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I send you this letter on a falling star. Reentry will score and test it but will
not melt it away. I write in �re across the sky, a plummet to match your rise.

This Is How You Lose the Time War
— Amal El-Mohtar & Max Gladstone



Abstract

The chromosphere is a thin layer of the observable solar atmosphere maintained in a
complex energy balance that is not well understood. Chromospheric conditions can
only be probed through observations of radiation, primarily atomic spectral lines. The
shapes and intensities of these spectral lines cannot be correctly reproduced by assuming
local thermodynamic equilibrium (LTE) conditions, and are instead a�ected by non-
local radiation �elds. During solar �ares, an enormous amount of energy is deposited
in the chromosphere, heating the plasma, provoking dramatic dynamic reactions and
substantial changes in the observed line pro�les. A two-pronged approach is therefore
required to develop our understanding of this region and its reaction to �ares: detailed
observations, and a theoretical framework derived from complex modelling by which to
interpret them.

In this thesis we focus on techniques for modelling optical spectral lines in solar �are
conditions, including a reassessment of previous assumptions, the radiative in�uence
of a �are on neighbouring atmosphere, and present a novel machine learning inversion
technique. Our choice of optical lines is motivated by the exceptional resolution and
cadence of modern and upcoming ground-based observatories, enabling a highly detailed
exploration of this region. All of the radiative modelling presented is performed with our
new Python framework Lightweaver, which aims to facilitate the development of complex
radiative transfer simulations.

In Chaps. 1, 2, and 3, we introduce the necessary background material. We �rst present a
brief description of the outer layers of the solar atmosphere and general introduction to
solar �ares. Then, in Chap. 2, we provide an overview of �eld-aligned radiation hydro-
dynamic modelling of solar �ares, and associated numerical techniques, including an
in-depth discussion of radiative transfer in non-LTE conditions. In Chap. 3, we introduce
the two primary spectral lines used in our research, Hα and Ca II 854.2 nm, along with
an overview of the inverse problem of radiative transfer (determining the atmospheric
conditions responsible for an observed spectrum), and the concept of response functions,
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Abstract

which describe the radiative response to a perturbation in atmospheric parameters. We
also provide a brief introduction to machine learning techniques.

The design philosophy and implementation of Lightweaver is described in Chap. 4. We
also provide validation examples for the various features of this framework, presenting
comparisons with state-of-the-art radiative transfer codes RH and SNAPI, along with two
further tests to validate its time-dependent treatment of atomic level populations.

In Chap. 5, we apply Lightweaver to the synthesis of radiation from �are models produced
by the radiation hydrodynamic code RADYN and present three di�erent case studies.
Firstly, using two di�erent RADYN simulations, we investigate the photoionising e�ects
of the hydrogen Lyman lines on Ca II and show that this has a signi�cant e�ect on the
emergent line pro�les and a 10–15% change in chromospheric radiative losses. Secondly,
the importance of a time-dependent treatment of Ca II is tested, with onlyminor deviations
found due to ignoring these e�ects. Finally, we present a modi�cation of this tool to
include the e�ects of partial frequency redistribution (PRD) and synthesise the radiation
from a RADYN model, despite the poor convergence of our technique. The Doppler-
like approximate PRD treatment used for the Lyman lines is found to remain relatively
accurate in the �aring simulation, but the Ca II K line pro�le and radiative losses di�er
more signi�cantly. We also present a time-dependent formulation of response functions
that, with further development, should allow for greater interpretability of spectral line
formation in complex radiation hydrodynamic models.

The extension and application ofLightweaver to a two-dimensional slab of quiet Sunplasma
adjacent to a RADYN �aremodel is presented in Chap. 6. This slab is held at a constant pre-
�are temperature and density structure, whilst the atomic level populations and electron
density are allowed to vary with the incoming radiation. Signi�cant enhancements in the
Hα and Ca II 854.2 nm line pro�les are found in excess of 1Mm from the �are, although no
continuume�ects are seen in this simplemodel. These enhancements found in this simple
model are compared against observations from the CRisp Imaging SpectroPolarimeter
(CRISP) on the Swedish Solar Telescope (SST) and e�ects of a similar order of magnitude
are found, although substantial di�erences remain.

RADYNVERSION, described in Chap. 7, is a novel deep learning based inversion technique
built on an invertible neural network, allowing inference of chromospheric conditions
multiple orders of magnitude faster than conventional techniques, outside of the con-
straints of statistical and hydrostatic equilibrium that are ill-suited to �ares. We discuss in
detail the theory of its construction, and provide a brief proof of concept application to
SST/CRISP data, which is found to agree with previous analysis of this event.

iv



Contents

Abstract iii

List of Figures ix

Preface & Acknowledgements xiii

1 Introduction 1
1.1 The Layers of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Solar Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Numerical Flare Modelling 10
2.1 Radiation Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 An Eye to the Future: Radiative Magnetohydrodynamics . . . . . . . . . . . 13
2.3 Solar Flare Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Introduction to Radiative Transfer . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 The Formal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Short-Characteristics Methods . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Other Formal Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 LTE vs NLTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Collisional Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.6 Emissivity and Opacity . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.7 Radiative Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.8 General Source Function . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.9 Iterative Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.10 Solving the Multilevel NLTE Problem . . . . . . . . . . . . . . . . . 27
2.4.11 Time-Dependent Population Updates . . . . . . . . . . . . . . . . . 30
2.4.12 Partial Frequency Redistribution . . . . . . . . . . . . . . . . . . . . 31
2.4.13 Charge Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.14 Determining Numerical Convergence . . . . . . . . . . . . . . . . . 35

v



Contents

2.5 Introduction to Hydrodynamics and Conservation Laws . . . . . . . . . . . 36
2.5.1 Numerical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.2 Riemann Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.3 Godunov’s Method and Higher Order Reconstructions . . . . . . . . 41
2.5.4 Numerical Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.5 Time Integration, Stability, and Splitting Schemes . . . . . . . . . . 43

2.6 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Optical Flare Observations and Inversions 48
3.1 Important Optical Spectral Lines . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 The Swedish Solar Telescope . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 The Daniel K Inouye Solar Telescope . . . . . . . . . . . . . . . . . . 52

3.2 Introduction to Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Milne-Eddington Inversions . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Generalisation Through Response Functions . . . . . . . . . . . . . 56
3.2.3 Forward Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.4 In the Context of the Latent Space . . . . . . . . . . . . . . . . . . . 62

3.3 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 Arti�cial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 General Function Approximations . . . . . . . . . . . . . . . . . . . 65
3.3.3 Training via backpropagation . . . . . . . . . . . . . . . . . . . . . . 66
3.3.4 Di�culties training DNNs . . . . . . . . . . . . . . . . . . . . . . . . 67

4 The Lightweaver Radiative Transfer Framework 69
4.1 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Accessibility & Code Overview . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Model Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Other Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Lightspinner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Radiative Transfer with
Time-Dependent Populations 85
5.1 A Brief Dissection of RADYN and a Possible Future of RHDModelling . . . 85
5.2 Minority Species Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



Contents

5.3 Reprocessing RADYN Simulations with the Lightweaver Framework . . . . 89
5.3.1 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Case Study: Ca II Photoionisation by the Hydrogen Lyman Lines . . . . . . 93
5.4.1 The RADYN simulations . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Line Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.3 Radiative Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Case Study: Is Full Time-Dependence Necessary? . . . . . . . . . . . . . . . 104
5.6 Case Study: Partial Frequency Redistribution . . . . . . . . . . . . . . . . . 107

5.6.1 Modifying Our Lightweaver-based Model to Support PRD . . . . . . 107
5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Digging Deeper: Time-Dependent Response Functions . . . . . . . . . . . 112
5.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Two-Dimensional Radiative Transfer 123
6.1 The Formal Solver in Two-Dimensions . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 The BESSER method . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Evaluation Order and Boundary Conditions . . . . . . . . . . . . . . 128
6.1.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 2D Simulation Con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.1 Observed Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Spectroscopic Results . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.3 Population Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.4 Importance of Time-Dependence . . . . . . . . . . . . . . . . . . . 156
6.3.5 Horizontal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Observational Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 RADYNVERSION 171
7.1 The RADYNVERSIONModel . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3 Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.4 MaximumMean Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.6 Proof of Concept Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vii



Contents

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Concluding Remarks 189

Bibliography 197

viii



List of Figures

1.1 Temperature and total hydrogen number density (nH) structure of the FAL
C atmosphere model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Grotrian (term) diagram of Ca II bound terms of interest. . . . . . . . . . . 49
3.2 Diagram illustrating the degeneracy present in traditional inversions. . . . 53
3.3 Resolving the degeneracy of inversions through the addition of a latent space. 54
3.4 Failure of pseudoinverse in inferring quadratic varying source function. . 58

4.1 Comparison of Lightweaver and RH synthesis of Ca II 854.2 nm from the
FALC atmosphere with di�erent electron density solutions. . . . . . . . . . 77

4.2 Comparison of the Lightweaver, RH, and SNAPI synthesis of Ca II 854.2 nm
from the FALC atmosphere with complex velocity pro�le and LTE electron
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Comparison of Lightweaver and RH synthesis of Ca II K from a RADYN
snapshot comparing the e�ects of PRD. . . . . . . . . . . . . . . . . . . . . 80

4.4 Fig. 4 of Judge (2017). Time-dependent response of hydrogen populations
to instantaneous temperature change. . . . . . . . . . . . . . . . . . . . . . 81

4.5 Validation of Lightweaver’s time-dependent population update scheme. . . 81
4.6 Validation of time-dependent charge conservation in Lightweaver. . . . . . 83

5.1 Overlap between Lyman transitions and Ca II continua in model atoms used. 94
5.2 Comparison of Ca II 854.2 nm treatments in the F9 simulation. . . . . . . . 97
5.3 Comparison of Ca II 854.2 nm treatments in the F10 simulation. . . . . . . . 98
5.4 Ca II 854.2 nm contribution functions and level populations for the two

calcium treatments in the F9 simulation at t = 11 s. . . . . . . . . . . . . . . 99
5.5 Ca II 854.2 nm contribution functions and level populations for the two

calcium treatments in the F9 simulation at t = 20 s. . . . . . . . . . . . . . 99
5.6 Ca II 854.2 nm contribution functions and level populations for the two

calcium treatments in the F10 simulation at t = 11 s. . . . . . . . . . . . . . 100

ix



List of Figures

5.7 Ca II 854.2 nm contribution functions and level populations for the two
calcium treatments in the F10 simulation at t = 20 s. . . . . . . . . . . . . . 100

5.8 Time evolution of the calcium losses in the F9 simulation. . . . . . . . . . 101
5.9 Time evolution of the calcium losses in the F10 simulation. . . . . . . . . . 102
5.10 E�ect of calcium losses on total radiative losses in the two simulations. . . 103
5.11 Comparison of time-dependent and statistical equilibrium treatment of

Ca II 854.2 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.12 Comparison of the CRD and PRD treatments of the Lyα line in the F9 model.109
5.13 Comparison of the CRD and PRD treatments of the Ca II K line in the F9

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.14 Comparison of the chromospheric radiative losses under CRD and PRD

treatments of the Ca II K line in the F9 model. . . . . . . . . . . . . . . . . 111
5.15 Comparison of contribution, temperature response, and velocity response

functions for the F9 simulation at t = 11 s. . . . . . . . . . . . . . . . . . . . 114
5.16 Comparison of contribution, temperature response, and velocity response

functions for the F9 simulation at t = 20 s. . . . . . . . . . . . . . . . . . . . 115
5.17 Comparison of contribution, temperature response, and velocity response

functions for the F10 simulation at t = 11 s. . . . . . . . . . . . . . . . . . . 115
5.18 Comparison of contribution, temperature response, and velocity response

functions for the F10 simulation at t = 20 s. . . . . . . . . . . . . . . . . . . 116
5.19 Comparison of time-dependent and statistical equilibrium response func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Diagram of short-characteristics formal solver in two-dimensions. . . . . . 124
6.2 Diagram of sweep order for two-dimensional short-characteristics formal

solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 Validation of 2D formal solver in static FALC atmosphere with periodic x

boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4 Di�erence in Ca II 854.2 nm line pro�les between 1 and 2D formal solvers. 132
6.5 Validation of 2D formal solver with complex velocity �eld, and with �xed x

boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6 Con�gurationof the two-dimensional simulation showing the�aringbound-

ary condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.7 Con�guration of two-dimensional simulation to produce radiation that

would be observed by a slit spectrograph looking across the model �are. . 138
6.8 Hα spectral line and variation in the 2D F9 simulation. . . . . . . . . . . . 140
6.9 Ca II 854.2 nm spectral line and variation in the 2D F9 simulation. . . . . . 141

x



List of Figures

6.10 Hα spectral line and variation in the 2D F10 simulation. . . . . . . . . . . . 142
6.11 Ca II 854.2 nm spectral line and variation in the 2D F10 simulation. . . . . . 143
6.12 Hα spectroscopy in the 2D F9 simulation. . . . . . . . . . . . . . . . . . . . 144
6.13 Ca II 854.2 nm spectroscopy in the 2D F9 simulation. . . . . . . . . . . . . . 144
6.14 Hα spectroscopy in the 2D F10 simulation. . . . . . . . . . . . . . . . . . . 146
6.15 Ca II 854.2 nm spectroscopy in the 2D F10 simulation. . . . . . . . . . . . . 146
6.16 Spectroscopy at t = 10 s in the F10 model with x boundary conditions set to

zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.17 Contribution function, χν/τν and relative population changes at t = 10 s in

the F9 simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.18 Contribution function, χν/τν, and relative population changes at t = 10 s

in the F10 simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.19 Radiation �eld anisotropy and electron density in F10 model at t = 10 s. . . 154
6.20 Comparison of statistical equilibrium and time-dependent treatments at

t = 10 s for the Hα line in the F9 model. . . . . . . . . . . . . . . . . . . . . 156
6.21 Comparison of statistical equilibrium and time-dependent treatments of

Hα as a function of x position. . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.22 Comparison of statistical equilibrium and time-dependent treatments of

Ca II 854.2 nm as a function of x position. . . . . . . . . . . . . . . . . . . . 158
6.23 Comparison of statistical equilibrium and time-dependent treatments of

Hα with electron density taken from time-dependent model. . . . . . . . . 159
6.24 Comparison of statistical equilibrium and time-dependent treatments of

Ca II 854.2 nm with electron density taken from time-dependent model. . . 159
6.25 Ratio of outgoing radiation using 41 and 81 horizontal points at t = 5 s in

the F9 simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.26 Ratio of outgoing radiation using 41 and 81 horizontal points at t = 10 s in

the F9 simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.27 Ratio of outgoing radiation using 41 and 81 horizontal points at t = 15 s in

the F9 simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.28 Ca II line core observation of M1.1 �are at time 2014-09-06T17:09:26 . . . . 163
6.29 Extent of enhancement in Ca II 854.2 nm for selected region. . . . . . . . . 164
6.30 O�set between the enhancement of the blue and red wings of the Ca II

854.2 nm line and the line core for the labelled region. . . . . . . . . . . . . 165
6.31 O�set between the enhancement of the blue and red wings of the Hα line

and the line core for the labelled region. . . . . . . . . . . . . . . . . . . . 165
6.32 O�set between the enhancement of the blue and red wings of the Ca II

854.2 nm line and the line core in the simulations. . . . . . . . . . . . . . . 167

xi



List of Figures

6.33 O�set between the enhancement of the blue and red wings of the Hα line
and the line core in the simulations. . . . . . . . . . . . . . . . . . . . . . . 167

7.1 Structure of the invertible RADYNVERSION network. . . . . . . . . . . . . 174
7.2 Validation of RADYNVERSION forwards model. . . . . . . . . . . . . . . . 182
7.3 Validation of the RADYNVERSION reverse model. . . . . . . . . . . . . . . 182
7.4 CRISP context image of 2014-09-06 M1.1 �are just a�er �are peak. . . . . . 184
7.5 Line pro�les to invert, on- and o�-ribbon. . . . . . . . . . . . . . . . . . . . 185
7.6 Inversion results for the on-ribbon pixel. . . . . . . . . . . . . . . . . . . . 186
7.7 Inversion results for o�-ribbon pixel. . . . . . . . . . . . . . . . . . . . . . 186

xii



Preface & Acknowledgements

It took me a long time to grok the concepts of NLTE radiative transfer, probably due to
hubris. I never imagined, at the start of this endeavour, that it would come to represent the
core of my research interests. At some point a�er learning and playing with LTE methods,
I convinced myself that the problem couldn’t get much more di�cult. A�er all, how hard
can it be to determine the opacity of a plasma? The answer, it turns out, is “quite hard”,
but that’s a topic for the rest of this thesis. The methods we will discuss typically take a
journey through a complex space to arrive at their destination — there is an unfortunate
lack of direct methods in this �eld. I don’t know whether I’ve arrived at my destination yet,
but this is certainly a milestone, and there are many people I am grateful to for guiding
me along this meandering path.

First and foremost, I would like to thank my supervisor, Lyndsay Fletcher, for letting me
explore and follow the excitement gradient into the most interesting little valley. In equal
parts always ready to point me in the right direction, tear my bad ideas to shreds, and
reassure me that I hadn’t just wasted the last nmonths.

There is no chance that I would be where I am today without the support and guidance
of Paulo Simões who really took me under his wing, introduced me to many aspects of
numerical modelling, and was always willing to spend time sounding out new ideas. You
really helped me learn how to be a scientist and engage with the community.

Tomy RT and inversionmentor, IvanMilić: Thank you! Your enthusiasm is infectious, and
your hospitality fantastic. I’ll never forget cycling around Boulder, or the “quick questions”
that turned into chats that lasted for hours. Thank you to everyone else at the National
Solar Observatory for being so welcoming, full of di�erent perspectives, and fun to be
around, both in and out of the o�ce. Hazel and Jørgen, thanks for providing me with a
home in Boulder, rather than just a place to stay!

Denizens of the 604 o�ce, I don’t know half of you as well as I should like. . . I know that
youwill all support each other as you �nally get back in there. Would that we had hadmore
time in that little box of science: I have missed the whiteboard sessions, the impromptu

xiii



Preface & Acknowledgements

chess, and the general banter. John and Aaron, thanks for listening to my regular rants
about numerical methods; I hope some of my Python advice has been useful! To everyone
else along the astronomy corridor, thank you for your passion and willingness to share
the latest exciting discovery, scienti�c or otherwise, especially at 4 pm co�ee.

A personal thank you to Mats Carlsson for taking time to explain the intricacies of RADYN,
and nudge me in the directions of interesting problems. Thanks also to Petr Heinzel and
Jana Kašparová for listening to my ideas and then ensuring that I test them with su�cient
rigour!

To the bois of FLaD, your entertaining company got me through the lockdowns with some
amount of (in)sanity intact! And where would I be without the soundscapes that have
infused throughout this work? Thanks to Devin Townsend, Eluveitie, Leprous, Myrkur,
Babymetal, Nightwish, Wardruna, and Heilung. . . to name but a few.

I must of course thank my parents for always encouraging my curiosity, making me
consider the world around me, and supporting all my endeavours. You made me a person
capable of handling this.

Throughout all the time spent at home, one person has stayed at my side (admittedly
sleeping most of the time). Thanks for the company Augustus, some cats have earned
co-authorships for less. Finally, Clara, none of this would have happened without you.
Thank you, pup, for all of your love, understanding, friendship, and encouragement. Let’s
see where the next adventure takes us.

xiv



1
Introduction

To be taught, if we are fortunate

The Sun is obviously responsible for the existence of life on Earth — a�er all, there would
be no solar systemwithout it! The Earth lies within a narrow orbital zone inwhich the solar
irradiance is precisely su�cient to maintain the very speci�c temperatures required for
life as we know it, without cooking or freezing us. Our Sun is but one ofmany similar stars
with similar solar systems, and perhaps, similar life. Whilst the planetary temperature is
a necessary condition, it is far from su�cient, and the requirements of life are far more
complex than a simple balancing act of “power in, power out”. Instead, the form of the
energy received, and how the atmosphere reacts to it, has a crucial role in the viability of
a planet. Indeed, there is a complex and delicate set of photochemical reactions that both
maintain the planetary temperature and protect its inhabitants from the more dangerous
components of the incoming radiation.

During a solar (or stellar) �are certain dangerous components of a star’s radiative output
can be dramatically enhanced. For example, the e�ects of a �are observed from AD
Leonis, an M Dwarf star, on an orbiting Earth-like planet were investigated by Segura
et al. (2010). The DNA-damaging ultraviolet (UV) radiation increased at the top of the
atmosphere by approximately an order of magnitude, which could lead to disastrous
consequences on the health and genetic stability of biological lifeforms caught in the path
of this oncoming radiation. This would be equivalent to the UV index going from “low” to
“extreme” and back again over the course of an hour! The modelling of this event showed
that the increase in the more damaging UVB and UVC bands reaching the planet’s surface
was greatly diminished thanks to the planet’s oxygen-rich atmosphere, yielding a peak UV
dose rate for DNA damage only slightly higher than that on Earth.
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1.1 The Layers of the Sun

A slightly di�erent atmospheric chemistry could yield di�erent results, but so too could
a di�erent �are. Fortunately for us, our solar UV intake varies far less during �ares (e.g.
Woods et al. 2006), and the Earth provides an essential envelope that protects, but not
with impunity, from the worst this star can throw at us. As our closest star, the Sun most
directly a�ects us, and knowledge gained from this companion can help us understand
the environment through which our planet falls, and also the conditions in distant solar
systems to which we may one day venture.

Flares produced by our own star have e�ects clearly visible to life on Earth, from the
beautiful aurorae that occasionally adorn the night sky, to disruptive impacts on tele-
communications and satellites. Due to the proximity and signi�cance of the Sun, it is
the only star, that human science is aware of, to be continuously monitored by a �eet
of advanced instrumentation, with a corresponding global community of researchers
dedicated to unravelling its mysteries. The intensely dramatic and rapid variations of
the solar atmosphere that are observed during energetic �aring events are almost as
mesmerising as the aurorae they can produce, and developing an understanding of them
is a key component of living long-term as a species with this companion star, whilst its
proximity enables investigation on a scale that can only be dreamed of for the distant
cosmos. These fascinating questions can and should be answered to slake the natural
human thirst for scienti�c comprehension, but are also key stepping stones to answering
some of the questions appearing from the �elds of plasma and particle physics, in addition
to those of exoplanetary viability.

1.1 The Layers of the Sun

Theobservable solar atmosphere is composed of threemain layers of plasma: photosphere,
chromosphere, and corona. These are all permeated by a complex, structured, time-
varying magnetic �eld. The photosphere is the innermost observable “surface” of the
Sun, and is the origin of the daylight with which we see (Zirin 1992). The photosphere
appears granulated, a pattern of light and dark structure evolving slowly, like the surface
of a pot of boiling water, due to the convection cells that form within the photosphere
and the solar interior below it. These transport plasma that has cooled down deeper
into the atmosphere and renew the hotter surface layer. Larger dark features known as
sunspots are o�en visible on the photosphere: these occur in regions of stronger magnetic
�eld which inhibits the local convection and allows the plasma locked in this region to
cool. The photosphere serves as the visible surface of the Sun, and is optically opaque,
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Figure 1.1: Temperature and total hydrogen number density (nH) structure of the FAL C
atmosphere model of (Fontenla et al. 1993).

primarily due to an abundance of negative hydrogen that forms due to the temperature
and density of this region. This H− ion is formed by the addition of a second electron to a
hydrogen atom: it has a low ionisation potential and is a signi�cant component of solar
opacity and emissivity across the optical region and beyond (Hubený & Mihalas 2014).
The photosphere emits as an almost ideal black body with a temperature of approximately
5800K, and continues radially outward for ∼ 500 km from the optically opaque layer until
we enter the chromosphere (Carroll & Ostlie 2007).

The chromosphere is ∼ 2000 km thick, throughout which the density of the solar plasma
drops o� rapidly, and in standard reference models the temperature of the plasma starts
to rise from approximately 4000–4500K (Vernazza et al. 1981; Solanki 2004). This lower
boundary is known as the temperature minimum region. The increase in temperature
above this level clearly shows that the atmospheric temperature structure is not controlled
by radiation and conduction alone (which would lead to a monotonic decrease), and
there must be additional heating mechanisms at work (Gurman 1992). In Fig. 1.1 we
show the temperature and total hydrogen density structures of the FAL C semiempirical
atmosphere (Fontenla et al. 1993). This model was constructed to attempt to reproduce
observed spectral lines and continua which form throughout the solar atmosphere, and a
height of 0Mm corresponds to an optical depth of unity at a wavelength of 500 nm. The
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1.1 The Layers of the Sun

optical depth de�nes the number of mean free paths, or average number of scattering
events, for a photon between two points, thus an optical depth of one is o�en considered
to be opaque. Due to its low density, very little broadband light can be observed from the
chromosphere. Instead, we image this region with narrowband observations of spectral
features, primarily absorption and emission lines.

At the top of the chromosphere, and the top of the FAL C model, there is a dramatic
increase in temperature (from ∼ 20 000K to ∼ 106 K), with a corresponding decrease in
density. The average ionisation of the plasma increases signi�cantly and many ultraviolet
spectral lines are observed to form in this region. This exceedingly narrow layer, barely
a few hundred kilometres thick, is known as the transition region, as it controls the
atmosphere’s transition from the denser inner layers to the hot and tenuous corona.

The fully-ionised corona extends outwards to a distance of several solar radii, and main-
tains a high temperature, fromwhich extreme ultraviolet (EUV) and X-ray emission can be
observed. The corona presents a complex structure, containing loops of di�erent scales
and morphologies, due to closed magnetic �eld lines, as well as coronal holes where the
plasma in a region is ejected outwards into the heliosphere by open magnetic �eld lines.
An obvious, and long-standing, problem in solar physics is the so-called coronal heating
problem (reviewed by Klimchuk 2006): by what mechanism, or mechanisms, does the
corona reach and maintain its multi-million K temperature? The current consensus (De
Moortel & Browning 2015, and references therein) is that this heating must occur through
a variety of processes which is likely to include magnetic reconnection (a restructuring of
the magnetic �eld to a lower potential, liberating the stored energy) and the dissipation
of magnetohydrodynamic waves.

Despite its much lower temperature than the corona, the chromosphere requires a much
larger energy �ux to maintain its temperature structure, due to the much higher density
of this region (De Moortel & Browning 2015; Carlsson et al. 2019). The mechanisms
proposed for this include acoustic waves propagating from the photosphere for heating
the lower chromosphere, and magnetic �eld e�ects in the upper chromosphere. The
magnetic �eld can contribute to heating in a multitude of ways including the dissipation
and mode conversion of waves, as well as more direct heating through the release of
magnetic stresses by reconnection and Joule heating (Carlsson et al. 2019). In addition to
the heating problem, there are numerous other unanswered questions connected to the
chromosphere, including but not limited to the mediation of energy during solar �ares,
the formation of spicules (small dense jets observed in the chromosphere), the transport
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of the magnetic �eld and waves, the formation of prominences and �laments (cool and
dense material rising from the photosphere into the corona).

The solar atmosphere, at least from the upper photosphere, must be treated as a single
unit, and thus, problems such as that of the corona’s temperature cannot be considered
separately. Some of the corona’s energy will be conducted downwards into the chromo-
sphere, a process aided by the magnetic �eld, and by the same, the magnetic �eld that
permeates the corona originates from deeper in the solar atmosphere and has to pass
through the chromosphere. Determining the energy balance throughout the atmosphere is
a very active �eld of research, necessitating both complex numerical models and detailed
observational results (e.g. Carlsson et al. 2019).

1.2 Solar Flares

Solar �ares are intense short-duration �ashes of radiation that occur in the solar at-
mosphere and can be observed across the entire electromagnetic spectrum. The �rst
documented scienti�c observation of a solar �are was that of Carrington (1859), which
occurred spontaneously during a routine observation of a sunspot cluster. This event was
so energetic that the ensuing solar storm and magnetic disturbances wrought havoc on
the telegraph network, and aurorae were seen as far south as Colombia (Moreno Cárdenas
et al. 2016). The Carrington Event, as it is known, was a particularly spectacular event,
and whilst no event of equivalent magnitude has been recorded since, during the peak
of the 11 year solar cycle it is not uncommon to observe multiple smaller �ares over the
course of a day.

Flares occur in active regions, which are areas where a twisted magnetic �eld in the kG
range emerges from the photosphere (for a review of active region evolution see van Driel-
Gesztelyi & Green 2015). The magnetic �eld in these regions o�en leads to the generation
of sunspots, although the presence of sunspots is not necessary for a �are. Here, we will
brie�y describe the evolution of a �are and some of the observational characteristics. For a
full review of the latter the reader is directed to the works of Benz (2008) and Fletcher et al.
(2011). This description follows the standard model of �ares, o�en known as the CSHKP
model a�er the authors of the papers involved in its development: Carmichael (1964);
Sturrock (1966); Hirayama (1974); Kopp & Pneuman (1976). This model considers a single
magnetic �eld loop or simple arcade of loops, and whilst �ares are typically observed in
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regions of more complex geometry with multiple intersecting and neighbouring loops, it
correctly reproduces many observed characteristics.

The evolution of a �are can be roughly split into two sections: impulsive phase, and
gradual decay. As the potential energy stored in the magnetic �eld of the active region
increases due to twisting and shearing, it can be seen in photospheric magnetograms and
can sometimes be visualised by emission from the energetic plasma trapped within it. The
photospheric motions and emergence of this magnetic �ux builds and stores energy in
coronal loops. In theminutes preceding a �are, small-scale brightenings may be observed
in the so� X-ray (SXR) and EUV bands. The �are proper, and the impulsive phase, are
presumed to begin with a magnetic reconnection event that releases a large amount of
magnetic energy previously stored in the coronal magnetic �eld. In some situations, an
amount of material previously held in place by the closed magnetic �eld lines is carried
by an expanding �eld and ejected along �eld lines that are now open to the heliosphere.
This process is known as coronal mass ejection. At the looptop, near to the reconnection
site, small SXR sources are observed due to the heating and acceleration of electrons. Less
frequently, non-thermal hard X-ray (HXR, photon energies above 10 keV) sources may
also be observed in this region (Krucker et al. 2008). The accelerated electrons then spiral
along the magnetic �eld lines producing radiation in the synchrotron family.

A large portion of the energy released travels down the loop and arrives at the chro-
mosphere, producing extreme heating, rapid ionisation, and driving signi�cant plasma
motions. There is a large spike observed in the X-ray �ux, notably HXR bremsstrahlung
from high-energy non-thermal electrons accelerated by the energy released by the �are
colliding with the denser chromosphere. This has traditionally been described by the
collisional thick target model (Brown 1971; Hudson 1972), which presumes that these
non-thermal electrons are accelerated in the corona. Due to the heating that ensues from
this process the chromosphere undergoes evaporation, where the dense heated material
starts to rise along the magnetic loop. These motions can be observed in the Doppler shi�
of spectral lines, and regions of heating can be seen in the enhancement of chromospheric
spectral lines, such as the Hα line. In a real-world system with neighbouring loops the
reconnection process may travel along the loops, triggering these heating processes in
turn and leading to ribbons along their footpoints visible in these lines. SXR observations
have revealed compact hot sources with short durations (∼1 minute) in �are footpoints
(Hudson et al. 1994). Analysis of these regions in both SXR and EUV have revealed densit-
ies close to those expected at the top of the chromosphere but with temperatures in the
millions of K (Mrozek & Tomczak 2004; Graham et al. 2013; Simões et al. 2015).
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Another proposed mechanism for transporting the energy from the coronal reconnection
site to the chromosphere is Alfvén heating (Emslie & Sturrock 1982; Fletcher & Hudson
2008), which suggests that energy is transported by Alfvén waves1 to the denser layers
at the base of a �aring loop where electrons are locally accelerated. One argument for
this is the so-called “number problem” which expresses the di�culty in resupplying the
acceleration site in the low density coronal plasma with su�cient electrons to re�ect the
number inferred from HXR observations of their chromospheric impact (e.g. Simões &
Kontar 2013). The denser regions closer to the electrons’ impact location do not su�er
from this same scarcity of electrons, and thus represent a possible resolution to this
problem.

A�er the energy involved in particle acceleration has been expended the �are enters what
is known as the gradual decay phase. Due to the lack of particle acceleration the HXR
�ux drops rapidly, but the plasma continues to evolve hydrodynamically whilst cooling
radiatively to slowly relax into a quieter con�guration.

Whilst the total radiated energy may seem like a natural metric by which to classify �ares,
this is an extremely di�cult �gure to estimate (e.g. Milligan et al. 2014). The magnitude
of a �are is instead estimated by the total solar �ux between 0.1 and 0.8 nm as measured
by the Geostationary Operational Environmental Satellite (GOES) network. These are
then classi�ed based on the peak �ux, with the smallest class, A, having a peak �ux in
the range 10−8–10−7Wm−2. The following classes, in order of increasing �ux, are B, C, M,
and X, with bins increasing by 1 dex per class, and X having no upper bound. A numerical
su�x is appended to these classes representing the measured �ux as a multiple of the
bin’s lower bound. The frequency of �aring events is found to be inversely proportional to
their magnitude, with X-class �ares being quite rare (only a handful of events per year),
while less energetic events occur far more commonly. Whilst the most energetic events
are rare, their distribution is far from uniform. For example, in September 2017, at the end
of solar cycle 24, the Sun produced a series of �ares from two active regions, including
four X-class events, in the space of less than a week.

The primary unanswered questions in �are physics are related to the storage, release,
transport, and dissipation of energy, as well as the interaction of the magnetic �eld of the
magnetic �eld with these. These phenomena modify the atmosphere and lead to directly
observable e�ects, such as changes in spectral signatures, which are our only means for
determining the functioning of these mechanisms.

1These are transverse waves that propagate along the magnetic �eld (e.g. Tandberg-Hanssen & Emslie 1988).
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In this thesis we focus on the numerical modelling of solar �ares, paying close attention
to the formation and interpretation of chromospheric spectral lines. These spectral lines
are accessible to ground-based instrumentation and have already yielded great insights
into the evolution of the chromosphere during �ares. As the chromosphere mediates a
large portion of the energy liberated during a �are, understanding its response is key to
developing our understanding of the complete �aring system. It is important to verify the
soundness of assumptions made in current modelling, and investigate e�ects that will
become important as the next generation of high-resolution solar telescopes enter service.
The work presented in this thesis seeks to develop our understanding of the formation and
interpretation of spectral features in �ares, which is a necessary step in determining the
dominant energy transport mechanism in �ares, as well as the associated atmospheric
conditions.

In Chap. 2, we present the numerical approaches employed in �are modelling. Then,
in Chap. 3 we describe the primary optical spectral lines that will be modelled, the in-
strumentation used, an overview of the inverse problem of radiative transfer, and an
introduction to machine learning. The Lightweaver radiative transfer framework is presen-
ted and validated in Chap. 4. Lightweaver is then applied, in Chap. 5, to synthesising the
radiation from current solar �are models to assess assumptions and investigate future
directions. Chap. 6 presents the modelled radiative response of a quiet Sun slab adjacent
to a �are. In Chap. 7, we describe our deep learning inversion technique, RADYNVERSION.
Finally, in Chap. 8 concluding remarks are made.

1.3 Conventions

Throughout this thesis we use SI units unless otherwise noted, with wavelengths in nm.
In all discussions the “height” or altitude of a point is considered to increase vertically
from the solar surface (i.e. the layer of the photosphere which is opaque to light with
a wavelength of 500 nm). This leads to a de�nition of velocity where a positive value
indicates an observed blueshi�.

When referring to di�erent computers, we refer to:

1. hercules: 36 cores/72 threads across 2 sockets containing Intel Xeon E5-2697v4, 256
GB of DDR4 RAM, CentOS 7 Linux.
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2. tomahna: 8 cores/16 threads AMD Ryzen 3700X, 32 GB DDR4 RAM, Windows 10 with
Ubuntu Windows Subsystem for Linux.

3. hephaistos: 6 cores/12 threads Intel i7 8700, 16 GB DDR4 RAM, CentOS 7 Linux.

This thesis is produced using PythonTeX (Poore 2015), and all �gures are produced by
Python code stored inline. Diagrams are produced using the Paul Tol’s vibrant colourblind
accessible colour scheme2. The complete source of this document, and the data necessary
to reproduce it, will be distributed and archived following typical practices. Whilst a com-
plete list of packages will be made available with this distribution, the current version has
been compiled with Python 3.8.2, NumPy 1.20.0 (Harris et al. 2020), SciPy 1.6.0 (Virtanen
et al. 2020), Matplotlib 3.4.3 (Hunter 2007), seaborn 0.10.0 for its colourblind accessible
colour scheme (Waskom 2021), Astropy 4.2.1 (Robitaille et al. 2013; Price-Whelan et al.
2018), and Lightweaver 0.7.5 (Osborne & Milić 2021). For all validations of the Lightweaver
framework presented herein the data is produced using simulations run during the compil-
ation of the document, and for the other chapters the complete post-processed simulation
output or observational product is ingested, with the exception of Chap. 6 where the small
region isolated in the observational data was extracted in a separate step to reduce the
necessary volume of information. The source of this thesis therefore documents how this
data was processed to produce the �gures presented and can easily be modi�ed to analyse
the available data in other ways.

2https://personal.sron.nl/~pault/
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2
Numerical Flare Modelling

Simulation is a powerful scienti�c approach that seeks both to validate our understanding
of a phenomenon and also learn how it is in�uenced by various parameters. Contrary
to its dictionary de�nition, which suggests deceit or merely a surface level resemblance,
simulations are essential tools in an astrophysical context. Astrophysical observations
di�er greatly from laboratory experiments, due to our lack of knowledge of the con�gura-
tion and parameters of the system, and inability to repeat particular events. Modelling
therefore represents our best tool for bridging the gap between a theory of the physical
processes at work in an observed event, and the observations thereof. A numerical ap-
proach is o�en needed as the coupled physical processes investigated are typically too
complex and non-linear to analytically solve in detail. There will commonly be free para-
meters le� in these models, some of which can be directly inferred from observation, but
others may need to be investigated and later constrained by comparing the model output
to observations. Due to computational or conceptual limitations, simplifying assumptions
are o�en required to make these models tractable.

To design a model of solar �ares it is �rst necessary to understand as much as possible
from the available observations, so as to ascertain reasonable approximations and the
most important processes to include. By the same, it is necessary to understand which
observables vary between �ares, to be able to exploit their speci�c sensitivities and choose
those that exhibit su�cient variations to describe the processes at work and distinguish
between models. The following builds on many years of work by the solar physics com-
munity, and we start from the understanding that has slowly been accrued to present the
current state of �are modelling, and an introduction to some of the important numerical
theory. A discussion of the �are observables we are focused on, as well as the techniques
used to obtain these, is presented in Chap. 3.
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2.1 Radiation Hydrodynamics

2.1 Radiation Hydrodynamics

A complete numerical description of a solar �are would require considering the sim-
ulation of a large volume of plasma permeated by a strong magnetic �eld, using the
equations of magnetohydrodynamics (MHD) to describe the motion of the �uid, and
considering the propagation of energy through the volume. Due to the complexity of this
treatment, including obtaining su�cient numerical resolution throughout the model,
this is not currently feasible. It is reasonable to assume that the strength of the magnetic
�eld e�ectively locks the �uid within �ux tubes to the �eld lines. This is then used to
construct an approach known as �eld-aligned radiation hydrodynamic (RHD) modelling.
RHDmodelling of �ares starts from the assumption that the plasma to be modelled can
be represented as being contained within a tube, o�en considered semi-circular. This
represents a single magnetic �ux tube, and the plasma may only move longitudinally
along it. The atmosphere is then treated as a plasma (ranging from semi-ionised in the
lower atmosphere to fully ionised in the corona) consisting of a single compressible �uid,
obeying the equations of hydrodynamics and energy transport through this medium.

This gas dynamic system can be described by
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(2.1)

where ρ is the mass density of the gas, υ is the bulk velocity, z is the spatial coordinate, g
is the local gravitational acceleration, P is the pressure, µ is the coe�cient of dynamic
viscosity, E is the total plasma energy, L is the radiative loss term, and S is all additional
energy source terms, from radiative transfer and atmospheric heating. In these models
the plasma is typically assumed to behave as an ideal gas, and therefore uses the equation
of state P = ntotkBT , where ntot is the total particle number density, kB is Boltzmann’s
constant, and T is the plasma temperature. Additionally, κ is the temperature-dependent
coe�cient of heat conduction, and is discussed in detail in Sec. 2.6.

All of the quasi-one dimensional codes solve a variant of the RHD equations presented in
(2.1). The �rst of these describes mass continuity, the second conservation of momentum,
and the third conservation of energy. The nuance typically occurs in ensuring that all
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2.1 Radiation Hydrodynamics

terms are solved in a self-consistent fashion and the treatment of the optically thick
radiation source and sink terms appearing in the energy equation.

The �rst generation of hydrodynamic �are models (Nagai 1980; Mariska et al. 1982; McCly-
mont & Can�eld 1983) focused on capturing the gas dynamics of the �aring event, using
simpli�ed radiative treatments. These early models were, in general, much more limited
due to computational constraints. Nagai (1980) and Mariska et al. (1982) both employ
optically thin losses with ad hoc corrections to avoid over-cooling the lower atmosphere.
McClymont & Can�eld (1983) employed an escape probability formalism for determining
the transition rates of hydrogen, which is a faster, less precise method than detailed radiat-
ive transfer, but vastly more accurate than assuming the chromosphere to be optically thin
(or an ad hoc modulation thereof). Escape probability methods are unable to directly take
radiative backwarming into account – where radiation produced higher in the atmosphere
is absorbed at a lower point – which can be an important factor for strong solar optical
transitions used to diagnose atmospheric properties.

The current generation of RHD codes includes RADYN (Carlsson & Stein 1992, 1995, 1999;
Allred et al. 2015), FLARIX (Varady et al. 2010; Heinzel et al. 2015), HYDRAD (Bradshaw
& Mason 2003; Bradshaw & Cargill 2013), and HYDRO2GEN (Druett & Zharkova 2018,
2019). RADYN and FLARIX both apply detailed treatment of the radiative losses for certain
chromospheric transitions, whilst HYDRAD uses partially precomputed radiative rates
for hydrogen (based on the treatment of Sollum (1999)) and radiative losses following
the approximations of Carlsson & Leenaarts (2012). HYDRAD originally focused more
on the investigation of non-equilibrium optically thin radiative losses in the corona, and
less on the chromosphere, however, recent development has also moved in the direction
of an improved chromospheric treatment. It also di�ers in its use of a two-�uid model,
treating electrons and ions as separate, but coupled, �uids. In current applications this
does not appear to provide signi�cantly di�erent results when applied to �are modelling.
HYDRO2GEN applies a di�erent approach to computing the radiative transfer terms using
the approximate L2method of Ivanov& Serbin (1984), and electron beamheating following
Syrovatskii & Shmeleva (1972).

RADYN is derived from the MULTI radiative transfer code (Scharmer & Carlsson 1985;
Carlsson 1986, 1992), and applies the linearisation approach described therein to the
entire RHD system, ensuring the self-consistency of all terms. The equations of RHD
are solved in an implicit linearised form by Newton-Raphson iteration on the dynamic
grid of Dor� & Drury (1987). RADYN was originally constructed to investigate the e�ects
of waves propagating through the chromosphere, but was extended by Abbett & Hawley
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(1999) to perform some of the earliest simulations of the dynamic �ares with detailed
radiation treatment in a self-consistent fashion. The code has since been developed
further to include improved energy transport treatments, primarily focusing on electron
beam energy deposition (Allred et al. 2005, 2015). Its techniques are discussed further in
Sec. 5.1.

FLARIX, on the other hand, consists primarily of three separate modules. The hydro-
dynamics is solved by a variant of the NRL Solar Flux Tube Model described in Mariska
et al. (1982, 1989), extended with a MALI module (considering non-overlapping spectral
lines with constant background continuum as described in Rybicki & Hummer (1991)) for
detailed radiation transfer, and a test-particle code for determining heating and electron
deposition (Varady et al. 2010; Heinzel et al. 2015).

RADYN and FLARIX have recently been tested against each other and provide remarkable
agreement, despite their di�erent heritage (Kašparová et al. 2019), and early tests also
show good consistency with HYDRAD when its recent extensions are enabled1.

2.2 An Eye to the Future: Radiative Magnetohydrodynamics

Much scienti�c e�ort is being invested into the creation of three-dimensional radiative
MHD (RMHD) models, which aim to accurately describe all of the physics of a �aring
system through the use of large models on supercomputers. The two leading codes are
Bifrost (Gudiksen et al. 2011), and MURaM (Rempel et al. 2009; Rempel 2016). MURaM was
originally focused on photospheric magnetoconvection, but has been extended into the
corona. It adopts a grey radiative transfer technique that treats all outgoing radiation using
a wavelength averaged approach, but has successfully demonstrated the ability to drive
self-consistent �are-like eruptions with time-dependent photospheric magnetograms as a
boundary condition (Cheung et al. 2019).

Bifrost is more focused on a detailed chromospheric treatment; it can apply di�erent
combinations of physics modules including multi-group opacities for wavelength depend-
ent radiation transport, the Sollum (1999) model for hydrogen ionisation (following the
treatment of Leenaarts et al. 2007), and radiative losses following the method of Carlsson
& Leenaarts (2012). It has been used to investigate solar enhanced networks (Carlsson
et al. 2016), the generation of spicules (Martínez-Sykora et al. 2017), and the magnitude

1Initial comparisons undertaken following the International Space Science Institutemeeting: “Interrogating
Field-Aligned Solar Flare Models: Comparing, Contrasting and Improving” led by G.S. Kerr and V. Polito.
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of magnetic energy present in the chromosphere (Martínez-Sykora et al. 2019), amongst
many other projects.

Currently, neither code can handle the scale of the energy deposition used in the �eld-
aligned �are models, or provide an equivalent chromospheric spatial resolution, but this
is an area of very active development. The �eld-aligned models remain complementary
to these much more complex and computationally intensive models, allowing for more
rapid investigation of the relative importance of phenomena to be implemented within
the RMHDmodels, the use wider parameter spaces and higher energy inputs, and easier
more compact output that is easier to manipulate and interpret.

2.3 Solar Flare Heating

The aforementioned modern �eld-aligned RHD codes are primarily designed to simulate
the response of a tube of initially quiet solar atmosphere to heating. This is typically
presumed to be due to a beam of energetic electrons precipitating from the corona due to
magnetic reconnection.

The direct e�ects of these electrons must also be considered, as their �ux is su�ciently
large that their collisions with particles in the lower atmosphere can substantially change
the distribution of these particles, exciting and ionising them. The evolution of the
atmosphere will also a�ect how and where it interacts with these precipitating electrons,
coupling an additional problem to the extant RHD system.

There are di�erent methods of solving this problem, the simplest of which is the analytic
solution of Emslie (1978), known as the “Emslie beam”, which provides an analytic solution
to electron beam energy deposition along the column of plasma under the assumption
that all electron energy is lost due to Coulomb collisions with the plasma acting as a cold
target. This is a useful approximate treatment, however terms such as relativistic e�ects
on high energy electrons, return current (heating the corona), magnetic mirroring, and
particle di�usion (pitch-angle and momentum) are all important here, and ignored in
this model. RADYN and FLARIX both include more advanced treatments including these
e�ects; FLARIX uses a test-particle module (Varady et al. 2010), whereas RADYN solves
the Fokker-Planck equation (now using the method of Allred et al. 2020), but both also
include the option to use the the simpler analytic Emslie formulation.
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2.4 Introduction to Radiative Transfer

The Alfvénic heating model has also been considered in modelling e�orts. A simpli�ed
variant of this has been investigated by Kerr et al. (2016) inside the RADYN code, and
produced notably di�erent spectral line pro�les which may agree better with observa-
tions than those from an electron beammodel. Further investigation of a more complete
implementation of this method and its results are needed. This approach was also incor-
porated into HYDRAD by Reep & Russell (2016), which showed the viability of these waves
heating the deep chromosphere and triggering explosive chromospheric evaporation. It
is non-trivial to incorporate a full treatment of this phenomenon into RHD codes as it is
coupled to the magnetic �eld, and future improvements are needed to more accurately
model these e�ects and investigate to what extent Alfvénic and electron beam heating
occurs simultaneously.

The simulations of �ares discussed thus far allow us tomodel the time-evolution of heating
a starting atmosphere and in turn predict line and continuumemission through the tools of
radiative transfer. These detailed results can be compared against observations, and have
provided signi�cant insight into chromospheric properties (e.g. Kuridze et al. (2015); Rubio
da Costa et al. (2016); Kowalski et al. (2017b); Simões et al. (2017)). The manual forward-
�tting process involved in attempting to reproduce these observations with simulations
is both time-consuming and di�cult and lies close to the �eld of automated inversions,
which we will address later in Chaps. 3 and 7.

Wewill nowpresent amore detailed overviewof the physics involved in themost important
terms of the RHD equations (2.1), starting with complexities of radiative transfer outside
of local thermodynamic equilibrium.

2.4 Introduction to Radiative Transfer

The content of this section draws primarily from Hubený & Mihalas (2014) and the paper
describing the Lightweaver radiative transfer framework (Osborne & Milić 2021).

Radiative transfer is the science of how radiation propagates through a material: the
absorptions, scatterings and emission that happen therein. Radiation is by far the most
widely exploited conduit through which information can arrive from celestial bodies. It
allows us to derive proxies for in situmeasurements, that cannot otherwise be obtained,
due to the distances and extreme conditions being observed.
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Everyone is familiar with the concept of images, which show the spatial variation of light,
but a lot of additional information can be gleaned by analysing radiation in terms of
its wavelength variation and polarisation projections. Using both of these properties is
referred to as spectropolarimetry, and spectroscopy when only the unpolarised intensity is
considered. The most basic property to consider here is the speci�c intensity, commonly
denoted I(ν,~d) for a particular frequency ν and direction ~d at a location in space with
typical SI units Jm−2 s−1Hz−1 sr−1.

A ray propagating through a medium, such as a neutral gas or plasma, will gain a certain
amount of energy per unit length due to emission processes, whilst also losing another
amount due to absorption and scattering processes. These will depend on the local
parameters of the plasma as well as the direction of the ray. For a plasma where the
primary interacting species are atomic, we can distinguish bound-bound (spectral lines)
and bound-free (continuum) transitions. In the former a bound electron moves between
two di�erent sublevels of an atom2, whilst in the latter the atom either absorbs su�cient
energy to free a previously bound electron, or a free electron recombines with an atom
and loses energy in the process.

In addition to the obvious spontaneous emission and absorption processes, there is also a
process of stimulated emission which is needed to balance the transitions. This occurs
when an electron is stimulated to transition between levels by photons with the same
frequency and direction as the photon produced by this transition.

In the following, we will discuss how to obtain the frequency- and direction-dependent
outgoing radiation given the emissivity and opacity of the plasma, and how to obtain a self-
consistent radiation �eld and populations for atomic species outside of the approximations
of local thermodynamic equilibrium. We will also discuss how to determine convergence
for the iterative processes used.

2.4.1 The Formal Solution

For a one-dimensional planar atmosphere the radiative transfer equation (RTE) for the
speci�c intensity along a ray can be written as

1
c

∂I(ν,~d)
∂t

+ µ
∂I(ν,~d)
∂z

= η(ν,~d) − χ(ν,~d)I(ν,~d), (2.2)

2Here atom refers to either a neutral atom or an ion
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2.4 Introduction to Radiative Transfer

where η is the plasma emissivity, χ is the plasma opacity, z is the spatial coordinate of
the strati�cation of the atmosphere, t represents time, c is the speed of light, and µ is the
cosine of the ray’s inclination to the surface normal of the plane-parallel con�guration.
We consider that the light-crossing time for the propagation of light on a solar scale is
small compared to the time evolution of both the atmosphere and our observations so we
ignore the time-derivative term. De�ning the source function

S(ν,~d) = η(ν,~d)
χ(ν,~d)

, (2.3)

and the optical depth along a ray from the observer as the number of photon mean free
paths along this segment

τ(z,ν,~d) =
∫zobs
z

χ(z′,ν,~d)
µ

dz′, (2.4)

we can write the RTE as
∂I(ν,~d)
∂τ(ν,~d)

= I(ν,~d) − S(ν,~d). (2.5)

Equation (2.5) is a �rst-order linear di�erential equation and can be solved with the
integrating factor e−τ(ν,~d) giving the formal solution of the RTE:

I(τ0,ν,~d) = I(τ1,ν,~d)e−(τ1−τ0) +

∫τ1
τ0

S(tν,ν,~d)e−(tν−τ0) dtν, (2.6)

for τ0 the optical depth at the observer, tν a dummy variable used for integration, and
τ1 > τ0 along the line of sight.

The solution in equation (2.6) prescribes nothing about the form of the source function in
the atmosphere, and assumes that it varies continuously. A formal solver is a numerical
routine that computes the intensity in a discretised atmosphere by solving a form of the
RTE (2.5). There are approaches such as that of Feautrier (1964) that involve casting the
problem as a second order di�erential equation for both an up-going and a down-going
rays simultaneously, it cannot handle both Doppler shi�s and overlapping lines, and
for these reasons we will not discuss it further. We shall instead focus on the so-called
short-characteristic method consisting of solving the RTE directly between discrete points
by prescribing a functional form for its variation between these points.
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2.4.2 Short-Characteristics Methods

If a functional form with an analytic integral is chosen for the variation of the source
function between de�ned points then an atmosphere can be treated as a sum of analytic
integrals. We shall consider the simplest useful functional form, a linear variation, as an
illustrative example. This approach was �rst presented by Olson & Kunasz (1987).

The RTE for one frequency and direction through a slab of a plane-parallel atmosphere
(in the case of outgoing radiation (i.e. µ > 0)) can be written

I(τ0) = I(τ1) exp(−|τ0 − τ1|) +

∫τ1
τ0

S(t) exp(−(t− τ0))dt, (2.7)

with t as a dummy integration variable.

Now, assuming a linear variation of S with τ in this slab gives

S(t) = Sτ0
τ1 − t

τ1 − τ0
+ Sτ1

t− τ0
τ1 − τ0

, (2.8)

where Sτi indicates the value of the source function at optical depth τi. This can then be
substituted into (2.7) (with ∆ := τ1 − τ0) giving

I(τ0) = I(τ1) exp(−|τ1 − τ0|) +
∆− 1+ exp(−∆)

∆
Sτ0 +

1− exp(−∆) − ∆ exp(−∆)
∆

Sτ1 . (2.9)

This expression can be applied repeatedly from one end of the atmospheric model (as-
suming that the incoming radiation �eld is known), to the other, to provide the emergent
intensity. It is this procedure we refer to as computing a formal solution, and this will
typically need to be computed for multiple directions (angles to the surface normal in the
plane-parallel case) to compute the angle-averaged radiation �eld at each frequency and
location in a model atmosphere using a weighted quadrature, such as the Gauss-Legendre
quadrature.

In atmospheres with very well resolved spatial grids, this method works quite well, how-
ever whenever the true source function has positive curvature, the intensity is overes-
timated, and underestimated for negative curvature. These e�ects can become quite
signi�cant in more sparsely sampled atmospheres.

The short characteristics method can be improved by using higher order polynomial
interpolants, however these can lead to spurious ringing artifacts, negatively a�ecting
their precision. One commonly used robust formulation is the monotonic piecewise
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parabolic method of Auer & Paletou (1994). This method assumes a parabolic variation of
the source function across three consecutive points (i.e. a three point stencil), but limits it
to the value obtained from linear interpolation if the parabolic interpolant exits the range
bounded by these three points.

Other interpolating functions can be used. For example, the cubic Bézier spline technique
of de la Cruz Rodríguez & Piskunov (2013), provides a higher order approximation in
regions of smooth variation, and can be limited through the control points to prevent
any ringing instability. A similar approach has been taken with the BESSER quadratic
Bézier spline approach of Štěpán & Trujillo Bueno (2013). For the plane-parallel case, all
of these methods can be derived analogously to the linear formal solver presented above.
In Sec. 6.1 we describe the implementation of the BESSER method in a two-dimensional
atmosphere.

2.4.3 Other Formal Solvers

Janett et al. (2018) propose a novel approach to the formal solver, using an optimised solver
for the di�ering optical thickness in each slab. They show that this leads to substantial
performance bene�ts whilst also being more numerically stable. They comment that
whilst higher order formal solvers will theoretically converge better to the true result, due
to the assumptions that are made in their derivation, this will only occur if the variation
of the source function in relevant regions of the atmosphere is su�ciently smooth. The
modern three-dimensional RMHD simulations use relatively coarse spatial grids with
large transients in atmospheric parameters that risk provoking instability in the higher
order formal solvers, especially in the case of full Stokes radiative transfer.

As work continues on these higher resolution RMHD simulations an investigation into
how each formal solver handles discontinuous parameters is needed. This has been
discussed by Steiner et al. (2016), and the methods employed for reconstructing discon-
tinuous parameters in numerical hydrodynamics (see Sec. 2.5.3 for a description of these)
may present a future avenue for more robust, accurate, and e�cient formal solvers. An
accurate treatment of steep gradients and discontinuities is not just valuable to the RMHD
models, but important to all radiative transfer modelling, as a reduction in the spatial
resolution needed to correctly evaluate radiative transfer can lead to signi�cant reductions
in computational requirements, making more complex simulations possible.
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2.4.4 LTE vs NLTE

With the understanding of how to design and implement formal solvers for the radiative
transfer equation, we have the ability to compute the radiation leaving an atmosphere
from the opacity and emissivity structure. The values of these depend on the atomic
populations, and their distribution across energy levels and ionisation states.

As stars like the Sun radiate energy into the cosmos, it is clear that they cannot be in
total thermal equilibrium. However, it is reasonable to suggest that if the atmosphere
is su�ciently collisional then a form of local thermodynamic equilibrium (LTE) holds,
whereby local parcels of the plasma are e�ectively in thermodynamic equilibrium such
that Kirchho�’s laws of radiation hold. When a species within a plasma is in LTE its
population distribution can be computed using the Saha-Boltzmann equation. This is
the case for spectral lines that form in the photosphere, and the associated level popu-
lations, emissivity, and opacity can all be computed directly from local thermodynamic
quantities3.

If the radiative rates instead dominate the total transitional rates for the species then the
particle distribution can no longer be governed by purely local parameters and we enter
the realm of non-LTE (NLTE) physics. This occurs as we enter the chromosphere, where
the collisional rates decrease, and the radiation �eld couples the atomic populations in
di�erent regions together. The core focus of NLTE radiative transfer is to determine atomic
populations consistent with the local thermodynamic parameters of the atmosphere and
the non-local radiation �eld. Until otherwise speci�ed, we will consider that the electron
density throughout the atmosphere is known and consider it part of the atmospheric
model.

Expressing this mathematically, we write the total transition rate Pij per atom in level i
between levels i and j (with the convention that i < j) as

Pij = Rij + Cij, (2.10)

where Rij is the rate of radiative transitions (due to absorption, spontaneous, and stim-
ulated emission) and Cij is the rate of collisional transitions. As the total population of
each element must remain constant we can write the kinetic equilibrium equation (which

3If the electron density is not known a priori then an iteration scheme using the Saha-Boltzmann equation is
necessary to determine consistent values of both the electron density and the atomic populations.
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can be derived from the Boltzmann equation)

∂nl
∂t

+∇ · (nl~υs) =
∑
l′ 6=l

(nl′Pl′l) − nl
∑
l′ 6=l

Pll′ , (2.11)

where nl is the number density of atoms in level l of the atomic species in question and
~υs is the bulk velocity of this species.

Equation (2.11) is frequently simpli�ed to the statistical equilibrium equation, by setting
the le�-hand side to 0 giving

∑
l′ 6=l

(nl′Pl′l) − nl
∑
l′ 6=l

Pll′ = 0. (2.12)

In Chaps. 5 and 6wewill discusswhen the full time-dependent solutionneed be considered
over the simpler statistical equilibrium solution. The former of these requires a history of
the atomic populations in the atmosphere, typically from a time-evolving model such as
an RHD simulation, whereas the latter associates a unique solution of atomic populations
to a given atmosphere.4 In the following, even when considering the time-dependent
problem, we assume that the timescale over which each step in our numerical simulation
is integrated is long compared to the light-crossing time for the regions where each
transition is optically thick. If this is not the case, then a di�erent formulation of the
formal solver will be required, so as to solve (2.2).

2.4.5 Collisional Rates

There are many collisional processes by which electrons can transition between energy
levels in a plasma, including ionisation and recombination processes. These include
excitation of ions by electrons, ionisation and excitation of neutral by electrons, excitation
by protons and neutral hydrogen, as well as charge exchange with these species. There
are more advanced rate formulations that depend on complex functional forms derived
from laboratory work and theoretical analysis, such as those of Burgess & Chidichimo
(1983); Arnaud & Rothen�ug (1985).

Inmost cases, the collisional rates are assumed to only depend on local plasma properties,
such as the temperature, total particle density, and electron density, with the particles

4The uniqueness of the solution was proven by Rybicki (1997) for the linear case of (2.12). I have found no
equivalent proof for the non-linear system when a variable electron density is also considered.
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locally following Maxwellian velocity distributions that connect the upwards and down-
wards collisional rates for a process through detailed balance i.e., n∗iCij = n∗jCji, where
n∗i indicates the LTE population of level i. This is not the case for non-thermal rates,
such as those of Fang et al. (1993) which consider collisional excitation by non-thermal
electrons from the electron beams used in RHD simulations, but are still computed from
local parameters.

2.4.6 Emissivity and Opacity

To mathematically formulate the radiative rates that are so important to Pij in a NLTE
context we must �rst formulate expressions for emissivity and opacity. There are two
forms of transition we need to consider for atomic radiative transfer, spectral lines, and
continua. In spectral lines, the three processes that need to be understood to develop a
model for emissivity andopacity are spontaneous and stimulated emission, and absorption.
The magnitude of these terms are controlled by the Einstein coe�cients Aji, Bij, and Bji
respectively, which are related by the Einstein relations

giBij = gjBji, (2.13)

where gi is the statistical weight of level i and

Aji =
2hν3ij
c2

Bji, (2.14)

where h is Planck’s constant, c is the speed of light, and νij is the rest frequency of the
spectral line.

The rest frequency νij of a spectral line is de�ned by

νij =
∆Eji

h
, (2.15)

where ∆Eji is the energy di�erence between levels j and i. Bound-bound transitions
between states in a static plasma are not in�nitely narrow, but are instead broadened by a
number of factors such as natural broadening fromuncertainty in the lifetime of the upper
state, Doppler broadening due to random thermal motions in the plasma, and collisional
broadening (e.g. van der Waals, and Stark broadening5). The net e�ect of these processes

5van der Waals broadening is due to an interaction between an excited atom and the dipole it induces over a
neutral atom, whilst Stark broadening is due to the interaction between an atom and a charged particle.
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typically leads to spectral line pro�les being modelled as a Voigt function (the convolution
of a Gaussian and a Lorentzian). TheGaussian terms are due toDoppler broadening, whilst
the other terms are typically modelled as Lorentzians (e.g. Sutton 1978), although more
accurate treatments of Stark broadening such as those employed by Kowalski et al. (2017b)
are non-Lorentzian, and must be separately convolved with the Voigt pro�le produced
from the previous terms. This term typically produces chromospheric lines much broader
than those resulting from the method of Sutton (1978), and becomes important as the
density of charged particles in the chromosphere increases during �ares, or in earlier
spectral type (i.e. hotter) stars. The normalised line absorption pro�le then describes the
probability of a photon with a certain energy being absorbed by the transition.

Typically it is assumed that the plasma is su�ciently collisional for elastic collisions to
redistribute the electrons of an atom in an excited state over all sub-states of an energy level
prior to emission. If this is not the case then the frequency of the outgoing photon will be
correlated with the frequency of the photon that excited the atom into this state. Thus the
spectral line will have an emission pro�le distinct from its absorption pro�le. This e�ect
is known as partial frequency redistribution (PRD) and will be discussed in Sec. 2.4.12.
The typical state of a�airs, where there is su�cient redistribution from elastic collisions
for these two processes to be uncorrelated is known as complete redistribution (CRD). In
the following, we will always express line emission processes through an emission pro�le
for generality, even if they are treated as CRD.

Continua, or bound-free transitions, depend instead on photoionisation cross-sections.
In the case of hydrogenic ions these fall o� with 1/ν3 (for photons of frequency ν) as
the energy of the ionising photon increases away from the continuum edge. The edge
of a continuum is de�ned by the ionisation potential for an atom in the bound state of
this transition, as only photons with an energy equal to or greater than this are capable
of photoionising the element. In general these cross-sections and their variations are
determined from laboratory experiments and numerical solutions of the Schrödinger
equation. The photoionisation cross-section describes how likely the atom is to interact
with a photon of a particular energy through this bound-free transition. Its partner
processes (like spontaneous and stimulated emission for bound-bound transitions) are
spontaneous and stimulated recombination, whereby an electron is captured by the atom
and a photon is released with energy equal to the excess energy of the system. These are
related to the photoionisation cross-section and the local plasma parameters by the Milne
relations.

There are also free-free interactions between particles (o�en known as bremsstrahlung),
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where electrons and ions interact, and the electron gains or loses energy through absorp-
tion or emission of a photon. This process also has a characteristic cross-section and is
considered as part of the background opacities and emissivities.

Following the notation of Rybicki & Hummer (1992) and Uitenbroek (2001) the emissivity
η and opacity χ for a transition can then written

ηij = njUji(ν,~d), (2.16)

χij = niVij(ν,~d) − njVji(ν,~d). (2.17)

The U and V terms are de�ned for bound-bound and bound-free transitions as

Uji =


hν
4πAjiψij(ν,~d), bound-bound

neΦij(T)
(
2hν3
c2

)
e−hν/kBTαij(ν), bound-free,

(2.18)

Vij =

hν
4π Bijφij(ν,~d), bound-bound

neΦij(T)e
−hν/kBTαij(ν), bound-free,

(2.19)

Vji =

hν
4π Bjiψij(ν,~d), bound-bound

αij(ν), bound-free,
(2.20)

where φ is the line absorption pro�le, ψ is the line emission pro�le, αij is the photoion-
isation cross-section, ne is the local electron density, and kB is the Boltzmann constant. Φ
is the Saha-Boltzmann equation given by

neΦij(T) =
n∗i
n∗j

=
gi
2gj

(
h2

2πmekBT

)3/2
exp

(
∆Eji

kBT

)
, (2.21)

wheren∗ is the population of the species in LTE,me is the electronmass,∆Eji is the energy
di�erence between levels j and i, and gi is the statistical weight of level i. By convention
we de�ne Uij = Uii = Vii = 0 and χij = −χji. From these de�nitions we see that the U
quantities relate to spontaneous emission, whereas the V quantities describe stimulated
processes. In the case of complete redistribution, where ψ = φ, all of the U and V terms
are constant at each location in a given atmosphere, and the variation in emissivity and
opacity depends on the atomic populations.
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2.4.7 Radiative Rates

The radiative rates that are needed to solve the kinetic or statistical equilibrium equations
are an expression of the number of upward (ij) and downward (ji) transitions due to
absorption, spontaneous and stimulated emission processes (and the equivalent bound-
free processes). The formulation of emissivity and opacity through U and V also allows us
to express the radiative rates succinctly for both upwards and downwards transitions in
lines and continua at each location in the atmosphere as

Rll′ =

∮ ∫ 1
hν

(
Ull′(ν,~d) + Vll′(ν,~d)I(ν,~d)

)
dνdΩ, (2.22)

where I(ν,~d) is the speci�c intensity at this location for a given frequency ν and direction
~d. It is through I that the non-locality of the radiation �eld enters the problem.

2.4.8 General Source Function

Where multiple atomic species are present, the total emissivity and opacity are simply
the sum of the emissivity and opacity for every transition on each atom at the current
frequency and direction. It is common to additionally consider scattering by processes
such as Thomson scattering, in which case the source function will be written

S(ν,~d) = ηtot(ν,~d) + σ(ν)J(ν)
χtot(ν,~d)

, (2.23)

where the “tot” subscript refers to these terms being summed over all interacting species,
σ describes the frequency-dependent coherent and isotropic continuum scattering cross-
section, and

J(ν) =
1
4π

∮
I(ν,~d)dΩ (2.24)

is the angle-averaged intensity at frequency ν.

2.4.9 Iterative Solutions

Now we have an expression for the radiative rates in each transition that can be computed
numerically given the local value of the intensity, however the radiation �eld is not known
a priori. Clearly, an iterative scheme will be needed to �nd a stable set of populations
yielding a self-consistent radiation �eld.
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If we treat the formal solver as an operator Λ yielding the intensity from the source
function throughout the atmosphere, i.e.

I(ν,~d) = Λν,~d[S(ν,~d)], (2.25)

then starting from an initial estimate of the atomic populations (e.g. LTE) we can com-
pute the radiation �eld throughout the atmosphere and iteratively use this to update the
populations by solving (2.11). This is known as Lambda iteration (a�er the operator used)
and presents woefully poor convergence in optically thick conditions as the size of the
population updates stagnate long before the true NLTE populations are obtained. Each ad-
ditional Lambda iteration performed e�ectively accounts for photons that were scattered
an additional time (i.e. the �rst Lambda iteration accounts for photons unscattered a�er
emission, the second for once-scattered. . . ). In the cores of optically thick lines photons
will scatter a vast number of times and thus an equivalent number of Lambda iterations
will be required.

The failure of Lambda iteration can be remedied by a process known as operator splitting,
�rst introduced by Cannon (1973) whereby we set

Λ = Λ∗ + (Λ−Λ∗), (2.26)

with Λ∗ an approximation of Λ. The iterative scheme then becomes

I(ν,~d) = Λ∗
ν,~d[S(ν,~d)] + (Λν,~d −Λ∗

ν,~d)[S
†(ν,~d)], (2.27)

where † identi�es values from the previous iteration. This method is termed accelerated
Lambda iteration (ALI), and can be shown to accelerate convergence by signi�cantly
amplifying the size of the corrections that would be computed by Lambda iteration at
large optical depths, for an appropriately chosen Λ∗. From (2.27) we can see that it is
necessary to invert Λ∗ to obtain the updated value of S, on which I is also dependent.
For a two-level atom this is discussed at length in Chaps. 12 and 13 of Hubený & Mihalas
(2014). The full coupling of the terms in the multilevel NLTE problem will be made
explicit in Sec. 2.4.10 when the MALI methods are presented; for now it is clear that the
source function depends on the emissivity and opacity of each species, which in turn are
controlled by the atomic populations, which are a�ected by the radiation �eld.

A good choice for Λ∗ is not immediately evident, as it should be cheap to construct and
invert, whilst providing a good approximation of Λ. Scharmer (1981) presented an upper
triangular approximate operator that �ts these criteria and showed its relation to the core-
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saturation approach of Rybicki (1972) (where the net rates in the line core and wing are
treated separately to precondition the net radiative rates by removing the large proportion
of photons that are emitted in the wing and immediately reabsorbed).

Olson et al. (1986) proposed the use of the diagonal of the trueΛ operator as an approximate
operator, and showed that this is close to optimal, and is clearly trivial to invert (as it is
a scalar at each location in the atmosphere). Now, the diagonal of Λ is easy to obtain by
setting a test source function S = δdd′ (where δ is the Kronecker delta) and computing

Λ∗ = Λ[S]. (2.28)

Taking the example of the linear short characteristic formal solver presented in Sec. 2.4.2
and substituting this de�nition of S we obtain

Λ∗
ν,~d =

∆− 1+ exp(−∆)
∆

, (2.29)

where∆ is de�ned as in Sec. 2.4.2. The approximate operator can be computed analogously
for other formal solvers.

2.4.10 Solving the Multilevel NLTE Problem

Starting from the radiative transfer equation (2.5) and the kinetic equilibrium equation
(2.11) we can construct a framework with which to solve the multilevel NLTE problem.
The primary term of interest is the right-hand side of (2.11), which is concerned with
the atomic transition rates. This is also shared with the statistical equilibrium equations
(2.12), and thus we will solve the latter of these and return to the former later. We fol-
low the approach of Rybicki & Hummer (1992) and Uitenbroek (2001), which is known
as Multi-level Accelerated Lambda Iteration (MALI) with full-preconditioning. The full-
preconditioning approach handles arbitrary overlaps of lines and continua for multiple
multilevel atoms. EarlierMALImethods (Rybicki &Hummer 1991) are capable of handling
lines overlying a constant background continuum, but not interacting with each other.
These methods describe a form of radiative transfer that is still based on a transition
by transition approach to determining the radiative rates (which does not preclude self-
consistency). Socas-Navarro & Trujillo Bueno (1997) proved that this approach can be
numerically equivalent to the linearised ALI method of Scharmer & Carlsson (1985) im-
plemented in the MULTI code (Carlsson 1986, 1992) provided the same assumptions are
made in the design of the local operator. Note that we distinguish between the linearised
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ALI method and the older method of complete linearisation (e.g. Auer & Mihalas 1969;
Auer 1973; Auer & Heasley 1976). The latter of these is signi�cantly more computationally
demanding and less numerically stable than the ALI based methods we are considering
here (a comparison of MULTI and LINEAR-B is shown in Carlsson 1986).

As MALI with full-preconditioning directly supports all forms of overlapping transitions,
and the interactions between them, whilst retaining the convergence properties of the
ALI method, we focus solely on this method in the following description of radiative
transfer. Whilst there are also more rapidly converging methods (which can be viewed
as extensions and variants of the ALI approach) such as the Gauss-Seidel and successive-
over-relaxation methods of Trujillo Bueno & Fabiani Bendicho (1995) (with the extension
to multilevel systems presented by Paletou & Léger (2007)), the forth-and-back implicit
Lambda iteration of Atanacković-Vukmanović et al. (1997) (extended to multilevel systems
by Kuzmanovska et al. (2017)), and even the multi-grid method of Fabiani Bendicho et al.
(1997), we opt for this well-testedmethod that is proven stable and reliable in a wide variety
of situations. This is particularly key when considering modelling of �ares, which present
much larger variations in parameters and steeper gradients than the quiet Sun models or
academic semi-empirical models o�en considered. The other, more rapidly convergent,
methods present possible avenues of improvement for Lightweaver in the future.

Now, following Rybicki & Hummer (1992) and Uitenbroek (2001) and substituting (2.25)
into (2.12), and subsequently expanding the radiative rates gives

∑
l′ 6=l

(nl′Cl′l) +
∑
l′ 6=l

∮ ∫ 1
hν
nl′(U

†
l′l + V

†
l′lI(ν,~d))dνdΩ

−nl
∑
l′ 6=l

Cll′ − nl
∑
l′ 6=l

∮ ∫ 1
hν

(U†ll′ + V
†
ll′I(ν,~d))dνdΩ = 0.

(2.30)

U and V are marked with daggers so as to later incorporate the necessary PRD e�ects.
Rybicki & Hummer (1992) de�ned a new operator Ψ such that

Ψν,~d[η] = Λν,~d[(χ
†)−1η] (2.31)

These two operators,Λ andΨ are equivalent for a converged solution as χ† = χ, but the use
of Ψ is necessary to obtain the form of statistical equilibrium equations preconditioned to
be linear in the atomic populations that is core to this method.
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The operator splitting technique is again applied here. We then have

I(ν,~d) = Ψ∗
ν,~d[η(ν,~d)] + (Ψν,~d − Ψ∗

ν,~d)[η
†(ν,~d)], (2.32)

and then considering the e�ects on one atom, under the assumption that background
emissivity and opacity do not change during an iteration

I(ν,~d) = I†(ν,~d) −
∑
j

∑
i<j

Ψ∗
ν,~d[n

†
jU
†
ji] +

∑
j

∑
i<j

Ψ∗
ν,~d[njU

†
ji], (2.33)

where i and j refer to the levels present in the atomic model. The �rst two terms of this
expression are o�en termed Ie� and in the case of a diagonalΨ∗ operator this represents the
non-local contribution to the radiation �eld from the current atom, and the contribution
from all other species.

We can write the preconditioned statistical equilibrium system (2.30) as

Γ~n = ~0, (2.34)

where Γ is a matrix consisting of the sum of ΓR due to the radiative contributions, and ΓC

from the collisional contributions. ~n is the vector of the updated level populations for the
species at this point in the atmosphere. We can then write

ΓRll′ =

∮ ∫
1
hν

U†l′l + V†l′lIe�ν,~d −

∑
m 6=l

χ
†
lm

Ψ∗
ν,~d

[∑
p

U
†
l′p

]dνdΩ (2.35)

for l 6= l′. As the collisional rates can be treated directly we have simply

ΓCll′ = Cl′l, (2.36)

for l 6= l′. The problem is now represented by a system of equations linear in the level
populations. Due to the necessity of total number conservation the sum of the entries
in each column of Γ must be 0, which allows us to compute the diagonal entries of the
complete Γ matrix as

Γll = −
∑
m 6=l

Γml. (2.37)

An additional constraint must be applied to (2.34) to determine the new populations,
and avoid the trivial solution of ~n = ~0, which is otherwise always a valid solution. This
constraint is typically expressed through local population conservation, which amounts
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to replacing one of the rows of Γ with ones, and the associated entry in the right-hand-side
zero-vector with the local species number density ntotal. There is then a Γ matrix at each
point in the atmosphere for each atomic species being considered in detail; each of these
is squarewith dimension equal to the number of levels in the atomicmodel for this species.
This system can then be solved for ~n, independently at each location in the atmosphere,
as the current estimate of non-local coupling through the radiation �eld is already present
in the terms that compose Γ .

Iterating the populations through (2.34) with interleaved formal solutions gives us a reli-
able and rapidly convergingmethod for solving themultilevel NLTE problemwithmultiple
atoms and overlapping transitions as used in the Lightweaver framework. A more detailed
description of the numerical implementation is provided in the Lightweaver paper (Os-
borne & Milić 2021).

2.4.11 Time-Dependent Population Updates

As discussed previously, an iterative update to the populations in the statistical equilibrium
case can be phrased as Γ~n = ~0. A variant of this method can also be applied to the time-
dependent form of the kinetic equilibrium equations (2.11). We will not directly treat
the advection term of equation (2.11), as this requires consideration of hydrodynamic
e�ects and the discretisation schemes used therein (due to the large gradients of these
populations that occur in the solar atmosphere)6. We can, however, discretise ∂n/∂t = Γ~n
as

~nt+1 − ~nt

∆t
= θΓt+1~nt+1 + (1− θ)Γt~nt, (2.38)

where θ indicates the degree of implicitness, the t and t+ 1 indices indicate the start and
end of the timestep being integrated respectively, and ∆t the duration of the timestep.
~nt+1 can then be found by rewriting (2.38) as

(I− θ∆tΓt+1)~nt+1 = (1− θ)∆tΓt~nt + ~nt, (2.39)

with I the identity matrix. This system is then iterated until ~nt+1 converges, for a new
evaluation of Γt+1 at each iterate.

6An overview of the methods used to numerically solve the conservation laws of hydrodynamics is provided
in Sec. 2.5.
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2.4.12 Partial Frequency Redistribution

Most solar spectral lines form in regions where complete frequency redistribution (CRD)
holds. That is to say that the plasma is su�ciently collisional that elastic collisions redis-
tribute electrons across all sub-states of an energy level prior to emission. In this case,
the emission frequency of a photon is not correlated with the frequency of the photon
absorbed to excite the atom into this state i.e. photons are completely redistributed in
frequency and the line emission and absorption pro�les are equal. In lower density
regions with strong, typically resonance7, lines where radiative e�ects dominate over
collisional e�ects, a portion of the population of each level will emit photons with a
frequency correlated with the previous absorption frequency. The remainder of the level
population is said to be natural, with an emission frequency independent of the manner
in which the level was populated. (Hubený & Mihalas 2014). The line’s emission and
absorption pro�les then di�er and this coherent scatteringmust be treated explicitly. This
imposes substantial computational e�ort, but we will brie�y describe the key points of
the process, and how it �ts into the MALI framework following Uitenbroek (2001) and
Hubený & Mihalas (2014).

We can de�ne the emission pro�le coe�cient ρij = ψij/φij, at which point all U and V
terms can be rewritten in terms of ρij and φ, and † on these terms refers to the value of
ρij evaluated at the previous iterate (analogous to n†).

From this de�nition of ρij, under the assumptions of a line with an in�nitely sharp lower
level and broadened upper level, and the validity of PRD in the atomic frame being
approximated by PRD in the observer’s frame (Uitenbroek 2001), following Hubený &
Mihalas (2014) we have

ρij(ν,~d) = 1+ γ
∑
l<j njBlj

njPj

∮ 1
4π

∫
I(ν′,~d′)

·
[
RIIlji(ν

′,~d′;ν,~d)
φij(ν,~d)

− φlj(ν
′,~d)

]
dν′ dΩ′,

(2.40)

where RII is the generalised redistribution function for transitions of this kind (Hubený
1982), γ is the coherency fraction, and Pj is the total depopulation rate of level j. The
lji subscript on RII describes the scattering process, indicating that electrons can start
from any level l in the range [i, j). These scattering processes are then summed. The
cross-redistribution, or Raman scattering, processes for which l 6= i are typically less

7A transition whose lower state is the ground state of the atom is known as a resonance transition.
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important than resonance scattering (l = i). Only considering the latter of these simpli�es
the evaluation of ρij. The redistribution function describes the probability that a photon
with frequency ν′ and direction ~d′ is re-emitted with frequency ν and direction ~d.

The coherency fraction γ describes the probability of a photon being emitted from its
current sublevel of the energy level j, prior to an elastic collision that would redistribute it
across the sublevels of j. This is computed as

γ =
Pj

Pj +Qj
, (2.41)

whereQj is the total rate of elastic collisions a�ecting level j.

Ignoring bulk plasma motions that create anisotropy in the radiation �eld, the integrals
over angle and frequency can be split, and render the calculation of this angle-averaged
form of ρij much simpler and less computationally demanding. Also de�ning gII(ν,ν′) =
RII(ν,ν′)/φij(ν′) such that the fast approximation of Gouttebroze (1986) and Uitenbroek
(1989) can be employed, and ignoring cross redistribution terms we have

ρij(ν) = 1+ γniBij
njPj

(∫
gII(ν,ν′)J(ν′)dν′− J̄ij

)
, (2.42)

where
J̄ij =

1
4π

∮ ∫
I(ν,~d)φ(ν,~d)dνdΩ =

Rij

Bij
(2.43)

is the frequency-integrated mean intensity across the transition. In the case of plasma
�ows we adopt the approximate hybrid treatment of Leenaarts et al. (2012b), using J in
the plasma’s rest frame, to compute ρij in this same frame. Its value is then interpolated
to �nd the value of ρij at the Doppler shi�ed value in the observer’s frame. The additional
computational cost of this hybrid method over the angle-averagedmethod is very low, and
in most cases the results are comparable to the far more costly complete angle-dependent
treatment (Leenaarts et al. 2012b; Kerr et al. 2019a).

We adopt the iterative method of Uitenbroek (2001) to evaluate ρij by interleaving formal
solutions at wavelengths of PRD lines (and wavelengths that are Doppler shi�ed into the
region of a PRD line in the case of hybrid PRD) between updates of ρij from the current
value of the radiation �eld. The atomic populations are held constant during this process,
and a handful of iterations of computing ρij and updating the radiation �eld are performed
between each MALI iteration.
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2.4.13 Charge Conservation

We have thus far assumed that the electron density is known a priori as part of the atmo-
spheric model. Unfortunately, it is also insu�cient to assume that the electron density
follows the LTE ionisation state of the plasma, as many species (in particular hydrogen)
with important NLTE spectral lines will be far from their LTE ionisation state (e.g. Heinzel
1995; Paletou 1995; Bjørgen et al. 2019). Synthesis of lines with an incorrect electron dens-
ity will o�en converge to di�erent �nal populations, and produce di�erent spectral line
shapes. A secondary iteration process is needed to determine the electron density in self-
consistent way within the MALI framework. This is achieved through a Newton-Raphson
iteration �rst proposed by Heinzel (1995) and Paletou (1995). The method presented here
di�ers slightly from that presented by these authors as we choose to include the e�ects of
all species considered in NLTE in the calculation of charge conservation.

The statistical equilibrium equations of level i of species s can be written as a function of
the species’ level populations and the electron density

Fs,i(~ns,ne) =
∑
j6=i

njPji(~ns,ne) − ni
∑
j6=i

Pij(~ns,ne) = 0. (2.44)

Under our previous assumption of �xed electron density this expression is linear in
unknown populations and reduces to the preconditioned system of the MALI method
(2.34). We �rst obtain the solution to this system and denote this intermediate result ~̃ns.

A Newton-Raphson iteration is applied to this system to compute the correction to the level
populations and electron density that will drive the Fs,i(~ns,ne) towards 0. This is achieved
by using the Jacobian of F. For an arbitrary function f(~x), to compute the correction δx to
an initial parameter ~x0 such that f( ~x0 + ~δx) = 0 it is su�cient to solve −J ~δx = f( ~x0) for ~δx,
where J is the Jacobian of f evaluated at ~x0. Applying this procedure to the preconditioned
statistical equilibrium equations gives

Fs,i(~̃ns,n†e) = −
∑
j

(
∂Fs,i(~ns,ne)

∂nj

∣∣∣∣
(~̃ns,n†e)

δnj

)
−
∂Fs,i(~ns,ne)

∂ne

∣∣∣∣
(~̃ns,n†e)

δne, (2.45)

where δnj and δne are the necessary corrections to obtain self-consistent level populations
and electron density.

This system applies simultaneously to all species to be considered in the determination of
the self-consistent electron density, and contains

∑
sNlevel,s + 1 equations, whereNlevel,s

is the number of levels in the model of species s. Similarly to the initial population update
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through the MALI method (2.34), constraints are needed to ensure that all parameters are
correctly conserved. Here we require constraints on the population of each species, and
on the charge neutrality of the system. The former of these is expressed as

∑
j

δnj = ntotal −
∑
j

ñj, (2.46)

for each species, while the latter is described by

δne −
∑
s

∑
j

ions(j)δns,j = ne,bg +
∑
s

∑
j

ions(j) − n†e, (2.47)

where ions(j) is the ionisation state of the j-th level of species s, and ne,bg represents the
electron density due to background species not considered in detail here. The le�-hand
side of the population conservation equation replaces one of the rows of the Jacobian for
each species, analogously to the population conservation equation used in (2.34). The
charge conservation equation is the “extra” equation in this system, and the le�-hand side
of the expression here forms one row of the Jacobian.

The �nal Jacobian matrix is therefore block diagonal, with one row that couples these
blocks to each other. The le�-hand side of the system (2.45) is given by the right-hand sides
of the previous constraint equations, and Fs,i(~̃nsn†e) = Γs~̃n for the remaining entries for
each species s. This system can now be solved in the same fashion as (2.34), and the �nal
populations can be computed from nj = ñj + δnj and ne = n†e + δne. The exact form of
these derivatives used in the Jacobian can be computed analytically for all rates, and these
terms are presented in Osborne & Milić (2021). The derivatives with respect to the level
populations are simply the associated entries of Γ for each species, whilst those associated
with the electron density depend on the collisional and bound-free radiative rates, but we
do not �nd the exact form to be particularly insightful.

The time-dependent case canbe solved very similarly to theprevious statistical equilibrium
case. Following Kašparová et al. (2003), and starting from the time-dependent population
update equation (2.39), we can de�ne

Gs,i(~n
t+1
s ,ne) = nt+1s,i − θ∆tFs,i(~n

t+1
s ,ne) − (1− θ)∆tΓts~nts − nts,i = 0, (2.48)

and apply this secondary Newton-Raphson iteration process to G, using the same con-
straint equations as before.

It is important to stress that only one Newton-Raphson iteration is needed following each
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standard preconditioned population update, as the original MALI system was already
preconditioned and linear in the populations. The iterative process proceeds by following
each MALI population update with a secondary Newton-Raphson iteration evaluated
using the updated Γ , and then returning to the evaluation of Γ , or ρij in the presence of
transitions treated with PRD.

2.4.14 Determining Numerical Convergence

The iterative procedures presented in the previous sections yield re�ned estimates of the
level populations throughout the model atmosphere for each additional iteration. This
raises the question of when to stop iterating, and by what metric to measure convergence.
Convergence describes the di�erence between these values for two subsequent iterations,
and how far they are from the true values for the model. As we do not generally have
knowledge of the latter, the former is typically used to determine when to cease iterations.
The most important quantities to use when estimating convergence are the populations n,
and radiation �eld J, due to their appearance in the source function.

In NLTE problems, where spectral lines will o�en form in relatively compact regions
of the atmosphere, the change may only be large in this region, so the L1 or L2 norms
of the di�erence between successive iterates may not be very informative. Additionally,
the value of both J and n will vary hugely throughout the atmosphere, thus the absolute
change over an iteration may not be particularly meaningful. Instead, it is common to use
the L∞ norm8 of the relative change of these parameters. For a population ni, following
Auer et al. (1994), we denote the relative change Rc(itr, i) for level i and iteration itr. It
can be expressed as

Rc(itr, i) =maxk

∣∣∣∣∣nitri − nitr−1i

nitri

∣∣∣∣∣ , (2.49)

where k represents the location in the atmosphere, and nitri represents the population of
level i a�er iteration itr. By iterating until Rc(itr, i) is low for all transitions, we ensure
that the largest update to a term is small relative to its current value. When applied to J, the
L∞ norm of the relative change is typically computed across frequency and atmospheric
depth.

Auer et al. (1994) and Fabiani Bendicho et al. (1997) provide a framework for estimating
both the error from the fully converged solution, and the truncation error due to the
discretisation onto the numerical grid, but in practice this is rarely employed outside
8The L∞ norm of a vector is given by the maximum absolute value present in its components.
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of multi-grid strategies (e.g. Fabiani Bendicho et al. 1997; Léger et al. 2007). Instead, we
apply the more common technique of iterating until the maximum value of Rc for the
populations drops below a certain threshold (typically ∼ 10−3)9. This approach has been
applied with success to many modelling problems within the MULTI, RADYN, and RH
(Uitenbroek 2001) codes (amongst others), but we note, following Auer et al. (1994) and
Fabiani Bendicho et al. (1997), that a small value of Rc does not guarantee convergence,
whilst methods such as the multi-grid one they present can do so. Unfortunately, these
methods are signi�cantly more complex than the MALI method presented here and
appear to have di�culty in more realistic multi-dimensional models (J. Štěpán, private
communication).

2.5 Introduction to Hydrodynamics and Conservation Laws

The majority of the basic theory in this section follows the two texts by LeVeque (1997, 2002).

In the previous sections we have explained the basis of the radiative transfer methods
used throughout this work. The di�culty in radiative transfer primarily lies in the nuance
of implementing the various integration terms. To provide a clear understanding of RHD
we also need a numerical description of hydrodynamics, and an explanation of solving
the coupled systems of partial di�erential equations (PDE) that represent the other major
facet of RHD.

The scalar radiative transfer equation, solved via the formal solver, is a good example of
an ordinary di�erential equation. It is relatively easy to solve via a variety of methods,
typically striving for a balance of speed, reliability, and accuracy. Unfortunately, PDEs are
di�cult to solve numerically in a general way.

A generic second-order PDE of a quantity q depending on two independent variables x
and y can be written as

aqxx + bqxy + cqyy + dqx + eqy + fq = g, (2.50)

wherein the subscripts represent partial derivatives with respect to these variables. For
convenience we will retain this convention through the current section. The sign of the
discriminant (∆ = b2 − 4ac) of this equation determines the class of the problem:

9It is wise to also track Rc for J, and although this is less commonly used as a convergence criterion, we
o�en choose to do so as a safety factor. The Rc of one of n or J being signi�cantly larger than the other
likely indicates that the spatial, frequency, or angular quadrature is ill-suited to the problem at hand.
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• ∆ < 0: Elliptic problem (e.g. Poisson equation).

• ∆ = 0: Parabolic problem (e.g. Heat equation).

• ∆ > 0: Hyperbolic problem (e.g. Advection equation).

Here, we will focus primarily on hyperbolic problems, with a brief discussion of parabolic
terms. Hyperbolic problems take the form

qt + f(q)x = 0, (2.51)

where f is a function describing the �ux of q at each location in the domain, t indicates a
temporal coordinate, and x a spatial coordinate. In the following discussions, there is an
inherent assumption that the �ux function is local, and acts only on the local state variables
q. This is not necessarily the case with radiative terms, but these can be incorporated into
such a scheme by determining their local e�ects on the plasma energy.

Equations of the form (2.51) are known as conservation laws, and the quantities q are
o�en termed “conserved quantities”, implying that

∫∞
−∞ qdx is constant in time. This does

not preclude the addition of sources and sinks of this quantity, but simply requires that
the total of a conserved quantity not change without being acted on in such a way. The
simplest equation of this form is advection, which arises from conservation of mass in a
moving �uid and is written for mass density ρ and �uid velocity υ as

ρt + (ρυ)x = 0. (2.52)

The advection equation can be augmented with two further equations to form the Euler
equation set. These three equations are the conservation ofmass, momentum, and energy.
Together they describe the evolution of ideal �uids. The complete set is written

ρt + (ρυ)x = 0,

(ρυ)t + (ρυ2 + p)x = 0,

Et + (υ(E+ p))x = 0,

(2.53)

where E is the total energy and p is the gas pressure. This system is already recognisable as
the simpli�ed roots of the RHD equations. As our three conserved quantities are the mass
density, momentum density, and energy, the pressuremust be expressed as a combination
of these so as to be able to write this system in the form of (2.51). The simplest way to
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achieve this is to use the equation of state for an ideal gas

e =
p

γ− 1 , (2.54)

with e the internal energy, and γ is the ratio of gas’ speci�c heat at constant pressure and
constant volume, which is 5/3 for monatomic gases, typically assumed in the case of solar
plasma. This is related to the total energy E by

E = e+
1
2ρυ

2. (2.55)

The Euler equations (2.53) describe the evolution of an ideal �uid without any energy
losses. In practice we o�en need to model some loss terms. Ignoring radiative e�ects
for now, the most important of these is heat conduction10, which is typically described
by parabolic equations. This adds a second spatial derivative term to the right-hand side
of the energy conservation equation. It is also common to need source and sink terms
when modelling real world problems; these can account for �uids entering and leaving a
volume, the non-local emission and absorption of energy, or simply the e�ects of gravity.
These terms are also added to the right-hand side of the equations of (2.53), and together
with the e�ects of viscosity, these describe the Navier-Stokes equations.

2.5.1 Numerical Approaches

The typical �rst choice for numerically solving di�erential equations is to apply a �nite
di�erence method. In this class of method, the problem is discretised, similarly to the
approach taken in radiative transfer, and the values associated with each grid point repres-
ent the local pointwise value. The local gradient of the conserved quantities can then be
estimated from pointwise di�erence in the quantity between adjacent cells. This method
can be applied to discrete problems in both space and time. Applying a basic one-sided
method to the advection equation (2.52) gives

qt+1i − qti
∆t

+ υ

(
qti+1 − q

t
i

∆x

)
= 0, (2.56)

where the subscript refers to the location of the conserved quantity, the superscript the
discrete timestep, with ∆x and ∆t being the local grid spacing and timestep duration

10In the plasmas considered here there is additional nuance to heat conduction, which we will return to in
Sec. 2.6.
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respectively.

It is clear that without loss of generality we could have also chosen to spatially di�erence
our problem in the other direction (i.e. qti − qti−1). From the in�nitesimal de�nition of
the derivative, these two formulations are equivalent. This is not the case in discretised
problems. It is better to locally use the formulation such that information from points “up-
wind” in terms of the �uid velocity are used to update the points downwind of themselves.
In this sense the information used to update points is following the �uid �ow. Equation
(2.56) can be rewritten to explicitly determine the approximate value of the quantity at
the next timestep,

qt+1i = qti −
υ∆t

∆x

(
qti+1 − q

t
i

)
. (2.57)

This simple �rst order accurate approach can be applied to any conservation law, and
higher-order accurate methods can be derived from using �nite di�erence methods
over larger stencils, or deriving similar approaches from combinations of the local �nite
di�erence approximations using Taylor series.

Many other spatial and temporal discretisations can be devised for conservation laws, and
it is important to choose a discretisation that introduces minimal error. In general, we
termdiscretisationswhereqt+1 depends only onqt as explicit, and those also depending on
qt+1 as implicit, necessitating the solution of a system of typically non-linear equations.

Whilst the �nite di�erencemethod provides an intuitive formulation for discretising these
equations, it is di�cult (but entirely possible) to ensure conservation of the quantities
that we desire be conserved with only pointwise values and no formal description of the
variation between these points. Instead, the �nite volume description is o�en preferable
and consists of treating qti as the average value over grid cell i. Conservation can then be
ensured by evolving this value based on the �uxes in and out of the cell. This implies

qti ≈
1
∆x

∫xi+1
xi

qt(x)dx. (2.58)

Rewriting the conservation law (2.51) in an integral form then gives∫xi+1
xi

qt+1(x)dx =

∫xi+1
xi

qt(x)dx +

∫tt+1
tt

f(q(xi, t))dt −
∫tt+1
tt

f(q(xi+1, t))dt, (2.59)

which can then be written as the �ux-di�erencing form

qt+1i = qti −
∆t

∆x

(
Fti+1 − F

t
i

)
, (2.60)
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where Fi represents the �ux due between cells i and i− 1, and Fi+1 the �ux between cells i
and i+ 1. In the case of an explicit method with a correctly chosen timestep for the grid,
where information cannot move further than one cell in a timestep, each of these �ux
functions depends only on cell i and one of its neighbours. An important strength of this
method for solving conservation law problems is that if Fi and Fi+1 are respectively the le�
and right edge �uxes for cell i, then Fi+1 will be the le� edge �ux for cell i+ 1, and Fi will
be the right edge �ux for cell i− 1. Thus the numerical integration of qt+1 is conserved
with respect to qt, as all numerical �uxes, other than the le�- and right-most, will cancel
due to the formulation of (2.60). These le�- and right-most �uxes will need to consider
the boundary conditions of the �nite simulation volume to ensure the correctness of the
conservation law. Equivalent formulations can be found for �nite-di�erence approaches,
but are slightly harder to arrive at.

2.5.2 Riemann Problems

The �nite volume method we have described therefore depends on �nding expressions
for the numerical �ux between two adjacent cells. This is o�en framed as a Riemann
problem at the cell interface. A Riemann problem consists of solving a conservation
law with an initial parameter distribution consisting of two constant states meeting at a
discontinuity.

This problem can be analytically solved by considering the propagation of waves from
this interface. From analysis of the Jacobian of the �ux function of the Euler equations,
the structure of this solution can be revealed. There are three waves, associated with the
eigenvalues of this Jacobian: υ and υ± cs, where cs is the sound speed of the �uid. These
waves can be non-linear and do not necessarily propagate at the characteristic velocity
given by their associated eigenvalue. The expected solution is a contact discontinuity
propagating with the �uid velocity υ, and two non-linear waves, a shock wave and a
rarefaction wave. That states on either side of these waves will need to be computed using
an iterative process a�er the application of the Rankine-Hugionot jump conditions.

As the complexity of the system and the equation of state increases, it becomes harder
(or impossible) to compute this solution in an e�cient manner. Fortunately, it is rarely
necessary to compute the exact solution to the Riemann problem as many e�cient ap-
proximate solvers exist, but the structure originating from this simple case can be used to
interpret and validate other numerical methods. This solution will need to be computed
at every interface to determine the �uxes between the cells, but the question remains of
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how to de�ne the states le� and right of the interface in the de�nition of the Riemann
problem.

2.5.3 Godunov’s Method and Higher Order Reconstructions

The method of Godunov (1959) consists of assuming that the data q is piecewise constant
in each cell of our simulation domain. At this point the values on the le�- and right-hand
side of each interface are known and the �ux through this interface can be computed. The
Riemann problem at each interface can be treated independently under the assumption
that the fastest wave from one interface not carry information to the next. This is a
fundamental requirement of stability and will be discussed in more detail in Sec. 2.5.5.

This method provides a basic framework for solving conservation laws. It is limited by
the assumption that the data is piecewise constant, but nevertheless paved the way for
some of the most accurate numerical methods for conservation laws. van Leer (1979)
provided one of the �rst higher order extensions to Godunov’s method. It is tempting to
attempt to estimate the value of q at the cell interfaces with higher accuracy by using some
form of reconstruction (a method closely related to interpolation), but care must be taken
with this approach. The Monotonic Upstream-centred Scheme for Conservation Laws
(MUSCL) method of van Leer (1979) uses a piecewise linear approach to reconstruction
in each grid cell, but limits the gradient of the reconstruction to prevent the addition of
under- or over-shoots to the data. This is achieved through use of a slope-limiter such
that a monotonic series of cell averages be preserved by ensuring that the reconstructed
slope not take values beyond the average of the adjacent cells. If the current cell is an
extremum then the slope is set to 0. Thismethod tracks the data to second-order in regions
of smooth variation, but degenerates to the �rst-order Godunov method at discontinuities.
The reconstruction technique used in RADYN is based on this method.

There are further high-order extensions to the concept of reconstruction including the
parabolic method of Colella &Woodward (1984) providing third-order accuracy in smooth
regions, and the general weighted essentially non-oscillatory (WENO) methods. WENO
methods are a cornerstone of reconstruction11 in modern �nite volume and �nite di�er-
ence codes, and as such we will describe them brie�y here.

11The properties that make WENOmethods a good choice for reconstruction also render them applicable to
interpolation. Throughout Lightweaver and the other numerical tools presented in this thesis we make use
of a fourth-order WENO interpolation method described by Janett et al. (2019) for its accuracy in smoothly
varying regions and reliable behaviour around sharp variations. For example, in Lightweaver it is used for
the interpolation of photoionisation cross-sections onto the �nal wavelength grid.
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WENOmethods were �rst proposed by Liu et al. (1994), and formalised for arbitrary order
by Jiang & Shu (1996). These methods form a convex combination of polynomials over
overlapping regions. For example, in the case of the commonly used ��h-order WENO
method of Jiang & Shu (1996), three parabolae are constructed over �ve adjacent points, i.e.
each using three contiguous points. We can equivalently de�ne a fourth-order polynomial
over the �ve points, which can also be written as a linear combination of our interpolating
parabolae at each point in this region. These linear weights are further weighted by a term
known as the smoothness indicator, which estimates the local smoothness, such that the
weight of each term is equal to its expected linear weight in smooth regions, and heavily
biased towards a parabola in a smooth region if other regions present discontinuities.
WENOmethods are highly performant thanks to the lack of conditional branches in this
core procedure.

In the case of the �nite volume method these functions can be derived to reconstruct the
interface values from the cell average values, and for a �xed uniform grid, the integration
weights for each interface can be computed analytically. For non-uniform grids, the
weights can be precalculated if the grid remains �xed, or computed on the �y if necessary.
There are also a number of approximate methods for handling non-uniform grids at low
computational cost such as WENO-NM (Huang et al. 2018).

2.5.4 Numerical Fluxes

Whilst there are many approximate Riemann solvers that can accurately and e�ciently
solve the Riemann problems arising from the Euler equations including the addition of
source terms, it does not appear feasible to express the evolution of the entire RHD system
in this way. Instead, in explicit methods we can use numerical approximations to the �ux
based on the reconstructed values at the interfaces. For implicit methods we can instead
use a Newton iterative scheme to minimise the residual of the discretised conservation
law across the cell interfaces with the �uxes typically computed from the upwind value of
the reconstructed parameter.

With high-order reconstructions, simple expressions for the �uxes can be used and give
accurate results. An obvious �rst choice would be the average �ux from the reconstructed
states le� and right of the interface. Unfortunately, this leads to numerical instabilities,
and some arti�cial damping (numerical viscosity) is needed. This leads to a �ux known as
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the Local Lax-Friedrichs, or Rusanov Flux (Rusanov 1962)

FLLF =
1
2(f(q

L
i+1) + f(q

R
i )) −

1
2α(q

R
i − qLi+1). (2.61)

Here qLi and qRi represent the le�- and right-hand reconstructed states of the i-th Riemann
problem, f represents the�ux function of the conservation law, andα is the localmaximum
wave propagation speed for this system. Whilst α can o�en be formally derived from the
Jacobian of f, it can o�en be replaced with either the maximum absolute value of the
sum of the sound speed on each side of the interface and the local �uid velocity, or the
average of these on both sides of the interface. General symmetric �uxes like this are
simple and e�cient, but tend to be di�usive, smearing features across many grid cells,
especially if the �rst-order Godunov or van Leer-style reconstruction methods are used.
This can be e�ectively combatted by the use of high-order reconstruction schemes and
adaptive mesh re�nement techniques, providing simple and robust solutions thanks to
the reconstruction scheme.

2.5.5 Time Integration, Stability, and Splitting Schemes

Explicit schemes are only stable (i.e. do not diverge or introduce spurious oscillations) if
the Courant-Friedrichs-Lewy (CFL) condition is met. The CFL condition states that the
numerical domain of dependence of the equation (i.e. the terms used in the computation
of a value in the next timestep) must encompass the analytic domain of dependence to
ensure that all necessary information is taken into account. This is a necessary, but not
su�cient condition, and the exact requirements of each scheme can o�en be derived
analytically, although it is common to apply an additional safety margin to the maximum
permitted value of the CFL condition.

For explicit methods the CFL condition typically sets the maximum timestep that can
be used based on the current simulation conditions. In a hyperbolic system the CFL
condition takes the form

C =
υ∆t

∆x
, (2.62)

and will be constrained to a maximum value (6 1) for the stability of a low order explicit
method. Most implicit methods do not place an upper limit on the CFL condition for sta-
bility (as all points are coupled), but typically need to remain ∼ 1 to avoid losing �ne detail
in the solution. This is discussed by Viallet et al. (2011), who comment that CFL ∼ 1 serves

43



2.5 Introduction to Hydrodynamics and Conservation Laws

as an accuracy criterion and typically represents the optimum accuracy/computational
cost ratio despite the method being nominally stable for large CFL values.

It is di�cult to achieve better than second order accuracy due to the temporal discret-
isations discussed so far, but by viewing Fti as the �ux at time t, we can achieve higher
order accuracy by applying a multi-step method to more accurately integrate these �uxes
(and any associated source terms) over time. A good choice for this is a method in the
family of total-variation diminishing Runge-Kutta methods (e.g. Shu & Osher 1988). These
multi-step time integration methods can be combined with fractional step methods that
allow us to perform operator splitting. That is, splitting an equation into two subproblems
that can be solved independently. An example of this would be the radioactive decay of an
isotope transported by advection. Splitting this into an advection and a reaction problem
allows for standard methods to be used in both of these problems, but clearly their results
need to be coupled to each other. A naive �rst approach is to solve one of the subproblems
over the timestep, and then solve the other, but this method cannot be better than �rst
order accurate in time for coupled subproblems. A commonly used approach that is
second order is known at Strang splitting (Strang 1968), which consists of time-advancing
the �rst subproblem by half the timestep, then the second by the whole timestep, before
once again advancing the �rst subproblem by half the timestep. This method can provide
second-order accuracy. Many more advanced splitting procedures have been developed,
but Strang splitting remains widely used due to its ease of implementation.

LeVeque (1997) comments that in many situations the �rst-order splitting described above
performs better than would likely be expected from its formal �rst-order accuracy. This is
because the errors introduced are equivalent to solving the problem at a slightly di�erent
time, di�ering by up to a single timestep. Whilst this renders the method �rst-order
accurate, the quality of the solution is still primarily controlled by the quality of the
methods used to solve the subproblems, and this exceedingly simple splitting scheme can
o�en be applied with no problems.

There are many nuances to each of the techniques needed to accurately and robustly solve
conservation laws numerically, and no single correct method to use. Indeed, formulations
based on �nite volume, �nite di�erence, �nite element, and discontinuous Galerkin
methods are all in use in state-of-the-art research codes. The above is intended to serve
as a somewhat opinionated introduction to the complexities of these methods, but by no
means present a conclusion on how conservation laws should be solved. It is hoped that
this introduction will improve general understanding of this aspect of RHD codes.
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2.6 Conduction

When expressed in terms of energy the heat equation in a plasma along a magnetic �eld
line is given by

∂E

∂t
=
∂

∂z

(
κ0T

5/2∂T

∂z

)
, (2.63)

with spatial coordinate z, and coe�cient κ0 varying, but typically taken to be approximately
1×10−6 erg cm−1 s−1 K−3.5 (Spitzer & Härm 1953; Braginskii 1965) based on deviations from
a fully ionised hydrogen plasma. The form of this equation poses several problems, the
most signi�cant being that in regions of su�ciently steep temperature gradients, the
conductive �ux approaches in�nity. Clearly this is not physical and there is a maximum
limit, known as the free-streaming limit, at which all electrons in the plasma are �owing at
their thermal speed with this heat gradient, representing a �nite limit on this term. As this
free-streaming limit is approached the heat �ux becomes non-local and depends on the
global temperature and density structure in the loop (Battaglia et al. 2009). Campbell (1984)
provides an expression for the transport coe�cients used to determine the conductive �ux
through an ionised plasma and smoothly handles both the Spitzer-Härm, locally limited,
and non-locally limited regimes. This approach can be applied in numerical simulations
but more frequently (such as in RADYN) the method of Fisher et al. (1985) is applied which
smoothly limits the local �ux to remain less than the local free-streaming limit, helping
to stabilise this equation.

Due to its parabolic nature, an explicit solution of the heat equation can be extremely
costly; stability requirements provide a timestep requirement scaling with the inverse
square of the grid spacing, rather than linearly as in the case of most hyperbolic equations.
Any attempt to explicitly integrate the heat equation on a timestep limit set by the hydro-
dynamic equations will likely be met with rapid divergence of any small perturbation in
the data. This renders the conduction term sti� compared to the hydrodynamical terms
and it may therefore be advantageous to use an implicit method to guarantee stability. Sev-
eral alternative methods have been developed, such as expressing the parabolic equation
as a hyperbolic wave equation (Rempel 2016), implicit-explicitmethods (whichmay also be
used for integrating sti� source terms such as the atomic level population transition rates)
(e.g. Ascher et al. 1995), or accepting the cost of an explicit discretisation in exchange for
simplicity and accuracy (Bradshaw &Mason 2003; Bradshaw & Cargill 2013).

Recently, discussion has emerged around the concept of turbulence suppressed con-
duction (Bian et al. 2016), where turbulence restricts the motion of electrons along the
loop, and it has been suggested that the standard assumption of collisionally-dominated

45



2.7 Discussions

conduction may be a signi�cant overestimation of true conduction rates. Simulations
using the zero-dimensional enthalpy based EBTEL code (Klimchuk et al. 2008) currently
suggest that this turbulent suppression alone is insu�cient to maintain the high coronal
temperatures and slow cooling times seen in observations, but likely represents an im-
portant component of this e�ect (Bian et al. 2018). As part of further investigation, work
is currently under way to integrate these e�ects in the RADYN and HYDRAD codes.

2.7 Discussions

We have provided an overview of the commonly used techniques for simulating solar
�ares and the observable radiation produced from these events. The core components
of radiative transfer, hydrodynamics, and heat conduction have been discussed in depth,
along with an overview of the numerical treatments of these terms. Whilst there are other
important terms in the RHD equations, such as the heating model, these represent the
core of any �are simulation.

In Chaps. 4–6 we will build on the theory presented in this chapter with simulations
built using our Lightweaver framework. The Lightweaver radiative transfer framework
is described in detail in Chap. 4 and provides components for computing the intensity
and atomic level population updates (in both statistical equilibrium and time-dependent
situations) as described in Sec. 2.4. It is therefore not a complete RHD code like RADYN,
but provides a more thorough treatment of the radiative transfer terms through the use
of the fully preconditioned MALI method with a cubic Bézier spline formal solver. The
novel modularity of its design enables greater �exibility when treating the radiative terms
of RHD �are modelling and revisiting existing assumptions regarding their treatment, as
di�erent methods can easily be combined and compared.

Modern RHD simulations have signi�cantly enhanced our understanding of �ares, but
remain limited in the dimensionality of their treatments and cannot currently produce
plausible synthetic light-curves without the arti�cial superposition of many individual
simulations (e.g. Kerr et al. 2020). It is likely that signi�cant progress will bemade on these
limitations in the coming 1–2 decades as computing power and numerical techniques
improve. In the meantime, we can undertake numerical experiments to evaluate indi-
vidual components of these larger treatments (along with re-evaluating certain current
assumptions) and we will present several of these using our Lightweaver-based exper-
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iments, that leverage the dynamics of RADYN RHD simulations, with the �exible and
enhanced treatment of radiative transfer and level populations from Lightweaver.
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3
Optical Flare Observations and Inversions

Solar �ares release a vast quantity of energy across the entire electromagnetic spectrum,
observed from γ-rays to microwaves. Almost all of this presents signi�cant diagnostic
potential, and is observed by a plethora of advanced instruments. Many of these have to
be situated above the Earth’s atmosphere, which shields us from the biologically harmful
wavelengths at which they observe. An in-depth review of di�erent spectral ranges, and
the �aring signatures they observe is given in Fletcher et al. (2011).

In this chapter we will discuss the optical spectral lines that we focus on during this thesis,
the basics of inversion (retrieving a solar atmosphere from spectral line observations),
and �nally introduce the concepts used in machine learning that will be applied in our
machine learning inversion model presented in Chap. 7.

3.1 Important Optical Spectral Lines

Ground-based telescopes can have much larger apertures and bemore complex than their
space-based counterparts for an equivalent budget, allowing for much better spatial resol-
ution. The instruments attached to them can also be repaired, replaced, and upgraded
over time, allowing them to havemuch longer lifecycles than spacemissions. In exchange
for this they can only observe in limited spectral bands (due to the aforementioned at-
mospheric absorption e�ects), and su�er from the e�ects of atmospheric turbulence. To
some degree the e�ects of atmospheric seeing can be accounted for and corrected, but the
magnitude of these e�ects will vary on a daily basis. Our aim is to develop predictions and
techniques allowing the more thorough exploitation of the high spatially and spectrally
resolved data obtained from the current and next-generation of ground-based optical
telescopes to enhance our understanding of the chromosphere during solar �ares.
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Figure 3.1: Grotrian (term) diagram of Ca II bound terms of interest. The Ca II 854.2 nm
transition is highlighted in red. The wavelength of each bound-bound transition is labelled.

There are but a handful of spectral lines that are both accessible to these ground-based
telescopes and that are sensitive to the chromosphere. Following de la Cruz Rodríguez &
vanNoort (2017) these are primarily the Ca IIH&K lines, the Ca II infrared triplet, Hα, He I
D3, and He I 1083 nm. Many other spectral lines with chromospheric diagnostic potential,
such as Lyα, Mg II h & k, He II 30.4 nm can only be observed from space. The decision
regarding which of these to focus on depends both on the availability of observations
(current and future) and the complexity of modelling. The Hα line at 656.3 nm has long
been exploited. It has a strong line core and wide wings with a varying degree of central
reversal and asymmetry (e.g. Švestka 1966). These features suggest that the line responds
di�erently to di�erent �ares, suggesting that it has good diagnostic potential. Indeed,
Hα has been a component of many investigations into �are dynamics and evolution (e.g.
Acton et al. 1982; Heinzel et al. 1994; Wang et al. 1995; Kuridze et al. 2015; Rubio da Costa
et al. 2016). Other lines in the hydrogen Balmer series can also be used, optionally in
conjunction with Hα, such as in the work of Capparelli et al. (2017). The spectral lines of
Ca II have long been present in the RADYN code and used for chromospheric diagnostics
(e.g. Carlsson & Stein 1992), and are a mainstay of �aring chromospheric analysis (e.g.
Mein et al. 1997; Cauzzi et al. 2008; Kuridze et al. 2015; Rubio da Costa et al. 2016; Kuridze
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et al. 2018; Vissers et al. 2021; Yadav et al. 2021), thanks in part to the polarisability of the
Ca II 854.2 nm line. There have been relatively few observations of the neutral helium
lines at high spatial and spectral resolution in �ares (e.g. Zeng et al. 2014; Libbrecht et al.
2019), but they appear to have strong diagnostic potential, although it is likely necessary
to exploit spectropolarimetric information to fully interrogate these lines (Libbrecht et al.
2019). Recently unpolarised RHDmodelling e�orts have started to investigate the possible
dimming of these lines (Kerr et al. 2021).

In the following we shall therefore focus primarily on two of the strongest optical lines,
Hα, and Ca II 854.2 nm, which have a long history of use within RHDmodelling, and as
will be discussed, can o�en be observed with the same instrument. Hα is the �rst of the
hydrogen Balmer series, and is emitted by an electron transitioning between the n = 3
and n = 2 bound levels of hydrogen. Ca II 854.2 nm is part of the Ca II infrared triplet, and
is highlighted in red on the Grotrian diagram in Fig. 3.1. The Ca II 854.2 nm line is themost
polarisable of this triplet (as it has the largest Landé factor of the three): it is not blended
with other lines, and lies relatively close to the peak of the solar spectrum, providing a
high �ux for easy integration. The pair of transitions on this same �gure, between the
4p2P and 4s2S levels, are the Ca IIH & K lines.

The Hα and Ca II 854.2 nm lines have been extensively used together for chromospheric
analysis and carry complementary information. Simulations have found them to form at
di�erent heights within the chromosphere, for example Kuridze et al. (2015) found the
Hα line core forming in the 1.1–1.2Mm region of a RADYN simulation, whereas the Ca II
854.2 nm line core was formed over a much more compact region, deeper in the atmo-
sphere, around an altitude of 0.9Mm. Diagnostics involving both Hα and Ca II 854.2 nm
can therefore reliably constrain chromospheric models, and are sensitive to a larger re-
gion of the solar atmosphere than is possible with just one of the two. Both of these lines
have been reliably modelled without the need for additional time-consuming PRD calcu-
lations, which is not the case for the Ca IIH & K lines. Whilst Hα can be treated in CRD,
Leenaarts et al. (2012a) �nd that three-dimensional radiative transfer modelling is needed
to correctly reproduce the expected intensity structure from RMHDmodels. Bjørgen et al.
(2019) found that the magnitude of this e�ect was reduced for the brightest regions of
a three-dimensional active region simulation, due to the localised high chromospheric
mass density, but three-dimensional modelling remained important for regions adjacent
to these bright structures. Flare models with detailed chromospheric treatment are not
yet possible in three-dimensions, but with the large gradients in the radiation �eld that
occur in �ares it is likely that this e�ect will also be important in regions adjacent to �ares
(as supported by the simulations presented in Chap. 6).
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3.1.1 The Swedish Solar Telescope

The Swedish Solar Telescope (SST, Scharmer et al. 2003) is a 1-metre refracting telescope
located in the Observatoria del Roque de los Muchachos, La Palma, Spain. Behind the
singlet lens, the telescope is held in a vacuum to improve image quality and a Schupmann
corrector is used to compensate for chromatic aberration. The light is then sent from this
corrector to an adaptive optics system that compensates for atmospheric seeing e�ects
and on to the optical bench. This adaptive optics system allows the SST to operate at
close to its di�raction limit in good seeing conditions (∼ 0.17′′ for Hα and ∼ 0.21′′ for Ca II
854.2 nm).

There are three instruments usablewith the SST: TRIPPEL, CHROMIS, and CRISP. TRI-Port
Polarimetric Echelle-Littrow (TRIPPEL, Kiselman et al. 2011) is a spectrograph that can
simultaneously observe in three di�erent wavelength regions (across 380–1100 nm) with
a spectral resolution1 R ≈ 200 000. CHROMospheric Imaging Spectrometer (CHROMIS,
Löfdahl et al. 2021) and CRisp Imaging SpectroPolarimeter (CRISP, Scharmer et al. 2008,
2019) are both dual Fabry-Pérot tunable �lter systems that can be operated simultan-
eously. CHROMIS serves the blue end of the spectrum between 380 and 500nm, whereas
CRISP operates in the 510–860 nm region. The di�raction limit is lower at the CHROMIS
wavelengths, but CRISP can perform full spectropolarimetric imaging.

In this thesis we make use of one set of observations taken from the SST using the CRISP
instrument, so we shall brie�y describe how these are processed. This observation was
performed on 2014-09-06 and captures the M1.1 �are SOL 20140906T17:09 from National
Oceanic and Atmospheric Administration (NOAA) Active Region 12157 at heliocentric
coordinates (−732′′, −302′′). This data is available in the F-CHROMA database2 and was
prepared using the CRISPRED pipeline (de la Cruz Rodríguez et al. 2015) which is respons-
ible for image calibration, alignment, instrumental e�ects, and seeing restoration through
the multi-object multi-frame blind deconvolution algorithm (MOMFBD, van Noort et al.
2005). MOMFBD is a post-processing phase diversity algorithm that accounts for seeing
that is worse, or evolving faster, than the adaptive optics system of the telescope can cope
with. It has been suggested by Armstrong & Fletcher (2021) that the di�erences between
the wide- and narrowband images of �ares may hinder the reconstructive abilities of the

1The spectral resolution R describes an instrument’s ability to resolve spectral features and is de�ned by
λ

∆λ
where for a wavelength λ, ∆λ is the smallest di�erence in wavelengths that can be distinguished.

2https://star.pst.qub.ac.uk/wiki/public/solarflares/0450.html
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MOMFBD system, and they have developed a machine learning approach to correcting
for these e�ects. This method has not been applied to the data used in this thesis.

3.1.2 The Daniel K Inouye Solar Telescope

The Daniel K Inouye Solar Telescope (DKIST, Rimmele et al. 2020) is a new 4-metre
Gregorian solar telescope that saw �rst solar light in December 2019. It is designed to
support a number of instruments observing between 380 and 5000 nm with a di�raction
limit of 0.026′′ (20 km) at 500 nm. The instruments initially expected to capture �aring
chromospheric observations are the Visible Tunable Filter (VTF) and the Visible Spectro-
Polarimeter (ViSP). The former of these will capture narrow-band line images similar
to CRISP, but at higher spatial resolution, whereas the latter will provide high-precision
spectropolarimetric observations through a slit spectrograph with R > 180 000. DKIST is
expected to start making routine observations in 2021 and promises observations of the
chromosphere on scales that will push our modelling and analysis techniques to their
limits.

3.2 Introduction to Inverse Problems

From the previous chapter we have an understanding of the so-called “forward problem”
of radiative transfer, that is, the synthesis of a spectrum from a known atmospheric model.
The inverse of this problem is not well-posed; there is no guarantee of uniqueness, and
typically the problem is extremely underdetermined. The radiation �eld inside the plasma
couples the atomic populations at all depths (as is evident from the form of theΛ operator)
in a way that cannot be trivially disentangled and information is then lost in the forward
process that is needed for the inverse process.

It is, of course, of great value to constrain the atmospheric parameters associated with a
particular observation, and it is this we seek to achieve, by solving the inverse problem of
radiative transfer, known as inversion. As observed radiation is the only vector by which
information can arrive from the Sun, it is important to maximally exploit the information
that can be gleaned from observations and determine the structure of the atmosphere
that produced the observed radiation.

The forward process is described by the diagram in Fig. 3.2. Here elements of X are
the parameters describing an atmosphere (in this description we choose temperature T ,
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T1, ρ1,~υ1, ~B1

T2, ρ2,~υ2, ~B2
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~I3

~I4

~I5

Y

Observed Intensity
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Atmospheric Parameters

f(x)

f−1(y)

?

?

Figure 3.2: The degenerate mapping f demonstrates the di�culty of traditionally framed
inversions.
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Figure 3.3: The bijective mapping g can be used to resolve the problem of inversions upon
the introduction of a latent space Z containing the information lost in the forward process.
For the sake of legibility we have only included the observed intensity vectors which were
mapped to in Fig. 3.2.
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mass density ρ, velocity ~υ, and magnetic �eld ~B, although there are many other similar
formulations that can be used). The elements of Y are possible forms of the outgoing
radiation that may be associated with di�erent sets of atmospheric parameters. Fig. 3.2
shows the theoretically degenerate nature of the problem; whilst the mapping f from X to
Y is always well-posed, the inverse f−1 is not necessarily, and with only the information
present in Y there is no way to immediately resolve this ambiguity (indicated by the
question marks in this �gure).

The problem of inversion can instead be framed as shown in Fig. 3.3, where elements of
the newly introduced latent space Z represent the information lost in the forward process
and a bijective mapping gmay be written between X and the cartesian product of Y and
Z. Z is di�cult to conceptualise, and harder still to characterise; in the following we will
discuss multiple approaches for replacing or reconstructing this information.

As an example we can pose the simple problem of the function f : R→ R+; x 7→ x2. This
function is clearly not bijective, as for any y in R+ it is ambiguous whether the expected
input x was√y or −√y. If the domain of this function was instead R+, there would be no
ambiguity here. Instead, we can introduce a latent space, the form of which is chosen
by us and captures the lost information, i.e. the sign of the input ({1, −1}). With this we
can de�ne the bijective function g : (R+ × {1, −1}) → R; (y, z) 7→ z

√
y. Discarding z, the

forward process of g−1 is equivalent to that described by f, but the invertibility of the
problem is now assured. This example does not illustrate how to discover the correct z,
and for a purely mathematical case such as this, there is no unambiguous solution given
only y. However, the form of the latent space is known (and in this case �nite), and this
can allow us to infer the di�erent possibilities for x. In complex physical systems these
di�erent possibilities may have di�erent likelihoods of occurring that then allow us to
construct a probability distribution function for x.

For the remainder of this chapter, we denote individual samples of the atmospheric
parameters x, the emergent line pro�les y and the latent space z.

3.2.1 Milne-Eddington Inversions

In depth reviews of the primary methods of spectral inversion are provided by del Toro Iniesta &
Ruiz Cobo (2016) and de la Cruz Rodríguez & van Noort (2017).

Milne-Eddington inversions have proven to be a simple, but very powerful tool that is
o�en applied in solar physics. The loss of information can be somewhat limited by placing
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constraints on the solution. One of the simplest constraints that can be placed on the
problem is that of a source function that changes linearly with continuum optical depth,
whilst all other parameters are held constant throughout the atmosphere. This is a low-
order approximation of the problem, and is convenient as we can express the outgoing
intensity analytically. This can be done for the full Stokes polarised case of the RTE, but
for illustration we choose to use only the scalar case here. With continuum opacity τc the
source function is then de�ned as

S(τc) = S0 + S1τc, (3.1)

where S0 and S1 are constants. In this situation where we are dealing with the source
function directly, rather than atomic parameters (as we are e�ectively in an two-level
atom case due to only considering a single line), we can de�ne the line strength α as the
ratio between the continuum opacity and the line opacity i.e.

τ(ν) = τc(1+ αφ(ν)), (3.2)

where φ is the line pro�le.

Now, by formulating S in terms of τ(ν) and integrating the RTE directly whilst assuming a
semi-in�nite atmosphere we obtain the outgoing intensity

I(τ = 0,ν) =
∫∞
0

(
S0 + S1

τ

1+ αφ(ν)

)
e−τ dτ (3.3)

= S0 +
S1

1+ αφ(ν) . (3.4)

Thanks to the analytic nature of this solution, it is easy to attempt to �t this to observations,
and e�ects such as constant atmospheric velocity, and magnetic �eld can be included in
the line pro�le. This approach is rapid and works quite well for quiet photospheric lines,
such as Fe I 6301 Å and Fe I 6173 Å as used in Hinode SOT andHMI (e.g. Centeno et al. 2014),
but the linear description of source function reduces its applicability to chromospheric
lines.

3.2.2 Generalisation Through Response Functions

It can be very limiting to impose a chosen source function, especially in regions where
the temperature does not vary monotonically. A far more �exible approach is to attempt
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to �t a source function. From the previous discussion of formal solvers we know that for a
discretised atmosphere wherein the source function follows a prescribed functional form
over each interval we can write

I(τ = 0) =
∑
i

∫τi+1
τi

S(τ)e−τ dτ, (3.5)

whereby we have once again assumed that I(τ = ∞) = 0. If the source function is taken to
be constant in each slab this becomes

I(τ = 0) =
∑
i

S(τi)

∫τi+1
τi

e−τ dτ, (3.6)

and for each slab the associated integral represents its contribution to the outgoing intens-
ity. In fact, as each contribution is linear in the source function, it represents the response
function here i.e. the response in the outgoing intensity to a perturbation in the source
function at this depth. We can therefore form a response matrix associating, for each
wavelength and depth, the response to a change in source function at this depth. This
response function does not change with the source function due to the linearity of the
problem. In theory, we should therefore be able to infer the depth strati�ed form of the
source function. However, two primary di�culties arise.

Typically observations of a line contain many more wavelength points than the number
of depth points it is feasible to have in our discretised source function, leading to an
overdetermined system with no direct inverse. Even if one were to modify the system so
that these dimensions are compatible, the response matrix typically has extremely poor
conditioning (is extremely sensitive to errors in the input) and thus cannot be inverted
directly. An immediate solution is then to use a pseudoinverse based on the singular value
decomposition of the response matrix, as this can attempt to tackle both problems at
once.

Applying this method to a simple example with a quadratically varying source function
strati�ed across 61 depth points using a constant line strength and line pro�le with 101
wavelength points we �nd the result shown in Fig. 3.4. The poor quality of the pseudoin-
verse solution is apparent from the large oscillations and poor agreement with the true
source function, and this example showcases the simple case of a static atmosphere with
constant line strength. If these parameters are also allowed to vary then the solution is
likely to deteriorate further.

Whilst this problem can be overcome (to some extent) by regularisation of the solution, to
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Figure 3.4: Comparison between true source function and inferred for the case of a quadratic
variation.

enforce smoothness in the ill-posed problem, we are also le� with a problem of interpret-
ation for NLTE problems. Ultimately, we seek to learn information about the atmospheric
structure from the outgoing radiation, and not simply the source function. A natural
solution to this is to take a model atmosphere and attempt to �t the synthetic spectrum
generated from this model to the observations, but to do this the parameters of the model
need to be connected to the synthetic spectrum.

It is common to use the integral form of the RTE

I(ν) =

∫∞
0
S(ν, tν)e−tν dtν, (3.7)

and de�ne the contribution function as the integrand of this expression (Carlsson & Stein
1997; del Toro Iniesta 2003), similarly to the contribution term from (3.6). This contribution
function is o�en interpreted as a description of the location at which a spectral line forms.
If this can be used to understand how and where the line forms then it seems reasonable
to use this as the basis of an inversion scheme. However, there are several problems
that would arise from this approach. In many lines, the contribution at the line core can
span a relatively large region, and thus there is a high probability that photons measured
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at the same wavelength have been produced in signi�cantly di�erent locations. It is
di�cult to meaningfully ascribe mean thermodynamic parameters of line formation to a
non-uniform extended region over which the line forms. This problem becomes more
complex still if the contribution function is double-peaked, as is relatively common for
lines forming in the complex atmospheres produced by �are models. As commented by
del Toro Iniesta (2003) the mathematical de�nition of the contribution function CI is also
ill-posed, as for any function f such that

∫∞
0 f(tν)dtν = 0, CI + f is also an equivalently

valid contribution function.

The contribution function will qualitatively capture most of the information about the
regions important to the formation of a certain line, but it misses the non-local e�ects
that occur in NLTE radiative transfer as the radiation �eld from one region of the model
atmosphere o�en determines the populations and thus the emissions in another. These
e�ects can instead be captured by the use of response functions.

Response functions have been primarily used in the �eld of inversions, but also represent
strong tools for understanding the theory of spectral line formation in atmospheric mod-
els, due to the close coupling of these two problems. A response function tells us how the
outgoing intensity changes in response to a change in an atmospheric parameter. These
were �rst named by Beckers & Milkey (1975), but a similar concept was previously presen-
ted by Mein (1971) in the form of weighting functions for the RTE. They were generalised
to full Stokes radiative transfer by Landi Degl’Innocenti & Landi Degl’Innocenti (1977) and
applied by Ruiz Cobo & del Toro Iniesta (1992) for the situation of full Stokes synthesis and
inversion (using the formulation of Sánchez Almeida (1992)). A similar approach (built
on framing the intensity perturbations as a Fredholm integral equation and using the
�nite di�erence method to evaluate necessary terms) for the scalar RTE was employed
in the inversions of Metcalf et al. (1990a), but their focus was on the direct application to
inversions rather than the interpretation of the response functions produced.

In the followingwe shall consider only the response of the unpolarised Stokes I component,
as we are focusing on unpolarised models, although the techniques discussed here can
easily be applied to the full Stokes case. The frequency- and depth-dependent response
function Rν,q(z) to a parameter q can then be de�ned by

∆I(ν) =

∫
Rν,q(z)∆q(z)dz, (3.8)

where ∆I(ν) is the change in outgoing radiation due to a change of ∆q(z) in parameter
q.
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To learn from response functions, we �rst need to know to which parameters we wish
to know the intensity response. This will depend on the parametrisation of the model
atmosphere used, but it is common to see response functions to temperature, electron
density, velocity, and in the case of spectropolarimetry, magnetic �eld. An example
of using response functions for chromospheric diagnostics, and their advantages over
contribution functions was presented by Uitenbroek (2006). It was shown that there can
be substantial di�erences between the contribution and response functions for lines
that form in NLTE conditions, and highlighted that for Hα the photospheric conditions
will a�ect the line-core formation height, and hence the source function due to radiative
coupling.

In LTE, where the source function is set by the local atmospheric parameters, the response
functions canbe computedwith relative ease. The SIR inversion code (Ruiz Cobo&del Toro
Iniesta 1992) analytically computes the (full Stokes) response functions to perturbations in
di�erent atmospheric parameters at the same time as the formal solution. These response
functions are used in conjunction with a Levenberg-Marquadt damped least squares
regression procedure to modify the starting atmosphere (de�ned on equidistant nodes in
log τ and assumed to follow cubic splines between nodes) until the synthesised radiation
matches the observation as closely as possible.

For lines that are formed well outside LTE the process of determining the response func-
tions to atmospheric perturbations can be signi�cantly more arduous. The most common
approach has been to apply a �nite di�erence method to the outgoing radiation from
the statistical equilibrium solution to an atmosphere by successively perturbing each
parameter at each node in the atmosphere. Whilst computationally expensive, this “brute
force” approach to response functions makes them simple to calculate. Following this
approach, the parameter we wish to know the response to is perturbed at one depth point
in our discretised atmosphere, and the populations are updated using the new radiation
�eld and atmosphere. This procedure is repeated for the parameter at each depth in the
atmosphere. The intensity response to perturbation δq in parameter q at depth point k
can then be computed by �nite di�erences as

Rν,q(k) =
I(ν,qk + δq) − I(ν,qk)

δq
. (3.9)

Despite the e�ective doubling in computational cost, a centred �nite di�erence method
was recommended by I. Milić (private communication) and de la Cruz Rodríguez & van
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Noort (2017), and this has provenmore robust. The response function is then written as

Rν,q(k) =
I(ν,qk + δq/2) − I(ν,qk + δq/2)

δq
. (3.10)

This process must be undertaken for each depth (or node in the model) and atmospheric
parameter independently, leading to its signi�cant computational cost. In a statistical
equilibrium case, the standard procedure of formal solution and population update is
repeated until convergence is reached.

Whilst this process is computationally expensive, it has been used reliably since the
NICOLE code (Socas-Navarro et al. 2015, developed from Socas-Navarro et al. (2000) but
no longer using �xed departure coe�cients). The Stockholm Inversion Code (STiC) also
follows this procedure, using a modi�ed form of RH, allowing for the application of PRD
(de la Cruz Rodríguez et al. 2019).

Analytic response functions for the multi-level NLTE problem were �rst derived by Milić
& van Noort (2017), and are now implemented in the SNAPI code (Milić & van Noort 2018).
These response functions should signi�cantly reduce the computational cost of NLTE
inversions, a necessity for inverting the large �elds of view in current and next generation
solar observations.

An alternative approach to reducing the computational overhead of NLTE inversions can
be seen in the DeSIRe code, which combines SIR and RH, guiding itself to an approximate
solution using the fast analytic LTE response functions of SIR and �ne-tuning the solu-
tion with �nite-di�erence response functions computed with RH (B. Ruiz Cobo et al. in
preparation).

All of the codes discussed here use the Levenberg-Marquadt regression method with
di�erent varieties of regularisation to enforce smooth solutions. Additionally, only the
statistical equilibrium solution is considered, and then only in hydrostatic equilibrium
as this reduces the number of parameters to be inferred. It is common to allow line-
of-sight velocity as a parameter, which technically violates the constraint of hydrostatic
equilibrium, however this is a minor e�ect and is seen as a worthwhile trade-o� for
the increase in tractability of quiet sun inversions. Clearly these constraints render this
technique very di�cult to apply to �ares, although NICOLE has been applied to �aring
atmospheres by Kuridze et al. (2018). The integral approach of (Metcalf et al. 1990a) was
also applied to �ares and di�ers from the others discussed here, by constructing a matrix
of kernels which is solved for temperature and electron density perturbations using a
regularised method. The kernels presented cannot capture the complete response to
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perturbations in parameters a�ecting NLTE spectral lines without an approach that can
�nd the new source function (which can bemodi�ed non-locally). These kernels therefore
have a narrow range of validity, and require a starting guess close to the true solution.

Response function driven inversions are not the only form of inversions to have been
applied, but they are the most widely used. For example, Asensio Ramos et al. (2007)
presented a Bayesian approach utilising a Markov Chain Monte Carlo method with Milne-
Eddington atmospheres. This method is too computationally costly to reasonably apply
to the full depth-strati�ed NLTE problem with today’s technology, but it would allow the
investigation of the posterior distributions of the atmospheric parameters, and be less
sensitive to local minima. With the recent rise in popularity ofmachine learning, tractable
approaches to inversion that allow characterisation of the atmospheric posteriors are a
key area of interest (e.g. Osborne et al. 2019; Díaz Baso et al. 2021), and we will discuss
these further, along with other machine learnt approaches in Chap. 7.

3.2.3 Forward Modelling

A technique related to inversions that has commonly been applied to �ares in the last
decade is that of forward modelling through the use of RHD codes. Where possible,
the energy input parameters are constrained from observations, via techniques such
as X-ray spectroscopy to deduce the non-thermal electron �ux and spectral index. A
challenging manual iteration then follows to attempt to obtain an agreement between
the time-dependent simulation and the observations. This is extremely time-consuming
both due to the manual aspect of the inversions and the computational requirements of
the RHD simulations. Clearly, the human intervention necessary to optimise and analyse
these simulations cannot scale to the large volumes of data coming already present and
coming from future telescopes. This technique has nevertheless yielded many interesting
developments in our understanding of the structure of the �aring chromosphere from the
investigation of both spectral line shapes and continuum variations (Kuridze et al. 2015;
Rubio da Costa et al. 2016; Kowalski et al. 2017b; Simões et al. 2017).

3.2.4 In the Context of the Latent Space

Returning now to the mathematical description of an inversion we can start to discuss
the meaning of Z in practice. With the response function based inversions described
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previously, the size of Z is limited by the constraints placed on the atmospheric strati�ca-
tion, and the regularisation thereof. It then becomes feasible to “explore” this space (Z
coupled with Y as no explicit distinction is made) using the gradient information from
the response functions to guide the solution. It is worth noting that this approach does
not guarantee the global minimum solution; whilst the Levenberg-Marquadt algorithm is
extremely e�cient at �nding local minima, it provides no further guarantees and the �nal
solution may therefore be substantially in�uenced by the choice of starting atmosphere,
which is typically picked based on intuition from the “standard” semi-empirical models.
The RHD based forward �tting methods are also comparable in terms of exploration of Z,
except here the optimisation is done manually and the gradient information is replaced
by intuition.

3.3 Introduction to Machine Learning

Machine learning describes a family of generic algorithms that are used to make sense
of data without being explicitly programmed. A model is de�ned by the researcher, but
its �nal behaviour is determined by patterns in the data it is fed. The abundance of
both observational and simulated solar data continues to increase and new approaches,
such as machine learning, are needed to make use of this vast quantity of information
in a computationally tractable manner, helping to highlight patterns that can be further
investigated by researchers.

There are three primary varieties of machine learning algorithms: supervised, semi-
supervised, and unsupervised learning. Supervised algorithms are themost common. The
model is provided with a set of examples (typically produced or preprocessed manually)
and is then trained so that it represents an approximate transformation between the
input and output data de�ned by the training data. We can further divide this class into
classi�cation and regression models. Classi�cation associates each class with a discrete
input, possibly labelling an image based on its contents, whereas regression approximates
a continuous mathematical function. In both of these cases the model approximates a
function which is learnt entirely from the training data.

Unsupervised learningdoesnot require themanually prepared set of examples, but instead
organises data based on generic programmed criteria. Two commonly used examples of
unsupervised learning are clustering and dimensionality reduction techniques. Clustering
algorithms extract groups of similar objects (where similar is de�ned given a particular
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basis and metric determined by the choice of algorithm), and can be used to �nd patterns
in large datasets. There are many kinds of dimensionality reduction techniques, but one
of the most common and general choices is principal component analysis, where an
orthogonal basis spanning the data is constructed and then sorted by the variance of the
factors of each of these axes (i.e. the eigenvalues of the covariance matrix). For data of
dimensionalitym, keepingm principal components allows for a perfect reconstruction,
as this is simply a basis transformation, however, we can o�en discard terms with small
variance and produce accurate approximate reconstructions of the data with substantially
fewer thanm components. It is necessary to ensure that su�cient components are chosen
for the reconstruction to be accurate, but such techniques can reveal patterns that are
otherwise di�cult to discern in the original high-dimensional spaces.

Finally, as implied by the name, semi-supervised learning lies in between the two previ-
ously discussed classes. It still requires preprocessed training data which is used for some
training, however unsupervised learning processes may be used internally to the model,
or in some cases data generated by a model is used in conjunction with this training data.
This form of machine learning exists only within the realm of deep learning, built on
neural networks.

3.3.1 Arti�cial Neural Networks

Arti�cial Neural Networks (ANNs) loosely follow the principle of biological neuronal
systems, consisting of layers of interconnected neurons, the output of which is summed
in synapses and then has a non-linear activation function applied to determine if the
signal is passed on through the network. ANNs consists of multiple layers of neurons and
synapses whereby we designate any layer that is neither the input nor the output a hidden
layer. If an ANN consists of more than one hidden layer it is termed a deep neural network
(DNN), and these are considered to be the standard building blocks of modern machine
learning (Raschka 2015).

There are many di�erent architectures for ANNs, used for solving di�erent problems.
ANNs can vary in number of hidden layers, interconnectedness of neurons within these
layers, connectedness of the layers to each other, and the activation function used in
each layer. We distinguish two primary forms of layers, based on their interconnectivity;
these are fully connected (FC) where each neuron in a layer is the linear combination of
its inputs (typically the activation function applied to the neurons of the previous layer),
and the convolutional layers of convolutional neural networks (CNNs, Lecun et al. (1998);
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Simard et al. (2003)) which connect only nearby neurons to exploit local structure in the
input (in one or more dimensions). These convolutional layers can then be described as a
set of �lters learned during the training process which are cross-correlated with the input,
the output of which is then passed through the activation function. CNNs are somewhat
inspired by the neuronal structure of the visual cortex, and have been applied with great
success in the �elds of image analysis, processing, and generation (Raschka 2015). A fully
connected layer rarely works well for these tasks as a slight movement of an object within
an image can easily invalidate its training whereas the smaller layers of a CNN sweep
across the image (are applied to each region in turn) and are far less a�ected by this.

There aremany common forms of activation function. Due to the backpropagationmethod
used for training ANNs it is highly advantageous if these non-linear activation functions
be trivially di�erentiable. Some common choices are the sigmoid function

S(x) = 1
1+ e−x , (3.11)

inverse tangent tan−1(x), and variants of the recti�ed linear unit (ReLU; Nair & Hinton
(2010)).

ReLU(x) =max(0, x). (3.12)

All of these functions are used in the creation of ANN basedmodels, but the ReLU family is
key to modern machine learning for reasons of sparsity in its output. Here sparsity refers
to the presence of zeros in the output of a layer creating clearer pathways through the
network. Classi�cation ANNs will typically employ an activation function on the output
layer (most frequently a normalised exponential to select a single discrete class), whereas
ANNs employed in regression problems will rarely do so.

3.3.2 General Function Approximations

ANNs are universal function approximators; they can learn arbitrarily complex classi�ca-
tion and regression problems (Rumelhart et al. 1986; Cybenko 1989). This was theoretically
proven for shallowneural networks (with only one hidden layer) using sigmoidal activation
functions by Cybenko (1989). Increasing the precision to which a function is approxim-
ated may however require exponential increases in layer width and training. A similar
proof for the commonly used ReLU activation function was provided by Lu et al. (2017),
who developed bounded expressions for the layer width and network depth needed to
approximate functions to arbitrary precision. Unfortunately these results can be di�cult
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to apply to many real world scenarios where the intrinsic dimensionality of the function
being approximated is not known (these results are also a�ected by any imperfections in
the training data).

It is also possible to increase the approximation capability of an ANN by increasing its
depth (the number of stacked layers), these stacked layers then represent the composition
of functions, and each additional layer increases the complexity of the representation
of its input, allowing for very complex tasks to be approximated (Raschka 2015). The
approximation power of stacked layers explains why the DNN is core to modern machine
learning, however care must be taken when designing a model to select appropriate width
and depth for the problem at hand (Lu et al. 2017).

3.3.3 Training via backpropagation

ANNs are trained via a process known as backpropagation (Rumelhart et al. 1986). The
networks are composed of linear combinations and (by our original requirements) di�er-
entiable activation functions. The entire network can then be di�erentiated by repeated
applications of the chain rule (from output to input) to �nd the gradients of the output
with respect to each weight (the coe�cients of the linear combinations in each layer) and
input, which then describes how each weight a�ects the output. Typically the output of
the network when fed with data from the training set is compared against the expected
output via a loss function, and then the gradient information from this loss is combined
with the previous gradient of the network output to each weight and used to minimise the
magnitude of the loss by modifying the weights.

Updating the weights in the network can be carried out in a variety of ways, but it is
a similar minimisation process to that used in inversions. The basic method is that of
stochastic gradient descent (SGD) which takes a step through the loss space guided by the
gradients for each batch of training data. The size of this step is known as the learning rate,
and is a hyperparameter3 of the ANN. It can be kept constant, vary following a prescribed
evolution with epoch, or even bemodi�ed based on the rate of convergence of the training
procedure. As SGD is only a�ected by the most recent batch of data it can have di�culty
escaping local minima and traversing plateaus in the loss space.

Many improvements to SGD have been developed, such as the addition of momentum,
which accelerates convergence and helps to avoid the solution being overly a�ected by

3Hyperparameters are tunable parameters that are o�en set by the researcher, or optimised by a process
external to the training of the INN
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a single batch of training data. Other modern algorithms based on the same principles
as SGD have also been developed (e.g. the Adam algorithm, Kingma & Ba 2014) and
o�en converge in fewer epochs (rounds of training) to similar or better solutions. None
of these stochastic algorithms can guarantee a global minimum in the loss space, and
such a requirement is not feasible for anything other than the smallest neural networks,
where more time- and memory-consuming optimisers can be used due to the much more
dimensionally compact spaces over which the optimisation occurs. Nevertheless, with
su�cient training data and epochs a model capable of approximating the function we
wish to learn should be able to descend into su�ciently good local minimum using these
techniques.

Auxiliary techniques to improve model convergence have also been developed, such
as minibatching, in which the network is only shown a random portion of the training
data each epoch. Clearly this can reduce the computational cost of an epoch, as fewer
calculations are performed on this training set, but minibatching can also improve the
convergence by avoiding the stagnation that arises in the traditional batched gradient
descent where the entire training set is used to direct the step.

A technique known as autodi�erentiation has become prominent in the �eld of machine
learning. It allows users to easily design custom blocks and compose these without the
need to consider the implementation of the derivatives needed for training as these are
computed by the framework. Frameworks (e.g. TensorFlow (Abadi et al. 2016), PyTorch
(Paszke et al. 2019)) may record the path of data through a network and then using this
information (as every function present therein is di�erentiable) construct all necessary
gradient information for training, which can then be computed on GPU. The automatic
nature of this approach has enabled the rate of development seen in machine learning
in the last decade, as it allows researchers to spend longer thinking about design than
low-level engineering.

3.3.4 Di�culties training DNNs

As the number of layers in an ANN increases the networks can become much harder to
train; the gradient of the output with respect to the weights in early layers can easily be-
come vanishingly small due to the repeatedmultiplication of small gradients in the deeper
layers. The use of ReLU activation functions o�en minimises this e�ect, but can instead
lead to exploding gradients due to their high dynamic range. He et al. (2015) developed
residual networks (ResNets), which have greatly increased the depth and complexity of
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networks that can be e�ectively trained, and now networks with many hundreds of layers
are frequently used (e.g. Jegou et al. 2017). The residual blocks of these networks contain
so-called skip connections, which take the output from a layer and sum or concatenate
it with the output of layer one or more levels deeper. These skip connections provide a
path for gradients to propagate through the network, helping to avoid both vanishing and
exploding gradients. Variants of the ReLU function are almost uniquely used in ResNets as
these additionally provide sparsity to the representation (i.e. their output is 0 for all input
less than or equal to 0), which can improve the expressiveness4 of the representation and
aid in disentangling information propagating through the network (Glorot et al. 2011).
These variants include the leaky ReLU (max(0.01x, x), Maas et al. 2013) which still produces
a small amount of gradient information for negative inputs, helping to prevent neurons
with ReLU activation from “dying”, and exponential linear units (ELUs, Clevert et al. 2015)
which achieve a similar result in a smoothly varying fashion.

Like all regression models with a large number of free parameters, ANNs can very easily
enter a regime of over�tting their training set. In this situation the ANN has learnt to
match its training set so closely that it is unlikely to perform reliably on inference of
unseen data. This can o�en manifest as memorisation, where the network has learnt
to produce the expected output for a training sample, but not the relationship between
the two. ANNs must therefore be trained with care and diligent use of validation data,
prepared in the same way as the training set, but never shown to the network during
training. The network’s performance can be judged by how well it performs in inference
on the validation set in between training epochs. If the performance on the training data
continues to improve over time, but the performance on the validation set stagnates or
worsens then the network has entered an over�tting regime.

There are additional techniques that can be employed to mitigate over�tting, such as
regularisation, which will attempt to prevent a model’s weights fromminimising the loss
function too perfectly, for example by penalising overly large weights with a modi�ed loss
function, or randomly deactivating neurons in each layer during training (this approach
is known as dropout).

Selecting hyperparameters for a model can be a challenging process of manual optimisa-
tion but is essential to training, and many advanced optimisers like Adam require addi-
tional hyperparameters that can drastically in�uence the rate of convergence. Approaches
such as grid searches can be applied here, but given the computational requirements of
training these models, an intuitive approach is o�en applied.

4The expressive power of a neural network is its ability to approximate functions.
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4
The Lightweaver Radiative Transfer

Framework

The Lightweaver framework1 (Osborne & Milić 2021; Osborne 2021a) is a Python package
built around a C++ core in which we have implemented the methods for numerical NLTE
radiative transfer discussed in Sec. 2.4. As can be seen from the referencing of this section,
none of these methods are novel on their own – they represent the most robust methods
encountered in our survey of NLTE radiative transfer – and it is in the combination of
these methods and the implementation strategies employed that Lightweaver di�ers from
current state-of-the-art radiative transfer codes. An overview of the key components and
functions that users will typically interact with is presented in Osborne & Milić (2021),
in the following we describe the most important design decisions made in Lightweaver
and explain how they can enable new forms of radiative transfer simulations whilst also
increasing productivity.

4.1 Philosophy

The design of the Lightweaver framework is inspired by deep learning frameworks, such as
PyTorch (Paszke et al. 2019). These have risen to prominence in recent years, due to their
low barrier to entry, whilst still providing a customisable, full-featured, interface to the
underlying methods that can be manipulated with pure Python code. Machine learning
frameworks provide a collection of building blocks that can be combined in multiple
ways to allow researchers to construct new tools, speci�cally tailored to the problem they
wish to address. Whilst there can be slight performance gains from using a specialised,

1Lightweaver is freely available under the permissive MIT license on GitHub (https://github.com/Goobley/
Lightweaver) with archival on Zenodo.
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optimised, state-of-the-art method implemented in a performance-focused language for
this particular task, the bene�ts are likely outweighed by the additional development time.
This is especially true in research environments where tools are o�en used by a small
group of researchers in a transient fashion, and the return on possible optimisations is
rarely su�ciently large compared to the bene�ts of increased development speed that a
framework allows. The use of a tested framework also allows researchers con�dence in
the core numerics they are reusing, whether they understand every detail or not.

The steps involved in solving the NLTE radiative transfer problem, e.g. formal solution,
calculation of preconditioned rates, population updates, conservation of charge, and
calculation of the PRD line pro�le ratio, are quite modular, and we provide optimised
methods for the most commonly used steps following the standard techniques outlined
previously. They are building blocks that can be combined in di�erent ways, to produce
di�erent tools. These building blocks are the core o�ering of the Lightweaver framework,
and are intended to be combined by the user in a new Python program to solve their
particular problem. If at any point a user wishes to fully replace a core component of
Lightweaver, this can be done in Python, inside their program, with no modi�cation of
the framework itself, whilst the other components can continue to be used as before.
This �exibility is encompassed by one of the core design goals, which is to allow Python
code written by the user to “interfere” with all of the numerical treatment of the NLTE
problem.

All other radiative transfer codes that the author has interacted with have been designed
with a strict limit of one simulation per computer process. Whilst this limitation does
make the design of the program easier, especially in Fortran and C, it is not bene�cial to
an end user who may, for example, wish to couple multiple simulations with di�erent
atomic con�gurations, or, say, use one as a radiative boundary condition for another. This
latter con�guration is applied extensively in Chap. 6 where plane-parallel models are used
as boundary conditions for a two-dimensional slab. Whilst there are other solutions to this
problem, such as saving necessary data and loading it in a recon�gured program, these
are typically more error-prone than a simple program which can �exibly represent the
coupling between these models in its code, even allowing for memory sharing of certain
components. To this end, each radiative transfer simulation performed in Lightweaver
occurs in a self-contained Context, a Python object containing all necessary con�guration
and storage needed for this model. These can be serialised using the pickle package of
the Python standard library, allowing for a complete simulation to be dumped to disk
or transferred between processes using the standard approach expected in the Python
ecosystem. This has impacts on parallelisation, which will be discussed in Sec. 4.5.
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4.2 Accessibility & Code Overview

One of the aims of Lightweaver is to attempt to reduce the barrier to entry for new users,
thus we ensure that it is simple to install with pre-compiled libraries available. Thus a user
with a Python environment (version > 3.8) using an x86-64 CPU supporting AVX vector
extensions (essentially any Intel or AMD chip from the past decade) on any of macOS2,
Windows, or Linux, can install the package in one command using the Python package
manager pip. No additional compilation steps are necessary, and any additional libraries
required are automatically sourced during installation. Whilst slight performance bene�ts
can likely be acquired by using amodern compiler to tune the code generated to the user’s
machine (and this option is available for advanced users), the option of automatically
installing a tested release version of the library in under 60 s was an important goal that
has easily been achieved thanks to Python’s well-supported packaging systems.

All interfaces to the framework are thoroughly documented through the Python docstring
convention (internally to the source �les) and can be used to automatically generateHTML
or LATEX documentation. This can also be viewed online at https://goobley.github.io/
Lightweaver.

As of v0.7.3, excluding automatically generated code (of which we make extensive use),
the Lightweaver frontend consists of 4520 lines of Python, with 2326 lines of comments
and documentation. 777 of these consist of an implementation of the equation of state
originally authored by Wittmann following Mihalas (1978), and ported to Python by J. de
la Cruz Rodriguez (used here with permission). This is an LTE equation of state that has
been used in both the SIR (Ruiz Cobo & del Toro Iniesta 1992) and NICOLE (Socas-Navarro
et al. 2015) codes.

The backend consists of 9896 code lines of personally authored C++, along with two
external libraries: Faddeeva3 (Steven G. Johnson, 2066 lines of code, MIT license) used for
computing Voigt functions, and a lightweight multi-platform thread pool and scheduler4

(Doug Binks & Micha Mettke, 788 lines of code, zlib license). As both of these libraries are
small and permissively licensed, they are included directly in Lightweaver’s distribution,
so there is no concern about these links going stale. Multiple routines present in the
calculation of the background terms are thread-safe reimplementations of those used
in RH (Uitenbroek 2001), with permission. There are also 2439 lines of Cython (Behnel
2Preliminary support of Apple’s ARM CPUs is present, but several underlying libraries do not yet support
this.

3http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
4https://github.com/vurtun/lib/blob/master/sched.h
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et al. 2011) code present in the backend. Cython is a compiled language used to bridge
the Python interfaces to the C++ core. It allows us to share NumPy (Harris et al. 2020)
arrays by reference between Python and C++, allowing changes to the array’s contents to
be visible from either language with no duplication necessary. This data sharing is not
just e�cient but allows the Python frontend to be “involved” with the radiative transfer
calculations on a deep level in line with Lightweaver’s design goals.

4.3 Model Atoms

An o�-quoted aphorism in programming circles is that of Greenspun’s tenth rule of program-
ming5 which states: “Any su�ciently complicated C or Fortran program contains an ad
hoc, informally-speci�ed, bug-ridden, slow implementation of half of Common Lisp”. The
implementations of model atoms in the codes the author is personally familiar with are
examples of this. This is not to say that con�guration �les containing the data needed to
run a program are problematic, but we are instead referring to the large amount of logic
associated with these �les, that eventually turns into an ad hoc domain speci�c language.
These models are structured and contain methods of specifying the approximations to be
used for di�erent terms, such as van der Waals broadening and bound-free cross sections.
Any new method that a user wishes to implement then has to be added to the custom
interpreter responsible for parsing these �les and propagating this information into the
numeric core of the program.

A di�erent approach to the problem of needing to specify data with associatedmethods
and approximations is to de�ne a set of requirements (henceforth contract) specifying the
information needed by the numerical core and allow the speci�c model to ful�l this con-
tract through anymeans. It is this approach we take in Lightweaver. This means that model
atoms need to be “smart” and have the ability to execute arbitrary code. Implementing
these models in Python makes this trivial, and its wide array of scienti�c libraries are also
available6. As a “free bonus”, thanks to the models being standard Python objects stored
in source code, the Python interpreter will take care of parsing these models, through
extremely well-tested code paths.

5e.g. https://philip.greenspun.com/research/
6We stress that other languages could be used for this task, and they need not be dynamic “scripting”
languages; for example, a similar approach could be achieved in C/C++ through the use of dynamic
libraries.
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An AtomicModel in Lightweaver is the de�nition of an object containing an element or
isotope identi�er, and a list of each of levels, lines, continua, and collisional rate approx-
imations. Each of these terms is itself a Python object which must conform to a particular
contract describing the form of the information it must be capable of supplying when a
particular method is called. Many of these objects also contain components with their
own contracts. These contracts are de�ned through the use of Python classes, and a basic
implementation of features, comparable to those in extant radiative transfer codes, is
present within the core of Lightweaver. These can be further extended with new function-
ality through the use of inheritance. A user can therefore implement a newmethod for
computing, say, the absorption pro�le (e.g. the non-Voigt pro�le of Kowalski et al. 2017b)
of a spectral line and employ this by de�ning a new model atom with no changes needed
in the Lightweaver package.

Atomicmodels can be supplied in two di�erent ways, in textual source code, which is both
human and machine readable, or in a pickle, which is only machine readable, possibly
from a previously serialised Context. The former of these is treated as a canonical form,
and it can always be recovered by asking Python for the representation of the object (via
the repr function). This imposes a minor constraint on the way user constructed classes
extending the components of these models need to be de�ned i.e. they must de�ne a
__repr__ function de�ning how to recover a textual representation of themselves. This
is due to our adherence to the standard Python convention that obj == eval(repr(obj)),
requiring that the evaluation (in the Python interpreter) of the textual representation of
an object give an equivalent object. This is explained in depth with the examples provided
in Osborne & Milić (2021).

The use of Python objects and data structures to describe the model atoms does not only
allow the models to execute arbitrary code, but also for the models to be manipulated via
user code. This makes managing and modifying atomic models easier as transformations
(modi�cations of parameters) can be undertaken in bulk by code, rather than a painstaking
manual process. This is all achieved through the use of standard Python, with no custom
code needed to support this.

4.4 Other Implementation Details

Here we present a general overview of the implementation of some of the techniques
discussed in Sec. 2.4, primarily from a design and usage perspective, rather than a nu-
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merical one, as we �nd the former to be more insightful. The numerical implementation
details of Lightweaver, including ensuring correct normalisation of the numerical integra-
tions performed are presented in depth in Osborne & Milić (2021). In general we follow
the best practices discussed in literature, and given the amount of memory present in
today’s computers we typically opt for slightly more memory costly approaches if they
are signi�cantly simpler or more e�cient. In the plane-parallel case, a Gauss-Legendre
quadrature based on the polar angle of the rays is typically used for integrating terms with
angular dependence, although a user can supply their own that is optimised to a particular
problem. Integrations over frequency are typically carried out by using a simple Riemann
sum variant, such as the midpoint rule, and ensuring normalisation of terms such as the
line absorption pro�le and PRD scattering integral.

In Lightweaver, model atoms are considered active, detailed static, or passive. Prior to
construction of the Context, the user de�nes the set of model atoms, and how each is to be
treated in this particular simulation. This is done through an instance of the RadiativeSet
class. Active atoms are given the full NLTE treatment, with the terms necessary for
iterating the populations (the preconditioned Γ matrix) being computed with the formal
solution. To correctly resolve the e�ects of Doppler shi�s, the emissivity and opacity terms
associated with the transitions of these atoms are considered to be angle-dependent, and
are computed for each ray in the angular quadrature, both up- and downgoing. So-called
detailed static atoms are treated similarly, but the terms for updating the populations
are not computed. As such, they will be ignored by the population update routines. A
model atom de�ned as detailed static is intended to be used when the atomic populations
of a species are known a priori, e.g., it is in LTE, or its populations determined in an
alternative manner but its transitions are a signi�cant source of emissivity and opacity
that may a�ect another species being simulated (and the radiative terms associated with
this other species are not expected to have a signi�cant e�ect on the former). Model
atoms designated as passive are treated in LTE and only their bound-free transitions are
considered. Their contributions to the plasma emissivity and opacity are considered
isotropic and incorporated into the background terms. The populations of all of these
species are stored in a SpeciesStateTable, which holds the arrays that are shared with the
C++ iteration machinery.

To handle overlapping transitions, we treat all of these on a common grid. This grid is
computed by the instance of RadiativeSet, a�er the treatment of each atom has been
de�ned. The wavelength grids of each transition considered in detail are combined, and
the region of this common grid associated with each transition is used in the evaluation of
its line absorption pro�le or photoionisation cross-section. During the formal solution, all
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of the sources of emissivity and opacity present at each wavelength (active, detailed static,
and passive model atoms, along with other background terms) are summed to provide
the total emissivity and opacity terms needed to compute the source function.

As discussed in Sec. 4.2, the background emissivity, opacity, and scattering terms take the
same form as those in RH. The background implementation is de�ned through a �exible
interface that receives the atomic populations, model atoms, and wavelength at which
the background parameters need to be known. Through this interface, a user can easily
override the provided implementation. In all of the numerical experiments presented
in this thesis the default implementation (or its parallel cousin FastBackground) is used.
The components considered in the default background implementation and their original
references are:

• Frequency independent Thomson scattering (Mihalas 1978)

• H free-free (Mihalas 1978)

• H−
2 free-free (Bell 1980)

• H+
2 free-free (Bates 1952)

• H2 Rayleigh scattering (Victor & Dalgarno 1969; Tarafdar & Vardya 1973)

• H− bound-free (Geltman 1962; Mihalas 1978)

• H− free-free (Stilley & Callaway 1970; Mihalas 1978)

• H− free-free (> 9113nm) (John 1988)

• basic Rayleigh scattering for H and He (Mihalas 1978)

• OH bound-free (Kurucz et al. 1987)

• CH bound-free (Kurucz et al. 1987)

• Bound-free terms from all passive atoms.

We note that the terms with (Mihalas 1978) as their reference are also discussed similarly
in Hubený & Mihalas (2014). Due to its importance in obtaining a correct background
opacity, the molecular H− population is always computed. Lightweaver can compute the
formation of molecules, assuming that they form in instantaneous chemical equilibrium.
Their formation will reduce the total populations of the species bound up in them, and
they may contribute to the background opacities (e.g. CH, OH, H2).

In Lightweaver, the time-dependent population updates are computed using the fully
implicit variant of the method described in Sec. 2.4.11, i.e. with θ = 1. In general, we
have found no di�erence between the fully- and semi-implicit treatments of the term, and
adopt θ = 1 for simplicity. It is simple to replace the time-dependent population update
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scheme with one that performs the semi-implicit integration without modifying the core
of Lightweaver itself.

The derivatives of the collisional rates needed for the Newton-Raphson charge conserva-
tion scheme are computed by a �nite-di�erence approximation. This is relatively e�cient
as these rates depend only on local parameters, and much less restrictive than requiring a
user to also compute the analytic derivative of any collisional rate formalisms they add to
their own model atoms.

As discussed in Sec. 2.4.2, we adopt a short-characteristics formal solver to solve the RTE,
and in Lightweaver, the default implementation for plane-parallel atmospheres is the cubic
Bézier spline technique of de la Cruz Rodríguez & Piskunov (2013). We also provide an
implementation of the simple linear short-characteristics scheme, and allow for users to
load their own formal solvers from shared libraries at runtime, provided they implement
the interface described in the Lightweaver codebase.

4.5 Parallelisation

The self-contained nature of the Contextmakes Lightweaver programs for computing grids
of models easy to adapt to paradigms such as the Message Passing Interface (MPI, e.g.
Gropp et al. 1996, for an overview of the MPICH implementation) commonly used in
high performance computing environments. A proof of concept implementation utilising
MPI for a grid of models was undertaken by A. Asensio Ramos (private communication),
running 10,000 models in 4 hours across 15 CPUs with no need to modify Lightweaver.

A secondary form of parallelisation is also incorporated into Lightweaver. This consists of
splitting time-consuming work from a single simulation over multiple threads in the same
machine. This work primarily consists of the formal solution, accumulation of terms
into the Γ matrix, and calculation of any line pro�le ratios needed for PRD, which are
parallelised over wavelength. These terms typically represent the vast majority of the
program’s runtime for non-trivial simulations. The calculation of line absorption pro�les,
when using atomic models with the default Voigt pro�le implementation, along with the
optional FastBackground implementation of background opacities, emissivities, and scat-
terings, are also parallelised. The choices of the terms to parallelise has been motivated
by our observations of the most time-consuming processes when using Lightweaver to
undertake the numerical experiments presented in Chaps. 5 and 6.
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4.6 Validation

The Lightweaver framework was extensively validated during development, primarily
against RH (Uitenbroek 2001), but also the synthesis module of SNAPI (Milić & van Noort
2018) when discrepancies were found. RH is a well-established code that serves as a
cornerstone of NLTE radiative transfer in the solar physics community. It assumes a single
time-independent atmospheric input, for which the statistical equilibrium solution of the
atomic populations is computed. The MALI method with full preconditioning (Rybicki
& Hummer 1992) is used, and implementations of angle-averaged and angle-dependent
PRD with cross-redistribution are present following the methods outlined in Uitenbroek
(2001) and Miller-Ricci & Uitenbroek (2002). RH can also be used for NLTE modelling of
molecular lines, but we do not make use of this here. In the examples presented here,
we make use of v2 of the RH code, distributed by H. Uitenbroek, and not the massively
parallel RH 1.5D presented in Pereira & Uitenbroek (2015).

The synthesis module of SNAPI also uses a MALI method allowing for overlapping lines,
with an implementation of the method entirely distinct to the one used in RH. It assumes
a CRD treatment of all spectral lines. In the following we will present just a few of the
validation cases that have been used during the development of Lightweaver.
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Figure 4.1: Comparison of Lightweaver and RH synthesis of Ca II 854.2 nm from the FALC
atmosphere with di�erent electron density solutions.
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Figure 4.2: Comparison of the Lightweaver, RH, and SNAPI synthesis of Ca II 854.2 nm from
the FALC atmosphere with complex velocity pro�le and LTE electron density.

Fig. 4.1 presents a comparison of the synthesis of Ca II 854.2 nm by Lightweaver and RH
in the FALC atmosphere of Fontenla et al. (1993). This is a static, semi-empirical quiet
Sun atmosphere, so the synthesis is performed in statistical equilibrium. RH’s solution is
shown in blue, with the Lightweaver solution overlaid in dashed orange. There is clearly
very good agreement between these codes in this simple static test. This �gure also
shows the sensitivity of Ca II 854.2 nm to the electron density when computed under
the assumption of LTE ionisation (green), and how the charge conservation method
implemented in Lightweaver can help to mitigate these e�ects when the electron density
is not known a priori (red). The line pro�le computed from the simulation with the charge
conservation strategy approaches the reference solution, where the electron density is
provided by the FAL model. The primary di�erences between these treatments is likely
due to other species, such as Fe, being treated in LTE.

In Fig. 4.2 we once again present the synthesis of Ca II 854.2 nm in the FALC atmosphere,
but here a complex velocity pro�le is imposed on the atmospheric model. The vertical
velocity structure of the atmosphere is de�ned to be two periods of a sine wave with
amplitude 30 kms−1 mapped over the vertical extent of the FALC model (approximately
2Mm). The electron density is set and held �xed at the value given by the LTE ionisation
state of the plasma. This is to allow for easier comparison between the codes with di�erent
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formulations for their model atmospheres. Here RH’s solution is once again shown in
blue, Lightweaver’s in dashed orange, and SNAPI’s in dot-dashed green. This problem
serves primarily as a test of the formal solver: the piecewise parabolic method of Auer &
Paletou (1994) implemented in RH, which falls back to monotonic linear interpolation
if the parabolic terms under- or overshoot, was unable to correctly solve the problem,
causing the iteration to fail by producing a singular Γ matrix. The cubic Bézier method
of de la Cruz Rodríguez & Piskunov (2013) normally used in all three of these codes,
along with their standard MALI iteration machinery, provides a very similar solution
in all three cases. The slight di�erences apparent around ∆λ = −0.1 nm is likely to be
caused by di�erences in the formal solver implementations; the version implemented
in RH uses the method of Fritsch & Butland (1984) to compute numerical estimates of
the necessary derivatives, whereas we use the method of Ste�en (1990) in Lightweaver
following the recommendation of Janett et al. (2018), as the accuracy of Fritsch & Butland
(1984) falls to �rst-order on non-uniform grids. Additionally, the implementation present
in RH chooses to limit the control points on the spline interpolants to positive values,
but following the advice of J. de la Cruz Rodríguez (private communication) we remove
this limitation as negative absorption can occur with su�cient stimulated emission. The
di�erences between SNAPI and the other methods around ∆λ = 0.02nm is also likely due
to choices made when estimating the derivatives and limiting the control points. SNAPI
also uses a di�erent formulation for the background emissivities and opacities, as well as
di�erent parametrisations for the damping terms present in the Voigt pro�le. These are
likely responsible for the di�erences in the |∆λ| > 0.15nm far wing to continuum region.
Nevertheless, we consider that the agreement between the three implementations is very
good on this challenging test.

Fig. 4.3 shows a simple validation test for the PRDmethod implemented in Lightweaver.
We show the synthesis of the Ca II K line in statistical equilibrium from a snapshot of a
RADYN simulation. This snapshot is taken from the F9 simulation discussed in Chap. 5, at
5 s a�er �are heating starts. The CRD solutions are shown in blue and dashed orange for
RH and Lightweaver respectively. The PRD solutions both employ angle-averaged PRD and
are presented in green (RH) and dashed red (Lightweaver). The agreement between these
solutions is again very good, with a slight observable di�erence around |∆λ = 0.012nm|

where the line in Lightweaver’s PRD solution appears slightly wider than in RH’s. This
di�erence is present only over a very small range of wavelengths and we consider the
agreement between the two implementations to be very good.

Slightlymore complex examples are needed to test the time-dependentmachinery present
in Lightweaver, and neither SNAPI nor RH, with their time-independent viewpoints can be
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Figure 4.3: Comparison of Lightweaver and RH synthesis of Ca II K from a RADYN snapshot
comparing the e�ects of PRD.

used for comparison here. We instead use the example of a perturbed FALC atmosphere
presented by Judge (2017). This �gure is reproduced here as Fig. 4.4. A�er converging
to the statistical equilibrium solution in a standard FALC atmosphere, the temperature
is perturbed as shown by the blue line of the top-le� panel of both Fig. 4.4 and our own
solution is presented in Fig. 4.5. This model uses a three level plus continuum model
hydrogen atom, and the populations of the ground, �rst excited, and continuum states are
shown in the top-right, bottom-le�, and bottom-right panels of these �gures respectively.
The red line shows their starting values, and the blue line their �nal values a�er the
simulation has been allowed to run for 500 s in the case of Fig. 4.4 and 60 s for Fig. 4.5, as
we �nd the solution has stabilised by this point. The black lines represent the solutions for
each population every 1 s. The x-axis on these plots is the atmospheric column mass, and
Fig. 4.5 is prepared in cgs to allow direct comparison to Fig. 4.4. The typically temperature-
dependent (i.e. due to assuming a Maxwellian electron distribution) collisional ionisation
and excitation “strengths” are �xed to their values at 7000K obtained using the method of
Johnson (1972) (P. Judge, private communication; we note that the collisional rates associated
with these still scale with

√
T ).

We see good overall agreement with Judge (2017), but the di�erences are larger than those
presented in the previous �gures. Themethod used by Judge (2017) is di�erent to ours, and
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Figure 4.4: Fig. 4 of Judge (2017). The response of hydrogen levels (n = 1, 2) and continuum
(κ) are shown for an instantaneous perturbation of the temperature of the FALC model
(top-le� panel). Each black line shows the population densities once every 1 s. Note that
the abcissa should be labelled as g cm−2. © AAS. Reproduced with permission.
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Figure 4.5: Validation of the time-dependent population update scheme in Lightweaver. Com-
pare with Fig. 4.4. Each black line shows the population densities once every 1 s.
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uses full preconditioning but with aΛ operator based on the escape probability formalism
of Hummer & Rybicki (1982), using a one-sided escape probability. This approach is
much more approximate than the full MALI treatment applied in Lightweaver, as it only
performs the approximate formal solution at onewavelength per transition, and computes
the integrals over wavelength and angle analytically. The advantage of this treatment is
that it is much less computationally intensive. Thus, the use of this approximate method
by Judge (2017) is likely to be the origin of the di�erences between our results, and we
�nd that the level populations converge to similar �nal solutions, at apparently similar
rates. The most substantial di�erence between our results is for the n = 2 population:
in Fig. 4.4, the points close to a column mass of −4.9315 g cm−2 do not vary from their
initial values, whereas in our model they change quite dramatically, with an enhancement
of up to 2 dex, leaving the range of the original plot, but converge close to the expected
�nal solution. This is likely an e�ect of downgoing radiation not being considered in the
escape probability based formal solution of Judge (2017). The maximum enhancement
in this level also peaks higher than that seen in Fig. 4.4, but rapidly drops towards the
expected solution. The downgoing radiation is also likely responsible for the o�set of the
�nal populations from the initial model in the −4.9315 g cm−2 region that is not present in
Fig. 4.4, as the populations stay stable when the populations are advanced in time through
the same process without the temperature perturbation, i.e. statistical equilibrium is
maintained. This simple example illustrates that Lightweaver’s behaviour is reasonable
when applied to time-dependent problems, and the quality of its treatment will become
apparent in the in-depth comparisons with RADYN presented in Chap. 5.

In Fig. 4.6 we show the electron density in the lower atmosphere at four di�erent timesteps
of a RADYN simulation where the radiative transfer (including self-consistent electron
density) has been reprocessed using Lightweaver. The techniques used here will be de-
scribed in depth in Chap. 5, and this �gure is produced using the F9 model described in
Sec. 5.4.1. The Lightweaver model presented is run with time-dependent charge conserva-
tion, maintaining self-consistency throughout the simulation, whilst loading the other
thermodynamic parameters from the RADYNmodel at each timestep, and using these
to compute the time-dependent population updates and self-consistent electron density.
Advection of the atomic populations and electron density is performed using a similar
technique to RADYN, implemented as per Sec. 5.3.1. The electron density in the RADYN
model is shown in blue, and the Lightweaver model in dashed orange. The agreement
between the two models is extremely good, including the �ne features around z = 1.2Mm
shown in the 11 s panel.

Lightweaver agrees well with the other models against which it has been tested here; it is
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Figure 4.6: Comparison of electron density in a RADYN simulation and time-dependent re-
processing using Lightweaver that will be presented as the F9 model of Chap. 5.

easy to construct new validation tests for statistical equilibrium cases that can be run with
many di�erent extant radiative transfer codes, but the validation of time-dependent treat-
ments on their own is more di�cult, due to current tools o�en coupling these equations
to hydrodynamics. Other tests have been undertaken to verify the performance of Light-
weaver, but those presented here should be su�cient to demonstrate its capabilities.

4.7 Lightspinner

During the development of Lightweaver, a simpler pedagogic framework was also con-
structed. This framework, Lightspinner7 (Osborne 2020), is written in pure Python and
focuses on documenting the internal numerics of a simple formal solver and the MALI
method using full preconditioning (under the assumption of CRD). It is accompanied by a
slide deck highlighting themost important terms that need to be understood to implement

7Available on GitHub (https://github.com/Goobley/Lightspinner), with archival on Zenodo.
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these methods following Rybicki & Hummer (1992) and Uitenbroek (2001) for iteration,
and Olson & Kunasz (1987) and Auer & Paletou (1994) for the short-characteristics formal
solver (although only a linear formal solver is implemented in the code). This framework
can be employed to help users familiarise themselves with the concepts of NLTE radiative
transfer and some of the techniques present in Lightweaver: it presents the core concepts
clearly, and naïvely, without focusing on performance, so can easily be dismantled and
understood by a single person over the course of a few days.

4.8 Discussions

We have presented a description and validation of the Lightweaver radiative transfer
framework and the intentions behind its design. Frameworks can substantially enhance
productivity, and enable the construction of specialised tools without the need to focus on
the implementation or performance of the common core of dense numerical code shared
by programs of this style. The power of this will be demonstrated with the experiments
presented in Chapters 5 and 6 which leverage Lightweaver signi�cantly, and demonstrate
how the addition of small amounts of Python can yield tools that would otherwise require
in-depth modi�cation and coupling of existing tools such as RH and RADYN.
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5
Radiative Transfer with

Time-Dependent Populations

Modern Radiation Hydrodynamic (RHD) codes as described in Chap. 2 are highly complex,
and contain many specialised features. In the following discussion we will focus primarily
on RADYN, the most widely used code of its ilk, and show how using additional tools can
facilitate new avenues of investigation.

5.1 A Brief Dissection of RADYN and a Possible Future of RHD
Modelling

This section is informed by my discussions with Prof. Mats Carlsson of the University of Oslo,
experiences using RADYN, and analysis of its source code. It represents my own conclusions from
the synthesis of these.

RADYN’s design closely follows its radiative transfer lineage. Its direct predecessor is the
MULTI radiative transfer code (Carlsson 1986, 1992) and many commonalities remain.
NLTE radiative transfer is solved on a per transition basis using an ALI method and linear-
isation of the resultant kinetic equilibrium equations. This method solves for the case of
non-overlapping lines but includes an underlying background continuum. This linear-
isation approach was proven by Socas-Navarro & Trujillo Bueno (1997) to be e�ectively
equivalent to that of preconditioning for non-overlapping transitions (i.e. MALI, Rybicki
& Hummer 1991) for pure radiative transfer problems in the statistical equilibrium case.
Their analysis assumed the use of a local diagonal Λ∗ operator; RADYN, however, chooses
to employ a pentadiagonal Λ∗ operator to make optimal use of matrix bandwidth needed
elsewhere in the program and obtain improved convergence as a result. It is unlikely that
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this change in operator signi�cantly a�ects the conclusions of Socas-Navarro & Trujillo
Bueno (1997), but the two methods will no longer arrive at exactly equivalent numerical
formulations. RADYN also uses an e�cient Feautrier formalism for its formal solver,
which solves for both the up- and down-going rays simultaneously but cannot handle
both overlapping lines and Doppler shi�s. There are no lines with signi�cant overlap
considered in the standard model atoms used in RADYN, and continuum emissivities
and opacities rarely change su�ciently over the wavelength range of a line to need to be
considered in a wavelength varying sense. This is likely a fair trade-o� for RADYN given
the computational bene�ts it can bring.

The advantage of the linearisation approach applied in RADYN is the ability to directly
couple other equations to the RTE and implicitly solve all of these simultaneously and
self-consistently. Taking for example the kinetic equilibrium equation (2.11), RADYN’s
method formulates this expression such that the corrections from both the advection
and population transition terms are considered simultaneously. This is achieved through
the use of a Newton-Raphson method, where the Jacobian is computed based on an
analytic derivation, including the aforementioned linearisation of the kinetic equilibrium
equations. This same process simultaneously solves for the population updates, heat
conduction, hydrodynamics of the system, and the new locations of the dynamic grid
points on which the RHD equations are discretised following the method of Dor� & Drury
(1987).

A signi�cant bene�t of this implicit approach is a relaxation of the timestep constraints
present in explicit approaches. This is particularly important when considering the very
�ne grid spacing o�en required by the dynamic grid which, combined with the large
bulk velocities occurring in �ares, can lead to extremely oppressive timestep constraints.
Thermal conduction (which is typically sti� in an explicit treatment) is also computed
as part of this system, using the �ux limiter of Campbell (1984). Whilst this limiter will
limit the local electron �ux to below the free-streaming limit, the implementation is
not physically accurate and non-local transport terms resulting from the solution of the
Vlasov-Fokker-Planck equation may further a�ect this term, however any adjustment of
the thermal conduction treatment is outside the scope of the work presented here.

Despite its elegance, there are severalmajor downsides to this implicit approach. Foremost
of these is the complexity engendered by the coupled design of the system, and the need
to ensure that all necessary derivatives are analytically derived and correctly computed.
This presents a very large barrier to entry for future developments on the platform, and
is likely part of the reason why both Fokker-Planck modules integrated in RADYN have
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operated externally to this core coupled system. Additionally, implicit codes, whilst having
less severe timestep constraints, are typically muchmore costly per timestep than explicit
codes. This is somewhat o�set by the majority of the cost of each step residing within the
formal solver, which remains similar in both cases. The dynamic grid can also become
problematic due the di�culty interpreting and manipulating the locations of the grid
points. The positions of these points are determined by a metric taking into account
local variations and concentrations of multiple quantities, with manually determined
weightings. These di�culties are linked to a tendency to drop to extremely �ne spacings
in shock regions, severely limiting the possible timestep (sub-micron spacings have been
observed in non-convergent simulations). Due to the �xed number of grid points used
throughout the model, this reduces spatial accuracy elsewhere in the simulation. The grid
weights can be manually adjusted during a run (e.g. Kowalski et al. 2015), but a reliable,
fully automated process is much more desirable.

RADYN is a fantastic tool that has enabled insight into many di�erent �are-associated
phenomena, and these comments merely intend to highlight avenues for future develop-
ment within the �eld of RHD. As the di�erent applications of RADYN continue to evolve in
complexity, with projects such as multi-strand arcade andminority species modelling (e.g.
Kerr et al. 2019a; Polito et al. 2019; Kerr et al. 2020), the code at the core of RADYN will
need to be modi�ed by di�erent researchers, and work facilitating this and highlighting
additional factors to be considered in RHDmodelling is key to the future development of
this �eld.

As discussed previously with respect to Lightweaver and radiative transfer, a �exible
framework designed for solving a class of problem can yield signi�cant advances in
productivity. The task of designing, constructing, and testing a framework for a problem as
complex as the complete quasi-one-dimensional RHD simulation of �ares is too signi�cant
to be undertaken here. Nevertheless, it may prove a powerful future development once the
necessary speci�cations are de�ned. In the following we focus on reprocessing aspects
of the radiative transfer of previously computed RADYN simulations and investigating
important directions for future developments in RHDmodelling of �ares.

5.2 Minority Species Modelling

For �ares, RADYN’s primary focus is on the major spectral lines and continua of hydrogen,
helium, and calcium. These typically represent the bulk of the radiative energy lost from
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the chromosphere. Singly ionised magnesium has also been shown to be an important
contributor to these energy losses, however the h and k lines require a treatment including
PRD to avoid signi�cantly overestimating their losses. The Ca II H and K lines are also
somewhat a�ected by PRD, in addition to the hydrogen Lyman lines. For the Lyman
lines we will discuss strategies for approximating this treatment. For Ca IIH and K, it has
been suggested that considering the radiative losses of these lines in CRD approximately
accounts for the lack of detailed Mg II h and k treatment if all of these transitions were
treated with PRD (Carlsson & Stein 2002; Kerr et al. 2019b).

Whilst the lines of these four species, H, He, Mg, and Ca are some of the strongest in the
solar spectrum, and their continuamediatemuch of the energy leaving the chromosphere,
there are other chromospheric transitions that can be used to diagnose the atmosphere.
An element treated as a “minority species” is assumed to not interact signi�cantly with
the energy balance of the simulation (i.e. the thermodynamic response of the model does
not change signi�cantly if this species is subject to a complete radiative treatment). This
should be true for most species with trace populations. For example, optically thick Si IV
formation in a heated chromosphere has been investigated in a minority species context
by Kerr et al. (2019c). The radiative transfer calculations associatedwith aminority species
can then be performed in a “second-pass” over a previously computed RADYN simulation.
The MS_RADYN code is a modi�cation of RADYN designed for this task; it takes the
thermodynamic parameters from every timestep of a RADYN simulation, along with the
non-equilibrium hydrogen populations, and solves the kinetic equilibrium equation at
each timestep for a minority species. Due to the lack of atmospheric thermodynamic
response to changes in the radiative output of this species, far more complex atomic
models can be used, such as the 30 level model silicon atom used by Kerr et al. (2019c).

An approach similar to that of minority species modelling can be applied to testing the
methods used in RADYN, the importance of certain omissions, and the feasibility of
extensions. Due to the reduced complexity of solving the kinetic equilibrium equations
rather than the entire RHD system, these calculations typically run signi�cantly faster
than the original simulation. In the following we will discuss the creation of a minority
species tool for reprocessing RADYN simulations, built on the Lightweaver framework,
as well as its application to investigating the importance of overlapping transitions, and
discuss the di�culties of including PRD in these simulations. Building such a tool on the
Lightweaver framework should provide researchers with a modern, simpler codebase that
is easier to conceptualise and modify, allowing for investigation of e�ects to be included
in RADYN or future RHD codes. Excluding the model atom de�nitions, the source code of
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the simulations presented in this chapter totals ∼1000 lines of Python, mostly following
modern best practices.

This approach could also be applied to a simple investigation of the e�ects of a magnetic
�eld on the outgoing radiation, by imposing an ad hocmagnetic �eld (constant or varying)
on the model atmosphere and computing the emergent line pro�les, in a much simpler
way than modifying RADYN for this task.

5.3 Reprocessing RADYN Simulations with the Lightweaver
Framework

To perform a minority species simulation, a particular �le from the original simulation,
atmost.dat, must be provided. From investigating the contents of this �le we can de-
termine the exact con�guration of Lightweaver and the equations to be solved. When
requested, this �le is written to for every internal timestep of the RADYN simulation, and
represents a limited subset of the less frequently written “complete” output (typically
stored every 0.1 s). It contains some metadata describing the size of the simulation, then
for each internal timestep, it records the current timestep, the elapsed time, the current
locations of the dynamic grid, the mass density pro�le, the electron density pro�le, the
temperature structure, the vertical velocity, and the current hydrogen level populations.

For the validation of Lightweaver and this style of simulation, we also wish to compute and
compare the hydrogen populations to those computed in RADYN. Several di�culties arise
due to the non-thermal collisional rates used in the kinetic equilibrium calculation for
hydrogen and helium. The non-thermal collisional rates of Fang et al. (1993) are used to
determine hydrogen ionisation, and require the beam energy deposition throughout the
atmosphere at each timestep. For helium, if the Fokker-Planck electron beam description
is used, then the rates of Arnaud&Rothen�ug (1985) are used, but these require integration
over the electron energy distribution. Whilst it is possible to add both of these to the
atmost.dat �le, the complete electron distribution information is very large, and we
instead elect to use “Emslie” beam electron formalism (Emslie 1978), for which the energy
deposition pro�le throughout the atmosphere is su�cient to describe the non-thermal
rates. We therefore chose to slightly modify one of RADYN’s output routines, and add
the beam deposition pro�le to the atmost.dat �le. Our function for reading these �les
can handle �les written both with and without this modi�cation. In the event that this
beam heating information is not saved, an approximation of it can be reconstructed via
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interpolation from the information in RADYN’s complete save �le. Our testing of this show
that the approximation is relatively good, but short term, or particularly narrow heating
features may be lost. For this reason, all simulations presented here use the version with
the beam energy deposition data.

With the above data we have su�cient information to construct the RADYN thermody-
namic atmosphere at any of its internal timesteps. Lightweaver is then responsible for
determining the radiation �eld and atomic level populations throughout the atmosphere
using the thermodynamic properties at each timestep loaded from the RADYN output and
the populations at the previous timestep. Thus, the atomic level populations are computed
in statistical equilibrium for the RADYN starting atmosphere and are then evolved only
by our simulation code using Lightweaver, and not RADYN, which simply provides the
thermodynamic structure of the atmosphere at each timestep. Lightweaver does not make
use of the mass density stored by RADYN directly, but instead maps it to hydrogen density.
For this we use the default abundances in Lightweaver, based on Asplund et al. (2009).
These di�er to those used in RADYN, but not signi�cantly for any of the species discussed
here.

Ignoring the advection term it is then simple to produce a minority species tool using
this approach. In many situations, the advection term has a small e�ect, and can safely
be ignored (Kašparová et al. 2003; Nejezchleba 1998). The method for advancing the
atomic populations in time employed in RADYN is formulated on the dynamic grid, and
this is not the case in Lightweaver, which assumes that the grid is static (although this
limitation can be worked around). We can simply use a �xed denser spatial sampling of
the atmosphere to account for the motion of features such as the transition region over
the course of the simulation. This model then interpolates the thermodynamic properties
and NLTE hydrogen populations for the starting atmosphere onto our strati�cation and
computes the statistical equilibrium solution for the minority species in question. For
each subsequent timestep these properties are interpolated from the new RADYN grid to
the static grid, and the minority species populations can be advanced in time using the
process described in Sec. 2.4.11.

To reduce the number of grid points needed for a static strati�cation one could instead
use a �xed column mass strati�cation. The transition region moves very little in terms of
columnmass during the simulation, however it then becomes necessary to interpolate
the populations from one column mass strati�cation to the next; a process which can
introduce signi�cant error if not undertaken with care. This error can be reduced by
renormalising each species’ total number density throughout the atmosphere from the
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mass density and abundances, and this helps to avoid errors growing around regions of
high gradient, such as the transition region.

All of these approaches were trialled with di�erent RADYN simulations, and it was clear
that while the general evolution of the radiative output was similar, di�erences remained
in the synthesised line pro�les, especially those of Ca II. To solve the minority species
problem properly in a manner fully compatible with RADYN it is necessary to include
the advection terms, and so an advection treatment was added. In the following we
will describe two di�erent approaches to handling the advective terms, drawing on our
previous discussions of hydrodynamics, and thus solving the complete system of kinetic
equilibrium equations.

5.3.1 Advection

In Sec. 5.1 we discussed the coupled manner in which RADYN solves the RHD equations.
For �exibility we wish to decouple the advection terms from the radiative e�ects. Our
initial approach was to use an explicit method on the dense, �xed grid discussed above.
This method draws the simple explicit �nite-volume approaches discussed in Chap. 2, and
thus uses a ��h-order WENO-NM scheme for reconstruction and the simple local Lax-
Friedrichs �ux for estimating the �ow of the atomic populations through the simulation.
This numerical scheme performs extremely well in textbook advection and hydrodynamic
tests, however it was found to be ill-suited to the long internal timesteps that RADYN’s
implicit method chooses. These timesteps are longer than those permitted by the CFL
condition, requiring the explicit method to performmultiple substeps for each of RADYN’s
timesteps. This alone can introduce cumulative error, and is further compounded by the
use of the dense static grid. As this grid needs to conform to the requirements of the
simulation over its entire evolution, rather than just its instantaneous requirements (as is
the case for RADYN’s grid) there are o�en dense clusters of points in regions where they
are not currently required to resolve the atmospheric structure. These regions may have
high plasma �ow velocities, further increasing the timestep restrictions on the explicit
method. In some cases several thousand applications of the explicit schemewere required
to match one of RADYN’s internal timesteps. With such di�erent timestep restrictions
imposed on the two components of this simulation, it is di�cult to correctly treat both
processes in a coupled fashion.

Using this explicit approach for advection, a fair agreement with RADYN was found,
but performance was dramatically worsened. A signi�cant proportion of runtime had
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to be spent on the advective terms as the energy deposition in simulations increased,
which increased the �ow speeds and moved the transition region further from its starting
altitude. Due to RADYN’s longer timesteps, during more explosive evaporative phases,
our advection scheme was occasionally able to carry chromospheric material through
the majority of the transition region. Whilst the populations quickly evolved in their new
environment this process is su�ciently slow to introduce unexpected variability in the
line pro�les. A higher order splitting schememight have helped to mitigate this but would
add further computational cost to an already expensive process (due to the sheer number
of advection steps needed). This e�ect can also be mitigated by limiting the maximum
timestep that can be taken by RADYN during the creation of the baseline simulation.
However, limiting RADYN’s performance is a poor solution to this problem; the explicit
advection method described here could serve well at the core of a code designed around
it, in the way that FLARIX and HYDRAD both use similar explicit advection schemes, but
many di�culties are created by the di�erence in ideologies between this and RADYN’s
implicit dynamic grid.

To improve the agreementwith RADYN, reduce the number of interpolations, and leverage
rather than �ght its adaptive grid we instead decided to apply its technique for advection,
but keep it distinct from the radiative transfer. Thus, at the start of each timestep we
advect the populations from the previous grid to the new grid locations, and then advance
the populations in time based on the NLTE rates. This method employs a variant of the
second order spatially accurate method of van Leer (1979) to reconstruct the values on
either side of the interface, of which the upwind value is chosen. This is set within a
time-centering scheme similar to that described by Dor� (1997). Under this scheme the
advection stencil depends on the values of �ve cells, two on either side of the current one.
Thus the Jacobian matrix for this equation is pentadiagonal (and block pentadiagonal for
the complete system of ODEs). For simplicity and ease of implementation we chose to not
directly code the expressions for these derivatives that occur in the Jacobian matrix, but
instead compute them by �nite di�erences. There is an elegant technique that can be used
to optimise this processwhen an equation’s region of dependence is known. This approach
is known as Coloured Finite Di�erence (Curtis et al. 1974); so long as only one point in the
domain a�ecting each output point is perturbed the gradient can be trivially attributed
to the correct point. In essence, we need only perform �ve additional evaluations of the
advection residual, perturbing one point in every �ve, to �ll the Jacobian, rather than the
traditional approach where each point would be perturbed in turn. The solution to this
system is then computed by a Newton-Raphson iteration with Armijo line search (Armijo
1966) to accelerate convergence.
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This technique has proven far more suited for reprocessing these simulations than the
previous explicit scheme. Only one application of the method (typically requiring at most
�ve Newton-Raphson iterations) is needed for each timestep and the computational cost
is typically < 0.1% of the total CPU time. This approach remains harder to debug and
modify due to its implicit nature, although this is simpli�ed thanks to the �nite di�erence
method for computing the Jacobian which does not need to be adjusted if the equations
are modi�ed, so long as the stencil remains the same.

The agreement in the synthesised lines was improved by the implementation of advection
in our simulations, but substantial di�erences still remained in the spectral lines of Ca II.
In the following, we investigate the e�ects of di�erent radiative treatments, and discuss
possible implications on RHDmodelling.

This �nal code used in these investigations is available on GitHub1 with archival on Zenodo
(Osborne 2021b). The code for the previous advection method on the dense �xed grid is
available on the Advection branch of the same repository. This is an early development
branch of the code, as this method was not retained.

5.4 Case Study: Ca II Photoionisation by the Hydrogen Lyman
Lines

The content of this section is based on the work presented in Osborne et al. (2021).

The methods discussed above can be used to reprocess the radiative transfer aspects of
RADYN simulations and thus investigate the e�ects of the Lyman lines on Ca II photoion-
isation in these models, as this was theorised to be the origin of possible di�erences in
the Ca II line pro�les. In RADYN, the photoionisation of Ca II by the hydrogen Lyman
continuum is considered, but the e�ects of the Lyman lines are not. The hydrogen Lyman
lines are strongly enhanced in �ares, and a two dex enhancement relative to quiet sun
intensity was found by Rubio Da Costa et al. (2009) using observations from the Transition
Region and Coronal Explorer (TRACE). RHDmodelling using RADYN has also suggested
that enhancements at least this large are to be expected in this line (Brown et al. 2018;
Hong et al. 2019). Fig. 5.1 shows the overlap between the hydrogen Lyman transitions
and the Ca II continua present in our model. Radiation from Lyα photoionises Ca II from
all levels other than the ground state. All of the other Lyman transitions present can

1https://github.com/Goobley/MsLightweaver
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Figure 5.1: The overlap betwen the hydrogen Lyman lines and continuum with the Ca II
continua present in the model atom used here. Both the Ca II 3p6 4p and 3p6 3d levels
contain two sub-levels with indistinguishably di�erent continuum edges.

photoionise Ca II to Ca III from all levels present in this model. Additionally, in �aring
conditions, the higher lines of the Lyman sequence are signi�cantly Stark broadened and
create a quasi-continuum between Lyδ and the Lyman continuum (De Feiter & Švestka
1975), which will further enhance the photoionisation of Ca II from what is considered in
ourmodel. These highly enhanced transitions therefore provide an importantmechanism
for the photoionisation of Ca II to Ca III and in the following we will investigate the e�ect
this has on both the emergent line pro�les and the radiative losses of several RHDmodels.
These e�ects have long been considered in prominence modelling, starting with the work
of Ishizawa (1971), however we are not aware of any previous detailed investigation of these
e�ects in RHDmodelling of �ares, where the Lyman transitions become so signi�cantly
enhanced.

The hydrogen (�ve bound levels with H II continuum and ten lines), helium, and calcium
(�ve bound Ca II levels with Ca III continuum and �ve lines) model atoms used in the
simulations presented here are the same as those used in RADYN. All other model atoms
used in the LTE background opacities are taken from the Lightweaver standard library
(and have in turn been converted from RH distribution (Uitenbroek 2001)). Currently only
the hydrogen and calcium populations are fully treated in NLTE. In the RADYNmodels
the tabulated LTE background emissivities and opacities of Gustafsson (1973) are used.
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5.4 Case Study: Ca II Photoionisation by the Hydrogen Lyman Lines

To determine the importance of the photoionisation by the Lyman lines, each RADYN
simulation is reprocessed twice, once including the e�ects of the Lyman lines on Ca II
(henceforth Lyman inclusive (LI)), and once without these e�ects (Lyman exclusive (LE)).
This is achieved through the use of two di�erent hydrogen model atoms, where the one
for the LE treatment excludes the Lyman lines and uses �xed hydrogen populations
from RADYN. In both cases the e�ects of the Lyman continuum are included, as this is
commonly considered inRHDcodes, and allows for direct comparisonof theLE simulation
against RADYN. The simulations are performed using the CRD formalism for consistency
with RADYN, although the models used for the Lyman lines contain an approximation
to PRD by removing radiative broadening and reducing van der Waals broadening. This
makes the line pro�le closer to a Doppler pro�le, by reducing the importance of the
Lorentzian wings. This is one of the two more common approaches to approximating
PRD e�ects in these transitions, the other being to truncate the line quadrature around
ten Doppler widths from the line core. Both of these are empirical but we favour the
former in �are simulations as the narrow grid used in the latter can easily “lose” opacity
in the moderate to high Doppler shi�s that occur in �are models (M. Carlsson 2021, private
communication). PRD e�ects are also present in the Ca II lines — primarily the resonance
lines, although cross-redistribution e�ects also a�ect the infra-red triplet. The e�ects on
these are typically less signi�cant than those on the hydrogen Lyman lines, especially
due to the high chromospheric densities that occur during �ares. We therefore do not
add any approximate PRD treatments to the Ca II lines. These model atoms are identical
between RADYN and Lightweaver, and the two tools di�er only in their description of
LTE background opacities, which in the case of the Lightweaver simulations includes
helium. Comparison of these simulations should therefore enable the study of these
photoionisation e�ects.

Our Lightweaver-based tool uses the �rst-order splitting technique discussed in Sec. 2.5.5
to temporally couple the two subproblems of the kinetic equilibrium equations. The
complete kinetic equilibrium equations are split into radiative and advective operators
that are applied sequentially. A Strang-splitting approach was trialled but provided no
noticeable di�erence in the solution over this �rst-order technique, whilst being more
computationally costly than the simpler approach. A�er solving the statistical equilibrium
problem to determine an initial solution for the atomic populations in the given starting
atmosphere, the populations are then advected, and the thermodynamic atmospheric
parameters are updated using theRADYNdata from the next timestep. This update process
includes the calculation of the LTE populations of all species considered and computing
the resultant background opacities. The atomic level populations are then advanced in
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time using the implicit approach described in Sec. 2.4.11. In the LI case, the simulations are
performed with charge conservation as described in Sec. 2.4.13, and the electron density
is advected with the atomic populations. No di�erence in the radiative output was found
between our charge conservation implementation, and that found by using the RADYN
values at each step, showing that this method is self-consistent. The results of this were
shown during Lightweaver validation in Fig. 4.6 of Sec. 4.6.

5.4.1 The RADYN simulations

For this investigation two RADYN simulations were used. Their parameters were chosen
to serve as typical simulations, and were based on those used by Kerr et al. (2019a,b).
The same starting atmosphere derived from VAL3C (Vernazza et al. 1981) as used in the
F-CHROMA grid of simulations2 was used. As previously discussed, the “Emslie” beam
formalism was chosen over the Fokker-Planck for ease of reconstructing any non-thermal
rates that might be needed. The spectral index3 used for the power-law distribution of
electron energies was δ = 5, with a low-energy cut-o� of 20 keV. The two simulations
di�ered only in energy deposition, which was a constant �ux for 10 s of 1 × 106 or 1 ×
107 Jm−2 s−1 4 These simulations will be referred to as F9 and F10 respectively.

All of these parameters fall within the range of those used in the F-CHROMA grid, other
than the beam energy �ux which is lower than the peak �uxes used in the grid. This is
primarily due to the triangular 20 s duration heating pro�le used in the grid, which is less
demanding on the simulation than the constant deposition used in our simulations.

Our choice of parameters are also supported by observational data. The low-energy cut-o�
is in accord with the �ndings of Sui et al. (2007) whose analysis of 33 early impulsive �ares
using the Ramaty High Energy Solar Spectroscopy Imager (RHESSI) found a range of 10-
50 keV whilst accounting for X-ray albedo and under the assumption of a cold collisional
thick target model. Another study of 53 �ares using RHESSI by Saint-Hilaire et al. (2008)
found that the photon spectral index γ was distributed between 2 and 5, peaking between
3 and 3.5. Given this, our choice of spectral index is reasonable and lies well inside this
distribution as the spectral index of the electron beam is related to the photon spectral
index by δ = γ+ 1.

2https://star.pst.qub.ac.uk/wiki/public/solarmodels/start.html
3The distribution of electrons with energy E in a power-law distribution is proportional to E−δ and is
controlled by the spectral index δ.

4In the cgs units that are commonly adopted for RADYN simulations these represent 1 × 109 and 1 ×
1010 erg cm−2 s−1.
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5.4 Case Study: Ca II Photoionisation by the Hydrogen Lyman Lines

For both of these simulations RADYN’s additional coronal X-ray and extreme ultraviolet
(XEUV) irradiation terms were disabled due to discrepancies that were found between
these and their re-implementation in Lightweaver. Thus, no coronal XEUV irradiation
terms were used in either RADYN or Lightweaver, as this was necessary to ensure agree-
ment in the LE case, allowing the di�erences in the LI case to be assessed. Additionally,
the maximum timestep allowed in RADYN was limited to 0.01 s. This was primarily due to
experiments with the explicit advection scheme, but likely also reduced the possible loss of
accuracy due to the operator splitting scheme used in our �nal reprocessed simulations.

5.4.2 Line Pro�les
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Figure 5.2: Comparison of the LI, LE, and RADYN Ca II 854.2 nm line pro�les during the F9
simulation.

The Ca II 854.2 nm line pro�le from 5, 11, 20, and 40 s a�er the onset of heating in the F9
and F10 simulations is shown in Figs. 5.2 and 5.3 respectively. These �gures show the
comparison of the LI and LE treatments, as well as the reference line pro�les computed
by RADYN. Despite the di�erent formal solvers and numerical techniques, the agreement
between the RADYN and LE pro�les is extremely good, di�ering by a few per cent at most.
There are substantial di�erences between the LI and LE models: in the F9 simulation
the LI line pro�le is narrower, consistently double-peaked, and less intense than the LE
pro�le, which is much more variable, including becoming singly-peaked a�er the heating
ends (t = 11 and 20 s), before returning to a double-peaked shape at later times in the
simulation.

The di�erences in the outgoing radiation in the F10 case (Fig. 5.3) are still signi�cant,
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Figure 5.3: Comparison of the LI, LE, and RADYN Ca II 854.2 nm line pro�les during the F10
simulation.

but perhaps a little less dramatic than the F9 case. The LI peak intensity is signi�cantly
reduced relative to the LE line pro�le in the t = 5 s plot, and post-heating (t = 11 s) the
asymmetry of the double-peaked pro�les is reversed between the LI and LE treatments.
At t = 20 s the situation is similar to the F9 simulation: the LE treatment produces a
singly-peaked line pro�le, whilst the LI treatment produces an asymmetric double-peaked
pro�le (due to the appearance of a secondary peak on the violet wing). At later times there
is a signi�cant dip in the far violet wing for the LE treatment that is not present in the LI
treatment. This dip varies slowly in position and depth over the evolution of the cooling
phase.

We can investigate the formation of these line pro�les by looking at the contribution
functions, and the atomic level populations associated with these spectral lines. From
Figs. 5.2 and 5.3, we consider that the di�erence between the two treatments is most
signi�cant at t = 11 and 20 s. The contribution functions and associated atomic level
populations for these two times in both of the simulations are plotted in Figs. 5.4-5.7.

The level populations for both treatments are plotted in the right-hand panel of these
�gures. The LI and LE treatments produce signi�cantly di�erent populations for the upper
and lower levels of the Ca II 854.2 nm transition. The le�-hand and centre panels present
the contribution functions for the two di�erent treatments with the τν = 1 line overlaid
in red. The τν = 1 line is reliably extended to higher altitudes in the line core of the LE
treatment, suggesting that this core is formed in a di�erent location between the two
treatments. There is a signi�cant feature contributing to the violet wing of the LE models
around the 1.5Mm region. In this same region both the upper and lower level populations
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Figure 5.4: Ca II 854.2 nm contribution functions and level populations for the two calcium
treatments in the F9 simulation at t = 11 s. The two le�-hand panels show the contribution
function, overlaid with the line pro�le in blue and the τν = 1 line in red. The right-hand
panel shows the structure of the atmosphere, with populations from the LI treatment
shown with solid lines and the LE treatment with dashed lines.
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Figure 5.5: Ca II 854.2 nm contribution functions and level populations for the two calcium
treatments in the F9 simulation at t = 20 s. The panels present the same information as
Fig. 5.4.
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Figure 5.6: Ca II 854.2 nm contribution functions and level populations for the two calcium
treatments in the F10 simulation at t = 11 s. The panels present the same information as
Fig. 5.4.
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Figure 5.7: Ca II 854.2 nm contribution functions and level populations for the two calcium
treatments in the F10 simulation at t = 20 s. The panels present the same information as
Fig. 5.4.
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for the Ca II 854.2 nm transition are signi�cantly enhanced over their LI values, creating
an increase in opacity, whilst keeping the source function approximately constant, leading
to the attenuation of radiation from deeper in the atmosphere. Under the LI treatment we
instead see that there is substantially more Ca III in this region, likely due to Ca II to Ca III
photoionisation from Lyman lines formed in the upper chromosphere and transition
region. In the F10 simulation there is also a signi�cant di�erence between the Ca III
populations computed in the two treatments around the temperature minimum region;
this is much deeper than any of the Ca II spectral line cores typically form, but is likely
due to the same photoionisation process and the e�ects of the much larger Lyman line
intensity that occurs in the F10 model.

For both the F9 and F10 simulations, the e�ect of the Lyman lines on the calcium level
populations (enhanced Ca III, reduced Ca II) in the upper chromosphere is similar to that
found by Gouttebroze & Heinzel (2002) in prominence models, although the magnitude of
the e�ect is larger here, likely due to the strong enhancement of the Lyman lines in these
�are models.

5.4.3 Radiative Losses
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Figure 5.8: Time evolution of the calcium losses in the F9 simulation. The le�-hand panel
shows the absolute relative change in losses due to the di�erent calcium treatments, and
the right-hand panel shows the proportion of the total radiative losses due to the calcium
lines.

Whilst the term “radiative losses” is o�en used to describe the e�ects of radiation on the
energy balance of the plasma, these e�ects are not uniquely negative. In many regions
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Figure 5.9: Time evolution of the calcium losses in the F10 simulation. The le�-hand panel
shows the absolute relative change in losses due to the di�erent calcium treatments, and
the right-hand panel shows the proportion of the total radiative losses due to the calcium
lines.

of the plasma, absorption leads to a net gain in plasma energy, especially considering
each transition on an independent basis. It is therefore di�cult to immediately assess
the e�ect that a change in radiative loss has on the system. For this we adopt an absolute
relative di�erence metric computed following∑

i∈C |lossi, LE|−
∑
i∈C |lossi, LI|∑

i∈C |lossi, LE|
(5.1)

where C is the set of calcium lines used on our model atom, and lossi is the volumetric
radiative loss of transition i. This metric therefore quanti�es the e�ect on the total energy
being redistributed throughout the simulation (or leaving the simulation) from the dif-
ferent treatments of the Ca II lines. To assess the importance of this it is also essential to
know the impact of the Ca II lines on the total energy balance of the simulation. Thus we
also compute ∑

i∈C |lossi, RADYN|∑
j |lossj, RADYN|

, (5.2)

which describes the proportion of all radiative losses considered with a detailed NLTE
treatment in RADYN (hydrogen, helium, and calcium, lines and continua) due to the
calcium lines. These twometrics are plotted in the le�- and right-hand panels respectively
of Figs. 5.8 and 5.9 for the F9 and F10 simulations respectively.

Looking�rst at the F9 simulation shown inFig. 5.8, there is a signi�cant di�erence between
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Figure 5.10: The absolute relative change of the radiative losses considered here due to the
two di�erent calcium treatments in each of the simulations (i.e. the product of the two
panels in each of Figs. 5.8 and 5.9).

the calcium losses in the two treatments during heating (0–10 s), with relative di�erences
primarily in excess of 50% and peaking as high as 1000% in the 0.6–1.75Mm region. This
is not surprising given the di�erence in the outgoing pro�les shown in Fig. 5.2. This
di�erence remains important (typically 10–70%) above an altitude of 1Mm throughout
the entire simulation. The right-hand panel shows that these losses represent the largest
proportion of the total radiative losses in the 0.6–1Mm region (a�er heating has ended).
This is also the region in which the radiative losses between the two treatments agree the
best, with di�erences below 10% over most of this region. Nevertheless, in the region
above 1Mm where there is signi�cant disagreement between the two treatments, the
calcium losses typically represent in excess of 8% of the total.

The e�ects are quite similar in the F10 simulation. During energy deposition the region
where the di�erence between the two treatments is largest is a smaller band, which is
centred on ∼1.2Mm. The variation here is 30–50%. This location is in agreement with
the line-core formation region shown in the contribution functions. This region then
expands signi�cantly due to evaporation as the beam heating ends. Similarly to the F9
simulation, the region where the calcium lines represent the largest proportion of the
total radiative losses is between 0.6 and 1Mm at later times in the simulation, and this is
once again the region where the two treatments best agree (with a similar discrepancy to
the F9 case). In the region above this, where the di�erence between the two treatments
is less but still signi�cant, the calcium line losses typically represent 5–20% of the total
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radiative losses.

For both of the simulations presented here there appears to be a similar di�erence between
the LI and LE calcium treatments. We can obtain a clearer estimate of the e�ects of the
calcium treatment on the total radiative losses by plotting the product of the le�- and
right-hand panels of Figs. 5.8 and 5.9. These are plotted in Fig. 5.10 and con�rm our
conclusions. In both cases, throughout the upper chromosphere there is a variation in
total radiative losses of up to 15%. Time-averaging this variation suggests that the average
di�erence is larger in the F9 simulation than the F10 simulation, although these are both
of the same order of magnitude. This di�erence is likely due to a larger fraction of the
total radiative losses from this region being mediated by the hydrogen transitions in the
more energetic simulation, as a larger proportion of the calcium populations are ionised
into the Ca III state. From these simulations, we can suggest that it is likely that using
a self-consistent LI treatment (where the changes in radiative losses directly a�ect the
hydrodynamic evolution) could produce a change in energy balance in the chromosphere
of 10–15%. This is su�ciently large to noticeablymodify the atmospheric evolution, which
would further a�ect the outgoing calcium line pro�les and formation heights, but also
other chromospheric lines, such as the hydrogen Balmer series.

5.5 Case Study: Is Full Time-Dependence Necessary?

The work in this section was undertaken in collaboration with P. Heinzel and J. Kašparová, in
parallel with the study of Ca II photoionisation, as a result of the International Space Science In-
stitute (ISSI) meeting: “Interrogating Field-Aligned Solar Flare Models: Comparing, Contrasting
and Improving” led by G.S. Kerr and V. Polito.

It has been repeatedly shown that a time-dependent treatment of the hydrogenpopulations
is necessary in RHD simulations. This was �rst investigated inwave heated chromospheric
simulations by Carlsson & Stein (2002), who found a settling time for hydrogen to return
to equilibrium ionisation of the order of thousands of seconds. Brown et al. (2018) also
compared the hydrogen line pro�les, computed with RADYN’s approximate PRD and
time-dependence, and also with statistical equilibrium using the full PRD treatment of
RH (i.e. treating each atmospheric subsequent snapshot in statistical equilibrium). They
found that the time-dependence had a more signi�cant e�ect than PRD on the Lyman
lines, and could not be ignored. More recently Kerr et al. (2019b) have investigated the
e�ects of a time-dependent treatment of the level populations of Mg II, and found that
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whilst there were di�erences between the statistical equilibrium and time-dependent
treatments, the statistical equilibrium treatment was su�cient for most stages of the �are
models investigated. They conclude that for this line priority should be given to the PRD
treatment. Similarly, Leenaarts et al. (2012a) found that for a correct synthesis of Hα
from three-dimensional RMHD models, only an equation of state taking into account
the non-equilibrium ionisation and its e�ects on the electron density is necessary, and
under this condition a full three-dimensional treatment is more important than complete
time-dependence. Wedemeyer-Böhm & Carlsson (2011) investigated the non-equilibrium
ionisation of calcium in quiet RADYN simulations and found that whilst the statistical equi-
librium and time-dependent treatments gave di�erent ionisation fractions, the di�erence
in the synthesised line pro�les was hardly discernable.

It is therefore important to assess the importance of a time-dependent treatment of Ca II
in solar �are models. In the following, we shall brie�y summarise our investigation of
the importance of treating Ca II with time-dependence in the RHD model used for the
comparison of the RADYN and FLARIX codes presented in Kašparová et al. (2019). This
simulation utilises a set of features common to both codes, considering only hydrogen
and calcium in detailed radiative transfer, and using an analytic “Emslie” beam formalism.
The beam �ux is modulated to have a symmetric triangular time pro�le, lasting 20 s and
peaking at 10 s depositing a total of 1× 108Jm−2 5. A spectral index of 3 and low-energy
cut-o� of 20 keV was also chosen, and similarly to the models shown previously the initial
atmosphere was based on the VAL3C model of Vernazza et al. (1981).

In Fig. 5.11 we present a comparison of both the LI and LE treatments of Ca II 854.2 nm line
at di�erent times in this simulation, having applied both time-dependent and statistical
equilibrium treatments to the calcium populations. In all cases the hydrogen populations
were loaded from a fully time-dependent run and are used in Lightweaver’s “detailed
static” mode to provide the correct radiation �eld. The time-dependent treatments are
considered as expected reference solutions shown with solid lines, whilst the statistical
equilibrium treatments are shown with dashed lines. Comparing the time-dependent LI
(orange) and LE (green) line pro�les, we see a very similar picture to that presented by
our previous simulations, with the peak intensity during heating being higher in the LE
case and the LI model remaining more dramatically double-peaked at later times. Instead
comparing the time-dependent and statistical equilibrium line pro�les, we �nd very good
agreement for all but the t = 2 s snapshot, and the LI case of the t = 5 s snapshot. For the
latter of these, the line shape is correct, but the intensity of the statistical equilibrium

51× 1011erg cm−2
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Figure 5.11: Comparison of time-dependent and statistical equilibrium treatments for the
Ca II 854.2 nm line for LI and LE treatments in the simulation described in Section 5.5.
The time-dependent treatments are shown with solid lines, and the statistical equilibrium
treatments with dashed lines. Orange is used for the LI treatment, and green for the LE
treatment.

case is a few per cent lower than that of the full time-dependent treatment. At t = 2 s the
di�erence between the two di�erent LI treatments is greater than the di�erence between
the LE treatments, but for both the LI and LE cases the statistical equilibrium lines are
narrower and less pronounced than their time-dependent counterparts.

For this particular simulation, a�er the �rst few seconds of heating, the statistical equi-
librium treatment is perfectly valid with no obvious defects. Clearly, this one simulation
does not represent all RHD �are simulations, but we have empirically found this to be true
when testing multiple timesteps from the simulations used in the previous sections.
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5.6 Case Study: Partial Frequency Redistribution

As highlighted by Brown et al. (2018), when considering the hydrogen Lyman lines it would
be a signi�cant improvement to simultaneously handle full time-dependence and PRD.
It is possible that this could prove important for the energy balance of the line-forming
regions, in a similar manner to the photoionisation e�ects discussed previously. Indeed,
any signi�cant variation in the hydrogen Lyman series may a�ect the populations of
calcium and other species through photoionisation. Hα could also be a�ected through
modi�cations of the level populations associated with the Lyman lines, as discussed by
Leenaarts et al. (2012a). They investigated the same Doppler-like PRD approximation that
was used in our F9 and F10 RADYN simulations presented in Sec. 5.4 and found that it was
su�cient to obtain correct Hα line pro�les in the quiet Sun case. The version of RADYN
used by Brown et al. (2018) applied this same Doppler-like approximation. We term this
treatment “Doppler-like” as it consists of the removal of natural radiative and van der
Waals broadening terms, but the linear Stark broadening terms, that can be important in
�ares (e.g. De Feiter & Švestka 1975), are le� in the model.

5.6.1 Modifying Our Lightweaver-based Model to Support PRD

The Lightweaver framework supports both time-dependence and PRD lines, thus we can
attempt tomodify the tool built in this chapter to also include PRDe�ects. Hong et al. (2019)
included some of the e�ects of partial redistribution with simultaneous time-dependent
populations by extracting the hydrogen level populations from RADYN and computing
the PRD line pro�le ratio with RH. Using this method, the modi�ed radiation �eld and
line emission pro�le will not be taken into account in the calculation of the radiative
rates used to update the populations. In the following, we attempt to treat this problem
self-consistently.

Our hydrogen model atom is modi�ed by restoring the natural and van der Waals broad-
ening terms in the de�nitions of the Lyα and Lyβ spectral line models. These are the
terms that were previously removed to render the line pro�les Doppler-like. We then solve
the statistical equilibrium problem for the initial atmosphere in PRD, and then update
the PRD line emission ratio ρij during each timestep based on the current atmospheric
parameters and radiation �eld, performing several updates of ρij and formal solutions
with �xed populations, following the usual process described in Sec. 2.4.12. Unfortunately,
this basic approach proved to have incredibly poor convergence. Many timesteps failed
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to converge or the iterative scheme would enter a loop of repeatedly passing through
the same states, getting no closer to the convergence threshold. Of the timesteps that do
converge, many take an exceedingly large number of iterations.

These convergence problems are somewhat unexpected due to the reliability of the meth-
ods used here when applied to statistical equilibrium problems (e.g. Uitenbroek 2001).
Unfortunately, we are faced with an additional problemwhen performing time-dependent
simulations, especially in the reprocessing context used here: when a timestep fails to
converge we lose the ability to investigate later in the simulation, as the populations at
every timestep are dependent on those preceding. When reprocessing snapshots of an
RHD simulation using a statistical equilibrium treatment, a failure for one of these to
converge does not limit the analysis of any other snapshot.

The following procedure was found to be relatively robust, and was su�cient to reprocess
the complete F9 simulation presented previously. At the start of each timestep, when
the populations are advected from the previous grid to the next, the line emission ratio
ρij is interpolated onto the new grid. Inherent to this assumption is the idea that ρij will
not change too drastically between subsequent timesteps. The time-dependent problem
is then solved to our normal tolerance whilst keeping ρij �xed at its interpolated values.
Once converged, we continue to compute the time-dependent population update, whilst
now interleaving iterations of updating ρij following the usual process.

In the F9 simulation this approach proves to be rapidly convergent at early times, but far
less so at later times during the cooling phase. Initially this appears unintuitive, but the
non-thermal collisional rates from the electron beam depositing energy in the simulation
are combined with thermal collisional rates during the heating phase and likely reduce
the e�ects of PRD on these lines. At later times the Lyman line forming regions are likely
to be less collisional, whilst the line remains strong with the radiative rates representing
a signi�cant component of the population transition rate. Similar convergence behaviour
occurred when reprocessing the F10 simulation, but the convergence deteriorates sooner
and despite adjustments to the number of PRD sub-iterations taken, the model usually
fails to converge around t = 3.75 s.

5.6.2 Results

The Lyα line computed in the reprocessed F9 simulation, both with approximate (dashed
orange) and fullymodelled PRD e�ects (dashed green), is shown in Fig. 5.12. It is compared
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Figure 5.12: Comparison of the RADYN CRD, Lightweaver CRD, both with reduced broadening
to approximate PRD, and Lightweaver PRD treatments of the Lyα line in the F9 model. Lw
is used as shorthand for Lightweaver.

against the RADYN solution (blue), using the same approximate treatment. Once again, our
CRD treatment of the problem with Lightweaver yields very good results when compared
to RADYN as a reference solution. Other than the line wings at t = 5 s and to a lesser extent
at t = 40 s the PRD and CRD (with reduced broadening terms) match well, although the
PRD line core at t = 20 s is a fair amount deeper than the CRD case. This is encouraging
for the use of this approximation, especially in light of the di�culties converging the
PRD problem in time-dependent simulations. Furthermore, the PRD solution, due to its
poor convergence at later times, is extremely computationally costly when compared to
the CRD solution, taking close to two orders of magnitude more CPU time (73 vs 1.2 wall
hours6 on hephaistos).

Lyα is not the only line a�ected by PRD in this simulation; we also investigated the
e�ects on Lyβ and the Ca IIH and K resonance lines. Lyβ was found to have very good
agreement between the approximate and complete PRD treatments in Lightweaver, similar
or better than that found for Lyα. The agreement between RADYN and the Lightweaver
CRD treatment was also extremely good, as in the Lyα case. Ca IIH and K are a�ected by
PRD e�ects but also by the use of the LI treatment, albeit less than Ca II 854.2 nm, and this
is likely due to the lack of overlap between Lyα and the Ca II resonance continuum. In
Fig. 5.13, the variation of the Ca II K line computed using CRD with the LI treatment and

6Wall hours refer to a real world elapsed time, despite the fact multiple CPU cores are used in the problem.
Thismetric also captures the fact that the implementation of updating ρij is less parallelised in Lightweaver
than the CRDMALI method which dominates the runtime of the CRD case (average ∼ 65% utilisation of
12 threads, rather than 98%).
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Figure 5.13: Comparison of the CRD and PRD treatments of the Ca II K line in the F9 model.

PRD with the LI treatment is shown. The di�erences between the CRD line pro�les and
the RADYN line pro�les are due to the LI treatment. The PRD line cores agree very well
with the CRD LI treatment, but as expected when a signi�cant proportion of the scattering
is coherent the line wings deepen and then slowly return to the same continuum level as
the CRD case.

Uitenbroek (2002) undertook similar tests in a wave-heated quiet Sun RADYN simulation
and looked at the radiative losses in the Ca II K line when treated in PRD (under statistical
equilibrium). In the chromosphere these losses were found to vary between the CRD and
PRD treatments by a factor of 2–5. Qualitatively, there is a smaller di�erence in the Ca II
wings in our �are simulation than their wave-heated model. The losses between these two
di�erent treatments in the chromosphere are shown in Fig. 5.14. The di�erences in the
radiative losses are most signi�cant at t = 5 s with the inversion of the sign of the losses
between the PRD and CRD treatments around 1Mm. Whilst less signi�cant, at the other
times shown there is also clear variation in radiative losses due to the treatment of the
Ca II resonance lines in PRD, typically decreasing these relative to their CRD values.

5.6.3 Discussion

Whilst we have not attempted to implement this, it is possible that applying a direct,
rather than iterative solution for evaluating the emission pro�le ratio may be more stable
in this situation. The iterative method, implemented as �rst presented in Uitenbroek
(2001), tends to have very good convergence when used in the statistical equilibrium
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Figure 5.14: Comparison of the chromospheric radiative losses under CRD and PRD treat-
ments of the Ca II K line in the F9 model. A negative value indicates a radiative loss and a
positive value a radiative gain. Lw is used as a shorthand for Lightweaver.

case, whilst being less computationally expensive and much easier to apply in multi-
dimensional geometry. It is plausible here that the e�ective damping of the population
update equations of the time-dependent kinetic equilibriumequations relative to statistical
equilibrium is reducing the convergence rate, due to the slower rate (per iteration) at
which the populations evolve. It may therefore be worth investigating the direct solution
in the hope that bymore rapidly converging to the correct solution for the emission pro�le
the populations do not pass through intermediate states that are not “valid” i.e. states that
are intermediate to the iteration scheme, but do not occur at any point in the real world
system we are computing. It is plausible that many of the intermediate states that occur
in both time-dependent and statistical equilibrium calculations are not states that occur
naturally, instead resulting from our numerical treatment of the system.

When additional iteration processes such as PRD and charge conservation are applied
(leading to the application of three simultaneous iterative processes to the problem),
whilst being combined with the damped nature of the time-dependent population update,
it appears that cycles in the global iteration procedure can occur quite frequently, and
no method that we have found reliably prevents these (including interleaving basic Λ-
iterations and applying Ng acceleration (Ng 1974)). Avrett & Loeser (2008) also comment
that strong lines can pose problems for the convergence of ALI schemes and propose a
scheme for computing strong PRD lines by solving a linear system of simultaneous equa-
tions for the rate and transfer equations, whilst solving for weaker transitions by an ALI
method. If this approach is reformulated and implemented for the time-dependent case,
it is possible that it will not su�er the same convergence problems that were encountered
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in this section, especially given the strength of these lines in �are-heated atmospheres.

5.7 Digging Deeper: Time-Dependent Response Functions

In Section 5.4.2 the contribution function was used to investigate the e�ects of the LI
treatment on the Ca II 854.2 nm line. It may be possible to obtain greater interpretability
through the use of response functions (as introduced in Sec. 3.2.2), but to our knowledge
these have only been considered for models in statistical equilibrium. Carlsson & Stein
(2002) investigated the settling times for hydrogen ionisation in RADYN simulations by
applying a perturbative numerical formulation similar to that we will apply in computing
time-dependent response function.

For the time-dependent situation, we perturb an atmospheric parameter at a particular
depth as before, and then a timestep by which to advance the system is needed. This
should be short compared to the hydrodynamic evolution of our system, but su�ciently
long to allow the population change to rise above our convergence threshold and correctly
converge to the new solution. In essence, we are computing the time-dependent response
function Rν,q,t as the response function Rν,q a�er a time ∆t has elapsed. As discussed in
Sec. 3.2.2, a centred �nite-di�erencemethod in the perturbed parameter is applied, i.e.

Rν,q,t(k, t) = Rν,q(k)

∣∣∣∣
t+∆t

=
I(ν,qk + δq/2, t+ ∆t) − I(ν,qk − δq/2, t+ ∆t)

δq
.

(5.3)

Carlsson & Stein (2002) and Judge (2005) note that for a two level atom a population
perturbed out of statistical equilibriumwill follow an exponential decay back to the steady
state solution, further supporting the choice of a short timestep to attempt to remainwithin
the more “linear” regime of this process. The NLTE multilevel system is more complex
and theoretically depends on the eigenvalue spectrum of the rate matrix. In the analysis
of Carlsson & Stein (2002) the full rate matrix was found to signi�cantly underestimate the
ionisation relaxation time, and NLTE e�ects slowed the population evolution. Judge (2005)
applied a simpli�ed variant of the mathematical framework of Gayley (1990) showing
how, at high optical depths, NLTE radiative transfer e�ects can reduce the radiative decay
rate. Extreme care should be taken when trying to make quantitative use of these time-
dependent response functions, especially for longer timesteps, but for now we shall focus
on qualitative aspects.
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Time-dependent response functions were computed for perturbations in temperature and
velocity to the same atmospheres for which the contribution functions were considered
in Section 5.4.2. These properties were chosen as they are important but “relatively” free
parameters in the system. It is also common to compute the response functions to electron
density, microturbulent velocity and magnetic �eld, however these parameters are either
not considered or not truly free. Following RADYN, the microturbulence is assumed to be
constant both in time and throughout the atmosphere, and this model does not consider
any e�ects of themagnetic �eld. For the LImodel, the electron density is dependent on the
rest of the atmosphere through charge conservation, and is therefore not a free parameter.
In the LE case, where the hydrogen populations are considered �xed over each timestep,
the electron density is also held �xed over the duration of the response functions. We
note that the radiative response to the electron density could likely be computed following
Metcalf et al. (1990a) who present the following method for computing the response to
electron density ne

∂I

∂ne
=

(
dI

dT
−
∂I

∂T

)(
dne

dT

)−1
, (5.4)

where these terms are de�ned as follows: the total derivative of I with respect to T can be
evaluated from computing the response with charge conservation enabled, the partial
derivative of I with respect to T from computing the response with ne �xed, and the
derivative of ne with respect to T can simply be computed from the change in ne during
evaluation of the response function with charge conservation. This method was originally
presented for computing the response of an intermediate parameter such as the source
function or opacity to ne, but there is no reason why it cannot be applied directly to
intensity. In the context of inversions, this additional response is very useful, however
our RHDmodels should normally remain self-consistent. Nevertheless, this could also be
useful for interpretation, but is ∼ 2×more computationally costly than other parameters
due to the requirement of additional derivatives.

Our contribution and response functions are shown in Fig. 5.15 – 5.18 (LI in the upper
rows and LE in the lower). In the response function plots red shows an enhancement
in outgoing radiation as a response to an increase in the perturbed parameter at the
particular depth, whereas blue indicates a reduction. The same colour scale is used for
all response function panels. All of the response functions shown in these plots were
computed with a timestep of 1ms, but were visually identical to those computed for
a timestep of 10ms and extremely similar to those computed for a timestep of 0.1ms.
Substantial di�erences appeared for a timestep of 1µs, possibly due to convergence issues,
as the populations have little time to evolve over such a short timestep, making it di�cult
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Figure 5.15: Comparative plots of the temperature and velocity response functions and the
contribution function for the Ca II 854.2 nm line in the F9 simulation at t = 11 s. The
upper row shows the LI treatment, and the lower row the LE treatment. For the response
functions, enhancement to a positive perturbation is shown in red, and reduction in blue.
The same colour scale is used in all response function panels, and τν = 1 altitude is overlaid
on each plot.

to judge convergence to the necessary level. The stability of the response across these
three timesteps suggests we are capturing a physical response, rather than the numerics
of the method.

The shape of the temperature response function is immediately recognisable as similar to
the contribution function shown in the �rst column. This is not surprising, as temper-
ature is the most important atmospheric parameter in spectral line formation, and will
always a�ect the region where the observed photons form. Nevertheless, at a particular
wavelength, temperature response features can be seen at greater depth (well below the
τν = 1 line) than any in the contribution function, as a change in radiation �eld at this
depth can a�ect the radiative rates in the line-forming region.

The other immediately remarkable feature present in all of the temperature response
functions shownhere is the presence of a negative response to temperature above ∼1.2Mm
(i.e. an increase in temperature in this region decreases the outgoing intensity). This
is due to a reduction in the local source function, primarily due to an increase in the
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Figure 5.16: Comparative plots of the response and contribution functions, equivalent to
Fig. 5.15 for the F9 simulation at t = 20 s.
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Figure 5.17: Comparative plots of the response and contribution functions, equivalent to
Fig. 5.15 for the F10 simulation at t = 11 s.
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Figure 5.18: Comparative plots of the response and contribution functions, equivalent to
Fig. 5.15 for the F10 simulation at t = 20 s.

populations of the lower level of this transition: below 1.4Mm this reduces the strength of
the line core, whereas above this region this reduction is due to an increase in opacity,
trapping radiation in the atmosphere, and creating a dip in the line pro�le. This same
region is simply shown as contributing in the contribution function panels and tends to
be more pronounced in models with the LE treatment, where the τν = 1 line is at a higher
altitude.

There is a narrow blue bar in the line core of the LI temperature response function of
Fig. 5.15 around 0.25Mm. This is likely an artefact of the numerical method used to
compute the response function, although it also appears for the other timesteps used to
verify the response function. When a feature like this appears only for one depth point it
is usually a spurious numerical artefact, and we will discount it in the following.

In the right-most column of these �gures we have plotted the velocity response function.
The structure of this plot below ∼1Mm is easy to interpret; an increase in velocity shi�s
the line-core towards bluer wavelengths, and away from redder wavelengths. The e�ects
on the far wings, visible below ∼0.4Mm are less immediately intuitive, but are very small
variations corresponding to increased absorption of photospheric emission in the blue
wing, and reduced absorption in the red wing, due to the far wings of the line pro�le. The
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structure in the line core is far more complex, and has a non-trivial response to variations
in velocity, a�ecting the LE and LI cases di�erently. This is most pronounced in the F10
response function at 11 s (Fig. 5.17). There are also responses due to changes in velocity
from well below the τν = 1 level in the line core which produce changes in opacity in
these regions a�ecting the radiation �eld in the line forming region.

The di�culties of a quantitative analysis become clear when looking at the scales of
two di�erent LI temperature response functions from the F10 simulation at t = 11 s.
Normalising the response to the line pro�le, for a timestep of 10ms themaximumresponse
in the Ca II 854.2 nm line was 8.84× 10−5 K−1, and for a timestep of 0.1ms this was 8.86×
10−5 K−1. The consistency of these values and the response functions suggests that the
evolution is occurring on a timescale 6 0.1ms. This is not overly surprising given the
conclusions of Sec. 5.5, where a statistical equilibrium treatment was found to adequately
reproduce the full time-dependent evolution of the calcium populations at most points
in the model presented. This consistency poses problems to recasting these response
functions as a fractional change in the line pro�le per unit time, as the model with the
shorter timestep would appear to have a response two orders of magnitude larger than
the smaller one.

More interestingly, the Hα response function computed for these two timesteps was also
found to be almost identical, despite the accepted need for a time-dependent treatment. It
is probable that we are seeing results similar to those of Leenaarts et al. (2012a), who found
that for RMHD simulations Hα can be synthesised correctly in statistical equilibrium if
the equation of state takes into account non-equilibrium ionisation.

This leads to the question of whether it is possible to employ statistical equilibrium
response functions in these simulations. These are compared both with and without
charge conservation to the time-dependent temperature response function for the Ca II
854.2 nm line in the F10 atmosphere at t = 11 s in Fig. 5.19. The le�-hand panel once again
shows the time-dependent response function computedwith a timestep of 1ms, the centre
panel shows a statistical equilibrium response function, including hydrogen evolution and
charge conservation, while the right-hand panel shows a statistical equilibrium response
function computed whilst holding the hydrogen populations and electron density �xed.
Immediately we see a large di�erence between themiddle panel and the other two. This is
due to the hydrogen populations, and more speci�cally its ionisation state, relaxing back
to the statistical equilibrium solution. The information presented on this middle panel is
not equivalent to the le�-hand panel, showing responses in the line core at locations both
deeper and shallower than those found in the time-dependent solution. The right-hand
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Figure 5.19: Comparison of time-dependent and statistical equilibrium response functions
for the Ca II 854.2 nm line in the F10 simulation at t = 11 s. The time-dependent response
function is computed with a timestep of 1ms. The middle column shows the statistical
equilibrium response functionwhen charge conservation is considered, and the right-hand
column the statistical equilibrium response function when the hydrogen populations and
electron density are held �xed.

panel (holding the hydrogen populations and electron density �xed) agrees better with
the time-dependent response function, but there are still signi�cant di�erences in the
structure above 1.2Mm, with additional positive responses appearing. It was found that
running the time-dependent response functions for long timesteps (> 100 s), started to
produce similar structure, although these did not converge to the same result. It may
be acceptable to use this second form of statistical equilibrium response function to
diagnose the Ca II 854.2 nm response in RHD simulations, but it typically took longer
to converge than the time-dependent approach, and cannot be generalised to compute
response functions of hydrogen lines, due to these populations being held �xed. The
di�erence between the time-dependent and statistical equilibrium with �xed electron
density response functions is qualitatively similar in the F9 simulation and at other times in
this simulation, although at later times (t & 35 s), as the populations settle the di�erences
are reduced in both simulations.

The time-dependent response functions discussed here are a more NLTE-motivated ap-
proach to the problem of spectral line formation in RHD simulations. They allow the
identi�cation of the regions and parameters to which the line is sensitive (which may
be due to non-local radiative e�ects), and show whether a change in a parameter will
provoke a positive or negative response on the outgoing radiation. This di�erentiates
response functions from the contribution function by showing the negative response to
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temperature above ∼ 1.2Mm. Response functions can also be used to separate the e�ects
of di�erent parameters in these models, a feature that will likely become increasingly im-
portant as the complexity of �are modelling increases further. We stress that as response
functions represent a local gradient, they are only valid in small parameter regions around
those the model was computed with. The time-dependent formalism presented here will
need additional development for quantitative uses, but we feel that it already provides
information complementary to the contribution function and are optimistic about future
applications to improve the interpretation of line formation in RHD simulations

5.8 Discussions

Wehave presentedmultiple applications of the Lightweaver framework to reprocessing the
radiative transfer of RADYN simulations. Through the construction of simple tools, we are
able to quantitatively investigate the importance of various radiative e�ects that may not
be considered in RADYN’s treatment (but without modifying the energy balance or hydro-
dynamics), more rapidly than would be possible incorporating the necessary changes into
RADYN. These tools have been used to investigate the e�ects of photoionisation of Ca II
to Ca III by the hydrogen Lyman lines, the importance of treating the Ca II populations
with time-dependence, and the possible di�culties in applying a PRD treatment in RHD
simulations.

From the �are simulations presented here the hydrogen Lyman lines have signi�cant
e�ects on the Ca II photoionising radiation �eld. This results in substantial changes in
both the outgoing Ca II 854.2 nm line pro�les, and the radiative energy balance in the
upper chromosphere. The radiative losses in this region were found to be a�ected by
up to 15%, which could in turn lead to di�erences in the hydrodynamic evolution of
the simulation and thus greater di�erence in the line pro�les. We did not �nd a clear
correlation between the magnitude of this e�ect and the increased heating in the F9 and
F10 models: in both cases the e�ect was important, and therefore is likely to remain
so at higher energy depositions. It is therefore essential that RHD simulations start to
consider this in a self-consistent way to gauge its full e�ect. These photoionisation e�ects
could also a�ect other species with continua overlapping the hydrogen Lyman lines. For
instance, Mg II line pro�les are o�en used for chromospheric diagnostics, but these are
unlikely to be as signi�cantly a�ected by the hydrogen Lyman lines as Ca II due to the
resonance continuumedge being located at 82.46 nm, which can therefore only be a�ected
by the far Lyman continuum. The Mg II populations will be in�uenced to a lesser extent
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by photoionisation from the subordinate continua, some of which overlap the Lyman
series.

On the other hand, we found that the deviations of the calcium populations due to full
time-dependent kinetic equilibrium over statistical equilibrium were typically small in
the simulations investigated. This is interesting, as it theoretically allows for Ca II to be
processed separately, but as the radiative losses from this species need to be known for the
hydrodynamics of anRHDsimulation, this species likely still needs to be treated in lockstep
with the rest of the simulation. Additionally, there is typically a loss in speed by computing
the statistical equilibrium solution at each timestep in the simulation (even starting close
to the solution from the previous timestep’s solution) over the time-dependent solution
when using traditional radiative transfer methods. This could change with the application
of machine learning, as it will be far easier to construct detailed models that provide
the unique statistical equilibrium solution for a given atmosphere than determining the
correct time-dependent solution. As the hydrogen populations would continue to require
a full time-dependent treatment there is not likely to be an immediate gain from such a
model in the context of RHD simulations. However, the nuanced analysis of the formation
of Hα in the quiet Sun by Leenaarts et al. (2012a) suggests that it may be su�cient to purely
capture the e�ects of hydrogen non-equilibrium ionisation (i.e. the fraction of hydrogen
that is fully ionised and its e�ects on the electron density) through the equation of state
and then performNLTE synthesis in statistical equilibriumwith this given electron density.
This would also need to be validated for �are models, which could be done following
the approach laid out in this chapter. It would then become signi�cantly easier to apply
machine learning models to these separable components; this could provide massive
computational gains in RHDmodelling, whilst detailed spectral synthesis would remain
possible through traditional NLTE radiative transfer approaches. Parallels can be drawn
between the application of machine learning to this problem and the use of simpli�ed
local rates following the method of Sollum (1999) as used in HYDRAD (Reep et al. 2019),
and BIFROST (Gudiksen et al. 2011; Leenaarts et al. 2007), but it remains to be proven
whether this method retains su�cient accuracy at the high energy depositions that occur
in �ares.

Despite the apparent simplicity of incorporating PRD into these tools, the iteration process
was plagued with convergence problems that we have been unable to fully resolve. Never-
theless, for the hydrogen Lyman lines in the F9 simulation presented in this chapter, the
Doppler-like PRD approximations currently present in RADYN perform well, and come
at no additional computational cost over the basic CRD treatment, validating the quiet
Sun results of Leenaarts et al. (2012a). We therefore recommend that this approximation
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continue to be employed for Lyα and Lyβ until more advanced iteration methods are
developed and implemented (that can simultaneously e�ciently solve for the atomic
level populations, electron density, and necessary PRD line emission pro�le ratios), al-
though it would be good to test the quality of this approximation in more strongly heated
atmospheres.

It is possible to apply the method outlined in Sec. 5.6 to Mg II, but it is likely, as shown
by Kerr et al. (2019a), that treating it in statistical equilibrium with PRD will provide a
su�ciently accurate solution whilst remaining relatively e�cient, hopefully allowing this
species to be incorporated into RHD simulations in the near future. It is also important
to investigate other e�ects that may change the formation of these spectral lines. For ex-
ample, Zhu et al. (2019), used an improved Stark broadening treatment when synthesising
Mg II h & k from snapshots of a RADYN model in RH. They found that a 30× increase
in Stark broadening (or the equivalent increase in another Lorentzian broadening term)
was needed to reproduce observations. Additionally, Kowalski et al. (2017a) note that a
correct treatment of Mg II requires themodelling of overlapping bound-bound transitions,
which is not possible with current RHD codes, but does not pose any great computational
di�culty in theory.

The e�ects of treating the Ca II resonance lines in PRD were signi�cantly larger than
those seen with the hydrogen Lyman lines. This is seen not only in the line pro�les,
but also in the chromospheric radiative losses in these lines, which vary substantially
when treated with PRD (and are typically smaller than those computed in CRD, as found
previously in wave-heated atmospheres by Uitenbroek (2002)). It is therefore important to
investigate whether applying PRD to the H and K lines can be done e�ciently. Empirically,
we have found that the majority of convergence problems originate from the hydrogen
Lyman lines, thus it may be relatively e�cient to treat the Ca II resonance lines in PRD. If
similar convergence issues also a�ect these lines, then it would be desirable to devise and
implement an approximation scheme similar to that used for Lyα and Lyβ. As previously
mentioned, it has been suggested that RADYN’s treatment of the Ca II resonance lines
in CRD overestimates the radiative losses but this overestimation is compensated by not
considering the Mg II h and k lines (e.g. Carlsson & Stein 2002; Kerr et al. 2019b). The
techniques presented in this chapter should allow for a thorough investigation of this
assumption and the development of suitable PRD approximations if necessary.

In summary, we found that it is essential to consider the photoionising e�ects of the
Lyman lines when modelling the Ca II lines in �ares, but a statistical equilibrium treat-
ment of the Ca II level populations appears to be su�cient in general. Considering PRD
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e�ects, we found that the Doppler-like approximation used in RADYN appears accurate for
Lyα and Lyβ, and similar approximations should be investigated for the Ca II resonance
lines, as their line pro�les and radiative losses vary dramatically between PRD and CRD
treatments (as previously remarked by Uitenbroek (2002) in wave-heated chromospheric
simulations).
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6
Two-Dimensional Radiative Transfer

It is clear that the world around us is multi-dimensional, but until this point we have only
considered radiative transfer in one-dimensional plane-parallel atmospheres.

All of the theory of radiative transfer discussed in previous chapters remains valid when
applied to higher dimensional systems, with the exception of the description of the formal
solver. This is due to the non-local terms that appear within the MALI description (with
diagonal Λ operator) being handled by the formal solver, which is responsible for comput-
ing the radiation �eld throughout the plasma from the local parameters and boundary
conditions and thus coupling the atmospheric nodes to each other. Once the radiation
�eld has been computed it is then used as a local parameter in the rest of the iteration.
In fact, if the storage for the atmosphere is “�attened” into a one-dimensional form, the
code from the plane-parallel case can (and should) be used to implement the iteration
scheme.

In this chapter we shall �rst describe the extension of the Lightweaver framework to two
dimensions (with the possibility of further extension), and then describe its application
to the simulation a slab of quiet sun being illuminated by an adjacent slab of quiet sun,
along with potential implications for future observations at high resolution.

6.1 The Formal Solver in Two-Dimensions

Similarly to the plane-parallel formal solver used in Lightweaver, described in Sec. 2.4.2, we
use the short-characteristics method to compute the radiation �eld throughout the atmo-
sphere. This approachwas �rst employed in two-dimensions as a pure parabolic treatment
by Kunasz & Auer (1988) and was developed further by Auer & Paletou (1994) to produce
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Figure 6.1: Diagram of short-characteristics formal solver in two-dimensions.

the aforementioned limited parabolic scheme that avoids possible over- and undershoots.
We assume the following Cartesian basis: the z-axis is oriented as in the plane-parallel
case, oriented vertically from photosphere to corona, the x-axis is perpendicular and
co-planar to the z-axis (in the plane of the page for the following diagrams), and by the
right-hand rule the y-axis is oriented into the plane of the page. In the two-dimensional
case it is assumed that the atmospheric parameters are homogenous along the y-axis, but
vary along the x- and z-axes. We assume that the atmosphere has a �xed strati�cation
in x and z, and that the atmospheric parameters are known at each intersection of these
grids.

The mean intensity at each point will be computed similarly to the plane-parallel case: by
integration of the local intensity over a weighted angular quadrature. The Gauss-Legendre
nodes used in the plane-parallel case are poorly suited to anisotropy that occurs in the
two- and three-dimensional cases, and so we therefore employ the optimised angular
quadratures of Štěpán et al. (2020) in Lightweaver.

For each ray prescribed by the angular quadrature the formal solver must perform one
sweep through the grid. The general case, that of an inclined ray travelling through the
atmosphere is shown in Fig. 6.1. In the case of this ray the formal solver must sweep �rst
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6.1 The Formal Solver in Two-Dimensions

along x and then along z. The di�culties which can arise from this will be discussed in
Sec. 6.1.2. The points U andD refer to them being “upwind” and “downwind” of the point
O for which we are currently computing the intensity. This can be visualised by looking at
the intersections of ray with the grid. To compute the intensity in the direction of this ray
at point O using the short-characteristics formulation we have, as in one-dimension,

IO = IUe
−(τU−τO) +

∫τU
τO

S(t)e−(t−τO) dt, (6.1)

where these terms have their usual meanings, IO is the intensity in this direction at O,
IU is the intensity in this direction at U, and we have dropped the angular and frequency
dependencies for clarity. Thus, to compute the intensity at O, the intensity at Umust �rst
be known. As U does not generally lie on a point of our discrete two-dimensional grid,
the value of IU (and other quantities) are not computed directly by the formal solver, and
must instead be interpolated from the values of grid points along the line αβ.

Following the short-characteristic method, a functional form must be assigned to the
variation of S over the the line segment [UO]. In the simplest case, this can again be a
linear functional form, but due to the additional dimension for inhomogeneities in the
two-dimensional case, unless the grid is very �ne or the atmosphere very slowly varying,
thismay be a poor choice. A higher order parametrisation of S is likely to require the values
of the source function at bothU andD, and possibly other points along the ray. Similarly to
the cubic Bézier spline1method used as standard in our plane-parallel code, we once again
turn to monotonic Bézier splines for safe, smooth interpolation, minimising the presence
of under- and over-shoots. The cubic method we apply in plane-parallel atmospheres
requires four points along UD, which becomes less practical in higher dimensions, due to
the computational demands of the method. Instead we choose the quadratic Bézier spline
method, BESSER, of Štěpán & Trujillo Bueno (2013), which will be brie�y summarised
here for the scalar case of the RTE.

6.1.1 The BESSERmethod

The BESSER method (Štěpán & Trujillo Bueno 2013) di�ers from other monotonic Bézier
spline methods by ensuring the continuity of the �rst derivative of the interpolant at O.
Due to the large di�erences in optical depth between adjacent regions (e.g. τUO and τOD)

1A superb graphical introduction to Bézier spline methods and a visualisation of their construction and
features is provided in the video by Freya Holmér, The Beauty of Bézier Curves available at https://youtu.
be/aVwxzDHniEw.
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6.1 The Formal Solver in Two-Dimensions

that are likely to occur in multi-dimensional cases with irregular grids, this method is
designed so as to guarantee that if the values over [UOD] are monotonic then the spline
interpolant will remain monotonic.

The spline interpolant over the [UO] interval is described by

f(a) = (1− a)2fU + 2a(1− a)cU + a2fO, a ∈ [0, 1], (6.2)

where fU and fO are the values of f at points U and O respectively, cU is the functional
value of the spline’s control point, and a is the normalised coordinate for the distance
along [UO]. The control points are points half way along an interval, de�ning the tangent
to the spline at each end of the range i.e. cUO de�nes the tangent to the spline at O and
UcU de�nes the tangent to the spline atU. If we denote the coordinates of our points along
the ray sU, sO, and sD then we have a = (s− sU)/hU, where hU = sU− sO and s ∈ [sU, sO].
An equivalent interpolation can be de�ned over the [OD] segment. The monotonicity (for
monotonic fU, fO, fD) and continuous �rst derivative of the interpolating functions at O
is ensured by following this procedure:

1. Verify the monotonicity of fU, fO, fD, and if fO is a local extremum then the control
points cU and cD are set to fO, giving a derivative of zero at O. As this is is the only
possible solution for this case, the process stops here.

2. Compute an estimate of the derivative at O, by using the derivative of the standard
parabolic interpolation of UOD.

3. Use this derivative to compute the initial values at the control points, by direct
projection of the �rst derivative to their coordinates (as this de�nes a tangent to
function at O).

4. Check cU ∈ [fU, fO]. If not, set cU to fU to correct for any new extremum and halt
the process, as cD is not needed for the integration of the source function.

5. Check cD ∈ [fO, fD]. If not, set cD to fD, and use this to compute a new value for the
derivative at O, and follow the projection of this tangent to determine cU (due to the
enforced continuity of the derivative at O).

This process is described in more detail in Štěpán & Trujillo Bueno (2013), but this covers
the most important elements of the process.
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6.1 The Formal Solver in Two-Dimensions

Similarly to the plane-parallel case, we will solve the RTE in optical depth, due to its
increased stability. This interpolation method can be used to compute the optical depths
τUO and τOD along these segments by

τUO =
1
3(χU + χO + χcU)(sO − sU), (6.3)

τOD =
1
2(χO + χD)(sD − sO). (6.4)

Note that a linear approximation was used for τOD, as the previous process does not
guarantee the calculation of cD. This could be modi�ed to also use the quadratic spline
method, which may be more robust, however the value of τOD rarely a�ects the �nal
solution dramatically.

This method can now be applied to the source function but parametrised along τ rather
than geometric distance along the ray s. The BESSER quadratic spline method is then
used to compute the value of the source function control point ScU . The integral in (6.1)
can now be evaluated, by using the prescribed quadratic spline variation of S over the
interval [τU, τO]. Working through the maths we arrive at

ID = IUe
−τUO +ωUSU +ωOSO +ωcUScU , (6.5)

where,

ωU =
2− (τ2UO + 2τUO + 2)e−τUO

τ2UO
, (6.6)

ωO = 2τUO − 2+ e−τUO(τUO + 2)
τ2UO

, (6.7)

ωcU = 1− 2e
−τUO + τUO − 1

τ2UO
. (6.8)

For small values of τUO the numerical precision of these coe�cients becomes unreliable
(in �oating point arithmetic), so for this reason these are replaced with Taylor expansions
for τUO . 0.1.

An expression for the Λ∗ operator can then be devised equivalently to the process used
previously for the plane-parallel case. The source function is locally set to unity, and zero
elsewhere. This implies that cU is also set to 1. Thus the local contribution to the radiation
�eld is given by

Λ∗(ν,~d) = ωcU +ωO, (6.9)
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Figure 6.2: Diagram of sweep order for two-dimensional short-characteristics formal solver.

and remains related to Ψ∗ by the local opacity.

The equivalent integration and Λ operator coe�cients for a linear short-characteristics
approach can be computed similarly and are analogous to those computed in the one-
dimensional case.

6.1.2 Evaluation Order and Boundary Conditions

Looking more closely at the order in which the formal solver needs to sweep the grid,
we can see that the point O for the ray discussed in the previous section (and shown in
Fig. 6.1) would be the 10th node to be solved, and this ordering is shown in Fig. 6.2. Most
of the nodes on this �gure are solved equivalently to this one, with all necessary quantities
known at evaluation time provided the sweep order is preserved, but there are several
question marks which require explanation.

The cyan question marks along the x axis all require values that must be computed from
the boundary conditions. The upper and lower boundary conditions in z are typically
taken to be described by a de�ned in-going radiation �eld (possibly zero or based on a
black body). The upper and lower boundaries in x can be described by �xed boundary
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6.1 The Formal Solver in Two-Dimensions

conditions, but it is also common to describe these with periodic boundary conditions
where the ray wraps from one side of the grid to the other. The teal question marks along
the upper x boundary can then be interpreted in multiple ways: in the case of periodic
boundary conditions they can be prolonged along the teal arrows, and used in the same
way as the previously described case. If �xed boundary conditions are used then the
intensity at these points must be computed by a linear formal solver indicated by the black
arrows ending at the nodes labelled 4 and 8.

Finally, the region around the orange question mark, the tail end of the arrow passing
through node 11, requires some additional explanation. In the con�guration shown here,
the arrow can stop at its intersection with the vertical line on which nodes 6 and 10
lie as the intensity information has been computed at both of these. If an equivalent
situation occurs at a periodic x boundary, then a long-characteristics approach will need
to be applied to this ray. This implies that the ray will need to be prolonged back to the
previous intersection with a horizontal grid line, where the necessary intensity values can
be interpolated, as is shown on this �gure. There are multiple options for treating the
integration over the segment between this upwind point and the node. Whilst it is possible
to take this segment as a singular integration term, very inclined rays may cross multiple
vertical grid lines and regions with dramatically varying parameters. For this reason it
is common to sub-step along this ray, performing an accumulated short-characteristics
integration along each subinterval.

Another problem that may arise, closely related to choosing the correct upwind point, is
that of velocity shi�s in the medium. van Noort et al. (2002) discussed the possibility of
the opacity over an integration integral being underestimated due to di�ering Doppler
shi�s at each end of the segment a�ecting the local opacity by a large margin (say from
the core to the wing of the line). As commented by Ibgui et al. (2013), it is also possible
for this e�ect to overestimate the opacity along this segment, in a similar manner. The
most common solution to this, proposed by van Noort et al. (2002), and explained in detail
in Ibgui et al. (2013) is to subgrid along the ray. The ray is then divided into subintervals
along which the velocity may only change by a small (implementation de�ned) amount
relative to the thermal velocity. This approach can be very expensive when large Doppler
shi�s are present, due to the work involved in computing these segments, interpolating
the necessary parameters to each start/end point (this will now require interpolation on
both axes, rather than simply one as in the basic case discussed thus far), and the extra
numerical integration steps. This subgridding technique is not currently supported in
Lightweaver but the code was designed with this method in mind, and a sensible location
has been le� for its implementation.
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6.1.3 Implementation Details

The restrictive ordering of the formal solver sweep discussed in the previous section im-
poses constraints on the parallelisation of this algorithm. There is an in-depth discussion
of an advanced spatial and frequency parallelisation algorithm for multi-dimensional ra-
diative transfer in Štěpán & Trujillo Bueno (2013), however in Lightweaver we assume that
the entire simulation domain can be held in memory and the formal solver is parallelised
in frequency, equivalently to the plane-parallel case.

The data structures for storing the atmospheric and population information in Lightweaver
were updated to support two-dimensional atmospheres, storing the data contiguously so
as to be able to reuse the core iterationmachinery from the plane-parallel case (as inspired
by the RH code). Two-dimensional formal solvers can be loaded from external libraries
via the same interface as used for their one-dimensional counterparts, and through
these interfaces we ensure the modularity of Lightweaver. An equivalent interface is also
de�ned for the interpolation function to be used in two-dimensions, giving �exibility in
the interpolation order and any form of limiting used (which may need to be adapted
to speci�c grids). Lightweaver provides default implementations of the two-dimensional
linear and BESSER short-characteristics formal solvers, along with linear and BESSER
interpolation schemes for the necessary parameters. The framework defaults to the
BESSER formal solver with linear interpolation for the parameters.

For e�ciency, the calculation of the ray-grid intersections is performed in a separate
pre-pass to the formal solution, as this information can be reused for each formal solu-
tion using the same angular quadrature. Whilst it is possible to compute the necessary
parameter interpolation weights at this stage, we choose not to do this, as it would render
the interpolation interface either more limited, or substantially more complex, due to
the need to utilise di�erent numbers of interpolation weights for di�erent schemes. We
instead opt to store fractional indices which can be used in conjunction with the grid
information in any interpolation procedure. Using 64-bit arithmetic these are a concise
and robust method for storing these locations. By design, the intersection calculation
is only performed for one upwind and downwind point (excluding long characteristics
that cross grid boundaries), as we consider the second order method to be a practical
trade-o� in terms of computational cost against accuracy. This could easily be updated in
the future, and we acknowledge that this is a limitation in terms of the two-dimensional
formal solvers that can be loaded via the external interface.
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6.1.4 Validation
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Figure 6.3: Validation of 2D formal solver in static FALC atmosphere with periodic x boundary
conditions.

It is necessary to validate both the two-dimensional formal solver and its integration
into the Lightweaver framework. Here, we present a basic validation case, a horizontally
homogenous FALC atmosphere, using �ve points in x, spaced 5 km apart. The bound-
ary conditions in x are periodic, thermalised at the photosphere, and no radiation is
incoming at the top of the atmosphere. The standard con�guration of Lightweaver in
two-dimensions is used, i.e. BESSER formal solver and linear interpolation. The 11th order
angular quadrature with 6 rays per octant (Štěpán et al. 2020) is used when solving for the
level populations.

InFig. 6.3we show the comparisonof aCa II 854.2 nmcomputedusing this two-dimensional
method against the same model atom and atmosphere in a plane-parallel con�guration.
Both of these are iterated until the maximum relative change in the Ca II populations
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Figure 6.4: L∞ and L2 norms of the di�erence of the Ca II 854.2 nm line pro�les between
between the 1 and 2D formal solvers (including population iteration procedure).

is less than 10−4. The outgoing radiation shown in the upper panel of this �gure was
synthesised using rays in the x− z plane with µz = 0.9. Visually, the dashed lines, showing
the solution from di�erent x locations using the two-dimensional formal solver overlie
each other perfectly, showing that the output is homogenous along the x axis, as is to
be expected from this horizontally homogenous atmosphere with periodic boundary
conditions. There is a slight visible o�set between the solutions generated from the plane-
parallel and two-dimensional simulations, and the relative di�erence between these is
shown in the lower panel of this �gure. We see that the relative di�erence is greatest in
the line core, peaking at around 1.5%. Overall, this is very good agreement considering
the di�erent underlying methods used in the formal solvers.

In Fig. 6.4 we show how the di�erence between the plane-parallel and two-dimensional
models changes as the L∞ norm of the relative population change decreases (i.e. as we
approach convergence). Further iterations beyond amaximum relative population change
of 10−3 do not substantially improve the agreement between the two methods. Thus, the
situation shown in Fig. 6.3 is su�ciently converged to compare the �nal solutions of the
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Figure 6.5: Validation of 2D formal solver in FALC atmosphere with 20 kms−1 sinusoidal ver-
tical velocity �eld and periodic x boundary conditions in the le�-hand column and 5 kms−1
vertical sinusoidal velocity �eld and �xed x boundary conditions computed from a one-
dimensional plane-parallel model in the right-hand column. The le�-hand column is again
synthesised at µz = 0.9 whereas the right-hand column is synthesised at µz = 0.99999 to
include transverse e�ects, without simply sampling the �xed boundary condition that
would give the plane-parallel result directly.

two methods.

We �nd that the two-dimensional formal solver performs well, both in terms of accuracy
and computational performance. For the example presented here the plane-parallel
solution takes 1.026 s and the two-dimensional solution takes 12.471 s a�er 55 and 266
iterations respectively (this timing includes con�guring the additional contexts and the
formal solutions used for the convergence analysis shown in Fig. 6.4). Both of these
simulations were run with 16 threads on tomahna.

Similar validation tests have been run for �xed boundary conditions and Doppler shi�ed
atmospheres, all of which yielded extremely satisfactory results. These are shown in
Fig. 6.5 and utilise the same con�guration other than the parameters discussed below. The
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le�-hand column shows the e�ects of a vertical velocity �eld on a simulation with periodic
boundary conditions. This velocity �eld is uniform in x and de�ned by the additive inverse
of a single period sine wave spanning the entire FALC atmosphere, with the �rst and
last three points set to 0 kms−1. The amplitude of this wave is set to 20 kms−1. As such, it
represents a simpler version of the plane-parallel test presented in Fig. 4.2. The lower row
of this column shows that there is once again good agreement between the plane-parallel
and two-dimensional models, with di�erences peaking around 5% in the line core, but
the line shape being accurately reproduced. This di�erence could likely be reduced by
the use of the previously discussed subgridding technique, but as the simulations that are
presented later in this chapter do not use velocity �elds within the 2D slab, this work was
not undertaken.

In the right-hand column a model with �xed x boundary conditions is presented. This
model also applies an equivalent velocity �eld, albeit with a smaller 5 kms−1 amplitude.
The boundary conditions are computed from the associated one-dimensional simulation;
the radiation along each ray of the two-dimensional quadrature needed for the boundary
condition at each depth used in the two-dimensional simulation is synthesised from the
plane-parallel simulation for both boundary conditions along the x axis. The radiation
presented here is synthesised along a ray with µz = 0.99999 (0.25°) so that the ray through
central x cell at the top of the model does not intersect directly with either of these
boundary conditions (as this would simply be sampling the plane-parallel simulation),
whilst still testing the two-dimensional nature of the formal solver. The agreement here is
once again very good, with the error peaking around 1.5%.

The coupling between the two-dimensional and plane-parallel models utilised here is
facilitated by the design of the Lightweaver framework, and will be leveraged extensively
in the following sections. A Lightweaver model describing a plane-parallel boundary
condition can be updated and synthesise its output dynamically in response to the rays
requested from the two-dimensional model, without the need to precompute these values
and go through a multi-step saving and loading process that is prone to error when
simulation parameters change. This can be especially di�cult in caseswhere the incoming
radiation �eld from a �xed boundary condition is allowed to be anisotropic, requiring
agreement between the rays in both models. The boundary condition radiation for the
almost vertical rays used in the right-hand column is computed automatically due to the
design of the class that describes the boundary condition, and the coupling allowed by the
framework, which allows easy manipulation and coupling of multiple radiative transfer
contexts within the same program.
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6.2 2D Simulation Con�guration

Flares produce huge changes in the radiation �eld, in both lines and continua. They are
typically modelled in a plane-parallel context and we analyse the radiation leaving the top
of this plane-parallel atmosphere. In reality, the �aring kernels that we are simulating
with these RHD models are likely small; on the scale of 10s to 100s of km in diameter
(Jing et al. 2016) and represent an estimate of the conditions in the core of a heated
�ux-tube. As the resolution of solar telescopes increases, so does their ability to resolve
spatial e�ects tangential to the solar surface (henceforth horizontal). The lack of horizontal
atmospheric homogeneity, that is not accounted for in thesemodels,mayproduce complex
intensity structures resolvable with these new telescopes as the huge outgoing �ux of
radiation from the �are core impinges on and interacts with neighbouring plasma. These
e�ects include the possible ‘core-halo’ pattern reported around �are kernels in ground-
based line and continuum imaging (Neidig et al. 1993; Xu et al. 2006), TRACE white light
observations (Hudson et al. 2006), and Hinode/Solar Optical Telescope (SOT) G-band and
Fe I 630.2 nm observations (Isobe et al. 2007). The proposed explanation for these halos
is typically radiative backwarming from the �are’s radiation (previously investigated in-
depth using Mg I lines by Metcalf et al. (1990b)). In the following we shall focus primarily
on NLTE radiative e�ects a�ecting plasma neighbouring a �are, but leave the inclusion of
temperature variations due to absorption of radiation to a future study.

It is reasonable to suggest that the plasma neighbouring the �are is substantially cooler,
both due to the lack of direct heating, and the low strength of cross-�eld conduction
relative to that along the �eld (Spitzer & Härm 1953), however photons are not a�ected by
these limitations. Thus, we will investigate the e�ects of illumination from a neighbouring
plane-parallel �are model on a two-dimensional slab of plasma representing the quiet
atmosphere, with a time-dependent radiative treatment of both of these. This model can
then serve as a “�rst-order” approximate investigation of the e�ects of �are radiation on
the slab, as well as the depth of radiation penetration, e�ects on the atomic populations,
and observable signatures.

Modelling undertaken by Leenaarts et al. (2012a) suggests that a three-dimensional treat-
ment of Hα in quiet Sun models yields very di�erent synthetic line pro�les than a 1.5D
column-by-column plane-parallel treatment. Bjørgen et al. (2019) found that these dif-
ferences were less signi�cant for the bright structure of an active region (based on the
simulations of Cheung et al. 2019), but de�nition appears to be lost in regions adjacent to
this structure when a 1.5D treatment is applied. It is precisely the e�ects of a bright region
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Figure 6.6: Con�guration of the two-dimensional simulation showing the �aring boundary
condition.

on the neighbouring atmosphere thatwewish to investigate, and a simple two-dimensional
model should reveal the importance and possible time-dependence of reactions to this
radiation.

Our simulation is set up as shown inFig. 6.6: the primary simulation domain is a 2Mmwide
slab of plasma initially set to the quiet sun atmosphere used for the RADYN simulation. On
one side of this slab we place the RADYN simulation, and compute the intensity along each
ray of the angular quadrature used for the 2D slab, at each depth in the simulation. The
other x boundary is treated equivalently, but using the �xed initial quiet sun atmosphere
from the RADYN simulation and the 2D slab. The width of this domain was chosen by a
manual iterative process ensuring that the line pro�les emerging from the slab close to
the quiet Sun boundary naturally and smoothly return to close to the quiet Sun values,
otherwise this �xed boundary will be spuriously sinking large quantities of energy.
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6.2 2D Simulation Con�guration

Similarly to the process described in the previous chapter a time-dependent simulation
is run, again reprocessing the thermodynamic atmospheric properties using RADYN’s
internal timestep. The separate components of this model share a z strati�cation based
on a combination of RADYN’s grids used for both the initial quiet sun atmosphere and
the current timestep. This method ensures that 450 points are spaced across the entire
altitude range of the atmosphere and provide su�cient resolution for the transition region
of both the quiet sun model and that of the �are model. The populations determined
by Lightweaver are interpolated between the z grids from one timestep to the next, and
locally scaled to follow the mass density (this is typically a small adjustment, but without
it errors can grow as points move through the transition region). The electron density
in the �are model is loaded from the RADYN output, and charge is conserved in the 2D
slab using the secondary Newton-Raphson iteration procedure discussed in Sec. 2.4.13.
The 6 rays per octant of the unit sphere quadrature of Štěpán et al. (2020) was chosen,
as the plasma in the 2D slab is static and these rays capture enough detail to describe
the radiation �eld leaving the plane parallel model (where the radiative transfer model
natively uses 5 Gauss-Legendre rays per quadrant of the unit disc). In addition to the
450 points in z, we use 41 linearly spaced points in x to discretise the two-dimensional
atmosphere. As these points span 2Mm each point is spaced 50 km apart. The use of this
grid is justi�ed in Sec. 6.3.5. Due to the very �ne z spacing that o�en occurs due to the
strong gradients in the transition region, many of the 2D cells have an aspect ratio very
far from square, which can pose convergence di�culties if insu�cient angular resolution
is used . Unlike the model in the previous chapter, we do not consider advection here: the
plasma in the two-dimensional slab is static, and the e�ect of advection on the �aring
boundary condition is small. This also has the e�ect of allowing more �exibility in the z
strati�cation, as a grid that is stable for radiative transfer may not be so for advection.

The le�-most column of the 2D slab requires special treatment due to the nature of �xed
boundary conditions in radiative transfer simulations. The incoming radiation from the
�are model is speci�ed for each ray and depth in the �rst column of the atmosphere. As
the intensity is speci�ed for all incoming (rightgoing) rays here, it cannot be calculated
taking into account the local parameters, meanwhile the outgoing (le�going) rays do take
into account the local parameters, and then inform the local operator acting on these
populations. Thus, if this column has its thermodynamic properties �xed to those of the
initial quiet sun model, it behaves as if it is only receiving radiation from the right, whilst
only being a�ected by the �are in a “second-hand” sense. This leads to a dark �rst column
in the two-dimensional synthesis. To minimise these e�ects we copy the �are atmosphere
and populations into this �rst column, and hold these �xed over each timestep. These
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Simulated AtmosphereRe�ected Atmosphere
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Instrument Observing Plane

Figure 6.7: Using the single simulation shown in Fig. 6.6 to investigate the radiation observed
by a slit spectrograph looking across the �aring region. The radiation emitted along the
blue arrow from the re�ected atmosphere is the same as that from the magenta arrow in
the simulated atmosphere. The angles of the rays shown in this diagram are exaggerated
relative to those used in the results presented later, to better illustrate the con�guration.

populations are then consistent with the adjacent plane-parallel atmosphere and the
radiation emerging from it which is used as a �xed boundary condition. There should
not be any need to perform the same process at the quiet sun boundary, as it is placed
2Mm away and should change very little over the course of the simulation, remaining
consistent on both sides of the boundary.

This con�guration produces the outgoing intensity at 12 di�erent angles from each of the
41 cells in x. These rays are symmetric in the z-axis, so we can use the symmetric de�nition
of these to synthesise the radiation observed by a theoretical slit spectrograph viewing the
sun from a particular inclination with the �are in the centre of the slit. This is shown in
Fig. 6.7 for an observation inclined as shown we are observing the radiation along the blue
arrows. Re�ecting the entire simulation in the z-axis, the intensity observed along the
blue ray from the re�ected atmosphere is the same as the radiation along the magenta ray
produced in the original simulation con�guration shown in Fig. 6.6. Using the information
produced by the original simulation con�guration we can therefore produce this view of
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6.3 Simulation Results

both sides of the �are.

In the following results, we consider that the �aring boundary is at x = 0 and will be
presented as in�nitesimally narrow, with the simulated atmosphere in positive x, and its
re�ection in negative x. To better describe the atmosphere we will split it into regions
based on x-coordinate as follows: A := (0, 0.5]Mm, B := (0.5, 1]Mm, C := (1, 2]Mm. We
will use minuscules (lower-case) of these designations to denote the re�ections of their
associated regions in the z-axis (i.e. in negative x).

We will focus primarily on these inclined observations as �ares are extremely unlikely to
occur at exactly disc centre and the e�ects of inclination are therefore important. Even
a slight inclination can have a large e�ect, and in the following we will focus primarily
on the most vertical ray present in our quadrature, with an angle of approximately 18°
(µz ≈ 0.95) to the surface normal. Only ∼1/25 of the visible solar disc has a viewing angle
smaller than this, so inclination e�ects will be at least this signi�cant for the majority of
observed �ares. The two-dimensional model is assumed to be homogenous along y, and
the rays of the angular quadrature used for integration have non-zero y components to
correctly sample the unit sphere. Themost vertical ray has an inclination from the surface
normal of 18° and an azimuth from the x-axis of 83°, meaning its projected inclination in
the non-homogeneous x− z plane is 2.24°.

In this simulation we use the same model atoms as the previous chapter, with both
hydrogen and calcium being set as active species. This simulation is carried out for two
di�erent �are models illuminating the 2D slab: F9 and F10 models with identical heating
parameters to those of Chapter 5 including the Lyman line photoionisation e�ects, but
with RADYN’s in-built coronal irradiation enabled. We will now show the results of these
simulations, looking at both the observable e�ects and the population changes internal
to the slab, focusing on the Hα and Ca II 854.2 nm spectral lines, before comparing these
to observations taken with the CRISP instrument on the SST. To justify the importance
of the time-dependent treatment, we will also compare these results against statistical
equilibrium solutions computed at several timesteps.

6.3 Simulation Results

Due to the additional complexity of the two-dimensional simulation these models are sub-
stantially more computationally intensive than the plane-parallel models of the previous
chapter, both due to the larger number of points at which the RTE is to be solved as well as
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Figure 6.8:Hα for 2D F9 case. The le�-hand column shows the intensity enhancement over
quiet values on each side of the �are (red line) for the three di�erent wavelengths indic-
ated on the right-hand panel with vertical lines. The blue lines show the extent of a 40%
enhancement over the quiet boundary condition, and the orange a 10% enhancement. The
right-hand panel shows the spectral output at position x = 500 km at di�erent times in the
simulation.

the increased angular samples and interpolations needed at each point. The F9 simulation,
consisting of 1793 internal timesteps takes ∼2,300 CPU hours, and the F10model, with 5996
timesteps takes ∼8,000 CPU hours on hercules. The tool employed for these simulations is
derived from the code described in Chap. 5, and is available on GitHub2, with archival on
Zenodo (Osborne 2021c).

6.3.1 Observed Radiation

Figs. 6.8–6.11 show the Hα and Ca II 854.2 nm spectral lines in the F9 and F10 simulations
respectively. The le�-hand column shows the intensity enhancement in three di�erent
wavelengths as a function of space and time, con�gured as described in Fig. 6.7 with the
re�ected side shown in negative x. The �are model is presumed to have an in�nitesimal
width (in x) indicated by the horizontal red line. These three wavelengths sample the line

2https://github.com/Goobley/MsLightweaver2d
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Figure 6.9: Ca II 854.2 nm for 2D F9 case. The panels show equivalent information to Fig. 6.8.

core and secondary features on either side of the line and are indicated by the vertical
lines in the le�-hand panel, with the line core indicated in blue and the two secondary
wavelengths in dashed orange. This le�-hand panel also shows the emergent intensity in
this line at x = 500 km from the �are at di�erent times throughout the simulation for the
most vertical emergent ray from the simulation. Blue and orange lines are also plotted
on the le�-hand panel and indicate the distance at which an enhancement of 40% and
10% (respectively) over the quiet boundary are observed for this wavelength and time in
the simulation. The di�erent thresholds are used for the positive and negative x regions
respectively as the scale of the enhancements vary signi�cantly between these, with the
e�ect in the negative x region being notably smaller.

It is clear from these �gures that in all cases the enhancement in the line core is signi�c-
antly larger in all of value, extent (dimension in x), and duration than the wing feature
enhancements, with both the positive and negative x enhancements remaining over
0.5Mm from the �are for the entire duration. The enhancements in the wing features
are much smaller in extent and more transient, especially for Hα, where the blue wing
feature near the �aring boundary enters a reduction relative to the quiet boundary value
soon a�er heating ends in the �are model (t = 10 s). In Ca II 854.2 nm both the blue and
red wing features in positive x present a similar extent, but the red wing feature persists
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Figure 6.10:Hα for 2D F10 case. The panels show equivalent information to Fig. 6.8.

for the entire simulation whereas the blue feature vanishes around t = 30 s. There are
interesting di�erences in the negative x enhancements for Ca II 854.2 nm between the
F9 and F10 models. In the former there is an enhancement only during the �are heating
period, whereas in the latter there is no signi�cant enhancement until a�er the heating
has ended, which then persists for the remainder of the simulation.

TheHα line pro�le in the F9 simulation (Fig. 6.8) synthesised at x = 500 km shows that over
the course of the simulation the line core intensity increases, but does not rise above the
continuum value, and two secondary features form in the red and blue wings during the
�are heating. These decay rapidly a�er heating ends, dropping to below the initial quiet
value at our blue wing sampling. The Ca II 854.2 nm computed in this same simulation
(Fig. 6.9) emits strongly as a doubly-peaked line with a slight asymmetry in favour the
red wing and remains so for the majority of the simulation, decaying slowly over time,
with the line core decaying more rapidly than the secondary peaks (the peaks of the line
pro�le in this centrally-reversed state), leading to an increasingly deep central reversal.

The e�ects are similar, but much larger in the F10 simulation. The Hα line (Fig. 6.10)
is greatly enhanced presenting a doubly-peaked shape with a deep central reversal dur-
ing heating. This line is notably asymmetric in favour of the red wing throughout the
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Figure 6.11: Ca II 854.2 nm for 2D F10 case. The panels show equivalent information to Fig. 6.8.

simulation. A�er the �are heating ends, the red secondary peak remains enhanced and
decays slowly whereas the blue wing rapidly drops below the initial quiet value. The Ca II
854.2 nm line (Fig. 6.11) is a more dramatically enhanced version of the one considered
previously for the F9 simulation although its asymmetry �ips in favour of the blue wing
for the t = 12 s line pro�le.

We note that for both spectral lines the far wings and continuum (|∆λ| > 0.1 nm for
Hα and |∆λ| > 0.04nm for Ca II 854.2 nm) have very small or no variations throughout
both simulations. This will be discussed later, when the e�ects on the populations are
investigated.

To better interpret these simulations we can also look at what our theoretical slit spectro-
graph described in Fig. 6.7 would observe at di�erent times in the simulation.

6.3.2 Spectroscopic Results

The emergent spectra from the F9 simulation are shown for Hα and Ca II 854.2 nm in
Figs. 6.12 and 6.13 respectively. The intensity scale is constant for all timesteps for each line.
As expected from the previous imaging results, signi�cant variations in the line pro�les
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Figure 6.12:Hα intensity on both sides of the �are (indicated by the red line) at di�erent
points during the F9 simulation. The scale of the colourmap is constant across the panels.
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Figure 6.13: Ca II 854.2 nm intensity in the F9 simulation shown equivalently to Fig. 6.12.
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are observed 0.5–1Mm from the �are location. Once again, there is a large di�erence
between the positive and negative x regions, with much greater variations observed in the
former. This is likely due to rays passing through the positive x region encountering more
scattered light from the �are and directly intersecting the �aring atmosphere. There is
some enhancement in the negative x region, presenting as a narrowing of the line core in
Hα and enhancement of the core of Ca II 854.2 nm, but it is much less signi�cant than that
present in the positive x region. Despite the horizontal uniformity of plasma properties in
this atmosphere, there is substantial variation in the observed radiation.

Starting with the Hα line pro�les shown in Fig. 6.12, during heating (t = 5 s) we see a
line pro�le in region A with a broadened core in absorption (dark in the �gure) and
enhanced secondary peaks in both the red and blue around |∆λ| = 0.06nm. In B, the
line core is enhanced relative to both A and its quiet value with the secondary peaks in
the wings around decaying rapidly, producing a shallower absorption pro�le, before a
smooth return to the quiet sun line pro�le over C. In the negative x region the line is less
deep near the �are, decaying back to pre-�are levels over the 2Mm extent. The situation
is similar at the end of the heating (t = 10 s), but here the core is more signi�cantly
enhanced in region A before deepening but remaining well above the quiet value over B
and smoothly transitioning back to its quiet sun form in region C. A slight asymmetry of
the red wing (due to the brightening around ∆λ = 0.05nm) starts to appear here in region
A. The negative x region remains similar to t = 5 s although the line core is less enhanced
immediately adjacent to the �are. Some time a�er the heating has ended (t = 15 s and
t = 25 s), the previous brightening (secondary peak) in the blue wing over A is now a
dimming, but there remains an enhancement in the red wing, which fades gradually. In
region B the line appears shallower than for t = 10 s, but not as enhanced as for t = 5 s.
The negative x region and C remain similar to the t = 10 s line pro�le, with the line core
smoothly increasing in depth until reaching the quiet sun value as distance from the �are
increases.

The Ca II 854.2 nm line pro�les in the F9 simulation shown in Fig. 6.13 tell a similar
story, although the line width does not vary noticeably throughout the simulation. The
line is strongly enhanced in emission over A for t = 5 s and t = 10 s, with a slight red
asymmetry. At later times this line remains in emission with a more signi�cant red
asymmetry. Region B presents the start of a smooth transition back towards the quiet sun
line pro�le, but retains asymmetry present in region A. The negative x region presents
slight core enhancement over a, which is stronger during heating, before decaying slowly
a�er heating. Regions b, c, and C do not change substantially over the course of the
simulation.
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Figure 6.14:Hα intensity in the F10 simulation shown equivalently to Fig. 6.12.
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Figure 6.15: Ca II 854.2 nm intensity in the F10 simulation shown equivalently to Fig. 6.12.

146



6.3 Simulation Results

The Hα and Ca II 854.2 nm line pro�les from the F10 simulation are shown in Figs. 6.14
and 6.15 respectively. The results are similar to those from the F9 simulations, but mostly
exaggerated. The line pro�les over A and B are substantially broadened relative to those
shown in the F9 simulation, which is not surprising, as much of this radiation comes
from the �aring boundary condition, which is heated by a signi�cantly more energetic
beam. During the cooling phase there is still a strong red asymmetry in this region; much
stronger than that in the F9 model. This is likely due to the higher velocities present in the
�aring boundary. This brightening encompasses the red wing, line core and enters the
blue wing in region A. Focussing on Hα (Fig. 6.14), the broadening in B, which is much
more signi�cant than that seen in the F9 case, is not constant in x. For t = 5 and 10 s the
line pro�le is enhanced over quiet values and substantially broadened, decaying slowly
back to quiet values as the distance from the �are increases, whereas for t = 15 and 25 s,
this e�ect increases over the �rst half of B before reducing over the second half. This
reduction continues into C with the line appearing at its narrowest around x = 1.5Mm,
although this feature’s distance from the �are decreases to ∼ 1.2Mm at t = 25 s.

This broadening is somewhat mirrored in the negative x region. At early times the line
appears signi�cantly broadened over a, before decaying back towards the quiet sun pro�le
over b and c. The variation over b and c is most signi�cant for t = 10 and 15 s but remains
important at t = 25 s.

Similarly to the F9 case, the Ca II 854.2 nm pro�le is most a�ected over A, presenting
substantial broadening, initially symmetric but with a red brightening (∆λ ≈ 0.03nm)
appearing during the cooling phase. During this phase the line remains broadened in the
blue wing whilst the red wing half-width returns to a value similar to that found in quiet
sun pro�le, despite the intensity enhancement. These broadenings persist into B and
rapidly, but smoothly, decrease to the constant line width observed in the F9 case. The
variations in the intensity of the line continue into C and decay smoothly back towards
the quiet sun line pro�le. The negative x region is also similar to the F9 case, with the
more signi�cant e�ects appearing in region a. The line core near the �are is shallower
and narrower than in the F9 case, but this once again smoothly returns to values close to
the quiet sun line pro�le over the course of a, with only a slight enhancement in the line
core persisting into b.

We see that these optical line pro�les can present signi�cant core enhancements up to
1Mm away from the �are boundary in these simulations when looking at a viewing angle
that intersects this boundary (i.e. the positive x region). For viewing angles where this is
not the case (the negative x region), the e�ects on the line pro�le are much more modest,

147



6.3 Simulation Results

−0.1 0.0 0.1
∆λ [nm]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
x
[M
m
]

Hα

−0.1 0.0 0.1
∆λ [nm]

Ca II 854.2 nm

Figure 6.16: Intensity at t = 10 s in the F10 model for both Hα and Ca II 854.2 nm with the
boundary conditions in x set to emit no radiation.

but measurable line core enhancements can still be detected over 1Mm from the �are
with wing e�ects up to 0.4Mm from the �aring boundary.

As some of the rays emerging from positive x region intersect the �aring boundary con-
dition it is important to ascertain to what extent we are observing the “conventional”
plane-parallel simulation, and what is due to two-dimensional e�ects. To assess this we
have synthesised the spectra of the Hα and Ca II 854.2 nm lines using the populations
computed for t = 10 s in the F10 simulation, but setting the radiation from the boundary
conditions to zero. These spectra are shown in Fig. 6.16. For both lines, in regionA, there is
no emission in the far wings and continuum (|∆λ| > 0.07nm for Hα and |∆λ| > 0.02nm for
Ca II 854.2 nm) below 0.25Mm. For Hα, the secondary peaks in the wings (|∆λ| ≈ 0.06nm)
protrude approximately 100 km further toward the �aring boundary with the line core
protruding approximately 50 km less than these secondary peaks. The situation is reversed
for Ca II 854.2 nm: the line core protrudes similarly to the secondary Hα peaks, and there
is a slight recess of approximately 50 km at wavelengths just beyond the secondary peaks
(|∆λ| > 0.02nm) which returns smoothly and rapidly towards the continuum values. There
is no signi�cant variation in extent in the negative x region, with visible emission starting
around 0.3Mm from the quiet boundary.

These distances are quite consistent with an approximate calculation using the ray dir-
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ection. The ray’s projected inclination from the z axis in the x − z plane is 2.24° and
the simulation has a vertical extent (from RADYN) of approximately 10Mm. The trans-
ition region occurs at approximately z = 1.75Mm. So a ray entering the top boundary
will have a horizontal displacement of approximately 0.3Mm before entering the upper
chromosphere, where the plasma starts to become optically thick at these wavelengths.

There are clear e�ects due to the two-dimensional simulation beyond 0.25Mm from the
�aring boundary, and these lie well within the regions of important variation outlined
in our imaging and spectroscopic analyses of the data. To further investigate the �are’s
e�ect on the slab and why the continuum emission is not a�ected we will now see how
the atomic populations within the slab vary.

6.3.3 Population Changes

To investigate how and where the �are’s radiation �eld a�ects the plasma in our two-
dimensional slab we can compare the atomic populations responsible for these spectral
lines against their initial statistical equilibrium values. For the F9 simulation Fig. 6.17
shows the contribution function CI in the �rst column, the e�ect of local opacity on the
outgoing radiation (χν/τν) in the second column, and the relative change of the upper and
lower levels of the transitions considered from their initial statistical equilibrium values
in the last two columns respectively. The relative change of the population is computed as

ni,t − ni,0
ni,t

, (6.10)

whereni,t is thenumberdensity of atomic level i at time t. The indexing of the levels shown
in theplots is the indexingusedbyLightweaver’smodel atoms,which is zero indexed. These
properties are all shown at t = 10 s. The contribution function and local opacity e�ect are
computed by treating the atmosphere close to the �aring boundary at x = 50 km as plane-
parallel and computing the contribution function in the traditional way. This approachwas
taken due to the di�culty formulating the contribution function in the two-dimensional
slab: the wavelength varying contributions of even a single output spectrum from a two-
dimensional atmosphere cannot be represented directly on a two-dimensional plot, and
this problem of dimensionality becomes greater still when investigating the contribution
to each outgoing pixel. We therefore use this simpli�ed model as it should still inform
us of the primary line forming and absorbing regions, especially as the thermodynamic
structure of the two-dimensional slab is constant (other than the �rst column, copied
from the �aring boundary). The χν/τν plot is computed equivalently to the contribution
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Figure 6.17: Contribution functions, χν/τν, and relative changes to the upper and lower level
populations from initial values for the Hα and Ca II 854.2 nm lines in the F9 simulation
at t = 10 s. The τ = 1 line and initial line pro�le are plotted in red and dashed black
respectively in the �rst column. The pink line pro�le shows the �aring boundary condition.
The other solid and dashed line pro�les in the �rst panel are synthesised at 200, and 400 km
from the �aring boundary respectively, with orange being positive x and green being
negative x.
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function, and highlights where the local opacity is large but the optical depth is small.
In plane-parallel models with �ows this can be used to highlight their e�ect on the line
pro�le. The line pro�les overplotted on the contribution function are the initial statistical
equilibrium solution (dashed black), current emission from the �aring boundary (pink),
and those observed from 200 (solid line) and 400 km (dashed line) on either side of the
�aring kernel (orange for the positive x region and green for thenegative x region). Whilst it
is possible to compute the response function to perturbations in atmospheric parameters,
this is not particularly insightful due to the assumption that the temperature and velocity
�elds remain �xed, and the coupling of the electron density through charge conservation
again.

There is an enhancement in the upper and lower levels of the Hα transition in the upper
chromosphere appearing deeper in the atmosphere (down to an altitude of 1Mm) closer to
the �aring boundary condition. The contribution function shows that the secondary peaks
of the Hα line pro�le form deeper in the atmosphere than the line core and approximately
overlap the bottom of this enhanced region. The depth of this enhancement decreases
with distance from the �aring boundary, and corresponds well with the disappearance
of the secondary peaks observed over region B. Where the relative change is roughly
similar in both the upper and lower levels of the Hα line there will be both an increase
in opacity, and an equivalent increase in emissivity. This leads to no net change in the
source function, thus this higher altitude region will proportionately contribute more
signi�cantly to the outgoing radiation as the increase in opacity blocks light from deeper
in the ray’s path. This enhancement does not appear to be su�cient to directly create
the secondary peaks in the Hα pro�les other than in the columns closest to the �aring
boundary, as evidenced by the green line pro�les, but the increased source function in
the higher temperature region of the upper chromosphere is su�cient to signi�cantly
enhance the core of the line pro�le at large distances from the �are (∼ 1Mm).

The Ca II populations, shown in the lower row of Fig. 6.17, are much more dramatically
a�ected than the hydrogen populations previously discussed. Both the upper and lower
levels of the Ca II 854.2 nm spectral line are a�ected in the same z = 1.25− 1.75Mm region
at the x = 0Mm boundary, tapering o� as x increases. The populations are substantially
reduced from their initial statistical equilibrium values over this range, with a maximum
relative change of approximately −20. The lower level of this transition is signi�cantly
more reduced than the upper level, which will lead to a dramatic reduction in the local
opacity whilst the emissivity remains less a�ected. This will lead to an increase in the
local source function as well as a reduction in the opacity a�ecting the line core radiation
formed just below this level. This reduction is likely due to photoionisation e�ects similar
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Figure 6.18: Contribution functions, χν/τν, and relative changes to atomic populations equi-
valent to Fig. 6.17 for the F10 simulation at t = 10 s.
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to those considered in Sec. 5.4, and will be discussed more in the context of the F10
model.

An equivalent �gure for the F10 simulation at t = 10 s is shown in Fig. 6.18. Due to the
increased magnitude of the population changes in the transition region, it is harder to
interpret the population change plots for the F10 model. The upper and lower levels of
the Hα transition have been a�ected similarly to the F9 simulation, but the magnitude
of the population increase is larger, however this does not signi�cantly change the inter-
pretation of the population e�ects on the line pro�le, which is corroborated by the line
pro�les shown in the le�-most panel. We also note, as evidenced by Fig. 6.16, that the
enhancements in the Hα populations are su�cient to produce small secondary peaks in
the line pro�le, and the formation of these is clearer in the contribution function than it
was in the F9 case.

Despite the upper level of the Ca II 854.2 nm line appearing darker than the lower level,
given the di�erences in scaling, the lower level populations have again been reduced by a
greater amount than the upper level. Thus, the same interpretation as that given to the F9
simulation applies to the Ca II 854.2 nm line over the z = 1.25− 1.75Mm region. There is a
secondary feature on these Ca II population relative change plots, an additional reduction
in the z = 1 − 1.25Mm region. This feature overlaps the core of the line contribution
shown in the le�-most panel, and appears to be a relatively similar reduction in both the
upper and lower level populations (the reduction in the upper level population becomes
larger than that of the lower level population approaching x = 1Mm).

This will mostly lead to a reduction in local opacity, with a slight reduction in source func-
tion. Thus the radiation from deeper in atmosphere, and that formed locally, is less atten-
uated in both the line-core forming region, and the optically-thick upper-chromospheric
layers above the core forming region. This reduction in local opacity appears to be well-
validated by the extremely shallow core of the green line-pro�le in the �rst panel relative
to the statistical equilibrium solution.

An interesting feature present in the Ca II plots is the angled white band starting from
z = 1.2Mm at the �aring boundary and increasing in altitude with distance from the
�are. This indicates that there is little change in the calcium populations in this region,
despite the much more monotonic variation in x seen in the F9 case. In Fig. 6.19 the
anisotropy of the radiation �eld leaving the �aring boundary and entering the slab over
the range z = 0.9− 1.7Mm for the timestep currently considered is shown, along with the
electron density in this region of the slab. The anisotropy is shown for the line cores of
four di�erent spectral lines (Lyα, Ca II K, Hα, Ca II 854.2 nm) along the vectors of angular
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Figure 6.19: The anisotropy of the radiation �eld at the �aring boundary at the line cores of
four di�erent lines (Lyα, Ca II K, Hα, Ca II 854.2 nm) is shown in the le�-hand panel for
the F10 simulation at t = 10 s. Note that the angles of the rays have been mapped to match
the aspect ratio of the right-hand panel. The right-panel shows the electron density in the
slab at the same point in time.

quadrature used in the two-dimensional simulation. These have been plotted so that their
x and z components match the aspect ratio of the electron density plot in the right-hand
panel. Their sampling of the unit sphere is far more uniform than it appears here due
to this signi�cant stretching e�ect along z and each vector’s projection in the x− z plane
has been normalised. This mapping allows their directions to be directly considered in
terms of the adjacent panel. The length and colour of each vector is then scaled by the
associated intensity. In the formation region of each line the line core radiation �eld is
relatively isotropic, but the downgoing rays are greatly reduced above this region (as there
is little emission or scattering).

In the right-hand panel there is an approximately triangular region of enhancement in
the electron density (which is initially approximately uniform in x taking the values at the
x = 2Mm boundary), starting at the �aring boundary around z = 1.1Mm, and increasing
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in distance from the �are with altitude up to x = 0.75Mm at z = 1.7Mm. The leading
edge of this enhancement in electron density agrees well with the white band present in
the Ca II population plots and the increase in electron density will locally increase the
collisionality of the plasma. This region also appears to overlapwell with the incoming Lyα
radiation, which will penetrate further at higher altitudes due to the higher temperature
and the combination of radiation arriving close to horizontally and from below. This, and
other EUV radiation forming at similar temperatures, will likely be the cause of signi�cant
photoionisation. The downward sloped population reduction seen in the Ca II population
plots corresponds to the line core formation region (∼ 1.1Mm) which also aligns with the
highest altitude at which Ca II 854.2 nm radiation �eld is relatively isotropic. Above this,
the radiation �eld is primarily upgoing and injects energy into the slab in a non-uniform
fashion.

Hα appears relatively isotropic up to z = 1.45Mm, with a slight upward anisotropy likely
due to plasma motions of up to 15 kms−1, and becoming primarily upgoing above this.
From the contribution function in Fig. 6.18 the Hα line core in the slab continues to form
up to z ≈ 1.75Mm, and the anisotropic injection of energy is likely partially responsible for
the diagonal structure seen in the population change plot of Hα’s upper level. The Ca II K
radiation �eld behaves similarly to Ca II 854.2 nm, but forms slightly higher, with a strong
anisotropic component around z = 1.15Mm, corresponding roughly with the bottom of
the ionisation region depicted in the right-hand panel. This line will be somewhat a�ected
by the region of enhanced electron density, but less than either of the hydrogen lines
presented.

There is a signi�cant enhancement of electron density within the triangular region shown
in the right-hand panel of Fig. 6.19, which appears to be due primarily to photoionisation
(as the temperature within the slab cannot change). This increase in electron density
a�ects line formation within the slab, both in terms of the line pro�les, but also collisional
rates and LTE populations. It overlaps well with the more complex features shown in
the population change plots for the F10 model and shows that the atomic populations
responsible for these chromospheric lines can be signi�cantly a�ected by the incoming
radiation.

From the population change �gures shown in this section it becomes clear that the far
wings and continuum of both of these spectral lines are not a�ected by the incident
radiation due to the lack of changes in the populations in the deep chromosphere and
photosphere. It is likely that the plasma here is both too optically thick, and collisionally
coupled into LTE to be a�ected by the incoming radiation. Thus, without a thermodynamic
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Figure 6.20: Comparison of statistical equilibrium and time-dependent treatments at t = 10 s
for the Hα line in the F9 model.

change deep in the slab it is not possible for the continuum levels to change. It is not easy
to disentangle how the atomic populations in �aring boundary and the slab both contribute
to the outgoing radiation. Nevertheless, it is clear that the �are’s e�ects penetrate far into
the slab and have a lasting impact on the populations, on both spatial and temporal scales
that should be easily resolvable with upcoming optical instruments.

6.3.4 Importance of Time-Dependence

Due to the need to solve the radiative transfer problem at every timestep in the RADYN
simulation, the full time-dependent treatment is extremely computationally demanding.
If these e�ects are not important then the style of simulation presented here can likely
be accelerated dramatically by performing a statistical equilibrium solution for the slab
illuminated by the �aring boundary at each timestep of interest (which is likely to bemany
fewer than the total number of timesteps needed for the time-dependent solution).

Statistical equilibrium and time-dependent solutions for the Hα line at t = 10 s in the F9
simulation are shown in Fig. 6.20. Region A appears similar in both cases, but there are
signi�cant di�erences in the line width and core depth outside of this region. It is di�cult
to directly compare these plots, however the e�ect is clear when the intensity in this line
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Figure 6.21: Integrated intensity of Hα lines shown in Fig. 6.20 as a function of x position.

is integrated and plotted as a function of x position. This is shown in Fig. 6.21 for both
t = 10 s (solid) and t = 15 s (dashed) with the statistical equilibrium treatments shown
in blue and the time-dependent treatments shown in orange. The enhancement of Hα
and the region over which it is enhanced varies substantially between the two treatments,
showing that for this line there is a clear need to perform this time-dependent treatment.
There is signi�cantly more intensity present in the line in regions B and C, as well as
in all of the negative x region when using the time-dependent treatment. An equivalent
comparison is shown for the Ca II 854.2 nm line in Fig. 6.22. The e�ect is less signi�cant
here, but nevertheless easily visually resolvable, and interestingly is the inverse of what is
seen for the Hα line, as there is less intensity in the time-dependent case than in statistical
equilibrium.

Themaximumdi�erence between the treatments appears where the primary contribution
to the rays is from the two-dimensional slab between a few hundred km and 1Mm from
the �aring boundary. For the positive x region, the radiation from the boundary mostly
dominates region A, but the local conditions within the slab, in particular the electron
density, are critical for the line formation along the rays observed from region B. As the
�aring boundary is not dominating the outgoing rays from region a, and these rays look
deeper into the slab rather than towards the �aring boundary we immediately see the
di�erences between the treatments close to x = 0Mm in the negative x region.
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Figure 6.22: Integrated intensity of Ca II 854.2 nm lines treated with time dependence and
statistical equilibrium as a function of x position, analagous to Fig. 6.21.

In the wave-heated RADYN simulation of Carlsson & Stein (2002) the settling time for
hydrogen to return to equilibrium populations was found to be on the order of 103 − 105 s,
much longer than the entire 50 s simulation duration shown here. The e�ect is likely to
be less pronounced here with no thermodynamic variation possible in the slab, and only
excitation by incident radiation from the �aring boundary condition, but given the large
di�erence between these treatments at both t = 10 s and t = 15 s it seems prudent to adopt
the time-dependent treatment by default when exploring the present phenomenon in
�ares.

From the discussions in Sec. 5.5 it is reasonable to investigate whether these discrepancies
between the time-dependent and statistical equilibrium treatments can be overcome by
applying statistical equilibrium with the electron density �xed to the value computed
from the time-dependent situation (under the e�ects of charge conservation).

Figs. 6.23 and 6.24 show theHα andCa II 854.2 nm line pro�les respectively at t = 15 s using
the electron density loaded from the time-dependent model. There remains a signi�cant
di�erence in the Hα line pro�les between the two treatments; this is particularly visible in
the gradual widening of the line core over regions B and C present in the time-dependent
treatment that is barely visible in the statistical equilibrium treatment. We note that the
line-core narrowing around x = 0.5Mm in this statistical equilibrium case is not present in
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Figure 6.23: Comparison of statistical equilibrium and time-dependent treatments with elec-
tron density taken from time-dependent model at t = 15 s for the Hα line in the two-
dimensional slab case.
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Figure 6.24: Comparison of statistical equilibrium and time-dependent treatments with elec-
tron density taken from time-dependent model at t = 15 s for the Ca II 854.2 nm line in the
two-dimensional slab case.
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Fig. 6.20 andmust be due to the use of the electron density from the time-dependentmodel.
The Hα line pro�le is therefore closer to that expected from the time-dependent case,
but signi�cant di�erences remain, and it appears that a full time-dependent treatment is
necessary to capture the evolution of the hydrogen populations.

Ca II 854.2 nm, on the other hand, agrees well with the expected solution when computed
in statistical equilibrium with the provided electron density. This is not surprising follow-
ing the analysis undertaken in Sec. 5.5, but we note that this is only one timestep of the
model.

Attempts were made to compare these treatments at other timesteps but the process of
converging a statistical equilibrium solution with the �xed electron density provided from
the time-dependent model proved to be unreliable, and the models at t = 5, 10, and 11 s
failed to converge. This approach therefore appears unsuited to themodels presented here,
but from the comparison of the Ca II 854.2 nm line pro�les and the analysis undertaken
in the previous chapter it is plausible that a situation with a detailed static treatment of
hydrogen, where the populations and electron density can be known approximately, could
produce relatively accurate Ca II 854.2 nm line pro�les, at lower computational cost than
the full time-dependent method employed in this chapter.

6.3.5 Horizontal Resolution

Whilst it would be nice to evaluate the radiation with arbitrary horizontal precision, the
limitations of computer performance do not allow this. Clearly, we want to investigate
the problem at a resolution similar or better than that provided by our observations. If
the problem produces smoothly varying solutions then it is not necessarily required to
run the simulation at the same resolution as the observations; however we anticipate �ne
features that only span one or two pixels, and thus use a 50 km element spacing as our
baseline. This is similar to the 42 km resolution provided by CRISP observation against
which our results will be compared.

To analyse whether this resolution appears su�cient we shall compare the statistical
equilibrium solution to our problem (as this only requires the calculation of a single
timestep, rather than the entire model) at a horizontal grid spacing of both 50 km and
25 km at several timesteps in the F9 simulation and compare the outgoing radiation.
It is reasonable to use a statistical equilibrium treatment for this as we are primarily
testing the performance of the formal solver on this atmospheric con�guration, and it

160



6.3 Simulation Results

−0.1 0.0 0.1
∆λ [nm]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
x
[M
m
]

0.064

Hα

−0.1 0.0 0.1
∆λ [nm]

0.142

Ca II 854.2 nm

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Figure 6.25: Ratio of outgoing statistical equilibrium radiation using 41 and 81 horizontal
points in Hα (le�) and Ca II 854.2 nm (right) at t = 5 s. The number in the upper-le� corner
is the maxmum change in intensity in each panel (i.e. the absolute value of the ratio
presented in the �gure subtracted from unity.)

should converge to similar solutions in both cases if su�cient resolution is used. The
incident radiation at the x = 0Mm boundary is the same in both instances and the
atmospheric parameters are horizontally uniform, although the electron density in the
slab is allowed to vary through charge conservation. In Figs. 6.25–6.27 we show the
ratio of the outgoing radiation from the 41 point (50 km) and 81 point (25 km) models at
t = {5, 10, 15 s} respectively. The maximum fractional error is shown in the upper-le�
corner of each panel.

The location of the peak di�erences between the treatments in the positive and negative x
regions appear to follow a pattern similar to those considered in Sec. 6.3.4, with the largest
di�erences in positive x appearing in region B while those in negative x appear in a. The
maximum di�erence is found to be an enhancement of around 14% in both line cores
at x ≈ 0.6Mm for the ratio of lower resolution simulation to the higher resolution. This
is not an insigni�cant variation, but it does not appear to vary dramatically during the
simulation, and the variation is smooth, with no signi�cant e�ects on the line shape.

The computational cost of using the higher resolution model is unfortunately not a simple
linear ratio of the number of points (i.e. the 81 point simulation does not take simply ∼ 2×
longer than the 41 point simulation). Indeed, the cost of each iteration scales close to
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Figure 6.26: Ratio of outgoing statistical equilibrium radiation using 41 and 81 horizontal
points in Hα (le�) and Ca II 854.2 nm (right) at t = 10 s. The number in the upper-le�
corner is the maxmum change in intensity in each panel (i.e. the absolute value of the ratio
presented in the �gure subtracted from unity.)
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Figure 6.27: Ratio of outgoing statistical equilibrium radiation using 41 and 81 horizontal
points in Hα (le�) and Ca II 854.2 nm (right) at t = 15 s. The number in the upper-le�
corner is the maxmum change in intensity in each panel (i.e. the absolute value of the ratio
presented in the �gure subtracted from unity.)
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linearly with the number of points in the atmosphere (for a given angular and wavelength
quadrature), but the number of iterations needed also increaseswith �ner grid sizes, as the
information carried by the approximate Λ operator takes longer to cross the grid. For this
reason the 81 point simulation takes ∼ 2.4× longer than the 41 point simulation. We there-
fore opted to use the 41 point spatial grid in all models presented in this chapter, primarily
for computational reasons, but are con�dent that the solution obtained is reasonable.

6.4 Observational Comparison
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Figure 6.28: Ca II line core observation of M1.1 �are at time 2014-09-06T17:09:26

Whilst any realworld�are situation is farmore complex than the simpli�ed two-dimensional
model presented in the previous section, we will compare these results against obser-
vations of the two-ribbon M1.1 �are SOL 20140906T17:09 from the CRISP instrument,
observed in Hα and Ca II 854.2 nm. This data was prepared following the standard proced-
ure described in Sec. 3.1.1. A context image of the region in the core of the Ca II 854.2 nm
line at the �are peak is shown in Fig. 6.28. We have selected a region on edge of the
western ribbon for this comparison, which is highlighted in blue in both the le�- and
right-hand panels of this �gure. The chosen region is 100 x 10 px, with each pixel of the
CRISP instrument being 0.057′′ (∼ 42 km). This region was chosen as it represents the
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Figure 6.29: Extent of enhancement in Ca II 854.2 nm line for the region labelled in Fig. 6.28.

intersection between the �are ribbon and some of the quieter material present in the data
(the east ribbon overlaps a sunspot), lies approximately perpendicular to the structure
visible here, and is close to the region analysed by Kuridze et al. (2015). We note that for
both spectral lines, the angular size of 2 px is less than the di�raction limit of the SST at
these wavelengths (Sec. 3.1.1), and this may slightly a�ect the extents of the enhancements
measured in this data.

To investigate the e�ects presented in the simulation we shall analyse the variation of the
radiation in the selected region as a function of x location and time. The 10 px in y are
averaged to increase the signal-to-noise ratio. These timeslices are then plotted for three
di�erent wavelengths, corresponding to the two wings and the line core, and shown in
Fig. 6.29. We take the right-hand edge of this region as representing an approximation of
the background intensity and compute the distance from the le�-hand boundary at which
a 40% enhancement over this background level is seen. This extent is shown as the blue
lines in Fig. 6.29. The bright expansion of the �are ribbon can be seen on these plots as
the triangular region that collapses rapidly around 17:11. This �gure is similar in concept
to the imaging plots (Figs. 6.8–6.11) produced from our models, where the “ribbon” was
held at the x = 0 boundary.

We can compare the di�erences between the extents for these di�erent spectral positions
on both lines to investigate the di�erences in emission throughout the slab. This is shown
for Ca II 854.2 nmandHα in Figs. 6.30 and 6.31 respectively. The comparison here is against
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Figure 6.30: O�set between the enhancement of the blue and red wings of the Ca II 854.2 nm
line and the line core for the region labelled in Fig. 6.28.
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Figure 6.31: O�set between the enhancement of the blue and red wings of the Hα line and
the line core for the region labelled in Fig. 6.28.
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the line core, so an o�set of 0 px implies that the enhancement is co-spatial in the line core
and at this wavelength. For Ca II 854.2 nm, prior to 17:05, there is little di�erence between
both linewings and the line core, although the bluewing enhancement on average extends
slightly further than the red wing, and just prior to the �are peak, up to 5 px further than
the line core. As the �are peaks, the enhancement of the line core extends consistently
5− 10 px further from the ribbon than either of the wings, and this trend continues for
the remainder of the dataset. For Hα, before ∼17:07, the red wing enhancement remains
∼15 px behind the line core, whilst the blue wing starts in this region, then extends past
the line core at ∼17:00 before falling back to a similar o�set to the red wing at ∼17:07. From
this point onwards, both wings remain at a similar o�set, typically remaining 10− 30 px
less extended than the line core.

We can compute this samemetric for the simulations of slabs adjacent to F9 and F10 �ares
presented in this chapter, and these are shown in Figs. 6.32 and 6.33 respectively for the
Ca II 854.2 nm and Hα results. The red and blue wings are again shown with the same
colours, the solid lines refer to the F9 simulation and the dashed lines the F10 simulation.
Wenote that there is a substantial variation in viewing angle between these simulations and
the set of observations investigated here. The simulations use a viewing angle µz ≈ 0.951
(an inclination of 2.24° when projected into the x− z plane), whilst this observation was
taken at µ ≈ 0.565. If the same viewing angle is used with the simulation then all of the
“pixels” at the top of the atmosphere “look” directly into the �aring boundary condition,
and the e�ect we wish to investigate cannot be resolved without performing simulations
with substantially larger extents in x. Due to the prohibitive computational cost of this
(a similar horizontal spatial resolution would still be required), we instead choose to
compare the simulations using this smaller viewing angle as a “�rst-order approximation”
of the problem. In both cases, the size of a pixel is similar (42 km for CRISP and 50 km in
the simulation); whilst the pixels in the data are nominally smaller this does not include
the e�ects of viewing the inclined solar surface so we compare these extents in pixels
directly.

The Ca II 854.2 nm line behaves similarly in both the F9 and F10 simulations, with the
line core immediately extending signi�cantly further than the wings (by 9 − 13 px) as
the heating begins. Around t = 30 s the extent of the blue wing enhancement decreases
signi�cantly, whilst the red wing enhancement remains approximately constant, slightly
approaching the line core. This is not in agreement with the observations where the
red wing o�set decreases relative to the blue wing o�set later in the cooling phase. The
consistency of the red enhancement is likely due to the strong red asymmetry present
in region A of the simulation at later times, whilst the core remains notably enhanced
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Figure 6.32: O�set between the enhancement of the blue and red wings of the Ca II 854.2 nm
line and the line core. The dashed lines show the F10 simulation, and the solid lines the F9.
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further into the slab. Nevertheless, the extent of the line core enhancement relative to
the wings remains comparable to the observation, in the 5− 20 px range.

There are signi�cant di�erences between the F9 and F10 simulations for the Hα line. In
the less energetic simulation, the line core o�set rapidly jumps to ∼ 22 px further than both
the red and the bluewings. As the heating ends there is a short-term variation (lasting ∼ 1 s)
in the red and blue wing extents, as both approach the line core extent. For the remainder
of the cooling period, the line core remains 15 − 20px more extended than both of the
line wings. This is approximately comparable to the observed o�set from 17:10 onwards
(10 − 30 px), and the short-term spike a�er the heating ends could be compared to the
spike in the observation just prior to 17:10, although the timescales are very di�erent. For
the F10 simulation, the di�erence in extent between the line core and the wings remains
small during heating, but a�er the heating ends increases relatively rapidly to ∼ 13 px. The
red wing takes approximately 8 s longer to drop back to this level.

Qualitatively, there are a number of features that agree between the simulations and
this observation: from the �are peak onwards both line cores remain signi�cantly more
extended than their respective wings, and both simulations support this, with compar-
able changes in enhancement o�set. A�er the �are peak, the line-core remains visibly
extended into the quieter region adjacent to the western ribbon, up to 20 px further than
an equivalent enhancement in the wings. In both the simulation and the observation this
is in part due to the variation of the line pro�le shape, changing from either a strong emis-
sion or centrally reversed enhanced line on the ribbon to a much deeper absorption line
o�-ribbon. Given the additional complexity of the observed con�guration, the di�erence
in viewing angle, timescale, and the likelihood of thermodynamic changes occurring in
proximity to the �are (including Doppler shi�s from plasma �ows), it is unwise to attempt
to interpret the comparison of these o�sets in much greater depth than this qualitative
agreement. The basic agreement between the simulation and observation suggests that
this simulation is an accurate “�rst-order” approximation of this problem, and is capturing
some of the observed e�ects through the treatment of radiation alone, although further
simulation of more complex con�gurations and in-depth comparisons are needed.

Future comparisons between this style of modelling and observations can follow the
methodology presented here, although it would be advantageous tomore closelymatch the
viewing angle of the observation and simulation. Whilst it is important to consider inclined
observations, when using the approach presented here, slightly inclined simulations are
signi�cantly less computationally intensive than ones with extreme inlcination, due to
the need for the rays exiting the top of the atmosphere to not simply sample the �aring

168



6.5 Discussions

boundary. This can likely be addressed bymodifying the functionality of the formal solver
for the �nal synthesis, so as to pick rays that will intersect with the chromospheric regions
of interest.

6.5 Discussions

The basic two-dimensional simulations shown in Sec. 6.3 demonstrate that even for a
two-dimensional slab of plasma with a �xed quiet Sun temperature structure, the time-
dependent illumination by an adjacent �are will create signi�cant variations in the level
populations deep in the slab, causing notable enhancements in the observed Hα and Ca II
854.2 nm optical spectral lines 1Mm and further from the �aring boundary. Traditional
inversion techniques performed on this region are likely to lead to incorrect conclusions
as to the thermodynamic structure of the slab, as the outgoing radiation is not necessarily
directly linked to the slab’s local thermodynamic properties, but is instead signi�cantly
in�uenced by the incident radiation. If the thermodynamic properties were allowed to
vary through absorption of radiation and cross-�eld heat conduction (it is di�cult to
foresee other terms being possible without resorting to 2D RMHD simulation), then the
local thermodynamic properties would be more closely linked to the observed radiation
and changes in continuum �ux would become possible. We have shown that the e�ects
of radiation alone in the chromosphere are su�cient to produce signi�cant changes in
the observed line pro�les and it does not seem likely that thermodynamic e�ects would
dominate given the magnitude of the radiative e�ects, so care should still be taken when
applying traditional inversion techniques.

It is necessary to perform a time-dependent treatment of the hydrogen populations in this
problem, taking into account the e�ects of non-equilibrium ionisation, and this species’
slow return to statistical equilibrium, despite the lack of time-varying thermodynamic
modi�cations of the quiet Sun slab. With the electron density provided by non-equilibrium
hydrogen ionisation, a statistical equilibrium treatment of calcium was able to accurately
reproduce the time-dependent Ca II 854.2 nm line pro�le (similarly to our results from
Chap. 5). We note that this result is valid only for one timestep of this model, as it was
the only one that converged, suggesting the importance of the full time-dependent treat-
ment.

The enhancement e�ects are not uniform as a function of wavelength, with the line core
enhancement typically extending up to several hundred km further than the enhance-
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ments in the line wings. This may have implications for the calculation of �lling factors,
due to the wavelength dependence of this “smearing”, but more detailed simulation and
analysis are needed to attempt to prescribe any functional form for this.

Nevertheless, these enhancements are on scales that are observable with current genera-
tion instruments such as SST/CRISP, and are likely to become more important with the
improved resolution of upcoming telescopes such as DKIST. We have presented an initial
analysis of these e�ects in SST/CRISP data and found enhancements of a similar order of
magnitude sharing a number of observational characteristics, but signi�cant di�erences
remain, likely due to the limitations of our simple model. It is likely that the temperatures
in such a slab will vary due to the absorption of radiation, thermal conduction and other
modes of heating occurring adjacent to the �are. Thus, the results presented here likely
underestimate the magnitude of these line enhancement e�ects which could be more
accurately captured by using the detailed two-dimensional radiative transfer available in
Lightweaver in conjunction with an RMHDmodel responding to the incoming energy.
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7
RADYNVERSION

The contents of this chapter are based on my contributions to the research presented in Osborne
et al. (2019).

As discussed in Sec. 3.2, the assumptions that render NLTE response function based
approach to inversions tractable, such as hydrostatic equilibrium, cannot reasonably
be applied in �ares where �ows o�en approach the sound speed. We therefore need
an inversion technique that can operate outside of these constraints. In the notation of
Sec. 3.2, our standard radiative transfer forward process can be framed as a function
y = f(x)with atmospheric inputs x and line pro�les y. Clearly this function is not bijective,
but if we also capture the information lost in the forward process, we can instead de�ne
a bijective function x = g(y, z) such that g−1 represents the forward process, and g the
inverse process. Our theory of radiative transfer does not give any immediate insight into
the formulation of g with so few constraints, so we instead turn to the �eld of machine
learning from RHD simulations with the intention of learning the form of the information
lost in the forward process.

The RADYNVERSION model was the �rst machine learning model for solar inversions
to address the problem of degeneracies in the inversion, but not the �rst to approach
inversions of solar observations. Simple fully connected networks have long been used
to obtain plausible atmospheric parameters based on Milne-Eddington inversions (e.g.
Carroll & Staude 2001; Socas-Navarro 2005). Asensio Ramos & Díaz Baso (2019) and Milić
& Gafeira (2020) both presented models focused on the photosphere, that learn to mimic
the results of traditional inversions with convolutional neural networks, the former using
spatial correlations and allowing inference of the depth of the Wilson depression, the
latter using a much simpler model and taking a pixel-by-pixel approach. These models
are not theoretically capable of handling degeneracies, but in practice produce plausible
results, much faster than is possible with any traditional gradient-based inversion code.
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Gafeira et al. (2021) caution against the direct use of these CNNmodels directly, and instead
applied the model of Milić & Gafeira (2020) to initialise traditional inversions, allowing
them to converge substantially faster, and in some cases, produce more accurate �ts.
More recently, Díaz Baso et al. (2021) have presented an elegant Bayesian method using
normalising �ows, a family of methods related to the one we present below. They present
the results of this method and show that it is capable of providing plausible inversions and
posterior distributions using observations of Ca II 854.2 nm and Fe I 630.15 nm. The �eld
of machine learning based, and assisted, inversions is undergoing rapid development and
appears to have a very exciting future.

The RADYNVERSION model and associated training methods are available under the per-
missive MIT license on GitHub1 with archival on Zenodo (Osborne & Armstrong 2019).

7.1 The RADYNVERSIONModel

Our approach to inversions of solar �ares is based upon the application of machine
learning to the problem as it is framed in Fig. 3.3. We wish to learn the form of the latent
space, and by sampling this space su�ciently for a given observation we can infer the
likelihoods of parameters at each location in the �aring atmosphere. Nevertheless, we
have no data on which to train which directly characterises the latent space, and thus we
turn to the technique of invertible neural networks (INNs) which naturally learn bijective
functions to learn the bijective mapping and the form of the latent space simultaneously.

The INN is a form of DNN inwhich invertible blocks are used. A traditional fully connected
or convolutional layer used in an ANN is not generally invertible. Indeed, whilst a fully
connected layer with equal number of inputs and outputs and an invertible activation
function can be inverted, it is extremely computationally expensive to do so due to the
cost of inverting the potentially large square matrix of weights. The INN is instead built
on trivially invertible blocks which can be trained to naturally learn our bijective func-
tion. These blocks are built using DNNs, and are thus universal function approximators
themselves, meaning they can learn to map di�erent density (in the sense of probability
density) distributions to each other. This is the cornerstone of how the form of the latent
space is learned: the INN is trained to map the samples of the latent distribution to a
known distribution. Provided there is su�cient dimensionality to represent the original
distribution, it can be remapped to another without any loss of information. We can

1https://github.com/Goobley/Radynversion
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7.1 The RADYNVERSIONModel

therefore choose to represent the latent space as any smooth continuous distribution
desired and the INN will internally learn the mapping to the form of the “true” latent
space contained within the training data. For simplicity we choose to represent the latent
space as the unit multivariate Gaussian distribution with mean 0 and variance 1, which
we denote N(0, In) for an n dimensional case. Due to the speed of our neural network
based solution relative to the cost of the formal solution and iteration that is required
in conventional NLTE inversions, we can simply take a large number of samplings of
our chosen latent space, and thus generate a probability density function for the atmo-
spheric parameters at each location in the atmosphere, conditioned by our training set.
The approach to inferring atmospheric parameters using the INN therefore di�ers to
the approach of traditional methods that take guided explorations of the latent space by
taking much broader samplings of this space and constructing a posterior distribution
from these, but similarities can also be drawn between this rapid direct sampling and the
“exploration” approach of traditional inversion codes. Pre-trained models such as INNs
can have signi�cant performance advantages when applied to many similar inputs, as
regression-based approaches will tend to treat these independently and repeat similar
trajectories, whereas an INN’s training is shared between each application.

The invertible blocks on which our INN is built are known as a�ne coupling layers (Dinh
et al. 2014, 2016) of the form �rst presented by Ardizzone et al. (2018). The input vector ~x
is �rst split into two halves [x1, x2] which undergo the following a�ne transformations

y1 = x1 ⊗ exp(s2(x2)) + t2(x2), (7.1)

y2 = x2 ⊗ exp(s1(y1)) + t1(y1), (7.2)

where ⊗ represents the elementwise product of tensors and si and ti (i ∈ {1, 2}) are
arbitrarily complex di�erentiable functions (that need not be invertible). It is worth
noting the order of operations here, as y1 must be computed before y2. The output ~y
is then constructed from the concatenation of y1 and y2. The inverse of these a�ne
transforms is given by

x2 = (y2 − t1(y1))� exp(s1(y1)), (7.3)

x1 = (y1 − t2(x2))� exp(s2(x2)), (7.4)

where � represents the elementwise division of tensors. We have stated that the si and
ti functions can be of arbitrary complexity, but clearly they need to be tailored to the
particular task and for this reason we apply DNNs in this role. The networks used for si
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and ti are identical, save for the application of a tan−1 transformation on the output of the
si block, which prevents extreme values from being produced whereby the exponential
term would dominate, or have no e�ect on the output of the block.

In the spirit of DNNs we then stack multiple a�ne coupling layers to allow for increased
representational capability within the INN. As the input is split in half upon entering each
a�ne layer, we can see that the data in each half is only combined at the elementwise
multiplication step in each layer on its journey through the network. To alleviate this, and
further increase the generalisation capabilities of the network, we interleave a permuta-
tion layer between each a�ne coupling layer. This layer shu�es the data in a random, but
�xed order which is di�erent for each permutation layer, before it is split, whilst allowing
for trivial reversibility.
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Figure 7.1: Structure of the �nal RADYNVERSION network. The forward process is shown
with the blue arrows, and the inverse process with teal arrows.

For the RADYNVERSION2 model we use �ve a�ne coupling layers, with four interleaved
permutation layers. This is shown schematically in Fig. 7.1. Given the presence of four
DNNs per a�ne coupling layer, our �nal model is composed of twenty DNNs. Each of
these networks is an individual four-layer fully connected network utilising leaky ReLU
activation functions a�er each of the �rst three layers, and a ReLU following the �nal layer.
This architecture was developed empirically, guided both by the examples presented in
(Ardizzone et al. 2018) and machine-learning best practices. A commonly used approach
that we applied extensively is to take a small subset of the training data and attempt to
�nd a model which can successfully over�t this mapping; a model that can memorise
the mapping for a subset of inputs can demonstrably learn the problem (although it may
not have enough dimensionality to generalise, depending on the range and complexity
of the input data). Models with both three and �ve a�ne coupling layers were trialled,
with the latter performing signi�cantly better. Whilst it is possible to continue to increase

2RADYNVERSION is a portmanteau of RADYN and “inversion”.
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the depth of this network, this is not without signi�cant computational cost, and did not
seem necessary given the quality of the results.

RADYNVERSION is trained using RHD simulations generated with RADYN, which contain
the structure of a model �aring atmosphere and the synthesised emergent radiation (here
the Hα and Ca II 854.2 nm spectral lines). The input to the RADYNVERSION network
then consists of a reduced set of atmospheric parameters at a given point in time; in our
case the temperature T , electron density ne, and velocity υ. These are provided to the
network on a�xedheight strati�cation, with 50 points covering the entire atmosphere. The
large dynamic range of these parameters (both across a single atmosphere, and between
di�erent timesteps at a �xed location in the atmosphere) can have a negative impact on the
training and accuracy of the ANN, and we therefore map T 7→ log10 T , ne 7→ log10 ne, and
υ 7→ sign(υ) log10

(
|υkms−1 |+ 1

)
. The mapping for υ serves to scale it based on its base-10

logarithmic value, whilst preserving its sign information. These logarithmic mappings
preserve detail better over each decade than a simple linear rescaling.

The output consists of line pro�les, in this case Hα and Ca II 854.2 nm. Both of these are
interpolated onto �xed wavelength grids, with 30 points each (a half width of 0.14 nm for
Hα and 0.1 nm for Ca II 854.2 nm). The intensity values of the spectral lines are scaled to
cover the range [0, 1] whilst preserving the relative intensity of the two (which conveys
important information regarding continuum emission).

Our model then has an input dimensionality of 150 and an output dimensionality of 60.
We choose, by experimentation, to set the size of the latent space to the same as the input,
however we cannot prove the optimality of such a choice as it depends on the (unknown)
intrinsic dimensionality of the problem. Thus the input and total output (i.e. output and
latent space) must be of length at least 210. To improve the generalisation performance
of the network and allow it a greater dimensionality for its representation of the data we
choose to set the input and output size to 384. The input to the network is zero-padded
to this length, and the output and latent space are concatenated with zero-padding in
between. This width was also determined empirically, as it was found that the model had
di�culties converging for the minimum width of 210. This problem was greatly mitigated
by increasing the width, a technique that was found in the examples of Ardizzone et al.
(2018), so no other values were trialled. The deep neural networks used inside the a�ne
coupling layers have an input and output of length 192, but this is increased to 384 for the
inner layers, to further increase their representational ability.

The RADYNVERSIONmodel presented here considers each set of atmospheric parameters
and observables as instantaneous quantities. As we have discussed, it is usually necessary
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to consider time-dependent populations in �ares, and clearly we do not do so here. The
atomic populations are not considered directly with this model, thus we are interested in
determining whether there is su�cient information present in this reduced description
of the atmosphere (under the inherent assumption in the training set that all snapshots
originate from the same starting atmosphere) to reproduce the emergent line pro�les and
whether an ANN can then learn to decode this information.

7.2 Training Data

To train this model we use 81 RADYN simulations computed by the F-CHROMA project 3.
These models all start from a variant of the VAL3C quiet sun atmosphere (Vernazza et al.
1981), slightly modi�ed to remain stable in RADYN. All models are heated by a symmetric
triangular electron beam pulse, modelled using the Fokker-Planck module (with an initial
power law distribution of electron energies), of 20 s duration, with a peak at 10 s. The total
beam deposition varies between 3×1010 erg cm−2 and 1×1012 erg cm−2, the low-energy cut-
o� is one of {10, 15, 20, 25} keV, and the spectral index of the electron energy distribution
is one of {3, 4, 5, 6, 7, 8}. All of these simulations last for 50 s, with data saved every 0.1 s.

Not all of these simulations converged due to certain parameter combinations. In par-
ticular some simulations with lower values for the low-energy cut-o�, higher spectral
indices, and high total energy deposition were not present in the grid of models. From
the 81 simulations we then have 40,500 individual timesteps, of which we separate 20%
for validation purposes. The atmospheric parameters and line pro�les are mapped onto
their �xed grids and the parameters are prepared as discussed previously. Our height
strati�cation is chosen to primarily sample the chromosphere, and places 45 linearly
spaced points below 3.5Mm, with a constant spacing of 79.2 km. The remaining 5 points
are then exponentially spread through the corona from 3.5Mm to 10Mm.

7.3 Training Method

Our training method is based on the one presented in Ardizzone et al. (2018) and the
network is constructed using their framework, FrEIA4. The INN is trained in both direc-
tions to ensure the conditioning of both the forward and inverse problems. The model is

3https://star.pst.qub.ac.uk/wiki/public/solarmodels/start.html
4https://github.com/VLL-HD/FrEIA
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7.3 Training Method

trained using minibatching with the sameminibatch of the training set being used in both
directions. Both training directions are constrained by two loss functions, and a linear
combination of these serves as our �nal loss to minimise. The forward direction (from
atmospheric parameters to line pro�les) uses an L2 loss (||y−ytrue||22, where y indicates the
output of the network and ytrue the expected output) on the output vector of line pro�les
and zero padding. This latent space is constrained by a Maximum Mean Discrepancy
(MMD) loss. The MMD is a loss that compares distributions from �nite samples, and is
computed between batches of [y, z] and [ytrue, N(0, Iz)]. This is discussed in depth, along
with implementation details in Section 7.4. During the forward process the MMD loss is
used to ensure that the network learns to map the true latent space to our chosen form
for it (the multivariate unit Gaussian distribution). A traditional regression loss cannot
be applied here, as we would have to assign �xed samples from the latent space for each
timestep in the training set, which cannot be done without understanding the true latent
space. Its aim is instead to condition the form of the distribution produced in the latent
space. To this end, whilst y is included in the MMD loss terms (as this is an important
component of the output), the gradients on y due to the MMD loss are ignored, so as not to
a�ect the training of the forward model i.e. whilst the elements of y are considered when
computing the value of the MMD loss, the MMD can only a�ect the weights determining
z. The convergence of both the L2 and MMD losses ensures that samples of z are correctly
independent of y as they must not contain copies of the same information (i.e. they must
be independent) for the reverse process to work correctly.

The inverse process is trained similarly, with an additional two losses. An L2 loss is used
for x and the zero-padding to ensure the expected atmosphere parameters are produced
(and that the padding remain 0), and an MMD loss ensuring the correct distribution of x
for random latent samples.

Both of the forward and backwards losses are linearly combined to produce a set of
weighted gradients used to update the network. We de�ne three hyperparameter weights
for this purpose wpred, wlatent, and wrev. These are combined to produce the losses

lossf = wpredL2f +wlatentMMDf, (7.5)

lossb = 0.5wpredL2b + ξ(n)wrevMMDb, (7.6)

where f and b represent the forward and backward terms respectively, and ξ is a term that
gradually increases towards unity over the course of a fade-in period. It is parametrised
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as

ξ(n) =

(
min

(
n

0.4Nfade
, 1
))3

, (7.7)

where n is the current epoch, andNfade is the fade-in period. This term serves to slowly
increase the e�ect of the MMD loss, as this was otherwise found to hinder the training of
both the forward and inverse problems by dominating lossb and guiding the system away
from a solution that minimised both terms. To ensure that the output in the zero-padded
sections remains close to zero we also use 1 − ξ to initialise these with a small amount
of random noise, decaying over this same period. This increases the activation of these
neurons early on, forcing the network to learn that these must be adjusted towards 0 for
all inputs. Through a manual hyperparameter search we found that for a fade-in period
of 800 epochs, a good choice for the loss weights was wpred = 4000, wlatent = 900, and
wrev = 1000. A�er the fade-in period the network was trained in blocks of 400 epochs,
increasing the value of wpred by 1000 for each of these blocks to �ne-tune the line pro�les
and atmospheric parameters which were otherwise a little noisy. From 4,800 epochs to
12,000 epochs the network was trained in blocks of 600 epochs, with the value of wpred

again being increased by 1000. These weights were all tuned empirically, and others were
also found to yield good convergence, however we found it important that the L2 weight
be a factor of 2 or more larger than the MMD weights or the forward process would not
reliably converge.

The update of the weights inside the neural networks is computed from the gradients
of the linearly combined losses using the Adam optimisation algorithm (Kingma & Ba
2014) with hyperparameters β1 = β2 = 0.8 and ε = 1 × 10−6. The βi terms control the
decay rate for momentum of the �rst- and second-moment estimates of the gradients
and ε simply prevents division by zero. These gradients are limited to a range of ±15 to
help further mitigate problems with exploding gradients. This does not a�ect the �nal
solution as the gradients will become small as we approach a minimum. The learning
rate was initialised to 1.5× 10−3 and decays by a factor of 0.0041/1333 every 12 epochs. Each
minibatch contained 500 di�erent samples and 20 minibatches were used per learning
epoch. The �nal model was selected based on its L2 performance for the forward and
backwards results on the validation set. In this case the best performing model was the
one saved a�er 11,400 epochs of training.
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7.4 MaximumMean Discrepancy

The content of this section draws primarily from Sriperumbudur et al. (2009), Gretton et al.
(2012), Muandet et al. (2017), and Gretton’s lecture content, currently available online5.

The maximummean discrepancy (MMD) is a statistic for comparing two distributions,
based on samples drawn from these, and computes the di�erence in expectations over
functions in the unit ball of a reproducing kernel Hilbert space (RKHS). It represents an
estimate of the distance between the mean features of the sampled distributions in the
space de�ned by a chosen kernel i.e. the greater similarity between the two sampled
distributions the smaller the value of the MMD.

A Hilbert space is a space in which an inner product is de�ned that is linear, symmetric,
and where the inner product of an element with itself is positive de�nite. A norm can be
de�ned from this inner product ||f|| =

√
〈f, f〉. These spaces must also be Cauchy complete,

implying that every Cauchy sequence (convergent sequence), must converge to a point in
the space.

An RKHS H is then a Hilbert space of functions f : X → R for which the evaluation
functional δx : f 7→ f(x) is bounded and continuous6. The RKHS has the property that two
functions that are close in norm inH are then pointwise close when evaluated anywhere
over X. The kernel associated with this RKHS is a positive de�nite kernel k : X× X→ R if
there exists a map φ : X→ H such that ∀ x,y ∈ X

k(x,y) = 〈φ(x),φ(y)〉H. (7.8)

The map φ is termed the feature map, andH is known as the feature space.

Let us de�ne two probability distributions P andQ and draw observations X and Y in an
independent and identically distributed fashion from P andQ respectively. The MMD is
then de�ned by

MMD2 = ||µP − µQ||
2
H

= 〈µP,µP〉H + 〈µQ,µQ〉H − 2〈µP,µQ〉H,
(7.9)

where µA represents the mean embedding of the distribution A in the feature space,
which is the expectation vector of the features ofH evaluated for this distribution. The

5http://www.gatsby.ucl.ac.uk/~gretton/teaching.html
6This can be generalised to functions f : X→ C.
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kernel associated withH is characteristic if the feature map is injective, and in this case the
MMD is zero i� P = Q. It was shown by Sriperumbudur et al. (2009) that all measurable
and bounded strictly positive de�nite kernels are characteristic, and we therefore limit
ourselves to this class.

µP can now be written in terms of the features ofH

µP = [. . .EP[φi(X)] . . .], (7.10)

where EP denotes the expected value of its argument with respect to P, and φi is the ith
feature of the feature map (which may contain in�nitely many features). We can then
write

〈µP,µP〉H = 〈EP[k(· , X)],EP[k(· , X′)]〉H = EP[k(X,X′)], (7.11)

where X′ is an independently drawn copy of X from P, and k(· , X) refers to the function,
and not its evaluation at a particular point. Thus k(·, X) is the feature mapφ(X). We de�ne
Y′ analogously for Y andQ to then write (7.9) as

MMD2 = ||µP − µQ||
2 = EP[k(X,X′)] + EQ[k(Y, Y′)] − 2EP,Q[k(X, Y)]. (7.12)

Here the �rst two terms compare the distributions for internal similarity, whereas the last
compares the intra-distribution similarity.

For length n �nite observations X and Y we can expand this to provide an unbiased sample
estimate

M̂MD
2
u =

1
n(n− 1)

∑
i 6=j

k(xi, xj) +
1

n(n− 1)
∑
i 6=j

k(yi,yj) −
2
n2

∑
i,j
k(xi,yj). (7.13)

As this statistic is unbiased and computed froma�nite sample size, it can be negativewhen
P and Q are similar distributions, despite being the de�nition of MMD2. We therefore
employ a biased estimate of the MMD which remains positive in all scenarios

M̂MD
2
b =

1
n2

∑
i,j

(
k(xi, xj) + k(yi,yj) − 2k(xi,yj)

)
. (7.14)

This biased form of the MMD is also more e�cient to compute using the vectorised tensor
operations present in machine learning frameworks like PyTorch.

The choice of kernel used in the MMD will then determine how this statistic is able to
distinguish between distributions. We choose to employ the inverse multi-quadric (IMQ)
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kernel as used by Tolstikhin et al. (2017) and Ardizzone et al. (2018)

kα(x,y) =
α2

α2 + ||x− y||22
. (7.15)

This kernelmeets the strictly positive de�nite criterion that is necessary for a characteristic
kernel of an RKHS, but contains a free parameter α. This equation therefore describes a
family of kernels, which will have di�erent performance depending on the data and the
choice of α. We were unable to empirically determine a single value for α for which the
MMD could reliably distinguish between the two distributions well enough to optimise
over, however it was found that the value of the MMD for di�erent values of α, whilst
retaining �xed X and Y, peaked for a particular value of α. The kernel of the family with
this value of α is able to better resolve the di�erences between our �xed samples and
is therefore best suited (of the tested values) to guiding the optimisation of the weights
associated with these terms. This approachwas used to re�ne theMMD losses by updating
the α parameter of the kernel to the value for which the MMD was maximal (given the
�xed input samples from this epoch) every �ve epochs of training. Modifying the MMD
loss in this way ensures that it is most sensitive to the scale of the currently di�ering
features between our distribution samples.

Minimising the forward MMD loss then ensures the independence of data stored in
the latent space and that the latent space takes a normal unit distribution form, whilst
minimising the backwards MMD ensures that the distribution of atmospheres generated
with di�erent draws of the latent space is a plausible distribution when compared against
the training set.

7.5 Validation

During and a�er training, the RADYNVERSION model is validated against the unseen
validation data separated from the training set. An example taken from the validation set
showing the forward process is presented in Fig. 7.2. The upper row shows the atmosphere
input into the model whilst the lower row shows the expected output (solid lines) and
the output of the forward process (dashed lines). The mean squared error in the scaled
intensity at each wavelength point for the validation set is 5.74× 10−5 showing that the
model can very accurately predict the scaled line pro�les based on the atmospheric
parameters for unseen atmospheres.
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Figure 7.2: Validation of the RADYNVERSION forwards process on unseen data. The upper
row shows the atmospheric input, and the lower row the expected output along with the
predicition from the network.
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Figure 7.3: Validation of the RADYNVERSION reverse process from the ground truth line
pro�les shown in Fig. 7.2. The two-dimensional histograms show the probability density
of the solution in each altitude node, and the black dashed lines the expected solution.
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Due to the inherent non-uniqueness and presence of possible degeneracies it is harder
to numerically evaluate the performance of the model’s reverse process. For each pair
of line pro�les we draw a large number of samples from the latent space and infer the
predicted atmosphere from each latent space draw combined with the pair of line pro�les.
This gives a large number of possible sets of atmospheric parameters which we plot
on a two dimensional histogram to show the probability density of the solution in each
altitude node. This method then allows us to gauge possible degeneracies and establish
the relative probabilities of di�erent solutions. An example validation inversion is shown
in Fig. 7.3, using the ground truth output line pro�les shown in the forward validation
process as input. These histograms were generated from 10 000 latent space draws, and
their values were gamma corrected (with γ = 0.2) to enhance the visibility of less probable
solutions. The overplotted black dashed lines show the ground truth solution for each of
the atmospheric parameters, and overlap the peak density of the histogram extremely
well. The histogram remains very narrow in the lower atmosphere, but starts to expand
above 3Mm, where the solution is poorly constrained by the chromospheric lines in use
here. This e�ect is most visible on the velocity plot, but despite the increase in uncertainty,
the solutions remain accurate on the validation set due to the model’s conditioning to the
RADYN training data.

7.6 Proof of Concept Results

The proof of concept application of the RADYNVERSION model was primarily undertaken by my
co-authors. I will brie�y summarise the primary results in this section, but the methodology is
more fully described in the associated paper.

As a proof of concept the RADYNVERSIONmodel was applied to the two-ribbon M1.1 �are
SOL 20140906T17:09 observed with the CRISP instrument in Hα and Ca II 854.2 nm. The
preparation of this data is brie�y discussed in Sec. 3.1.1.

Due to the formation heights of these spectral lines, our interest is primarily focused on
the region below ∼2Mm. Fig. 7.4 shows CRISP images in the blue wing, line core, and
red wing for both of the spectral lines respectively. These images were taken just a�er
�are onset. Two pixels are marked, a circle on the �are ribbon, and a square far from
the �are, in a much quieter region. The spectral line pro�les from these two pixels are
shown in Fig. 7.5. For the circular point both lines are strongly in emission whereas for the
square point they are broad absorption lines. These lines from these pixels have then been
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Figure 7.4: Observations of the the M1.1 �are from AR 12157 on 2014-09-06 just a�er �are
onset. The upper row shows images in the Ca II 854.2 nm band, and the lower row shows
equivalent images from the Hα band. These two inverted pixels are marked by the square
(o�-ribbon) and circle (on-ribbon). Wavelengths in this �gure use their values in air.
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Figure 7.5: The spectral line pro�les of Ca II 854.2 nm and Hα for the two pixels marked in
Fig. 7.4.

inverted using RADYNVERSION, with 20 000 latent space draws each. The results of these
inversions are shown in Figs 7.6 and 7.7 for the circular and square points respectively.
These �gures present equivalent information to the lower panels of Fig. 7.3, although the
dashed black lines now show the median of the histogram at each atmospheric point as
there is no ground truth solution available. Performing these inversions with 20 000 draws
each takes ∼893ms on an NVIDIA GTX 1050 Ti GPU installed in hephaistos.

The following is a brief summary of the analysis undertaken by my co-authors. The
inverted pixels were found to be consistent with previous analyses. For example, forward
modelling by Kuridze et al. (2015) suggests that the Hα line pro�le forms below 1.2Mm,
with the core forming towards the top of this region, and the line wings forming below
0.95Mm. In this observation the Hα line pro�le is found to be asymmetric in favour of
the red wing, and from the inversions we see that there is a slight up�ow in the region
where the wings are formed. This is likely due to chromospheric evaporation in this region
causing an increase in the opacity of the blue wing, leading in turn to more intensity in
the red wing.
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Figure 7.6: Inversion results for the on-ribbon pixel. The histograms represent the probability
density for the solution in each altitude node, and the median solution is shown with the
dashed black lines.
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Figure 7.7: Inversion results for the o�-ribbon pixel. The histograms represent the probability
density for the solution in each altitude node, and the median solution is shown with the
dashed black lines.
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For the o�-ribbon pixel we note that both line pro�les are very broad. The inverted velocity
�eld contains a signi�cant number of small magnitude oscillations which we believe are
due to RADYN’s conservative assumption of a 2 kms−1 microturbulent velocity throughout
the atmosphere, as this is insu�cient to produce line pro�les as broad as those observed
here. If the network has learned that bulk plasma �ows can shi� the position of the line
core (i.e. the majority of the opacity in a line), then it is reasonable to suggest that these
represent our model’s attempt to broaden the line pro�les. Recent studies have shown
that signi�cantly higher microturbulent velocities are needed to explain the non-thermal
broadenings observed in chromospheric plages (6–7 kms−1, Carlsson et al. 2015). The
other atmospheric parameters vary more smoothly and do not reach values as large as
those found for the on-ribbon pixel, which is consistent with themuch quieter atmosphere
expected at this location.

7.7 Discussion

The RADYNVERSION invertible neural network presented in this chapter represents a
novel method for investigating the atmospheric properties of observed events and li�s
many of the restrictions that previously made inversions of �aring line pro�les infeasible.
This is achieved by the union of machine learning and a large body of RHD simulations.
The implementation is currently a proof of concept but shows much promise, agreeing
with previous investigations, and can easily be extended to other spectral lines and atmo-
spheric parameters. With the addition of more advanced forward models this technique
could be applied to inference of the chromospheric magnetic �eld from full Stokes ob-
servations. Inversions using this method are fast and robust; the e�ort of “exploring” the
latent space that is common in regression based codes has e�ectively been replaced with
an up-front cost in the training process. Once the model is trained, taking multiple draws
from the latent space replicates the exploration, but extremely rapidly, due to the previous
training e�ort which is then shared between every application of the model (contrary to
the traditional 1.5D inversion technique, where every column is treated independently,
and a lot of this work is replicated). These latent draws additionally serve to provide an
estimate of the uncertainty on the inferred parameters. Potential future extensions to
this model include incorporating the concept of time-dependence in a robust fashion so
as to condition the solution from previous observations, and increasing the number of
atmospheric parameters inferred.

The RADYNVERSION approach has the potential to provide new insight into the structure
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of the �aring chromosphere and allow investigation of complete observation �elds of view
in a timely fashion, allowing researchers to leverage the full capabilities of next-generation
solar telescopes such as DKIST.
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8
Concluding Remarks

In this thesis we have investigated the formation and inversion of chromospheric optical
spectral lines, in particular Hα and Ca II 854.2 nm. These lines form outside of local ther-
modynamic equilibrium (LTE) and can only be synthesised through a detailed treatment
of the atmospheric radiation �eld. To facilitate the modelling of these spectral lines, we
have developed the Lightweaver framework: a modular radiative transfer Python package
capable of handling both plane-parallel and two-dimensional geometries. The purpose of
a framework such as this is to empower researchers with the ability to easily create custom
tools for the radiative transfer problems they wish to simulate. The conceptual design of
Lightweaver, along with a series of validation examples, were presented in Chap. 4, build-
ing on the radiative transfer theory presented in Chap. 2. The extension of Lightweaver
to support two-dimensional atmospheres was presented in Chap 6. The development
of Lightweaver has enabled much of the research presented in this thesis, thanks to its
�exibility, and we hope that other researchers will be able to make use of it1.

We have presented the application of Lightweaver to the synthesis of spectral lines with
time-dependent populations in both plane-parallel �aring simulations and the irradiation
of a slab of quiet Sun atmosphere by an adjacent �are model. In Chap. 5 we used Light-
weaver to investigate some of the assumptions present in �are models produced by the
most commonly used state-of-the-art radiation hydrodynamic codeRADYN.Weperformed
in-depth investigations of the e�ects of the hydrogen Lyman lines on the Ca II populations
(and thus emergent line pro�les), and discussed whether a full time-dependent treatment
of the Ca II populations is needed. We also presented some of the di�culties encountered
when trying to treat �aring models with time-dependence and partial frequency redis-

1Lightweaver (Osborne & Milić 2021) is developed openly under the MIT license on GitHub (https://github.
com/Goobley/Lightweaver), with archival on Zenodo (Osborne 2021a).
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tribution simultaneously. The concept of a time-dependent response function was also
introduced as a new tool for analysing RHDmodels.

The atmospheric evolution of two di�erent RADYN simulations (with constant F9 and
F10 beams) was used as the input for a Lightweaver-based tool. The synthetic spectra
produced serve both as a validation of the time-dependent radiative transfer techniques
implemented in Lightweaver, and also a validation of RADYN. Di�erences were found
between the Ca II lines synthesised with RADYN and Lightweaver, and were found to result
from photoionisation by the Lyman lines. RADYN’s default includes the photoionising
e�ects of the Lyman continuum on Ca II, but neglects the impact of the Lyman lines. The
Lyman series contains some of the strongest spectral lines in the �aring solar spectrum,
with extreme enhancements observed over their quiet Sun values. The additional �ux
produced by these lines is su�cient to provoke substantial changes in the synthesised
Ca II line pro�les, in particular, that of the Ca II 854.2 nm line. The e�ects of the Lyman
lines on the shape and intensity of the Ca II line pro�les also impact the net radiative losses
from the atmosphere. In the simulations there was found to be a 10–15% variation in the
chromospheric radiative losses. This di�erence could plausibly change the atmospheric
evolution of the simulation, leading to greater di�erences in the Ca II line pro�les from
models self-consistently taking these e�ects into account, and also possibly changing the
observed line pro�les from other species such as hydrogen.

We also investigated the necessity of performing a fully time-dependent treatment of the
Ca II level populations, once again using Lightweaver to reprocess a RADYN simulation.
It was found that for a signi�cant majority of the simulation, there was little di�erence
between line pro�les computed with statistical equilibrium populations and those com-
puted with a time-dependent treatment. The most signi�cant di�erences occurred at the
start of the simulation, as the atmosphere �rst reacts to the heating, but these e�ects are
relatively minor. The possibility of treating this species in statistical equilibrium may
provide future opportunities for further optimisation.

We implemented a method for including the e�ects of partial frequency redistribution
into the Lightweaver-based tool developed in Chap. 5. This was found to be a di�cult
problem, o�en su�ering from non-convergence, but we were able to fully reprocess
the previously discussed F9 simulation. The Doppler-like line pro�le approximations
implemented in RADYN for the Lyα and Lyβ proved to be relatively accurate atmost points
in the simulation. Much larger di�erences were found for the calcium resonance lines,
with signi�cant di�erences in the radiative losses due to these lines. It therefore seems
essential to develop approximate treatments for the Ca IIH & K spectral lines.
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The concept of time-dependent response functions was also introduced in this chapter:
these generalise the statistical equilibrium response functions for atomic level populations
that cannot be treated in a time-independent fashion. These also represent a powerful
tool for disambiguating the atmospheric response to di�erent thermodynamic parameters,
whilst also considering the natural settling time of the populations towards the statistical
equilibrium solution. For species such as hydrogen, which are found to have a long settling
time, a time-dependent treatment is necessary to obtain the instantaneous atmospheric
response to a parameter, especially when including the e�ects on the electron density
due to charge conservation.

In Chap. 6, we investigated the radiative response and outgoing line pro�les from a two-
dimensional slab of quiet Sun illuminated by an adjacent columnof �aring plasma. Despite
the thermodynamic properties of the slab being �xed to the initial quiet Sun atmosphere
(other than the electron density, which was allowed to vary to ensure charge conservation),
signi�cant enhancements of the Hα and Ca II 854.2 nm lines were found 1Mm and further
from the �aring boundary. This has several implications. Firstly, any kind of traditional
column-by-column inversion technique employed on regions adjacent to �aring ribbons
is likely to be led astray, and infer an incorrect atmospheric structure. This is due to the
atomic level populations being determined by a non-local transverse radiation �eld, rather
than the plasma parameters in the column. Secondly, the enhancements produced in our
simulations are far from uniform as a function of wavelength, being much more dramatic
in the line core than in the wings, with no e�ect being seen in the continuum. The lack of
continuum enhancement is primarily due to the temperature and mass density structure
in the slab being �xed, whilst the continuum forms in approximately LTE conditions, and
is therefore dependent on the local thermodynamic parameters. As such, calculations
of �lling factors may need to take this wavelength dependence into account. Finally, the
enhancements observed in ourmodels are on a scale already easily resolvablewithmodern
ground-based solar telescopes, such as the SST, and are likely to become more important
with the generational leap provided by DKIST. We also presented a simple comparison
against SST/CRISP observations and found enhancements on the same order of magnitude
as those produced by our simple model. When analysing the regions adjacent to �aring
ribbons in optical spectral lines, it therefore will be necessary to take into account the
e�ects of horizontal irradiation such as this.

RADYNVERSION, a novel machine learning inversion technique, was presented in Chap. 7.
This model uses an invertible neural network to simultaneously learn both the forward
(synthesis) and inverse problems of radiative transfer based on atmospheric snapshots
produced with RADYN. Thanks to this training set, the model learns to synthesise the Hα
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and Ca II 854.2 nm spectral lines from a geometric strati�cation of temperature, electron
density, and velocity. It is the �rst non-LTE inversion technique not constrained by the
assumptions of statistical equilibrium and hydrostatic equilibrium, rendering it much
more applicable to �ares than conventional approaches. RADYNVERSION learns the
possible information lost in the forward process from its training set, and we are then able
to sample this to produce posterior distributions for the strati�ed atmospheric parameters.
A proof of concept analysis of two pixels observed with the SST/CRISP instrument was
shown to be in accord with previous investigation of the same event involving forward
modelling using RADYN by Kuridze et al. (2015). This model is also extremely performant
once trained, taking ∼ 10µs per latent space draw on modest consumer computing hard-
ware, as its training process “front-loads” a lot of the work that is undertaken repeatedly in
a regression-based inversion model (although this can be reduced by the use of database
initialisation techniques). Enhancing the performance of inversion techniques, through
approaches such as RADYNVERSION, is essential to a detailed exploitation of the vast
quantity of data produced by current observatories that will only be dwarfed by those
arriving in the coming solar cycle.

Future Directions

The Lightweaver framework is robust and has been proven production-ready by the applic-
ations presented in this thesis. Nevertheless, there are many enhancements that could
yet be implemented. These include:

• The inclusion of more rapid iteration schemes such as forth-and-back implicit
lambda iteration (Atanacković-Vukmanović et al. 1997; Kuzmanovska et al. 2017), or
the hybrid scheme described in Avrett & Loeser (2008) for possibly improving the
handling of strong lines that exhibit partial frequency redistribution e�ects.

• Full Stokes synthesis is currently supported in plane-parallel models, but only an
unpolarised formal solver has been implemented for the two-dimensional case.

• Lightweaver could be extended to treat three-dimensional radiative transfer. The
frontend of the framework is already designed to support this, but no formal solver
has been implemented.

• To support the use of Lightweaver in two- and three-dimensional modelling, a
domain-decomposition technique to split large simulations across clusters of ma-
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chines is likely to be bene�cial. An MPI-based implementation has already been
tested for the 1.5D column-by-column situation, but full domain-decomposition will
require modi�cations to the core of Lightweaver itself.

• The equation of state used in the front-end is written in pure Python, and is very slow,
o�en taking longer than the full non-LTE calculations for a simple plane-parallel
atmosphere on a parallel machine. This should be replaced with a more performant,
and possibly more advanced, implementation.

• Lightweaver could serve as the base of an inversion package, and the technique used
for computing the response functions would determine the scale of the modi�c-
ations required. For a STiC (de la Cruz Rodríguez et al. 2019) style approach, no
modi�cations would be needed, as the machinery for computing �nite-di�erence
response functions is already present. If a SNAPI (Milić & van Noort 2018), or DeSIRe
(B. Ruiz Cobo et al. in preparation) style approach were instead taken, the implement-
ation of a technique for computing the necessary analytic response functions would
be needed.

• Most RT codes, including Lightweaver, use �xed wavelength quadratures for each
spectral line, and this requires pessimistically determining the minimum resolution
needed to evaluate the necessary integrals. It could be highly bene�cial to introduce
an adaptive wavelength quadrature that can estimate the error in these integrals,
and re�ne if necessary. An initial implementation of this would likely use a form of
step-doubling techniques.

• Graphical processing units (GPUs) are becoming evermore ubiquitous and powerful,
and can easily be adapted to radiative transfer calculations. A well-optimised GPU
implementation of the routines needed for non-LTE radiative transfer can likely
provide an order of magnitude increase in performance at similar hardware cost.

• The scattering integral needed to evaluate the e�ects of partial frequency redistribu-
tion could likely be accurately approximated by a neural network. This could provide
signi�cant performance improvements in angle-dependent PRD calculations where
the evaluation of the scattering integral is highly computationally intensive.

This list is far from exhaustive, but it should be clear that while Lightweaver is a powerful
and �exible package, there are many interesting directions to explore.

Another interesting application of Lightweaver would be to incorporate it into a radiation
hydrodynamic modelling package. Its advanced radiative transfer could then be used in
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self-consistent �eld-aligned radiation hydrodynamicmodelling. Of the currently available
codes, HYDRAD is themost suited to this treatment, in this author’s opinion. It is available
on GitHub2 under the MIT license, and consists of a relatively small body of C++ that
could be bound to Python in a similar way to Lightweaver, with Python controlling the
�ow of data between the two. This would allow investigation of the magnitude of the
Ca II photoionisation e�ects discussed in Chap. 5, whilst self-consistently considering
the modi�ed energy balance. Of course, this e�ect can also be incorporated into RADYN
or FLARIX by including the radiation �eld of the Lyman lines in the calculation of the
Ca II continua. This would likely need to be done under the assumption that the Ca II
continua are not a primary source of opacity at these wavelengths, as this would require
the treatment of the Lyman lines and Ca II continua to be coupled. In the modelling we
have undertaken, this appears to be a safe assumption. Similarly to Ca II, Mg IImay be
photoionised by the hydrogen Lyman lines. We feel that the e�ect is likely to be of lesser
magnitude, as the Mg II resonance continuum edge is situated at 82.46 nm, and the Lyman
lines could therefore only a�ect the subordinate continua of this ion. Nevertheless, a
similar investigation should be conducted to determine the scale of these e�ects.

We found that statistical equilibrium was a good approximation for the calcium level
populations at most points in our �aring models. An investigation of whether statistical
equilibrium can also be employed for hydrogen in �are models is also needed. It is clear
that the non-equilibrium ionisation state of hydrogen needs to be known, but whether
its level population distribution can be treated in statistical equilibrium whilst taking
this ionisation into account remains to be seen in �aring models. If the primary species
needed to compute chromospheric radiative losses in �are models could be accurately
treated in some form of statistical equilibrium this would allow neural networks to be
much more easily applied to this problem. Similarly to RADYNVERSION, this has the
potential to greatly accelerate this style of simulation, even if a slight accuracy trade-o�
occurs.

The two-dimensional slab model we presented is intended to serve as a “�rst-order” ap-
proximation of the situation, and there are clearly many e�ects that were not included
here. A simple extension of this model would include a method by which the temperature
of the plasma in the slab could change based on the radiation absorbed. Such a model
should also likely consider the e�ects of heat-conduction, even if the magnetohydro-
dynamics of such a situation are not considered. In our opinion, allowing the plasma to
be heated by the radiation from the neighbouring �are is likely to increase the magnitude

2https://github.com/rice-solar-physics/HYDRAD
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of the e�ects seen in Chap. 6, and it is possible that this heating could produce continuum
enhancements and a�ect spectral lines forming signi�cantly deeper in the atmosphere.

Another development of the two-dimensional �are model would be to investigate the
limitations of the plane-parallel radiative transfer model assumed by the �eld-aligned
radiation hydrodynamic codes. The plane-parallel treatment of the radiative transfer
equation considers that the stacked slabs of homogeneous atmosphere are in�nitely
wide, whereas �ux tubes appear to be quite narrow, especially in the chromosphere. It
is plausible that the radiative losses and spectral lines produced by these models will
di�er signi�cantly when embedded in a plasma with non-uniform opacity, and when the
compact heated regions are not modelled as having in�nite transverse extent. This could
bemodelled in a similar way to thework undertaken in Chap. 6, but instead embedding the
RADYN simulation in the centre of the slab, rather than using it as a boundary condition.
Tomodel this, assumptions would need to bemade regarding the diameter of the �ux tube,
although a series of models could be performed with di�erent diameters, constrained
by observations and radiative magnetohydrodynamic modelling. The size and intensity
pro�le of any core-halo e�ects produced by these models could be used with observations
to attempt to constrain the size of �are kernels at di�erent depths in the atmosphere,
using di�erent spectral lines. Of course, this improvement could also be combined with
the prior, allowing the temperature in the plasma surrounding the �are model to change,
yielding a more advanced treatment of the physics with an emphasis on the radiation,
rather than the dynamics, of the situation.

The techniques employed in the RADYNVERSIONmodel are not unique to the spectral
lines we presented. Indeed, a similar model can support any line formation problem,
given the correct training set. Trained with the spectral lines we have presented here,
RADYNVERSION is able to infer the atmospheric properties throughout the majority
of the �aring chromosphere. These lines will lose sensitivity at higher temperatures,
especially going into the transition region. As such, other lines such as Mg II h & k should
be incorporated into this model, although this will create calibration and alignment
di�culties if added to the current Hα and Ca II 854.2 nm model due to the lack of an
instrument which can observe all of these. Ca IIH & K can be observed from the same
telescope as Hα and Ca II 854.2 nm (e.g. SST with CRISP and CHROMIS) so may represent
an interesting addition to the RADYNVERSION model, but such a model would need
to be trained to determine how much information was added by this additional data.
All of Ca II H & K and Mg II h & k need to be modelled taking into account the e�ects
of partial frequency redistribution, so the RADYN output could not be used to directly
train such a model. Additionally, the Ca II photoionisation e�ects discussed in Chap. 5
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had signi�cant e�ects on the outgoing line pro�les and should be taken into account
in an updated RADYNVERSION model. This would require generating a new grid of
models using an updated version of RADYN or reprocessing pre-existing models using
Lightweaver, although this is dependent on the necessary output having been generated
and preserved.

The quality of inference obtained from models such as RADYNVERSION is entirely de-
pendent on the quality of the training data: a larger and more varied training set, as
well as models that are trained for multiple di�erent viewing angles will all be key to the
development of RADYNVERSION into a dependable, widely applicable, inversion tool.

Closing Remarks

The complexity of spectral line formation in the chromosphere means that there is always
“more to do” to glean greater understanding of the atmospheric conditions at play. In this
thesis we have primarily focused on modelling the formation of Hα and Ca II 854.2 nm,
but the techniques presented are much more widely applicable. Regular high-resolution
observations of these spectral lines with the SST, as well as the imminent arrival of the
DKIST, drives us to consider the formation and analysis of these lines on more compact
spatial scales where the non-uniformity of the solar atmosphere becomes increasingly im-
portant. This thesis is intended to be a step along this path, focusing more on the radiative
treatment of these events, rather than the dynamic. All of the treatments presented here
can be extended to support more complex con�gurations with additional physics, but we
have shown that the e�ects of the hydrogen Lyman lines on Ca II cannot be neglected, that
the radiation produced by moderate �are simulations is capable of provoking signi�cant
changes in the atomic level populations and radiative output of an adjacent slab of quiet
Sun, and that the combination of modelling andmachine learning can provide techniques
to render the inversion of �aring spectral lines outside of the assumptions of statistical
equilibrium and hydrostatic equilibrium tractable.
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