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Abstract 

Total haemoglobin concentration tHb, arterial haemoglobin saturation (SaO2), and arterial 
oxygen content (CaO2) are indicative of a patient’s ability to transport oxygen (O2) and can be 
used to guide clinical decisions. Laboratory-based methodologies such as the haematology 
analyser, laboratory CO-Oximetry, and point-of-care analysers have been used to assess these 
values, but despite being accurate all these instruments require a blood sample, allow only 
intermitted monitoring, are operator-dependent, and introduce a delay in obtaining results. Pulse 
CO-oximetry, by combining the principles of CO-Oximetry with pulse oximetry enables non-
invasive measurements of the Hb (SpHb) and derived values. Whilst the Masimo pulse CO-
oximeter has given the approval by the Food and Drug Administration (FDA) and European 
Medical Agency (EMA), there is still debate within the scientific literature regarding its 
accuracy. In a recent version of the pulse CO-oximeter software, a so-called in-vivo adjustment 
that allows initial calibration of the SpHb against a measured laboratory value has been 
introduced with the intent to increase accuracy (Miyashita et al. 2014; Frasca et al. 2015; De 
Rosa 2020).To date, in veterinary medicine only three studies have investigated the 
performances of pulse CO-oximetry, but none of them have investigated the accuracy of SpHb 
after in-vivo adjustment. With the hypotheses that in-vivo adjustment would increase the 
accuracy of subsequent SpHb measurements, the aim of this thesis was to assess the agreement 
of pulse CO-oximeter derived values of tHb [H], CaO2 and SaO2, using an optical fluorescence-
based blood gas analyser and oximeter (VetStat®) as the reference method. This thesis 
hypothesises that the accuracy of SpHb and SpO2 will be influenced by perfusion index (PI), 
mean arterial pressure (MAP) and tongue thickness. Furthermore, clinical significance and 
trending accuracy were tested with error grid and four quadrant plot analysis. A total of 39 data 
pairs of tHb were obtained before in-vivo adjustment in as many dogs. The mean [Hb]-SpHb 
difference was -2.7 g dL−1 with limit of acceptance (LoA) of -4.9 to -0.5 g dL−1. After in-vivo 
adjustment from the same dogs, 104 data pairs were obtained; the mean [Hb]-SpHb difference, 
after in-vivo adjustment, was -0.2 g dL−1 with LoA of -1.1 to 0.6g dL−1. The mean SaO2-SpO2 
difference was 0.86% with LoA of -0.8 to 2.5% and between CaO2 -SpOC was 0.66 ml dL-1with 
LoA of -2.59 to 3.91 ml dL-1. Zone A of the error grid encompassed approximately 98% of data 
pairs for SpHb. The concordance rate for consecutive changes in SpHb and [Hb] performed with 
four quadrant plot analysis was 92.6%. Before in-vivo adjustment, pulse CO-oximetry derived 
values overestimated the spectrophotometric-based blood gas analyser [Hb] and CaO2 values. 
Following in-vivo adjustment, the accuracy, precision, and LoA markedly improved. The 
accuracy of SpHb and SpO2 were not influenced by PI, MAP and tongue thickness and pulse 
CO-oximetry, after in-vivo adjustment, adequately tracked the changes of Hb within the time 
confirming a good trending accuracy. Furthermore, the Masimo’s performance was evaluated in 
dogs referred to the University of Glasgow Small Animal Hospital for a variety of emergency 
surgeries and presented in hypovolemic states, and/or acute haemorrhagic states. The findings 
from our observational study shown an acceptable [Hb]-SpHb difference, and a consistent fall 
in SpHb values during bleeding episodes. This finding may support the use of pulse CO-oximetry 
devices as an intraoperative starting point for deciding when to perform an invasive tHb 
measurement. Nevertheless, in all patients receiving synthetic colloids and/or vasoactive drugs 
(noradrenaline infusion) the increase in [Hb]-SpHb difference suggests that values displayed by 
the Masimo Radical-7 under these circumstances should be considered carefully and always 
confirmed by an invasive blood sample. In conclusion, pulse co-oximetry and SpHb monitoring, 
after in-vivo adjustment, cannot completely replace invasive measurements, but show definite 
promise for use during surgical procedures.    
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BACKGROUND 
 
1 INTRODUCTION 
 

1.1.1 Haemoglobin and Oxygen Transport 

Red blood cells, (RBCs) are components of the blood which functions to carry haemoglobin 

(Hb) around the body in sufficiently high concentration. They allow the effective transport 

of oxygen (O2) from the lungs to the tissues, and the return of carbon dioxide (CO2), 

produced during oxidative phosphorylation, back to the lungs (Gordon-Smith, 2013).  

The Hb molecules contain a metallo cofactor, the haem group, which makes Hb capable of 

carrying in endothermic mammals and birds (haematocrit ~ 45%), about 9 mmol O2 L-1 of 

blood (Hsia et al. 2013). The capability of RBCs to bind and to deliver the O2 is due to a 

combination of the cooperative binding and allosteric modulations of Hb.  

In nature, Hb molecules exist as an equilibrium between two different forms; the relaxed (R) 

form, where Hb has high O2 affinity (oxyhaemoglobin, HbO2) and the tense (T) form, with 

a low O2 affinity (deoxyhaemoglobin, HHb).  

At a high arterial oxygen partial pressure (PaO2) context, such as at the respiratory surfaces, 

Hb becomes fully saturated with O2, assuming its R form. Instead, as the blood enters into 

the microcirculation, the PaO2 decreases, promoting the O2 offloading and Hb shifting to the 

T form (Jensen 2009).  

Each Hb molecule is a tetramer structure that contains 4 Hb chains and 4 atoms of iron 

capable of binding one molecule of O2 each, for a total of 4 molecules of O2 carried by each 

Hb molecule (Figure 1-1; 1-2).  
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The ability of Hb to carry O2 molecules is due to cooperative binding, a phenomenon 

displayed by receptors that have multiple binding sites and where the affinity of each of the 

binding sites for a ligand is increases (positive cooperativity) upon the binding of a ligand 

to a binding site. While the deoxyhaemoglobin has a relatively low affinity for O2, once the 

first O2 molecule is bound to a single haem, the O2 affinity of Hb increases, allowing the 

second molecule to bind more easily, and then the third and fourth even more so.  

The peculiarity that a binding of a particular ligand at one site affects the conformation of a 

second remote binding site for another ligand on the same protein is named allosteric 

modulation. As Hb is an allosteric protein it alters its affinity towards the first ligand, 

therefore the first O2 molecule has to overcome strong electrostatic charges between the 4 

Hb protein chains compared to the successive O2 molecules that bind more easily. Due to 

the allosteric modulation and cooperative binding features the Hb molecule cannot be 

considered as made of four independently oxygen-binding subunits. The Hb molecule 

peculiarities allow it to deliver 1.7 times as much O2 as it would if the sites were independent 

(Naik 2016). Regarding O2 binding capacity, the amount of O2 in millilitres carried by each 

gram of Hb, this is commonly referred to as Hüfner’s constant, that, at STP – (standard 

temperature and pressure, 0° C and 760 mmHg), has a theoretical value of 1.39 ml O2 for 

each gram of Hb (McDonell & Kerr 2017).  

In reality, the Hb oxygen carrying capacity of blood is less than the 1.39 due to the presence 

of other forms of Hb in blood (e.g., carboxyhaemoglobin and methaemoglobin) with a 

different affinity for O2. For this reason, oxygen carrying capacity is often theoretically 

reduced to 1.34 ml of O2 per gram of Hb (Hüfner 1894) and a further reduction to 1.31 has 
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been proposed assuming a normal level of carboxyhaemoglobin and methaemoglobin in 

human blood (McLellan and Walsh 2004). In other species, the Hüfner’s constant has been 

calculated as 1.33– and 1.35– ml of O2 per g of Hb e.g., in dogs and mice (Shimizu S et al. 

1986) and 1.38 ml g-1 in horses (Clerbeaux et al. 1986).  

 

1.1.2 Oxygen Dissociation Curve  

The oxygen dissociation curve (ODC) (Figure 1-3), describes the relation between the PaO2 

(x axis) and the haemoglobin oxygen saturation (SaO2) (y axis). The shape of ODC is 

sigmoidal among the normal physiological range of PaO2 (e.g., 40 to 100 mm Hg),typically 

the blood that leaves the lungs and enters into systemic arteries having a PaO2 of about 95 

mmHg, which from the OCD is equal to a SaO2 of about 97% (Guyton and Hall 2016). Once 

the PaO2 decreases to a level as low as 60 mmHg, arterial Hb remains 89% saturated with 

O2 and conversely even if PaO2 rises above 95mmHg, O2 saturation can only increase to a 

maximum of 3 percent above normal. This is due to the oxygen that acts as a buffer, meaning 

that with a PaO2 varies from 60 to 500 mmHg, SaO2 in the peripheral tissue will not vary 

more than a few millilitres from normal (Guyton and Hall 2016).    

 

Another important value in the context of ODC is the P50, that represents the PaO2 value at 

which the Hb is 50% saturated with O2 (typically about 26.6 mmHg in humans), and is 

conventionally used to define the Hb’s affinity for O2.  

The value of P50 of each species is determined by natural selection according to animal size, 
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tissue metabolic requirements and ambient oxygen tension. As a rule of thumb, the smaller 

the animal, the lower its Hb’s affinity for the O2 would be (e.g. P50 for cats and dogs are 34 

and 30 mmHg respectively; Cambier et al. 2004) and the ODC will shift to the right. A left 

shift of ODC would instead define a higher Hb’s affinity for O2, such as for the foetal human 

Hb, where the P50 value is about 19 mmHg (Thomas & Lumb 2012).  

Several physiological factors may influence the ODC displacing the curve in one direction 

or the other (left or right shift) as shown in Figure 1-4. While a right shift favours unloading 

the O2, a left shift determines an increased Hb’s affinity for O2, that by favouring the O2 

binding makes its unloading more difficult.  Increased CO2 tension, decreases the pH 

(acidity), increases the 2,3-diphosphoglycerate (2,3-DPG) level, and increases the 

temperature, which are all factors that shift the curve to the right due to the Bohr effect. The 

Bohr effect facilitates the O2 unloading, because once the CO2 diffuses from the tissue into 

the blood where it reacts with water to form carbonic acid, the resulting decreases blood pH 

allowing the dissociation of O2 away from the Hb towards the tissues (Bohr et al 1904). 

Henderson in 1920 was the first that showed the pH effect on Hb.  

H–Hb + O2 ß à Hb- – O2 + H+ 

This adaptation has been later shown to depend in part on the presence of 2,3- 

diphosphoglycerate (2,3-DPG) (Tomita & Riggs 1971). The 2,3-DPG which is a metabolic 

intermediate produced in tissues under heavy energy use (low ATP, high acid production). 

The oxygen binds to mammalian Hb with an exothermic reaction, as stated by Chatelier’s 

principle, so increased temperatures are associated with reduced O2 affinity, and vice versa 

(Weber & Campbell 2011), such that in humans extreme hypothermia is known to increases 

the affinity of Hb for O2 more than 22-fold (Dash & Bassingthwaighte 2010). The decrease 

in Hb–O2 affinity with increasing temperature, is advantageous in that it enhances O2 

unloading from blood that perfuses warm tissues, for example exercising muscles that have 

increased O2 requirements (Barcroft & King 1909), but can  become detrimental in 

regionally heterothermic animals, for example in cold-tolerant birds and mammals, where it 

may perturb the balance between O2 unloading and O2 requirement in organs with 
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substantially different temperatures (Weber & Campbell 2011). 

 

1.1.3 Dysfunctional Haemoglobins 

Not all the Hb are functional, meaning capable of transporting and unloading O2 at the 

tissues; in fact, dysfunctional haemoglobins species such as sulfhaemoglobin, 

carboxyhaemoglobin (COHb) and methaemoglobin (MetHb), are Hb combined with other 

substance beside oxygen (Ralston et al. 1991). For instance, if Hb combines with carbon 

monoxide (CO), a colourless and odourless gas with a 200–times greater Hb affinity than 

O2, a large proportion of the Hb binding sites will become occupied by CO forming COHb, 

even at low partial pressures.  

HbO2 + CO à COHb + O2 

The formation of COHb not only displaces the O2, but also causes a conformational change 

in Hb that results in greater affinity of the Hb for the CO then for O2 and a shift of the ODC 

to the left, further compromising tissue oxygen delivery (Figure 1-5).   

In humans the normal reference value for COHb ranges between 1% to 3% (Piantadossi 

2002). Reports in the veterinary literature indicate a lack of consensus on the normal 

reference range in dogs but suggest that it is higher than in humans (between 5.6% - 6.4 %, 

median 6.1%) (Ashbaugh et al. 2012). Another dysfunctional haemoglobin species is the 

methaemoglobin; a Hb in the form of metalloprotein where the iron in the haem group is 

changed from the ferrous (Fe2+) to the ferric state (Fe3+) due to oxidative stress. The Fe3+ not 

only cannot bind O2 and carry it to the tissues, but also prevents O2 release from the other 
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Fe2+ on the same Hb molecule (Jaffe 1981). Under standard conditions, a small amount of 

methaemoglobin is always present [in the human blood < 1% of the total Hb (Jaffe 1981)] 

in the erythrocytes but is usually converted back to functional Hb by nicotinamide adenine 

dinucleotide (NADH)–dependent methaemoglobin reductase cytochrome b5 reductase 

(b5R), through the diaphorase pathway (Figure 1-6). 

 

Figure 1-6 Formation of methaemoglobin  

An increased level of MetHb relative to functional Hb, may cause tissue hypoxia and a left 

shift in the ODC as a result of increased affinity to bound O2 in the remaining haem groups 

(Margulies & Manookian 2002). Diagnosis of methaemoglobinemia is extremely difficult; 

it is asymptomatic up to concentration of 10- 15%, with the colour of blood turning to 

chocolate brown when higher than 10%, exercising intolerance and cyanosis only with 

concentrations > 20%. Methaemoglobinemia occurs as a congenital or acquired condition; 

congenital due to NADH‐cytochrome b5 reductase deficiency (Atkins et al 1981; Harvey

2006; Shino et al. 2018), acquired as a result of exposure to toxic oxidizing agents such as 

benzocaine, prilocaine, sulphonamides, nitrates (Key et al. 1980). 

1.1.4 Oxygen Content 

The oxygen content (CaO2) of blood is another important measurement, as neither SaO2 nor 

PaO2 provide information on the number of O2 molecules within the blood. Of the main 

values used to assess blood O2 levels, the ‘how much’ is only provided by the CaO2, which 

represents the total volume of O2 in arterial blood and it is conventionally reported as 

millilitres of O2 per decilitre (ml dL-1) of blood. The CaO2 value incorporates the O2 bound 

to Hb and the O2 dissolved in the plasma, where the amount of O2 dissolved is proportional 

to the partial pressure exerted by oxygen on the plasma at a given temperature (Dunn et al.  
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2016) equation [1] 

!"#$"%&'	)*+,$-	.)-#$- = 0)1-2	)*+,$- + 2%44)'5$2	)*+,$- 

 

While CaO2 is influenced by factors, such as PaO2 and the adequacy of ventilation and gas 

exchange, its main determinant is the Hb concentration and affinity for the O2, equation [2]   

 

CaO2 = (Hb • Hüfner′s	constant) • 	!"#!$%% + (F&G& • 4)'10%'%#+	.)$HH%.%$-#	)H	)*+,$-) 

The Hb is the amount of haemoglobin in grams per decilitre (g dL−1), the SaO2 is the percentage arterial haemoglobin 

saturation, and the solubility coefficient of O2 in blood is equal to 0.0031ml mmHg-1 of O2 dL-1 of blood and represents the 

solubility coefficient of oxygen at body temperature; the number of ml of O2 dissolved per 100 ml of plasma per kilopascal 

(ml O2 100 ml−1 plasma kPa−1). PaO2, partial pressure of oxygen in arterial blood, is expressed in kilopascals (kPa) 

(McLellan & Walsh 2004; West 2004). 

 

The measurement of PaO2 from a sample of arterial blood has been the traditional method 

for assessing oxygenation (Nishioka et al. 2017). Arterial blood gas analysis or arterial blood 

gas (ABG) is a widely available test used to directly measure PaO2, PaCO2, and pH, however 

some limitations include; as discrete measurements, the inability to give real-time 

measurement, possible pain and/or vascular trauma, difficulties in obtaining arterial blood 

samples from small sized patietns, sampling of venous as opposed to arterial blood, variable 

arterial oxygen tension associated with positioning for sample collection, operator 

dependency, and cost, can reduce or limit its use to only some contexts.  

Dependent on the blood gas analyser used, the SaO2 value can be measured or calculated 

from PaO2 values (Nishioka et al. 2017), about which certain degree of inaccurancy has been 

shown when compared to the direct measurement of SaO2 by laboratory CO‐Oximetry 

(Johnson et al. 1993; Nierman & Schechter, 1994). The SaO2, which is the percentage (%) 
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of tHb binding sites available and occupied by O2 represents the measure of how much of 

the CaO2 due to Hb is being utilised, as defined by the following equation [3] 

SaO2 = ["#$!]
["#$!]&[""#]

	× 	100% 

 

It is important to note that the denominator of this equation is not the concentration of the 

total Hb, as MetHb and COHb are in fact not included. This means that pathologies such as 

carbon monoxide poisoning and methaemoglobinemia (see previous sections) may result in a 

reduction of the CaO2 that is not reflected in a decrease of SaO2%. In the same way, 

pathological states that determine reduction in Hb concentration (e.g. due to anaemia) 

decrease the CaO2 values without eliciting changes in SaO2.  

In blood gas analysis, the overall percentage of Hb binding sites occupied by O2, defined as 

SaO2 % is often denoted as functional SaO2. On the other hand, the term fractional SaO2, 

often indicated as fractional HbO2 (abbreviated as F HbO2) reflects the effects of COHb and 

MetHb giving a more accurate indication of the oxygen carrying capacity of the Hb (Chan 

et al. 2013), equation [4] 

F HbO2 = 
["#$!]

["#$!]&[""#]&['$"#]&[()*"#]
 x 100% 

 

As previously mentioned, the SaO2 % is generated with blood gas analysis, by one of the 

two following methods: from an indirect calculation from the measured PaO2 or from a 

direct spectrophotometric measurement. The calculated methodology generates a SaO2 from 

the pH and PaO2 values and is based on their relationship as described by the ODC using a 

number of algorithms and variables including; PaO2, pH, PaCO2 and base excess (Breuer et 

al. 1989). Portable blood gas analysers such as i-STATÒ, EPOCÒ, calculate SaO2 from 

measured pH and PaCO2 on the basis of standard human ODCs (pH 7.4, PaCO2 40 mmHg, 

and temperature 37°C) and assume a normal concentration of 2,3-DPG and 

dyshaemoglobins (COHb and MetHb). Unfortunately, as previously discussed, ODC is 

affected by a number of factors other than PaO2 that make the calculated SaO2 potentially 
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inaccurate. 

Instead, the measured SaO2 via spectrophotometric principles (shining light through the 

sample) is the method of choice for determining arterial oxygen saturation. Among the 

devices that measure the SaO2, IDEXX VetStat® analyser enables total Hb and SaO2 

measuring through a red and infrared light coming from one light-emitting diode (LED) and 

two laser diodes, that are directed through an optically polished window to the blood in the 

cassette over the O2 sensor. The light is partially absorbed and reflected by the erythrocytes 

to a photodiode. The intensity of reflected light varies in a well-defined way with the blood 

Hb and SO2 used in their measurement. The output signal of the detectors is converted by 

the microprocessor to a number and displayed on the touch screen. Other values commonly 

used for the assessment of oxygen and acid-base status are calculated from these measured 

values (https://www.idexx.pl/files/vetstat-updated-operator-guide-en-gb.pdf). Clinicians 

should be aware of the methodology used to generate the SaO2 value during blood gas 

analysis (Table 1-1), whether the methodology is based on calculation or direct 

measurements and for these reasons SaO2 values should be interpreted with caution.  

Calculated SaO2 (blood gas analyser) Measured SaO2 (CO-Oximeter) 

I-STAT portable  
IL Gem Premier  
IL 1630, 1640, 1650, 1660, 1710, 1720, 1730, 1740 IL 682, 1715, 1725, 1735, 1745 
Bayer 400 Bayer 405 
Bayer 248, 278, 280, 288, 348, 840, 850, 860, 1200 Bayer 845, 855, 865, 1205 
AVL Opti 1, 3, IDEXX VetStat AVL Omni 3, 6 
AVOXimeter 1000E AVOXimeter 4000 
Radiometer ABL 330 Radiometer ABL 520, 620, 625, 700 & 800 series 
Radiometer 5, 50, 500, 505, 555, 600 Radiometer OSM, OSM3 
AVL Compact 2, 3, AVL 995, AVL Omni 1, 2, 4, 5  

Table 1-1 Various blood gas machines (calculated SaO2) and CO-Oximeters (measured SaO2). This is not an 
exhaustive list (Masimo web site). 
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1.2 METHODOLOGIES TO MEASURE HAEMOGLOBIN  

Haemoglobin can be measured by several methodologies. The first clinical test of Hb 

measurement was developed more than a century ago, where after adding drops of distilled 

water to a measured volume of blood until its colour was matched that of an artificial colored 

standard (Gowers 1879). A later modification involved first saturating blood with coal gas 

(carbon monoxide) to convert haemoglobin to the more stable carboxyhaemoglobin and then 

to measure it.  

Modern haemoglobinometry dates from the 1950’s after the development of 

spectrophotometry and the haemiglobincyanide (cyanomethaemoglobin) method. 

Adaptation of this method and others for use in automated hematology analysers then 

followed. Over the past two decades advances have focused on the development of methods 

which allow point-of-care testing (POCT) of Hb.  

 

1.2.1 Cyanomethaemoglobin assay 

Nearly 50 years after it was first adopted as the reference method for measuring Hb by the 

International Committee for Standardization in Hematology (ICSH), the 

haemiglobincyanide (HiCN) assay remains the recommended method against which all new 

Hb methods were judged and standardised.  The assay is performed by mixing the blood      

sample with a cyanide-containing reagent (ferricyanide and potassium cyanide) that 

converts the Hb molecule into cyanomethaemoglobin (ICSH 1995).  The HiCN is a stable 

coloured product which in solution has an absorbance maximum at 540 nm. Absorbance of 

a diluted sample is compared with a standard HiCN solution whose equivalent Hb 

concentration is known. The major advantages of this type of Hb test is the availability of 

an internationally standard HiCN solution manufactured and assigned a concentration value 
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according to very precise criteria laid down and reviewed periodically by the ICSH (ICSH 

1995) (Shah et al. 2011). 

 

 

The ‘gold standard’  HiCN technique, however it is  both time and labor intensive as well 

as expensive, making it impractical for daily use in a clinical setting (Gehring et al. 2007) 

(Table 1-2). 

 
 
1.2.2 Haematology analyser  

The haematology analyser counts Hb proteins by detecting changes in conductance as cells 

suspended in a low concentration of electrolytes solution that pass through a small aperture. 

The volume of electrolyte displaced by the particle passing through the aperture causes a 

short-term change in the impedance across the aperture, which is measured as a voltage or 

current pulse. Thereafter, the characteristics of the pulse are used to calculate the number 

and volume of particles. Relative to the HiNDC this method has been reported to shown a  

bias ± SD of 0.3 ± 0.2 g dL-1 in Hb values (Pinkerton et al. 1970 ; Gehring et al. 2002). 

 

1.2.3 Laboratory CO-Oximetry 

Laboratory CO-Oximetry or haemoximetry, measure Hb and SaO2 using a set of fixed 

wavelengths of light applying the principles of the Beer-Lambert law. This methodology of 

measurement is based on the fact that Hb and all its derivatives are coloured proteins which 

absorb light at specific wavelengths and thus have a characteristic absorbance spectrum (the 

range of Hb species absorb light 520-620 nm).  

Advantages of HiCN Disadvantages of HiCN 
International standard – accurate Manual method requires accurate pipetting and spectrophotometer 

Easily adapted to automated hematology 

analyzers 

Reagent (cyanide) hazardous 

Well established and thoroughly investigated 
– ICSH recommended 

Subject to interference from raised lipids, plasma proteins and 
leucocyte numbers 

Inexpensive reagent Does not distinguish those Hb derivatives which have no oxygen-
carrying capacity (MetHb, COHb) 

Table 1-2 Advantages and Disadvantages of HiCN methodology 
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Once the operator has injected an arterial blood sample into the blood gas analyser CO-

oximeter, the whole sample, or most likely a portion of it, is automatically pumped to a 

measuring cuvette, whereby either chemical or physical action, erythrocytes are lysed to 

release the Hb molecules. The sample is then spectroscopically scanned, then the  

absorbance measured to determine the Hb concentration and the concentration of each of 

the haemoglobin derivatives (HHb, O2Hb, MetHb and COHb). The number of Hb 

derivatives detected by the CO-Oximeter is determined by the number of fixed wavelengths 

it is able to detect. Most clinically used CO-Oximeters detect over 100 wavelengths of light, 

providing the ability to discriminate between different Hb forms (Table 1-3). 

There is no common agreement among researchers about the Hb results obtained by CO-

oximetry. Several studies (Brunelle et al. 1996; Kuleš et al. 2011) have confirmed that Hb 

results obtained by CO-oximetry are not significantly different from those derived from 

reference laboratory methods, and that CO-oximetry is accepted to provide an acceptable 

means for urgent estimation of Hb in a critical care setting.  

Gehring and colleagues (Gehring et al. 2007) measured the error among different CO-

Oximeter devices, where the samples were tested on two identical devices from each 

manufacturer, and differences in [Hb] values up to 1.2 g dL-1 were detected between the 

pairs. When [Hb] values from six different CO-Oximeters were compared to that determined 

by a Coulter Counter, Patel et al. (Patel al. 2007) found biases ± standard deviation (SD) 

ranging from 0.0 ± 0.2 to 1.4 ± 0.4 g dL-1.  

Advantages of CO-oximetry 

Speed of analysis 

Easy of analysis 

No capital or consumable cost beyond that required for 
blood gas analysis 

Additional parameters (MetHb, COHb, O2Hb) measured 

Not affected by high white-cell count 

Table 1-3 Advantages of CO-oximetry 
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1.2.4 Conductometric point of care testing (POCT) devices (i-STAT®) 

The conductometric methodology uses the conductivity properties to calculate haemoglobin 

concentration [Hb], haematocrit, blood gases and other parameters by measuring the current 

in a solution when a constant potential difference is applied and where the current 

(conductivity) is inversely related to the resistance (current = potential/resistance) (Ng et al 

2014). 

Systems using the conductivity method, such as the i-STAT® (Abbott Park, IL, USA) 

system, measures the electrical conductance of a whole blood sample where plasma 

conducts electrical current, and blood cells act as insulators. As an example, in a sample 

with a relatively high haematocrit, a larger proportion of volume is filled by the non-

conductive RBCs, meaning that the overall conductance of the sample is relatively low.  

In the i-STAT system corrections are applied for the temperature of the sample, the size of 

the fluid segment measured, and the relative conductivity of the plasma component 

(https://www.pointofcare.abbott/int/en/home). The i-STAT system provides a calculated 

[Hb] result which is determined as follows:  

Hb (g dL
-1

) = haematocrit (% PCV) x 0.34 or Hb (g dL
-1

) = haematocrit (decimal fraction) x 34 

Results of Hb levels from i-STAT, can be affected by elevated white blood cells values, high 

lipid levels, and low total protein levels, besides that i-STAT® is less accurate than a 

haematology analyser at low Hb level with sample discrepancies up to 2 g dL-1 (Hopfer et 

al. 2004). While the compactness of this method is desirable, a bias of 2 g dL-1 could affect 

patient management, and borderline measurements should be confirmed with another 

methodology (Berkow 2013). 

 

1.2.5 Spectrophotometric point-of-care devices (HemoCue) 

The HemoCue system provides an easy and convenient [Hb] estimation based on 

spectrophotometric readings from blood drawn into a single use cuvette by capillary action. 

In earlier generation devices (HemoCue 201 and HemoControl [EKF Diagnostics, GmbH,  
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Barleben, Germany]), a blood drop was placed on a cuvette where sodium deoxycholate 

haemolysed erythrocytes to release the Hb. Sodium nitrite then converted the Hb to MetHb, 

which together with sodium azide gave azide-MetHb. The absorbance of which was 

measured photometrically at 565 and 880 nm wavelengths in order to compensate for 

turbidity in the sample (Chaudhary et al. 2017).  

One of the advantages of the current available microcuvettes such as the HemoCue system, 

is that it can easily be used by non-laboratory-trained medical professionals at the site of 

care. It is fast, inexpensive and requires only small amounts of blood. It has been shown to 

have high accuracy and precision relative to haematology analysers in the hands of trained 

operators (Neville 1987; http://www.hemocue.com), but can be subject to large inter-

operator variability (Neufeld et al. 2002). Reported sources of error with this system may 

come from incomplete filling, trapping of air bubbles and moisture, which can lead to errors 

of [Hb] of about 2 g dL-1 (Nguyen 2002). The mentioned limitations have however been 

mitigated in the newer modified devices (Hemocue 301 [HemoCue AB] and DiaSpect 

Haemoglobin T [DiaSpect Medical GmbH, Sailauf, Germany]) which use reagent-free 

cuvettes,  not affected by temperatures (10°–40°C), humidity, and without special storage 

condition requirements (http://www.hemocue.com). The measurement of the absorbance of 

whole blood in this system is photometrically performed at the 506 nm isosbestic point, the 

wavelength at which the absorbance of the two main Hb derivatives oxy-haemoglobin and 

deoxyhaemoglobin are the same, and 880 nm which allows for compensation for turbidity 

(Table 1-4).  

Advantages of HemoCue Disadvantages of HemoCue 

Small blood sample Inter-operator variability 
No needed laboratory-trained operator Air buble and humidity may cause errors (old version) 

Cost effective  

Quick results  

Table 1-4 Main advantages and disadvantages of HemoCue point of care device 
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1.2.6 Non invasive spectrophotometry 

These methodologies use noninvasive, multiwavelength sensors to determine the [Hb] with 

sensors that automatically and continuously perform self-testing and calibration checks 

during measurement sessions (Chaudhary et al. 2017). 

Presently, there are three technologies developed for human patients that use non invasive 

spectrophotometry for [Hb] measurement; the occlusion spectroscope (NBM 200; OrSense 

Co., Petah-Tikya, Israel); the transcutaneous reflection spectroscopy (HemoSpect; MBR 

Optical Systems GmbH & Co. Wuppertal, Germany); the pulse co-oximeter (Pronto-7; 

Radical-7 Masimo Co, Irvine, CA, USA). 

The occlusion spectroscope, is a portable device that via a ring-shaped sensor fitted 

on the patient finger, this applies a pressure that temporarily stops the blood flow, creating 

an optical signal with a high signal-to-noise ratio. The optical elements in a multi-

wavelength sensor (between 600 and 1500 nm) measure the light transmitted through the 

finger. Differential light absorption, before and after blood flow obstruction are then used to 

determine the [Hb] (Shah et al 2014). 

The transcutaneous reflection spectroscopy has a button sensor adherent to the palm 

side of the finger of the nondominant hand. The sensor head, which is placed on the skin, 

projects a white light into the underlying tissue via a waveguide. Some of the projected light 

is absorbed by various tissue components, while some is reflected back to the device. The 

signal return to the unit is broken down into separate wavelengths, and an electronic 

evaluation unit connected to the system analyses the [Hb] (Chaudhary et al. 2017). 

In the pulse co-oximeter, a sensor is placed over the individual’s fingertip. The sensor 

acquires blood constituent data based on light absorption through this finger probe. Based 

on the light attenuation characteristics, the device calculates the [Hb]. Disadvantages of this 

method with regard to human medicine include the need for an adequate perfusion rate and 

the facts that dark skin color and metallic nail polishes may interfere with the results 

(Littlejohn & Applegate 2018).



  CHAPTER 1 

 16  

1.3 PULSE OXIMETRY 

Although arterial blood gas analysis is commonly considered the ‘gold standard’ for the 

assessment of oxygenation, oximetry may offer multiple advantages: as it provides 

continuous and transcutaneous estimations of the SaO2, without the needed for repeated 

arterial punctures.  

The accuracy of pulse oximeter readings of oxygen saturation (SpO2) in estimating the SaO2 

among 23 studies available, reports that SpO2 overestimated SaO2 by 1.99% with a range of 

bias from -13.2 ± 8.0% to 12.0 ± 13.3% (Jensen et al. 1998).  

In veterinary medicine, accuracy of oximetry in healthy and compromised horses during 

spontaneous and controlled ventilation suggested that SpO2 has a general tendency to 

underestimate SaO2 values (laboratory CO-Oximetry based) that were over 90% (Koening 

et al. 2003). Accuracy of pulse oximetry during arterial oxyhaemeglobin desaturation in a 

study involving dogs reported that the SpO2 value closely reflected functional SaO2 in the 

range of 22-100%, with a bias of +5.5% over this range (Sendak et al. 1988).  

The agreement between SpO2 and SaO2 could be affected by confounding factors such as; 

complex physiological disturbances including altered blood flow, acid–base disturbances, 

abnormalities in temperature regulation, low perfusion status, sepsis, the presence of 

dysfunctional Hb, vital dyes, or due to motion (Jensen et al. 1998; Wilson et al. 2010; 

Hasanin et al. 2017).  In regards to the last factor, a study performed in dogs, cats, and adult 

horses has also indicated considerable differences in accuracies between various type of 

monitors, sensors, and site of sensor placement, probably due to the different algorithms 

used (Matthews et al. 2003).  

Nevertheless, pulse oximeter is routinely used to non-invasively measure SpO2 as an 

estimation of SaO2 and it is often considered as the additional vital sign (Branson & 

Mannheimer, 2004). Since, the use of pulse oximetry in human medicine has decreased the 

need for ABG by 37%, causing significant changes in the medical treatment of disorders in 

the emergency departments (Simon & Clark, 2002); nevertheless, several investigators 

demonstrated that episodic hypoxemia events are more common than previously suspected, 
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with an incidence ranging from 20–82% in the postoperative period (Roe & Jones, 1993; 

Bierman et al. 1992; Bowton et al. 1994).  

For the safe use of pulse oximeters, it is critical to understand its multiple limitations and 

the two basic principles that govern its mechanism of function, in particular: 

• How HbO2 is distinguished from HHb. 

• How the SpO2 is calculated only from the arterial compartment of blood. 

Pulse oximeters operate based on the principle of different absorption and light emission of 

the different Hb conformation states (Chan et al 2013); in fact by using an electronic 

processor and a pair of small LEDs a pulse oximeter emits red lights, with wavelength of 

660 nm, and infrared lights with a wavelength of 940 nm.  

Absorption of lights at these wavelengths differs significantly between blood loaded with 

oxygen and blood lacking oxygen; HbO2 absorbs more infrared light and allows more red 

light to pass through while HHb allows more infrared light to pass through and absorbs more 

red light (Giguére et al. 2014).  

The pulse oximeter’s LEDs flash in a characteristic sequence: one on, then the other, then 

both off, to allow the photodetector to measure the background level of the ambient light in 

a triple sequence that happens 30 times per second. Furthermore, the microprocessor 

corrects for ambient light, and for the difference between arterial and venous saturation by 

deducting the minimum transmitted light during diastole from the maximum during systole 

(Al-Shaikh & Stacey 2013).  

The peripheral oxygen saturation detected by the pulse oximeter is then displayed as the 

ratio between the concentrations of HbO2 and other Hbs present in the blood, as defined by 

the following equation [6] 

SpO2 = [+,-2]
[+,-2]	&	[++,] x 100 (%) 

The ratio of absorbance at these two wavelengths is calibrated empirically against direct 

measurements of arterial blood oxygen saturation (SaO2) in volunteers, and the resulting 

calibration algorithm is stored in a digital microprocessor within the pulse oximeter. During  
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subsequent use the calibration curve is used to generate the pulse oximeter’s estimate of 

arterial saturation (Tremper & Barker, 1989) (Table 1-5). 

SaO2 660 nm (R) 940 nm (IR) R/IR 

0%   3.4 

85%   1.0 

100%   0.43 

 

All pulse oximeters are based on three main principles: spectrophotometry, Beer’s – 

Lambert’s law, and optical plethysmography. 

 

 

1.3.1 Spectrophotometry 

Every chemical compound absorbs, transmits, or reflects light over a certain range of 

wavelengths, which can be used to calculate the unknown amount of a known chemical 

substance. Spectrophotometry is a method used to measure how much a chemical substance 

absorbs light, by measuring the intensity of a light as it passes through a sample solution. 

Depending on the range of wavelength of the light sources used, spectrophotometers are 

classified into two types; UV-visible  spectrophotometer, which uses light in the ultraviolet 

range (185 - 400 nm) and visible range (400 - 700 nm) of electromagnetic radiation 

spectrum, and IR-spectrophotometer, that uses light in the infrared range (700 - 15000 nm) 

of the electromagnetic radiation spectrum.  

Any spectrophotometer consists of two principal components; a spectrometer and a 

photometer. The first produces the desired range of light wavelengths by the transmitting 

straight beam of light (photons) into a collimator and through a monochromator (prism) that 

splits the light into several wavelengths (spectrum); then a wavelength selector (slit) will 

transmit only the desired wavelength. The photometer instead, measures the range of  

Table 1-5 Calibration curves. Red (R) and infrared (IR) scaled alternating current (AC) signals at arterial 
oxygen saturation (SaO2) of 0%, 85% and 100%.  
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wavelength of light that passes through a sample and sends a signal to a galvanometer or a 

digital display Figure 1-7. 

 

The intensity of the light that passed through a sample is related to transmittance (the 

fraction of the light that passed through the sample) as illustrated by equation [7]	 

 

 L"&-4M%##&-.$	(L) = 	 '"'# 

Where It is the light intensity after the beam of light passes through the sample and Io is the 

light intensity before the beam passes through it. Absorbance on the other hand, is related 

to the transmittance as illustrated by equation [8] 

 

!04)"0&-.$(!) = − log L − '),	(
Q(
Q)
) 

Well-oxygenated blood has a higher concentration of HbO2 and appears bright red to the eye 

because it scatters more red light than HHb, while HHb absorbs more red light and appears 

less red. Unfortunately, because conventional pulse oximeters measure light absorbance at 

only two wavelengths, if any other substance is present in the sample this assumption is 

violated and the pulse oximeter cannot accurately estimate SpO2. 
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1.3.2 Beer-Lambert’s law in pulse oximetry  

This law states that there is a linear relationship between the concentration and the 

absorbance of the solution, which enables the calculation of the solution concentration by 

measuring its absorbance. 

• Beer’s law: formulated by German mathematician and chemist August Beer in 1852, 

states that the intensity of transmitted light (It) decreases exponentially as the 

concentration of the medium increases.  

• Lambert’s law: formulated by German physicist Johann Heinrich Lambert (1728-

1777), states that the intensity of transmitted light (It) decreases exponentially as the 

distance travelled through the substance increases (L). 

Thus, the solute concentration can be calculated from the measurement of incident and 

transmitted light intensity at a known wavelength (Tremper & Barker, 1989).  

 

1.3.3 Optical plethysmography 

The ability of pulse oximeters to detect the SpO2 ‘only’ from arterial blood is based on the 

fact that the amount of red and infrared light absorbed fluctuates within the cardiac cycle.The 

volume of arterial blood increases during systole and decreases during the diastole (named 

here as pulsatile compartment, AC) while the blood volume in the capillaries, veins, skin 

and fat remains relatively constant (named here as no pulsatile compartment, DC) (Chan et 

al 2013) Figure 1-8. This pulsatile 

expansion of the arteriolar bed produces 

an increase in path length that results in 

incresed absorbance, which is assumed 

as arterial blood by all pulse oximeters 

and the only pulsatile absorbance 

between the light source and the  photodetector.  
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In more detail, the electronic processor in the pulse oximeter is programmed to first 

determine the AC component of absorbance at each wavelength, 660 nm and 940 nm, then 

to divide it by the DC component to obtain a “pulse added” absorbance that is independent 

of incident light intensity. Lastly pulse oximeters calculate the ratio of these pulse added 

absorbances, which is  empirically related to SaO2 (Tremper & Barker, 1989) equation [9].              

Ratio (r) =(AC660 ⁄DC660)/(AC940 ⁄DC940). The Figure 1-9, illustrates an example of a pulse 

oximeter calibration curve (Pologe, 1987). This curve is determined on a theoretical basis, 

but for an accurate prediction of SpO2 experimental data is required. The ratio of red to 

infrared absorbances vary from approximately 0.4 at 100% saturation to 3.4 at 0% 

saturation. Unfortunately, MetHb and COHb also absorb red and infrared light at the 

wavelength used by standard pulse oximeters (Figure 1-10) causing possible errors 

(Tremper & Barker, 1989). Now, how strongly a chemical species or substance absorbs light 

at a particular wavelength is termed the extinction coefficient (ε), which is an intrinsic 

property of a chemical species. With respect to ε  in the IR range (940 nm) COHb absorbs 

very little light; whereas in the R range (660 nm) it absorbs as much light as HbO2, therefore 

to the pulse oximeter COHb has a similar absorbance of HbO2 at 660 nm. In a study 

conducted in dogs the effect of COHb on SpO2 was found to be given by the following 

equation [10] (Barker & Tremper, 1987). 
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RSG&	 =
T0G&	 + 0.9	 × 	WGT0

#)#&'	T0 × 	100% 

 

The effect of MetHb on pulse oximetry are also partially predictable from the extinction 

curves (Figure 1-10). MetHb has nearly the same absorbance as reduced Hb at 660 nm, 

while it has a greater absorbance at 940 nm. As MetHb levels increase, the SpO2 tends to 

measure a value of 85% and eventually becomes almost independent of the actual SaO2, it 

is erroneously low when SaO2 is above 85% and erroneously high when SaO2 is below 85% 

(Barker et al, 1989). This effect is due to an increased AC660 and AC940 on the r equation 

[9].  

Probably one of the most difficult engineering problems in pulse oximeter design is the 

identification of the pulsatile absorbance pattern of the arterial blood in the ‘sea’ of 

electromagnetic artifact (Tremper & Barker, 1989). Generally speaking, artifact has three 

major sources; ambient light, low perfusion (low AC/DC signal), and motion (large AC/DC 

signal), all of which result in poor signal-to-noise-ratio (Pologe, 1987).  

A pulse oximeter probe has only 2 LEDs on the side of the detector, however the detector is 

exposed to three sources of light; red, infreared and ambient light. Due to the photodiodes 

used in the sensors as light detectors, they cannot discriminate one wavelength of light from 

the other, LEDs flash on and off in a particular sequence repeated 100 times per second (100 

Hz) in order to try to eliminate the background light interference. First R light passes through 

the tissue and reaches the detector, but ambient light also reaches the detector, so the 

photodiodes record the R and ambient light. Next the pulse oximeter switches off the R LED 

and switches on the IR LED, now IR light and ambient light reach the photodiodes that 

record the IR and room light. Finally, the pulse oximeter switches off both LEDs and only 



  CHAPTER 1 

23 

ambient light reaches the photodiodes that record the rooms light level, which it then 

subtracts from the reading of R and IR light levels. 

In the event of small pulsatile absorbance (low AC-to-DC signal ratio) the pulse oximeter 

will amplify the signal and estimate the saturation from the Ratio of the amplified 

absorbance, unfortunately background noise is also amplified (static signal) and can be 

displayed as an artefactual SpO2 value. To prevent these manufactures have incorporated 

minimum values for signal-to-noise ratio, below which the device will not display a SpO2 

value. Some pulse oximeters display a noise plethysmographic wave for visual identification 

of the noise. Regarding the motion (large AC/ DC signal) which is maybe the most difficult 

artefact to eliminate (Wukitsch et al. 1988), it is an artefact that rarely causes disturbance on 

the operating room, but rather in the recovery and ICU (Intensive Care Unit) it can make the 

pulse oximeter less reliable. Engineers have tried several approaches to address this problem 

such as the signal averaging time; if the device measures over a longer time period the effect 

of an intermitted artefact will be lessened, the downside is that will also slow the response 

time to an acute change in SaO2 . To reduce the artefact due to motion, an algorithm present 

in most pulse oximeters identifies and rejects spurious signals. This shrewd mechanism 

assesses the AC-to -DC signal ratio, checking the validity of the saturation estimate by 

calculating its rate of change (Tremper & Barker, 1989). For example, if the saturation 

estimates change from 97% to 75% in one-tenth of second this sudden change may not be 

averaged into displayed SpO2 (Wukitsch et al. 1988).  
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1.4 PULSE CO-OXIMETRY 

 

Conventional pulse oximeters estimate SaO2 and pulse rate by using a theoretical model 

which was developed over thirty years ago (Severinghaus & Honda, 1987), assuming 

absence of dyshaemoglobins forms and without accounting for motions or possible 

interference sources (Jubran 1993; Buckley et al. 1994). 

Recently, manufacturers have developed other devices that by using more light wavelengths 

are able to measure other forms of Hb present in a blood sample (e.g., HbO2 HHb, COHb 

and MetHb). The operation of pulse CO-oximetry (Radical-7® Pulse CO-Oximeter; 

Masimo Corp., Irvine, California, USA) is based on this relatively new technology, which 

furthermore has the ability to detect the true arterial signal by measuring and subtracting 

the noise signals during motion or low perfusion (Goldman et al. 2000).  

The methodology of Hb measurement by pulse CO-oximetry is similar to that used for 

oxyhaemoglobin estimation by conventional pulse oximetry, except that instead of two 

wavelengths of light, multiple wavelengths are transmitted through the tissues to measure 

the light absorbance characteristics of the analyte [Hb]. The exact number of wavelengths 

and the specific wavelengths used however, are still proprietary and not available from the 

manufacturer. The performance of a conventional pulse oximeter, in a high motion 

environment or in patients with low perfusion is not always ideal and a high incidence of 

false alarms due to artefact has been reported (Moller et al. 1993). In this regard, medical 

equipment manufacturers have developed band-pass filtering in an attempt to address these 

confounding clinical problems. In fact, band-pass filters allow only a physiologic window 

of interest to pass while rejecting frequencies outside the desired frequency band.  

Barker et al. (1997), by evaluating two conventional pulse oximeters accuracy during 

motion but a controlled oxygen desaturation protocol in human volunteers, revealed that 

the two pulse oximeters have displayed saturation values of about 23% and 13% lower than 

the stationary reference unit (Barker et al. 1997).  
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During motion, venous blood and other non-arterial absorptive substances generate a 

pulsatile optical signal attenuating the transmitted light. The result is a decrease in displayed 

SpO2 which is not due to a reduced oxygen saturation, but rather to these ‘non-arterial 

components in movements’, with data strongly suggesting is the venous blood. During 

motion in fact, the low-pressure venous blood is susceptible to local effects of perturbation 

and creates a source of ‘in-band’ noise within the frequency bandwidth of interest. 

Furthermore, the venous blood is a strong absorber of light (Goldman et al. 2000; Swan 

2007). In a pulse CO-oximeter the saturation values displayed account for not only the true 

arterial signal, by detracting those signals created by motion/noise, such that the detected 

IR and R signals coming from a venous (or non-arterial) motion/noise signal as shown by 

equation[11] 

IR= S + M  

R = (ra x S) + (rv x M) 

Where IR is normalised pulsatile IR signal, R is normalised red signal, S is IR signal vector 

from pulsatile arterial blood, M is IR motion signal vector generated by venous (or non-

arterial) pulsation, ra is optical density ratio corresponding to arterial saturation (this gives 

SpO2), and rv is optical density ratio corresponding to venous (or non-arterial) saturation 

(Goldman et al. 2000). Furthermore, adaptive filters (AF), an evolution of the band-pass 

filtering, are able to change their filtering characteristics based on the noise reference signal. 

This is obtained by subtracting the product of the arterial optical density ratio and the 

physiologic signal due to IR light from the physiologic signal due to R light. The resultant 

is a reference signal that contains only noise portions. Finally, a discrete saturation 

transform (DST) algorithm will allow one to separate and consequently calculate the optical 

density ratios that correspond to both the arterial oxygen saturation (ra) and an estimate of 

the venous oxygen saturation (rv) identifying the correct arterial saturation. As the pulse 

CO-oximeter calculates the arterial oxygen saturation without first extracting or 

determining discrete pulses it is able to display the values also when the pulse is poor 
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(Goldman et al. 2000; Swan 2007).  

 

1.4.1 Pulse co-oximetry-based measurement of Hb  

A pulse CO-oximeter based measurement of the O2 carrying state of Hb as well as the 

dyshaemoglobins is obtained by measuring the absorption of light with multiple 

wavelengths (Masimo’s rainbow technologyÒ) through the blood. The use of the suffix 

‘CO’ refers to the capacity of this device to measure also the carbon monoxide (Vos et al. 

2012: Butwick et al. 2012; Patino et al. 2014).  

Through the principles of spectrophotometry and photo plethysmography, this so-called 

rainbow technology measures light absorption during the blood pulsatile cycle with the 

maximum radiant power of the strongest light rated at ≤ 25 mW. The detector receives the 

light, converts it into an electronic signal and sends it to the pulse CO-oximeter (Radical-

7Ò) for calculation. Once the Radical-7 receives the signal from the sensor, it utilises 

proprietary algorithms to calculate the patient’s functional oxygen saturation SpO2 %, blood 

levels of carboxyhaemoglobin (SpCO%), methaemoglobin (SpMet %), total haemoglobin 

concentration (SpHb [g dL-1]) and pulse rate (PR). Acquires absorbance signals from each 

wavelength allowing the non-invasive measurement of total Hb concentration (SpHb) and 

to distinguish between HbO2, HHb, COHb, MetHb. In addition, other parameters such as 

perfusion index (PI), plethysmograph variability index (PVI), and oxygen content (SpCaO2) 

are also calculated (Nicholas et al. 2015).  

 

1.4.2 In-vivo Calibration 

The measurement of blood components such as SaO2, COHb, MetHb, and total Hb, vary 

depending on the method of measurement used. Several studies have compared laboratory 

methods with each other demonstrating that Hb measurements from the same blood sample 

can differ significantly due to inter-device variation. Rivas Chirino and colleagues (2006), 

measured Hb in human patient undergoing liver transplantation using Coulter and blood 
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gas analyser found a consistently higher Hb when measuring by the blood gas analyser 

(0.3–1.0 gdL-1) (Rivas Chirino et al. 2006). The same inter-devices variation was found by 

Patel and colleagues testing eight different analysers (Patel et al. 2007). The Hb 

measurement can also vary within the same device. Gehring and colleagues documented 

variation of Hb level measured from the same blood sample analysed by two identical CO-

oximeters, as large as 1.2 g dL-1 (Gehring et al. 2007). Laboratory measurement devices are 

often compared to a reference standard, but this standard is also subject to error (Bland & 

Altman, 1999). Therefore, inter- and intra-device variability differences can be a significant 

source of measurement variation, as well as inherent and expected variability within and 

between non-invasive and invasive measurement techniques.  

Physiologic factors such as the blood source (venous or arterial), site and time of blood 

draws, blood draw technique, and patient body position are recognized in the clinical 

literature to add variability to Hb levels. The Radical 7® Pulse CO-oximeter (Radical-7® 

Pulse CO-Oximeter; Masimo Corp., Irvine, California, USA) has recently developed the 

ability to adjust the Hb value of displayed to a laboratory reference value. This should have 

the ability to mitigate some of the potential measurement variations and bring the SpHb 

value closer to laboratory instruments currently used for clinical decisions. Even though the 

ability to adjust the Hb value of device to a laboratory reference value is a retrospective 

application of a data set to a new algorithm. This coined ‘in-vivo’ feature does not alter the 

way of measuring SpHb, but just adds or subtracts a constant to the reported values, based 

on a laboratory instrument. The measured reference [Hb] value is subtracted from the SpHb 

displayed on the monitor and this ‘offset’ value is than keyed into the monitor interface 

(this could be up to ± 3 g dL-1).With this new feature, clinicians can adjust the non-invasive 

value at the beginning of a monitoring period to account for individual patient variation and 

the laboratory reference value (Isosu et al. 2013). With this adjustment the standard 

deviation and as such the limits of agreement (LoA) between the reference method and the 

pulse CO-oximeter should be reduced, for example with a significant increase of the 
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accuracy and reliability of SpHb within 2 g dL-1 in 98% of measures when compared with 

the HbLab obtained with a blood gas analyser (Model ABL700; Radiometer, Copenhagen, 

Denmark) (Miyashita et al 2014).  

 

1.4.3 Perfusion Index  

Clinicians often need to be aware of changes in peripheral perfusion and circulatory status, 

particularly in patients under general anaesthesia or who are in critical conditions in order 

to administer the best therapy for the case.  

Tissue perfusion index (PI) varies with the quantity of RBCs in the skin microvasculature 

and it is a reliable indicator of changes in skin blood flow in humans and animals (Hales et 

al. 1989). The PI, which is derived from the photoplethysmographic signal on pulse 

oximetry (Lima & Bakker, 2013) is calculated as the ratio (%) between the pulsatile signal 

of light absorbed by the pulsating arterial inflow and the nonpulsatile signal (light absorbed 

by the skin, other tissues and venous or nonpulsatile blood) (De Felice et al. 2002). The PI 

may function as a marker for peripheral perfusion and resembles vasomotor tone, with low 

and high PI values indicating perfusion below and above average, respectively (van Gender 

et al. 2013; Lima et al. 2002). PI values in humans, may range from 0.02% (very weak pulse 

strength) to 20% (very strong pulse strength) (Mohamed et al. 2015), with a foot skin PI 

value ≤1.24% reported as accurate predictor of severe illness in neonates (De Felice et al. 

2002),  and a PI value ≤1.4% indicating hypoperfusion in adults (Lima et al.2002). PI has 

also shown to be useful as a  more sensitive and earlier indicator of the sympatholytic effect 

after epidural block or sympathectomy compared with regional body temperature (Galvin 

et al. 2006; Ginosar et al. 2009). Microcirculatory disturbance and vascular 

hyporesponsiveness (i.e. in septic shock) lead to rapid changes on PI value, with poor 

perfusion usually associated with worse outcome (Lima et al 2002); which is why PI has 

become one of the resuscitation targets, helping clinicians to detect and to monitor 

microcirculatory disturbance  (van Genderen et al. 2013). The impact of impaired perfusion 
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on the accuracy of non-invasive Hb measurement performed with pulse CO-oximeter has 

been evaluated in human patients during different volume and perfusion statues. Adel and 

colleagues (2018), concluded that a slightly better accuracy of SpHb when compared to 

LabHb was observed in fluid non-responsive patients compared to fluid responsive patients 

and in high-PI samples compared to low-PI samples (Adel et al. 2018; Isosu 2013). 

Conversely, in a volunteer study, Miller et al. had reported different results, where a higher 

PI (induced by digital nerve block) improved the accuracy of SpHb (Miller et al. 2014). The 

manufacturer of Masimo Radical-7TM pulse CO-oximeter recommends caution interpreting 

SpHb results when  PI is ≤1.4% (Bridges &Hatzfeld, 2016). 

 
1.4.4 Conformity and Approval 

 

Pulse oximeters are empirically calibrated on normal, healthy volunteers during 

desaturation studies which are then validated by the authorities [The European Medical 

Agency (EMA) in Europe; the Food and Drug Administration (FDA) in Canada and United 

States; the Medicines and Healthcare Products Regulatory Agency (MHRA) in United 

Kingdom)].  This procedure involves a conformity assessment; an audit of the 

manufacturer’s quality system and a review of technical documentation from the 

manufacturer on the safety and performance of the device 

(https://www.ema.europa.eu/en/human-regulatory/overview/medical-devices), (Council 

Directive 93/42/EEC and subsequent modifications).  

The study methodology for validating accuracy is outlined in the pulse oximetry 

International Standard, ISO 80601-2-61-2017 (https://www.iso.org/standard/67963.html). 

During these studies, warm healthy, young adult volunteers are slowly desaturated to as low 

as 75% SaO2. Arterial samples are drawn during stable plateaus, and the SpO2 pulse 

oximetry reading values are compared against functional SaO2 from a laboratory CO-

Oximeter. This comparison has routinely been reported in literature in terms of bias and 

precision. Bias is the mean difference between SaO2 and SpO2. Precision is defined as 
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standard deviation (SD) of the difference between SaO2 and SpO2 (Milner & Mathews, 

2012; ISO 80601-2-61-2017; Singh et al. 2017). For the values of SpO2, SpCO and SpMet, 

accuracy was determined by testing on healthy adult volunteers in the range of 60-100% 

for SpO2, in the range of 0-40% for SpCO, and 0-15% for SpMet against a laboratory CO-

Oximeter. SpO2 and SpMet accuracy was determined on 16 neonates ranging in age from 

7-135 days old and weighing between 0.5-4.25 kg from which seventy-nine (79) data 

samples were collected over a range of 70-100% SaO2 and 0.5-2.5% MetHb with a resultant 

accuracy of 2.9% for SpO2 and 0.9% for SpMet (www.accessdata.fda.gov).  

 

1.4.5 Pulse CO-oximetry in clinical setting 

The ability to rapidly and accurately determine the Hb concentration is important to 

determine which patients, particularly those undergoing general anaesthesia and surgery, 

may require treatments such as blood transfusions (Villanueva et al. 2013).  

The development of spectrophotometric methods for the non-invasive measurement of 

blood constituents such as Hb has been a highly desired yet largely unachieved goal of 

medical bioengineering (Berkow et al, 2011); although, with the introduction of pulse CO-

oximetry (MasimoÒ Corp., Irvine, California, USA) the continuous non-invasive 

measurement of Hb, referred as SpHb and its components seems to be achieved (Linder & 

Exadaktylos, 2013).  

In human medicine the performance of pulse CO-oximetry and in particularly the SpHb 

measurement has been assessed by comparing the results obtained from laboratory CO-

Oximetry, haematology analyser, blood gas analysers, conductometric POC testing, and 

spectrophotometric POC devices with those obtained via pulse CO-oximetry.  

Results from such studies report an absolute bias of about -0.2 to 0.8 ± 0.6 g dL-1 (Berkow 

et al. 2011;Causey et al. 2011, Lamhaut et. al 2011) and a precision of about 1.1 g dL-1 (SD 

0.83). However, in comparison to haematology Hb analyser, the percentage of outliers 

resulted significantly higher with non-invasive than with capillary measurement (Lamhaut 
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et. Al 2011). Wittenmeier and colleagues 2018, have compared the simultaneous Hb values 

obtained by pulse CO-oximeter (SpHb; Radical‐7 Pulse Co‐Oximeter), a blood gas analyser 

(clinical standard, BGAHb; ABL 800 Flex), and a laboratory haematology analyser (used 

as reference method, labHb; Siemens ADVIA) in 60 healthy children (0.2–7.6 years of age). 

The bias/limits of agreement (LoA) between SpHb and labHb in that study resulted as 

−0.65/−3.4 to 2.1 g dL-1. Interestingly, the bias/LoA between BGAHb and labHb were 

wider 1.14/−1.6 to 3.9 g dL-1 and it was concluded that both methods can show clinically 

relevant differences from the reference method, but that the non-invasive pulse CO-

oximetry measurement of Hb agrees more with the reference method than the measurement 

of Hb obtained by using a blood gas analyser (Wittenmeier et al. 2018). 

Conversely, Hiscock and colleagues reported that the SpHb values obtained from pulse CO-

oximeters (MasimoÒ Rad-7 and MasimoÒ Pronto-7) and HemoCue photometers (201) 

diverged from the standard laboratory CO-Oximeter, by mean variances of -0.03 g dL-1 

[95% confidence interval (CI) and LoA -3.0, 2.9 g dL-1] and 0.08 g/dL (95% CI; and LoA 

-1.3, 1.4 g dL-1) (Hiscock et al. 2015).  

To date, the Radical-7TM Pulse CO-oximeter has been approved by the USA Food and Drug 

Administration, and by EMA for the non-invasive measurement of  Hb in human, reporting 

a difference in Hb concentrations of ±1 g/dL-1 from the standard laboratory values in adult 

patients with Hb concentration ranging between 8 to 17 g dL-1 (Moore et al. 2013, von 

Schweinitz et al. 2015).  

In human medicine, the use of pulse CO-oximetry technology and particularly the SpHb 

monitoring has been shown to reduce blood transfusion frequency in orthopaedic surgery 

(Ehrenfeld et al. 2014; Awada et al. 2015) and abdominal cancer surgery (Kamal et al. 2016) 

patients. 

In fact, in a surgical setting in which blood loss may not be apparent or difficult to properly 

estimate, a continuous rather than intermittent Hb monitoring may provide an earlier 

warning, which is useful in the decision-making process. In this sense, SpHb represents a 
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good indicator of a need to measure invasively Hb if a decrease of more than − 0.5 g dL-1 

is used as cut off (Applegate et al. 2020). 

While the use of pulse CO-oximetry is being increasingly reported in human anaesthesia 

(Lamhaut et al. 2011; Skelton at al. 2013; Moore at al. 2013; Nicholas et al. 2015; De Rosa 

et al. 2020), only a limited number of studies have been published in veterinary species 

namely, dogs (Read et al. 2016), late gestation pregnant sheep (Quinn et al. 2013) and horses 

(Zoff et al. 2019). 

Read and colleagues compared the SpHb values obtained from Radical-7TM against jugular 

venous blood samples analysed by a CO-oximeter laboratory haematology analyser 

(ADVIA 120; Siemens Healthcare GmbH, Germany) and reported that the Radical-7 Pulse 

CO-oximeter underestimated LabHb by 3.1 g dL-1 (bias) and had a wide LoA (-1.5 to 7.5 g 

dL-1) concluding that pulse CO-oximeter cannot be safely used as the sole determinant to 

direct clinical decision-making for dogs (Read et al. 2016).  

The study performed on ovine assessed the accuracy of the signal extraction technology 

(SET) of the Masimo Rad-7 pulse CO-oximeter for SpO2 measurement against laboratory 

CO-Oximeter based SaO2 values obtained from arterial blood gas analyses, investigating the 

failure rate of the pulse CO-oximeter, the accuracy and LoA, (Bland & Altman’s analysis) 

and the effect of mean arterial blood pressure (MAP), perfusion index (PI) and haemoglobin 

(Hb) concentration on accuracy (regression analysis) (Quinn et al. 2013). The results of this 

study indicated that pulse CO-oximeter measurements tend to underestimate 

oxyhaemoglobin saturation compared to laboratory CO-Oximetry with a bias (mean 

difference) of 2% and precision (standard deviation of the differences) of 6%. Accuracy 

appeared to decrease when SpO2 was <75%, however the authors believe that sample was 

too small for statistical comparisons. Among the other findings Quinn and colleagues 

reported that PI had minor influence on the accuracy of SpHb values obtained, however 

MAP was negatively correlated with SpO2 bias. Quinn and colleagues concluded that 

Masimo SET pulse CO-oximeter provided reliable and continuous monitoring of arterial 
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oxyhaemoglobin saturation in anaesthetized pregnant sheep (Quinn et al. 2013). 

In veterinary medicine, the most recent study is a retrospective one that involved equine 

species by comparing the performance of pulse Masimo Radical-7 CO-oximeter against 

laboratory CO-Oximeter (Zoff et al. 2019).  Low bias and wide LoA were found between 

Masimo SpO2 and SaO2 (bias = -1.4%, LoA= -4.0 to 1.3%), and SpHb and Hb (bias = 0.6. 

g dL-1, LoA -3.9 to 5.2 g dL-1). When SpCaO2 was compared with CaO2, a bias of -0.2 ml 

dL-1 and a LoA –of 6.7 to 6.2 ml dL-1 were found. The authors of this study concluded that 

Masimo® pulse CO-oximeter was acceptable for SpHb measurement meeting the Clinical 

Laboratory Improvement Amendments for people (CLIA) limits. However, the wide LoA 

found in all compared measures suggest that pulse CO-oximeter cannot be recommended 

as a substitute of direct measurements.  

The in-vivo method for adjusting SpHb, proposed recently by the manufacturer of pulse 

CO-oximeter Radical-7 (MasimoÒ), which allowed the clinicians to manually adjust the 

first displayed value of SpHb to match the corresponding Lab-Hb for continuous trending, 

has been evaluated only in three studies involving human patients (Isosu et a. 2013; 

Miyashita et al. 2014; Frasca et al 2015) which all concluded that in vivo adjustment may 

represents a significant advance in non-invasive monitoring of Hb as improved the accuracy 

and limit of agreement for SpHb. To date, no study has carried out the same evaluation in 

veterinary species.  
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1.5 METHOD-COMPARISON RESEARCH 

In medicine new or revised versions of measurement techniques are developed on a regular 

basis, but one common issue with new instrumentation or clinical tests is their agreement 

with existing instruments or tests. In fact, before replacing an old device with a new one, 

for example a blood pressure device, it is essential to know whether the results of the two 

devices are similar. Method comparison research aims to evaluate the validity of a new 

monitor against an established reference technique by measuring its accuracy (the way in 

which an observed value of a quantity agrees with the true value) and precision (a measure 

of the extent to which repeated observations conform) (Watson & Petrie, 2010; McAlinden 

et al. 2011; Montenij et al. 2016). Specifically, in regards to the measurement of the ‘true’ 

Hb value, this should be obtained by using the reference technique of haemoglobin cyanide 

(HiCN) methodology, however it requires the waste disposal of large volumes of a reagent 

containing cyanide, it is bulky, time consuming and surely cannot be used in bedside 

monitoring. Therefore, less bulky and faster but reliable techniques for Hb determination 

have been developed by testing the agreement with a reference method. Subsequently the 

agreement between two measurement techniques, rather than validating the experimental 

technique against a perfect reference, have been carried out, letting only conclusions about 

interchangeability between the experimental and reference technique to be drawn 

(Giavarina, 2015; Montenij et al. 2016).  

Saying that, if the disagreement between two devices is sufficiently small and the new 

device has advantages over the old one (for example because it is cheaper or less invasive), 

it is possible to replace the old method by the new one or use the two devices 

interchangeably.  

Many methods have been developed to assess the agreement between two measurement 

methods, but the existing approaches can be classified into three main categories; (1) 

hypothesis testing approach, which tests the departure from the perfect agreement; (2) index 

approach, which includes the first commonly used correlation coefficient (CC), the 
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coefficient of determination (CD) and many more, (3) interval approach with the earliest 

approach in this category being the Bland-Altman (B&A) (Liao, 2015).  

Outline guidelines on the design and analysis studies such the one reported in the present 

thesis, is based on Abu-Arafeh et al. 2016, and more recently on Riou 2018. Moreover, the 

American Society of Veterinary Clinical Pathologists (ASVCP) published guidelines for 

performing method comparison studies, recommend calculating the correlation coefficient 

(r) to help determine the appropriate statistical tests (Arnold et al. 2019).  

 

1.5.1 Correlation Coefficient and Coefficient of Determination 

The degree of association measured by a correlation coefficient is commonly abbreviated to 

r. It is sometimes called Pearson’s correlation and measures linear associations between two 

variables on a scale that varies from + 1 through 0 to – 1. If the value of a variable increases 

and so does the value of the other variable, the correlation is recognised as positive and a 

full correlation between two variables would be expressed by + 1. On the opposite, if the 

value of a variable increases but the other variable value decreases, the correlation is 

recognised as negative and a full negative correlation would be expressed by -1. In case of a 

complete absence of correlation, the r value would be equal to 0 (Figure 1-11). 

The correlation coefficient is sometimes criticized as having no obvious intrinsic 

interpretation, and researchers sometimes report the square of the correlation coefficient. 

Figure 1-11 Scatter plot examples. (a)positive correlation, (b) negative correlation, 
(c) no correlation. 
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This r2 is termed the “coefficient of determination”. It can be interpreted as the proportion 

of variance in 1 variable that is accounted for by the other (Rodgers & Nicewander 1988). 

For example a r of 0.42 correspond to a r2 of 0.18, meaning that in 18% of the variation can 

be explained by the relation between the two variables examined, however as more than 

80% is not explained by this correlation there must be one or more other relevant factors 

that are related (Schober et al 2018). In interpreting the coefficient of determination, note 

that the squared correlation coefficient is always a positive number, so information on the 

direction of a relationship is lost. 

Many studies use the product–moment correlation coefficient (r) between the results of two 

measurement methods as an indicator of agreement, with the null hypothesis that the 

measurements performed by using the two methods are not linearly related (Giavarina, 

2015).  Notably, by using correlation coefficients such investigations are often analysed 

inappropriately, as the (r) measures the strength of a relation between two variables, not the 

agreement between them. In fact, as the change in scale will not affect the correlation, it 

will certainly affect the agreement, and data which seems to be in poor agreement can 

produce quite a high correlation. Furthermore, the test of significance may show that the 

two methods are related, but it would be surprising if two methods designed to measure the 

same quantity were not related (Bland & Altman, 1986).  

 

1.5.2 Bland-Altman 

In 1983 Douglas G. Altman and Martin Bland (B&A) set out their view regarding the 

correct analysis and misconception regarding the Pearson correlation coefficient, they 

proposed an alternative analysis based on the quantification of the agreement between 

measurements, by studying the mean difference and limits of agreement (LoA) (Bland & 

Altman, 1983; 1986). In particular, Bland and Altman highlighted the need to assess two 

aspects of agreement: how well the methods agree on average and how well the 

measurements agree for individuals. As an example in regards to the first assumption, if 
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one of the methods reads lower than the other for half of the subjects but higher for the other 

half of subjects, the net average discrepancy (the difference between measures on the same 

subject) is close to 0, despite the discrepancy for individuals being high. The average 

agreement, or bias, can be estimated by the mean of the differences for individuals, with a 

t test conducted against the null hypothesis of no bias. Estimates of bias then can be reported 

with 95% confidence intervals (CIs), computed as the mean difference ± 1.96 × standard 

error of the differences. The LoA summarises the agreement for individuals, which involves 

the analysis of the variability of the differences. In case of a reasonably normal distribution 

of the differences (assessed by a histogram), and provided that the level of discrepancy does 

not depend on the level of the characteristic being measured, then a 95% LoA can be 

computed as the mean of the differences ± 1.96 × standard deviation (SD) of the differences 

(Bunce 2009). 

In regards to the second assumption, as the B&A plot is a simple scatterplot of the difference 

between the measurements against their averages (Odor et al., 2017), this should be looked 

at to detect whether there seems to be any relationship between discrepancy and the level 

of measurement [e.g. increasing discrepancy between reference and tested method with 

increased Hb level (Figure 1-12 a simulated data) or increasing variability of differences 

between instruments with increased Hb level (Figure 1-12 b simulated data)]. 

 

Figure 1-12a-b Bland-Altman Scatter plots simulating (a) an increase of discrepancy with the increase of haemoglobin 
concentration,  (b) an increase of variability with the increase of haemoglobin concentration.  
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The B&A scatterplots on the x axis represent the average of a pair of measurements (method 

A + method B/2), and the y axis shows the difference between the two paired measurements 

(method A – method B); a line of perfect agreement (0 bias), and two external dashed lines 

indicating the limit of agreements (LoA) (within which approximately 95% of all 

population differences would lie) (Bland & Altman, 1999). 

The 95% LoA quantifies the range of values that can be expected to cover agreement for 

most of the subjects and guides the clinician as to whether the two methods agree 

sufficiently for use in clinical assessment. How small a LoA should be to conclude that two 

methods agree sufficiently is a clinical and not a statistical decision, that should ideally be 

made in advance of the analysis (Bunce 2009). 

Subsequently, B&A (Bland & Altman, 1999) have provided a modification for analysing 

repeated measures under stable or changing conditions, where repeated data were collected 

over a period of time (e.g., consecutive Hb concentrations during surgery). This tool allows 

traditional bias and LoA, but also within-subject and between-subject variability. When 

repeated measurements (replicantes) are made for each subject, it is inefficient to estimate 

average bias and LoA using only the first measurement, rather than for all measurements.  

The Guidelines for Reporting Reliability and Agreement Studies (GRRAS) by Kottner et 

al. (2011) comprise of a comprehensive checklist of fifteen items that support the 

transparent reporting of agreement and reliability studies (Kottner et al. 2011). More 

recently, these aspects have been commented upon in more general terms (Gerke et al. 

2018). 

 

1.5.3 Assessment of Repeatability 

The repeatability (i.e., the single operator or intralaboratory precision) and reproducibility 

(the interlaboratory precision), of a measurement are important attributes that should be 

quantified to enalbe the user to understand the variability of test results. In order to 

investigate the repeatability of measurements, a repeatability study should consider at least 



  CHAPTER 1 

39 

two measurements per subject under identical conditions (same measurement method or 

same observer or rate). The ASTM E691 Standard Practice for Conducting an 

Interlaboratory Study to Determine the Precision of a test method in terms of repreatibility 

and reproducibility specifies analysis of variance (ANOVA) for repeated measures to 

quantify the single-operator or multilaboratory errors (ASTM E691-15, 2015). Once 

repeatability is quantified, and the possibility of bias between measurements excluded, the 

agreement between measurements made on the same subject would depend only on the 

within-subject standard deviation, which measures the size of measurement errors (Bartlett 

& Frost 2008). 

Once repeatibility is assessed, a systematic effect, which implies that there is a tendency for 

the differences in the paired results to go in one direction (e.g., to be positive if the variable 

of interest is numerical) or a random effect, which implies that sometimes the differences 

go in one direction and sometimes they in the opposite direction, but they tend to balance 

out on avarage. To answer this question, we need to calculate the differences between each 

of the n pairs of measurements. Generally, a paired t-test to test the null hypothesis that the 

true means the difference is zero. If the mean of these differences is zero, then it may be 

concluded that there is no systematic difference between the pairs of results (i.e., on 

average, the results are reproducible or repeatable, as relevant) (Siegel & Castellan, 1988). 

 

 

1.5.4 Trending Analysis 

An increased number of studies focus on the ability to track changes in Hb, in addition to 

determining its absolute value (Chang et al. 2019; De Rosa et al. 2020).   

Although the Bland-Altman analysis can provide insights within a trending analysis, the two 

most frequently used graphical statistical methods for trending analysis are; the 4-quadrant 

(4Q) concordance and the polar plot methodology. The 4Q method plots the change in 

experimental Hb (e.g.; ΔSpHb) against the change in reference Hb (ΔHb ref). The percentage 
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of data points in which ΔSpHb and ΔHb ref change in the same direction is called 4Q con- 

cordance. 

 

Four-Quadrant Concordance Analysis 

The 4Q plot was first used for the description of trending capabilities in studies comparing 

cardiac output measurement technologies by Perrino and colleagues (Perrino et al.1994; 

Perrino et al. 1998). This statistical tool illustrates the trending ability of two devices 

(reference and studied) on measuring a quantity, allowing for the fast visual assessment 

of accuracy besides information about the magnitude and direction of changes detected by 

both technologies. Figure 1-13 shows an example of a 4Q plot with 9 artificial data points.  

 

Once data are plotted, the points will be distributed in one of the four quadrants. When both 

the studied technology and the reference technology indicate an increase or decrease in [Hb], 

the respective data points will appear in the upper right and lower left respectively, quadrant 

of the 4-quadrant plot. For example point 8 in figure 1-13, indicates a reference method 

detected a [Hb] change by 0.5 g dL-1, whereas the studied technology showed a change of 

about 2 g dL-1. Despite the two technologies both indicating a positive change in [Hb], the 

numerical values are far from being equal. Points with equal numerical values will be located 

on the 45° diagonal within the quadrant (the dotted line in the blue quadrants). When 

Figure 1-13 Four quadrant plot reporting 9 artificial data for explanation purpose  
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measurements of ΔHb ref methodology and ΔHb-studied methodology disagree in regards 

to the direction of change, the respective data points will appear in the upper left or lower 

right quadrant of the plot (purple areas). The higher the number of data points in the blue 

quadrants compared with those in the purple quadrants, the higher the concordance between 

the measurement devices is. In order to quantify the level of concordance between the two 

methodologies, the proportion of data points in the quadrants representing direction of 

change agreement (blue quadrants) in all data points need to be calculated. Very small 

changes in [Hb] readings can be attributed to noise, and are not supposed to contribute 

sufficiently to, or even disturb trending analysis; to mitigate the inconvenience the concept 

of exclusion zone was introduced. In the exclusion zone, which is represented by the center 

of the 4Q plot, as it is not clear whether the points measured are related to real changes in 

the measurements of Hb or are mainly driven by noise, data are excluded from the analysis 

of the trending ability. In figure 1-13 the exclusion zone was set as 0.5 g dL-1 and marked as 

a grey area. The limitations of the 4Q concordance analysis are related to the lack of cutoff 

values defining good, acceptable, and poor agreement. Moreover, as the results of the 4Q 

plot depend on the time interval between consecutive measurements, the plot can be 

influenced by choosing different time intervals for the analysis. 

 

1.5.5 Clinical Significance Analysis  

 

Error Grid Analysis 

In 1987 Clarke and colleagues (Clarke et al, 1987) developed the error grid analysis (EGA), 

originaly to assess the performance of blood glucose values obtained from a blood glucose 

meter in comparison to reference values obtained from ‘gold standard’. As opposed to the 

traditional statistical method comparison approaches such as; Deming regression, Passing-

Bablok regression or Ordinary Least Squares regression. Subsequently the ‘Clarke Error 

Grid’ or EGA, was also used for analysing non-glucose analytes comparison. The Error 

Grid Analysis consists of a predefined grid of several regions that indicate whether the 
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measured test vs reference data paired observations are within clinically acceptable 

boundaries, with five typically different zones called zone A to E (Figure 1-14). In 

particular, zone A should contain values that are within 20% of reference values and are 

considered “clinically accurate/acceptable”. Zone B will contain values that are greater than 

20% of the reference value but would “not lead to inappropriate treatment”; zone C contains 

values that would "lead to unnecessary treatment"; zone D contains values that would 

indicate a "potentially dangerous failure” to detect low or high analyte value (e.g.; Hb); last, 

zone E will contain values that would confuse treatment of low or high (e.g. Hb) and vice-

versa. 

 

 In 2011 this statistical tool was applied by Morey and colleagues as a method to assess the 

clinical significance of the accuracy of Hb measurement, where by placing the reference and 

tested measurements in x and y axes respectively, they divide the grid in 3 zones: A, B, and 

C, which is based on the American Society of Anesthesiologists guidelines and clinical 

relevance for blood transfusion (ASA guidelines 2006; Morey et al. 2011). With this setting, 

zone A begins with an isthmus of a 10% error on either side of a perfectly accurate 

measurement between the Hb values of 6 and 10 g dL-1. Furthermore, as below 6 g dL-1, 

transfusion will likely occur as well as Hb measurements >10 g dL-1 where the likely result 

in no transfusion, the accuracy at these levels is considered less important. Zone C, signifies 

where errors may be critical. If the ‘true’ Hb is <6 g dL-1, but the device reports a value >10 

Figure 1-14 Clarke Error Grid for venous vs Fingerstick Glucose (mg dL-1) 
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g dL-1, PRBCs may be withheld, resulting in possible harm to the patient. Conversely, if the 

reference Hb is >10 g/ dL-1, but the device reads <6 g dL-1, an unnecessary transfusion would 

occur. Zone B is between zone A and zone C, where errors might result in harm depending 

on the circumstances, but not as serious as a zone C error.  

 

1.5.6 Cohen’s Kappa 

To further assess the agreement between pulse CO-oximetry and IDEXX VetStat, Cohen’s 

kappa coefficient (κ) statistics was calculated. The Cohen’s kappa is a statistical coefficient 

that measures the agreement between two raters, who each classify N items into mutually 

exclusive categories negating the agreement by chance. Although not perfect, this value is 

superior to percent agreement because it accounts for random agreement (Morey et al 2011). 
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2 OBSERVATIONAL PROSPECTIVE STUDY (Agreement) 
 

 
2.1 Thesis aim and hypothesis 

 
Perioperative bleeding remains a major complication during and after surgery, resulting in 

increased morbidity and mortality (Ghadimi et al. 2016). In dogs as in humans the 

intraoperative estimation of total blood loss is anything but easy (Clark et al. 2010; Nuttall 

et al. 2000) and beside a patient’s vital parameters, the measurement of Hb, SaO2, and CaO2 

are important determinants for transfusion decision making (Colquhoun et al 2012; Frasca 

et al 2015).  

Although the ‘gold standard’ of Hb determination remains the cyanomethaemoglobin assay 

(HiCN), the complexity of this methodology does not allow its routine use in a hospital 

setting as it is time intensive and labour intensive, and expensive (Berkow et sl. 2013).  

While the laboratory-based methodologies such as the haematology analyser, the laboratory 

CO-Oximetry, the conductometric point of care, and the spectrophotometric point of care 

are effective for assessing [Hb], SaO2, and CaO2, all require a blood sample which needs to 

be analysed, introducing a delay in result obtainment and therefore are ineffective for 

tracking on going changes (Joseph et al 2016).  

In this scenario a non-invasive methodology to analyse the haematological parameters 

offers the advantages of continuous monitoring, allowing clinicians to react to ongoing 

changes that may reduce over or under transfusion events (Berkow 2013; Iamaizumi et al 

2016).  

Recent technological advances in the field of multiwavelength pulse oximetry (Masimo 

Rainbow SET® Radical-7 Pulse CO-oximeter, Masimo Corp., Irvine, CA, USA) enables 

non-invasive and real-time measurements of Hb, SaO2, and CaO2 as derived pulse CO-

oximeter Hb concentration (SpHb), SaO2 (SpO2), and calculated pulse CO-oximeter derived 

oxygen content (SpCaO2), and perfusion index (PI) values. The spectrophotometry-based 

technology of the probe allows continuous haemoglobin determination; as light passes 

2 
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through the tongue, it is received by the photodetector and generates electrical signals that 

are processed by a Masimo algorithm. This provides an estimation of [Hb] based on its 

absorbance characteristics (De Rosa et al. 2020). 

Pulse CO-oximetry technology has been tested in various clinical scenarios, with results 

from human and veterinary studies regarding its accuracy (Macknet et al. 2010; Miller et 

al. 2011; Nguyen et al. 2011; Read et al. 2016; Zoff et al. 2019) to date have been 

inconsistent, and two meta-analyses concluded with an alert about clinical decision making 

based on these device (Kim et al. 2014; Hiscock et al. 2015).   

As a strategy to improve the accuracy of SpHb, a software feature called in-vivo’ adjustment 

has recently been introduced in the new version of pulse CO-oximeter, which uses a 

haemoglobin value provided by invasive methods (Miyashita et al 2014; Frasca et al 2015). 

Based on a search of scientific literature published to date about in-vivo adjustment applied 

to SpHb values, no study in veterinary medicine has been carried out. Consequently, the 

aim of this study was to evaluate if in-vivo adjustment using the Hb value provided by blood 

gas analyser measurement from arterial blood sampled at the first SpHb measurement, 

would increase the accuracy of the monitor of the subsequent haemoglobin values obtained 

by Masimo Radical-7 pulse CO-oximeter, when compared with the standard value provided 

by the laboratory blood gas analyser.  

 

2.2 Ethical Approval 

This study received University ethical approval (REF13a/16). No further medical or 

pharmacological treatment, except for the routine clinical treatments, was carried out at any 

point and in any of the animals enrolled. All animals enrolled in the study underwent general 

anaesthesia and their lungs were mechanically ventilated during the surgery. 

During hemilaminectomy among other complications, major blood loss is common 

(Nowicki 2014) and as the neurological outcome is also linked to normotension (Vale et al. 

1997; Guha et al. 1989), the assessment of arterial blood pressure is mandatory. Considering 

2 
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that the non-invasive blood pressure (NIBP) technique is inherently inaccurate (MacFarlane 

et al. 2010), in all the animals enrolled in this study a peripheral arterial catheter was placed 

for measuring invasively the arterial blood pressure as per routine anaesthetic management. 

In fact, the recognized ‘gold-standard’ for blood pressure measurement in small animal 

clinical anaesthesia is the invasive measurement via cannulation of a peripheral artery 

(Bodey & Michell 1996; Valerio et al. 2006). 

Considering that all patients’ lungs were mechanically ventilated during the surgery, arterial 

blood gas sampling was performed under the Veterinary Surgeons Act 1966, as per routine 

monitoring. All arterial catheters were removed in all dogs at the end of the surgery.  

 

2.3 Informed Consent 

Informed owner consent, to allow anonymous use of patient clinical data, was obtained upon 

admission to the hospital and recorded via a signed form. 

 

2.4 Materials & Methods 

2.4.1 Hypothesis 

The null hypothesis of this study was that ‘in-vivo’ adjustment using the first invasive 

haemoglobin value provided by a blood analyser could increase the accuracy of subsequent 

SpHb, SpCaO2 measurements performed by Masimo rainbow-SET® Radical-7 pulse CO-

oximetryTM, when compared to the laboratory blood gas analysis (LabHb and LabCaO2) in 

dogs undergoing general anaesthesia for spinal surgery. The primary endpoint of the study 

was to compare the accuracy in measuring the Hb concentration using a non-invasive 

method (Masimo rainbow SET® Radical 7 Pulse CO-oximetry™) to the values provided 

by the invasive method (IDEXX VetStat® analyser). As a second endpoint, the influence of 

PI, mean arterial pressure (MAP) and tongue thickness on the accuracy of SpHb and SpO2 

readings after in vivo adjustment was evaluated. The third endpoint was to assess the 
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trending ability of pulse CO-oximetry on measuring haemoglobin by comparing it to the 

trend provided by IDEXX VetStat® analyser. 

 

2.4.2 Experimental Design  

The study was designed as a prospective single-site field study performed in the UK at the 

University of Glasgow, Small Animal Hospital between March 2017 and March 2019 where 

a method comparison study was conducted. 

2.4.3 Sample Size Calculation 

The population size to compare SpHb and [Hb], considering the power of the test set at 0.8 

(1- β error), with a significant level of 0.05, α (error of 5%) and a correlation coefficient of 

r =0.5 was about 30 patients according to a previous study in human patients (Riess & Pagel; 

2016). The sample size for repeated measurement for a population with a mean of Hb of 12 

dL-1 with an estimated SD of 3.5 g dL-1 with a significant level of 0.05 α (error of  5%) and 

to detect a mean difference (bias) of ±1 g dL-1 was about 96 sample.  The animals enrolled 

and the samples collected were rounded to 39 dogs, and 39 time-matched blood samples 

before in-vivo adjustment and 104 time-matched blood samples after in-vivo respectively, in 

order to compensate for possible lost and to reduce the number of blood sampling for each 

dog. Due to the adjustment of the first measured SpHb to first measured VetStat [Hb] value, 

the data pairs from the first time point were not included in the linear regression and Bland-

Altman analysis for repeated measurements for [Hb] and SpHb. 
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2.4.4 Inclusion & Exclusion Criteria 

Based on physical examinations preanaesthetic haematology and biochemistry analysis, only 

dogs classified as the American Society of Anesthesiologists (ASA) physical status II and 

with a body condition score (BCS) ranging between 4 and 6 out of 9 were included 

(Laflamme, 1997). Animals with preoperative haemoglobin levels outside the Masimo’s 

validated range for humans [(Hb) 8 – 17 g dL-1], or outside the paediatric rainbow® reusable 

pulse CO-oximeter sensor range (10 – 50 kg) were excluded. A total of 39 dogs of various 

breeds, undergoing spinal surgery for decompressive hemilaminectomy were included in 

this study. Animals that had diagnostic procedures and surgery carried out within the same 

day or same general anaesthetic event were also excluded. If the same animal had 

hemilaminectomy performed twice, only at the time of the first event was considered for the 

present study.  

 

2.5  Description of the method 

Food, but not water, was withheld for approximately 8 hours prior to general anaesthesia. 

Dogs were premedicated with a variety of drugs based on clinical requirements and 

anaesthetist preference. Once sedation was achieved, an intravenous (IV) cannula (Biovalve 

safe, Vygon, UK), was aseptically placed into a peripheral vein and general anaesthesia was 

induced with either propofol (PropoFlo Plus, Zoetis, UK) or alfaxalone (Alfaxan, Jurox, UK) 

titrated to effect. Orotracheal intubation was performed to maintain anaesthesia with either 

isoflurane (IsoFlo, Zoetis, UK) or sevoflurane (SevoFlo, Zoetis, UK) vaporised in either 

oxygen or in a mixture of medical air and oxygen. The fractional inspired oxygen (FIO2) was 

maintained between 0.7 - 0.98 and was delivered via a rebreathing system (Datex Ohmeda, 

GE Healthcare, Chalfont St Giles, UK). Volume controlled, mechanical ventilation was 

instituted in all dogs (Aestiva/5 Datex Ohmeda, GE Healthcare, Chalfont St. Giles, UK) with 

inspiratory: expiratory ratios between 1:2.5 and 1:3, with tidal volumes and respiratory rates 
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(fR) adjusted based on the animal’s requirements to maintain an end-tidal carbon dioxide 

concentration (PE´CO2) between 35 to 45 mmHg and peak inspiratory pressures kept below 

20 cmH2O. Hartmann’s solution (Vetivex II Solution, Dechra, UK) was administered at 5 

ml kg-1 hour-1 throughout anaesthesia. Hypotension (mean arterial blood pressure less than 

60 mmHg) was managed with a fluid bolus (5 to 10 ml kg-1 over 10 minutes) or drugs 

(antimuscarinic or dopamine) or both where appropriate. As part of standard care procedures 

for continuous invasive arterial blood pressure (IBP) monitoring and intermittent arterial 

blood samples, 20- or 22-gauge cannula (Biovalve Safe, Vygon, UK), depending on the size 

of the dog, was aseptically placed in a dorsal pedal artery. All dogs were administered 

fentanyl (Fentadon 50 μg ml-1, Dechra, UK) and ketamine (Anesketin 100 mg ml-1, Dechra, 

UK) as variable rate IV infusions throughout surgery. During anaesthesia, heart rate (HR), 

fR , IBP, PE´CO2, FIO2, end-tidal isoflurane (FE´Iso) or end-tidal sevoflurane (FE´Sevo) were 

continuously monitored using a multiparameter monitor (S5 Compact Anaesthesia Monitor; 

Datex Ohmeda, Clafont St. Giles, UK) and recorded every 5 minutes. For IBP, the transducer 

was zeroed to atmospheric pressure and positioned at the level of the right atrium (point of 

shoulder). By using a clip-type pulse co-oximeter probe (paediatric rainbow® reusable 

Sensor DCI-P SC 200, Masimo Corporation, CA, USA) positioned on the apex of the tongue 

laterally to the median groove, SpHb, SpO2, SpOC, and PI values were displayed on a pulse 

CO-oximeter monitor (Masimo Radical-7, Masimo Corporation, CA, USA). All data 

generated were automatically and continuously recorded using the Masimo collect program 

(RDS Docking Station. Model/Cat # Radical-7) throughout the duration of the procedure. A 

calliper was used to measure the maximal vertical dimension and thickness of each dog’s 

tongue at the level of the median groove, prior to placement of the probe, and this value was 

recorded in centimetres (cm). The probe sensor was left in place for 5 minutes until the 

device obtained a stable measurement. If no reading was obtained at the location after three 

attempts, it was recorded as an undetectable reading. Once the reading had stabilised, the 

SpHb value recorded as before in-vivo adjustment was the one displayed by the pulse CO-
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oximeter 15 minutes from the first reading; at this point, an arterial blood was simultaneously 

sampled via the dorsal pedal arterial catheter. Thereafter, every 30 minutes until the end of 

the surgery, arterial blood was sampled, and pulse CO-oximetry detected values were 

recorded simultaneously. For each arterial blood gas (ABG) measurement, to prevent 

hemodilution or contamination of the blood sample, the first 2 ml of arterial blood was 

withdrawn from the attached extension tubing and three-way tap connected to the arterial 

catheter, using a 2.5 ml syringe and discarded; a further 1 ml was collected anaerobically 

using arterial blood gas lyophilized calcium-balanced heparin syringes (BD Preset, Becton-

Dickinson, UK). The maximum volume of arterial blood collected from each dog was 0.5% 

of total circulating blood volume (estimated as 90 ml kg-1) (Haneda & Horiuchi, 1986). All 

ABG samples were analysed within 1 - 2 minutes from collection using a fluorescence-based 

blood gas analyser and oximeter (IDEXX VetStat, Electrolyte and Blood Gas Analyser, 

Laboratories, Inc., ME, USA) using respiratory blood gas cassettes (Electrolyte 8 Plus, 

IDEXX Laboratories, Westbrook, USA) that were kept at a room temperature between 4°C 

and 30°C. The VetStat uses red and infrared light from one light-emitting diode (LED) and 

two laser diodes. This light is directed through an optically polished window to the blood in 

the cassette. The light is partially absorbed and reflected by the erythrocytes to a photodiode. 

The intensity of reflected light varies in a well-defined way, with the blood Hb and SaO2 

used in their measurement. Haemoglobin saturation (SaO2) and [Hb] were measured. 

Temperature correction was not applied, and samples were analysed at 37° C. The VetStat 

blood gas analyser was installed to the manufacturer’s specifications and serviced as 

recommended with daily and monthly quality control checks, using quality control products 

supplied by the manufacturer (IDEXX Laboratories, 2019, IDEXX Laboratories, 2010). 

Results were shared anonymously with IDEXX’s SmartServiceTM allowing for automatic 

software updates and remote calibration of the analysers. The before in-vivo adjustment [Hb] 

values, obtained by the VetStat were used to calibrate the pulse co-oximeter using the in-

vivo feature of this device. The measured reference [Hb] value from the VetStat was 
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subtracted from the SpHb displayed on the monitor and this ‘offset’ value was keyed into 

the monitor interface (this could be up to ± 3 g dL-1). Arterial oxygen content was calculated 

manually, using the arterial partial pressure of oxygen (PaO2), SaO2, and [Hb] values 

obtained from ABG and by using the following equation: 

 

CaO2 ml dL
-1

 =([Hb] g dL
-1

 x SaO2 /100 x Hüfner’s constant) + (0.0031 ml dL
-1

 mmHg
-1

 x arterial 

partial pressure of oxygen (PaO2) mmHg). 

The Hüfner’s constant of 1.3 ml g Hb–1 was applied in the Masimo Radical-7 algorithm 

(Masimo Corporation 2014) as used for calculation purposes. The same investigator 

maintained intraoperative anaesthesia in all dogs, recorded all the relevant variables, and 

collected the arterial blood to be analysed. A different investigator analysed all the arterial 

samples according to the manufacturer instructions

 

2.6 Statistical Analysis 

All data was transferred from paper records onto a digital spreadsheet (Microsoft Excel, 

USA).  

 

2.6.1 Statistical Software  

Most statistical analyses were performed using MedCalc (MedCalc, v17.1 64-bit, Ostend, 

Belgium) except for Error-Grid analysis and Four-quadrant plot that were performed using 

an open-source program R 3.6.2 statistical software (GNU General Public License) 

https://www.r-project.org/.   

 

2.6.2 Normality Testing 

A Shapiro-Wilk test was performed to confirm normality of the continuous variables.  
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2.6.3 Bland Altman Analysis 

The agreement between methods [Hb] provided by IDEXX VetStat® Blood Gas Analyser, 

and SpHb provided by the tested method, Masimo rainbow SET® Radical 7 Pulse CO-

oximetry™, was assessed by calculating the bias and displayed using Bland-Altman plot 

(1986; 2012) for each variable (Hb; SpO2; CaO2) of paired data before in-vivo adjustment.  

In this context, bias (error), SD (precision) and LoA (mean difference ± two standard 

deviations of the differences) between the two methods were calculated. Our predefined ∆ 

was ±1.0 g dl-1 (O’Reilly 2011; Johnson et al. 2020). 

 

 

2.6.4 Bland Altman Analysis for repeated measures 

For paired data after in-vivo adjustment, Bland-Altman analysis for repeated measures per 

subject was performed (Bland & Altman, 2007; 2012). The bias which value could be either 

negative (the pulse CO-oximeter overestimated the value compared to the reference method) 

or positive (the pulse CO-oximeter underestimated the value compared to the reference 

method), precision, and LoA between the two methods were calculated. Our predefined ∆ 

was ±1.0 g dl-1 (O’Reilly 2011; Johnson et al. 2020). 

 

 

2.6.5 Regression Analysis 

The effect of mean arterial blood pressure (MAP), PI and tongue thickness on accuracy (the 

difference between [Hb] and SpHb and difference between SaO2 and SpO2), was assessed 

by regression analysis.  
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2.6.6 Clinical Significance Analysis – Error Grid Analysis 

Clinical significance analysis was evaluated by plotting paired Hb values using the graphical 

technique described by Clarke et al. and adapted by Morey et al. for Hb (Clarke et al. 1987; 

Morey et al. 2011). The reference method is plotted on the abscissa versus the SpHb 

measures on the ordinate. Zones are defined that demarcate acceptable and unacceptable 

errors. Of particular interest is the Hb concentration range of 6–10 g dL-1, which involves 

critical decisions concerning blood transfusions and within which range only a 10% error is 

generally regarded as permissible (ASA guidelines 2006; Morey et al. 2011). 

 

2.6.7 Trending Capability 

Trending capability of the pulse CO-oximeter to follow [Hb] measured by the reference 

method (IDEXX VetStat® Blood Gas Analyser) was assessed in addition to accuracy 

analysis. A modified four-quadrant plot method was used to test the magnitude and 

directionality of the change in [Hb] values. A central exclusion zone for values ± 0.5 g dL-1 

of change in [Hb] was applied to rule out pairs of data with minimal difference. For the four-

quadrant plot, the change in [Hb] measured by the reference method was plotted against the 

change in [Hb] measured by the test method in a regression style. The concordance rate of 

the four-quadrant plot simply describes the number of points which lie within the 2 quadrants 

of agreement (lower left and upper right). 

 

2.6.8 Cohen’s Kappa  
 
The Cohen κ statistic for agreements to transfuse beyond chance, between pulse CO-

oximetry device (SpHb) and VetStat [Hb], was calculated as recommended by Morey et al. 

(Morey et al. 2011). Results were collected into five categories based on if they fell below, 

within or above the reference interval. The agreement was considered poor if κ < 0.2, fair if 

κ = 0.21 to 0.40, moderate if κ = 0.41 to 0.60, substantial if κ = 0.61 to 0.80 and almost 

perfect or perfect if κ > 0.81 (Landis and Koch, 1977). 
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2.7 Number of Samples per dog 

Based on a prior study performed in human patients (Applegate et al. 2012), which reported 

a median of 4 blood samples to allow an average of 3 trend calculation per patient using a 

standard deviation of 1.5, a median of 4 blood samples per dog was performed (of which, 

one was before the in-vivo calibration). 

 

 

2.8 Sample Test Ranges 

The range over which samples were tested on IDEXX VetStat® analyser are listed below in 

Table 2-1. 

 

Parameter Unit Dynamic Range 
pH pH unit 6.6–7.8 

PCO2 mmHg 10–200 

PO2  mmHg 10–700 

tHb g dL-1 5-25 

Table 2-1 Range over which samples were tested on IDEXX VetStatTM 
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2.9 Results 

Fifty-two animals were eligible for the study; of these 13 were excluded (2 due to the 

incompleteness of the anaesthetic record, 2 had PI values missed, in 1 dog the thickness of 

the tongue was not recorded, and in 8 dogs arterial catheterisation was not successfully 

achieved). The remaining 39 animals were included in the study and their data therefore 

analysed. A flow chart according to consolidated standards of reporting trials (CONSORT) 

is presented in Figure 2-1 

 

 Figure 2.1 CONSORT chart for animal recruitment 
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The means and standard deviations and range for weight and age of dogs were 20.8 ± 10.4 

kg (10.2 to 55.5 kg) and 84 ± 33 months (6 to 156 months) respectively. Median BCS was 5 

(range 4 to 6 out of 9) (Table 2-2). 

(n= 39) mean*± SD range 
Age (month) 84 ± 33 6 – 156 

Weight (kg) 20.8 ± 10.4 10.2– 49.5 

PaO2 (mmHg) 460 ± 96 238 – 626 

PaCO2 (mmHg) 37 ± 8 36 –44 

BCS (over 9) 5 4 – 6 

ASA  2 1 – 2 

Gender   

male 3  

female 4  

male neutered 13  

female neutered 19  

Anaesthesia time (minutes) 198 ± 89 79 – 380 

Number of samples (median) 4 ± 1.5 3 – 8 

Tongue thickness (cm) 0.7± 0.2 0.3 – 1 

 

Table 2-2 Demographic and clinical data of  39 dogs. Data are described as mean and standard deviation 

(SD), range, number of animals or proportion (%). [Hb] haemoglobin concentration measured by the 

reference method (VetStat); (SpHb) haemoglobin concentration measured by pulse CO-oximetry; (BCS) 

body condition score (over 9); (ASA) American Society of Anesthesiologists. * Mean if not indicated 

differently. 

Breeds distribution of the 39 dogs included in the study are reported below (Table 2-3). 

 

 

 

 

 

 

 

 

Table 2-3 Breed distribution among the 39 dogs included in the data analysis 
 

(Total n = 39) n 
Basset Hound 1 
Beagle 3 
Cavalier King Charles Spaniel 2 
Cocker Spaniel 3 
Collie 1 
Crossbreed 7 
Dachshund 1 
Doberman 1 
English Bulldog 2 
French Bulldog 6 
German Shepherd 2 
Golden Retriever 1 
Great Dane 1 
Greyhound 1 
Labrador 4 
Lhasa Apso 1 
Pointer 1 
Welsh Corgi 1 
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A total of 143 time-matched blood samples and pulse CO-oximetry values were obtained, 

of which 39 pairs of data for [Hb] measurements were obtained before in-vivo adjustment 

and 104 pairs of data for [Hb], SaO2, and CaO2 measurements were obtained after in-vivo 

adjustment. The average number of measurements (pulse CO-oximetry measurements 

simultaneously to arterial samples) performed per dog was four (range 3-8). In all dogs, pulse 

CO-oximetry provided detectable SpHb, SpO2 and SpOC readings after 2 (1-3) attempts 

from the first attempt of probe positioning on the tongue, with a prevalence in delayed 

reading in dogs administered dexmedetomidine and methadone as premedication (7 out of 

10 dogs premedicated only with dexmedetomidine and methadone vs 3/23 dogs 

premedicated with acepromazine and methadone, and 0/6 dogs premedicated with 

dexmedetomidine acepromazine and methadone).  

The recorded PaO2 was 460 ± 96 (238 – 626) mmHg and 480 ± 84 (227 – 657) mmHg before 

and after in-vivo adjustment respectively. The recorded PaCO2 was between 36–44 mmHg 

for all samples. A total of 23 dogs were sedated with a combination of acepromazine (ACP 

Injection 2 mg ml-1, Elanco, UK) with a dose range of 0.005 - 0.02 mg kg-1 and methadone 

(Comfortan Solution for Injection,10 mg ml-1, Dechra, UK), range 0.3 – 0.4 mg kg-1 

administered either IV or intramuscularly (IM). In 10 dogs, sedation consisted of a 

combination of dexmedetomidine (Dexdomitor 0.5 mg ml-1, Vetoquinol, UK), with a range 

0.5 - 5 µg kg-1 and methadone, range 0.3 – 0.4 mg kg-1, and 6 dogs were sedated with a 

combination of acepromazine, dexmedetomidine, and methadone (same dose ranges). 

General anaesthesia was induced with IV propofol in 25/39 dogs (dose range 1 – 3 mg kg-1) 

and with IV alfaxalone in 14/39 dogs (dose range 1 – 2.5 mg kg-1) and maintained with either 

isoflurane in 30/39 dogs or sevoflurane in 9/39 dogs.  
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2.9.1 Before in-vivo Adjustment 

Thirty-nine samples were taken from 39 dogs (1 from each) of which 39 data pairs were 

analysed. The mean (± SD) values for [Hb] and SpHb were 10.6 ± 1.8 g dL-1 and 13.4 ± 1.7 

g dL-1, respectively; normality distribution, assessed with Shapiro-Wilk is reported in 

(Figure 2-2).  

 
Figure 2-2  Histogram frequency distribution before in-vivo adjustment of haemoglobin measured (a.) by pulse CO-

oximetry, (b.) by VetStat. Normal distribution confirmed with W close to 1, and large p. Standard deviation (SD); number 

of measurements (n) of haemoglobin (Hb) as g dL-1 performed using each methodology; SpHb haemoglobin-based pulse 

CO-oximetery; [Hb] haemoglobin-based VetStat.  

With the quantile-quantile plot (QQ-plot) a graphical presentation of the distribution for Hb 

concentration measured by the two methods has been assessed, which resulted normally 

distributed (Figure 2-3; 2-4).  

 

 
F Figure 2-3   Quantile-quantile plot (QQ-plot) for haemoglobin (Hb) measured by (a.) pulse CO-oximeter, (b.) VetStat laboratory 

blood gas analyser.  



CHAPTER 2 

59 

Since there was no evidence of a systematic effect, the intraclass correlation coefficient 

(ICC) was estimated by creating a sample of 78 pairs of observations by adding to the 

original sample of 39 pairs and a set of 39 pairs of observations in which the value in each 

pair from the original sample are interchanged (Petrie & Watson, 2013).  

 

 

 

Figure 2.4  Distribution plot of differences between measurements by VetStat and pulse CO-oximeter. The red line 

represents Normal distribution. 

 

The estimated Pearson correlation coefficient calculated using all 78 pairs of observations 

created was 0.8, i.e., from this intracalss correlation coefficient, 88.4% of the variability in 

the observations is due to the difference between the pairs, and 11.6% is due to difference 

within a pair. The coefficient of determination (r2 values) was 0.78. Bias, LoA and 95% 

confidence intervals (CI) are reported in Table 2-3. The Bland and Altman plot showed that 

the values obtained by using the pulse CO-oximeter overestimated [Hb] compared with the 

value obtained by the VetStat and the bias was consistent across the range of measured 

values (Figure 2-5). The difference between [Hb] and SpHb was < 1 g dL-1 in 1/39 (2.6%)  
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pairs, 1 - 2 g dL-1 in 7/39 (17.9%) pairs, 2 - 3 g dL-1 18/39 (46.1%) pairs, > 3 g dL-1 13/39 

(33.3%) pairs. Distribution plots of differences between measurements by VetStat and pulse 

CO-oximeter before in-vivo adjustment are reported in Figure 2-5.  

 

 

 

 

 

 

 

The mean ± SD values for CaO2 and SpOC were 15.3 ± 2.4 ml dL-1 and 17.7 ± 2.6 ml dL-1, 

respectively. There was a tendency for SpOC to be overestimated and SpO2 to be 

underestimated compared to the reference method.  

 

 

 

 

Figure 2-5 Bland-Altman plot to assess agreement between Vetstat haemoglobin concentration ([Hb]) and pulse CO-

oximeter derived haemoglobin (SpHb) before in-vivo adjustment (39 data pairs). The mean difference between the two 

methods (bias) is shown as a solid black line; the 95% limits of agreement are shown as dashed lines. Negative bias 

indicates that the pulse co-oximeter overreads compared to the reference method. 
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 2.9.2 After in-vivo Adjustment 

One hundred and four samples were taken from 39 dogs (average 3 samples from 39 dogs) 

of which all 104 data pairs were analysed. The mean (± SD) values for [Hb] and SpHb, were 

10.3 ± 1.8 g dL-1 and 10.6 ± 1.5 g dL-1, respectively. Bias, LoA and 95% confidence intervals 

(CI) are reported in Table 2-4. The Bland-Altman plot showed that the pulse CO-oximeter 

overestimated [Hb] compared with the VetStat and the bias was consistent across the range 

of measured values (Figure 2-6). Once the threshold for accuracy (± 1 g dL-1) is applied to 

our data, difference between [Hb] and SpHb was < 1 g dL-1 in 100/104 (96.1%) pairs, and 1 

- 2 g dL-1 in 4/104 (3.84%) pairs. The correlation coefficient (r) between simultaneous [Hb] 

and SpHb measurement pairs was depicted in a scatter plot, resulting as 0.97. To assess 

SpHb accuracy in time (n=104), consecutive r2 values were calculated for all measured 

intervals and resulted as 0.94.  

 

 

 

 

Figure 2-6  Bland-Altman plot to assess agreement between Vetstat haemoglobin concentration ([Hb]) and pulse CO-

oximeter derived haemoglobin (SpHb) after in-vivo (104 data pairs) adjustment. The mean difference between the two 

methods (bias) is shown as a solid black line; the 95% limits of agreement are shown as dashed lines. Negative bias indicates 

that the pulse co-oximeter overreads compared to the reference method.  
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There was a tendency for SpOC and SpO2 to be underestimated compared to the reference 

method following in vivo adjustment (Figure 2-7). Regarding arterial oxygen saturation, the 

mean ± SD values for SaO2 and SpO2, were 100 ± 0% and 98.6±1.05% respectively. SaO2 

had a bias of 0.9% and LoA of -0.81 to 2.6% after in-vivo (Figure 2-8). 

 

 

 
 
 

 

. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2-7  Bland-Altman’s plot after in-vivo adjustment. Comparison of oxygen content measurements by 

laboratory blood gas analyser (VetStat[CaO2]) and pulse CO-oximeter (Masimo[SpCaO2]). 140 data pairs 

with in-vivo adjustment were represented with different symbols, each symbol represents a data pair. The 

light dashed line represents the 0-bias value. The solid horizontal line represents the bias (mean difference). 

The outer dark dashed lines represent the 95%limits of agreement. Bias of 0.66 ml dL-1 with a LoA of -2.59 

to 3.91 ml dL-1. CaO2 oxygen content, SD standard deviation. 
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Figure 2.8  Bland-Altman’s plot after in-vivo adjustment. Comparison of haemoglobin oxygen saturation measurements 

by laboratory blood gas analyser (VetStat[SaO2]) and pulse CO-oximeter (Masimo[SpO2]).The middle solid horizontal line 

represents the bias (mean difference). All data pairs were superimposed on the 5 points reported. The light dashed line 

represents the 0-bias value. The outer dashed lines represent the 95%limits of agreement. Bias of 0.86% and LoA of -0.81 

to 2.54%. SaO2 haemoglobin oxygen saturation, SD standard deviation 
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2.9.3 Regression Analysis 

The results for regression analysis are shown in Figure 2-9. The coefficients of 

determination (r2), a statistical measure of how close the data are to the fitted regression line, 

was used to assess the effects of MAP, PI and 

tongue thickness on the difference between 

[Hb] and SpHb, resulting in a r2 values of 

0.016, 0.0061 and 0.0044 respectively. Values 

for r2 assessing the effects of MAP, PI and 

tongue thickness on the difference between 

SaO2 and SpO2 were 0.008, 0.024 and 0.093 

respectively. These low r2 values are 

indicative of poor correlation. Nevertheless, in 

35 of 104 occasions, SpHb values were 

recorded when the associated PI value was 

≤1.4%. 

Higher PI values were recorded in dogs that 

were given acepromazine and methadone [PI 

1.5% (0.35 -4.5)] or acepromazine, 

dexmedetomidine, and methadone [PI 1.2% 

(0.62 – 5.6)] as premedication, compared with 

dogs to which dexmedetomidine and 

methadone were administered [PI 0.8% (0.34 

– 1.7)].  

 Figure 2-9  Regression analysis to assess the effect of (a.) mean arterial pressure (MAP) (mmHg), (b.) perfusion index 

(PI) (%), and (c.) tongue thickness (cm) on the difference in haemoglobin concentration ([Hb]) (g dL-1) measured between 

the 2 methods tested (VetStat [Hb] and pulse co-oximeter derived haemoglobin (SpHb)), after in-vivo adjustment. Values 

for r2 for MAP, PI and tongue thickness were 0.016, 0.0061 and 0.0044, respectively. 
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All parameters assessed before and after in-vivo adjustment have been summarised in the 

following table [Table 2-4]. 

 
 
 
[Hb] Bias (95% CI) g dL-1 95% LoA (95% CI) g dL-1 

Before in-vivo adjustment -2.7 (-3.1; -2.3) -4.9 (-5.5; -4.3) to -0.5 (-1.1; 0.1) 

After in-vivo adjustment - 0.2 (-0.3; -0.1) -1.1 (-1.2; -0.9) to 0.6 (0.5; 0.8) 

CaO2 Bias (95% CI) ml dL-1 95% LoA (95% CI) ml dL-1 

Before in-vivo adjustment -2.2 (-3.2; -1.2) -8.3 (-10.0; -6.5) to 3.8 (2.1; 5.6) 

After in-vivo adjustment 0.6 (0.4; 1.0) -2.6 (-3.0; -2.0) to 3.9 (3.8; 4.4) 

SaO2 Bias (95% CI) % 95% LoA (95% CI) % 

Before in-vivo adjustment 1.3 (1.0; 1.6) -0.8 (-1.4; -0.2) to 3.4 (2.8; 4.0) 

After in-vivo adjustment 0.9 (0.7; 1.0) -0.8 (-1.2; -0.6) to 2.6 (2.3; 2.9) 

 
Table 2-4  

Bland–Altman analysis comparing measurements of haemoglobin concentration [Hb], calculated arterial oxygen content 

(CaO2) and arterial oxygen saturation (SaO2), between a reference blood gas analyser (VetStat) and the Masimo Radical-7 

pulse co-oximeter. Bias (mean difference), 95% limits of agreement (LoA) and associated 95% confidence intervals (CI) are 

reported before (39 data pairs) and after (104 data pairs) in vivo adjustment. Negative bias indicates that the pulse co-oximeter 

over-reads compared to the reference method. 
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2.9.4 Clinical Significance Analysis –Error Grid Analysis 
 
The paired haemoglobin values provided by the Radical-7 pulse CO-oximeter (SpHb) and the 

haemoglobin values provided by the VetStat [Hb] after the in-vivo adjustment were also 

plotted using the Error Grid Zone Analysis as proposed by Morey and colleagues which 

accounts for the clinical significance of the difference. This was divided in 3 regions with 

clinical meaning; Zone A (green) is the maximum agreement area, Zone B (white) is better 

agreement area, Zone C (red) is the error area (Morey et al. 2011). Performing Morey's Error 

Grid analysis on all sample points, the majority of data points 102/104 (~98%) were in Zone 

A; in Zone B were 2/104 (1.9%); while in critical Zone C were 0/104 (0%). Considering that, 

it can be said that SpHb and [Hb] are in strong agreement (Figure 2-10). The two values 

within Zone B were recorded during very low PI values (<0.3). Zone  A; in Zone B were 2/104 

(1.9%); while in critical Zone C were 0/104 (0%). Considering that, it can be said that SpHb 

and [Hb] are in strong agreement.

Figure 2-10 Haemoglobin error grid. Haemoglobin measured by a laboratory blood gas analyser [Hb] was plotted against 

haemoglobin measured by pulse CO-oximetry (SpHb). The dashed line represents a line of equality and the solid black line 

represents the data regression line. Zone A (green area) deviation of ± 10% of tested versus reference method, zone C (red  area) 

major therapeutic error, zone B (white area;  < 5% of all data pairs should be encompassed in Zone B) in between. The majority 

of data points should lie in the zone A isthmus. Hb > 10 g dL-1 are of little interest since this will not trigger a RBCs transfusion.  
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2.9.5 Trending Capability 

Trending capability of the pulse co-oximeter to follow [Hb] measured by the reference method 

(VetStat) was assessed in addition to accuracy analysis. A modified 4Q plot was used to test 

the magnitude and directionality of the change in [Hb] values. A central exclusion zone for 

values ± 0.5 g dL-1 of change in [Hb] was applied to rule out pairs of data with minimal 

difference that may not reflect a real change in circulating haemoglobin measured by laboratory 

analyser [Hb] as previously reported by other authors (Applegate et al. 2020). The change in 

[Hb] measured by the reference method (x axis) was plotted against the change in [Hb] 

measured by the test method (y axis) in a regression style. Of the 104 data pairs analysed, 22 

fell into the exclusion zone and were not analysed further. All the 22 pairs excluded were 

recorded during low PI state (≤1.4%). Once the mentioned 22 pairs were excluded, the resulting 

concordance rate was 92.6% (Figure 2-11).  

Figure 2-11 Four-quadrant plot for haemoglobin trending of the pulse CO-oximeter compares the consecutive changes 

in haemoglobin measured by pulse CO-oximeter (SpHb) and measured by laboratory blood gas analyser (Hb). The 

central exclusion zone was set at 0.5 g dL-1. Of the 104 pairs 22 were excluded with a total concordance rate of 92.6%. 

Some of the data pairs are superimposed, the numbers of data superimposed have been reported in correspondence to 

the point/s in red in the picture.  
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Among the six change directions that did not agree, 5/6 were measured during a low PI state 

(≤1.4%). The concordance rate of the 4Q plot simply describes the number of points which lie 

within the 2 quadrants of agreement (lower left and upper right).  

 

 

2.9.6 Cohen’s Kappa  

Cohen’s Kappa value of 0.65 (substantial agreement) if used to identify time points with 

haemoglobin concentration less than 10 g dL-1 based the arterial blood gas values. 
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2.10 Discussion 

The results of this study into pulse CO-oximeter in canine patients undergoing a general 

anaesthesia for spinal surgery, confirms that prior to in-vivo adjustment, the measurement of 

SpHb is not as accurate as it is reported in humans (Moore et al. 2013). In fact, the agreement 

resulting from the Bland-Altman analysis in the present study before in-vivo adjustment 

showed a bias of -2.7 g dL-1, meaning that the pulse CO-oximeter tended to over-read compared 

with the VetStat and this difference was great enough to be clinically relevant.  

To date, in veterinary medicine, only one other study has investigated the accuracy of SpHb in 

dogs (Read et al. 2016), who compared [Hb] measured by a laboratory haematology analyser 

with SpHb measured by pulse CO-oximetry, but without applying the in-vivo adjustment or 

trending analysis. These authors reported a bias + 3 g dL-1 with wide LoA (-1.55 to 7.56 g dL-

1), and 64.5% of the SpHb values differed from the paired [Hb] by > 2 g dL-1. In the present 

study, we found a bias of -2.7 g dL-1 between the two methods and 79.5% of the SpHb values 

differed from the paired [Hb] by > 2 g dL-1. Although the bias values reported between the two 

studies are similar, Read et al. (2016) showed that the pulse CO-oximeter tended to 

underestimate SpHb compared to [Hb] measured by the laboratory haematology analyser, 

which differs with our study. In regard to this, one of the possible explanations could be related 

to a different reference method being used to measure [Hb]. 

In the present study, the reference analyser (VetStat) used was a microprocessor-based 

instrument measuring [Hb], by using red and infrared light emitted at 3 different wavelengths 

(670 nm, 780 nm and 850 nm) (https://www.idexx.pl/files/vetstat-updated-operator-guide-en-

gb.pdf), while the Masimo Radical-7TM pulse CO-oximeter emits +7 wavelengths of light 

between 500 and 1400 nm (https://techdocs.masimo.com/globalassets/techdocs/pdf/lab-

5475e.pdf). Although the wavelengths of light emitted by the VetStat are included within the 
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Masimo Radical-7 range, the specific wavelengths may differ between the instruments and 

may influence the [Hb] values reported by each device. The reason behind which the VetStat 

blood gas analyser was chosen instead of a laboratory haematology analyser, (as in Read and 

colleagues’ study), or a laboratory CO-Oximeter is because of the widespread spread of VetStat 

as a POC equipment in veterinary practices (Bell et al. 2014). 

The disparity between the present study and that of Read et al. (2016) could also be related to 

the type of blood analysed (peripheral arterial blood in the present study vs jugular venous 

blood in the aforementioned study). In fact, based on previous reports [Hb] measured in arterial 

samples are expected to be 0.7– 1.0 g dL-1 less than those derived from venous samples (Yang 

et al. 2001).  

Furthermore, while Read and colleagues used a disposable rainbow adhesive sensor (R1 25L 

Adult Pulse CO-oximeter Masimo Corporation, CA, USA), in the present study a reusable clip-

type pulse CO-oximeter probe (Rainbow DCI-P SC 400, Masimo Corporation, CA, USA) was 

used. 

Lastly, the use of different anticoagulants might cause a wide variation in [Hb] measurements 

(Fairbanks et al. 1992; Thomas & Thomas 2005). Read et al. (2016) sampled venous blood and 

transferred it to a vacuum tube containing ethylenediaminetetraacetic acid (EDTA), whereas 

in our study we sampled arterial blood directly into lyophilized calcium-balanced heparin 

syringes. These variations in methodology may account for some of the differences observed 

between the studies.  

To improve the performance of SpHb, some authors have proposed to calibrate the pulse CO-

oximeter based on in-vivo Hb values gained from other diagnostic methods. In the present study 

performed in dogs scheduled for decompressive hemilaminectomy under general anaesthesia, 

the difference between the initial value for SpHb and Hb obtained from an arterial sample 
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analysed by an arterial blood gas analyser was used for the in-vivo adjustment and also as a 

reference method.  

In veterinary medicine, this is the first study which applies the in-vivo adjustment technique to 

SpHb values as proposed by Miyashita (2014) and Frasca (2015). 

Following the application of the proposed in-vivo adjustment method, the bias for SpHb, was 

reduced to -0.2 g dL-1 and the LoA became narrower. Therefore in-vivo adjustment improved 

the agreement and reliability of SpHb measurements making our results in agreement to human 

clinical studies, where an improved accuracy and precision of SpHb after in-vivo adjustment 

has been also reported (Isosu et al. 2013; Miyashita et al. 2014; Frasca et al. 2015).  

In human medicine literature, different in-vivo calibration methods to improve performance of 

SpHb have been proposed.  

Isosu and colleagues (2013), examined the adjustment of SpHb based on Hb values measured 

by a satellite laboratory CO-Oximeter in 20 Japanese surgical patients, for a total of 92 blood 

samples collected. In this study, Bland-Altman showed before in-vivo  adjustment a bias of 

0.2±1.5 g dL-1 and LoA of -2.8 to 3.1 g dL-1 and after in-vivo adjustment a bias of 0.7±1.1 g 

dL-1 with LoA of -2.8 to 1.4 g dL-1. The authors concluded that in-vivo adjustment may 

represent a significant advancement in non-invasive monitoring of Hb as it improved the bias, 

precision, LoA and correlation coefficient compared to satellite laboratory CO-Oximeter 

measurements. 

Miyashita and colleagues (2014) conducted a similar study to evaluate the accuracy of SpHb 

after in-vivo adjustment, using a reference method to measure Hb in a calibrated blood gas 

analyser, in 19 patients undergoing elective abdominal surgical procedure. Seventy-three Hb 

measurements were obtained by the R2-25a SpHb sensor (pulse CO-oximeter), when compared 

to blood gas analyser values used to in-vivo adjust; it significantly reduced the percentage of 
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outliers (13.6% from 32.8% for SpHb), improved the correlation coefficient (0.93 from 0.83 

for SpHb), improved the bias 0.16 g dL-1 vs 0.68 g dL-1 for SpHb), and LoA. 

Frasca and colleagues (2015) performed a prospective observational study in patients 

undergoing elective major surgical procedures where significant blood loss was expected (41 

patients and 173 measurements), to compare the accuracy of SpHb adjusted in-vivo with the 

mean of 3 arterial HemoCue measurements and with laboratory values. The authors of this 

study concluded that in-vivo adjusted by means of HemoCue measurements improved 

precision (1.4 g dL-1 for SpHb vs 1.1 g dL-1 after in-vivo), but without impacting significantly 

on bias which remained close to 0 g dL-1. In Frasca and colleagues’ study, pulse CO-oximeter 

calibration and reference methods were not the same, but interestingly they reported that also 

the in-vivo adjustment based on laboratory values provided the same results.  

After the in-vivo adjustment was applied, the pulse CO-oximeter still tended to over-read SpHb 

compared with the VetStat [Hb] values, however the discrepancy between measurements was 

significantly reduced following in-vivo calibration.  

In the Masimo Radical-7 pulse CO-oximeter the proprietary algorithm accounts for the 

presence of dyshaemoglobins (methaemoglobin and carboxyhaemoglobin), whilst the VetStat 

analyser used does not discriminate between functional and dysfunctional Hb species; this may 

have contributed to the wide LoA before in-vivo adjustment.  

In fact, multi-wavelength CO-Oximeters such as the ABL90 FLEX, ABL800 FLEX, and 

RAPID Point 500 can detect most common dyshaemoglobins (HHb, O2Hb, MetHb and COHb) 

by haemolyzing a small volume of sampled blood, and shining at least 4 wavelengths to 

calculate the optical absorbance at each wavelength. Similarly to them, the Masimo Radical-7 

pulse CO-oximeter by using a multi-wavelength light that passes through living tissues,  

enables to detected the most common dyshaemoglobin species.  
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On the other hand, neither the IDEXX VetStat blood gas analyser, nor the non-invasive two-

wavelength measurement technologies (e.g. standard pulse oximetry) are able to detect 

dyshaemoglobins. This will not only lead to falsely elevated oxygen saturation values in the 

presence of dyshaemoglobins, but will also miss the presence of MetHb and COHb. The use 

of  the two-wavelength measurement technologies should be avoided when the presence of 

dyshaemoglobins is suspected. There was good agreement between the haemoglobin oxygen 

saturation measurements from the pulse CO-oximeter and VetStat. However, the range over 

which this was assessed was narrow due to the clinical nature of the study. Intentional 

desaturation of patients would be necessary to assess agreement at lower saturation ranges that 

may have an impact upon the accuracy of the pulse CO-oximeter.  

Before in-vivo adjustment, the CaO2 measured by the pulse CO-oximeter was significantly 

higher than the VetStat with wide LoA, largely due to the inclusion of a higher SpHb in the 

equation. However, after in-vivo adjustment a marked improvement of accuracy was achieved 

although a wide LoA remained. This means that the precision of the pulse SpOC does not 

improve in the same way as SpHb following in-vivo adjustment. Further investigation to 

compare SpOC with a HiCN assay or CO-Oximetry based CaO2 calculations are needed to 

better understand this phenomenon.  

In regard to the PI, this is an indirect indicator of peripheral circulation which results from the 

ratio of the amplitude of the arterial pulse detected by the pulse CO-oximeter sensor, to the 

amplitude of non-pulsatile factors such as the veins or subcutaneous fat. As the amplitude of 

the non-pulsatile factors remains almost the same regardless of the dilatation or contraction of 

the vessels, changes in the amplitude of the arterial pulse mostly determines the PI. 

Nevertheless, the PI influence on the accuracy of non-invasive SpHb monitoring is not well 

defined; Nguyen and colleagues (2011) reported that the SpHb bias decreased when the PI was 

over 2.0 in patients undergoing cardiac surgery. Similarly, Miller et al. (2012) reported a highly 
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accurate SpHb measurement in patients with a PI > 2.0 after the peripheral nerve block of their 

fingers with local anaesthetics. Chung and colleagues in 2014, also reported a significantly 

increased PI after spinal anaesthesia and a reduction in the discrepancy between SpHb and 

laboratory Hb (Chung et al. 2014). Furthermore, according to the Radical-7 manufacturer, the 

PI value has a definite influence on SpHb accuracy and obtaining SpHb values (Lee et al. 

2014). The ability of the monitor to obtain a signal and the influence of PI on the SpHb obtained 

was also investigated in the present study. The lack of association between [Hb]/SpHb and 

SaO2/SpO2 differences and MAP, tongue thickness and PI values, demonstrated that these 

factors did not influence the agreement between the two devices. However, following in vivo 

adjustment, 35 SpHb values were recorded when the PI was ≤ 1.4%. In the present study, a 

higher PI value was associated with the use of acepromazine-based sedative protocols, as 

opposed to dexmedetomidine-based protocols. This agrees with the results of Read et al. (2016) 

and it is likely due to the fact that acepromazine induces peripheral vasodilation when 

compared to dexmedetomidine (Grasso et al. 2015).  

For the  sake of clarity, it should be mentioned that as we sampled dogs of ASA categories I-

II, we cannot say that dogs with severe perfusion impairment can be monitored accurately with 

pulse CO-oximetry, and further studies including patients presented with different ASA status 

are needed to adequately define the influence of PI on SpHb accuracy.  

The American Society of Anesthesiologists (ASA) Practice Guidelines for Perioperative Blood 

Transfusion (ASA guidelines) recognise that defining exactly when a perioperative blood 

transfusion is necessary is not obtainable from the literature, as clinical considerations other 

than [Hb] also influence decisions to transfuse RBCs. The ASA guidelines recommend that 

transfusions are mostly not needed when [Hb] >10 g dL-1 but should be administered when 

[Hb] <6 g dL-1 (ASA guidelines 2006). In this regard, the clinical significance was evaluated 

by plotting Hb accuracy against a clinically acceptable error as proposed by Morey (Morey et 
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al. 2011). The EGA in fact helped to better visualise the relation between SpHb and [Hb], 

which resulted in a higher density of data pairs lying closer to the perfect agreement line with 

98% of them encompassed in Zone A, representing a 10% deviation from the reference 

measurement between [Hb] values of 6 and 10 g dL-1 (ASA guidelines 2006). These results 

suggest that the pulse CO-oximeter tested meets the proposed criteria for an ideal device as 

laid out by Morey and colleagues (2011), where an ideal device should have 95% of points 

within the zone A, 5% within the zone B and 0% within the zone C (98/2/0% in our study) 

(Morey et al. 2011). 

Hence, after analysing the error grid we found that none of the SpHb readings could have 

contributed to wrong decision making in blood transfusions, especially if the decision was 

taken wisely, considering the haemodynamic state of the animal. This strongly supports the 

idea that pulse CO-oximetry could be a helpful tool in guiding the clinical decision to initiate 

a blood transfusion. Hypothetically, possible inappropriate blood transfusion decisions (which 

might result in harm, depending on the circumstances, but not as serious as a zone C error) 

could have occurred for the 2 points within zone B, if their measurements have been used as 

the solo way for decision making guidance. However, considering the results of the EGA 

within the narrow critical isthmus where Hb <10 g dL-1, in conjunction with a favourable κ 

statistic, there is probably sufficient evidence to suggest that the pulse CO-oximetry is a reliable 

technology and ± 1 g dL-1 a reasonable degree of accuracy to provide guidance for therapeutic 

transfusion decisions. Additional studies of sufficient magnitude within the range of 

haemoglobin 6–8 g dL-1 are needed to confirm this assumption for all cases. 

To supplant current haemoglobin monitoring practices, SpHb should accurately represent the 

true haemoglobin at any given in time point and the trend of Hb throughout surgery. By trend 

analysis, sequential changes in SpHb with sequential [Hb] changes can be tested, and a 

concordance rate of change defined. According to our findings, the Masimo Radical-7 Pulse 
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CO-oximeter acts as an acceptable trend monitor with 76/82 change direction agreements 

(92.6%) when compared to [Hb].  

The present study is the first in veterinary medicine that has evaluated the trending and 

concordance rate of SpHb changes over time therefore, comparison can only be performed with 

prior reports of single centre studies in human medicine. In a previous study performed in 12 

volunteers under general anaesthesia subjected to haemorrhage and with total Hb concentration 

< 10.0 g dL-1, a 95.4% SpHb change agreement with a Hb laboratory CO-Oximeter base was 

found, however an exclusion zone of ± 1 g dL-1 was applied (Marques et al. 2015). Another 

study which used the same exclusion zone as used in the present study, resulted in 129/137 

SpHb and a concordance rate of changes of 94.2% (Applegate al. 2020). In a study involving 

49 patients undergoing spine surgery, change concordance was 85.1% when SpHb with low PI 

were excluded (Chang et al. 2019). In the present study, the measurements taken during a low 

PI state were not exclude, however if that should be the case, the concordance rate would rise 

to 97.6%.  

The largest discrepancy of study design between the mentioned reports and ours, was the 

inability of easy comparison to be performed and in particular, it is not possible to exclude that 

the use of a newer SpHb probe and software version, and the choice of different refence method 

as reference may have played a major role.  
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 2.11 Limitations 

The current results should be interpreted within the constraints of several limitations.  

 

2.11.1 Case Selection 

The study population included a wide range ages, breeds and equal numbers of each sex, which 

it makes it representative of dogs seen in clinical practice. However, as the present study is a 

single centre observational study, with a quantitatively limited and specific patient population, 

it may differ from that encountered in other referral centres, therefore, the current conclusions 

cannot necessarily be translated to other canine populations, or different clinical conditions. 

Some breeds such as the French Bulldog and English Bulldog (8 cases in total) are over 

represented compared to others, and although this data is in accordance with the higher 

prevalence of intervertebral disc disease reported in these breeds (Bellumori et al. 2013; 

Mayousse et al. 2017), they also present other peculiarities such as significantly lower PaO2, 

and higher tHb compared to meso and dolichocephalic dog breeds (Hoareau et al 2012). The 

higher Hb, which might be a possible compensatory mechanism to maintain normal arterial 

content of oxygen in brachycephalic dogs, may have had some direct influence on the results 

presented in our study (e.g. mean [Hb] and SpHb before in-vivo adjustment) and further study 

specifically assessing the performance of pulse CO-oximetry in brachycephalic breeds should 

be carried out. Furthermore, it is not possible to exclude that other physical characteristic such 

as a denser tongue of brachycephalic breeds compared to mesaticephalic breeds (Jones at al. 

2020) may influence the ability and/or accuracy of pulse CO-oximetry reading. Although 

brachycephalic dogs in the present study are overrepresented compared to other breeds, their 

limited number does not permit further conclusion to be drawn.  

In spite of the fact that only one Greyhound was included in the present study, it is not possible 

to exclude that the documented lower Hb P50 values (the partial pressure of oxygen at which 
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50% of Hb is saturated) that Greyhound dogs show compared to those of non-Greyhound dogs 

(Sullivan et al. 1994) has some influence on the pulse CO-oximeter reading, even though this 

technology does not rely on the ODC.  

 

2.11.2 Sample Numbers and Clinical nature of the study 

Although in line with the sample size calculation, there were limited number of dogs entered 

into the study and many factors were not standardised. Therefore other confounding factors 

cannot be entirely ruled out. Future studies in a standardised condition (e.g. same fluid therapy 

and rates, same anaesthetic protocols) are needed to identify other factors that may influence 

the accuracy of the pulse CO-oximetry in dogs undergoing general anaesthesia. 

 

2.11.3 Spectrophotometric Interferences 

Spectrophotometric analysis can be influenced by the concentration of serum bilirubin (Myers 

& Browne 2007) however, none of the animals included in the study had a preoperatively 

elevated serum bilirubin this was not measured in all of them. 

Furthermore, the reference analyser that we used in the present study only emits 3 wavelengths 

of light and therefore cannot differentiate between Hb species. Although the present study did 

not aim to assess agreement between measurements of dyshaemoglobins (methaemoglobin and 

carboxyhaemoglobin), this would have been useful to further assess the accuracy of the pulse 

CO-oximeter.  

 

2.11.4 Sample Ranges 

Assessment of the pulse CO-oximeter was only conducted in healthy animals, with 

preoperative [Hb] within the limit range for the tested device. This is even more relevant for 

the accuracy trend analyses where less than 10% of change samples were with Hb ≤ 8.0 g dL-
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1 (10 of 104), which may have impacted the ability to assess clinical utility at the very low Hb. 

Nevertheless, change direction agreement was good with Hb < 10 g dL-1 in > 25% of change 

samples (28 of 104). 

In a recent pilot study, it was found that SpHb values changed significantly during 

preoxygenation with a high FIO2, suggesting that SpHb accuracy is influenced by high 

concentrations of O2 (Gayat et al. 2011). In the present study, while all patients in the 

preparation area received 100% O2, the same were all mechanically ventilated once arrived in 

the operating theatre and maintained with the same mixture of O2 and medical air during the 

entire surgery (70% to 98% O2).  Therefore, it  is difficult to draw firm conclusions about the 

influence of FIO2 on SpHb value. Additionally, no animals with abnormal SaO2 and Hb values 

were studied. Further work is required to clarify if in-vivo adjustment improves the accuracy 

and precision of measurements in patients with [Hb] outside the validated range of the device 

(anaemia or polycythaemia) or with lower FIO2 or SaO2.  

 

2.11.5 Samples Tested 

Arterial blood samples have been used in the present study which may be seen as a limitation 

for generalisation to clinical settings, where venous or capillary blood is more commonly 

sampled. As the studied animals were at risk of blood loss and their lungs mechanically 

ventilated during the entire anaesthetic period, arterial catheters were used to facilitate the ABG 

samples for quick testing for the appropriateness of ventilation and blood pressure care, as part 

of the routine anaesthetic management and the motivation behind the choice of using arterial 

blood samples. In spite of the fact that venous blood may be easier to obtain in some clinical 

situations, by using arterial blood, we removed a potential confounding point that a mix of 

arterial and venous blood samples could have introduced into the accuracy of the analyses 

(Applegate et al. 2020).  
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2.11.6.Repeatability  

Repeatability was not carried out in the present study as a repeatability study must, for an 

appropriately selected sample, make at least two measurements per subject under identical 

conditions (Bartlett & Frost, 2018). For the clinical nature of the present study, it was not 

possible to take two blood samples (unless two arterial catheters per patient were placed) at the 

same time and two measurements of SpHb with the same pulse CO-oximeter at the same time. 

Moreover, as the repeatability studies should be carried out under identical condition, in a 

dynamic situation as during a general anaesthesia for surgical procedure, this was not feasible 

to achieved in a clinical setting, therefore repeatability, calculated from analysis of variance 

(ANOVA) was not performed. Under experimental condition, (e.g. dogs undergoing a 

controlled and maintained level of haemodilution), it would be interesting to quantify the 

agreement and reliability of measurements made by those particular methods. 

 

2.11.7 Haemodilution 

In a previous study, the SpHb after haemodilution in healthy adults showed for SpHb a bias of 

0.15 g dL-1± 0.92 g dL-1 and clinically high accuracy against reference Hb (Macknet et al. 

2010). Despite no clinical evidence indicating hyper or hypohydration were recorded, it is not 

possible to exclude those changes in the haemoglobinemia value due to these events have 

happened during the surgery. To avoid this uncertainty, a Goal-Directed Fluid Therapy 

Protocol (GDFTP) and dedicated haemodynamic monitoring should be used. Considering the 

clinical nature of the present study this was not feasible on this occasion, however we advocate 

the need for further studies investigating the SpHb and PI interaction with a controlled GDFTP.  
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Furthermore, evaluation of the sensor and software version of the Pulse CO-oximeter tested 

here should be assessed in patients undergoing large blood loss before drawing any firm 

conclusions. 

 

2.11.8 Influence of inhalational anaesthetic agents 

The use of inhalational anaesthetic agents causes arteriolar dilatation which may alter PI value. 

However this effect was not investigated in the present study, other authors (Park et al. 2015) 

demonstrated that the use of sevoflurane increases the PI with an improvement of SpHb 

accuracy. A similar study should be conducted to investigate the influence of isoflurane on the 

PI value and SpHb accuracy.   

 

2.11.9 Temperature correction 

When analysing blood samples using the VetStat, we did not correct for the body temperature 

of the patients. Whilst this may introduce a small amount of error due to alterations in 

absorption spectra of haemoglobin species, it is suggested that this is not of clinical significance 

(Ralston et al. 1991). However, when assessing agreement between two measurement 

techniques, it may have minor implications.  

 

2.11.10 Reference Methodology 

The VetStat IDEXX blood analyser has been used as the reference method in the present study 

instead of a laboratory CO-Oximeter, as in a survey of veterinary practices POC analysers 

manufactured by IDEXX accounted for 85% of all in UK practice analysers (Bell et al. 2014). 

This also reflected the intraoperative care for many patients undergoing surgical procedures at 

the time this study was conducted at the Small Animals Veterinary Teaching Hospital, 

Veterinary Medicine School, University of Glasgow. In addition, measurement of [Hb] using 
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the technology used within the IDEXX VetStat (AVL Opti) showed in human adults and 

newborns a very good agreement and precision with routine laboratory testing (Schlebusch et 

al. 2001; Boonlert et al. 2003). Despite the lack of validation studies for [Hb] measurements 

using the VetStat in dogs, spectrophotometric characteristics of canine haemoglobin compared 

with human haemoglobin are almost identical (Zijlstra & Buursma 1987). Therefore, we can 

assume that agreement between measurements of [Hb] using the VetStat and other laboratory 

analysers will also be good, and it is acceptable to use the VetStat as the reference method.  

 

2.11.11 Exclusion Zone 

The four-quadrant concordance method uses exclusion zones to limit the influence of small 

changes in [Hb]. The exclusion zones we defined are based on 95% limits of agreement for 

[Hb] and suggests that in our patients, a change up to ± 0.5 g dL-1 may not reflect a real change 

in circulating haemoglobin measured. The exclusion zone may introduce random noise that 

may reduce statistical power and ignores potentially valuable information. 

 

2.11.12 Study Duration 

The present study took place over a long period of time and it is not possible to exclude some 

change in analyser performance, however the blood gas analyser used in the present study  does 

not require periodic routine replacement. The study conditions however may represent clinical 

practice, where most veterinarians keep their blood gas and electrolyte analyser for many years 

and often service them themselves rather than by the manufacturer. In fact, in a survey of 

veterinary practices, POC analysers manufactured by IDEXX accounted for 85% of all in 

practice analysers and more than two thirds (71%) of respondents reported that they used the 

reference intervals supplied by the manufacturer, without further adjustment or assessment 

(Bell et al. 2014). Nevertheless, there was no evidence of change over time from our data, 
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which may have been due to the regular servicing and quality control procedures within the 

Glasgow University Small Animal Hospital. 

 

2.12 Future Studies 

Further studies are needed to explore the Masimo Radical-7® Pulse CO-oximeter® (Masimo 

Corporation, CA, USA) performances in veterinary medicine aiming to assess; the SpHb 

accuracy, as absolute and trend values, in patients with active blood loss or with comorbidities 

that affect peripheral perfusion (e.g. sepsis or cardiac disease).  

Additionally, patients receiving colloids and/or vasoactive drugs as part of their anaesthetic 

management should be investigated to evaluate the influences of these therapies on SpHb 

accuracy. 

As the purpose of non-invasive Hb technology in the operating room is to assist clinicians in 

deciding whether to transfuse, not only should non-invasive Hb devices and the reference 

method produce statistically similar results, but they should also lead to comparable clinical 

decisions (Rice et al., 2013). Future studies should explore the ability of this device to detect 

sudden changes in Hb as well assessing the clinical decision taken based on SpHb.  

For completeness, trend data should be analysed not only with the four-quadrant plot analysis, 

which considers only the directionality of the change, but also with the Critchley polar plot, 

which includes both the directionality of the change and magnitude of the change by setting 

error bars to bind the data. 

Furthermore, venous blood samples instead of arterial samples should be tested to assess if 

results are similar to our findings as venous blood samples are more widely used in daily 

veterinary practice than arterial blood samples. 

Agreement with different reference methods of measuring Hb concentration  (e.g. laboratory 

CO-Oximeter, other POC devices) should be also explored. 
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Future study would help to define if breeds characteristics (e.g. macroglossia and hyperplasia 

of the tongue of brachycephalic dogs) interfere with the pulse CO-oximetry accuracy.  

Lastly, despite the pulse CO-oximetery technology does not rely on the ODC to measure the 

SaO2 and SpHb and SpCO, it would be interesting to assess its performances in Greyhounds 

and other Sighthounds dogs with lower P50 and higher oxygen content and oxygen-binding 

capacity (Zaldívar-Lopez et al. 2011). 

 

2.13 Conclusion 

The proposed adjustment method for SpHb, when compared with blood gas values, reduced 

the numbers of outliers and bias and the SpHb showed to be consistent with the arterial 

haemoglobin measured by blood gas analysis. Therefore, in-vivo adjustment is recommended 

when using this device to monitor SpHb in anaesthetized dogs. Future well-designed studies 

are needed to confirm these findings, particularly in haemodynamically compromised patients. 

 

2.14 Clinical Implications 

Although pulse oximetry does not replace laboratory-based analysis, it provides an early 

warning system of decreasing oxygen saturation. In the same way, pulse CO-oximetry as a 

continuous non-invasive haemoglobin trend monitoring could support the laboratory 

measurements, providing  valuable guidance regarding blood loss and the need for transfusion 

therapy during surgery. 

Pulse CO-oximetry may help in maintaining patients within a target haemoglobin range and 

reducing the number of blood samples needed to control fluid therapy, as well as blood 

products administered intraoperatively. The CO-oximetry technology is promising, it would 

represent a significant advance in non-invasive monitoring of Hb and a very helpful tool in 

guiding the clinical decision to initiate, or not, a blood transfusion.  
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3 OBSERVATIONAL RETROSPECTIVE STUDY (CASE SERIES)  

 

3.1 Role of retrospective observational studies 

Many researchers advocate that experimental methods, such as randomised controlled trials, 

are always needed to address research questions however, practical implications for 

researchers and for funding may reduce the possibility to carry experimental studies.  

The conflict between those who advocate randomised trials in all situations and those who 

believe observational data provide sufficient evidence is a ‘false’ conflict, and should be 

replaced with a mutual recognition of the complementary roles of the two approaches, as 

experimental studies may also carry some limitations (Blank, 1996).  

Observational studies are widely used in veterinary medicine to address a variety of 

research questions, such as descriptive questions (e.g. to estimate the prevalence or 

incidence of a condition), to evaluate diagnostic-test accuracy, or to identify and evaluate 

risk or exposures (Thiese, 2014).  

There are however retrospective studies, these are designed to analyse pre-existing data that 

might be important for expanding or narrowing the implications of established treatments, 

and to allow clinicians to see how interventions play in the ‘real world’ out of clinical 

medicine research (Riley 2014).  

Within this context, a case series belong to a group of observational studies which do not 

test the hypothesis of treatment efficacy but usually follows a group of patients who have a 

similar diagnosis or who are undergoing the same procedure over a certain period of time 

(Carey & Boden 2003). The outcome from a case series may serve as initial reporting on 

novel diagnostic or therapeutic strategies, particularly when the option of waiting for 

comparative evidence is considered unacceptable, or as a tool for summarising the 

outcomes in a certain patient category (e.g. intraoperative bleeding patients). 

Among the purposes of a case series, the generation of a hypothesis that subsequently can 

be tested in studies of greater methodological rigor should be primary. 
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Many case reports and case series have brought to the fore a hitherto unrecognized disease 

and played an important role in advancing medical science. For instance, HIV/AIDS was 

first recognised through a case report of disseminated Kaposi's sarcoma in a young 

homosexual man (Gottlieb et al. 1981). 

In order to explore the accuracy of the pulse CO-oximetry in unhealthy canine patients 

undergoing general anaesthesia for different procedures, the following section, presents a 

retrospective observational study in the form of case series, with an aggregation of multiple 

cases of canine patients referred to Small Animals Veterinary Teaching Hospital, 

Veterinary Medicine School, University of Glasgow, between the study period of March 

2017 and March 2019, for surgical procedures that suffered from acute blood loss, and/or 

hypotension and/or acute hypovolemic state.  

   

3.2 Aim of this case series 

The aim of this case series was to observe the ability of the Masimo pulse CO-oximeter 

(Radical-7®) to detect the change of Hb concentration in dogs undergoing surgical 

procedures that were considered based on their clinical presentation (ASA status  ≥ 3), 

haemodynamically unstable or/and at high risk of bleeding or already presenting an active 

bleed. In particular, the influence of the administration of crystalloids (Hartman’s solution 

or Plasma-Lyte®A), and/or synthetic colloids (Volulyte®) and/or blood products (PRBCs), 

and/or vasoactive drugs (Dopamine or Noradrenaline CRI) on the accuracy of the Masimo 

Radical-7 pulse CO-oximeter to measure the SpHb during general anaesthesia, compared 

to simultaneous discrete [Hb] obtained from ABG processed by IDEXX VetStat® analyser 

was investigated. 
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3.3 Additional Instrumentation 

Due to their clinical conditions and/or the type of surgical procedures they were undergoing, 

all animals included in the case series were instrumented with an arterial catheter to 

facilitate blood pressure monitoring and/or arterial blood sampling alongside the standard 

anaesthesia monitoring. Furthermore, for all these cases, instead of a standard pulse 

oximeter, a Masimo Radical-7® pulse CO-oximeter was used for the purpose of SpHb 

monitoring, in addition to the SpO2 and pulse rate. In-vivo adjustment was applied after the 

first ABG sample to correct the first SpHb value based on the [Hb] obtained from the 

VetStat. 

 

3.4 Eligibility and Inclusion Criteria 

Dogs were required to be privately owned, and to have been referred to the Small Animals 

Veterinary Teaching Hospital, Veterinary Medicine School, University of Glasgow, for 

surgical procedures or to the emergency and intensive care departments between March 

2017 and March 2019, undergoing surgical procedures for which general anaesthesia was 

required and for whom the anaesthetic record was completed in all its parts. Based on the 

clinical conditions at presentation, all dogs included were required to be classified to a 

physical status ASA ≥ III. Only dogs where blood pressure was invasively monitored 

through a peripheral arterial catheter, and where arterial blood samples were analysed with 

VetStat® blood gas analyser were included. Dogs were required to have the SpO2 as well as 

the SpHb values measured by a Masimo Radical-7 pulse CO-oximeter and SpHb recorded 

manually on the anaesthetic file. All patients included in this case series received at least 

one of the following treatments during general anaesthesia; one or more bolus of 

crystalloids, one or more bolus of synthetic colloids, vasoactive drugs and or blood 

products. 
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3.5 Exclusion Criteria 

Those dogs considered outside the ASA physical status, dogs where arterial catheterisation 

was not performed, where arterial blood samples were analysed with a different device (e.g. 

i-STAT®), or whether the blood samples were either venous or not collected within dedicate 

syringes, or dogs for which anaesthetic records were incomplete, were excluded. All dogs 

that did not receive any of the mentioned treatments administered during the general 

anaesthesia period, were not included in the present case series. 

 

3.6 Ethical approval and Informed consent  

Due to the retrospective nature of the case series presented here ethical approval was not 

required, as data presented in this section were already available on the electronic database 

of the Small Animals Veterinary Teaching Hospital, Veterinary Medicine School, 

University of Glasgow. A generic consent form for clinical procedures and for data to be 

used for research purposes was given at the time of animal admission to the hospital. On 

presentation at the hospital each animal was given a six-digit hospital number used to 

identify the cases. In order to seek confidentiality, all data were then anonymised by 

removing the patient’s name, owner’s surname and an increasing cardinal number was 

assigned to each animal. 

Due to their clinical presentation at the time of admission, all cases included in the present 

case series were at risk of developing intraoperative bleeding and/or hypovolemia and/or 

ventilation impairment and as per standard clinical procedure, peripheral arterial 

catheterisation was performed.  

A pulse CO-oximeter (Masimo Radical-7TM) instead of a standard pulse oximeter was used 

with the intent to record information that would help the intraoperative and/or postoperative 

case management. An arterial catheter was maintained or removed after the surgical 
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procedure, depending on the animal’s clinical conditions and clinical management 

requirements.   

 

3.7 Surgical Procedures  

Patients included in the case series underwent a laparotomy with a subsequent liver 

lobectomy, or splenectomy, or cysto-prostatectomy, or enterectomy, or thoracotomy for 

lung lobectomy, or pericardiectomy. 

 

3.8 Anaesthesia Records and Protocols 

The preoperative [Hb] values, medical stabilisation therapies, anaesthetic techniques as well 

as all drugs and therapies administered in the perioperative period, were recorded. The dogs 

were either sedated with dexmedetomidine (0.001-0.08 mg kg-1) or acepromazine (0.005-

0.01 mg kg-1), combined with an opioid [methadone or morphine (0.1-0.4 mg kg-1); fentanyl 

(0.005-0.01mg kg-1)] administered IV or IM, except for fentanyl that was always 

administered IV; or only premedicated with one of the opioids mentioned. General 

anaesthesia was achieved by administering IV either propofol (1-4 mg kg-1), alfaxalone (1-

3 mg kg-1) or etomidate (0.5-2 mg kg-1). Where co-induction was performed, this was 

achieved using IV administration of either diazepam or midazolam (0.2-0.3 mg kg-1) or 

ketamine (0.5-1 mg kg-1). Orotracheal intubation was performed to maintain anaesthesia 

with either isoflurane (IsoFlo, Zoetis, UK) or sevoflurane (SevoFlo, Zoetis, UK) vaporised 

in either oxygen or in a mixture of medical air and oxygen. The fractional inspired oxygen 

(FIO2) was maintained between 0.7 - 0.9 and was delivered via a rebreathing system (Datex 

Ohmeda, GE Healthcare, Chalfont St Giles, UK). Where needed, volume-controlled, 

mechanical ventilation was instituted (Aestiva/5 Datex Ohmeda, GE Healthcare, Chalfont 

St. Giles, UK) with inspiratory: expiratory ratios between 1:2.5 and 1:3, with tidal volumes 

and respiratory rates (fR) adjusted based on the animal’s requirements to maintain an end-

tidal carbon dioxide concentration (PE´CO2) between 35 to 55 mmHg and a peak inspiratory 



CHAPTER 3 

91 

pressure kept below 15 cmH2O. All dogs included in this case series were considered at an 

increased risk of bleeding (due to their clinical conditions or due to surgical procedures they 

were undergoing) or at increased risk of hypovolemia or ventilation impairment.  

All dogs were instrumented with standard anaesthesia monitoring and additionally as per 

standard clinical procedure, peripheral arterial catheterisation was performed with a 20- or 

22-gauge cannula (Biovalve Safe, Vygon, UK) depending on the size of the dog and 

aseptically placed in a dorsal pedal artery for measuring IBP and for the collection of arterial 

blood samples. During anaesthesia, HR, fR, IBP, PE´CO2, FIO2, end-tidal isoflurane (FE´Iso) 

or end-tidal sevoflurane (FE´Sevo) were continuously monitored using a multiparameter 

monitor (S5 Compact Anaesthesia Monitor; Datex Ohmeda, Chalfont St. Giles, UK) and 

recorded every 5 minutes. Anaemia [Hb] < 7 gdL-1 (before fluid therapy and/or surgery), 

hypotension (MAP <60 mmHg), active intraoperative bleeding (≥20% of estimated total 

blood volume) were all recorded (Table 3-1).  

All animals received either Hartmann’s solution (Vetivex II Solution, Dechra, UK) or 

Plasma-Lyte®A (Vetivex® Veterinary pHyLyteTM, Dechra, UK), administered at the initial 

dose of between 5 to 10 ml kg-1 hour-1 throughout the anaesthetic period.  

Hypotension [mean arterial blood pressure < 60 mmHg; (Tanifuji & Eger, 1976)] was 

treated by reducing anaesthetic delivery, treated by administering intravenous bolus of 

crystalloid (5-20 ml kg-1 h-1, IV over 10-15 minutes), or treated by administering 

intravenous bolus (5 to 20 ml-1 kg-1) or treated by administering dopamine (5-15 mcg kg-1 

min-1, IV) or noradrenaline (0.05-2 mcg kg-1 min-1). Hypovolemia was treated by 

administering 5 to 20 ml-1 kg-1 IV of synthetic colloids (Volulyte® 6%, Fresenius Kabi, 

UK). Packed RBCs were transfused if; (a) Estimated blood loss was obviously > 20% of 

whole blood volume with mean arterial blood pressure < 60 mmHg, (b) Blood haemoglobin 

level was lower than 7 g dL-1(c). Continuous blood loss with mean arterial blood pressure 

< 60 mmHg (Table 3-1).  
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Bleeding patients who did not meet the criteria for blood transfusion were resuscitated by 

either crystalloids solution in ratio (crystalloids solution: blood loss = 3:1) and/or colloids 

for a maximum of  20 ml kg-1 per day. A baseline haemoglobin measurement was obtained 

and recorded for both [Hb] and SpHb at the beginning of surgery.  

 

Complication Criterion Reference 
1. Hypotension MAP <60 mmHg Tanifuji and Eger 1976 

2. Active Bleeding ≥ 20 % of tot blood volume (ml) Linklater 2019  

3. Low Haemoglobin < 7 g dL-1  

4. Packed RBCs were 
transfused if 

(a) Blood loss > than 20% of whole 
blood volume with MAP < 60 mmHg 
(b) Hb < 7 g dL-1  
(c) Continuous blood loss with mean 
arterial blood pressure < 60 mmHg 

Linklater 2019 

Table 3-1 Definitions of complications considered  

 

3.9 Results 

Of the 37 cases conforming to the inclusion criteria, 20 were included in the study, while 

17 were excluded (in 6/17 of cases the anaesthetic record was incomplete, in 6/17 of cases 

in-vivo adjustment were not performed, in 3/17 of cases SpHb values were not always 

recorded and in 2/17 of cases arterial blood samples were analysed within the same 

anaesthetic event with two different devices). The gender distribution of animals included 

was; four entire males, five entire females and eleven neutered. While in regard to the breeds 

distribution animals were as follows; four crossbreeds; three Golden Retrievers, two Cocker 

Spaniels, two German Shepherds, two Labradors, two Standard Poodles, two Pugs, one 

French Bulldog, one Husky, and one Miniature Schnauzer. Among the 20 dogs included; 

10 dogs were premedicated with a combination of dexmedetomidine and methadone IM or 

IV, four dogs with morphine and dexmedetomidine IM or IV, one dog with acepromazine 

and methadone IM, two dogs with only fentanyl IV and three with only methadone IV. In 

9/20 of the dogs, induction was performed with alfaxalone, in 10/20 with propofol and one 

dog  induction was achieved with etomidate. Among the dogs induced with propofol, four 
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had coinduction with midazolam and one with ketamine. Among dogs induced with 

alfaxalone, four had midazolam. Of the 20 dogs, general anaesthesia was maintained in 16 

and in four with sevoflurane and isoflurane respectively Table 3-2.  

 

 

Further demographic data are reported on Table 3-3. Of the 20 cases included, during the 

general anaesthesia all bleeding and/or hypotension/hypovolaemia was recorded and treated 

in 17/20 instances by reducing anaesthetic delivery, 3/20 by only administering IV 

crystalloid as bolus (10-20 ml kg-1 IV), 3/20 by only administering synthetic colloids as 

bolus (5-20 ml kg-1); 5/20 received crystalloids as bolus (5 to 30 ml kg-1) and synthetic 

colloids as bolus (5 to 20 ml kg-1); 5/20 were treated with PRBCs transfusion of which two 

received also synthetic colloids (5 to 10 ml kg-1); 4/20 received vasoactive drugs. Of the 20 

cases, two presented with anaemia before general anaesthesia. In the following sections 

some of the mentioned cases have been reported as examples. 

 

Parameters Crystalloid 
treatment 

Synthetic 
Colloids  

Crystalloids & 
Colloids  

PRBCs 
transfusion 

Vasoactive 
drugs 

n of dogs included in each treatment 3/20 3/20 5/20 5/20 4/20 

Age (mean ±SD) yrs 7.4 ± 1.9 7.5 ± 1.9 6.4 ± 2.8 10.4 ± 1.5 6.4 ± 2.6 

Body mass (mean ± SD) kg 42.1 ± 4.2 23 ± 10.9 23.2 ± 11.5 31.2 ± 11.2 12.7 ± 4.3 

SpHb – [Hb] before in-vivo (mean ±SD) g dL-1 0.9 ± 0.7 2.2 ± 0.4 0.5 ± 0.2 0.8 ± 0.5 1.7 ± 0.5 
*SpHb – [Hb] after in-vivo (mean ±SD) g dL-1 0.4 ± 0.3 1.7 ± 0.4 0.4 ± 0.1 0.5 ± 0.1 

1.9 ± 1.4$ 

0.6 ± 0.2d 

1.3 ± 0.4n 

 

Table 3-3 Summary of some of the demographic data of the 20 cases included in the case series. * Value after in-vivo adjustment 
and treatment. $ animals treated with PRBCs and Colloids; d animals treated with dopamine; n animals treated with noradrenaline. 
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3.9.1 Intra-Operative bleeding: SpHb in cases treated with crystalloids 
 
CASE 1 

 
Figure 3-1 SpHb & [Hb] in spontaneous (non-traumatic) haemoabdomen due to rupture of hemangiosarcoma 

 

A 9.5 years old neutered female Golden Retriever (44 kg), with a grade 2/6 pansystolic 

heart murmur, was presented after an episode of collapse that subsequently deteriorated 

with generalised weakness, cardiac arrhythmias and pulse deficiency. A ruptured splenic 

mass (probably an hemangiosarcoma) was diagnosed with abdominal ultrasound; 

abdominocentesis and a whole body computed tomography were also performed to exclude 

evidence of metastasis. The dog was then prepared for an exploratory laparotomy, which 

was followed by a splenectomy. During surgery mild hypotension (average 56 mmHg) and 

a small amount of, but constant bleeding (about 20% of total blood volume) were treated 

with two boluses of crystalloids (10 ml kg-1 Hartmann’s solution IV) administered over 10 

minutes.  
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CASE 2 

 
Figure 3-2 SpHb & [Hb] in acute, spontaneous (non-traumatic) haemoabdomen due to hepatocellular carcinoma 

 
A 7.3 years old male Golden Retriever (45.1 kg), with hyperaemic mucous membranes, 

increased rapid capillary relief time, and moderate tachycardia. Limited fluid volume 

resuscitation (LFVR) was performed, before diagnostic procedures were carried out under 

sedation, after which general anaesthesia was induced. During surgery, a mild permissive 

hypotension technique was carried out to reduce the bleeding, (about 20% of total blood 

volume was lost) and one bolus of crystalloids (10 ml kg-1 Plasma Lyte®) was administered 

during surgery. The diagrams show the trends in SpHb values (red line) generated by the 

pulse CO-oximetry before and after in-vivo adjustment (green dot), and intermittent [Hb] 

values obtained from arterial blood samples analysed with VetStat blood gas analyser 

(empty dots).  

 

Values of SpHb in 3 cases (2 of which have been reported in the present thesis) treated with 

crystalloids: 

On average, crystalloid bolus administered was 16.6 ml kg-1 (10 to 20 ml kg-1 IV) and 

performed 20 minutes from the beginning of general anaesthesia (10 to 30 minutes);  the 

number of arterial blood samples performed per animal was 4 (3 to 6). The mean difference 

between SpHb and [Hb] before in-vivo adjustment was 0.9 g dL-1 (range 0.8 to 1.1 g dL-1). 

After in-vivo adjustment the mean difference SpHb –[Hb] was 0.4 g dL-1 (0.4 to 0.5 g dL-
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1). In all three subjects, the pulse CO-oximeter showed a consistent fall in SpHb during 

bleeding. After crystalloids bolus, the difference between SpHb –[Hb] did not increase. 

 

3.9.2 Intraoperative hypovolemia: SpHb in cases treated with synthetic colloids  

CASE 3-4-5 

The diagrams on the right, show the trends in SpHb values (red line) generated by the pulse 

CO-oximetry before and after in-vivo adjustment (green dot), as well as the intermittent 

[Hb] values obtained from arterial blood samples analysed with VetStat blood gas analyser 

(empty dots).  

3. A 9.7 years old male Cocker Spaniel, 

with an early stage B1 mitral valve 

disease was presented for pyrexia and 

anorexia, as well as pain during urination 

and defecation. A prostatic abscesses 

rupture was diagnosed and  received 

colloids at 20 ml kg-1 . 

 

4. A 7 years old neutered female Standard 

Poodle, with suspicious of septic 

peritonitis due to a perforated gastric 

ulcer; with pale mucous membranes and 

vomiting. Colloid’s administration was at 

10 ml kg-1. 

 

5. A 6 years old Miniature Schnauzer, with 

a suspicious of septic abdomen from a 

Figure 3-3-4-5  SpHb & [Hb] in hypovolemic dogs 
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pancreatic pseudocyst was presented with mild icterus and pain. Colloid’s 

administration was 5 ml kg-1. 

 

All three cases presented hypovolemia, tachycardia, prolonged capillary relief time, 

hypalbuminaemia and hyperlactatemia (mean serum lactate of 3.2 ± 1.1 mmol L-1). Before 

induction of the general anaesthesia, in all cases analgesic therapy, pre-surgical blood work 

and abdominal ultrasound were performed, followed by an administration of 10 ml kg-1 of 

fluid (Plasma Lyte® A) and by 5 ml kg-1 of synthetic colloids (Volulyte®).  

 

Values of SpHb in three cases treated with synthetic colloids: 

On average, intraoperatively synthetic colloids (Volulyte®) as 11.6 ml kg-1 (5 to 20 ml kg-

1) were administered at 90 minutes from the beginning of general anaesthesia (70 to 100 

minutes). The average number of arterial blood samples performed per animal was three. 

The mean difference between SpHb and [Hb] before in-vivo adjustment was 2.2 g dL-1 

(range 2 to 2.8 g dL-1). After in-vivo adjustment and before intraoperative synthetic colloids 

bolus, the mean difference of SpHb –[Hb], in two over three dogs, was 0.4 g dL-1 (0.2 to 

0.6 g dL-1). After intraoperative colloids bolus the mean difference SpHb –[Hb] was 1.7 g 

dL-1 (1.3 to 2.2 g dL-1). In all three subjects on average SpHb values were lower than [Hb].  
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3.9.3 Intra-Operative bleeding: SpHb in cases treated with crystalloids & colloids 
 
CASE 6 

 
Figure 3-6 SpHb & [Hb] values in an acute traumatic hemoperitoneum for splenic rupture due to motor vehicle accident  

 
A 4 years old neutered female German Shepherd (32.7 kg), was presented with hyperaemic 

mucous membranes, increased respiratory rate, and cardiac arrhythmia/tachycardia. Soft 

tissue swelling and bruising on different parts of the body, and a closed carpal fracture were 

detected. The patient was first stabilised, then LFVR and analgesic therapy were 

administered; once stabilised, the dog underwent an abdominal ultrasound scan that revealed 

a considerable amount of fluid grossly appear with bleeding and probably due to a spleen 

torsion. After abdominocentesis  and PCV measurement of abdominal fluid, the dog was 

prepared for an exploratory laparotomy with subsequent splenectomy. During surgery 

bleeding, about 20% of total blood volume was lost and addressed with 20 ml kg-1 

crystalloids bolus and 5 ml kg-1 synthetic colloids (Volulyte®).  

 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 3 

99 

CASE 7 

 
Figure 3-7 SpHb & [Hb] values during liver lobectomy surgery 

 

A 4.3 years old neutered male Pug (14 kg) with mitral valve diseases grade 3/6 and 

pansystolic heart murmur was presented with pink mucous membranes, increased rapid 

capillary relief time, a moderate tachycardia and hypoalbuminemia. A limited fluid volume 

resuscitation (LFVR), 5 ml kg-1 of Plasma Lyte solution, before inducing of a general 

anaesthesia for an abdominal ultrasound was administered. During surgery, about (20% of 

total blood volume was lost). Blood typing but PRBCs transfusion was not carried out, 

however a bolus at 10 ml kg-1 of crystalloids and a bolus of 10 ml kg-1 of colloids were 

administered.  

The two diagrams show the trends in SpHb values (red line) generated by the pulse CO-

oximetry after in-vivo adjustment (green dot) and intermittent [Hb] performed with VetStat 

blood gas analyser (empty dots) taken from arterial catheter of this patient.  

 

Values of SpHb in five cases (two of which have been reported in the present thesis) treated 

with crystalloids and synthetic colloids: 

On average crystalloids bolus was administered as 15 ml kg-1 (5 to 30 ml kg-1) 20 minutes 

from the beginning of the general anaesthesia, and a bolus of synthetic colloids (Volulyte®) 

as 11 ml kg-1 (5 to 20 ml kg-1) at 41 minutes (30 to 70 minutes). The number of arterial 

blood samples performed was two. The mean difference between SpHb and [Hb] before in-
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vivo adjustment was 0.5 g dL-1 (range 0.4 to 0.7 g dL-1). After in-vivo adjustment and before 

intraoperative colloids bolus, the mean difference SpHb –[Hb], was 0.6 g dL-1. After 

intraoperative colloids bolus the mean difference SpHb –[Hb] was 0.45 g dL-1. In all three 

subjects on average SpHb values were higher than [Hb]. The pulse CO-oximeter showed a 

consistent fall in SpHb during bleeding. 

 
 
3.9.4 Intra-Operative bleeding: SpHb in cases treated with PRBCs 
 
CASE 8 

 
Figure 3-8 SpHb & [Hb] values in non-traumatic haemoabdomen for gastric mass 
 

An 8.2 years old female neutered Labrador (39.4 kg), presented with depressed mentation, 

pale mucous membranes, prolonged capillary relief time, a weak peripheral pulse, 

hypothermia, tachypnoea, and tachycardia, blood tests as well as an abdominal ultrasound 

with paracentesis were performed. Stomach perforation by an ulcerative tumour, with the 

spillage of stomach contents into the abdomen was diagnosed.  Before surgery PCV was 

22%, VetStat based Hb was 7.1 g dL-1, with mild hyperlactatemia; within the reference 

ranges for coagulation parameters. After an abdominal incision revealed a constant 

haemorrhage, gastrotomy and mass excision were performed, and once the bleeding was 

stopped and the dog was determined to be DEA 1.1 positive by an in-house card typing 

method (PCV 18%;VetStat Hb 6.3 g dL-1), the PRBCs transfusion was slowly started and 

then maintained at 10 ml kg-1 h-1 over 3 hours. Routine monitoring showed the dog to be 

stable and normothermic throughout the transfusion. 
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CASE 9 

 
Figure 3-9  SpHb &[Hb] values in a liver lobectomy for hepatocellular carcinomas 

 

A 10 years old male neutered Husky (37.8 kg), underwent an exploratory laparotomy with 

liver lobectomy to remove a hepatocellular carcinoma. Before surgery PCV, Hb, and 

coagulation parameters where within the reference ranges. During the surgery two episodes 

of bleeding were recorded; the first was mild, while the second was rapid, profuse, and 

difficult to arrest. The blood volume lost was estimated at about 30 % of total blood volume. 

The dog received after the first episode of bleeding 5 ml kg-1 of synthetic colloid, followed 

by another 5, for a total of 10 ml kg-1 over 15 minutes. After the second episodes of blood 

loss, (PCV 19%; VetStat Hb 6.5 g dL-1) and dog determined to be DEA 1.1 positive by an 

in-house card typing method, the PRBCs transfusion was started and then maintained at 10 

ml kg-1 h-1 over 4 hours. Routine monitoring showed the dog to be stable and normothermic 

throughout the transfusion.  

 

Values of SpHb in five cases treated with PRBCs transfusion  

On average PRBCs was administered once 25% of total blood volume was lost (20% to 

30%), with a [Hb] of 6.4 g dL-1 (6.1 to 7 g dL-1) and at 61 minutes from the beginning of 

general anaesthesia (35 to 120). In two of the five cases, synthetic colloids (Volulyte®) as 

7.5 ml kg-1 (5 to 10 ml kg-1) at 45 minutes (20 to 70 minutes). The number of average arterial 

blood samples performed for each dog was 3 (3 to 6). The mean difference between [Hb] 
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and SpHb before in-vivo adjustment was 0.8 g dL-1 (range 0.4 to 1.7 g dL-1). After in-vivo 

adjustment the three dogs that did not receive intraoperative colloid bolus had a mean 

difference SpHb-[Hb] of 0.5 g dL-1 (0.3 to 0.8 g dL-1), while in the two that received 

synthetic colloids and PRBCs was 1.9 g dL-1 (0.9 to 2.9 g dL-1). In all subjects SpHb values 

displayed were on average higher than [Hb], however the pulse CO-oximeter showed a 

consistent fall in SpHb during bleeding, with rising values during the transfusion time. Post-

operatively the mean difference of SpHb-[Hb] decreased for all five cases. 

 

3.9.5 Intra-Operative hypotension: SpHb in cases treated with vasoactive drugs 

CASE 10 

 
Figure 3-10 SpHb & [Hb] values during thoracotomy for lung lobe torsion 

 
A 5 years old neutered female Pug (10.2 kg), which was presented with dyspnoea, pyrexia, 

lethargy, and coughing, was diagnosed with left lung lobe torsion with mild pleural 

effusion. On the day of surgery, she was prepared for a total lung lobectomy, performed via 

thoracotomy at the level of 5th intercostal space. During surgery the lung lobe was congested 

and enlarged, and due to a mild untwist of the torsed lobe, severe hypotension, probably 

due to inflammatory mediator and endotoxins release into blood stream occurred. A rapid 

administration of crystalloids bolus of 10 ml kg-1 IV, followed by a noradrenaline infusion 

0.05-2 mcg kg-1 min-1 were necessary to restore the blood pressure. The dog was discharged 

from the hospital a few days after recovery. 
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CASE 11  

 
Figure 3-11 SpHb & [Hb] during thoracotomy for right auriculectomy 

  
A 7 years old neutered female (20.4 kg) crossbreed dog was presented with collapse, 

lethargy, anorexia/vomiting, and recurrent pericardial effusion. Tachycardia and muffled 

heart sounds were detected during thoracic auscultation. A right auricular mass was 

detected and identified as hemangiosarcoma, with no signs of metastasis based on computed 

tomography and abdominal ultrasound. On the day of surgery, she was prepared for a right 

lateral thoracotomy at the level of 4th intercostal space. During surgery, a dopamine infusion 

5-10 mcg kg-1 min-1 was necessary to maintain the blood pressure. The dog was hospitalised 

in the ICU for analgesia and supportive care, then discharged from the hospital a few days 

after. 

 

Values of SpHb in five cases (two of which have been illustrated in the present thesis) 

treated with vasoactive drugs: 

Five of the twenty dogs included in the case series, despite being normovolemic, developed 

hypotension during general anaesthesia. Of these five, three dogs received a dopamine 

infusion (5 to 15 mcg kg-1 min-1) and two received noradrenaline (0.5 to 2 mcg kg-1 min-1) 

during surgery. The average time of vasoactive drugs administration was 39 minutes from 

the beginning of general anaesthesia (30 to 65 minutes), with dopamine average infusion (7 

mcg kg-1 min-1) and noradrenaline infusion 1 mcg kg-1 min-1. In two of the five cases 

crystalloids bolus was also administered before or simultaneously to the vasoactive drugs. 
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The number of total arterial blood samples performed per dog on average was 3 (3 to 5). 

The mean difference between [Hb] and SpHb before in-vivo adjustment was 1.7 g dL-1 

(range 0.8 to 2.2 g dL-1). After in-vivo adjustment among the three dogs that received 

intraoperative dopamine, a difference SpHb-[Hb] was 0.6 g dL-1 (0.4 to 0.8 g dL-1), while 

in the two that received noradrenaline was 1.3 g dL-1 (0.9 to 1.7 g dL-1). In all subjects SpHb 

values displayed were on average higher than [Hb], however the pulse CO-oximeter showed 

a consistent fall in SpHb during bleeding. 
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3.10 Discussion 

In human medicine, it has been reported that intraoperative total haemoglobin are the most 

frequently ordered laboratory measurements, in both acute and outpatient setting (De 

Frances et al. 2008). In particular, acute blood loss frequently results in impaired peripheral 

perfusion and an acute hypovolemic state that requires rapid treatments such as blood 

transfusion (Adel et al. 2018).  

European guidelines for the management of perioperative bleeding had suggested using 

non-invasive haemoglobin devices only as trend monitors (Moore et al. 2013) but more 

recently, in human medicine the pulse CO-oximeter has been tested in trauma patients 

(Gamal et al. 2017), during low perfusion states and in hypovolemic states (Adel et al. 

2018), and active haemorrhage (Marques et al. 2015) with conflicting results.  

In veterinary medicine, the investigations regarding the accuracy of SpHb have just started, 

and with this case series we aimed to report the influence of acute blood lost and/or 

hypovolemia and different treatments such as crystalloids, synthetic colloids, PRBCs, and 

vasoactive drugs, on the direction of SpHb changes and how accurately these reflected the 

direction of haemoglobin changes detected by an invasive [Hb] measured by VetStat® blood 

analyser.  

Our finding highlighted the possible advantages of using pulse CO-oximetry in patients at 

high risk of intraoperative bleeding, in fact in all cases Masimo Radical-7 showed a 

consistent fall in SpHb reading during bleeding episodes, which may be form a starting 

point for deciding when to perform an invasive Hb measurement. Nevertheless, in all 

patients receiving synthetic colloids and/or noradrenaline infusion, a raise in difference 

between haemoglobin concentrations measured by VetStat® and by pulse CO-oximeter was 

recorded suggesting that values displayed by the Masimo Radical-7 under these 

circumstances should be considered carefully and always confirmed by an invasive blood 

sample.  
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3.10.1 Influence of hemodilution and Crystalloid administration on SpHb 

It has been previously established in human and animal studies, that by using mass balance 

and volume kinetics, a large bolus infusion of crystalloid results in an immediate fall and 

then a steady decline in haemoglobin concentration that reaches its nadir at the end of the 

infusion (Dobrin & Hahn 1999; Vane et al.2004). In a more recent study (Marques et al. 

2015), after an infusion of Ringer’s lactate solution for 20 minutes, the initiation of the 

decrease in SpHb values occurred within a 5-minute period, and the authors reported as a 

possible explanation of the delay in the initial fall as a reflect time for circulatory mixing 

and some level of transcapillary refill.  

To date, only a few studies have investigated the accuracy of SpHb in controlled 

hypovolemic states, unfortunately only in human medicine which limits the comparisons. 

Marques and colleagues reported a good precision during haemorrhage and replacement, 

however they suggested that the SpHb accuracy was not sufficient for a blood transfusion 

decision (Marques et al. 2015). Dewhirst and colleagues (Dewhirst et al. 2014) simulated a 

hypovolemic state by performing a preoperative phlebotomy and then assessed the accuracy 

of Masimo Radical-7 between Lab CO-Oximetry based Hb and SpHb, reporting that the 

last was not affected by acute blood loss.  

Despite the limited number of the cases presented, our results showed that acute bleeding 

and crystalloids bolus, after in-vivo adjustment, did not influence the difference between 

pulse CO-oximetry and VetStat analyser, which was stable, on average, within an 

acceptable range. In fact, pulse CO-oximeter adequately followed the [Hb] curve at all the 

time points measured, and the differences between SpHb –[Hb] were always lower than ± 

1 g dL-1, which is encouraging as ∆ of  ±1.0 g dL-1 has been chosen as acceptable accuracy 

in many similar studies (O’Reilly 2011; Johnson et al. 2020). These results are in agreement 

with a previous study, where hemodilution in healthy adults showed for SpHb a bias of 0.15 

g dL-1± 0.92 g dL-1 and clinically high accuracy against reference Hb (Macknet et al. 2010). 
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3.10.2 Influences of hypovolaemia and Synthetic Colloids administration on SpHb 

The measurement of [Hb] could be influenced by the synthetic colloids when these are 

administered to address hypovolemia; in fact, one of the unintended consequences of 

colloids therapy is the development of an acute iatrogenic haemodilution which may result 

in a paradoxical decrease in oxygen delivery (Bubenek-Turconi et al.2020). This event is 

reported to be more significant when synthetic colloids, compared to crystalloids, are 

administered, with a total decrease of about 5% in [Hb] for every 250 ml of colloids infused 

(Bubenek-Turconi et al.2020; Lobo et al. 2010). This iatrogenic haemodilution, together 

with intraoperative blood loss and fluid shift, may be sufficient to justify the need of serial 

[Hb] measurements to evaluate the fluid management strategy and/or to decide when to 

actually initiate the blood transfusion. A study performed in human patients undergoing 

hepatic resection has shown that the accuracy of SpHb measured by Masimo Radical-7 pulse 

CO-oximeter was influenced by colloid administration, and precisely immediately after 

colloids administration, in that case as 15 ml kg-1 IV of Voluven 6% administered for 30 

minutes (Vos et al. 2012). In a recent study, the researchers reported that, <10 ml kg-1 vs >10 

ml kg-1 colloids administration did not influence the pulse CO-oximeter accuracy, but that 

SpHb underestimates the [Hb] value when compared with laboratory CO-Oximeter for both 

groups (< and > 10 ml kg-1) (De Rosa et al.2020).  

In the three cases that have been reported in this case series however, Volulyte® instead of 

Voluven, at variable rates (5 to 20 ml kg-1) was administered. These two synthetic colloids 

are pretty similar, in fact both contain the same hydroxyethyl starch dissolved (130 as mean 

molecular weight and 0.4 as degree of molar substitution) even if in different solutions; 

isotonic electrolyte for Volulyte and 0.9% sodium chloride for Voluven.  

Despite the limited cases studied in the present case series, our data also suggests that the 

accuracy of SpHb decreased after rapid colloid administration (bolus) and the difference 

between SpHb –[Hb] was wider in cases where a higher rate of colloids was administered. 
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Even if a firm conclusion is not possible due to the limited data analysed, these confirm that 

colloids affect the SpHb accuracy in dogs under general anaesthesia in the same way that 

they do in human patients. Therefore, it is important to report this data, as a false assumption 

of too lower Hb levels may prompt unnecessary transfusion of allogenic RBCs, thereby 

exposing the patient to unnecessary risks (e.g. infection, allergic reactions, delayed 

haemolytic reaction). 

The results of the present retrospective observational study regarding the accuracy of the 

SpHb measurement while rapidly administering colloid solution requires further elucidation 

to prevent unnecessary blood transfusion or, on the other hand, omission of necessary blood 

transfusion, as both situations are potentially harmful. 

 

 

3.10.3 Influences of Blood transfusion on SpHb 

Anaemia is common amongst surgical patients and independently associated with adverse 

outcomes, increased length of hospital and intensive care stays, postoperative 

complications, and increased mortality (Beattie at al. 2009). On the other hand, the 

administration of blood in the perioperative setting is a risk factor which also may contribute 

to poor outcomes (Musallam et al. 2011). According to a systematic analysis of 494 studies 

evaluating RBCs transfusions in humans, for actual benefit in health outcomes, it concluded 

that 59% of transfusions were, in fact, inappropriate (Shander et al. 2012).  

The five cases studied presented in this case series showed that despite on average the SpHb 

displayed higher values compared to [Hb] the differences between SpHb –[Hb] were 

acceptable (0.5± 0.1 g dL-1).  

This is in disagreement with other studies (Applegate et al. 2012; Giraud et al. 2013) where 

the bias of SpHb and laboratory CO-Oximetry based Hb was about 0.9 ± 1 g dL-1 and with 

a high LoA. In addition to; the different blood sampled, the different software and pulse 

CO-oximeter probe, and reference method used, the imprecision of SpHb during rapid Hb 
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changes reported by the mentioned studies could be related to the frequency of blood 

sampling, that in the present case series were less recurrent compared to the mentioned 

studies. In fact, as the SpHb values displayed by the monitor are an average of 

measurements calculated over several minutes (2–8 min depending on the setting), if the 

Hb change is rapid and of large magnitude, several minutes are required before the changed 

value is displayed by the monitor, increasing the difference in Hb values with the reference 

method. This can possibly explain the reason why in our cases on average SpHb displayed 

higher values compared to [Hb] during active bleeding. 

Naftalovich and Naftalovich (2011) explained this phenomenon as due to the fact that as 

SpHb is based on the microvascular Hb and macrovascular Hb, as the former is less affected 

during conditions of acute haemorrhage it remains high to maintain tissue oxygenation, the 

macrovascular Hb measured in a blood sample decreases, increasing the discrepancy 

between SpHb and an invasive arterial Hb derived value. This hypothesis while interesting, 

has not been validated with clinical evidence. 

Furthermore, it is interesting that the two cases that in the present case series received also 

colloids bolus in addition to the PRBCs, showed a higher difference SpHb –[Hb] (1.9 ± 1.4 

g dL-1) which is in agreement with the cases where hypovolaemia was treated with the same 

synthetic colloids and with the human literature (Vos et al. 2012). 

 

3.10.4 Influences of vasoactive drugs on SpHb 

Based on the result of the present case series, the difference between SpHb –[Hb] seems to 

not to increase as much in patients with hypotension, who are receiving dopamine as a 

vasopressor, instead, the difference seems much bigger in patients receiving noradrenaline 

as a vasopressor. This could be related to a severe reduction of PI following noradrenaline 

administration in comparison to dopamine, however data related to the PI values have not 

been recorded and it is not possible to draw conclusions. However, Miller and colleagues 

(2012) using regional anaesthesia increased the perfusion to the finger wearing the SpHb 
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sensor, demonstrating that an increase of PI increased also the accuracy of SpHb (Miller et 

al. 2012). In the observational prospective study, reported in the present thesis however, we 

did not observe any link between the accuracy of SpHb and the value of PI, although the 

severity of the vasoconstriction caused by noradrenaline infusion may be severe enough to 

influence the pulse CO-oximeter accuracy. Nevertheless, other authors have reported that 

the use of norepinephrine/noradrenaline increases the likelihood of not being able to obtain 

a SpHb signal (Coquin et al. 2012); due to the retrospective nature of the present case series, 

it is not possible to exclude that the same happened for the cases analysed, as unfortunately 

the failures of pulse CO-oximeter in detecting signal were not recorded. Future studies are 

needed to investigate this hypothesis.  

 

3.11 Limitations 

Retrospective study presents several limitations that should be clarified; in fact, as 

previously reported, a retrospective analysis of the same data by different researchers have 

shown conflicting conclusions (Ward & Brier, 1999). 

 

3.11.1 Sample Numbers and population 

A very small sample size may have influenced the results. The retrospective character of this 

case series and the limited animal number included have surely precluded identification of 

important factors and limited the drawing of firm conclusions.  

 

3.11.2 Generalisation 

Data were gathered from dogs anesthetised in a University Veterinary Teaching Hospital 

setting, this might imply a selective population (older, unstable, or more critically ill). Due 

to selection bias, results of current retrospective case series may not be generalisable to the 

whole population. 
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3.11.3 Missing data 

Since the data was not collected in a predesigned proforma as per the specific requirements 

of a study, some of the data would inevitably be missing. Furthermore, some variables that 

have the potential to impact the outcome (e.g. perfusion index) may not have been recorded 

at all. 

 

3.11.4 Lack of Homogeneity 

Different persons have recorded the data in different ways, and at different times during the 

procedure. Moreover, animals included underwent different surgical procedures and did not 

undergo uniform anaesthetic protocols, which may have influenced some of the results. It is 

also not possible to guarantee that SpHb value displayed by the Masimo Radical-7 and the 

arterial samples were taken at the same time.  Future studies with a standardised design are 

needed to confirm or deny the results here presented. 

 

3.11.5 Estimation of Total Blood loss 

The volume of total blood loss was estimated based on the amount in the suction chamber, 

and by the gravimetric method (weighing of the pre- and post-procedure gauze). However, 

currently there is no ‘gold standard’ method to quantify intraoperative blood loss, and its 

estimation might be more difficult if most of the blood is absorbed by surgical gauze and 

not collected in the suction bottle. Despite other methodologies for blood loss estimation 

existing, the most are not in routine use either due to their unavailability or time-consuming 

nature during surgical procedures. Therefore, it is not possible to exclude that other methods 

for estimating blood loss would result in different treatment or blood transfusion timing, 

even if the amount of blood loss was not the only end point to start a PRBCs administration. 
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3.11.6 Transfusion trigger 

The term “transfusion trigger” is used to describe a set of conditions under which 

transfusion is considered to be indicated and for which no further justification is required. 

One of the earliest transfusion triggers was the 10/30 rule used in both human and veterinary 

patients, which stated that presurgical patients should be transfused if their Hb 

concentration was less than 10 g dL-1 or their haematocrit was less than 30% (Adams & 

Lundy, 1942). Further support for the 10/30 rule comes from the observations in animal 

models (Chapler &Carn, 1986; McFarland, 1999). Nevertheless, it was also recognised that 

healthy anesthetised animals could tolerate very low [Hb] and Hct (5 g dL-1; 15%) as long 

as intravascular volume is maintained (Weiskopf et al. 1998). The result reported in the 

present case series could be influenced by the transfusion trigger chosen; and different 

transfusion trigger would produce probably different results. Patient Blood Management 

(PBM) would help to reduce the discrepancy among future studies, as this clinical concept, 

if implemented, has the primary goal of avoiding unnecessary blood transfusions and 

improving patient outcome and safety (Thakrar et al. 2017).  

 

3.11.7 Monitoring of Fluid therapy 

Despite the impressive ability of the body to adjust ‘wrong’ fluid therapy administration, 

fluid requirements should be re-evaluated and adjusted regularly based on the patient 

requirements, rather than based on a general recommendation. To avoid this uncertainty, a 

GDFTP and a dedicated haemodynamic monitoring should be used, however due to the 

retrospective and clinical nature of the data present in this case series, it was not feasible in 

this occasion. Future prospective studies should use a controlled GDFTP.  
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3.12 Conclusion and Clinical Relevance 

The non-invasive measurement of blood constituents such as total Hb concentration has 

been a highly desired and largely unachieved goal of medical bioengineering until the 

introduction of the pulse CO-oximeter, which can be used for continuous haemoglobin 

(SpHb) monitoring.  

Although SpHb monitoring is not sufficiently accurate to completely replace invasive 

measurements, the results of the present retrospective study are very encouraging and 

showed the utility of this device in the surgical theatre. Future well-designed prospective 

studies (experimental and/clinical) are needed to confirm or contradict these findings. 

 

3.13 Future Studies 

The influences of the type of colloids administered (synthetic vs natural), timing, rate, 

duration, and rapidity of administration on SpHb values needs future investigation.  

Nevertheless, it would be interesting to investigate if the SpHb may be able to inform the 

clinician of decrease in [Hb] in a timely and accurate manner, preventing unnecessary 

diagnostic blood draw, while offering detailed clinical evidence for transfusion decision as 

shown in human patients (Tang et al. 2019).  

Additionally, as PRBCs transfusion is costly and a significant contributor to the expense of 

surgical care, it would be interesting to study if SpHb will shortening the time to start 

transfusion and decreased the number of blood sampling to test Hb values and/or the 

transfusion events during surgery and the total expense of the surgical procedure and/or 

postoperative hospitalisation. 

Lastly, the influences of different vasoactive drugs on the PI and the pulse CO-oximeter 

signal extraction/quality and SpHb accuracy should be investigated.  
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