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Abstract

Traditional text classification approaches may be ineffective when applied to texts with in-

sufficient or limited number of words due to brevity of text and sparsity of feature space.

The lack of contextual information can make texts ambiguous; hence, text classification ap-

proaches relying solely on words may not properly capture the critical features of a real-world

problem. One of the popular approaches to overcoming this problem is to enrich texts with

additional domain-specific features. Thus, this thesis shows how it can be done in two real-

world problems in which text information alone is insufficient for classification. While one

problem is depression detection based on the automatic analysis of clinical interviews, an-

other problem is detecting fake online news.

Depression profoundly affects how people behave, perceive, and interact. Language re-

veals our ideas, moods, feelings, beliefs, behaviours and personalities. However, because

of inherent variations in the speech system, no single cue is sufficiently discriminative as

a sign of depression on its own. This means that language alone may not be adequate for

understanding a person’s mental characteristics and states. Therefore, adding contextual in-

formation can properly represent the critical features of texts. Speech includes both linguistic

content (what people say) and acoustic aspects (how words are said), which provide impor-

tant clues about the speaker’s emotional, physiological and mental characteristics. Therefore,

we study the possibility of effectively detecting depression using unobtrusive and inexpensive

technologies based on the automatic analysis of language (what you say) and speech (how

you say it).

For fake news detection, people seem to use their cognitive abilities to hide information,

which induces behavioural change, thereby changing their writing style and word choices.

Therefore, the spread of false claims has polluted the web. However, the claims are relatively

short and include limited content. Thus, capturing only text features of the claims will not
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provide sufficient information to detect deceptive claims. Evidence articles can help support

the factual claim by representing the central content of the claim more authentically. There-

fore, we propose an automated credibility assessment approach based on linguistic analysis

of the claim and its evidence articles.
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Chapter 1

Introduction

1.1 Motivations

Over the last few decades, the number of computer users has significantly increased, espe-

cially due to the popularisation of the Internet and the possibility of automating office pro-

cesses using dedicated software [214]. This induces a continuing growth in the amount of

computer readable text produced, stored and handled, although the text information remains

widely in hard copy format. Over the last twenty years, ‘word processing’ software of some

form has been used to produce nearly most of the printed text information globally. Although

text is an extremely rich source of information, extracting insights from text can be challeng-

ing and time consuming due to its unstructured nature. For example, 80% of the entity data,

including person, place or thing, is provided only in unstructured form, such as email, views,

news or interviews [151]. This unstructured data is considered a problem in most areas of

data-intensive applications—business, universities and research institutions [151]. While it

would be impossible to manually analyse these data, text analytics has become increasingly

popular to automate this process.

Text analytics analyses the hidden relationships between entities to discover meaningful

patterns that reflect the knowledge contained in the dataset. This knowledge is utilised in

decision-making [48]. Text analytics typically employs various methodologies to process the

text: one of the most important is natural language processing (NLP). It applies computa-

tional linguistics principles to analyse lexical and linguistic patterns [48]. Text classification,

also known as text categorisation, is a classical problem in NLP that aims to assign labels or

tags to textual units, such as sentences, queries, paragraphs and documents. It has different

1
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applications, including question answering, sentiment analysis, misinformation detection and

depression detection. The widely studied cases of text classification are binary text classifi-

cation in which a textual text is classified into one of two mutually exclusive categories or

classes. In 1960, Hans Peter Luhn [189] utilised the document-frequency method to automat-

ically obtain literature summaries, which is also called the basis of text classification research.

In 1970, [275] proposed a vector space model for text representation. Within the 1990s, ma-

chine learning became a new trend after the development of statistics, enabling researchers to

apply machine learning algorithms to text classification. Recently, the increasing popularity

of deep learning has induced the application of advanced methods to text classification.

Computers need a vast amount of common-sense and domain-specific world knowledge

to understand natural language [84, 174]. However, the previous studies on semantic re-

latedness were purely based on a statistical approach that discarded background knowledge

[23,87] or on lexical resources that incorporated limited knowledge about the world [49,144].

This is especially true when standard text classification approaches are applied to texts that

have insufficient or limited words; thus, it may cause text brevity and feature space spar-

sity [103]. In this thesis, insufficient or limited words are defined as when text features

alone underperform compared to their combination with other sources of data. Compared

with paragraphs or documents, texts with a limited number of words are more ambiguous

due to the lack of contextual information. Thus, simple text classification approaches based

on words only may not properly represent the critical features of texts. One of the efficient

solutions to overcome the mentioned problems is to enrich texts by using domain-specific in-

formation, which can be called the feature space augmentation method or, more specifically,

feature enrichment [103]. In this thesis, we aim to study two different real problems in which

their text inputs alone are insufficient for classification. The common solution is to enrich

the text features with additional contextual features, and these additional features are based

on the problem that we address. We comprehensively analyse and address the two problem

scenarios separately.

The problem of insufficient text can occur in any communication, whether it happens

face-to-face (F2F) or online. The most important means of human communication in F2F is

the clinical interview. F2F clinical interviews are the foundation of all clinical activities in

psychotherapy and are typically the first encounter between the mental health professional
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and the patient. One of the more productive arenas for exploring text in clinical interview

has been in the depression literature. More specifically, we studied depression detection

in clinical interviews recorded in three Mental Health Centres (59 interviews). There were

difficulties in obtaining enormous data, a problem that is inherent to depression detection

due to ethical and practical concerns in recruiting depression patients. To effectively tackle

this limited data availability, we segmented the transcription of interviews into clauses, i.e.

to manually extract linguistic units that include a noun, a verb and a complement. These

segmented clauses therefore have a limited number of words that may not provide sufficient

contextual information. This problem of a limited number of words is imperative to study

in depression domain because of several reasons. First, the literature provides evidence that

depressed individuals tend to engage less in social interactions and, therefore, speak less than

people that are unaffected by the pathology [44, 118]. Second, realistic application scenarios

require one to tackle recordings that contain only a few words (e.g. the use of data collected

at help lines [140]). Finally, when the speech data are obtained through interviews or other

forms of interaction that involve medical personnel, reducing the amount of time necessary

to gather enough information lowers the costs associated with depression diagnosis.

Major depressive disorder is a mental disease, and over 300 million people suffer from

this disease globally [221]. Depression is considered a major cause of suicide and the sec-

ond primary cause of death among teenagers [222]. Depression cases are increasing with

an increase of around 18% between 2005 and 2015 [221]. According to the World Health

Organization (WHO), less than half of depressed patients globally (in many countries, fewer

than 10%) receive proper depression treatment. It can be difficult for the depressed to attain

professional attention due to mobility, cost, motivation and hesitation to report since they are

sometimes passive in contacting psychologists or psychiatrists to get treatment. Therefore,

it is imperative to develop a computer-aided automatic depression assessment system that

supports psychiatrists in the diagnosis of clinical depression and reduces subjective bias.

Depression certainly impacts the way people feel, think, and communicate [21]. Lan-

guage reveals our ideas, moods, emotions, beliefs, behaviours and personalities [289]. The

observed effect of depression on linguistic style is mainly explicated by cognitive mecha-

nisms (e.g. studies in [29, 67]) in which depressed patients reveal increased negative emo-

tions and self-focus. In line with these cognitive models, social integration/disengagement
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theories (e.g. study in [95] ) also study patterns in which suicidal patients become less so-

cially engaged with community. These underlying mechanisms manifest themselves through

language, indicating an increased self-focus, splitting from others and negative emotion

[65, 310]. Therefore, studying language to detect and assess human mental health diseases

is considered an appropriate mental health modelling. For example, a Russian speech study

[298] found a more frequent use of all pronouns and verbs in the past tense among depression

patients. This means that patients suffering from depression will reveal linguistic behaviours

that vary from those of healthy individuals. Therefore, language reflects the mind [100].

Although studies have shown the strength of predictive factors of linguistic features for

the depression status of individuals, no single feature on its own has enough distinctive power

as a sign of depression due to the inherent differences in the speaking method [79]. This

means that linguistic cues alone may not be sufficient to understand the mental traits and

states of the person; thus, information from other modalities needs to be supplemented.

Interview reveals the linguistic contents (what people say) and has paralinguistic/acoustic

speech (how words are said) that show significant clues about the emotional, neurological

and mental features of the speaker. Therefore, the recent speech technologies are suggested

for the evaluation, diagnosis and monitoring of different mental disorders that affect the sub-

ject’s voice [77]. Particularly, depression may induce cognitive and motor changes that af-

fect speech creation, where decreases in verbal activity efficiency, prosodic speech impropri-

ety and monotonous speech have all been revealed to be symptomatic of depression [300].

For example, spectral-based features of depressed people change remarkably in depressive

states [228]. Considering the broad clinical outline of depression, it appears that a multimodal

approach to identifying depression from collections of linguistic and paralinguistic/acoustic

channels of communication yields significant benefits. The first part of this thesis aims to

help clinicians and psychiatrists through the development of automatic approaches for iden-

tifying people affected by depression based on the automatic analysis of language (what you

say) and speech (how you say it).

The other type of communication can happen in online websites. The innovative invention

of the World Wide Web has enabled data sharing to the world very easy. People these days

completely depend on news from the internet than the classic organisations. For example, a

recent study showed that around 68% of U.S. adults get and share news using social media
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applications and websites [54]. This explosive growth of the web, including online news

and social media, has enabled the delivery of relevant content to the right users based on

limited context information and implicit knowledge. Despite being a vast resource of valuable

information, the spread of false claims has polluted the web. Therefore, we address the

misinformation problem of exploring text on online websites.

According to the World Economic Forum, ‘the rapid spread of misinformation online’

is one of the top ten greatest challenges facing the world [111]. Recently, this rapid spread

has widely emerged on online sites for different commercial and political influences. While

this spreading of misinformation (also known as ‘Fake News’) deceives people to accept

false beliefs and change the way they respond to the truth, it breaks the reliability of the

entire information ecosystem [296]. During the 2016 U.S. presidential election campaign,

misinformation was identified and became a severe risk to journalism, democracy, freedom

and the public’s trust in governments. The chance to mislead or to be misled increases during

news production, dissemination and consumption, thereby necessitating many fact-checking

websites, where people research claims, manually assess their credibility and present their

verdict along with evidence, such as background articles and quotations [193]. However,

human can detect deceptive claims just 4% better than chance based on a meta-analysis in

over 200 studies [43]. This problem calls for credibility assessment tools that can automate

the verification process of claims.

Individuals seem to employ their cognitive efforts to modify or hide information. This

induces changes in behaviour, thereby inducing changes in verbal and written texts. For par-

ticular reasons, they attempted to change their writing style and to change their word choices

to fabricate individual facts. This contains linguistic feature changes, and one may discover

fabricated text by analysing these features. This challenge encourages researchers to con-

sider several ways to detect deceptive texts [253]. Within this framework, writing misleading

claims appears to be done by carefully selecting words because words are the richest and

most distinguished way to communicate [98]. Also, to maintain ‘cohesion’ and ‘coherence’

in their claim, it is based heavily on lexicalisation and complex syntactic structures [55,126].

Therefore, it produces more linguistic leakage to deception, meaning that linguistic patterns

may leak information that people try to hide and indicate the claim’s credibility.

Considering the structure or origin of the claim, it is relatively short and contains a very
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limited context. Thus, analysing only textual claims will reveal limited clues that probably

cannot sufficiently identify deception. Therefore, studies often combine this approach with

other auxiliary features to improve detection, such as other linguistic or network analysis

techniques (e.g. studies in [106] and [107]). Since any fact can be demonstrated as genuine

with supporting evidence, gathering evidence is an ultimate step in assessing the credibility

of claims or facts. Evidence articles, also referred to in this thesis as supporting articles, help

to support the factual claim by representing the central content of the claim more authenti-

cally. The second part of this thesis aims to propose an automated credibility assessment that

reduces the burden by assisting humans in verifying the veracity of the claim. More specifi-

cally, we linguistically analyse the claim along with its relative evidence articles to determine

their opinions regarding the credibility of the input claim.

1.2 Thesis Statement

Binary text classification is becoming important in many problems, such as depression detec-

tion and misinformation identification. The classification of texts that include an insufficient

or limited number of words is particularly challenging. This thesis asserts that enriching tex-

tual data with contextual information (domain-specific information) can help to impact the

performance of text classification. Understanding the required contextual information will

help build a more effective text classification for a problem. Also, the way how to leverage

additional information to text directly influences the performance of text classification prob-

lems. Two different application scenarios—depression and misinformation—are studied to

explore the effectiveness of leveraging additional information. Overall, the statements set

forth by the thesis are as follows:

• Statement 1: Developing an objective, effective system that supports psychiatrists in

their diagnosis of clinical depression was based on linguistic and acoustic/paralinguistic

aspects of speech. We focus on estimating the likelihood that individuals could be con-

sidered depressed/non-depressed given their clauses. In this thesis, the clause is defined

as a multimodal analysis unit that includes both speech signals and their transcription.

• Statement 2: Developing an objective credibility assessment system that reduces the

burden by assisting humans in verifying the veracity of the textual claims that are ex-
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pressed freely in Internet. The assessment is based on a linguistic analysis of the claims

regarding evidence articles. We focus on estimating the likelihood that the claims could

be considered credible/not-credible given the claims along with their evidence articles.

1.3 Contributions

This thesis’s main contribution is the use of additional domain-specific information (con-

textual information) to enrich textual data for text classification in different forms of com-

munication. In F2F communication, clinical interviews for depression are studied, while in

online communication, misinformation is studied. We contribute a series of approaches to

analyse the data in both depression and misinformation domains. More specifically, the work

described makes the following contributions in each domain:

The main contributions and novel findings to the field of depression are as follows:

1. Distinguishing between depressed and non-depressed participants, in the data of

this work, was done by psychiatrists and not by administering self-assessment

questionnaires. Half of the participants have been diagnosed with depression by a

professional psychiatrist, while the other half, referred to as control participants, have

never experienced mental health issues. This is an important advantage because it in-

creases the chances of the data being representative of the actual difference between

depressed and non-depressed speakers. Alternatively, it ensures that the problem ad-

dressed in the work is depression detection and not the inference of self-assessment

scores. This is important because self-assessment questionnaires are subject to mul-

tiple biases and, furthermore, the data show that they can be filled out inconsistently,

especially by people affected by depression.

2. Developing an objective, effective system that supports psychiatrists in their di-

agnosis of clinical depression from linguistic and acoustic aspects of speech. The

experiments show that the approach appears to be in condition to discriminate between

cases that are sufficiently clear to be processed automatically and cases that require

medical attention, thus allowing the system to potentially reduce by two-thirds the

workload of the medical personnel while still keeping the accuracy above 90%.
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3. Structuring the input data by a clause which is a subject, a finite verb and possibly

a complement that express part of a speech act such as narrating, explaining or

interrupting. Unlike the other works that utilise entire interviews, interviews are seg-

mented into clauses. This methodological contribution is beneficial for tackling limited

data availability.

4. Manifesting conditions in non-depressed subjects tend to be much better in lin-

guistic cues (what you say), while depressed patients seem to be better in man-

ifesting their condition in speech (how you say it). It means that people tend to

manifest their condition either through what they say or through how they say it but not

through both. This induces different types of errors in each modality; thus, the mul-

timodal approaches benefit from these error differences as one modality compensates

for the error of the other modality. This highlights the importance of utilising another

source of information with text.

5. Performing depression detection in less than 10 seconds (this equals less than eight

clauses) can be possible without significant performance losses, especially for re-

call. The experiment shows that the observed results do not depend on the protocol

applied at the beginning of the interviews but on the amount of data. This finding can

explain why depression patients tend to manifest their condition so consistently and

that there is a high probability of correctly classifying any clause they utter.

The main contributions and novel findings to the field of misinformation are as follows:

1. Developing an objective credibility assessment system that reduces the burden by

assisting humans in verifying the veracity of the textual claims that are expressed

freely in Internet. The experiments show that the approach can reduce by four-fifths

the workload of the trained journalists while still keeping the accuracy above 73.4%.

2. Utilising complementary information beneficially classifies textual claims. The

experiments demonstrate that relying solely on claim inputs without enriching them

with relevant articles is insufficient. This is because they underperform, to a statistically

significant extent, compared with claims supplemented with relevant articles.
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3. Increasing the length of the supporting articles can capture all the key factors

that contribute to identifying the claim identity. This observation conforms with the

actual process of manual fact-checking that entails reading the entire article to make a

final decision towards a claim [45].

4. Using multiple evidence articles for a claim constitutes an important source of

information for improving the system’s performance. This finding conforms with

the manual fact checking process since the journalists scan the web to investigate the

claim identity. The more reliable articles the journalists read, the more confident the

results are.

1.4 Organisation of Thesis

This section mainly discusses the remainder of the thesis with core ideas. The thesis is divided

into three parts.

• Part I Depression Detection by Linguistic and Acoustic of Speech:This part com-

prises of Chapters 2, 3 and 4. Chapter 2 provides the background of depression from

psychology, linguistics and acoustics aspects. Different diagnostic tools are also de-

scribed, including clinical interviews and self-assessments. Also, the objective mark-

ers and indicators for depression, including speech, linguistic and the combination of

them, are highlighted. It covers the relevant datasets used in the depression litera-

ture. Chapter 3 shows how efficiently linguistic and acoustic/paralinguistic features are

combined for identifying depression. We proposed a model that uses network architec-

tures combining textual transcriptions with speech signals through a wide spectrum of

multimodal approaches that consider both what people say and how they say it. The

effectiveness of the proposed approaches on real-world dataset are investigated. The

efficacy of utilising advanced text embedding that considers the context of the word is

analysed. In Chapter 4 detailed motivations and extensive experiments are provided.

• Part II Assessment of the claim’s credibility: This part is divided into two different

Chapters 5 and 6. Chapter 5 introduces the problem of misinformation by discussing

the effects of misinformation on society and presenting different definitions of this
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problem. Additionally, it overviews a language-based approach for distinguishing be-

tween fake and real claims. It also shows the importance of extracting external evidence

alongside the claim to support the automatic verdict of the system. Furthermore, the im-

portance of the interpretability of verdicts is highlighted to potentially help a reader in

understanding the classification decision. Finally, different publicly available datasets

are introduced that have been evaluated and used across this part. Chapter 6 presents

the proposed approaches that are based on the self-attention mechanism for automated

credibility assessment of claims. They obtain the signal from the textual claims and

set of supporting articles, which act as evidence that captures higher-level semantics

and mimics the human reading process. The effectiveness of the proposed approaches

on real-world datasets are investigated. Following that, we empirically evaluated the

effect of evidence articles regarding the number of articles required for a claim and

their length. Also, the experiments illustrate several application scenarios where the

proposed approach uses confidence measures that identify the cases likeliest to be cor-

rectly classified. Finally, we investigate the attention weights that highlight how much

each word influences an article during the learning process.

• Part III Conclusions: This part includes only Chapter 7 with conclusions and future

works.

1.5 List of Publications

Most of the materials presented in this thesis have been published in various international

conferences and in a journal during the PhD programme. The following list various publica-

tions in chronological order:

1. Aloshban, Nujud. "ACT: Automatic Fake News Classification Through Self-Attention."

In 12th ACM Conference on Web Science, pp. 115-124. 2020. (Full paper) Part II

2. Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "Detecting Depression

in Less Than 10 Seconds: Impact of Speaking Time on Depression Detection Sen-

sitivity." In Proceedings of the 2020 ACM International Conference on Multimodal

Interaction, pp. 79-87. 2020. (Full paper) Part I
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3. Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "What You Say or How

You Say It? Depression Detection Through Joint Modeling of Linguistic and Acoustic

Aspects of Speech." Cognitive Computation (2021): 1-14." Part I

4. Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "Language or Par-

alanguage, This is the Problem: Comparing Depressed and Non-Depressed Speakers

Through the Analysis of Gated Multimodal Units." In INTERSPEECH (2021). (Full

paper) Part I



Chapter 2

The State of Depression: Depression
Background

This chapter discusses relevant literature from psychology, linguistics and acoustics. Sec-

tion 2.1 defines depression. Section 2.2 shows language and speech backgrounds, which

overviews the language and speech production systems. Also, in Section 2.3, we describe

the depression assessment, including different diagnostic tools and the objective markers

and indicators for depression. In particular, speech indicators, linguistic indicators and their

combination are analysed, and we present how these indicators are applied in the literature.

Finally, this chapter covers relevant datasets used in the literature in Section 2.4.

2.1 Definition of Depression

Depression is one of the most common mood disorders worldwide (Figure 2.1) [224]. The

most typical form of the pathology is major depressive disorder (MDD), commonly referred

to clinical depression. It induces negative emotional, physical and psychological conse-

quences [329], and its symptoms include anxiety, sadness, suicidal thoughts and self-hatred,

which reduces physical function and sense of wellbeing. The diffusion of depression can be

implied from the suicide rate—for example, in Canada, around 4,000 individuals committed

suicide, and about 90% of them were diagnosed with some form of a mental illness [219].

It is more frequent among women and can happen at any age group and in any life condi-

tion [30, 105]. According to the World Health Organisation (WHO), “at a global level, over

300 million people are estimated to suffer from depression, equivalent to 4.4% of the world’s

12
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Figure 2.1: Prevalence of depressive disorders (% of population) by WHO region [223].

population [...] the single largest contributor to global disability (7.5% of all years lived

with disability in 2015) [...] the major contributor to suicide deaths, which number close to

800,000 per year.” [339]. These numbers may still be undervalued because of different fac-

tors, such as stigma and lack of available services, which reduce the patient’s determination

from seeking treatment [335].

The term ‘being depressed’ has commonly been used in everyday speech to describe al-

tered mood or sadness. However, clinical depression differs from feeling depressed, which

commonly results in misidentification by either under-diagnose or over-diagnose depres-

sion [186, 208]. Therefore, it is difficult to distinguish between them even for the most up-

to-date classification patterns, such as the Diagnostic and Statistical Manual of Mental Dis-

orders (DSM-5), the most widely used resource in diagnosing mental disorders [332]. This

may be attributed to the difficulty in psychiatric diagnosis, probably compounded by some

factors—the time-consuming process of diagnosis, complicated medical conditions and phys-

ical problems that could overlap with the actual psychological illness. Also, emotional symp-

toms—sadness or hopelessness—are not always expressed by depressed patients [205, 286],

possibly due to the lack of objective boundaries between healthy and depressed people, and

it is often necessary to assess the past and the current psychosocial history of a possible pa-

tient [285]. Thus, this research highlights the importance of developing a computer-aided

automatic depression assessment system that supports psychiatrists while diagnosing clinical

depression and reduces subjective bias in the diagnosis.
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Figure 2.2: Speech production information flow, adapted from [72].

2.2 Language and Speech Backgrounds

Several researchers have proposed psychological theories of depression, such as cognitive,

self-aware and social integration theories. Aaron Beck’s cognitive theory of depression

hypothesises that people prone to depression will usually have a depressive schema. This

schema will cause them to have a negative outlook on life and is usually triggered by a very

traumatic event. Once this happens, the depressed person will start having depressive think-

ing and will end up having an episode of depression [28]. Also, Pyszczynski and Greenberg

proposed the self-awareness theory for depression, which theorises that people with depres-

sion tend to have an excellent opinion about themselves but a tough self-criticism person-

ality [247]. Moreover, a social integration theory of suicide is posited by Durkheim with

his own social model. It assumes that depression is a major suicidal key and is essentially

initiated when someone believes that they are not accepted by their own society [96].

Given existing psychological theories of depression, both psychologists and linguists have

investigated how these theories could manifest in language. Language is a medium that con-

veys the internal thoughts and feelings of people in a way that others can understand [310].

Thus, cognitive, personality, clinical and social psychologists study humans by language. De-
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Figure 2.3: Speech Production System, It is adapted from [159, 226]

pression influences how people feel, think and communicate. To see how depression affects

people’s thoughts, language is scientifically analysed; however, it is complex to understand

linguistic behaviour and patterns. Figure 2.2 shows the information flow in which the indi-

vidual conveys messages into acoustic output during the speech production process.

From Figure 2.2, the information is passed to a different number of steps to generate

a meaningful utterance. When a speaker produces an idea, it is interpreted as a linguis-

tic representation, after which the grammatical representation of the utterance is developed.

Consequently, the speaker selects one or more main lexical objects. When a fully developed

basic structure has been expressed, it is presumed that the structure can subject to changes

that delete or change constituents. The surface structure is the output of the transformation

stage. Then, phonological rules of stress obligation may be set to the output of the sur-

face structure. Lastly, phonetic representations are transported to the motor system, which

creates the articulatory configurations of speech. These steps of semantics and syntaxes influ-

ence speech [72], and a multitude of psychological symptoms can affect language selection.

Therefore, analysing language when studying depression is important [40].

The study of text analysis is one of the approaches for analysing language that shows the

relationship between depression and language use. For example, Stirman and Pennebaker

[305] studied suicidal and non-suicidal poets using the Linguistic Inquiry and Word Count

(LIWC) dictionary. They found that suicidal poets use more first-person singular words ( I,
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me, my) and fewer words regarding the social collective (we,us, our). For medical reports,

Poulin et al. [245] observed that certain words increased the probability of committing sui-

cide. Similarly, exaggerated use of “I” word and more use of negative emotion words were

found in the depressed group compared with non-depressed [270]. The increased utilisation

of first-person singular pronouns may suggest a susceptibility of depressed patients to focus

mostly on themselves. Their results showed proof coherent with both self-awareness and

social integration theories. Additionally, the experiments in [298] observed that the affected

group frequently utilised all pronouns and verbs in past tense. Recently, Al-Mosaiwi et al. [9]

found that affected group’s forums contained more absolutist words than control forums, such

as completely, absolutely and nothing. In related work, specific LIWC categories were indi-

cators of some depression symptoms, such as sadness and fatigue [215]. They found a clear

discrimination between depressed and control groups regarding their writing styles, content

and latent topics [215].

Moreover, linguists strongly believe in the critical relationship between syntax and prosody

[62]. Some have even debated whether prosody can be straight projected from the syntac-

tic tree configuration of a sentence [331]. Hence, studying word use and syntax (linguistic

domain) alongside prosodic and phonetic features of language usage (acoustic domain) is

imperative. The human speech system is complicated, and during speech, over 100 individ-

ually innervated muscles are synchronised in the tongue and mouth. Therefore, speech is

a sensitive mechanism. Some scientists strongly believe that minor physiological and cog-

nitive variations can cause acoustic alterations in speech [277]. This study presumes that

depression can cause cognitive and physiological alterations that affect speech creation, and

this alteration can then be detected and assessed. Figure 2.3 describes the speech production

system.

According to the schematic diagram, when people communicate, they cognitively scheme

a message. After that, they create the phonetic and prosodic details of the message that will

be kept in their temporary memory. Consequently, the details will be converted into phonet-

ics and prosodic descriptions, accomplished by sequences of neuromuscular orders. These

orders start with the motoric movements needed to produce speech. Motor movements com-

prise the source and filter. The source is represented by air created by the lungs, which goes

through the filter that forms the sound. The filter (Figure 2.3) characterises the vocal tract.
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The articulators of the vocal tract change the sound created, depending on their position.

Research has examined the cognitive properties of speech creation, and they concluded that

cognitive weaknesses are strongly related to depression and affect the working memory. The

phonological loop (Figure 2.3) is a significant factor in the speech creation system and is a

segment of working memory; the loop regulates the articulatory system. Thus, a cognitive

weakness in working memory may disturb this segment of the speech creation mechanism.

Many psychological studies [64] concluded that depression strongly impacts the phonologi-

cal loop, producing articulation and phonation faults. Therefore, this will affect the speech

creation mechanism, which makes speech an attractive candidate for an objective marker of

depression.

As described above, the relationship between speech, specifically non-verbal paralinguis-

tic cues, and psychological depression has been established. It distresses speech produc-

tion and cognitive processes, and psychological depression may highly affect speech motor

control [79, 278]. This disease can be detected by prosodic irregularities and articulatory

and acoustic faults [147]. The speech quality has been influenced [3, 137, 272, 278, 297] re-

garding the glottal pulse form, breathiness degree, jitter and shimmer. Recent studies have

shown a link between depression and changes in the neurophysiological system. This change

can target and alter the laryngeal control and its dynamics—the performance of the vocal

folds [51,79,248,297,300]. After these studies, many voice characteristics, such as jitter and

glottal flow, have been suggested as speech-based biomarkers for detecting depression-related

problems [228, 248].

In this study, while we refer to any techniques inducing the understanding of natural lan-

guage (i.e. syntactic and semantic analysis) to linguistic analysis, those techniques inducing

the understanding of speech are referred to as acoustic analysis.

2.3 Depression Assessment

This section presents the most common diagnostic tools for depression. It also discusses sev-

eral objective signs of depression, emphasising linguistic, acoustic and multimodality signs,

and how they are applied in previous works.
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2.3.1 Diagnostic Tools for Depression

Commonly used assessment tools for depression include clinical interviews and self-assessments

questionnaires. The standard approach to diagnosing depression is using a clinical inter-

view assessment tool that assesses the presence of DSM-5 criteria. Detecting the presence

and intensity of depression symptoms is usually assisted by scoring scales filled out by a

well-certified psychiatric specialist. For example, the Hamilton rating scale for depression

(HRSD) [128]) is one of the most common scales in clinical practice. The HRSD is clinician-

administered, includes 21 questions, and takes 20 to 30 minutes to complete. This instrument

evaluates the intensity of 17 symptoms associated with depression (such as depression mood

swings, suicidal thoughts, sleep disorder, anxiety and irritability) and gives a patient a score,

which relates to their depression level. Each question has 3 to 5 possible responses ranging

in severity (i.e. scored between 0–2, 2–3 or 4–5), depending on the importance of the symp-

tom. All scores are then summed, and the total is arranged into five categories (from normal

to severe). However, HRSD and DSM-5 clinical criteria are unreliable [24, 61], due to their

inconsistency in diagnosing MDD [158].

Self-assessments tools can also contribute to the clinical diagnosis of depression by pro-

viding scores on self-assessment scales and inventories (Self-RIs). The most widely used

self-reported measures of Self-RIs are the patient health questionnaire (PHQ) [160], which

has several versions of 2, 8 or 9 items, and the Beck depression inventory (BDI) [31]. The

BDI comprises 21 items and takes 5 to 10 minutes to complete. The question items aim

to cover important cognitive, effective and somatic symptoms observed in depression. Each

question has a score on a scale of zero to three based on how severe the symptom was over the

previous week. Like HRSD, all scores are summed, and the final score is classified into four

different levels, ranging from minimal to severe. Although this type of assessment is practi-

cal and affordable, it has some drawbacks. It may not be reliable due to a lack of adjustment

to individual differences biases in self-assessments, and attempts to conceal the pathology to

escape treatment [238, 258, 306]. While the cost-effectiveness of widespread screening prac-

tices for improving the quality of depression care is debated [149], practical issues related

to the aforementioned limitations of Self-RIs raise questions regarding the overall utility and

effectiveness of this practice for population-based mental health.

These types of questionnaires are different in some items and scoring points that cause
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inconsistencies in diagnosing depression between psychiatrists. Also, given that only one

test tool is performed, the subjective views and experiences of psychiatrists could produce

differences on the diagnosis. Alternatively, two psychiatrists performing the same diagnosis

test have a strong possibility of producing a different score for the same subject. Hence,

recently, different objective methods exist for diagnosing depression [10,11,50,120,145,355].

2.3.2 Objective Markers for Depression

Theoretically, machine learning algorithms for depression detection should access the same

amount of evidence as a clinician requires during the diagnostic process. Consequently, the

classifiers should use features that represent each communicative modality: language and

speech. This section reviews each modality (i.e. focusing on linguistic, acoustic and multi-

modalities) and highlights the successful markers in depression detection systems.

Linguistic Indicators

As previously mentioned in Section 2.2, many theories of depression persist, such as the 1987

Pyszczynski and Greenberg’s self-awareness theory, the 1967 Aaron Beck’s cognitive theory

of depression and the 1951 Durkheim’s social integration model. All these theories have

inspired empirical studies of depressed language and concurrently supported their validity.

Some studies used the LIWC tool to examine patterns in word choice. LIWC shows success

in text analysis research; thus, other different studies have used this instrument for depression

detection with promising results.

Adding to LIWC, many other approaches have shown accomplishment in modelling word

usage. Coppersmith et al. [73] models were also applied on Facebook posts for identifying

depression degree in individuals [288]. The study in [17] developed a large-scale quantitative

study on the discourses. A set of discourse features was built to measure the correlation

of different linguistic aspects of conversations with their performance. The results support

Psyzczynski and Greenberg’s depression theory, in which writers with a minimum of self-

focus were the more successful in counselling conversations.

Adding to word usage, several studies have explored syntactic aspects of language for

depressed people. Zinken et al. [366] analysed the narrative style of depression patients and

found that specific structures were related to patients’ possibility of finishing a guided self-
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help treatment. Their observations confirmed the promise in studying syntactic characteristics

of an individual’s language use. Part-of-speech (POS) tags also have been discovered as the

POS’s occurrences were useful in detecting depression from writing [210].

Researchers find social media to be an interesting domain to investigate depression. An

SVM classifier estimating the onset of postpartum depression (PPD) with an accuracy of 70%

has been built [86]. Behavioural indicators, such as linguistic style, social engagement and

medication history, were determined. They found that depressed users tend to be slightly

engaged in social media especially at morning [86]. Recently, Trotzek et al. [314] addressed

the early detection of depression using a single layer of convolutional neural network (CNN)

and logistic regression with user-level linguistic metadata, such as text length and POS tags.

Another study in [215] investigated linguistic language in online communities by sentiment

analysis, ANEW lexicon (affective norms for English words), LIWC and mood tags were

applied. They found a clear discrimination between depressed and control groups regarding

their writing styles, content and latent topics. Overall, the main issue with social media

platforms is the difficulty of testing whether the post claim is true.

Researchers have also investigated the content of the transcriptions of individuals com-

municating with a human-controlled avatar. In the literature, there are two types of modelling

settings for analysing spoken content: context-aware and context-free modelling. The former

approach relies on feature engineering (i.e. topic modelling) to extract question-answer pairs.

For example, patient’s answers to closed questions are selected when they are related to spe-

cific symptoms associated with psychoanalytic aspects of depression, such as ‘Do you have

a history of depression?’. The label of the sentences reflects the presence or absence of spe-

cific words/phrases related to the selected symptoms [340]. Similarly, the approach in [354]

selected questions related to the symptoms associated with psychoanalytic aspects of depres-

sion, such as sleep disorder. However, this approach requires topic modelling to formulate

each answer to its topic, and it is limited to known symptoms.

Additionally, context-free modelling involves responses without prior knowledge of the

structure of the interview. This model is data-driven and disregards a priori knowledge of

interview structure. For example, Alhanai et al. [6] applied bidirectional long short-term

memory network (Bi-LSTM) models to detect depression from human-machine interviews.

In related work, Dinkel et. al [92] proposed a text-based multitask Bi-LSTM for modelling
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text with attention pooling to visualise the sentences likeliest to account for depression. They

experimented with three different text embedding—Word2Vec, ELMo and BERT—and they

found that ELMo and BERT have robust and stronger performance than Word2vec in their

work [92]. Similarly, semantic and syntactic transcripts were analysed, and they observed

that depression severity is related to occupation’s and sleep’s lexicon [210].

Speech Indicators

Using speech as a diagnostic and monitoring aid is effective for depression [74, 79, 279,

341]. The human speech production framework is exceptionally complex; therefore, slight

cognitive or physiological changes can deliver acoustic changes in speech. This idea has

driven research on using speech as an objective marker for depression. Depressed speech

depends on a wide extent of prosodic, source, formant and spectral indicators.

In patients with depression, several changes in prosody have been attributed to vocal-

source and vocal-tract [6, 131, 301]. These prosodic features, including pitch [250], speech

intensity [251], loudness [357], energy [302], speaking rate [303], speech pauses [16], voice

quality [280] and formant measures, are effective for classifying depression due to increas-

ing tension in the vocal tract associated with depression [110, 112]. Also, reduced loudness

variability, repetitious pitch inflections and stress patterns, alongside monotonous pitch and

loudness, are good indicators. Alghowinem et al. [13] inspected some features for detecting

depression from spontaneous speech and found that the most discriminative features are loud-

ness, root mean square and intensity features. Psychomotor retardation in depressed people

has been studied, and they found that individuals suffering from depression are likelier to

have a reduction in the second formant range (F2) and slower rate of speech compared with

individuals without mental illness [1]. Similarly, the experiments in [78] showed that the

first three formants produced high classification performance. Specifically, many researchers

have observed correlations between a reduced F0 range and a reduced F0 average with in-

creasing levels of depression. Nevertheless, this contrasts with several studies that showed no

significant correlations between F0 variables and depression levels. The disagreement in the

results might be based on heterogeneousness for representing depression in individuals [69].

Spectral-and energy-based features are suitable for classification because the depressed

signal can carry more information in the higher energy band compared to the neutral sig-
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nal [112, 147]. The study in [188] inspected several acoustic features—spectral, cepstral,

prosodic, glottal and a Teager energy operator. The best performances were 87% and 79% ac-

curacies for males and females, respectively. In [78], spectral features, particularly MFCCs,

were found to be useful with an accuracy of 80% in a speaker-dependent configuration. Re-

cently, the study in [12, 291] investigated spontaneous speech and found that MFCC, energy

and intensity features are the most discriminative. Williamson et al. [342] studied two vocal

tract representations, which are formant-frequency tracks to encode the vocal tract resonant

frequencies and MFCC features to encode spectral shape dynamics. These feature sets cause

changes in the coordination of vocal tract motion associated with MDD. Then, Gaussian mix-

ture model (GMM)-based multivariate regression scheme was applied for final prediction.

Many available toolkits are widely applied to extract combinations of low-level indica-

tors—OpenSmile [101], COVAREP [88], SPTK [141], KALDI [246], YAAFE [197], and

OpenEAR [102]. Each existing toolbox is generally due to a single laboratory’s work. Each

researcher considers different features from his or her own viewpoint and suits their dataset.

Yet, these hand-crafted statistical properties are extracted based on prior knowledge about

speech perception and speech production and may not contribute to the improvement. Likely,

no consent set of features exists that may be considered the most useful for depression anal-

ysis.

Manually extracting features needs to understand the domain knowledge; thus, deep

learning could better capture useful information from signal. Combining hand-crafted fea-

tures with deep-learned features shows to be effective. For example, the authors [192] applied

an audio-based approach for depression classification using CNN, followed by a long short-

term memory network (LSTM) on a log Mel filter-bank and magnitude-spectrogram features.

Similarly, LSTM on 279 features extracted from the COVAREP tool were investigated [5].

He et al. [131] also adapted CNN to learn deep-learned features from spectrograms, state-

of-the-art LLD and raw signals. However, some researchers have tried to extract features

directly from sound waves for depression detection [230, 273].They found that using MFCC

features yields better performance than using raw sound waves directly. Similarly, the exper-

iment in [256] assessed the severity level of depression from speech using MFCC features as

input for the LSTM network, and they achieved an accuracy of 76.27% on the DAIC-WOZ

dataset.
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Multimodal Indicators

Recent experimental works have explored the automatic analysis of depression from multi-

modal approaches. In [200], they used a late fusion approach that trained visual and acoustic

models separately, and their decisions were combined using the weighted sum rule. They

found that combining these modalities at the decision level gained a better improvement for

depression detection. The relationship between facial actions and vocal prosody for depres-

sion detection has been investigated. Facial movement, head movement and vocal prosody

were studied, and their combination achieved good results [69].

Adding to combining voice and visual-based markers, researchers have also provided

empirical support for the existence of a relationship between depression and language. By

extracting numerous hand-crafted features from text and speech, the experiment in [114]

observed that a multimodal system combining these two sets of features induces the best

performing system (accuracy of 65.8%). Morales and Levitan [210] used automatic speech

recognition (ASR) to automatically transcribe speech and found that audios with their tran-

scriptions enhance the performance. The experiments in [6] modelled audio and text se-

quences with an LSTM network, and the best fusion performance reached 77% F1 measure.

Lam et al. [166] analysed depression levels using a transformer for text feature modelling and

CNN for audio feature modelling. Moreover, in [229], they investigated the depression level

by extracting hand-crafted features, such as sentiment analysis on the participant’s responses

to the interviewer’s questions, the speaking rate and the average length of the utterances dur-

ing this answer.

The combination of text, audio and video has also been explored. Gong et al. [122]

proposed an approach to predict depression levels by combining topic modelling of ques-

tion/answer of the interviews with hand-crafted features from text, audio and video features.

The study in [354] also extracted hand-crafted features from each modality, which were then

fed as an input into a CNN. The learned features were fed to a feed-forward network to pre-

dict the severity of depression. Similarly, the approach in [249] combined acoustic, visual and

text modalities, and different combinations of these modalities were fed to an attention-based

neural network to predict depression level. They found that text modality, regarding accurate

prediction, outperforms other single modalities. Similarly, [255] proposed multiple layers

of the attention model and found that the text modality had the highest weight, and almost
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equal weights were assigned to audio and video modalities. Also, different fusion techniques,

including early, late and hybrid fusions, have been deeply studied [209]. This research also

proposed a syntax-informed fusion approach to leverage syntactic information to obtain more

informative aspects of the speech signal. However, the overall results do not seem to obtain

any statistical evidence of this finding. Rohanian et al. [265] also proposed word-level mul-

timodal fusion with feed-forward networks as a gating mechanism from visual, speech and

text. They found that combining text and audio modals achieved the best result of 81.0% F1.

Furthermore, fusing audio, text and video features to a decision tree algorithm has obtained

satisfying results in predicting the PHQ-8 score over the benchmark dataset, DAIC-WOZ.

The researchers in [91] proposed a decision-level fusion approach for predicting the depres-

sion scale with features extracted from the provided DAIC-WOZ dataset. Gaussian staircase

model was applied in [340] to produce the final regression result by combining facial actions,

vocal prosody and text features.

2.4 Existing Datasets

The availability of empirical data is critical for developing and evaluating methods for auto-

matic depression detection. Various datasets are reported in relevant works, which are sum-

marised in Table 2.1. The table includes total number of participants, ground truths, research

questions and the availability to the third parties. The most common practices to encourage

collaboration are to conduct challenges and to release public data and code. The advantage of

it is to promote research, spur interest and build connections across the research community.

The examples of such challenges are the computational linguistics and clinical psychology

(CLPsych) shared task (2013–2017) and the audio-visual emotion challenge (AVEC, 2013-

2016). This section briefly describes the most common existing datasets applied in previous

studies, including Pittsburgh, BlackDog, ORYGEN, AVEC and DAIC-WOZ.

Overall, these datasets differ in assessing depression, which can be clinical assessment or

self-assessment tests. DAIC-WOZ and AVEC datasets are used depression self-assessment

tests, such as PHQ. While Pittsburgh, BlackDog and ORYGEN datasets are used clinical-

assessment depression tests, such as DSM-IV and HRSD. Moreover, the objectives of each

dataset differ, ranging from comparing depressed to control subjects to evaluating depression
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Table 2.1: Datasets employed by the reviewed studies for depression research
.

Corpus Total (Affected
group/Control
group)

Ground
Truth

Research Question Availability to third
parties

Pittsburgh 49 subjects Clinical As-
sessment

Severe/Low depression
Detection

Visual and Audio
Recordings

BlackDog 80 subjects
(40/40)

Clinical As-
sessment

Severely De-
pressed/Healthy
Control Detection

Visual and Audio
Recordings

ORYGEN 30 subjects
(30/30)

Clinical As-
sessment

Depression prediction Visual Recordings

DAIC-
WOZ

189 subjects Self-
assessment

Depressed/Healthy
Control Detection and
prediction

Visual, Audio
Recordings and
Transcripts

AVEC 292 subjects Self-
assessment

Severe/Low depression
Detection and predic-
tion

Visual and Audio
Recordings

severity. Concerning data availability, because of the confidential nature of the data and pri-

vacy issues, the depression dataset is difficult to gain. Among the existing datasets, only the

AVEC and DAIC-WOZ datasets could be shared under a privacy agreement. However, they

are not used clinical depression assessment tools, which might affect the scale of depression

and its automatic evaluation. The lack of this standardised dataset introduces challenges,

such as results replication, and increases the difficulties of developing a generalised system

that recognises depression symptoms.

2.4.1 Pittsburgh Dataset

The Pittsburgh dataset was collected at the University of Pittsburgh during treatment ses-

sions of depressed patients. It is a clinically validated depression dataset used to determine

the relationship between vocal prosody and changes in depression severity over time. The

participants were recruited from a clinical trial, where the participants were diagnosed with

depression according to DSM-IV. A total of 49 depressed patients were evaluated at seven-

week intervals using a semi-structured HRSD clinical interview for assessing severity of

depression [357]. The dataset included visual and audio recordings.
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2.4.2 BlackDog Dataset

BlackDog corpus was collected at the Black Dog Institute, a clinical research institute focus-

ing on mood disorders, including depression and bipolar disorder. Audio-video recordings

from 40 depressed subjects with DSM-IV scores exceeding 15 and 40 age-matched controls

were obtained. The interview was conducted by asking particular questions in which the sub-

jects were asked to describe events that had provoked significant emotions. The dataset had

many components, such as reading sentences and interviews [291].

2.4.3 ORYGEN Dataset

ORYGEN dataset was acquired due to research cooperation with the ORYGEN Youth Health

Research Centre. It contained video recordings of discussions conducted between parents and

their adolescent children. It was built to predict whether initially non-depressed adolescents

would develop depression at the end of a two-year follow-up period [220].

2.4.4 AVEC Dataset

The AVEC challenges were organised competitions aimed at comparing multimedia process-

ing and machine learning methods for automatic audio, video and audio-visual emotion and

depression analysis, with all participants competing strictly under the same conditions. It in-

cluded audio and video recordings of interviews in German, conducted by an animated virtual

interviewer. Overall, the dataset included 292 videos with duration ranging from 6 seconds to

4 minutes. In addition, it comprised various vocal exercises, including free and read speech

tasks with their answers. Depression was estimated for each recording using BDI-II. Differ-

ent versions of the AVEC dataset are available, including AVEC2013 [322], AVEC2014 [321]

and AVEC2016 [320]. Both the AVEC 2013 and 2014 corpora are available to download 1.

2.4.5 Distress Analysis Interview Corpus Wizard-of-Oz (DAIC-WOZ)

Distress Analysis Interview Corpus Wizard-of-Oz (DAIC-WOZ) was built by conducting in-

terviews in the English language to diagnose several psychological distress conditions, such

as anxiety, depression and post-traumatic stress disorder. The interviewer was an animated

1https://avec2013-db.sspnet.eu/
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virtual interviewer called Ellie, and she asked the interviewees a series of open-ended ques-

tions to identify clinical symptoms. Each subject was assigned a single depression value

using PHQ-8 [89, 124]. DAIC-WOZ dataset served as the benchmark dataset in AVEC’17

and AVEC’16 depression sub-challenges. For audio recordings and transcripts, raw data were

available, while only features extracted with OpenFace were available for video recordings.

Despite this limitation, several interesting approaches were presented.

2.5 Conclusion

This chapter reviewed the clinical definition of depression, symptoms and diagnostic assess-

ment approaches, including current diagnostic questionnaires and the objective markers for

depression, especially linguistic and speech aspects. A brief background on speech and lan-

guage was also given in this chapter, highlighting language and speech production systems.

It provided a better insight into how the process of language and speech involve separate but

coordinated actions, any of which can be interpreted by psychogenic illnesses, such as depres-

sion. The chapter also showed that psychologists and linguists have proven that depression

influences how a person communicates; thus, the theories and studies motivate the building

of a multimodal system. Further, existing datasets were identified. In the next chapter, we

present our methodology for building a depression detection system.



Chapter 3

What You Say or How You Say It?
Depression Detection Through Joint
Modelling of Linguistic and Acoustic
Aspects of Speech

3.1 Motivation

Depression certainly impacts the way people feel, think, and communicate [21]. The in-

fluence of depression on linguistic style is primarily explained by cognitive models (e.g.,

research in [29, 67])), which indicate that depressed patients have higher levels of negative

emotions and self-focus. Social integration/disengagement hypotheses (e.g., research in [95]

) also study patterns in which depressed patients become less emotionally involved with com-

munity. These underlying mechanisms manifest themselves through language, indicating an

increased self-focus, splitting from others and negative motion [65, 310] (see Chapter 2).

Therefore, studying language to detect and evaluate human mental health conditions, such

as depression has been observed as an appropriate mental health model. In this research,

while we study the linguistic aspects and examine its utility to capture depression, we ex-

plore whether a more advanced word embedding methodology (e.g. BERT) that considers

meaning and represents the same word differently depending on its context can contribute

to the result. Particularly, we aim to develop a high-quality contextualised embedding for

the interview transcriptions from BERT-based model to capture the linguistic properties of

speech, where it achieves the state-of-the-art performance in many NLP tasks.

28
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Because of inherent differences in the speech system, no particular cue has sufficiently

distinctive influence as a symbol of depression on its own [79]. This means that linguistic

cues alone may not be sufficient to understand the mental traits and states of a person; thus,

input from other modality must be supplemented. Interviews concurrently reveal linguistic

contents (what people say) and paralinguistic/acoustic speech (how words are said), which

can reveal about a person’s emotional, physiological and mental characteristics. Therefore,

modern speech techniques are proposed to assess, diagnose and monitor the various mental

disorders that affect the voice of the person in question [77]. Particularly, depression inter-

feres with the neural processes underlying language and communication (see, e.g. [81, 290]

and Chapter 2, Section 2.2), thus leaving detectable traces in both what people say and how

they say it. Also, the use of speech has several advantages from an application viewpoint,

including the possibility to detect depression via phone [140], typically the means through

which people contact counselling services or using ordinary laptop microphones in an infor-

mal setting like it happened for the data used in this work. Hence, this chapter proposes a

multimodal approach designed to detect depression based on linguistic and acoustic aspects

of speech. Particularly, it uses network architectures combining speech signals and their tran-

scriptions through various multimodal approaches that consider both what people say and

how they say it.

Recently, depression detection has attracted significant attention in the computing com-

munity. However, it is frequent to observe that the people involved in the experiments have

not been diagnosed with depression by professional psychiatrists, like in this work, but have

simply performed a self-assessment with questionnaires, such as BDI and PHQ (see Chapter

2 , Section 2.3.1). In this respect, the actual task being addressed is not depression detection,

but inference of the scores resulting from the questionnaires. This is the case, for example,

of the benchmarking campaigns conducted in the framework of the AVEC [261, 320] and

of other works that have used the data at the core of such campaigns [8, 80, 353, 363, 365].

Therefore, the experiments of this work were performed over a corpus of 59 participants, in-

cluding 29 persons diagnosed with depression by a psychiatrist and 30 that never experienced

mental health issues (see Section 3.2 for the dataset). During the experiments, the approaches

were applied to clauses, that is, to manually extracted linguistic units that include a noun, a

verb and a complement. Given that the average number of clauses per participant is 114,
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this allows one to perform, for every person, numerous clause level decisions, and these can

be aggregated through a majority vote. This is important because it shows that effectively

tackling the limited amount of available data is possible—a problem inherent to depression

detection due to ethical and practical concerns in recruiting depression patients.

To the best of our knowledge, this is one of the first depression detection works involving

Italian speakers. This is important because it shows that depression detection technologies

can be effective not only for English speakers, the most common case in the literature, but

also for people that belong to different cultures. Furthermore, unlike other works in the liter-

ature (see Section 3.3), the distinction between depressed and non-depressed participants has

been made by psychiatrists and not through the administration of self-assessment question-

naires. This is an advantage because it increases the chances of the data to be representative

of the actual difference between depressed and non-depressed speakers. Alternatively, it en-

sures that the problem addressed in the work is depression detection and not inference of self-

assessment scores. This is important because self-assessment questionnaires are subject to

multiple biases [232] and, furthermore, the data show that they can be filled inconsistently, es-

pecially by people affected by depression (see Section 3.2). Additionally, this work presents

one of the first comparative unimodal and multimodal effects on depressed and non-depressed

individuals.

The research questions and subsequent novel contributions of this work are the following:

1. Does replacing static word representation with contextualised word representation (BERT)

induce a significant improvement?

2. Is it ‘what it is said (linguistic)’, ‘how it is said (acoustic)’ or the combination of them?

This chapter first describes the data used in the experiments. Then, a survey of previous

work related to the problem is highlighted. Further, data preprocessing is described. After

that, the proposed approach is then presented. Finally, we report our experiments and discuss

the result.

3.2 The Data

As described in the Chapter 2, Section 2.4, the existing datasets have some limitations. There-

fore, a new dataset was collected and used for the experiments in this research. The dataset
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Figure 3.1: The chart shows the number of hits returned when submitting queries related
to mental health issues to IEEEXplore (https://ieeexplore.ieee.org/Xplore/
home.jsp). The queries have been submitted with the constraint of returning material
published after 2009.

contained 59 interviews recorded in three Mental Health Centres in Southern Italy. Every

interview involved a different participant, but the protocol remained the same. In particular,

the interviewers posed always the same questions (e.g., “What have you done during the last

week-end?”) and always in the same order. Out of the 59 participants, 29 were diagnosed

with depression by a professional psychiatrist, while the remaining 30, referred to as control

participants, have never experienced mental health issues. The interviewers were instructed

to speak as little as possible and, on average, they were speaking 10.0% of the interview

duration. When considering separately depressed and control participants, the fractions were

5.1% and 14.7%, respectively. The difference was statistically significant (p < 10−5 ac-

cording to a two-tailed t-test) and one possible explanation is that control participants tend

to involve the interviewers in interaction, while depressed ones simply tend to answer the

questions.

Table 3.1 provides demographic information. The gender distribution is the same for

both depressed and control groups with 2.47 times more females than males. This follows

the observation that, despite cultural and national differences [19], women tend to develop

depression roughly two times more frequently than men [148]. Concerning age, the range is

roughly the same and, according to a two-tailed t-test, no statistically significant difference

exist between the average ages (45.7 for depressed and 44.0 for control). This range is chosen

because depression tends to be less frequent for children [117], adolescents [149] and people

older than 65 [199]. Thus, the experiment participants should be representative of the popula-

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
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Table 3.1: The table shows the demographic information available about the participants. Ac-
cording to a t-test, no difference exists between depressed and control participants regarding
age. Similarly, according to a χ2 test, the distribution of gender and education level is the
same for both groups.

F M Avg. Age Age Range Primary Superior

Depressed 21 8 45.7 23-69 16 13
Control 21 9 44.0 23-68 12 18

Total 42 18 44.4 23-69 28 31

tion prone to depression. Finally, the table reports the distribution across the education levels

of the Italian system, namely Primary (up to 8 years of education) and Superior (between 13

and 18 years of education). According to a two-tailed χ2 test, the difference between the two

distributions is not statistically significant, which means that, overall, the two groups differ

regarding mental health condition (depressed or control), but not regarding the other factors

(gender, age and education). This should ensure that the approach proposed in this work de-

tects depression and not other factors that probably induce linguistic or acoustic differences

in speech.

The upper chart of Figure 3.2 shows how durations distribute across the participants. On

average, every interview lasts 242.2 seconds, but statistically significant difference (p < 0.05

according to a one-tailed t-test) was observed when considering separately depressed and

control participants (the averages were 216.5 and 267.1 seconds, respectively). Every inter-

view was manually transcribed and segmented into clauses, i.e. basic linguistic units that

include a noun, a verb and a complement. The clauses were the analysis unit of the experi-

ments, meaning that they were analysed and recognised individually before a participant was

classified as depressed or control (see Section 3.4 for more detail). Hence, the lower chart of

Figure 3.2 shows the distribution of clauses and the average number of words they include.

Overall, the average number of clauses was 114.0 but 100.8 and 126.8 when considering de-

pressed and control participants, respectively (the difference was statistically significant with

p< 0.05 according to a one-tailed t-test). However, statistically significant difference was un-

observed regarding average number of words per participant (429.7 and 463.9 for depressed

and control participants, respectively), thus suggesting that depressed participants tend to use
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Figure 3.2: The upper chart shows the interview durations for all participants and the number
at the top of each bar is the average duration (in seconds) of each clause. The lower chart
shows the number of clauses for each participant, and the number at the top of each bar is
the average number of tokens per clause (the tokens are sequences of characters enclosed
between two consecutive blank spaces and typically correspond to words). In both charts,
depressed and control participants are shown separately.
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Table 3.2: The table shows the distribution of the score across the four conventional ranges
used to interpret the Beck Depression Inventory II scores, namely minimal (0-13), mild (14-
19),moderate (20-28), severe (29-63).

Condition Minimal Mild Moderate Severe

Depressed 7 2 11 6
Control 24 2 1 2

Total 31 4 12 8

more words per clause. Difference in duration and number of clauses agreed with previous

observations, showing that people affected by depression tend to display lower involvement

in conversations [44, 118].

Out of the 59 participants, 55 accepted to fill the BDI-II [32], one of the self- assess-

ment questionnaires most commonly used to support depression diagnosis. The result of the

questionnaire was a score that, on average, was proportional to the severity of the depression

condition, which is the state of depression with regard to its symptoms. Table 3.2 shows

the distribution of the scores across the four conventional ranges used to interpret the BDI-

II scores, namely minimal (0-13), mild (14-19), moderate (20-28) and severe (29-63). The

data shows that, on average, the scores account for the actual condition of the participants

(the average scores are 21.7 and 9.7 for control and depressed participants, respectively).

However, roughly one third of the participants diagnosed with depression had scores that fell

in the minimal and mild ranges, those considered non-pathological. This suggests that the

BDI-II scores, at least in the data used for this work, cannot be considered fully reliable,

especially for depression patients. One possible explanation is that self-assessment ques-

tionnaires are sensitive to multiple biases and ‘[...] accuracy is not the only motive shaping

self-perceptions [...] the other powerful motives are consistency seeking, self-enhancement,

and self-presentation” [232]. Alternatively, the data of Table 3.2 suggest that several de-

pressed participants could not fill the questionnaire or, possibly, they have tried to conceal

their condition, probably to avoid the stigma associated to mental health issues.

Regarding the ethical implications of the work, we make sure that the data is stored in

a password protected repository and the name of the participants is never known (only an

ID). All participants also have signed an agreement where they accepted to have their data



CHAPTER 3. WHAT YOU SAY OR HOW YOU SAY IT? 35

shared. Furthermore, every person that will get access to the data will have to sign an EULA

(End User Licence Agreement). The ethical clearance at the origin of the project is the ethical

committee of the Department of Psychology at Universita’ degli Studi della Campania “Luigi

Vanvitelli”, responsible for the data collection, provided the ethical clearance with protocol

number 09/2016.

3.3 Survey of Previous Work

Chapter 2, Section 2.1 shows that depression mainly impacts both the life of patients and

the entire society. Correspondingly, Figure 3.1 shows that, when submitting the query “de-

pression psychiatry”, IEEEXplore returns more hits than for any other mental health issue.

Depression has been the subject of at least four benchmarking campaigns organised in the

last decade, including two based on a corpus that show 292 people performing a human-

computer interaction task [318, 319] and two based on a corpus where over 200 individuals

interact with an artificial agent [260, 317]. In all cases, the task addressed by the participants

is the inference from behaviour of scores resulting from the administration of self-assessment

questionnaires, such as BDI-II [32] or different versions of the PHQ [119].

The corpora collected for the challenges above were used to investigate different ap-

proaches, including the use of facial behaviour [7, 361, 364], the analysis of paralinguis-

tics [75] and the multimodal combination of multiple cues [352]. The experiments presented

in [7] were based on how the activation of individual facial muscles changes over time, while

in [361] the goal was the identification of markers of facial behaviours that explain the pres-

ence of depression. For the approach proposed in [364], there was no attempt to analyse the

way depression leaves traces in facial expressions and the focus was on the sole inference

of the BDI-II scores. The methodology investigated in [75] included two main steps—the

inference of the BDI-II range in which the score of a particular person is and the inference of

the exact score of a person in such a range.

The results obtained in the works above can be compared (they were obtained over the

same data) and range between 8.2 and 9.8 regarding root mean square error (RMSE). Given

that the BDI-II scores can be between 0 and 63 (see Section 3.2), such RMSE values do

not necessarily allow one to distinguish between people in the range 0–13 (corresponding to
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minimal or null depression) and people between 14 and 63 (corresponding to mild to severe

depression). Also, differences between facial expression utilization and paralinguistic utiliza-

tion seem unobserved. A different approach was made in [352], where a multimodal approach

(based on facial expressions, paralinguistics and manual speech transcriptions) achieved an

F1 score of 75% in discriminating between people below and above the PHQ-8 score thresh-

old corresponding to depression.

While the works mentioned so far have focused on the inference of self-assessment scores,

others have addressed the problem of detecting people diagnosed with depression by profes-

sional psychiatrists (like it happens in this study) [10, 11, 50, 120, 145, 355]. Such a task is

performed with accuracy up to 90% in [50] using electroencephalograms (EEG), with 88%

accuracy through the multimodal combination of paralinguistics, head pose and gaze in [10]

(following up on a previous approach presented in [11]), and with F1 measure up to 80% by

analysing body movement combined with head pose and facial expressions [145]. While

being incomparable (they have not been obtained over the same data), such results suggest

that replicating the judgment of professional psychiatrists around 4 times out of 5 is possible.

Regarding the modalities used in this study (linguistic and acoustic aspects of speech),

several works propose experiments aimed at investigating specific aspects of depression.

In [140], the focus was on using short utterances collected through mobile phones (a setting

typical of counselling services accessible through the phone). The results show that detect-

ing people above the PHQ-9 threshold corresponding to depression with accuracy up to 72%

is possible. The experiments proposed in [187] addressed the problem of adolescent voices

that, not being fully formed, are more challenging to process automatically. The results show

that energy, accounting for how loud people speak, is the best depression marker, especially

when measured with the Teager [282]. Similarly, the result presented in [74] showed that the

main difference between depressed and non-depressed speakers is phonetic variability, with

depressed people tending to be less variable.

Adding to the above, several works have addressed the problem of combining speech and

its transcription (like in this work). While some works have suggested, based on experimen-

tal evidence, that linguistic and paralinguistic aspects of speech should always be modelled

jointly [211], others have shown that this is not necessarily the case and better results can be

achieved, for example, using the sole speech transcriptions [343]. Furthermore, other works
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have suggested that the multimodal combination of speech and its transcription improve over

the individual modalities only when considering that a sentence has been uttered during an

interaction [5] or using models that include attention gates capable to identify, for every sam-

ple, the modality more likely to produce the best results [264]. Alternatively, it is unclear

whether depression relevant information is carried more effectively by linguistic or acoustic

aspects of speech.

Overall, the brief state-of-the-art presented in this section suggests that no form of be-

havioural evidence (speech, facial expressions, gestures, etc.) clearly outperforms the others.

Furthermore, the use of similar approaches (e.g., the joint modelling of linguistic and acous-

tic aspects of speech [5, 211, 264]) over different data does not necessarily induce the same

conclusions about how effective using a certain modality is regarding the others. One pos-

sible reason of such state-of-affairs is that several works ignore the problem of identifying

people diagnosed with depression by a doctor, but the problem of inferring self- assessment

scores. These are affected by different biases (see Section 3.2) and, therefore, can induce am-

biguous results. Furthermore, depression is a complex phenomenon involving varying factors

(e.g., physiology, socio-economic status, age, gender, etc. [142]) that result into individual

differences in the way people manifest the pathology.

3.4 Data Preprocessing

Data needs to be preprocessed before being analysed, either by removing noise, reducing

the high dimensionality and/or segmenting interesting parts for feature extraction. It is the

first step towards building a robust model. In this research, the raw data underwent several

preprocessing steps—segmentation and data cleaning.

Segmentation It is the process of identifying the discrete units occurring in a sequence

of sounds. Before the segmentation, interviewer is separated from pure subjects’ speech.

The data is then segmented into meaningful parts for further analysis. In this study, every

interview was manually transcribed, and the audio and its transcriptions were segmented

into clauses. Clauses is the basic linguistic units that include, following the definition of

the Cambridge Dictionary, a noun, a verb and a complement. The clauses are the analysis

unit of the experiments, meaning that they are analysed and recognised individually before
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a participant is classified as depressed or control. The rationale behind this segmentation is

that the clause is a smallest unit of speech that express part of a speech act, such as narrating,

explaining or interrupting. Also, the experiments involved 59 participants, considering that

we have an average of 114 clauses per participant (see Section 3.2); thus, by applying this

segmentation, loads of clause level decision can be achieved.

Data Cleaning Each speech signal and its transcription contain the participant’s answers

and the interviewer’s questions and responses. The interviewer’s questions and responses

were discarded. The participant’s answers can be verbal cues, which is the spoken words,

and nonverbal cues (e.g. laughing and coughing). In this study, the verbal clauses of the

participants were only extracted and considered. Given the transcriptions, no stemming or

stopwords removal were done on the extracted clauses, and the resulting tokens of each clause

were lowercased. Finally, the transcriptions were aligned with the audio clips.

3.4.1 Preprocessing for BERT Model

For BERT model, the data is required to be processed further in a specific format to feed it to

the model.

Tokonizer For each word in a clause, WordPiece tokenizer was applied. It breaks the words

down to their prefix, root and suffix to handle unseen words better. This eliminates the need

for stemming or other out-of-vocabulary (OOV) word handling.

Special Tokens Addition Special tokens were inserted to the start of each clause ([CLS])

for classification embedding and to the end of each clause ([SEP]) for denoting the end of the

clause.

3.5 The Approach

The proposed approach comprises four main steps—unimodal recognition, multimodal recog-

nition, clause classification and aggregation. Figure 3.3 shows the unimodal recognition ap-

proach used in the experiments. The feature extraction maps the clauses into sequences of

feature vectors that are then fed to a Bi-LSTM. This latter outputs a representation that is
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Figure 3.3: The figure shows the unimodal recognition approach. Speech signal and textual
transcription corresponding to every clause are converted into sequences of feature vectors
(A and S, respectively) that are fed to a Bi-LSTM followed by a softmax layer. The output of
this latter can be thought of as the a-posteriori probability distribution of the classes (a clause
is assigned to the class with the highest a-posteriori probability). The classification outcomes
of the individual clauses are aggregated through a majority vote (a participant is assigned to
the class her or his clauses are most frequently assigned to).

given as input to a softmax layer that estimates the posterior probabilities of the two possible

classes (control and depression).

Figure 3.4 shows the different strategies of multimodal recognition approaches. In par-

ticular, the unimodal representations output by the Bi-LSTMs (hT corresponding to text and

audio models) are combined through different intermediate fusion strategies including feed-

forward (FF–TF), logistic regression (LR–TF) and gated multimodal unit (GMU) [20]. In

addition, the output of the unimodal classifiers serve as input to Sum Rule [153] multimodal

approach. Using different combination approaches ensures that the conclusions of this work

result from actual properties of the data and not from using a particular methodology.

In both unimodal and multimodal cases, the input corresponds to the N clauses {c1,c2, ...,cN}
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that a given participant utters (the value of N changes from one participant to the other). Each

clause ci is then assigned to the class with the highest a-posteriori probability, resulting into N

individual outcomes {l̂1, l̂2, ..., l̂N}, where l̂ j is one of the two possible classes, i.e., depression

or control. The classification outcomes corresponding to the N clauses uttered by a particular

individual are obtained by aggregating l̂ through a majority vote. Alternatively, an individual

is assigned to the class her or his clauses are most frequently assigned to.

The rest of this section provides more detail about unimodal recognition including feature

extraction process and unimodal encoding (see Section 3.5.1), multimodal recognition (see

Section 3.5.2), classification approach (see Section 3.5.3) and aggregation (see Section 3.5.4).

3.5.1 Unimodal Recognition

The unimodal recognition component includes two main steps—feature extraction and uni-

modal encoding. Since every clause includes both an audio signal and its transcription, two

distinct feature sets are extracted, one from the audio and the other from the text. In both

cases, the result is a sequence of feature vectors, a suitable format while using Bi-LSTMs,

which acts as an encoder.

Audio Feature Extraction

The vocal tract spectral magnitude information is extracted by applying MFCCs (see Ap-

pendix A, Section .5.1). Temporal characteristics of mel-cepstral features that capture coor-

dination in vocal tract spectral shape dynamics are obtained. In detail, the signal is segmented

into 25 ms long analysis windows (corresponding to 551 samples) that start at regular time

steps of 10 ms (corresponding to 220 samples) and span the entire clause (two consecutive

windows overlap by 15 ms). This 25 ms length is large enough to capture enough informa-

tion and yet the features inside this frame should remain relatively stationary. The Hanning

windows are used as window function to remove edge effects. The values of both window

length and step are standard in the literature and no other values have been tested. After the

segmentation, the signal interval enclosed in every window is mapped into a feature vector

where the components are MFCC coefficients [282]. The first 13 coefficients contain the

most salient information needed for speech recognition and to represent dynamic nature of

the audio, and the first- and second-order derivative of first 13 coefficients are extracted as
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well. Thus, each frame in an audio signal has a total of 39 features comprising 13 MFCC

coefficients, 13 first-order derivatives of MFCC and 13 second-order derivatives.

Such a representation, based on the physiology of hearing, is widely applied in the lit-

erature, and it accounts mainly for energy (how loud someone speaks) and phonetic content

(what sounds someone utters). The main motivation behind its use is that it has been effective

in various approaches aimed at inferring social and psychological phenomena from speech,

including emotions [99], personality [324] and depression (see Section 3.3).

Correspondingly, each clause is converted into a sequence of vectors A= (a1,a2, . . . ,aTA),

where ai is the F-dimensional vector extracted from the ith window. The number of frames

are changed based on the length of the audio clauses; thus, the input features are truncated

at its T th
A element where TA is the number of vectors allowed in A and when the input fea-

tures are shorter than TA, the input features are padded with zero vectors. The value of the

hyperparameter TA has been set through hyperparameter optimisation technique during the

experiments (see section 3.6.2). Hence, every clause is mapped into a two-dimensional ma-

trix A ∈ R TA×F .

Text Feature Extraction

Recently, transfer learning as pretrained language models has become ubiquitous in NLP and

has contributed to the state-of-the-art on varying tasks. For extracting linguistic features,

word embedding is utilised, where words from the vocabulary are mapped to vectors of real

numbers (see Appendix A, Section .4). In this chapter, we experiment with two types of

embedding for the feature extraction phase: one is based on static word representation and

the other is based on contextualised representation.

• Static Word Representation: Conventionally, supervised lexicalised NLP approaches

take a word and convert it to an index, which is then transformed into a feature vector

f using a one-hot representation. Given a word wi ∈W , where W is a fixed-sized word

vocabulary and fi is a |W |-dimensional vector, where all elements are set to 0, except

element k that sets to 1. The one-hot representations are then transformed into word

embeddings by defining an embedding layer. Considering a sequence w1,w2, ...,wTS ,

each word wi ∈W is embedded through embedding layer into a D-dimensional vector
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space using the following formula:

si = E fi. (3.1)

Here the matrix E ∈ R|W |×D indicates all the word embeddings that are learned in this

layer, the same as the other parameters of the network. Practically, we applied a look

up table to substitute this computation with a simpler array indexing operation, where

Ewi ∈RD corresponds to the embedding of the word wi. This look up table operation is

then used for each word in the sequence, where the sequence in our case is the clause.

Finally, the resulting word embeddings are then concatenated where

S = [Ew1;Ew2; . . . ;EwTS
] ∈ RTs×D (3.2)

where S = (s1,s2, ...,sTS) and TS is the maximum number of vectors allowed in the

sequence S. If the number of vectors is shorter than TS, then the corresponding sequence

S is padded with zero vectors, otherwise, it is truncated at its TS
th element. The value

of D is set to 100 (no other values have been tried), while the value of TS is set through

hyperparameter optimisation during the experiments (see Section 3.6.2). Consequently,

S is represented as as a two-dimensional matrix S ∈ RTS×D.

• Contextualised Word Representation: Unlike static representation that maps every

word always into the same vector, irrespectively of the different contexts in which it ap-

pears, contextualised word representation overcomes such a limitation. In this chapter,

the pretrained BERT model is used, specifically the smaller BERT-base (uncased) with

12 transformer blocks and a hidden size of 768, which has 110M trainable parameters

in total (see Appendix A, Section .4.2).

To compute word features based on BERT, different methods exist for extracting the

features. BERT layers capture different information; thus, the word embedding for each

token can be extracted from any of these layers. The outputs from either the embedding

layer, the second-to-last hidden layer or the last-hidden layer, are commonly used in

the literature. However, the last layer is too closed to the target functions (i.e. masked

language model and next sentence prediction) during pretraining, which is probably
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biased to those targets, while the output of embedding layer may preserve the very

original word information (with no fancy self-attention). Therefore, we chose to extract

the features from the second-to-last hidden layer.

We obtain BERT word vectors from an open toolkit bert-as-service1. It is a sentence

encoder service using BERT pretrained models for generating the BERT embeddings.

We spin up BERT as a service server and create a client to get the embeddings. We

use the uncased L-12 H-768 A-12 pretrained BERT model to generate the embeddings.

Finally, the same word can have different embeddings according to the context. In this

study, we average the representations of the same word to generate an approximate vec-

tor for that word. Lastly, each clause is fed to the BERT model to generate a sequence

of word representations S = (s1,s2, ...,sTS), where si is embedded into a q-dimensional

vector space and q is 768 dimensional size.

Unimodal Encoding

After the feature extraction process, the clauses are mapped into sequences of feature vectors

X = (x1,x2, ...,xT ), where X corresponds to A or S, and T corresponds to TA or TS, depending

on whether the features have been extracted from the audio signal or from its transcription

(see previous subsections). The main motivation is that the input data is sequential and, in

particular, audio vectors at correspond to different points in time of the speech signal, while

vectors st correspond to different words in a text. However, the vectors do not carry sequential

information, i.e., they do not encode possible relationships between feature vectors extracted

at different points in time. Hence, the X sequences are fed to Bi-LSTMs [125], well known

to capture such relationships, if any (see Appendix A, Section .2.4 and .2.5 for LSTM and

Bi-LSTM frameworks respectively).

Such a model produces the creation of the network’s internal hidden state ht to model the

time series pattern. This internal hidden state is updated at each time step with the input data

xt and the hidden state of the previous time steps ht−1 as follows:

1https://github.com/hanxiao/bert-as-service
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−→
ht =

−−−→
LSTM(xt ,

−→
h t−1)

←−
ht =

←−−−
LSTM(xt ,

←−
h t−1)

(3.3)

where
−→
ht and

←−
ht represent the hidden states at tth time step for forward and backward

directions, respectively, and xt represents the tth MFCC features in a sequence A for audio

model, and for text modal is the tth embedded word in a sequence S. Then, we concatenate
−→
ht and

←−
ht to obtain ht as follows:

ht = [
−→
ht ⊕
←−
ht ], (3.4)

where⊕ denotes a concatenating operation for forward and backward pass outputs. After

concatenating the output vectors of each time step for T vectors, a matrix H is generated with

the shape of [T,2U ] ,where U denotes the hidden dimension of the LSTM network.

H = (h1,h2, ...,hT ). (3.5)

After encoding the input sequence X with Bi-LSTM, the last hidden state, hT , is extracted

to be the representative vector that contains all of the sequential input data. This unimodal

representation (hT ) is then classified by feeding hT to a softmax layer ( see Section 3.5.3).

3.5.2 Multimodal Recognition

The multimodal combination approach builds upon the unimodal representations introduced

in Section 3.5.1 and implements different strategies for combining lexical and paralinguistic

information extracted from the data. For more details about multimodal representation see

Appendix A, Section .6. The rest of this section presents every multimodal combination

approach in detail.

Late Fusion (LF)

The classification of the unimodal representations occurs by feeding the output of the en-

coders to a softmax layer trained to minimise the cross-entropy (see Section 3.5.3). The

output of such a layer can be thought of as the a-posteriori probabilities p(c|X) of the classes
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(see Appendix A, Section .6.2). Figure 3.4 (c) represents the LF approach. Based on the

assumption that both modalities used in this work are equally important and that the feature

vectors extracted from the different modalities are statistically independent given the class,

it is possible to apply the sum rule, probably the most widely applied approach for the late

fusion of multiple classifiers, corresponding to multiple modalities [153]:

l̂ = arg max
c∈C
{p(c|A)+ p(c|S)}, (3.6)

where l̂ is the class assigned to a clause, C is the set of all possible classes (depression

and control in the experiments of this work), while A and S are the sequences extracted from

the speech signal and its transcription, respectively (see section 3.5.1).

Early Fusion (EF)

The other typical approach for multimodal recognition is early fusion, i.e. the concatenation

of feature vectors extracted at the same moment from multiple modalities (see Appendix A,

Section .6.1). The problem is that, in the experiments of this work, there is a significant

difference in the rate at which the vectors are extracted from the data. For speech signals,

one vector is extracted every 10 ms, thus inducing a rate of 100 Hz, while for texts, there is

one vector per word, thus inducing a rate of roughly 2 Hz (the average number of words per

second). In such a situation, the application of the early fusion requires one to downsample

the sequence where the rate is greater to discard information. However, it is possible to avoid

such a problem by obtaining a joint representation through intermediate fusion technique as

described in the next subsection.

Intermediate Fusion (TF)

Section 3.5.1 shows that the feature vector sequences extracted from the speech signal and

its transcription are encoded using unimodal Bi-LSTMs that learn a representation capable to

consider relationships between the vectors in the sequence, possibly accounting for temporal

patterns in the data. For intermediate fusion, we can extract the internal data representation

from any layer and use it as an input of another network (see Appendix A, Section .6.3).

Recall that the input of the text model is the raw data and the word embedding is used as

its first representation. Then, Bi-LSTM network is applied on the embedding to produce a
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second internal representation of the input text. However, the feature extraction by MFCCs

is used as a first representation for the audio input signal. Then, Bi-LSTM network is applied

on the extracted features to produce a second internal representation of the signal. Since

the neural networks learn representation with each successive layer [34], we extracted the

latent features from the last layer before the softmax layer, which is the last hidden state of

Bi-LSTM (hT ), as a learned representation for each input sequence of text and audio.

The two vectors resulting from such a process are L2-normalised due to the different

nature of the two modalities. This makes features from different modalities compatible to be

combined. and the bias towards some features rather than others is reduced. The normalised

features are then fused according to multiple strategies. The first, referred to as Feed Forward

Intermediate Fusion (FF–TF) in the following, corresponds to concatenating the unimodal

recognitions and feeding them to a feedforward network with four hidden layers (128, 64,

32 and 16 neurons, respectively). The expected effect of the hidden layers is to embed the

encodings in a new, multimodal space more suitable for discriminating between depression

and control participants.

Likewise, the second fusion strategy, referred to as Logistic Regression Intermediate Fu-

sion (LR–TF),works by feeding the concatenation of the unimodal recognitions to a Logistic

Regression function trained to maximise the classification accuracy. Both FF–TF and LR–TF

are represented in Figure 3.4 (a).

In both cases above, the assumption is that both modalities are equally effective at dis-

criminating between depressed and control participants. However, this is not necessarily

the case and, therefore, the last intermediate fusion strategy uses a Gated Multimodal Unit

(GMU), and it is referred to as Intermediate Fusion with Attention Gate (ATT–TF) as de-

scribed in Figure 3.4 (b). The GMU is a processing block that weighs the different modalities

through a self-attention mechanism [20]. It learns to weigh the representations of the two

modalities and, in particular, to increase the weight of the modality that appears to carry

depression-relevant information. If ha and hs are the encodings of speech signal and its tran-

scription, respectively, the fusion is performed through a non-linear transformation that works

according to the following equations:

xa = tanh(Waha) (3.7)
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xs = tanh(Ws.hs) (3.8)

z = σ(Wz.[ha⊕hs]) (3.9)

hT = z∗ xa +(1− z)∗ xs, (3.10)

where Wa, Ws and Wz are learnable parameters and ⊕ is the concatenation operator. The

values of z and 1− z can be thought of as weights that account for the contribution of the

different modalities to the final classification outcome.

3.5.3 Clause Classification

All representations, whether unimodal (see Section 3.5.1) or multimodal (see Section 3.5.2),

are fed to a fully connected softmax layer that implements the following equation:

l̂ = σ(WhT +b), (3.11)

Where σ is the softmax function, hT is the unimodal/multimodal representations, W is

the weight matrix, and b is a bias vector. Both W and b are learned through a training pro-

cess aimed at the minimization of the cross-entropy between groundtruth and classification

outcome [70]:

L (X ) =− 1
M

M

∑
m=1

[lm logσ( ˆlm)+(1− lm) log(1−σ( ˆlm))], (3.12)

where X is the training set, M is the total number of samples in X , lm is the ground truth

of training sample m, and l̂m is the classification outcome for the same sample. The training

takes place through back-propagation using gradient clipping to alleviate the exploding gra-

dient problem [231].

3.5.4 Aggregation

As mention before, an individual has uttered many clauses. The clause classification step

(see section 3.5.3) processes each of them independently so that, for an individual that has N

clauses, there are N independent classifications l̂1, .., ˆlN . These are aggregated into a single

classification outcome ŷ through a majority voting, meaning that the individual is assigned to
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the class most frequently represented among the l̂k values.

ŷ = argmax
c∈C

n(c), (3.13)

where n(c) is the number of clauses assigned to class c and C is the set of all classes

(depressed and control in the experiments of this work).

3.6 Experiments and Results

The goal of the experiments is to build an objective multimodal approach that can help psy-

chiatrists to distinguish between the cases. To understand more about different depression

aspects, we developed several fusion approaches to investigate whether it is what people say,

how people say it or both of them. We analysed deeply the performance of the system by

conducting several experiments to answer the research questions proposed in Section 3.1.

This section presents the setting of the hyperparameters of the experiments and then the ex-

perimental results.

3.6.1 Issues with Existing Datasets

There are many existing datasets used in the literature yet they differ in assessing depression.

The available datasets are used self-assessment tests which lack of the clinical judgment

of the doctors. This is different from our research’s objective thus might affect the scale

of depression and results. Moreover, the presence of a control group is uncommon in the

available datasets. The matching between depressed and control groups in terms of age,

education level and gender is also captured. For these reasons, we use our data that assesses

depression based on clinical interviews where the distinction between depressed and non-

depressed participants has been made by psychiatrists and not through the administration

of self-assessment questionnaires. This is an advantage because it increases the chances of

the data to be representative of the actual difference between depressed and non-depressed

speakers. Due to these differences we do not compare our results with the existing works.
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3.6.2 Hyperparameter Setting

The experiments were performed according to a k-fold experimental design (for more details

see Appendix A, Section .3). The participants were randomly split into k = 5 disjoint subsets,

and the clauses uttered by all participants in k− 1 groups were used as training set. Corre-

spondingly, the clauses uttered by the participants in the left out subset were used for test.

The process was repeated k times and, at each repetition, a different subset discarded, making

it possible to perform experiments over the whole corpus at disposition, while still keeping

separated training and test set. Another advantage of the setup is that the experiments are

person independent, meaning that the same participant is never represented in both training

and test set. This excludes that what the approach recognises is the identity of the participants

and not their condition.

Every time a fold is used as a test set, the union of the remaining four is split into training

set (90% of the material) and validation set (10% of the material). This latter is used to se-

lect the value of the hyperparameters through hyperparameter optimisation (for more details

about different hyperparameter optimisation see Appendix A, Section .3). Automatic hyper-

parameter tuning approach with Bayesian optimisation [225] was applied to conduct a guided

search for the best hyperparameters. The combination showing the highest accuracy over the

validation set was retained and used to classify the samples of the test set. The spaces of the

hyperparameters that were searched are learning rate α0 (a factor that influences the size of

the parameter updates during training), number of neurons in the hidden layer U , number of

training epochs P (the number of cycles through which the network is trained), batch size B

(number of training samples used at any training epoch) and padding T (length of the vector

sequences fed to the networks).

During the experiments, the predefined sets used for the different hyper-parameters are as

follows: for the learning rate, the values are 10−3, 3×10−3, 10−2, and 10−1. For the hidden

layers, the number of neurons is 32, 64 or 128. The training epochs are 30, 50 or 80 and the

samples in the batch size are 32, 64 or 128. Finally, the padding values for speech are 40, 50,

60, 70, 80, 100 and 120, while those for text are the integers between 9 and 14. In all cases,

the main motivation behind the choice of the values is that they are considered standard in

the literature. The only exception is padding that depends on the type of data being used.

The training has been performed through backpropagation using the Adam optimiser and
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Table 3.3: The table reports accuracy, precisioN and recall for the two embedding techniques
used in the experiments, at the level of both individual clauses and participants. The values
in the table are the averages obtained over 30 repetitions of the experiment.

Embedding Level Accuracy (%) Precision (%) Recall (%)
Wikipedia2vec Clause 60.4±0.003 56.1±0.005 46.5±0.007
Wikipedia2vec Participant 74.1±0.023 100.0±0.000 47.4±0.047
BERT Clause 60.4±0.006 56.0±0.008 47.4±0.008
BERT Participant 73.3±0.021 100.0±0.000 46.0±0.031

categorical cross-entropy as a loss function2.

For the unimodal approaches, according to a practice common in the literature, the initial

learning rate was progressively reduced over successive training epochs using the expression

α = α0β φ/δ , where β= 0.96 is the decay rate, φ is the step and δ = 500 is the number of

decay steps. For the text model, the highest validation accuracy was obtained for α0 = 0.003,

P = 80, B = 64, U = 128 and T = 10. For the static word embedding, the experiments of

this work are based on a version of Wikipedia2vec pre-trained word embedding on a corpus

of Italian texts, ‘itwiki’, including Wikipedia articles written in Italian, which is based on

a 100-dimensional embedding space (see Appendix A, Section .4.1). However, for contex-

tualised word embedding, uncased multilingual-L-12-H-768-A-12 pretrained BERT is used

with 12 transformer blocks and a hidden size of 768, which has 110M trainable parameters in

total. Regarding the audio model, the hyperparameter values inducing the highest validation

accuracy were α0 = 0.001, P = 80, B = 32, U = 128 and T = 40.

For the multimodal approaches (FF-TF and ATT-TF), the hyperparameter values max-

imising the validation accuracy are α0 = 0.003 and B = 128. For FF-TF, the number of

neurons in the 4 layers of the network is 128, 64, 32 and 16 (the values have been set a-priori

and not through hyperparameter optimisation). For ATT-TF, the size of the hidden layer in

the gate is 27.

Given the small number of observations used in my research, the network could risk

overfitting to the training set. The overfitting issue makes it hard to generalise to bigger

datasets. Therefore, we applied several techniques that reduce the overfitting problem such

as cross-validation, early-features and regularization, which comes down to adding a cost to

the loss function for large weights.

2All models and training methodologies were implemented with Tensorflow.
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3.6.3 Recognition Results

Tables 3.3 and 3.4 show the performance at the level of both individual clauses and partici-

pants, i.e. after that a majority vote was applied to all clauses uttered by a given participant.

Given that the initialisation of the network weights takes place through a random process,

every experiment was repeated 30 times and, therefore, the results were reported regarding

average and standard deviation of the different performance metrics. The limited variance

across the 30 repetitions, suggests that the models are sufficiently robust to changes in the

initialisation and, therefore, the averages can be considered realistic estimates of the perfor-

mance. According to a two-tailed t-test with Bonferroni correction, the accuracy is always

better than chance to a statistically significant extent, at the level of both clauses and partici-

pants.

Table 3.3 shows accuracy, precision and recall for the text unimodal approach. According

to a binomial test, the accuracy is better than chance to a statistically significant extent in

all cases (p < 103). We conducted an experiment to compare between contextualised and

static embedding to see if the contextualised sophisticated word embedding can contribute

in such a problem. Using BERT rather than Wikipedia2vec for the word embedding (see

Section 3.5.1) does not induce performance improvements, possibly because there is a mis-

match between the dictionary used during the currently available versions of BERT for Italian

texts and the dictionary of the data used in this work. This could be because the version of

multilingual BERT-base has limited vocabulary size compared to the English one. Another

probable reason is that the clauses are short (the average length is 3.9 words) and, therefore,

the context might not carry sufficient information. Thus, the experiments rely solely on using

Wikipedia2vec.

Table 3.4 shows the depression detection results obtained with unimodal and multimodal

approaches at the level of both clauses and participants. For unimodal approaches, the audio-

based classifier outperforms the text-based at the clause level and, according to a two-tailed

t-test, the difference is significant (p < 0.05). This disagrees with other works of the lit-

erature [264, 343], acoustic aspects of speech appear to be more effective than linguistic in

conveying depression relevant information (despite the clauses having been transcribed man-

ually). One possible explanation is that approaches based on language are difficult when

tackling short linguistic units like clauses (the average number of words is 3.9). However,



CHAPTER 3. WHAT YOU SAY OR HOW YOU SAY IT? 54

another possible reason is that paralinguistics (how things are said) might be a cue more

honest than lexical choice (what people say), at least regarding the features used in this work.

This follows the observation of social psychology that nonverbal behaviour, being displayed

outside conscious awareness, tends to convey more reliable information about the inner state

of an individual [235].

However, from an application viewpoint, the most important metrics are those at the

participant level and, in this case, the difference between audio and text is not statistically

significant. At the clause level, multimodal approaches perform roughly like unimodal, but

for participant level, multimodal approaches outperform unimodal which achieves an accu-

racy of 83.5% and F1 measure of 80.5% (for the best approach), meaning that it correctly

distinguishes between depressed and non-depressed speakers roughly 4 times out of 5. In

particular, the best multimodal approach improves over the best unimodal system by 9.4

points. This means that supplementing linguistic cues with their paralinguistic cues substan-

tially improves the performance. The difference concerning the best unimodal approach is

always statistically significant (p < 0.05 according to a binomial test), except for LR-FT.

One possible explanation is that the unimodal encoders (see Section 3.5.1) capture temporal

patterns in their respective input data, but represent them in a space where the difference

between depression and control participants does not emerge with sufficient clarity. In this

respect, the multilayer network used in FF-TF to embed the unimodal encodings in a space

where there is more difference between depression and control participants appears to induce

higher person level accuracy. ATT-TF disregards the four layers network, but it still achieves

the same person level accuracy as FF-TF. In this case, the probable explanation is that the

GMU effectively identifies the modality likelier to carry information inducing the correct

classification.

It is worth noting that several techniques have been also applied to the data such as CNN,

RNN and Logistic regression. Like LSTM, these are proven techniques and have been used

extensively in the literature. There were no statistically significant difference exist between

our results and other techniques’ results therefore, we do not mention them.
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3.7 Conclusion

This chapter presented experiments on depression detection for combining speech signals

and their transcriptions. The experiments were performed using varying approaches aimed at

fusing multiple modalities, including synergising unimodal classifiers through the sum rule,

one of the most traditional approaches for combining multiple classifiers, and network based

approaches for the intermediate fusion of multiple modalities, one of the most recent trends

in multimodal behaviour analysis.

Experiments presented herein explored a new set of data involving 29 depression patients

and 30 persons that have never experienced mental health issues. The distinction between

depressed and control participants was made by professional psychiatrists and not through

the administration of self-assessment questionnaires. This is an important advantage because

it makes it more likely that the proposed approaches actually learn to detect depression.

The experimental results show that acoustic aspects of speech (how people say) appear

to be more effective than linguistic (what they say) in conveying depression relevant infor-

mation. However, the combined aspects achieve the best accuracy of 83.5% (F1 measure

of 80.5%) at the person level, meaning that it correctly distinguishes between depressed and

non-depressed speakers roughly 4 times out of 5. This chapter also discussed about advanced

text embedding (BERT) that considers the context of the word. The results show that it did not

improve the data used for the experiments. In the next chapter, we present our comprehensive

analysis for depression detection.



Chapter 4

A Comprehensive Analysis for
Depression Detection System

4.1 Motivation

The previous chapter introduced the state-of-the-art methodologies for joint modelling of lin-

guistic and acoustic aspects of speech (corresponding to what people say and how they say

it, respectively). The results show that, to a statistically significant extent, the multimodal

approaches outperform unimodal approaches. However, using similar approaches (e.g. the

joint modelling of linguistic and acoustic aspects of speech [5, 211, 264]) over different data

may not necessarily induce the same conclusions about how effective using a certain modal-

ity is regarding the others. This is true since the state-of-the-art is uncertain in identifying

the best way to detect depression (see Chapter 3, Section 3.2). One possible reason is that

several works ignore the problem of identifying people diagnosed with depression by a doc-

tor, like in this work, but the problem of inferring self-assessment scores. These are affected

by different biases (see Chapter 3, Section 3.2) and, therefore, can induce ambiguous results.

Furthermore, depression is a complex phenomenon involving various factors (e.g. physiol-

ogy, socio-economic status, age, gender, etc. [142]) that induce individual differences in the

way people manifest the pathology. Hence, it is important to analyse deeply the performance

of unimodal and multimodal methodologies, showing to what extent the majority vote is more

beneficial for a certain approach and how and when the synergised multiple modalities can

be addressed by investigating the possible differences between depressed and non-depressed

speakers in the modalities through which one’s condition is manifested.

56
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Adding to the above, the results presented in the Chapter 3 suggest that the proposed

approaches can make the right decision about an individual around 4 times out of 5, but it is

unclear whether this can be considered satisfactory regarding possible clinical applications.

Therefore, we illustrate several application scenarios where the proposed approaches use

confidence measures that identify the likeliest cases to be correctly classified. Thus, the work

of psychiatric and counselling services can be supported by possibly allowing doctors to

focus on ambiguous and difficult cases while leaving the machines to tackle the most evident

ones. This is important because it can increase the efficiency of screening services and,

correspondingly, reduce the costs associated with depression diagnosis.

Computing efforts made so far have targeted mainly the improvement of the detection

performance and have addressed, only to a limited extent, if at all, the problem of how much

data is necessary to make a reliable decision about an individual (see Section 3.3). Such

a problem is mainly important because realistic application scenarios require one to tackle

recordings that contain only a few words (e.g. the use of data collected at help lines [140]).

This is especially true as the tendency of depressed individuals is to avoid social interactions

and to speak less than non-depressed people [44, 118]. Furthermore, when the speech data

is obtained through interviews or other forms of interaction that involve medical personnel,

reducing the amount of time necessary to gather enough information lowers the costs associ-

ated with depression diagnosis. Hence, this chapter also investigates the relationship between

performance and number of clauses (amount of time). In particular, the chapter presents the

effectiveness of the recall measure when considering less than 10 seconds of speech (less

than 8 clauses) compared to the one obtained using the whole data at disposition. This is

imperative because recall measures the effectiveness at recognising all depressed individuals

as such, i.e. at avoiding type II errors (classifying a depressed individual as healthy), those

inducing the most negative consequences from a clinical viewpoint. Concerning a type I er-

ror (a control individual classified as depressed), the consequence is that a healthy individual

will be examined more thoroughly by doctors, but such an extra medical attention will be

harmless. In contrast, for type II error, a depressed individual will go undetected and will

not undergo proper treatment, thus joining the estimated 79% of depression patients without

appropriate care [148], a major issue in nowadays psychiatry.

In this chapter, the research questions and subsequent novel contributions are the follow-
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ing:

1. To what extent is the majority vote more beneficial for a certain approach? (see Section

4.2.1)

2. In which channel does the depressed people manifest their pathology more clearly?

And is it the same for healthy people? (see Sections 4.2.2 and 4.2.3)

3. Are the results considered satisfactory regarding possible clinical applications? (see

Section 4.3)

4. Is it possible to detect depression in less than 10 seconds and, if yes, what is the impact

of speaking time on depression detection sensitivity? (see Section 4.4)

The rest of this chapter is organised as follows: Section 4.2 analyses multimodal recogni-

tion, Section 4.3 describes different application scenarios, Section 4.4 presents the depression

detection based on number of clauses, and the final Section 4.5 concludes the chapter.

4.2 Experiment 1: The Analysis of Multimodal Recognition

In this section, we develop a set of experiments that deeply analyses the performance of

unimodal and multimodal methodologies. Specifically, it shows to what extent the majority

vote is more beneficial for a certain approach. It also discusses how and when the combined

multiple modalities can address and how effective using a certain modality is regarding the

others. We further analyse GMU to identify the modality that contributes most to depression

detection. The experiments in Sections 4.2.1, 4.2.2 and 4.3 are presented in the published

work1. The experiments in Section 4.2.3 are presented in the published work2.

4.2.1 The Application of Majority Vote

The results in Chapter 3, Section 3.6.3 show that the application of the majority vote allows

one to achieve high participant level accuracy, especially for multimodal approaches. This
1Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "What You Say or How You Say It? Depres-

sion Detection Through Joint Modeling of Linguistic and Acoustic Aspects of Speech." Cognitive Computation
(2021): 1-14."

2Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "Language or Paralanguage, This is the Prob-
lem: Comparing Depressed and Non-Depressed Speakers Through the Analysis of Gated Multimodal Units."
In INTERSPEECH (2021).
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result, probably, is mainly because the average number of clauses per participant is greater

than 100 for both depression and control participants (see Chapter 3, Section 3.2). There-

fore, a limited accuracy at the clause level is sufficient to increase the probability of at least

half of the clauses being classified correctly, the condition for a participant being assigned

to the right class. According to Table 3.4 in Chapter 3, multimodal approaches outperform

unimodal regarding person level accuracy, the metric that matters from an application view-

point. However, it is the speech-based unimodal approach that shows the highest clause level

accuracy. Overall, this means that multimodal approaches considerably benefit from the ma-

jority vote. Figure 4.1, showing the individual clause level accuracies in descending order,

possibly explains observation. In particular, the figure shows that, concerning the multimodal

approaches, correctly classified clauses tend to distribute more uniformly across participants.

This induces numerous cases in which the accuracy is above 50% (the condition for the ma-

jority vote to work).

While possibly explaining why the majority vote is more beneficial for certain approaches,

the observations above did not show to what extent the benefit can be considered satisfactory.

One way to do it is to consider the accuracy gain ∆α:

∆α =
α−αmin

αmax−αmin
, (4.1)

where α is the person level accuracy actually observed after the majority vote, and αmin

and αmax are minimum and maximum person level accuracy a majority vote can induce.

Person level accuracy αmin can be observed when all correctly classified clauses concentrate

in the smallest possible number of participants. In contrast, the maximum value αmax can

be observed when the clause level accuracy is the same for all participants. Given that the

clause level accuracy αc can be consider the probability of making the right decision about

a clause, αmax can be estimated as the probability of having more than half of the clauses

classed correctly:

αmax '
M

∑
k=M/2+1

 M

k

α
k
c (1−αc)

M−k, (4.2)

where M is the average number of clauses per participant (114 in the data of this work).

Table 4.1 shows the results for the different approaches and, in particular, it shows that



CHAPTER 4. A COMPREHENSIVE ANALYSIS 60

0 10 20 30 40 50 60
0

20

40

60

80

100
Cl

au
se

 L
ev

el
 A

cc
ur

ac
y 

(%
)

Clause Level Accuracy per Participant (Descending Order)
Text
Audio
LF
FF-TF
ATT-TF
LR-TF

Figure 4.1: The figure shows, in descending order, the clause level accuracy per participant.
The curves corresponding to the multimodal approaches intersect the 50% horizontal line
later. This means that correctly classified clauses tend to be distributed across a greater num-
ber of participants and, consequently, there is a greater number of cases in which the majority
vote induces a correct person classification. The acronyms LF, FF-TF, LR-TF and ATT-TF
stand for Late Fusion, Feed Forward Intermediate Fusion, Intermediate Fusion with Logistic
Regression and Intermediate Fusion with Attention Gate, respectively.

multimodal ones tend to obtain higher accuracy gains. Alternatively, achieving high clause

level accuracy is insufficient to correctly classify the participants. It is also necessary that

the distribution of correctly classified clauses allows one to achieve a clause accuracy ex-

ceeding 50% for the largest possible number of participants. This is important because the

networks are trained to maximise the clause level accuracy, but not to perform uniformly

across participants. Therefore, there is a possible misalignment between the way the models

are trained and the actual goal of the approaches. The next subsection shows how and when

the combined multiple modalities can address, at least to a partial extent, such a problem.
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Table 4.1: The table shows the accuracy gain ∆α for the different approaches used in the
experiments. The values αmin and αmax are minimum and maximum accuracy that can result
from the application of the majority vote, respectively.

Modality αmin (%) αmax (%) ∆α (%)

Text 47.4 98.4 52.3
Audio 55.9 100 41.5

LF 49.1 99.5 63.5
FF-TF 49.1 99.7 67.0
LR-TF 49.1
ATT-TF 49.1 99.7 67.0

4.2.2 The Combination of Multiple Modalities

The previous section revealed that the unimodal approaches tend to concentrate correctly

classified clauses for few participants. One possible explanation is that some of the partici-

pants tend to consistently manifest their condition through at least one of the modalities. In

this way, they leave detectable traces of their condition in many clauses, thereby enabling

high accuracy to be easily achieved at the clause level. The participants tending to do this

only through one modality are likely to inject diversity [252], i.e. to lead the unimodal clas-

sifiers to make different mistakes over different participants. This is advantageous because

a multimodal approach can be beneficial mainly when unimodal approaches disagree and,

hence, one of these has a chance to compensate for the errors of the other.

Following the above, one way to measure the diversity is to compare Nd , the number

of times the two unimodal approaches classify differently the same participant, with its up-

per bound, i.e. with the number Nmax of disagreements expected when the two unimodal

approaches are statistically independent. According to the data, Nd = 21, while Nmax can

be estimated as follows (the accuracy can be considered the probability of making the right

decision about a participant):

Nmax = [α1(1−α2)+α2(1−α1)]N, (4.3)

where α1 and α2 are the person level accuracies of the two unimodal approaches and

N = 59 is the total number of participants. From the results of Table 3.4 in Chapter 3, Nmax =
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Table 4.2: The table considers the 21 cases (out of the total 59) for which there is disagree-
ment between the two unimodal approaches. When the audio-based approach is the correct
one, the classified participant is always depressed. In contrast, when it is the text-based ap-
proach to be the correct one, the distribution of the participants across the classes is roughly
uniform. One explanation is that, whenevr depressed people tend to manifest their condition
through only one modality, they tend to do it through audio, i.e., through the way they speak.

Correct Modality Depressed Control

Audio 11 0
Text 4 6

23, meaning that Nd is 91.3% of its upper bound and the unimodal approaches appear to be

highly diverse.

The results above suggest that a significant fraction of participants (Nd corresponds to

35.6% of the total) tend to manifest their condition either through one modality or the other.

In particular, Table 4.2 shows that depressed participants tend to manifest their pathology

rather clearly through the way they speak, while doing it more ambiguously through the

words they use (hence the high recall of the audio-based unimodal approach). All multimodal

systems show significantly higher person level accuracy probably because of the resulting

diversity of the unimodal approaches (see Table 3.4 in Chapter 3.4). In particular, the best

multimodal approach improves over the best unimodal system by 9.4 points. Furhermore,

the person level accuracy difference between multimodal and unimodal approaches is always

statistically significant (p < 0.05 according to a two-tailed t-test).

The problem left open in the above is to what extent the improvement resulting from the

application of multimodal approaches can be considered satisfactory. Therefore, it is possible

to estimate how close is the performance of the multimodal approaches to αmax, the upper

bound of the accuracy that can be estimated as follows (it is the probability of at least one of

the two unimodal approaches making the right decisions and, hence, giving the combination

a chance to make the right decision too):

αmax = 1− (1−α1)(1−α2), (4.4)

where α1 and α2 are the person level accuracies of the unimodal approaches. The value of

αmax is 93.0% and, therefore, the person level accuracy of the multimodal approaches ranges
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Figure 4.2: The left chart shows the w ratio for all participants (the horizontal dashed lines
correspond to the average w values for control and depressed participants). The right chart
shows the same w values in descending order.

between 89.2% and 90.0% of αmax, the maximum that can be obtained with the two unimodal

approaches at disposition. In particular, given that the best unimodal approach achieves an

accuracy of 74.1%, the improvement by 9.4 points (see above) corresponds to 54.3% of the

maximum improvement that can be achieved. Alternatively, roughly half of the times, the

two modalities disagree, the one inducing the correct classification compensates for the error

of the other.

4.2.3 The Analysis of Gated Multimodal Units

Previous Section 4.2.2 revealed that the diversity occurs because participants belonging to a

given class tend to manifest their condition through one modality, while those belonging to

the other class tend to do it through the other modality. Hence, we analyse GMU that trained

to weigh modalities according to how effectively they account for the condition of a speaker

(depressed or non-depressed). The left chart in Figure 4.2 shows, for every participant, the

value of the ratio w = wl/wp, where wl and wp are the weights that the GMU assigns to

language and paralanguage, respectively. The higher such a ratio, the more the GMU consid-

ers language to convey reliable information and vice versa. The value of w is always below

1, thus suggesting that paralanguage tends to play a more important role than language in

depression detection (at least for the data of this work). However, the average w value for

control participants is 0.82, while it is 0.73 for depressed. Such a difference is statistically

significant (p < 10−5 according to a two-tailed t-test), suggesting that, on average, language

plays a more important role for control participants compared with the depressed, and this

confirms our finding in the previous Section 4.2.2.
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The right chart of Figure 4.2 shows the w values in descending order and further confirms

the observations above. In particular, the chart shows that the lowest 18 values correspond to

depressed participants, thereby suggesting that roughly two thirds of these latter (18 out of

the total 29) can be correctly identified by simply finding the speakers for which w is below

or equal to a threshold corresponding to the 18th value from the bottom. Alternatively, the w

value can possibly be used as a confidence score when a speaker is classified as depressed.

The remaining 11 depressed speakers distribute roughly uniformly across the rest of the chart.

However, it can be observed that 15 of the speakers corresponding to the top 20 w values

are non-depressed, thus confirming the tendency of the GMU to assign higher weights to

language for control participants.

This experiment aims to identify the modality that contributes most to depression detec-

tion, and the results show that, at least for the data used in this work, it is paralanguage to

consistently be assigned the higher weight, possibly because the proposed approach is based

on the recognition of clauses, sentences that include only a few words (less than 10, on aver-

age). Therefore, the input texts might be too short for text modelling approaches to achieve

their best results. However, the most interesting observation is that the ratio w between the

weights of language and paralanguage is higher, to a statistically significant extent, regarding

non-depressed speakers. This suggests that the role of language is likely to be more important

for control participants than depressed ones.

To summarise the experiments of Section 4.2, the main differences between unimodal and

multimodal methodologies is that the latter tend to have more uniform clause level accuracy

across the participants. This is important because it induces higher person level accuracy,

the metric that actually matters from an application viewpoint (see Figure 4.1). Such a result

stems from the tendency of certain participants, in particular depressed ones, to manifest their

condition either through what they say or how they say it, but not through both. However,

control participants seem to manifest their condition much better in language through the

word they use. To our knowledge, this observation remains unknown in the literature. But

it is an important aspect of this work because it is a source of diversity across the unimodal

approaches, and it is thanks to such a property that these disagree about a participant roughly
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one third of the times. In this way, the correct unimodal approach can compensate for the

error of the other, the key assumption underlying multimodal methodologies.

The observations above suggest that it is the behaviour of the participants, at least to a

certain extent, that determines the conditions for the approaches to work. This is important

because it might explain why the state-of-the-art is uncertain in identifying the best way to

detect depression (see Chapter 3, Section 3.3). The experiments of this section suggest that

the modality carrying the most reliable information can be different for people belonging to

different classes. This further confirms that the best strategy is not necessarily looking for

the best modality but for a set of modalities that cover all groups of people appearing in the

data. The way people manifest depression can change significantly from one individual to

the other, depending on numerous social, psychological, economic and cultural factors [142].

Thus, none of the behaviours considered in the literature (facial expressions, paralinguistics,

body movements, etc.) appear to clearly outperform the others.

4.3 Experiment 2: Application Scenarios

The results presented so far in Chapter 3 suggest that the proposed approaches can make the

right decision about an individual around 4 times out of 5, but it is unclear whether this can

be considered satisfactory. In this section, the experiment is conducted to identify the cases in

which the outcome of a system can be trusted, while leaving the others to medical attention.

The experiment illustrates several application scenarios where the proposed approaches use

confidence measures that identify the likeliest cases to be correctly classified.

One possible benchmark for comparison is the performance of General Practitioners

(GP), the doctors who are the first line of intervention against depression, especially for

convincing patients to seek for treatment. According to a meta-analysis of the literature,

sensitivity3 and specificity4 of GPs are in the ranges 41.3% to 59.0% and 74.5% to 87.3%,

respectively [204]. This corresponds to an accuracy between 57.9% and 73.1% for the data

used in the experiments of this work.

Following the above, all approaches proposed in this work appear to perform comparably

to an average GP, especially about sensitivity (the name of recall in medical domains). Such

3Percentage of depressed individuals actually diagnosed as such (equivalent to recall).
4Percentage of non-depressed individuals actually diagnosed as such.
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Figure 4.3: The plots show the accuracy when considering only the r persons with the highest
confidence values. On average, multimodal approaches appear to have higher accuracy for
every value of r and, in particular, they appear to have accuracy at least 90% when considering
the 40 top ranking participants. Alternatively, it is possible to automatically isolate two thirds
of the participants for which the system decides correctly 9 times out of 10. The acronyms
LF, FF-TF, LR-TF and ATT-TF stand for Late Fusion, Feed Forward Intermediate Fusion,
Intermediate Fusion with Logistic Regression and Intermediate Fusion with Attention Gate,
respectively.

a measure is particularly important because Type II errors (classifying a depressed person as

non-depressed) are those with the most negative consequences and, therefore, should be as

limited as possible. This suggests that one possible approach for the application of depres-

sion detection technologies is to identify the cases in which the outcome of a system can be

trusted, while leaving the others to medical attention. This appears to follow recent trends

suggesting that AI-driven technologies should collaborate with their users and not simply

replace them [83].

One way to address the problem above is to consider only those participants for which

the two unimodal approaches agree with each other. The rationale is that agreement between

multiple modalities might correspond to higher confidence and, correspondingly, to higher
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performance. In our experiments, the unimodal approaches agree 38 times out of 59 (corre-

sponding to 64.4% of the total participants), 24 times over a control participant and 14 over

a depressed one. In 33 of the 38 cases, both approaches are correct (corresponding to an

accuracy of 86.8%). In the remaining 5 cases, the participants are always depressed, thus

inducing a recall of 64.3%. This means that filtering the participants according to agreement

between modalities increases accuracy while keeping the sensitivity at the level of an average

GP. Consequently, at least in our experiments, it is possible to process automatically roughly

two thirds of the participants, while leaving to the doctors only the remaining third (without

accuracy or sensitivity losses compared to the doctors considering all participants).

The above approach is disadvantageous that it can be applied only to the unimodal ap-

proaches that, according to Table 3.4 in Chapter 3, have the lowest performance. Hence, it is

necessary to define a confidence measure that is independent of the particular approach being

used. One possibility is to consider the following:

c =
max(nD,N−nD)

N
(4.5)

where N is the total number of clauses a participant has uttered and nD is the number of

clauses that, for a given participant, have been assigned to class depression. The rationale

behind the definition above is that the higher the fraction of clauses the approach assigns to a

given class, the higher the confidence of the system.

The measure above allows one to rank the participants according to the value of c (from

largest to smallest) and to consider the accuracy at position r. If higher values of c correspond

to correct decisions, the accuracy should be high when considering only the top positions of

the ranking. Figure 4.3 appears to confirm this expectation and, in particular, it shows that

the multimodal approaches have an accuracy exceeding 90% when considering the top 40

ranking participants (roughly two thirds of the total) ,except for LR-TF that exceeds 88%.

In this respect, the approach appears to be in condition to discriminate between cases that

are sufficiently clear to be processed automatically and cases that require medical attention,

thus allowing the system to potentially reduce by two thirds the workload of the medical

personnel while still keeping the accuracy above 90%. This is important because it can

increase the efficiency of screening services and, correspondingly, reduce the costs associated

with depression diagnosis.
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Figure 4.4: The plots show the expected accuracy of unimodal approaches and FF when using
only a limited number of clauses. The expected accuracy is based on Equation (4.2) and it is
based on the assumption that correctly classified clauses distribute uniformly across speakers.

According to the Gartner Group, one of the most important strategic consulting compa-

nies in the world, the detection of mental health issues is one of the most promising areas of

Social and Emotion AI 5, the AI areas concerned with the inference of effective phenomena

from observable data. The main reason is the increasingly greater number of people affected

by mental health issues [339] and the resulting pressure on healthcare services. In such a con-

text, our approaches can support the work of psychiatric and counselling services, possibly

allowing doctors to concentrate on ambiguous and difficult cases, while leaving machines to

tackle with the most evident ones. This agrees with all observations showing that the best

way to implement AI is to use it for supporting humans and not for replacing them [83]

5www.gartner.com/smarterwithgartner/13-surprising-uses-for-emotion-ai-technology/

www.gartner.com/smarterwithgartner/13-surprising-uses-for-emotion-ai-technology/
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4.4 Experiment 3: The Analysis of Time: Based on Number
of Clauses

Previous computing efforts, to our knowledge, have largely concentrated on improving detec-

tion efficiency and have addressed only to a limited extent, if at all, the problem of how much

data is necessary to make a reliable decision about an individual (see Section 3.3 in Chapter

3). The experiments introduced in Section 4.2 shows that a limited accuracy at the clause

level is sufficient to increase the probability of at least half of the clauses being classified

correctly, the condition for a participant being assigned to the right class. This probability

can be estimated using the equation 4.2 (by assuming that the clause level accuracy is the

same for all participants). Figure 4.4 shows that such a probability increases significantly

with the number of clauses and, therefore, the greater the number of these latter, the higher

the expected participant level accuracy.

One of the main consequences of the considerations above is that it takes a substantial

amount of time before the number of clauses is sufficiently large to ensure high performance.

This is a problem for at least two reasons—the tendency of depressed people to speak less

than the others (see Chapter 3, Section 3.2), and the need to shorten the interviews to lower the

costs associated with depression diagnosis. Hence, this section investigates the relationship

between performance and number of clauses. In particular, the analysis focuses on the two

unimodal approaches and on FF-TF, the approach with the highest participant level recall.

This experiment is presented in the publish work 6.

Figure 4.5 shows how accuracy, precision and recall change as a function of the number

of clauses used to make a participant level decision. The reason for considering only odd

numbers is that this makes it possible to apply the majority vote without the risk of a tie.

For unimodal approaches, the plot shows that the accuracies of both audio and text unimodal

approaches after one clause are within a statistical fluctuation regarding the accuracies ob-

tained while using the whole corpus. However, there are statistically significant differences

for precision and recall. For both modalities, after the first clause, the precision is lower, but

the recall is higher. For what concerns FF-TF, the pattern is similar, with the recall that has a

6Aloshban, Nujud, Anna Esposito, and Alessandro Vinciarelli. "Detecting Depression in Less Than 10
Seconds: Impact of Speaking Time on Depression Detection Sensitivity." In Proceedings of the 2020 ACM
International Conference on Multimodal Interaction, pp. 79-87. 2020
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small decrease (from 71.0% to 69.5%).

As the number of clauses increases, the pattern remains roughly the same for both uni-

modal and multimodal approaches. Therefore, the recall seems to improve or remain stable

(for FF-TF) when considering a limited amount of material. In this respect, using a limited

number of clauses appears to ensure that more depressed patients are recognised as such.

Even if this comes at the cost of more control participants being classified as depressed, this

result can be considered positive because the consequences of type II errors (classifying a

depression patient as control) are significantly more negative than those of type I (control

participants classified as depression patients).

The effectiveness of the approaches after the first few clauses, especially for recall, can

induce the interpretation that the depressed patients tend to manifest their condition more

clearly at the very beginning of the interview. Similarly, it can be argued that the results

stem from the particular questions asked at the beginning of the interaction. Hence, the

same experiment was conducted after shuffling the order of the clauses (see plots in the right

column of Figure 4.5). It can be seen that the pattern is similar, suggesting that the clause

order is irrelevant. Furthermore, it confirms that using a limited amount of material appears

to induce the same recall level as when using the whole interview. Given that the average

length of a clause is 1.2 seconds, the results above mean that such a time is sufficient to

identify as many depressed patients as those that get detected when using the whole material

at disposition. Alternatively, it is possible to perform depression detection with less than 10

seconds without significant performance losses, especially for recall. Furthermore, the results

show that such a result can be observed whether the clauses are recognised in the order as

they appear in the interviews or randomly. This suggests that the observed results do not

depend on the protocol applied at the beginning of the interviews, but on the amount of data.

One possible explanation of the results above is that depression patients tend to man-

ifest so consistently their condition, that there is high probability of correctly classifying

any clause they utter. Not surprisingly, the clause level accuracy is well above chance for

all approaches considered in the experiments. This result agrees with previous observations

showing that limited amount of audio, possibly captured in naturalistic settings like the one in

our experiments, is sufficient to perform depression detection, especially when the approach

is based on paralanguage [140]. However, our results seem to contradict the finding in [5]
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that depression detection can improve by considering when a given sentence is uttered during

a conversation.

These observed results are significant since fast depression detection addresses several

issues in clinical practice. The first is the tendency of depressed individuals to avoid social

interactions and to speak less than non-depressed people [44, 118]. The possibility to detect

depression with limited material canhelp handle such a tendency and to obtain good results

for people that cannot sustain an interview like those used in this work. The second is to

spot actually depressed people among the many individuals that call counselling services be-

cause they are momentaneously in distress but are unaffected by a pathology. In this respect,

approaches like those presented in this work can help to quickly dispatch callers among op-

erators more or less qualified to handle depressed individuals.

4.5 Conclusion

This chapter has presented several experiments to analyse comprehensively depression prob-

lem. It discusses several important contributions to the research community as they serve as

great resources for understanding the effectiveness of the multimodal combination, alongside

the differences between unimodal and multimodal aspects when designing a depression de-

tection system. The experiments show that one of the main differences between unimodal

and multimodal methodologies is that these latter tend to have more uniform clause level

accuracy across the participants. This is significant because it contributes to higher person

level accuracy. This is due to the tendency of certain participants, particularly those who are

depressed, to express their condition either through what they say or through how they say

it but not through both. Additionally, GMU weights were analysed, and it shows that higher

weights are assigned to language regarding control participants.

This chapter also conducted experiments to show that it is possible to measure the ‘con-

fidence’ of the approach and automatically identify a subset of the test data in which the

performance is above a predefined threshold. This is important because it shows that the

systems can reduce the workload of the doctors by up to two thirds while still ensuring a

desired level of performance (above 90% accuracy). Additionally, this chapter investigated

the performance as a function of the time to see how many materials the system needs to
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detect depression. The experiments show that it is possible to perform depression detection

with less than 10 seconds without significant performance losses, especially for recall. The

results are based on the amount of data not on the procedure used at the beginning of the

interviews. This finding may explain that depressed patients’ states appear to be expressed

consistently, making it easier to classify any clause they utter. The next chapter will present

the misinformation problem.



Chapter 5

The Landscape of Misinformation:
Misinformation Background

This chapter presents a background of misinformation problem. Section 5.1 differentiates

fake news from a series of related terms. We also discuss in Section 5.2 the effect of mis-

information in society and introduce different methods to address the problem of misinfor-

mation. Section 5.3 overviews language-based approach for distinguishing between fake and

real claims. External evidence approach is also discussed in Section 5.4 to enrich the lin-

guistic features of the claims by representing the central content of them more authentically.

The importance of interpretability of verdicts is highlighted in Section 5.5, in which it poten-

tially helps a reader in understanding the classification decision. Finally, different datasets

are introduced for misinformation problem that we will used in our experiment in Chapter 6.

5.1 A Taxonomy of Misinformation

Supported by social media, misinformation or fake news has reached the public and caused

more serious social damage. Misinformation detection has been studied extensively by both

academic communities and the industry. Nevertheless, consensus about the definition of

misinformation among many existing studies remains absent. Thus, we begin by discussing

the definitions of misinformation that have been widely used in previous studies. Then we

present our definition of misinformation, which will be adopted for the rest of this study. We

use the term fake news or misinformation interchangeably in this study.

Generally, the term ‘news’ indicates all types of claims, statements, speeches, posts via
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social media or mainstream channels. Fake news was exclusively used in the satire context

[26, 46, 268]. Balmas et al. [26] stated that fake news is intended to be seen as fictional,

whereas conventional news is intended to be seen as rational. The study in [68] described fake

news or misinformation broadly, stating that it includes everything from malicious articles to

political propaganda. They discovered that many articles are published by journalists who

rely on online searches for information but do not verify it. Also, 53.8% of journalists use

microblogs, such as Twitter and Facebook, to collect facts and report on news stories [344].

According to a recent analysis of misinformation in the 2016 election [14], misinformation

or fake news is described as any news that is deliberately and verifiably inaccurate and may

deceive readers. This definition has been widely adopted in some of previous research [71,

155, 213, 243]. Following this definition, misinformation has been linked to several terms

and concepts, including satire, parody, fabrication, manipulation, propaganda and advertising

[362].

News satire is considered irony and humour than information delivering. News fact is

exaggerated to attract audience to their posts or shows. However, it is harmful because it

will reach different kinds of audience with different levels of cognitive abilities. This leads

to inability to discover the satirical cues; therefore, this news may be believed easily [309].

News parody is similar to news satire, involving entertainment in news. The difference be-

tween satire and parody is that the latter relies on unreal information to inject sarcasm while

the former relies on facts but presents it in a diverting format [309]. Also, fabrication news

is unreal fact lacking factual basis but are published in the style of news article to create

legitimacy. Unlike the previous ones, there is no implied understanding between the produc-

ers and receivers to know that the contents are fake. Its goal is to deliberately convey the

misinformation to deceive audience in their own interests.

Different from textual information, photo manipulation is based on photos and videos

rather than text to illustrate visual news. The difficulty in photo manipulation detection ranges

from minor adjustments (i.e. change pictures’ colour saturation) to complex adjustments (i.e.

add or remove some items in photos). Advertising and public relations is another type that

aims to entice the public to click on specific link to transfer them to the commercial marketing

site, this is called clickbait headlines [309]. Finally, propaganda is related to political news

that are originated by the political entities to affect the audience perspectives. This concept
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has flourished during the election for a president in the United State 2016. Numerous fake

news were propagated through social networking to deceive voters or gain a profit [309]. In

the US election of a president 2016, it was alleged that fake news might have been pivotal in

the election of President Trump [14].

The scope of this thesis is to detect the credibility of information on web based only on

the textual information in the English language. We formally define misinformation as any

claim or statement that intentionally and verifiably not credible. The term ‘credibility’ instead

of ‘truth’ should be used since undisputable truth is frequently elusive and ill-defined. We

focus on tackling the problem as a text classification problem, i.e. attempting to automatically

detect whether a particular claim is fake/not credible or not. By ‘fake / not credible’ it means

unverified or untrue claims, or attempts to disseminate information that is not accurate.

5.2 The State of Misinformation

The great discovery of the World Wide Web has made distribution of information around the

world easy. The increase growing of the web use has caused substantial increases in the use

of internet. Recently, people are gradually turning to the internet for watching news rather

than conventional news sources. A recent study shows that around 68% of adults in the USA

watch news on the web rather than in TV [54]. Although internet is a fast source of useful

information, there is a large growth in the spread of false information on the web [161, 294].

In [169], the velocity of misinformation was studied and it has shown that posts containing

false information reach people on six times faster than truthful posts. Given the high spread

of false information, words like ‘Post-truth’ and ‘Fake news’ are called as word of the year

by Oxford dictionary in 2016 and by the American Dialect Society in the 2017, respectively.

This high spread of false information on the internet has negatively affected the society in

general, such as influencing stock market [4, 42], manipulating political decisions [26, 46],

defamation of personalities [336] and creating bias to change real world event outcomes

[104]. Studies on the false information consequences have also shown weakening in human

memory rising after experiencing false information [185, 212]. Figure 5.2 exemplifies true

news and its fabrication.

The societal challenges mentioned above have increased efforts to limit the distribution
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Figure 5.1: The Figure shows a sample of legitimate and fabricated information in the tech-
nology domain. The Figure (a) presents the fabricated information of the original article in
the Figure (b). The sample is taken from [236].

of false information. Specifically, with this spread of misinformation, fact-checking and

debunking websites have increased, including Snopes1, PolitiFact2 and FullFact3. Fact-

checking is the process of verifying information to determine the claims veracity and cor-

rectness, where qualified journalists manually assess such controversial claims, analyse their

credibility and provide analysis along with the supporting evidence (e.g. background arti-

cles, trustworthiness of the information source and quotations). In the fact-checking process

the claim is defined as the statement that is being fact-checked, verdict is the conclusion on

the veracity of the claim according to the fact-checkers, and supporting or relevant evidence

is defined as the relevant documents or articles that are extracted from reliable sources to

supports a claim.

The main advantage of fact-checking is that it can correct a person’s misconceptions. A

long-term study of the 2014 election showed that being exposed to fact-checking substantially

enhanced the accuracy of people’s beliefs [218]. Recently, a cooperation between Facebook

and fact-checkers resulted in fact-checked articles valued false to spread to 80% fewer peo-

ple; though, further data about the extent and the relative coverage of fact-checks has not been

shared to public and with researchers [18]. Nonetheless, the study in [15] showed that shar-

ing wrong information happened 60% less on Facebook than on Twitter due to Facebook’s

implementation of high proactive stance, which limits the spreading of false information on

their platform. Moreover, after the increases of fact-checking websites, political candidates

have been more aware of fact-checking concept. When government representatives believed

1www.snopes.com
2www.politifact.com
3www.fullfact.org
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that their speech were being fact-checked, they decrease the number of imprecise statements

they announce [217]. The fact-checking of political statements are used to certify politicians’

statements and devoting financial and personnel resources.

Despite the benefits of fact-checking process, it has some drawbacks. First, fact-checking

process may induce into counterproductive in which fact-checking an article could produce

familiarity with it, and this familiarity produces acceptance rather than rejection [37,97,234,

308]. Lewandowsky et al. [308] suggested that debunk rumour should not be broadcasted,

and the credible facts should rather be reported without revealing the false information. This

is because changing people’s opinions of what is true is enormously difficult [116]. Second,

the same as in education sector, the manual fact-checking process is an individual’s respon-

sibility. Lazer et al. [171] indicated that people would probably not fact-check an article that

aligns with their previous beliefs. In [177,195,195], they demonstrated that fact-checkers fre-

quently do not allocate the same truth scores to the same claim, and the scores rarely overlap

between fact-checkers. This is especially true when a fact-checker has a bias towards a sub-

ject or an organisation. Third, multiple researches in social psychology and communications

showed that humans can identify deception slightly better than chance. The accuracy rates

ranged in 55%-58%, with a mean accuracy of 54% over 1,000 participants in over 100 stud-

ies [315]. Finally, manual fact-checking may not scale well due to the high volume of new

information on the web. Therefore, it is intellectually challenging and time-consuming [358]

and based on the difficulty of the claim, the process may last from hours to few days [129].

Based on the above shortcomings, objectively fact-checking a claim is required by au-

tomating the manual assessment process. The objective of automated credibility assessment

is to decrease the burden by supporting human in validating the veracity of the information.

By considering the cruelty of the problem, the main advantage of performing automatic claim

verification is that it can be conducted on a large scale. For example, the experiment in [66]

converted Wikipedia into a network of knowledge graphs therefore, unverified claims can

be checked against this network. A claim known to be true in Wikipedia will appear as an

edge of the knowledge graph or will have its subject and object linked via a short path in the

graph. Otherwise, the false claims will not appear as a connection in the graph. Jaradat et

al. [143] also proposed ClaimRank, which is a computational framework that distinguishes

claims that may require checking. The claims that need to be checked can then be submit-
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ted to fact-checking websites for manual verification or to the automatic systems. The study

in [207] proposed a framework that searches for relevant documents to a given claim and

snippets of evidence. Although using the system may not be fully automated, it can support

human verification experts.

5.3 Language-Based Text Analytics

People seem to harness their cognitive efforts to alter or conceal information, which induces

changes in behaviour and, thus, changes in verbal and written texts. This induces linguistic

feature changes, and by examining these features, fake texts may be discovered. In this

context, writing a false information tends to be a matter of carefully choosing words because

words are the richest and most distinctive form of communication. Despite regulating what

they are writing, language ‘leakage’ happens in such linguistic aspects that are involuntary

behaviour and difficult to control, such as frequencies and patterns of pronoun, conjunction

and negative emotion word usage [107]. This challenge inspires researchers to investigate

various methods for detecting deceptive texts [253].

Detecting misinformation based on its text content is an intuitive and straightforward

approach adopted by many existing studies. The experiment in [267] showed that the total

word count in fake texts is greater than the legitimate texts. Besides, self-oriented pronouns

in fake texts are used less often than other-oriented pronouns, and sensory-based words are

used more frequently. Moreover, several researchers have attempted to identify linguistic

features, such as semantic features (e.g. category, entities, keywords), sentiments features

(e.g. subjectivity) and syntactic features (e.g. part-of-speech tag, punctuation marks, spelling

errors) [52,56,242,316]. Similarly, those who write or spread misinformation need to capture

the attention of readers thus the text style becomes distinct. Style can be seen as a set of

language features that includes lexical choice, syntactic complexity, organisation and flow

of information. Some of these features such as lexical choice, are easier to capture with

computers than the others [167]. The study in [239] noticed that the article’s language style

is critical in assessing its credibility. Therefore, they use language stylistic features, such as

assertive verbs, factive verbs and implicatives to evaluate the credibility of web claims.

To predict, however, the linguistic methods first need enough text content. Hence, they
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cannot detect fake claims with either short or no text content. Textual claim is also diverse

regarding topic, style and platform. Thus, content-based features that work well on one

dataset of fake news might not work well on another [295].Several studies have used addi-

tional cues to enrich the linguistic cues, such as temporal spreading patterns [184], network

structures [293,326,346] and users’ feedbacks [292,327,328]. However, limited studies have

utilised external webpages that can provide complementary context to the claim.

A recent trend of researchers is to develop more objective tasks and evidence-based ver-

ification solutions, which concentrate on using evidence collected from more trustworthy

sources, such as encyclopaedia articles [311]. The study in [108] utilised news headlines as

evidence to predict whether a claim would be supported, debunked or dismissed. In the Fake

News Challenge, the body’s article is used as evidence to reveal the stances regarding the

claim presented in the headline. The experiments in [312] formulated the Fact Extraction

and VERification (FEVER) task to verify the claim by gathering evidence from Wikipedia

and synthesising information from multiple documents. Other study introduced an evidence-

aware neural attention mode named DeClarE, which extracts salient words from related arti-

cles as the main evidence to verify a claim [241].

5.4 External Evidence

In the present era of big data, the most challenging issue for automated assessment is to gather

related and enough evidence to confirm facts. A fact is something that can be proved with

evidence to be true. Hence, collecting evidence is a crucial step in evaluating the veracity

of any claim or information. Automated assessment of such claims requires machines to

automatically collect the related evidence; thus, this automated system will be confined to

the online evidence’s repository in a machine-readable format.

A massive quantity of textual data is posted online every moment, and the majority of

this data is unstructured. Approaches such as knowledge base depositories (e.g. YAGO

[307], WikiData [330]), information extraction and semantic web transform the unstructured

text into a machine-readable design. Such repositories are out dated and their coverage is

somehow inadequate. Therefore, they can be considered useless in presenting evidence to

validate contested facts, especially those emanating from current world affairs.
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An alternative approach for gaining evidence online is by search engines. An automated

method for credibility assessment can use these search engines and perform an online search

to obtain the related evidence, although search engines usually list online pages that are re-

lated to the textual search query. These related online pages have multiple designs with

multiple structure, including news stories, a group of question answers or an online discus-

sion panels. Extracting relevant evidence from this disorganised clutter is a major challenge

for automated credibility assessment.

Although online web has a massive resource of information, not all the knowledge posted

there is credible, and not all the web sources are trustworthy. The trustworthiness of the data

sources immediately impacts the credibility of the information [109]. For example, a fact

stated in The New York Times4 is probable to be credible—strictly examined by the expert

journalists. However, some information from The Onion 5 is most likely unreliable because

it is a satirical news institution. Therefore, assessing the trustworthiness of the data sources is

very critical for evaluating the credibility of the information. The most common conventional

methods for assessing the quality of online sources are PageRank [47] and authority-hub

analysis [156], which depend on the format of the hyperlink of the Web- graph, though such

methods detect only the authority and reputation of the online sources and not their trustwor-

thiness from the information credibility standpoint. For example, ‘The Onion’ website has a

high page rank mark, which is 7 out of 10.

Recently, the study in [240] suppressed the previously mentioned limitations for evaluat-

ing the quality of the retrieved evidence. They retrieved diverse evidence articles about the

claim and assessed them based on identifying the language of the reporting articles (i.e. bias

and subjectivity), the articles’ stance towards the claim (i.e. whether it supports or refutes the

claim) and the reliability of the web sources generating the articles. In details, number of ar-

ticles were retrieved by firing the textual claim as a query, and they assessed the most related

articles based on different factors mentioned above. First, they assumed that the reporting

articles should be reported in an objective and unbiased language to be considered credible.

Therefore, language stylistic features of the retrieved articles were analysed, including as-

sertive and factive verbs (e.g. ‘claim’, ‘indicate’), hedges (e.g. ‘may’) and reporting verbs

4www.nytimes.com
5www.theonion.com
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(e.g. ‘deny’). Second, the stance of the articles is captured by their proposed determination

classifier to assess whether the articles reporting the claim are supporting it or not. For ex-

ample, an article from a reliable source such as ‘truthorfiction.com’ refuting the claim will

make the claim less credible. The detailed method for stance determination is outlined in Al-

gorithm 1 in [240]. Finally, the reliability of the web-source hosting the article significantly

impacts the credibility of the claim. Unlike PageRank and authority-hub, a web source is

considered reliable if it contains articles that refute false claims and support true claims. In

this study, extracting and evaluating relative evidence are beyond the scope; thus, we follow

the same approach in [240] for retrieving evidence.

5.5 Interpretable Machine Learning

In the age of artificial intelligence, machine learning models have started to be the first op-

tion for resolving serious issues in different fields such as in finance, healthcare and justice.

Because of this prominent importance, it is vital to understand how and why these models

create certain decisions. Interpretability is the degree to which a person can realise the reason

of the decision [203]. The majority of existing machine learning models are not interpretable

because they do not explain their decisions. Overall, interpretability can assist in identify-

ing hidden biases in machine learning models. This problem has concerned the research

community [180,345]. A comprehensive discussion on the motivation of interpretability and

multiple methods to achieve it can be found in [182].

Multiple traditional machine learning models, such as regression, Naive Bayes, decision

tree and random forest are naturally interpretable. The coefficient weights in regression, for

example, indicate the significance of the features. Likewise, the traditional feature selection

approaches also assist in clarifying model decisions by highlighting the importance and con-

tribution of each feature [127, 356]. Studies in [164, 165, 175, 333] suggested methods for

creating decision lists that enhance interpretability over decision trees.

The study in [263] represented a method for clarifying predictions of black-box models

for individual instances. Likewise, the study in [22] proposed a different method for de-

scribing the decision of arbitrary nonlinear classifiers. Another study in [259] also proposed

another method to demonstrate the predictions of any classifier by estimating the black box
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model locally around the prediction. Furthermore, Samek et al. [276] suggested procedures

to clarify predictions of deep learning models.

In contrast, few approaches have concentrated on automatically gathering evidence that

supports factual claims raised in a debate. Supervised learning approaches to achieve this for

claims on social media and debate platforms are illustrated in [2,262]. Likewise, the studies in

[2,33] proposed methods that tackle this issue from an information retrieval standpoint using

varying documents to retrieve evidence in support of an assurance claims. The study in [240]

pursued a similar direction to the evidence retrieval approaches. Having a claim, their models

thoughtfully pull snippets from the relevant articles and that will assist in understanding their

automated valuation (see Section 5.4 for more details).

5.6 Exiting Datasets

There are several datasets available online for misinformation problem, especially for social

media domain. However, limited number of datasets are intended to an open-domain setting.

In this section, we will examine three most common datasets that are available for open-

domain setting and are used in the literature. These datasets are used in our experiments in

Chapter 6.

5.6.1 Snopes-A Dataset

Snopes is a fact-checking and debunking website that validates rumours, hoaxes, urban leg-

ends, e-mail forwards, and other stories of unknown or questionable origin. 300,000 visits

a day usually call the website. The false information is typically collected by users from

Facebook, Twitter, Reddit, news websites, e-mails and from any platforms. The credibility

of a claim is manually verified by performing a contextual analysis. The verdict of a claim is

true or false and sometimes can be mostly true or mostly false. This verdict is followed by

a summary of how the editor(s) found the claim (e.g. it was gathered from social media or

obtained from a user’s email), a section explaining the origin of the claim, and a section of

analysis supporting the verdict.

The Snopes dataset was created by Popat et el. [240], which contains fact-checking claims

from Snopes published until February 2016 (referred to as Snopes-A dataset). Each claim was
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used to query the Google search engine, and several relevant articles to a claim were retrieved.

Relevant articles refer to the articles that support the claim based on several factors mention

in Section 5.4. Ultimately, any search results coming from the Snopes domain are discarded

to avoid any kind of bias. At the end, the dataset includes the claims, labels, relevant articles

and articles’ sources. Each claim has more than one supporting articles that may be retrieved

from different web sources. The dataset is publicly available to download 6.

5.6.2 PolitiFact Dataset

PolitiFact is a political fact-checking website in which editors rank the credibility of claims

that were created by elected officials, candidates, leaders of political parties and political

activists in US politic. The PolitiFact’s editors validate the claims by pundits, talk show

hosts, columnists and widely distributed chain e-mails. The credibility verdict of the claims

can be one of six possible ratings: true, mostly true, half true, mostly false, false and pants-

on-fire. Along with the verdict, recorded interviews and a list of sources that support their

verdict are provided with each claim. This is important for PolitiFact transparency, and it

helps readers to judge and convince with the verdict .

PolitiFact dataset was created by Popat et al. [240] in which the claims that were published

before December 2017 were extracted. For collecting related evidence, each claim was used

to query the Google search engine, and several relevant articles to a claim were retrieved.

Similar to Snopes dataset (Snopes-A dataset), relevant articles refer to the articles that support

the claim based on several factors mention in Section 5.4. Importantly, any search results

coming from the PoltiFact domain are discarded to avoid any kind of bias. At the end, the

dataset includes the claims, labels, claims’ sources, relevant articles and articles’ sources.

Each claim has more than one supporting articles that may be retrieved from different web

sources. The dataset is publicly available to download 6.

5.6.3 Snopes-B Dataset

Snopes-B dataset is used by [146]. It is originally part of the misinformation dataset for

micro-blogging that was developed by Ma et al. [190]. They extracted 992 events and for each

event a set of tweets was retrieved from Twitter. Also, 778 of these events were generated

6https://www.mpi-inf.mpg.de/dl-cred-analysis/.
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from Snopes website during March-December 2015 of which 64% were fake claims. For

making the two classes balanced, they further added 214 non-rumour events taken from [53,

163]. The resulting dataset contained 498 rumors and 494 non-rumours. The dataset has

various domains including politics, local news, and fun facts. Each claim (or event) is labelled

as factually true or false.

Ma et al. [190] dataset did not release the claims or events as a part of their dataset;

however, it includes only the set of tweets for each claim. Karadzhov et al. [146] managed

to find the original claims for only 761 from snopes.com-based clusters. Their study focused

on open-domain setting, thus all the tweets were ignored, and they only used the claims. For

extracting evidence articles, their method differed from [240] in which they generated a short

query to the Google search API and instead of querying with the full claim, verbs, nouns and

adjectives were considered to get high quality search results. Then, the web documents were

retrieved, ignoring any results that come from unreliable sources that exist in their database.

The web documents were split into three groups and the most similar group to the claim was

taken by calculating the cosine similarity. At the end, only one supporting article was related

to a target claim (for more details see Chapter 6, Section 6.2.1).

Karadzhov et al. [146] made the dataset (Snopes-B dataset) available with their code7.

The number of the claims in the dataset exceeds 761 claims (4,856 claims). This is different

from what they state in their paper; however, it turns out that they further added more claims

from other Snopes dataset in [240]. The dataset includes claim id, label and the claim itself

without including any external supporting articles. Therefore, we used the same technique as

they proposed to retrieve the article for each claim.

5.7 Conclusion

This chapter introduced misinformation or fake news problem. It presented different defini-

tions of misinformation, which have been widely used in previous studies and the effect of

misinformation on society. We highlighted the importance of automatic assessment approach

over the manual fact-checking approach for claims assessment. We focused on tackling the

problem as a text classification problem, i.e. attempting to automatically detect whether a

7github.com/gkaradzhov/FactcheckingRANLP
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particular claim is fake/not credible or not. By ‘fake/not credible’, we meant unverified or

untrue claims, or attempts to disseminate information that is inaccurate. Also, the chapter

overviewed language-based approach and discussed it corresponding limitations for assess-

ing the credibility of information. Then, the significance of utilising external evidence to

enrich the textual data with its context was highlighted and providing it to the users to sup-

port the automatic verdict of the system. Finally, we introduced three datasets: Snopes-A,

PolitiFact and Snopes-B as resources for text classification efforts that provide external ar-

ticles with each claim. In next chapter, we present our approach for credibility assessment

with a comprehensive analysis for this problem.



Chapter 6

Automatic Assessment Based On
Evidence-Aware for Claims Credibility

6.1 Motivation

Fake news or misinformation is intentionally written to mislead readers, which makes it

nontrivial to detect them simply based on the text of the claim statement. Also, the struc-

ture or origin of the claim is relatively short and contains very limited context. There-

fore, the linguistic approach only may not capture the credibility of the claims with either

short or no text content. Several researchers have suggested different features to distinguish

claims [133,239,254]. Such features can be extracted from the claim text itself [254], author′s

history [269] or even from the web considering it as a knowledge source [146, 241]. Despite

the availability of various reporting articles related to the claim in the web, few studies have

considered it as knowledge source. It considers external evidence in the form of other articles

(retrieved from the Web) that confirm or refute a claim. Moreover, it can provide comple-

mentary information and gives an interpretative explanation for the user. This agrees with the

process of manual fact-checking that entails various evidence from different sources to help

in understanding the context of the statements and to support their verdict [45].

The experiments in [146, 241] have utilised a search engine to retrieve external evi-

dence/articles and used them to assess the credibility of the textual claim. However, these

articles are long hence carrying the semantics along all-time steps of recurrent models is hard

and not necessary. Also, these approaches suffer due to some reasons in [241], the approach

is very complex due to the nature in which article sources and claim sources are embedded
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and could have influenced the results, as many sources of fake news have a common ori-

gin [15]; in [146] four types of similarities are computed and fed through LSTMs. These

models might perform poorly in long sentences because of discarded internal interaction be-

tween the words of the article [60]. However, Chen et al. [59] incorporated a soft-attention

mechanism into the RNNs to pool out distinct temporal-linguistic features with a particu-

lar focus. Yet, this approach relies on domain-specific and community-specific features and

ignores external evidence, which provides limited context for credibility analysis.

To overcome the limitations of the prior works, this chapter proposes an automated credi-

bility assessment approach. It aims to decrease the burden by supporting humans in validating

information based on joint interactions between a claim and its several supporting articles.

The idea is motivated by the fact that textual claims are relatively short and could not be reli-

ably used for classification. In contrast, evidence articles can be used to represent the central

content of the claim more authentically. For the article input, LSTM neural network was

applied and since the article input is long by its nature, the output of the last step of LSTM

may not represent the entirely of the article’s semantics. Moreover, concatenating all vector

representations of multiple words in the article may induce a large vector dimension. Thus,

the internal interaction between the words of the article may not be considered. For these rea-

sons, we adapted self-attention mechanism that applies on the top of the LSTM model which

can extract different aspects of the article into multiple vector representations. The system

then aggregates all the information about the web articles to their target claim by applying a

majority vote to asses the claim. Finally, the retrieved article can be visualized to the user as

an interpretable explanation. This chapter presents the published work in ACM conference 1.

The research questions and subsequent novel contributions of this work are the following:

RQ-1: Does enriching a textual claim with its supporting articles improve the credibility

classification of this claim? (see Section 6.4.5)

RQ-2: How does the system perform compared to the state-of-the-art models? (see Section

6.4.5)

RQ-3: What is the impact of article length on the system performance? (see Section 6.4.6)

RQ-4: Are the results considered satisfactory regarding possible fake news applications? (see

1Aloshban, N., 2020, July. ACT: Automatic Fake News Classification Through Self-Attention. In 12th ACM
Conference on web Science (pp. 115-124).
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Section 6.4.7)

RQ-5: Is the system performance affected by number of evidence articles for a particular

claim? (see Section 6.4.7)

RQ-6: How can the system help to interpret the classification results? (see Section 6.4.8)

This chapter first overviews the previous works related to the problem. Then, the proposed

approach is described. Finally, we report the experiments and discuss the results.

6.2 Related Work

The research areas most closely related to our work are fake news detection and attention

mechanism. This section overviews these two topics.

6.2.1 Fake New Detection

Previous works have typically relied on textual, network and temporal features to characterise

and detect fake news. Wang et al. [336] highlighted the importance of social context along

with textual features on social media domain. Thus, additional metadata information was

used to improve the performance which are subject, speaker profile, party affiliation, and dif-

ferent media sources. Ma et al. [191] and Ruchansky et al. [269] have also adopted RNNs to

represent sequential posts and user engagement. Zhang et al. [359] also used RNNs to detect

fake news by exploring news creators, articles, subjects ,and their relationships. Despite the

performance improvement gained in fake news detection on the social media domain, these

models may not effectively execute in detecting fake news in its early stage. Such metadata

features are not always available as a prior for fake news detection and user responses to the

event comes after this event has been intensely propagated.

Apart from the social media domain, several researchers have investigated fake news de-

tection on the web. Different linguistic features, either content-based features or semantic

features, are used for the classification [244, 254]. It aims to find specific writing styles and

sensational titles that commonly occur in fake news contents. The study in [240] proposed

a pipeline of supervised classifiers that consider the articles’ stance, the language style us-

ing subjectivity lexicons, the trustworthiness of the sources, and the credibility of the claim.

Due to the dependency of the linguistic features on specific topics and the tight coupling to
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domain knowledge, hand-crafted linguistic patterns are not yet well suitable for fake news

classification, hence, not scalable [269]. To overcome this limitation, several deep learning

models have recently been applied to extract the latent embedding features and the experi-

mental results show the potential of these models [146, 241, 269].

Evidence-aware approach shows its importance in providing cues about the controversial

nature of the claim and helps in understanding its credibility. Yet, very limited studies are

conducted on verifying the credibility of the claims based on the web evidence. For example,

Hassan et al. [130] used repositories, which act as a text-based evidence for the claims that

are earlier fact-checked. New claims are matched against the claims in the repository, which

was built from different fact-checking tools. However, this leads to limit in using this tool

to detect the claims that are similar to what already exist in the repository. To overcome this

restriction, the authors in [146] used the web as a knowledge source to confirm or reject a

claim by generating a query to search the web. Four types of similarities were computed and

fed through four LSTMs networks. This approach is brute-forced as there is no explanation

for using four different sources of similarity and the complexity of the vectors within different

LSTM components could induce information overload, which can affect the performance of

the model. The method proposed in [241] also considered external evidence as manually

retrieved articles and evaluated them against the language stylistic features, reliability of the

web sources and the stance of articles toward the claim. Claim text, claim source, retrieved

articles and article sources were fed to Bi-LSTM. However, as argued by [15], a number of

sources are well-known to engineer false documents. Using these sources as evidence may

boost the performance of the model, as such sources provide good separability (Figure 2 (b)

of [241]).

6.2.2 Attention Mechanism

The attention mechanism has been used widely in recent literature. Dos Santos et al. [93]

used attention mechanism on the top of CNN and LSTM models to guide the extraction of

sentence embedding. The study in [60] proposed an intra-sentence level attention mecha-

nism. This is a fine-grained process for detecting lexical correlations between nearby words.

They have applied this model for sentiment analysis and have shown improvement in the

performance. In [176],proposed a self-attention mechanism for question encoding. Sim-
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ilarly, [178] proposed interpretative sentence embedding through self-attention and used a

matrix representation for sentence encoding, which we also follow in our work.

CNN is widely applied in fake news detection given their successes in various text classi-

fication tasks. For example, [336] merged the max-pooled text embedding with the metadata

representation from Bi-LSTM. However, representing the input embedding by using max-

pooling could lose many valuable word meanings. Additionally, Popat et al. [241] used

weighted average of the hidden states to represent the sentence encoding into a vector. They

calculated the attention weights of the retrieved articles according to their relevance to the

claim. Based on these attention weights, the retrieved article can be visualised to the user

as an interpretable explanation. However, our approach uses a self-attention mechanism to

calculate the attention weights according to the article itself. Through this, we extract the im-

portant features of the article into multiple vector representations. Our proposed model can

not only automatically learn multiple feature representations, but also generates user compre-

hensible explanations of the learned representations.
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Figure 6.1: The Figure shows the proposed approach which takes as inputs the claim and
N articles reported the claim, classes each of them as credible or not. This is performed by
concatenating two sequences of feature vectors of the claim and the article and feeding it to
a fully connected layer with a softmax activation. Then, we apply majority vote to decide
whether the claim belongs to one class or the other.
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6.3 The Approach

Individual claims are generally short and containing very limited context. For example, the

false claim ‘President Obama waived work requirement welfare’ lacks of linguistic features

needed for a good classifier and hence such short claims may not give a good prediction to the

model. Therefore, we are not considering the claim text alone but also the various evidence

articles related to it . For example, the reporting article,

‘Romney campaign began airing its new TV ad, the ad praises the bipartisan cooperation

of President Bill Clinton and a congress to overhaul welfare it then turns partisan and attacks

President Obama. Romney TV ad right choice President Obama quietly announced a plan

to gut welfare reform by dropping work requirements. Under Obama’s plan you would not

have to work and would not have to train for a job they just send you your welfare check and

goes back to being plain old welfare. Mitt Romney will restore the work requirement because

it.....’ provides more context and hence we can extract inter-term relations.

Figure 6.1 shows the three major steps of the approach, namely Encoders, Individual

Claim classification, and Aggregation. Initially, we treat the claim as the underlying informa-

tion needed to be credibility checked. Assuming a claim C is reported by a set of N articles

D = {d1,d2, ...,dN}. The tuple of a claim and reporting articles {C,d1},{C,d2}, ...{C,dN},

forms an individual classification outcome l̂ = {l̂1, l̂2, ..., ˆlN}. By concatenating them we hope

to learn a new mapping that provides better estimation for a claim. Finally, the aggregation

step applies a majority vote over l̂ to obtain a classification outcome ŷ for the claim C. The

rest of this section explains each step in detail.

6.3.1 Encoder

In the encoder process, a claim and an article are converted first into sequences of vectors

through word embedding step. Then, the claim encoder and article encoder are performed on

these vectors.

Word Embedding

The claim and the article are converted into sequences of vectors through word embedding,

an approach that has been shown to capture linguistic and semantic characteristics of words,
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meaning that words similar along such dimensions tend to be mapped into similar vectors

(see Chapter 3, Section 3.5.1 for more information about static word embedding). Particu-

larly, each article is mapped into a sequence X = (x1,x2, ...,xτ), where xi is a D-dimensional

vector corresponding to the ith word and τ is the maximum number of vectors allowed in

X . Moreover, the claim itself is also mapped into a sequence B = (b1,b2, ...,bk), where bi

is a Q-dimensional vector corresponding to the ith word and k is the maximum number of

vectors allowed in B. The values of τ and k have been set through cross-validation during the

experiments. Consequently, X is represented as a two-dimensional matrix A ∈ Rτ×D and B is

represented as a two-dimensional matrix B ∈ Rk×Q.

Claim Encoder

After representing a claim input as vectors, the vector representations of the claim B =

(b1,b2, ...,bk) are passed through a dense layer to obtain the latent features of the textual

claim.

S =WsB+bs, (6.1)

where Ws and bs are the corresponding weight matrix and bias term.

Article Encoder

• Bi-LSTM

After representing an article input as vectors, the vector representations of the article

X = (x1,x2, ...,xτ) are fed to Bi-LSTM. The main motivation is that the article data

is long and it is essential to encode the possible relationships between words in the

article. Especially, it understands the context of the article in both directions of a word

(see Appendix A, Section 17 for more details). Such a model produces the creation of

the network’s internal hidden state ht with the input data xt and the hidden state of the

previous time steps ht−1 as follows:

−→
ht =

−−−→
LSTM(xt ,

−→
h t−1)

←−
ht =

←−−−
LSTM(xt ,

←−
h t−1)

(6.2)
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Where
−→
ht denotes to the hidden state for time step t of the forward LSTM and

←−
ht is

the hidden state for time step t of the backward LSTM. The final output is produced by

concatenated
−→
ht and

←−
ht to obtain ht = [

−→
ht ⊕
←−
ht ]. After concatenating the output vectors

of each time step for τ vectors, a matrix H is generated with the shape of [τ,2s], where

s denotes to the hidden dimension of the LSTM network.

H = (h1,h2, ...,hτ) (6.3)

• Self-Attention Based on the Article Encoder

Attention mechanisms have shown successes in various fields, for example, from ques-

tion answering and machine translations to image captioning [25, 60, 63, 134, 176, 178,

349]. Motivated by these, we conjecture that these attention techniques can improve

the fake news/misinformation detection, especially given the presence of distinctive

linguistic features for fake claims.

Self-attention mechanisms are motivated to mimic the behaviours of human readers,

who process text sequentially, from left to right, fixating nearly every word while

they read and creating partial representations of sentence prefixes [157]. This can be

achieved by utilising a self-attentive mechanism to overall hidden states H of a Bi-

LSTM encoder. First, we need to obtain the attention weights q for τ values which is

computed as follows :

A = tanh(Wa HT ) (6.4)

q = so f tmax(vq A), (6.5)

where Wa is a trained weight matrix with a shape of [e,2s] and vq, a trained parameter

vector with size e, where e is a hyperparameter. This results in size [e,τ] for matrix A

and the weighted vector q has a τ dimensional vector over which we apply a softmax

to obtain a probability distribution over τ values.

To obtain attended context vectors r, the weighted sum of each qi with each value in

the vector hi is calculated.

r = q H, (6.6)
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where r has 2s dimensional embedding.

Typically, when reading a long article, we can pay different attention to it and find

different parts of the article that express the semantic of the whole article. Therefore,

instead of focusing on a specific part of the article by using only a single vector rep-

resentation r, we need multiple vector representations that focus on p various parts of

the article. This will capture the semantics of the article more broadly. To achieve our

goal, the vector parameter vq is replaced by a weight matrix Vq with a shape of [p,e].

In details, a linear transformation is performed to convert 2s dimensional space, which

is produced after applying Bi-LSTM layer (Eq.6.3) to e dimension (Eq.6.4). Then, an-

other linear transformation is performed to convert e dimension to p dimension, which

results in p attention weight vectors of size τ .

Q = so f tmax(Vq A) (6.7)

The final article representation R is computed by multiplying the matrix Q with the

hidden states H, which result in p different weighed vectors of size 2s.

R = Q H (6.8)

• Attention Diversity

Using p different attention weights can enhance the representation of the article with

different semantics. Yet, the attention techniques may always produce similar summa-

tion weights Q for the article, thus, there will be no difference between multiple rows

of attention weights. This yields the article representation R to become infected with

redundancy problems. For preventing several attention vectors from being similar or

redundant, a penalisation term is introduced to get diverse summation weight vectors

in different p. Therefore, different summation embeddings in R can capture several

aspects of the article. This can be achieved by ensuring that Q has orthonormal rows.

Following Lin et al. [178] in regulating the redundancy, the dot product of Q with its

transpose, subtracted by an identity matrix I is applied.

J = ||(Q QT I)||2F (6.9)
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where ||·||F stands for the Frobenius norm of a matrix, and J will be large when the

row values are similar and vice versa. This means that when p rows have apparent

variances, J becomes smaller. Therefore, the objective is to minimise both penalty

term J and the loss of the model together (see the following section).

6.3.2 Individual Claim Classification

To perform credibility classification for a claim, which is based on linguistic features of the

claim and its evidence articles, the final representations, S and R are concatenated. A fully

connected layer is then processed with a linear activation to map output of LSTM layer to a

desired output size that produces a label prediction l̂ for the claim.

l̂ = g(Wl(S⊕R)+bl) (6.10)

Where ⊕ denotes the concatenate operation, Wl is a weight matrix, bl is a bias term and g is

a sigmoid that gives as output a vector l̂ where l̂i is the probability of the claim to belong to

class i.

We measure the probability error in our model by the following loss function.

L (X ) =− 1
M

M

∑
m=1

[lm logσ( ˆlm)+(1− lm) log(l−σ( ˆlm))]+λJ, (6.11)

where X is the training set, M is the total number of samples in X , lm is the groundtruth

of training sample m, λ is a regularization hyperparameter and l̂m is the classification outcome

for the same sample. By this constraint, the parameters in our model are trained by back-

propagation. We also use the gradient clipping technique to alleviate the exploding gradient

problem with a threshold of 0.5.

6.3.3 Aggregation

Section 6.3 shows that every claim has multiple supporting articles. The claim classification

step (section 6.3.2) processes each of them independently so that, for a claim that has N

supporting articles, there are N independent classifications l̂1, .., ˆlN . These are aggregated

into a single classification outcome ŷ through a majority voting, meaning that the claim is

assigned to the class most frequently represented among the l̂k values.
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Table 6.1: The Table shows statistics of the Snopes-A, PolitiFact and Snopes-B datasets. It
provides total number of claims and articles and an accurate information about the classes
distribution for claims and articles.

Snopes-A Dataset PolitiFact Dataset Snopes-B Dataset
Total Claims 4341 3,568 4,856

True Claims 1164 (26.8%) 1867 (52.3%) 1,277 (26.29%)
False Claims 3177 (73.1%) 1701 (47.6%) 3,579 (73.70%)

Total Articles 29,242 29,556 4,856
True Articles 7507 (25.7%) 15,019 (50.8%) 1,277 (26.29%)
False Articles 21,735 (74.3%) 14,537 (49.18%) 3,579 (73.70%)

6.4 Experiment and Result

The main goal of the experiments is to build an objective approach that can help journalists to

distinguish between cases. We analyse deeply the performance of the system by conducting

several experiments to answer the research questions proposed in Section 6.1. In this section,

the experimental dataset is presented. Further, the setting of the hyperparameters of the

experiments is explained. Finally, the deep analysis of the results is investigated.

6.4.1 Experimental Datasets

We assess the effectiveness of our model by conducting a set of experiments on three real-

world datasets. We use three publicly available datasets for fake news classification: Snopes-

A dataset [239], PolitiFact dataset [239] and Snopes-B dataset [146]. This allows us to fairy

compare the state of the art models in the literature. The datasets are explained in depth in

Chapter 5, Section 5.6.

In Snopes-A and PolitiFact datasets, the articles were retrieved based on different factors.

They were assessed based on identifying the language of the reporting articles (i.e. bias and

subjectivity), the articles’ stance towards the claim (i.e. whether it supports or refutes the

claim) and the reliability of the web sources generating the articles. More details about the

process is described in Chapter 5 Section 5.4. There are more than two classes: mostly true,

half-true, mostly false and half false. As we are considering only binary credibility labels,

we map mostly true and half-true into class label true; and mostly false and half false into

class label false. Claim sources and evidence sources were ignored in this study. We used
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the evidence articles as they exist in these two datasets, which allow us to fairy compare the

results reported in [241].

However, Snopes-B dataset comes without any evidence articles and to compare our

model in a fair manner with the study in [146], we used their approach to retrieve exter-

nal articles. A short query was generated to the Google search API and instead of querying

with the full claim, verbs, nouns and adjectives were considered to get high quality search

results. Then, the web documents were retrieved, ignoring any results that come from un-

reliable sources that exist in their database.The web documents were split into three groups

and the most similar group to the claim was taken by calculating the cosine similarity. At

the end, only one supporting article was related to a target claim. Regardless of whether

their approach is effective or not (which is behind the scope of this thesis), we used the same

technique for a fair comparison. Table 6.1 shows statistics of the three datasets.

6.4.2 Hyperparameter Settings

The datasets have been split into 5 disjoint subsets through a random process such that all

supporting articles belonging to a given claim belong to the same subset. In this way, it

is possible to apply a k-fold approach (k = 5) and perform claim-independent experiments,

meaning that the supporting articles belonging to the given claim never appear in both train-

ing and test set. In such a way, it is possible to ensure that the approach actually detects

misinformation and does not simply recognise the identity of the claims. Every time a fold

has been used as a test set, the union of the remaining four has been split into training set

(90% of the material) and validation set (10% of the material). This latter has been used to

select the value of the hyperparameters through hyperparameter optimisation.

The space of the hyperparameters (initial learning rate α0, number of training epochs t,

batch size b , number of hidden neurons u0 for LSTM, self-attention hidden units u1, L2 reg-

ularisation coefficient λ0 and attention diversity regularisation coefficient λ1) was searched

through a Bayesian Optimisation [225]. At the end of this phase, the hyperparameter val-

ues leading to the highest validation accuracy are α= 0.001, t= 30, b= 32, u0= 32, u1= 250,

λ1= 0.004 and λ0= 1.0 for Snopes-A and λ0= 0.0 for PolitiFact and Snopes-B. According to

a practice common in the literature, the initial learning rate has been progressively reduced

over the successive training epochs using the expression α = α0β φ/δ where β=0.96 is the
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decay rate, φ is the global step and δ =500 is the number of decay steps.

Additionally, the number of words at which an article is truncated, has been set to 80 for

Snopes-A and 100 for PolitiFact and Snopes-B (section 6.4.6 for more details). The number

of words at which a claim is truncated is 9 for all datasets. The embedding size for both claim

and article inputs is 100. We set 10 different rows (p) for the matrix embedding (see section

6.3.1). All models and training methodologies have been implemented with Tensorflow. The

models are trained through back-propagation and the loss function is the categorical cross-

entropy [70]. The cross-entropy loss function was weighted to balance classes for Snopes-A.

The models are trained using Adam optimiser [152].

6.4.3 Evaluation

To evaluate and compare the performance of our model with other state-of-the-art methods,

we considered various evaluation metrics, which include: AUC, Accuracy, Macro F1 and

Micro F1. The prevalent problem in many of the public fake news classification dataset is

the number of ground truth fake news higher than true news. This imbalanced distribution

between classes gives an unreliable result when using accuracy measures. This induces a

situation where a classifier always predicts that the majority class will achieve high accuracy.

Area-Under-Curve (AUC) for the ROC (Receiver Operating Characteristic) curve is proven

to be statistically consistent and more discriminating than accuracy in an imbalanced clas-

sification problem [179]. It shows how well the probabilities from the positive classes are

separated from the negative classes. However, we also calculate the accuracy to be compara-

ble with the results reported in the state-of-art models. In addition to the accuracy and AUC

matrices, we measure the performance with precision, recall and F1 matrices. F1 score can be

interpreted as a weighted average of the precision and recall, this weighted average is either

macro average or micro average. Macro average calculates metrics globally between labels,

and micro average calculates metrics for each label. (See Appendix A, Section .3, for more

details about hyperparameter and model selection).

6.4.4 Baselines

We compared the performance of our approach with the following competitive baseline ap-

proaches that have studied external evidence in the fake news detection:
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• DeClarE, which is a recent approach based on LSTM with attention mechanism [241].

• LSTM++ approach, which uses the claim text, snippet, web document and different

similarity vectors against the claim and they were fed to LSTM networks [146]

To further investigate the impact of each component and the self-attention mechanism in

our approach, we designed several baselines for comparison. They are simplified variations

of our approach by removing certain components as follow:

• Our approach (Claim Only), it is considered the claim inputs only, which is a dense

layer for the claim encoder, without the evidence articles .

• Our approach (Plain), it is our approach with a dense layer for claim encoder and Bi-

LSTM for article encoder without using self-attention.

• Our approach (Plain+Attention), which is our approach with a dense layer for claim

encoder and self-attention on the top of Bi-LSTM for article encoder with using simple

vector representation instead of two-dimensional representation matrix.

• Our approach (Full), which is an end-to-end algorithm with a dense layer for claim

encoder and self-attention on the top of Bi-LSTM, considering a two-dimensional rep-

resentation matrix for input article.

6.4.5 Experimental Result

Training the models requires a random initialisation step that changes the performance of the

approach. Hence, every experiment of this work was replicated 10 times, and the value of

every performance metric was the average of the values observed in the 10 repetitions. The

low variance over the 10 repetitions implied that the models were fairly resilient to changes

in initialisation and, therefore, the averages can be considered realistic estimates of the per-

formance. Table 6.2 shows the baseline and the proposed approaches at the level of the claim,

i.e. after that a majority vote was applied to all articles reported by a given claim. Like the

state-of-the-art models, we reported our results based on the performance at each particu-

lar class (e.g. accuracy for true claims and accuracy for false claims), macro F1, micro F1

and AUC. While the authors of LSTM++ model has distributed the source code2, DeClarE
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model does not; thus, we reproduced their code. In both cases, we ran the models to get the

results by taking the average of the values of 10 repetitions. We could observe that the overall

performance of the proposed model (i.e. Full Approach) outperforms that of baselines to a

statistically significant extent in all cases (p < 103).

Regarding claims only approach, the claim inputs only without enriching them with their

relevant articles are insufficient. This is because they do not perform better than claims sup-

plemented with relevant articles to a statistically significant extent. Overall, this means that

our approaches benefit to a greater extent from adding complementary information. For ex-

ample, on PolitiFact dataset, specifically, our approachesclearly outperform the claims only

approach. However, Snopes-A and Snopes-B datasets do not learn at all from considering

only claim inputs (symbolising in the Table 6.2). In addition, all our model versions with

several configurations mostly outperform the baseline models. This means that each compo-

nent of our model has an important contribution to reach the best misinformation detection

performance. If we removed one of the components, the performance would drop by a certain

degree, as shown in Table 6.2. Moreover, the system accuracy for detecting fake claims is

mostly higher than the true claims. This is important as we aim to notify readers to the sus-

picious statements as early as possible before widely spread. These observations prove the

advantages of our model and validate the effectiveness of the model in detecting fake claim

on the web.

To compare our approaches with the state-of-the-art, our model outperforms DeClarE by

a large margin on both Snopes-A and PolitiFact datasets. Importantly, the result performance

of DeClarE model that we reported in Table 6.2 differs from what was reported in their pa-

per. This is because we reproduced their source code and reported what we observed. One

possible explanation of the result differences is that they may apply k−fold approach without

considering claim independent, meaning that the evidence articles related to a given claim

may appear in both training and testing, thereby inducing simple recognition of the claim

identity. However, our model outperforms LSTM++ approach in Snopes-B dataset by a large

margin of 24% in AUC and 19% in false claims accuracy. The latter is much important mea-

surement because it has the most negative consequences and, therefore, should be as limited

as possible. However, the F1 measurements and the true accuracy for LSTM++ are better

than our model, probably because each claim in Snopes-B has one best sentence taking from
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Figure 6.2: The plot shows the performance based on accuracy and AUC as a function of
number of words in the article considered, 10 to 80 words counting by tens are analysed. On
average, increasing the article length induces better performance.

the supporting article, this is how LSTM++ approach works, while our approach addresses

the problem of article length and the effective of retrieving multiple evidence articles. This is

important from an operational viewpoint since it mimics real-life checking process.

In the following sections, we conducted different experiments to analyse the performance

of the model more deeply. Observably, our model outperforms the other models in all the

datasets; thus, what we observed is not just the effect of the data. At that point, choosing one

dataset to comprehensively analyse the results is sufficient. In particular, the analysis focuses

on the Snopes-A, the most widely benchmark that has been used in the literature.

6.4.6 Analysis of Article Length

As we discussed earlier in this chapter, sequential models are typically difficult to capture

long-term dependencies, especially when the input sequences are too long [35, 136]. There-

fore, the last hidden state may not accurately express the semantics of the article thus self-

attention is proposed. This experiment was conducted to analyse the effect of model’s per-

formance regarding article length. Figure 6.2 displays a plot of the relation between the
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performance of the model about accuracy and AUC and the number of words in the article

considered. In this study, 10 to 80 words counting by tens were analysed and 100 words in the

articles were considered (see Section 6.4.2). The model consistently performs better as the

length of articles increases, validating that incorporating article semantics by self-attention

can capture the article’s long-term dependencies. We can conclude that increasing the length

of the article can capture all the key factors that contributes to identify the claim identity.

This observation follows the actual process of manual fact-checking which entails reading

the entire article to give a final decision towards a claim [45].

6.4.7 Analysis of Model Confidence

The application of the majority vote over the articles of a given claim allows us to achieve

an accuracy close to 75% at the level of the claims. We compared our findings with several

benchmarks and concluded that our results can be considered satisfactory, as it outperforms

the state-of-the-art results (see Section 6.4.5). Also, one of the real benchmark for comparison

is human fact-checkers, a traditional process to verify information where journalists manually

assess the claims. Several studies in social psychology and communications found that hu-

man can identify fake contents slightly better than chance. The accuracy ranged in 55%-58%,

with a mean accuracy of 54% over 1,000 participants in over 100 studies [315].According

to these results, all the proposed approaches in this study seem to outperform human fact-

checkers. This indicates that one possible approach for applying misinformation detection

technologies is to classify the cases in which the outcome of a system can be trusted while

leaving the rest to journalists attention. This conforms with recent developments, indicating

that AI driven technologies should work alongside rather than replacing their users [83].

This can be done by considering the confidence score described in Chapter 4, Section

4.3. The score c can be calculated by Equation 4.5, where N is the total number of articles

reporting a target claim, and nD is the number of articles that, for a given claim, is assigned to

fake/not credible class. The rationale behind this score is that the more close nD is to N, the

more the approach appears to be confident about its decision. This measure allows one to rank

the claims according to the value of c (from largest to smallest) and to consider the accuracy

at position k. If higher values of c induce right decisions, the accuracy should be high if only

the top positions of the ranking are considered. Figure 6.3 shows the average accuracy (i.e.
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Figure 6.3: The plot shows the accuracy over the k claims for which the approach shows the
highest confidence scores for all possible values of k.

average accuracy taken over 10 repetitions with their respective standard errors) at position

k of the confidence score ranking, i.e. the accuracy observed when considering only the

claims that correspond to the k highest confidence scores. There are very high confidence

values for wrong decisions at the beginning, meaning that the approach does not appear to

confirm such an expectation. Consequently, higher confidence does not necessarily mean that

the classification is correct. One possible explanation for this result is that it is whether the

contents are written very carefully to look like the real ones, fooling the reader who does

not check for reliability of the sources or the arguments in its content, or the contents are

originally true but it looks like the fake ones. This observation highlights the challenges of

the problem.

However, it is possible to measure to what extent higher confidence scores tend to be

associated to correct classifications and, correspondingly, to measure how much the confi-

dence score can actually be trusted. The plot shows that there are many intervals where the

approach has an accuracy exceeding 77% (e.g. when considering the ranking claims between

256 to 348, 755 to 1162 and 2413 to 3561). Also, the approach has an accuracy above 73.4%
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Figure 6.4: The plots show the accuracy when considering only the k claims with the highest
confidence values, considering the claims that have more than n evidence articles

when considering 2413 to 4341 ranking claims (corresponding to four-ninths of the data).

Here, this observation suggests that the confidence score can be used as a criterion to accept

or discard a decision made by the system, while, concurrently, ensuring that the accuracy for

the accepted cases is above an acceptable threshold. This is important from an operational

viewpoint because it can allow the trained journalists to identify the subset of the claims

for which the system performs to an acceptable level, allowing the system to potentially re-

duce by four-ninths the workload of the trained journalists while still keeping the accuracy

above 73.4%. This is critical because it can increase the efficiency of detecting services and,

correspondingly, reduce the costs associated to detecting false claim.

The results above tackle all claims regardless of how many articles are available for a

claim. Note that the number of supporting articles for each claim in the dataset differs.
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Therefore, analysing whether the number of articles reporting a claim impacts the system

confidence is imperative. Hence, we considered only the claims that have above n supporting

articles and ignored the claims lacking enough materials (i.e. n < 5). Figure 6.4 displays

plots of the relation between the accuracy when considering only the k claims with the highest

confidence values and the number of evidence articles for each claim n. Interestingly, it shows

that increasing the number of articles regarding a claim increases the confidence of the system

with the correctness of its decisions, especially at the beginning. This highlights that multiple

evidence articles for a claim constitute an important source of information for improving the

correctness of confidence score of the system. This follows manual fact-checking process

since the journalists scan the web to investigate the claim identity, and the more reliable

articles the journalists read, the more confident the result is.

6.4.8 Analysis of Attention Weights

When reading an article, a human fact-checker usually focuses on several words with different

attention weights. Similarly, in our model, the attention weights purpose is to highlight how

much each word influences an article during the learning process. This visualisation gives

insight into the internal process. Therefore, we can know which words the embedding con-

siders and which are ignored by the embedding. This also interprets learning representations

to the end-users. Higher weights are coloured by darker shades to show the most significant

words in the learning process that play a major role in credibility decision. Figure 6.4.8 exem-

plifies true and false claims, along with their supportive articles and each article has different

(p) weights(see section 6.3.1).Different article weights help to extract the latent information

and provide higher level semantics of the article, which the model exploits. For example, in

Figure 6.4.8(a) the words in the article ‘allow’,‘turn on your camera’ and ‘could read’ sup-

port the model to recognize the credibility of a claim ‘Photos taken with your smart-phone

can provide others with the locations of the people pictured and allow hackers to clone your

phone’. However, Figure 6.4.8(b) exemplifies false claim ‘Football player Michael Vick broke

legs in auto- mobile accident’. The model highlights different words that help to understand

the context such as: ‘misleading’, ‘did not’ and ‘satire’.
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6.5 Conclusions

The chapter described a novel fake news detection algorithm based on the signal from the

textual claim and set of evidence articles. To capture higher level semantics for the articles

and to mimic human reading process, we applied self-attention mechanism, in which we

represented each article using a matrix-based representation. Then, a majority vote over

several external articles of a given claim was applied to assess the claim’s credibility.

Extensive experiments on large-scale real-world data demonstrated the effectiveness of

the system over state-of-the-art baselines. The experiments also showed the impact of the

article’s length on the performance in which the system consistently performs better as the

length of the article increases. Also, the experiments illustrated several application scenarios

where the proposed approaches used confidence measures that identify the likeliest cases to

be correctly classified. In this way, the systems could reduce by four-ninths the workload

of the trained journalists while still keeping the accuracy above 73.4%. The analysis of

the performance also showed that the more supporting articles for a claim, the higher the

performance of the system. This agrees with manual fact-checking process in which the

journalists scan the web to investigate the claim identity, and the more reliable articles the

journalists read, the more confident the result is. Finally, the system provided interpretability

of results, which potentially help a reader in understanding the classification decision.



Chapter 7

Conclusions

7.1 Introduction

Binary text classification problems have been widely studied and addressed in many real ap-

plications, such as depression detection and misinformation identification. In particular, with

the latest NLP and text mining breakthroughs, several studies have developed applications

that exploit text classification methods. However, the classification of texts that include an

insufficient or limited number of words is particularly challenging. In this thesis, we can

define the insufficiency of texts as any text that does not adequately represent the critical fea-

tures of a problem. Alternatively, the text features alone do not function as well as when they

are paired with additional information sources. Enriching texts using domain-specific knowl-

edge is one of the successful solutions for addressing the problems described. In this thesis,

we extensively researched the textual data in the depression and misinformation domains and

made a list of contributions for each domain.

The rest of this chapter is organised as follows. Section 7.2 summarises the contributions

of this thesis for each domain, and Section 7.3 discusses limitations of the research and

prospective future research.

7.2 Contribution Summary

Regarding the depression problem, we found that most previous studies have addressed de-

pression by the inference from behaviour of scores resulting from the administration of self-

assessment questionnaires, such as BDI-II or different versions of PHQ (see Chapters 3 and

111
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4). In this thesis, however, the disparity between depressed and non-depressed participants

has been made by psychiatrists rather than by administering self-assessment questionnaires.

This is a privilege since it increases the probability of data representing the true difference

between depressed and non-depressed participants. Alternatively, it ensures that the problem

addressed in the work is depression detection and not the inference of self-assessment scores.

This is remarkable due to multiple biases of self-assessment questionnaires and inconsistency

that may happen in filling out the questionnaires, especially by people affected by depression

(see Chapters 3 and 4).

All the experiments in Chapters 3 and 4 were conducted over a corpus of 59 interviews.

To effectively tackle this limited amount of data, the interviews were segmented into clauses,

i.e. to manually extracted linguistic units that include a noun, a verb and a complement.

Given that the average number of clauses per participant is 114, this allows one to perform,

for every person, a large number of clause level decisions. In particular, Chapter 3 examined

whether applying a high-quality contextualised embedding (i.e. BERT) for the interview

transcriptions can contribute to the result. It showed that using of BERT rather than traditional

word embedding does not induce performance improvements, possibly because there is a

mismatch between the dictionary used during the currently available versions of BERT for

Italian texts and the dictionary of the data used in this work, which may be due to the small

vocabulary size of the multilingual BERT-base edition compared to the English one. Also, it

is probably because the clauses are short (the average length is 3.9 words); thus, the context

might carry insufficient contextual information.

No single indicator on its own can sufficiently identify depression signs due to intrinsic

variations in the speech system [79]. This suggests that linguistic cues alone might not be

adequate to explain a person’s mental characteristics and states, necessitating the inclusion of

knowledge from other sources. Therefore, Chapter 3 introduced the proposed model that in-

tegrates speech signals and their transcriptions via varying multimodal methods that consider

both what people say and how they say it. The key explanation for focusing on linguistic and

acoustic features of speech is that depression interferes with the neural processes underlying

language and communication, therefore leaving detectable traces in both what people say and

how they say it. For textual data performance, the experiments show that the efficiency of

textual transcriptions does not produce better performance compared to when it is paired with
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its signals (74.1% vs 85.5% on the best multimodal method). This highlights the significance

of utilising another source of information other than relying only on textual transcriptions.

A more comprehensive analysis can be found in Chapter 4. The experiments showed

that the key variations between the methodologies of unimodal and multimodal are that the

multimodal methodologies appear to have more uniform clause-level accuracy across the par-

ticipants. This is significant since it contributes to greater accuracy at the person level, the

metric that really matters from an application viewpoint. This result originates from the ten-

dency of certain participants, particularly depressed ones, to manifest their condition either

by what they say or by how they say it, but not by both. Also, the analysis of GMU weights

showed that the role of language is likely to be more important for control participants than

the depressed. These are important findings that are unprecedented in the literature. One of

the most important consequences of the observations is that the two modalities appear to be

a source of diversity—the tendency of different classifiers to make different mistakes [252].

Such a property was shown to increase the chances of classifier ensembles [153] to outper-

form their best members [162]. Therefore, in the experiments of this work, diversity across

modalities might be at the origin of the significant performance difference between the mul-

timodal approach and the best unimodal recogniser (83.5% vs 74.1% based on accuracy). In

this respect, the main question seems to be not whether there is a modality that is better than

the others (as the state-of-the-art in Chapter 3 seems to suggest), but whether it is possible to

find multiple modalities that can correct each other when one or some of them do not carry

reliable information. Furthermore, the experiments suggested that the modality carrying the

most reliable information could be different for people belonging to different classes. This

further confirms that the best strategy is not necessarily looking for the best modality but for

a set of modalities that cover all groups of people appearing in the data.

Chapter 4 also illustrates several application scenarios in which the proposed approaches

use confidence measures to identify the likeliest cases to be correctly classified. The ex-

periments showed that the doctors’ workload can be reduced by up to two-thirds, although

still maintaining above 90% accuracy. This is significant due to the increasing efficiency

of screening services, thereby reducing the costs related to the diagnosis of depression. In

this respect, our approaches can assist psychiatric and counselling services by potentially en-

abling psychiatrists to focus on challenging situations while leaving machines to handle the
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more obvious ones. This supports the previous findings, indicating that the most effective

way to utilise AI is by supporting people and not replacing them.

Fast depression detection addresses several issues in clinical practice. First, depressed

people are inclined to avoid social relations to speak less than non-depressed people (see

Chapter 3). The potential of identifying depression with minimal material can help to tackle

such a pattern and produce good results for individuals who have difficulties in retaining an

interview. Second, detecting depressed individuals out of many people who contact coun-

selling services due to momentary distress, but are not having depression, is critical. There-

fore, in Chapter 4 deeply analysed the performance as a function of the time, based on the

number of clauses, to see how many materials the system need to detect depression. The ex-

periments show that it is possible to perform depression detection with less than 10 seconds

without significant performance losses, especially for recall. The results do not depend on

the protocol applied at the beginning of the interviews, but on the amount of data. This obser-

vation may explain that the state of depression patients tends to be manifested consistently,

thus there is a high likelihood of accurately classifying any clause they utter.

Furthermore, the problem of misinformation was studied in Chapters 5 and 6. We high-

lighted the importance of utilising external evidence, such as web evidence, for credibility

analysis of claims. Its importance lies in providing additional information that represents the

central content of the claim more authentically and gives the user an interpretative explana-

tion (see Chapter 5 for more details). In particular, Chapter 7introduced an approach designed

to reduce the burden by assisting humans in verifying the veracity of textual claims based on

joint interactions between a claim and its evidence articles. The experiments showed that the

systems can reduce the workload of the trained journalists by four-ninths while still keep-

ing the accuracy above 73.4%. This is important because it can improve the efficiency of

detection services and, consequently, lower the costs of detecting false claims.

Chapter 6 showed that utilising complementary information for a claim is critical based

on the fact that textual claims are quite short and may not be used accurately for classifi-

cation. Confirming that, the experiments of this study notice that using claim inputs alone

without supplementing them with their relevant articles is inadequate. This is because the

performance of claims regarding the articles performs better, to a statistically significant ex-

tent, than the claims approach performance does alone. In addition, Chapter 6 also analysed
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the system confidence, and it showed that when the system has high confidence values, this

does not always induce its correct classification decisions. One potential reason for such a

finding is that the contents are written very deliberately similar to the true ones or the contents

are true but seem to be false. Such insight emphasises the problem’s difficulties.

In addition, the effect of evidence articles on the number of articles required for a claim

and article length were studied in Chapter 6. Regarding the number of articles, we observed

that increasing the number of evidence articles enabled a better assessment of the credibility

of claims. This finding agrees with the manual fact-checking process since the journalists

scan the web to investigate the claim identity, and the more factual articles the journalists

read, the more confident the result is. Regarding article length, the experiments showed that

article length is critical in the credibility assessment of claims. It showed that increasing the

length of the article can capture all the key factors that contribute to identifying the claim

identity. This finding follows the actual process of manual fact-checking, which involves

reviewing the whole article before reaching a final judgement on a claim.

Several machine learning models, including regression, Naive Bayes, decision tree and

random forest are naturally interpretable. In regression, for example, coefficient weights

show the importance of the features. Likewise, traditional feature selection methods also

provide clarification of model decisions by providing the contribution of each feature. This

highlights the importance of providing user-interpretable explanations as an additional pro-

duction of the system that can justify the credibility assessment ( see Chapter 5. In Chapter

6, we conducted an experiment using interpretable evidence that aimed to specify the infor-

mative words of evidence articles. This visualisation shows insight into the internal process;

thus, we can know which words the embedding considers and which are ignored by the em-

bedding.

7.3 Limitations and Future Work

This section discusses the limitations that arise from the thesis as a whole and provides pos-

sible directions for future research. Based on the thesis organisation, in Chapter 1, Section

1.4, the main works were introduced in Parts I and II; thus, this section is based on these parts

only.
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Part I

• In this work, we conducted several experiments on a new dataset that included a rel-

atively small number of interviews. Having a larger number of subjects would allow

validation of the investigated approaches and allow for the use of more advanced tech-

niques. Future work should consider collecting more data and releasing the dataset to

the public to allow for comparisons with state-of-the-art approaches.

• Gender, age, comorbidity and cultural variances are factors that can highly affect the

diagnostic appropriateness. According to the National Comorbidity Survey, depression

was found to affect around twice as many females (21.3%) than males (12.7%) [150].

Moreover, depression was found in 50%, 50–75% and 25% of patients suffering from

Parkinson’s disease, eating disorder and cancer, respectively. Future work should anal-

yse the results of depression deeply regarding the participants’ age, education level and

gender to better understand how these factors may affect system performance.

• This work on depression detection involves Italian speakers; thus, it examined de-

pressed individuals from broadly similar cultures. Future work should improve cross-

cultural investigations and enhance the awareness of the effect of cultures on depres-

sion behaviour by gathering multiple cultural backgrounds in the data. Therefore, it

has been stated that different cultures have different displays of depression and differ-

ent cultural acceptance of depression. These differences could or could not influence an

objective depression detection system. It would be critical to have the same paradigm

to allow for the comparison of findings.

• The label in the dataset represents a snapshot of an individual’s mental state. That is

the current score of the individual’s depressive symptoms does not reflect continuous

data regarding a person’s condition. Therefore, it is difficult to gauge how a system

would fare over time. Future work should involve a longitudinal analysis that measures

the efficiency of depression detection systems over time.

• This work investigated the diagnosis of clinical depression from linguistic and acoustic

aspects of speech. However, other cues could be investigated in future work. The visual
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modality, including body movement, head pose and eye activity, could be a rich source

of cues to detect depression.

• Every interview was manually transcribed and segmented into clauses. However, speech

segmentation and transcriptions can be performed automatically using advanced speaker

techniques. Future work should consider a fully automated system to segment and tran-

scribe the interviews, which might be feasible for the task of detecting depression.

Part II

• Our models for automated credibility assessment assign a classification label indicating

how likely the information is to be true or false. This is done by enriching the claim

with its supporting articles retrieved from the web. To rely on these retrieved articles,

evaluating the article’s trustworthiness (i.e. such as reliability and stance determination

of the article) is critical. However, in this thesis, the evaluation of the article’s trust-

worthiness is not considered. Future work should investigate and evaluate the evidence

and automate the process of generating evidence.

• The analysis of the system confidence showed that a high confidence value of the sys-

tem does not always induce correct decisions in classification. Future work should

further investigate which cases the system makes wrong decisions while it has high

confidence in them.

• This work on credibility assessment focuses on textual contents. With the rise of tech-

nology, however, misinformation has also affected digital content. Future work should

consider developing models that assess the credibility of multimedia content. Overall,

a significant number of important research questions remain open in the area of de-

pression and misinformation domains, and we believe they should be tackled in future

studies, possibly relying on our work in this thesis as a foundation.



Appendix A: Methodology

Most of the existing methods of the machine learning perform properly because of the fea-

tures of inputs and human-designed representations. When machine learning is applied to

the features of the data, it is simply about weight optimisation to get the best final prediction.

However, deep learning can be considered as the formation of representation learning and

machine learning. It seeks to jointly learn proper features over multiple levels of growing

complexity and abstraction, and the final prediction.

In this Appendix, the reasons for deep neural network based models are reviewed and the

general structure of a neural network is defined. Moreover, more advanced architectures of

neural networks are examined including MLP, RNN, LSTM and Bi-LSTM. This chapter also

explains how words and signals are represented in a way the machine can understand. Finally,

the chapter shows different techniques for combining multiple representations of models.

.1 Why Deep Learning Is Important?

In our research, we utilised deep learning models for several reasons. First, hand-crafted fea-

tures are time-consuming, frequently over-specified, and uncompleted. Considering having

more than one modality or task, the process of extracting features is repeated for each of

them. Therefore, deep learning algorithms are important as they can learn features automat-

ically; the whole learning process can be automated more easily and many tasks could be

addressed.

Second, many models in Natural Language Processing (NLP) are based on count-based

models which suffers from generalisation when particular words during testing do not ap-

peared within the training set. The so-called ‘curse of dimensionality’ is another characteris-

tic of this problem. Because an index vector over a large vocabulary is very sparse, models

can simply overfit to the training set. The traditional solution to such a problem is to either
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use aforementioned hand-crafted features or rather simple target functions, such as in linear

models. Instead of discrete word counts, deep learning models of language often utilise dis-

tributed word representation, which captures similarities between words and make models

more robust. Distributed word representation is described in more details in Section .4.

Finally, deep learning models learn multiple levels of representation which are similar to

the human brains. In NLP, for example, humans can handle sentences as compositions of

words and phrases, and deep learning algorithms can use recursive architectures to process

and compose meaningful representations through compositionality (see Section .4).

.2 Neural Networks: Definitions and Basics

Artificial Neural Networks (ANNs) are information processing models that are developed to

simulate the network of neurons in human brain [198,266,271]. The underling structure of an

ANN is a network of nodes connected to each other by weighted connections, with different

weights. This is inspired by the biological model where the nodes refer to neurons and the

weighted connections refer to power of the synapses between the neurons. The degree of

importance of the given connection in ANN is indicated by the weigh coefficient. Producing

an input to number of neurons activates the network, and this activation then extends to all

the network beside the weighted connections. The electrical motion of the nerve cells has a

sequence of sharp points. The purpose of activating the ANN node is to simulate the average

firing rate of these sharp points.

Over the years, various ANNs have arisen with generally different properties. The ma-

jor difference between them is the form of the connections. The first type is ANNs with

noncyclic, which means that the computation can be performed sequentially. This type of

networks are called Feed-Forward Neural Networks (FNNs). The wide application of FNNs

is the Multilayer Perceptron (MLP), networks and it is simply called Neural Networks (NNs)

(see Section .2.2). The other type is ANNs with cycles, which means the processing can feed

into itself. This type of network are called Recursive or Recurrent Neural Networks (RNNs)

and they are far more complex, and we will describe them later in section .2.3. [39,271,338].

In the rest of this section, the structure of simple neuron model is presented. In addition,

MLP, RNN, LSTM and Bidirectional LSTM models (Bi-LSTM) are described. The basic
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Figure 1: McCulloch and Pitts’ neuron maps m inputs to one y output. The inputs xi are
multiplied by the weights wi, and the neurons sum their values. The neuron activities when
this sum is greater than specific threshold; otherwise it does not. The Figure is adapted
from [196].

training process of any ANNs is also highlighted.

.2.1 Neuron Model

The most widely used neuron model is based on McCulloch and Pitts’ neuron [198]. Figure

1 shows the graphical representation of the neuron (it is also called perceptron). The neuron

receives input as a vector of length m (x1,x2, . . . xm), where the neuron has a set of free

parameters which learns during the training process.

θ = (w,b), ∈ R×Rm (1)

where b is referred to bias and w = (w1,w2, . . .wm) is termed the synaptic weight vector.

Therefore, m+1 is the number of parameters of this neuron model.

A neuron comprises two components which are the net function and the activation func-

tion ( it is also called transfer function). These two functions are described below:

Net Function

The net function defines how the input signals are combined inside the neuron. The weighted

sum of inputs is computed as follows.
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Figure 2: The graph of the two activation functions showsing their distinct output values. The
Tanh function outputs ranges from -1 to 1, whereas Sigmid function outputs ranges from 0 to
1.

z = b+
m

∑
i=1

xiwi (2)

Then, the linear combination z is transformed by activation function Φ to specify the

output signal y from the neuron regarding its net input signal z (see the following paragraph).

Activation Function

The activation function is extremely crucial which is a mathematical function attached to each

neuron in a neural network. It is biologically inspired by activities in human brains where

certain neurons are either firing (or are activated) or they are not firing (or are not activated)

by different stimuli. The activation function does the non-linear transformation to the input,

making it capable to learn and perform more complex tasks. It regulates whether the signal

will progress further through the network to affect the result. It maps the resulting values

into the desired range which varies from a function to another based on the problem itself. It

also aims to fine-tune the weights of the inputs until the margin of error of neural network is

minimal. The activation function Φ can be formulated as follows.

y = Φ(z) (3)

The most commonly activation functions are logistic sigmoid, softmax and hyperbolic

tangent (tanh). Figure 2 illustrates the two distinct activation functions.
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The logistic sigmoid function transforms the values between the range 0 and 1. It is

widely used for binary classification problems. The sigmoid function can be defined as:

Φ(z) = σ(z) =
1

1− e−z (4)

However, the softmax function is often described as a combination of multiple sigmoid

functions. It determines a probability value for each class by representing a categorical dis-

tribution, i.e. a probability distribution over ‘N’ different possible outcomes. It is suitable

for multi-class problems since the output for a neuron (z) depends on the output of the other

neurons in the same layer. At the end, the total values add up to 1, and all class probabilities

are between 0 and 1. The mathematical expression of softmax function is:

Φ(z) = so f tmax(z) =
ez

∑
N
i=1 ezi

(5)

Finally, the tanh function is very similar to the sigmoid function. The difference is in

the symmetry around the origin. The range of values is from -1 to 1. The mathematical

expression of tanh function is

Φ(z) = tanh(z) =
e2z−1
e2z +1

(6)

.2.2 MultiLayer Perceptron Model

A multilayer perceptron network (MLP) or neural network (NNs) is a feed forward artificial

neural network. The underlying structure of MLP is a layered structure comprising w a

set of neurons. Each layer contains some number of identical neurons, where each neuron is

connected to all neurons in the following layer. There are three types of layers which are input

layer, one or more hidden layers of neurons and output layer. A three-layer neural network

is called Shallow Neural Network, whereas a network with more than three layers is called

Deep Neural Network. The MLP with a single hidden layer is shown in Figure 3. The input

patterns are provided to the input layer. The output signals, in which input patterns may map,

are provided to the output layer. The layers between these two layers are hidden layers where

the summed input weights are passed through a node’s activation function. It is hypothesised

that the hidden layers infer latent features in the input data that have predictability towards

the outputs, which describes the feature extraction process.
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Figure 3: The figure illustrates the structure of simple multilayer perceptron network (MLP),
comprising multiple layers of connected neurons, which are the input layer, one hidden layer
and the output layer.

In practice, each neuron in a specific layer is linked to all neurons in the subsequent

layer, this interconnection between the ith and jth neurons are characterised by the weight

coefficient wi j. Consider an MLP with a set of neurons in a layer A, a set of neurons in the

following layer B and x j presenting the output of neuron j, each neuron is computed as in

equation 2. More generally the equation can be written as follows:

ai = bi + ∑
j∈A

wi jx j, ∀i : i ∈ B (7)

where bi represents the bias of perceptron i. To get the output of hidden perceptron i, the

linear combination ai is transformed by activation function by equation 3, more generally:

xi = Φ(ai) (8)

The output of the neuron flows to all the neurons in the following layer till the final outputs

of the network would be produced. However, the output of MLP depends only on the current

input and not on the past or future inputs; thus, it is not suitable for sequential data.

.2.3 Recurrent Neural Networks

Traditional feedforward neural networks are confined to looking at individual instances rather

than analysing sequential inputs. Sequential data is common various domains which have
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Figure 4: The Figure shows unrolling an RNN over sequential data over time which shows
weight sharing across time steps. RNN has three types of layers: the input layer x, the hidden
layer h, and the output layer y. If we unfold this loop, the standard RNN can be considered
as copying the same structure multiple times, and the state h of each copy is taken as an input
to its successor.

time-dependent individual instances, such as NLP, speech recognition and computational bi-

ology. NNs address each instance independently thus the advantage that can be taken by

exploiting this sequential information is lost. One solution to attribute sequential dependency

is a window-based method. It concatenates a fixed number of successive data instances to-

gether and process them as one data point, similar to moving a fixed size sliding window over

stream of data. This method was applied in [113] for time sequence prediction and in [206]

for acoustic modelling. However, it depends on the factor of choosing the optimal window

size, where a small window size may not capture the longer dependencies, while a larger win-

dow size may add unnecessary noise. Particularly, a window-based approach may not scale

when there are long term dependencies in data ranging over hundreds of time steps [113].

Moreover, considering these two sentences, ‘I went to Roma in 2019’ and ‘In 2019, I

went to Roma’, they have the same meaning but the details are in different positions of the

sequence. Feeding these two sentences into a neural network for a prediction task, the model

will assign different weights to ‘to Roma’ at each moment in time. This is because, for

each input feature, the neural network has different parameters, thus the network learn all the

rules of the language independently. Yet, Recurrent Neural Network (RNN) shares the same

weights across multiple time steps and, thus the same weight will be assigned to ‘to Roma’.

Parameter sharing allows a model to be extended to examples of different lengths and to be

generalized across examples. It is especially important when the the same part of information

appears at multi-position within an input sequence [123].
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RNNs are developed [183] which are well-known to work well for learning tasks where

the input data is sequential. It processes the input sequence one instance at a time and pre-

serves a hidden state vector which acts as a memory for past information. Alternatively, the

state of a hidden neuron at time step t is a function of all inputs from previous time steps.

Therefore, the recurrent connection from the end of the hidden layer to the beginning can

be viewed as creating a kind of ‘memory’. This allows them to utilize both current input

and past information while making future predictions. The concept of memory is useful with

sequential data, giving an example from NLP, ‘I had cleaned my room’ has different meaning

from ‘I had my room cleaned’. Therefore, it is important to understand the context of each

word by looking to the words before or after it. Critically, the RNN framework does not

require a limited fixed length on the prior context; the context encoded in the previous hidden

layer contains information extending back to the beginning of the sequence.

Figure 6 illustrates the structure of the basic RNN model where on the right side of the

figure, it shows the unfolded version of the RNN, which can be seen as a deep feed-forward

neural network with the number of layers equivalent to the number of time steps in the input

sequence and with shared weight matrices W ,U and V between layers. Given a sequence of

inputs (x1, . . . ,xT ), the model sees at each t time step a current sequence element xt and the

hidden state vector from previous time step ht−1. Therefore, the hidden state is updated to ht

as follow:

ht = tanh(Wxt +Uht−1 +bh), (9)

where W accounts for a weight matrix between input and the hidden layer, and U is a weight

matrix connecting the hidden layer to itself at the previous time step t. In this way the current

output ht depends on all the previous inputs xt
′ (for ′t 6 t).

The output yt is computed as a function of hidden state as follows:

yt = Φ(V ht +by) (10)

where Φ is an activation function, V is the output weight matrix and by is the bias.

Although this approach manages to achieve relatively good accuracy on many problems

involving temporal data, it suffers from vanishing and exploding gradient problems. These

problems occur when the input has long-range dependencies. During training of a deep net-
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Figure 5: The figure shows the architecture of a recurrent cell in a Long Short-Term Mem-
ory Network (LSTM). + and x circles depict linear operations, while σ f , σu and σo are the
sigmoids used in the forget, update and output gates respectively [38].

work, the gradients are being propagated back in time all the way to the initial layer and

the gradients are calculated in the deeper layers by continuous matrix multiplications. When

the values are so small, they reduce proportionally till they vanish and, thus, a gradient not

able to have a significant impact on the parameters that need to be adjusted. Alternatively,

if the values are very large, they eventually explode and, in turn, an unstable network [135].

To overcome this problem, LSTM networks have been introduced and they are proven to

be very useful in learning long-term dependencies compared to standard RNNs. LSTM net-

works have become the most popular variant of RNN, the next section describes in details its

structure.

.2.4 Long Short-Term Memory

Long Short-Term Memory Networks (LSTMs) are special kind of RNNs and were proposed

in 1997 by Sepp Hochrieiter and Jürgen Schmidhuber. They can learn long-term dependen-

cies. They avoid vanishing and exploding gradient problems by introducing an adaptive gat-

ing mechanism and an explicitly defined memory cell (also called cell state), which preserves

information across multiple time steps. Each neuron has a memory cell and three gates: in-
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put, output and forget. These gates regulate the information flow into and out of the memory

cell. The gate mechanism is based on sigmoidal activation functions, which output values in

the range of 0 and 1, which refers to whether the corresponding entry can go through (1) or

not (0).

LSTMs come in many forms, but all of them have some form of input, forget and output

gates. The basic architecture of the LSTM unit, which is used in this work, is depicted in

Figure 5.

Forget Gate

The forget gate ft decides what the existing information is forgotten from the cell state. Al-

ternatively, how much information on the previous memory cell ct−1 should be remembered.

For each entry in the cell state ct−1, ht−1 and xt are considered then a value between 0 and

1 is assigned by pushing the output of the forget gate through the sigmoid function, which

refers to whether the corresponding entry is kept (1) or removed (0).

ft = σ(Wf .[ht−1,xt ]+b f ), (11)

where Wf is the weight and b f is the bias.

Input gate

The input gate it is to decide what the new information stores into the new memory cell ct .

This occurs in two steps using two parallel neural network layers. The first layer determines

which values should be updated in the state. Previous internal state ht−1 and the current input

of xt are used to calculate the input gate it as follows:

it = σ(Wi.[ht−1,xt ]+bi). (12)

This layer is passed through sigmoid function where the output will be close to 0 for the

values that the gate decides to leave unchanged, and the output will be close to 1 for the

values that the gate decides to change. The second step produces new candidate values c̃t that

might be updated in the state with the same two input nodes.

c̃t = tanh(Wc.[ht−1,xt ]+bc) (13)
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Finally, the old memory cell ct−1 requires to be updated into the new cell state ct . This

happens based on the multiplication of it and c̃t , which is the new candidate values scaled by

how much it is decided to update each state value, added to the filtered previous internal state

ct−1 by the forget gate.

ct = ft ∗ ct−1 + it ∗ c̃t (14)

Here ct is proceed as input for the next time step.

Output Gate

The output gate ot regulates which part of the memory cell ct should flow into the hidden

state ht using sigmoid function to the previous hidden state and current input as follows.

ot = tanh(Wo.[ht−1,xt ]+bo) (15)

The next hidden state ht is then calculated by passing the updated cell state (ct) through an

elementwise tanh. This is then multiplied by the output gate ot with values in the range of 0

to 1 to decide which element should be considered in the hidden state ht .

ht = ot ∗ tanh(ct) (16)

Generally, the last hidden state hT of a sequence of length T represents the entire se-

quence.

.2.5 Bidirectional Long Short-Term Memory Network

Conventional LSTMs only consider the previous context of data for training as it processes

sequences in temporal order. Since simply looking at previous context may not be sufficient

to understand the context, future context is also important to explore. Therefore, Bidirec-

tional RNNs were introduced in 1997 by Schusterand Paliwa [287]. Recently, Bidirectional

LSTMs (Bi-LSTMs) are applied more commonly in the literature, the standard LSTM net-

works are extended by adding another layer where the hidden connections are streamed in

reverse temporal order.

The basic structure of Bi-LSTM is shown in Figure 17, where there is two LSTMs for

each forward and backward sequence, and both are connected to the output layer. Therefore,
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Figure 6: The Figure shows the basic structure of the Bi-LSTM network. The LSTM nets at
the bottom indicate the forward feature. The above nets are used for backward. Both networks
are concatenated and connected to a common activation layer σ to produce outputs..

the model can capture both the previous and the future time steps of the input sequence.

For each input sequence (x1,x2, ...,xT ), the hidden states sequence (
−→
h1 ,
−→
h2 , ...,

−→
hT ) of the

output of the forward LSTM and the hidden states sequence (
←−
h1 ,
←−
h2 , ...,

←−
hT ) of the backward

LSTM are concatenated at each time step as follows.

ht = [
−→
ht ⊕
←−
ht ], ∈ R2u (17)

Where u is the number of hidden unit in each unidirectional LSTM. The entire hidden

states sequence are formed as follows:

(h1,h2, ...,hT ), ∈ RT×2u (18)

Generally, the last hidden state hT of the sequence of length T represents the entire se-

quence.

.2.6 Network Training

Network training is the fundamental part of machine learning procedure. Before training

ANNs, the initialisation phase occurs. Several approaches are available to initialise any type

of ANNs, the most common one is to set the weights W to a small negative or positive

random values. Besides, the bias b(l) for each layer l is set to a number, which is not 0. The
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performance of this initialisation process apparently will not result in a good prediction, thus

the training process is essential. After this initialisation step, the actual training starts. The

remaining of this section presents the basic training process of any form of ANNs.

Loss Function

A training step comprises the forward pass, where the training samples are passed forward

through the network (the processes that was described in details in Section .2). The network

predicts the probability for an independent label ŷ for each instance where ŷ = f (x,θ). The

goal of the training process is to learn the network’s parameters for each layer as such making

each training example closest to the true value (y). The distance between the network’s output

(ŷ) and the true output (y) is measured, this is called cost function or loss function. The

Mean Squared Error (MSE) and the Cross-Entropy Loss functions are the most common cost

functions used in literature. In classification tasks, the loss function we want to minimise

is usually cross-entropy. This work uses the binary cross-entropy cost function which is

calculated with:

J(ŷ,y) =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(l− (ŷi)] (19)

where y is the ground-truth label. Getting low loss means that the network’s predictions are

very close to the true values.

Optimisation Algorithm

The goal of training any ANNs is to minimise the cost function J. This is achieved by itera-

tively updating the network’s parameters θ . Therefore, learning is an optimisation problem

with the following criterion:

min
θ

J( f (x,θ),y) (20)

To minimise the difference between the network’s output and the target output, the op-

timal weights for the neurons are discovered by performing a backward pass, moving back

from the network’s prediction to the neurons that generated that prediction. Each time the

network processes the whole set of data (both a forward pass and a backward pass), it is

called an epoch. This process is an iterative process, which continues to reduce the error by

every epoch until an acceptable level of errors is obtained. This entire process is called back-
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propagation process or backward pass. It identifies how the network’s performance changes

for each parameter in the network (θ ). Alternatively, it tracks the derivatives of the activation

functions in each successive neuron, to find weights that bring the loss function to a mini-

mum, which will generate the best prediction, with a given step (this step is called learning

rate). The mathematical process for this approach is called gradient descent.

The gradient descent method is an iterative optimisation algorithm, which updates the

weights of the model in the opposite direction of the gradient to minimise the loss function.

In the simplest version, it has the following form:

θ := θ −α
∂J(θ)

∂θ
(21)

where α represents the learning rate.

ANNs often have a large number of parameters to optimise. The gradient is therefore

not efficient regarding the computation time and update speed. This means that it must com-

pute millions of forward propagations, before it can compute one backpropagation step for

updating the weights. For one update, it processes the entire training set, which can have

millions of examples. Therefore, one possible solution is to split the training set into mini-

batches (its size can be set by batch size hyperparameter) and the gradient is calculated on

each mini-batch, this Gradient Descent is called Stochastic Gradient Descent (SGD).

In the recent years, several new optimizers have been proposed to tackle complex train-

ing scenarios where gradient descent methods behave poorly. One of the most widely used

and practical optimizers for training deep learning models is Adaptive Moment Estimation

(Adam) [152]. It is a stochastic optimisation algorithm that calculates adaptive learning rate

for different parameters from estimates of the first and second moments of the gradients.

Thus, Adam adapts its learning rate α during training and optimizes it for every parameter.

Practically, Adam optimiser outperforms SGD in many complex tasks [152].

The selection of the learning rate α is important because choosing a too small step value

may result into long time training of the algorithm, and it could stuck in a local minima. Al-

ternatively, if α is too big, it may jump the valley with the best solution. Therefore, learning

rate is one of the main hyperparameter of a neural network and should be carefully selected.

The next section discusses the network hyperparameters, including learning rate and opti-

miser algorithm.
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.3 Hyperparameter and Model Selection

To test the generalisation of the model, the training set is further split in a validation set.

Hence, there is three datasets: a training set, a validation set and a test set. The validation set

is used to measure the generalisation error and is not used for the training. Since the model

is chosen by maximising the performance on validation set, the predicted performance on the

validation set has a bias. Therefore, the performance should be measured on the test set, and

this is a good approximation of the performance on unseen data.

One of the best technique used to test the effectiveness of the algorithm is cross validation

methods (CV). It is a re-sampling procedure used especially with limited dataset where a

portion of the given data is kept for training the model and another for testing its performance.

Several CV techniques are used for splitting the dataset including the leave-one-out (LOO)

and the k-fold methods. In the LOO procedure, all the samples are trained except for one

sample and the prediction is performed in the out sample and, thus, the average error is

computed and is used to evaluate the overall model. In addition, one subject can have several

samples and, hence, the LOO can also be implemented in a leave-one-subject-out manner,

where all samples from a specific subject are excluded each time. In the k-fold procedure,

k partitions of the dataset are split, where one partition is kept each time for testing and the

others used for training the model. This manner is repetitive for k times.

Machine learning algorithms automatically adjust and learn their internal parameters

based on data. However, there is a subset of parameters that is not learned and that have to

be configured by the scientists. Such parameters are often referred to as ‘hyperparameters’.

With these hyperparameters, the algorithms’ behaviours can be changed and the capacity of

the models can be regulated. The hyperparameters for ANNs are numerous, but the most

important ones are: epochs, batch size, number of neurons, number of hidden layers, ac-

tivation functions, optimisation algorithms, and loss functions. Selecting an optimal set of

hyperparameters is crucial because it influences the performance of the model substantially.

Tuning a hyperparameter scheme to find optimum topology of the model is time-consuming

and tedious. Thus, hyperparameter optimisation methods are termed to find the best hyper-

parameter combination that gives the best performance on a hold-out validation set. Grid

Search, Random Search, and automated hyperparameter optimisation methods have been
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commonly employed. Grid Search and Random Search create a grid of hyperparameter val-

ues. Specifically, in Grid Search, the value combinations will be exhaustively explored to

find the hyperparameter values combination that gives the best accuracy values. This method

is a costly approach, assuming having n hyperparameters and each hyperparameter has two

values, then the total number of configurations is 2n, making this method very inefficient.

However, Random Search navigates the grid of hyperparameters randomly, which repeatedly

selects random combinations from the grid until the certain number of iterations is achieved.

Although it manages to give good hyperparameters combination, it is hard to be certain that it

is the best combination [36]. In contrast, automatic hyperparameter tuning forms knowledge

about the relation between the hyperparameter settings and model performance to make a

smarter choice for the next parameter settings. It uses different techniques such as Bayesian

optimisation that conducts a guided search for the best hyperparameters. Bayesian optimisa-

tion applies a Gaussian process to model the surrogate and typically optimises the Expected

Improvement, which is the expected probability that new trials will improve upon the current

best observation. Bayesian optimisation can yield better hyperparameter combinations than

Grid Search and Random Search algorithms [115, 225].

.4 Natural Language Processing: Text Representation

NLP is a sub-field of Artificial Intelligence (AI) for computational techniques which helps

computers to understand, process and manipulate human written language such as sentiment

analysis. It allows computers to execute various natural language tasks including part-of-

speech tagging (POS) [334], syntactic parsing [58], named entity recognition [168], semantic

role labelling [360] and machine translation [367]. NLP techniques depend mostly on ma-

chine learning to derive meaning from human languages, which help to understand what

people say. For machine to understand the text, word representation is essential to represent

words as feature vectors as real-valued vectors. This process is called word representation or

feature extraction. This section illustrates the different types of word representation methods

including static representation and dynamic representation.
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.4.1 Static Representation

Representing the words in the static form can be divided into two different techniques: lo-

cal representation and distributional representation. Local representation is to represent the

words into sparse and high-dimensional vectors. This type of representation suffers from

high dimensionality and data sparsity, especially with a large size of vocabulary. Conversely,

distributed representation can address such a problem by representing the words with dense

and low-dimensional vectors, which have been trained on large data with the goal of trans-

ferring it to other NLP problems. This section describes briefly these different techniques for

static word representation.

Local Representations

In the early age of NLP, local representation such as one-hot word representation was intro-

duced. Each word is represented to a sparse discrete vector which is all zero values except

the index of the specific word which is marked with a one. This representation, however, is

meaningless because it lacks the relationship of words with each other. For example, ‘apple’

and ‘banana’ should be near to each other in the semantic space due to their similarity in con-

texts. If the word ‘apple’ is changed by ‘banana’, regardless whether it has seen the sentence

‘This banana is fresh’ by virtue of banana occurring in the same context of apple, the sen-

tence’s probability should be estimated. However, one-hot representation is unsuccessful to

do this because all the word vectors are orthogonal to each other which means that the cosine

similarity of any two distinct word vectors is 0. Moreover, if there is a dictionary of n-words,

this requires n-dimensional vector for each word, thereby making the training model on this

representation infeasible.

For capturing the syntactic and semantic similarity between words, additional features of

word representation are utilised, including morphology and part of speech. The intuition be-

hind it is that the linguistic concept of distributional hypothesis states that ‘words occurring

in similar contexts seem to have similar meanings’ [27]. Word is represented by a vector

whose values are the count of words that appear in context which may semantically capture

the similarity between words. With large corpus, for example, we can observe that the con-

texts of banana is closer to the contexts of apple. If Vw is the word vocabulary and Vs is the

predefined context word vocabulary. A metric W is created to quantify the relation of words
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with their contexts.

Wi j = count(wi,c j),W ∈ R|Vw|×|Vc| (22)

where count(wi,c j) is the the number of times a wi appears in the context of c j.

However, the co-occurrence is not the only measurement that captures the correlation

of words, since high weights could be assigned to word-context pairs containing common

contexts. Therefore, term frequency–inverse data frequency model (TF-IDF) was proposed

to solve such a problem by applying weighting factors [138]. Unlike co-occurrence vectors,

TF-IDF considers not just the occurrence of a word in a single sentence (context) but in

the entire corpus. The weights of word-context pairs are decreased in proportion to their

frequency in the corpus. Alternatively, weighs down the frequent words (less significant

words) while scaling up the rare ones (more significant words).

Given a document collection D, a word w and a document d ∈D, TF-IDF is claculated as

follow:

wd = fw,d ∗ log(|D|/ fw,D) (23)

where fw,d calculates the word count of w in d, |D| is the corpus size and fw,D is the number

of documents in which w occurs in D [274].

The main problem with this type of representations is the high dimensionality of vectors.

If there is a dictionary of n-words, n-dimensional vector for each word is required, thereby

making the training model on this representation infeasible. Furthermore, it can suffer from

data sparsity caused by having vast vocabularies and a given word would be represented by a

large vector comprising mostly zero values.

Distributed Representation

The traditional word representation models mentioned above are easy to develop. However,

the semantic of elements of larger granularity, such as phrases and sentences, is difficult

to capture. To solve this problem, the expressive power of neural network are employed a

neural network based approach using contextualised information [202, 233]. The distributed

representations are real-valued vectors to flexibly represent semantics of natural language.

Can distributed word representations used to improve language modelling? Instead of hand-

crafted word representation, different ways of learning representations are considered directly
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Figure 7: The Figure shows the neural network architecture of two different word2vec mod-
els: (a) Bag-of-Words model (CBOW) and (b) Continuous Skip-gram model. archite. In
the CBOW architecture, the model predicts a target word given a set of surrounding context
words. In contrast, the Skip-gram architecture tries to predict a set of context words given a
target word.

from the data to solve some task at hand. Such representations are learned implicitly with

the language modelling task in a neural network architecture. This results in a low, dense,

real-valued distributed word representation which is called distributed representation or word

embedding.

In details, words can be initialised with random vectors in a lookup table. These initialised

representations can be updated via backpropagation which results in a dense, real-valued

distributed word representation. While having distributed representations for each word in

the vocabulary, a probability of sequence of words is computed as a function of the word

representations. This induces another question, what type of functions can be used to assign

word representations to probabilities? Word representations are learned by training neural

network as parameters of the model. Backpropagation is then used to learn the function from

word vectors to probabilities and the word vectors themselves that minimises the difference

between next-word prediction features and target values.

The most common learning techniques for unsupervised learning to learn word embed-

dings are Continuous Bag-of-Words model (CBOW) and Continuous Skip-gram model [202].

Figure 7 illustrates these two methods. Skip-gram is the conditional probability for gen-

erating n surrounding words (context) given a word, where n is the context window size.
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However, CBOW maximises the probability of a word given its context (surrounding words).

It predicts the central target word based on the context words proceeding and following it

in the text sequence. Generally, these two approaches use shallow neural network, an MLP

network with one hidden layer, to learn word representation. In practice, Word2Vec is the

most popular implementation for both CBOW and skip-gram models.

Recently, Wikipedia2Vec is presented: an optimised tool for learning embeddings of

words and entities from Wikipedia [350]. It learns embeddings of words and entities simul-

taneously and places similar words and entities close to one another in a continuous vector

space. This is achieved by extending Word2Vec’s skip-gram model, which learns to predict

the context word for a given target word, with two sub-modules: the link graph module and

the anchor context module. The link graph module learns to estimate neighbouring entities

given an entity in the link graph of Wikipedia entities. The anchor context module learns

to predict neighbouring words given an entity using a link that points to the entity and its

neighbouring words. Wikipedia2Vec has been applied in different important fields including

text classification [351] and paraphrase detection [94].

The main drawback of distributed representation introduced above is that it learns em-

beddings by looking at the occurrences of nearby words which is limited on the local context

of a given word. For instance, CBOW and skip-gram incorporate 5 to 10 context words in

practice that influence a word embedding. Therefore, they lack to project all global connec-

tions of the word. Besides, they suffer from capturing the polysemous of words in different

context where each word is represented by a single prototype vector that does not change

with its context [237].

.4.2 Dynamic Word Embedding

A more effective way to address the polysemy problem is using dynamic embeddings or

contextualised embeddings. Essentially, the static word embedding models generate the same

embedding for the same word in different contexts. Instead of learning a fixed number of

contexts per word, dynamic word embedding captures word semantics in different contexts

to address the issue of polysemous and the context-dependent word semantics [237].

Bidirectional Encoder Representations from Transformers (BERT) is the most common

example of dynamic word embedding which has recently improved the state-of-the-art in
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Figure 8: The figure shows neural network architecture of BERT. The input word piece,
position and segment embeddings are summed [337].

word embeddings [90]. BERT has a transformer encoder that captures both left and right

contexts through reading the entire sequence of words at once. This characteristic allows the

model to learn the context of a word based on all of its surroundings (left and right of the

word). It is pre-trained with two objectives—masked language model (MLM) and next sen-

tence prediction (NSP) pretraining task. The MLM task is for predicting randomly masked

words given its context whereas the NSP task is for capturing the relationship between sen-

tences by predicting if a sentence B is followed by sentence A.

BERT utilises WordPiece embeddings [347] for tokenisation instead of word ones. The

input is tokenised into word pieces so that each word piece is an element of the dictionary,

which in effect, splits token such as ‘playing’ to ‘play’ and ‘##ing’. This is because the

tokens may not be contained in the pre-trained vocabulary of BERT as the BERT model has

a specific fixed vocabulary. Moreover, this kind of WordPiece tokeniser has a certain way of

handling Out-of-Vocab words (OOV). In addition, special tokens are inserted into the start

of the sequence ([CLS]), which contains the special classification embedding, and the end of

each sequence ([SEP]) for separating segments or denoting the end of the sequence.

The embedding layer is used to get the vector representation for each word in a sequence.

It comprises word piece embedding, the segment embedding, and the position embedding.

Specifically, word piece embedding is obtained through the corresponding embedding ma-

trices. Position embedding is used to capture the order information of the sequence which
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is ignored during the self-attention process. Segment embedding is used to distinguish be-

tween two different sequences of the input. The word, segment and position embeddings are

summed up to create the final input embeddings for a sequence (Figure 8).

Two model sizes for BERT have been developed, including BERT-Base, which has 12

encoder layers, each having a hidden size of 768 and 12 attention heads (110M parameters),

and BERT-Large, which has 24 encoder layers, each having a hidden size of 1024 and 16

attention heads (330M parameters). For each word, the word representation can be extracted

from any of the encoder layers. BERT models have been trained on general domain corpora,

such as English Wikipedia and Books Corpus. They have released English language and

multilingual versions. The latter supports 104 languages in a single model, which has a large

shared vocabulary, including Italian, German, Arabic and Japanese. The vocabulary size of

multilingual model is 119,547 WordPiece tokens for all of 104 languages compared to 28,996

tokens for English-only model.

In contrast to fixed word embeddings, the text representations are learned based on se-

quential context than word concurrency. Moreover, it further learns sentence-level informa-

tion by sentence-level encoders than only extract local semantic information of individual

words.

.5 Computational Paralinguistics: Speech Representation

It is a fact that a human speech contains both the basic verbal message along with paralinguis-

tic information. Paralinguistics mean ‘alongside linguistic’. It is the study of non-verbal prop-

erties of speech that is based on the qualities of your voice and the way you vocalise [283].

In signal processing and machine learning, it is being a mainstream subject and one of the

hot topics within Social Signal Processing [325]. It is a non-linguistic function that is em-

bedded in the verbal acoustic message and can be consciously controlled by the speaker such

as intentions, attitudes, emphasis and speaking styles.

Conventional NLP approaches concentrate on linguistic content analysis and word repre-

sentation. With the wider availability of recorded speech, analysing the states and traits of

speakers are increased [284]. Compare with computational linguistics, computational par-

alinguistics analyses how people say rather than what people say. The ability to analyse
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paralinguistic features has induced progress in a multitude of speech processing tasks, such

as speaker verification [132,173,323], age identification [201], personality recognition [284],

speech emotion recognition [121, 216, 313], conversation analysis [170, 172], medical diag-

nostics [41, 82, 194, 281] and depression detection [76].

This section discusses the extracting features from paralinguistic information using Mel

frequency cepstral Coefficients (MFCCs), a feature widely used in speech processing tasks.

.5.1 Mel Frequency Cepstral Coefficients

Feature extraction aims to transform the speech signal into a parametric representation of

reduced dimensionality, providing a good discriminability between classes to be identified.

Mel Frequency Cepstral Coefficients (MFCCs) are a unit of representation related to the

human auditory system and are very distinguishing for speech processing tasks. Several

studies (e.g. phone recognition [85], speaker identification [257] and claim identification

[181]) have extracted the coefficients of MFCCs to identify the paralinguistic features,

It is short-term spectral features that are widely applied in the area of audio and speech

processing. Human ears have different bandwidths with different frequencies, and the MFCCs

are based on the difference of frequencies that the human ear can distinguish. To detect the

patterns of speech and audio, filters are placed linearly at low frequencies (below 1000 Hz)

and are placed logarithmically at high frequencies (above 1000 Hz). It is useful as the voice

depends on the shape of vocal tract, including tongue and teeth. Representation of short-time

power spectrum of sound is essentially a representation of the vocal tract. The process of

MFCCs comprises several steps, performed in order, which are described below.

Frame Blocking

Speech signal varies over time. To gain stable acoustic characteristics, speech signal should

be processed over adequately short period known as frames. Speech analysis studies short

segments that capture enough information in which the features inside the frames should

remain relatively stationary. Therefore, the speech signal is divided into a sequence of N

frames, where each frame can be analysed independently and are represented by a single

feature vector, with next frames separated by M samples (M < N), and the adjacent frames

are overlapped by N−M samples. The typical length of the frame size is about 20− 40ms
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with overlap to the frames by 15ms [139]. It is necessary to choose a reasonable frame size

in which it can provide good spectral resolution. If the frame size is too large, it will not

capture the local spectral properties, whereas if the frame size is too small, there will not be

enough samples to get a reliable spectral estimate. The standard frame size for the speech

analysis during speech recognition is set to 25ms, as within this short period, the speech

signal’s properties are fairly stationary.

Windowing Function

To smooth the signal and minimise the disruptions at the start and at the end of the frames,

windowing function is applied over the frames where the frame and window function is being

multiplied. Hanning and Hamming are commonly applied windowing functions to enhance

the continuity between each frame and its adjacent frame, after the signal is segmented into

frames. Practically, the spectral distortion is reduced using a window that tapers the speech

sample to zero at both the beginning and the end of each frame. This windowing process

W [n] is applied to the input speech frame S[n] as follows:

X [n] = S[n]∗W [n], where 0≤ n≤ N−1 (24)

where N stands for the quantity of samples within every frame, and X[n] represents the output

signal after multiplying the input signal S[n] and the window function W [n].

Spectral Estimation (Discrete Fourier Transform)

For the spectral analysis, discrete Fourier transform (DFT) converts each windowed frame

from the time domain to the frequency domain [139]. The fast Fourier Transform (FFT) is

a computationally efficient algorithm for implementing the DFT in which each frame has a

given set of N samples that are converted into frequency domain as follows:

X [k] =
N−1

∑
n=0

X [n]e(− j 2π

N kn), where k = 0,1, ...,N−1 (25)

Here X [n] is the framed speech signal, and X(k) are spectral coefficients where their values

are comprise real and imaginary values. These values result in complex numbers, however,

only the absolute values (frequency magnitudes) are considered to perform further process.
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By calculating DFT, we can obtain the magnitude spectrum for the kth frequency component

in the original signal.

Mel Spectrum

Conventional spectral analysis results in a varying frequencies and the signal is linearly

spaced frequencies. This means that the resolution (variance between adjacent frequencies)

is the same at all frequencies. However, the human auditory system has unevenly resolution.

For instance, human may be able to identify small changes in frequency in low frequency

audios, and big changes in frequency in high frequency audios. Thus, there is a need to adapt

some new techniques on the spectral output from the preceding step (spectral estimation) to

replicate the human auditory response. Hence, Fourier transform signal is passed through

triangular band-pass filters known as Mel-filter bank to wrap the output frequencies to the

Mel-scale [304]. A Mel is a unit of measure that mimics the human perception of sound. A

popular formula to convert from frequency scale to mel-scale m( f ) is given as follows:

mel( f ) = 2595∗ log10(
1+ f
700

) (26)

where mel( f ) is the frequency in mels, and f is the normal frequency in Hz.

The set of filters are a set of triangular windows that are distant uniformly with overlap-

ping on the Mel-frequency axis. These filters are roughly a linear frequency spacing below

1kHz and turns logarithmically afterward. The power spectrum of each frame is the input of

the mel-filter-bank and each filter output is the sum of its filtered spectral components, known

as mel-spectrum. This can be described in the given formula.

Y [k] = ∑
k
|X [k]|Hi(Mel( f )) (27)

Where X[k] is the DFT at frequency k, Hi is the mel-spaced-filter-bank. An example of the

mel-filter-bank is illustrated in Figure 9.

The human response to the audio level is logarithmic. Use of logarithm squeezes vigor-

ous amount of values and sorts frequency estimates less sensitive to slight variations in the

input such as power variation because of microphone distortions. Logarithm of the square
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Figure 9: The Figure shows a filter bank of 10 filters used in MFCC

magnitude of the mel-filter bank output Y [k], is defined as follow:

E[m] = log|Y [k]|2 (28)

Discrete Cosine Transform

Discrete cosine transform (DCT) is computed to the log-spectral-energy vector E[m] to trans-

form the log Mel spectrum from the frequency domain to the time domain [139]. This results

in several Mel-scale cepstral coefficients, which are the standard MFCC. The mathematical

formula for calculating the cepstral coefficients is as follows.

C[i] =

√
2
M

M

∑
m=1

E[m]cos(
πi
M
(m− 1

2
)) (29)

where M is the total number of cepstral coefficients extracted from each frame. Typically, the

first 12 coefficients are considered in the literature, since these 12 values depict the informa-

tion about the vocal tract only.

Energy and Deltas

The first 12 cepstral coefficients of MFCCs contain the most salient information needed for

speech recognition. To achieve higher accuracy, energy from each frame is computed, which

is considered as the 13th feature. The energy in each frame can be calculated as the summation
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Figure 10: The Figure shows different fusion strategies for multiple modalities: (A) Early
Fusion (EF) where all the features from different modalities F1 to Fn are fused using an EF
unit to obtain single feature vector F1,n which is passed as input of the model to get the
final result D, (B) Intermediate Fusion (TF) where the intermediate features for each channel
obtained from layer i of NN are fused using a TF unit, and then the combined feature vector is
passed to the model for further analysis, and Late Fusion (LF) where the individual decision
from each channel D1 to Dn are fused using an LF unit to obtain a final decision D.

of the power of the samples over time, as follows.

Energy = ∑
t

x2[t] (30)

In addition, the speech signal changes from frame to frame. To represent dynamic nature

of the audio, the change in the cepstral features over time is computed by adding a delta

(velocity feature) and a double delta (acceleration feature) for each of the 13 features. To

calculate deltas, the distance between frames is defined by the following formula:

d(t) =
C(t +1)−C(t−1)

2
(31)

where d(t) represents the delta values, at time t, for a specific cepstral value C(t). This results

in 13 delta features that show the variation between frames in the respective cepstral feature.

Furthermore, the 13 double delta features show the variation between frames in the respective

delta features. At the end, the entire signal is transformed to a sequence of 39 cepstral vectors.
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.6 Multimodal Representation

The integration of multiple sources, modals or modes to perform an analysis task is referred

to as multimodal fusion. Sources, modals or modes are, essentially, channels of information.

The data from multiple modalities are semantically correlated, and sometimes they provide

complementary information to each other. Therefore, it reflects patterns that may not be

visible when individual modality infer a decision in isolation from other modalities. The key

idea of utilising multimodal fusion is its ability to fill missing modality given the observed

ones which can increase the accuracy of the overall decision-making process. For example,

fusion of speech features along with manual transcription features for depression detection

enhances the result compared to what would be obtained using a single medium [210].

One recurrent question with multimodal fusion is where the fusion should be applied.

The most widely used strategy is to fuse the information close to the data, which is known as

early fusion. The other fusion approach is applied at the decision level, which is known as late

fusion. Another fusion strategy is in between these fusions which is known as intermediate

fusion. For neural networks, the fusion can be done at any level between the input and the

output of the unimodal networks. Figure 10 shows different variants of the early, intermediate

and late level fusion strategies. In this section, we will highlight these three fusion strategies.

.6.1 Early Fusion

Early Fusion (EF) is also called fusion in feature space. In early fusion, joint representation

of input features from different modalities are formed. For n different modalities, a set of

features F1 to Fn are concatenated into a feature vector F1,n before being fed to the the model.

The model,73 in the scope of this research, can be any type of neural network models that

are used for the task at hand such as feed-forward network, RNN, LSTM or CNN. Typically,

a preprocessing step is necessary on the concatenated features to share the same statistical

properties such as normalisation techniques. An illustration of the EF strategy is provided in

Figure 10-A. It shows an instance of the early fusion multimodal analysis task in which the

extracted features are first fused using an EF unit, and then the combined feature vector is

passed to the model for analysis.

This fusion strategy is advantageous in that it can utilise the relation between multiple
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features from different modalities at an early stage, which helps in better task achievement.

Moreover, it only involves one learning phase on the combined feature vector [299]. How-

ever, it is often difficult to combine features of different natures into a common homogeneous

representation [348], for instance, two time sequences of different sampling rates or different

lengths. One possibility is to flatten each representation to a one-dimensional vector be-

fore the concatenating process. This solution often is undesirable because flattening the data

changes the structure of it [227].

.6.2 Late Fusion

Late fusion approach (LF) is also called decision level approach. Unimodal approaches pro-

duce local decisions from D1 to Dn which are obtained based on individual unimodal features

(F1 to Fn). These local decisions are then combined using an LF unit to make a fused deci-

sion vector that is analysed further to obtain a final decision D about the problem [57]. An

illustration of LF approach is shown in Figure 10-C.

The late fusion strategy has many advantages over early fusion. Unlike early fusion, late

fusion focuses on the individual predictive strength of each modality. In addition, it can

be performed to a broader set of learning problems because it does not suffer from fusing

features in representation space. This is because the outputs of multiple unimodal classifiers

are in the same form, such as class labels or class confidence measures. However, it fails

in utilising the feature level correlation among modalities. In addition, different classifiers

have their local decisions and, thus, the training process for them seems to be tedious and

time-consuming.

Various techniques are used for late fusion approach. Regarding neural network with soft-

max layer, it produces a discrete probability distribution over the available classes. A com-

prehensive and comparative study of various combination rules such as sum, product, max,

min, median and majority voting, was studied in [154]. They suggested that the sum rule is

less exposed to the error of individual classifiers when estimating posterior class probability.

It is the most straightforward approach, probably the most commonly applied technique for

combined multiple classifiers. In this study, the sum rule was performed in which the outputs

of multiple classifiers can be combined into one multimodal class prediction by taking the
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class with the maximum index value [227]:

ĉ = arg max
c∈C

n

∑
i=1

p(c|Si) (32)

where C is the set of all possible classes, n is the number of modalities, and S is the decision

vector extracted from modality i.

.6.3 Intermediate Fusion

Intermediate fusion (TF) is neither early nor late fusion levels, it is in between them. The

architecture of intermediate fusion is built based on the deep neural network. Neural net-

works comprise hierarchy of layers that transform input data into a higher level representa-

tion through multiple layers. Therefore, the internal data representation (intermediate fea-

tures) can be extracted from any layers of processing on each unimodal representation. The

extracted learned representations of all modalities, F1 to Fn, are concatenated and then fed to

another model that learns to embed them in a new multimodal space that is better in optimiz-

ing their similarity. An illustration of the TF strategy is provided in Figure 10-B. It shows an

instance of the intermediate fusion multimodal analysis task in which the intermediate fea-

tures are fused using an TF unit and then the concatenated feature vector is passed to another

model for further analysis [227].

This type of fusion can be beneficial over early fusion, since the unimodal processing

layers can vary in a way matching the nature of each modality. Moreover, the concatenated

representation can be fed into any number of layers, this provides intense processing pro-

cedure of multimodal representation. Therefore, the intermediate fusion can be seen more

powerful than late fusion models.

.7 Conclusion

This study explored the importance of deep neural networks. It overviewed the basic structure

of neural networks and the more advanced structures, including MLP, RNN, LSTM and Bi-

LSTM. It also highlighted the different approaches of representing words and speech. The

different techniques for combining different modes were also considered.
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