, there was a significant main effect of Attention (Χ2(1) = 28.872, p < 

0.001) and Predictability (Χ2(2) = 41.929, p <0.001). However, there was not a 

significant interaction between the two variables (Χ2(2) = 5.160, p = 0.076). 

Unlike the main analysis, the addition of more participants resulted in the effect 

of AQ becoming significant(Χ2(1) = 4.084, p = 0.043), where participants with 

higher AQ had overall longer RTs. However, there were again no significant 2-

way interaction with Predictability (Χ2(2) = 0.931, p = 0.628)), no significant 2-

way interaction with Attention (Χ2(1) = 0.002, p = 0.961) and no significant 3-

way interactions (Χ2(2) = 1.305, p = 0.521). The interaction between Attention 

and Platform was also still significant (Χ2(1) = 5.043, p = 0.025). No other effects 

or interactions were significant with Platform – all p-values > 0.138, indicating 

that there were no other differences between the different platforms. 

Overall, Attended targets were detected faster than Unattended ones - β = 

0.041 [SE=0.008, 0.026 – 0.056], z-ratio = 5.373, p < 0.001. Additionally, as seen 

in Table 27, students showed a bigger difference in response time between 

attended and Unattended targets, in comparison to the participants recruited 

through Prolific. Although, unlike in the main analysis, the addition of the 
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second Prolific sample has increased the effect between Attended and 

Unattended targets making the difference significant for both platforms. 

Table 27. Simple effects of attention at each platform level 

Contrast Platform estimate SE LCI UCI Z-
ratio 

p-
value 

attended - 
unattended 

Prolific 0.024 0.010 0.003 0.046 2.531 0.023* 

attended - 
unattended 

Student 0.058 0.012 0.032 0.084 4.953 <0.001* 

Note: * indicate statistically significant contrast. 

Adding the additional Prolific participants did not change the simple contrasts 

between Predictability levels observed in the main analysis. Firstly, Expected 

targets were detected faster than None targets, however this difference was still 

not significant despite the larger sample - β = 0.018[SE=0.009, -0.003 – 0.041], z-

ratio = 2.034, p = 0.121. None targets, were still detected faster than 

Unexpected targets - β = 0.070[SE=0.013, 0.040 – 0.101], z-ratio = 5.527, p < 

0.001, and Expected targets were detected faster than Unexpected targets - β = 

0.089[SE=0.014, 0.056 – 0.122], z-ratio = 6.397, p < 0.001.  

Thus, as expected, predictability assists in participants ability to respond faster 

to Expected targets, however, that ability is not modulated by attention or AQ 

scores. However, the addition of a few more participants pushed the main effect 

of AQ over the chosen significance threshold, indicating that the effect AQ is 

weak, but present. This suggests that the effect might be more pronounced in 

autistic individuals. This is further in line with the increased processing time for 

autistic individuals reported in previous research (eg. Lawson et al., 2014). 

Prolific sample only 

After cleaning, we were left with 31 participants (Mage = 18.032(0.180), 23 male 

8 female, AQ = 3.868 (1.408), MacOS =1, Windows = 30, Chrome = 22, Mozilla 

Firefox = 3, other = 6). Observing the data in Table 28Table 24, variations 

between different conditions are small for accuracy indicating that individuals 

were able to perform the task. Additionally, reaction time appears faster for 

Expected targets in comparison to Unexpected targets. Further, looking at the 

Expected and the Unexpected conditions, Attended targets elicited shorter 

reaction times in comparison to Unattended target. The opposite was observed 
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in the None condition, where Attended targets elicited longer reaction times, 

which is an indication of potential inhibition of return which was observed in the 

CM experiment in both samples and in the other Prolific sample in the BM 

experiment. This difference with attention is not observed at the student or the 

combined samples for the BM experiment.  

Table 28 Participant accuracy and median reaction time 

Attention Predictability Mean accuracy 
(SD) 

Median RT 
(MAD)* 

Attended 
Expected 0.919 (0.272) 0.503 (0.106) 

None 0.904 (0.294) 0.520 (0.117) 
Unexpected 0.892 (0.311) 0.538 (0.127) 

Unattended 
Expected 0.898 (0.302) 0.516 (0.119) 

None 0.903 (0.296) 0.519 (0.118) 
Unexpected 0.882 (0.323) 0.541 (0.135) 

Note: * MAD = Median absolute deviation. 

Looking at the effects of AQ on performance, we observe similar trends as in the 

main analysis (see Figure 29). There appears to be an increase in RT with 

increase in AQ, although that is not the case for attended Unexpected targets. 

Additionally, we can see that we observe an IOR for Unexpected targets at lower 

AQ scored, but not at higher AQ scores. Moreover, in the None condition we only 

see an IOR at higher AQ levels, which was evident in the main sample. However, 

since this was also seen in the main CM experiment, it could be that higher AQ 

scores are only diminishing the difference between attended and Unattended 

targets. 
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Figure 29. Changes in RT with AQ scores for Attention (line types) and Prediction levels 
(colours). 

Overall, unlike the other Prolific sample, there was an effect of Attention. 

Additionally, the Predictability effect is still evident (see Table 29). 

Table 29. Model estimates for the second Prolific sample. 

Χ2 df p 
(Intercept) 838.657 1.000 <0.001* 
Attention 5.474 1.000 0.019* 
Predictability 17.050 2.000 <0.001* 
AQ 0.335 1.000 0.563 
Attention X Predictability 0.308 2.000 0.857 
Attention x AQ 0.000 1.000 0.988 
Predictability x AQ 0.738 2.000 0.692 
Attention x Predictability x AQ 2.854 2.000 0.240 

Note: * indicate statistically significant effects. 

Despite the observed IOR in the None condition in Table 28, Attended targets 

were detected faster than Unattended ones - β = 0.030 [SE=0.013, 0.005 – 

0.056], z-ratio = 2.340, p = 0.0193. Like in all other samples, there was no 

significant difference in the speed of detection between Expected and None 

targets- β = 0.028[SE=0.018, -0.014 – 0.070], z-ratio = 1.605, p = 0.291. None 

targets were, however, detected faster than Unexpected targets - β = 

0.072[SE=0.023, 0.018 – 0.127], z-ratio = 3.176, p = 0.005, and Expected targets 
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were detected faster than Unexpected targets - β = 0.100[SE=0.024, 0.042 – 

0.159], z-ratio = 4.120, p < 0.001. 

It is noteworthy that similar to the other Prolific sample in the main experiment, 

there were further singularity problems. Thus, the gamma model contained only 

intercept for participants and intercept for grating direction, however, it 

maintained the full random effect structure for the participant X grating 

direction. 

Combined analysis for the BM and CM experiment 

To be able to say with some degree of certainty, that there was a difference in 

the BM and the CM experiments which was caused by the type of stimulus rather 

than the social component of the stimulus, we ran a model combining the 

experiments reported in the main text, including experiment as an additional 

fixed factor. As seen in Table 30 and in Table 31 there was a significant 

interaction between Attention and Experiment. This was due to larger 

differences between the Attended and Unattended trials in the BM experiment, 

and it also indicates a non-significant but reversed response times for Attended 

and Unattended targets in the CM experiment. This can also be seen in Figure 

30. importantly, there is no interaction with AQ indicating that any effects of

the attention modulation between the two samples was not due to differences in

the level of autistic traits. Thus, we do not believe that the differences in

results between the two experiments is caused by the social/non-social nature

of the tasks.
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Table 30. Model estimates for the combined experiments reported in the main text 

Χ2 df p 
(Intercept) 2714.070 1.000 0.000 
Attention 5.891 1.000 0.015* 
Expectation 86.115 2.000 0.000* 
AQ 2.214 1.000 0.137 
Platform 2.550 1.000 0.110 
Experiment 0.169 1.000 0.681 
Attention X Expectation 5.119 2.000 0.077 
Attention x AQ 1.954 1.000 0.162 
Expectation x AQ 0.304 2.000 0.859 
Attention X Platform 1.834 1.000 0.176 
Expectation x Platform 0.552 2.000 0.759 
AQ x Platform 0.231 1.000 0.631 
Attention X Experiment 14.769 1.000 <0.001* 
Expectation x Experiment 2.420 2.000 0.298 
Experiment x AQ 1.312 1.000 0.252 
Experiment x Platform 0.302 1.000 0.583 
Attention x Expectation x AQ 2.745 2.000 0.253 
Attention x Expectation x Platform 0.939 2.000 0.625 
Attention x AQ x Platform  0.005 1.000 0.946 
Expectation x AQ x Platform 0.931 2.000 0.628 
Attention x Expectation x Experiment 1.376 2.000 0.503 
Attention x AQ x Experiment 1.248 1.000 0.264 
Expectation x AQ x Experiment 0.823 2.000 0.663 
Attention x Platform x Experiment 2.615 1.000 0.106 
Expectation x Platform x Experiment 0.183 2.000 0.913 
AQ x Platform x Experiment 0.132 1.000 0.717 
Attention x Expectation x AQ x Platform 1.244 2.000 0.537 
Attention x Expectation x AQ x Experiment 0.211 2.000 0.900 
Attention x Expectation x Platform x Experiment 1.857 2.000 0.395 
Attention x AQ x Platform x Experiment 1.155 1.000 0.283 
Expectation x AQ x Platform x Experiment 1.111 2.000 0.574 
Attention x Expectation x AQ x Platform x 
Experiment 

1.598 2.000 0.450 

Note: * indicate statistically significant effects. 

Table 31. Simple effects of Attention for each Experiment 

Contrast Experiment estimate SE LCI UCI Z-ratio p-value 

attended-
unattended BM 0.041 0.009 0.020 0.061 4.369 <0.001* 

attended-
unattended CM -0.009 0.009 -0.029 0.011 -0.970 0.554

Note: * indicate statistically significant effects. 
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Figure 30. Differences between Attention levels for the BM and CM experiments. 
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Appendix E 

Pilot studies’ design and results for Chapter 5 

To make sure that the participants were able to perform the task described in 

Chapter 5 and to select the appropriate amount of noise for the main 

experiment, two pilot studies were designed. To maintain similar difficulty 

conditions to the main experiment, the PLD and surrounding noise flickered at 

5Hz frequency, equivalent to the SSVEP frequency chosen below.  

The first pilot varied the number of noise dots surrounding a point-light display 

of a walking human (the ‘dots’ pilot). The aim was to allow us to select the 

appropriate amount of noise. The second pilot tested how many frames are 

necessary for an individual to be able to detect the direction of walking of the 

point-light display (the ‘frames’ pilot). The ‘dots’ pilot was run first; the results 

were analysed and then the ‘frames’ pilot was run using the parameters from 

the ‘dots’ pilot.  

‘Dots’ pilot 

Eight participants took part in the ‘dots’ pilot. One participant did not follow 

the instructions/did not pay attention, and for another, the paradigm 

malfunctioned. The remaining 6 participants had a mean age of 28.33 (SD = 

3.88) and there was an equal split between males and females.  

There were 10 different levels of noise. All participants started with no-noise – 

i.e., only the scrambled walker that was representing the direction that was not

coherent at the given point. The no-noise condition appeared at random 

throughout the paradigm to serve as baseline observation. The paradigm was set 

up for there to be 10 trials per condition, however, due to technical difficulties 

(introduction of lag in presentation by the end of data collection due to lack of 

RAM space), there was a varying amount of data per condition5. Stimuli were 

presented on a CRT screen at 120Hz at the centre of the screen at a visual 

distance of ~ 75cm. 

5 This was also the case for the ‘Frames’ pilot reported after. 
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Participants were asked to indicate the direction of walking on the PLD every 

time they detected one in a trial. Accuracy was solely measured based on 

detection and not on the direction of walking at this point. There were 16 

coherent walkers in each trial, and each was fully coherent for 31 frames. Each 

participant’s accuracy was calculated based on the total number of trials and 

conditions they saw. Accuracy was calculated for button presses which 1) 

occurred 200ms after the last frame of the coherent walker, 2) were the first 

response, and 3) were not considered as an outlier in each individual’s reaction 

time distribution, by using the inter-quartile method.  

All participants showed low detection rates regardless of the amount of noise. It 

is also noteworthy that chance performance here would not be 50%, as the 

participants needed firstly to be able to detect the PLD which has a 50% 

probability (seen/not seen), and then they had to correctly identify the 

direction of walking. As these probabilities are independent the chance 

detection rate would be 0.5*0.5 = 0.25, i.e., 25%. The best performance was 

observed when the noise was created by using only 1-2 dots from the six 

scrambled walkers (see Table 32Error! Reference source not found. & Figure 31). The 

80% and 90% detection rates were not taken into account because they 

represented very few participants due to the data loss. The most commonly 

occurring dots in the correct trials, that also maintained some movement from 

frame to frame, were the light dots representing the left wrist and the right 

ankle joint. These were used for the ‘frames’ pilot described below and the final 

study.  

Table 32. Proportion detected per condition. 

Proportion of noise 
dots 

Number of noise 
dots (x6) Proportion detected (SD) 

0.00 0 0.43 (0.25) 
0.10 1 0.51 (0.25) 
0.15 2 0.47(0.22) 
0.20 3 0.41 (0.22) 
0.30 4 0.43 (0.25) 
0.40 5 0.42 (0.20) 
0.50 6 or 7 0.39 (0.18) 
0.60 8 0.35 (0.18) 
0.70 9 0.31 (0.13) 
0.80 10 or 11 0.55 (0.24) 
0.90 12 0.44 (NA) 
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Figure 31. Proportion of correctly detected PLDs per participant and condition. (Dashed line 
represents 25%). Dots represent individuals’ proportion correct. 

It is noteworthy that participants tended to perform worse when there was ‘no 

noise’ (i.e., only the additional scrambled walker was present). We presume 

that this is due to the number of dots being in the same place as the coherent 

walker, making it more difficult to distinguish the coherent walker from the 

noise. In fact, a study by Trevino et al. (2016) showed a U-shaped function 

between the amount of noise and accuracy. Specifically, the inclusion of 

moderate noise in their study improved visual motion detection. We believe that 

this same mechanism might have come into play with our pilot.  

‘Frames’ pilot 

 In this pilot we varied the length of time (the number of frames) that the 

coherent walker was presented for – i.e., we varied the plateau of the sine curve 

of the PLD stimulus. In the ‘dots’ pilot, the coherent walker was present for 31 

frames at 120Hz, which was equivalent to ~258ms. As participants’ performance 

was rarely above 70% in that pilot, here we used 8 conditions, in which the 

length of the coherent walker presentation varied from 17 to 45 frames in steps 

of 4. 

Participants were again asked to indicate the direction of the walking PLD. Five 

participants took part in this pilot 1 female and 4 males, with a mean age of 
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24.4 (SD = 3.97). One participant took part in both pilots. We analysed accuracy 

in detecting the direction of the PLD. Surprisingly, the more frames we provided 

(the longer the coherent PLD presentation) led to lower accuracy. We also 

looked at detection rates to verify that participants were not just guessing but 

differences were very minimal on the sample level (see Table 33). The 

participants that showed high detection rates, were also performing better in 

detecting the direction of walking (see Figure 32 below). There was wide 

between-participant variability, thus, we initially decided to keep the 31 frames 

at 120Hz refresh rate. Due to equipment availability and script functionality, in 

the final study, we ended up using 17 frames at a 60Hz refresh rate, which is 

equivalent to ~284ms. It is noteworthy that this is ~26ms longer than the 

decided 31 frames at 120Hz. Based on the results that we obtained in the two 

pilot studies and the changes to the paradigm that we needed to make, we 

incorporated a training procedure to bring the participants to an accuracy of at 

least 65% for the experimental condition.  

Table 33. Proportion detected and correctly identified the direction of walking per condition. 

Number of 
frames 

Proportion detected 
(SD) 

Proportion detected 
direction (SD) 

17 0.49 (0.34) 0.43 (0.33) 
21 0.50 (0.28) 0.45 (0.27) 
25 0.50 (0.28) 0.47 (0.26) 
29 0.44 (0.21) 0.40 (0.21) 
33 0.37 (0.25) 0.33 (0.22) 
37 0.34 (0.20) 0.32 (0.18) 
41 0.28 (0.13) 0.25 (0.13) 
45 0.29 (0.14) 0.26 (0.13) 
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Figure 32. Responses of participants from the 'frames' pilot. 

Note: A - Detection rates of participants. B - Accuracy in walking direction discrimination. 
(Dashed line represents 25%). Dots represent each individual’s proportion correct. 
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