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Abstract

In the thesis, we investigate the properties of the reduced C∗-algebras of graphs of monoids.

These include nuclearity, ideal structure, K-theory and so on.

Based on Serre’s definitions of graphs of groups and their fundamental groups, we define

graphs of monoids and study the right LCM property. We also investigate the nuclearity of

C∗-algebras of graphs of monoids and give some examples to embed some special graphs of

monoids (generalised Baumslag-Solitar monoids) into amenable groups.

Using Xin Li’s work to view reduced semigroup C∗-algebras as reduced groupoid C∗-algebras,

we study the topological approximate invariant means, the closed subgroupoids and the prin-

cipality of the associated groupoids. The results in this part help us work out the primitive

ideal spaces of these groupoid C∗-algebras. Lastly, we compute K-theory of all the groupoid

C∗-algebras induced by the associated groupoids and their closed subgroupoids.
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Chapter 1

Introduction

In mathematical research, it makes sense to investigate the interactions among different areas

of mathematics. C∗-algebras have interactions with other areas of mathematics such as ge-

ometry, dynamical system, group theory and semigroup theory, and so on. These connections

are usually produced by constructions of some specific C∗-algebras.

In the thesis, we focus on (reduced) semigroup C∗-algebras. Motivated by the definition

of group C∗-algebras, a semigroup C∗-algebra is defined to be the C∗-algebra generated by

the left regular representation of a left cancellative semigroup. Despite the analogous defini-

tions, we can see, in semigroup C∗-algebras, phenomena completely different from those in

the group case. Therefore, it will be natural and interesting to study semigroup C∗-algebras

separately.

The properties of semigroup C∗-algebras depend heavily on the corresponding semigroups.

In the thesis, we only consider semigroup C∗-algebras associated to graphs of monoids. Serre

defined graphs of groups and the fundamental group of a graph of groups in his book. (see

[p42, Ser80]) In his definition, a graph of groups (G, Γ) consists of a graph Γ = (V, E), a

1
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group Gv for every vertex v ∈ Γ and a group Ge for every edge e ∈ Γ, together with group

embeddings Ge→Gt(e) (denoted by x 7→ xe) and the convention Ge = Gē for all edges e ∈ Γ.

The fundamental group π1(G, Γ, T ) is given by the groups Gv, v∈V and A, subject to the re-

lations xe = xē for all e∈ T and all x∈Ge, and ayaa−1 = yā for all a∈ A and all y∈Ga, where

T is a maximal subtree of the graph Γ and A is an orientation of Γ\T such that Γ = T ∪A∪ Ā.

Here we make the convention that all the graphs are countable and all the groups are dis-

crete and countable unless otherwise explicitly stated.

Based on Serre’s work, we defined similarly graphs of monoids and the fundamental monoid

P of a graph of monoids. Let (G, Γ) still be a graph of groups with Γ = (V, E) connected,

but assume that Gv, v ∈ V is totally ordered with positive cone Pv, i.e., Gv = Pv ∪P−1
v and

Pv ∩P−1
v = {ε}. Here and in the sequel, we always use ε to represent the identity element

in groups. For e ∈ E, define Pe := {g ∈ Ge, ge ∈ Pt(e)}. Assume further Pe = Pē for all

e ∈ T and either Pe = Pē or Pe = P−1
ē for all e ∈ A. Define A+ := {e ∈ A, Pe = Pē} and

A− := {e ∈ A, Pe = P−1
ē }. The fundamental monoid P is defined to be the subsemigroup

of π1(G, Γ, T ) generated by Pv and A. For more details, please refer to Chapter 3. The

fundamental monoid P, together with its semigroup C∗-algebra C∗
λ
(P), is exactly what we

investigate in the thesis.

As we see, a graph of monoids (groups) is a system of monoids (groups) associated to a

graph. Without ambiguity, by saying a monoid (group) is a graph of monoids (groups), we

mean it is the fundamental monoid (group) of some related system (graph of monoids or

groups).

We say that the monoid P is right LCM if for all p, q∈ P, either pP∩qP = /0 or pP∩qP = rP

for some r ∈ P. Throughout the thesis, we need the monoid P to be right LCM because it
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guarantees that all constructible right ideals of P are principal and thus that P satisfies in-

dependence. Naturally, we give a criterion for the monoid P to be right LCM in Chapter 3.

Below is the result. (see Definition 3.2.1 and Proposition 3.2.3)

Theorem 1.0.1. P is right LCM if for all e ∈ E, p ∈ Po(e), either p−1Pē
ē = /0 or p−1Pē

ē = qPē
ē

for some q ∈ Po(e), where p−1Pē
ē := {x ∈ P, px ∈ Pē

ē }.

Nuclearity, as a kind of finite approximation property of a C∗-algebra, can rarely be ignored

when referring to the properties of C∗-algebras. In 2012, Spielberg proved in [Spi12] that

the semigroup C∗-algebras of the Baumslag-Solitar monoids are Cuntz-Krieger and hence

amenable. Noting that all Baumslag-Solitar monoids are fundamental monoids of some spe-

cific graphs of monoids, the following result can be viewed as an extension of Spielberg’s

work. (see Theorem 4.1.1 in Chapter 4)

Theorem 1.0.2. Assume that P is right LCM, then C∗
λ
(P) is nuclear if C∗

λ
(PT ) is nuclear,

where PT is the submonoid of P generated by the semigroups Pv, v ∈V .

It is well known that a reduced group C∗-algebra is nuclear if and only if the group is

amenable, while we do not have an analogue in the semigroup case. Indeed, based on Exel’s

work, Xin Li proved in [Theorem 5.6.44 and Corollary 5.6.45, CELY17] that C∗
λ
(P) is nu-

clear if P embeds into an amenable group. But whether the converse is true still remains open.

Let P be the generalised Baumslag-Solitar monoid, then we have

P = GBS+(N, mi, ni) =< ai, b | aibmi = bniai, ∀i ∈ S1, b|ni|aibmi = ai, ∀i ∈ S2, N = ]A >+,
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where S1 := {i∈ S, ai ∈ A+}= {i∈ S, ni > 0} and S2 := {i∈ S, ai ∈ A−}= {i∈ S, ni < 0}.

To begin with, P is right LCM by Theorem 1.0.1. On the other hand, we have C∗
λ
(PT ) ∼=

C∗
λ
(N)∼=C∗(S), where S is a shift with codimension 1 in a separable Hilbert space and C∗(S)

is the universal C∗-algebra generated by S, i.e., the Toeplitz algebra. Therefore, C∗
λ
(PT ) is

nuclear and thus C∗
λ
(P) is nuclear. What we include in Chapter 4 except the nuclearity part is

to embed the generalised Baumslag-Solitar monoids into amenable groups. Luckily enough,

we obtained some results despite the fact that the generalised Baumslag-Solitar groups are

not amenable in general. Below is the conclusion. (see Theorem 4.2.11 and Corollary 4.2.13)

Theorem 1.0.3. Assume

gcd
( N

∏
i=1

mi,
N

∏
i=1

ni

)
= 1, mi, ni ∈ Z∗, N ∈ N∗. (1.1)

Let FN :=< s1, · · · , sN > be the free group generated by N generators s1, · · · , sN and let φ

be a semigroup homomorphism defined by

φ : FN → Aut(Q), si 7→ φ(si)
[
r 7→ mir

ni
, r ∈Q

]
.

Then there exists an injective semigroup homomorphism

ϕ : GBS+(N, mi, ni)→ (FN/F ′′N )nQ

such that ϕ(ai) = (si, 0) and that ϕ(b) = (ε, 1). Here F ′′N is the second derived group of FN .

In 1969, Hochster constructed in [Hoc69] an embedding of N ∗N into the amenable group

F2/F ′′2 , where N ∗N is the free monoid generated by 2 generators, F2 is the free group gen-
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erated by 2 generators and F ′′2 is the second derived group of F2. The proof of our theorem

above is motivated by Hochster’s work.

As you can see, we embed the generalised Baumslag-Solitar monoids into amenable groups

if equation (1.1) holds. What if equation (1.1) does not hold? Unfortunately, we failed giving

an answer in this case.

Every submonoid P of a group G induces a partial action of G on some character space

Ω. G y Ω induces a groupoid GnΩ and its reduced groupoid C∗-algebra C∗r (GnΩ). Given

the fact that C∗
λ
(P) is isomorphic to C∗r (GnΩ) (see Theorem 2.2.4 or [Theorem 5.5.21 and

Theorem 5.6.41, CELY17]), we will study the semigroup C∗-algebra C∗
λ
(P) by investigating

the properties of the groupoid C∗-algebra C∗r (GnΩ).

By [Theorem 20.7 and Theorem 25.10, Exe15], the groupoid GnΩ is amenable if the group

G is amenable. In this case, by the definition of amenability of groupoids, there exists a topo-

logical approximate invariant mean on GnΩ. It is natural to ask whether we can work out

such a topological approximate invariant mean on GnΩ. In Chapter 5, we give a construc-

tion of a Borel approximate invariant mean on GnX for a general transformation groupoid

GnX with the group G amenable and provide a sufficient condition for the mean to be topo-

logical. The construction is based on Renault’s and Williams’s joint work in [RW17].

In the rest of the thesis (Chapter 5, Chapter 6 and Chapter 7), we always treat the cases sepa-

rately according to whether P is the fundamental monoid of a general graph of monoids (gen-

eral case) or P is the generalised Baumslag-Solitar monoid (generalised Baumslag-Solitar

case). We have two reasons to do so. On one side, we have different assumptions on the

monoid P. In the general case, we have more assumptions in the construction of P to get

some results. On the other side, the generalised Baumslag-Solitar case is actually an extreme
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case of the general case and we can witness different phenomena.

In Chapter 5, we give a list of all nonempty closed invariant subspaces of the partial ac-

tion G y Ω. In the generalised Baumslag-Solitar case, we have the following result. (see

Corollary 5.2.24 and Corollary 5.2.29)

Theorem 1.0.4. (Generalised Baumslag-Solitar case) Let P be the generalised Baumslag-

Solitar monoid, then the following is the list of all nonempty closed invariant subsets of Ω:

(i) ∂Ω ( Ωb, ∞ ( Ω∞ ( Ω and ∂Ω ( Ωa, ∞ ( Ω∞ if 0 < |S1|< ∞ and |S2|= 0.

(ii) ∂Ω = Ωa, ∞ ( Ωb, ∞ = Ω∞ ( Ω if |S1|= 0 and 0 < |S2|< ∞.

(iii) ∂Ω ( Ωb, ∞ ( Ω∞ ( Ω if 0 < |S1|< ∞ and 0 < |S2|< ∞.

(iv) ∂Ω = Ωb, ∞ = Ω∞ ( Ω if |S1|= 0 and |S2|= ∞.

(v) ∂Ω = Ωb, ∞ ( Ω∞ ( Ω if 0 < |S1|< ∞ and |S2|= ∞.

(vi) ∂Ω = Ωb, ∞ ( Ω if |S1|= ∞.

For every finite or infinite positive word w = x1x2x3 · · · 6= with x∗ ∈ {Pv}v∈V ∪A and x∗ 6= ε

unless w = ε , set [w]i := w if w = x1 · · ·x j with j < i and [w]i := x1 · · ·xi otherwise. Define

χw ∈ Ω by setting χw(xP) = 1 if and only if [w]i ∈ xP for some i. By the work in [LOS18],

we know that every character in Ω is of the form χw for some finite or infinite positive word.

In the theorem above, Ω∞ denotes all the characters in Ω of the form χw for some infinite

word w, and we have Ω∞ = Ω\P. Ωa, ∞ is a subset of Ω∞ consisting of all the characters of

the form χw with w an infinite word containing infinitely many letters from A. And Ωb, ∞ is

defined to be the closure of Ω∞ \Ωa, ∞.

In general case, we focus on the following two situation.
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I. For all v ∈V , x ∈ Pv \ ε or x ∈ A and χ ∈Ω∞, there exists an infinite word w with χ = χw,

a strictly increasing sequence ( jN)N of positive integers, and a finite positive word y whose

first letter does not lie in Pv in the case where x ∈ Pv such that,

(i) xy[w] jN is a reduced positive word for all N,

(ii) Whenever p0d1 p1 · · · is a properly reduced positive word representing xy[w] jN , we must

have x ∈ p0PT if x ∈ Pv and x ∈ p0P if x ∈ A.

II. There exists u ∈V and b ∈ Pu such that the following holds:

For all v ∈ V , x ∈ Pv \ ε or x ∈ A and χ ∈ Ω∞, there exists an infinite word w with χ = χw,

a strictly increasing sequence ( jN)N of positive integers, and a finite positive word y whose

first letter does not lie in Pv in the case where x ∈ Pv such that,

(i) xy[w] jN is a reduced positive word for all N,

(ii) Whenever p0d1 p1 · · · is a properly reduced positive word representing xy[w] jN , then one

of the following holds:

A) x ∈ p0PT if x ∈ Pv and x ∈ p0P if x ∈ A,

B) [w] jN ∈ bP and xbi ∈ p0PT if x∈Pv and xbi ∈ p0P if x∈A, where i is some positive integer.

Below is the conclusion. (see Theorem 5.2.11)

Theorem 1.0.5. (General case) Let P be the fundamental monoid of a graph of monoids with

condition (LCM) for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈V , Pe 6= {ε} for

all e ∈ A and Pe
e 6= Pt(e) for all e ∈ E.

(i) If condition I. holds and there exists v ∈ V such that Gv is dense in R, then the following

is the list of all nonempty closed invariant subsets of Ω: ∂Ω = Ω.

(ii) If condition I. holds and Pv ∼= Z≥0 for all v ∈ V , then the following is the list of all

nonempty closed invariant subsets of Ω: ∂Ω = Ω∞ ⊆Ω.

(iii) If condition II. holds, there exists v ∈ V such that Gv is dense in R and ]A ≥ 1, then the
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following is the list of all nonempty closed invariant subsets of Ω: Ωb, ∞ = ∂Ω ( Ω.

(iv) If condition II. holds and ]A = 0, then the following is the list of all nonempty closed

invariant subsets of Ω: {∞}= ∂Ω ( Ω∞ ⊆Ω.

(v) If condition II. holds, Pv ∼= Z≥0 for all v ∈V , ]A≥ 1 and ]V > 1, then the following is the

list of all nonempty closed invariant subsets of Ω: Ωb, ∞ = ∂Ω ( Ω∞ ⊆Ω.

Here Ω∞ is as in Theorem 1.0.4, {∞} is exactly ∂ΩPT and Ωb, ∞ is defined to be

Ωb, ∞ := {χ ∈Ω, (g ·χ)(biP) = 1, ∀g ∈ G, ∀i ∈ N},

where we only consider those g ∈ G such that g ·χ is well defined.

In the theorem above, the assumption Gv ⊆ (R, +) for all v ∈V , together with other assump-

tions, is made such that in most cases, either condition I. or condition II. holds. As you may

see, these assumptions are also made in Theorem 1.0.6, Theorem 1.0.7 and Theorem 1.0.9.

In Chapter 5, we also give a complete discussion on the topological freeness of the partial

action G y X for all nonempty closed invariant subsets X ⊆Ω except the case X = ∂Ω. The

cases are complicated and here we will only take, for example, the partial action G y Ω∞ in

the general case. For more details, please refer to Chapter 5. The following theorem comes

from Proposition 5.3.11 and Proposition 5.3.13.

Theorem 1.0.6. (General case) Let P be the fundamental monoid of a graph of monoids with

condition (LCM) for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈V , Pe 6= {ε} for

all e ∈ A and Pe
e 6= Pt(e) for all e ∈ E.

(i) If condition I. holds, then the partial action G y Ω∞ is topologically free whenever Ω∞ is

closed in Ω.
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(ii) If condition II. holds, then Ω∞ is closed in Ω if and only if Pv ∼= Z≥0 for all v ∈ V ,

1 < ]V < ∞ and ]A+ < ∞. In this case, we have the following:

(a) If ]A+ > 0, G y Ω∞ is topologically free.

(b) If ]V > 2, G y Ω∞ is topologically free.

(c) If ]A+ = 0 and ]V = 2, take e ∈ T , and assume the two embeddings are Pe→ Po(e), 1 7→ k

and Pe→ Pt(e), 1 7→ l, G y Ω∞ is topologically free if and only if either k > 2 or l > 2.

In Chapter 6, we study the ideals in the groupoid C∗-algebra C∗r (GnΩ). Since every ideal in

a C∗-algebra is the intersection of all the primitive ideals (the kernels of non-zero irreducible

representations of the C∗-algebra) containing it, we end up with the list of all primitive ide-

als in C∗r (GnΩ). This part of work is based on Christian Bönicke’s and Kang Li’s work in

[BL18], where it states that there is a one-to-one correspondence between open invariant sub-

sets in Ω and ideals in C∗r (GnΩ) if the groupoid GnΩ is étale, inner exact and essentially

principal. (see Lemma 6.0.1)

It is easy to check that GnΩ is étale. The inner exactness of the groupoid GnΩ is ex-

actly the C∗-exactness of the group G by definition in [Gue01]. Also by Erik Guentner, a

group acting without inversion on a tree is C∗-exact if and only if the vertex stabilizers of

the action are C∗-exact. By [p50-p53, Ser80], the fundamental group π1(G, Γ, T ) acts with-

out inversion on a tree X̃ = X̃(G, Γ, T ) such that every vertex stabilizer is isomorphic to

Gv for some v ∈ V . Therefore, our group G is C∗-exact if and only if Gv is C∗-exact for all

v ∈ V . Noting Gv ⊆ (R, +) in our assumption, the latter follows since amenable groups are

C∗-exact by [Lan73]. And by definition the essentially principal property of the groupoid

GnΩ is exactly the topological freeness of the partial action of G on all nonempty closed

invariant subsets of Ω. Equivalently, the groupoid GnΩ is essentially principal if and only if

the partial action GyX is topologically free for all nonempty closed invariant subsets X ⊆Ω.
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We work out the list of all nonempty closed invariant subsets of Ω and analyse the topologi-

cal freeness of the partial action of G on these nonempty closed invariant subsets in Chapter

5. In the case where the partial action G y X is topologically free for all nonempty closed

invariant subsets X ⊆ Ω, we can easily obtain that every ideal in C∗r (GnΩ) is of the form

C∗r (GnX ′) with X ′ ⊆ Ω open and invariant and then analyse whether they are primitive or

not. In other cases, our work is based on Dixmier’s work in [Dix77]. (see Lemma 6.0.2)

The discussion of the primitive ideal space of the groupoid C∗-algebra C∗r (GnΩ) in Chap-

ter 6 is complicated, and here we will only give an example where P is a general graph of

monoids and Ω∞ is closed in Ω. For more details, please refer to Chapter 6.

Theorem 1.0.7. (General case) Let P be the fundamental monoid of a graph of monoids with

condition (LCM) for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈V , Pe 6= {ε} for

all e ∈ A and Pe
e 6= Pt(e) for all e ∈ E.

Assume further ]A 6= 0, Ω∞ is closed in Ω and the partial action G y ∂Ω is topologically

free if condition II. holds.

(i) If condition I. holds, there is a one-to-one correspondence between open invariant subsets

of Ω and ideals in C∗r (GnΩ). Therefore,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ω∞))∼= K }.

Here and in the sequel, K stands for the C∗-algebra consisting of compact operators on a

separable Hilbert space.

(ii) If condition II. holds, there are three nonempty closed invariant subsets Ω, Ω∞, ∂Ω =

Ωb, ∞.

If the action GyΩ∞ is topologically free, then there is a one-to-one correspondence between

open invariant subsets of Ω and ideals in C∗r (GnΩ). In this case,
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Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ω∞))∼= K , C∗r (Gn (Ω\Ωb, ∞))}.

If the action G y Ω∞ is not topologically free, then we must have ]V = 2, k = l = 2 and

]A+ = 0. (see Theorem 1.0.6) Set J :=C∗r (Gn (Ω∞ \Ωb, ∞)), then we have J ∼= K ⊗C(T).

In this case,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ωb, ∞)), C∗r (Gn (Ω\Ω∞))+ Jp +C∗r (GnΩb, ∞)},

where Jp := ϕ−1(K ⊗C0(T\{p})), p ∈ T and ϕ : J→K ⊗C(T) is a ∗-isomorphism.

Here is a list of all nontrivial closed subsets of Prim(C∗r (GnΩ)):

{I}, {C}, {I, C},

where I :=C∗r (Gn (Ω\Ωb, ∞)) and C = {C∗r (Gn (Ω\Ω∞))+ Jp +C∗r (GnΩb, ∞)}p∈C′ for

some closed subset C′ ⊆ T.

K-theory has played an important role in C∗-algebra theory since it was introduced as an tool

in the early 1970s. One of its most important applications in C∗-algebra theory is that it helps

in the classification of C∗-algebras. In Chapter 7, we try to compute the K-theory of all the

C∗-algebras of the form C∗r (GnX) with X ⊆ Ω invariant and closed. The work is partially

based on Xin Li’s work in [Li20]. Below are the conclusions.

Theorem 1.0.8. (Generalised Baumslag-Solitar case) Let P be the generalised Baumslag-

Solitar monoid.

(i) For Ω, we have

K0(C∗r (GnΩ))∼= Z and K1(C∗r (GnΩ))∼= 0.
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(ii) Ωb, ∞ is always closed in Ω, and we have

K0
(
C∗r (GnΩb, ∞)

)∼= Z and K1
(
C∗r (GnΩb, ∞)

)∼= Z.

(iii) Ω∞ is closed in Ω if and only if |S1|< ∞. In this case, we have

K0
(
C∗r (GnΩ∞)

)∼= Z and K1
(
C∗r (GnΩ∞)

)∼= Z.

(iv) Ωa, ∞ is closed in Ω if and only if either 0 < |S1| < ∞ and |S2| = 0 or |S1| = 0 and

0 < |S2|< ∞. In this case,

K0
(
C∗r (GnΩa, ∞)

)∼= Z(∑1≤i≤N |ni|)−1

and

K1
(
C∗r (GnΩa, ∞)

)∼= Z1+∑i∈S2
mi

if ∑1≤i≤N |ni|> 1. Here and in the sequel, Zn, n∈N∗ is the quotient group of Z by the normal

subgroup nZ.

K0
(
C∗r (GnΩa, ∞)

)∼= Z

and

K1
(
C∗r (GnΩa, ∞)

)∼= Z⊕Z1+∑i∈S2
mi

if ∑1≤i≤N |ni|= 1.

(iv) ∂Ω is always closed, but ∂Ω 6= Ωb, ∞ only if 0 < |S1|< ∞ and 0 < |S2|< ∞. In this case,

we have the following results.

If 1−∑1≤i≤N |ni| 6= 0 and 1−∑1≤i≤N sgn(ni)mi 6= 0,

K0
(
C∗r (Gn∂Ω)

)∼= Z∑1≤i≤N |ni|−1
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and

K1
(
C∗r (Gn∂Ω)

)∼= Z∣∣1−∑1≤i≤N sgn(ni)mi

∣∣.
If 1−∑1≤i≤N |ni|= 0 and 1−∑1≤i≤N sgn(ni)mi 6= 0,

K0
(
C∗r (Gn∂Ω)

)∼= Z

and

K1
(
C∗r (Gn∂Ω)

)∼= Z⊕Z∣∣1−∑1≤i≤N sgn(ni)mi

∣∣.
If 1−∑1≤i≤N |ni| 6= 0 and 1−∑1≤i≤N sgn(ni)mi = 0,

K0
(
C∗r (Gn∂Ω)

)∼= Z⊕Z∑1≤i≤N |ni|−1

and

K1
(
C∗r (Gn∂Ω)

)∼= Z.

If 1−∑1≤i≤N |ni|= 0 and 1−∑1≤i≤N sgn(ni)mi = 0,

K0
(
C∗r (Gn∂Ω)

)∼= Z⊕Z

and

K1
(
C∗r (Gn∂Ω)

)∼= Z⊕Z.

Theorem 1.0.9. (General case) Let P be the fundamental monoid of a graph of monoids with

condition (LCM) for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈V , Pe 6= {ε} for

all e ∈ A and Pe
e 6= Pt(e) for all e ∈ E.

(i) For Ω, we have

K0(C∗r (GnΩ))∼= Z and K1(C∗r (GnΩ))∼= 0.
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(ii) Ωb, ∞ is always closed in Ω, and we have

K∗(C∗r (GnΩb, ∞))∼= K∗(C(Ωb, ∞)or G)∼= K∗(C∗λ (GT )).

(iii) When {∞} is closed in Ω, we have

K∗(C∗r (Gn{∞}))∼= K∗(C∗λ (GT )).

(iv) When Ω∞ is closed in Ω, we have

K0
(
C∗r (GnΩ∞)

)∼= Z and K1
(
C∗r (GnΩ∞)

)∼= Z

if condition II. holds and

K0
(
C∗r (GnΩ∞)

)∼= Zn and K1
(
C∗r (GnΩ∞)

)∼= 0

if condition I. holds.

At the end of the thesis, we briefly give a description of possible extensions of all the results

in the thesis. Overall, one direction is to try to extend our results to general cases. For in-

stance, we embed successfully a part of generalised Baumslag-Solitar monoids into amenable

groups in Chapter 4, so we can try to embed all generalised Baumslag-Solitar monoids, and

even general graphs of monoids, into amenable groups. In Chapter 5, we make some as-

sumptions of the graphs of monoids to get all nonempty closed invariant subsets of the partial

action G y Ω. We can investigate the list of all nonempty closed invariant subsets of the par-

tial action G y Ω by removing a part of the assumptions. Another direction is to study other

properties of the C∗-algebras of graphs of monoids, which we miss in the thesis. Typical are

the pure infiniteness and the classification of the reduced C∗-algebras of graphs of monoids.



Chapter 2

Preliminaries

The study of the thesis requires a familiarity of certain basic concepts from the fields of set

theory, group theory, general topology ([Kel55]), functional analysis ([Rud91], [Yos68]), lin-

ear operators ([DS57]) and C∗-algebras ([Arv76], [Mur90]). The content in this chapter is

provided as a supplement besides the fundamentals mentioned above.

2.1 Graphs of groups

In this section, I present only some necessary notions, related to graphs of groups. For more

details, please refer to [Ser80].

Definition 2.1.1. A graph Γ consists of a set V = Vert Γ, a set E = Edge Γ and two maps

E→V ×V, e 7→ (o(e), t(e))

15
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and

E→ E, e 7→ ē

such that ē 6= e, ¯̄e = e and o(e) = t(ē). Such a graph Γ is also denoted by (V, E).

An element v ∈V is called a vertex of Γ; an element e ∈ E is called an (oriented) edge of Γ,

and ē is called the inverse edge. The vertices o(e) and t(e) are called the origin and terminus

of e. Such two vertices are called adjacent.

A tree is a connected non-empty graph without circuits. Every maximal subtree of a con-

nected non-empty graph contains all the vertices of the graph.

Definition 2.1.2. A graph of groups (G, Γ) consists of a graph Γ, a group Gv for every ver-

tex v ∈ Γ and a group Ge for every edge e ∈ Γ, together with group embeddings Ge→ Gt(e)

(denoted by x 7→ xe) and the convention Ge = Gē for all edges e ∈ Γ.

In the case where Γ is a tree, by amalgamating the groups Gv along the groups Ge, we get the

direct limit of the graph of groups (G, Γ), denoted by

GΓ = lim−→(G, Γ).

Here and in the sequel, let (G, Γ) be a graph of groups with Γ = (V, E) being a connected

nonempty graph. Define the group F(G, Γ) by the groups Gv, v ∈ V and the edges e ∈ E,

subject to the relations ē = e−1 and exeē = xē, x ∈ Ge.



CHAPTER 2. PRELIMINARIES 17

Let c be a path of length n in Γ and let e1, · · · , en be the edges of c, put vi = o(ei+1) = t(ei).

A word of type c in F(G, Γ) is a pair (c, x), where x = (x0, x1, · · · , xn) with xi ∈ Gvi . The

element

|c, x|= x0e1x1e2 · · ·enxn ∈ F(G, Γ)

is said to be associated with the word (c, x). When n = 0, we have |c, x|= x0.

Set

Ge
e := {xe, x ∈ Ge} ⊆ Gt(e), e ∈ E.

The element |c, x| (or the word (c, x)) is called reduced if either n = 0 or n≥ 1 and xi /∈ Gei
ei

whenever ei+1 = ēi for some 1≤ i≤ n.

Fix a vertex v ∈ V , the fundamental group (G, Γ) at v, denoted by π1(G, Γ, v), is the set

of all elements of the form |c, x| in the group F(G, Γ), where c is a path whose origin and

terminus are both v. When G is the trivial graph of groups I, i.e. Gv = Ge = {ε} (Here and

in the sequel, we write ε for the identity in a group), the group π1(I, Γ, v) coincides with the

fundamental group (in the usual sense) π1(Γ, v) of the graph Γ at the point v. In general, the

canonical morphism G→ I extends to a homomorphism

π1(G, Γ, v)→ π1(Γ, v).

This homomorphism is surjective and its kernel is the normal subgroup of π1(G, Γ, v) gen-

erated by the groups Gv.

Let T be a maximal subtree of the graph Γ, the fundamental group π1(G, Γ, T ) of (G, Γ) at

T is defined as the quotient of F(G, Γ) by the normal subgroup generated by all the edges
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e ∈ T . Let A be an orientation of E \T , i.e.,

E \T = A∪ Ā,

then the fundamental group π1(G, Γ, T ) is given by the groups Gv, v ∈ V and A, subject to

the relations xe = xē for all e ∈ T and all x ∈Ge, and ayaa−1 = yā for all a ∈ A and all y ∈Ga.

Examples.

(i) If (G, T ) is a tree of groups with Ge = {ε} for all edges e∈ T , then the fundamental group

π1(G, T, T ) is exactly the free product of all the groups Gv, v ∈V .

(ii) If Γ is a bouquet of circles with one unique vertex and (G, Γ) is a graph of groups such

that Gv ∼= Z for the unique vertex v ∈V and Ge ∼= Z for all edges e ∈ E, then the fundamental

group π1(G, Γ, T ) is exactly a generalised Baumslag-Solitar group. That is,

G = GBS(N, mi, ni) =< ai, b | aibmi = bniai, mi, ni ∈ Z,1≤ i≤ N, N = ]A > .

In particular, the fundamental group π1(G, Γ, T ) is the Baumslag-Solitar group if N = ]A =

1.

The following proposition comes from [Ser80, p44].

Proposition 2.1.3. Let (G, Γ) be a graph of groups with Γ being a connected nonempty

graph, let v∈V and let T be a maximal subtree of Γ. The canonical quotient map F(G, Γ)→

π1(G, Γ, T ) induces an isomorphism of π1(G, Γ, v) onto π1(G, Γ, T ).
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Every element in π1(G, Γ, T ) (T -word) is of the form

y = x0
1 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km
,

where xi
j ∈ Gvi

j
and ai ∈ A∪ Ā. Let [v, w] be the geodesic path from the vertex v to the vertex

w in T , define

E (y) := d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·e1

k1−1x1
k1

d2x2
1e2

1 · · ·em−1
km−1−1xm−1

km−1
dmxm

1 em
1 · · ·em

km−1xm
km

dm+1,

where ei
j = [vi

j, vi
j+1], di = [vi−1

ki−1
, o(ai)]ai[t(ai), vi

1], 1 ≤ i ≤ m, d0 = [v, v0
1] and dm+1 =

[vm
km
, v]. Then E (y) is an element in π1(G, Γ, v) (v-word). A T -word y is called reduced if the

corresponding v-word E (y) is reduced. Define the length of the T -word y by `(y) := `(E (y)).

Given an v-word x = x0e1x1e2 · · ·enxn, define I (x) as the T -word obtained from x by delet-

ing all ei with ei ∈ T and xi with xi = ε .

Corollary 2.1.4. The maps E and I induce a bijection between reduced T -words and re-

duced v-words.

2.2 Reduced semigroup C∗-algebras as groupoid C∗-algebras

In this section, I will describe reduced semigroup C∗-algebras as groupoid C∗-algebras. Here

I assume the readers have a knowledge of some basics in inverse semigroups, partial dynam-

ical systems and groupoids. These concepts and most of the content in this section can be

found in [CELY17].

Let P be a left cancellative semigroup, the partial bijection P→P, x 7→ px extends uniquely to
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an isometry Vp : `2P→ `2P. This assignment p 7→Vp is called the left regular representation

of P and the reduced semigroup C∗-algebra C∗
λ
(P) is defined to be the smallest subalgebra of

L (`2P) containing {Vp, p ∈ P}.

The inverse hull of P, denoted by Il(P), is the smallest semigroup of partial isometries on `2P

containing the isometries {Vp, p ∈ P} and their adjoints {V ∗p , p ∈ P}. Alternatively, Il(P)

can be described as the smallest semigroup of partial bijections on P containing the partial

bijections {P→ P, x 7→ px, p∈ P} (denoted by p) and their inverses {P→ P, px 7→ x, p∈ P}

(denoted by p−1). This allows us to regard P as a subsemigroup of Il(P). Furthermore, if P is

a subsemigroup of a group G, then there is a unique partial homomorphism σ : Il(P)×→ G

identical on P, where Il(P)× := Il(P)\{0}.

In the case of partial bijections, every idempotent in Il(P) is a partial identity on P and hence

is given by its domain and image. The idempotents in Il(P) are called the constructible right

ideals of P, whose collection is denoted by JP. It is easy to see that JP is an abelian

semigroup closed under intersection of sets. Indeed, we have such a concrete expression as

follows:

JP = {pn · · ·q−1
1 p1P : pi, qi ∈ P}∪{q−1

n pn · · ·q−1
1 p1P : pi, qi ∈ P}.

Definition 2.2.1. A left cancellative semigroup P is said to satisfies the independence condi-

tion if X , Xi, 1≤ i≤ n ∈JP with X = ∪1≤i≤nXi yields X = Xi for some 1≤ i≤ n.

If P is right LCM, i.e. for all p, q ∈ P, either pP∩qP = /0 or pP∩qP = rP for some r ∈ P,

then every nonempty constructible right ideal of P is principal. That is,

J ×
P = {pP, p ∈ P}.
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Furthermore, P satisfies independence if P contains an identity element.

Its character space ĴP is defined as follows

ĴP = {χ : JP→{0, 1} nonzero semigroup homomorphism}

and is endowed with the pointwise convergence topology.

When P embeds into a group G, G has a partial action on the character space ĴP. Every

g ∈ G acts on

Ug−1 = {χ ∈ ĴP : χ(x−1x) = 1 for some x ∈ Il(P)\{0} with σ(x) = g}

and gχ = χ(x−1t x) for χ ∈Ug−1 and x ∈ Il(P)\{0} with χ(x−1x) = 1 and σ(x) = g.

In the case of partial isometries, for every partial isometry V ∈ Il(P) \ {0} and every x ∈ P,

either V δx = 0 or V δx = δgx, where g = σ(V ). Set

Dλ (P) :=C∗({1X , X ∈JP})⊆C∗
λ
(P),

where 1X ∈C∗
λ
(P)∩ `∞(P) is the characteristic function on X ⊆ P, and define

ΩP := Spec(Dλ (P)),

then G has a partial action on ΩP. For every g ∈ G, let

Ug−1 := {χ ∈ΩP : χ(V ∗V ) = 1 for some V ∈ Il(P)\{0} with σ(V ) = g}

and gχ = χ(V ∗tV ) for χ ∈Ug−1 and V ∈ Il(P)\{0} with χ(V ∗V ) = 1 and σ(V ) = g.
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The following proposition comes from [CELY17].

Proposition 2.2.2. (i) ΩP can be identified with the subspace of ĴP consisting of all char-

acters χ with the property that for all X , Xi, 1≤ i≤ n ∈JP with X = ∪1≤i≤nXi, χ(X) = 1

implies χ(Xi) = 1 for some 1≤ i≤ n.

(ii) The identification above is compatible with the partial actions of G on ΩP and ĴP. In

particular, ΩP is an G-invariant subspace of ĴP.

Remark 2.2.3. If P is right LCM and contains an identity element, then P satisfies indepen-

dence and hence ΩP = ĴP.

Let G be an étale locally compact groupoid and let r, s be the range and source map. Cc(G )

is a ∗-algebra with respect to the multiplication

( f ∗g)(γ) = ∑
s(β )=s(γ)

f (γβ
−1)g(β )

and the involution

f ∗(γ) = f (γ−1).

For every x ∈ G 0, define a ∗-representation πx of Cc(G ) on `2(s−1(x)) by setting

πx( f )(ξ ) = f ∗ξ .

Alternatively, we can define

πx( f )δγ = ∑
s(α)=r(γ)

f (α)δαγ ,
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to highlight why this representation plays the role of the left regular representation attached

to left multiplication.

Set

π =⊕x∈G 0πx,

then the reduced groupoid C∗-algebra C∗r (G ) is defined by

C∗r (G ) := π(Cc(G ))⊆L (⊕x`
2(s−1(x))).

Utilising a reduced crossed product attached to a partial dynamical system as a bridge, we

can write the reduced semigroup C∗-algebra C∗
λ
(P) as a reduced groupoid C∗-algebra. This

result also comes from [CELY17].

Theorem 2.2.4. Let P be a subsemigroup of a group G, then the reduced semigroup C∗-

algebra C∗
λ
(P) is isomorphic to the reduced groupoid C∗-algebra C∗r (GnΩP) attached to the

transformation groupoid GnΩP.

2.3 K-theory

In this section, I will present briefly some formulae in general K-theory, K-theory for semi-

group C∗-algebras and K-theory for partial crossed products, which will be used later in the

thesis. Most of them will come from [CEL13], [CELY17], [Li20] and [RLL00], which you

can refer to for more details.
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Let A be a C∗-algebra and let

Pn(A) := P(Mn(A)) and P∞(A) := t∞
n=1 Pn(A),

where t is a disjoint union.

Define a relation ∼0 and a binary operation ⊕ on P∞(A) as follows. Suppose that p is a

projection in Pn(A) and q is a projection in Pm(A), then p∼0 q if there exists v ∈Mm, n(A)

such that p = v∗v and q = vv∗. And

p⊕q := diag(p, q) =

p 0

0 q

 .

Set

D(A) := P∞(A)/∼0

and define addition on D(A) by

[p]D +[q]D = [p⊕q]D , p, q ∈P∞(A),

where [p]D ∈ D(A) denotes the equivalence class containing p. It is easy to check that

(D(A), +) is an abelian semigroup.

If A is unital, K0(A) is defined to be the Grothendick group of D(A), i.e.,

K0(A) = G(D(A)).

That is,

K0(A) = {[p]0− [q]0 : p, q ∈P∞(A)},
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where [p]0 is the equivalence class of [p]D with respect to the equivalent relation ∼: [p]D ∼

[q]D if [p]D +[r]D = [q]D +[r]D for some [r]D ∈D(A).

In general, consider the split exact sequence

0 A Ã C 0ι π

with the split section λ : C→ Ã. Here Ã is obtained by adjoining a unit to the C∗-algebra A.

Define the scalar mapping s to be

s = λ ◦π : Ã→ Ã, a+α1 7→ α1, a ∈ A, α ∈ C.

If A is not unital, define K0(A) to be the kernel of the homomorphism K0(π) : K0(Ã)→

K0(C).

No matter A is unital or not, K0(A) has the following standard picture,

K0(A) = {[p]0− [s(p)]0 : p ∈P∞(Ã)}.

Let A be a unital C∗-algebra and let

Un(A) := U (Mn(A)) and U∞(A) := t∞
n=1 Un(A),

where t is a disjoint union.
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Define a binary operation ⊕ on U∞(A) by

u⊕ v := diag(u, v) =

u 0

0 v

 .

Define a relation ∼1 on U∞(A) as follows. Let u ∈ Un(A) and v ∈ Um(A), then u ∼1 v if

there exists a positive integer k ≥max{m, n} such that u⊕1k−n is homotopic to v⊕1k−m in

Uk(A). Here 1l is the identity matrix in Ml(A).

For every C∗-algebra A, define

K1(A) := U∞(Ã)/∼1 .

Let [u]1 ∈ K1(A) be the equivalence class containing u in U∞(Ã). Define a binary operation

+ on K1(A) by

[u]1 +[v]1 = [u⊕ v]1, u, v ∈U∞(Ã).

Both K0 and K1 are functors from the category of C∗-algebras to the category of abelian

groups. They preserve half exactness, split exactness, direct sum and continuity and have

stability.

The suspension of a C∗-algebra A is

SA := { f ∈C([0, 1], A), f (0) = f (1) = 0}=C0((0, 1), A).

S is an exact functor from C∗-algebras into itself. And we have K1(A)∼= K0(SA).
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The higher K-functors are defined by induction,

Kn(A) = Kn−1(SA), n≥ 2.

Let

0−→ I
ϕ−→ A

ψ−→ B−→ 0

be a short exact sequence of C∗-algebras and let u ∈ Un(B̃), there exist v ∈ U2n(Ã) and

p ∈P2n(Ĩ) such that

ϕ̃(p) = v

1n 0

0 0

v∗, ψ̃(v) =

u 0

0 u∗

 .

The index map δ1 : K1(B)→ K0(I) is given by

δ1([u]1) = [p]0− [s(p)]0.

By exactness of the functor S, we have the following short exact sequence of C∗-algebras,

0−→ SnI
Snϕ−→ SnA

Snψ−→ SnB−→ 0.

So we can also define the higher index map δn+1 : Kn+1(B)→ Kn(I) via the index map

K1(SnB)→ K0(SnI).

For K-functors, we have the following results ([RLL00]).

Theorem 2.3.1. (i) (Bott Periodicity) Kn+2(A) = Kn(A) for all n ∈ N and all C∗-algebras A.
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(ii) (The Six Term Exact Sequence) For every short exact sequence of C∗-algebras

0−→ I
ϕ−→ A

ψ−→ B−→ 0,

the associated six term sequence

K0(I) K0(A) K0(B)

K1(B) K1(A) K1(I)

K0(ϕ) K0(ψ)

δ0δ1

K0(ψ) K0(ϕ)

is exact. Here δ0 is the composition of the higher index map δ2 : K2(B)→ K1(I) and the

isomorphism map K0(B)→ K2(B).

All the above are about general K-theory, and now we present some K-theory formulae for

semigroup C∗-algebras and partial crossed products. The following definition can be found

in [Definition 5.8.1, CELY17].

Definition 2.3.2. Let P be a subsemigroup of a group G, we say that P ⊆ G is Toeplitz (or

satisfies Toeplitz condition) if for all g ∈ G with g−1P∩P 6= /0, the partial bijection

g−1P∩P→ P∩gP, x 7→ gx

lies in the inverse hull Il(P) of P.

Let P be a subsemigroup of a group G such that P ⊆ G is Toeplitz. Assume that P satis-

fies independence and G satisfies the Baum-Connes conjecture with coefficients (see [p110,
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CELY17]). Let J ×
P be the collection of all nonempty contructible right ideals of P and let

J ×
P⊆G = G ·J ×

P .

Choose a set of representatives X⊆J ×
P for the G-orbits G\J ×

P⊆G and define, for X ∈ X,

GX := {g ∈ G, gX = X},

and

ιX : C∗
λ
(GX)→C∗

λ
(P), λg 7→ λg1X ,

where we identify C∗
λ
(P) with the crossed product DP⊆G or G.

We have the following theorem on K-theory for semigroup C∗-algebras, which can be found

in [Theorem 5.10.1, CELY17] or [Corollary 1.3, Li20].

Theorem 2.3.3. In the same setting above, we conclude

⊕X∈X(ιX)∗ : ⊕X∈X K∗(C∗λ (GX))→ K∗(C∗λ (P))

is an isomorphism.

If P contains an identity element, then we have J ×
P = {pP, p ∈ P} and thus J ×

P⊆G has only

one orbit. We choose X= {P} and get

ι∗ : K∗(C∗λ (P
∗))→ K∗(C∗λ (P)),
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where P∗ ⊆ P is the subgroup consisting of all units. In particular, if P∗ is trivial, then we get

K∗(C∗λ (P))∼= K∗(C).

The following theorem on K-theory for partial crossed products comes from [Theorem 1.2,

Li20].

Theorem 2.3.4. Let G be a discrete and countable group and let X be a second countable

totally disconnected locally compact Hausdorff space such that Gy X is a partial dynamical

system, given by Ug−1→Ug, x 7→ g ·x. Assume that GyX admits a G-invariant regular basis

V for the compact open subsets of X and that G satisfies the Baum-Connes conjecture with

coefficients. Then the K-theory of the reduced partial crossed product of G y X is given by

K∗(C0(X)or G)∼=
⊕

[V ]∈G\V ×
K∗(C∗λ (GV )),

where G\V × denotes the set of orbits under the G-action on the non-empty elements V × of

V , and GV := {g ∈ G, g ·V =V}.

In the theorem above, a G-invariant regular basis V for the compact open subsets of X is a

family V of compact open subsets of X such that for all g ∈ G, Vg−1 := {V ∈ V , V ⊆Ug−1}

is a regular basis for the compact open subsets of Ug−1 and g ·Vg−1 = Vg. And here is the

definition for a regular basis, which comes from [Definition 2.9, CEL13].

Definition 2.3.5. Let X be a totally disconnected locally compact Hausdorff space. A family

V of non-empty compact open subsets of X is called a regular basis for the compact open
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sets of X if the following are satisfied:

(i) V ∪{ /0} is closed under finite intersections.

(ii) V generates the compact open sets of X by finite intersections, finite unions and comple-

mentary sets.

(iii) V is independent. That is, if V, V1, · · · , Vn are elements in V with V = ∪1≤i≤nVi, then

we have V =Vi for some 1≤ i≤ n.



Chapter 3

Graphs of monoids

We explained Serre’s definition of graphs of groups in the last chapter and in this chapter we

want to extend the notion to graphs of monoids. Moreover, we shall discuss the right LCM

property of the graphs of monoids as it is needed later in the thesis.

3.1 Normal Form

Let (G, Γ) be a graph of groups with Γ connected and let Gv, v ∈ V be totally ordered with

positive cone Pv, i.e., Gv =Pv∪P−1
v and Pv∩P−1

v = {ε}. For e∈E, define Pe := {g∈Ge, ge ∈

Pt(e)}. In general, it is difficult to find relations between Pe and Pē. In the thesis, We only

focus on the case where Pe = Pē for all e ∈ T and either Pe = Pē or Pe = P−1
ē for all e ∈ A.

Define A+ := {e ∈ A, Pe = Pē} and A− := {e ∈ A, Pe = P−1
ē }, then we have Pē

e ⊆ Po(e) for all

e ∈ A+ and Pē
e ⊆ P−1

o(e) for all e ∈ A−.

A v-word x = x0e1x1e2 · · ·enxn ∈ π1(G, Γ, v) is called to be positive if xi ∈ Pvi and ei ∈ E,

32
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where vi = t(ei) = o(ei+1), 0 ≤ i ≤ n. π
+
1 (G, Γ, v) is defined to be all the elements of

π1(G, Γ, v), which can be written as a positive v-word.

Let GT be the direct limit of the graph of groups (G, T ), then GT is the subgroup of

π1(G, Γ, T ) generated by Gv. Let π
+
1 (G, Γ, T ) be the subsemigroup of π1(G, Γ, T ) gener-

ated by Pv and A, and let PT be the subsemigroup of GT generated by Pv.

A T -word in compact form is a word of the form y0a1y1a2 · · ·anyn with yi ∈GT and ai ∈A∪ Ā.

It is called positive if yi ∈ PT and ai ∈ A. If we write yi = yi
1 · · ·yi

ki
, 0 ≤ i ≤ n with yi

j ∈ Gvi
j

for some vi
j ∈V and 1≤ j ≤ ki, then we get a T -word in the general normal form. It is called

positive if yi
j ∈ Pvi

j
and ai ∈ A for all 1≤ j ≤ ki and all 0≤ i≤ n. It is easy to see that every

element in π
+
1 (G, Γ, T ) can be expressed as a positive T -word (in compact form).

In this thesis, we make the convention that all the graphs are countable and all the groups

are discrete and countable unless otherwise explicitly stated. We will focus on the fundamen-

tal group π1(G, Γ, T ) and the fundamental monoid π
+
1 (G, Γ, T ). For brevity, we also call

the fundamental groups by graphs of groups and call the fundamental monoids by graphs of

monoids. Set G := π1(G, Γ, T ) and P := π
+
1 (G, Γ, T ).

Every element in G can be written as a word in {Gv}v∈V ∪A, and vise versa. Due to the

relations, two different words can represent the same group element. So we make the follow-

ing convention: for two T -words x, x′, we write x = x′ if they represent the same element in

G and write x≡ x′ if they are identical words. Similarly, for v-words y, y′, we write y = y′ if

they represent the same element in π1(G, Γ, v) and write y≡ y′ if they are identical words.

In the above setting, we have the following proposition.
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Proposition 3.1.1. (i) The monoid P is generated by Pv, v ∈V and A, subject to the relation

xe = xē for all e ∈ T and x ∈ Pe, axa = xāa for all a ∈ A+ and x ∈ Pa, and (xā)−1axa = a for

all a ∈ A− and x ∈ Pa.

(ii) Every element in P is represented by a reduced positive T -word.

Proof. (i) It follows directly from the definition.

(ii) Let y be a positive T -word with

E (y) = x0e1x1e2 · · ·enxn,

we prove the assertion by induction on n = `(E (y)).

If E (y) is not reduced, then we have n≥ 1 and there exists 0≤ l ≤ n−1 such that el+1 = ēl

and xl ∈ Pel
el , i.e., xl = zel for some z ∈ Pel . el+1 = ēl implies el+1, el ∈ T since y and E (y)

are positive and do not contain elements in Ā. Then we have

E (y) = x0 · · ·elxlel+1 · · ·enxn = x0 · · ·zēl · · ·enxn,

arriving at a word with smaller length. This finishes the induction and thus y can be repre-

sented by a reduced positive T -word.

For different words representing the same group element, we have the following lemma.

Lemma 3.1.2. (i) Let x = x0e1x1e2 · · ·enxn and x′ = x′0e′1x′1e′2 · · ·e′nx′n be two reduced v-words

with xl ∈ Gvl and x′l′ ∈ Gv′
l′

for all l, l′. If x = x′, then we have n = n′, el = e′l , and

x0e1x1e2 · · ·xl−1elz = x′0e1x′1e2 · · ·x′l−1el
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for some z ∈ Gel
el and all 1≤ l ≤ n.

(ii) Let y = y0a1y1a2 · · ·amym and y′ = y′0a′1y′1a′2 · · ·a′m′y
′
m′ be two T -words in compact form

with yk, y′k′ ∈ GT and ak, a′k′ ∈ A. If y = y′, then we have m = m′, ak = a′k, and

y0a1y1a2 · · ·yk−1akz = y′0a1y′1a2 · · ·y′k−1ak

for some z ∈ Gak
ak and all 1≤ k ≤ m.

Proof. (i) Recall that π1(G, Γ, v) is a subgroup of F(G, Γ), which is generated by Gv, v ∈V

and E, subject to the relation ē = e−1 and exee−1 = xē for all e ∈ E and all x ∈ Ge. x = x′

implies that we can get one word from the other by utilisation of the relations. Hence the

conclusion follows from the assumption that x and x′ are reduced.

(ii) The group G is generated by Gv, v∈V and A, subject to the relation xē = xe and aya = yāa

for all e ∈ T , all x ∈ Ge, all a ∈ A and all y ∈ Ga. Similarly as in part (i), the conclusion fol-

lows since we can get one word from the other by utilisation of the relations.

Corollary 3.1.3. Gv∩P = Pv for all v ∈V .

Proof. Let y = y0a1y1a2 · · ·amym ∈ P be a positive word in compact form and let y′ ∈ Gv

for some v ∈ V . If y = y′, then we have m = 0 and y = y0 ∈ PT by Lemma 3.1.2. Assume

y = y0 = y0
1 · · ·y0

n with y0
l ∈ Pvl , 1 ≤ l ≤ n, by y = y′, we conclude that we can get y′ by

utilisation of the relation xe = xē for all e ∈ T and x ∈ Ge. Noting Pe
e ⊆ Pt(e) and Pe = Pē for

all e ∈ T , we have y′ ∈ Pv.
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In order to study the relation between the reduced word representing the multiplication of two

group elements and the reduced words representing the two elements, we need to introduce

the following notion.

Definition 3.1.4. Let

y = x0
1 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

be a T -word, where xi
j ∈ Gvi

j
and ai ∈ A. And let

E (y) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·e1

k1−1x1
k1

d2x2
1e2

1 · · ·em−1
km−1−1xm−1

km−1
dmxm

1 em
1 · · ·em

km−1xm
km

dm+1,

where ei
j = [vi

j, vi
j+1], di = [vi−1

ki−1
, o(ai)]ai[t(ai), vi

1], 1 ≤ i ≤ m, d0 = [v, v0
1] and dm+1 =

[vm
km
, v]. y is called properly reduced if all of the following are satisfied:

(a) y is reduced;

(b) If e0
1 starts with e ∈ T , then x0

1 /∈ Gē
e;

(c) If em
km−1 ends with e ∈ T , then xm

km
/∈ Ge

e.

Remark 3.1.5. In the same setting as in the Definition above, define

l(y) := ∑
1≤ j<ki, 0≤i≤m

`(ei
j)+ ∑

1≤i≤m
`(di).

Note that if y is reduced but not properly reduced, then we have m≥ 1 and l(y)≥ 1.

Lemma 3.1.6. Every element in G is represented by a properly reduced T -word.
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Proof. Every element in G is represented by a T -word

y = x0
1 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

such that

E (y) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·e1

k1−1x1
k1

d2x2
1e2

1 · · ·em−1
km−1−1xm−1

km−1
dmxm

1 em
1 · · ·em

km−1xm
km

dm+1

is a reduced v-word. We now proceed inductively on l(y).

When l(y) = 0, y is properly reduced.

Now assume l(y) ≥ 1 and assume e0
1 starts with e ∈ T and x0

1 ∈ Gē
e. That is, e0

1 = ee′ for a

path e′ ⊆ T and x0
1 = zē for some z ∈ Ge. Then we have

y≡ zēx0
2 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

= zex0
2 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

:= y′
(3.1)

and

E (y′)= d0ezee′x0
2 · · ·e0

k0−1x0
k0

d1x1
1e1

1 · · ·e1
k1−1x1

k1
d2x2

1e2
1 · · ·em−1

km−1−1xm−1
km−1

dmxm
1 em

1 · · ·em
km−1xm

km
dm+1.

It is easy to see that l(y′)< l(y). And we can apply the induction hypothesis.

When em
km−1 ends with e ∈ T and xm

km
∈ Ge

e, the argument is similar.

Therefore, we prove by induction every element in G is represented by a properly reduced

T -word.

Lemma 3.1.7. Let y be a properly reduced positive word with l(y)≥ 1, then we have y /∈ Pv

for any v ∈V .
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Proof. Let

y = x0
1 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

be a properly reduced positive word and let y′ ∈ Pv for some v ∈ V . If y = y′, then we have

m = 0 and y≡ x0
1 · · ·x0

k0
∈ PT by part (ii) of Lemma 3.1.2. Then we have

E (y) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1

and E (y′) = d′0y′d′1.

Since E (y) = E (y′), we have by part (i) of Lemma 3.1.2,

`(d′0)+ `(d′1) = `(d0)+ `(d1)+ l(y).

So we get either `(d′0)> `(d0) or `(d′1)> `(d1).

Assume, without loss of generality, `(d′1) > `(d1), and assume e0
k0−1 ends with e ∈ T and

e0
k0−1 = e′e, we have by part (i) of Lemma 3.1.2,

d0x0
1e0

1 · · ·e0
k0−2x0

k0−1e′z = d′0y′d′′1

for some z ∈ Go(e), where d′′1 ⊆ d′1 is a sub-path of length `(d′1)− `(d1)−1 starting from the

vertex v. Coming back to T -words, we have

x0
1 · · ·x0

k0−1z = y′

and hence z = x0
k0

, contradicting with the fact x0
k0

/∈ Ge
e.

The following result is a straightforward consequence of Lemma 3.1.7.
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Corollary 3.1.8. Let

y = y0y1 · · ·ym, yk ∈ Pvk , 0≤ k ≤ m

and

y′ = y′0y′1 · · ·y′m′, y′k′ ∈ Pv′
k′
, 0≤ k′ ≤ m′

be properly reduced positive words in PT . If y = y′, then l(y) = l(y′), v0 = v′0 and vm = v′m′ .

Lemma 3.1.9. Let

y = x0
1 · · ·x0

k0
a1x1

1 · · ·x1
k1

a2x2
1 · · ·xm−1

km−1
amxm

1 · · ·xm
km

and

y′ = z0
1 · · ·z0

l0a′1z1
1 · · ·z1

l1a′2z2
1 · · ·zn−1

ln−1
a′nzn

1 · · ·zn
ln

be properly reduced positive words with

E (y) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·e1

k1−1x1
k1

d2x2
1e2

1 · · ·em−1
km−1−1xm−1

km−1
dmxm

1 em
1 · · ·em

km−1xm
km

dm+1,

E (y′) = d′0z0
1 f 0

1 · · · f 0
l0−1z0

l0d′1z1
1 f 1

1 · · · f 1
l1−1z1

l1d′2z2
1 f 2

1 · · · f n−1
ln−1−1zn−1

ln−1
d′mzn

1 f n
1 · · · f n

ln−1zn
lnd′n+1.

Then yy′ is a reduced positive word unless xm
km
∈ Pum

km
, z0

1 ∈ Pv0
1
, em

km−1 ends with e ∈ T and f 0
1

starts with f ∈ T such that um
km

= v0
1, e = f̄ and xm

km
z0

1 ∈ Pe
e .

Proof. If um
km
6= v0

1, we have `([um
km
, v0

1])≥ 1 and hence

E (yy′) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·em

km−1xm
km
[um

km
, v0

1]z
0
1 f 0

1 · · · f 0
l0−1z0

l0d′1z1
1 f 1

1 · · · f n
ln−1zn

lnd′n+1

is reduced.
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If um
km

= v0
1, then

E (yy′) = d0x0
1e0

1 · · ·e0
k0−1x0

k0
d1x1

1e1
1 · · ·em

km−1xm
km

z0
1 f 0

1 · · · f 0
l0−1z0

l0d′1z1
1 f 1

1 · · · f n
ln−1zn

lnd′n+1.

Assume em
km−1 ends with e and f 0

1 starts with f . If e 6= f̄ , E (yy′) is reduced. If e = f̄ and

xm
km

z0
1 /∈ Pe

e , E (yy′) is also reduced.

Remark 3.1.10. If we assume further l(y) ≥ 1 and l(y′) ≥ 1 in Lemma 3.1.9, then yy′ is

properly reduced whenever it is reduced. Without this assumption, it does not need to be the

case.

Lemma 3.1.11. Let

x = x0 · · ·xk0a1xk0+1 · · ·xk0+k1a2 · · ·amxk0+···+km−1+1 · · ·xk0+···+km−1+km (3.2)

be a positive word and y another positive word. Set

M := ∑
0≤i≤m

ki,

then there exists a properly reduced word

z = z0 · · ·zl0d1zl0+1 · · ·zl0+l1d2 · · ·dnzl0+···+ln−1+1 · · ·zl0+···+ln−1+ln

representing xy such that z(M) ∈ xP, where

z(M) := z0 · · ·zl0d1zl0+1 · · ·zl0+l1d2 · · ·d jzl0+···+l j−1+1 · · ·zM
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if

∑
0≤i≤ j−1

li < M ≤ ∑
0≤i≤ j

li

and z(M) := xy otherwise.

Proof. (i) We may assume the word representing x in the equation (3.2) and

y = y0 · · ·yk′0
a′1yk′0+1 · · ·yk′0+k′1

a′2 · · ·

are properly reduced. We prove the claim inductively on l(y).

If xy is reduced and l(x), l(y) ≥ 1, then xy is properly reduced. Take simply z = xy, it

follows that z(M) ∈ xP.

If xy is reduced and l(y) = 0, either xy′0 is properly reduced for some y′0 ∈ Pv′0
and y′0 = y0 or

∑0≤i≤n li ≤M. In both cases, we have z(M) ∈ xP.

If xy is reduced and l(x) = 0, then x = x0 and M = 0. In this case, z(0) = x′0 for some x′0 ∈ Pu′0

and x′0 = x0 or z(0) = x0y0 · · ·y j with x0 ∈ Pv′0
, x0y0 · · ·yi ∈ Pēi

ei , 0≤ i < j and x0y0 · · ·y j /∈ Pē j
e j ,

where yi ∈ Pvi and ei is the beginning edge of the path [vi, vi+1], 0≤ i≤ j.

If xy is not reduced, it follows from Lemma 3.1.9 that xMy0 ∈ Pe
e , where Pe

e is as in Lemma

3.1.9. In this case, we define x′ = xy0 and y′ = y1 · · ·yk′0
a′1yk′0+1 · · ·yk′0+k′1

a′2 · · · , then xy = x′y′

with l(y′)< l(y). By induction hypothesis, we can get a properly reduced word z representing

x′y′ such that z(M) ∈ x′P⊆ xP.

Corollary 3.1.12. Let x, y∈P be two positive reduced words and let ` := `(x). Then there ex-
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ists a reduced positive v-word z= z0e1z1e2 · · ·enzn representing xy such that z0e1z1e2 · · ·e`z` ∈

xP.

Proof. We may assume x, y are properly reduced. If xy is reduced, let z = E (xy) and we can

write E (x) = x′x′′, E (y) = y′y′′ such that `(x′)≤ `(x), I (x′) = x and E (xy) = x′y′′. The claim

follows from Lemma 3.1.11.

If xy is not reduced, it follows from Lemma 3.1.9 that xMy0 ∈ Pe
e , where Pe

e is as in Lemma

3.1.9 and xM is as in Lemma 3.1.11. In this case, xy = (xy0)y′′′ for some properly reduced

positive word y′′′ with l(y′′′) < l(y). We proceed inductively on l(y) and it suffices to treat

the case where l(y) = 0, i.e., y = y0. Then we have x = x′′′xM and xy = x′′′(xMy0) for some

properly reduced positive word x′′′ with `(xy)≤ `. Therefore, z0e1z1e2 · · ·e`z` = z ∈ xP.

3.2 The right LCM property

In this section, we assume we are in the same setting as in Section 3.1. Our goal is to study

when the monoid P is right LCM, i.e., for all p, q∈ P, either pP∩qP = /0 or pP∩qP = rP for

some r ∈ P. For convenience, we introduce a partial order ≺ on P, given by p≺ q if q ∈ pP.

We denote by p∨q the (necessarily unique) minimal element r ∈ P satisfying p,q≺ r if such

an element exists. In this language, P is right LCM if and only if for all p, q ∈ P, either

pP∩qP = /0 or p∨q exists.

Given e ∈ E and p ∈ P, we set

p−1Pē
ē := {x ∈ P, px ∈ Pē

ē }.
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Definition 3.2.1. We say condition (LCM) is satisfied if for all e ∈ E, p ∈ Po(e), either

p−1Pē
ē = /0 or p−1Pē

ē = qPē
ē for some q ∈ Po(e). In the latter case, we define p−1, e := q.

Remark 3.2.2. Let e ∈ E, p ∈ Po(e) and q ∈ Pē
ē p, then we have p−1, e = q−1, e.

The main result of this section reads as follows.

Proposition 3.2.3. P is right LCM if condition (LCM) is satisfied.

Before proving Proposition 3.2.3, we need a couple of lemmas. In the following, we always

assume condition (LCM) is satisfied.

Lemma 3.2.4. For all e ∈ E and p ∈ P, either p−1Pē
ē = /0 or p−1Pē

ē = qPē
ē for some q ∈ P.

Proof. Note that for all e ∈ E, p, x ∈ P, px ∈ Pē
ē implies p, x ∈ PT . So we can work in PT .

We first consider the case p ∈ Pv for some v ∈ V . Let [v, o(e)] = d1 · · ·dk and set dk+1 := e.

Define p0 := p, q1 := p−1, d1 if p−1Pd̄1
d̄1
6= /0, and for 1≤ i≤ k, pi := pq1 · · ·qi, qi+1 := p−1, di+1

i

if p−1
i Pd̄i+1

d̄i+1
6= /0. We claim that p−1Pē

ē 6= /0 if and only if p−1
i Pd̄i+1

d̄i+1
6= /0 for all 0 ≤ i ≤ k, and

that p−1Pē
ē = q1 · · ·qk+1Pē

ē in that case, i.e., p−1, e = q1 · · ·qk+1.

It is easy to see that p−1Pē
ē 6= /0 if p−1

i Pd̄i+1
d̄i+1
6= /0 for all 0 ≤ i ≤ k. We now prove the con-

verse and that p−1, e = q1 · · ·qk+1 inductively on ` := `([v, o(e)]). The case where ` = 0

follows directly from condition (LCM). Now assume ` ≥ 1, suppose p−1Pē
ē 6= /0 and take

x ∈ P with px ∈ Pē
ē .
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By Lemma 3.1.9, there exist positive words wm, xm, ym ∈ PT and fm ∈ T for 1≤ m≤ n such

that w1 ≡ p, x = x1y1, wm = wm−1xm−1, ym−1 = xmym, wm,xm ∈ Pvm , wmxm ∈ P fm
fm ⊆ Pvm+1 ,

o( fm) = vm, t( fm) = vm+1, and wn ≡ px. By construction, we have wm = px1 · · ·xm−1,

x = x1 · · ·xmym and wmxmym = px.

Let M ∈ {1, · · · , n} be maximal such that vm = v. Then we must have fM = d1 as [v, o(e)]

starts with d1. Set x′ := x1 · · ·xM, x′′ = yM, then we have px′ = wMxM ∈ Pd1
d1

= Pd̄1
d̄1

, which im-

plies p−1Pd̄1
d̄1
6= /0. Condition (LCM) implies x′= p−1, d1y= q1y for some y∈Pd̄1

d̄1
. Hence px=

px′x′′ = (pq1)yx′′ ∈ Pē
ē , p1 = pq1 ∈ Pd1

d1
⊆ Pt(d1) and yx′′ ∈ p−1

1 Pē
ē . Note that `([t(d1, e)])< `,

we have by induction hypothesis p−1
i Pd̄i+1

d̄i+1
6= /0 for all 0 ≤ i ≤ k and p−1, e

1 = q2 · · ·qk+1.

The latter yields yx′′ ∈ q2 · · ·qk+1Pē
ē . Therefore, x = x′x′′ = q1yx′′ ∈ q1q2 · · ·qk+1Pē

ē and

p−1Pē
ē ⊆ q1q2 · · ·qk+1Pē

ē = q1 p−1
1 Pē

ē .

Taking z ∈ p−1
1 Pē

ē , we get pq1z = p1z ∈ Pē
ē and thus q1z ∈ p−1Pē

ē . That is, p−1Pē
ē ⊇ q1 p−1

1 Pē
ē .

Therefore, p−1Pē
ē = q1 p−1

1 Pē
ē and p−1, e = q1 p−1, e

1 = q1q2 · · ·qk+1.

Now let p ∈ PT be arbitrary and let p = p0 · · · pm be a properly reduced positive word with

p j ∈ Pv j . We proceed inductively on l := l(p). The case where l = 0 is dealt with as above.

If l ≥ 1, take x ∈ P with px ∈ Pē
ē and let x = x0 · · ·xn be a properly reduced positive word with

xi ∈ Pwi . It follows from Lemma 3.1.7 that px is not a properly reduced positive word. If

l(x)≥ 1, by Lemma 3.1.9 and Remark 3.1.10, we must have w0 = vm and pmx0 ∈ Pd̄
d̄ , where

d ∈ T is the ending edge of the path [vm−1, vm]. If l(x) = 0, i.e., x≡ x0, then px is a reduced

positive word and thus we can still arrange that w0 = vm and pmx0 ∈ Pd̄
d̄ . In both cases, we

have x0 ∈ p−1
m Pd̄

d̄ . That is, x0 = p−1, d
m x′0 for some x′0 ∈ Pd̄

d̄ . Then

px = p0 · · · pmx0 · · ·xn = p0 · · · pm p−1, d
m x′0 · · ·xn ∈ Pē

ē .
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Set p̃ := p0 · · · pm p−1, d
m , then we have l(p̃) < l(p). The induction hypothesis implies there

exists q̃ ∈ P such that p̃−1Pē
ē = q̃Pē

ē . It follows that x′0 · · ·xn ∈ p̃−1Pē
ē = q̃Pē

ē and thus x =

p−1, d
m x′0 · · ·xn ∈ p−1, d

m q̃Pē
ē . It is now easy to check that p−1Pē

ē = qPē
ē for q := p−1, d

m q̃.

We extend the notation p−1, e introduced in Definition 3.2.1 as follows:

Definition 3.2.5. We denote by p−1, e the element q in Lemma 3.2.4 if p−1Pē
ē 6= /0.

Whenever p−1Pē
ē 6= /0, the element q is unique. In this case, we have p−1Pē

ē = p−1, ePē
ē .

Lemma 3.2.6. Let p ∈ Pv, x ∈ P such that px is represented by a properly reduced positive

word of the form q0q1 · · · with q0 ∈ Pw. Let `([v, w]) ≥ 1 such that [v, w] ends with f ∈ T ,

then x ∈ p−1, f P.

Proof. As in the proof of Lemma 3.2.4, we can use Lemma 3.1.9 to find positive words

wm, xm, ym and fm ∈ T for 1≤ m≤ n such that w1 ≡ p, x = x1y1, wm = wm−1xm−1, ym−1 =

xmym, wm,xm ∈ Pvm , wmxm ∈ P fm
fm ⊆ Pvm+1 , o( fm) = vm, t( fm) = vm+1, and wnyn is a properly

reduced positive word representing px. Here we allow the possibility that xm = /0 or ym = /0.

By construction, we have wm = px1 · · ·xm−1, x = x1 · · ·xmym and wmxmym = px. By Corollary

3.1.8, we get vn = w.

Let M be minimal such that vM = w, then we must have fM−1 = f . As a result, px1 · · ·xM−1 =

wM−1xM−1 ∈ P f̄
f̄ = P f

f . That is, x1 · · ·xM−1 ∈ p−1, f P f̄
f̄ . Therefore, x = x1 · · ·xM−1yM−1 ∈

p−1, f P.
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Looking at the way p−1, f has been constructed in the proof of Lemma 3.2.4, the following

is an immediate consequence.

Lemma 3.2.7. In the situation of Lemma 3.2.6, assume that [v, w] starts with d ∈ T , then

x ∈ p−1, dP.

Let ≺T and ∨T be the analogues of ≺ and ∨ with PT in place of P.

Proposition 3.2.8. Given p, q ∈ PT , pPT ∩ qPT = /0 if and only if pP∩ qP = /0, and p∨T q

exists if and only if p∨q exists. In the latter case, we have p∨T q = p∨q.

Moreover, P is right LCM if and only if PT is right LCM.

Proof. Given p, q ∈ PT , it is clear that pPT ∩qPT 6= /0 implies pP∩qP 6= /0. If pP∩qP 6= /0,

we can find x, y ∈ P with px = qy. Let x = p0d1 p1 · · · and y = q0e1q1 · · · be positive words in

compact form, then we have pp0d1 p1 · · · = qq0e1q1 · · · . By Lemma 3.1.2 (ii), we get either

pp0a = qq0 or pp0 = qq0a for some a ∈ PT . This implies pPT ∩qPT 6= /0.

If p∨ q exists, i.e., pP∩ qP admits a minimal element, take x, y be as above. We obtain

p∨q ∈ PT since either pp0a = qq0 or pp0 = qq0a for some a ∈ PT . Hence p∨q ∈ pPT ∩qPT .

On the other hand, assume px′ = qy′ with x′, y′ ∈ PT , then we have p∨q≺ px′ by definition.

That is, p∨q is the minimal element in pPT ∩qPT . Therefore, p∨T q exists and p∨T q= p∨q.
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If p∨T q exists, i.e., pPT ∩ qPT admits a minimal element, take x, y be as above. We have

either p∨T q≺ qq0 ≺ qy = px or p∨T q≺ pp0 ≺ px = qy. This means p∨T q is the minimal

element in pP∩qP, i.e., p∨q exists and p∨q = p∨T q.

We have already shown PT is right LCM if P is right LCM. Now we prove the converse.

If p, q ∈ PT , we have either pP∩qP = /0 or p∨q exists since PT is right LCM.

If p ∈ PT and q = q0e1q1 · · ·enqn is a positive word in compact form, we proceed induc-

tively on n to show p∨ q exists if pP∩ qP 6= /0. The case where n = 0 is done. Now as-

sume n ≥ 1. Noting pP∩ q0P ⊇ pP∩ qP 6= /0, we can find r ∈ PT with p∨ q0 = q0r. Then

p∨q = p∨q0∨q = q0r∨q = q0(r∨e1q1 · · ·enqn) exists if and only if r∨e1q1 · · ·enqn exists.

To show the latter, take x ∈ P with rx ∈ e1P. A similar argument involving Lemma 3.1.9 as in

the proof of Lemma 3.2.4 implies that we have a decomposition x = x′x′′ such that rx′ ∈ Pē1
ē1

and that x′′ ∈ e1P. By Lemma 3.2.4, we get x′ ∈ r−1, e1Pē1
ē1

, i.e., x′ = r−1, e1yē1 for some

y ∈ Pē1 . Let rr−1, e1 = aē1, a ∈ Pē1 .

If e1 ∈A−, we have e1 = aē1e1(ae1)−1 = rr−1, e1e1(ae1)−1 ∈ rP. Therefore, r≺ e1≺ e1q1 · · ·enqn

and thus r∨ e1q1 · · ·enqn = e1q1 · · ·enqn.

If e1 ∈A+, we have aē1e1 = e1ae1 and yē1e1 = e1ye1 . Then rx= rr−1, e1yē1e1 · · ·= e1ae1ye1 · · · ∈

e1ae1P and hence r∨ e1 = e1ae1 . Therefore,

r∨ e1q1 · · ·enqn = (r∨ e1)∨ e1q1 · · ·enqn = e1ae1 ∨ e1q1 · · ·enqn = e1(ae1 ∨q1 · · ·enqn).

In this case, r∨e1q1 · · ·enqn exists if and only if ae1∨q1 · · ·enqn exists. rP∩e1q1 · · ·enqnP 6= /0

since q0(rP∩ e1q1 · · ·enqnP) = pP∩qP 6= /0 and thus ae1P∩q1 · · ·enqnP 6= /0 since e1(ae1P∩

q1 · · ·enqnP) = rP∩ e1q1 · · ·enqnP. By induction hypothesis, ae1 ∨q1 · · ·enqn exists.
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Now let p, q ∈ P and let p0d1 p1 · · ·dm pm and q0e1q1 · · ·enqn be positive words in com-

pact form representing p, q. Without loss of genrality, assume n ≥ m. If pP∩ qP 6= /0,

there exists x, y ∈ P such that px = qy. Comparing the compact forms of px and qy, we

get, by Lemma 3.1.2 (ii), di = ei, 1 ≤ i ≤ m and either p0d1 p1 · · ·dm = q0e1q1 · · ·ema or

p0d1 p1 · · ·dma = q0e1q1 · · ·em holds for some a ∈ PT . In the first case, we have

p∨q = q0e1q1 · · ·emapm∨q0e1q1 · · ·enqn = q0e1q1 · · ·em(apm∨qmemqm+1 · · ·).

In the second case, we get

p∨q = p0d1 p1 · · ·dm pm∨ p0d1 p1 · · ·dmaqmemqm+1 · · ·= p0d1 p1 · · ·dm(pm∨aqmemqm+1 · · ·).

In both cases, we can conclude p∨q exists by the argument in the case where p ∈ PT .

Proposition 3.2.9. PT is right LCM.

Proof. Firstly, assume p ∈ Pv, q ∈ Pw and pP∩qP 6= /0, and we show inductively on `([v, w])

that p∨q exists. When `([v, w]) = 0, either p≺ q or q≺ p. In both cases, it is clear that p∨q

exists. Now we consider the case when v 6=w and assume [v, w] starts with d and ends with f .

Suppose that x, y∈PT satisfy px= qy, we can find, by Lemma 3.1.9, positive words wm, xm, ym

and fm ∈ T for 1≤m≤ n such that w1≡ p, x= x1y1, wm =wm−1xm−1, ym−1 = xmym, wm,xm ∈

Pvm , wmxm ∈ P fm
fm ⊆ Pvm+1 , o( fm) = vm, t( fm) = vm+1, and wnyn is a properly reduced positive

word representing px. Here we allow the possibility that xm = /0 or ym = /0. By Lemma 3.1.9,

we can find similarly positive words w′m′ , x′m′, y′m′ and f ′m′ ∈ T for 1 ≤ m′ ≤ n′ such that

w′1 ≡ q, y = x′1y′1, w′m′ = w′m′−1x′m′−1, y′m′−1 = x′m′y
′
m′ , w′m′,x

′
m′ ∈ Pv′

m′
, w′m′x

′
m′ ∈ P

f ′m′
f ′
m′
⊆ Pv′

m′+1
,
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o( f ′m′) = v′m′ , t( f ′m′) = v′m′+1, and w′n′y
′
n′ is a properly reduced positive word representing qy.

As before, we allow the possibility that x′m′ = /0 or y′m′ = /0. It follows from Corollary 3.1.8

that vn = v′n′ . Assume the paths v1, v2, · · · and v′1, v′2, · · · meet for the first time at u∈V , then

we must have u ∈ [v, w]. So we have x = x′x′′ and y = y′y′′ such that px′, qy′ ∈ Pu. Note that

Pu is the positive cone of the totally ordered group Gu, we conclude px′z = qy′ or px′ = qy′z

for some z ∈ Pu. In the first case, we have qy′y′′ = px′zy′′ = px′x′′ and thus zy′′ = x′′. So we

have the decomposition x = (x′z)y′′ and y = y′y′′ with p(x′z) = qy′. In the second case, we

have px′x′′ = qy′zx′′ = qy′y′′ and thus y′′ = zx′′. So we have the decomposition y = (y′z)x′′

and x= x′x′′ with px′= qy′z. Therefore, we may assume, without loss of generality, px′= qy′.

a) For x, y ∈ P with px = qy such that u ∈ [v, w] \ {v, w}, we obtain as in the proof of

Lemma 3.2.4 that x ∈ p−1, dP and y ∈ q−1, f̄ P.

b) For x, y ∈ P with px = qy such that u = v, a similar argument as in the proof of Lemma

3.2.4 and Lemma 3.2.6 yields y ∈ q−1, f̄ P and y′ ∈ q−1, d̄P.

If qq−1, d̄ ≺ p in Pv, then we have q≺ qq−1, d̄ ≺ p.

If p≺ qq−1, d̄ in Pv, i.e., qq−1, d̄ = pz for some z ∈ Pv, we have pz = qq−1, d̄ ∈ Pd
d = Pd̄

d̄ ⊆ Pv

and thus z ∈ p−1, dP. Therefore, px ∈ px′P = qy′P ⊆ qq−1, d̄P = pzP ⊆ pp−1, dP and thus

x ∈ p−1, dP.

c) For x, y ∈ P with px = qy such that u = w, similarly as in b), we have either p ≺ q or

x ∈ p−1, dP and y ∈ q−1, f̄ P.

In conclusion, one of the following is satisfied: p≺ q; q≺ p; For all x, y ∈ P with px = qy,

we have x ∈ p−1, dP and y ∈ q−1, f̄ P.

Noting that pp−1, d ∈ Pd̄
d̄ = Pd

d ⊆ Pt(d) and qq−1, f̄ ∈ P f
f = P f̄

f̄ ⊆ Po( f ) with `([t(d), o( f )])<
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`([v, w]), and that px = qy ∈ pp−1, dP∩ qq−1, f̄ P, we conclude pp−1, d ∨ qq−1, f̄ exists by

induction hypothesis. Therefore, we have p∨q = p or p∨q = q or p∨q = pp−1, d ∨qq−1, f̄ .

Now we assume p ∈ Pv and q = q0q1 · · ·qn ∈ PT is a properly reduced positive word with

q j ∈ Pw j such that pP∩qP 6= /0, and we proceed inductively on l(q) to show p∨q exists. The

case where n = 0 is done, so we may assume n≥ 1.

If v = w0, we have either p = q0z or q0 = pz for some z ∈ Pv since Gv is totally ordered and

Pv is the corresponding positive cone. In the first case, p∨q = (q0z)∨ (q0q1 · · ·qn) = q0(z∨

q1 · · ·qn) exists if and only if z∨q1 · · ·qn exists. zP∩q1 · · ·qnP 6= /0 since q0(zP∩q1 · · ·qnP) =

pP∩qP 6= /0. Noting l(q1 · · ·qn)< l(q), we obtain z∨q1 · · ·qn exists by induction hypothesis.

In the second case, p≺ q0 ≺ q and thus p∨q = q.

If v 6= w0, for all x, y ∈ PT in the form of properly reduced positive words such that px = qy,

we have, by Corollary 3.1.8, either px or qy is not properly reduced. If qy is not properly

reduced, then either l(y) = 0 or y ∈ q−1, ē
n P by Lemma 3.1.9, where e is the ending edge of

the path [wn−1, wn]. Moreover, when l(y) = 0, we have either qy′ is properly reduced for

some Pw ∈ y′ = y or y ∈ q−1, ē
n P. If qy is properly reduced while px is not properly reduced,

suppose that [v, w0] ends with e0. By Lemma 3.2.6, we have x ∈ p−1, e0P, i.e., x = p−1, e0x1

for some x1 ∈ Pw0 . Also, we have pp−1, e0 ∈ Pw0 . If pp−1, e0 ≺ q0, then p≺ pp−1, e0 ≺ q0≺ q

and thus p∨ q = q. If q0 ≺ pp−1, e0 , i.e., pp−1, e0 = q0 p1 for some p1 ∈ Pw0 , then we have

qy = px = pp−1, e0x1 = q0 p1x1 and thus q1 · · ·qny = p1x1. Let q(1)0 q(1)1 · · ·q
(1)
n1 y be the prop-

erly reduced positive word representing q1 · · ·qny obtained as in the proof of Lemma 3.1.6,

then we have q(1)n1 ∈ Pe
e qn, where e is as above. Again, Lemma 3.2.6 yields that x1 ∈ p−1, e1

1 P,

i.e., x1 = p−1, e1
1 x2, where e1 ∈ T lies in [w1, w2][w2, w3] · · · [wn−1, wn]. If p1 p−1, e1

1 ≺ q(1)0 ,

then we have p1 ≺ p1 p−1, e1
1 ≺ q(1)0 ≺ q(1)0 q(1)1 · · ·q

(1)
n1 = q1 · · ·qn and thus p ≺ pp−1, e0 =

q0 p1 ≺ q0q1 · · ·qn = q. Otherwise, we can continue in this way. Unless p ≺ q, we ob-
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tain elements xλ ∈ P and pλ ∈ Peλ−1
eλ−1 such that xλ = p−1, eλ

λ
xλ+1, pλ p−1, eλ

λ
= qλ

0 pλ+1 and

q(λ )0 · · ·q
(λ )
nλ

y = pλ xλ , where eλ ∈ T lies in [w1, w2][w2, w3] · · · [wn−1, wn] and q(λ )0 · · ·q
(λ )
nλ

y is

a properly reduced positive word representing q(λ−1)
1 · · ·q(λ−1)

nλ−1 y with q(λ )n ∈ Pe
e qn. We end up

with q(ν)0 y = pνxν . Again, Lemma 3.2.6 implies xν ∈ p−1, e
ν P and thus pν p−1, e

ν = q(ν)0 pν+1

by assumption. Since pν p−1, e
ν ∈ Pē

ē = Pe
e , we have pν+1 ∈ (q(ν)0 )−1, ēP. Therefore, q(ν)0 y =

pνxν ∈ pν p−1, e
ν P = q(ν)0 pν+1P and thus y ∈ pν+1P⊆ (q(ν)0 )−1, ēP = q−1, ē

n P.

In conclusion, when v 6= w0, either p ≺ q or y ∈ q−1, ē
n P for all x, y ∈ PT in the form of

properly reduced positive words such that px = qy. That is, p∨q = q or p∨q = p∨qq−1, ē
n .

In the latter case, it is easy to see that pP∩qq−1, ē
n P 6= /0 and l(qq−1, ē

n )< l(q), which yields

by induction hypothesis that p∨qq−1, ē
n exists and thus p∨q exists.

Lastly, we assume p, q ∈ PT with pP∩ qP 6= /0 and let p = p0 p1 · · · pm and q = q0q1 · · ·qn

be properly reduced positive words with pi ∈ Pvi and q j ∈ Pw j . We prove inductively on

l(p)+ l(q) that p∨q exists. The case where m = 0 or n = 0 is done, so we assume m, n≥ 1.

Suppose that x, y ∈ PT satisfy px = qy. If x, y are expressed as properly reduced positive

words such that px and qy are properly reduced, by Corollary 3.1.8, we have either p0 = q0z

or q0 = p0z since every semigroup Pv, v∈V is a positive cone of the totally ordered group Gv.

If p0 = q0z, then p = p0 p1 · · · pm = q0zp1 · · · pm, and p∨q = (q0zp1 · · · pm)∨ (q0q1 · · ·qn) =

q0((zp1 · · · pm)∨ (q1 · · ·qn)) exists if and only if (zp1 · · · pm)∨ (q1 · · ·qn) exists. The latter

now follows from induction hypothesis as zp1 · · · pmP∩q1 · · ·qnP 6= /0 and zp1 · · · pm, q1 · · ·qn

can be expressed as properly reduced positive words with smaller l. The case q0 = p0z is

analogous.

It remains to consider the case that for all properly reduced positive words x, y ∈ PT with

px = qy, either px or qy is not properly reduced. As we proceed inductively on l(p)+ l(q),



CHAPTER 3. GRAPHS OF MONOIDS 52

we may assume v0 6= w0.

If qy is not properly reduced, we have either qy′ is properly reduced for some y′ = y or

y∈ q−1, ē
n P as in the case where m = 0, where e is still the ending edge of the path [wn−1, wn].

If qy is properly reduced while px is not properly reduced, a similar argument entails x ∈

p−1, d
m P, where d is the ending edge of the path [vm−1, vm]. Let x = p−1, d

m x1 such that x1 is

a properly reduced positive word and let p(1)0 · · · p
(1)
m1 be the properly reduced positive word

representing p0 p1 · · · pm p−1, d
m such that p(1)0 ∈ Pv0 , then we have qy = px = p(1)0 · · · p

(1)
m1 x1.

By Corollary 3.1.8, we have p(1)0 · · · p
(1)
m1 x1 is not properly reduced and thus x1 ∈ (p(1)m1 )

−1, d1

for some d1 ∈ T . Noting l(p(1)0 · · · p
(1)
m1 ) < l(p), continue the process as above and we can

obtain finally qy = pν
0 xν with pν

0 ∈ Pv0 . As shown in the case where m = 0, we have either

pν
0 ≺ q or y ∈ q−1, ē

n P. In the first case, we have p≺ p(1)0 · · · p
(1)
m1 ≺ ·· · ≺ pν

0 ≺ q.

In conclusion, for all properly reduced positive words x, y ∈ PT with px = qy, we have

y ∈ q−1, ē
n P unless p≺ q. In this case, p∨q = p∨qq−1, ē

n with l(qq−1, ē
n )< l(q) and the latter

exists by induction hypothesis.

Proposition 3.2.8 and Proposition 3.2.9 entails Lemma 3.2.3.



Chapter 4

Amenability and Nuclearity

Having defined our monoid P in Chapter 3, we can now start to study its reduced semigroup

C∗-algebra C∗
λ
(P). Nuclearity, as a kind of finite approximation property of C∗-algebras, can

rarely be ignored when referring to the properties of C∗-algebras. In this chapter, we will

firstly discuss the nuclearity of our semigroup C∗-algebras of graphs of monoids and then

give some examples to show the embeddability of monoids into amenable groups when the

corresponding semigroup C∗-algebras are nuclear.

4.1 Nuclearity

Let P be a graph of monoids and assume that we are in the same setting as in Section 3.1 and

that condition (LCM) is satisfied. For the nuclearity of the reduced semigroup C∗-algebra

C∗
λ
(P), we have the following theorem.

Theorem 4.1.1. C∗
λ
(P) is nuclear if C∗

λ
(PT ) is nuclear.

53
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Before giving the proof, we need to introduce the following notions, all of which come from

[Exe94].

Let B be a C∗-algebra and let α be a group action of the unit circle T on B.

The spectral spaces: For n ∈ Z, the nth spectral subspace for α , denoted by Bn, is defined by:

Bn := {b ∈ B| α(z)(b) = znb, ∀z ∈ T}.

Semi-saturated: α is called semi-saturated if B is generated, as a C∗-algebra, by the union of

B0 and B1.

Stable: α is called stable if there exist a C∗-algebra B′ with B = B′⊗K and a circle ac-

tion α ′ on B′ such that α is the tensor product of α ′ by the trivial circle action on K .

Regular: α is called regular if there exists an isomorphism ϕ : B∗1B1 → B1B∗1 and a sur-

jective linear isometry ψ : B∗1→ B1B∗1 such that for all x, y ∈ B1, a ∈ B∗1B1 and b ∈ B1B∗1, we

have

(i) ψ(x∗b) = ψ(x∗)b;

(ii) ψ(ax∗) = ϕ(a)ψ(x∗);

(iii) ψ(x∗)∗ψ(y∗) = xy∗;

(iv) ψ(x∗)ψ(y∗)∗ = ϕ(x∗y).

Now we are ready to prove Theorem 4.1.1.
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Proof. By Proposition 3.2.3, P is right LCM. We have the following expression:

C∗
λ
(P) = span{λpλ ∗q , p, q ∈ P}.

Here the set {λpλ ∗q , p, q ∈ P} is linearly independent.

Let θ : P→ N be a semigroup homomorphism such that θ(e) = 1 for all e ∈ A and that

θ(x) = 0 for all x ∈ PT . Define a unitary uz,z ∈ T on `2(P) by

uz(δx) = zθ(x)
δx, x ∈ P,

then Ad(uz) is a ∗-isomorphism on C∗
λ
(P). Furthermore, we have

Ad(uz)(λpλ
∗
q ) = z−θ(p)+θ(q)

λpλ
∗
q .

Define an action α of T on C∗
λ
(P) by α(z) := Ad(uz̄), then the kth spectral subspace for α is

given by:

Bk = span{λpλ ∗q , θ(p)−θ(q) = k, p, q ∈ P}, k ∈ Z.

It is easy to get Bk = Bk
1, k ∈ Z∗, which implies, by [Exe94, Proposition (4.8)], the action α

is semi-saturated.

If α is regular, by [Exe94, Theorem 4.21], C∗
λ
(P) is isomorphic to a partial crossed prod-

uct of B0 by a partial automorphism. In this case, C∗
λ
(P) is nuclear if and only if B0 is nuclear.

If α is not regular, tensor it by the trivial circle action on K , we get a stable action α ′.

Furthermore, α ′ is still semi-saturated. This implies α ′ is regular by [Exe94, Corollary 4.5].

Again by [Exe94, Theorem 4.21], C∗
λ
(P)⊗K is isomorphic to a partial crossed product of
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B0⊗K by a partial automorphism. In this case, C∗
λ
(P) is nuclear if and only if B0⊗K is

nuclear. While the latter holds if and only if B0 is nuclear. Therefore, C∗
λ
(P) is nuclear if and

only if B0 is nuclear.

For p, q ∈ P, let

p = h0a1h1a2 · · ·hk−1akhk,hi−1 ∈ PT , ai ∈ A, 1≤ i≤ k, hk ∈ Gak
ak

PT

and

q = h′0a′1h′1a′2 · · ·h′l−1a′lh
′
l,h
′
j−1 ∈ PT , a′j ∈ A, 1≤ j ≤ l, h′l ∈ G

a′l
a′l

PT

be the compact forms. We say p∼ q if

h0a1h1a2 · · ·hk−1akGak
ak
= h′0a′1h′1a′2 · · ·h′l−1a′lG

a′l
a′l
.

Alternatively, p∼ q if k = l, ai = a′i for all 1≤ i≤ k and there exists x ∈ Gak
ak such that

h0a1h1a2 · · ·hk−1ak = h′0a′1h′1a′2 · · ·h′l−1a′lx.

It is easy to check that ∼ is a well-defined equivalent relation in P.

For p ∈ P with a compact form as above, define

p̄ := h0a1h1a2 · · ·hk−1ak.

Then p̄ is unique up to the equivalent relation ∼. Moreover, for all p, q ∈ P, p ∼ q if and

only if p̄∼ q̄.
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Let Pl := {p ∈ P, θ(p) = l}, l ∈ N and let

B0, l := span{λpλ ∗q , p, q ∈ Pl},

then B0, l , restricted on `2(∪k<lPk), is 0. Therefore, we can regard B0, l as a C∗-algebra on

the Hilbert space `2(∪k≥lPk).

When A− = /0, λpλ ∗q is of the form λ p̄λhλ ∗h′λ
∗
q̄ , h, h′ ∈ PT . Furthermore, we have in B0, l ,

λ p̄1λh1λ
∗
h′1

λ
∗
q̄1
·λ p̄2λh2λ

∗
h′2

λ
∗
q̄2
=


λ p̄1λh1λ ∗h′1

λ ∗x λh2λ ∗h′2
λ ∗q̄2

, q̄1 = p̄2x, x ∈ PT ,

λ p̄1λh1λ ∗h′1
λxλh2λ ∗h′2

λ ∗q̄2
, q̄1x = p̄2, x ∈ PT ,

0, otherwise.

Let

Hl :=


`2(m), |{ p̄, θ(p) = l}/∼ |= m < ∞,

`2(∞), |{ p̄, θ(p) = l}/∼ |= ∞,

and define a linear map

V : Hl⊗ `2(P) → `2(∪k≥lPk)

by sending δp̄⊗δx to δ p̄x, then V is a unitary.

Let

Kl :=


Mm, |{ p̄, θ(p) = l}/∼ |= m < ∞,

K, |{ p̄, θ(p) = l}/∼ |= ∞,

then the map

ϕ : B0, l → Kl⊗L (`2(P)), T 7→V ∗TV

is an injective ∗-homomorphism. Furthermore, it maps λ p̄λhλ ∗h′λ
∗
q̄ to E p̄, q̄⊗λhλ ∗h′ and hence
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ϕ(B0, l) = Kl⊗C∗(λ (PT )). Noting that P =⊕x∈PT \PPT x and that every subspace `2(PT x) is

PT -invariant, we have C∗(λ (PT ))∼=C∗
λ
(PT ). Since C∗

λ
(PT ) is nuclear, so is B0, l .

When A− 6= /0, for p ∈ P with the expression

p = h0a1h1a2 · · ·hk−1akhk,hi−1 ∈ PT , ai ∈ A, 1≤ i≤ k, hk ∈ Gak
ak

PT ,

define

Xp := {x ∈ Pak
ak
, p̄x−1 ∈ P}.

If Xp 6= {ε}, then there must exist a sequence (x(n)p )n∈N ⊆ Xp with x(n)p ≺ x(n+1)
p such that for

all x ∈ Xp, x ≺ x(n)p for some n ∈ N since every group Gv, v ∈ V is totally ordered. For each

n ∈ N, let

p(n) :=


p̄, Xp = {ε},

p̄(x(n)p )−1, Xp 6= {ε}.

Define

B(n)
0, l := span{λp(n)λhλ ∗h′λ

∗
q(n)

, p, q ∈ Pl, h, h′ ∈ PT}

and define

K(n)
l :=


Mm, |{p(n), θ(p) = l}/∼ |= m < ∞,

K, |{p(n), θ(p) = l}/∼ |= ∞.

Similarly as in the case when A− = /0, we obtain B(n)
0, l
∼= K(n)

l ⊗C∗(λ (PT )), which means B(n)
0, l

is nuclear. Noting that there is an injective ∗-homomorphism from B(n)
0, l to B(n+1)

0, l , sending

λp(n)λhλ ∗h′λ
∗
q(n)

to
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

λp(n+1)λx(n+1)
p (x(n)p )−1h

λ ∗
x(n+1)

q (x(n)q )−1h′
λ ∗

q(n+1), if Xp 6= {ε}, Xq 6= {ε},

λp(n+1)λx(n+1)
p (x(n)p )−1h

λ ∗h′λ
∗
q(n+1), if Xp 6= {ε}, Xq = {ε},

λp(n+1)λhλ ∗
x(n+1)

q (x(n)q )−1h′
λ ∗

q(n+1), if Xp = {ε}, Xq 6= {ε},

λp(n+1)λhλ ∗h′λ
∗
q(n+1), if Xp = {ε}, Xq = {ε},

for p= h0a1h1a2 · · ·hk−1akhk and q= h′0a′1h′1a′2 · · ·h′j−1a′jh
′
j, we conclude that B0, l =∪n∈NB(n)

0, l

is nuclear as an inductive limit of nuclear C∗-algebras.

Define

B0, ≤l := ∑
0≤k≤l

B0, k,

we have B0, l, l ≥ 1 is an ideal in B0, ≤l and the corresponding quotient is a quotient of

B0, ≤(l−1). Since quotients and extensions of C∗-algebras preserve nuclearity, we get, by

induction, B0, ≤l is nuclear. As an inductive limit of nuclear C∗-algebras, B0 = ∪l≥0B0, ≤l is

nuclear. Therefore, C∗
λ
(P) is nuclear.

Remark 4.1.2. If {ε} 6= Gv ⊆ (R, +) and we are in the same setting as in Theorem 5.2.11,

then the set Xp defined in the proof above is either {ε} or a monoid isomorphic to Z≥0. In

this case, the sequence (x(n)p )n∈N ⊆ Xp can be chosen to depend only on ak, regardless of p.

4.2 Amenability

It is well known that a reduced group (groupoid) C∗-algebra is nuclear if and only if the

group (groupoid, respectively) is amenable, while we do not have an analogue in the semi-

group case. Theorem 2.2.4 motivates us to study it via groupoids and groupoid C∗-algebras.
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Let P be a subsemigroup of a group G, it follows from Theorem 2.2.4 that C∗
λ
(P) is nuclear

if and only if the groupoid GnΩP is amenable. By [Exe15, Theorem 20.7] and [Theorem

25.10], we get that GnΩP is amenable if G is amenable. Therefore, C∗
λ
(P) is nuclear if P

embeds into an amenable group. However, we do not know whether the converse is true or

not. In this section, we give some examples where the converse is true.

Theorem 4.1.1 states C∗
λ
(P) is nuclear if C∗

λ
(PT ) is nuclear, where P is a graph of monoids.

In this section, we give examples of some special graph of monoids P such that C∗
λ
(PT ) is

nuclear and then try to embed these P into amenable groups.

4.2.1 Embedding of the Baumslag-Solitar monoids

Recall that the Baumslag-Solitar groups are examples of two-generator one-relator groups

and are given by the group presentation

BS(m, n) =< a, b | abma−1 = bn >, m, n ∈ Z∗. (4.1)

Since ab−ma−1 = b−n is an equivalent relation, we may assume that m is positive. And the

corresponding monoids BS+(m, n) are defined to be

< a, b | abm = bna >+ if n ∈ N∗,

and

< a, b | b−nabm = a >+ if n ∈ Z\N.

It is a graph of monoids. Indeed, let Γ be a circle, consisting of one vertex v and one oriented
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edge a, and let Gv = bZ, Pv =< b >N, Ga = Gā = Z and Pa = N. The map Ga → Gv=t(a)

(Ga → Gv=o(a)) is given by 1 7→ bm (1 7→ bn, respectively). If n > 0, Pā = N; If n < 0,

Pā =−N. It is easy easy to check that

P = π
+
1 (G, Γ, T ) = BS+(m, n).

By definition, BS(1, 1) =< a, b | ab= ba>, which is an abelian group and hence isomorphic

to Z2. It is also well known that BS(1, −1) =< a, b | aba−1 = b−1 > is the fundamental

group of the Klein bottle, isomorphic to the group ZoZ induced by the group action

ϕ : ZyZ, ϕ(m)(n) = (−1)mn, ∀ m, n ∈ Z.

BS(1, 1) and BS(1, −1) are amenable and hence BS+(1, 1) and BS+(1, −1) can be embed-

ded into amenable groups. Unfortunately, the Baumslag-Solitar groups are not amenable for

general nonzero integers m and n.

The following theorem gives an embedding into amenable groups for coprime integers m

and n.

Theorem 4.2.1. If |mn| > 1 and gcd(|m|, |n|) = 1, then there exists an injective semigroup

homomorphism ϕ : BS+(m, n)→ Q∗nQ such that ϕ(a) = (m
n , 0) and that ϕ(b) = (1, 1),

where Q∗ = Q \ {0} is a multiplicative group and Q is an additive group, and the group

action is the typical multiplication.

Proof. From a trivial calculation we get that (1, 1)n = (1, n), ∀n ∈ Z and that

(
m
n
, 0)(1, 1)m = (

m
n
, m) = (1, 1)n(

m
n
, 0).
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This means the values of ϕ at the two generators a and b lead to a well-defined semigroup

homomorphism. And what remains is to show the injectivity.

From [Spi12, Proposition 2.3], we know each element α ∈ BS+(m, n) has a unique rep-

resentation of the form

α = bi0abi1a · · ·bi j−1abp with iµ ∈ [0, |n|), p ∈ Z.

So we have

ϕ(α) = (1, 1)i0(
m
n
, 0)(1, 1)i1(

m
n
, 0) · · ·(1, 1)i j−1(

m
n
, 0)(1, 1)p

= (
m
n
,

m
n

i0)(
m
n
,

m
n

i1) · · ·(
m
n
,

m
n

i j−1)(1, p)

=
(
(
m
n
) j, (

m
n
) ji0 +(

m
n
) j−1i1 + · · ·+(

m
n
)i j−1 + p

)
.

(4.2)

Similarly, we have

ϕ(β ) =
(
(
m
n
)s, (

m
n
)sr0 +(

m
n
)s−1r1 + · · ·+(

m
n
)rs−1 +q

)
for

β = br0abr1a · · ·brs−1abq with rµ ∈ [0, |n|), q ∈ Z.

If ϕ(α) = ϕ(β ), then we have
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(
m
n
) j = (

m
n
)s, (4.3)

(
m
n
) ji0 +(

m
n
) j−1i1 + · · ·+(

m
n
)i j−1 + p = (

m
n
)sr0 +(

m
n
)s−1r1 + · · ·+(

m
n
)rs−1 +q. (4.4)

Since m
n /∈ {0, −1, 1}, it follows from (4.3) that j = s and hence an rearrangement of (4.4)

yields

(
m
n
) j(i0− r0)+(

m
n
) j−1(i1− r1)+ · · ·+(

m
n
)(i j−1− r j−1)+(p−q) = 0. (4.5)

If |n| = 1, we have by definition i0 = r0 = i1 = r1 = · · · = i j−1 = r j−1 = 0. Substitute these

into (4.5), we get p = q and thus α = β .

If |n| 6= 1, multiple by n j and then run a mudulo |n| operation on both hand sides of (4.5), we

obtain [m]
j
|n|[i0− r0]|n| = 0. Since m and n are coprime integers, [m]|n| is multiplicatively in-

vertible in Z|n|. So we have [i0−r0]|n| = 0 and thus i0 = r0 because i0, r0 ∈ [0, |n|). Similarly,

we can get i1 = r1, · · · , i j−1 = r j−1. This implies p = q by (4.5) and hence α = β .

Remark 4.2.2. Under the same condition as the theorem above, let ψ : Z→ Aut(Q) be the

unique group homomorphism such that

ψ(1)(r) =
mr
n
, ∀r ∈Q,

then there exists an embedding ϕ : BS+(m, n)→ ZnQ such that ϕ(a) = (1, 0) and that

ϕ(b) = (0, 1).
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Before giving the embeddings of the remaining subclass of Baumslag-Solitar monoids, we

need to present the following lemmas.

Lemma 4.2.3. Let P be a subsemigroup of a group G and let Q be a subsemigroup of a group

H such that

Q∗ := Q∩Q−1 = {ε},

then there exists a unique embedding

ϕ : P∗Q→ (⊕HG)oH,

sending p ∈ P to (δε, p, ε) and q ∈ Q to (ε, q), where the semidirect product (⊕HG)oH is

induced by the group action map

ψ : H→⊕HG, h 7→ ψ(h)
[

f 7→ f (h−1t)
]

for all h∈H and all functions f : H→G, and where δε, p is the function from H to G, taking

the value p at ε ∈ H and the value ε elsewhere.

Proof. It’s trivial to check ϕ is a well-defined semigroup homomorphism. We shall show the

injectivity next.

Define firstly a binary relation R on the semigroup Q as follows: (x, y) ∈ R if there ex-

ists z ∈ Q such that y = xz. It’s easy to check that R defines a partial order � on Q, where we

say x� y if (x, y)∈ R. Secondly, define π1 : (⊕HG)oH→ (⊕HG) and π2 : (⊕HG)oH→H

be the trivial coordinate projection maps.
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Every element α ∈ P∗Q has a unique expression

α = p1q1 p2q2 · · · pnqn, p1 ∈ P, p2, · · · , pn ∈ P\{ε},

q1, · · · , qn−1 ∈ Q\{ε}, qn ∈ Q, n ∈ N.

By definition,

ϕ(α) = (δε, p1, ε)(ε, q1)(δε, p2, ε)(ε, q2) · · ·(δε, pn, ε)(ε, qn)

= (δε, p1, q1)(δε, p2 , q2) · · ·(δε, pn, qn)

=
(
δε, p1δq1, p2δq1q2, p3 · · ·δq1···qn−1, pn, q1q2 · · ·qn

)
.

(4.6)

Let C (α)⊆ Q be the set

{ q ∈ Q | q = ε or
(
π1 ◦ϕ(α)

)
(q) 6= ε},

then

C (α) = {ε, q1, q1q2, · · · , q1q2 · · ·qn−1}

is an ascending chain with cardinality n.

If ϕ(α) = ϕ(β ) for

β = p′1q′1 p′2q′2 · · · p′mq′m ∈ P∗Q, p′1 ∈ P, p′2, · · · , p′m ∈ P\{ε},

q′1, · · · , q′m−1 ∈ Q\{ε}, q′m ∈ Q, m ∈ N,
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then we have C (α) = C (β ), where

C (β ) = {ε, q′1, q′1q′2, · · · , q′1q′2 · · ·q′m−1}

is an ascending chain with cardinality m. This happens if and only if n = m and qi = q′i for

i = 1,2, · · · ,n−1. In this case,

p1 =
(
π1 ◦ϕ(α)

)
(ε) =

(
π1 ◦ϕ(β )

)
(ε) = p′1

and

pi+1 =
(
π1 ◦ϕ(α)

)
(q1 · · ·qi) =

(
π1 ◦ϕ(β )

)
(q′1 · · ·q′i) = p′i+1

for i = 1,2, · · · ,n−1. Finally the fact that π2 ◦ϕ(α) = π2 ◦ϕ(β ) yields qn = q′n. All of these

entail α = β .

Lemma 4.2.4. There exists an embedding from the semigroup Zn ∗N to the group An :=

Zn ∗Z/(Zn ∗Z)′′ for any natural number n≥ 2.

Proof. By Lemma 4.2.3, there exists an embedding

ψ : Zn ∗N→ (⊕ZZn)oZ,

which can be naturally extended to a group homomorphism from Zn ∗Z to (⊕ZZn)oZ.

Noticing

ψ((Zn ∗Z)′′) = (ψ(Zn ∗Z))′′ ⊆
(
(⊕ZZn)oZ

)′′
= {(0, 0)},
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ψ induces further a group homomorphism from An to (⊕ZZn)oZ. Or equivalently, the

followig diagram

Zn ∗N Zn ∗Z

(⊕ZZn)oZ An

ι

ψ π

is commutative. The injectivity of ψ entails the semigroup homomorphism π ◦ ι from Zn ∗N

to An is also injective.

Remark 4.2.5. From [Hoc69] we know N∗N can be embedded into A := Z∗Z/(Z∗Z)′′.

Corollary 4.2.6. Assume that G is a group and that Zn ∗Zy G, N 3 n≥ 2 is a group action

such that Zn acts trivially, then (Zn ∗N)nG can be naturally embedded into An nG.

Proof. Since Zn acts trivially on G, the group homomorphism Zn ∗ Z → Aut(G) factors

through Z. So (Zn ∗Z)′′ acts trivially on G and Zn ∗Z→ Aut(G) factors through An. In

combination with the result from Lemma 4.2.4 that the semigroup homomorphism π ◦ ι is

injective, we can naturally get the embedding (Zn ∗N)nG ↪→An nG, induced by π ◦ ι .

Theorem 4.2.7. For each pair

(m, n) ∈ (Z\{0})2 with gcd(|m|, |n|) = d > 1,

there exists an injective semigroup homomorphism from BS+(m, n) to (Zd ∗N)nQ, sending

a to (s, 0) and b to (t, 1), where s and t are the generators of N and Zd respectively, the

group action Zd yQ is trivial and the group action Ny Q is such that s(r) = mr
n for any

r ∈Q.
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Proof. Since

(s, 0)(t, 1)m = (s, m) = (t, 1)n(s, 0),

such a semigroup homomorphism ϕ exists and what remains is to show it is injective. For

α = bi0abi1a · · ·bi j−1abp ∈ BS+(m, n), with, iµ ∈ [0, |n|), p ∈ Z,

we have

ϕ(α) = (t, 1)i0(s, 0)(t, 1)i1(s, 0) · · ·(t, 1)i j−1(s, 0)(t, 1)p

= (t i0s,
mi0
n

)(t i1s,
mi1
n

) · · ·(t i j−1s,
mi j−1

n
)(t p, p)

=
(
t i0st i1s · · · t i j−1st p, (

m
n
) ji0 +(

m
n
) j−1i1 + · · ·+(

m
n
)i j−1 + p

)
.

(4.7)

If ϕ(α) = ϕ(β ) for

β = bk0abk1a · · ·bkl−1abq with kµ ∈ [0, |n|), q ∈ Z,

then

t i0st i1s · · · t i j−1st p = tk0stk1s · · · tkl−1stq, (4.8)

(
m
n
) ji0 +(

m
n
) j−1i1 + · · ·+(

m
n
)i j−1 + p = (

m
n
)sr0 +(

m
n
)s−1r1 + · · ·+(

m
n
)rs−1 +q. (4.9)

This first equality yields j = l, d|(iµ −kµ) and d|(p−q). Substituting these into the equality

(4.9) and rearranging it, we have

(
m′

n′
) j i0− r0

d
+(

m′

n′
) j−1 i1− r1

d
+ · · ·+(

m′

n′
)
i j−1− r j−1

d
+

p−q
d

= 0,
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where m′ = m/d, n′ = n/d, iµ−rµ

d ∈ (−|n′|, |n′|) and p−q
d ∈Z. A similar analysis of the above

equality, as we did in Theorem 4.2.1, yields iµ−rµ

d = 0 and p−q
d = 0, which means α = β .

Corollary 4.2.8. BS+(m, n) can be embedded into Ad nQ for any pair (m, n) ∈ (Z\{0})2

and d = gcd(|m|, |n|), where the group action Ad y Q is induced by such a group action

Zd ∗ZyQ that Zd acts trivially and s(r) = mr
n for s ∈ Z being the generator and any r ∈Q.

Proof. The conclusion follows directly from Remark 4.2.2, Corollary 4.2.6 and Theorem

4.2.7.

The second derived group A ′′
d of Ad is trivial, so Ad is solvable and hence the semidirect

product Ad nQ is solvable and thus amenable. This means all the Baumslag-Solitar monoids

can be embedded into amenable groups.

4.2.2 Embedding of the generalised Baumslag-Solitar monoids

In last subsection, we embeded successfully the Baumslag-Solitars monoids into amenable

groups. Now we aim at extending the results to generalized Baumslag-Solitar monoids.

A generalized Baumslag-Solitar group is given by presentation as follows,

GBS(N, mi, ni) :=< ai, b | aibmia−1
i = bni,

mi, ni ∈ Z∗, 1≤ i≤ N, N ∈ N∗∪{∞}> .

(4.10)
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Without loss of generality, we assume, like we did in the Baumslag-Solitar case,

mi > 0, 1≤ i≤ N.

Set

S1 = {1≤ i≤ N | ni > 0}

and

S2 = {1≤ i≤ N | ni < 0},

then the corresponding GBS monoid is defined by presentation

GBS+(N, mi, ni) =< ai, b | aibmi = bniai, i ∈ S1,

b−niaibmi = ai, i ∈ S2, mi, ni ∈ Z∗, N ∈ N∗ >+ .

(4.11)

It is also a graph of monoids. Let Γ be a bouquet of circles, consisting of one vertex v and

N oriented edges {ai}i, and let Gv = bZ, Pv =< b >N, Gai = Gāi = Z and Pai = N. The

map Gai → Gv=t(ai) (Gai → Gv=o(ai)) is given by 1 7→ bmi (1 7→ bni , respectively). If ni > 0,

Pāi = N; If ni < 0, Pāi =−N. It is easy easy to check that

P = π
+
1 (G, Γ, T ) = GBS+(N, mi, ni).

To begin with, we have the following Proposition.

Proposition 4.2.9. Each element of GBS(N, mi, ni) has unique representations in the two

forms

(L) b j0aι
i1b j1aι

i2 · · ·a
ι
ip

b jp , where ι ∈ {±1}, 1 ≤ iµ ≤ N, jµ ∈ [0, |niµ+1|) if ι = 1, and jµ ∈

[0, miµ+1) if ι =−1, jp ∈ Z;



CHAPTER 4. AMENABILITY AND NUCLEARITY 71

(R) b j0aι
i1b j1aι

i2 · · ·a
ι
ip

b jp , where ι ∈ {±1}, 1 ≤ iµ ≤ N, jµ ∈ [0, miµ ) if ι = 1, and jµ ∈

[0, |niµ |) if ι =−1, j0 ∈ Z.

The standard L-form (R-form) of the proposition is obtained by moving b′s to the right (left,

respectively) via the equations bkniai = aibkmi and bkmia−1
i = a−1

i bkni , k ∈ Z.

Corollary 4.2.10. Each element of GBS+(N, mi, ni) has unique representations in the two

forms

(L) b j0ai1b j1ai2 · · ·aipb jp , 1≤ iµ ≤ N, jµ ∈ [0, |niµ+1|), jp ∈ Z;

(R) b j0ai1b j1ai2 · · ·aipb jp , 1≤ iµ ≤ N, jµ ∈ [0, miµ ), j0 ∈ Z.

Theorem 4.2.11. Assume

gcd
( N

∏
i=1

mi,
N

∏
i=1

ni

)
= 1, mi, ni ∈ Z∗, N ∈ N∗.

For each 1≤ i≤N, let Pi =< si >
+ be a semigroup isomorphic to N, and let φi be a semigroup

homomorphism defined by

φi : Pi → Aut(Q), si 7→ φi(si)
[
r 7→ mir

ni
, r ∈Q

]
.

Then there exists an injective semigroup homomorphism

ϕ : GBS+(N, mi, ni)→ (∗iPi)nQ

such that ϕ(ai) = (si, 0) and that ϕ(b) = (ε, 1).
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Proof. For each i ∈ S1, we have

(si, 0)(ε, 1)mi = (si, 0)(ε, mi) = (si, mi) = (ε, ni)(si, 0) = (ε, 1)ni(si, 0).

Similarly, we get

(ε, 1)−ni(si, 0)(ε, 1)mi = (si, 0), i ∈ S2.

Therefore, such a semigroup homomorphism ϕ does exist. It remains to show the injectivity.

By Corollary 4.2.10 each element α ∈ GBS+(N, mi, ni) has a standard L-form

α = b j0ai1b j1ai2 · · ·aipb jp, 1≤ iµ ≤ N, jµ ∈ [0, |niµ+1|), jp ∈ Z.

Then we have

ϕ(α) = (ε, 1) j0(si1 , 0)(ε, 1) j1(si2, 0) · · ·(sip, 0)(ε, 1) jp

=
(

si1,
mi1 j0

n1

)(
si2,

mi2 j1
n2

)
· · ·
(

sip,
mip jp−1

np

)
(ε, jp)

=

(
si1si2 · · ·sip,

( p

∏
µ=1

miµ

niµ

)
j0 +

( p

∏
µ=2

miµ

niµ

)
j1 + · · ·+

mip jp−1

nip

+ jp

)
.

(4.12)

If ϕ(α) = ϕ(β ) for β ∈ GBS+(N, mi, ni) with the standard L-form

β = bl0ak1bl1ak2 · · ·akqblq, 1≤ kµ ≤ N, lµ ∈ [0, |nkµ+1|), lq ∈ Z,

then we have

si1si2 · · ·sip = sk1sk2 · · ·skq (4.13)
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and

( p

∏
µ=1

miµ

niµ

)
j0 +

( p

∏
µ=2

miµ

niµ

)
j1 + · · ·+

mip jp−1

nip

+ jp

=
( q

∏
µ=1

mkµ

nkµ

)
l0 +

( q

∏
µ=2

mkµ

nkµ

)
l1 + · · ·+

mkqlq−1

nkq

+ lq.
(4.14)

It follows from the equality (4.13) that p = q and that iµ = kµ , 1≤ µ ≤ p. Substituting these

into the equality (4.14), we obtain, after a rearrangement,

( p

∏
µ=1

miµ

niµ

)
( j0− l0)+

( p

∏
µ=2

miµ

niµ

)
( j1− l1)+ · · ·+

mip

nip

( jp−1− lp−1)+( jp− lp) = 0. (4.15)

If |ni1|= 1, then j0 = l0 = 0 by definition. Otherwise, multiple both hand sides of the equality

(4.15) by ∏
p
µ=1 niµ and then run a modulo |ni1| operation, we get

[ p

∏
µ=1

miµ

]
|ni1 |

[
j0− l0

]
|ni1 |

= 0.

By the assumption in the theorem,
[

∏
p
µ=1 miµ

]
|ni1 |

is multiplicatively invertible in Z|ni1 |
. So

we have
[

j0− l0
]
|ni1 |

= 0 and hence j0− l0 = 0, i.e., j0 = l0 because j0, l0 ∈ [0, |ni1|). In

either case, we have j0 = l0. Substituting this into the equality (4.15) and repeating this

process, we can get, one by one, j1 = l1, · · · , jp = lp, which entails α = β .

Let G be the free additive abelian group on the family of generators

{b(m1, m2, · · · , mN)}, mi ∈ Z, 1≤ i≤ N, 2≤ N ∈ N.

Any permutation of these generators induces an automorphism of G. Let xi, 1≤ i≤ N be the
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automorphism induced by

b(m1, m2, · · · , mN) 7→ b(m1, · · · , mi−1, mi +1, mi+1, · · · , mN).

It is easy to see that the subgroup H of Aut(G) generated by {xi}, 1≤ i≤ N is a free ableian

group. Hence the semidirect product H nG is solvable and amenable. Set

yi =
(
xi, b(0, 0, · · · , 0)

)
, 1≤ i≤ N.

Proposition 4.2.12. {yi}, 1 ≤ i ≤ N is a family of free generators for a copy of ∗iPi, where

Pi is as in Theorem 4.2.11.

Proof. Consider a monomial U = u1u2 · · ·ud of length d ≥ 1, where each u j is some yi.

Suppose yi occurs pi times, then ∑
N
i=1 pi = d and U is of the form

( N

∏
i=1

xpi
i ,

d−1

∑
j=0

b(m j
1, m j

2, · · · , m j
N)
)
,

where for each j,

m j
i ≥ 0 and

N

∑
i=1

m j
i = j.

In particular, (m0
1, m0

2, · · · , m0
N) = (0, 0, · · · , 0). When d ≥ 2, we have

(m1
1, m1

2, · · · , m1
N) = (0, · · · , 0, 1, 0, · · · , 0)

with the i-th entry taking value 1 if ud = yi. These statements are proved by a trivial induction

on d.
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Now suppose that the distinct monomials U = u1u2 · · ·ud and V = v1v2 · · ·ve are equal. We

must have that d = e because the length can be recovered as the sum of the exponents of y′is

in the first entry. If d = 1, then u1 =U =V = v1. If d ≥ 2, the second entry will be a sum of

d terms, precisely one of which, b(m1
1, m1

2, · · · , m1
N), will have the property

N

∑
i=1

m1
i = 1.

It follows that ud = vd = yi with the i-th entry taking value 1. And then u1u2 · · ·ud−1 =

v1v2 · · ·vd−1. So a trivial induction on d finishes the proof.

Corollary 4.2.13. Under the same assumption as in Theorem 4.2.11, then the monoid GBS+(N, mi, ni)

can be embedded into an amenable group.

Proof. From Proposition 4.2.12, we know that the semigroup ∗iPi can be embedded into the

group HnG, which naturally induces a group homomorphism ψ from the free group FN with

N generators to the group H nG. Since G and H are both abelian, the second derived group

(H nG)′′ of H nG is trivial. Therefore, F ′′N is in the kernel of the group homomorphism ψ .

Alternatively, ψ factors through FN/F ′′N . That is to say, the following diagram

∗iPi FN

H nG FN/F ′′N

is commutative. Since the map ∗iPi → H nG is injective, the map ∗iPi → FN/F ′′N is also

injective.
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Recall the definition of φ ′i s, there exists a semigroup homomorphism φ : ∗iPi → Aut(Q)

such that the restriction of φ on Pi is exactly φi. It admits an extention from FN to Aut(Q),

which we also denote by φ , briefly. It is easy to see φ(FN) is an abelian subgroup of Aut(Q).

So φ factors through FN/F ′′N . That is, we have the follwing commutative diagram

∗iPi FN

Aut(Q) FN/F ′′N .

Combined with the fact that ∗iPi embeds into FN/F ′′N , we conclude that (∗iPi)nQ embeds

into (FN/F ′′N )nQ. By Theorem 4.2.11, GBS+(N, mi, ni) can be embedded into the group

(FN/F ′′N )nQ, which is amenable.

Question 4.2.14. Can we get an analogue for the semigroup GBS+(N, mid, nid), d ∈ N∗

under the same assumption as in Theorem 4.2.11? And in general case?



Chapter 5

Groupoids

Let G be a group and let P be a subsemigroup of G by an embedding P ↪→ G, if we define

a partial group action of G on the character space ΩP := Spec(Dλ (P)) as in Section 2.2, by

Theorem 2.2.4 we have C∗
λ
(P)∼=C∗r (GnΩP), where GnΩP is the transformation groupoid

induced by the partial action of G on ΩP. It makes sense to study such a kind of transforma-

tion groupoid, which is indeed what we do in this chapter.

5.1 Amenability of transformation groupoids

If a group G is amenable, we get, by [RW17, Corollary 4.5], for all partial action G y X ,

the corresponding transformation groupoid GnX is amenable. This means, by definition of

amenability, there exists a topological approxiamate invariant mean on GnX . It is natural to

ask whether we can work out such a topological approximate invariant mean on GnX . In

the following, we give a construction of a Borel approximate invariant mean on GnX and

provide a sufficient condition for the mean to be continuous. The construction is based on the

result in [RW17].

77
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Let G y X be a partial dynamical system, where G is a discrete, countable and amenable

group, and X is a locally compact, Hausdorff and second countable topological space, then

the associated transformation groupoid GnX := {(g, x)∈G×X | x∈Ug−1} is a locally com-

pact, Hausdorff and second countable étale groupoid.

Step 1. Set the groupoid

(GnX)o (GnX) := {
(
(g, x), (h, y)

)
∈ (GnX)× (GnX) | x = hy}

with composition

(
(g, x), (h, y)

)(
(g′, x′), (h′, y′)

)
=
(
(g, x), (hh′, y′)

)
if (gh, y) = (g′, x′), and inversion

(
(g, x), (h, y)

)−1
=
(
(gh, y), (h−1, x)

)
.

We identify the unit space of (GnX)o (GnX) with GnX with the range and source maps

given by

r
(
(g, x), (h, y)

)
= (g, x) and s

(
(g, x), (h, y)

)
= (gh, y).

By [Ren80, Lemma 2.7 and Proposition 2.8], we know GnX admits a counting measure

system λ as its left Haar measure system. And a direct application of [ADR00, Example

2.1.4(1)] gives a Borel invariant mean
{

m(g, x)}
(g, x) on the groupoid (GnX)o (GnX) such

that

m(g, x)((g, x), (h, h−1x)
)
= φ

(
(g, x)(h, h−1x)

)
= φ

(
(gh, h−1x)

)
,
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where φ is a nonnegative Borel function on GnX with λ (φ) = 1. Since the unit space X of

GnX is clopen, the characteristic function 1X is a nonnegative continuous function on GnX

with λ (1X) = 1. Therefore, taking φ = 1X ,
{

m(g, x)}
(g, x) becomes a continuous invariant

mean on (GnX)o (GnX).

Step 2. Define a cocycle c : GnX → G, (g, x) 7→ g, then c is a continuous homomor-

phism and c−1(ε) = {ε}×X ∼= X is an amenable subgroupoid of GnX .

The skew-product groupoid associated to the cocycle c is, as in [RW17, p2262],

G (c) = {
(
a, (g, x), b

)
∈ G× (GnX)×G : b = ag}.

((
a, (g, x), b

)
,
(
c, (h, y), d

))
is a composable pair if and only if b = c and x = hy. The

multiplication is given by

(
a, (g, x), b

)(
b, (h, y), d

)
=
(
a, (gh, y), d

)
and inversion by (

a, (g, x), b
)−1

=
(
b, (g−1, gx), a

)
.

We can identify the unit space of G (c) with X ×G, and then the range and source maps are

given as expected:

r
(
a, (g, x), b

)
= (gx, a) and s

(
a, (g, x), b

)
= (x, b).

Let

Y := {(x, g) ∈ X×G | (g, x) ∈ GnX},

it is easy to see that Y is G (c)-invariant. Indeed, if
(
a, (g, x), b

)
∈ G (c) has its source in Y ,

then we have (x, b) ∈ Y and hence x ∈Ub−1 =U(ag)−1 . Combined with the fact x ∈Ug−1 , we
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conclude gx ∈Ua−1 and r
(
a, (g, x), b

)
= (gx, a) ∈ Y .

Define a map

ϕ : G (c)|Y → (GnX)o (GnX),
(
a, (g, x), ag

)
7→
(
(a, gx), (g, x)

)
,

then from a trivial computation it follows that ϕ is a topological groupoid isomorphism.

Hence, by the isomorphism ϕ , G (c)|Y admits a continuous invariant mean of discrete proba-

bility measures
{

m(x, g)}
(x, g)∈Y such that

m(x, g)(g, (h, h−1x), gh
)
= χX

(
(gh, h−1x)

)
.

So we have

m(x, g) = δ(
g, (g−1, gx), ε

), (x, g) ∈ Y.

Note that G acts on the left of G (c) by groupoid automorphisms:

h ·
(
a, (g, x), b

)
=
(
ha, (g, x), hb

)
.

Assume

G = {g1, g2, · · · , gn, · · ·}

with g1 = e, we then have X×G=∪ngnY and G (c)|gnY = gnG (c)|Y . So we get the continuous

invariant mean
{

m(x, g)}
(x, g)∈gnY on G (c)|gnY such that

m(x, g) = δ(
g, (g−1gn, g−1

n gx), gn

), (x, g) ∈ gnY.
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Set

Yn := gnY\
n−1⋃
i=1

giY, n ∈ N∗,

then {Yn}n is a disjoint cover of X×G by invariant Borel subsets. For (x, g) ∈ G (c)0, define

m(x, g) by

m(x, g) = δ(
g, (g−1gn, g−1

n gx), gn

), (x, g) ∈ Yn.

It’s easy to verify that
{

m(x, g)}
(x, g)∈X×G is a Borel invariant mean of discrete probability

measures on G (c). Moreover, it is continuous if Y is a clopen subset of X×G.

Step 3. Now we try to construct a continuous approximate invariant mean on GnX . Since G

is amenable, there exists a nonnegative and finitely supported function ψn on G such that

∑
g∈G

ψn(g) = 1 and ∑
g∈G
|ψn(gh)−ψn(g)| ≤ 1/n

for all h ∈ Kn, where {Kn}n is an increasing sequence of finite subsets such that
⋃

n Kn = G.

Define the function Ψn on GnX by

Ψn
(
(h, h−1x)

)
: = ∑

g∈G
ψn(g)m(x, g)(g, (h, h−1x), gh

)
= ∑

m∈N∗
∑

g: (x, g)∈Ym

ψn(g)δ(g, (g−1gm, g−1
m gx), gm

)(g, (h, h−1x), gh
)

= ∑
m: (x, gmh−1)∈Ym

ψn(gmh−1), (h−1, x) ∈ GnX .

(5.1)

In the last term, (x, gmh−1) ∈ Ym if and only if

(g−1
k gmh−1, x) /∈ GnX ,

or equivalently,

g−1
k gmh−1 /∈ Gx,
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for any 1≤ k < m. By [RW17, Proposition 4.1], the sequence {Ψn}n forms a Borel approx-

imate invariant mean on GnX . And it becomes a continuous approximate invariant mean if

Y is a clopen subset of X×G.

Indeed, for all x ∈ X ,

∑
h∈Gx

Ψn
(
(h, h−1x)

)
= ∑

g∈G
∑

h∈Gx
ψn(g)m(x, g)(g, (h, h−1x), gh

)
= ∑

g∈G
ψn(g) = 1.

(5.2)

This means that Ψn is a density function of probability measures. By the equality (5.1), we

have

Ψn
(
(g, x)(h, h−1x)

)
= Ψn

(
(gh, h−1x)

)
= ∑

m: (gx, gmh−1g−1)∈Ym

ψn(gmh−1g−1), (g, x), (h−1, x) ∈ GnX .
(5.3)

Noticing that (gx, gmh−1g−1) ∈ Ym if and only if (x, gmh−1) ∈ Ym, it follows that

∑
h∈Gx

∣∣Ψn
(
(g, x)(h, h−1x)

)
−Ψn

(
(h, h−1x)

)∣∣
= ∑

h∈Gx

∣∣ ∑
m: (x, gmh−1)∈Ym

(
ψn(gmh−1)−ψn(gmh−1g−1)

)∣∣
≤ ∑

h, m: h∈Gx, (x, gmh−1)∈Ym

∣∣ψn(gmh−1)−ψn(gmh−1g−1)
∣∣.

(5.4)

Assume (h1, m1) and (h2, m2) are two pairs such that hi ∈ Gx, (x, gmih
−1
i ) ∈ Ymi and that

gm1h−1
1 = gm2h−1

2 . If m1 = m2, then h1 = h2. Otherwise, assume, without loss of gen-

erality, m1 < m2, we then get g−1
m1

gm2h−1
2 = h−1

1 ∈ Gx, which contradicts the assumption

(x, gm2h−1
2 ) ∈ Ym2 . So in the last term in the equation (5.4), when the sum takes over all
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possible h and m, the element gmh−1 is never repeated. Hence

∑
h∈Gx

∣∣Ψn
(
(g, x)(h, h−1x)

)
−Ψn

(
(h, h−1x)

)∣∣
≤ ∑

h, m: h∈Gx, (x, gmh−1)∈Ym

∣∣ψn(gmh−1)−ψn(gmh−1g−1)
∣∣

≤∑
k∈G

∣∣ψn(k)−ψn(kg−1)
∣∣.

(5.5)

The last term tends to 0 as n tends to infinity. This proves approximate invariance of Ψn.

When Y is clopen in X ×G, Ψn is a continuous function by definition. Take f ∈Cc(GnX),

the function

x 7→ ∑
h∈Gx

f
(
(h, h−1x)

)
Ψn
(
(h, h−1x)

)
is continuous on X because of the fact f Ψn ∈ Cc(GnX) and the property of the left Haar

measure on groupoids.

In the semigroup case, if P⊆ G satisfies the Toeplitz condition, the set Ug is a clopen subset

of ĴP for all g ∈ G. Therefore,

Y =
⋃

g∈G

Ug−1×{g}

is clopen in ĴP×G. This entails that the groupoid GnĴP admits a continuous approximate

invariant mean.

5.2 Closed invariant subsets

In this section, let G be the graph of groups and let P ⊆ G be the graph of monoids in the

same setting as in Section 3.1. Assume that condition (LCM) is satisfied.
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Under some circumstances, there is a one-to-one correspondence between the ideals of the

reduced groupoid C∗-algebra C∗r (GnΩP) and the open invariant subsets of the unit space ΩP.

Even in general, every open invariant subset in ΩP yields an ideal in the reduced groupoid

C∗-algebra C∗r (GnΩP). Our goal in this section is to study closed invariant subsets of ΩP.

By Lemma 3.2.3, P is right LCM, i.e., all nonempty constructible right ideals are princi-

pal. That is, JP = {pP | p ∈ P} or {pP | p ∈ P}∪{ /0}. Furthermore, remark 2.2.3 states

ΩP = ĴP. For convenience, denote JP by J and denote ΩP by Ω.

By definition, every χ ∈Ω is a nonzero filter function from J ∪ /0 to {0, 1} with χ( /0) = 0.

And Ω is endowed with the pointwise convergence topology.

Each p ∈ P determines a character χp given by χp(xP) = 1 if and only if p ∈ xP. Identity

χp with p, P is a dense subset in Ω. For every finite or infinite positive word w = x1x2x3 · · · ,

x∗ ∈ {Pv \ {ε}}v∈V ∪A, define [w]i := w if w = x1 · · ·x j with j < i and [w]i := x1 · · ·xi oth-

erwise. Let {w}i be the rest subword of w after removing [w]i, i.e., w = [w]i{w}i. Define

χw ∈ Ω by setting χw(xP) = 1 if and only if [w]i ∈ xP for some i. It is compatible with our

notation χp when w = p ∈ P.

Define Ω∞ := Ω\P, then we have, by [LOS18, Lemma 2.3], every χ ∈ Ω∞ is of the form

χw for some infinite positive word w. In conclusion, every character χ ∈Ω is of the form χw

for some finite or infinite positive word w.

An easy interpretation of the partial action of G on Ω yields that χ ∈ dom(g) = Ug−1 if

and only if g = pq−1 for some p, q ∈ P and χ(qP) = 1. Furthermore, we have

(g ·χ)(xP) = χ(qyP) if xP∩ pP = pyP
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and

(g ·χ)(xP) = 0 if xP∩ pP = /0.

If χ = χw for some word w, χ(qP) = 1 implies that [w]i ∈ qP for some i. Assume [w]i =

qr, r ∈ P, then we have gχw = χpr{w}i . In this case, define gw := pr{w}i. Since the group

element g may have different decomposition, the word pr{w}i is not unique. While we can

always get one from another by rearrangement and the characters χpr{w}i coincide.

It is easy to see that P and Ω∞ are invariant.

Among all the characters in Ω, we are interested in some special ones under which the preim-

age of 1 is maximal. That is, χ ∈Ω is called a maximal character if we have χ ′= χ whenever

χ ′ ∈Ω satisfies χ ′(xP) = 1 for all x ∈ P with χ(xP) = 1. Let Ωmax be the family of all max-

imal characters in Ω, then we have Ωmax ⊆ Ω∞ and that Ωmax is invariant. The boundary of

Ω, denoted by ∂Ω, is defined to be the closure of Ωmax in Ω, i.e., ∂Ω := Ωmax. It is closed

and invariant in Ω.

5.2.1 General case

We will focus on the following two situation.

I. For all v ∈V , x ∈ Pv \ ε or x ∈ A and χ ∈Ω∞, there exists an infinite word w with χ = χw,

a strictly increasing sequence ( jN)N of positive integers, and a finite positive word y whose

first letter does not lie in Pv in the case where x ∈ Pv such that,

(i) xy[w] jN is a reduced positive word for all N,

(ii) Whenever p0d1 p1 · · · is a properly reduced positive word representing xy[w] jN , we must

have x ∈ p0PT if x ∈ Pv and x ∈ p0P if x ∈ A.
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II. There exists u ∈V and b ∈ Pu such that the following holds:

For all v ∈ V , x ∈ Pv \ ε or x ∈ A and χ ∈ Ω∞, there exists an infinite word w with χ = χw,

a strictly increasing sequence ( jN)N of positive integers, and a finite positive word y whose

first letter does not lie in Pv in the case where x ∈ Pv such that,

(i) xy[w] jN is a reduced positive word for all N,

(ii) Whenever p0d1 p1 · · · is a properly reduced positive word representing xy[w] jN , then one

of the following holds:

A) x ∈ p0PT if x ∈ Pv and x ∈ p0P if x ∈ A,

B) [w] jN ∈ bP and xbi ∈ p0PT if x∈Pv and xbi ∈ p0P if x∈A, where i is some positive integer.

Lemma 5.2.1. Suppose that condition I. holds and let χ ∈Ω∞ be arbitrary. For η ∈Ω such

that η = χw′ for some infinite positive word w′ with liml→∞`([w′]l) = ∞, we have η ∈ G ·χ .

Proof. Let x0 f1x1 · · ·xn−1 fnxn be a properly reduced positive word representing [w′]l , we dis-

tinguish between two cases:

(a) xn ∈ Pv \{ε} for some v ∈V ;

(b) xn = /0 and fn ∈ A.

Condition I. applied to χ and x = xn in case (a) and x = fn in case (b) provides w, [w] jN

and y as above. Note that these depend on l. We now claim that liml→∞χ[w′]lyw = η .

If η(pP) = 1, then [w′]l ∈ pP for all sufficiently big l, so that [w′]ly[w] jN ∈ pP for all suffi-

ciently big l and all N. Thus χ[w′]lyw(pP) = 1 for all sufficiently big l.
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Conversely, suppose that χ[w′]lyw(pP) = 1 for all sufficiently big l, then [w′]ly[w] jN ∈ pP for

all sufficiently big l and all sufficiently big N, say [w′]ly[w] jN = pz. Let q0e1q1 · · ·qM−1eMqM

be a reduced v-word representing pz.

Let p be in the form of a properly reduced positive word, for all sufficiently big l, [w′]l can be

represented by a reduced v-word of the form x′nxε · · ·ε with `(x′n) > `(p). Corollary 3.1.12

applied to m = `(x′n) implies that q0e1q1 · · ·qm−1emqm ∈ pP, say q0e1q1 · · ·qm−1emqm = pz′

and z = z′z′′. Since y and [w] jN are as in condition I., there is a reduced v-word representing

[w′]ly[w] jN , which starts with x′nx. By Lemma 3.1.2 (i), we have q0e1q1 · · ·qm−1emqma = x′n or

q0e1q1 · · ·qm−1emqm = x′na. In the first case, we have [w′]l ∈ x′nP ⊆ q0e1q1 · · ·qm−1emqmP ⊆

pP and thus η(pP) = χw′(pP) = 1. In the second case, x′nxy[w] jN = [w′]ly[w] jN = pz =

pz′z′′ = x′naz′′ and thus xy[w] jN = az′′. Lemma 3.1.11 provides a properly reduced posi-

tive word representing az′′ starting with aa′ ∈ Pu for some u ∈ V . Now condition I. im-

plies that x ∈ aa′P ⊆ aP. This in turn yields [w′]l = x′nx ∈ x′naP = pz′P ⊆ pP and thus

η(pP) = χw′(pP) = 1.

Lemma 5.2.2. Suppose that condition II. holds.

(i) Let χ ∈Ω∞ with χ(bP) = 0. For η ∈Ω such that η = χw′ for some infinite positive word

w′ with liml→∞`([w′]l) = ∞, we have η ∈ G ·χ .

(ii) Let χ ∈Ω∞ be arbitrary. For η ∈Ω such that η = χw′ for some infinite positive word w′

with liml→∞`([w′]l) = ∞ and g ·η(biP) = 1 for all g ∈ G for which g ·η is defined and all

positive integers i, we have η ∈ G ·χ .

Proof. Let x0 f1x1 · · ·xn−1 fnxn be a properly reduced positive word representing [w′]l as in

the proof of Lemma 5.2.1. Condition II., applied to χ and x = xn if xn 6= /0 and x = fn if

xn = /0, provides w, [w] jN and y as above. Note that these depend on l. We now claim that
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liml→∞χ[w′]lyw = η .

(i) B) in condition II. leads to a contradiction to the assumption that χ(bP) = 0 since [w] jN ∈

bP implies χ(bP) = 1. Hence we always have statement A) when condition II. is applied

to χ and x as above. Therefore, liml→∞χ[w′]lyw = η follows by the same argument as in the

proof of Lemma 5.2.1.

(ii) If η(pP) = 1, we obtain that χ[w′]lyw(pP) = 1 for all sufficiently big l as in the proof

of Lemma 5.2.1.

If χ[w′]lyw(pP) = 1 for all sufficiently big l, we can then use A) in condition II. and the same

argument as in the proof of Lemma 5.2.1 to show η(pP) = 1, or we can use B) in condition

II. and the same argument as in the proof of Lemma 5.2.1 to show that [w′]lbi ∈ pP for some

positive integer i. Now our assumption that g ·η(biP) = 1 for all g∈G implies for g = [w′]−1
l

that [w′]−1
l ·η(biP) = 1 and η([w′]lbiP) = 1. This, together with [w′]lbi ∈ pP, yields that

η(pP) = 1.

Suppose that condition II. holds, define

Ωb, ∞ := {χ ∈Ω, (g ·χ)(biP) = 1, ∀g, i},

where we only consider those g ∈G such that g ·χ is well defined. Note that we always have

Ωb, ∞ ⊆Ω∞.

To summarize, here is the conclusion.
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Lemma 5.2.3. Suppose that condition I. holds. For any χ, η ∈ Ω, we have η ∈ G ·ΩPu for

some u ∈V or η ∈ G ·χ .

Suppose that condition II. holds.

(i) For any χ ∈Ω with χ(bP)= 0 and η ∈Ω, we have η ∈G ·ΩPu for some u∈V or η ∈G ·χ .

(ii) For any χ ∈Ω and η ∈Ωb, ∞, we have η ∈ G ·ΩPu for some u ∈V or η ∈ G ·χ .

Here ΩPu is the collection of all characters of the form χw′ , where w′ = ε or w′ consists

of letters in Pu \ ε .

Proof. It suffices to show that if η = χw′ with supl`([w
′]l)< ∞, we then have η ∈G ·ΩPu for

some u ∈V .

If w′ is a finite word, then η = g ·χε with g = w′.

If w′ = x1x2x3 · · · with x j ∈ {Pv \{ε}}v∈V ∪A is an infinite word, then we must have x j ∈ Pu

for all sufficiently big j and some u ∈V (independent of j), which entails η ∈ G ·ΩPu . Oth-

erwise, there exists a sequence ( jn)n of positive integers such that either x jn ∈ A for all n or

x jn ∈ Pvn with vn 6= vn+1 for all n. In the first case, we have supl`([w
′]l) ≥ ∑n 1 = ∞ since

each x jn ∈ A contributes at least length 1 in `([w′]l) with l sufficiently big. In the second case,

similarly we have supl`([w
′]l) ≥ ∑n `([vn, vn+1]) = ∞. In both cases, it leads to a contradic-

tion to the assumption that supl`([w
′]l)< ∞.

Now we turn to the following question: When do we have condition I. or condition II.?

In the following, we will assume without loss of generality that Pv 6= {ε} for all v ∈ V ,
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Pe 6= {ε} for all e ∈ A and Pe
e 6= Pt(e) for all e ∈ T .

Lemma 5.2.4. Assume that Pv 6= {ε} for all v ∈V , Pe 6= {ε} for all e ∈ A and Pe
e 6= Pt(e) for

all e ∈ T . If there exists e ∈ T such that Pe = {ε}, then condition I. is satisfied.

Proof. Let x∈ Pv\ε or x∈ A. In the latter case, set v := t(x). Let χ and w be as in condition I.

First assume that there exists a strictly increasing sequence ( jN)N of positive integers such

that, [w] jN can be represented by a properly reduced positive word with first letter in Pv or

first letter in E with origin v, for all N. Assume that [v, o(e)] does not contain t(e), otherwise

replace e by ē. Take y ∈ Pt(e) \ {ε}. Then xy[w] jN is reduced, and we can assume without

loss of generality that xy[w] jN is properly reduced (when we replace x and [w] jN by suitable

positive words representing them). Suppose that x∈Pv, the case x∈A is similar. If p0d1 p1 · · ·

is a properly reduced positive word representing xy[w] jN , then we have x = p0a or xa = p0.

In the first case, we are done. The second case leads to a = ε using that Pe = {ε}.

Now assume that there exists a strictly increasing sequence ( jN)N of positive integers such

that, [w] jN can be represented by a properly reduced positive word with first letter not in Pv

or first letter in E with origin not equal to v, for all N. Assume that [v, o(e)] does not contain

t(e), otherwise replace e by ē. Take y1 ∈ Pt(e) \ {ε} and y2 ∈ Pv \P f
f , where [t(e), v] ends

with f ∈ T . Define y := y1y2. Then xy[w] jN is reduced, and we can assume without loss of

generality that xy[w] jN is properly reduced (when we replace x and [w] jN by suitable positive

words representing them). The same argument as in the first case shows that condition I.

holds.
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To get examples satisfying condition II., we now assume that Gv ⊆ (R, +) for all v ∈V . Fur-

thermore, we assume that, in addition to our assumption above, Pe
e 6= Pt(e) for all e ∈ A∪ Ā.

For convenience, we will still use multiplicative notation.

Noting that either Gv ∼= Z (with a least positive element) or Gv is dense in R (without least

positive elements), we have the following result.

Lemma 5.2.5. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. Then Pe

e is not dense in Pt(e) for all e ∈ E. Moreover, Pe ∼= Z≥0 or

Pe = {ε} for all e ∈ E.

Proof. If Pe
e is dense in Pt(e) for some e ∈ E, then we can find p ∈ Pt(e) \Pe

e and a sequence

(pn)n ⊆ Pe
e such that p ≺ pn and limn→∞ pn = p. Then p−1 pn ∈ p−1Pe

e = p−1, ēPe
e , which

implies p−1, ē ≺ p−1 pn for all n. This entails p−1, ē = ε and thus p−1Pe
e = Pe

e , contradicting

our picking p ∈ Pt(e) \Pe
e .

For all e ∈ E, we always have one of the following: Pe ∼= Z≥0, Pe = {ε} or Pe is dense in

(R+, +). In the third case, it entails that Pe
e is dense in Pt(e).

Lemma 5.2.6. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. If Pe 6= {ε} for all e ∈ T , then condition II. is satisfied if one of the

following is satisfied:

(i) ]V > 1;

(ii) ]A+ > 0.
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Proof. To begin with, we assume ]V > 1. Take e ∈ T such that [v, o(e)] does not contain t(e)

(otherwise replace e by ē), and let b be the generator of Pe
e
∼= Z≥0. Take x ∈ Pv \{ε} or x ∈ A,

and let χ and w be as in condition II..

Suppose that there exists a strictly increasing sequence ( jN)N of positive integers such that

[w] jN can be represented by a properly reduced positive word with first letter in PvN or first

letter in E with origin vN such that v and vN are on the same side of e for all N. Take

y1, y3 ∈ Pt(e) and y2 ∈ Po(e) such that y1, y3 ≺ z for all z ∈ Pe
e \ {ε} and that y2 ≺ z̄ for all

z̄ ∈ Pē
ē \{ε}, define y := y1y2y3. Then xy[w] jN is reduced, and we can assume without loss of

generality that xy[w] jN is properly reduced (when we replace x and [w] jN by suitable positive

words representing them). Let us now treat the case that x ∈ Pv, the case x ∈ A is similar.

Let p0 p1 · · · pmyw′ be a properly reduced positive word representing xy[w] jN , then either

x = p0 p1 · · · pmz or p0 p1 · · · pm = xz for some z ∈ Pē
ē . In the first case, A) in condition II. is

satisfied. In the second case, we obtain xz ∈ p0PT for some z ∈ Pē
ē = Pe

e . That is, xbi ∈ p0PT

for some positive integer j. In the mean time, xy[w] jN = p0 p1 · · · pmyw′ = xzyw′ = xyz′w′

for some z′ ∈ Pe
e with zy = yz′, which means [w] jN = z′w′ ∈ z′P ⊆ bP. B) in condition II. is

satisfied.

Suppose that there exists a strictly increasing sequence ( jN)N of positive integers such that

[w] jN can be represented by a properly reduced positive word with first letter in PvN or first

letter in E with origin vN such that v and vN are on opposite sides of e for all N. Take y1 ∈ Pt(e)

and y2 ∈ Po(e) such that y1 ≺ z for all z ∈ Pe
e \{ε} and that y2 ≺ z̄ for all z̄ ∈ Pē

ē \{ε}, define

y := y1y2. Then xy[w] jN is reduced, and we can assume without loss of generality that xy[w] jN

is properly reduced (when we replace x and [w] jN by suitable positive words representing

them). Let us now treat the case that x ∈ Pv, the case x ∈ A is similar.
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Let p0 p1 · · · pmyw′ be a properly reduced positive word representing xy[w] jN , then either

x = p0 p1 · · · pmz or p0 p1 · · · pm = xz for some z ∈ Pē
ē . In the first case, A) in condition II. is

satisfied. In the second case, we obtain xz ∈ p0PT for some z ∈ Pē
ē = Pe

e . That is, xbi ∈ p0PT

for some positive integer j. In the mean time, xy[w] jN = p0 p1 · · · pmyw′ = xzyw′ = xyz′w′

for some z′ ∈ Pe
e with zy = yz′, which means [w] jN = z′w′ ∈ z′P ⊆ bP. B) in condition II. is

satisfied.

Now assume ]A+ > 0. Take e ∈ A+ and let b be the generator of Pe
e
∼= Z≥0. Take x ∈ Pv \{ε}

or x ∈ A, and let χ and w be as in condition II.. Let ( jN)N be a strictly increasing sequence

of positive integers and define y := e. Then xy[w] jN is reduced, and we can assume without

loss of generality that xy[w] jN is properly reduced (when we replace x and [w] jN by suitable

positive words representing them). Let us now treat the case that x ∈ Pv, the case x ∈ A is

similar.

Let p0 p1 · · · pmyw′ be a properly reduced positive word representing xy[w] jN , then either

x = p0 p1 · · · pmz or p0 p1 · · · pm = xz for some z ∈ Pē
ē . In the first case, A) in condition II.

is satisfied. In the second case, we obtain xz ∈ p0PT for some z ∈ Pē
ē . We can find z′ ∈ Pe

e

with z ≺ z′. Therefore, xz′ ∈ xzPT ⊆ p0PT . That is, xbi ∈ p0PT for some positive integer i.

In the mean time, we have xy[w] jN = p0 p1 · · · pmyw′ = xzyw′ = xyz′′w′ for some z′′ ∈ Pe
e with

zy = yz′′, which means [w] jN = z′′w′ ∈ z′′P⊆ bP. B) in condition II. is satisfied.

Now we are ready to determine all closed invariant subsets of Ω.

Lemma 5.2.7. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. If condition I. holds and there exists v ∈ V such that Gv is dense in
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(R, +), then ∂Ω = Ω.

Proof. Let χ ∈ Ω∞ be arbitrary and choose xn ∈ Pv \ {ε} such that limn→∞xn = ε . Let y, w

and ( jN)N be as in condition I.. We now claim that limn→∞χxnyw = χε . As in Lemma 5.2.4,

we may assume without loss of generality that xny[w] jN is properly reduced. If χxnyw(pP) = 1

for all sufficiently big n, then xny[w] jN ∈ pP for all sufficiently big n and all sufficiently big

N. Assume p 6= ε and let p0d1 p1 · · · be a properly reduced word representing p. We treat the

case p0 ∈ Pv0 \ {ε}, the case p0 = /0 is analogous. xny[w] jN ∈ pP means that xny[w] jN = pz

for some z. By Lemma 3.1.11, there is a properly reduced positive word with first letter p0z′

representing pz. Comparing properly reduced positive words, we must have p0z′ ∈ Pv by

Lemma 3.1.8. Condition I. implies xn ∈ p0z′PT and thus p0 ≺ xn for all sufficiently big n,

contradicting our choice of xn.

We now turn to condition II. Note that in that case, we must have Pe ∼= Z≥0 for all e ∈ T , and

thus PT is Ore. We write ∂ΩPT = {∞}.

Lemma 5.2.8. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. If condition II. holds and ]A = 0, then for all χ 6= ∞ and η ∈Ω∞, we

have η ∈ G ·χ .

If condition II. holds, ]A ≥ 1 and there exists v ∈ V such that Gv is dense in R, then ∂Ω =

Ωb, ∞. Moreover, for every χ /∈Ωb, ∞, we have G ·χ = Ω.

Proof. Assume firstly ]A= 0. If η = χw for some infinite positive word w with liml→∞`([w]l)=
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∞, then we already know that η ∈ G ·χ by Lemma 5.2.2. Otherwise Lemma 5.2.3 implies

that η ∈ G ·ΩPv for some v ∈ V . If Pv ∼= Z≥0, then η ∈ Ω∞ implies η = ∞, and our claim

follows. If Gv is dense in R, let (xn)n be a sequence in Pv such that η = limn→∞χxn . Without

loss of generality we may assume χ(bP) = 0. Let y, w and ( jN)N be as in condition II. for

x = xn. Note that in the proof of Lemma 5.2.6, y and ( jN)N were chosen so that they only

depend on v, not on xn. Moreover, as in the proof of Lemma 5.2.6, the first letter of y lies

in Pt , and suppose that [v, t] starts with d ∈ T . Without loss of generality we may assume

that xn ≺ z and xn 6= z for all z ∈ Pd̄
d̄ . This is because Gv y ΩPv \{∞} is minimal. We claim

that η = limn→∞χxnyw. Indeed, suppose that χxnyw(pP) = 1. Then xny[w] jN ∈ pP. As before,

xny[w] jN is reduced, and we can assume without loss of generality that xny[w] jN is properly

reduced (when we replace xn and [w] jN by suitable positive words representing them). Sup-

pose that p = p0 p1 · · · pm is a properly reduced word with pk ∈ Pvk . We proceed inductively

on l(p) to show that xn ∈ pP. xny[w] jN ∈ pP implies that xny[w] jN = pz for some z in P.

If l(p) = 0, then p = p0 and Lemma 3.1.11 implies that pz can be represented by a prop-

erly reduced positive word with first letter of the form p0z′. Now condition II. implies that

xn ∈ p0z′PT as otherwise, we would get [w] jN ∈ bP, contradicting χ(bP) = 0. Now suppose

that l(p) ≥ 1. First let z be expressed as a properly reduced positive word. If pz is properly

reduced, then Lemma 3.1.8 implies that p0 ∈ Pv and [v0, v1] must start with d. As before,

condition II. and χ(bP) = 0 imply that xn = p0a for some a ∈ Pd̄
d̄ . But xn ≺ z and xn 6= z for

all z ∈ Pd̄
d̄ implies a = ε , and we are done. If pz is not properly reduced, then we can write

pz = (pz′)z′′ such that l(pz′)< l(p). By induction hypothesis, we obtain xn ∈ pz′P⊆ pP, as

desired.

Now we assume ]A ≥ 1 and there exists v ∈ V such that Gv is dense in R. To prove

∂Ω = Ωb, ∞, we need to prove Ωb, ∞ ⊆ ∂Ω. By Lemma 5.2.3, it suffices to show {∞} =

ΩPu ∩Ωb, ∞ ⊆ ∂Ω.
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Take e ∈ A and a strictly decreasing sequence (yn)n in Pv such that limn→∞yn = ε . Let χ ∈Ω

be arbitrary and write χ = χw for some infinite positive word w. By compactness, we can —

by passing to a subsequence if necessary — assume that χ ′ := limn→∞χynew exists. We claim

that χ ′ ∈ΩPT . Indeed, if not, then we must have χ ′(peP) = 1 for some p ∈ P. It follows that

pGē
ē = ynGē

ē for all n. Hence ymGē
ē = ynGē

ē for all m and n. But this contradicts limn→∞yn = ε .

So we obtain that ΩPT ∩G ·χ 6= /0, so that ∞ ∈ G ·χ .

Now we show G ·χ = Ω for every χ /∈Ωb, ∞. We may assume that χ(bP) = 0. If ]V > 1 or

]A > 0, then a similar argument as in Lemma 5.2.2 shows the following: If we take e ∈ A and

a sequence (xn)n in Pv such that limn→∞xn = ε and write χ = χw for some infinite positive

word w, then limn→∞χxnew = χε . If ]V = 1 and A = A− 6= /0, and if we write χ = χw for

some infinite positive word w, then χ(bP) = 0 implies that no e∈ A− can appear in w, so that

χ ∈ΩPv \{∞}. Now our claim follows because Gv y ΩPv \{∞} is minimal.

Lemma 5.2.9. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. If condition I. holds and Pv ∼= Z≥0 for all v ∈ V , then for all v ∈ V ,

there exists an infinite positive word w with liml→∞`([w]l) = ∞ such that Ω∞∩ΩPv ⊆ G ·χw.

If condition II. holds, ]V > 1 and Pv ∼= Z≥0 for all v ∈ V , then for for all v ∈ V and all

χ ∈Ω, we have Ω∞∩ΩPv ⊆ G ·χ .

Note that if condition II. holds and ]V = 1, then we are in the case of generalized Baumslag-

Solitar monoids.

Proof. Suppose that condition I. holds, then there exists e ∈ T such that Pe = {ε}. In partic-
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ular, ]V > 1. Let bv be the generator of Pv, then Ω∞∩ΩPv = {χbvbvbv · · ·}. Take v′ ∈ V with

`([v, v′]) = 1, and define f := [v, v′]. Set w := bv′bvbv′bv · · · , where bv′ is the generator of

Pv′ , we claim that limn→∞χbn
vw = χbvbvbv · · · . Indeed, if χbn

vw(pP) = 1 for all sufficiently big

n, then we have bn
vbv′bv · · ·bv′bv ∈ pP for all sufficiently big n. Since P f̄

f̄ 6= Pv and P f
f 6= Pv′ ,

we must have bn
v ∈ pP for all sufficiently big n. Hence χbvbvbv · · ·(pP) = 1.

Suppose that condition II. holds and assume ]V > 1, then PT is Ore and thus Ω∞∩ΩPv = {∞}.

Take w, v∈V with w 6= v, and let bw and bv be the generators of Pw and Pv, respectively. Take

χ ∈ Ω. If χ ∈ ΩPT , then there is nothing to show. If χ /∈ ΩPT , then there exist q ∈ PT and

e ∈ A with χ(qeP) = 1. By compactness, we can find a sequence ni such that (bwbv)
ni · χ

converges to η . We claim that η ∈ΩPT . If not, then there exists p ∈ P such that η(peP) = 1.

It follows that (bwbv)
niqGē

ē = pGē
ē and thus (bwbv)

niqGē
ē = (bwbv)

n jqGē
ē for all i, j. Hence, if

we set m j = n j−n1, then (bwbv)
m jq = qg j for some g j ∈ Gē

ē. The length `(qg j) is bounded

(independent of j), while the length `((bwbv)
m jq) tends to infinity as j → ∞. So this is a

contradiction, as desired.

Lemma 5.2.10. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. If Pv ∼= Z≥0 for all v ∈V and Pe 6= {ε} for all e ∈ T , then Ωb, ∞ = Ω∞

if and only if ]V = 1 and A = A− 6= /0.

In particular, if ]V > 1, then Ωb, ∞ ( Ω∞.

Proof. If ]V = 1 and A = A− 6= /0, every character χw ∈ Ω∞ satisfies that w contains either

infinitely many letters in A− or infinitely many letters in Pv, where v ∈V is the unique vertex.

Noting that Gv is totally ordered, we obtain in both cases that (g · χw)(biP) = 1 for all g ∈ G

with g ·χ defined and all positive integers i. That is, Ωb, ∞ = Ω∞.



CHAPTER 5. GROUPOIDS 98

If ]V > 1, take v, w ∈V with v 6= w and let bv and bw be the generators of Pv and Pw, then we

have χbvbwbvbw··· ∈Ω∞ \Ωb, ∞. If A+ 6= /0, take a ∈ A+, then χaaa··· ∈Ω∞ \Ωb, ∞.

We can now summarize our findings as follows:

Theorem 5.2.11. Let P be the fundamental monoid of a graph of monoids with condition

(LCM) for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈V , Pe 6= {ε} for all e ∈ A

and Pe
e 6= Pt(e) for all e ∈ E.

(i) If condition I. holds and there exists v ∈ V such that Gv is dense in R, then the following

is the list of all nonempty closed invariant subsets of Ω: ∂Ω = Ω.

(ii) If condition I. holds and Pv ∼= Z≥0 for all v ∈ V , then the following is the list of all

nonempty closed invariant subsets of Ω: ∂Ω = Ω∞ ⊆Ω.

(iii) If condition II. holds, there exists v ∈ V such that Gv is dense in R and ]A ≥ 1, then the

following is the list of all nonempty closed invariant subsets of Ω: Ωb, ∞ = ∂Ω ( Ω.

(iv) If condition II. holds and ]A = 0, then the following is the list of all nonempty closed

invariant subsets of Ω: {∞}= ∂Ω ( Ω∞ ⊆Ω.

(v) If condition II. holds, Pv ∼= Z≥0 for all v ∈V , ]A≥ 1 and ]V > 1, then the following is the

list of all nonempty closed invariant subsets of Ω: Ωb, ∞ = ∂Ω ( Ω∞ ⊆Ω.

Proof. (i) It follows directly from Lemma 5.2.7.

(ii) For any characters η , χ ∈Ω∞, we have by Lemma 5.2.3 either η ∈G ·ΩPv for some v∈V

or η ∈ G ·χ . In the first case, by Lemma 5.2.9, there exists χw ∈Ω∞ with liml[w]l = ∞ such

that η ∈ G ·χw. By Lemma 5.2.1, we get χw ∈ G ·χ and thus η ∈ G ·χ .

(iii) It follows directly from Lemma 5.2.8.
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(iv) It follows from Lemma 5.2.8.

(v) For any characters η ∈Ωb, ∞ and χ ∈Ω∞, we have by Lemma 5.2.3 either η ∈G ·ΩPv for

some v ∈V or η ∈ G ·χ . In the first case, Lemma 5.2.9 implies η ∈ G ·χ as well. Now take

χ /∈ Ωb, ∞ and assume without loss of generality that χ(bP) = 0. Take η ∈ Ω∞, by Lemma

5.2.3 and Lemma 5.2.9, we obtain similarly η ∈ G ·χ .

The following result is included for completeness.

Lemma 5.2.12. Suppose we are in the same setting as in the theorem above, then Ω∞ = Ω if

and only if one of the following is satisfied:

(a) There exists v ∈V such that Gv is dense in R;

(b) Pv ∼= Z≥0 for all v ∈V and ]V = ∞;

(c) Pv ∼= Z≥0 for all v ∈V and ]A+ = ∞.

Proof. (⇐=): Firstly assume there exists v∈V such that Gv is dense in R. For all x∈R+\Pv,

there exists a sequence (xn)n ⊆ Pv such that limn→∞xn = x. Define χx := limn→∞χxn , it is easy

to see that χx is well defined and independent of the choice of the sequence (xn)n. Moreover,

χx ∈Ω∞. R+ \Pv is dense in R+ since Pv is countable. As a result, χε ∈ {χx, x ∈ R+ \Pv} ⊆

Ω∞.

Now assume Pv ∼= Z≥0 for all v ∈ V . If ]V = ∞, set V := {vi}i∈N. Let bvi be the genera-

tor of Pvi and define χn := χbvn
χbvn+1

χbvn+2
· · · , n ∈ N. It is easy to see that limn→∞χn = χε .

If ]A+ = ∞, set A+ := {ai}i∈N. Define χn := χan χan+1 χan+2 · · · , n ∈ N. It is easy to see that

limn→∞χn = χε .
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(=⇒): Assume Pv ∼= Z≥0 for all v ∈ V , ]V < ∞ and ]A+ < ∞. Let bv be the generator of

Pv, then for all χ ∈ Ω∞, either χ(bvP) = 1 for some v ∈ V or χ(aP) = 1 for some a ∈ A+.

Take a convergent sequence (χn)n ⊆Ω∞, then either there exists v ∈V such that χn(bvP) = 1

for all sufficiently big n or there exists a ∈ A such that χn(aP) = 1 for all sufficiently big n,

which implies limn→∞χn 6= χε .

5.2.2 Generalised Baumslag-Solitar case

As the readers may have found, we assume ]V > 1 in Lemma 5.2.9 and Theorem 5.2.11

when condition II. holds and Pv ∼= Z≥0 for all v ∈V . In this section, we focus on this missing

case: condition II. holds, Pv ∼= Z≥0 for all v ∈V and ]V = 1, and then work out all the closed

invariant subsets of Ω.

We never consider the case when the graph (V, E) consists of a single vertex. So ]V = 1

yields that ]A > 0. We also assume that Pe 6= {ε} for all e ∈ A, that is, Pe ∼= Z≥0. But in this

section, we do not require Pe
e 6= Pv anymore, where e ∈ A∪ Ā and v ∈V is the unique vertex.

Let b be the generator of Pv, let A = {ai}i∈S for some index set S and let xi be the gener-

ator of Pai . Assume that the map Pai → Pv=t(ai) maps xi to bmi and the map Pāi → Pv=o(ai)

maps xi to b|ni|. By Proposition 3.1.1, we have the following expression of the graph of

monoids P:

P=GBS+(N, mi, ni)=< ai, b | aibmi = bniai, ∀i∈ S1, b|ni|aibmi = ai, ∀i∈ S2, N = ]A= ]S>+,

where S1 := {i∈ S, ai ∈ A+}= {i∈ S, ni > 0} and S2 := {i∈ S, ai ∈ A−}= {i∈ S, ni < 0}.

It is easy to see that P is a generalised Baumslag-Solitar monoid.
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We firstly consider the case when N is finite. Let θi be the semigroup homomorphism from

P to N, given by θi(a j) = δi, j and θi(b) = 0, and let θ := ∑i∈S θi.

As we characterize the characters by finite or infinite words, we hope to have also a char-

acterization of the subset Ωmax. To begin with, we need the following Lemma, which is from

[CELY17, Lemma 5.7.4].

Lemma 5.2.13. Let F be a semilattice. If χ ∈ F̂max, then for any f ∈ F× with χ( f ) = 0, there

exists e∈ F× such that χ(e) = 1 and e f = 0. Conversely, if χ ∈ F̂ is such that for any f ∈ F×

with χ( f ) = 0, there exists e ∈ F× with χ(e) = 1 and e f = 0, then χ ∈ F̂max.

Theorem 5.2.14. If S2 = /0, let χw ∈Ω∞, then χw ∈Ωmax if and only if

(i) w contains infinitely many ai’s (counting multiplicity); (ii) χw(biP) = 1 for all i ∈ N.

Proof. When S2 = /0, for all i ∈N and all x ∈ P, we have biP∩xP 6= /0. By Lemma 5.2.13, we

must have χw(biP) = 1 for all i ∈ N and all characters χw ∈ Ωmax. Also by Lemma 5.2.13,

we have χbbb··· /∈ Ωmax. Since Ωmax is G-invariant, χw is not maximal for all w containing

only finitely many ai’s. That is, for all χw ∈Ωmax, w contains infinitely many ai’s.

We now assume χw ∈Ω∞ \Ωmax satisfies (i) and (ii) and finish the proof by contradiction.

By Lemma 5.2.13, there exists x∈ P with χw(xP) = 0 such that for all y∈ P with χw(yP) = 1,

xP∩ yP 6= /0. Let

x = b j0ai1b j1ai2 · · ·b
jk−1aikbp
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be its standard L-form and let

x′ = b j0ai1b j1ai2 · · ·b
jk−1aik .

Take y ∈ P with enough ai’s, since xP∩ yP 6= /0, there exist r, s, t ∈ P such that r = xs = yt

and xP∩ yP = rP. xs and yt admit the same standard L-form, so x′ is a prefix of the standard

L-form of yt and hence of y. That is, y = x′z for some z ∈ P and χw(x′P) = 1.

On the other hand, x′P∩biP 6= /0 for all i∈N. Actually, there exist j ∈N and x′′ ∈ P such that

x′b j = bix′′ and x′P∩biP = x′b jP. Furthermore, when i goes up to infinity, j also tends to ∞.

Take i big enough such that j > p and hence that x′b jP⊆ xP. Since χw(x′P) = χw(biP) = 1,

we have χw(x′b jP) = 1 and hence χw(xP) = 1, leading to a contradiction.

Theorem 5.2.15. If S2 6= /0, let χw ∈Ω∞.

(i) If w contains infinitely many ai’s with i ∈ S2 (counting multiplicity), then χw ∈Ωmax.

(ii) If w contains only finitely many ai’s with i ∈ S2 (counting multiplicity), then χw ∈Ωmax if

and only if

(a) w contains infinitely many ai’s with i ∈ S1 (counting multiplicity); (b) There exists some

j ∈ N such that g · χw(biP) = 1 for all i ∈ N with g = [w]−1
j and that {w} j does not contain

ai for all i ∈ S2.

Proof. (i) Take x ∈ P with χw(xP) = 0, and take y ∈ P satisfying (1) θ(y)> θ(x); (2) θi(y)>

θi(x) for some i ∈ S2; (3) χw(yP) = 1. We claim xP∩ yP = /0.

Let

x = b j0ai1b j1ai2 · · ·b
jk−1aikbp

be its standard L-form, and let x′ = b j0ai1b j1ai2 · · ·b jk−1aik . If xP∩yP 6= /0, there exist r, s, t ∈
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P such that r = xs = yt and xP∩ yP = rP. xs and yt admit the same standard L-form, so x′

is a prefix of the standard L-form of yt and hence of y. That is, y = x′z for some z ∈ P and

χw(x′P) = 1.

When p≤ 0, x′P⊆ xP and thus χw(xP) = 1, contradicting our choice of x.

When p > 0, since θi(y) > θi(x) for some i ∈ S2, we have θi(z) > 0 for some i ∈ S2. In

this case, we have z ∈ bpP and thus y ∈ xP. This again leads to the conclusion χw(xP) = 1,

contradicting our choice of x.

In conclusion, our claim is proved. By Lemma 5.2.13, χw ∈Ωmax.

(ii) If w contains only finitely many ai’s for all i ∈ S2, there exists some j ∈ N such that

{w} j does not contain ai for all i ∈ S2. Take g = [w]−1
j , we have χw ∈ Ωmax if and only if

gχw ∈Ωmax, which holds if and only if, by Theorem 5.2.14,

(a′) gw contains infinitely many ai’s for some i; (b′) gχw(biP) = 1 for all i ∈ N. An easy

analysis implies the equivalence of conditions (a), (b) and conditions (a′), (b′).

Remark 5.2.16. Every maximal character χ satisfies χ(biP) = 1 for all i ∈ N.

Lemma 5.2.17. Let wb = bbb · · · ∈ Σ∞, then we conclude χwb /∈ ∂Ω.

Proof. We assume χwb ∈ ∂Ω and finish the proof by contradiction.

Since χwb ∈ ∂Ω, there exists a sequence {χwi}i ⊆ Ωmax such that χwi converges pointwisely

to χwb . For each χwi , there exist positive integers j and k with 1 ≤ j ≤ N and k ∈ [0, |n j|)

such that χwi(b
ka jP) = 1. Since there are only finitely many possible values for the pair

( j, k), there must be some common 1 ≤ j ≤ N and k ∈ [0, |n j|) such that χwi(b
ka jP) = 1

for infinitely many wi. Taking the limit, we get χwb(b
ka jP) = 1, which contradicts the fact
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χ−1
wb

(1) = {P, bP, b2P, · · ·}.

Theorem 5.2.18. ∂Ω = Ωmax.

Proof. It suffices to show ∂Ω⊆Ωmax.

Since ∂Ω is G-invariant, every orbit under the action of the group G is either included in ∂Ω

or intersects it by the empty set.

Let wb be as above, and then its orbit is

Orbit(wb) = {χw | w ∈ Σ
∞ contains only finitely many ai’s}.

It follows from Lemma 5.2.17 that

Orbit(wb)∩ ∂Ω = /0.

Since the orbit {χp, p ∈ P} is dense in Ω and the fact ∂Ω ( Ω, we conclude

{χp, p ∈ P}∩ ∂Ω = /0.

In conclusion, every character χ ∈ ∂Ω is of the form χw for some w∈ Σ∞ containing infinitely

many ai’s.

If w contains infinitely many ai’s for some i ∈ S2, then χw ∈Ωmax.

If w contains only finitely many ai’s for all i ∈ S2, then it must contain infinitely many ai’s

for some i ∈ S1. Furthermore, there exists some j ∈ N such that {w} j does not contain ai for

all i ∈ S2. Let g = [w]−1
j , then gχw is also in ∂Ω and thus gχw(biP) = 1 for all i ∈ N. By

Theorem 5.2.15, χw ∈Ωmax.
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Now we need to define several maps to help with our analysis of the closed invariant subsets

of Ω. We firstly define a map τ ,

τ : Σ
∞ \{wb} →

(
∪M∈N SM)∪SN,

τ(bk0a j1bk1a j2 · · ·b
kM−1a jM bbb · · ·) = ( j1, j2, · · · , jM).

Then we define the map β as follows,

β : Σ
∞ \{wb} →

(
∪M∈NZM)∪ZN,

β (bk0a j1bk1a j2 · · ·b
kM−1a jM bbb · · ·) = (r0, r1, · · · , rM−1),

where rµ ∈ [0, |n jµ+1|) satisfies r0 = k0 +q1n j1 and rµ = kµ −qµm jµ +qµ+1n jµ+1, µ ≥ 1.

Lemma 5.2.19. Let Σ∞
a ⊆ Σ∞ be the subset consisting all infinite words containing infinitely

many ai’s, and then denote by Ωa, ∞ ⊆ Ω∞ be the collection of all characters of the form χw

with w ∈ Σ∞
a . Then we have

(i) If χw, χw′ ∈ ∂Ω, then χw = χw′ if and only if τ(w) = τ(w′) and β (w) = β (w′).

(ii)If χw, χw′ ∈Ωa, ∞ \∂Ω, then χw = χw′ implies τ(w) = τ(w′) and β (w) = β (w′).

(iii) If χw, χw′ ∈Ω∞ \Ωa, ∞, then χw = χw′ if and only if τ(w) = τ(w′) and β (w) = β (w′).

Proof. (i) When χw = χw′ , we assume

τ(w) = ( j1, j2, j3, · · ·), β (w) = (r0, r1, r2, · · ·)

and

τ(w′) = ( j′1, j′2, j′3, · · ·), β (w′) = (r′0, r′1, r′2, · · ·).
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We now set out to show jµ = j′µ , rν = r′ν .

For any i ∈N, there exists k ∈N such that [w′]k ∈ [w]iP. That is, [w′]k = [w]ix for some x ∈ P.

Writing them down in the standard L-form, we get jµ = j′µ , µ ≤ θ([w]i) and rν = r′ν , ν ≤

θ([w]i)−1. Since w ∈ Σ∞
a and i is arbitrary, we conclude jµ = j′µ , rν = r′ν .

Conversely, if

τ(w) = τ(w′) = ( j1, j2, j3, · · ·)

and

β (w) = β (w′) = (r0, r1, r2, · · ·),

to prove χw = χw′ , it suffices to show χw′([w]iP) = 1 for all i ∈ N.

If w contains at most finitely many ak for each k ∈ S2, take j ∈ N such that θ([w′] j) =

θ([w]i) = M for some M ∈ N, then we have

[w]i = br0a j1br1a j2 · · ·b
rM−1a jM bp

and

[w′] j = br0a j1br1a j2 · · ·b
rM−1a jM bq,

where rµ ∈ [0, |n jµ+1|), p, q ∈ Z. Take i big enough such that {w′} j does not contain ak

for each k ∈ S2, by Theorem 5.2.15, gχw′(blP) = 1 for all l ∈ N with g = [w′]−1
j . So we

have χw′([w′] jblP) = 1 for all l ∈ N. Taking l big enough, we have [w′] jbl ∈ [w]iP and thus

χw′([w]iP) = 1 for all i big enough. That is, χw′([w]iP) = 1 for all i ∈ N.

If w contains infinitely many ak for some k ∈ S2, take j ∈ N such that θ([w′] j) = M2 >

θ([w]i) = M1, M1, M2 ∈ N and that θk([w′] j)> θk([w]i), then we have

[w]i = br0a j1br1a j2 · · ·b
rM1−1a jM1

bp

and

[w′] j = br0a j1br1a j2 · · ·b
rM2−1a jM2

bq,
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where rµ ∈ [0, |n jµ+1|), p, q ∈ Z. Furthermore,

brM1−pa jM1+1 · · ·b
rM2−1a jM2

bq ∈ P

since jµ = k for some M1 < µ ≤M2. So we get

[w′] j = [w]ibrM1−pa jM1+1 · · ·b
rM2−1a jM2

bq ∈ [w]iP

and hence χw′([w]iP) = 1.

The proof of (ii) and (iii) is similar.

Theorem 5.2.20. (i) Ω∞ is closed.

(iii) Ωb, ∞ := Ω∞ \Ωa, ∞ = (Ω∞ \Ωa, ∞)∪∂Ω.

Proof. (i) We prove it by contradiction.

If Ω∞ is not closed, we must have Ω∞ = Ω. Take a sequence {χwi} ⊆ Ω∞ converging to the

character χε , we assume, without loss of generality, wi does not contain any ai with i ∈ S2.

If limsup θ(wi)≥ 1, then there exist k ∈ N and j ∈ S1 such that χi(bka jP) = 1 for infinitely

many i, contradicting limi χwi = χε .

If lim θ(wi) = 0, then there exists k ∈ N such that χwi = χwb for all i ≥ k, contradicting

limi χwi = χε .

(iii) Take a sequence {χwi} ⊆Ω∞ \Ωa, ∞ converging to some character χw ∈Ω∞.

When limsup θ(wi)< ∞, it is easy to show χw ∈Ω∞ \Ωa, ∞.

When limsup θ(wi) = ∞, we have χw ∈Ωa, ∞.
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If w contains infinitely many ai’s for some i ∈ S2, then χw ∈Ωmax = ∂Ω.

If w contains only finitely many ai’s for all i ∈ S2, then it must contain infinitely many ai’s

for some i ∈ S1. Furthermore, there exists some j ∈ N such that {w} j does not contain ai for

all i ∈ S2. Let g = [w]−1
j , then gχw is also in Ω∞ \Ωa, ∞ and thus gχw(biP) = 1 for all i ∈ N,

given the fact that χ(biP) = 1 for all χ ∈Ω∞ \Ωa, ∞. By Theorem 5.2.15, χw ∈Ωmax = ∂Ω.

In conclusion,

Ωb, ∞ ⊆ (Ω∞ \Ωa, ∞)∪∂Ω.

For χw ∈ ∂Ω, let τ(w) = ( j1, j2, j3, · · ·) and β (w) = (k0, k1, k2, · · ·). Define

wN = bk0a j1bk1a j2 · · ·b
kM−1a jM bbb · · · ,

it is easy to check χwN ∈Ω∞ \Ωa, ∞ and it converges to χw. Therefore,

(Ω∞ \Ωa, ∞)∪∂Ω⊆Ωb, ∞.

Remark 5.2.21. Every character χ ∈Ω∞ \Ωa, ∞ is isolated in Ω∞.

Theorem 5.2.22. (i) If S1 = /0, Ωa, ∞ = ∂Ω.

(ii) If S2 = /0, Ωa, ∞ is closed.

(iii) If both S1 and S2 are not empty, Ωa, ∞ is not closed.

Proof. (i) The conclusion follows directly from Theorem 5.2.15.
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(ii) Take a sequence {χi} ⊆ Ωa, ∞ converging to some character χ ∈ Ω. Take M ∈ N, there

exist unique elements ( j1, j2, · · · , jM) ∈ SM and (k0, k1, · · · , kM−1) with kµ ∈ [0, |n jµ+1|)

such that

χi(bk0a j1bk1a j2 · · ·b
kM−1a jM P) = 1

for all i big enough. As a result, χ(bk0a j1bk1a j2 · · ·bkM−1a jM P) = 1. Since M is arbitrary,

χ ∈Ω∞ and thus χ = χw for some w ∈ Σ∞. Furthermore, w contains infinitely many ai’s, that

is, w ∈ Σ∞
a and hence χ = χw ∈Ωa, ∞.

(iii) Take ai ∈ S1 and a j ∈ S2 and set wk := bka jaiai · · · , k ∈ N, then χwk ∈ Ωa, ∞. We claim

that χwk converges to χwb .

Firstly, χwk(b
iP) = 1 for all i ∈ N and thus limk χwk(b

iP) = 1 for all i ∈ N.

Furthermore, if limsupk χwk(xP) = 1 for some x ∈ P with θ(x) > 0, then there exists l ∈ N

such that xP ⊆ bla jP and that limsupk χwk(b
la jP) = 1. On the other hand, bka jan

i /∈ bla jP

for all k > l and all n ∈N, contradicting limsupk χwk(b
la jP) = 1. So limk χwk(xP) = 0 for all

x ∈ P with θ(x)> 0. This proves our claim, which implies Ωa, ∞ is not closed.

Theorem 5.2.23. If S1 6= /0, let χw ∈Ωa, ∞ \∂Ω and let X ⊆Ω be the minimal closed invari-

ant subset containing χw, then we have Ωa, ∞ ⊆ X.

Proof. It follows from Theorem 5.2.15 that w contains infinitely many ai’s for some i ∈ S1

and contain only finitely many ai’s for all i ∈ S2. By a group action, we can assume w does

not contain any ai with i ∈ S2.

Assume χw(bP) = 0. Otherwise, there exists M1 ∈ N such that χw(biP) = 1 if and only if

0≤ i≤M1. Let g = b−M1 , then g ·χw ∈ X and g ·χw(bP) = 0.
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Take χw′ ∈ Ωa, ∞ \ ∂Ω such that w′ does not contain any ai with i ∈ S2. Let gi = [w′]i, then

we assert gi ·χw converges to χw′ .

Take x ∈ P, if χw′(xP) = 1, then there exists M2 ∈ N such that [w′]i ∈ xP for all i ≥M2. For

these i, gi ·χw(xP) = 1 and hence lim gi ·χw(xP) = 1.

If χw′(xP) = 0, we have also lim gi · χw(xP) = 0. Otherwise, take i big enough with gi ·

χw(xP) = 1. Since χw′(xP) = 0, [w′]i /∈ xP and thus [w′]i[w] j ∈ xP for some j. That is,

[w′]i[w] j = xy for some y ∈ P. Let

x = bk0a j1bk1a j2 · · ·b
kM−1a jM bp

be its standard L-form and let x′ = bk0a j1bk1a j2 · · ·bkM−1a jM . By the uniqueness of the stan-

dard L-form, we have p≥ 0 and there exists z ∈ P such that x′z = [w′]i and that z[w] j = bpy.

Since χw(bP) = 0, [w] j /∈ bP and thus z ∈ bpP. This means [w′]i = x′z ∈ x′bpP = xP, contra-

dicting the assumption χw′(xP) = 0.

This means all χw′ ∈ Ωa, ∞ \ ∂Ω, where w′ does not contain any ai with i ∈ S2, lie in X . By

the invariance of X , we get Ωa, ∞ \ ∂Ω ⊆ X . As the unique minimal closed invariant subset

of Ω, ∂Ω is also contained in X . That is, Ωa, ∞ ⊆ X .

Corollary 5.2.24. The closed invariant subsets of Ω are

(i) Ω, Ω∞, Ωa, ∞, Ωb,∞ and ∂Ω if S2 = /0.

(ii) Ω, Ω∞ = Ωb, ∞ and ∂Ω = Ωa, ∞ if S1 = /0.

(iii) Ω, Ω∞, Ωb,∞ and ∂Ω if both S1 and S2 are not empty.

We now consider the case when N = ∞. In this case,

P = GBS+(∞, mi, ni) =< ai, b | aibmi = bniai, ∀i ∈ S1, b|ni|aibmi = ai, ∀i ∈ S2 >+,
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where S1 and S2 are as in the case when N is finite. Let θi be the semigroup homomorphism

from P to N, given by θi(b) = 0 and θi(a j) = 1 if and only if j ∈ Si, i = 1, 2. Set θ := θ1+θ2.

Theorem 5.2.25. Let χw ∈Ω∞.

(i) If w contains infinitely many ai’s with i ∈ S2 (counting multiplicity), then χw ∈Ωmax.

(ii) If w contains at most finitely many ai’s with i ∈ S2 (counting multiplicity), then χw ∈Ωmax

if and only if

(a) w contains infinitely many ai’s with i ∈ S1 (counting multiplicity); (b) There exists some

j ∈ N such that g · χw(biP) = 1 for all i ∈ N with g = [w]−1
j and that {w} j does not contain

ai for all i ∈ S2.

Proof. The proof is similar to the proof of Theorem 5.2.15.

Theorem 5.2.26. ∂Ω = (Ω∞ \Ωa, ∞)∪Ωmax.

Proof. Firstly, χP /∈ ∂Ω since χ(biP) = 1 for all χ ∈ Ωmax and all i ∈ N. By invariance of

∂Ω, ∂Ω⊆Ω∞.

Secondly, let χw ∈Ωmax with w = bk0a1bk1a2bk2a3 · · · and let

gM := bM(bk0a1bk1a2 · · ·bkM−1aM
)−1

.

Then limM 7→∞ gMχw = χwb . Indeed, for any x ∈ P with θ(x) > 0, gMχw(xP) = 0 for M big

enough. For all i ∈ N, gMχw(biP) = 1 for M big enough. Therefore, limM 7→∞ gMχw = χwb

and hence Ω∞ \Ωa, ∞ ⊆ ∂Ω.

Lastly, if χw ∈ ∂Ω with w ∈ Σ∞
a , as we analysed in the case when N < ∞, we can conclude
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χw ∈Ωmax.

In conclusion, ∂Ω = (Ω∞ \Ωa, ∞)∪Ωmax.

Remark 5.2.27. Ωb, ∞ = ∂Ω.

Theorem 5.2.28. When S1 6= /0, let χ ∈ Ω∞ \ ∂Ω and let X be the minimal closed invariant

subset of Ω containing χ .

(i) If |S1|= ]A+ = ∞, X = Ω.

(ii) If |S1|= ]A+ = M < ∞, X = Ω∞.

Proof. Similarly as in Theorem 5.2.23, we have Ωa, ∞ ⊆ X . Because of the minimality,

∂Ω⊆ X . Therefore, Ω∞ = Ωa, ∞∪Ωb, ∞ ⊆ X .

(i) Assume S1 = { j1, j2, j3, · · ·} and let wi = a jia ji+1a ji+2 · · · , then χwi ∈ Ω∞. It is easy

to check limi χwi = χε . It follows, from Gχε = Ω, that X = Ω.

(ii) It suffices to show χε /∈ X , which we will prove by contradiction.

Assume {χwi}i ⊆ Ω∞ tends to χε , then there exists M′ ∈ N such that χwi(bP) = 0, i ≥ M′.

For i ≥M′, let bk0a j1bk1a j2bk2a j3 · · · be the standard L-form of wi, then we have k0 = 0 and

j1 ∈ S1. In this case, χwi(a j1P) = 1. Since |S1|= M < ∞, there must be some j ∈ S1 such that

χwi(a jP) = 1 for infinitely many i≥M′, contradicting the fact limi χwi(a jP) = χε(a jP) = 0.

Corollary 5.2.29. The closed invariant subsets of Ω are

(i) Ω and ∂Ω = Ω∞ = Ωb, ∞ if S1 = /0.
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(ii) Ω, Ω∞ and ∂Ω = Ωb, ∞ if 0 < |S1|< ∞.

(iii) Ω and ∂Ω = Ωb, ∞ if |S1|= ∞.

5.3 Topological freeness

As we mentioned in the last section, there is a one-to-one correspondence between the ide-

als of the reduced groupoid C∗-algebra C∗r (GnΩ) and the open invariant subsets of the unit

space Ω under some conditions. The conditions are not unique. In particular, Theorem 3.10

and Corollary 3.12 in [BL18] implies that such a one-to-one correspondence exists if the

groupoid GnΩ is étale, inner exact and essentially principal. In this section we investigate

whether GnΩ is essentially principal or not.

By definition, GnΩ is essentially principal if Gn X is topologically principal for every

closed invariant subset X ⊆Ω. And GnX is topologically principal if and only if the partial

action of the group G on the space X is topologically free. That is, we need to check whether

the group action of G on those closed invariant subsets of Ω is topologically free or not.

First recall that a partial dynamical system G y X is topologically free if there exists a dense

subset X ′ ⊆ X such that if g ·x = x for some g ∈G and some x ∈ X ′, then we must have g = ε .

For each subset Y ⊆ X , define

Stab(Y ) := {g ∈ G | Dom(g)∩Y 6= /0 and ∃ x ∈ Dom(g)∩Y, g · x = x}.

For brevity, denote Stab({x}) by Stab(x) for all x ∈ X . Then G y X is topologically free

if and only if there exists a dense subset X ′ ⊆ X such that Stab(X ′) = {ε}. The following

Proposition follows directly by our definition.
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Proposition 5.3.1. Let G y X be a partial dynamical system.

(i) For all g ∈ G and x ∈ Dom(g), Stab(gx) = gStab(x)g−1.

(ii) Let {Yi} be a collection of subsets of X and Y = ∪Yi, then we have Stab(Y ) = ∪Stab(Yi).

5.3.1 Generalised Baumslag-Solitar case

In this section, we focus on the generalised Baumslag-Solitar case. That is,

P=GBS+(N, mi, ni)=< ai, b | aibmi = bniai, ∀i∈ S1, b|ni|aibmi = ai, ∀i∈ S2, N = ]A= ]S>+,

where S1 := {i∈ S, ai ∈ A+}= {i∈ S, ni > 0} and S2 := {i∈ S, ai ∈ A−}= {i∈ S, ni < 0}.

Firstly, we assume N is finite.

Theorem 5.3.2. (i) G y Ω is topologically free.

(ii) G y Ω∞ is not topologically free.

(iii) G y Ωb, ∞ is not topologically free.

(iv) If ni|mi, ∀ 1≤ i≤ N, bn fixes every character in Ωb, ∞, where

n := lcm(n1, · · · , nN)

is the least positive common multiple of all the ni. Furthermore, the quotient action G/ <

bn >y Ωb, ∞ is topologically free if and only if n = 1.

Proof. (i) Since Stab(χx) = {ε}, ∀x ∈ P, the set Ω\Ω∞ does not admit any non-trivial stabi-

lizer. Observing that Ω\Ω∞ is dense in Ω, we conclude G y Ω is topologically free.
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(ii) Noticing Stab(χ) 6= {ε} for all χ ∈Ω∞ \Ωa, ∞, any subset X ⊆Ω∞ satisfying Stab(X) =

{e} is included in Ωa, ∞, and hence is not dense in Ω∞. So G y Ω∞ is not topologically free.

(iii) The proof is similar to that of (ii).

(iv) Take χw ∈Ωb, ∞. If w = wb, bnw = w. If not, we get τ(bnw) = τ(w) and β (bnw) = β (w)

instead. By Lemma 5.2.19, bnχw = χw.

If n = 1, Stab(χwb) = {ε}, where ε is the identity element in the quotient group G/ < bn >.

Therefore, the orbit Ω∞ \Ωa, ∞ in the quotient action G/ < bn >y Ωb, ∞ does not admit any

non-trivial stabilizer and hence the quotient action G/ < bn >y Ωb, ∞ is topologically free.

If n > 1, Stab(χ) 6= {ε} for all χ ∈Ω∞ \Ωa, ∞, so any subset X ⊆Ωb, ∞ satisfying Stab(X) =

{ε} is included in ∂Ω and hence is not dense in Ωb, ∞. So G/ < bn > y Ωb, ∞ is not topo-

logically free.

For any χw ∈Ωa, ∞ \∂Ω and all M ∈N, there exist unique M-tuple integers ( j1, j2, · · · , jM)

and (k0, k1, · · · , kM−1, kM) with kµ ∈ [0, |n jµ+1|), 0≤ µ ≤M−1, kM ∈ Z such that

χw(bk0a j1bk1a j2 · · ·b
kM−1a jM bkM P) = 1.

Define

γM(w) := sup{q ∈ Z | χw(bk0a j1bk1a j2 · · ·b
kM−1a jM bqP) = 1}

and set γ(w) :=
(
γM(w)

)
M.

The following Lemma is an immediate result.
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Lemma 5.3.3. If χw, χw′ ∈ Ωa, ∞ \ ∂Ω, then χw = χw′ if and only if τ(w) = τ(w′), β (w) =

β (w′) and γ(w) = γ(w′).

Remark 5.3.4. If we extend the domain of γ onto Ω∞, and take χw, χw′ ∈Ω∞, we then have

the following result:

χw = χw′ if and only if τ(w) = τ(w′), β (w) = β (w′) and γ(w) = γ(w′).

Theorem 5.3.5. When S2 = /0, Ωa, ∞ is closed. If we assume further |S1| = 1, then P is a

Baumslag-Solitar monoid. Assume P =< a, b| abm = bna, m, n ∈ N∗ >.

(i) If m, n≥ 2, G y Ωa, ∞ is topologically free.

(ii) If m≥ 2, n = 1, G y Ωa, ∞ is topologically free.

(iii) If m = 1,n≥ 2, G y Ωa, ∞ is not topologically free.

(iv) If m = n = 1, a fixes every character in Ωa, ∞. Furthermore, the quotient action G/ <

a >y Ωa, ∞ is topologically free.

Proof. Let w = bi0abi1abi2a · · · be such that α(w) ∈ {0, 1}N and that α(w) is not periodic

eventually.

(i) Let g ∈ G with g · χw = χw, then we have gw = w since w does not contain any relator

as a finite subword. There exist p, q ∈ P with g = pq−1 such that q = [w]i for some i. In this

case, w = gw = p{w}i and thus p = [w]i = q. That is, Stab(χw) = {ε}. By our choice of w,

χw ∈ Ωa, ∞ \ ∂Ω. So the orbit containing χw is a dense subset in Ωa, ∞ and does not admit

any non-trivial stabilizer. G y Ωa, ∞ is topologically free.
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(ii) Let g ∈ G with g ·χw = χw, then we have γ(gw) = γ(w). For N big enough,

γN(gw) = γN−1(gw)m+αN(gw)

and

γN(w) = γN−1(w)m+αN(w).

This implies αN(gw) = αN(w) for N big enough. So there exist i, N ∈ N such that {gw}i =

{w}i and g[w]i = [w]i = aNbγN(w). The latter means

g ·χaNbγN (w)P = χaNbγN (w)P.

That is, g = ε and Stab(χw) = {ε}. Similarly as above, we can conclude G y Ωa, ∞ is topo-

logically free.

(iii) Let X ⊆Ωa, ∞ be without non-trivial stabilizer and let wa = aaa · · · . Since Ωa, ∞ \∂Ω is

a single orbit containing χwa and that Stab(χwa) 6= {ε}, X is contained in ∂Ω and can never

be dense. G y Ωa, ∞ is not topologically free.

(iv) Stab(χwa) = {ε} and hence its orbit Ωa, ∞ \ ∂Ω does not admit any non-trivial stabi-

lizer. Ωa, ∞ \∂Ω is dense in Ωa, ∞, so the quotient action G/ < a >y Ωa, ∞ is topologically

free.

Theorem 5.3.6. When S2 = /0 and |S1| ≥ 2, Ωa, ∞ is closed and G y Ωa, ∞ is topologically

free.

Proof. Let i1, i2 ∈ S1 with i1 6= i2 and let χw ∈ Ωa, ∞ with w = a j1a j2a j3 · · · such that jµ ∈
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{i1, i2} and that the sequence { jµ}µ is not periodic. We then have χw /∈ ∂Ω and Stab(χw) =

{ε}. It follows that the orbit containing χw is dense in Ωa, ∞ and does not admit any non-

trivial stabilizer. Hence G y Ωa, ∞ is topologically free.

Theorem 5.3.7. (i) If ni - mi for some i, then G y ∂Ω is topologically free.

(ii) If ni|mi, ∀ 1≤ i≤ N, bn fixes every character in ∂Ω, where

n := lcm(n1, · · · , nN)

is the least positive common multiple of all the ni. Furthermore, the quotient action G/ <

bn > y ∂Ω is not topologically free if and only if there exist p ∈ (0, n), M ∈ N∗ and a

M-tuple

( j1, j2, · · · , jM) ∈ {1, 2, · · · , N}M

satisfying

n j1 | p,

n jk+1 | p ·
m j1m j2 · · ·m jk
n j1n j2 · · ·n jk

, ∀ 1≤ k ≤M−1,

and

n | p ·
m j1m j2 · · ·m jM
n j1n j2 · · ·n jM

.

Proof. (i) To prove G y ∂Ω is topologically free, it suffices to show that {χ ∈ ∂Ω | gχ 6= χ}

is dense in ∂Ω for every ε 6= g ∈ G. We divide the proof into three steps.

Step 1. Ωc
bp is dense in ∂Ω for 0 6= p ∈ N, where Ωg := {χ ∈ ∂Ω | gχ = χ} and Xc is

the complementary set of X with respect to ∂Ω.

If χw ∈ ∂Ω with τ(w) = ( j1, j2, j3, · · ·) is a solution of the equation bpχ = χ , we have, by
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Lemma 5.2.19, β (bpw) = β (w). By definition of β , we get n j1 | p and

n jk+1 | p ·
m j1m j2 · · ·m jk
n j1n j2 · · ·n jk

, ∀k ≥ 1. (5.6)

Take χw′ ∈ ∂Ω with τ(w′) = ( j′1, j′2, j′3, · · ·) such that j′µ = i, ∀ µ ≥ M for some M ∈ N.

It is easy to see w′ does not satisfies equation (5.6), that is, β (bpw′) 6= β (w′). This means

bpχw′ 6= χw′ . A similar analysis yields bp(gχw′
)
6= gχw′ for all g ∈ G. The orbit {gχw′}g is

dense in ∂Ω and is included in Ωc
bp , so Ωc

bp is dense in ∂Ω.

Step 2. Ωc
p, q is dense in ∂Ω for every p, q ∈ P with p 6= q, where Ωp, q := {χ ∈ ∂Ω | pχ =

qχ}.

Let

p = bk0a j1bk1a j2 · · ·b
kM1−1a jM1

bx

and

q = bk′0a j′1
bk′1a j′2

· · ·bk′M2−1a j′M2
by

be their standard L-forms and let χw ∈ ∂Ω with τ(w)= (i1, i2, i3, · · ·) and β (w)= (l0, l1, l2, · · ·)

be a solution of the equation pχ = qχ . By Lemma 5.2.19, τ(pw) = τ(qw) and β (pw) =

β (qw).

If M1 = M2, it follows from τ(pw) = τ(qw) that

( j1, j2, · · · , jM1) = ( j′1, j′2, · · · , j′M2
).

And by β (pw) = β (qw), we have

(k0, k1, · · · , kM1−1) = (k′0, k′1, · · · , k′M2−1)

and β (bxw) = β (byw). Since p 6= q, x 6= y. Assume, without loss of generality, x > y, we
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then get β (bx−yw) = β (w), or equivalently, bx−yχw = χw. In this case,

Ωp, q ⊆Ωbx−y and Ω
c
bx−y ⊆Ω

c
p, q,

which yields that Ωc
p, q is dense in ∂Ω.

If M1 6= M2, the equation τ(pw) = τ(qw) determines a unique solution (i1, i2, i3, · · ·). Also,

the equation β (pw) = β (qw) determines a unique solution (l0, l1, l2, · · ·). It follows again

from Lemma 5.2.19 that Ωp, q is a singleton set, which means Ωc
p, q is dense in ∂Ω.

Step 3. Ωc
g is dense in ∂Ω for every ε 6= g ∈ G.

For χ ∈Ωg, there must be some p, q ∈ P with g = pq−1 such that p(q−1χ) = χ . In this case,

χ = q(q−1χ) and thus q−1χ ∈Ωp, q. So we have

Ωg ⊆ ∪g=pq−1qΩp, q and ∩g=pq−1 (qΩp, q)
c ⊆Ω

c
g.

Here (qΩp, q)
c = qΩc

p, q ∪ (∂Ω \ q∂Ω) is dense in ∂Ω. Since ∂Ω is compact and Haus-

dorff, it is a Baire space. There exist at most countable pairs (p, q) with g = pq−1, so

∩g=pq−1(qΩp, q)
c is dense in ∂Ω as a countable intersection of open dense subsets. Hence

Ωc
g is dense in ∂Ω.

(ii) Let χw ∈ ∂Ω, it is easy to see that β (bnw) = β (w) and that bnχw = χw. We now consider

topological freeness of the quotient action G/ < bn >y ∂Ω.

If there exist p, M and ( j1, j2, · · · , jM) as described in the theorem, we then have

bpa j1a j2 · · ·a jM = a j1a j2 · · ·a jM bqn
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for some q ∈N. In this case, bpχw = χw for all χw ∈ ∂Ω with [w]M = a j1a j2 · · ·a jM . Noticing

{χw ∈ ∂Ω | [w]M = a j1a j2 · · ·a jM}

is proper clopen subset of ∂Ω, we conclude Ωc
bp is not dense in ∂Ω and thus the quotient

action G/ < bn >y ∂Ω is not topologically free.

If not, take x, xi ∈ P, 1≤ i≤M1, M1 ∈ N such that xiP ( xP. Let O be the nonempty basic

open subset

{χ ∈ ∂Ω | χ(xP) = 1, χ(xiP) = 0, 1≤ i≤M1}.

Let

x = bk0a j1bk1a j2 · · ·b
kM′−1a jM′b

p

and

xi = bki, 0a ji, 1bki, 1a ji, 2 · · ·b
ki, M′i−1a ji, M′i

bpi,

1≤ i≤M1, be their standard L-forms and let

x′ = bk0a j1bk1a j2 · · ·b
kM′−1a jM′

and

x′i = bki, 0a ji, 1bki, 1a ji, 2 · · ·b
ki, M′i−1a ji, M′i

,

1≤ i≤M1. It is easy to verify

O = {χ ∈ ∂Ω | χ(x′P) = 1, χ(x′iP) = 0, 1≤ i≤M1}.

Since O is not empty, there must be some y ∈ P with θ(y) big enough, of whose standard

L-form x′ is a prefix while x′i, 1≤ i≤M1 is not a prefix.



CHAPTER 5. GROUPOIDS 122

For any q ∈ (0, n), set yq := bqy. Let

y = bk′0a j′1
bk′1a j′2

· · ·bk′N1−1a j′N1
bp′

and

yq = bk′′0 a j′′1
bk′′1 a j′′2

· · ·bk′′N2−1a j′′N2
bq′

be their standard L-forms, and let

y′ = bk′0a j′1
bk′1a j′2

· · ·bk′N1−1a j′N1

and

y′q = bk′′0 a j′′1
bk′′1 a j′′2

· · ·bk′′N2−1a j′′N2
.

By our assumption, either y′ 6= y′q or n - (q′− p′).

If y′ 6= y′q, let χw ∈ ∂Ω such that [w] j = y for some j.

If n - (q′− p′), there exists some 1 ≤ i ≤ N such that ni - (q′− p′). Let χw ∈ ∂Ω such that

[w] j = yai for some j.

In either case, x′ is a prefix of w while x′i, 1 ≤ i ≤M1 is not. So χw(x′P) = 1, χw(x′iP) = 0

and hence χw ∈ O . Also, it follows from our choice of w that bqχw 6= χw. That is,

χw ∈ O ∩Ω
c
bq.

Let O run over all nonempty basic open subsets of ∂Ω, we get that Ωc
bq is dense in ∂Ω.

Following Step 2 and Step 3 as in the proof of (i), we can conclude Ωc
g is dense in ∂Ω for

every e 6= g ∈ G. That is, G/ < bn >y ∂Ω is topologically free.

When N is infinite, we have the following results.
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Theorem 5.3.8. G y Ω is topologically free.

Theorem 5.3.9. (i) If 2≤ |S1|< ∞, G y Ω∞ is topologically free.

(ii) If |S1|= 1 and mi ≥ 2 for i ∈ S1, G y Ω∞ is topologically free.

(iii) If |S1|= 1 and mi = 1 for i ∈ S1, G y Ω∞ is not topologically free.

Proof. The proof is similar to the proofs of Theorem 5.3.6 and Theorem 5.3.5.

Theorem 5.3.10. (i) If ni - mi for some i, then G y ∂Ω is topologically free.

(ii) If ni|mi for all i, then G y ∂Ω is topologically free if and only if n = ∞, where

n := lcm(n1, n2, n3, · · ·)

is the least positive common multiple of all the ni.

(iii) If n < ∞, bn fixes every character in ∂Ω. Furthermore, the quotient action G/ < bn >

y ∂Ω is not topologically free if and only if there exist p ∈ (0, n), M ∈ N∗ and ji ∈ N∗,

1≤ i≤M satisfying

n j1 | p,

n jk+1 | p ·
m j1m j2 · · ·m jk
n j1n j2 · · ·n jk

, ∀ 1≤ k ≤M−1,

and

n | p ·
m j1m j2 · · ·m jM
n j1n j2 · · ·n jM

.
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5.3.2 General case

In this section, P is the fundamental monoid of a graph of monoids with condition (LCM)

for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. We set out to find the topological freeness of the group action of G

on all closed invariant subspaces of the character space Ω.

First of all, every character χ ∈ Ω \Ω∞ does not admit non-trivial stablizers, so the action

G y Ω is topologically free.

Proposition 5.3.11. If condition I. holds and Pv ∼= Z≥0 for all v ∈ V , then G y Ω∞ is topo-

logically free whenever Ω∞ is closed.

Proof. Since condition I. holds, there exists e ∈ T with Pe = {ε}. Let v = o(e) and w = t(e),

and assume α (β ) is the generator of Pv (Pw, respectively). Set X :=αk1β k2αk3β k4 · · · with the

sequence {ki}i aperiodic, then χX ∈Ω∞ and Stab(χX) = {ε}. When Ω∞ is closed, Ω∞ = ∂Ω

is minimal and thus G ·χ is dense in Ω∞. Therefore, G y Ω∞ is topologically free.

Proposition 5.3.12. If condition II. holds and ]A = 0, then the action G y {∞} is not topo-

logically free.

Proposition 5.3.13. Suppose condition II. holds, Pv ∼=Z≥0 for all v∈V with 1 < ]V < ∞ and

]A+ < ∞.

(i) when ]A+ > 0, G y Ω∞ is topologically free.

(ii) when ]V > 2, G y Ω∞ is topologically free.
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(iii) when ]A+ = 0 and ]V = 2, take e ∈ T , and assume the two embeddings are Pe →

Po(e), 1 7→ k and Pe→ Pt(e), 1 7→ l, G y Ω∞ is topologically free if and only if either k > 2

or l > 2.

Proof. When G y Ω∞ is topologically free, we prove it by seeking out a character χX ∈

Ω∞ \Ωb, ∞ with Stab(χX) = {ε}.

(i) Take e ∈ A+ and let α ∈ Pt(e) be the generator, set X := αk1eαk2e · · · with ki ∈ {0, 1}

and the sequence {ki}i aperiodic. Take g ∈ G such that gχX = χX , then there exists j ∈ N

such that g = pq−1 with q = [X ] j and that p{X} j ≡ X since X contians no relators. This

yields p = q and hence g = ε .

(ii) Take u, v, w∈V and let α ∈Pu, β ∈Pv, γ ∈Pw be the generators, set X :=αβγk1αβγk2 · · ·

with ki ∈ {0, 1} and the sequence {ki}i aperiodic.

(iii) Let α ∈Po(e), β ∈Pt(e) be the generators. If k > 2, set X :=αk1βαk2β · · · with ki ∈{1, 2}

and the sequence {ki}i aperiodic.

If k = l = 2, Ω∞ \Ωb, ∞ is a single orbit containing χY with Y = αβαβ · · · . Stab(χY ) 6= {ε},

so G y Ω∞ is not topologically free.

In the above, we give a complete discussion on the topological freeness of the partial action

of the group G on the closed invariant subsets Ω, Ω∞ and {∞}. While we fail obtaining

a complete discussion on the topological freeness of the partial action G y ∂Ω in the case
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where condition II. holds and ]A≥ 1. Instead, we give some examples when the partial action

G y ∂Ω is topologically free.

Proposition 5.3.14. Suppose condition II. holds, Pv ∼= Z≥0 for all v ∈V , ]V > 1 and ]A > 0.

Assume Pe → Pt(e)(Z≥0 → Z≥0) sends 1 to me for all e ∈ T ∪A, Pe → Po(e)(Z≥0 → Z≥0)

sends 1 to ne for all e ∈ T ∪A+ and Pe→ P−1
o(e)(Z≥0→ Z≤0) sends 1 to ne for all e ∈ A−. If

me = ne for all e ∈ T and there exists e ∈ A such that ne - me, then G y ∂Ω is topologically

free.

Proof. A similar argument as in the proof of Theorem 5.3.7 yields that there exists χw ∈ ∂Ω

with w consisting of letters from Po(e) and {e} such that Stab(χw) = {ε}, where e lies in A

with ne - me. The claim follows since G y ∂Ω is minimal.

Proposition 5.3.15. Suppose condition II. holds, there exists v∈V such that Gv is dense in R

and ]A > 0. Assume there exists a ∈ A such that the geodesic path [o(a), t(a)]⊆ T contains

at most one vertex v with Gv ⊆ R dense.

(i) If Pv ∼= Z≥0 for all v ∈ [o(a), t(a)]. Assume Pe→ Pt(e)(Z≥0→ Z≥0) sends 1 to me for all

e ∈ [o(a), t(a)]∪{a} and Pe→ Go(e)(Z≥0→ Z) sends 1 to ne for all e ∈ [o(a), t(a)]∪{a}.

If me = ne for all e ∈ [o(a), t(a)] and na - ma, then G y ∂Ω is topologically free.

(ii) If the geodesic path [o(a), t(a)] ⊆ T contains exactly one vertex v with Gv ⊆ R dense.

Assume the unique relation containing a in G is bna
o(a)a = abma

t(a), where bo(a) and bt(a) are

the generators of Po(a) and Pt(a), respectively. Assume further m and n are the least positive

integers such that ma|m, na|n, m
ma

= n
|na| and bn

o(a), bm
t(a) ∈ Gv. If there does not exist r ∈ N
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such that bm
t(a) = (bn

o(a))
r, then G y ∂Ω is topologically free.

Proof. Noting that bm
t(a) = (bn

o(a))
r for some r ∈ N implies bm

t(a) = br for b = bn
o(a) ∈ Gv and

abr = bsgn(na)a, the claims in (i) and (ii) follow by a similar argument as in the proof of

Proposition 5.3.14.



Chapter 6

Ideal structure

Let P (G) be a graph of monoids (groups, respectively). In last chapter, we worked out all

the closed invariant subsets of the partial action G y Ω and analysed the topological freeness

of the partial action of G on all these closed invariant subsets. This partial action G y Ω

induces a transformation groupoid GnΩ and hence a groupoid C∗-algebra C∗r (GnΩ). In

this chapter, to have a better understanding of the C∗-algebra C∗r (GnΩ), we shall investigate

the ideals in C∗r (GnΩ).

Since every ideal in a C∗-algebra is the intersection of all the primitive ideals (the kernels

of non-zero irreducible representations of the C∗-algebra) containing it, we end up with the

list of all primitive ideals with a topology in C∗r (GnΩ). This part of work is based on the

following Lemma, which comes from Christian Bönicke’s and Kang Li’s work in [Theorem

3.10 and Corollary 3.12, BL18].

Lemma 6.0.1. If a groupoid G is étale, inner exact and essentially principal, then there is a

one-to-one correspondence between open invariant subsets in Ω and ideals in C∗r (G ).

128
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It is easy to check that GnΩ is étale. The inner exactness of the groupoid GnΩ is exactly

the C∗-exactness of the group G by definition in [Gue01]. Also by Erik Guentner, a discrete

group acting without inversion on a tree is C∗-exact if and only if the vertex stabilizers of the

action are C∗-exact. By [p50-p53, Ser80], the fundamental group π1(G, Γ, T ) acts without

inversion on a tree X̃ = X̃(G, Γ, T ) such that every vertex stabilizer is isomorphic to Gv for

some v ∈ V . Therefore, our group G is C∗-exact if and only if Gv is C∗-exact for all v ∈ V .

Noting Gv ⊆ (R, +) in our assumption, the latter follows since discrete amenable groups are

C∗-exact by [Lan73]. And by definition the essentially principal property of the groupoid

GnΩ is exactly the topological freeness of the partial action of G on all nonempty closed

invariant subsets of Ω. Equivalently, the groupoid GnΩ is essentially principal if and only if

the partial action GyX is topologically free for all nonempty closed invariant subsets X ⊆Ω.

We work out the list of all nonempty closed invariant subsets of Ω and analyse the topologi-

cal freeness of the partial action of G on these nonempty closed invariant subsets in Chapter

5. In the case where the partial action G y X is topologically free for all nonempty closed

invariant subsets X ⊆ Ω, we can easily obtain that every ideal in C∗r (GnΩ) is of the form

C∗r (GnX ′) with X ′ ⊆ Ω open and invariant and then analyse whether they are primitive or

not. In other cases, our work is based on the following Lemma, which comes from [Proposi-

tion 3.2.1, Dix77].

Lemma 6.0.2. If J is an ideal in a C∗-algebra A, then the canonical map from the closed

subset

PrimJ(A) := {I ∈ Prim(A) : J ⊆ I} ⊆ Prim(A)
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to Prim(A/J), induced by the quotient, is a homeomorphism. And the map ρJ from

PrimJ(A) := {I ∈ Prim(A) : J * I}

to Prim(J), defined by ρJ(I) = I∩ J, is also a homeomorphism.

To begin with, we still need a couple of Lemmas as following.

Lemma 6.0.3. If X ⊆ Ω is an orbit, then the ∗-representations πχ and πχ ′ of the ∗-algebra

Cc(GnX) on the Hilbert spaces `2(Gχ n{χ}) and `2(Gχ ′n{χ ′}) respectively are unitarily

equivalent. Here πχ and πχ ′ are sub-∗-representations of the left regular representation π of

the groupoid GnΩ as in section 2.2.

Proof. Let h ∈ G be such that hχ ′ = χ . Define a map

U : `2(Gχ n{χ}) → `2(Gχ ′n{χ ′}),

δ(g,χ) 7→ δ(gh, χ ′), g ∈ Gχ ,

it is easy to check that U is a unitary.

Take f ∈Cc(GnX) and ξ ∈ `2(Gχ n{χ}), then we have

(
U ◦πχ( f )

)
(ξ ) (gh, χ

′) =U( f ∗ξ ) (gh, χ
′)

= f ∗ξ (g, χ)

= ∑
g′∈Gχ

f (gg′−1,g′χ)ξ (g′, χ), g ∈ Gχ .

(6.1)
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and

(
πχ ′( f )◦U

)
(ξ ) (gh, χ

′) = ( f ∗Uξ ) (gh, χ
′)

= ∑
g′∈Gχ

f (gg′−1,g′χ)Uξ (g′h, χ
′)

= ∑
g′∈Gχ

f (gg′−1,g′χ)ξ (g′, χ), g ∈ Gχ .

(6.2)

From the equation (6.1) and the equation (6.2), we conclude πχ(t) =U∗ ◦πχ ′(t)◦U .

Lemma 6.0.4. πχε

(
Cc(Gn (Ω\Ω∞))

)
is isomorphic to F (`2(N∗)) as a normed ∗-algebra,

where F (`2(N∗)) is the finite rank operator algebra on the Hilbert space `2(N∗).

Proof. Noting Gχε
= P, we naturally get a unitary V : `2(Gχε

n {χε}) → `2(N∗) via a

bijection v : P → N∗. In the mean time, define

ϕ : Cc
(
Gn (Ω\Ω∞)

)
→ F (`2(N∗)), f 7→ (ci j)i j

where ci j = f (g, χp) if i = v(gp) and j = v(p), and ci j = 0 otherwise.

It is easy to check that ϕ is a ∗-algebraic isomorphism and that πχε
(t) = V ∗ ◦ ϕ(t) ◦V .

It follows that

‖πχε
( f )‖2 = sup

‖ξ‖=1, ξ∈`2(Gχε n{χε})
|< ξ , πχε

( f ∗ f ) ξ > |

= sup
‖ξ‖=1, ξ∈`2(Gχε n{χε})

|< ξ , V ∗ ◦ϕ( f ∗ f )◦V ξ > |

= sup
‖η‖=1, η∈`2(N∗)

|< η , ϕ( f ∗ f ) η > |

= ‖ϕ( f )‖2, f ∈Cc
(
Gn (Ω\Ω∞)

)
.

(6.3)



CHAPTER 6. IDEAL STRUCTURE 132

Corollary 6.0.5. Whenever Ω∞ is closed in Ω, we have ∗-isomorphims C∗r
(
Gn (Ω\Ω∞)

)∼=
K .

6.1 Generalised Baumslag-Solitar case

In this section, we assume P is a generalised Baumslag-Solitar monoid. That is,

P=GBS+(N, mi, ni)=< ai, b | aibmi = bniai, ∀i∈ S1, b|ni|aibmi = ai, ∀i∈ S2, N = ]A= ]S>+,

where S1 := {i∈ S, ai ∈ A+}= {i∈ S, ni > 0} and S2 := {i∈ S, ai ∈ A−}= {i∈ S, ni < 0}.

Take x ∈ P. Let x = b j0ai1b j1ai2 · · ·b jk−1aikbp, 1 ≤ iµ ≤ N, jµ ∈ [0, |niµ+1|), p ∈ Z be its

standard L-form, and define x′ := b j0ai1b j1ai2 · · ·b jk−1aik . Let P′ be the collection of x′ when

x varies all over P and define the map π ′ : P → P′ by sending x to x′.

The orbit Ω∞ \Ωa, ∞ is a discrete subspace of Ω. Let wb = bbb · · · and let H := < b >

be the subgroup of G, generated by b. It is easy to see Gχwb
:= {g ∈ G | χwb ∈ dom(g)} is

equal to P′H ⊆ G.

Lemma 6.1.1. πχwb

(
Cc(Gn (Ω∞ \Ωa, ∞))

)
is isometrically isomorphic to a ∗-subalgebra of

L
(
`2(P′;`2(H))

)
, where `2(H) is a Hilbert space with the operations of convolution and

involution:

f ∗g(bk) = ∑
l

f (bl)g(bk−l) and f ∗(bk) = f (b−k).
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Proof. Define a map

V : `2(Gχwb
n{χwb}) → `2(P′;`2(H)), δ(pbk, χwb)

7→ δp, δbk
, p ∈ P′,

where δp, δbk
is a function taking value δbk at the point p and taking value 0 elsewhere. It is

easy to check that V is a unitary.

In the mean time, define

ϕ : Cc
(
Gn (Ω∞ \Ωa, ∞))

)
→ L

(
`2(P′;`2(H))

)
, f 7→ ( fp, q)p, q, p, q ∈ P′,

where ( fp, q)p, q is an infinite matrix with finite rank ( f finitely supported), and every matrix

entry fp, q is an element in the Hilbert space `2(H), given as follows: fp, q(bk) = f (g, χhwb)

if π ′(h) = q and g = pbkq−1, and fp, q(bk) = 0 otherwise.

It follows easily that ϕ is well-defined, injective and linear. Also, we have

ϕ( f1)ϕ( f2)(p, r)(bk) = ∑
q∈P′, l∈Z

ϕ( f1)(p, q)(bl)ϕ( f2)(q, r)(bk−l)

= ∑
q∈P′, l∈Z

f1(pblq−1, χqwb) f2(qbk−lr−1, χrwb)

= f1 ∗ f2(pbkr−1, χrwb)

= ϕ( f1 ∗ f2)(p, r)(bk),

f1, f2 ∈Cc
(
Gn (Ω∞ \Ωa, ∞))

)
, p, r ∈ P′, k ∈ Z,

(6.4)
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and

ϕ( f )∗(p, q)(bk) = ϕ( f )(q, p)(b−k)

= f (qb−k p−1, χpwb)

= f ∗(pbkq−1, χqwb)

= ϕ( f ∗)(p, q)(bk),

f ∈Cc
(
Gn (Ω∞ \Ωa, ∞))

)
, p, q ∈ P′, k ∈ Z.

(6.5)

That is, ϕ preserves multiplication and involution. Therefore, ϕ is a ∗-algebraic isomorphism.

Let f ∈Cc
(
Gn (Ω∞ \Ωa, ∞))

)
and ξ ∈ `2(Gχwb

n{χwb}), then we have

V ◦πχwb
( f )(ξ )(p)(bk) = πχwb

( f )(ξ )(pbk, χwb)

= f ∗ξ (pbk, χwb)

= ∑
q∈P′, l∈Z

f (pbk−lq−1, χqwb)ξ (qbl, χwb)

= ∑
q∈P′, l∈Z

ϕ( f )(p, q)(bk−l)V (ξ )(q)(bl)

= ϕ( f )◦V (ξ )(p)(bk), p ∈ P′, k ∈ Z.

(6.6)

That is, πχwb
( f ) =V ∗ ◦ϕ( f )◦V for all f ∈Cc

(
Gn (Ω∞ \Ωa, ∞))

)
. It follows that

‖πχP( f )‖2 = sup
‖ξ‖=1, ξ∈`2(Gχwb

n{χwb})
|< ξ , πχP( f ∗ f ) ξ > |

= sup
‖ξ‖=1, ξ∈`2(Gχwb

n{χwb})
|< ξ , V ∗ ◦ϕ( f ∗ f )◦V ξ > |

= sup
‖η‖=1, η∈`2(P′;`2(H))

|< η , ϕ( f ∗ f ) η > |

= ‖ϕ( f )‖2, f ∈Cc
(
Gn (Ω∞ \Ωa, ∞))

)
.

(6.7)
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Proposition 6.1.2. Whenever Ωa, ∞ is closed in Ω∞, we have ∗-isomorphisms C∗r
(
Gn (Ω∞ \

Ωa, ∞)
)∼= K ⊗C(T), where T is the unit circle.

Proof. For any f ∈ Cc
(
Gn (Ω∞ \Ωa, ∞)

)
, ϕ( f ), as defined in Lemma 6.1.1, is an infinite

matrix with finitely many nonzero entries such that each nonzero entry is a finitely supported

function on H. Noting

`2(P′;`2(H))∼= `2(P′)⊗ `2(H),

which induces an isomorphism between L
(
`2(P′;`2(H))

)
with L

(
`2(P′)

)
⊗min L

(
`2(H)

)
,

we can identify these two C∗-algebras with each other. Let

A ⊆L
(
`2(P′)

)
⊗min L

(
`2(H)

)
be the collection of all elements of the form ∑i∈I Mi⊗ fi, where I is a finite index set, Mi

is an infinite matrix of finite rank and fi is a finitely supported function on H, then A is

a ∗-subalgebra of L
(
`2(P′)

)
⊗min L

(
`2(H)

)
. Under the identification, ϕ( f ) ∈ A for all

f ∈Cc
(
Gn (Ω∞ \Ωa, ∞)

)
. Conversely, every element ∑i∈I Mi⊗ fi ∈A is the image of some

f in Cc
(
Gn (Ω∞ \Ωa, ∞)

)
under the map ϕ since Gn (Ω∞ \Ωa, ∞) is discrete. Therefore,

ϕ

(
Cc
(
Gn (Ω∞ \Ωa, ∞)

))
= A

and hence πχwb

(
Cc(Gn (Ω∞ \Ωa, ∞))

)
is isomorphic to A by Lemma 6.1.1.

Every finitely supported function on H acts on `2(H) via convolution, as exactly it does

in the left regular representation of the group H. In combination with the fact that every

compact operator can be approached by finite rank operators, we conclude

A ⊆K
(
`2(P′)

)
⊗min C∗r (H)⊆ ¯A
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and thus

¯A = K
(
`2(P′)

)
⊗min C∗r (H).

Since P′ is countable and C∗r (H)∼=C(T), we have

¯A ∼= K ⊗min C(T).

Therefore,

C∗r (Gn (Ω∞ \Ωa, ∞))∼= πχwb

(
Cc(Gn (Ω∞ \Ωa, ∞))

)∼= ¯A ∼= K ⊗min C(T).

Since K is nuclear, the C∗-norm on the algebraic tensor product of K and C(T) is unique.

Therefore, by removing the footnote over the tensor product without ambiguity, we have

C∗r (Gn (Ω∞ \Ωa, ∞))∼= K ⊗C(T).

Proposition 6.1.3. Every primitive ideal in K ⊗C(T) is of the form K ⊗C0(T\{p}), where

p ∈ T is a point.

Proof. Since K is separable and exact and C(T) is separable, by [Bla06, Theorem IV.3.4.25],

every primitive ideal in K ⊗C(T) is of the form K ⊗min I + J ⊗min C(T), where I is a

primitive ideal of C(T) and J is a primitive ideal of K . Since K is simple, J = {0}. In this

case, every primitive ideal in K ⊗C(T) is of the form K ⊗ I, where I is a primitive ideal

of C(T). Every primitive ideal in C(T) is a maximal ideal since C(T) is commutative. Every

ideal in C(T) is of the form C0(X) with X ⊆ T being an open subset, so I =C0(T\{p}) for

some p ∈ T.
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Remark 6.1.4. Prim(K ⊗C(T)) is homeomorphic to T with the usual topology.

When |S1|= 1 and mi = 1 for i ∈ S1, Ωa, ∞ \∂Ω is exactly an orbit. In this case, every char-

acter in Ωa, ∞ \∂Ω is of the form χw with w = paiaiai · · · , p ∈ P, i ∈ S1.

Proposition 6.1.5. The sub-topology on Ωa, ∞ \∂Ω is discrete.

Proof. Let

Op := {χ ∈Ω | χ(pP) = 1, χ(pbP) = 0}, p ∈ P,

then Op is an open subset in Ω. It is easy to check that

Op∩ (Ωa, ∞ \∂Ω) = {χw},

where w= paiaiai · · · , i∈ S1. This entails the discreteness of the sub-topology on Ωa, ∞\∂Ω.

Proposition 6.1.6. If |S1|= 1 and mi = 1 for i ∈ S1,

C∗r
(
Gn (Ωa, ∞ \∂Ω)

)∼= K ⊗C(T).

Proof. The proof is similar as the proofs of Lemma 6.1.1 and Proposition 6.1.2.

Now we are ready to work out the primitive ideal space. Our work is based on Lemma 6.0.1
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and Lemma 6.0.2.

If there exists i with ni - mi or all the ni’s does not admit a common multiple, the action

G y ∂Ω is topologically free. In the following, we always assume G y ∂Ω is topologically

free.

When N is infinite:

Case 1. If |S1| = 0 or ∞, there are only two nonempty closed invariant subsets, Ω and

∂Ω. GnΩ is essentially principal and there is one to one correspondence between ideals

in C∗r (GnΩ) and open invariant subsets in Ω.

Prim
(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\∂Ω)), 0
}
.

Here C∗r (Gn(Ω\∂Ω)) is maximal and thus primitive. The intersection of all primitive ideals

is 0 and thus 0 is primitive. {C∗r (Gn (Ω\∂Ω))} is the only nontrivial closed subset.

Case 2. If 0 < |S1| < ∞, there are three nonempty closed invariant subsets, Ω, Ω∞ and ∂Ω.

When G y Ω∞ is topologically free, GnΩ is essentially principal and there is one to one

correspondence between ideals in C∗r (GnΩ) and open invariant subsets in Ω.

Prim
(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\Ω∞)), C∗r (Gn (Ω\∂Ω)), 0
}
.

Here C∗r (Gn (Ω\Ω∞)) is primitive because it could never be the intersection of other prim-

itive ideals. There are two nontrivial closed subsets: {C∗r (Gn (Ω \ ∂Ω))}, {C∗r (Gn (Ω \

∂Ω)), C∗r (Gn (Ω\Ω∞))}.

Case 3. If |S1| = 1 and mi = 1 for i ∈ S1, G y Ω∞ is not topologically free. C∗r (Gn ∂Ω) is
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simple and thus

PrimJ1

(
C∗r (GnΩ∞)

)
=
{

J1 :=C∗r (Gn (Ω∞ \∂Ω))
}
.

We have an C∗-isomorphism ϕ1 : J1 → K ⊗C(T) and

Prim(K ⊗C(T)) =
{
K ⊗C0(T\{p}), p ∈ T

}
.

Therefore,

PrimJ1
(
C∗r (GnΩ∞)

)
=
{

ρ
−1
J1

(Ip), p ∈ T
}
,

where Ip = ϕ
−1
1 (K ⊗C0(T\{p})) is a maximal ideal in J1.

So we have

PrimJ2

(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J1

(Ip), p ∈ T
}
,

where J2 :=C∗r
(
Gn (Ω\Ω∞)

)
is isomorphic to K . By Prim(K ) = {0}, we get

PrimJ2
(
C∗r (GnΩ)

)
= {0}.

Here {0} is primitive in C∗r (GnΩ) since C∗r (GnΩ) ∼=C∗
λ
(P) and the left regular represen-

tation of C∗
λ
(P) on `2(P) is irreducible and faithful.

To determine the topology on Prim
(
C∗r (GnΩ)

)
, we need to determine firstly the topology on

Prim
(
C∗r (GnΩ∞)

)
. To fulfill this, we need to have a better understanding of what ρ

−1
J1

(Ip) is.

Recall that

C∗r (Gn (Ω∞ \∂Ω))∼= K ⊗C∗r (Hi)∼= K ⊗C(T),
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where Hi ∼= Z is generated by ai, i ∈ S1. Every continuous function f ∈C(T) is of the form

∑n∈Z cnzn. Such a function corresponds to an element f ′ = ∑n∈Z cnλan
i

in the group C∗-

algebra C∗r (Hi) via the isomorphism C∗r (Hi)∼=C(T). Assume f ∈C(T\{1}), then f (1) = 0

and thus ∑n∈Z cn = 0.

For every x ∈ P, there exists y ∈ P and j ∈ N such that x = ya j
i . Among all the pairs (y, j),

there is a special pair (x̄, jx) such that jx ≥ j for any other pair (y, j). Let P̄ ⊆ P be the

collection of x̄ when x varies over P. The function

φ : Cc(Gn (Ω∞ \∂Ω))→L
(
`2(P̄;`2(Hi))

)
, F 7→ (Fpq)pq,

is defined by Fpq(ak
i ) = F(g, χhwai

) if h̄ = q and g = pak
i q−1, and Fpq(ak

i ) = 0 otherwise. If

F ∈Cc(Gn (Ω∞ \∂Ω))∩ I1, then φ(F) is of the form ∑i Mi⊗ f ′i with fi ∈C(T\{1}). Since

F is finitely supported, we can assume, without loss of generality, Mi has at most one nonzero

entry. Therefore, ∑k Fpq(ak
i ) = 0 for all p, q ∈ P̄.

Hence, J1/I1 ∼= K ⊆L (`2(P̄)) and the quotient map π : J1 →K sends the function F ∈

Cc(Gn (Ω∞ \∂Ω)) to the infinite matrix (F ′pq)pq, where F ′pq = ∑h̄=q, gh=p F(g, χhwai
).

By [Bla06, II.6.1.6], there is a unique extension of π to a representation of C∗r (G n Ω∞)

on `2(P̄). Assume Ω∞ \∂Ω := {χ1, χ2, · · ·} and let Xn = {(ε, χ1), (ε, χ2), · · · , (ε, χn)},

then Xn is a compact subset of the groupoid GnΩ∞. Let hn = 1Xn , then (hn) is an approx-

imate unit for J1. By [Bla06, II.6.1.6], π(Fhn)→ π(F) in the strong operator topology in

L (`2(P̄)) for every function F ∈Cc(GnΩ∞). It is easy to check that π(F) = (F ′pq)pq with

F ′pq = ∑h̄=q, gh=p F(g, χhwai
).

π is an irreducible representation and its kernel is not I1. Therefore, ρ
−1
J1

(Ip) is a maximal
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ideal in C∗r (GnΩ∞) and thus

ρ
−1
J1

(Ip) = Ip +C∗r (Gn∂Ω).

Let X ⊆Prim
(
C∗r (GnΩ∞)

)
be closed, then X∩PrimJ1

(
C∗r (GnΩ∞)

)
is closed in PrimJ1

(
C∗r (Gn

Ω∞)
)

and thus

X ∩PrimJ1
(
C∗r (GnΩ∞)

)
= {ρ−1

J1
(Ip), p ∈C}

for some closed subset C ⊆ T.

Noting Cc(Gn ∂Ω)∩ J1 = /0 and Cc(Gn ∂Ω) ⊆ ρ
−1
J1

(Ip) for all p ∈ T, we conclude, for an

arbitrary closed subset X ⊆ Prim
(
C∗r (GnΩ∞)

)
, either X = {J1} or X = {ρ−1

J1
(Ip), p∈C} for

some closed subset C⊆T. Here is a list of all nonempty closed subsets of Prim
(
C∗r (GnΩ)

)
:

{C∗r (Gn (Ω\∂Ω))},

{J2 +ρ
−1
J1

(Ip), p ∈C, C ⊆ T closed},

{C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J1

(Ip), p ∈C, C ⊆ T closed},

{0, C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J1

(Ip), p ∈ T}.

When N is finite:

Case 4. If |S1| = 0, there are three nonempty closed invariant subsets, Ω, Ω∞ and ∂Ω.

G y Ω∞ is not topologically free and the analysis of primitive ideals is similar as in Case

3.
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Case 5. If 0 < |S1| < ∞ and |S2| = 0, there are five nonempty closed invariant subsets, Ω,

Ω∞, Ωa, ∞, Ωb, ∞ and ∂Ω. When G y Ωa, ∞ is topologically free, GnΩa, ∞ is essentially

principal and there is one to one correspondence between ideals in C∗r (GnΩa, ∞) and open

invariant subsets in Ωa, ∞. Therefore,

Prim
(
C∗r (GnΩa, ∞)

)
=
{

C∗r (Gn (Ωa, ∞ \∂Ω)), 0
}

and thus

PrimJ3

(
C∗r (GnΩ∞)

)
=
{

C∗r (Gn (Ω∞ \∂Ω)), J3 :=C∗r (Gn (Ω∞ \Ωa, ∞))
}
.

We have C∗-isomorphism ϕ3 : J3 ∼= K ⊗C(T) and thus

PrimJ3
(
C∗r (GnΩ∞)

)
=
{

ρ
−1
J3

(I′p), p ∈ T
}
,

where I′p = ϕ
−1
3 (K ⊗C0(T\{p})) is a maximal ideal in J3. Similarly as in Case 3, we have

ρ
−1
J3

(I′p) = I′p +C∗r (GnΩa, ∞).

So we have

PrimJ2

(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\∂Ω)), C∗r (Gn (Ω\Ωa, ∞)), J2 +ρ
−1
J3

(I′p), p ∈ T
}
,

where J2 :=C∗r
(
Gn (Ω\Ω∞)

)
is isomorphic to K . By Prim(K ) = {0}, we get

PrimJ2
(
C∗r (GnΩ)

)
= {0}.

Here {0} is primitive in C∗r (GnΩ) since C∗r (GnΩ) ∼=C∗
λ
(P) and the left regular represen-
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tation of C∗
λ
(P) on `2(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim
(
C∗r (GnΩ)

)
:

{C∗r (Gn (Ω\∂Ω))}, {C∗r (Gn (Ω\Ωa, ∞)), C∗r (Gn (Ω\∂Ω))},

{J2 +ρ
−1
J3

(I′p), p ∈C, C ⊆ T closed},

{C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J3

(I′p), p ∈C, C ⊆ T closed},

{C∗r (Gn (Ω\Ωa, ∞)), C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J2

(I′p), p ∈C, C ⊆ T closed},

{0, C∗r (Gn (Ω\Ωa, ∞)), C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J2

(I′p), p ∈ T}.

Case 6. If |S1|= 1, mi = 1 for i ∈ S1 and |S2|= 0, G y Ωa, ∞ is not topologically free.

PrimJ1

(
C∗r (GnΩa, ∞)

)
=
{

J1 =C∗r (Gn (Ωa, ∞ \∂Ω))
}
.

We have an C∗-isomorphism ϕ1 : J1 → K ⊗C(T) and thus

PrimJ1
(
C∗r (GnΩa, ∞)

)
=
{

ρ
−1
J1

(Ip), p ∈ T
}
,

where Ip = ϕ
−1
1 (K ⊗C0(T\{p})) is a maximal ideal in J1. Similarly, we have

ρ
−1
J1

(Ip) = Ip +C∗r (Gn∂Ω).
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So we have

PrimJ3

(
C∗r (GnΩ∞)

)
=
{

C∗r (Gn (Ω∞ \∂Ω)), J3 +ρ
−1
J1

(Ip), p ∈ T
}
.

We have C∗-isomorphism ϕ3 : J3 ∼= K ⊗C(T) and thus

PrimJ3
(
C∗r (GnΩ∞)

)
=
{

ρ
−1
J3

(I′p), p ∈ T
}
,

where I′p = ϕ
−1
3 (K ⊗C0(T\{p})) is a maximal ideal in J3.

So we have

PrimJ2

(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J3

(I′p), J2 + J3 +ρJ−1
1
(Ip), p ∈ T

}
,

By Prim(J2) = {0}, we get

PrimJ2
(
C∗r (GnΩ)

)
= {0}.

Here {0} is primitive in C∗r (GnΩ) since C∗r (GnΩ) ∼=C∗
λ
(P) and the left regular represen-

tation of C∗
λ
(P) on `2(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim
(
C∗r (GnΩ)

)
:

{C∗r (Gn (Ω\∂Ω))}, {C′}, {C′′}, {C′, C′′}, {C∗r (Gn (Ω\∂Ω)), C′},

{C∗r (Gn (Ω\∂Ω)), C′′}, {C∗r (Gn (Ω\∂Ω)), C′, C′′},

{0, C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J3

(I′p), J2 + J3 +ρ
−1
J1

(Ip), p ∈ T}.

Here C′= {J2+ρ
−1
J3

(I′p), p∈C} for some closed subset C⊆T and C′′= {J2+J3+ρ
−1
J1

(Ip), p∈

C} for some closed subset C ⊆ T.
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Case 7. If 0 < |S1| < ∞ and |S2| 6= 0, there are four nonempty closed invariant subsets,

Ω, Ω∞, Ωb, ∞ and ∂Ω. By the isomorphism

ϕ3 : J3 =C∗r (Gn (Ωb, ∞ \∂Ω))∼= K ⊗C(T),

we get

PrimJ3
(
C∗r (GnΩb, ∞)

)
= {ρ−1

J3
(I′p), p ∈ T},

where I′p = ϕ
−1
3 (K ⊗C0(T\{p})) is a maximal ideal in J3. Similarly as in Case 3, we have

ρ
−1
J3

(I′p) = I′p +C∗r (Gn∂Ω).

So we have

PrimJ1

(
C∗r (GnΩ∞)

)
=
{

C∗r (Gn (Ω∞ \∂Ω)), J1 +ρ
−1
J3

(I′p), p ∈ T
}
,

where J1 =C∗r
(
Gn (Ω∞ \Ωb, ∞)

)
.

If |S1| ≥ 2 or |S1| = 1 and mi ≥ 2 for i ∈ S1, GnΩ∞ \Ωb, ∞ is topologically free and hence

C∗r
(
Gn (Ω∞ \Ωb, ∞)

)
is simple.

Take χ ∈ Ω∞ \Ωb, ∞, and consider the left regular representation πχ of C∗r (G n Ω∞) on

`2(Gn {χ}). It is irreducible and thus the kernel is a primitive ideal of C∗r (GnΩ∞). For

nonzero function f ∈ Cc(G n Ω∞), it is nonzero in {g}nO for some g ∈ G and some

open subset O ⊆ Ω∞. Since Gχ is dense in Ω∞, there exists h ∈ G with χ ∈ Dom(h)

and hχ ∈ Dom(g)∩O . That is, f (g, hχ) 6= 0. It is easy to see that f /∈ ker(πχ) and that



CHAPTER 6. IDEAL STRUCTURE 146

ker(πχ) = 0.

Therefore,

PrimJ1
(
C∗r (GnΩ∞)

)
= 0

and

PrimJ2

(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\Ω∞), C∗r (Gn (Ω\∂Ω)), J2 + J1 +ρ
−1
J3

(I′p), p ∈ T
}
.

By Prim(K ) = {0}, we get

PrimJ2
(
C∗r (GnΩ)

)
= {0}.

Here {0} is primitive in C∗r (GnΩ) since C∗r (GnΩ) ∼=C∗
λ
(P) and the left regular represen-

tation of C∗
λ
(P) on `2(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim
(
C∗r (GnΩ)

)
:

{C∗r (Gn (Ω\∂Ω))}, {C′}, {C∗r (Gn (Ω\∂Ω)), C′},

{C∗r (Gn (Ω\Ω∞)), C∗r (Gn (Ω\∂Ω)), J2 + J1 +ρ
−1
J3

(I′p), p ∈ T},

{0, C∗r (Gn (Ω\Ω∞)), C∗r (Gn (Ω\∂Ω)), J2 + J1 +ρ
−1
J3

(I′p), p ∈ T}.

Here C′ = {J2 + J1 +ρ
−1
J3

(I′p), p ∈C} for some closed subset C ⊆ T.

Case 8. If |S1|= 1, mi = 1 for i ∈ S1 and |S2| 6= 0, we have

PrimJ1

(
C∗r (GnΩ∞)

)
=
{

C∗r (Gn (Ω∞ \∂Ω)), J1 +ρ
−1
J3

(I′p), p ∈ T
}
,
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where J1 =C∗r
(
Gn (Ω∞ \Ωb, ∞)

)
.

We also have C∗-isomorphism ϕ1 : J1 ∼= K ⊗C(T) and thus

PrimJ1
(
C∗r (GnΩ∞)

)
=
{

ρ
−1
J1

(Ip), p ∈ T
}
,

where Ip = ϕ
−1
1 (K ⊗C0(T\{p})) is a maximal ideal in J1.

Therefore,

PrimJ2

(
C∗r (GnΩ)

)
=
{

C∗r (Gn (Ω\∂Ω)), J2 + J1 +ρ
−1
J3

(I′p), J2 +ρ
−1
J1

(Ip), p ∈ T
}
.

Prim(J2) = {0}, so we get

PrimJ2
(
C∗r (GnΩ)

)
= {0}.

Here {0} is primitive in C∗r (GnΩ) since C∗r (GnΩ) ∼=C∗
λ
(P) and the left regular represen-

tation of C∗
λ
(P) on `2(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim
(
C∗r (GnΩ)

)
:

{C∗r (Gn (Ω\∂Ω))}, {C′}, {C′′}, {C′, C′′}, {C∗r (Gn (Ω\∂Ω)), C′},

{C∗r (Gn (Ω\∂Ω)), C′′}, {C∗r (Gn (Ω\∂Ω)), C′, C′′},

{0, C∗r (Gn (Ω\∂Ω)), J2 +ρ
−1
J1

(Ip), J2 + J1 +ρ
−1
J3

(I′p), p ∈ T}.

Here C′= {J2+ρ
−1
J1

(Ip), p∈C} for some closed subset C⊆T and C′′= {J2+J1+ρ
−1
J3

(I′p), p∈

C} for some closed subset C ⊆ T.
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6.2 General case

In this section, let P be the fundamental monoid of a graph of monoids with condition (LCM)

for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. We still aim at the primitive ideal space of the groupoid C∗-algebra

C∗r (GnΩ).

If condition I. holds and there exists v ∈ V such that Gv is dense in R, then Ω is minimal

and the partial action G y Ω is topologically free, so the groupoid C∗-algebra C∗r (GnΩ) is

simple by [BL18, Corollary 3.14].

If condition I. holds and Pv ∼= Z≥0 for all v ∈ V , then G y Ω is minimal and topologically

free whenever Ω∞ is not closed. In this case, C∗r (GnΩ) is simple.

If condition I. holds, Pv ∼= Z≥0 for all v ∈ V and Ω∞ is closed, then G y Ω∞ is minimal

and topologically free. There is a one-to-one correspondence between open invariant subsets

of Ω and ideals in C∗r (GnΩ). It is easy to check

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ω∞))∼= K }.

If condition II. holds, ]A = 0 and Ω∞ is not closed, there are two nonempty closed invariant

subsets Ω, ∂Ω = {∞}. The action G y Ω\{∞} is minimal and topologically free, so C∗r (Gn

(Ω\{∞})) is simple and we have

PrimJ(C∗r (GnΩ)) = {0}.
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C∗r (Gn{∞})∼=C∗
λ
(GT ), and we have

Prim(C∗r (GnΩ)) = {0, I +C∗r (Gn (Ω\{∞})), I ⊆C∗r (Gn{∞}) primitive}.

Every nontrivial closed subset of PrimJ(C∗r (GnΩ)) is of the form C+C∗r (Gn (Ω \ {∞})),

where C is a nonempty closed subset in Prim(C∗r (Gn{∞})).

If condition II. holds, ]A = 0 and Ω∞ is closed, there are three nonempty closed invariant

subsets Ω, Ω∞, ∂Ω = {∞}. If the action G y Ω∞ is topologically free, then the action

G y Ω∞ \ {∞} is minimal and topologically free, so C∗r (Gn (Ω∞ \ {∞})) is simple. In this

case, we have

Prim(C∗r (GnΩ∞)) = {0, I +C∗r (Gn (Ω∞ \{∞})), I ⊆C∗r (Gn{∞}) primitive}.

Therefore,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ω∞))∼= K , I +C∗r (Gn (Ω\{∞}))},

where I ⊆C∗r (Gn{∞}) is primitive.

If the action G y Ω∞ is not topologically free, then we must have ]V = 2, k = l = 2. (see

Proposition 5.3.13) Let J :=C∗r (Gn (Ω∞ \{∞})), we can prove J ∼= K ⊗C(T). In this case,

we have

Prim(C∗r (GnΩ∞)) = {Jp +C∗r (Gn{∞}), I +C∗r (Gn (Ω∞ \{∞}))},

where Jp := ϕ−1(K ⊗C0(T \ {p})), p ∈ T with ϕ : J →K ⊗C(T) is a ∗-isomorphism,

and I ⊆C∗r (Gn{∞}) is primitive.
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Therefore,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn{∞})+ Jp +C∗r (Gn (Ω\Ω∞)), I +C∗r (Gn (Ω\{∞}))},

where Jp and I are as above.

Here is a list of all nontrivial closed subsets of Prim(C∗r (GnΩ)):

{C∗r (Gn{∞})+ Jp +C∗r (Gn (Ω\Ω∞))}p∈C, {C′+C∗r (Gn (Ω\{∞}))},

{C∗r (Gn{∞})+ Jp +C∗r (Gn (Ω\Ω∞)), p ∈C, C′+C∗r (Gn (Ω\{∞}))},

where C ⊆ T is closed and C′ ⊆ Prim(C∗r (Gn{∞})) is also closed.

If condition II. holds and ]A 6= 0, we assume the action G y ∂Ω is topologically free. If

Ω∞ is not closed, there are only two nonempty closed invariant subsets Ω, ∂Ω = Ωb, ∞. In

this case,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ωb, ∞))}.

If Ω∞ is closed, there are three nonempty closed invariant subsets Ω, Ω∞, ∂Ω = Ωb, ∞. If

the action G y Ω∞ is topologically free, then there is a one-to-one correspondence between

open invariant subsets of Ω and ideals in C∗r (GnΩ). It is easy to check

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ω∞))∼= K , C∗r (Gn (Ω\Ωb, ∞))}.

If the action GyΩ∞ is not topologically free, then we must have ]V = 2, k= l = 2 and ]A+=

0. (see Proposition 5.3.13) Let J :=C∗r (Gn (Ω∞ \Ωb, ∞)), we can prove J ∼= K ⊗C(T). In

this case, we have

Prim(C∗r (GnΩ∞)) = {J, Jp +C∗r (GnΩb, ∞)},



CHAPTER 6. IDEAL STRUCTURE 151

where Jp := ϕ−1(K ⊗C0(T\{p})), p ∈ T and ϕ : J→K ⊗C(T) is a ∗-isomorphism.

Therefore,

Prim(C∗r (GnΩ)) = {0, C∗r (Gn (Ω\Ωb, ∞)), C∗r (Gn (Ω\Ω∞))+ Jp +C∗r (GnΩb, ∞)}.

Here is a list of all nontrivial closed subsets of Prim(C∗r (GnΩ)):

{I}, {C}, {I, C},

where I :=C∗r (Gn (Ω\Ωb, ∞)) and C = {C∗r (Gn (Ω\Ω∞))+ Jp +C∗r (GnΩb, ∞)}p∈C′ for

some closed subset C′ ⊆ T.



Chapter 7

K-theory

In this chapter, we will try to find the K-theory of all the C∗-algebras of the form C∗r (GnX)

with X ⊆Ω G-invariant and closed.

First of all, we have C∗r (GnΩ) ∼= C∗
λ
(P) and by [CELY17, Theorem 5.10.1] there exists

an unital ∗-homomorphism ι : C→C∗
λ
(P) such that K∗(ι) : K∗(C)→ K∗(C∗λ (P)),∗ = 0, 1

is an isomorphism. That is,

K0(C∗r (GnΩ))∼= Z and K1(C∗r (GnΩ))∼= 0.

7.1 Generalised Baumslag-Solitar case

In this section, we assume P is a generalised Baumslag-Solitar monoid.

Firstly, we compute the K-theory of C∗r (GnΩb, ∞) since Ωb, ∞ is always closed in Ω.

We claim that {gΩb, ∞}g∈G is a G-invariant regular basis for the compact open subsets of

152
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Ωb, ∞. It is easy to see that gΩb, ∞ is a compact open subset of Ωb, ∞ for all g ∈ G and that

{gΩb, ∞}g∈G is G-invariant. Therefore, it remains to show that {gΩb, ∞}g∈G is a regular basis.

We have the following observations.

(i) If ∩1≤i≤n piΩb, ∞ 6= /0 with pi ∈ P, 1≤ i≤ n and n ∈N, then we must have ∩1≤i≤n piP 6= /0

and thus ∩1≤i≤n piP = rP for some r ∈ P because P is right LCM. Therefore,

∩1≤i≤n piΩb, ∞ = rΩb, ∞.

(ii) For every basic compact open subset O in Ωb,∞, there exist p, pi, 1≤ i≤ n ∈ P such that

O = {χ ∈Ωb, ∞, χ(pP) = 1, χ(piP) = 0}. In this case, we have

O = pΩb, ∞ \ (∪1≤i≤n piΩb, ∞).

(iii) If pΩb, ∞ = ∪1≤i≤n piΩb, ∞ for some p, pi, 1 ≤ i ≤ n ∈ P, then we must have pP =

∪1≤i≤n piP and thus pP = piP for some i because P satisfies independence. In this case,

pΩb, ∞ = piΩb, ∞.

These observations, together with the fact that for all g ∈ G there exists p ∈ P such that

gΩb, ∞ = pΩb, ∞, yields our claim by Definition 2.3.5.

Noting that G satisfies the Baum-Connes conjecture with coefficients, we have by Lemma

2.3.4

K∗(GnΩb, ∞)∼= K∗(C(Ωb, ∞)or G)∼= K∗(C∗λ (b
Z)).

Therefore,

K0
(
C∗r (GnΩb, ∞)

)∼= Z and K1
(
C∗r (GnΩb, ∞)

)∼= Z.
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Now we compute the K-theory of C∗r (GnΩ∞) in the case when Ω∞ is closed in Ω.

We have the following exact sequence of C∗-algebras,

0→C∗r
(
Gn (Ω\Ω∞)

)
→C∗r

(
GnΩ)→C∗r (GnΩ∞)→ 0,

and the six term exact sequence of their K-theories,

K0
(
C∗r
(
Gn (Ω\Ω∞)

))
K0
(
C∗r (GnΩ)

)
K0
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ)

)
K1
(
C∗r
(
Gn (Ω\Ω∞)

))
.

By Corollary 6.0.5, we have

C∗r
(
Gn (Ω\Ω∞)

)∼= K

and thus

K0
(
C∗r
(
Gn (Ω\Ω∞)

))∼= Z and K1
(
C∗r
(
Gn (Ω\Ω∞)

))∼= 0.

Noting that we also have

K0
(
C∗r (GnΩ)

)∼= Z and K1
(
C∗r (GnΩ)

)∼= 0,

we obtain the following six term exact sequence

Z Z K0
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ∞)

)
0 0,

K0(ϕ)



CHAPTER 7. K-THEORY 155

where ϕ is a unital ∗-homomorphism from C∗r
(
Gn (Ω\Ω∞)

)
to C, composed by

C∗r
(
Gn (Ω\Ω∞)

) ι−→C∗r (GnΩ)
ϕ1−→C∗

λ
(P)

ϕ2−→ C.

To calculate the K-theory of C∗r (GnΩ∞), we need to find out the map K0(ϕ) from Z to Z. It

suffices to find out K0(ϕ)([p]0) for some rank one projection p ∈C∗r
(
Gn (Ω\Ω∞)

)
.

Recall that the left regular representation of P is such that λp(δx) = δpx, p, x ∈ P, we define

E(p), p ∈ P to be the range space of λp in `2(P), and then the projection from `2(P) onto

E(p) is λpλ ∗p . It is easy to see that

E(ai)∩E(b) = E(aibmi) if i ∈ S1

and that

E(ai)⊆ E(b) if i ∈ S2.

Since Ω∞ is closed, we have 0≤ |S1|< ∞. In this case, we always have

q := 1− [λbλ
∗
b + ∑

i∈S1

(λaiλ
∗
ai
−λaibmi λ

∗
aibmi )]

is a rank one projection in C∗
λ
(P), whose range space is exactly Cδe. Here e is the identity of

P. Noting λ ∗b λb = λ ∗ai
λai = 1, it follows that this rank one projection q is in the equivalence

class of 0 in P∞(C∗λ (P)). So is any other rank one projection in C∗
λ
(P).

As a unital ∗-homomorphism, ϕ1 ◦ ι maps the rank one projection p ∈ C∗r
(
Gn (Ω \Ω∞)

)
to some rank one projection q′ ∈C∗

λ
(P). Therefore,

K0(ϕ)([p]0) = K0(ϕ2)([q′]0) = K0(ϕ2)(0) = 0.
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That is, K0(ϕ) = 0. From the six term exact sequence, it follows that

K0
(
C∗r (GnΩ∞)

)∼= Z and K1
(
C∗r (GnΩ∞)

)∼= Z.

In the next we compute the K-theory of C∗r (G n Ωa, ∞) in the case when Ωa, ∞ is closed

in Ω.

When Ωa, ∞ is closed in Ω, we must N is finite and thus Ω∞ is also closed in Ω. Hence

we have the following exact sequence of C∗-algebras,

0→C∗r
(
Gn (Ω∞ \Ωa, ∞)

)
→C∗r

(
GnΩ∞)→C∗r (GnΩa, ∞)→ 0,

and the six term exact sequence of their K-theories,

K0
(
C∗r
(
Gn (Ω∞ \Ωa, ∞)

))
K0
(
C∗r (GnΩ∞)

)
K0
(
C∗r (GnΩa, ∞)

)
K1
(
C∗r (GnΩa, ∞)

)
K1
(
C∗r (GnΩ∞)

)
K1
(
C∗r
(
Gn (Ω∞ \Ωa, ∞)

))
.

By Proposition 6.1.2, we have

C∗r
(
Gn (Ω∞ \Ωa, ∞)

)∼= K ⊗C(T)

and thus

K0
(
C∗r
(
Gn (Ω∞ \Ωa, ∞)

))∼= Z and K1
(
C∗r
(
Gn (Ω∞ \Ωa, ∞)

))∼= Z.
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By our previous computation,

K0
(
C∗r (GnΩ∞)

)∼= Z and K1
(
C∗r (GnΩ∞)

)∼= Z.

Therefore, we have such a six term exact sequence

Z Z K0
(
C∗r (GnΩa, ∞)

)
K1
(
C∗r (GnΩa, ∞)

)
Z Z,

K0(ι)

K1(ι)

where ι is the inclusion map from C∗r
(
Gn (Ω∞ \Ωa, ∞)

)
into C∗r

(
GnΩ∞).

First of all, in the K-theory of the C∗-algebra K ⊗C(T), we have [p⊗ 1]0 = 1 for some

rank one projection p ∈K . Via the path of ∗-isomorphisms

K ⊗C(T)→K ⊗C∗r (b
Z)→C∗r

(
Gn (Ω∞ \Ωa, ∞)

)
,

it is easy to find [δ(e, χwb)
]0 = 1 in the K-theory of C∗r

(
Gn (Ω∞ \Ωa, ∞)

)
, where δ(e, χwb)

is

the delta function which takes value 1 at (e, χwb) and vanishes elsewhere. Via the quotient

map π : C∗r (GnΩ)→C∗r (GnΩ∞), we find one preimage

f := 1{e}×X = 1− ∑
1≤i≤N, 0≤ j≤|ni|−1

1{b jai}×Ω1∗{b jai}×Ω
∈Cc(GnΩ)

of the element δ(e, χwb)
∈C∗r (GnΩ∞). Here and in the sequel, 1Y is always the characteristic

function on the set Y . When S2 = /0,

X = {χbk , k ∈ N}∪{χwb}.
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When S1 = /0,

X = {χwb}∪{χbk , k ∈ N}∪
(
∪1≤i≤N {χbkaib j , k ≥ |ni|, 0≤ j ≤ mi−1}

)
.

In K0(C∗r (GnΩ)), [ f ]0 = 1−∑1≤i≤N |ni|. That is, in K0(C∗r (GnΩ∞)), [δ(e, χwb)
]0 = 1−

∑1≤i≤N |ni|. Therefore, K0(ι) is a multiplication map, sending 1 to 1−∑1≤i≤N |ni|.

In the K-theory of the C∗-algebra K ⊗C(T), we have [p⊗ (z−1)+1]1 = 1. Via the path of

∗-isomorphisms

K ⊗C(T)→K ⊗C∗r (b
Z)→C∗r

(
Gn (Ω∞ \Ωa, ∞)

)
,

it is easy to find [δ(b, χwb)
+1−δ(e, χwb)

]1 = 1 in the K-theory of C∗r
(
Gn (Ω∞ \Ωa, ∞)

)
.

Let u = δ(b, χwb)
+1−δ(e, χwb)

∈C∗r (GnΩ∞) and let

v :=

1{b}×X +1−1{e}×X 1{e}×(X\bX)

0 1{b−1}×bX +1−1{e}×X

 .

We have

π(v) =

u 0

0 u∗


and

p := v

1 0

0 0

v∗ =

1−1{e}×(X\bX) 0

0 0

 .

Therefore, we have the index map δ1 : K1
(
C∗r (GnΩ∞)

)
→ K0

(
C∗r (Gn (Ω\Ω∞))

)
,

δ1(1) = δ1([δ(b, χwb)
+1−δ(e, χwb)

]1) = [p]0− [s(p)]0 =−[1{e}×(X\bX)]0.
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Therefore, K1(ι) is a multiplication map, sending 1 to −[1{e}×(X\bX)]0.

When S2 = /0, [1{e}×(X\bX)]0 = 1.

When S1 = /0, [1{e}×(X\bX)]0 = 1+∑1≤i≤N mi.

When ∑1≤i≤N |ni|> 1, it is easy to conclude that

K0
(
C∗r (GnΩa, ∞)

)∼= Z(∑1≤i≤N |ni|)−1

and that

K1
(
C∗r (GnΩa, ∞)

)∼= Z1+∑i∈S2
mi.

Here and in the sequel, Zn, n ∈ N∗ always stands for the quotient group of Z by its normal

subgroup nZ.

When ∑1≤i≤N |ni|= 1, it is easy to conclude that

K0
(
C∗r (GnΩa, ∞)

)∼= Z

and that

K1
(
C∗r (GnΩa, ∞)

)∼= Z⊕Z1+∑i∈S2
mi.

Lastly, we try to compute the K-theory of C∗r (Gn ∂Ω). Given our previous computation,

it suffices to work in the case where ∂Ω ( Ωb, ∞.

In this case, we have the following exact sequence of C∗-algebras,

0→C∗r
(
Gn (Ωb, ∞ \∂Ω)

)
→C∗r

(
GnΩb, ∞)→C∗r (Gn∂Ω)→ 0,
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and the six term exact sequence of their K-theories,

K0
(
C∗r
(
Gn (Ωb, ∞ \∂Ω)

))
K0
(
C∗r (GnΩb, ∞)

)
K0
(
C∗r (Gn∂Ω)

)
K1
(
C∗r (Gn∂Ω)

)
K1
(
C∗r (GnΩb, ∞)

)
K1
(
C∗r
(
Gn (Ωb, ∞ \∂Ω)

))
.

Noting that in our case, we have Ωb, ∞ \∂Ω = Ω∞ \Ωa, ∞. By Proposition 6.1.2, we obtain

C∗r
(
Gn (Ωb, ∞ \∂Ω)

)
=C∗r

(
Gn (Ω∞ \Ωa, ∞)

)∼= K ⊗C(T)

and thus

K0
(
C∗r
(
Gn (Ωb, ∞ \∂Ω)

))∼= Z and K1
(
C∗r
(
Gn (Ωb, ∞ \∂Ω)

))∼= Z.

On the other hand, we have

K0
(
C∗r (GnΩb, ∞)

)∼= Z and K1
(
C∗r (GnΩb, ∞)

)∼= Z.

Therefore, we have such a six term exact sequence

Z Z K0
(
C∗r (Gn∂Ω)

)
K1
(
C∗r (Gn∂Ω)

)
Z Z,

K0(ι)

K1(ι)

where ι is the inclusion map from C∗r
(
Gn (Ωb, ∞ \∂Ω)

)
into C∗r

(
GnΩb, ∞).

In the K-theory of the C∗-algebra K ⊗C(T), we have [p⊗1]0 = 1 for some rank one projec-
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tion p ∈K . Via the path of ∗-isomorphisms

K ⊗C(T)→K ⊗C∗r (b
Z)→C∗r

(
Gn (Ωb, ∞ \∂Ω)

)
,

it is easy to find [δ(e, χwb)
]0 = 1 in the K-theory of C∗r

(
Gn (Ωb, ∞ \∂Ω)

)
. Noting

δ(e, χwb)
= 1− ∑

1≤i≤N, 0≤ j≤|ni|−1
1{b jai}×Ωb, ∞

1∗{b jai}×Ωb, ∞
∈Cc(GnΩb, ∞),

we have K0(ι)([δ(e, χwb)
]0) = 1−∑1≤i≤N |ni|. That is, K0(ι) is a multiplication map, sending

1 to 1−∑1≤i≤N |ni|.

In the K-theory of the C∗-algebra K ⊗C(T), we have [p⊗ (z−1)+1]1 = 1. Via the path of

∗-isomorphisms

K ⊗C(T)→K ⊗C∗r (b
Z)→C∗r

(
Gn (Ωb, ∞ \∂Ω)

)
,

it is easy to find [δ(b, χwb)
+1−δ(e, χwb)

]1 = 1 in the K-theory of C∗r
(
Gn (Ωb, ∞ \∂Ω)

)
.

On the other hand, we have [1{b}×Ωb, ∞
]1 = 1 in the K-theory of C∗r (GnΩb, ∞).

Let u = δ(b, χwb)
+1−δ(e, χwb)

∈Cc(GnΩb, ∞) and let

ui := 1+ ∑
0≤ j≤|ni|−1

(1{b}×Ωb, ∞
−1)1{b jai}×Ωb, ∞

1∗{b jai}×Ωb, ∞
∈Cc(GnΩb, ∞), 1≤ i≤ N,

then we have u ·Π1≤i≤Nui = 1{b}×Ωb, ∞
.
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Take χ ∈Ωb, ∞ and consider the left regular representation on `2(Gn{χ}). Define

Hi, j := 1{b jai}×Ωb, ∞
1∗{b jai}×Ωb, ∞

`2(Gn{χ}),

then ui is an identity on `2(Gn {χ})	 (⊕ jHi, j) and a unitary on ⊕ jHi, j. Let u′i be the

restriction of ui on the subspace ⊕ jHi, j, we have

u′i =



0 1{b|ni|}×Ωb, ∞

1
. . .

1

0


under the basis {Hi, j} j. Multiply u′i by the permutation matrix


0

1
. . .

1

1 0


on the right hand side, we get the following diagonal matrix

u′′i =



1{b|ni|}×Ωb, ∞
0

0

1
. . .

1


Therefore, u′i is homotopic to u′′i in U (⊕ jHi, j) and hence ui is homotopic to

1+(1{b|ni|}×Ωb, ∞
−1)1{ai}×Ωb, ∞

1∗{ai}×Ωb, ∞
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= (1−1{ai}×Ωb, ∞
1∗{ai}×Ωb, ∞

)+1{ai}×Ωb, ∞
1{bsgn(ni)mi}×Ωb, ∞

1∗{ai}×Ωb, ∞
.

Before continuing, we need the following Lemma, which comes from [Lemma 4.6.2, HR00].

Lemma 7.1.1. Let A be a C∗-algebra. If u ∈ A is a unitary and v ∈ A is an isometry, then u

is homotopic to vuv∗+(1− vv∗).

It follows from Lemma 7.1.1 that ui is homotopic to 1{bsgn(ni)mi}×Ωb, ∞
. That is, [ui]1 =

sgn(ni)mi and [u]1 = 1−∑1≤i≤N sgn(ni)mi. Therefore, K1(ι) is a multiplication map, sending

1 to 1−∑1≤i≤N sgn(ni)mi.

When 1−∑1≤i≤N |ni| 6= 0 and 1−∑1≤i≤N sgn(ni)mi 6= 0, we have

K0
(
C∗r (Gn∂Ω)

)∼= Z∑1≤i≤N |ni|−1

and

K1
(
C∗r (Gn∂Ω)

)∼= Z∣∣1−∑1≤i≤N sgn(ni)mi

∣∣.

When 1−∑1≤i≤N |ni|= 0 and 1−∑1≤i≤N sgn(ni)mi 6= 0, we have

K0
(
C∗r (Gn∂Ω)

)∼= Z

and

K1
(
C∗r (Gn∂Ω)

)∼= Z⊕Z∣∣1−∑1≤i≤N sgn(ni)mi

∣∣.
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When 1−∑1≤i≤N |ni| 6= 0 and 1−∑1≤i≤N sgn(ni)mi = 0, we have

K0
(
C∗r (Gn∂Ω)

)∼= Z⊕Z∑1≤i≤N |ni|−1

and

K1
(
C∗r (Gn∂Ω)

)∼= Z.

When 1−∑1≤i≤N |ni|= 0 and 1−∑1≤i≤N sgn(ni)mi = 0, we have

K0
(
C∗r (Gn∂Ω)

)∼= Z⊕Z

and

K1
(
C∗r (Gn∂Ω)

)∼= Z⊕Z.

7.2 General case

In this section, let P be the fundamental monoid of a graph of monoids with condition (LCM)

for P satisfied. Assume that {ε} 6= Gv ⊆ (R, +) for all v ∈ V , Pe 6= {ε} for all e ∈ A and

Pe
e 6= Pt(e) for all e ∈ E. We still set out to compute the K-theory of the reduced groupoid

C∗-algebras C∗r (GnX) for all closed invariant subsets X in Ω. By Theorem 5.2.11, X may

be Ω, Ω∞, {∞} and Ωb, ∞.

In the case where X = Ω, we are done.

When X = {∞} is closed, we have condition II. holds and ]A= 0. In this case, C∗r (Gn{∞})∼=

C∗
λ
(GT ) and thus K∗(C∗r (Gn{∞}))∼= K∗(C∗λ (GT )).
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When X = Ωb, ∞ 6= {∞} is closed, we have condition II. holds and ]A ≥ 1. In this case,

we claim that {gΩb, ∞}g∈G is a G-invariant regular basis for the compact open subsets of

Ωb, ∞. It is easy to see that gΩb, ∞ is a compact open subset of Ωb, ∞ for all g ∈ G and that

{gΩb, ∞}g∈G is G-invariant. Therefore, it remains to show that {gΩb, ∞}g∈G is a regular ba-

sis. We have the following observations.

(i) If ∩1≤i≤n piΩb, ∞ 6= /0 with pi ∈ P, 1≤ i≤ n and n ∈N, then we must have ∩1≤i≤n piP 6= /0

and thus ∩1≤i≤n piP = rP for some r ∈ P because P is right LCM. Therefore,

∩1≤i≤n piΩb, ∞ = rΩb, ∞.

(ii) For every basic compact open subset O in Ωb,∞, there exist p, pi, 1≤ i≤ n ∈ P such that

O = {χ ∈Ωb, ∞, χ(pP) = 1, χ(piP) = 0}. In this case, we have

O = pΩb, ∞ \ (∪1≤i≤n piΩb, ∞).

(iii) If pΩb, ∞ = ∪1≤i≤n piΩb, ∞ for some p, pi, 1 ≤ i ≤ n ∈ P, then we must have pP =

∪1≤i≤n piP and thus pP = piP for some i because P satisfies independence. In this case,

pΩb, ∞ = piΩb, ∞.

These observations, together with the fact that for all g ∈ G there exists p ∈ P such that

gΩb, ∞ = pΩb, ∞, yields our claim by Definition 2.3.5.

Noting that G satisfies the Baum-Connes conjecture with coefficients, we have by Lemma

2.3.4

K∗(C∗r (GnΩb, ∞))∼= K∗(C(Ωb, ∞)or G)∼= K∗(C∗λ (GT )).

It remains to consider the case where X = Ω∞ is closed. In this case, we have, by Lemma
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5.2.12, Pv∼=Z≥0, ]V <∞ and ]A+ <∞. By the following short exact sequence of C∗-algebras

0→C∗r (Gn (Ω\Ω∞))→C∗r (GnΩ)→C∗r (GnΩ∞)→ 0,

we get the six term exact sequence of their K-theories as follows

K0
(
C∗r
(
Gn (Ω\Ω∞)

))
K0
(
C∗r (GnΩ)

)
K0
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ)

)
K1
(
C∗r
(
Gn (Ω\Ω∞)

))
.

Since C∗r (Gn (Ω\Ω∞))∼= K , we have

K0(C∗r (Gn (Ω\Ω∞)))∼= Z and K1(C∗r (Gn (Ω\Ω∞)))∼= 0.

Therefore, we have such an updated six term exact sequence

Z Z K0
(
C∗r (GnΩ∞)

)
K1
(
C∗r (GnΩ∞)

)
0 0,

K0(ϕ)

where ϕ is a unital ∗-homomorphism from C∗r
(
Gn (Ω\Ω∞)

)
to C∗

λ
(P), composed by

C∗r (Gn (Ω\Ω∞))
ι−→C∗r (GnΩ)

ψ−→C∗
λ
(P).

To calculate the K-theory of C∗r (GnΩ∞), we need to find out the map K0(ϕ) from Z to Z. It

suffices to find out K0(ϕ)([p]0) for some rank one projection p ∈C∗r (Gn (Ω\Ω∞)).

If condition II. holds, assume bv is the generator of Pv. Then we have relations bmv,w
v = bmw, v

w



CHAPTER 7. K-THEORY 167

and bmv, a
v a = abma, w

w . Recall that the left regular representation of P is such that λp(δx) =

δpx, p, x ∈ P, we define E(p), p ∈ P to be the range space of λp in `2(P), and then the

projection from `2(P) onto E(p) is λpλ ∗p .

Fix v ∈ V , denote by s(w) the vertex connected to w in the geodesic path [v, w] ⊆ T for

all v 6= w ∈V and by s(a) the origin vertex of a for all a ∈ A. It is easy to see that

E(a)∩E(bs(a)) = E(b
ms(a), a
s(a) a) if a ∈ A+

and that

E(a)⊆ E(bs(a)) if a ∈ A−.

Since ]V < ∞ and ]A+ < ∞, we always have

q := 1− [λbvλ
∗
bv
+ ∑

v6=w∈V
(λbwλ

∗
bw
−λ

b
ms(w), w
s(w)

λ
∗
b

ms(w), w
s(w)

)+ ∑
a∈A+

(λaλ
∗
a −λ

b
ms(a), a
s(a) a

λ
∗
b

ms(a), a
s(a) a

)]

is a rank one projection in C∗
λ
(P), whose range space is exactly Cδe. Here e is the identity of

P. Noting λ ∗bw
λbw = λ ∗a λa = 1 for all w ∈V and all a ∈ A, it follows that this rank one projec-

tion q is in the equivalence class of 0 in P∞(C∗λ (P)). So is any other rank one projection in

C∗
λ
(P).

As a unital ∗-homomorphism, ψ ◦ ι maps the rank one projection p ∈ C∗r
(
Gn (Ω \Ω∞)

)
to some rank one projection q′ ∈C∗

λ
(P). Therefore,

K0(ϕ)([p]0) = [q′]0 = 0.

That is, K0(ϕ) = 0. From the six term exact sequence, it follows that

K0
(
C∗r (GnΩ∞)

)∼= Z and K1
(
C∗r (GnΩ∞)

)∼= Z.



CHAPTER 7. K-THEORY 168

If condition I holds, K0(ϕ) is not 0 anymore. Indeed, there exists e ∈ T such that Pe = {ε}.

Set n := 1
2]{e ∈ T | Pe = ε}, we get similarly as above that [q]0 = −n, where q is a rank

one projection from `2(P) onto Cδe. Therefore, K0(ϕ)(1) = −n. From the six term exact

sequence, we get

K0
(
C∗r (GnΩ∞)

)∼= Zn and K1
(
C∗r (GnΩ∞)

)∼= 0.



Chapter 8

Extension

Based on our work in the thesis, there are some future directions in which we can work.

Firstly, in Chapter 4 we proved the nuclearity of the reduced C∗-algebras of graphs of monoids,

but only embedded successfully a part of generalised Baumslag-Solitar monoids into amenable

groups. It is natural to try to extend the result to all generalised Baumslag-Solitar monoids

and even to our graphs of monoids. This may reveal the relation between nuclearity of semi-

group C∗-algebras and embeddability of these semigroups into amenable groups.

In Chapter 5, we made some assumptions of the graphs of monoids to get all nonempty

closed invariant subsets of the the partial action G y Ω. In the process, we focused on the

cases where condition I. or condition II. holds, but we failed having a complete discussion

when either condition I. or condition II. holds. (see Lemma 5.2.4 and Lemma 5.2.6) It would

be better if we can show that either condition I. or condition II. holds in the missing case

where Pe 6= {ε} for all e ∈ T , ]V = 1, ]A+ = 0 and ]A− > 0. It also makes sense to investi-

gate whether all those assumptions of the graphs of monoids we made are necessary. That is,

can we still get a list of all nonempty closed invariant subsets of the the partial action G y Ω
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if some of the assumptions are removed?

In Chapter 5, we also discussed the topological freeness of the partial action G y X for

all closed and invariant subset X ⊆Ω. In the generalised Baumslag-Solitar monoid case, we

had a full discussion on the topological freeness. While in general case, we could not provide

a complete discussion when the partial action G y Ωb, ∞ is topologically free. Instead, we

gave some examples (sufficient conditions) where the partial action G y Ωb, ∞ is topologi-

cally free. This problem is also worthy of thinking.

In Chapter 6, we worked out the primitive ideal space (with topology) of the groupoid C∗-

algebra C∗r (GnΩ) under the assumption that the partial action G y ∂Ω is topologically free

unless ∂Ω = {∞} (in the case where ]A = 0). We can also try to find the primitive ideal space

(with topology) of the groupoid C∗-algebra C∗r (GnΩ) in the case where our assumption does

not hold, that is, the partial action G y ∂Ω is not topologically free.

Lastly, we can study other properties of the C∗-algebras of graphs of monoids, for instance,

the pure infiniteness and the classification.
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