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Abstract 

Chronic pain, considered here to be pain lasting 3 months or longer, imparts 

significant socioeconomic and public health burden around the globe. Chronic 

pain is associated with a wide range of conditions, illnesses, or injuries, and is 

categorised and investigated in many ways. Treatment and management of 

chronic pain is complicated by this heterogeneity, and by lack of full 

understanding of factors (including genetic) that influence vulnerability to 

developing chronic pain and biological mechanisms of chronic pain development. 

Major depression is commonly comorbid with chronic pain, and results of studies 

into potential causal direction between the two conditions are mixed. Due to 

symptom overlap and common comorbidity, it may be that cases of chronic pain 

are misclassified as major depression and vice versa. Understanding genetic 

factors that contribute to chronic pain vulnerability and development has the 

potential to improve treatment of both conditions, in addition to allowing for 

investigation of potential causal relationships and clinical heterogeneity. 

Recently, the International Association for the Study of Pain released an updated 

definition of chronic pain and advocated for the study of chronic pain as a 

disease entity. Studying the genetics of chronic pain through genome wide 

association study of broad chronic pain traits, in line with this updated pain 

definition, may present a more tractable way to uncover common genetic 

variation associated with vulnerability to and mechanisms of development of 

chronic pain. This mode of study can also provide genome wide association study 

summary statistics for use in analyses that aim to investigate causality, genetic 

correlation and pleiotropy, and clinical heterogeneity in chronic pain and major 

depression.  

The overall aim of this PhD project is therefore to explore causal relationships 

between chronic pain and MDD in large UK general-population cohorts with 

whole-genome genotyping data using a wide range of statistical genetic methods. 

Data were obtained from two large UK cohorts with whole-genome genotyping. 

One, UK Biobank, is a cohort of 0.5 million participants recruited in middle age 

(40-79) with information on an extensive list of physical, behavioural and health 

related traits. Generation Scotland is a smaller (N ~ 22,000) Scottish cohort of 

participants recruited mainly through general practitioners in a family-based 
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manner, again with information of physical, health, and behavioural traits. 

Summary statistic data were also obtained from a 23andMe-Pfizer genome wide 

association study of chronic pain grade.  

As part of this PhD the largest genome wide association study of any chronic pain 

trait to date was carried out in UK Biobank. Validation of the trait (multisite 

chronic pain) was carried out through polygenic risk score analysis in Generation 

Scotland, examining the relationship between this novel chronic pain trait and 

chronic pain grade. Genetic correlation analyses were used to explore the 

genetic overlap of multisite chronic pain and a range of traits of interest, 

including other chronic pain phenotypes such as chronic widespread pain and 

chronic pain grade, in addition to major depression. Gene-level analyses were 

carried out to investigate genes of interest associated with chronic pain and 

potentially relevant to mechanisms of chronic pain development. BUHMBOX 

analyses were performed to test for clinical heterogeneity in chronic pain with 

respect to major depression and vice versa in UK Biobank. Conditional false 

discovery rate analyses using 23andMe-Pfizer data were also used to explore 

pleiotropy in chronic pain grade and major depression and to highlight 

pleiotropic loci of interest. Mendelian randomisation analyses, including recent 

mendelian randomisation methods explicitly designed to account for extensive 

horizontal pleiotropy, were carried out to assess potential causal relationships 

between major depression and chronic pain grade, and between major 

depression and multisite chronic pain. 

Results indicated multisite chronic pain was a polygenic, moderately heritable 

trait. Associated genes of interest implicated a strong central nervous system 

component, in addition to immune related genes. Conditional false discovery 

rate analysis highlighted loci of interest mapped to LRFN5, a gene involved in 

neuroinflammation, and that were associated with regulation of gene expression 

at this locus. Polygenic risk scoring analysis showed multisite chronic pain to be 

significantly associated with both chronic pain grade and chronic widespread 

pain, in addition to a multisite chronic pain-like trait in Generation Scotland, 

validating multisite chronic pain as a trait and indicating strong genetic overlap 

between widespread and non-widespread pain. Genetic correlation analysis 

showed significant genetic overlap between multisite chronic pain and mental 

health traits, markedly major depressive disorder, and depressive symptoms, but 
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a lower degree of genetic correlation with conditions associated with significant 

chronic pain such as rheumatoid arthritis, and no significant genetic correlation 

with inflammatory bowel diseases. BUHMBOX analyses showed no evidence of 

clinical heterogeneity in chronic pain with respect to major depression in UK 

Biobank or vice versa. Mendelian randomisation analyses showed no causal 

relationship between chronic pain grade and major depressive disorder, but a 

significant causal effect of multisite chronic pain on major depressive disorder.  

In conclusion, I have shown that broad chronic pain traits such as multisite 

chronic pain present a powerful and tractable way to study mechanisms of, and 

factors contributing to vulnerability to, chronic pain development. Output from 

well-powered genome wide association studies can also be used to validate 

phenotypes, explore genetic overlap with traits of interest, and conduct causal 

analyses.  
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Chapter 1: Introduction 

This chapter introduces chronic pain and major depression, discussing defining 

and diagnosing chronic pain and depression, the epidemiology of both conditions, 

comorbidity of the two conditions, and introduces key concepts in complex trait 

genetics. 

1.1 What is chronic pain? 

1.1.1 Definitions 

Chronic pain was defined by the International Association for the Study of Pain 

(IASP) (Treede et al., 2019) until recently as pain persisting beyond the normal 

healing time, agreed to be 3 months. ‘Normal healing time’ can vary widely 

depending on the condition causing the pain and is hard to accurately ascertain, 

with no standard length of time agreed, e.g., between clinicians and researchers. 

Another problem with this definition is the fact that many disorders where 

chronic pain is a main symptom effectively never involve complete healing or 

are associated with continued tissue damage or degeneration; a good example of 

this is rheumatoid arthritis. Chronic pain can also be involved where there is no 

known pathology or damaged tissue, either existing or detectable from the 

outset of the chronic pain condition (e.g., fibromyalgia). These issues led to a 

somewhat arbitrary agreed window of 12 weeks as the standard cut off point, 

beyond which a pain is considered chronic or persistent. Recently, an IASP Task 

Force was instrumental in adding a code for chronic pain to the ICD-11 (the WHO 

International Classification of Diseases 11th edition), and for advocating that 

chronic pain is a disease entity in its own right (Nicholasa et al., 2019; Treede et 

al., 2019). The IASP definition of pain itself was also recently updated (July 2020) 

(Raja et al., 2020), to state that pain is defined as: 

“An unpleasant sensory and emotional experience associated with, or 

resembling that associated with, actual or potential tissue damage” 

Six key notes accompany this definition: 

• Pain is always a personal experience that is influenced to varying degrees 

by biological, psychological, and social factors. 
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• Pain and nociception are different phenomena. Pain cannot be inferred 

solely from activity in sensory neurons. 

• Through their life experiences, individuals learn the concept of pain. 

• A person’s report of an experience as pain should be respected. 

• Although pain usually serves an adaptive role, it may have adverse effects 

on function and social and psychological well-being. 

• Verbal description is only one of several behaviours to express pain; 

inability to communicate does not negate the possibility that a human or 

a nonhuman animal experiences pain. 

This definition and accompanying notes emphasise that nociception refers to the 

neural process by which noxious stimuli are encoded, whereas pain refers to the 

unpleasant emotional, sensory perception that is linked to actually or 

potentially-occurring tissue damage (Jaracz et al., 2016), that pain and 

nociception do not necessarily occur together (Baliki & Apkarian, 2015), and that 

pain is thought to be a “complex, perceptual” experience with a large affective 

component (Asmundson & Katz, 2009).  

IASP terminology also includes mechanistic descriptors of pain, defining pain as 

nociceptive, neuropathic, or nociplastic (IASP, 2017a). Nociceptive pain is 

defined as that which “arises from actual or threatened damage to non-neural 

tissue and is due to the activation of nociceptors”, neuropathic pain as “caused 

by a lesion or disease of the somatosensory nervous system”, and nociplastic as 

“pain that arises from altered nociception despite no clear evidence of actual or 

threatened tissue damage causing the activation of peripheral nociceptors or 

evidence for disease or lesion of the somatosensory system causing the pain”. 

Additionally, though not included in the IASP terminology, mixed pain states 

(presence of pain types fitting multiple mechanistic descriptors in a single 

individual or patient) are receiving increased attention (Freynhagen et al., 2019, 

2020). 

1.1.2 Measurement (Phenotyping) 

Pain is a subjective experience, and chronic pain falls under the umbrella of 

symptom-based disorders: there are no scans or biological tests that can be used 

to decisively diagnose chronic pain. At present there are also no objective 

biomarkers available for use in diagnosing chronic pain (Mouraux & Iannetti, 
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2018; Reckziegel et al., 2019), presenting a significant barrier both in clinical 

treatment of pain and in pain research. There are quantitative methods for 

clinical assessment of pain including chronic pain, such as Quantitative Sensory 

Testing (QST), originally developed to assess somatosensory changes associated 

with neuropathic pain and involving application of various stimuli by a clinician 

(Backonja et al., 2009; G. Cruccu et al., 2010; Giorgio Cruccu & Truini, 2009; 

Geber et al., 2011; Peripheral Neuropathy Association., 1993). Somatosensory 

changes in non-neuropathic pain conditions can also be assessed using QST 

(Geber et al., 2011), and QST is often applied in the study of central 

sensitisation (see 1.1.4). Other experimental quantitative methods to assess pain 

and chronic pain include cutaneous biopsy, microneurography, functional and 

structural brain imaging, chemical neuroimaging, and pharmacological 

phenotyping (stratifying pain patients by drug response) (Fillingim et al., 2016; 

Martucci & Mackey, 2016) – these methods have varying utility and usage rates in 

a clinical setting, and may fail to capture subjective and psychological aspects 

of pain and chronic pain experience. 

In the context of patients or individuals reporting their pain, questionnaire 

assessments delivered in person by researchers or medical professionals, or 

remotely via survey, that ask the individual or patient about aspects of pain 

experience, such as severity, frequency, duration, and resultant disability, are 

widely used. Unsurprisingly, this generates a great deal of heterogeneity within 

the category ‘chronic pain’. Different questionnaire-based methods to assess 

chronic pain in patients are reviewed by Dansie and Turk and by Fillingim et al, 

and can be sorted into seven broad categories; unidimensional pain measures, 

measures of pain quality and location, pain interference and function (general 

measures), pain interference and function(specific diseases), HRQOL (Health-

Related Quality of Life) measures, psychosocial measures, and finally 

observational pain assessment measures (Dansie & Turk, 2013). In addition, tools 

such as the chronic pain grade (CPG) questionnaire, derived by Von Korff and 

colleagues and validated by Smith et al several years later, span across 

categories to assess pain intensity, duration, resultant disability and impact on 

quality of life (Smith et al., 1997; Von Korff et al., 1992).  

Several questionnaires for chronic pain assessment, such as the Brief Pain 

Inventory (Cleeland & Ryan, 1994), also include questions on site of chronic pain 
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on the body – most often assessed by asking the patient to shade areas on a pain 

drawing (Jensen & Karoly, 2001). Diagnosis of certain chronic pain conditions is 

also based on chronic pain location meeting requirements in terms of 

‘widespreadness’ or presence in a minimum number of body quadrants and 

tender points – these conditions include fibromyalgia and chronic widespread 

pain (CWP) itself (distinct from its role as a cardinal symptom of fibromyalgia) 

(Clauw, 2014; Wolfe et al., 1990, 2011). CWP is defined as constant axial (pain 

confined to a certain area/ ‘tender point’) pain, in addition to pain in both the 

upper and lower body quadrants, and left and right side of the body (Burri et al., 

2015; Wolfe et al., 1990).  

Chronic pain may also be characterised based on probable causal or related 

injury or illness – neuropathic pain is caused by damage to the somatosensory 

nervous system (Colloca et al., 2017), and may be chronic in nature. However, 

neuropathic and non-neuropathic types of chronic pain may ‘converge’ over time, 

in terms of changes in the dorsal horn and dorsal root ganglion (DRG) (Xu & 

Yaksh, 2011). In addition, individuals may be diagnosed with neuropathic pain in 

complete absence of definite or clear lesions or nervous system damage 

(Finnerup et al., 2016), and the extent or severity of pain experienced may not 

match observable nervous system damage (Weir et al., 2019). 

Cancer pain may also be chronic in nature, with causes of pain in individuals 

with cancer ranging widely. Cancer pain can be neuropathic (Mulvey et al., 2017; 

Stewart, 2014), pain classed as both neuropathic and non-neuropathic can co-

occur due directly to tumour growth and activity, to surgical and/or 

pharmacological cancer treatment, or due to comorbid chronic pain conditions 

(Caraceni & Shkodra, 2019). Pain may not be related directly to cancer, and 

distinguishing between acute and chronic pain in the context of cancer is 

difficult, further complicating classification and treatment (Caraceni & Shkodra, 

2019) 

Measuring and characterising chronic pain both clinically and in the context of 

research is challenging, resulting in extensive heterogeneity among and within 

chronic pain phenotypes, with many chronic pain conditions often occurring 

together (Maixner et al., 2016). Individuals with chronic pain often receive at 

least one misdiagnosis (Hendler, 2016), and may also be given an inappropriate 
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psychiatric diagnosis, such as somatic symptom disorder (Katz et al., 2015). One 

recent systematic review concluded that there are “hardly two research groups 

that assess chronic pain in exactly the same manner” (Steingrímsdóttir et al., 

2017). 

1.1.3 Epidemiology of chronic pain 

Chronic pain is estimated to affect approximately 20% of the adult population 

worldwide (Breivik et al., 2006; Goldberg & McGee, 2011; Gureje et al., 2008; 

Palmer et al., 2000; Santos-Eggimann et al., 2000; Von Korff et al., 2005), and 

prevalence can be much higher in certain population subgroups (e.g. amputees, 

where 85% are affected (Schug & Bruce, 2017)). Disorders involving chronic pain, 

including migraine, neck and back pain, low back pain and general 

musculoskeletal disorders, were amongst the top 10 global contributors to years 

lived with disability (YLDs) consistently from 1990-2017 (GBD 2015 Disease and 

Injury Incidence and Prevalence Collaborators, 2016; James et al., 2018). Low 

back pain represented the leading cause of disability worldwide until very 

recently (replaced by major depressive disorder (MDD) (WHO, 2017)).  

Chronic pain and chronic pain disorders are widely documented as being more 

prevalent in women than in men, often twice as common in women (Bartley & 

Fillingim, 2013; Fillingim, 2015; Fillingim et al., 2009; Hardt et al., 2008; Munce 

& Stewart, 2007; Rollman & Lautenbacher, 2001; Tsang et al., 2008). Low back 

pain also remains in the top three of YLD in both the highest and lowest SDI 

(sociodemographic index) quintiles (James et al., 2018). For example, there are 

stark contrasts between the rates of YLDs between high-SDI and low-SDI groups 

of individuals with low-back pain globally (a difference of approximately twice 

the level of YLDs per 100,000 higher for low-SDI compared to high SDI) (James et 

al., 2018). Overall, although chronic pain contributes to disability levels similarly 

across developed and developing countries, deprivation is associated with 

increased disability and less effective management for those with chronic pain 

(Bonathan et al., 2013; Dorner et al., 2011; Jackson et al., 2015; Mills et al., 

2019; Poleshuck & Green, 2008; Yu et al., 2020). 

Increased mortality may be associated with chronic pain phenotypes such as 

chronic widespread pain(both all-cause mortality and specific causes of death) 

(H. I. Andersson, 2009; Macfarlane et al., 2017). Chronic widespread pain is 



27 
 

defined as chronic pain in multiple sites of the body including both above and 

below the waist, on right and left body quadrants, and axially (Butler et al., 

2016; F. Wolfe et al., 1990, 2011). This is distinct from multisite chronic pain 

(2.3.3.1.2), where chronic pain can be present at a few sites and not necessarily 

fulfilling quadrant, axial or above/below waist location requirements. The 

relationship between chronic widespread pain and mortality may be mediated by 

lifestyle factors associated with pain such as poor diet, reduced physical activity 

levels, smoking and high BMI (Macfarlane et al., 2017). Psychosocial factors, 

including depression, may also be involved in the relationship between chronic 

widespread pain and excess mortality (Da Silva et al., 2018). 

1.1.4 From Acute to Chronic Pain 

The mechanisms of chronic pain development are not fully known, but likely 

involve both central and peripheral nervous-system processes, the immune 

system, and genetic and environmental risk factors, including previous injury 

and psychological stress (reviewed by (Denk & Mcmahon, 2017)). The 

relationship between acute and chronic pain also tends to vary greatly: not 

every person who experiences serious injury or undergoes surgery goes on to 

develop chronic pain, and conversely, chronic pain may develop after seemingly 

innocuous procedures (Denk et al., 2014). Additionally, across a variety of 

chronic conditions associated with chronic pain, the degree of tissue damage is 

not necessarily correlated with the severity of pain experienced. This has been 

observed with endometriosis, where disease severity in terms of lesion size and 

type is generally not associated with increasing severity of chronic pelvic pain 

experienced (Stratton & Berkley, 2011; Vercellini et al., 2007). This poor 

correlation between tissue damage or extent of disease and chronic pain 

experienced is also seen in both osteoarthritis (Dieppe & Lohmander, 2005; 

Neogi, 2013; Trouvin & Perrot, 2018; Valdes et al., 2012) and rheumatoid 

arthritis (Meeus et al., 2012).  

Significant peripheral neuropathy or central nervous system injury can also be 

present without subsequent development of chronic neuropathic pain (Colloca et 

al., 2017). In conditions involving widespread chronic pain such as fibromyalgia, 

complex regional pain syndrome (CRPS), and conditions such as irritable bowel 

syndrome and temporomandibular disorder (TMD), there may be an absence of 
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damaged or diseased tissue altogether, with the individual experiencing 

debilitating pain regardless (Cairns, 2010; C. Chang et al., 2019; Feng et al., 

2012; Goebel, 2011; Jahan et al., 2012; Kosek et al., 2016; Sluka & Clauw, 2016; 

Verne & Zhou, 2011). This further supports viewing chronic pain as a disease 

entity as outlined in 1.1.1. 

Central sensitisation is associated with the development and maintenance of 

chronic pain, with features of central sensitisation found across a range of 

chronic pain-associated conditions (Harte et al., 2018). Central sensitisation is 

defined by the IASP as increased responsiveness, to normal or sub-threshold 

afferent input, of nociceptor neurons in the CNS, resulting in hypersensitivity to 

stimuli and increased pain response (IASP, 2017; Ji et al., 2018). This 

phenomenon can only be observed directly when both input and output of the 

neural system are known e.g. through QST (see also 1.1.2), or indirectly through 

healthcare-professional administered assessment or questionnaire assessment of 

manifestations of central sensitisations i.e. allodynia (pain resulting from 

normally innocuous stimuli) or hyperalgesia (heightened sensitivity to pain). As 

well as being implicated in the transition from acute to chronic pain in general, 

central sensitisation has also been found to be a common occurrence across 

chronic pain diagnostic boundaries, from chronic pain at specific body sites such 

as the shoulder (Sanchis et al., 2015), or pelvis (Kaya et al., 2013), to a range of 

conditions associated with significant chronic pain, including endometriosis (P. 

Zheng et al., 2019), rheumatoid arthritis (Meeus et al., 2012), osteoarthritis 

(Lluch et al., 2014), temporomandibular disorders (La Touche et al., 2018) and 

fibromyalgia (Desmeules et al., 2003; Woolf, 2011). Although earlier definitions 

of central sensitisation state a requirement for initial noxious/ painful stimuli, 

recent study has highlighted that peripheral input (sustained or repeated 

application of noxious stimulus) may not be required – central sensitisation may 

result from changes in the CNS that are independent of peripheral input (Hains & 

Waxman, 2006; Latremoliere & Woolf, 2009; Yang et al., 2014), including 

dysfunction in endogenous pain control systems (Yarnitsky, 2015). 

In addition to central sensitisation specifically, a range of other functional 

(changes to activity) and structural (changes to composition or appearance) 

changes in the brain and spinal cord are associated with the development and 

maintenance of chronic pain (Baliki et al., 2014; Baliki & Apkarian, 2015; Bliss et 
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al., 2016; Hashmi et al., 2013; Khoutorsky & Price, 2018; Mansour et al., 2013; 

Sheng et al., 2017). Structural changes such as synaptic spine density, cellular 

changes (both loss and gain) involving microglia and multiple neuron types, and 

remodelling of neuronal circuits that results in separation or bringing together of 

nociceptive and non-nociceptive neurons, have been linked to chronic pain 

development (Kuner & Flor, 2016; Mansour et al., 2013). Functional changes 

associated with chronic pain include synaptic plasticity in multiple different 

brain regions linked to pain such as the anterior cingulate cortex, thalamus, and 

dorsal horn of the spinal cord (Bliss et al., 2016), the periaqueductal grey (Yu et 

al., 2014), and more recently in visual networks (Shen et al., 2019). 

Considering the above, the transition from acute to chronic pain may occur as 

follows: firstly, acute injury results in prolonged activation of peripheral 

nociceptors, namely Aδ- and C-fibres (Apkarian et al., 2005; Moehring et al., 

2018). This prolonged activation can lead to neuroplastic changes in central as 

well as peripheral somatosensory circuits (Cichon et al., 2017; Zhuo, 2008), and 

changes in higher brain regions associated with emotion. One of the specific 

kinds of synaptic plasticity that may constitute these neuroplastic changes in the 

case of chronic pain development include increased glutamate release and 

increase in the postsynaptic response to glutamate in the spinal cord in the 

ascending pain pathway (the route of signal transmission from the periphery 

towards the CNS) (Kuner & Flor, 2016; Latremoliere & Woolf, 2009). The 

descending pain pathway (the downward route of nerves from the CNS to the 

periphery via the spinal cord) is also thought to be involved in chronic pain 

development, through modulation of spinal responses to noxious stimuli (E. P. 

Mills et al., 2018; Ossipov et al., 2014). In cases without underlying injury or 

tissue damage, this central sensitisation through neuroplastic changes is still 

thought to occur – instead of persistent engagement of ascending/descending 

pain circuits driving persistent experience of pain, pain circuitry outside of these 

pathways is affected during acute injury and contributes to pain experienced 

after the healing period. One example of such circuitry is the nucelus accumbens, 

where studies in rodents showed neuroplasticity associated with development of 

chronic pain (Chang et al., 2014; Ferris et al., 2019; Goffer et al., 2013). 

Another example is, in humans, structural changes in corticolimbic circuits 

(encompassing the prefrontal cortices, hippocampus and amygdala) have also 
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been found to predict transition to chronic pain (Baliki et al., 2012; Vachon-

Presseau et al., 2016).  

A range of social and psychological factors are also likely to be involved in the 

transition from acute to chronic pain, and the role of non-medical/ non-

biological factors is increasingly recognised as important in chronic pain 

management. The biopsychosocial model (Bevers et al., 2016) of chronic pain 

outlines how psychological, social and biological factors interact to influence the 

development and course of chronic pain. Factors such as ethnicity, age and 

gender fall under the psychosocial label in addition to potentially being markers 

for biological factors linked to chronic pain development (Fillingim, 2017), and 

lifestyle or behavioural factors such as level of physical activity and cigarette 

smoking are also associated with risk of chronic pain development (Mills et al., 

2019). Previous studies found that factors related to social support such as 

spousal negative reinforcement of pain behaviours were involved in chronic pain-

related disability, and that an introverted personality and tendency towards 

catastrophizing were associated with increased chronic post-surgical pain 

(reviewed by (Katz & Seltzer, 2009)). Factors such as low mood and somatising 

tendency may also contribute to increased risk of developing chronic pain, and 

at the societal level psychosocial aspects of the workplace may also contribute 

to chronic pain development risk (Vargas-Prada & Coggon, 2015). A recent 

systematic review found that fear-avoidance beliefs and depression/ anxiety 

were both associated with transition from acute to chronic pain in a range of 

scenarios including post-surgical and non-specific widespread pain syndromes, 

but also that some studies found no link between psychosocial factors examined 

and pain chronicity (Hruschak & Cochran, 2018).  

The imprecision hypothesis (Moseley & Vlaeyen, 2015) outlines the method by 

which biopsychosocial factors influence chronic pain development suggesting 

that a lack of precision in integrating multisensory information (physical, 

nociceptive, psychological, emotional) leads to chronic pain development 

through the painful response then generalizing to non-painful events.  

Additionally, the functions of brain areas involved in nociception are not limited 

to pain processing: many are also involved in emotional regulation (Tracey, 2010; 

Tracey & Johns, 2010), including affective aspects of the pain experience (Peirs 
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& Seal, 2016; Schweinhardt & Bushnell, 2010). A recent systematic review found 

maladaptive emotional regulation in general to be linked to increased risk of 

chronic pain development (Koechlin et al., 2018).  

Overall, research across multiple fields suggests that chronic pain conforms to 

the biopsychosocial model of disease. A complex array of genetic, medical, 

lifestyle, social and psychological factors are associated with and likely 

contribute to risk of developing chronic pain, and to pathology or mechanisms of 

chronic pain development. However, unifying qualities among chronic pain 

conditions exist across all three (biological, psychological, social) domains, and 

these similarities could aid understanding of chronic pain development in 

general and do so more powerfully in comparison to study of chronic pain within 

disease or diagnostic boundaries. Such similarities include absence of 

identifiable injury or cause of pain for many individuals with chronic pain, likely 

extensive CNS involvement in a wide range of chronic pain states and overlap 

with brain areas involved in emotion and affect.  

1.1.5 Associations with Other Conditions 

Individuals with certain traits and conditions experience chronic pain at 

significantly higher rates compared to the general population, and for some 

conditions and disorders chronic pain is a hallmark symptom. Conditions 

associated with chronic pain include obesity (Okifuji & Hare, 2015; Paley & 

Johnson, 2016), and high BMI more generally, with chronic pain incidence 

estimated to be ~68-254% higher in individuals classed as obese compared to 

individuals with a BMI of less than 30 kg/m2 (Paley & Johnson, 2016). Higher BMI 

and increased body fat may influence chronic pain development through 

mechanical stress (Okifuji & Hare, 2015; Wearing et al., 2006), activity of 

molecules secreted from adipose tissue (Hauner, 2005; Urban & Little, 2018), 

and general inflammation (DeVon et al., 2014; Eichwald & Talbot, 2020).  

Autoimmune disorders are also associated with chronic pain (Mifflin & Kerr, 2017; 

Phillips & Clauw, 2013). The immune system in general is also implicated in 

chronic pain development, including inflammatory responses in the brain and 

spinal cord (neuroinflammation) (Ren & Dubner, 2010). The complement system, 

part of the innate immune system, has also been found to play a part in synaptic 

pruning and neuronal connectivity during both development and as part of 
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neurodegenerative disease progression (Stephan et al., 2012). There is also 

significant communication between the nervous and immune systems in 

nociception and in sensitisation processes that can lead to chronic pain 

(Kwiatkowski & Mika, 2018; Pinho-Ribeiro et al., 2017). Though not classed as an 

autoimmune disease, another disorder with immune involvement, asthma, may 

also be associated with increased chronic pain risk – this may be due to 

musculoskeletal damage involved with severe coughing during asthma attacks or 

with postural changes associated with asthma (Lunardi et al., 2011), with higher 

opioid use associated with having asthma (Naik et al., 2019). Additionally, 

autoimmune conditions that can involve significant and chronic pain such as 

lupus have been found to be more common in those with asthma (Krishna et al., 

2019), and pain has been found to be a significant comorbidity and generally 

more common in individuals with asthma compared to those without 

(Weatherburn et al., 2017).  

Insomnia and sleep disturbance are also commonly experienced by those with 

chronic pain, with ~65% of those with chronic pain conditions also having clinical 

insomnia (Alföldi et al., 2014), rates which are 2-20x higher than those 

estimated for the general population (Roth, 2007; Singareddy et al., 2012; Y. 

Zhang et al., 2019). Reduced sleep duration and poor sleep quality may be a 

significant risk factors in development of subsequent chronic pain, in addition to 

potentially being caused by pain (Broberg et al., 2021; Haack et al., 2020; Jank 

et al., 2017; Sun et al., 2020). Opioid treatment of chronic pain can also 

negatively impact sleep (Ferini-Strambi, 2017; Tentindo et al., 2018). Improving 

sleep duration and quality has the potential to improve treatment outcomes for 

comorbid chronic pain, with individuals with chronic pain likely to experience 

increased pain sensitivity, lower mood, and higher levels of disability in 

comparison to individuals with chronic pain but without comorbid sleep issues 

(reviewed by Cheatle et al., 2016).  

Neurological diseases, such as Parkinson’s disease, are also associated with 

chronic pain (Borsook, 2012), as are migraine (Minen et al., 2016) and multiple 

sclerosis (MS) (Marrie et al., 2012). 30-95% of individuals with Parkinson’s disease 

experience chronic pain (Broen et al., 2012; Buhmann et al., 2017; Valkovic et 

al., 2015), which can be related to rigidity, posture changes, reduced movement 

of the joints, and involuntary muscle contractions experienced as part of 
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Parkinson’s, or a central pain syndrome which could be due to Parkinson’s-

related brain changes (Blanchet & Brefel-Courbon, 2018). Pain can also be 

classified in terms of whether it is thought to be directly related, indirectly 

related, or not related to Parkinson’s disease in the individual, and further 

labelled in terms of whether this pain is experienced in the off or on-phase of 

the condition (Skogar & Lokk, 2016). Individuals with MS tend to experience pain 

and pain syndromes more often than the general population, with estimates of 

pain prevalence of ~30-80% (Drulovic et al., 2015; Foley et al., 2013; Heitmann 

et al., 2020; O’Connor et al., 2008; Solaro et al., 2013), and estimates of chronic 

pain prevalence more specifically ranging from ~40-50%  (Ehde et al., 2003; 

Ferraro et al., 2018) to as high as 86% (Urits et al., 2019). 

A wide range of psychiatric traits and disorders have been found to be associated 

with chronic pain. These include addiction and substance use disorders (Cheatle 

& Gallagher, 2006; Elman & Borsook, 2016; Speed et al., 2018), with 8-12% of 

those with chronic pain prescribed opioids going on to develop an opioid use 

disorder (reviewed by Speed et al., 2018), in contrast to 0.6% of the US 

population aged 12+ in general estimated to misuse analgesic medication 

(SAMHSA, 2018).  

PTSD in both veterans and civilian populations is associated with higher rates of 

chronic pain (Akhtar et al., 2019; Dunn et al., 2011; Outcalt et al., 2015; Phifer 

et al., 2011; Shipherd et al., 2007). For example, a non-veteran sample 

attending pain clinic for treatment of chronic pain was found to have rates of 

PTSD over four times as high as that of the general US population (28% vs. ~6%) 

(Akhtar et al., 2019), and other studies found between 46%-66% of combat 

veterans seeking chronic pain treatment had PTSD (Dunn et al., 2011; Shipherd 

et al., 2007). A systematic review found consistent evidence that PTSD was 

associated with chronic pain (Fishbain et al., 2017). 

In addition to PTSD, anxiety disorders in general are commonly comorbid with 

chronic pain (Asmundson & Katz, 2009; Gureje, 2008). 2012 Canadian Community 

Health Survey–Mental Health participants with chronic pain were  found to have 

generalised anxiety disorder (GAD) up to 2.6x more often than in comparison to 

the entire cohort (Csupak et al., 2018), and World Mental Health Survey results 
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indicated that participants reporting chronic pain showed increased odds from 

90-170% of having a comorbid anxiety disorder (Gureje, 2008).  

Individuals with schizophrenia commonly experience chronic pain, and often 

have comorbid conditions associated with significant chronic pain (De Hert et al., 

2011; Gabilondo et al., 2017; Smith, Langan, et al., 2013; Von Hausswolff-Juhlin 

et al., 2009). However systematic reviews found prevalence of pain with 

apparent medical cause to be lower amongst a sample of individuals with 

schizophrenia in comparison to the general population (Engels et al., 2014), or 

similar when compared to age and sex-matched controls (Stubbs et al., 2014). In 

contrast other studies, for example of cohorts of veterans, found schizophrenia 

to be associated with higher rates of chronic pain (in comparison to veterans 

without this psychiatric comorbidity) (Birgenheir et al., 2013). In addition, 

differences in pain perception and the integration and processing of sensory 

information (interoception) in those with schizophrenia, have been reported. 

One study showed participants with schizophrenia to have elevated sensitivity to 

acute pain and reduced sensitivity to prolonged pain in an experimental setting 

(Lévesque et al., 2012), though another study highlighted that such differences 

may be due to issues in expressing and reporting pain for individuals with 

schizophrenia, as opposed to nociception-related effects (Urban-Kowalczyk et 

al., 2015). Autism spectrum disorder and anorexia nervosa have also been 

associated with altered pain perception and interoception (Bär et al., 2015; 

Bischoff-Grethe et al., 2018; C. Clarke, 2015; Gu et al., 2018; Strigo et al., 2013), 

which may impact chronic pain prevalence and reporting in these specific 

populations. There is growing evidence that many autistic people also have 

significant joint hypermobility (Baeza-Velasco et al., 2018; Casanova et al., 2020; 

Csecs et al., 2020), often associated with chronic pain, and which may or may 

not be subthreshold to official Joint Hypermobility Syndrome (JHS) or Ehlers-

Danlos (Castori et al., 2017) diagnosis.  

Similarly to schizophrenia, living with bipolar disorder is associated with a range 

of serious and pain-associated chronic physical conditions (De Hert et al., 2011). 

In contrast to results from some studies of individuals with schizophrenia, those 

with bipolar disorder tend to experience chronic pain at rates higher than the 

general population (Nicholl et al., 2014; Stubbs et al., 2015), for example with a 
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relative risk for “clinically relevant pain” of 2.14 and of migraine specifically of 

3.3 (Stubbs et al., 2015).  

Chronic pain conditions are often commonly comorbid with one another (Maixner 

et al., 2016). Chronic pain syndromes involving specific body parts or areas (e.g. 

irritable bowel syndrome, low back pain) were  found to be associated with one 

another (Kato et al., 2009), and chronic pain, including both abdominal and joint 

pain, is a common symptom for those with inflammatory bowel disease and is 

often not resolved even in the absence of active disease (Docherty et al., 2011; 

Norton et al., 2017). Arthritis and fibromyalgia have also been found to be 

associated with one another (Haliloglu et al., 2014). Neuropathic ocular pain has 

also been found to be associated with other chronic pain syndromes (Galor et al., 

2016). Rheumatoid arthritis is associated with a wide variety of pain experiences, 

but pain is often the most significant and disabling symptom, even with well-

managed inflammation (Walsh & McWilliams, 2014).  

Explanatory factors connecting chronic pain and other disorders, including MDD, 

involve shared biological mechanisms, environmental factors, shared 

psychological aspects, or most likely a complex mixture of multiple genetic and 

non-genetic factors. There is extensive overlap not only between different 

chronic pain conditions, but also between chronic pain conditions, chronic pain 

experience in a general sense, and a diverse range of traits and conditions, many 

of which do not feature chronic pain as a core symptom. The focus of this thesis 

is aspects of the relationship between chronic pain and MDD specifically (see 

also 1.3.1).  

1.2 What is Major Depressive Disorder (MDD)? 

1.2.1 Screening and Diagnosis of MDD  

Diagnoses of depression and of MDD are based on the self-report of symptoms, 

often in a primary care setting using self-report inventories where the individual 

completes a survey or questionnaire. Most depression rating scales fall under this 

umbrella, although some are completed by researchers (e.g. Hamilton 

Depression Rating Scale (Hamilton, 1960; Williams, 1988)). The most commonly 

used screening tools in a primary care setting for adults is the Patient Health 

Questionnaire-9 (PHQ-9) (Kroenke et al., 2001; Spitzer et al., 2000). The PHQ-
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9can also be used in more specific populations such as post-partum and older 

adults, although more specialised screening tools such as the Edinburgh Post-

Natal Depression Scale and the Geriatric Depression Scale are also available 

(reviewed by (Maurer et al., 2018; Sharp & Lipsky, 2002)). The PHQ-9 is also one 

of three measures of depression severity recommended by the UK general 

practice contract Quality and Outcomes Framework (QOF) (Kendrick et al., 2009). 

If an individual is screened and scores positively for MDD, this diagnosis should 

then be confirmed using the Diagnostic and Statistical Manual of Mental 

Disorders (DSM), currently in its fifth edition (DSM-5). The DSM classification is 

used by researchers in mental health (Regier et al., 2013) and consists of lists of 

symptoms and threshold levels of endorsements of these symptoms for a positive 

diagnosis of a psychiatric disorder.  

In order to meet the criteria for a DSM-5 diagnosis of MDD, an individual must 

have five or more symptoms from two lists of criteria (A and B), at least one of 

which must come from the A list; A: depressed mood, markedly diminished 

interest or pleasure in almost all activities, B: significant weight loss/gain or 

decrease/increase in appetite, insomnia or excessive sleep, psychomotor 

agitation or retardation, fatigue or loss of energy, feelings of worthlessness or 

excessive/inappropriate guilt, diminished concentration or indecisiveness and 

finally recurrent thoughts of death, suicidal ideation, plans or an attempt. There 

is also an ICD-10 equivalent for DSM-5 MDD, ‘Major Depressive Episode’, again 

with two lists of criteria (reviewed in McIntosh et al., 2019). For both DSM-5 and 

ICD-10 diagnoses both sets of criteria also require that the symptoms have lasted 

at least two weeks, that there is significant functional impairment, and that the 

disorder is not better accounted for by another condition.  

Even use of the same ‘instrument’ to diagnose MDD (such as the DSM) can result 

in a wide range of symptom profiles being grouped into the same diagnostic 

category. The single diagnosis of MDD based on DSM-IV criteria can cover over 

100 different and in some cases non-overlapping symptom combinations (Fried & 

Nesse, 2015a; Olbert et al., 2014; Zimmerman et al., 2015). 

In addition, many large epidemiological studies of depression also use self-

reported depression phenotypes (e.g., answering survey or questionnaire items 

as to whether participant has ever been diagnosed with depression by a doctor, 
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seen a psychologist or psychiatrist). These are often very different to methods 

used in primary care or other clinical settings. However, self-reported 

phenotypes can share significant overlap with clinical diagnoses of MDD, and the 

two together (MDD and self-reported depression) have been used as a single 

diagnostic group in some studies of MDD (McIntosh et al., 2019).  

1.2.2 Epidemiology of MDD 

An extensive review found that lifetime prevalence estimates of MDD from 

population surveys worldwide ranged from 1-19%, with prevalence higher in 

high-income versus low-income countries, and with a worldwide average 

prevalence of 11.1% and age of onset at 24 years old (Kessler & Bromet, 2013). 

Another study, using the World Mental Health Survey, found a global estimate of 

MDD prevalence to be 5.5-5.9% (Ferrari et al., 2013). 

A study of US populations, using DSM-5 diagnoses, found the 12-month and 

lifetime prevalence of MDD to be 10.4% and 20.6% respectively (Hasin et al., 

2018). A European estimate of 12-month MDD prevalence was found to be 5% 

(Ferrari et al., 2013). Prevalence of 12.2% has been inferred for Scotland from 

work in the Generation Scotland: Scottish Family Health Study (Fernandez-Pujals 

et al., 2015). 

Similar to chronic pain, Kessler & Bromet also found that women were twice as 

likely to have MDD as men, and that this was consistent across different adult 

population samples around the world (Kessler & Bromet, 2013). Earlier work also 

found lifetime incidence of MDD to be almost twice as high in women compared 

to men (20% vs 12%) (Belmaker & Agam, 2008). Work involving the GS: SFHS also 

found higher prevalence in women than in men (15.8% versus 9.1%) (Fernandez-

Pujals et al., 2015). This 2:1 ratio appears to vary with age (WHO, 2017), first 

emerging in adolescence and early adulthood (Avenevoli et al., 2015; Patton et 

al., 2008). In contrast to some studies suggesting convergence of male and 

female prevalence rates of major depression in older age in some populations 

(Forlani et al., 2014; Kuehner, 2017; Patten et al., 2016), this ratio does appear 

to persist into old age (Byers et al., 2010; Girgus et al., 2017; Luppa et al., 2012). 

Additionally, in pre-puberty males may be at greater risk of depression than 

females of the same age (Douglas & Scott, 2014).  



38 
 

The prevalence of MDD for those with chronic comorbidities is between three 

and seven times higher compared to those without. Comorbidities here refers to 

other health, including mental health, conditions experienced by the same 

individual simultaneously with MDD. Earlier work across the 48 contiguous states 

of the USA found an MDD prevalence of 16.2%, and that most lifetime and 12 

month MDD cases (>70% in both categories) had comorbid psychiatric disorders 

(Kessler et al., 2003). Furthermore, the comorbidity of MDD with other 

psychiatric and substance use disorders was substantial in later work on a large 

US sample (Hasin et al., 2018). Risk of all-cause mortality was significantly 

increased in most common mental disorders, including in depression (Chesney et 

al., 2014). 

1.3 Overlap between MDD and Chronic Pain 

1.3.1 Comorbidity between MDD and Chronic Pain 

MDD and chronic pain are often comorbid: chronic pain is found at higher rates 

than expected in those with MDD and vice versa, and this is true across a diverse 

range of populations around the world. Estimates quantifying the degree of 

comorbidity between MDD and chronic pain vary widely: one review found 

chronic pain in people with depression to range from 15-100%, and prevalence of 

depression in people with chronic pain from 1.5-100% (Bair et al., 2003). Another 

study found 65.7% of those with MDD had chronic pain, compared to 43.5% of 

those without MDD, and that chronic pain was more likely to be disabling in 

those with MDD (Arnow et al., 2006). In people with chronic pain 10.4% also met 

the criteria for MDD, compared to 4.5% of people without chronic pain who met 

the criteria for MDD (Arnow et al., 2006).  

Analyses of the World Mental Health survey results found higher rates of mood 

disorders including MDD are found in those with chronic pain across a range of 

global populations, and these rates increase with number of pain sites (Gureje et 

al., 2008; Tsang et al., 2008). 66.3% of individuals with MDD reported chronic 

pain in a US study (compared to 49% of the whole sample) – if this was more 

stringently limited to chronic pain that led to medical consultation or 

medication use this resulted in 44.2% of MDD subjects with this level of pain 

(compared to 21.8% in the entire sample). 73.3% of individuals reporting a 

chronic painful physical condition also meet the criteria for MDD (Ohayon & 
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Schatzberg, 2010). An independent positive association was also found between 

depression/ anxiety and chronic pain in a study of a New Zealand population 

(Dominick et al., 2012). Chronic pain was more prevalent in individuals with MDD 

compared to those without a history of mood disorder (50.4% versus 38.2%) in a 

subset of UK Biobank (Nicholl et al., 2014), with a positive relationship seen 

between the number of sites of chronic pain and the risk of MDD. It was also 

found that unexplained painful physical symptoms, including chronic pain, are 

experienced by up to two thirds of patients with MDD (Jaracz et al., 2016). This 

comorbidity can negatively impact success in treatment and management for 

either disorder (Asmundson & Katz, 2009; Bair et al., 2003, 2008; Jaracz et al., 

2016; Ohayon & Schatzberg, 2010). 

1.3.2 Causal Relationships between MDD and Chronic Pain 

Although comorbidity between chronic pain and MDD is high, the temporal 

nature of the relationship is not fully clear. Causality in relationships between 

MDD and chronic pain has been previously explored in both pre-clinical (non-

human) and human samples, but with conflicting results. In mouse models of 

neuropathic pain, pain was found to have a causal effect on depressive 

behaviour in several studies, as was arthritis, IBS (in female mice and not males) 

(reviewed by (Li, 2015)). A general chronic-pain phenotype in Wistar-Kyoto mice 

was also found to exacerbate depression-like symptoms (reviewed by (Li, 2015)). 

Animal model studies investigating any potential causal effect of depression on 

pain, however, show less clear results, whereas studies assessing causal effects 

of pain on depression showed some consistency in results regardless of modality 

(the way pain/depression-like symptoms are measured) (reviewed by (Li, 2015)). 

A range of cross-sectional and longitudinal studies in human populations tend to 

suggest that chronic pain has a causal effect on depression. A longitudinal study 

found that chronic pain in rheumatoid arthritis patients seemed to have a causal 

effect on development of depression (Brown, 1990). A later extensive review 

showed several studies where results suggest that pain causes depression 

(demonstrated through depression severity increasing with number of sites of 

pain), and that depression was not antecedent to pain but was a consequence. 

Studies were of a range of pain types, including cancer pain. They also highlight 

three studies of intermittent pain and depression, which showed depression to 
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be consequent to pain episodes. (Fishbain et al., 1997). Later studies also 

showed pain at baseline to be predictive of depression onset (Gureje et al., 

2001), and that pain contributes to the risk of a first episode of depression 

(Gerrits et al., 2014). 

Other studies show mixed results, suggest depression precedes chronic pain 

development, or indicate that the depression-pain relationship is reciprocal. In a 

study of US participants where pain and MDD were surveyed, pain occurred prior 

to the first depressive episode in 57.1% of cases, concurrently with a depressive 

episode in 14.3% of cases, and following a depressive episode in 24.3% of cases 

(Ohayon & Schatzberg, 2010). Other work suggests the pain-depression 

relationship to be bidirectional (Bair et al., 2003; Kroenke et al., 2011; Von Korff 

& Simon, 1996). Studies also link both pain and depression to HPA axis 

dysfunction (Blackburn-Munro, 2001; Hasler, 2010), or indicate that the shared 

genetic and environmental factors influencing MDD and chronic pain may act 

independently on either condition (Pinheiro et al., 2015). A study in paediatric 

chronic pain indicated onset of psychiatric disorders preceded chronic pain 

development (Tegethoff et al., 2015), and a study of adults (free from chronic 

pain at baseline) followed up for 24 months found depression to triple the 

incidence of chronic pain in later waves (Currie & Wang, 2005). 

Studies investigating causal relationships between MDD and chronic pain in 

human populations vary widely in many respects, including the assessment of 

MDD and chronic pain, the kinds of chronic pain conditions and bodily sites 

investigated, in sample size and in other population characteristics. Cross-

sectional studies most often do not or cannot explicitly test causality. In 

addition, even longitudinal studies with data collection over multiple time points 

may be subject to extensive confounding (Streeter et al., 2017) which may 

influence results. The use of a large general-population sample with genotyping 

data, such as the UK Biobank, can address these outstanding issues in 

investigating causal direction between depression and chronic pain development.  
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1.3.3 Genetics of Complex Traits 

1.3.3.1 Common genetic variation and common traits and diseases 

Many human traits, which can include physical characteristics such as height and 

weight, disease status, or personality and mental health related characteristics, 

have a genetic component; they cluster within families and are hereditary, and 

this is observable and quantifiable through twin and pedigree studies. In some 

cases, variation in phenotypic or trait value is due to a single mutation or 

disruption in a single gene, and inheritance patterns clearly show the dominant 

or recessive nature of the mutation underlying the trait – termed Mendelian 

inheritance in reference to Mendelian traits, first outlined by Gregor Mendel in 

his work in plant genetics (Mendel, 1866). One example of a Mendelian disease 

trait, where phenotypic variation can be mapped back to a single gene, is 

Huntington’s disease. Here the causal variant is a CAG repeat expansion in the 

huntington gene inherited in an autosomal dominant fashion (Macdonald et al., 

1993) and protein-coding changes drive trait variation (Botstein & Risch, 2003). 

In other cases, traits show a genetic, heritable component, but patterns of 

inheritance are less clear. Rather than changes at a single gene resulting in 

corresponding changes to a single phenotype or trait, trait variation is 

influenced by many small-effect variants, the external environment, and 

interactions between these components. These complex disease traits also tend 

to be more common than traits or diseases that are associated with large 

detrimental effects at single genes – common genetic variation most likely 

contributes the largest proportion of variance to the phenotype, and this 

variation would not persist in the population at the frequency it does if it were 

extremely deleterious, due to natural selection. Genetic variants with large 

effects are virtually always rarer –these large-effect variants will have been 

subject to negative selection and therefore circulate at low frequency in the 

population.  

Rare variants do not provide a sample pool large enough to test for association 

across the genome with sufficient power. The finer resolution of common 

genetic variation contributing to most complex traits is not fully understood. 

Variation in complex traits also appears to be often influenced by variants in 

non-coding regions of the genome (Li et al., 2016; Pickrell, 2014; Welter et al., 
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2014), again in keeping with selective constraint ideas (i.e. most of the variation 

in the human genome that could potentially be associated with any trait is in 

non-coding regions (Hindorff et al., 2009)). Common genetic variation here 

refers to Single Nucleotide Polymorphisms (SNPs), single-base changes in DNA 

sequence, usually with minor allele frequency (MAF) of more than 5%, and not 

less than 1%. SNPs with an MAF of less than 1% are considered rare variants. 

One example of a complex trait is human height, where several hundred SNPs 

have been found to be associated with height (Wood et al., 2014) and 

environmental factors such as nutrition also contribute. Disease traits can also 

be complex – complex diseases include Parkinson’s disease, where both genetic 

and environmental factors are thought to contribute to the disease phenotype, 

and high blood pressure (hypertension), the pathological ‘upper end’ of a 

continuous complex trait phenotypic value spectrum (blood pressure), also 

influenced by many common genetic variants (Evangelou et al., 2018) and by 

environmental and lifestyle factors.  

These two types of traits, (single gene) Mendelian and complex (or quantitative), 

are not necessarily as distinct as previously thought. Instead, Fisher’s 

infinitesimal model of inheritance of quantitative traits, whereby an infinitely 

large number of genetic variants, in addition to environmental factors, 

contribute to phenotypic variation (Barton et al., 2017; Mather, 1964), and 

Mendelian trait inheritance can be thought of as opposite ends of a spectrum in 

terms of number of contributing genetic variants. Fisher’s infinitesimal model 

unified competing schools of thought at the turn of the 20th century 

(biometricians versus Mendelian geneticists) to establish quantitative genetics as 

a research field (Nelson et al., 2013).  

Another important model in considering complex traits, specifically disease 

traits, is the liability-threshold model. Generally speaking, a threshold model is 

any model where a threshold distinguishes ranges of values i.e. where behaviour 

predicted by the model (the outcome) varies in some way above or below a 

particular threshold. In genetics such models were first applied in studies of 

guinea pig polydactyly by Wright (Wright, 1934b, 1934a). In this work he outlined 

that although the trait in question was binary in nature (three-toed versus four-

toed), the underlying genetic factors contributing to this could not be a 
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“singular factor” (Wright, 1934a), and additionally that environmental factors 

contributed to whether the animal’s morphology was pushed over this 

“physiological threshold” (Wright, 1934a). He also theorised that particular 

guinea pig strains were much closer to the polydactyl threshold, due to 

increased genetic and/or environmental risk burden, despite appearing to be 

phenotypically identical to “normal” strains (Wright, 1934b). The modern 

disease liability-threshold model in complex trait genetics with regard to human 

disease is attributed to Falconer (Falconer, 1965, 1967), with disease traits as 

“threshold characters” and liability to developing disease described as a graded 

attribute which incorporates both innate and external contributors to increased 

risk of developing disease.  

Disease liability-threshold models represent a way to incorporate both genetic 

and environmental contributions to disease-trait phenotypic variance for binary 

traits, where above a certain threshold of accumulated genetic and 

environmental risk factors the outcome varies significantly (i.e. disease is 

present, versus below the threshold, disease is not).  

Common genetic variants can be tested for their association with traits of 

interest via Genome Wide Association Studies (GWASs) (Visscher et al., 2017), 

discussed in further detail in 2.2.1. MDD and chronic pain are both complex 

traits, with an inherited genetic component in addition to environmental factors, 

and interaction between genetic and environmental factors, contributing to 

phenotypic variance. Both traits can be examined within the disease liability-

threshold model framework, e.g., in chronic pain the “physiological threshold” 

for diagnosis when chronic pain is considered a binary or threshold character 

may be reached with increasing genetic risk burden in combination with 

environmental factors (e.g. injury, surgery, or disease).  

1.3.3.2 Pleiotropy and genetic correlation 

Many hundreds or even thousands of common genetic variants contribute to 

variation in each complex trait, and the number of human complex traits is large 

but still finite. This means that there is significant genetic ‘overlap’ in terms of 

the genetic architecture of complex traits. Common genetic variants often 

contribute to variation in more than a single trait. These contributions to 

variation in more than one trait may be made independent of one another, so-



44 
 

called ‘biological’ or ‘horizontal’ pleiotropy (Fig 1: a + b), or a variant may 

contribute to variation in a trait, which then itself contributes to variation in a 

second trait, termed ‘mediated’ or ‘vertical’ pleiotropy (Fig 1: c). Pleiotropy 

overall is extremely commonplace in human complex traits and diseases 

(Gratten & Visscher, 2016; Hackinger & Zeggini, 2017; Visscher & Yang, 2016; 

Watanabe et al., 2018), and complicates the investigation of causal relationships 

and mechanisms of disease development. Furthermore, ‘directional’ pleiotropy 

refers to when shared variants tend to be associated with the same direction of 

effect in both traits, making the average value across variants non-zero, and 

‘balanced’ pleiotropy to when there are opposing directions of effect associated 

with shared variants, effectively cancelling each other out.  

Genetic correlation and pleiotropy are closely linked. Two traits are genetically 

correlated when a significant proportion of associated genetic variation is shared 

between them, as can occur with a high enough degree of pleiotropy. Formally, 

genetic correlation rg is the additive genetic covariance between two traits 

scaled by the geometric mean of the trait variances. Genetic correlation can 

inform on shared genetic influences contributing to variation in two compared 

traits, as well as in applications such as validation of measurement of a 

phenotype in one cohort by assessing its genetic correlation with the same 

phenotype in a separate cohort (which should approach 1, if the measurement is 

examining sufficiently similar trait constructs). 

 

Figure 1. 1: Pleiotropy.  
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(a) and (b) show biological (horizontal) pleiotropy, with a single causal variant influencing more than 1 

trait, or two causal variants at a single locus affecting two traits (and so a single locus affecting two traits)  

due to linkage disequilibrium. (c) shows mediated a.k.a vertical pleiotropy – variant influences trait which 

then has an effect/ associated with an effect on a ‘subsequent’ trait. Note that this type of pleiotropy is 

the cornerstone of MR. (d) shows spurious pleiotropy where the causal variants/ associated variants are in 

independent loci but are tagged by (i.e. in LD with) a single variant in both trait 1 and 2. Diagram from 

(Hackinger & Zeggini, 2017).  

Heterogeneity, specifically clinical heterogeneity, is due to the misclassification 

of individuals into disease or phenotype categories. This misclassification can be 

due to shared risk factors, and overlap in symptom profiles, and error in 

measurement and assessment.  

In psychiatric disorders error in measurement is introduced as diagnoses may 

overlap and are based on questionnaire assessment (i.e., there are no laboratory, 

biomarker or imaging tests to decisively deliver a psychiatric diagnosis). 

Depression or MDD may therefore be several distinct disorders (Cai et al., 2020; 

Schwabe et al., 2019), and in our own assessment of this we introduce 

heterogeneity via the structure of the questionnaires. For example, considering 

all DSM-5 depression symptoms to be of equal importance and of more 

importance than non-DSM symptoms results in a large number of non-overlapping 

symptom profiles being categorised under the same diagnostic label (Fried et al., 

2016; Fried & Nesse, 2015b; Olbert et al., 2014). The situation for chronic pain is 

similar to that of major depression (see 1.1.2), again potentially leading to 

clinical heterogeneity because of error in measurement and assessment. 

Partially overlapping symptom profiles of chronic pain and depression may also 

contribute to potential clinical heterogeneity in depression with respect to 

chronic pain and vice versa. For example, those with chronic pain commonly 

report fatigue (Van Damme et al., 2018), and fatigue or loss of energy is 

included as a non-core symptom of MDD in DSM definitions, complicating the 

diagnosis of depression in chronic pain patients (Knaster et al., 2016). 

Additionally, manifestation of depression or depressive symptoms in certain 

groups could be misclassified as chronic pain altogether – men often view 

depression symptoms, particularly physical or somatic symptoms, as an indicator 

of physical illness (Seidler et al., 2016). In general many people with depression 

seek treatment in primary care for somatic symptoms, including aches, pains, 

and fatigue (reviewed (Kapfhammer, 2006)). Chronic pain and MDD also share 
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many risk factors, e.g., being female, or of lower socioeconomic status, and are 

commonly comorbid, further contributing to increased likelihood of clinical 

heterogeneity in the two conditions.  

Clinical heterogeneity can also be described as subgroup pleiotropy (Han et al., 

2016), and if the general case is that e.g. MDD is misclassified as chronic pain, 

then that may be a major contributor to the observation of shared genetic 

factors between the two conditions, as opposed to this sharing of genetic factors 

being an indicator of true pleiotropy. It is therefore important to distinguish 

clinical heterogeneity, or subgroup pleiotropy, from true or whole-group 

pleiotropy to further understand the genetic architecture of both MDD and 

chronic pain. Confirming that misdiagnosis of chronic pain as MDD and vice versa 

is not a significant issue also has implications for examining causal relationships 

between the two conditions.  

1.3.4 Genetics of Chronic Pain and Chronic Pain Disorders 

Twin studies have also shown several chronic pain disorders to have a heritable 

component – a systematic review of a range of twin studies of chronic pain 

phenotypes found heritability to range from ~25% (irritable bowel syndrome) to 

77% (in studies of headache including migraine) (Nielsen et al., 2012). Nielsen et 

al also note that heterogeneity and lack of pain intensity measurement, lack of 

assessing the pain itself, and use of dichotomous pain phenotyping may reduce 

power. This approach to measurement may also mean that genetics and 

resulting heritability estimates may be related to tissue pathology rather than 

pain processing or the chronic pain itself. Subsequent twin studies of chronic 

pain phenotypes have also indicated moderate heritability, including phenotypes 

such as low back pain, H2 = 21-67% (P. H. Ferreira et al., 2013; Junqueira et al., 

2014), and the number of sites (0-31) of chronic pain H2 = 55-63% (Burri et al., 

2018). 

Non-family genetic studies of chronic pain have, to date, commonly been 

investigated using candidate gene and animal model-based approaches (Zorina-

Lichtenwalter et al., 2016, 2017). Although not a focus of this thesis animal 

models of pain and chronic pain reviewed in greater detail by (Burma et al., 

2017; Mogil et al., 2010). In addition to chronic pain as described and 

investigated in this thesis (as a complex trait), rare autosomal recessive genetic 
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diseases such as congenital insensitivity to pain (CIP) have been previously 

described (Golshani et al., 2014; Nagasako et al., 2003). CIP inhibits the ability 

to perceive any physical pain, and this difference in perception is present from 

birth. CIP is heterogeneous both in terms of clinical presentation and genetic 

mutations causing the disease, and mutations in genes including NTRK1 

(neurotrophic tyrosine kinase receptor type 1) (Kilic et al., 2009), PRDM12 (PR 

domain zinc finger protein 12) (Chen et al., 2015) , and SCN9A (sodium channel 

voltage-gated type IX, alpha subunit) (Majeed et al., 2018; Peddareddygari et al., 

2014), among many others, have been implicated. CIP may also be more 

specifically classified according to symptoms, genetic cause, and/or 

comorbidities such as intellectual disability, into one of five kinds of hereditary 

sensory and autonomic neuropathy (HSAN) (Houlden et al., 2006; Lafrenière et 

al., 2004; Minde et al., 2004; F. Zhao et al., 2020). More recently, a novel 

pseudogene microdeletion (in FAAH, fatty acid amide hydrolase) was found in a 

66 year old British woman that conferred pain insensitivity, fast-healing wounds, 

and absence of anxiety, fear and depression (Habib et al., 2019). Two further 

rare genetic disease associated with mutations in SCN9A have also been 

described. One such condition is primary erythromelalgia, characterised by 

erythema (rashes), temperature changes (warmth) and episodes of burning pain 

in the extremities (Dabby, 2012; Fischer & Waxman, 2010; Mann et al., 2019; 

Tang et al., 2015). Disease inheritance in primary erythromelalgia is autosomal 

dominant, with gain-of-function mutations in the SCN9A gene (which encodes 

voltage-gated sodium channels) causing symptoms (Fischer & Waxman, 2010; 

Mann et al., 2019; Tang et al., 2015). Another autosomal dominant disease 

associated with extreme pain is paroxysmal extreme pain disorder (PEPD), 

caused by gain-of-function mutations in genes encoding voltage-gated sodium 

channels (Fertleman et al., 2006; Fischer & Waxman, 2010). PEPD manifests as 

episodic burning pain (of ocular, mandibular and rectal regions as opposed to 

extremities in erythromelalgia), which can be accompanied by non-epileptic 

seizures and slowed heart rate in addition to skin flushing (Fischer & Waxman, 

2010). 

Candidate gene studies, where variants within a gene region chosen a priori by 

researchers are tested for their association with a complex trait (Patnala et al., 

2013; Tabor et al., 2002) (in contrast to single-gene Mendelian pain disorders 

described above), have also been carried out for chronic pain phenotypes. 
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However, candidate gene studies in general may be more likely to yield false-

positive associations (Sullivan, 2007), and so candidate genes in the study of 

chronic pain, such as COMT, SLC6A4, GCH1, OPRM1 and ADRB2 (Mogil, 2012; 

Veluchamy et al., 2018), may not be associated with chronic pain in large-scale 

GWAS of chronic pain as a trait.  

Certain chronic pain phenotypes such as CPG, a graded classification of chronic 

pain assessing pain severity, duration, resultant disability and impact on quality 

of life first constructed by von Korff (Von Korff et al., 1992) and colleagues and 

later validated by Smith et al (Smith et al., 1997), pain at specific bodily sites 

(e.g. low back pain), and specific chronic pain related conditions (e.g. migraine, 

temporo-mandibular joint disorder), have been shown to be complex traits with 

moderate heritability, and common genetic variation (SNP variation) has been 

found to contribute to variation in these traits (Hocking et al., 2012; McIntosh et 

al., 2016; Nicholl et al., 2011; M. J. Peters et al., 2013; Suri et al., 2018; Zorina-

Lichtenwalter et al., 2016, 2017). However, as pain assessment and experience 

are so heterogeneous (Steingrímsdóttir et al., 2017; Vellucci, 2012), there are 

few large-scale genetic, particularly GWAS, studies of chronic pain as a 

phenotype in its own right (Nicholl et al., 2011; Tsepilov et al., 2020; Zorina-

Lichtenwalter et al., 2016, 2017). However, GWAS studies of chronic low back 

pain and chronic pain in particular body sites have been previously carried out 

(Meng et al., 2020; Suri et al., 2018).  

Due to the fact that common genetic variants across the genome are tested for 

their association with a complex trait in a GWAS, sufficient sample size is 

essential (Hong & Park, 2012). At an absolute minimum, this sufficient total 

sample size is estimated to be 2,000 individuals (Hong & Park, 2012), and in 

general number of variants discovered appears to reliably increase with 

increasing sample size (Visscher et al., 2017). GWAS of chronic pain likely 

requires extremely large sample sizes to find associated common genetic 

variants. For example, a genome-wide association study with a sample size of 

~23,000 found no SNPs to be significantly associated with CPG (McIntosh et al., 

2016), a GWAS meta-analysis of low-back pain in ~150,000 individuals showed 

only three trait-associated SNPs at genome-wide significance (Suri et al., 2018) 

and recent GWAS of a musculoskeletal pain phenotype with a sample size of 

~190,000 found nine trait-associated loci (Tsepilov et al., 2020). Required 
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sample sizes for discovery of a large number of chronic pain associated SNPs are 

likely to approach the magnitude (~ 0.5 – 1 million) of those in recent large 

GWAS meta-analyses of MDD (Howard et al., 2019; Wray et al., 2018).  

1.3.5 Genetics of MDD 

As previously discussed with respect to chronic pain, candidate gene analyses 

have been problematic generally, with replication of gene-trait associations 

often inconsistent in subsequent studies. Wray et al (2012) systematically tested 

180 previously highlighted potential candidate genes for MDD, and showed no 

significant findings (Wray et al., 2012). A more recent paper also investigated a 

range of historical MDD candidate genes, and again found “not much support” 

(Border et al., 2019). Linkage analysis findings are also non-overlapping with 

GWAS findings and likely assumptions of analyses were not robust (reviewed 

(McIntosh et al., 2019)). Twin studies indicate MDD has a significant genetic 

component, with heritability estimated at ~30-40% (Kendall et al., 2021; 

Polderman et al., 2015; Sullivan et al., 2000). Heritability estimates from other 

types of familial relationships including extended kinship constructs and varying 

familial-relationship dyads also produce results within a similar range 

(Fernandez-Pujals et al., 2015; also reviewed by Kendall et al., 2021).  

As recently as 6 years ago an extensive review of the genetics of major 

depression asserted that no GWAS up to that point had found loci significantly 

associated with MDD, depression or for any traits genetically related to MDD (e.g. 

neuroticism) (Flint & Kendler, 2014). This paper also emphasised that candidate 

gene work in MDD had, for the most part, only revealed false positives. 

As discussed above (1.3.3.1), MDD is a complex, quantitative trait, where the 

genetic architecture is highly polygenic, and many common variants of small 

effect contribute to variation in the trait. MDD is also more common and less 

heritable than e.g., schizophrenia, further complicating the search for trait-

associated common genetic variation. This is emphasised by the fact that sample 

sizes of over 0.3 million individuals were required before more than one or two 

variants were found significantly associated with MDD (Hyde et al., 2016; Wray 

et al., 2018), and a recent GWAS meta-analysis including broader depression 

phenotypes, the largest to date with a sample size over 1 million participants, 

found more than 100 SNPs significantly associated with depression (Howard et al., 
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2019). Additionally, a much more deeply phenotyped cohort of a more extreme 

depression phenotype of severe recurrent MDD (mean number of episodes being 

5.6) (where contrasts in trait-associated alleles are likely to be much larger 

between cases and controls and so there is more power to detect them) showed 

only two significantly-associated SNPs (Cai et al., 2015). 

Analysis of broader depression phenotypes (i.e., aside from clinician diagnosed 

MDD) has also been shown to be of value. In analyses of broad depression, ICD-9 

or ICD-10 coded MDD and probable MDD in UK Biobank, Howard et al showed all 

three phenotypes to be highly genetically correlated (rg = 0.85-0.87), genetically 

correlated with depression phenotypes from an independent study (rg = 0.63-

0.79), and that the broad depression phenotype was most highly genetically 

correlated (more so than either probable or ICD-coded MDD) with clinically 

defined MDD from an independent study (Howard, Adams, Shirali, et al., 2018; 

Howard et al., 2019). 

GWAS findings of MDD thus far highlight the importance of the immune system, 

synaptic plasticity and neurogenesis, prefrontal brain regions and multiple types 

of neurotransmission (calcium, glutamate), as well as genetic correlation with a 

wide range of psychiatric, behavioural and physical/health traits including 

schizophrenia, bipolar disorder, neuroticism and BMI (Howard et al., 2019; Wray 

et al., 2018).  

MDD has been found to be significantly genetically correlated with chronic pain. 

In family-based analyses of environmental and genetic risk for chronic pain, 

chronic pain grade (M Von Korff et al., 1992) was found to be genetically 

correlated with MDD at ρ = 0.53, indicating that just over half of the common 

genetic variation contributing to either disorder is shared. Positive genetic 

correlations were found between chronic pain at a range of body sites in UK 

Biobank, and between most of the different chronic pain-site phenotypes and 

MDD (rg = ~0.3 – 0.5) (Meng et al., 2019). 

1.4 Summary 

MDD and chronic pain are commonly comorbid, and represent significant global 

socioeconomic and health burdens, both individually and when considered 

together. Mechanisms of chronic pain development, and drivers of differing 
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vulnerability to developing chronic pain, are not currently fully understood, but 

likely include biological and medical, and psychosocial factors, and complex 

interactions between these factors.  

Both MDD and chronic pain as phenotypes represent very heterogeneous 

constructs, complicating the understanding of their aetiology. Chronic pain has 

recently been defined as a disease entity in its own right by an IASP taskforce 

and studying chronic pain as a complex trait may be a more tractable way to 

investigate chronic pain vulnerability and mechanisms in comparison to only 

studying conditions and disorders associated with significant chronic pain 

separately. This is comparable to recent large-scale analyses investigating MDD 

in terms of “broad depression” phenotypes. Common genetic variation 

associated with these two conditions, chronic pain as a disease and MDD, can be 

used to address outstanding questions on: 

• Common genetic variation associated with chronic pain 

• Pleiotropy – to investigate the degree to which common genetic variation 

is shared between chronic pain and MDD, and which genomic loci are 

involved  

• Clinical heterogeneity – is it possible that depression is mis-diagnosed as 

chronic pain, and vice versa? 

• Causal relationships between chronic pain and depression through 

Mendelian Randomisation analyses. 

Further understanding both chronic pain and MDD through use of common 

genetic variant data also has the potential to shed light on aetiology and 

highlight potential new treatment options for both conditions.  

1.5 Aims and Objectives 

1.5.1 Overall Aim 

The over-arching aim of this PhD project is to explore causal relationships 

between chronic pain and MDD in large UK general-population cohorts with 

whole-genome genotyping data using a wide range of statistical genetic methods.  



52 
 

1.5.2 Objectives 

The overall aim will be achieved through investigations that set out to address 3 

main objectives. 

1. To uncover common genetic variation associated with chronic pain 

phenotypes 

2. To investigate genetic correlation and pleiotropy between MDD and 

chronic pain 

3. To test for clinical heterogeneity between MDD and chronic pain 
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Chapter 2: Methodologies and Technical Information 

2.1 Introduction 

This chapter introduces and outlines in detail different methods in statistical 

genetics used throughout this thesis. Certain key concepts involved in analyses, 

such as aspects of complex trait genetics, are also discussed in greater detail 

compared to their introduction in Chapter 1. Datasets, cohorts, and phenotypes 

which are used in multiple analyses and referred to in multiple results chapters 

are also described. 

2.2 Methodologies 

2.2.1 Genome-Wide Association Studies 

Genome-wide association studies (GWASs) are a search for common genetic 

variation that is associated with a complex trait of interest.  Methodologically, 

this involves many millions of regressions, where single-nucleotide polymorphism 

(SNP) genotype (i.e., allele complement) is a predictor or independent variable, 

and trait value (e.g., blood pressure, or case vs control status of a disease trait) 

is the outcome or dependent variable. Each regression tests whether genotype is 

associated with trait value. As outlined previously in Chapter 1: Genetics of 

Complex Traits, SNPs are single-base changes in the genomic DNA sequence, 

each making a very small contribution to the variation in a trait.  

This common variation may ‘tag’ (be physically nearby and in LD with) a causal 

variant, whilst having statistical properties that allow for the surveying of the 

genome, and the general population, in this manner. These properties include 

the genetic variation being common, which means the sample size of each of the 

three genotypes (e.g., AA, AT, TT) is more likely to be sufficiently large to give 

enough power to test association when effect sizes are low.  

GWASs were made possible by the advent of next generation sequencing 

methods (reviewed by Goodwin et al., 2016) and of SNP reference panels, with 

decades of work both sequencing point-mutation changes and mapping these 

genetic variants in the human genome involved. In the 1980s, Botstein and 

colleagues proposed restriction fragment length polymorphisms (RFLPs) be used 

as molecular markers in linkage studies, with the first RFLP map of the human 
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genome completed in 1987 (Botstein et al., 1980; also reviewed by Kruglyak, 

2007). However, linkage studies are underpowered for the discovery of common 

loci associated with complex traits, and the need for association studies in non-

family structured populations was increasingly recognised (reviewed by Kruglyak, 

2007). The SNP consortium (Thorisson & Stein, 2003) and HapMap project 

(Belmont et al., 2005; International HapMap Consortium, 2003) were formed 

with the initial goal of providing a dense genome-wide map of SNPs for use as 

molecular markers in association studies. In addition to highlighting the need for 

association studies of complex traits, it was suggested linkage disequilibrium 

(see also 2.2.5) mapping (Lander, 1996) would also be necessary: in line with 

these previous theories, studies showed SNPs chosen as markers could not be 

uniformly spaced across the genome, nor could they be randomly chosen – LD 

mapping would be necessary to obtain a set of optimally informative markers 

(Carlson et al., 2004; Gabriel et al., 2002). In addition to the HapMap project, 

more recent endeavours such as the 1000 Genomes project (Auton et al., 2015) 

and Haplotype Reference Consortium (McCarthy et al., 2016) provide reference 

panels for a range of human populations, and can also be used for obtaining 

informative SNP marker sets. For example, UK Biobank (see 2.3.2.1) phasing and 

imputation was carried out using 1000 Genomes and Haplotype Reference 

Consortium data (Bycroft et al., 2018; Marchini, 2015).  

It should also be noted that the contributions of non-common-SNP genetic 

variants to phenotypic variation in a trait are unmeasured in GWAS, and such 

genetic variants may also contribute to missing heritability (see next section, 

2.2.1.1). Rare SNP variants (MAF < 1%) are not assayed in GWAS, and non-point 

mutations (mutations where alterations involve more than a single nucleotide), 

such as larger (2 or more bases) insertions and deletions, chromosomal 

rearrangements such as inversion and translocations, and copy number variants 

(CNVs) (J. M. Kidd et al., 2008; Lodish et al., 2016; Scherer et al., 2007) are also 

not investigated (A. J. Clarke & Cooper, 2010; Maher, 2008; Manolio et al., 2009; 

McCarroll, 2008).   

2.2.1.1 The problem of missing heritability in GWASs of complex traits  

Heritability is generally defined as the proportion of phenotypic variation in a 

trait which is due to genetic differences between individuals in a population. 
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These genetic differences include the effects of alleles in an additive sense, but 

also include potential inter- and within-loci effects (dominance and epistasis, 

respectively) - this broad-sense heritability can be calculated using Equation 2.1.  

𝐻2 =
𝑉𝐴 + 𝑉𝐷 + 𝑉𝐸

𝑉𝑃
=

𝑉𝐺

𝑉𝑃
 

Equation 2. 1: Broad-sense heritability. 

In complex traits such as those measured using GWAS, many small-effect genetic 

variants likely contribute to this heritability. In a GWAS context, heritability in 

terms of the proportion of phenotypic variance explained by SNPs under an 

additive model of inheritance is usually calculated – a narrow-sense heritability 

(Equation 2.2). One method to do this is through linkage-disequilibrium score 

regression (LDSR, see 2.2.5), with rescaling of the regression slope to give the 

proportion of variation attributable to the SNPs used in score estimation (h2
SNP).  

ℎ2 =
𝑉𝐴

𝑉𝑝
 

Equation 2. 2: Narrow-sense heritability. 

Prior to GWASs, heritability in complex traits was most often estimated through 

twin and pedigree studies, comparing the phenotypic correlations between 

relatives where the shared proportion of the genome between them is known 

(e.g., parent-offspring pairs or trios, full and half-sib pairs, monozygotic versus 

dizygotic twins). For example, narrow-sense heritability can be estimated from 

the slope of the regression line between mid-parent phenotypic value and 

offspring phenotypic value (Visscher et al., 2008), or broad-sense heritability 

through comparing phenotypic correlations between different sets of relatives 

(Griffiths et al., 2000). 

Missing heritability in GWAS is the heritability that cannot be explained by 

common SNPs assayed in the analyses (Timpson et al., 2018), or the much lower 

values of SNP-heritability from GWAS in comparison to estimates of heritability 

from twin and pedigree studies for the same traits (Maher, 2008; Manolio et al., 

2009). For example, estimates of heritability for major depression from twin 

studies range from 30-40% (Sullivan et al., 2000), but estimates of heritability 

from GWASs are less than 10% (Howard et al., 2019). 
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One possible reason for missing heritability in GWASs may be due to not 

detecting all contributing genetic variation. This can be due to low power to find 

trait-associated variants, and as power increases with increasing sample size, we 

may see more of the phenotypic variation in complex traits explained by 

common genetic variation. Another potential reason we may not be detecting all 

contributing variants is due to genotyping – only a certain proportion of all SNPs 

are genotyped, and the contribution of rare variants (MAF < 1%) or other non-SNP 

variation (e.g., Copy Number Variants, CNVs) is not usually examined (A. J. 

Clarke & Cooper, 2010; Manolio et al., 2009; Marjoram et al., 2014). 

Furthermore, the majority of GWASs are carried out using European-ancestry 

samples – isolated populations and African populations may be enriched for 

unique variants and contain more genetic variation in general, respectively, and 

GWASs carried out in these populations may reveal previously undiscovered trait-

associated variants (Manolio et al., 2009).  

Heritability estimates from twin studies capture non-additive genetic 

contributions to phenotypic variation (i.e., estimates are of broad-sense 

heritability), whereas estimates of heritability derived from GWAS assess only 

additive contributions to phenotypic variation (narrow-sense heritability). For 

example, estimates from twin studies could be inflated due to common-

environment effects (e.g., identical twins more likely to be similarly treated 

than non-identical twins and pairs of siblings) which generate a gene-by-

environment interaction and inflate heritability estimates. Therefore, another 

way heritability may go missing is in the comparison of narrow-sense (GWAS) and 

broad-sense (twin or certain pedigree analyses) heritability estimates.  

Broad-sense heritability can be higher than narrow sense due to both epistasis 

and dominance effects, but in addition to this ‘legitimate’ increase in 

phenotypic variation explained in comparison to narrow-sense heritability, 

broad-sense heritability in twin studies can be inflated due to confounding 

(Hemani et al., 2013). Specifically, variance is generated due to the confounding 

between common-environment effects and non-additive genetic effects (Evans 

et al., 2002). In a GWAS, the proportion of variation in phenotype explained can 

be formalised as the ratio of SNP-heritability (contribution of known variants to 

phenotypic variation) to total additive genetic contribution to variation in a trait 

(Equation 2.3) (Zuk et al., 2012).  
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𝜋𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
ℎ𝑘𝑛𝑜𝑤𝑛

2

ℎall
2  

Equation 2. 3: Proportion of variance explained. 

Rather than missing heritability being due to not discovering all possible trait-

associated variants (i.e. the numerator is underestimated), the denominator 

(total narrow-sense heritability) may instead be overestimated (Zuk et al., 2012). 

While the numerator is directly estimated from the GWAS data, the denominator 

is estimated indirectly from population parameters, in a way that does not 

account for the effects of gene x gene interactions on heritability attributable to 

additive variation.  

In contrast, it may be the case for most complex traits that non-additive genetic 

contribution to phenotypic variation is minimal (W. G. Hill et al., 2008). In this 

case, missing heritability cannot be explained solely by the comparison of 

narrow versus broad-sense estimates. It may never be possible to find this 

missing heritability: Barton argues that missing heritability is “to be expected” 

(Barton et al., 2017), as SNPs are not perfectly associated with causal alleles (J. 

Yang et al., 2010), so only the top tail of the distribution is obtainable even if all 

genomes in all people are assayed (Boyle et al., 2017). 

2.2.1.2 Population stratification  

Population stratification is the presence of systematic differences in allele 

frequencies between subpopulations in a population (e.g., human populations 

from different continents are subpopulations of the global population). This is 

due to non-random mating, which in turn can be caused by physical barriers to 

migration and admixture such as distance, or more subtle influences such as 

selective mating and related factors such as language and country boundaries. 

Genetic drift, a neutral process by which allele frequencies change with time, 

then occurs in this subpopulation, and stochasticity and the possible differences 

in the original ‘split’ subpopulations results in systematic allele frequency 

differences.  

Stratification in the sample population means that any association between 

genotype and trait of interest may not be due to a genetic variant’s association 

with the trait of interest (the fundamental question asked in GWAS), but instead 
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due to the variant segregating at higher or lower frequency in a certain 

subpopulation. These subpopulations may then be unequally represented 

between cases or controls, or distribution of quantitative trait values varies 

between subpopulations. 

GWASs are mostly carried out on samples of white Europeans (Chaichoompu et 

al., 2020). This gap in the field is due to early GWASs being performed almost 

entirely on unrelated, relatively small, European ancestry samples (Mills & Rahal, 

2019; Visscher et al., 2012, 2017): methodology and reference panels were 

developed with these populations in mind. There is comparatively vast genetic 

diversity and different haplotype block structures in non-European populations, 

particularly African populations (Ardlie et al., 2002; Calafell et al., 1998; 

Peterson et al., 2019; Richter et al., 2017; Rito et al., 2013, 2019; Rosenberg et 

al., 2002; Schlebusch et al., 2017; J. C. Stephens et al., 2001; Tishkoff et al., 

2009). This genetic diversity makes it more difficult to build usable reference 

panels for these populations relative to white Europeans. Reference panels are 

needed for genotype imputation, amongst other functions, as part of GWASs.  

Using large, admixed, and ancestrally diverse populations in general is also 

difficult in GWAS not only due to reference panel build issues, but due to 

population stratification on a larger scale in comparison to populations without 

admixture, and the issues this presents for standard GWAS analysis. Modelling 

the extent of fine-scale population structure in genetically diverse populations 

with a long evolutionary history, such as African populations, can be more 

computationally inefficient and complex in comparison to modelling population 

structure in white/ white-European populations. As previously mentioned, GWAS 

is a regression analysis – in standard regression data are assumed to have an 

identically and independently distributed property (i.e., all variables share the 

same underlying probability distribution and so are mutually independent of one 

another). As sample sizes increase and/or include participants of diverse and/or 

admixed ancestry, the chances of including related participants (either in terms 

of familial or ancestral relatedness) increases and this non-independence can 

generate spurious genetic association results (Peterson et al., 2019; Sul et al., 

2018). Analyses in this thesis are carried out on primarily white study 

participants, partly due to the above considerations and due to the demographic 
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composition of UK Biobank, Generation Scotland and 23andMe Pfizer datasets 

(2.3.2) – this limitation is further discussed in 7.5. 

Potential inflation of test statistic values, and associated false-positive results, 

due to population structure, can be mitigated via calculation of a genomic 

inflation factor, commonly λ (J. Yang, Weedon, et al., 2011). Lambda is largely 

a function of population stratification, which can be corrected for in a range of 

ways. Older methods include genomic control (Devlin et al., 2004; Devlin & 

Roeder, 1999), whereby every association test statistic (i.e. per-SNP) is adjusted 

by an overall genomic inflation factor – this may not be appropriate as some 

SNPs differ in terms of allele frequency across ancestral populations more than 

others – some results will be over-adjusted and others under-adjusted, resulting 

in loss of power overall. Another method is structured association, where 

samples are sorted into discrete subpopulation-based clusters, and evidence of 

association is then assessed on a by-cluster basis (Pritchard et al., 2002; Satten 

et al., 2002). This method is also flawed, this time due to issues with defining 

the number of clusters, and inability of the method to allow for membership of 

more than one cluster. The most widely-used approach for population 

stratification correction in GWAS is therefore genetic principal component (GPC) 

analysis-based methods such as EIGENSTRAT (Price et al., 2006), where no prior 

knowledge of population ancestry is required and underlying stratification is 

modelled empirically from the genetic data of the sample population. In 

addition, newer GWAS methods such as BOLT-LMM (Loh et al., 2015), take a 

Bayesian linear mixed-model approach in order to account for relatedness and 

cryptic population stratification in GWAS samples. 

2.2.1.3 Relatedness and Population Stratification– BOLT-LMM 

Linear mixed models allow for both fixed and random effects 

(https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-

models/; Dean & Nielsen, 2007), effectively allowing for hierarchical structure 

within sample data. Hierarchical structure in sample data means there are 

‘levels’ to the data e.g., individuals make up the sample, but an added level is 

that these individuals are related in family groups, or are students sampled from 

different classrooms, or individuals from different geographic locations. 

Observations per-individual are likely to be non-independent as these groupings 

https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/
https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/
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may make individuals more similar to one another within groups compared to 

between groups. To find a true estimate of the relationship between per-

individual observations and an outcome, groupings must be taken into account in 

any model. Non-independence and correlation can also occur in genetic data, 

due to individuals belonging to groups i.e., presence of population stratification 

and/or cryptic relatedness within a sample.  

One linear-mixed model approach used to account for population stratification 

and cryptic relatedness in GWAS samples is BOLT-LMM (Loh et al., 2015). In 

contrast to traditional GWAS where related individuals are removed from the 

sample and GPCs are added as covariates to the GWAS model, BOLT-LMM 

incorporates a genetic relatedness matrix (GRM) into the GWAS model, allowing 

related individuals to remain in the sample while still adjusting for stratification 

and relatedness.  

Mixed model approaches in general are gaining traction in association studies 

particularly in terms of investigating non-infinitesimal traits (Loh et al., 2015; 

Sul et al., 2018), but BOLT-LMM is one of the most computationally efficient, 

and additionally allows for modelling of both infinitesimal and non-infinitesimal 

trait architectures directly.   

2.2.2 Multiple-testing correction in a GWAS context 

As a GWAS is essentially the process of running millions of regressions of SNP 

genotype on trait value, correction for multiple comparisons is vital. Due to 

linkage disequilibrium some genotyped variants are inherited together more 

often than expected by chance, making the number of independent tests smaller 

than the number of genotyped SNPs tested in the GWAS. The standard practice 

for multiple comparison correction in GWAS is Bonferroni correction, giving a 

genome-wide significance alpha value of 5 x 10-8 i.e., the nominal alpha value of 

0.05 is divided by 1 million (an estimate of the number of independent tests).  

2.2.3 Conditional False Discovery Rate Analyses 

As explained in the previous section, multiple testing correction is of great 

importance in a GWAS context, with Bonferroni correction the standard practice. 

Bonferroni correction is generally considered very conservative, a quality which 

some argue may make it less than ideal in the context of a GWAS where the aim 
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is discovery of new trait-associated genetic variation rather than testing of a 

pre-set hypothesis, and the number of tests is extremely large. Bonferroni 

correction is a method for controlling the family-wise error rate – specifically, if 

we set a significance level according to this procedure, we specify the 

probability of concluding at least one false positive result out of the entire set of 

tests we are carrying out.  

An alternative set of multiple-testing corrections fall instead under the umbrella 

of false discovery rate (FDR)-controlling procedures. The false discovery rate is 

the rate or proportion of type 1 errors amongst a set of tests – in contrast to 

Bonferroni correction, FDR-controlling procedures do not control the family-wise 

error rate (chance of at least one type 1 error amongst a set of tests), providing 

a less stringent, but more powerful approach. The tail-end FDR procedure is 

concerned with controlling the FDR at a pre-defined level, and deciding the 

maximum test statistic value from a list of ordered test statistic values which 

allows for this (Benjamini & Hochberg, 1995), which then becomes the new cut-

off value for deciding significance. Local FDR reframes the FDR as a Bayesian 

posterior probability that the SNP in question is not associated with the disease 

or trait, given its association test statistic (usually a p value) (Benjamini & 

Hochberg, 1995; Storey, 2002). Conditional FDR then simply extends local FDR 

analysis and incorporates association data for a second, genetically correlated 

trait, to ask ‘what is the posterior probability that the SNP in question is not 

associated with trait 1 given its association test statistics for both trait 1 and 

trait 2’ (Equation 2.4). This is equivalent to adjusting each association test 

statistic (p value) for trait 1 by an empirical conditional probability value, which 

can be calculated by finding the proportion of instances where the two 

conditions pi ≤ Pi and pj ≤ Pj are true.  

 

 

𝑐𝐹𝐷𝑅 = Pr(𝐻0(𝑖)| 𝑝𝑖 ≤  𝑃𝑖 , 𝑝𝑗 ≤ 𝑃𝑗) =  
𝑝𝑖

Pr(𝑝𝑖 ≤ 𝑃𝑖 | 𝑝𝑗 ≤  𝑃𝑗)
 

Equation 2. 4: Conditional false discovery rate. 
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cFDR analyses have been used to find novel variants associated with 

schizophrenia, type 2 diabetes, Alzheimer disease, bipolar disorder and systolic 

blood pressure (Andreassen et al., 2014; Andreassen, Djurovic, et al., 2013; 

Andreassen, Thompson, et al., 2013; Wang et al., 2016). This therefore 

represents a promising and potentially more cost-effective method for 

identifying new SNPs associated with complex traits by maximising the utility of 

existing GWAS outputs.  

2.2.4 BUHMBOX 

BUHMBOX (Breaking Up Heterogeneous Mixture Based on cross(X)-locus 

correlations) is based on the principle that if clinical heterogeneity were present 

(a subset of disease A cases are mis-diagnosed disease B cases), disease B risk 

variant (allele) frequencies will be higher only within a subset of disease A cases 

(Han et al., 2016), and under ‘true’ or whole-group pleiotropy, disease B risk 

alleles will be found at higher allele frequencies in all disease A cases in the 

sample. In addition, under true whole-group pleiotropy, the expected 

correlation between risk allele dosages at different loci should be “consistently 

positive” (Han et al., 2016). These between-loci pairwise correlations are 

combined into a single BUHMBOX statistic, which tests for excessive positive 

correlations. This test, and thus its statistic, will be significant in the case of 

heterogeneity, and non-significant in the cases of whole-group pleiotropy (lack 

of true heterogeneity) or insufficient power.  

The statistic itself is calculated in several steps. Genotype data in a sample of 

disease A cases and controls is assembled, along with information about SNPs 

associated with disease B (risk allele, risk allele frequency and effect size 

(measured as or converted to odds ratio)). A set of SNPs is compiled where all 

SNPs are associated with disease or trait A at p < 10-4 and are pruned in controls 

by excluding SNPs with r2 > 0.1. SNPs with an info score of < 0.8, MAF < 0.01 and 

HWE test p value of < 10-6 are also excluded. Genetic principal components are 

regressed out from risk allele dosages to give residual dosages for each 

individual locus. Individuals without complete information on SNP rsID, risk allele 

and dosage, risk allele frequency and effect size are excluded. A correlation 

matrix, R, of residual risk-allele dosages in N cases of disease A is constructed, 

along with a correlation matrix R’ of risk-allele dosages in N’ controls. These 



63 
 

matrices are then used to calculate Y (Equation 2.5), a matrix where non-

diagonal elements are z scores from delta correlations, where a delta 

correlation is the relative increase in correlation between risk allele dosages at 

different loci in cases compared to controls (Han et al., 2016). 

𝑌 = √
𝑁 ∗ 𝑁′

𝑁 + 𝑁′ (𝑅 − 𝑅′) 

Equation 2. 5: Y matrix for BUHMBOX calculations. 

 

The BUHMBOX statistic is then calculated according to Equation 2.6 using the 

matrix generated by Equation 2.5, where yij in Equation 2.6 is the element in Y 

row I column j. wij refers to a weighting function designed to maximise power, 

discussed in detail in the BUHMBOX method paper Supplementary Note (Han et 

al., 2016), and utilising risk allele frequency and allele-disease association OR 

values. 

 

𝑆𝐵𝑈𝐻𝑀𝐵𝑂𝑋 = 
∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑖<𝑗

∑ 𝑤𝑖𝑗
2

𝑖<𝑗

 

Equation 2. 6: BUHMBOX test statistic. 

 

A p value is calculated using Equation 2.7, where ϕ is the cumulative density 

function of the standard normal distribution. 

 

𝑃𝐵𝑈𝐻𝑀𝐵𝑂𝑋 = 1 −  𝜑(𝑆𝐵𝑈𝐻𝑀𝐵𝑂𝑋) 

Equation 2. 7: P value for BUHMBOX test statistic.  

 

Population stratification and linkage disequilibrium could lead to a false positive 

result of the BUHMBOX test. Population stratification is addressed through 
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regressing out genetic principal components (GPCs), as part of the calculation of 

delta-correlations (Han et al., 2016). Linkage disequilibrium is adjusted for 

through LD pruning and examining delta-correlations (Han et al., 2016). 

Insufficient power may lead to potential false insignificance or false negative 

result from BUHMBOX analysis. Insufficient power can result when the number of 

disease A cases is too small, heterogeneity proportion is too low, and the 

number of known risk alleles and/or their effect sizes are low. Through 

simulation Han et al showed that high power (approaching 100%) at moderate 

suspected true heterogeneity proportions (0.2) can be achieved if the number of 

risk loci used in analyses is 100 or greater, and when the number of individuals 

with the disease (case individuals) is greater than 2,000 (Han et al., 2016). 

 

2.2.5 Linkage-Disequilibrium Score Regression 

Linkage disequilibrium (LD) is a property of genetic variants, namely alleles at 

different loci, whereby they are inherited together more often than is expected 

by chance (Pritchard & Przeworki, 2001).  

LD can be measured in a range of ways (Devlin & Risch, 1995), most commonly 

between pairs of genetic markers (and mostly using an r2 estimate; see Equation 

2.8 below which gives r. Note the numerator is equal to ‘D’, another common LD 

measure, and the denominator can be written (p1p2q1q2)1/2). p1 is the 

frequency of allele 1 at a biallelic locus SNP 1, q1 is the frequency of allele 2 at 

SNP1, q2 is the frequency of allele 2 at SNP 2, and p2 is the frequency of allele 1 

at SNP 2. r2 can then be used to prune out SNPs correlated (in LD) at an 

undesirable level e.g., SNPs at r2 > 0.1 (10%). Note that r2 is a preferred measure 

of LD rather than D, as r2 correctly accounts for differences in allele frequencies 

at loci being compared.    

 

𝑟 =  
𝜋11𝜋22 − 𝜋12𝜋21

(𝜋1 + 𝜋2 + 𝜋+1 𝜋+2)
1/2 

Equation 2. 8: Linkage disequilibrium estimate (r). 
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LD can be caused by a range of factors, including those in the evolutionary 

history of the population in which the variants segregate, as well as influences at 

the molecular level. Formally, r2 is a function of a scaled recombination rate 

parameter, or ρ (Equation 2.9) (Pritchard & Przeworki, 2001).  

𝜌 = 4𝑁𝑒𝑐 

Equation 2. 9: Recombination rate. 

 

Where c is the rate of recombination between the two markers and Ne is the 

effective population size. Genetic recombination refers to the rearrangement of 

DNA sequences and its consequences (Alberts, Johnson & Lewis, 2002; Carroll, 

2001; Heyer et al., 2010). Where effective population size and recombination 

rate are relatively large, r2 is inversely proportional to ρ i.e., LD between two 

markers decreases with increasing recombination. Recombination rate between 

markers tends to increase with increasing physical distance, and recombination 

rate in general varies across the human genome (Altshuler et al., 2010; Kong et 

al., 2002; Y. Liu et al., 2017; Myers et al., 2005; Stapley et al., 2017). Mutation 

rates also tend to vary across the human genome (Casane et al., 1997; Nachman 

& Crowell, 2000; Smith et al., 2002; K. H. Wolfe et al., 1989), and as high 

mutation rates break down LD between loci and nearby markers this also affects 

the degree of LD between markers. Also, at the molecular level, gene conversion 

can lead to decrease or breakdown in LD – gene conversion is the swapping of 

short sections of chromosomes between copies of a chromosome pair (i.e., is a 

form of non-reciprocal recombination), and effect on LD is equivalent to two 

recombination events in close proximity (and so acts on LD in similar fashion to 

recombination in general).  

Higher-order influences such as genetic drift can also influence levels of LD – 

genetic drift is the change in allele frequencies from one generation to the next 

due to random sampling without replacement in a finite population (Kimura, 

1954; Masel, 2011; S. Wright, 1937).  In small (finite) populations drift can lead 

to general loss of haplotypes over time and lead to an increase in LD 

(Charlesworth, 2009; Star & Spencer, 2013). Conversely, rapid population grown 
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can reduce genetic drift and so reduce levels of LD. Admixture, or migration, 

can generate LD in a population as gene flow temporarily results in long 

haplotype blocks (Darvasi & Shifman, 2005; Smith & O’Brien, 2005). Natural 

selection acting on linked variants can also lead to increase in LD through 

genetic hitchhiking (Smith & Haigh, 1974), as a haplotype flanking an 

advantageous variant is swept to high frequency or potentially to fixation in a 

population – negative selection can remove regions linked to deleterious variants, 

also inflating LD.  

Linkage disequilibrium score regression (LDSR) is a widely used method making 

use of linkage disequilibrium and its relationship with GWAS test statistics in 

order to quantify genetic correlation between traits, and to differentiate 

between population stratification and polygenicity in the inflation of association 

statistics in GWAS data estimated by the lambda value (Bulik-Sullivan et al., 

2015).  

The LD score is a measure of the amount of genetic variation tagged by variant j 

(Equation 2.10), calculated as the sum across k individuals included in the 

reference panel (see Supplementary Note in (Bulik-Sullivan et al., 2015) for full 

derivation).   

𝑙𝑗 = ∑ 𝑟𝑗𝑘
2

𝑘
 

Equation 2. 10: Amount of genetic variation tagged by variant j.  

 

Variants in LD with a causal variant for a trait display an elevation in their test 

statistic in a GWAS, and this elevation is proportional to the degree of LD with 

the causal variant (Pritchard & Przeworki, 2001; J. Yang, Weedon, et al., 2011). 

Additionally, inflation in test statistics caused by population stratification does 

not correlate with LD (Devlin & Roeder, 1999; Lin & Sullivan, 2009; Voight & 

Pritchard, 2005). The expected value of the test statistic from GWAS for a 

variant j therefore depends on sample size (N), SNP-heritability (h2), number of 

markers included in the calculation (M), the contribution of confounding biases 

such as cryptic relatedness and population stratification (a), and the LD score of 

the variant lj.  
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𝐸[𝑥2|𝑙𝑗] =
𝑁ℎ2𝑙𝑗

𝑀
+ 𝑁𝑎 + 1 

Equation 2. 11: Expected value for GWAS test statistic associated with variant j.  

 

The intercept of the regression of the test statistic on LD score (Equation 2.11), 

minus one, provides a measure of test statistic inflation and an indication of 

whether this is due to stratification or polygenicity. Therefore, the closer the 

intercept value to 1, the lower the contribution of confounding bias (such as 

stratification) to inflation of GWAS test statistics, and an intercept value 

including 1 indicates no significant inflation in test statistics due to these 

influences. 

 

To obtain a genetic correlation value for two traits, LDSR can be extended 

(cross-trait LDSR), replacing the chi-squared test statistic of a single study with 

the product of two z scores calculated from GWAS effect sizes (beta values) for 

two separate traits (Bulik-sullivan et al., 2015) (Equation 2.12). N1 and N2 refer 

to the sample size for each of the two traits being compared, M to the number 

of markers included in the calculation, Ns to the number of overlapping samples 

(individuals included in GWAS for both trait 1 and 2), e.g., to genetic covariance 

between the two traits, e to phenotypic correlation among the Ns overlapping 

samples. 

𝐸[𝑧1𝑗𝑧2𝑗| 𝑙𝑗] =
√𝑁1𝑁2ⅇ𝑔

𝑀
𝑙𝑗 +

ⅇ𝑁𝑠

√𝑁1𝑁2

 

Equation 2. 12: Expected value of cross-trait product of GWAS z scores. 

 

A genetic covariance value between the two traits can then be obtained by 

regression of this z score product on LD score, and normalisation of this 

covariance value by square root of the product of the SNP-heritabilities for the 

corresponding studies gives a genetic correlation value between the two traits of 
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interest (Bulik-sullivan et al., 2015). As any sample overlap inflates the z score 

product and then influences the intercept (term to the right-hand side of ‘+’ in 

Equation 2.12) rather than the slope value for the regression, genetic correlation 

as calculated by cross-trait LDSR is not biased by sample overlap.  

2.2.6 Polygenic Risk Scoring 

An individual’s burden of risk (trait-associated) alleles can be quantified by 

calculating their polygenic risk score (PRS). This can be calculated as a simple 

sum of independent trait-associated and trait-increasing alleles present in the 

individual, determined from GWAS output, or as a weighted sum where each 

trait-associated SNP included in the score is weighted by its effect size value 

(Chatterjee et al., 2016; Dudbridge, 2013). Independence of trait-associated 

SNPs contributing to a PRS is ensured via LD-based pruning, which can be carried 

out using tools such as PLINK (S. Purcell et al., 2007). To avoid over-fitting and 

over-estimation of the predictive accuracy of PRSs, the cohort from which the 

score is constructed (i.e. discovery cohort/ sample or training data) should be 

independent from the cohort in which PRSs are calculated and analyses are 

performed (target sample) (S. W. Choi et al., 2020; Wray et al., 2013).  

Significance thresholds to use in PRS construction have been contested – in the 

case of complex traits and considering the infinitesimal model (Barton et al., 

2017), it may in fact be more powerful to include variants associated with the 

trait at much lower than traditional genome-wide significance thresholds (Wray 

et al., 2013), and this approach (using all SNPs whether significantly associated 

or otherwise) is commonly used in animal and plant breeding applications (Erbe 

et al., 2012; Hayes et al., 2009; Meuwissen et al., 2001). Several purpose-built 

statistical tools have been constructed for PRS analyses, one of which, PRSice 

(Euesden et al., 2015), calculates the ‘optimum’ PRS from a range of PRSs with 

varying variant inclusion thresholds based on maximising Nagelkerke R2 value (a 

measure of predictive value of a model and a quantification of amount of 

variation explained).  

PRSs can be included in regression models and used to validate GWAS results, by 

testing whether a PRS for a trait is significantly associated with that trait in an 

independent cohort. In this case population stratification must be accounted for 

by covarying for genetic principal components (similarly to GWAS analyses), or 
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other measures of substructure (underlying stratification) in genetic data such as 

Multidimensional Scaling (MDS) components. PRS analysis can also be used to 

investigate shared genetic factors between traits in a similar fashion to genetic 

correlation – should a PRS for one trait be significantly associated with a 

different trait in an independent cohort, this suggests shared genetic factors 

underlie the two traits. PRSs have been valuable in a clinical setting in some 

cases and may inform treatment or allow stratification of patients by genetic 

risk for disease – examples of diseases where this is true include coronary heart 

disease and certain cancers (reviewed in (Chatterjee et al., 2016; Torkamani et 

al., 2018). In psychiatry, the clinical utility of PRSs is less clear, but there may 

be potential for PRS use in diagnosing of individuals whose symptoms meet 

multiple diagnostic criteria (Ruderfer et al., 2018), and perhaps eventually for 

prediction of illness and to inform treatment, as seen for some physical diseases, 

although this is in its infancy, particularly for psychiatric disorders with lower 

heritability in comparison to more highly heritable disorders such as 

schizophrenia, such as MDD (Binder, 2019).  

2.2.7 Mendelian Randomisation 

The first outlining of the principles of Mendelian randomisation, the “natural 

randomised control trial” (Smith & Ebrahim, 2005; Smith & Hemani, 2014) (Fig 

2.1) framework, is attributed to Katan (Katan, 1986). The basic premise of MR is 

that the causal effect of an exposure on an outcome can be estimated through 

division of the regression coefficients from the regression of the outcome on the 

instrument by the regression coefficient of the regression of the exposure on the 

instrument.  
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Figure 2. 1: MR as a natural randomised control trial.  

Adapted from: https://www.researchgate.net/figure/Principles-and-assumptions-behind-Mendelian-

randomization-A-Diagram-illustrating-the_fig1_325460102 

In the early 2000s MR gained traction in the context of genetic and observational 

epidemiology (Brown, 2003; Keavney et al., 2006; Smith & Ebrahim, 2003). Even 

during these early stages, the potential problems with Mendelian Randomisation 

such as pleiotropy, gene-environment interactions, gene-gene interactions and 

population stratification were recognised (Thomas & Conti, 2001a). Also 

recognised was the potential insight MR could provide into causal relationships 

when only observational/ cross-sectional data were available. Use of aspects of 

the genotype as instrumental variables meant that reverse causation issues are 

avoided, as the genotype is generated prior to experience of both the exposure 

and the outcome, and germline genotype is unaltered by exposures and 

outcomes. Regression dilution bias, whereby errors in measurement of the 

independent variable cause the regression slope to be biased towards zero 

(Hutcheon et al., 2010), is also avoided as the genetic variants associated with 

the exposure tend to remain associated to the same degree throughout the life 

course (Smith & Ebrahim, 2004), mitigating random measurement error in 

measurement of the exposure variable. To a degree, issues with confounding can 

also be avoided if genetic variants used as instruments are unrelated to factors 

that confound exposure and outcome such as socioeconomic status (Lawlor et al., 

2008) (see below for further discussion of this in the context of increasingly 

complex exposures).  

https://www.researchgate.net/figure/Principles-and-assumptions-behind-Mendelian-randomization-A-Diagram-illustrating-the_fig1_325460102
https://www.researchgate.net/figure/Principles-and-assumptions-behind-Mendelian-randomization-A-Diagram-illustrating-the_fig1_325460102
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However, this is only true if the instrument-outcome-exposure relationship 

adheres to a list of specific assumptions. This allows for investigation of the 

exposure-outcome relationship in a way that is analogous to a randomised 

control trial (RCT), as the ‘participants’ are ‘dosed’ with the exposure 

(measured via instrumental variable(s)) at conception, and this dosage is 

randomised according to Mendel’s second law (the law of independent 

assortment) (Mendel, 1866). The assumptions that allow causal effect estimation 

are as follows (Lawlor et al., 2008) (Fig 2.2); 

 

Figure 2. 2: MR assumptions.  

IV1 = instrumental variable assumption 1, IV2 = instrumental variable assumption 2, IV3 = instrumental 

variable assumption 3. Adapted from: https://www.researchgate.net/figure/Principles-and-assumptions-

behind-Mendelian-randomization-A-Diagram-illustrating-the_fig1_325460102  

1. the instrument is associated with the exposure (IV1) 

2. the instrument affects the outcome only via the exposure (IV2) 

3. the instrument is not associated with any confounders of the exposure-

outcome relationship. (IV3) 

 

If there is only one IV, the simple ratio of regression coefficients described 

above can be used as-is, and this is the Wald ratio method. However, in most 

cases, there will be more than one IV. This is because in the cases of MR analysis 

of complex traits, instruments are genetic variants and are commonly chosen 

from GWAS (Burgess et al., 2017). Here is where the problems of population 

stratification, pleiotropy, gene-gene and gene-environment interactions, as 

envisioned in the early 2000s (Thomas & Conti, 2001b) become apparent. As the 

https://www.researchgate.net/figure/Principles-and-assumptions-behind-Mendelian-randomization-A-Diagram-illustrating-the_fig1_325460102
https://www.researchgate.net/figure/Principles-and-assumptions-behind-Mendelian-randomization-A-Diagram-illustrating-the_fig1_325460102
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number of IVs increases so does the chance that one or more will be associated 

with a second trait other than the exposure (pleiotropy). It also becomes more 

likely that an IV will be associated with another genetic factor (G) in addition to 

an environmental factor (E) – if G and E are independently distributed and the 

relationship between exposure and outcome is linear, this G x E interaction may 

not be a problem, but with non-independent distribution of G and E (where G is 

associated with likelihood of exposure to E) and non-linear relationships 

between exposure and outcome, this can result in both false positive and false 

negative results in MR analyses. If an IV is involved in a gene-gene interaction, 

this would produce similar results to G x E in MR analyses. Population 

stratification in GWAS introduces “distortion” of estimates of association 

between genetic variants and traits, which can then bias results of MR analyses 

through introduction of confounding between genetic variants and trait values.  

There are two main branches of MR analysis, depending on whether the 

researcher has access to individual-level genetic information, or just to genome-

wide association study (GWAS) summary statistics. In the former, associations 

between genetic variants (instruments) and exposures are measured in the same 

dataset as the measurement of instrument-outcome associations. In the latter, 

two independent GWAS summary statistic datasets are used, one for instrument-

outcome association measurement, and one for instrument-exposure 

measurement. Discussion below will focus on two-sample MR (where two 

independent GWAS summary statistic datasets are used) which is used in 

analyses in this thesis, but one-sample MR (and the relative merits of one versus 

two-sample MR) is summarised in detail elsewhere (Haycock et al., 2016; Lawlor, 

2016; Smith & Ebrahim, 2003). 

In the context of MR, the derivation of instruments from GWAS can be 

problematic for three main reasons. Firstly, since associated variants are likely 

to have small effects on the variation of the exposure, they may be weak as 

instruments (and so may not meet assumption 1). This can result in weak 

instrument bias, which is when the causal estimate tends towards the 

confounded observed estimate between exposure and outcome. In some 

situations, inclusion of a greater number of instruments can increase power – 

this is not true if many, or all, of the instruments are weak, and is known as 

‘many weak instruments’ bias (Bound et al., 1995).  
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The decision as to what constitutes robust association in an instrument is less 

straightforward for complex, heterogeneous exposures. APOE genotype and 

serum cholesterol have a clear relationship, and intuitively genotype makes a 

good ‘stand-in’ (instrument) for serum cholesterol level (Katan, 1986). For 

exposures such as BMI, employment status or MDD the genetic variants found to 

be associated with the traits through GWAS will have negligible effect sizes, and 

the ‘threshold’ for choosing certain variants rather than others is tricky to define. 

Genome-wide significance may be chosen as a threshold, but in the case of MDD 

this provides potentially over a hundred variants as the starting pool of 

instruments – and again each will only contribute to a tiny proportion of the 

variance in the exposure. Many algorithms exist to prioritise and rank GWAS SNP 

associations according to predicted functional consequence (de Leeuw et al., 

2015; McLaren et al., 2010, 2016), but again the relationship between predicted 

functional consequence of a SNP-change and the end-point of variation in the 

exposure trait value is not clear and many variants may have relevant functional 

annotation (or conversely, it may be that none of the trait-associated variants 

have relevant functional annotation).  

Secondly, pleiotropy is of great concern. Biological a.k.a. horizontal pleiotropy 

could mean that assumptions 2 and 3 are violated, as the variant may be 

associated indirectly with confounders and/or directly with the outcome 

(reviewed by Hemani, Bowden, & Smith, 2018). Furthermore, chances of 

pleiotropy are increased with increasing number of associated variants. Many 

hundreds of SNPs are associated with many complex traits at genome-wide 

significance, as sample sizes and variant-discovery power of GWASs increase. For 

example in a recent analysis of ~0.8 million individuals over 100 variants were 

found to be associated with MDD at genome-wide significance (Howard, Adams, 

Clarke, et al., 2018). It is impossible to empirically test MR assumptions 2 and 3 – 

not all possible confounders are known, and their possible association with 

instrument(s) is not assessed – it is likely, due to pleiotropy, that each 

instrument is associated with at least one confounder or the outcome.  

Thirdly, there may be extensive measurement error in a GWAS, depending on 

factors such as sample size. Both the SNP-exposure association and the SNP-

outcome association may be measured with considerable error, depending on 
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study size and design (particularly case-control versus continuous/ quantitative-

trait association analyses) (Liao et al., 2014).  

2.2.7.1 Pleiotropy in Mendelian Randomisation Analyses 

As discussed directly above, pleiotropy may render an instrument invalid. In 

complex traits this is an issue because pleiotropy is widespread and likely to be 

unavoidable when choosing instruments (Sivakumaran et al., 2011; Solovieff et 

al., 2013; Timpson et al., 2018; Visscher & Yang, 2016). Considering this, MR 

methodology has been developed to account and correct for pleiotropy amongst 

instruments. Two methods for dealing with pleiotropic instruments in MR, 

Inverse-Variance Weighted MR and MR-Egger, are conceptually based upon 

dealing with heterogeneity in estimates derived from meta-analyses, and small-

study bias in meta-analysis respectively. In contrast MR-RAPS is based on errors-

in-variables regression models.  

2.2.7.2 Inverse-variance weighted (IVW) MR 

In IVW analyses the Wald ratio estimates of the causal effect of the exposure on 

the outcome, obtained for each individual instrument, are essentially weighted 

and combined in a fixed-effect meta-analysis model to obtain an overall 

estimate of causal effect of exposure on outcome. This can be visualised as a 

line of best-fit passing through causal estimates plotted on an instrument-

outcome versus instrument-exposure coefficient plot: in IVW, this line is 

constrained to pass through the origin (Bowden et al., 2015). It is assumed that 

heterogeneity in causal estimate values across instruments is due to horizontal 

pleiotropy in at least one or more instruments, but could be due to a range of 

issues that lead to model assumptions not being met (Hemani et al., 2018). 

An adaptation of Cochran’s Q statistic can be used to quantify and statistically 

test the significance of this heterogeneity-indicated horizontal pleiotropy 

(Bowden et al., 2017, 2019; Burgess et al., 2013). Q, derived from the IVW 

estimate, should follow a chi-squared distribution with degrees of freedom equal 

to the number of SNP instruments minus 1, and significant departure indicates 

heterogeneity (and so potential horizontal pleiotropy). Additionally, a measure 

of instrument strength in IVW MR analyses is the F-statistic (Bowden et al., 2016, 

2017, 2019; Burgess et al., 2011; Staiger & Stock, 1997).  
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2.2.7.3 MR-Egger 

MR-Egger is another MR method, and is based on the fact that small-study bias in 

meta-analysis can be visualised by plotting the precision associated with study 

estimate against estimates themselves in a funnel plot (Egger et al., 1997). 

Unlike IVW MR analyses which indicates presence of general horizontal 

pleiotropy whether balanced or directional, MR-Egger detects directional 

horizontal pleiotropy specifically. Directional pleiotropy is when pleiotropic 

effects of genetic variants are not balanced around the null (zero), but tend to 

be in the same direction (trait increasing or trait decreasing) across different 

traits (Bowden et al., 2015). 

In MR analysis, directional pleiotropy can be considered a kind of small-study 

bias, with each SNP instrument representing a ‘study’, with asymmetry in a plot 

of ‘precision’ (size of the association between instrument and exposure) against 

the causal estimate for that instrument indicating directional pleiotropy. If the 

intercept in MR-Egger is significantly different from zero, this indicates 

directional pleiotropy is present amongst instruments. Note that balanced 

horizontal pleiotropy (i.e., where effect direction is heterogeneous amongst 

individual estimates, effectively cancelling out overall) would not be detected. 

Analogous to the F-statistic in IVW analysis, a version of the I2 statistic (Higgins 

et al., 2003) termed I2GX (Bowden et al., 2016) can be calculated in MR-Egger 

analysis to give an estimate of instrument strength. I2
GX can range from 0 to 1 

and quantifies the degree of bias (or dilution) of the causal estimate obtained 

from MR-Egger due to measurement error in SNP-exposure association values.  

Overall, MR-Egger and/or IVW, or other MR analyses, can be done in tandem to 

further interrogate causal estimates obtained via MR, and attempt to identify 

and adjust for the presence of horizontal pleiotropy amongst instruments. 

Multiple approaches can be used to further understand the most prominent type 

of horizontal pleiotropy present e.g., IVW and MR-Egger to assess for presence of 

horizontal pleiotropy generally and directional pleiotropy, respectively.  

2.2.7.4 MR-RAPS 

An alternative methodology treats potential violations of IV assumptions an 

‘errors in variables regression’ problem framework, in contrast to meta-
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analysing effect estimates from individual instruments. Errors-in-variables 

models account for error in measurement of the independent variables (R. J. 

Carroll, 2006)– in standard regression (and so in IVW, MR-Egger and similar 

methods) it is assumed that independent variables are measured without error 

and these models therefore only account for errors in dependent (outcome) 

variables, and measurement error in SNP-exposure association is assessed 

separately through measuring e.g. I2GX and F. MR-RAPS (Robust Adjusted Profile 

Score) adjusts the profile likelihood of the summary data (Zhao et al., 2020).  

The effect of an exposure on an outcome is modelled as an errors-in-variables 

regression (Equation 2.13). 

𝛤𝑗 ≈ 𝛽0𝛾𝑗 

Equation 2. 13: Errors-in-variables regression. 

 

Where 𝛤𝑗  is the association between instrument j and the outcome, and 𝛾𝑗 is the 

association between instrument j and the exposure, and 𝛽0 gives an estimate of 

the causal effect of exposure on outcome. For MR-RAPS analysis, first a log-

likelihood function of the summary data is obtained (Equation 2.14). This is the 

natural log transformation of the likelihood function of the summary data, where 

the likelihood function measures goodness-of-fit of the errors-in-variables 

regression model given the values of model parameters.  

𝑙(𝛽, 𝛾𝑗 … , 𝛾𝑝) = −
1

2

[
 
 
 
 

∑
(𝛾𝑗 − 𝛾𝑗)

2

𝜎𝑥𝑗
2

𝜌

𝑗=1

+ ∑
(𝛤𝑗 − 𝛾𝑗𝛽)

2

𝜎𝑦𝑗
2

𝑝

𝑗=1 ]
 
 
 
 

 

Equation 2. 14: Log-likelihood function of the summary data. 

 

‘Profiling out’ of nuisance parameters (𝛾𝑗) from the log-likelihood function gives 

the profile score (profile log-likelihood of 𝛽) (Equation 2.15) (Zhao et al., 2020).  
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𝑙(𝛽) = −
1

2
∑

(𝛤𝑗 − 𝛽𝛾𝑗)
2

𝜎𝑥𝑗
2 𝐵2 + 𝜎𝑦𝑗

2

𝜌

𝑗=1

 

Equation 2. 15: Profile score. 

 

A maximum likelihood estimator of 𝛽 is given by �̂� = argmax𝛽𝑙(𝛽). Briefly, 

maximum likelihood estimation is the estimation of model parameters of a 

function (here, regression of exposure on outcome) via maximizing the likelihood 

function (of 𝛽 ) given the data x so the data are most probable under the 

assumed statistical model.  

Zhao et al showed the relationship between exposure and outcome deviates 

from the linear relationship described above due to systematic pleiotropy 

(almost all instruments show horizontal pleiotropy), and this can be modelled 

under a random-effects model. 

When a profile score is calculated according to this model, it is biased (does not 

have mean zero at the true value). Inflation in the variance of 𝛤 (due to 

systematic horizontal pleiotropy in instruments) is described by the unknown 

additive constant 𝜏0
2, and as a result the profile log-likelihood and one of the 

associated profile scores has a corresponding maximum likelihood estimator that 

is not statistically consistent. In order to correct for this bias (and so effectively 

model systematic pleiotropy), the profile score is modified (‘adjusted’) 

((McCullagh & Tibshirani, 1990), see also Zhao et al., 2020 section 4.2).    

In addition to systematic pleiotropy, idiosyncratic pleiotropy (horizontal 

pleiotropy of a single instrument or small subset of instruments) can mean even 

an adjusted profile score will not be able to deliver the best causal estimate – 

this idiosyncratic pleiotropy is indicated by outliers on diagnostic plots of the 

adjusted profile score estimator (QQ plots and leave-one-out versus instruments 

strength plots). To mitigate the effects of idiosyncratic pleiotropy on the 

adjusted profile score estimator of the causal estimate, the adjusted profile 

score can be made robust, through robust regression techniques first developed 

by Huber (Huber, 1964). This involves changing the l2-loss in the profile 
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likelihood to a robust loss function, either the Huber or the Tukey biweight loss 

function.  

Overall, using a robust adjusted profile score to estimate the causal effect is 

based on a model that is most likely to match underlying instrument (SNP) 

biology i.e., widespread pleiotropy in variants associated with in complex traits. 

MR-RAPS allows estimation of a causal estimate in scenarios where both 

systematic pleiotropy (most or all instruments are pleiotropic) and idiosyncratic 

pleiotropy (a small subset or single instrument(s) are/ is pleiotropic) are present, 

and this can be explicitly modelled. Additional added benefits of MR-RAPS 

include the fact that inclusion of additional weak instruments (e.g., associated 

SNPs at less than genome-wide significance) can improve accuracy of the causal 

estimate, and that this type of in-depth statistical correction is usually only 

possible with access to individual-level data (and through MR-RAPS is possible 

with summary statistics).  

In addition to IVW, MR-Egger and MR-RAPS described above and used in analyses 

described in later chapters of this thesis, a wide range of other MR approaches 

are also in common usage (Bowden et al., 2017; Burgess et al., 2017; Evans & 

Smith, 2015; Smith & Hemani, 2014; Zheng, Baird, et al., 2017), many also 

developed with respect to specific challenges of two-sample MR with multiple 

instruments derived from GWASs.  

2.2.7.5 Summary Statistics & Methodological Issues in Two-Sample MR 

If harmonisation of GWAS summary statistics for two-sample MR approaches is 

not carried out correctly, causal estimates can be wrong (reviewed by Hartwig, 

Davies, Hemani, & Smith, 2016). Harmonisation can be summarised as 4 main 

steps; 

1. merging of the GWAS datasets (one for exposure, one for outcome) 

2. choosing a subset of SNPs from the merged dataset 

3. matching the effect alleles in exposure and outcome GWAS datasets 

4. linkage-disequilibrium pruning  

In step 1, SNPs must be present in both GWAS datasets and have no missing 

allele information. SNPs must also be reported on the same strand of DNA in 

both GWAS datasets. For example, a SNP may be read as A/G if reported on the 
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forward strand, and T/C if reported on the reverse strand. If there are strand 

discrepancies between GWAS datasets, labelling can be easily converted (e.g., 

A/G ➔ T/C).  

In step 2 a subset is chosen via a significance threshold of the researcher’s 

choosing – this may be genome-wide significance, nominal significance, or 

another threshold (in relation to the SNP-exposure p-value). It is also ensured 

that the effect allele (allele for which the association beta or OR is reported) is 

exposure-increasing. If the effect (beta) value is less than zero (not exposure 

increasing), effect allele is swapped with non-effect in the exposure GWAS 

dataset, and the beta value is multiplied by -1. Effect alleles are then matched 

between exposure and outcome datasets, ‘flipping’ alleles in the outcome 

dataset where necessary & possible (step 3).  

Finally, LD pruning is carried out, r2 threshold depending on the type of MR 

analysis to follow (e.g., a PLINK default r2 threshold of 0.2 is acceptable for MR-

Egger, but r2 < 0.01 is required for MR-RAPS). This results in a set of independent 

instruments, ready for two-sample MR analyses. 

Selection bias can be avoided by selecting instruments (based on, for example, 

p-value of association with the exposure) in a third, independent dataset. 

Selection bias occurs if genetic instruments influence the likelihood of taking 

part in a study or participating fully in follow-up. As an example, to mitigate this, 

if the MR analysis was to be carried out with BMI as an exposure and MDD as an 

outcome, two independent GWAS summary statistic datasets would be used, one 

for BMI and one for MDD, with a third independent dataset of an entirely 

separate GWAS of BMI used for instrument selection initially – if SNPs are 

associated with BMI in two independent GWASs, this suggests the association is 

true rather than driven by an association between SNP and likelihood of 

participating in a particular study. However, selection bias may be of less 

concern in large, general-population cohorts such as UK Biobank in comparison 

to cohorts where participants are recruited from hospital or general practice 

settings, or specifically based upon a condition of interest.  

These methodological stumbling blocks relating to harmonisation errors can 

result in discordant results between two-sample MR analyses even when using 

the same GWAS datasets (Hartwig et al., 2016). In two independent MR analyses 
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of C-reactive protein and schizophrenia, Prins et al found a protective (negative) 

causal effect of CRP on schizophrenia (Prins et al., 2016), whereas Inoshita et al 

found a positive causal effect of CRP on schizophrenia, with the latter analysis 

since retracted as the results were likely biased due to harmonisation issues 

(Hartwig et al., 2016).  

2.3 Resources and Materials 

2.3.1 FUMA and analyses therein (MAGMA, GTEx) 

FUMA is an integrative, open-access web platform used for the annotation, 

prioritisation, visualisation and interpretation of GWAS results , with GWAS 

summary statistics as input (Watanabe et al., 2017). A range of the available 

tools within FUMA have been utilised in analyses in this thesis; MAGMA and GTEx 

are of importance and summarised below.   

2.3.1.1 MAGMA 

In a GWAS, association between SNPs and a trait of interest is tested for. GWAS 

output (summary statistics) can be further characterised at the gene level, to 

investigate genes and gene ‘sets’ (functional groupings of genes) which are 

significantly associated with the trait of interest. In gene a.k.a. gene-based or 

gene-level testing, effects of variants are aggregated at the gene level – SNPs 

within the same gene have their test statistics combined to give a single p value 

for the test of the association of the trait with that gene. This method was 

inspired by pathway analyses in microarray data (Wang et al., 2007), and some 

of the first implementations involved adapting the GSEA (Gene Set Enrichment 

Analysis) algorithm (Subramanian et al., 2005), and adjustment for multiple 

testing is achieved through a permutation-based procedure (Subramanian et al., 

2005; Wang et al., 2007).  

Combining the test statistics of each SNP in a gene into a single gene-level test 

statistic (p value), was done by calculating a maximum statistic by Wang et al 

(Wang et al., 2007) (summing p values or the logarithms of p values), followed 

by permutation-based adjustment. Permutation testing approaches are used to 

adjust for multiple comparisons, and in contrast to Bonferroni or Benjamini-

Hochberg where a family-wise or false discovery rate is controlled at a desired 

value, the underlying null distribution of the sample data is simulated by 
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resampling test statistics under the null hypothesis (Camargo et al., 2008; 

Conneely & Boehnke, 2007). 

There may be issues with this overall approach if multiple LD blocks in a gene 

contain a SNP contributing significantly to variation in the trait (i.e. putatively 

causal), and although a permutation-based approach to multiple testing 

corrections keeps the Type 1 error rate effectively the same across genes of 

different size, there may be a loss of power for larger genes, and there is some 

evidence that a permutation-based approach is not accurate with increasing LD 

as “undue weight” is given to highly correlated markers (Moskvina et al., 2012). 

There are a range of methods for gene-level association testing (gene-based 

testing) and gene-set analyses (De Leeuw et al., 2016; Holmans et al., 2009; P. H. 

Lee et al., 2012; Lips et al., 2012) which aim to address these issues related to 

linkage disequilibrium and gene size, and one of the best-performing of such 

methods is MAGMA (Multi-marker Analysis of GenoMic Annotation) (de Leeuw et 

al., 2015; De Leeuw et al., 2016). 

MAGMA gene-based testing or gene analysis uses a multiple linear principal 

components regression model to test for association between each gene and the 

trait of interest, and an F test is used to compute the gene-level p value. The 

SNP matrix for a gene, consisting of rows of participants and columns of SNP 

genotypes (i.e. each element in the matrix is a 0, 1 or 2) is projected onto that 

gene’s genetic principal components (PCs), PCs with very small eigenvalues are 

removed, and then remaining PCs are used as predictors of the trait of interest 

in the linear regression model (de Leeuw et al., 2015) (Equation 2.16), where Y 

phenotype or trait value, 𝛼0𝑔 is the intercept, 𝑋𝑔
∗ is the matrix of PCs, 𝛼𝑔 is the 

vector of genetic effects for gene g, W an optional matrix of additional 

covariates and 𝛽𝑔 the vector of covariate effects. 

𝑌 = 𝛼0𝑔𝐼 + 𝑋𝑔
∗𝛼𝑔 + 𝑊𝛽𝑔 + 𝜀𝑔 

Equation 2. 16: Regression of phenotype Y on gene effects (gene-level MAGMA 

analysis). 
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An F test then tests the null hypothesis of no association between the gene and 

the trait (all values in the vector 𝛼𝑔 being zero for a gene). This method means 

that LD is fully accounted for, the model is flexible (allows for extra covariates 

and interaction terms without change to the underlying model), and 

computation time is much faster in comparison to permutation-based test 

methods.   

There is some discussion in the literature as to defining gene boundaries in the 

context of gene-level association testing (reviewed (Wang et al., 2007), see also 

(Portin & Wilkins, 2017)), which can be done according to SNPs locations in 

relation to expression boundaries, coding regions and varying length of 

up/downstream sequence, and may or may not include SNPs correlated with 

SNPs mapped to gene locations. In MAGMA analyses, genes are defined by their 

transcription start and stop sites, as given by human genome reference builds & 

Entrez gene IDs, and SNPs are mapped to the gene if they are located within 

that interval (between start and stop site) – options also exist to add upstream 

and downstream extensions of this interval (de Leeuw et al., 2015).  

As an extension of gene-based or gene-level association testing using MAGMA, 

trait-associated genes can be tested for membership of functional pathways 

(gene-set analysis). This is achieved by transforming the p value for each gene 

𝑝𝑔 (calculated during the gene-level analyses) into a Z value using Equation 2.17 

below. 

𝑧𝑔 = 𝜙−1(1 − 𝑝𝑔) 

Equation 2. 17: Transformation of gene p values to Z values for gene set 

analysis. 

 

Where 𝜙−1 is the probit function. This gives a variable Z containing all values of 

𝑧𝑔. To ask whether all genes in a set s are associated with the trait (self-

contained gene-set analysis), an intercept-only regression is carried out 

(Equation 2.18).  
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𝑧𝑠 = 𝛽01⃗⃗ + 𝜀𝑠 

Equation 2. 18: Intercept-only regression (MAGMA gene set analysis, self-

contained)  

 

Competitive gene-set analysis tests whether genes in a set are more strongly 

associated with the trait than genes in another set. The regression used in self-

contained gene-set analyses is expanded through use of a binary indicator 

variable Ss with elements sg (with sg = 1 for genes present in a set, and = 0 for 

those outside the set) (Equation 2.19).  

𝑍 = 𝛽0𝑠 1⃗⃗ + 𝑆𝑠𝛽𝑠 + 𝜀 

Equation 2. 19: MAGMA gene set analysis (competitive) 

 

The parameter 𝛽𝑠 shows the difference in association between genes in the set 

and those not in the set and testing the null hypothesis 𝛽𝑠 = 0 against the one-

sided alternative 𝛽𝑠 > 0 is equivalent to performing a one-sided two-sample t-

test that compares mean association of genes in the set with the mean 

association of genes not in the set. Similarly, self-contained gene-set analyses is 

the same as carrying out a one-sided one-sample t-test, comparing the mean 

association value of genes in the gene set to 0. 

Aggregating SNP-level statistics to the gene and gene-set level allows for an 

increase in power as fewer tests are performed overall. These types of analyses 

can also inform on potential functional impact of trait-associated SNP variation, 

by indicating loci for further investigation.  

2.3.1.2 GTEx 

The Genotype-Tissue Expression (GTEx) project is  resource that enables study of 

relationships between genetic variation, gene expression, and other molecular 

phenotypes in a range of human tissues (Aguet et al., 2017; Ardlie et al., 2015). 

As of the GTEx v6 data freeze used within FUMA, the resource consists of data 

from over 7,000 cell and tissue samples from 449 donors (the most recent GTEx 
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release (v8) is made up of over 1,000 individuals). One of the key goals for the 

GTEx project was to identify eQTLs for all genes for a range of human tissue 

types, and over 150,000 cis-eQTLs have also been mapped using these data. This 

was done by calculating significance correlations between genotypes and gene 

expression levels by performing linear regression of genotype on quantile 

normalized gene-level expression values (following correction for technical 

covariates) using Matrix eQTL (Shabalin, 2012) – see also Ardlie et al 

Supplementary Information including Figure S8 (Ardlie et al., 2015). Gene-

specific p values with correction for multiple testing (of multiple SNPs per gene) 

were calculated using a permutation-based approach. SNPs were mapped to 

genes if they were located within 1Mb of the transcription start site.  

Normalized gene expression data (reads per kilobase per million) for 56, 320 

genes in 53 tissues were taken from GTEx v6 for use in FUMA (Watanabe et al., 

2017). These 56, 320 genes were filtered to include genes with an average RPKM 

per tissue greater than or equal to 1, in at least one tissue type, giving a set of 

28, 520 genes, of which 22, 146 were mapped to entrez ID identifiers. Gene 

expression analysis using GTEx in FUMA is an extension of MAGMA gene-level 

analyses: “gene-property” analysis is performed using the average expression of 

genes per tissue type as a gene covariate, in order to test the (positive) 

relationship between genes highly expressed in a certain tissue, and genetic 

associations. Gene expression values are log2 transformed average RPKM per 

tissue type, after winsorized at 50 (based on GTEx RNA-seq data). FUMA tissue 

expression analysis is performed separately for 30 general tissue types and 53 

specific tissue types. 

The full GTEx data are accessible via dbGap, and certain subsets can be 

explored and visualised using the online GTEx portal 

[https://www.gtexportal.org/home/].  

2.3.2 Cohort Profiles 

2.3.2.1 UK Biobank 

UK Biobank is a UK general-population cohort of 0.5 million individuals recruited 

in middle age (40-79 years) from 2006-2010, with ongoing follow-up assessments 

including imaging, repeated measures of baseline phenotypic measures and 

https://www.gtexportal.org/home/
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linkage to health records and death registers (Sudlow et al., 2015). Many 

thousands of phenotypic measures, such as blood pressure, height and weight 

were recorded, along with whole-genome genotyping (Bycroft et al., 2018). A 

subset of the cohort also completed an online follow-up Thoughts and Feelings 

questionnaire, from which DSM-5-approximating psychiatric disorder phenotypes 

can be derived (Davis et al., 2020). In addition, and importantly for this PhD 

project, all 0.5 million UKB participants were also asked through touchscreen 

questionnaire about pain and duration of any pain, at a range of bodily sites, at 

baseline assessment. (Pain phenotyping is discussed in detail below and in 

relevant results chapters). Approved UKB projects with datasets used for 

analyses described in this thesis were 6553 and 7155.  

A large proportion of the information collected during the UKB assessment 

centre visits or as part of online follow up, including questions on pain, is based 

on self-report, which may also represent a limitation in comparison to use of 

data collected during interview by a healthcare professional or with testing or 

sample collection. In general, information collected by self-selected participants 

in a self-report format can be subject to a range of biases such as confounding 

(the risk factor(s) being studied is correlated with an unmeasured risk factor), 

information bias (systematic measuring errors during data collection), and 

selection bias (the studied population is non-representative of the general 

population) (Janssens & Kraft, 2012).  

More specific limitations include the fact that UKB participants tend to be 

wealthier and healthier than the general UK population, and are likely to be 

older, less likely to be obese, less likely to be physically inactive, and less likely 

to smoke and drink on a daily basis: the participation rate for UK Biobank was 

also 5.45% (Fry et al., 2017).This is in line with findings showing that research 

participants and those who purchase direct-to-consumer genetic tests tend to be 

non-representative of target or general populations (Klijs et al., 2015; Leitsalu 

et al., 2015; Prictor et al., 2018; Stamatakis et al., 2021). This ‘healthy 

volunteer effect’ can have adverse effects when estimating relative risk of 

lifestyle and environment exposures in the study of chronic disease (reviewed by 

Stamatakis et al., 2021). Additionally, UKB participants are also ethnically 

homogenous, with the majority being white (94.6%), again affecting the extent 

to which results of studies using UKB can be generalised to other populations. 
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Issues can also arise if the trait of interest is correlated with study participation 

– for example, in the study of chronic pain in non-clinical cohorts, results could 

be biased if participation is less likely for individuals with the most severe 

and/or disabling chronic pain or chronic pain conditions.  

Despite the unrepresentativeness of UKB with respect to the UK general 

population, some analyses found that results of studies using the UKB resource 

are still largely generalisable to the UK population (Fry et al., 2017). 

Furthermore, lack of representation in general is not necessarily problematic, if 

this is considered during interpretation of study results (Rothman et al., 2013).  

2.3.2.2 23andMe 

23andMe is a private direct-to-consumer genetic testing company. Consumers in 

50 countries worldwide including the US, UK and Canada may purchase saliva 

testing kits and receive information on ancestry and genetic predisposition to 

disease. Data is also used in research – 80% of 23andMe customers ‘opt-in’ for 

this, with each consumer contributing on average to 200 different studies. One 

such study was a GWAS of chronic pain grade carried out using 23andMe 

consumer genotyping data in collaboration with Pfizer. As discussed in the 

previous section research participants may be non-representative of wider target 

populations, and individuals purchasing direct-to-consumer genetic testing kits 

in particular tend to be white, have higher educational attainment, and have 

higher income (Gollust et al., 2017; J. S. Roberts et al., 2017).  

The sample characteristics of the collaborative chronic pain grade GWAS carried 

out by 23andMe and Pfizer have been summarised by McIntosh et al (McIntosh et 

al., 2016). Validated pain questionnaires identical to those used in Generation 

Scotland: Scottish Family Health Study (GS: SFHS) were completed by more than 

32,000 research participants, from which a sample of 23,332 unrelated white 

European ancestry participants was derived, consisting of 10, 780 pain cases (i.e., 

those with any chronic pain grade that was not zero) and 12, 552 controls. This 

GWAS was carried out with adjustment for age, sex, BMI, current and previous 

manual labour and the first five genetic principal components.  
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2.3.2.3 Generation Scotland: Scottish Family Health Study 

The GS: SFHS is a genetic epidemiology study with a family-based recruitment 

process and structure, comprised of sociodemographic, clinical and DNA data 

from ~ 24,000 participants recruited across Scotland, aged 18-98 years old (B. H. 

Smith et al., 2006, 2013). Recruitment was carried out from 2006-2011 through 

identifying suitable potential participants registered at participating general 

medical practices, and the final cohort was 59% female. As in UK Biobank, the 

sample is in general healthier and wealthier than the general Scottish population, 

but nevertheless contains participants from a wide range of socioeconomic 

backgrounds and with a wide range of clinical features (Smith et al., 2013). The 

family-based structure and depth and breadth of phenotyping information allows 

for family-based genetic studies, for example into parent-of-origin effects, and 

for different forms of genetic studies such as investigating the role of rare 

alleles in health and disease.  

2.3.3 Chronic Pain Phenotyping in Key Cohorts 

2.3.3.1 Chronic Pain in UK Biobank 

At baseline all UKB participants were asked about ‘Pain type(s) experienced in 

the last month’ (data field 6159). Participants could choose from seven non 

mutually exclusive body sites or ‘pain all over the body’ or could answer ‘none 

of the above’ or ‘prefer not to answer’. If participants selected ‘pain all over 

the body’ they could not then select a specific site. Each body site, and the ‘all 

over the body’ option, had a corresponding question item where participants 

could answer if this pain had lasted for 3+ months or not – to which participants 

could respond ‘yes’, ‘no’, ‘do not know’ or ‘prefer not to answer’.  

As discussed in 1.1.2, those defined as having ‘chronic pain’ can be extremely 

heterogeneous groups of people, and chronic pain is measured and defined in a 

wide range of ways. It may be more powerful to consider chronic pain as a 

disease in its own right, as recently outlined in IASP taskforce discussions and 

recent ICD-11 coding additions of “chronic primary pain”. Multisite chronic pain 

(MCP) is a derived quasi-quantitative trait, constructed in order to investigate 

chronic pain as a phenotype in its own right, and with consideration of the fact 
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that there are unlikely to be legitimate cut-off points between localised and 

widespread chronic pain (Kamaleri et al., 2008). 

The trait value for MCP was derived from the number of sites at which the 

participant had experienced chronic pain for 3+ months (0-7). Those answering 

‘prefer not to answer’ with regards to pain types experienced in the past month 

were removed from analyses. Those answering that they ‘did not know’ the 

duration of any pain were not labelled as having chronic pain at that site but 

were not excluded from analyses. In the GWAS analyses discussed in Chapter 4, 

those answering that they experienced pain all over the body, which lasted for 

3+ months, were excluded from initial GWAS. Rationale behind this is further 

discussed in Chapter 4, but briefly: pain all over the body may represent an 

extreme phenotype presentation of MCP, but this may also represent a distinct 

phenotype in comparison to having a number of individual chronic pain sites 

(Gerhardt et al., 2016a; Viniol et al., 2013; Zadro et al., 2020), or even in 

comparison to participants selecting 7 individual sites of chronic pain (Nicholl et 

al., 2014). In addition, ‘all over the body’ does not necessarily follow linearly 

from an MCP trait value of 7, potentially representing an experience of pain 

without distinct sites that can be quantified and therefore complicating GWAS 

analyses (which are regression-based). The relationship between chronic pain all 

over the body and MCP is investigated in downstream analyses in Chapter 4 in 

order to address these issues. 

A phenotype approximating chronic widespread pain can also be derived in UK 

Biobank, and consists of those labelled as having chronic pain all over the body 

i.e., those who answer ‘All over the body’ to pain types experienced in the past 

month, and answer that this pain has lasted for 3+ months.  

2.3.3.2 Chronic Pain in Generation Scotland and 23andMe-Pfizer Sample 

Chronic pain grade a validated chronic pain phenotype (B. H. Smith et al., 1997; 

M Von Korff et al., 1992) derived from questionnaire participation, was 

ascertained in both GS: SFHS and 23andMe-Pfizer sample. Chronic pain grade 

incorporates scores on both disability and pain severity, and trait value ranges 

from 0 (no chronic pain) to 4 (most severe and most disabling chronic pain) 

depending on both disability due to pain and pain intensity. These scores are 

calculated from the answers to seven questions, all of which besides question 4 
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(“About how many days in the last six months have you been kept from your 

usual activities (work, school or housework) because of this pain?”) are answered 

by giving a rating from 0-10. A rating of 0 represents ‘no pain’ for questions 1-3, 

‘no change’ for questions 6-7, or ‘no interference’ for question 5, and ratings of 

10 represent ‘pain as bad as it could be’ for questions 1-3, ‘unable to carry on 

activities’ for question 5 and ‘extreme change’ for questions 6-7. Pain intensity 

is then calculated as the mean of question 1 + question 2 + question3 multiplied 

by 10, and disability score as the mean of the sum of rating values for questions 

5-7, multiplied by 10. Disability points are then calculated from the recoded 

disability score (0-29 = 0, 30-49 = 1, 50 – 69 = 2, >70 = 3) added to the recoded 

number of days value from question 4 (0-6 days = 0, 7-14 days = 1, 15-30 days = 

2, >31 days = 3).  

Chronic pain grade is then assigned based on both pain intensity and disability 

due to pain, as measured using disability points and pain intensity score. Chronic 

pain grade classification of 0 corresponds to disability points of 0 and pain 

intensity of 0, grade 1 to pain intensity of < 50 and disability points < 3, 2 to 

pain intensity greater than or equal to 50 and disability points < 3, grade 3 to 

disability points of 3 or 4, regardless of pain intensity, and grade 4 to disability 

points of 5+, again regardless of pain intensity.  

Such a phenotype may be potentially problematic when trying to understand the 

mechanisms of chronic pain development, as increasing trait value is not only 

correlated with increased chronic pain severity but with how that pain affects 

interaction with the environment (disability due to pain). Disability due to pain 

is likely also influenced by a range of factors, some of which may constitute 

confounders of the relationship between pain and pain-related disability. For 

instance, low socioeconomic status is associated with both chronic pain and can 

contribute to disability related to chronic pain ( reviewed by Mills et al., 2019), 

a relationship which can complicate a study to find genetic variation associated 

specifically with chronic pain. Furthermore, extremes in chronic pain grade trait 

value do not necessarily represent the most severe chronic pain, only the pain 

associated with greatest disability – although these factors would be expected to 

correlate with one another (Chiarotto et al., 2019), again higher disability points 

could be related to other, non-pain-severity factors that increase pain-related 

disability (i.e. theoretically individuals with the ‘same’ chronic pain but who 
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experience environments that are disabling to different extent can have 

differing chronic pain grade classifications). For example, an individual living in 

smaller, less accessible housing may be more likely to find pain has a greater 

impact on daily tasks compared to an individual with similarly severe pain who 

has access to resources that allow them to modify their living environment. A 

phenotype closely matching that of MCP in UK Biobank was also derived using GS: 

SFHS data. GS: SFHS participants were asked “are you currently troubled by any 

pain or discomfort?” as part of a chronic pain identification questionnaire – if 

answering ‘yes’, they could then choose from six specific bodily sites and ‘other’. 

In contrast to UK Biobank there was no option to note whether pain at specific 

sites had lasted longer than 3 months, but participants were asked the single 

question “have you had this pain or discomfort for more than 3 months?” which 

could refer to one of, several of, or all their sites of pain and is not discernible 

from the data. Body site options also differ slightly between cohorts. Therefore, 

MCP in GS: SFHS can take a value from 0-6 sites of chronic pain. This assumes 

that answering yes to the question “Have you had this pain or discomfort more 

than 3 months” indicates that pain at every site indicated by the participant is 

chronic.  

2.3.4 Major Depression Phenotyping in UK Biobank 

A subset of UKB participants (N = 157, 366) fully completed the online follow-up 

‘thoughts and feelings’ mental health questionnaire (Davis et al., 2020). This 

mental health questionnaire was designed by an expert working group and 

involved consultation with a patient group, and aims to make use of existing, 

validated measures. Though case classifications aim to replicate a psychiatric 

diagnosis, their delivery and reliance upon self-report means they can only be 

thought of as “likely” psychiatric diagnoses (Davis et al., 2020). Despite this, 

prevalence and patterns of association between demographic factors and other 

disorders were found to match expectations based on previous research and the 

expectations of the Health and Safety Executive (HSE) (Davis et al., 2020). 

MDD and related phenotypes in UK Biobank was derived following protocol found 

at 

http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/MentalStatesDerivation

.pdf?fbclid=IwAR1Bsy3hnKzC6uThVpcz8bkbzV9yH-

http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/MentalStatesDerivation.pdf?fbclid=IwAR1Bsy3hnKzC6uThVpcz8bkbzV9yH-9dkp0gVCvOSuaV1CZcm1nu0p0qYII
http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/MentalStatesDerivation.pdf?fbclid=IwAR1Bsy3hnKzC6uThVpcz8bkbzV9yH-9dkp0gVCvOSuaV1CZcm1nu0p0qYII
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9dkp0gVCvOSuaV1CZcm1nu0p0qYII (UKB application 7155) and associated with 

(Smith et al., 2013). These MDD phenotypes are also discussed by Davis et al 

(Davis et al., 2020). Derived UKB MDD phenotypes are “single probable major 

depressive episode”, “probable recurrent major depression (moderate)” and 

“probable recurrent major depression (severe)”, and the latter two can be 

combined into “probable recurrent major depression”. A ‘ranked mood’ variable 

can then be constructed, where each participant has a value from 0-4, 0 

indicating they did not meet criteria for any derived major depression or bipolar 

disorder phenotype, 1 indicating meeting criteria for single episode major 

depression, 2 for probable recurrent major depression, and 3 or 4 indicating 

having met criteria for either bipolar disorder I or II.  

 

 

 

http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/MentalStatesDerivation.pdf?fbclid=IwAR1Bsy3hnKzC6uThVpcz8bkbzV9yH-9dkp0gVCvOSuaV1CZcm1nu0p0qYII
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Chapter 3: Further Understanding Overlap of Chronic Pain 

and Depression: Pleiotropy and Clinical Heterogeneity  

3.1 Introduction 

Analyses undertaken in this chapter address objectives 1, 2 and 3: to investigate 

genetic correlation and pleiotropy between MDD and chronic pain, to uncover 

common genetic variation associated with chronic pain phenotypes, and to test 

for clinical heterogeneity between MDD and chronic pain. Some of the analyses 

described in this chapter have been published as part of an article in 

Translational Psychiatry (Johnston et al., 2019).  

As previously described (2.2.3), cFDR analyses provide an alternative route to 

SNP discovery, making use of existing GWAS datasets and leveraging association 

with related conditions to boost discovery power. In the case of chronic pain, 

the association with mood disorders (commonly comorbid with chronic pain and 

chronic pain conditions) is of substantial interest, as improved understanding of 

the biological underpinnings of this overlap may provide ideas for the 

development of novel treatment strategies. cFDR analyses have been used to 

find novel variants and pleiotropic loci associated with schizophrenia, type 2 

diabetes, Alzheimer disease, bipolar disorder and systolic blood pressure 

(Andreassen et al., 2014; Andreassen, Djurovic, et al., 2013; Andreassen, 

Thompson, et al., 2013; Wang et al., 2016). 

Additionally, to date there is a relative lack of large, well-powered GWASs of 

chronic pain as a phenotype in its own right (1.3.4), and in those which have 

been carried out few variants have been found to be significantly associated 

with chronic pain. One such GWAS is the 23andMe-Pfizer GWAS of CPG (2.3.2.2), 

N = 23, 332 (McIntosh et al., 2016), where no SNPs were found significantly 

associated with CPG. cFDR therefore represents a promising and potentially 

more cost-effective method for identifying new SNPs associated with complex 

traits such as chronic pain, by repurposing existing GWAS outputs. Genetic 

correlation between traits can be driven by pleiotropy (1.3.3.2), and MDD and 

chronic pain grade have been previously found be genetically correlated at ρ ~ 

0.5 (McIntosh et al., 2016). However, even if pleiotropy is detected it is unclear 

whether this is whole-group (so-called ‘true’ pleiotropy) or subgroup-driven 
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(clinical) heterogeneity (see also 2.2.4). Additionally, other types of analyses to 

check for clinical heterogeneity (e.g., polygenic risk scoring) are not robust in 

the face of pleiotropy. In order to test for presence of clinical heterogeneity and 

to distinguish this from whole-group pleiotropy in MDD and chronic pain in UK 

Biobank, BUHMBOX (Han et al., 2016) analysis was carried out. 

3.2 Methods 

3.2.1 Conditional False-Discovery Analysis of Chronic Pain Grade and Major 

Depressive Disorder 

3.2.1.1 Phenotype Definition and Source Data 

cFDR analyses require two independent GWAS summary statistic datasets. For 

chronic pain, summary statistics from a GWAS carried out collaboratively with 

Pfizer-23andMe Inc of CPG (McIntosh et al., 2016)) were used. This GWAS sample 

consisted of 23,332 unrelated white European ancestry participants was derived, 

consisting of 10, 780 pain cases (i.e., those with any chronic pain grade that was 

not zero) and 12, 552 controls. 

For MDD, summary statistics from a recent case-control GWAS meta-analysis 

(Wray et al., 2018) were provided by the Psychiatric Genomics Consortium (PGC). 

After removal of data from 23andMe and UK Biobank participants, this gave a 

dataset originating from an analysis using 43 028 cases and 87 522 controls. 

Phenotype definitions, study population demographics and meta-analysis 

procedures for the MDD GWAS have been described previously (Wray et al., 

2018). 

3.2.1.2 Data Preparation and Linkage Disequilibrium Pruning & cFDR 

Analysis 

A dataset of SNPs for which a p-value for association, chromosome position data 

and rsID were available in both MDD and CPG datasets was constructed. This was 

then LD pruned. Firstly, PLINK-format genotype data, for each SNP in the newly 

compiled CPG-MDD summary-statistic dataset, was extracted from the UK 

Biobank genotype data (approved application 6553). Pruning was carried out 

using command line PLINK (version 1.9) --indep-pairwise function. These 

parameters are as recommended for cFDR analyses (Andreassen, Djurovic, et al., 
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2013; Liley & Wallace, 2015). This resulted in an LD-pruned dataset of 774 292 

SNPs with association data available for both MDD and CPG. These SNPs were 

then taken forward and cFDR were calculated using equation X in 2.2.3, 

repeated below (Equation 1), following detailed formulae and derivations from 

Liley & Wallace (Liley & Wallace, 2015) using R (version 3.5.2). Conjunctional 

cFDR (ccFDR) values are then the highest cFDR value between the two cFDR 

analyses. 

𝑐𝐹𝐷𝑅 = Pr(𝐻0(𝑖)| 𝑝𝑖 ≤  𝑃𝑖 , 𝑝𝑗 ≤ 𝑃𝑗) =  
𝑝𝑖

Pr(𝑝𝑖 ≤ 𝑃𝑖 | 𝑝𝑗 ≤  𝑃𝑗)
 

Equation 3. 1: Conditional false discovery rate. 

 

3.2.2 Further understanding the overlap of MDD and Chronic Pain 

The genomic context for SNPs significantly associated with MDD, CPG or both 

was examined. The R package ‘rsnps’ was used to extract data from records in 

NCBI dbSNP (https://www.ncbi.nlm.nih.gov/snp). Genomic context for each SNP 

was examined in the UCSC Genome Browser (build GRCh38/hg38) (Kent et al., 

2002), using a window of 0.5Mbp around each SNP and data from the GENCODE 

v24 track, validated or reviewed by either Refseq or SwissProt staff. Genes 

partially or fully contained within this window were noted. The presence of cis-

eQTLs close to the significant SNPs was investigated using the IGV eQTL Browser 

(Aguet et al., 2017) web interface. 

3.2.3 Clinical Heterogeneity in MDD and Chronic Pain 

Briefly, BUHMBOX requires GWAS summary statistics for disease A obtained in a 

sample that is independent from the sample where disease B is measured (and 

vice versa). First, clinical heterogeneity in MDD cases was tested for, using CPG 

as the independent GWAS dataset, and secondly clinical heterogeneity in chronic 

pain cases was tested for using MDD as the independent GWAS dataset. 

BUHMBOX is fully described in 2.2.4.  
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3.2.3.1 Phenotypes & Data 

Chronic pain is widely defined as pain persisting beyond the healing period (with 

the threshold duration of 3 months taken to be the healing period) (Greene, 

2010; Merskey & Bogduk, 1994), and can be assessed using the CPG questionnaire 

(M Von Korff et al., 1992). On this scale 0 = no chronic pain (no pain that has 

persisted beyond 3 months), 4 = most severe chronic pain (pain persisting 

beyond 3 months which also fulfils specific criteria relating to impact on daily 

functioning, mood, and ability to work). In contrast to MCP, questions on pain 

duration and impact on quality of life are also incorporated into this chronic pain 

phenotype. A GWAS of CPG (0-4) using a linear regression model was carried out 

by 23andMe in collaboration with Pfizer (McIntosh et al., 2016), these summary 

data are used here. 

Wray et al carried out a GWAS meta-analysis of MDD (Wray et al., 2018). 

Summary statistic data with UK Biobank and 23andMe participants removed were 

used in this analysis. Effect allele frequencies were obtained from the GWAS 

summary statistic dataset where UK Biobank individuals were not removed, 

downloadable from the PGC website– this is unlikely to bias results significantly 

and is acceptable for BUHMBOX analysis (Han et al., 2016), despite EAF 

calculations involving UK Biobank participant data. 

With respect to phenotyping in UK Biobank for these analyses, being classed as 

having MDD approximates a DSM-5 diagnosis of MDD (see 2.3.4). Controls consist 

of those with no mood disorder, and those with bipolar type 1 or 2 are removed 

from the analyses, along with those answering ‘Prefer not to say’ or ‘Don’t know’ 

in components of the MDD phenotype. The number of MDD cases and controls 

prior to BUHMBOX quality control were 34,025 and 93,819, respectively.  

During the baseline investigations, UK Biobank participants were asked via a 

touchscreen questionnaire about “pain types experienced in the last month” 

(field ID 6159), with possible answers: ‘None of the above’; ‘Prefer not to 

answer’; pain at seven different body sites (head, face, neck/shoulder, back, 

stomach/abdomen, hip, knee); or ‘all over the body’ (see Chapter 2 section: 

Chronic pain phenotyping in key cohorts). Those who answered that they had 

chronic pain at any site were classed as cases, and chronic pain at none of the 

sites as controls – those who answered ‘don’t know’ or ‘prefer not to answer’ 
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were removed from analyses. The number of chronic pain cases prior to 

BUHMBOX quality control was N = 215, 383 and controls N = 279, 641.  

3.2.3.2 Genotype Data  

UK Biobank phenotyping, genotyping and quality control has been described in 

detail elsewhere (Bycroft et al., 2018; Sudlow et al., 2015). The first eight 

genetic principal components (pre-calculated and included as part of UK Biobank 

data) were used in BUHMBOX calculations. 

3.2.3.3 BUHMBOX Procedure 

SNPs associated with CPG at a p value of 10-4 or less, their effect allele 

frequencies and effect sizes (odds ratios, ORs) were compiled from the UKB 

genotyping data, as were MDD cases/controls UKB-IDs and genetic principal 

components. ORs as a measure of effect size for SNPs associated with CPG were 

obtained by taking the exponent of beta values for each SNP (in personal 

communication between Dr Nicholas Graham and Dr Buhm Han this 

transformation was deemed acceptable in BUHMBOX analysis, despite the CPG 

GWAS being non case-control). 

BUHMBOX quality control steps (Han et al., 2016), other exclusions (see 

‘Phenotyping’) and linkage-disequilibrium (LD) pruning using command-line 

PLINK ‘indep-pairwise’ function with recommended parameter settings of 50 

kilobase window size, a step size of 5 SNPs and r2 threshold of 0.1 (Han et al., 

2016) was carried out. The resulting number of MDD cases = 3,455 and controls = 

9,681, and the number of independent CPG-associated SNPs used in calculations 

was 156. 147 of these SNPs were imputed with mean average call rate (the 

imputation quality metric provided with the 23andMe GWAS data) of 0.99. 

BUHMBOX was carried out to obtain a BUHMBOX test statistic value. If the test 

statistic-associated z value is negative, the resultant P value is transformed via 1 

– P value (BUHMBOX analysis performs a one-sided test only). 

SNPs associated with MDD at a p value <= 10-4, effect allele frequencies and 

effect sizes were compiled, along with chronic pain case and control UKB IDs and 

genetic principal components. BUHMBOX-specific quality control steps, 

phenotypic exclusions and LD pruning were carried out at previously described. 

The resulting number of chronic pain cases was 51, 494 and controls was 67, 857, 
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with 120 SNPs also taken forward for use in BUHMBOX calculations. 110 of these 

SNPs were imputed with mean imputation score of 0.96. BUHMBOX test-statistic 

z values were converted as needed as previously described.  

3.3 Results 

3.3.1 cFDR: SNPs Associated with CPG and MDD 

cFDR analyses were carried out to investigate pleiotropic loci associated with 

both MDD and CPG. Eleven SNPs in total were found at cFDR ≤ 0.01 (Table 3.1), 

six of which, located on chromosomes 12 and 14, were associated with CPG and 

nine of which, located on chromosomes 1 and 14, were associated with MDD. 

Four of these 11 SNPs, all located within a 131 kilobase-pair region on 

chromosome 14, were found to be pleiotropic (ccFDR ≤0.01). 

 

rsID Position Alleles  β (CPG)  p (CPG) OR (MDD)  p (MDD) cFDR (CPG) cFDR (MDD) ccFDR 

rs4904790 14:42242623 C/T -0.03 1.44 x 10-3 1.042 1.37 x 10-5 0.02 3.58E-03 0.02 

rs1584317 14:42213816 C/G 0.028 4.48 x 10-3 0.96 4.59 x 10-6 0.029 3.57E-03 0.03 

rs11846556 14:42183025 A/G -0.037 1.11 x 10-4 1.05 2.98 x 10-7 5.57 x 10-4 3.76E-05 5.57E-04 

rs10131184 14:42166111 A/G 0.035 2.82 x 10-4 0.95 2.53 x 10-8 8.46 x 10-4 7.10E-06 8.46E-04 

rs8015100 14:42095232 A/T -0.033 6.67 x 10-4 1.06 1.50 x 10-9 6.67 x 10-4 9.27E-07 6.67E-04 

rs11157241 14:42051771 C/T 0.035 2.91 x 10-4 0.94 4.44 x 10-9 5.83 x 10-4 1.28E-06 5.83E-04 

rs10138559 14:41975989 C/T -0.02 0.03 1.042 1.04 x 10-6 0.1 5.25E-03 0.1 

rs10872954 14:41948768  A/G -0.026 6.45 x 10-3 1.04 7.68 x 10-6 0.053 7.02E-03 0.053 

rs149981001 12:60264802 C/T 0.2 6.24 x 10-8 1.087 0.0181  1.06 x 10-3 0.018 0.018 

rs147573737 12:60231575 C/T -0.2 2.09 x 10-7 0.917 0.023 2.21 x 10-3 0.023 0.023 

rs35641559 1:73760104 C/T  0.02  0.03 0.961 2.08 x 10-6 0.1 8.83E-03 0.11 

Table 3. 1: Loci identified from cFDR analysis.  

Position = position given as chromosome: base pair location. cFDR (CPG) = cFDR for CPG conditioning on 

MDD; β (CPG)/p (CPG) = effect size and p value from the CPG GWAS; cFDR (MDD) = cFDR for MDD 

conditioning on CPG; OR (MDD)/p (MDD) = effect size (odds ratio for the effect allele) and p value from 

the MDD GWAS. Alleles are given as effect allele/other; effect allele is defined as the allele for which 

association with the trait was tested in the original (CPG or MDD) GWAS. rsIDs for SNPs associated with 

both MDD and CPG (pleiotropic SNPs) (ccFDR < 0.01) are shown in bold. 
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3.3.2 cFDR: Genomic Context of Trait-Associated SNPs 

The R package ‘rsnps’ and the UCSC Genome Browser were used to investigate 

genomic context of SNPs found to be of interest through cFDR analyses, 

including nearest genes to these loci (Tables 3.2, 3.3).  

 

rsID Chromosome cFDR-

Associated 

Trait 

Gene(s) Alleles Major Minor MAF AA 

rs35641559 1 MDD LOC105378800 C/T T C 0.4641 T 

rs149981001 12 CPG NA C/T C T 0.0022 C 

rs147573737 12 CPG NA C/T T C 0.0024 T 

rs4904790 14 MDD LRFN5 C/T C T 0.3175 C 

rs1584317 14 MDD LRFN5 C/G G C 0.2993 G 

rs11846556 14 Both LRFN5 A/G A G 0.3676 G 

rs10131184 14 Both LRFN5 A/G G A 0.239 G 

rs8015100 14 Both LRFN5 A/T A T 0.2546 A 

rs11157241 14 Both NA C/T T C 0.2508 T 

rs10138559 14 MDD NA C/T C T 0.4399 T 

rs10872954 14 MDD NA A/G A G 0.4343 A 

Table 3. 2: Output of ‘rsnps’ query 

SNP ID (rsID), location, cFDR-associated trait, associated genes (Gene(s)), minor allele frequency (MAF) and 

ancestral allele (AA) are shown. ‘NA’ indicates no result for that query in that category. 
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rsID Chromosome cFDR-Associated Trait Gene(s) 

rs35641559 1 MDD LINC01360, LRRIQ3, FPGT, FPGT-TNNI3K 

rs149981001 12 CPG SLC16A7 

rs147573737 12 CPG SLC16A7 

rs4904790 14 MDD LRFN5 

rs1584317 14 MDD LRFN5 

rs11846556 14 Both LRFN5 

rs10131184 14 Both LRFN5 

rs8015100 14 Both LRFN5 

rs11157241 14 Both LRFN5 

rs10138559 14 MDD LRFN5 

rs10872954 14 MDD LRFN5 

Table 3. 3: UCSC Genome Browser Results. 

3.3.2.1 CPG-Associated SNPs  

No genes were found through an ‘rsnps’ query for cFDR-associated SNPs 

associated solely with CPG (Table 3.2). SLC16A7, which encodes 

monocarboxylate transporter 2 (MCT2), is located within 1Mbp of SNPs which 

were solely associated with CPG (Table 3.3). In the central nervous system, 

MCT2 is involved in high affinity, proton-coupled transport of metabolites 

(particularly lactate) into neurons and may play a role in neuronal uptake of 

energy substrates released by glia (Y. Itoh et al., 2003; Pellerin, 2003). MCT2 is 

localised to the post-synaptic compartment in many human neurons and may 

have a specialised role in synaptic functioning (Chiry et al., 2008; Pierre et al., 

2002). Regulation of SLC16A7 has also been linked to disorders of the brain: loss 

or under-expression has been associated with temporal-lobe epilepsy (Lauritzen 

et al., 2012) and it may be expressed and methylated at different levels in 

patients with psychosis versus controls (C. Chen et al., 2014).  

3.3.2.2 MDD-Associated SNPs 

A single SNP on chromosome 1 was solely associated with MDD and located 

within 1Mbp of LRRIQ3 and FPGT (Table 3.3). LRRIQ3 encodes leucine-rich repeat 

(LRR) and IQ motif containing protein 3, a calcium-channel component. LRR-

domain containing proteins in general are involved in cell-cell communication, 
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including processes involved in innate immunity and neuronal development 

(Bella et al., 2008; Ng et al., 2011). FPGT encodes fucose-1-phosphate 

guanylyltransferase, a protein involved in the alternative (salvage) pathways of 

fucose metabolism (Becker & Lowe, 2003). Fucose metabolism is important in a 

variety of cell-cell communication and host-microbe interaction situations, but is 

also important during neuronal development (Becker & Lowe, 2003). Previous 

studies have found associations between variants in the LRRIQ3 region, 

schizophrenia (Ripke et al., 2014), neurodevelopmental disorders (Reuter et al., 

2017) and migraine (Gormley et al., 2016).  

The pleiotropic LRFN5 SNPs were all located just upstream of the 5’-most 

promoter, or within a large intron close to the 5’-end of the gene. The SNPs 

solely associated with MDD were also located within this intron or were located a 

little further upstream of the gene. The CPG-only SNPs were all located 

downstream of SLC16A7.  

GTEx eQTL results revealed that some of these phenotype-associated SNPs were 

also associated with expression levels of nearby genes. A SNP associated only 

with MDD, on chromosome 1 (rs35641559), was found to be significantly 

associated with expression of a long non-coding RNA gene LINC01360 in the testis 

(FDR < 0.05, Table 3.4). The MDD-associated and pleiotropic SNPs on 

chromosome 14 are all significantly associated with expression of LRFN5 in a 

range of tissues, including brain, heart, adipose tissue and spleen. The CPG-

associated SNPs on chromosome 12 were not significantly associated with 

expression of any gene in the eQTL database (Table 3.4). 
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rsID Chrom cFDR-Associated Trait cis-eQTL Tissue Location(s) 

rs35641559 1 MDD testis  

rs149981001 12 CPG NA 

rs147573737 12 CPG NA 

rs4904790 14 MDD cerebellar hemisphere, cerebellum, transformed fibroblasts 

rs1584317 14 MDD transformed fibroblasts 

rs11846556 14 Both aorta, tibial artery, cerebellar hemisphere, cerebellum, transformed 

fibroblasts, spleen 

rs10131184 14 Both subcutaneous adipose, aorta, tibial artery, cerebellar hemisphere, 

cerebellum, thyroid, transformed fibroblasts, oesophagus muscularis, 

ovary, skin (lower leg, not sun-exposed), spleen 

rs8015100 14 Both omentum, aorta, coronary artery, cerebellum, cerebellar 

hemisphere, transformed fibroblasts, oesophagus muscularis, ovary, 

spleen, thyroid 

rs11157241 14 Both subcutaneous adipose, aorta, tibial artery, cerebellar hemisphere, 

cerebellum, transformed fibroblasts, oesophagus muscularis, skin 

(lower leg, not sun-exposed), spleen, thyroid 

rs10138559 14 MDD coronary artery, aorta, tibial artery, cerebellum, cerebellar 

hemisphere, transformed fibroblasts, oesophagus muscularis, spleen, 

thyroid 

rs10872954 14 MDD aorta, transformed fibroblasts, spleen  

Table 3. 4: IGV eQTL Browser results. 

The tissue location(s) of cis-eQTLs where a gene is significantly regulated by the queried SNP (rsID column) 

(FDR < 0.05) are listed, along with SNP ID (rsID), chromosomal location (Chrom) and cFDR-associated trait. 

Single tissue eQTL lookups of rs11846556 (Figure 3.1) showed different trends in 

expression pattern of LRFN5 with 0, 1 and 2 A alleles, with a trend towards 

increased expression in the cerebellum and cerebellar hemisphere associated 

with homozygosity for the A allele (Figure 3.1 A & B respectively), and decreased 

expression in tibial artery and transformed fibroblasts associated with increasing 

number of copies of the A allele at this SNP locus (Figure 3.1 C & D respectively).  
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Figure 3. 1. Single tissue eQTL lookups of rs11846556  

A = Cerebellum, B = cerebellar hemisphere, C = tibial artery, D = transformed fibroblasts. Homo Ref = 

homozygous for the reference allele (GG), Het = heterozygote (AG), Homo Alt = homozygous for the 

alternative allele (AA). Boxplots display minimum, maximum, median, 1st and 3rd quartile rank normalised 

gene expression values. 

3.3.3 BUHMBOX: Whole-Group Pleiotropy in MDD and Chronic Pain in UK 

Biobank 

BUHMBOX analyses were carried out to test for clinical heterogeneity in chronic 

pain, using chronic pain grade data, with respect to MDD and vice versa in UK 

Biobank. No evidence for clinically heterogeneity was found in either MDD or 

chronic pain cases. The BUHMBOX test statistic was insignificant at p = 0.277 

(Table 3.5), indicating no clinical heterogeneity in terms of CPG-like MDD cases 

within MDD in UK Biobank. 

p p (adj) log(p) N N cases N controls Z N loci 

0.723 0.277 -0.141 13,136 3,455 9,681 -0.592 156 
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Table 3. 5: BUHMBOX results for test of clinical heterogeneity in MDD cases in UK Biobank.  

p = BUHMBOX p value, p (adj) = 1 – BUHMBOX p value, log(p) = log-transformed p value (base 10), N = total 

number of individuals included in analysis, N cases = number of case participants included in analysis, N 

controls = number of control participants included in analysis, Z = BUHMBOX test statistic Z score value, N 

loci = number of SNPs included in analysis. 

The BUHMBOX test statistic was also non-significant at p = 0.29 (Table 3.6) in 

analyses of chronic pain, showing no clinical heterogeneity, or in other words no 

MDD-like chronic pain cases.  

p p (adj) log(p) N N cases N controls Z N loci 

0.706 0.29 -0.151 119,351 51,494 67,857 -0.541 120 

Table 3. 6: BUHMBOX results for test of clinical heterogeneity in chronic pain cases in UK Biobank.  

p = BUHMBOX p value, p (adj) = 1 – BUHMBOX p value, log(p) = log-transformed p value (base 10), N = total 

number of individuals included in analysis, N cases = number of case individuals included in analysis, N 

controls = number of control individuals included in analysis, Z = BUHMBOX test statistic Z score value, N 

loci = number of SNPs included in analysis. 

3.3.5 Pleiotropic SNPs in LRFN5 

Conditional false discovery rate analyses, in addition to showing SNPs associated 

with chronic pain grade, indicated significant pleiotropy at the LRFN5 locus. 

3.4 Discussion 

3.4.1 Pleiotropic Loci 

LRFN5 encodes leucine-rich repeat (LRR) and fibronectin type 3 domain-

containing protein 5. Proteins in the LRFN family span the plasma membrane, 

with extracellular domains thought to participate in cell-cell interactions 

necessary for both neuronal development (Morimura et al., 2006; Nam et al., 

2011) and synapse formation (Choi et al., 2016). Lrfn5, along with another 

member of the Lrfn protein family, Lrfn2, may induce both inhibitory and 

excitatory presynaptic differentiation in nearby neuronal cells (Lin et al., 2018), 

a process that may play a critical role general brain development and function 

(Córdova-Palomera et al., 2016). This gene family is expressed primarily in the 

CNS. Polymorphic markers linked to LRFN5 have been associated with 

progressive autism and familial schizophrenia (De Bruijn et al., 2010; Xu et al., 



104 
 

2009). Neuroinflammation has also been linked to reduced expression of Lrfn5 

protein (Y. Zhu et al., 2016).  

Each of the four pleiotropic SNPs is associated with opposing directions of effect 

in MDD and CPG. This may be due to underlying differences in development of 

MDD and CPG related to brain structure and connectivity – e.g. the maintenance 

of CP has been theorised to involve neurogenesis and synaptic plasticity 

(Apkarian et al., 2011; Baliki et al., 2014; Vasic & Schmidt, 2017), and in 

contrast impaired neurogenesis has been associated with depression (Fang et al., 

2018; Jacobs et al., 2000).  

However, effect sizes compared are those in the original MDD and CPG GWASs – 

in this case the confidence intervals include zero (in CPG no SNPs were found to 

be significantly associated in the original GWAS). cFDR analyses using p values 

indicate pleiotropy in terms of significant cFDR-derived association, and new 

effect sizes are not estimated.  

3.4.2 Whole-group pleiotropy in MDD and chronic pain 

There was not significant evidence for misclassification of individuals with MDD 

as having chronic pain or vice versa, suggesting that genetic correlation and 

pleiotropy between MDD and chronic pain in this cohort is driven by whole-group 

pleiotropy. BUHMBOX is unable to distinguish between horizontal and vertical 

pleiotropy, so even though ‘true’ pleiotropy is indicated by these analyses, 

causal relationships cannot be explored. However, in analyses of rs11846556 

genotype (a pleiotropic SNP) carried out in attempts to distinguish mediated 

from horizontal pleiotropy, it was found that pleiotropy between the two 

phenotypes may be mediated (i.e., vertical), at least in relation to the LRFN5 

locus.  

 

3.4.2.1 BUHMBOX Power 

Non-significant BUHMBOX results may have been due to insufficient power. 

Power to detect moderate heterogeneity (proportion of cohort who actually are 

genetically distinct), i.e. a true underlying heterogeneity proportion of π = 0.2, 

approaches 100% when the number of cases is greater than ~1,500, or when the 

number of risk SNPs is greater than 50 (see (Han et al., 2016) Figure 3.). 
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In these analyses the minimum number of cases is 3, 455, and minimum number 

of trait-associated SNPs (risk SNPs) is 120. However, the true subgroup 

heterogeneity proportion is unknown, though it may be acceptable to assume 

moderate heterogeneity in MDD, as clinical heterogeneity in MDD can be 

estimated at 25-30% as based on the typical/ atypical symptom profile 

framework (Penninx et al., 2013). Clinical heterogeneity in chronic pain is less 

easy to estimate, as unlike in MDD there is no agreed ‘single’ clinical diagnosis of 

chronic pain and a lot of study is on chronic pain disorders rather than of chronic 

pain as a disease in itself (see 1.1.2 and 1.3.3.2.1).   

Therefore, these analyses may be underpowered due to low proportion of ‘true’ 

underlying heterogeneity, as heterogeneity proportion is unknown but estimated 

as moderate. In GWAS of CPG no SNPs were found to be associated with the trait 

at genome-wide significance, which may also mean BUHMBOX analyses are 

underpowered.  

Future steps may include use of larger, more well-powered independent chronic 

pain and MDD GWASs. Repetition of BUHMBOX analyses using depressive 

symptoms as opposed to GWASs of MDD itself may also be of interest – it may be 

more likely that chronic pain is misclassified as a depressive symptom as 

opposed chronic pain being misdiagnosed as MDD.  

Previous analyses using BUHMBOX use phenotypes such as serotypes of 

rheumatoid arthritis, which are distinct disorders with clear clinical differences, 

where participants or patients can be logically classified as a case or control. In 

contrast it may not be ideal to consider chronic pain as a case-control phenotype, 

and in addition to this, chronic pain phenotyping varies widely (see 1.1.2). 

Additionally, BUHMBOX is not agnostic: this analysis only tests for clinical 

heterogeneity with respect to a second phenotype chosen a priori. In other 

words, it is not possible to test for presence of any clinical heterogeneity in 

general within a phenotype.  
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Chapter 4 Common Genetic Variation Associated with 

Chronic Pain and Shared with Phenotypes of Interest 

4.1 Introduction 

This chapter specifically addresses objectives 1: To uncover common genetic 

variation associated with chronic pain phenotypes, and 2: To investigate genetic 

correlation and pleiotropy between MDD and chronic pain. Analyses carried out 

in this chapter have been published as part of an article in PLOS Genetics 

(Johnston, Adams, Nicholl, Ward, Strawbridge, Ferguson, et al., 2019). 

As previously discussed, (1.1, 1.3.3, 1.3.4), chronic pain is a complex trait, and 

few large-scale genetic studies of chronic pain exist. Chapter 3 made use of one 

of these few large-scale GWAS studies of chronic pain (defined as chronic pain 

grade) along with existing MDD GWAS summary statistics to investigate 

pleiotropy, and to identify SNPs associated with Chronic Pain Grade. In contrast, 

in this chapter a new chronic pain phenotype, MCP, was defined in UK Biobank 

(see 2.3.2.1), and a GWAS was carried out to find common genetic variation 

(SNPs) associated with MCP. The summary statistics generated from this GWAS 

were then used to conduct linkage disequilibrium score regression analyses 

(LDSR) (2.2.5) examining genetic correlation between MCP and a range of other 

traits, including MDD. 

It can be argued that to understand genetic variation that contributes to 

vulnerability to, development and maintenance of chronic pain it is more 

powerful to examine measures of chronic pain as complex neuropathological 

traits in themselves. This contrasts with GWAS of chronic pain in specific body 

sites, or of disorders and diseases where chronic pain is a major component such 

as fibromyalgia and migraine. This view of chronic pain as a disease entity is also 

in line with recent IASP definitions of Chronic Primary Pain for the ICD-11 

(Nicholasa et al., 2019; Treede et al., 2019), and an IASP update on the 

definition of pain in general (see also 1.1.1). MCP represents a quasi-

quantitative chronic pain phenotype, with the aim of examining underlying 

chronic pain on a continuous scale rather than by threshold, specific body site, 

or associated specific chronic pain disorder. In keeping with recent IASP 

publications and previous research on chronic pain cut off points, derivation of 
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the phenotype MCP aims to capture underlying vulnerability to the development 

of chronic pain and potential genetic factors associated with maintenance of 

chronic pain. 

The range of phenotypes chosen for genetic correlation analyses was based on 

previous association evidence (see 1.1.5) and represents a small fraction of all 

possible correlations that could be calculated. Exploring the full constellation of 

genetic correlations between this new chronic pain phenotype and other traits 

and disorders is of interest, but somewhat beyond the scope of this thesis where 

the main genetic correlation-addressing objective is in relation to major 

depression.  

4.2 Methods 

4.2.1 Chronic Pain Phenotyping in UK Biobank 

UK Biobank participants were asked via a touchscreen questionnaire at baseline 

about “pain types experienced in the last month” (field ID 6159), with possible 

answers: ‘None of the above’; ‘Prefer not to answer’; pain at seven different 

body sites (head, face, neck/shoulder, back, stomach/abdomen, hip, knee); or 

‘all over the body’.  

MCP was defined as the sum of body sites at which chronic pain (at least 3 

months duration) was recorded: 0 to 7 sites. Chronic pain phenotyping in UK 

Biobank is discussed further in 2.3.3.1. Those who answered that they had 

chronic pain ‘all over the body’ were excluded from the MCP GWAS, as were 

10,000 randomly selected individuals reporting no chronic pain. These 

participants were used in a secondary GWAS of chronic widespread pain in this 

chapter, and as cases and controls, respectively, in subsequent polygenic risk 

score (PRS) analyses (see Chapter 5).   

4.2.2 Genome-Wide Association Study of Multisite Chronic Pain 

SNPs with an imputation quality score of less than 0.3, Minor Allele Frequency 

(MAF) < 0.01 and Hardy-Weinberg equilibrium (HWE) test p < 10-6 were removed 

from the analyses. Participants whose self-reported sex did not match their 

genetically determined sex, those who had putative sex-chromosome aneuploidy, 

those considered outliers due to missing heterozygosity, those with more than 10% 
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missing genetic data and those who were not of self-reported white British 

ancestry were excluded from analyses. A list of such “poor quality” samples (due 

to these reasons) was derived by Bycroft et al (Bycroft et al., 2018) and was 

used here as part of genetic quality control. Briefly, putative sex chromosome 

aneuploidy was defined by visual inspection of scatterplots of mean log2 ratio 

(L2R) on X and Y chromosomes, and 652 UKB participants meet these criteria for 

putative sex-chromosome aneuploidy (Supplemental Information S 3.6 (Bycroft 

et al., 2018)). Samples with a population-structure-adjusted heterozygosity 

value above the mean heterozygosity value (0.1903) and missing rate greater 

than 0.05 as computed using PLINK ‘—miss’ command were also flagged as 

potentially poor quality ((Bycroft et al., 2018); 968 such samples are listed in 

this paper’s Supplemental Information S 3.5.3). 

These exclusions are a standard part of GWAS analysis (Coleman et al., 2016; 

Marees et al., 2018), and represent indications of sample contaminations, 

genotyping error, inbreeding, markers under significant selection, or markers 

which are rare variants – these conditions would mean the statistical 

assumptions necessary for GWAS would be violated. These genetic quality 

control measures left a subset of “hard-called” PLINK-format genotypes (SNPs) 

of 615, 839 (see BOLT-LMM manual 5.1.2) on which the mixed model was built. 

GWAS was then carried out using BOLT-LMM under an infinitesimal model (see 

2.2.1.3), adjusting for age, sex and chip (genotyping array). Relatedness and 

population stratification were adjusted for within the BOLT-LMM model via use 

of a Genetic Relatedness Matrix (GRM), and age was found to have a relationship 

with MCP conforming to linearity. Genomic risk loci were identified via the 

definition employed by FUMA (Watanabe et al., 2017).  

4.2.3 Linkage-Disequilibrium Score Regression 

Genetic correlations between MCP and 22 complex traits selected on the basis of 

epidemiological evidence or suspected relationship with chronic pain (1.1.5) 

were calculated using LDSR (Bulik-Sullivan et al., 2015), implemented either 

using the ‘ldsc’ package (Bulik-Sullivan et al., 2015) and downloaded publicly-

available summary statistics and summary statistics from in-house analyses or 

using LD Hub (Zheng et al., 2017). LD Hub datasets from the categories 

Psychiatric, Personality, Autoimmune and Neurological were selected and 
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datasets with the attached warning note ‘Caution: using this data may yield less 

robust results due to minor departure from LD structure’ were excluded from 

the analyses. Where multiple GWAS datasets were available for the same trait, 

the one with the largest sample size and/or European ancestry was retained 

with priority given to European ancestry, for example, for PTSD multiple 

different ancestry groups were available and European was selected.  

Genetic correlation between MCP and between von Korff chronic pain grade (see 

1.1.2 &  2.3.2.2) was also calculated. A secondary GWAS of participants with 

chronic pain all over the body (termed chronic widespread pain, CWP) versus 

10,000 chronic pain-free controls was also carried out (total N = 15,258), and 

these summary statistics were used in LDSR analyses to calculate genetic 

correlation between CWP and MCP.   

P values for heritability are estimated according to formulae given by Altman & 

Bland (Altman & Bland, 2011).  

4.2.4 Phenotypic Correlations 

Phenotypic information on BMI was obtained from baseline measure of BMI (data 

field 21001). For MDD, anxiety, schizophrenia, autism spectrum disorder, 

anorexia nervosa and bipolar disorder, UK Biobank data field 20544 “mental 

health problems ever diagnosed by a professional” (part of the Thoughts and 

Feelings questionnaire in online follow-up) was used to derive a dichotomous 

phenotype value. For subjective well-being the UK Biobank data field 20459 

“general happiness with own health”, a Likert-like self reported measure of 

subjective wellbeing where 1 = extremely happy and 6 = extremely unhappy, 

was used to derive a continuous measure of subjective well-being.  

Phenotypic information for the traits rheumatoid arthritis, asthma, primary 

biliary cirrhosis/cholangitis, inflammatory bowel disease, Crohn’s disease, 

ulcerative colitis and Parkinson disease was derived from the UK Biobank data 

field 20002 “non-cancer illness codes, self-reported”. Phenotypic information for 

PTSD, a psychiatric cross-disorder phenotype, neuroticism, celiac disease, and 

depressive symptoms was not available within datasets associated with UKB 

projects to which access was available to for this PhD project.   
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For all available traits, those who answered, “prefer not to answer”, “do not 

know”, or who did not have complete phenotypic information on both traits to 

be used in the phenotypic correlation coefficient calculation were removed 

before estimation of phenotypic correlation.  

For continuous traits, phenotypic correlation coefficients between the trait and 

MCP were calculated as Pearson’s rho. For dichotomous traits a special case of 

Pearson’s rho, the point biserial correlation coefficient, was calculated to give 

an estimate of phenotypic correlation. The point biserial correlation is 

appropriate for use in estimating correlation when one variable is dichotomous 

and the other continuous (Kornbrot, 2014; Sheskin, 2000). Note that sample size 

varied depending upon availability of variables (phenotypic information) in UKB 

datasets available for use in this PhD project, and due to the fact psychiatric 

trait phenotype information was derived from the Thoughts and Feelings online 

follow-up data which was only completed by a subset of the UK Biobank sample 

(max N = 157, 366) (see also 2.3.4).  

4.3 Results 

4.3.1 Description of Participants  

A total of 387, 649 UK Biobank participants with a mean age of ~56 years old and 

53.9% of whom were female were included in the MCP GWAS analysis (Table 4.1). 

MCP total N (%) male N (%) female N (%) age (mean) 

0 218622 (56.4) 105474 (48.2) 113148 (51.8) 56.71 

1 92718 (23.92) 42734 (46.1) 49984 (53.9) 57.03 

2 44612 (11.51) 18612 (41.7) 26000 (58.3) 57.29 

3 20147 (5.2) 7771 (38.6) 12376 (61.4) 57.65 

4 8289 (2.14) 2970 (35.8) 5319 (64.2) 57.48 

5 2503 (0.65) 780 (31.2) 1723 (68.8) 56.53 

6 652 (0.17) 181 (27.8) 471 (72.2) 56.2 

7 106 (0.03) 34 (32.1) 72 (67.9) 56.17 

total 387649 178556 (46.1) 209093 (53.9) 56.91 

Table 4. 1: Age, sex and MCP phenotype value of UK Biobank participants included in the MCP GWAS.  
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MCP = MCP phenotype value (0 = no chronic pain). 

4.3.2 Common genetic variants and genes associated with MCP 

MCP was found to have a moderate SNP-heritability value (h2
SNP

 = 10.2%). 

Genome-wide association analyses showed 76 SNPs were associated with MCP at 

a genome-wide significance p value threshold of 5 x 10-8, spread across 39 

genomic risk loci (Table 4.2). 143 genes were also found to be significantly 

associated with MCP in gene-level analyses (Appendix 1).  

Genomic Risk 

Locus 

rsID (Lead SNP) Chr Pos GWAS p 

1 rs10888692 1 50991473 5.30E-09 

2 rs197422 1 112317512 2.00E-09 

3 rs59898460 1 150493004 9.20E-12 

4 rs12071912 1 243241614 5.30E-09 

5 rs4852567 2 80703379 4.30E-08 

6 rs7628207 3 49754970 8.40E-10 

7 rs28428925 3 107294634 1.40E-09 

8 rs6770476 3 136073920 9.40E-09 

9 rs34811474 4 25408838 2.70E-11 

10 rs13135092 4 103198082 1.50E-13 

11 rs13136239 4 140908755 3.60E-08 

12 rs6869446 5 65570607 9.50E-09 

13 rs1976423 5 104042643 8.20E-09 

14 rs17474406 5 122732342 2.40E-08 

15 rs1946247 5 160836620 4.90E-08 

16 rs11751591 6 33794215 2.70E-10 

17 rs6907508 6 34592090 1.10E-08 

18 rs6926377 6 145105354 7.90E-09 

19 rs10259354 7 3487414 3.00E-08 
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20 rs7798894 7 21552995 1.60E-08 

21 rs6966540 7 95727967 3.30E-08 

22 rs12537376 7 114025053 1.70E-09 

23 rs11786084 8 142651709 2.30E-08 

24 rs10992729 9 96181075 1.10E-09 

25 rs6478241 9 119252629 3.10E-09 

26 9:140251458_G_A 9 140251458 5.30E-14 

27 rs2183271 10 21957229 3.10E-08 

28 rs11599236 10 106454672 3.30E-08 

29 rs12765185 10 134977077 3.90E-08 

30 rs61883178 11 16317779 2.00E-10 

31 rs1443914 13 53917230 2.80E-11 

32 rs12435797 14 73797669 3.70E-08 

33 rs2006281 14 104327732 3.40E-08 

34 rs2386584 15 91539572 2.80E-11 

35 rs285026 16 77100089 1.90E-08 

36 rs11871043 17 43172849 1.70E-09 

37 rs11079993 17 50301552 5.70E-12 

38 rs62098013 18 50863861 4.00E-11 

39 rs2424248 20 19650324 3.70E-10 

Table 4. 2: Genomic Risk Loci. 

Chr = chromosome, pos = position (basepairs), GWAS p = p value for lead SNP association with MCP. 
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Figure 4. 1 : MCP GWAS Manhattan plot 

-log10P-value = transformed p values (-log base 10) for SNP-trait association. The red dotted line indicates 

the significance threshold (~7 i.e. p < 5 x 10-8). 

 

Genes associated with MCP were also found to be significantly enriched in 

biological pathways through MAGMA gene set analyses (see 2.3.1.1). These 

MsigDB (Molecular Signatures Database) (Liberzon et al., 2015) C2 (curated gene 

set) canonical pathways were DCC-mediated attractive signalling, PLC-β-

mediated events, BCR signalling and α6β4 and α6β1 integrin signalling (Appendix 1 

Table A1.3). Function of these genes is also summarised in 4.4.3.3. 

4.3.3 Genetic Correlations 

MCP was significantly genetically correlated with a range of psychiatric disorders 

and phenotypes, notably MDD, depressive symptoms, anxiety, PTSD, and 

schizophrenia (Table 4.3, Figure 4.1). MCP was not found to be significantly 

genetically correlated with inflammatory bowel diseases (Crohn’s disease, 

ulcerative colitis, inflammatory bowel disease) or other autoimmune diseases 

Celiac disease and systemic lupus erythematosus. The only psychiatric 

phenotype examined which was not significantly genetically correlated with MCP 

was bipolar disorder. Rheumatoid arthritis, an autoimmune disease associated 

with significant chronic pain (Walsh & McWilliams, 2014), was significantly 

genetically correlated with MCP, but with an rg value of only 16% (Table 4.3). In 

contrast genetic overlap between MCP and MDD, depressive symptoms, and 

neuroticism ranged from 40-59% (Table 4.3). 

There were no genome-wide significant SNP associations in the second chronic 

widespread pain (CWP) GWAS, likely due to the fact the sample size is too small 
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for significant power, but the summary statistics could still be taken forward for 

LDSR analysis – this is another route to assessing the relationship between 

chronic widespread pain and MCP, in contrast to the polygenic risk score 

analyses described in Chapter 5. 
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Trait rg se z h2 h2 p (FDR) source PMID Category p p (FDR) 

MDD 0.53 0.03 18.92 0.077 1.25 x 10-47 PGC 29700475 psychiatric 7.68 x 10-

80 

1.69 x 10-78 

Depressive 

symptoms 

0.59 0.03 17.16 0.047 6.87 x 10-29 ld_hub 27089181 psychiatric 5.63 x 10-

66 

6.19 x 10-65 

BMI 0.31 0.02 15.69 0.138 5.42 x 10-59 GIANT 

consortium 

25673413 anthropometric 1.90 x 10-

55 

1.39 x 10-54 

Neuroticism 0.4 0.03 11.9 0.089 3.66 x 10-26 ld_hub 27089181 personality 1.24 x 10-

32 

6.82 x 10-32 

Subjective well 

being 

-0.36 0.04 -8.94 0.025 2.77 x 10-32 ld_hub 27089181 psychiatric 3.78 x 10-

19 

1.66 x 10-18 

Low Relative 

Amplitude 

-0.3 0.05 -6.37 0.053 3.03 x 10-13 In-house 

analysis 

30120083 circadian 1.91 x 10-

10 

7.00 x 10-10 

Rheumatoid 

Arthritis 

0.16 0.03 4.7 0.160 7.41 x 10-8 ld_hub 24390342 autoimmune 2.64 x 10-

6 

8.30 x 10-6 

Anxiety (Case-

Control) 

0.49 0.11 4.53 0.081 0.00405 PGC 26754954 psychiatric 5.91 x 10-

6 

1.63 x 10-5 

Schizophrenia 0.1 0.03 4.08 0.443 6.56 x 10-79 PGC 25056061 psychiatric 4.50 x 10-

5 

1.10 x 10-4 

Asthma 0.22 0.06 3.63 0.123 3.53 x 10-6 ld_hub 17611496 autoimmune 3.00 x 10-

4 

6.60 x 10-4 

PGC cross-

disorder 

analysis 

0.13 0.04 3.54 0.172 7.89 x 10-36 ld_hub 23453885 psychiatric 4.00 x 10-

4 

8.00 x 10-4 

PTSD (European 

Ancestry) 

0.41 0.12 3.28 0.097 0.030855 PGC 28439101 psychiatric 0.001047 1.92 x 10-3 

Autism 

spectrum 

disorder 

-0.1 0.04 -2.22 0.451 9.38 x 10-17 ld_hub NA psychiatric 0.026 0.0443 

Primary biliary 

cirrhosis 

0.1 0.04 2.17 0.376 1.11 x 10-8 ld_hub 26394269 autoimmune 0.03 0.047 

Anorexia 

Nervosa 

-0.06 0.03 -2.14 0.556 2.18 x 10-63 ld_hub 24514567 psychiatric 0.032 0.0471 

Inflammatory 

Bowel Disease 

(European 

Ancestry) 

0.05 0.03 1.75 0.333 9.17 x 10-21 ld_hub 26192919 autoimmune 0.08 0.1101 

Celiac disease -0.07 0.05 -1.49 0.314 2.50 x 10-10 ld_hub 20190752 autoimmune 0.136 0.1756 

Crohn’s disease 0.04 0.03 1.35 0.504 2.65 x 10-17 ld_hub 26192919 autoimmune 0.179 0.2125 

Systemic lupus 

erythematosus 

0.06 0.04 1.33 0.390 9.77 x 10-9 ld_hub 26502338 autoimmune 0.184 0.2125 

Ulcerative 

colitis 

0.04 0.04 1.08 0.257 1.19 x 10-14 ld_hub 26192919 autoimmune 0.281 0.3094 

Bipolar disorder -0.02 0.04 -0.66 0.436 5.51 x 10-29 ld_hub 21926972 psychiatric 0.509 0.5329 
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Parkinson’s 

disease 

0.0 0.04 0.05 0.409 0.000761 ld_hub 19915575 neurological 0.961 0.9612 

Table 4. 3: Genetic correlation results.  

rg = genetic correlation coefficient value, se = standard error of correlation value, z = z value, h2 = SNP-

heritability value, h2 p (FDR) = p value (FDR-corrected) for SNP-heritability, source = source of GWAS 

summary statistics, PMID = PubMed ID of associated paper (if applicable), p = p value for genetic 

correlation coefficient, p(fdr) = FDR-corrected p value for genetic correlation coefficient. 
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Trait rg rp p N 

MDD 0.53 0.15 < 2 x 10-16 155570 

Depressive symptoms 0.59 NA NA NA 

BMI 0.31 0.148 < 2 x 10-16 491364 

Neuroticism 0.4 NA NA NA 

Subjective well being -0.36 0.26 < 2 x 10-16 155653 

Low Relative Amplitude -0.3 -3.13 x 10-4 0.925 91077 

Rheumatoid Arthritis 0.16 0.055 < 2 x 10-16 155570 

Anxiety (Case-Control) 0.49 0.1039 < 2 x 10-16 155570 

Schizophrenia 0.1 -0.0032 0.212 155570 

Asthma 0.22 0.06 < 2 x 10-16 155570 

PGC cross-disorder analysis 0.13 NA NA NA 

PTSD (European Ancestry) 0.41 NA NA NA 

Autism spectrum disorder -0.1 0.0075 0.0033 155570 

Primary biliary cirrhosis 0.1 0.007 0.0032 155570 

Anorexia Nervosa -0.06 0.018 4.35 x 10-13 155570 

Inflammatory Bowel Disease (European 

Ancestry) 

0.05 0.007 0.0045 155570 

Celiac disease -0.07 NA NA NA 

Crohn’s disease 0.04 0.018 1.04 x 10-12 155570 

Systemic lupus erythematosus 0.06 0.02 1.73 x 10-18 155570 

Ulcerative colitis 0.04 0.014 1.44 x 10-8 155570 

Bipolar disorder -0.02 0.015 9.02 x 10-9 155570 

Parkinson’s disease 0.0 0.013 3.71 x 10-7 155570 

Table 4. 4 : Phenotypic correlations between MCP and traits of interest 

rp = phenotypic correlation coefficient (Pearson’s rho/ point biserial correlation coefficient), rg = genetic 

correlation coefficient for comparison, p = p value associated with phenotypic correlation coefficient, N = 

sample size for phenotypic correlation estimation. 

The genetic correlation between von Korff chronic pain grade and MCP was large 

and significant at rg = -0.78 (p = 3.46 x 10-13), but negative (Figure 4.1). The 

genetic correlation between chronic widespread pain and MCP was significant 

and positive at rg = 0.83 (p = 2.4 x 10-54) (Figure 4.1).  
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Figure 4. 2: Genetic correlations between MCP and a range of traits.  

GIP1 = genetically independent phenotype 1 (see Appendix 3). CWP = chronic widespread pain. Error bars 

indicate 95% confidence interval (estimated as +/- 2 x standard error of the genetic correlation value rg). 

 

Overall, psychiatric phenotypes, particularly MDD and depressive symptoms, 

shared the largest and most statistically significant proportions of common 

genetic variation with MCP. Many conditions commonly associated with 

significant chronic pain, including inflammatory bowel diseases and systemic 

lupus erythematosus, showed no genetic overlap with MCP. 

 

4.4 Discussion 

4.4.1 Genetic Correlations with MCP and Traits of Interest 

A range of traits of interest, either found previously to be associated with 

chronic pain in the literature, or with potential involvement of or association 

with chronic pain but with inconclusive evidence from past epidemiological 

studies, were chosen for LD-score regression analysis (see 1.1.5). 

4.4.1.1 Psychiatric Traits 

The psychiatric phenotype most significantly genetically correlated with MCP 

was MDD (rg = 0.53) while the largest significant genetic correlation coefficient 

was for MCP and depressive symptoms (rg = 0.59). This matches closely with a 

genetic correlation value for chronic pain grade and MDD found by McIntosh et al 

via a mixed-modelling approach (rho = 0.53). MCP was also positively genetically 
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correlated with neuroticism (rg = 0.40), anxiety (rg = 0.49), schizophrenia (rg = 

0.10), cross-disorder psychiatric phenotype (rg = 0.13) and PTSD (rg = 0.41). 

Significant negative genetic correlation was found between MCP and anorexia 

nervosa, autism spectrum disorder, and between MCP and subjective well-being. 

There was no significant genetic correlation between MCP and bipolar disorder. 

The genetic overlap between schizophrenia and MCP is somewhat in contrast to 

findings indicating people with schizophrenia tend to show less sensitivity to 

ongoing or chronic pain compared to the general population (1.1.5), and may 

indicate that these differences could be due to environmental factors, including 

difficulties in reporting pain for people with schizophrenia. A lack of significant 

genetic correlation between bipolar disorder and MCP may also indicate non-

genetic factors drive the overlap in bipolar disorder and chronic pain. The 

genetic overlap between MCP and psychiatric disorders and traits, particularly 

MDD and depressive symptoms, emphasises the psychological and affective 

component to chronic pain.  

4.4.1.2 Autoimmune Traits 

Autoimmune disorders and disorders with a significant autoimmune component 

such as rheumatoid arthritis, asthma and primary biliary cholangitis showed 

positive genetic correlation with MCP. However, gastrointestinal autoimmune 

disorders ulcerative colitis and Crohn’s Disease did not. This suggests that 

distinct genetic variation and mechanisms underlie chronic pain associated with 

these disorders compared to those outwith the digestive system. Pain related to 

inflammatory bowel diseases may represent something less ‘chronic’ and more 

‘on-going acute’, as stricture, abscesses and partial or complete obstruction of 

the small bowel result in pain (Docherty et al., 2011). Structural and functional 

brain changes associated with the transition to chronic pain may also play a less 

central role in gastrointestinal autoimmune disorder-associated pain, due to 

potential for the enteric nervous system to act independently from the CNS, and 

the role of the gut-brain axis in chronic abdominal pain (Carabotti et al., 2015; 

Cryan & Dinan, 2012). In addition, Crohn’s disease is associated with pain not 

only viscerally and in relation to disease exacerbation, strictures and abscesses, 

but also with pain in the joints (arthritis) and back, which for some individuals 

never goes away even with remission or successful management of active 

Crohn’s disease (Norton et al., 2017). A GWAS of Crohn’s or other inflammatory 
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bowel disease may therefore not capture genetic variation involved in pain and 

chronic pain, but instead significantly associated variation is related to disease 

activity and inflammation more specific to the digestive system.  

There was no significant genetic correlation between MCP and systemic lupus 

erythematosus (SLE). This may be, again, because pain associated with SLE is 

complex and multifactorial, and can vary between individuals with the same SLE 

diagnosis (Waldheim et al., 2018). SLE involves multiple body systems – specific 

types of arthritis can be involved, neuropathic pain or headache syndromes are 

often experienced, and SLE is also associated with pericarditis and Raynaud’s 

(Fava & Petri, 2019). Pain therefore likely depends at least in part on organ 

system and active disease, and SNPs associated with SLE will not necessarily be 

associated with chronic pain. Similarly to other conditions (Crohn’s, 

osteoarthritis, rheumatoid arthritis), pain in SLE has been found not to “track 

with disease activity” (Fava & Petri, 2019). 

4.4.1.3 Parkinson’s Disease  

Chronic pain is often reported in those with neurological diseases (Borsook, 

2012), including Parkinson’s disease (Ford, 2012; Simuni & Sethi, 2008), reaching 

prevalence of 60% in certain patient populations. However, no significant 

genetic correlation was found between Parkinson’s disease and MCP (p = 0.96), 

suggesting other factors associated with Parkinson’s disease may contribute to 

chronic pain, as opposed to shared genetic contributions to risk for both 

disorders. Some of the pain experienced by those with Parkinson’s disease may 

also be distinct from an unexplained chronic pain or widespread chronic pain, 

and may be related to muscle rigidity, dystonia, reduced movement in the joints, 

changes in posture and associated radicular pain due to trapped nerves – this 

pain could be viewed as chronic in the sense that potentially causal contributory 

factors are chronic in nature but may be distinct from chronic pain without 

comorbid Parkinson’s disease. Again, GWAS of Parkinson’s disease may reveal 

SNPs associated with disease activity and progression, rather than with chronic 

pain experienced as part of Parkinson’s disease. 



122 
 

4.4.1.4 Neurodevelopmental, Circadian and Anthropometric Traits 

Significant negative genetic correlation was found between autism spectrum 

disorder and MCP. This negative genetic correlation between autism spectrum 

disorder and MCP may suggest differences observed between autistic people and 

the general population in terms of integrating bodily signals (interoception) lead 

to reduced experience of or reporting of chronic pain. Alternatively, increased 

prevalence of autism spectrum disorder diagnosis in men (Halladay et al., 2015), 

who tend to have chronic pain at reduced rates compared to women (see 1.2.2), 

may drive this negative genetic correlation value. 

Significant negative genetic correlation was found for low relative amplitude and 

MCP, which is unexpected: low relative amplitude is a circadian rhythmicity and 

health phenotype that indicates poor circadian regulation, which is associated 

with a range of poor health outcomes. A PRS for low relative amplitude was 

significantly associated with mood instability, MDD and neuroticism (Ferguson et 

al., 2018). The fact that shared common genetic variation between MCP and low 

relative amplitude is associated with opposing directions of effect in these two 

disorders may indicate that the association between poor sleep and circadian 

rhythm and chronic pain is instead driven by other lifestyle factors, rather than 

shared genetic factors predisposing to increased risk for both chronic pain and 

low relative amplitude. There may also be a significant underrepresentation of 

people with chronic illness and chronic pain amongst the sub-sample of UK 

Biobank (N = 71, 500) who took part in activity monitoring, introducing potential 

bias into SNP effect value estimates. 

Significant positive genetic correlation was found between BMI and MCP, 

indicating that a moderate proportion of variants are shared between MCP and 

BMI, and contribute to an increase in both BMI and chronic pain. This is in line 

with work linking increased BMI (obesity) and adiposity to immune activation and 

chronic inflammation, which play a key role in pain perception and development 

of chronic pain.  

4.4.1.5 Chronic Widespread Pain 

Chronic widespread pain and MCP were strongly positively correlated, but the 

genetic correlation value was significantly different to 1– this may be due to 
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small sample size of the CWP GWAS or may mean that these are subtly different 

phenotypes with a large genetic overlap. For example, Nicholl et al found that 

multisite pain was associated with MDD and bipolar disorder severity except at 

the ‘extreme’ – chronic pain ‘all over the body’ (= chronic widespread pain) was 

less strongly associated with MDD and bipolar disorder severity in comparison to 

chronic pain at 4-7 body sites. Other work also suggests that chronic widespread 

pain represents a distinct phenotype in comparison to chronic pain in general 

(Gerhardt et al., 2016b; Mansfield et al., 2017). However, it may be the true 

‘clinical reality’ that there are no natural or logical cut-off points for localised 

versus widespread chronic pain (Kamaleri et al., 2008). Traits with lower genetic 

correlation values are commonly used as proxies for one another e.g. 

educational attainment as proxy for intelligence (rg ~ 70%) (Savage et al., 2018), 

or current age as a proxy for life span (rg ~40-70%) (K. M. Wright et al., 2019).  It 

may therefore be acceptable to say rg = 0.83 means that these GWASs capture 

genetic variation associated with the same underlying construct, and this 

definition of chronic widespread pain (chronic pain all over the body for 3+ 

months) could be added as the maximum trait value of MCP.  

4.4.1.6 Chronic Pain Grade 

Genetic correlation coefficient value between MCP and CPG was significant and 

large, but negative. This suggests most shared SNPs between the two conditions 

are associated with opposing direction of effect i.e., most SNPs are associated 

with an increase in trait value in MCP and decrease in trait value in CPG, or vice 

versa. Another important difference in the GWASs of the two chronic pain traits 

is that CPG was adjusted for both body-mass index (BMI) and an employment-

related variable (manual labour). This difference may drive the unexpected 

differences in effect sign for MCP and CPG-associated variants, and a difference 

in trait-associated variants may additionally be generated because BMI is also 

heritable and is genetically correlated (as demonstrated above) with chronic 

pain.  

Adjusting for genetically correlated traits, such as adjusting for BMI in a GWAS of 

chronic pain, can bias results (Aschard et al., 2015; Vansteelandt et al., 2009). If 

the relationship between a genetic variant (SNP), covariate of interest, and 

outcome (i.e. GWAS trait) is as shown in Figure 4.2 A below, then the adjusted 
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GWAS estimate of effect size represents the direct effect (or measures directly 

the magnitude of association) between SNP and outcome trait, and the 

unadjusted GWAS estimate gives a total effect (direct + indirect) of SNP on 

outcome trait – in every other situation or relationship type between SNP, 

covariate and outcome trait (Figure 4.2 B-D) the adjusted estimate may be 

biased (Aschard et al., 2015).  

 

Figure 4. 3: Sources of bias in GWAS.  

Based on Figure 1 (Aschard et al., 2015). Possible relationships between SNP, covariate and outcome 

variable in GWAS. 

Aschard et al suggest that adjustment for environmental or demographic traits 

would not likely introduce bias as they do not have genetic associations – 

however, recent GWASs including of demographic traits such as socioeconomic 

status (Hill et al., 2019) indicate that genetic variation is in fact associated with 

traits previously considered environmental/ demographic and therefore ‘safe’ as 

GWAS covariates. Adjustment for manual labour may therefore also introduce 

bias into GWAS effect size estimates in the Pfizer-23andMe CPG GWAS. 

As a sensitivity analysis, a second MCP GWAS was carried out, identical in every 

way to the main analyses except with adjustment for BMI – the genetic 

correlation results with CPG remained the same, suggesting adjustment for 

manual labour may contribute to the negative correlation value. 

Departure of the genetic correlation value from 1 may also be due to differences 

in the trait concepts of CPG and MCP themselves – CPG takes account of 

disability and the impact of chronic pain on daily life and functioning (Smith et 

al., 1997; Von Korff et al., 1992), whereas MCP simply sums chronic pain sites. It 

has been theorised that phenotypic correlations between traits tend to reflect 

genetic correlations, to the extent that phenotypic correlations can be used as 

proxies of genetic correlation (Cheverud’s conjecture) – if phenotypic correlation 

between CPG and MCP were found to be negative, a negative genetic correlation 
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as found here may not be unexpected after all. This was explored using 

Generation Scotland participant data (see Appendix 2), where it was found that 

phenotypic correlation between CPG and MCP was significant and positive (~0.3). 

This again suggests that there may be potential bias in the GWAS output of the 

23andMe-Pfizer GWAS due to the inclusion of manual labour as a covariate, 

which may be the cause of unexpected negative genetic correlation between 

CPG and MCP. 

4.4.2 Heritability and Polygenicity of Multisite Chronic Pain 

MCP was found to be moderately heritable. This reduction in heritability value 

when comparing SNP-heritability (a narrow-sense heritability) with twin study 

derived estimates of heritability (a broad sense heritability measure) is to be 

expected (see 2.2.1.1). This heritability value is of similar magnitude to recent 

SNP-heritability estimates of MDD (8.9% (Howard et al., 2019)). Results also 

indicated a high degree of polygenicity, shown through MAGMA gene-level 

analysis. 

4.4.3 Genes of Interest Associated with MCP 

Genes found to be associated with MCP through MAGMA gene-level analyses 

suggested CNS involvement in chronic pain, with genes found to be involved in 

processes such as synaptic connectivity (SDK1) (Yamagata & Sanes, 2008) and 

glial-guided neuronal migration (ASTN2) (Wilson et al., 2010). Genes associated 

with MCP were also involved in Notch signalling pathway and implicated in 

neurogenesis and CNS plasticity (NUMB, MAML3) (Ables et al., 2011; Andersson 

et al., 2011; Kitagawa, 2015), in non-UK Biobank studies. Several MCP-associated 

genes were also involved in immune processes, cell cycle regulation, protein 

degradation, and apoptosis. A full list of genes associated with MCP is discussed 

in Appendix 1. 

4.4.3.1 Associations with Other Chronic Pain Conditions 

Five of the 143 genes significantly associated with MCP are also listed in the 

Human Pain Genetics Database (Meloto et al., 2018), an online repository 

documenting genetic contributors to chronic pain and chronic pain conditions. 

These genes, ASTN2, SLC24A3, RABGAP1L, F2 and FHL5 have been previously 

associated with migraine (Anttila et al., 2013; Gormley et al., 2016; Rodriguez-
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Acevedo et al., 2015), a chronic pain condition where large and well-powered 

GWAS have been previously carried out. DCC and SOX5 (which jointly functions 

with SOX6 in chondrogenesis) have been associated with chronic back pain (Suri 

et al., 2018), GABRB3 (encoding one of three beta subunits of the GABA A 

receptor along with GABRB2) has been associated with migraine and fibromyalgia 

(Zorina-Lichtenwalter et al., 2016). AMIGO3, SLC39A8, ECM1, EXD3 and FOXP2 

have been associated with a musculoskeletal pain phenotype (Tsepilov et al., 

2020) (see also Appendix 3) in addition to MCP.  

Genes associated with chronic pain related phenotypes in previous candidate 

gene studies including COMT, OPRM1, GCH1 and BDNF were not found to be 

associated with MCP – this could be due to the pitfalls of candidate gene studies 

generally, and is in keeping with general inconsistency/ lack of replication for 

candidate gene study findings (Mogil, 2012). For example, the association 

between COMT and individual differences in pain perception was originally found 

in studies of healthy individuals or fibromyalgia patients exposed to pain in an 

experimental setting, with relatively small sample sizes N ~ 29-202 (Diatchenko 

et al., 2005; Martínez-Jauand et al., 2013; Zubieta et al., 2003), which were 

likely not powerful enough for discovery of trait-associated common genetic 

variation. In addition, while these studies may indicate pain perception 

differences associated with COMT haplotypes or polymorphisms, pain perception, 

particularly in response to acute pain challenges delivered in an experimental 

setting, may not be equivalent to chronic pain.  

None of the genes involved in CIP, erythromelalgia or PEPD (SCN9A, FAAH, 

NTRK1, PRDM12) were found to be associated with MCP. This suggests that CIP 

and chronic pain (MCP) are distinct, despite the role CIP-associated genes play in 

the perception of pain (as discovered through mutations leading to CIP), this is 

different to chronic pain.  

4.4.3.2 Associations with Other Disorders 

Several MCP-associated genes have been previously implicated in other traits 

and disorders, which was explored by manually searching GeneCards (Stelzer et 

al., 2016) and Online Mendelian Inheritance in Man (OMIM) (McKusick-Nathans 

Institute of Genetic Medicine, Johns Hopkins University) databases with gene 

names as search terms. Disorders such as Brugada Syndrome 9 and Spinal ataxia 
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19 & 22 (KCND3) (Duarri et al., 2012; Giudicessi et al., 2011; Y. C. Lee et al., 

2012), systemic lupus erythematosus (SLE) (Y RNAs) (Kowalski & Krude, 2015), 

Joubert syndrome 31 and short-rib thoracic dysplasia 13 (CEP120) (Roosing et al., 

2016), were found to be associated with genes which were also associated with 

MCP (relevant genes given in parentheses). Genes associated with MCP were also 

found to be associated with Amyotrophic lateral sclerosis (ALS) (FAF1) (Baron et 

al., 2014), Urbach-Wiethe disease (ECM1) (Hamada et al., 2003; Oyama et al., 

2003), cohesinopathies associated with intellectual disability as well as Cornelia 

de Lange Syndrome (STAG1) (Lehalle et al., 2017; Liu & Krantz, 2009), split 

hand/ split foot malformation (DYNC1I1) (S. H. Roberts et al., 1991; Tayebi et 

al., 2014), and a wide range of cancers (PRC1) (J. Li et al., 2018). Schizophrenia 

(GABRB2) (Laroche et al., 2008; T. Li et al., 2013; Lo et al., 2007; Petryshen et 

al., 2005; Sanjuá et al., 2006; Tolosa et al., 2010; Yeung et al., 2018; Yin et al., 

2018), intellectual disability and epilepsy (GABRB2) (Srivastava, Cohen, Pevsner, 

et al., 2014), and neuroleptic-induced tardive dyskinesia (GABRB2) (Inada et al., 

2008) were also found to be associated with MCP-related genes.  

These disorders can be roughly grouped according to pathogenic similarities, 

which short-rib thoracis dysplasias, electrodactyly and Urbach-Wiethe disease 

involving musculoskeletal and soft tissue malformations. Short-rib thoracic 

dysplasias are a group of autosomal recessive ciliopathies, associated with short 

ribs, abnormalities of the hip joint, and potential involvement of other organs 

and tissues (Schmidts et al., 2013). Split hand/ split foot malformation 

(electrodactyly) can be caused by many different mutations, and can be 

inherited singly or as a symptom of a congenital syndrome, with failure to 

maintain signalling from and typical development of the median apical 

ectodermal ridge (AER) (a structure at the distal end of limb buds coordinating 

limb development) identified as a main mechanism of pathogenesis (Tayebi et 

al., 2014). Urbach-Wiethe disease is a rare, autosomal recessive disorder 

characterised deposits of collagen in skin and soft tissues. Complications due to 

these collagen deposists can manifest as papules around the eyes and fingers, 

and calcification of brain tissue (most often basal ganglia) that can lead to 

seizures and cognitive changes (Parida et al., 2015). 

Several genes associated with MCP were also found to be associated in 

neurodegenerative disorders with motor function involvement. Spinal ataxias 19 
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& 22 are rare, progressive, degenerative nervous system diseases associated with 

cerebellar atrophy and a range of motor coordination, balance and speech 

related symptoms (Duarri et al., 2012). Joubert syndrome is another condition 

affecting the cerebellum, and is also associated with motor and cognitive 

symptoms (Roosing et al., 2016; Uniprot). ALS is a neurodegenerative disorder 

affecting motor function, with extra-motor symptoms in up to half of cases such 

as changes in behaviour, executive dysfunction and problems with language 

(Masrori & Van Damme, 2020).  

GABRB2, encodes the GABAA beta-2 subunit protein, a component of ionotropic 

(neurotransmitter-binding) GABAA receptors which form the major inhibitory 

system in the brain (Jacob et al., 2008). Dysregulation of this system has been 

suggested to play a key role in schizophrenia pathogenesis (Lichtshtein et al., 

1978), and variants in this gene have since been associated with schizophrenia 

(Laroche et al., 2008; Lo et al., 2007; Yeung et al., 2018).   

Brugada Syndrome 9 is a type of rare heart arrythmia disorder, associated with 

increased risk of sudden death (Gourraud et al., 2016). Pathology may be a 

result of sodium channel defects and either concurrent gain of function or loss of 

function in cardiac potassium or calcium channels, respectively, or of purely 

sodium-channel related defects (Gourraud et al., 2016).   

SLE is an autoimmune disorder associated with significant chronic pain and 

potential involvement of a range of tissues and organs (Fava & Petri, 2019, see 

also 1.1.5). Y-RNAs are generally involved in maintenance of typical cell function, 

and form a part of autoantigen complexes found in serum from individuals with 

SLE (Driedonks & Nolte-T’Hoen, 2019). Extracellular vesicle exchange (involving 

these circulating RNAs) is generally important in immune-related processes 

including inflammation, immune suppression, and tumour micro environment 

establishment (Driedonks & Nolte-T’Hoen, 2019). Another gene involved in 

immune processes is PRC1, which encodes an evolutionarily conserved Polycomb 

group (PcG) protein. PRC1 has been shown to be involved in cancer metastasis 

through immunosuppressive activities (Su et al., 2019), and this protein is also 

involved in epigenetic regulation of gene expression and resultant cell fate 

decisions (Schuettengruber et al., 2017).  
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Cohesinopathies are caused by mutations in genes coding for components of the 

cohesion complex, which guides sister chromatid segregation during cell division 

(Piché et al., 2019). A wide range of symptoms across a variety of associated 

disorders are associated with malfunctioning of the cohesion complex, including 

intellectual and growth delays.  

Overall, it is difficult to extrapolate from these genes shared between MCP and 

other disorders in terms of any causal roles these genes may play in either 

disorder, or in relation to whether this genetic overlap drives any increased 

chronic pain seen in these disorders (if present). Conclusions as to the 

mechanisms of chronic pain development also cannot be drawn based on the 

putative roles these genes play in each disorder. As an extreme generalisation, 

genes associated with both MCP and the disorders discussed in this section seem 

to suggest involvement of the CNS, particularly the cerebellum, the immune 

system, and structural changes in organs and tissues. Dysfunction in the 

inhibitory system of the brain could also be associated with chronic pain.   

4.4.3.3 Function of Genes Associated with MCP 

Many genes associated with MCP are implicated in CNS development and 

functioning. For example, several genes associated with MCP were linked to 

synapse development and plasticity (CTNNA2, CEP120, KNDC1, CA10, FOXP2, 

NRXN1, SLC4A10, LANCL1, SEMA3F) development of the nervous system (e.g. 

AMIGO3, NCAM1), development of astrocytes (UTRN), and peripheral nerve 

myelination (DAG1) (Appendix 1 Table A1.2). 

Several genes associated with MCP through MAGMA analyses have been linked to 

regulation of cell cycle progression, including DNA replication regulation and 

apoptotic processes. These included STAG1, involved in organisation of sister 

chromatids, genes associated with regulation of the cell cycle (e.g., ANAPC4, 

PRC1, BOLL) and several genes involved in apoptotic processes (e.g., FAM120A, 

MON1B, SEMA3F) (Appendix 1 Table A1.2). 

Genes associated with MCP were also found to be involved in a range of immune-

related processes, including neutrophil activation (UTRN), T-cell activation (FYN, 

PABPC4), and innate immune signalling (e.g., TRAIP, ILF3, VPS33B) (Appendix 1 

Table A1.2), 
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Other genes associated with MCP were involved in a wide range of processes 

including DNA replication regulation (PURG), angiogenesis both specific to the 

brain (BAI2) and generally (F2), protein transport (e.g., SORT1, TM9SF4) 

degradation (UBA7, PSMA5), and repair (PCMT1). Several genes associated with 

MCP are implicated in regulation of gene transcription (e.g., SMARCC1, ASXL3, 

AGO2) and pre-mRNA processing (PRPF3, PTBP1) and mRNA processing (e.g., 

SNRPC). Other processes associated with genes found to be associated with MCP 

included cell development/ differentiation (e.g., FYN, LEMD2), and 

mitochondrial metabolism (e.g., UQCC2) and protein synthesis (e.g., DHX30). 

MCP-associated genes were also linked to roles in cell adhesion, migration, and 

outgrowth (e.g., LAMB2, RHOA, AMIGO3) (Appendix 1 Table A1.2),  

4.4.3.4 Pathways Enriched for MCP-Associated Genes 

PLC-β-mediated events include immune signalling cascades (Bueno et al., 2006) 

and synapse formation (Hwang et al., 2005; Südhof, 2018), and disruption is 

associated with a wide range of conditions including schizophrenia, epilepsy, 

cancers and autoimmune disease (Yang et al., 2013). BCR signalling coordinates 

B cell development, and is key for various immune processes (Kurosaki, 2000; Liu 

et al., 2020). Integrin signalling generally mediates cell-cell adhesion, regulation 

of gene expression and cell growth, with α6β1 and α6β4 involved in maintaining 

tissue integrity in muscle, skin and kidney (Anderson et al., 2014).  

DCC-mediated attractive signalling is involved in cell migration and motility, 

including processes such as neuronal haptotaxis (Meijers et al., 2020) and axon 

guidance (Torres-Berrío et al., 2020), in addition to its role in colorectal and 

other cancers as a (malfunctioning) tumour suppressor gene (Mehlen & Fearon, 

2004). The protein product of DCC functions as a receptor, binding Netrin ligands 

(secreted ligands involved in regulation of axon guidance and migration in 

addition to roles during development of a wide range of other tissues (Larrieu-

Lahargue et al., 2012)) – this signalling and its role as a cue for axon guidance is 

highly evolutionarily conserved (reviewed by Boyer & Gupton, 2018). The role of 

DCC in neuronal migration is key for brain, particularly cortical, development 

through coordination of newly born cortical neurons. Commissural axons (axons 

directed towards the ventral midline of the CNS) that express Dcc proteins on 

their surface are attracted to Netrin sources, and are repelled in the additional 
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presence of uncoordinated 5 (UNC5) (reviewed by Meijers et al., 2020). Dcc-

Netrin binding has also been found in mouse studies to specifically repel 

GABAergic neurons from the ventricular zone of the ganglionic eminence (a 

temporary structure involved in cell and axon migration during foetal 

development) (Yamagishi et al., 2021). DCC may also play a role in synaptic 

plasticity the adult brain, with studies in rodents showing that deletion of this 

protein in neurons in the adult forebrain led to loss of long-term potentiation 

and negative impact on spatial and recognition memory (Horn et al., 2013), and 

a putative DCC ligand found to be highly expressed in neurogenic brain regions 

(Yamagishi et al., 2015). Emerging work in humans and rodents also links DCC to 

corpus callosum development through regulation of development of astroglia 

(Morcom et al., 2021). 

DCC has also been associated with psychiatric phenotypes including mood 

instability (Ward et al., 2019), self-injurious behaviour (Campos et al., 2020), 

suicidality (Strawbridge et al., 2019), insomnia (Byrne et al., 2013), depression 

(Li et al., 2020), and to complex brain-related traits such as putamen volume 

(Satizabal et al., 2019) and intelligence (Savage et al., 2018).  

Overall, results indicate MCP is a moderately heritable, polygenic trait, 

significantly genetically correlated with a range of traits and disorders – most 

markedly other chronic pain phenotypes and mood disorder phenotypes. Genetic 

correlation results in particular emphasise that GWAS findings from studies of 

chronic pain-associated conditions, rather than chronic pain itself, may capture 

genetic variation associated with disease specific processes rather than pain (as 

indicated by low/ moderate genetic correlation and in some cases no significant 

genetic correlation between MCP and conditions associated with significant 

chronic pain). Findings also suggest a key role for both nervous system and 

immune-related changes in the development and maintenance of chronic pain 

and implicate pathways such as DCC-mediated attractive signalling which have 

previously been found to be linked to nervous system development, cell 

proliferation, and a wide range of psychiatric phenotypes.  
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Chapter 5 Validation of Multisite Chronic Pain Phenotype 

5.1 Introduction  

Analyses were carried out to validate the MCP phenotype using PRSs, both in an 

independent general-population cohort, and in a subset of UK Biobank. This 

chapter specifically addresses objectives 1: to uncover common genetic 

variation associated with chronic pain phenotypes, and 2: To investigate genetic 

correlation and pleiotropy between MDD and chronic pain. 

Both utility and validity of trait PRSs can be assessed by testing for association 

between the trait investigated in the original GWAS, and PRS in an independent 

cohort. In this chapter, this was achieved through constructing a MCP PRS for a 

subset of Generation Scotland participants and testing for association between 

PRS and an MCP-like phenotype within Generation Scotland, and for association 

between MCP PRS and CPG, a well-validated chronic pain phenotype.  

PRS analyses can also be used to explore whether common genetic variation is 

shared between two different disorders or traits of interest. This type of PRS 

analysis was undertaken here to examine the relationship between MCP and CWP 

in UK Biobank a chronic pain phenotype that is potentially genetically distinct 

from localised chronic pain and from MCP (Kamaleri et al., 2008; Phillips & 

Clauw, 2011).  

In addition, outlined in Chapter 1, chronic pain is more common in women than 

men. This could be due to a range of genetic and lifestyle factors. Therefore, it 

is of interest to investigate potential genetics-by-sex interactions in chronic pain, 

also achievable through PRS analyses. 

5.2 Methods 

5.2.1 Chronic Pain Phenotyping in Generation Scotland and UKB 

Chronic pain phenotyping is similar between Generation Scotland (Smith et al., 

2013) and UK Biobank (Sudlow et al., 2015) (see also 2.3.3), but with a few key 

differences, such as specific body sites used in the questionnaire (Table 5.1). An 

MCP phenotype was derived in both cohorts, but it was not possible for this 

phenotype to be identical, due to these differences in the types of questions on 
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pain that were asked in each of the two studies. CPG score can also be 

calculated for Generation Scotland participants. In general Generation Scotland 

participants were asked a greater range of questions on their pain, including 

questions on social and work-related impact of pain (a total of 24 pain-related 

question items are present in Generation Scotland, compared to effectively two 

in UK Biobank). 

 

Generation Scotland UK Biobank 

Back Back 

Neck or Shoulder Neck or Shoulder 

Headache, facial or dental pain Headache 

Stomachache/ abdominal Stomach/ abdominal 

Arms, hands, hips, legs, feet (limbs) Hip 

Chest Facial 

Other Knee 

 
All over the body 

Table 5. 1: Pain site options in Generation Scotland versus UK Biobank 

5.2.1.1 Chronic pain grade 

CPG (2.3.3.2) phenotype value (0-4) was calculated for each Generation 

Scotland participant included in PRS analyses (N = 6, 080 total). This sample 

consists of a subset of Generation Scotland participants who were not related to 

one another (Generation Scotland was developed using a family-based 

recruitment structure, see Chapter 2.3.2.3) and who had complete information 

on CPG phenotype, genotyping data, age, sex, and multidimensional scaling 

components (MDS) available. The subset of unrelated participants was created 

by using the GCTA (J. Yang, Lee, et al., 2011) ‘--grm-cutoff’ option to derive a 

set of individuals related at < 0.025 genetic covariance from the Generation 

Scotland GRM. Overlapping participants between Generation Scotland and UK 

Biobank were also removed from this subset. 
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CPG Mean age N male (%) N total  

0 49.44 1692 (64.75) 3708  

1 52.92 579 (22.16) 1260 

2 51.97 224 (8.57) 711 

3 52.72 60 (2.30) 198 

4 55.05 58 (2.22) 203 

total 50.75 2613 (42.98) 6080 

Table 5. 2: Age and sex of participants included in CPG regression analyses. 

5.2.1.2 Multisite chronic pain 

A chronic pain phenotype similar to UK Biobank MCP was derived in Generation 

Scotland (see 2.3.3.2.2)) and was calculated for unrelated Generation Scotland 

participants with complete genotype data and information on age, sex and MDS 

components. As before, any participants in Generation Scotland who were also 

participants in UK Biobank were also removed. 

MCP Mean age N male (% male) N total 

0 49.41 1801 (63.46) 3898 

1 53.01 513 (18.08) 1169 

2 53.53 329 (11.59) 801 

3 55.38 120 (4.23) 418 

4 53.67 45 (1.59) 170 

5 52.91 25 (0.88) 74 

6 52.68 5 (0.18) 25 

total 51.09 2838 (43.28) 6558 

Table 5. 3: Age and sex of participants included in MCP regression analyses.  

5.2.2 Validation of MCP Polygenic Risk Score in Generation Scotland 

5.2.2.1 Polygenic Risk Scoring in Generation Scotland 

A MCP PRS value was calculated for unrelated Generation Scotland participants, 

who had not participated in UK Biobank, and whose genetic data passed quality 
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control checks. This was carried out using PRSice (Euesden et al., 2015) (see also 

2.2.6)– the target phenotype was MCP derived in Generation Scotland as 

explained above. The best PRS was calculated by PRSice as one consisting of 

SNPs associated with MCP at a GWAS p < 0.4, and this PRS was standardised by 

PRS z value throughout. A weighted PRS is unit-less, and using a standardised 

score in this way aids interpretation of regression output i.e., for every 1-SD PRS 

increase, MCP phenotype value increased by X. 

5.2.2.2 Regression Analyses 

The relationship between MCP PRS and MCP phenotype in unrelated Generation 

Scotland participants with complete data on PRS, age, sex, MCP phenotype value 

and Multidimensional Scaling (MDS) components 1-4 (N = 6, 558) was then 

examined via linear regression (adjusting for age, sex and MDS components). 

MDS components are included to account for population stratification between 

UK Biobank and Generation Scotland (see Chapter 2.2.1.2 & Chapter 2.2.6). Four 

regression models in total were run (model formulae and sample size 

summarised Table 5.4). 

Model Formula N 

Initial MCP~ Age + Sex + PRS + C1 + C2 + C3 + C4 6558 

Sex Interaction MCP~ Age + Sex*PRS + C1 + C2 + C3 + C4 6568 

Sex-stratified: Male MCP~ Age + PRS + C1 + C2 + C3 + C4 2838 

Sex-stratified: Female MCP~ Age + PRS + C1 + C2 + C3 + C4 3720 

Table 5. 4: Summary of regression models with MCP as outcome.  

C1-4 = MDS components 1-4, MCP = Multisite Chronic Pain trait value (0-6), PRS = Polygenic Risk Score  

The relationship between MCP PRS and CPG phenotype in unrelated GS 

participants with complete data on PRS, age, sex, CPG phenotype value and 

Multidimensional Scaling (MDS) components 1-4 (N = 6, 080) was then examined 

via linear regression. (adjusting for age, sex and MDS components). Four 

regression models in total were run (model formulae and sample size 

summarised Table 5.5). 
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Model Formula N 

Initial CPG~ Age + Sex + PRS + C1 + C2 + C3 + C4 6080 

Sex Interaction CPG~ Age + Sex*PRS + C1 + C2 + C3 + C4 6080 

Sex-stratified: Male CPG~ Age + PRS + C1 + C2 + C3 + C4 2613 

Sex-stratified: Female CPG~ Age + PRS + C1 + C2 + C3 + C4 3467 

Table 5. 5: Summary of regression models and sample sizes.  

C1-4 = MDS components 1-4, CPG = Chronic Pain Grade, PRS = Polygenic Risk Score 

5.2.3 Multisite Chronic Pain and Chronic Widespread Pain in UK Biobank: PRS 

Analysis 

An MCP PRS was calculated for individuals who reported chronic pain all over the 

body in UK Biobank (excluded from previous GWAS analyses described in Chapter 

5, N = 6, 815) and in 10, 000 randomly selected UKB participants who reported 

no chronic pain at any site or all over the body (also excluded from previous MCP 

GWAS analyses). The PRS was calculated using SNPs associated with MCP at p < 

0.01, weighting by MCP GWAS effect size (GWAS beta) for each SNP. PRS score 

was standardised by standard deviation (SD) to give a z-PRS. A weighted PRS is 

unit-less, and using a standardised score in this way aids interpretation of 

regression output i.e., for every 1-SD PRS increase, CPG score increased by X.  

5.2.3.1 Regression Analyses 

The association between MCP PRS and CWP status was investigated using logistic 

regression, adjusting for age, sex, genotyping array and the first eight UK 

Biobank genetic PCs (to account for potential population stratification when 

comparing the two subsets of UK Biobank participants). 

5.3 Results 

5.3.1 MCP PRS Validation in Generation Scotland 

PRS analyses undertaken to validate the MCP phenotype showed that MCP PRS 

was significantly (p < 0.05) associated with both MCP and CPG in Generation 

Scotland (Table 5.6: p = 8 x 10-32, Table 5.7: 2.87 x 10-23, respectively). Every 1-

SD increase in PRS value was associated with a 0.17-site increase in MCP 

phenotype value, and with a 0.13 increase in CPG phenotype value.  
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Estimate SE t p 

(Intercept) 0.31 0.07 4.23 2.40 x 10-5 

PRS 0.17 0.01 11.80 8.08 x 10-32 

age 0.01 0.00 11.76 1.30 x 10-31 

sexM -0.25 0.03 -8.60 9.81 x 10-18 

C1 -14.75 10.17 -1.45 0.15 

C2 -25.06 11.34 -2.21 0.03 

C3 -4.94 1.85 -2.67 0.01 

C4 3.32 2.49 1.33 0.18 

Table 5. 6: Results of the regression of MCP polygenic risk score on MCP in Generation Scotland, adjusted 

for age, sex and multidimensional scaling components 1-4..  

Estimate = regression coefficient value, SE = standard error of regression coefficient value, t = t-statistic 

value, p = p value. Default level for factor variable ‘Sex’ is set to female (F). PRS refers to standardised (z) 

PRS.  

 
Estimate SE t p 

(Intercept) 0.32 0.07 4.82 1.45 x 10-6 

PRS 0.13 0.01 9.98 2.87 x 10-23 

age 0.01 0.00 9.48 3.57 x 10-21 

sexM -0.21 0.03 -8.14 4.72 x 10-16 

C1 -5.89 9.13 -0.65 0.52 

C2 -20.28 10.12 -2.00 0.05 

C3 -3.07 1.64 -1.87 0.06 

C4 2.08 2.21 0.94 0.35 

Table 5. 7: Results of the regression of MCP polygenic risk score on chronic pain grade in Generation 

Scotland, adjusted for age, sex and multidimensional scaling components 1-4.  

Estimate = regression coefficient value, SE = standard error of regression coefficient value, t = t-statistic 

value, p = p value. Default level for factor variable ‘Sex’ is set to female (F). PRS refers to standardised (z) 

PRS. 
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5.3.2 Sex-Specific Associations between PRS and MCP in Generation Scotland 

There was a significant interaction between sex and PRS (Table 5.11: p = 0.002), 

and in sex-stratified regression analyses the association between PRS and MCP 

phenotype value was markedly higher in females than in males (Table 5.11: 0.21 

vs 0.12, respectively). This significance survives Bonferroni correction of 

significance threshold (all p values for PRS terms in models << pbonf = 0.0125). 

 
 

Estimate SE t p 

(Intercept) 0.31 0.07 4.19 2.82 x 10-5 

PRS 0.21 0.02 11.01 5.96 x 10-28 

sexM -0.25 0.03 -8.67 5.36 x 10-18 

age 0.01 0.00 11.77 1.16 x 10-31 

C1 -14.43 10.17 -1.42 0.156 

C2 -24.71 11.33 -2.18 0.029 

C3 -4.90 1.85 -2.65 0.008 

C4 3.15 2.49 1.26 0.206 

PRS: sexM -0.09 0.03 -3.12 0.002 

Table 5. 8: Results for the regression of MCP polygenic risk score on MCP in Generation Scotland with 

inclusion of an interaction term (sex x PRS).  

Estimate = regression coefficient value, SE = standard error of regression coefficient value, t = t-statistic 

value, p = p value. Default level for factor variable ‘Sex’ is set to female (F). PRS refers to standardised (z) 

PRS. 
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Estimate SE t p 

(Intercept) 0.26 0.10 2.61 0.0092 

PRS 0.12 0.02 5.87 5.00 x 10-9 

age 0.01 0.00 7.06 2.02 x 10-12 

C1 -30.96 14.08 -2.20 0.028 

C2 -32.63 15.62 -2.09 0.037 

C3 -2.36 2.51 -0.94 0.347 

C4 1.02 3.45 0.30 0.767 

Table 5. 9: Results for the regression of MCP polygenic risk score on MCP in Generation Scotland in males 

only.  

Estimate = regression coefficient value, SE = standard error of regression coefficient value, t = t-statistic 

value, p = p value. PRS refers to standardised (z) PRS. 
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Estimate SE t p 

(Intercept) 0.15 0.10 1.42 0.15 

PRS 0.21 0.02 10.29 1.67 x 10-24 

age 0.01 0.00 9.50 3.79 x 10-21 

C1 -2.50 14.28 -0.18 0.86 

C2 -18.92 15.98 -1.18 0.24 

C3 -6.94 2.64 -2.63 0.01 

C4 4.85 3.50 1.38 0.17 

Table 5. 10: Results for the regression of MCP polygenic risk score on MCP in Generation Scotland in 

females only.  

Estimate = regression coefficient value, SE = standard error of regression coefficient value, t = t-statistic 

value, p = p value. PRS refers to standardised (z) PRS. 

Model PRS PRS*Sex Significant 

Initial 0.17 NA Yes 

Sex Interaction 0.21 -0.09 Yes, Yes 

Sex-stratified: Male 0.12 NA Yes 

Sex-stratified: Female 0.21 NA Yes 

Table 5. 11 Summary of all four model key results.  

PRS = coefficient value for PRS term in regression models, PRS*Sex = coefficient value for sex-PRS 

interaction term (where applicable). Significant = p value for coefficient < 0.0125 (Bonferroni-corrected by 

number of regression models run in total (4)). PRS refers to standardised (z) PRS. 

 

5.3.3 MCP and Chronic Widespread Pain in UK Biobank 

PRS analyses carried out to assess the relationship between CWP and MCP, as 

well as to partially validate the MCP phenotype, indicated that genetic risk for 

MCP (MCP PRS) was significantly associated with having chronic widespread pain, 

with every 1-standard deviation (SD) increased in PRS associated with a 63% 

increase in the odds of having chronic widespread pain (Table 5.12: OR = 1.63, p 

= 1.45 x 10-109). 
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Term Estimate SE (Estimate) Z P OR 

(Intercept) -61.418 2.763 -22.23 1.90 x 10-109 2.12 x 10-27 

Age 0.016 0.002 7.45 9.25 x 10-14 1.02 

Sex -0.488 0.035 -14.01 5.56 x 10-45 0.61 

PRS 0.488 0.022 22.24 1.45 x 10-109 1.63 

Table 5. 12: Results of the regression of MCP polygenic risk score on chronic widespread pain in UK Biobank.  

Regression beta coefficient values (Estimate), odds ratios (OR), and P values. The reference level for ‘sex’ 

is set to female, PRS = z-polygenic risk score. 

 

5.4 Discussion 

5.4.1 Multisite Chronic Pain and Chronic Widespread Pain 

Clinical syndromes involving chronic pain all over the body such as fibromyalgia, 

and chronic widespread pain itself, may represent the upper end of a spectrum 

of centralisation of pain, or the extreme of a chronic pain state (Phillips & Clauw, 

2011). It has also been suggested that there are not “natural cut-off points” 

when it comes to chronic widespread pain versus localised chronic pain 

(Kamaleri et al., 2008). In support of this, MCP PRS was significantly associated 

with chronic widespread pain, indicating that chronic widespread pain be the 

upper end of a spectrum of increasingly widespread chronic pain, as previously 

suggested (Kamaleri et al., 2008; Phillips & Clauw, 2011), and that there are 

likely to be genetic variants that predispose both to MCP and to CWP. 

5.4.2 Validation of MCP PRS in an Independent Cohort 

Polygenic risk for MCP was significantly associated with both increasing MCP trait 

value and increasing chronic pain grade trait value in an independent cohort. 

This indicates that SNP associations discovered in UK Biobank are not limited to 

this specific cohort, and instead capture variation in chronic pain more generally. 

In addition, the significant association of MCP PRS with CPG is encouraging as 

CPG represents a validated chronic pain phenotype, again indicating that the 
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GWAS of MCP in UK Biobank was capturing genetic variation contributing 

generally to chronic pain. 

5.4.3 Sex Differences in PRS Associations 

An MCP PRS was associated with MCP in Generation Scotland in both men and 

women, but the size of the association was greater in women (β = 0.21, if a 95% 

CI is taken to be 0.21 +/- 0.04 this is significantly larger than the size of the 

male PRS-MCP association β = 0.12). There was also significant PRS-by-sex 

interaction. These results may indicate a genetic contribution to sex differences 

in prevalence of chronic pain, and were further examined in the published 

journal article associated with analyses in this chapter (Johnston et al., 2021).   

Sex as a biological variable has a range of effects on how the genome functions 

and therefore on resulting phenotypic trait values (Bernabeu et al., 2021; 

Khramtsova et al., 2019; Rawlik et al., 2016). These effects can be mediated by 

sex differences in DNA methylation (Ge et al., 2017; Gilks et al., 2014; Hall et 

al., 2014; McCormick et al., 2017; Rahmioglu et al., 2015), sex differences in 

gene expression (Quinn & Cidlowski, 2016; X. Xu et al., 2012) and in eQTL 

effects (Kukurba et al., 2016; Yao et al., 2013), and varying levels and actions of 

hormones (Gomez-Santos et al., 2011; Kósa et al., 2009). Sex-specific pleiotropy, 

whereby genetic variants are associated with multiple traits but these 

relationships differ according to sex, can also contribute to sex differences in 

complex traits (Mitra et al., 2016; Rahmioglu et al., 2015), including chronic 

pain. Environmental factors strongly correlated with sex can also contribute to 

sex differences in complex trait phenotypic values. 

Sex-differential gene expression has been observed in populations of sensory 

neurons (Mecklenburg et al., 2020) including within the dorsal root ganglion (K. 

Stephens et al., 2018) and tibial nerve (Ray et al., 2019).  

In rodents, it has been found that different immune cells mediate mechanical 

pain hypersensitivity depending on sex, and that this relationship is affected by 

the action of testosterone (Mapplebeck et al., 2016; Sorge et al., 2015; Sorge & 

Totsch, 2017). In humans, improvement in chronic pain symptoms associated 

with some chronic pain conditions (particularly autoimmune conditions such as 

rheumatoid arthritis and MS) has been observed during pregnancy (Adams 

Waldorf & Nelson, 2008; Krause & Makol, 2016; Ray-Griffith et al., 2018; Varytė 
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et al., 2020). Again, this relationship is thought to be associated with varying sex 

hormone levels and their downstream effects on immune cell populations such 

as T helper cells (Craft et al., 2004; Pozzilli & Pugliatti, 2015). The relationship 

between pain perception and varying sex hormone levels during the human 

menstrual cycle, and between pain symptoms in chronic pain conditions and the 

menstrual cycle, is not fully understood (reviewed by Iacovides et al., 2015). 

A range of diverse non-genetic (environmental) factors associated with female 

gender may also contribute to differences in chronic pain prevalence between 

sexes. Pain and chronic pain are more common in people reporting intimate 

partner/ domestic violence (Alhalal et al., 2018; Craner et al., 2020; Wuest et 

al., 2008), who also tend to be women (World Health Organization, 2021). 

Willingness to seek medical treatment, which is generally higher in women than 

men (Höhn et al., 2020; Thompson et al., 2016), may also contribute to higher 

prevalence estimates for chronic pain in women, as women are more likely to 

seek treatment for pain (K. D. S. Ferreira & Speciali, 2015)– however some 

evidence is mixed (Hunt et al., 2011) and this relationship may depend on pain 

type and be generally variable. Women may also be more likely to use 

maladaptive coping strategies for chronic pain (El-Shormilisy et al., 2015), 

potentially increasing any time period spent in pain and contributing to higher 

chronic pain prevalence. Adverse childhood experiences (ACEs) such as parental 

conflict, poverty, and psychological, physical or sexual abuse are also associated 

with higher rates of chronic pain in adulthood (Edwards et al., 2016; Groenewald 

et al., 2020), and some types of ACEs have been found to be more commonly 

experienced by women (Bellis et al., 2014; CDC, 2019), and in other cases 

greater variation and complexity in ACEs has been reported by women compared 

to men (Haahr-Pedersen et al., 2020). 
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Chapter 6: Using Genetics to Assess Causal Relationships 

in Pain and MDD 

6.1 Introduction 

Analyses undertaken in this chapter address the over-arching aim of this PhD 

project: to investigate causal relationships between MDD and chronic pain. 

Although the relationship between MDD and chronic pain in terms of comorbidity 

and genetic overlap is well documented, it is unclear as to whether a causal 

aspect to the relationship between MDD and chronic pain exists (see 1.3.2). In 

the absence of longitudinal data collection (that is specifically designed to 

control for many potential confounding factors in any underlying causal 

relationship between MDD and chronic pain, e.g., BMI, socioeconomic 

deprivation), it can be difficult to examine causality. One potential method to 

determine causality in exposures where randomised control trials (RCTs) are 

inappropriate for ethical, feasibility and financial reasons, and where 

longitudinal data is scarce or non-existent, is Mendelian Randomisation (MR) 

(reviewed by (Zheng, Baird, et al., 2017), see also 2.2.7). Using MR can mean 

that bias in causal estimates due to both reverse causality and confounding are 

in theory avoided.  

The first section of this chapter (6.2.1), compares three different MR methods; 

Inverse-Variance Weighted (IVW), MR-Egger, and MR with Robust Adjusted Profile 

Score (MR-RAPS). Subsequent analyses focus solely on MR-RAPS (6.2.2) – this is 

because MR-RAPS is likely to be the most appropriate method when some degree 

of horizontal pleiotropy is almost certain to exist between the two traits. This is 

the case with depression and chronic pain, shown both by analyses in this thesis 

(Chapters 3, 4 and 5) showing significant genetic correlation between the two 

conditions, and in prior literature (see 1.1.5, 1.3.1). Differences in MR 

approaches and respective advantages and limitations are discussed in further 

detail in 2.2.7.  

The next section of this chapter (6.2.3) examines the relationship between SNP 

genotype rs1186556 and chronic pain, and between SNP genotype and depression, 

in UK Biobank. Rs1186556 was found to be pleiotropic in cFDR analyses of MDD 

and CPG (Chapter 3), and mapped to LRFN5, a locus previously linked to 
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neuroinflammation and involved in neuronal development and synapse formation 

(3.3.5). 

6.2 Methods 

6.2.1 MR: Causal Relationship between Chronic Pain Grade and MDD 

6.2.1.1 GWAS Datasets & Data Preparation 

GWAS summary statistics from the 23andMe-Pfizer CPG GWAS were used. This 

GWAS was carried out on 23, 301 unrelated individuals of European descent (see 

2.3.2.2 and 2.3.3.2.1). Harmonisation was carried out (see 2.2.7.5), with an r2 

threshold of 0.01 chosen throughout. LD between instruments was checked using 

PLINK command --r2 --ld-window-r2 0.01, checking against UK Biobank 

genotyping data as a reference. This command delivers a list of pairwise 

correlation values (measured in r2) between instrument SNPs, for any value of r2 > 

0.01. This stringent threshold was used to make MR-RAPS (Zhao et al., 2020) 

valid. Where LD was found (r2 > 0.01), the SNP with the lowest GWAS p value 

amongst the inter-correlated group was reserved. These reserved SNPs plus the 

SNPs that were not found to be in LD comprised the list of instruments for MR. 

SNPs associated with the exposure (here, CPG) at p < 10-5 and satisfying the 

other criteria were taken forward into the MR analysis. Note that this p value 

threshold is one order of magnitude more conservative than recommended for 

MR-RAPS (where recommended threshold is p < 10-4), to account for the fact that 

CPG-associated SNP effect sizes were calculated in a sample that was not 

independent of the source GWAS for the exposure trait (CPG). After the above 

steps were completed, 25 SNPs were taken forward to assess the causal effect of 

CPG on MDD. 

MR-Egger, IVW and MR-RAPS were carried out, and Q and I2GX
 values were 

calculated. 

A large GWAS meta-analysis was carried out by Wray et al (Wray et al., 2018), 

and data from UK Biobank and 23andMe participants were removed from those 

results, to give GWAS summary statistics for a cohort consisting of 43, 028 and 

87, 522 MDD cases and controls, respectively. Harmonisation and pruning steps 

were carried out as described in the preceding section, leaving 44 independent 
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SNPs associated with MDD at p < 10-5 to be used as instruments to assess the 

causal effect of MDD on CPG. 

6.2.1.2 Mendelian Randomisation Analysis  

MR-Egger (2.2.7.3), IVW (2.2.7.2) and MR-RAPS (2.2.7.4) were carried out using 

summary statistic datasets prepared as described in previous sections, first to 

estimate the causal effect of CPG on MDD, then to estimate the causal effect of 

MDD on CPG. Q and IGX
2 values were calculated to assess pleiotropy in SNP 

instruments. 

IVW MR involves fixed-effect meta-analysis of the Wald ratio causal effect 

estimates for each SNP. MR-Egger analysis provides a causal estimate through 

treating each instrument (SNP) as a study in a meta-analysis, where the overall 

effect estimate (causal effect estimate) is given by the slope of the MR-Egger 

regression – in contrast to IVW analysis the intercept of this regression is not 

constrained to pass through the origin. Directional horizontal pleiotropy was also 

tested for through testing whether the intercept of this regression was 

significantly different to zero. Both IVW and MR-Egger MR analyses were carried 

out using code written in R (versions 3.5.3 – 3.6.0), partially based on code 

templates distributed as part of the 2018 Mendelian Randomisation workshop 

(University of Bristol).  

MR-RAPS was carried out using the package ‘mr-raps’ in R (version 3.6.0) (Zhao 

et al., 2020).  

6.2.2 MR: Causal relationships between Multisite Chronic Pain and MDD 

6.2.2.1 GWAS Datasets & Data Preparation 

Summary statistics for the GWAS carried out in Chapter 4 in UKB on MCP were 

used to derive instruments for MCP, a second chronic pain phenotype distinct 

from CPG. After harmonisation and pruning steps were completed as above, this 

resulted in 200 independent SNP instruments associated with MCP at p < 10-5 for 

use in investigating potential causal effects of MCP on MDD.  

Wray et al summary statistics were used and pruning and harmonisation steps 

followed as previously outlined. This resulted in 99 independent SNPs associated 

with MDD at p < 10-5 to be used as instruments in estimating the causal effect of 
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MDD on MCP. Note that the number of instruments for MDD varies between the 

MCP<->MDD and CPG<->MDD analyses as pruning and harmonisation is carried out 

with respect to the outcome variable GWAS data in each case. 

6.2.2.2 Mendelian Randomisation Analysis 

MR-RAPS (2.2.7.4) analyses were carried out, first to estimate the causal effect 

of MCP on MDD, then to estimate the causal effect of MDD on MCP.  

 

6.3 Results 

6.3.1 Causal Relationships between Chronic Pain Grade and MDD 

MR analyses investigating a potentially causal effect of CPG on MDD found no 

significant causal effect after FDR correction for multiple testing (Table 6.1, p 

value = 0.08). With respect to MR-Egger, where the causal effect was non-

significant even prior to FDR correction, this may be due to causal dilution 

caused by violation of the NOME (No Measurement Error) assumption, as 

indicated by the I2GX value of < 0.9.  

 

Method β SE β/ SE p p (FDR) Q p (Q) I2 τ2 I2GX model 

type 

loss 

functio

n 

IVW 0.068 0.03 2.218 0.036 0.054 21.75 0.594 0 0 NA NA NA 

MR-

Egger 

0.0805 0.044 1.83 0.08 0.08 NA NA NA NA 0.84 NA NA 

MR-

Egger 

(Interc

ept) 

-0.0015 0.004 -0.395 0.7 NA NA NA NA NA NA NA NA 

MR-

RAPS 

0.07 0.034 2.0588

235 

0.035 0.054 NA NA NA NA NA simple L2 

Table 6. 1: MR results with chronic pain grade as the exposure and MDD as the outcome across all three 

methods.  

β = causal estimate, SE = standard error of causal estimate, β/ SE = z value, p = p value, p (FDR) = FDR-

adjusted p value, Q = Cochran’s Q value, p (Q) = p value for Cochran’s Q, I2 = heterogeneity estimate (IVW), 

τ2 = among-study variance (heterogeneity estimate, IVW), I2gx = heterogeneity indicator (MR-Egger).  

No significant directional or balanced horizontal pleiotropy was detected in 

these analyses, as indicated by the non-significant intercept value in MR-Egger 
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(Table 6.1 p = 0.7), and the non-significant Q value for IVW MR (Table 6.1 p = 

0.59), respectively. This is corroborated in MR-RAPS analysis, as no significant 

over-dispersion (indicating widespread horizontal pleiotropy amongst 

instruments) or idiosyncratic pleiotropy (horizontal pleiotropy in a small subset 

of instruments) was detected – simple, non-robust (L2 loss function) regression 

was best-fitting.  

In MR analyses investigating potential causal effect of MDD on CPG, again no 

significant causal effect was found across any of the four MR methods. IVW 

results indicated no horizontal pleiotropy among instruments (Table 6.2 p (Q) > 

0.05), and MR-Egger intercept results suggest no direction pleiotropy (Table 6.2 

p > 0.05), but MR-Egger results suggest significant violation of the NOME 

assumption (Table 6.2 I2GX <<0.9). The fact that the best-fitting MR-RAPS model 

was one with a Huber loss function indicates idiosyncratic pleiotropy among 

instruments – a small subset of instruments for MDD were horizontally pleiotropic.  

 

Method β SE β/ SE p p (FDR) Q p (Q) I2 τ2 I2GX model 

type 

loss 

functio

n 

IVW -

0.022 

0.03 -0.74 0.46 0.69 45.9 0.35 6.3 0.003 NA NA NA 

MR-Egger 0.078 0.063 1.24 0.22 0.66 NA NA NA NA 0.44 NA NA 

MR-Egger 

(Intercep

t) 

-

0.007 

0.004 -1.86 0.07 NA NA NA NA NA NA NA NA 

MR-RAPS -

0.012 

0.032 -0.375 0.712 0.712 NA NA NA NA NA simple, 

robust 

Huber 

Table 6. 2: MR results with MDD as the exposure and chronic pain grade as the outcome across all three 

methods.  

β = causal estimate, SE = standard error of causal estimate, β/ SE = z value, p = p value, p (FDR) = FDR-

adjusted p value, Q = Cochran’s Q value, p (Q) = p value for Cochran’s Q, I2 = heterogeneity estimate (IVW), 

τ2 = among-study variance (heterogeneity estimate, IVW), I2gx = heterogeneity indicator (MR-Egger). 

6.3.2 Causal Relationships between Multisite Chronic Pain and MDD 

MR-RAPS analysis was performed to investigate causal relationships between 

MDD and MCP, first with MDD as the exposure and MCP as the outcome. QQ plots, 

leave-one out versus t-value plots and Anderson-Darling/ Shapiro-Wilk test p 
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values indicated that models without dispersion were best-fitting (Table 6.3 

rows 1-3, pAD > 0.05, pSW > 0.05). Effects of outliers (idiosyncratic pleiotropy) 

are not ameliorated in models with dispersion despite robust regression (Figure 

6.1: D, E, F right-hand panels). The best-fitting model with greatest 

amelioration of pleiotropy was one without over-dispersion and with a Tukey loss 

function (Table 6.3: row 3, Figure 6.1: C).  

 

overdisper

sion 

Loss 

function 

β SE (β) p (β) p (AD) p (SW) τ p (τ) C.F 

FALSE L2 0.0117 0.0052 0.0241 0.9375 5.34E-01 NA NA A 

FALSE Huber 0.0153 0.0054 0.0042 0.9285 5.23E-01 NA NA B 

FALSE Tukey 0.0185 0.0054 0.0006 0.9230 5.18E-01 NA NA C 

TRUE L2 -0.0096 0.0132 0.4671 0.0080 1.76E-03 1.61E-04 0.0470 D 

TRUE Huber -0.0056 0.0126 0.6556 0.0087 2.11E-03 1.30E-04 0.0677 E 

TRUE Tukey -0.0065 0.0137 0.6330 0.0055 9.03E-04 1.67E-04 0.0627 F 

Table 6. 3: MR results for MR-RAPS analysis with MDD as the exposure and MCP as the outcome.  

β refers to the causal effect, SE (β) and p (β) to the standard error and p value of β, p (AD) to the 

Anderson-Darling test of normality p value, p (SW) to the Shapiro-Wilk test of normality p value, τ to the 

over-dispersion statistic size and p (τ) to the p value. C.F = corresponding QQ plot panel for the model. p 

(τ) was calculated from the tau estimate and its standard error (Altman & Bland, 2011). The row of the 

table corresponding to the regression model found to be best-fitting is in bold. 
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Figure 6. 1. Diagnostic plots of MR-RAPS analysis with MDD as exposure 

Quantile-quantile plots (left-hand panels, ‘normal Q-Q plot’) and leave-one-out β versus t-value plots 

(right-hand panels) for each of the six models fitted during MR-RAPS analyses (A-F) are shown. 

Beta.hat.loo = leave-one-out β value estimate, abs(b_exp/se_exp) = absolute β value divided by standard 

error (t value). Each point represents a SNP instrument.  

These results indicate idiosyncratic pleiotropy (pleiotropy in some but not all 

instruments). The causal effect of MDD on MCP is positive and significant at beta 

= 0.019 and p = 0.0006, but the diagnostic plots show a ‘swapping’ of sign for 

the causal estimate (Figure 6.1), suggesting that there is not a truly significant 

causal effect of MDD on MCP.  

MR-RAPS analyses were then carried out with MCP as the exposure and MDD as 

the outcome. Models with dispersion are a better fit than those without (Figure 

6.2: A, B, C vs D, E, F, Table 6.4: rows 4-6, pAD > 0.05, pSW > 0.05, pτ << 0.05). 

This indicates that effectively all instruments are horizontally pleiotropic 

(affecting MDD through pathways other than via MCP). The causal effect of MCP 

on MDD is positive and significant at beta = 0.16 and p = 0.047. 
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overdisper

sion 

Loss 

function 

β SE (β) p (β) p (AD) p (SW) τ p (τ) C.F 

FALSE L2 0.1714 0.0605 0.0046 0.4256 0.0853 NA NA A 

FALSE Huber 0.1815 0.0621 0.0034 0.4247 0.0835 NA NA B 

FALSE Tukey 0.2097 0.0621 0.0007 0.4221 0.0784 NA NA C 

TRUE L2 0.1201 0.0790 0.1286 0.8374 0.2853 9.81E-05 2.43E-03 D 

TRUE Huber 0.1446 0.0801 0.0712 0.8289 0.2724 9.18E-05 5.13E-03 E 

TRUE Tukey 0.1578 0.0795 0.0471 0.8236 0.2641 8.77E-05 7.09E-03 F 

Table 6. 4: MR results for MR-RAPS analysis with MCP as the exposure and MDD as the outcome.  

β refers to the causal effect, SE (β) and p (β) to the standard error and p value of β, p (AD) to the 

Anderson-Darling test of normality p value, p (SW) to the Shapiro-Wilk test of normality p value, τ to the 

over-dispersion statistic size and p (τ) to the p value. p (τ) was calculated from the τ estimate and its 

standard error (Altman & Bland, 2011)The row of the table corresponding to the regression model found to 

be of best fit is in bold. 
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Figure 6. 2: Diagnostic plots of MR-RAPS analysis with MCP as exposure and MDD as the outcome. 

Quantile-quantile plots (left-hand panels, ‘normal Q-Q plot’) and leave-one-out β versus t-value plots 

(right-hand panels) for each of the six models fitted during MR-RAPS analyses (A-F) are shown. 

Beta.hat.loo = leave-one-out β value estimate, abs(b_exp/se_exp) = absolute β value divided by standard 

error (t value). Each point represents a SNP instrument. 

Overall, the results of this analysis suggest a causal effect of MCP on MDD. 

6.4 Discussion 

6.4.1 Causal relationship between MCP and MDD 

Several MR analyses indicated no causal effect of CPG on MDD or vice versa, but 

MR-RAPS suggested MCP has a causal effect on MDD.  

The finding of no causal effect of CPG on MDD could be due to the comparatively 

smaller sample size of the 23andMe-Pfizer CPG GWAS, an order of magnitude 

smaller than the MCP GWAS, reducing power. It is also possible that potential 

bias introduced into the CPG GWAS output through adjustment for traits which 



153 
 

are likely to be genetically correlated with CPG (BMI and manual labour) may 

affect causal analyses (see 4.4.1.6).  

Differences between CPG and MCP as traits may also contribute to potential 

differences in observed causal estimates. Although the environment has a large 

influence on MCP (heritability, i.e., additive genetic component of trait 

variation, is only ~10%), environmental components of chronic pain experience 

are perhaps more explicitly measured with CPG. For example, interference in 

daily activities (e.g., item 4, how many days in the last 6 months have you been 

kept from your usual activities because of this pain?), is assessed as part of CPG. 

The individual’s interaction with their environment and the relationship between 

this interaction and any chronic pain is, in contrast, not directly measured or 

used to calculate the number of chronic pain sites on the body (i.e., MCP).  

MR-RAPS results for the causal effect of MCP on MDD also showed that 

effectively all instruments were horizontally pleiotropic – their effect on MDD is 

not exclusively through MCP and is instead dispersed or diluted out through other 

MCP-correlated traits. This emphasises that despite evidence of a significant 

causal role of chronic pain in MDD, many interrelated factors are involved in the 

relationship between MDD and chronic pain, and the relationship between the 

two phenotypes is complex. However, lack of significant causal effect of MDD on 

MCP can be interpreted as evidence that despite high comorbidity and genetic 

overlap, MDD does not directly cause chronic pain.  

Heterogeneity in MDD may mean that, although unexplained physical symptoms 

including chronic pain and headaches are experienced by some people with an 

MDD diagnosis, any potential causal effect of some specific subtypes of 

depression on MCP is obscured as the MDD GWAS included MDD cases overall, 

many of whom likely experience no chronic pain or unexplained physical 

symptoms. It is perhaps then even more significant that significant (if small) 

causal effect of MCP on MDD was found, given that MCP is also a heterogeneous 

trait. The translational impact of the results of these analyses is, however, 

minimal. MR studies of modifiable exposures or medications can have a direct 

translational impact as the causal effect of discrete, actionable changes (e.g. 

smoking cessation or taking a medication) can be ascertained – for example the 

impact of PSCK9 inhibitors on risk for type 2 diabetes was investigated in this 
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manner and has potential direct clinical implications (Schmidt et al., 2017). In 

contrast, in this section the causal impact of chronic pain (a heterogeneous, 

complex-trait exposure that is perhaps not modifiable in the way lifestyle 

factors such as cigarette smoking are) on MDD (and vice versa) is estimated.  
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Chapter 7: General Discussion 

This chapter is designed to bring together an overview of results from each of 

the previous chapters, along with discussion of strengths, limitations, and future 

directions of work carried out in this thesis. The over-arching aim of this thesis 

was to investigate causal relationships between major depression and chronic 

pain. Three main research objectives were addressed to achieve this aim; to 

uncover common genetic variation associated with chronic pain phenotypes, to 

investigate genetic correlation and pleiotropy between MDD and chronic pain, 

and finally to test for clinical heterogeneity between MDD and chronic pain.  

Novel common genetic variation associated with chronic pain phenotypes 

Chronic Pain Grade (CPG) was discovered first through leveraging genetic 

overlap with MDD (Chapter 3), then through genome wide association analysis 

with a novel chronic pain phenotype (Multisite Chronic Pain, MCP) (Chapter 4). 

Eleven novel SNPs were found to be associated with CPG, and 76 with MCP. MCP 

was found to be a moderately heritable, polygenic trait, with associated genes 

suggesting a strong central nervous system component to MCP development.  

Genetic correlation and pleiotropy was examined through analyses in Chapter 3 

which identified pleiotropic loci of interest (associated with effects in both MDD 

and chronic pain), and through estimating genetic correlation between MCP and 

MDD (Chapter 4). Analyses in Chapter 3 also tested for clinical heterogeneity in 

MDD with respect to CPG and vice versa, using GWAS summary statistics for each 

trait. LRFN5, a gene involved in cell-cell adhesion in the CNS and previously 

implicated in neuroinflammation and major depression, was found to be 

pleiotropic with respect to MDD and CPG. Significant genetic correlation was 

observed between MCP and a range of traits and disorders, most notably mood 

and psychiatric traits, with low-moderate or non-significant genetic overlap 

observed between MCP and conditions involving significant chronic pain (e.g., 

IBDs and rheumatoid arthritis). No significant evidence for clinical heterogeneity 

in MDD or in CPG was found in UK Biobank.  

Analyses undertaken in Chapter 5 examined whether genetic risk for MCP was 

associated with CPG, and with chronic widespread pain, where it was found that 

genetic risk for MCP was significantly associated with both CPG and chronic 

widespread pain, and with MCP in an independent cohort. Finally, GWAS 
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summary statistics were taken forward for causal analyses in Chapter 6, where a 

significant causal effect of MCP on MDD was observed.  

7.1 History of Pain Theories 

Understanding pain and chronic pain has been a key philosophical as well as 

scientific question throughout human history. Ancient theories on pain include 

those formulated by Plato, such as intensity theory (Zeyl & Sattler, 2019), i.e. 

that pain is an “emotion” and occurs when a stimulus is sufficiently intense and 

long-lasting. In the 1600s Descartes posited Cartesian dualism, suggesting pain is 

a result of physical injury or of psychological (emotional) injury, but never both 

and neither can influence the other. However, he described the mind (‘soul’) 

and body as intertwined and connected the concept of pain to a soul, with the 

soul of pain in the pineal gland. Descartes also described ‘fibres’ that could 

transmit pain messages to the brain (Benini & Deleo, 1999; Moayedi & Davis, 

2013). Later, in the 1800s Bell outlined specificity theory, assigning types of 

sensations to particular pathways, and also described brain as a complex 

structure with different components (Bell & Shaw, 1868;Bell, 1811) 

Also during this period Muller suggested that different sensations, including pain, 

are due to activity at different receptors (reviewed by Perl, 2007). The work of 

von Frey also assigned different sensations to separate and specific receptors, 

with four separate modalities of somatosensory system activity (pain, cold, heat 

and touch) – different small areas of skin were linked to different types of 

sensation, and Von Frey observed relationships between types of neural 

structure (histologically defined) and these small skin areas (specificity theory) 

(reviewed by Moayedi & Davis, 2013; Rey, 1995). However, contrasting theories 

around the same time such as those of Erb argued that pain was a result of a 

stimulus being sufficiently intense to evoke painful sensation through activity at 

receptors that usually were involved in other, non-painful sensation (i.e. the 

opposite of specificity theory/ intensity theory as suggested by Plato, and in 

opposition to Muller) (reviewed by Moayedi & Davis, 2013; Perl, 2007). In the 

1900s ‘pattern theory’ attributed to Nafe stated that there are no separate or 

specific receptors, and instead different types of sensations lead to different 

sequences or patterns of signals being transmitted to the brain.  

The first theory to incorporate endogenous (non-peripheral) modulation of pain 

signals was that of Wall & Melzack in 1965: gate control theory. Here, stimuli 
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have to pass through 3 locations in the spinal cord before reaching the brain, 

with the substantia gelatinosa in the dorsal horn acting as a gate that modulates 

these signals – if a signal reaches significant intensity, this is transmitted to the 

brain (the gate ‘opens’), with additional control mechanism in cortical regions of 

the brain. This theory incorporated psychological and cognitive aspects in pain in 

addition to explaining clinical observations of non-noxious activity (e.g. rubbing 

an injured area) attenuating the level of pain felt, and the wide variation seen 

in the relationships between stimuli and resultant pain (Katz & Rosenbloom, 

2015; Melzack & Wall, 1965; Mendell, 2014).  

Later, in 1990, Melzack also described the idea of a neuromatrix, whereby the 

CNS is responsible for producing painful sensation, not the periphery (though the 

periphery can influence this sensation, in line with previous gate-control ideas) 

(Melzack, 1990, 2001). The ‘neuromatrix’ consists of multiple CNS locations that 

work in concert to produce a “neurosignature”, leading to pain. Peripheral 

information can influence this neurosignature but cannot lead to production of a 

neurosignature in isolation: this theory recognised influence of cognitive and 

emotional (but not social) factors in pain, and the fact that pain (particularly 

chronic pain syndromes) can be experienced in the absence of, or related only to 

minimal, direct sensory input. In this context mechanistic descriptors of pain 

(nociceptive, neuropathic, nociplastic, see also 1.1.1) may therefore describe 

ways in which the neurosignature is modulated, rather than discrete and causal 

descriptions for pain experiences.  

The biopsychosocial model of disease (Bevers et al., 2016) as applied to chronic 

pain (Fillingim, 2015, 2017, see also 1.1.4), can be thought of as uniting these 

three broad categories of theories on pain (specificity theory, intensity theory, 

and ideas of pain as a kind of emotion), and additionally emphasises 

multifactorial contributions, including environmental (e.g. social) factor 

contributions, to chronic pain development.  

Results of analyses in this thesis are in line with these theories – derivation of a 

broad chronic pain trait (MCP) where sensory input associated with inflammation 

or injury is not directly measured as a component of the phenotype ties in with 

ideas of the neuromatrix (with a neurosignature and chronic pain modulated by 

but not wholly produced by nociceptive or other peripheral input). Furthermore, 

several disease traits which commonly involve significant chronic pain were not 
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genetically correlated with MCP, including Crohn’s disease, lupus and 

rheumatoid arthritis (4.4.1.2). This suggests GWAS in these traits does not 

capture underlying mechanisms of chronic pain development, but rather genetic 

variation associated with more specific disease characteristics (which have a 

variable relationship with pain experienced). However, it should be noted that 

comparatively smaller sample sizes of some GWAS datasets (e.g., 5, 956 Crohn’s 

disease cases and 21, 770 controls) (Liu et al., 2015) may mean power to detect 

significant genetic correlation is reduced. This smaller sample size is directly 

related in many cases to lower prevalence of many chronic pain conditions – 

again taking Crohn’s disease as an example, prevalence in cases per 100,000 

people in Europe is estimated to be 1.5-213 (Burisch et al., 2013), whereas for 

MDD (where highly significant genetic correlation with MCP was observed and the 

GWAS sample size was much larger) this figure is ~12,000 (see 1.2.2). It may also 

be the case that genetic correlation on a more local level is present but not 

detectable between MCP and chronic pain conditions (see 7.6.3). Additionally, 

phenotyping chronic pain in addition to chronic pain-associated condition status 

may be more informative in finding genetic predictors of chronic pain, as across 

a range of conditions disease severity, disease activity and tissue damage are not 

necessarily reflected in severity of pain experienced. 

Several MCP-associated genes (particularly DCC) are involved in neuronal 

migration (see 4.4.3), outlined as a key component of the formation and 

alteration of the neuromatrix across the life course (Melzack, 1990). Pathways 

enriched for MCP-associated genes (see 4.4.3) included DCC-mediated attractive 

signalling, involved in cell motility and migration including in neural cell 

haptotaxis and synapse formation, and PLC-β-mediated signalling, also involved 

in synapse formation.  

Results of GWAS analyses also indicate that chronic pain follows the 

biopsychosocial model of disease: ~10% of trait variation is attributed to 

common genetic (SNP) variation, with therefore ~90% attributed potentially to 

non-genetic (environmental) factors in addition to other types of genetic 

variation not assayed in GWAS. Genetic correlations between MCP and other 

traits of interest indicated significant and large overlap in psychiatric traits, 

such as MDD and depressive symptoms, emphasising an affective component of 

chronic pain in addition to biological and social components. Considering chronic 
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pain as a disease or trait in this way is also in line with recent definitions of 

Chronic Primary Pain for the ICD-11 (see 1.1.1). 

7.2 Evolutionary Perspectives of Pain 

Acute pain is considered to be adaptive, as it warns against damage and danger 

(De C Williams, 2019) – in humans one demonstration of this is severe injury and 

even limb loss in individuals with congenital insensitivity to pain (see also 1.3.4). 

If chronic pain is related to a high enough degree to acute pain, this may explain 

why chronic pain as a trait is maintained in the population – as an unavoidable 

side effect of acute pain where any deleterious effect is outweighed by the 

adaptive benefit of acute pain. However, the relationship between acute and 

chronic pain is less straightforward, and most likely not strong enough to explain 

maintenance of chronic pain. This is demonstrated by the fact that severe and 

debilitating chronic pain can result from initial injuries where the experience of 

acute pain is minimal e.g. CRPS (C. Chang et al., 2019; F. & Chandan G., 2014), 

and that chronic pain is thought to be often absent in wild non-human animals 

(though this may be due to the fact this phenomenon is under-studied) (De C 

Williams, 2019).  

Other traits apart from acute pain may be both highly correlated with chronic 

pain and highly adaptive, driving the maintenance of chronic pain as a trait in 

the population in the face of natural selection. For example, neural plasticity is 

thought to be involved in chronic pain development, but is also an adaptive (or 

rather essential) trait in general brain development and function (Mateos-

Aparicio & Rodríguez-Moreno, 2019)– the selective disadvantage conferred by 

chronic pain would not outweigh the adaptive role of neural plasticity. It could 

also be the case that chronic pain itself is adaptive and so maintained through 

positive selection – studies in laboratory animals have shown advantages for 

predator avoidance associated with nociceptive sensitisation after injury (Crook 

et al., 2014; Lister et al., 2020).  

At the genetic rather than trait level, many hundreds of genetic variants 

contribute a small amount to variation in complex traits (see 1.3.3.1), and 

pleiotropy is widespread – results of analyses in this thesis indicate that chronic 

pain (MCP) is a highly polygenic complex trait (4.3.2, 4.3.3, 4.4.2), and 

pleiotropic variants were found specifically to contribute to both MDD and 

chronic pain (3.4.2). The vast majority of MCP-associated variants are therefore 
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likely to be selectively neutral (have a small effect size, and circulate in the 

population as common SNPs), or exert effects (however small) on traits that are 

adaptive, and so are maintained in the population.  

Another important point to note is that traits persist in a population not 

necessarily because they are adaptive (or strongly associated with an adaptive 

trait) at all: they are just not sufficiently deleterious to be removed by purifying 

selection. It is also important to note that maladaptive in a clinical sense is not 

the same as maladaptive in evolutionary terms. Traits may be selectively neutral, 

particularly traits like chronic pain where trait onset is often established after 

the reproductive period (Macfarlane, 2016), does not have severe enough fitness 

effects (in terms of negative impact on reproduction) to be subject to negative 

selection, or both. Additionally, natural selection, particularly if not extremely 

strong purifying selection, acts over long, multigenerational timespans. It may 

be the case that chronic pain played an adaptive role in the context of more 

ancient human environments (Walters, 2019), and this has recently stopped 

being the case – again lack of evidence of chronic pain in wild animals (but 

presence in domesticated animals) could be taken to support this theory (De C 

Williams, 2019).  

7.3 Multisite Chronic Pain in UK Biobank  

7.3.1 Comparing MCP and Other Chronic Pain Phenotypes 

Studying chronic pain as a disease entity or phenotype in its own right may 

present a more tractable way to uncover genetic factors involved in 

development of and vulnerability to chronic pain. An attempt to do this was 

made through derivation of the MCP phenotype in UK Biobank. 

MCP was found to be a moderately heritable, polygenic complex trait, similar to 

MDD. Genes associated supported a view of chronic pain as a disorder with a 

significant central nervous system component, implicating neuroinflammation 

and neuronal plasticity. Interestingly, so-called ‘classic’ chronic pain genes such 

as COMT was not found to be associated with MCP. Similarly to early candidate 

gene studies of MDD, this may be due to COMT’s association with individual 

variation in pain perception being specific to those cohorts, or an artefact of 

reduced power (associated with small sample sizes and with methodological 

issues in candidate gene analysis). It may be the case that more general genetic 
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factors influencing chronic pain susceptibility or development are likely to be 

found in GWAS presented in this thesis, and that GWASs of chronic pain 

conditions are more likely to show genetic variation associated with more 

specific disease or condition-associated processes.  

The relationship between MCP and other more ‘general’ i.e., non-disease or 

chronic pain condition-associated chronic pain traits was also explored. Chronic 

widespread pain could be considered the ‘upper end’ or more extreme 

presentation chronic pain (Kamaleri et al., 2008; Phillips & Clauw, 2011), and 

this was supported by genetic correlation results between MCP and ‘chronic pain 

all over the body’, rg = 0.83. MCP-PRS was also significantly associated with MCP 

in an independent cohort (Generation Scotland), and with having CWP in UK 

Biobank. In addition to demonstrating genetic overlap with these different 

chronic pain phenotypes, these results further support view of MCP as a useful 

chronic pain phenotype and suggest associations between this phenotype and 

common genetic variation are not specific to UK Biobank. CPG and MCP were 

also found to be phenotypically correlated in an independent cohort, further 

legitimising MCP as a chronic pain phenotype. Finally, extremely high genetic 

correlation was seen between a chronic pain phenotype derived in a data-driven 

manner by Tsepilov et al in UK Biobank, and MCP (Appendix 3). This suggests the 

assumptions made in defining MCP as a trait (namely equivalence between 

genetic predictors of musculoskeletal and non-musculoskeletal chronic pain 

(Tsepilov et al., 2020)) are in fact acceptable, and again indicating MCP 

represents a valid broad chronic pain phenotype derived from a basic pain 

questionnaire. 

Key differences between MCP and CPG include that a larger sample size was 

possible for the MCP GWAS, and there was no adjustment for correlated traits. 

This increased power to find trait-associated genetic variants. Environmental 

aspects of chronic pain experience may be more explicitly captured in CPG 

compared to in measuring number of chronic pain sites (as is done with MCP) – 

this aspect may explain differences in MCP vs CPG such as the unexpected 

negative genetic correlation between the two traits. This could also have an 

impact on causal estimates between CPG and MDD. 
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7.3.2 Broad MDD Phenotyping Parallels 

MCP can be considered a broad chronic pain phenotype, as more detailed 

information on pain (such as impact on daily functioning or on mood) was not 

collected at baseline by the original pain questionnaire, and GWAS of MCP does 

not consider or adjust for participants having chronic pain conditions, or for 

related traits of interest such as BMI.  

Similar ‘broad’ phenotyping has been shown to be useful for investigating the 

genetics of depression and MDD (1.3.5), meaning questionnaire ascertained 

probable MDD or other depression phenotypes share significant enough genetic 

overlap with ‘narrow’ (detailed or specific clinician diagnosed) MDD phenotypes 

to be informative. However, fully dissecting the heterogeneity of MDD, and of 

chronic pain, will require both broad and narrow phenotyping approaches (which 

can be non-mutually exclusive, as suggested for the field of MDD genetics 

research) (Cai et al., 2020). There is opportunity to carry out both approaches 

on a large scale in UK Biobank with the release of the new chronic pain 

questionnaire data, a more in-depth follow-up assessment of pain experience 

(see 7.5.2).  

MDD and chronic pain share overlapping symptom profiles, can respond to the 

same pharmacological and psychological treatments, and are significantly 

genetically correlated. Although this means the two conditions are more likely to 

be misclassified (misdiagnosed) as one another, BUHMBOX analyses indicated 

that the two conditions are distinct with respect to one another, and the 

relationship between them represents true, biological pleiotropy. In addition to 

this finding being of general interest, this also aids in interpretation of causal 

analyses results – if misclassification is the underlying reason for genetic 

correlation, the question being asked in MR inadvertently becomes “does X cause 

X” to some degree, rather than “does X cause Y”. 

 

7.5 Causal Effect of Chronic Pain on MDD  

Results indicate a significant causal effect of chronic pain on MDD, but not the 

reverse. Attempts at triangulation were made via use of different Mendelian 

randomisation approaches. MR-RAPS indicated that effectively all instruments 
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were horizontally pleiotropic (associated with MDD through pathways other than 

via MCP).  The size of the causal effect is relatively small (beta = 0.16) – again 

suggesting involvement of non-additive-genetic factors and gene-by-environment 

interactions may be involved in the high degree of comorbidity between 

depression and chronic pain.  

The potential introduction of bias in effect sizes through adjustment for manual 

labour in the 23andMe-Pfizer chronic pain grade GWAS could also have affected 

MR results. Sensitivity analyses to check for this kind of bias were not possible as 

summary statistics for an unadjusted CPG GWAS do not exist (see also Appendix 

2).  

MR-RAPS results show that something specific to chronic pain is causal for MDD, 

and not just non-genetic factors closely associated with chronic pain. Results of 

these causal analyses indicate that chronic pain itself contributes to 

development of MDD. Although studies on causal relationships between pain and 

depression often show mixed results (see 1.3.2), including that depression has a 

causal effect on chronic pain, MR-RAPS results here indicated that MDD did not 

cause chronic pain, suggesting chronic pain subsequent to depression is not a 

direct result of the depression itself. Causal analyses also suggest multifactorial 

pathways leading to MDD from pain, detected as widespread horizontal 

pleiotropy – chronic pain itself has an independent, causal effect, but many 

other factors (genetic and environmental) are likely involved.  

7.6 Strengths & Limitations 

A main limitation to analyses in this thesis, and to GWAS analyses in general 

(Mills & Rahal, 2019, 2020), is that cohorts primarily consist of white European-

ancestry participants (e.g. GS: SFHS: 99% white). While this is approximately 

representative of a Scottish population (Smith et al., 2006, 2013), this 

demographic make-up is non-representative in terms of ethnicity of global or 

even UK-wide populations, and SNP-trait associations may not be generalisable 

to populations with different ancestry, including admixed samples. In addition, 

ethnicity itself also acts to confound associations between SNPs and traits of 

interest – if magnitude of trait values or disease prevalence vary between ethnic 

groups, this may generate spurious SNP-trait associations (Medina-Gomez et al., 

2015). This confounding occurs even though race or ethnicity as biological 
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constructs cannot be quantified in a meaningful way. In other words this 

confounding is epidemiological rather than genetic, and is different from 

population structure (“AAPA Statement on Biological Aspects of Race,” 1996; 

Blackburn, 2000; Yudell et al., 2016).  

Another potential limitation is that extensive heterogeneity in MCP as a trait 

construct is not fully explored in, and is beyond the scope of, this thesis. As 

discussed above and in the previous section7.3.2, despite advances made in MDD 

research using broad phenotyping, more detailed phenotyping is also of value, 

and examining both detailed and broad chronic pain phenotypes in a non-

mutually exclusive fashion would be of interest. Heterogeneity in terms of 

clinical heterogeneity in chronic pain is only examined with respect to MDD and 

vice versa (a methodological constraint with BUHMBOX analysis). With respect to 

causal analyses, again as chronic pain measured as MCP is a broad trait construct, 

this is not really modifiable in the way e.g., cigarette smoking is, meaning MR 

results are difficult to interpret or involve in e.g., treatment guidelines in 

chronic pain. 

As previously discussed, (4.4.1.6, see also Appendix 2), use of summary statistics 

adjusted for traits that are genetically correlated with the main trait of interest, 

such as manual labour and BMI in the case of CPG, has the potential to bias 

GWAS results and subsequent analyses involving GWAS outputs. This is a 

possibility with 23andMe-Pfizer CPG GWAS outputs, and may have affected 

genetic correlation and causal analyses.  

A key strength is that analyses undertaken in this thesis represent the largest 

GWAS of a chronic pain trait to date, giving insight into potential mechanisms of 

chronic pain development. A novel chronic pain trait based on recent re-

definition of chronic pain emphasising its independence from nociception and 

detectable biological causes, was derived, providing genetic research in keeping 

with shifting paradigms in defining chronic pain. This way of exploring chronic 

pain as a ‘broad’, complex trait phenotype is similar to recent study of broad 

MDD phenotypes and represents a potentially powerful route to understanding 

genetic contribution to chronic pain. This view of chronic pain is also in line with 

theories on chronic pain as a complex trait following the biopsychosocial model 

of disease. In addition, analyses in this thesis employ a varied range of statistical 
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genetics techniques to answer research objectives, examining common genetic 

variation, genetic correlation, and pleiotropy from multiple angles – several 

techniques (BUHMBOX, cFDR, MR-RAPS) have never before been applied in 

research into MDD and chronic pain. 

7.6 Future Directions 

7.6.1 Representative Cohorts 

Recent advances for successful GWAS analysis in ancestrally diverse populations 

(Peterson et al., 2019), including in admixed populations, such as Tractor 

(Atkinson et al., 2021) could be used to investigate genetic variation 

contributing to chronic pain, including in the entirety of UK Biobank (as opposed 

to the white British sub-sample), addressing a key limitation of ancestrally 

homogenous cohort use. Tractor is a statistical framework and associated 

software package that allows for the inclusion of admixed individuals in GWAS, 

achieved through leveraging local ancestry in contrast to traditional GWAS where 

population stratification is adjusted for using e.g. genetic principal components, 

which represent a broader estimate of admixture (Atkinson et al., 2021).  

The model used within Tractor allows for inclusion of terms that estimate SNP-

trait association within different ancestry categories (Equation 7.1), where b 

values are effect estimates, X1 represents the number of haplotypes of the index 

ancestry at the locus in question for each individual, X2 is the number of copies 

of the risk allele coming from the first ancestry, X3 is the copies coming from the 

second ancestry, and X4 – Xk are additional covariates such as age, sex, and an 

estimate of global (rather than local) ancestry (Atkinson et al., 2021). 

𝐿𝑜𝑔𝑖𝑡[𝑌] = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 … + 𝑏𝑘𝑋𝑘 

Equation 7. 1: Tractor association model 

Tractor analysis can therefore boost SNP discovery power and have a 

downstream effect on utility of PRS in less ancestrally homogenous populations. 

This would be achieved by allowing calculation of ancestry-specific SNP effect 

sizes which then contribute to weighting in PRS calculation. Another potential 

benefit of the inclusion of mixed-ancestry participants in GWAS is the ability to 

use admixture based fine-mapping approaches for discovery of causal variants. 

Fine-mapping refers to analysis of trait-associated genetic loci, found through 
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GWAS, in order to determine which genetic variants within these regions are 

putative causal variants for the trait (Schaid et al., 2018). One fine-mapping 

approach is use of admixture (trans-ethnic fine-mapping) whereby meta-analysis 

is carried out across GWASs of the same trait across ancestrally diverse 

populations. This allows for pinpointing putative causal variants as patterns of 

LD vary between populations – signals that persist despite variation in LD block 

structure indicate potential causal variants (Y. R. Li & Keating, 2014). Tractor 

analysis specifically can also improve location of causal variants within GWAS 

results due to improved power to find causal variants in non-European 

populations (Atkinson et al., 2021). In addition to application of newer GWAS 

methods for diverse and admixed populations being applied to the full UK 

Biobank sample, more ethnically and ancestrally diverse cohorts such as All of Us 

(All of Us Research Program Investigators, 2019), could also be used in GWAS 

analyses of chronic pain conditions and chronic pain phenotypes. All of Us is a 

large general-population biobank research program funded by the National 

Institutes of Health (NIH) in the USA, with recruitment ongoing and a 

commitment to recruiting a diverse participant pool. The program aims to 

recruit 1 million participants and to contain genotyping data in addition to 

information on a wide range of traits and conditions of public health interest. 

7.6.2 New Pain Data for UK Biobank 

Other emerging datasets could also be used to further investigate the genetics of 

MCP, in addition to allowing for derivation of more detailed chronic pain 

phenotypes. In particular, the recent release of the new UK Biobank pain 

questionnaire data (UKB Data Showcase category 154: Experience of Pain) gives 

the opportunity to derive narrower chronic pain phenotypes, due to comparative 

increased detail of questioning compared to the baseline UK Biobank pain 

questionnaire. Whereas the baseline UK Biobank touchscreen questionnaire on 

pain effectively contained just two questions, on pain site and the duration of 

pain at that site, the new UK Biobank pain questionnaire, an online follow-up 

questionnaire completed by ~167,000 participants, contains ten sections. 

Questions asked of participants include ones on the location (an extended 

number of site options in comparison to the baseline pain questionnaire), nature, 

and impact of pain, in addition to sections separately asking about medical 
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conditions, depression, fatigue, and health outcomes that may be relevant to 

pain. Separate sections also exist on neuropathic pain and headache.  

The new UK Biobank pain questionnaire also provides opportunity for potentially 

very large longitudinal studies of pain and depression – baseline pain data were 

collected at recruitment from 2006-2010, whereas the new pain questionnaire 

was sent to participants initially in 2017 (UK Biobank, 2020). With more detailed 

information on timing, duration, and associated symptoms and pain, genetic 

similarity, and differences between chronic pain with certain characteristics 

could also be explored. However, there may be issues with trying to carry out 

longitudinal studies as data collection (for the new pain questionnaire) was 

carried out in instances that were relatively far apart in time, and on a subset of 

participants rather than the entire UK Biobank sample of 0.5 million (Caruana et 

al., 2015). Another potentially interesting analysis would be comparison of 

‘depression-in-pain’, derived from mood information in the new UKB pain 

questionnaire, versus MDD with and without comorbid chronic pain.  

Outside of UK Biobank, output from analyses of conditions associated with 

chronic pain, such as Ehlers-Danlos syndrome (Forghani, 2019), which have 

previously not been investigated at scale and/or using GWAS are expected in 

coming years. The relationship between these phenotypes and MCP in terms of 

genetic overlap and causal effect would also be of interest.  

7.6.3 Alternative Approaches to Pleiotropy  

As previously discussed, the clinical heterogeneity of chronic pain, and of MCP 

specifically, cannot be fully explored using just BUHMBOX. This method can only 

examine clinical heterogeneity in a trait with respect to a second, defined trait 

or condition – there is no scope for an agnostic investigation of clinical 

heterogeneity. Additional data-driven approaches, such as cluster analysis as 

previously used to explore clinical heterogeneity in a range of traits and diseases 

(Guo et al., 2017; Mu et al., 2017; Nagel et al., 2018) could be used to 

characterise heterogeneity within the broad MCP trait construct, particularly in 

conjunction with new pain questionnaire data.  

Emerging methods could also be used to interrogate location-specific pleiotropy 

in MDD and chronic pain and act as an extension of cFDR analyses. An example of 
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such a method is LAVA (Local Analysis of coVariant Association) a recently 

developed framework for calculating local genetic correlation (Werme et al., 

2021). Most current genetic correlation analysis methods, including LDSR, 

measure a global average of rg across the genome – this may not allow detection 

of heterogeneous genetic correlation relationships where rg varies between 

genomic regions and where global rg is non-significant, and does not give an idea 

of specific pleiotropic loci of interest. In contrast, LAVA allows for estimating 

location-specific rg, and similarly to cFDR analyses undertaken in this thesis, 

could be used to investigate shared loci in MCP and MDD. 

7.6.4 Whole-Exome Data and Chronic Pain 

Whole-exome data, recently released for UK Biobank, could also be used to 

explore exome regions associated with chronic pain. As previously discussed, 

(1.3.3.1, 2.2.1.1), rare variants are excluded from GWAS analyses, but studying 

their association with traits of interest is possible through aggregating them at 

the gene or exon level. The exome refers to sections of the genome containing 

protein coding sections (exons), which comprise a small fraction of the total 

genome (Dunham et al., 2012) but are where most rare variants of large effect 

are thought to reside. Although most of the genetic variation associated with 

complex traits such as MCP and chronic pain in general is likely to be common 

and of small effect (i.e., SNP) (1.3.3.1), rarer variants of large effect in exons 

could also contribute to trait variation (2.2.1.1). 

Whole-exome association studies, whereby larger-effect and rarer genetic 

variation is tested for association with traits or conditions of interest, have been 

used in a clinical setting to determine genetic causes or contributory factors to a 

range of genetic disorders, including both single-gene and complex disorders 

(Rabbani et al., 2014; Retterer et al., 2016; Srivastava, Cohen, Vernon, et al., 

2014). These include heterogeneous monogenic disorders such as hearing loss, 

movement disorders (study N ranging from 9-270) and rare subtypes of diabetes 

(N = 1) (reviewed by Rabbani et al., 2014), and determination of specific 

pathological phenotype such as abnormality of the nervous system or 

mitochondrial dysfunction (with successful diagnoses in ~30% of N = 3, 040 cases) 

(Retterer et al., 2016).  
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In addition to these applications, whole-exome association studies have the 

potential to shed light on rare genetic variation contributing to common, 

complex traits using large cohorts (Cirulli et al., 2020; Povysil et al., 2019). The 

missing heritability (see also 2.2.1.1) in complex traits could be partially 

explained by the contribution of rare variants to phenotypic variance remaining 

unmeasured (Eyre-Walker, 2010) (as these variants are present at much lower 

allele frequency in the population due to negative selection pressures, and so 

are unmeasured as part of GWAS). Rare variants have been found to contribute 

to complex traits such as height (Marouli et al., 2017), autism spectrum disorder 

(De Rubeis et al., 2014; Wilfert et al., 2021), and schizophrenia (Fromer et al., 

2014; S. M. Purcell et al., 2014), in studies with sample sizes ranging from 600 to 

450,000, indicating exome data available in the UK Biobank (N ~ 50,000 with an 

eventual goal of sequencing the exomes of 450,000 participants) could also be 

used to investigate rare variant associations with complex traits such as chronic 

pain.  

With respect to chronic pain more specifically, in their large-scale analyses of 

UK Biobank exome data Cirulli et al found rare variants within the genes TET3, 

PTPRR, PHLDB1, TSPYl4, IQCM, ACTN2 to be associated at a suggestive level (p < 

10-3) with back pain for 3+ months (Ncase = 6819, Ncontrol =2981), within MMS19 

with hip pain for 3+ months (Ncase = 3378, Ncontrol =953), within TNS3, ZNF347, 

HEATR6, RBL1 and FAM17A1 with stomach or abdominal pain for 3+ months (Ncase 

= 1631, Ncontrol =1401), and within PRG4, NLRC5, ITGAE, PLEKHA6 and EIF2AK4 

with knee pain for 3+ months (Ncase = 6798, Ncontrol = 1710). Rare variants were 

also found to be associated (p < 10-3) with neck/shoulder pain for 3+ months, 

implicating genes LARP7, LRRC7, OTOG, MEI1, GDF1, RSPH1 and ZNF462 (Ncase = 

6009, Ncontrol =2656). Although for the most part these associations are suggestive 

(p > 10-6), they again suggest exome association studies could be of interest in 

the study of chronic pain. 

7.6.5 Genomic Structural Equation Modelling Approaches 

A potentially powerful way to investigate genetic variation contributing to 

chronic pain development and maintenance, in contrast to deriving a ‘general’ 

or broad chronic pain trait such as MCP, could be to use various applications of 

GenomicSEM (Grotzinger et al., 2019). GenomicSEM (genomic structural equation 

modelling), is a flexible framework that allows for studying multivariate genetic 
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architecture of groups of related traits through fitting network models, taking 

GWAS summary statistics as input.  

GenomicSEM applications of interest for the study of chronic pain include 

common factor GWAS approaches. Existing GWAS output for chronic pain 

conditions could be used in this way to find common genetic variation shared 

across chronic pain conditions e.g., from large-scale GWASs of Crohn’s disease, 

rheumatoid arthritis, and lupus. This is a similar approach to recent work 

attempting to uncover variation associated with a ‘p factor’ associated with 

psychiatric traits (Grotzinger et al., 2019). It would also be of interest to 

compare the output of this analysis with that of the MCP GWAS, to further 

explore the extent to which MCP represents genetic variation associated more 

generally with chronic pain.  

Another genomicSEM application of interest could be ‘GWAS by subtraction’ 

(Demange et al., 2021). GWAS by subtraction involves ‘subtracting’ the genetic 

influence on a trait from each SNPs association with a second trait – the 

remaining SNP-trait association values represent a new GWAS of an unmeasured 

trait of interest. These kinds of analyses could be used to highlight genetic 

variation captured by chronic pain condition GWASs that is independent of 

chronic pain itself, and which may be more specific to disease processes. For 

example, if the genetic influence on MCP were subtracted from that on e.g., 

rheumatoid arthritis, remaining SNP-arthritis association may highlight loci with 

a more specific role in disease progression. A separate and potentially useful 

way to use GWAS by subtraction could also be ‘unadjustment’ of GWAS where 

adjustment for particular covariates has likely introduced bias into estimation of 

SNP-trait associations e.g., subtraction of the relationship a SNP has with manual 

labour from its relationship with CPG-adjusted-for-manual-labour, if original CPG 

datasets and raw data are not available for reanalysis for legal and data 

protection reasons.  

Exploratory factor analysis (EFA) could also be used in conjunction with existing 

chronic pain condition GWAS outputs, and MCP GWAS output, to explore the 

relationship between MCP and chronic pain conditions generally, and to further 

characterise heterogeneity in the MCP trait construct e.g., do certain kinds of 

chronic pain condition cluster with MCP more so than others? EFA could also 
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present a way to investigate the genetic contributions to broad factors 

associated with chronic pain and affective spectrum disorders.  

Affective spectrum disorders is an umbrella term describing a group of mood 

conditions including MDD, GAD, and PTSD among others, which are also 

commonly comorbid with chronic pain generally in addition to chronic pain 

conditions including fibromyalgia, migraine and IBS (Gardner & Boles, 2011; 

Hudson & Pope, 1994). As significant genetic overlap between chronic pain and 

mood disorders, including MDD but also phenotypes such as neuroticism and 

PTSD, has been demonstrated (4.3.3), it would be interesting to further explore 

the affective spectrum disorder group using GWAS outputs and genomicSEM. 

7.6.4 Affective Dysregulation and Pain 

Another potentially interesting area linking chronic pain and psychopathology 

may be aspects of emotional self-regulation. As previously mentioned, 

comorbidity in chronic pain and multiple affective spectrum disorders suggests 

affect and emotion play a key role in the development of physical and 

psychiatric distress. Results both from the literature and from analyses 

undertaken in this thesis, demonstrating significant genetic correlation between 

MCP and mood disorders and mood-related phenotypes in particular (1.1.5, 

4.3.3), are in agreement with this. 

Although a negative genetic correlation was seen between MCP and autism 

spectrum disorder, the relationship between neurodevelopmental disorders such 

as autism spectrum disorder and chronic pain warrants further investigation. In 

addition to physical comorbidities in autism spectrum disorder that potentially 

contribute to chronic pain (1.1.5), certain emotion-related personality 

constructs associated with autism spectrum disorders, such as alexithymia, could 

be involved. Alexithymia refers to difficulty identifying and expressing emotions 

and was originally described in studies of patients with a range of psychosomatic 

conditions (Goerlich, 2018; Poquérusse et al., 2018). Alexithymia involves 

confusing bodily sensation and emotion – many people scoring highly on 

alexithymia scales may only be able to describe emotion in terms of bodily 

sensation. Although alexithymia shows high degree of overlap with autism 

spectrum disorder it is not universal or a core component (Kinnaird et al., 2019): 

alexithymic traits are also common in people with neurodegenerative disease, 
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depression, and eating disorders, and in neurotypical relatives of autistic people 

(De Berardis et al., 2017; Martino et al., 2020; Poquérusse et al., 2018). 

Alexithymia is also thought to contribute to emotional dysregulation, and has 

been found to be more common in those with chronic pain (Aaron et al., 2019).  

7.7 Overall Conclusions  

In addressing the objective of uncovering common genetic variation associated 

with chronic pain phenotypes, it was demonstrated that examining chronic pain 

as a broad phenotype is a powerful way to look at chronic pain.  

The objective of investigating pleiotropy and genetic correlation was achieved 

through use of well-powered MCP GWAS results. Significant genetic overlap was 

found between MCP and a range of traits of interest, including MDD (rg = 0.53). 

This overlap highlighted an affective component to chronic pain and indicated 

that genetic variation associated with chronic pain conditions like IBDs may not 

be associated with pain or pain experience, but instead with disease processes 

more specifically – this is in line with recent work highlighting the value of 

studying chronic pain as a disease rather than a symptom (see 1.1.1).  

The comorbidity between chronic pain and psychiatric, mood and 

neurodevelopmental phenotypes has been documented to varying degrees, but 

in some cases, results are mixed and/ or may only hold in specific non-general-

population cohorts (see 1.1.5). The genetic correlation between MDD and 

chronic pain (MCP) was quantified in analyses in this thesis (4.3.3), and results 

specifically informed subsequent causality analyses. Horizontal pleiotropy in MR 

as indicated in genetic correlation and cFDR results, for example, has the 

potential to bias causal estimates. Clinical heterogeneity can also be thought of 

as a type of pleiotropy. Therefore, further characterising pleiotropy with respect 

to MDD and chronic pain was also a key part of this thesis and of investigating 

causal relationships between MDD and chronic pain. This was achieved through 

BUHMBOX analyses, and through use of MR methods that quantified and adjusted 

for horizontal pleiotropy amongst SNP instruments. A significant causal effect 

roughly equivalent to each +1 increase in MCP trait value resulting in 17% 

increase in the odds of having MDD (OR = 1.17) was found.  

Mixed results are also seen in studies of causal relationships between MDD and 

chronic pain. Genetic correlation and MR analyses in this thesis contribute to 
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answering both of these outstanding questions, quantifying genetic overlap and 

size and direction of the causal effect of chronic pain on MDD 

Genes found to be associated with MCP (N = 143, see 4.4.3, Appendix 1) 

highlighted neural system development and functioning, immune processes, and 

cell cycle regulation as broad functional categories important for chronic pain 

development and maintenance. This is in agreement with past studies indicating 

the importance of neural plasticity in chronic pain development, and indicating 

changes in brain structure and function associated with chronic pain 

development and maintenance (see 1.1.4).  

Overall, results of analyses completed as part of this thesis emphasise the 

existence of genetic variation shared across chronic pain conditions regardless of 

putative cause or mechanistic description. Large-scale investigations of a broad 

chronic pain trait were shown to be a powerful way to explore this genetic 

variation. Viewing chronic pain a complex disease trait that follows the 

biopsychosocial model of disease draws on both historical theories of pain and 

chronic pain development, and is also in line with recent work of IASP taskforces 

to redefine pain.   
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Appendix 1: Genes Associated with Multisite Chronic Pain 

A total of 143 genes were found to be significantly associated with MCP using 

MAGMA gene level analyses (see 2.3.1.1). Significance thresholds for association 

are Bonferroni-adjusted (0.05 divided by number of genes tested (18, 670)) = 

2.67 x 10-6. Genes of interest associated with MCP, their association with other 

traits and disorders, and functional roles are also discussed in the published 

article that resulted from these analyses (Johnston et al., 2019). 

As 143 genes total were found to be significantly associated with MCP, it was not 

feasible to discuss them in the same level of detail as with DCC (see 4.4.3.4). 

DCC is described as it was the most significantly associated gene of the 143, has 

also been implicated in other psychiatric and brain-structure related phenotypes, 

and the pathway showing most significant enrichment of MCP-associated genes 

was found to be DCC-mediated attractive signalling. 
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CHR NSNPS ZSTAT P SYMBOL 

1 34 5.3574 4.22 x 10-8 BAI2 

1 30 4.9792 3.19 x 10-7 PABPC4 

1 417 4.6593 1.59 x 10-6 DNAJC6 

1 32 4.7804 8.75x 10-7 TRMT13 

1 119 4.5989 2.12x 10-6 SORT1 

1 41 4.7137 1.22x 10-6 PSMA5 

1 236 4.8592 5.89x 10-7 FAM212B 

1 8 4.6565 1.61x 10-6 C1orf51 

1 50 6.1047 5.15x 10-10 MRPS21 

1 77 5.7623 4.15x 10-9 PRPF3 

1 311 5.6039 1.05x 10-8 RPRD2 

1 57 6.1773 3.26x 10-10 TARS2 

1 12 6.3192 1.31x 10-10 ECM1 

1 192 4.6001 2.11x 10-6 GATAD2B 

1 12 4.577 2.36 x 10-6 CRTC2 

1 214 4.8049 7.74 x 10-7 NUP210L 

1 1673 5.1844 1.08 x 10-7 RABGAP1L 

1 373 5.1296 1.45 x 10-7 FAM129A 

1 157 5.3923 3.48 x 10-8 CEP170 

1 411 5.0361 2.38 x 10-7 SDCCAG8 

1 1883 4.6993 1.31 x 10-6 KIF26B 

2 3196 5.0683 2.01 x 10-7 NRXN1 

2 21 4.6699 1.51 x 10-6 VAMP5 

2 1078 5.086 1.83 x 10-7 SLC4A10 

2 153 4.6202 1.92 x 10-6 RFTN2 

2 94 4.5783 2.34 x 10-6 AC011997.1 
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2 67 4.6412 1.73 x 10-6 BOLL 

2 103 5.3326 4.84 x 10-8 LANCL1 

2 448 5.8441 2.55 x 10-9 CPS1 

2 4060 5.7201 5.32 x 10-9 ERBB4 

2 659 5.1788 1.12 x 10-7 SPHKAP 

3 208 4.8881 5.09 x 10-7 SMARCC1 

3 35 4.9732 3.29 x 10-7 DHX30 

3 12 4.8195 7.20 x 10-7 LAMB2 

3 3 4.7316 1.11 x 10-6 CCDC71 

3 19 5.1965 1.02 x 10-7 C3orf84 

3 70 5.1723 1.16 x 10-7 CCDC36 

3 4 4.8776 5.37 x 10-7 RP11-3B7.1 

3 86 5.2367 8.17 x 10-8 RHOA 

3 7 5.8232 2.89 x 10-9 TCTA 

3 97 4.9452 3.80 x 10-7 DAG1 

3 150 5.9396 1.43 x 10-9 BSN 

3 7 5.3003 5.78 x 10-8 MST1 

3 47 5.9543 1.31 x 10-9 RNF123 

3 3 5.7329 4.94 x 10-9 AMIGO3 

3 3 5.7329 4.94 x 10-9 GMPPB 

3 88 5.4909 2.00 x 10-8 IP6K1 

3 16 5.6163 9.75 x 10-9 CDHR4 

3 7 4.8532 6.07 x 10-7 UBA7 

3 38 5.3125 5.41 x 10-8 TRAIP 

3 16 5.6583 7.64 x 10-9 CAMKV 

3 25 4.9781 3.21 x 10-7 MST1R 

3 12 4.892 4.99 x 10-7 CTD-2330K9.3 
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3 27 6.3576 1.02 x 10-10 MON1A 

3 238 5.6467 8.18 x 10-9 RBM6 

3 26 6.0831 5.89 x 10-10 RBM5 

3 58 5.992 1.04 x 10-9 SEMA3F 

3 2 4.6616 1.57 x 10-6 GNAT1 

3 226 4.9441 3.82 x 10-7 EIF4E3 

3 4594 5.784 3.65 x 10-9 ROBO2 

3 491 5.8122 3.08 x 10-9 BBX 

3 50 5.7467 4.55 x 10-9 MSL2 

3 119 4.8309 6.80 x 10-7 PCCB 

3 590 5.5475 1.45 x 10-8 STAG1 

3 21 4.9664 3.41 x 10-7 PSMD2 

4 215 4.6644 1.55 x 10-6 GRK4 

4 987 7.3313 1.14 x 10-13 MAML3 

5 620 5.0251 2.52 x 10-7 FAM172A 

5 616 6.6132 1.88 x 10-11 GABRB2 

5 2066 4.7086 1.25 x 10-6 TENM2 

5 60 4.632 1.81 x 10-6 NPM1 

6 61 5.8246 2.86 x 10-9 UQCC2 

6 100 5.988 1.06 x 10-9 IP6K3 

6 64 4.5588 2.57 x 10-6 LEMD2 

6 140 4.6315 1.82 x 10-6 PACSIN1 

6 200 5.839 2.63 x 10-9 C6orf106 

6 45 5.6501 8.02 x 10-9 SNRPC 

6 233 5.5866 1.16 x 10-8 UHRF1BP1 

6 156 4.6163 1.95 x 10-6 PXT1 

6 132 4.848 6.24 x 10-7 FHL5 
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6 140 5.5273 1.63 x 10-8 LIN28B 

6 544 6.0603 6.79 x 10-10 FYN 

6 1493 5.0295 2.46 x 10-7 LAMA2 

6 20 4.8934 4.95 x 10-7 GINM1 

6 109 4.8721 5.52 x 10-7 KATNA1 

6 89 4.6412 1.73 x 10-6 LATS1 

6 44 4.7059 1.26 x 10-6 NUP43 

6 154 4.6245 1.88 x 10-6 PCMT1 

7 3444 7.3968 6.97 x 10-14 SDK1 

7 245 5.4101 3.15 x 10-8 SP4 

7 381 5.3545 4.29 x 10-8 GRM3 

7 242 5.9014 1.80 x 10-9 SLC25A13 

7 792 6.6565 1.40 x 10-11 FOXP2 

8 52 4.9155 4.43 x 10-7 PURG 

8 291 4.6758 1.46 x 10-6 AGO2 

8 514 4.8893 5.06 x 10-7 PTK2 

9 301 6.1799 3.21 x 10-10 FAM120A 

9 399 5.3574 4.22 x 10-8 PHF2 

9 2845 6.4635 5.12 x 10-11 ASTN2 

9 103 4.5993 2.12 x 10-6 GOLGA1 

9 297 4.8088 7.59 x 10-7 SCAI 

9 94 5.409 3.17 x 10-8 DNM1 

9 262 6.3722 9.31 x 10-11 EXD3 

10 847 4.6285 1.84 x 10-6 NEBL 

10 160 6.0382 7.79 x 10-10 MLLT10 

10 74 4.575 2.38 x 10-6 ZRANB1 

10 364 5.3329 4.83 x 10-8 JAKMIP3 
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11 49 4.639 1.75 x 10-6 F2 

11 139 4.7341 1.10 x 10-6 CKAP5 

11 36 5.074 1.95 x 10-7 TSKU 

11 835 4.8551 6.02 x 10-7 NCAM1 

12 430 4.9129 4.49 x 10-7 RERG 

12 604 4.6857 1.40 x 10-6 PTPRO 

12 32 4.868 5.64 x 10-7 ERBB3 

13 65 4.7009 1.30 x 10-6 OLFM4 

13 83 5.0493 2.22 x 10-7 EFNB2 

14 385 4.6906 1.36 x 10-6 NUMB 

14 39 4.6872 1.38 x 10-6 ZFYVE21 

14 232 4.997 2.91 x 10-7 PPP1R13B 

15 68 5.9866 1.07 x 10-9 VPS33B 

16 8933 4.7735 9.05 x 10-7 RBFOX1 

16 31 4.862 5.81 x 10-7 MARVELD3 

16 68 4.9134 4.48 x 10-7 ATXN1L 

16 155 4.9441 3.82 x 10-7 IST1 

16 62 5.0294 2.46 x 10-7 ZNF821 

17 83 5.5391 1.52 x 10-8 DCAKD 

17 154 5.8159 3.01 x 10-9 NMT1 

17 12 4.7923 8.24 x 10-7 HEXIM2 

18 344 5.3098 5.49 x 10-8 ASXL3 

18 4053 8.2342 9.04 x 10-17 DCC 

18 637 4.5548 2.62 x 10-6 TCF4 

19 46 4.7804 8.75 x 10-7 PTBP1 

19 93 4.7278 1.14 x 10-6 SLC44A2 

19 46 5.1026 1.67 x 10-7 ILF3 



180 
 
19 46 5.6931 6.24 x 10-9 ATP13A1 

19 30 4.9853 3.09 x 10-7 ZNF101 

20 1440 5.3386 4.68 x 10-8 SLC24A3 

20 99 5.0374 2.36 x 10-7 TM9SF4 

20 67 4.9893 3.03 x 10-7 KIF3B 

20 86 4.9567 3.59 x 10-7 ASXL1 

20 201 5.4406 2.66 x 10-8 C20orf112 

20 348 4.562 2.53 x 10-6 ZBTB46 

22 357 4.972 3.31 x 10-7 TCF20 

Table A1. 1: Genes found to be significantly (p < 2.67 x 10-6) associated with MCP in MAGMA gene-level 

analyses.  

CHR = chromosome, NSNPS = number of SNPs in the GWAS data that were annotated to the gene, ZSTAT = 

gene Z-value, P = p value for association between gene and MCP. 
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General Function Description  Gene Symbol(s) Reference(s) 

Nervous system development & 

function 

Astrocyte development UTRN (Sogos et al., 2002) 

Neuronal cell function DYNC1I1 (Goldstein & Yang, 2000) 

SOX6 (Kurtsdotter et al., 2017) 

Presynaptic cytoskeleton organisation BSN (Frank et al., 2010) 

establishment of nervous system 

connectivity  

TENM2 (Rebolledo-Jaramillo & Ziegler, 2018) 

neurite formation, neuron morphogenesis PACSIN1 (Mondal et al., 2020) 

Glutamatergic neurotransmission & memory GRM3 (De Quervain & Papassotiropoulos, 2006) 

Nervous system development NCAM1 (Paratcha et al., 2003) 

EFNB2 (Cramer & Miko, 2016) 

ATXN1L (Didonna et al., 2020) 

TCF4 (Mesman et al., 2020) 

BBX (T. L. Chen et al., 2014) 

PTK2 (X. R. Ren et al., 2004) 

ERBB3 (Britsch et al., 1998) 

SORT1 (Nykjaer et al., 2004) 

FYN (Yaka et al., 2002; Zamoyska et al., 2003) 

RHOA (K. Y. Wu et al., 2005) 

DAG1 (K. M. Wright et al., 2012) 

AMIGO3 (Kuja-Panula et al., 2003) 

ROBO2 (T. Kidd et al., 1998) 

Synapse development and plasticity  CTNNA2 (Zhong et al., 2016) 

CEP120 (Guerrier & Polleux, 2007) 

KNDC1 (Hayashi et al., 2017) 

CA10 (Sterky et al., 2017) 

FOXP2 (Vernes et al., 2011) 

NRXN1 (Araç et al., 2007; Missler et al., 2003) 

SLC4A10 (Gurnett et al., 2008) 

LANCL1 (W. Zhang et al., 2009) 

SEMA3F (Nakayama et al., 2018) 

LAMB2 (Hunter et al., 1989; Nishimune et al., 2004) 
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Peripheral nerve myelination DAG1 (Masaki & Matsumura, 2010; Saito et al., 2003) 

Cell cycle progression DNA proof-reading EXD3 (Bębenek & Ziuzia-Graczyk, 2018) 

Regulation ANAPC4 (J. M. Peters, 2006) 

PRC1 (J. Li et al., 2018; Shrestha et al., 2012; C. Zhu & 

Jiang, 2005) 

BOLL (Kang et al., 2015) 

LATS1 (Furth & Aylon, 2017) 

Sister chromatid organisation STAG1 (van der Lelij et al., 2017) 

LEMD2 (von Appen et al., 2020) 

KATNA1 (McNally et al., 2000) 

CKAP5 (Schneider et al., 2017) 

KIF3B (Zhou et al., 2019) 

Apoptosis FAM120A (Tanaka et al., 2009) 

MON1B (Kinchen & Ravichandran, 2010) 

FAM129A (H. Ji et al., 2012) 

DHX30 (Bosco et al., 2020) 

FAF1 (Menges et al., 2009) 

SEMA3F (Nakayama et al., 2018) 

PTK2 (Kurenova et al., 2004) 

PTPRO (Motiwala et al., 2004) 

OLFM4 (Anholt, 2014) 

PPP1R13B (Samuels-Lev et al., 2001) 

Synapsis CCDC36 (Stanzione et al., 2017) 

Cell proliferation NPM1 (Okuda et al., 2000) 

PTK2 (X. R. Ren et al., 2004) 

F2 (Danckwardt et al., 2006) 

ERBB3 (Holbro et al., 2003) 

KIF3B (Zhou et al., 2019) 

Cytokinesis  IST1 (Renvoise et al., 2010) 

DNA replication regulation PURG (Johnson et al., 2013) 

Immune-related Neutrophil activation UTRN (Cerecedo et al., 2010) 

T cell activation PABPC4 (H. Yang et al., 1995) 
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FYN (Sharma et al., 2016; Zamoyska et al., 2003) 

B-cell antigen receptor-mediated signalling  RFTN2 (Saeki et al., 2003) 

innate immune signalling TRAIP (M. Zhang et al., 2012) 

MST1R (Sakamoto et al., 1997) 

ILF3 (Pfeifer et al., 2008) 

VPS33B (Akbar et al., 2016) 

OLFM4 (Wenli Liu, Yan, et al., 2010) 

immune surveillance  NCAM1 (Van Acker et al., 2017) 

Other Brain-specific inhibition of angiogenesis BAI2 (Okajima et al., 2010) 

Angiogenesis F2 (Danckwardt et al., 2006) 

Thrombosis SLC44A2 (Bennett et al., 2020) 

Heat shock protein DNAJC6 (Alderson et al., 2016) 

tRNA processing  TRMT13 (Towns & Begley, 2012) 

TARS2 (Lightowlers et al., 2015) 

Protein transport RABGAP1L (T. Itoh et al., 2006) 

NUP43 (Cronshaw et al., 2002) 

VPS33B (Ambrosio & Di Pietro, 2019) 

TM9SF4 (Vernay et al., 2018) 

protein degradation PSMA5 (Tomko & Hochstrasser, 2013) 

UBA7 (H. Li et al., 2018) 

PSMD2 (Rock et al., 1994) 

Inhibitor of serine/threonine-protein kinase PAK4  (Vadlamudi & Kumar, 2003) 

FAM212B (Y. Y. Liu et al., 2019) 

mitochondrial protein synthesis MRPS21 (Kenmochi et al., 2001) 

DHX30 (Bosco et al., 2020) 

protein repair PCMT1 (DeVry & Clarke, 1999; Tsai & Clarke, 1994) 

mitochondrial metabolism  PCCB (Chapman et al., 2018; Ugarte et al., 1999) 

UQCC2 (Tucker et al., 2013) 

SLC25A13 (Convertini et al., 2019) 

pre-mRNA processing PRPF3 (Heng et al., 1998; Martínez-Gimeno et al., 2003) 

PTBP1 (Vuong et al., 2016) 

Regulation of gene transcription CRTC2 (Cheng & Saltiel, 2006) 
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SMARCC1 (He et al., 2020) 

GATAD2B (Willemsen et al., 2013) 

MLLT10 (Ogoh et al., 2017) 

HEXIM2 (Yik et al., 2005) 

ASXL3 (Katoh & Katoh, 2004) 

ZNF101 (Bellefroid et al., 1993) 

TCF20 (Sanz et al., 1995) 

MSL2 (L. Wu et al., 2011) 

AGO2 (Hansen et al., 2011) 

Adipogenesis ASXL1 (Park et al., 2011) 

mRNA processing EIF4E3 (Joshi et al., 2004) 

SNRPC (Du & Rosbash, 2002) 

ILF3 (Pfeifer et al., 2008) 

Cell development/ differentiation UHRF1BP1 (El Baroudi et al., 2017; Unoki et al., 2004) 

LEMD2 (M. D. Huber et al., 2009) 

Organelle transport KIF26B (Miki et al., 2001) 

Myogenesis VAMP5 (Zeng et al., 1998) 

UQCC2 (Feichtinger et al., 2017) 

Urea cycle CPS1 (Martínez et al., 2010) 

Cell adhesion, migration, outgrowth RHOA (Valderrama et al., 2006) 

DAG1 (Morikawa et al., 2017) 

MST1R (Ghigna et al., 2005) 

LAMA2 (Vuolteenaho et al., 1994) 

SCAI (Brandt et al., 2009) 

OLFM4 (Wenli Liu, Lee, et al., 2010) 

EFNB2 (F. Zhu et al., 2020) 

ZFYVE21 (Nagano et al., 2010) 

PTK2 (Chan et al., 2009; Hsia et al., 2003) 

Membrane trafficking MON1A (Bagley et al., 2012) 

Cardiac myofibril assembly NEBL (Moncman & Wang, 2002) 

Manganese transport ATP13A1 (Anagianni & Tuschl, 2019; Farley, 2012) 

Potassium-dependent sodium/calcium SLC24A3 (Kraev et al., 2001) 
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exchange  

DNA damage response signalling SDCCAG8 (Chaki et al., 2012) 

Table A1. 2: Function of genes associated with MCP.  

This table (Table A1.2) is designed to give a brief overview of gene function 

(note also that some of these categories are non-mutually exclusive). For 

example, PAK4 (RAC1 Activated Kinase 4) is listed under its main associated 

function (as an inhibitor of serine/threonine-protein kinase), but the protein 

encoded by this gene is also implicated in cell motility, proliferation, and 

angiogenesis. The full picture of gene function, gene interaction, and potential 

health and disease related effects associated with every gene found to be 

associated with MCP is in many cases not fully known and is beyond the scope of 

this thesis. 

GeneSet p value genes 

REACTOME_DCC_MEDIATED_ATTRACTIVE_SIGNALING 5.10 x 10-5 DCC, NCK1 

REACTOME_PLC_BETA_MEDIATED_EVENTS 9.85 x 10-5 PRKAR2A, GNAT1, ITPR3 

SIG_BCR_SIGNALING_PATHWAY 1.41 x 10-4 PPP1R13B, DAG1, ITPR3 

PID_A6B1_A6B4_INTEGRIN_PATHWAY 1.41 x 10-4 LAMB2, MST1, MST1R 

Table A1. 3: MAGMA gene set analysis results (for curated gene sets i.e., MSigDB C2).  

GeneSet = Canonical MSigDB pathway enriched for MCP-associated genes. p value = p value for MAGMA 

gene set analysis test. Genes = MCP-associated genes.  
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Appendix 2: Phenotypic Correlation between Multisite 

Chronic Pain and Chronic Pain Grade in Generation 

Scotland  

 

Cheverud’s conjecture posits that phenotypic and genetic correlations are likely 

to be similar in both direction and size, and phenotypic correlations can 

therefore be used as proxies for genetic correlations between traits (Cheverud, 

1988; Sodini et al., 2018). Evidence to support Cheverud’s conjecture has been 

found in plants, animals, and recently in humans across a large number of traits 

using UK Biobank (Sodini et al., 2018). 

Despite differences between the two phenotypes, MCP and CPG, such as 

assessment of disability due to pain in CPG and not MCP, intuitively one could 

expect that MCP and CPG are likely to be positively genetically and 

phenotypically correlated, at least to some degree. Therefore, the negative 

genetic correlation was described as unexpected. Potential reasons for this 

negative genetic correlation are discussed in 4.4.1.6, but an alternate 

explanation is that a negative genetic correlation may, counterintuitively, be 

expected between CPG and MCP, if there were a negative phenotypic correlation 

between these phenotypes. To investigate this possibility, phenotypic 

correlations were calculated between MCP and CPG in a cohort where both 

phenotypes can be derived (Generation Scotland).  

Both Pearson’s rho and Kendall’s tau were calculated, and p value significance 

thresholds Bonferroni adjusted (0.05/2). CPG can be treated as a continuous 

variable, and indeed was in previous PRS analyses in this thesis, and in 23andMe-

Pfizer GWAS, but is technically an ordinal construct hence calculation of 

Kendall’s tau as sensitivity analysis. N = 7, 574 GS participants had complete 

phenotype data for both CPG and MCP (mean age 50.9 years, 37% male), and 

their data were used in this analysis. Defining CPG and the Generation Scotland 

version of MCP is described in detail in 2.3.3.2. 
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Test Correlation coefficient value (CI) p value Type 

Pearson 0.317 (0.296-0.337) < 2.2 x 10-16 Parametric 

Kendall 0.246 (NA) < 2.2 x 10-16 Non-Parametric 

Table A2. 1: Phenotypic correlation between CPG and MCP.  

CI = confidence interval (where applicable).  

Results suggest genetic correlation should be expected to be positive between 

CPG and MCP – as discussed in 4.4.1.6, it is therefore likely that the covariates 

adjusted for in the 23andMe-Pfizer GWAS may be involved in the unexpectedly 

negative genetic correlation between the two phenotypes. i.e., the “true” 

underlying relationship is that, on average, allelic effects for pleiotropic variants 

are in the same direction in CPG and MCP but adjusting for manual labour in 

particular in the 23andMe-Pfizer GWAS has obscured that in subsequent genetic 

correlation analyses. 

Aschard et al also provide derivation of a Wald test for specific use to test for 

bias in GWAS caused by adjustment for covariates – as there is not an unadjusted 

GWAS of CPG available for comparison, these analyses could not be carried out, 

but would be of interest for formally testing whether adjustment for manual 

labour led to bias in the CPG GWAS output.  
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Appendix 3: Genetic Correlation between Tsepilov et al 

Phenotype GIP1 (Genetically Independent Phenotype 1) 

and Multisite Chronic Pain 

 

Tsepilov et al generated several genetically independent phenotypes (GIPs) 

related to musculoskeletal chronic pain at four bodily locations in UK Biobank 

(Tsepilov et al., 2020). GIP1 represents the “leading” GIP and explains 78.4% of 

the genetic variance in the musculoskeletal chronic pain traits and is genetically 

correlated with many psychiatric traits to a similar degree as MCP. GIP1 is also 

described as the most stable and most heritable of the GIPs derived and 

investigated. GIP1 shows enrichment with multiple nervous-system related terms, 

and GWAS of GIP1 indicates some overlapping genes that were also found to be 

associated with MCP.  

Tsepilov et al argue that a GWAS of MCP relies on the assumption that there is 

equivalence between genetic predictors of musculoskeletal pain conditions and 

non-musculoskeletal pain conditions, an assumption that may be too strong. 

However, similarities between the trait construct GIP1, explaining the majority 

of genetic variance in the examined musculoskeletal pain traits in UKB, and MCP, 

indicates that it may be an acceptable assumption that genetic predictors are 

shared between diverse types of pain conditions. It is also of note that the first 

GIP for a wider range of transformed pain traits (i.e., all but one of the pain site 

options in UKB, some which are not likely to be musculoskeletal e.g., stomach/ 

abdominal pain) is almost genetically equivalent to ‘musculoskeletal’ GIP1 rg = 

0.99.  

To investigate the genetic overlap between MCP and GIP1, LDSR was carried out 

using GIP1 GWAS summary statistics downloaded from 

https://zenodo.org/record/3797553 [13/12/2020] and the summary statistics 

from the MCP GWAS (Chapter 4) 

Trait 1 Trait 2 rg se z p 

MCP GIP1 0.9753 0.003 327.0843 <<0.001 

Table A3. 1: Genetic correlation results.  

https://zenodo.org/record/3797553
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rg = genetic correlation coefficient, se = standard error of genetic correlation coefficient.  

Results indicate that GIP1 and MCP are highly genetically correlated (rg = 0.98). 

This is significantly lower than rg = 1 (0.98 + 2 x SE < 1), but as discussed 

previously (4.4.1.5) genetic correlation values of this magnitude can indicate 

that these phenotypes are measuring the same underlying trait construct. 

Differences between MCP and GIP1 in terms of associated genes and other 

downstream results in the GIP1 GWAS analysis could therefore be due to 

differences in power (N for the Tsepilov et al discovery cohort is roughly 100,000 

fewer participants than the MCP GWAS sample size). Although ~20% of genetic 

variance in musculoskeletal traits is not explained by GIP1, the large genetic 

overlap between MCP and GIP1 indicates that genetic predictors of a 

biopsychological component to chronic pain may be shared across a diverse set 

of chronic pain conditions. Furthermore, this remaining proportion of genetic 

variance not attributed to GIP1 may in fact be related to disease and tissue-

specific elements of chronic pain conditions, rather than being informative on 

the development of chronic pain itself. 
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