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Abstract

In the thesis, we investigate the properties of the reduced C*-algebras of graphs of monoids.

These include nuclearity, ideal structure, K-theory and so on.

Based on Serre’s definitions of graphs of groups and their fundamental groups, we define
graphs of monoids and study the right LCM property. We also investigate the nuclearity of
C*-algebras of graphs of monoids and give some examples to embed some special graphs of

monoids (generalised Baumslag-Solitar monoids) into amenable groups.

Using Xin Li’s work to view reduced semigroup C*-algebras as reduced groupoid C*-algebras,
we study the topological approximate invariant means, the closed subgroupoids and the prin-
cipality of the associated groupoids. The results in this part help us work out the primitive
ideal spaces of these groupoid C*-algebras. Lastly, we compute K-theory of all the groupoid

C*-algebras induced by the associated groupoids and their closed subgroupoids.
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Chapter 1

Introduction

In mathematical research, it makes sense to investigate the interactions among different areas
of mathematics. C*-algebras have interactions with other areas of mathematics such as ge-
ometry, dynamical system, group theory and semigroup theory, and so on. These connections

are usually produced by constructions of some specific C*-algebras.

In the thesis, we focus on (reduced) semigroup C*-algebras. Motivated by the definition
of group C*-algebras, a semigroup C*-algebra is defined to be the C*-algebra generated by
the left regular representation of a left cancellative semigroup. Despite the analogous defini-
tions, we can see, in semigroup C*-algebras, phenomena completely different from those in
the group case. Therefore, it will be natural and interesting to study semigroup C*-algebras

separately.

The properties of semigroup C*-algebras depend heavily on the corresponding semigroups.
In the thesis, we only consider semigroup C*-algebras associated to graphs of monoids. Serre
defined graphs of groups and the fundamental group of a graph of groups in his book. (see

[p42, Ser80]) In his definition, a graph of groups (G, I') consists of a graph I' = (V, E), a
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group G, for every vertex v € I" and a group G, for every edge e € I', together with group
embeddings G, — Gy(,) (denoted by x — x°) and the convention G, = G for all edges e € T".
The fundamental group 7; (G, I', T) is given by the groups G,, v € V and A, subject to the re-
lations x¢ = x° for all e € T and all x € G,, and ay’a—! =y? foralla € A and all y € G,,, where

T is a maximal subtree of the graph I" and A is an orientation of '\ T such that ' = T UA UA.

Here we make the convention that all the graphs are countable and all the groups are dis-

crete and countable unless otherwise explicitly stated.

Based on Serre’s work, we defined similarly graphs of monoids and the fundamental monoid
P of a graph of monoids. Let (G, I') still be a graph of groups with I' = (V, E) connected,
but assume that G,, v € V 1is totally ordered with positive cone P,, i.e., G, = P,UP,” Iand
P,NP; 1— {€}. Here and in the sequel, we always use € to represent the identity element
in groups. For e € E, define P, := {g € G,, g° € P,(e)}. Assume further P, = P; for all
e € T and either P, = P; or P, = Pé_l for all e € A. Define Ay := {e € A, P, = P;} and
A_:={ecA, P.=P; 1}. The fundamental monoid P is defined to be the subsemigroup
of m (G, I', T) generated by P, and A. For more details, please refer to Chapter 3| The
fundamental monoid P, together with its semigroup C*-algebra C; (P), is exactly what we

investigate in the thesis.

As we see, a graph of monoids (groups) is a system of monoids (groups) associated to a
graph. Without ambiguity, by saying a monoid (group) is a graph of monoids (groups), we
mean it is the fundamental monoid (group) of some related system (graph of monoids or

groups).

We say that the monoid P is right LCM if for all p, g € P, either pPNgP =0 or pPNgP =rP

for some r € P. Throughout the thesis, we need the monoid P to be right LCM because it
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guarantees that all constructible right ideals of P are principal and thus that P satisfies in-
dependence. Naturally, we give a criterion for the monoid P to be right LCM in Chapter

Below is the result. (see Definition [3.2.1]and Proposition [3.2.3)

Theorem 1.0.1. P is right LCM if for all e € E, p € P,,, either p~'Pf =0 or p~'PZ = qP?

for some q € Po(e), where p’lPéE ={x€P pxe Pf}

Nuclearity, as a kind of finite approximation property of a C*-algebra, can rarely be ignored
when referring to the properties of C*-algebras. In 2012, Spielberg proved in [Spil2] that
the semigroup C*-algebras of the Baumslag-Solitar monoids are Cuntz-Krieger and hence
amenable. Noting that all Baumslag-Solitar monoids are fundamental monoids of some spe-
cific graphs of monoids, the following result can be viewed as an extension of Spielberg’s

work. (see Theorem[4.1.T]in Chapter [

Theorem 1.0.2. Assume that P is right LCM, then C; (P) is nuclear if C; (Pr) is nuclear,

where Pr is the submonoid of P generated by the semigroups P,, v € V.

It is well known that a reduced group C*-algebra is nuclear if and only if the group is
amenable, while we do not have an analogue in the semigroup case. Indeed, based on Exel’s
work, Xin Li proved in [Theorem 5.6.44 and Corollary 5.6.45, CELY17] that C; (P) is nu-

clear if P embeds into an amenable group. But whether the converse is true still remains open.

Let P be the generalised Baumslag-Solitar monoid, then we have

P =GBS, (N, mj, nj) =< a;, b | aip™ = b"a;, Vi€ Sy, b"lap™ = a;, Vi € S, N=HA >,
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where S;:={i€ S, ai€cA;}={ieS, ni>0}and S :={i€S, a;cA_}={ie S, n <0}.

To begin with, P is right LCM by Theorem On the other hand, we have C; (Pr) =
C; (N) = C*(S), where S is a shift with codimension 1 in a separable Hilbert space and C*(S)
is the universal C*-algebra generated by S, i.e., the Toeplitz algebra. Therefore, C) (Pr) is
nuclear and thus Cj (P) is nuclear. What we include in Chapter except the nuclearity part is
to embed the generalised Baumslag-Solitar monoids into amenable groups. Luckily enough,
we obtained some results despite the fact that the generalised Baumslag-Solitar groups are

not amenable in general. Below is the conclusion. (see Theorem[.2.11]and Corollary 4.2.13)

Theorem 1.0.3. Assume
N N
gcd(Hm,-,Hn,-) =1, my n;eZ*, N e N, (1.1)

Let Fy :=<s1, ---, SN > be the free group generated by N generators sy, ---, sy and let ¢

be a semigroup homomorphism defined by

¢: Fy — Aut(Q), s; — ¢(si) [r— ?, req).

l
Then there exists an injective semigroup homomorphism

¢: GBS\ (N, m;, n;) = (Fy/Fy) x Q

such that @(a;) = (s;, 0) and that ¢(b) = (g, 1). Here F is the second derived group of Fy.

In 1969, Hochster constructed in [Hoc69] an embedding of N N into the amenable group

F,/F), where NN is the free monoid generated by 2 generators, F; is the free group gen-
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erated by 2 generators and F;’ is the second derived group of F>. The proof of our theorem

above is motivated by Hochster’s work.

As you can see, we embed the generalised Baumslag-Solitar monoids into amenable groups
if equation (1.1)) holds. What if equation (1.1]) does not hold? Unfortunately, we failed giving

an answer in this case.

Every submonoid P of a group G induces a partial action of G on some character space
Q. G ~ Q induces a groupoid G x Q and its reduced groupoid C*-algebra C;' (G x Q). Given
the fact that C; (P) is isomorphic to C; (G x ) (see Theorem or [Theorem 5.5.21 and
Theorem 5.6.41, CELY17]), we will study the semigroup C*-algebra Cj (P) by investigating

the properties of the groupoid C*-algebra C; (G x Q).

By [Theorem 20.7 and Theorem 25.10, Exe15], the groupoid G x € is amenable if the group
G i1s amenable. In this case, by the definition of amenability of groupoids, there exists a topo-
logical approximate invariant mean on G x Q. It is natural to ask whether we can work out
such a topological approximate invariant mean on G x Q. In Chapter[5} we give a construc-
tion of a Borel approximate invariant mean on G X X for a general transformation groupoid
G x X with the group G amenable and provide a sufficient condition for the mean to be topo-

logical. The construction is based on Renault’s and Williams’s joint work in [RW17].

In the rest of the thesis (Chapter [5] Chapter[6]and Chapter[7)), we always treat the cases sepa-
rately according to whether P is the fundamental monoid of a general graph of monoids (gen-
eral case) or P is the generalised Baumslag-Solitar monoid (generalised Baumslag-Solitar
case). We have two reasons to do so. On one side, we have different assumptions on the
monoid P. In the general case, we have more assumptions in the construction of P to get

some results. On the other side, the generalised Baumslag-Solitar case is actually an extreme
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case of the general case and we can witness different phenomena.

In Chapter [5 we give a list of all nonempty closed invariant subspaces of the partial ac-

tion G ~ Q. In the generalised Baumslag-Solitar case, we have the following result. (see

Corollary [5.2.24]and Corollary [5.2.29)

Theorem 1.0.4. (Generalised Baumslag-Solitar case) Let P be the generalised Baumslag-
Solitar monoid, then the following is the list of all nonempty closed invariant subsets of €.
(i) 0Q C Q) o C Qoo T Qand 0Q C Qo C Qo if 0 < S| < o0 and |S,| =0,

(i) 0Q = Q4 00 T Qp o = Qoo T Qif |S1| =0and 0 < |S;| < oo,

(iii) 0L C Qp oo C Qoo C Q0 < [S1| < o0and 0 < |S| < oo,

(iv) 0Q = Q) o =Qu C QIf[S|| =0and |S3| = oo.

(1) 0Q=Qp o CQu CQif0 < |S)| < o0 and |Sy| = oo.

(vi) 0Q = Qp, o0 C Qf |S)] = =.

For every finite or infinite positive word w = x1x2x3 - - - # with x, € {P, },ey UA and x, # €
unless w = g, set [w]; ;== w if w =x;---x; with j <iand [w]; := x; ---x; otherwise. Define
Xw € Q by setting x,,(xP) = 1 if and only if [w]; € xP for some i. By the work in [LOS18],
we know that every character in € is of the form ), for some finite or infinite positive word.
In the theorem above, Q.. denotes all the characters in Q of the form ,, for some infinite
word w, and we have Q., = Q\ P. Q, . is a subset of Q.. consisting of all the characters of
the form y,, with w an infinite word containing infinitely many letters from A. And €, ., is

defined to be the closure of Qo \ Qg .

In general case, we focus on the following two situation.
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L ForallveV,xe P,\e€orxeAand ) € Q., there exists an infinite word w with ¥ = X,
a strictly increasing sequence (jy)y of positive integers, and a finite positive word y whose
first letter does not lie in P, in the case where x € P, such that,

(i) xy[w] jy is a reduced positive word for all N,

(i) Whenever pod;p; --- is a properly reduced positive word representing xy[w] ;,, we must

have x € poPr if x € P, and x € poP if x € A.

IL. There exists u € V and b € P, such that the following holds:

ForallveV,x€ P, \€orx €A and y € Q, there exists an infinite word w with ¥ = x,,,
a strictly increasing sequence (jy)y of positive integers, and a finite positive word y whose
first letter does not lie in P, in the case where x € P, such that,

(i) xy[w] jy is a reduced positive word for all N,

(ii) Whenever pod;p; --- is a properly reduced positive word representing xy[w] ;,, then one
of the following holds:

A)xe poPrifxe P,andx € poPifx €A,

B) [w];y € bP and xb’ € poPr if x € P, and xb’ € poP if x € A, where i is some positive integer.

Below is the conclusion. (see Theorem [5.2.1T])

Theorem 1.0.5. (General case) Let P be the fundamental monoid of a graph of monoids with
condition (LCM) for P satisfied. Assume that {€} # G, C (R, +) forallv €V, P, # {&} for
all e € A and P; # P, for all e € E.

(i) If condition I. holds and there exists v € V such that G, is dense in R, then the following
is the list of all nonempty closed invariant subsets of Q: dQ = Q.

(ii) If condition I. holds and P, = Z> for all v € V, then the following is the list of all
nonempty closed invariant subsets of Q: 0Q = Q.. C Q.

(iii) If condition II. holds, there exists v € V such that G, is dense in R and A > 1, then the
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following is the list of all nonempty closed invariant subsets of Q.: Qp o = dQ C Q.

(iv) If condition II. holds and A = O, then the following is the list of all nonempty closed
invariant subsets of Q: {} = 9dQ C Qo C Q.

(v) If condition I1. holds, P, = Z>q for allv € V, A > 1 and §V > 1, then the following is the

list of all nonempty closed invariant subsets of Q: Qp o = JdQ C Q. CQ.

Here Q. is as in Theorem {oo} is exactly dQp, and Q. . is defined to be

Q. ={x€Q, (g-x)'P)=1,VgeG, Vie N},

where we only consider those g € G such that g - ) is well defined.

In the theorem above, the assumption G, C (R, +) for all v € V, together with other assump-
tions, is made such that in most cases, either condition I. or condition II. holds. As you may

see, these assumptions are also made in Theorem [I.0.6, Theorem [I.0.7]and Theorem [I.0.9]

In Chapter [5] we also give a complete discussion on the topological freeness of the partial
action G ~ X for all nonempty closed invariant subsets X C Q except the case X = dQ. The
cases are complicated and here we will only take, for example, the partial action G ~ Q. in

the general case. For more details, please refer to Chapter [5] The following theorem comes

from Proposition [5.3.11]and Proposition [5.3.13]

Theorem 1.0.6. (General case) Let P be the fundamental monoid of a graph of monoids with
condition (LCM) for P satisfied. Assume that {€} # G, C (R, +) forallv €V, P, # {&} for
alle € A and P; # Py, for all e € E.

(i) If condition I. holds, then the partial action G ™ Q. is topologically free whenever Q. is

closed in Q.
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(ii) If condition II. holds, then Q. is closed in Q if and only if P, = Z>q for all v €V,
1 <V <o and A < oo. In this case, we have the following:

(a) If 1A+ > 0, G ~ Qo is topologically free.

(b) If {V > 2, G ~ Q. is topologically free.

(c)IftA+ =0and §V =2, take e € T, and assume the two embeddings are Pe — Fy(oy, 1k

and Pe — Fy(o), 1 = 1, G ™~ Qo is topologically free if and only if either k > 2 or | > 2.

In Chapter@ we study the ideals in the groupoid C*-algebra C; (G x Q). Since every ideal in
a C*-algebra is the intersection of all the primitive ideals (the kernels of non-zero irreducible
representations of the C*-algebra) containing it, we end up with the list of all primitive ide-
als in C;(G x Q). This part of work is based on Christian Bonicke’s and Kang Li’s work in
[BL18], where it states that there is a one-to-one correspondence between open invariant sub-

sets in Q and ideals in C; (G x Q) if the groupoid G x Q is étale, inner exact and essentially

principal. (see Lemma[6.0.1)

It is easy to check that G x Q is étale. The inner exactness of the groupoid G x Q is ex-
actly the C*-exactness of the group G by definition in [GueO1]. Also by Erik Guentner, a
group acting without inversion on a tree is C*-exact if and only if the vertex stabilizers of
the action are C*-exact. By [p50-p53, Ser80], the fundamental group 7, (G, I', T') acts with-
out inversion on a tree X = X(G, T, T) such that every vertex stabilizer is isomorphic to
G, for some v € V. Therefore, our group G is C*-exact if and only if G, is C*-exact for all
v € V. Noting G, C (R, +) in our assumption, the latter follows since amenable groups are
C*-exact by [Lan73]. And by definition the essentially principal property of the groupoid
G x Q is exactly the topological freeness of the partial action of G on all nonempty closed
invariant subsets of Q. Equivalently, the groupoid G x Q is essentially principal if and only if

the partial action G ~ X is topologically free for all nonempty closed invariant subsets X C Q.
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We work out the list of all nonempty closed invariant subsets of  and analyse the topologi-
cal freeness of the partial action of G on these nonempty closed invariant subsets in Chapter
5l In the case where the partial action G ~ X is topologically free for all nonempty closed
invariant subsets X C Q, we can easily obtain that every ideal in C; (G x Q) is of the form
Ci(G x X") with X’ C Q open and invariant and then analyse whether they are primitive or

not. In other cases, our work is based on Dixmier’s work in [Dix77]. (see Lemma[6.0.2))

The discussion of the primitive ideal space of the groupoid C*-algebra C;(G x Q) in Chap-
ter [0] is complicated, and here we will only give an example where P is a general graph of

monoids and Q.. is closed in Q. For more details, please refer to Chapter [6]

Theorem 1.0.7. (General case) Let P be the fundamental monoid of a graph of monoids with
condition (LCM) for P satisfied. Assume that {€} # G, C (R, +) forallv €V, P, # {&} for
all e € A and P; # Py, for all e € E.

Assume further A # 0, Qo is closed in Q and the partial action G ~ dQ is topologically
free if condition II. holds.

(i) If condition I. holds, there is a one-to-one correspondence between open invariant subsets

of Q and ideals in C;(G x Q). Therefore,

Prim(C: (G x Q)) = {0, C(Gx (Q\ Qu)) = #}.

Here and in the sequel, % stands for the C*-algebra consisting of compact operators on a
separable Hilbert space.

(ii) If condition II. holds, there are three nonempty closed invariant subsets Q, Qc., dQ =
Qp. oo

If the action G ™~ Q« is topologically free, then there is a one-to-one correspondence between

open invariant subsets of Q and ideals in C;(G x Q). In this case,
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Prim(CH(G % Q) = {0, CH(G x (Q\ Q) = A, CH(G x (Q\ Q. o))}

If the action G ~ Q. is not topologically free, then we must have §V =2, k=1=2 and
A = 0. (see Theorem[I.0.6) Set J := C;(G X (Qe0 \ Qp, ), then we have J = 7 @ C(T).

In this case,

Prim(CE(G x Q) = {0, €} (G (Q\ R, =), CF(G x (@) Q) +Jp +C(G x )},

where J, ;= @1 (" @Co(T\{p})), p€Tand ¢ : J — # @C(T) is a x-isomorphism.

Here is a list of all nontrivial closed subsets of Prim(C;(G x Q)):

{1}, {c}, {1, ¢},

where I := C}(G X (Q\ Qp, o)) and C = {C; (G x (Q\ Qu)) +J, +C (G X Qp o)} pec for

some closed subset C' C T.

K-theory has played an important role in C*-algebra theory since it was introduced as an tool
in the early 1970s. One of its most important applications in C*-algebra theory is that it helps
in the classification of C*-algebras. In Chapter|7, we try to compute the K-theory of all the
C*-algebras of the form C;(G x X) with X C Q invariant and closed. The work is partially

based on Xin Li’s work in [Li20]. Below are the conclusions.

Theorem 1.0.8. (Generalised Baumslag-Solitar case) Let P be the generalised Baumslag-
Solitar monoid.

(i) For Q, we have

Ko(CH(G x Q) = Z and K (C! (G x Q)) 220.



CHAPTER 1. INTRODUCTION 12

(ii) Qp, o is always closed in Q, and we have

Ko(CHG X, o)) 2 Z and Ki (CF(G X Qp o)) = Z.

(iii) Qo is closed in Q if and only if |S1| < oo. In this case, we have

Ko(C/ (G X Qu)) 2 Z and K, (C; (G x Qu)) 2 Z.

(iv) Qg o is closed in Q if and only if either 0 < |Si| < oo and [S2| =0 or |S;| =0 and

0 < [S2| < 0. In this case,

Ky (C;k(G X Q. m)) = Z(Z1§5§N|"i|)*1

and

Ki (G (G % Q0. )) = Zisp.om

if Y1<i<n |ni| > 1. Here and in the sequel, Z,, n € N* is the quotient group of Z by the normal

subgroup n.

Ko(CHGX Qg o)) ZZ

and

Ki(CHGx Q) = L®Lntyics,m

if Yi<ien il = 1.
(iv) dQ is always closed, but dQ # ), . only if 0 < |S1| < eoand 0 < [S3| < 0. In this case,

we have the following results.

If1 =Y <i<n|ni| #0and 1 =Y, <;<y sgn(n;)m; # 0,

Ko (C:(G X 8(2)) = ZZ1§:’§N [ni| =1



CHAPTER 1. INTRODUCTION 13

and

K (CH(Gx Q) =Z :

N ‘ 1=Y1<i<n sgn(ni)m;

If1 =Y <i<n|nil =0and 1 =Y, <;<y sgn(n;)m; # 0,

Ko(C(Gx 0Q)) 27

and

Ki(C:(GX Q) 2 ZaZ

‘ 1=Y1<i<n sgn(ni)m;

If1 =Y <icn |l #0and 1 =Y, <;<y sgn(n;)m; =0,

Ko (Cj(G X 8(2)) = ZEBZZlgigN|”i|—1

and

K (C(Gx0Q)) = Z.

If1 =Y <icn|nil =0and 1 — Y <;<y sgn(n;)m; =0,

Ko(CH(Gx0Q)) 2 ZBZ

and

K (CH(Gx0Q)) X ZBZL.

Theorem 1.0.9. (General case) Let P be the fundamental monoid of a graph of monoids with
condition (LCM) for P satisfied. Assume that {€} # G, C (R, +) forallv eV, P, # {&} for
alle € A and P; # By, forall e € E.

(i) For Q, we have

Ko(CH(G X Q)) 2 Zand K, (C (G x Q)) 0.
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(ii) Qp, o is always closed in Q, and we have

K (CHG X Qp. ) 2K (C(Qp. ) %, G) 2 K, (C}(Gr)).

(iii) When {oo} is closed in Q, we have
K. (CH(G x {e})) = Ki(C5 (G1))-
(iv) When Q. is closed in Q, we have

Ko(CH(G X Q) 2 Z and K, (C; (G X Qo)) = Z

if condition II. holds and

Ko (C; (G X Qo)) =2 Zy and K (C; (G X Qo)) =0

if condition 1. holds.

At the end of the thesis, we briefly give a description of possible extensions of all the results
in the thesis. Overall, one direction is to try to extend our results to general cases. For in-
stance, we embed successfully a part of generalised Baumslag-Solitar monoids into amenable
groups in Chapter 4, so we can try to embed all generalised Baumslag-Solitar monoids, and
even general graphs of monoids, into amenable groups. In Chapter [5S| we make some as-
sumptions of the graphs of monoids to get all nonempty closed invariant subsets of the partial
action G ~ Q. We can investigate the list of all nonempty closed invariant subsets of the par-
tial action G ~ Q by removing a part of the assumptions. Another direction is to study other
properties of the C*-algebras of graphs of monoids, which we miss in the thesis. Typical are

the pure infiniteness and the classification of the reduced C*-algebras of graphs of monoids.



Chapter 2

Preliminaries

The study of the thesis requires a familiarity of certain basic concepts from the fields of set
theory, group theory, general topology ([Kel55]), functional analysis ([Rud91], [Yos68]), lin-
ear operators ([DS57]) and C*-algebras ([Arv76], [Mur90]). The content in this chapter is

provided as a supplement besides the fundamentals mentioned above.

2.1 Graphs of groups

In this section, I present only some necessary notions, related to graphs of groups. For more

details, please refer to [Ser80].

Definition 2.1.1. A graph I consists of a set V = Vert I, a set E = Edge I" and two maps

E—VxV, e (o(e), t(e))

15
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and

E—E e—e

such that ¢ # e, ¢ = e and o(e) = t(€). Such a graph T is also denoted by (V, E).

An element v € V is called a vertex of I'; an element e € E is called an (oriented) edge of I,
and é is called the inverse edge. The vertices o(e) and #(e) are called the origin and terminus

of e. Such two vertices are called adjacent.

A tree is a connected non-empty graph without circuits. Every maximal subtree of a con-

nected non-empty graph contains all the vertices of the graph.

Definition 2.1.2. A graph of groups (G, ') consists of a graph ', a group G, for every ver-
tex v € I' and a group G, for every edge e € I, together with group embeddings G, — Gy(,)

(denoted by x — x¢) and the convention G, = G; for all edges e € T.

In the case where I is a tree, by amalgamating the groups G, along the groups G,, we get the

direct limit of the graph of groups (G, I'), denoted by

Gr = lim(G, I).

Here and in the sequel, let (G, I') be a graph of groups with I' = (V, E) being a connected
nonempty graph. Define the group F(G, I') by the groups G,, v € V and the edges ¢ € E,

subject to the relations € = e~ ! and ex¢é = x°, x € G,.
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Let ¢ be a path of length nin " and let ey, --- , e, be the edges of ¢, put v; = o(e;j11) = t(e;).
A word of type ¢ in F(G, T) is a pair (c, x), where x = (xg, x1, -+, x,) with x; € G,,.. The
element

lc, X| = xperxiez---enx, € F(G, T)

is said to be associated with the word (¢, x). When n = 0, we have |c, x| = xo.

Set

Ge:={x, x€Ge} C Gy, e€E.

The element |c, x| (or the word (c, X)) is called reduced if either n =0 or n > 1 and x; ¢ G

whenever ¢, = ¢é; for some 1 <i<n.

Fix a vertex v € V, the fundamental group (G, I') at v, denoted by 7, (G, T', v), is the set
of all elements of the form |c, x| in the group F(G, T"), where c is a path whose origin and
terminus are both v. When G is the trivial graph of groups I, i.e. G, = G, = {€} (Here and
in the sequel, we write € for the identity in a group), the group 71 (I, I', v) coincides with the
fundamental group (in the usual sense) 7| (I, v) of the graph I at the point v. In general, the

canonical morphism G — I extends to a homomorphism

m(G, T, v) = m (L, v).

This homomorphism is surjective and its kernel is the normal subgroup of 7 (G, I', v) gen-

erated by the groups G,,.

Let T be a maximal subtree of the graph I', the fundamental group 7; (G, I', T) of (G, I') at

T is defined as the quotient of F (G, I') by the normal subgroup generated by all the edges
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e € T. Let A be an orientation of E\ T, i.e.,

E\T =AUA,

then the fundamental group 7; (G, T', T) is given by the groups G,, v € V and A, subject to

the relations x° = x° for all e € T and all x € G,, and ay’a! =y foralla € Aand all y € G,,.

Examples.
(i) If (G, T) is a tree of groups with G, = {&} for all edges e € T, then the fundamental group

m (G, T, T) is exactly the free product of all the groups G,, v € V.

(ii) If T" is a bouquet of circles with one unique vertex and (G, I') is a graph of groups such
that G, = Z for the unique vertex v € V and G, = Z for all edges e € E, then the fundamental

group (G, T, T) is exactly a generalised Baumslag-Solitar group. That is,

G= GBS(N, m;, ni) =<a;, b | a;b™ :bniai, mij, n; € 2,1 <i<N,N= ﬂA > .
In particular, the fundamental group 71 (G, I, T) is the Baumslag-Solitar group if N = #A =

1.

The following proposition comes from [Ser80, p44].

Proposition 2.1.3. Let (G, I') be a graph of groups with T being a connected nonempty
graph, letv € V and let T be a maximal subtree of T'. The canonical quotient map F(G, T') —

m (G, T, T) induces an isomorphism of m (G, I', v) onto m (G, T, T).
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Every element in (G, I', T) (T-word) is of the form

0.0 1 1.2 ~1
y pr— ‘xl . .xkoalxl .. .xklale .. .x]’::'171amx’in . .x]]/::n’
where xi]. € G, and a; € AUA. Let [v, w] be the geodesic path from the vertex v to the vertex
h J

win T, define

. 00 0 0 1.1 1 1 22 m—1 m—1 m_m m
E(y) :==doxyey ey X dixie) - ep X doxiey e~ xp dpxyey e 1 xp dmi,

where ej- = [v;-, V5'+1]’ d; = [v;{:, o(a;))ailt(a;), V’i], 1 <i<m,dy=1v, v(])] and dj,, 1 =
Vi, v]. Then &(y) is an element in 711 (G, I, v) (v-word). A T-word y is called reduced if the

corresponding v-word & (y) is reduced. Define the length of the T-word y by £(y) :=¢(&(y)).

Given an v-word x = xpejxje; - - - epXp, define .7 (x) as the T-word obtained from x by delet-

ing all ¢; with ¢; € T and x; with x; = €.

Corollary 2.1.4. The maps & and . induce a bijection between reduced T-words and re-

duced v-words.

2.2 Reduced semigroup C*-algebras as groupoid C*-algebras

In this section, I will describe reduced semigroup C*-algebras as groupoid C*-algebras. Here
I assume the readers have a knowledge of some basics in inverse semigroups, partial dynam-
ical systems and groupoids. These concepts and most of the content in this section can be

found in [CELY17].

Let P be a left cancellative semigroup, the partial bijection P — P, x — px extends uniquely to
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an isometry V), : ¢>P — (?P. This assignment p — V), is called the left regular representation
of P and the reduced semigroup C*-algebra C; (P) is defined to be the smallest subalgebra of

Z(£?P) containing {V,, p € P}.

The inverse hull of P, denoted by [;(P), is the smallest semigroup of partial isometries on ’p
containing the isometries {V,, p € P} and their adjoints {V,, p € P}. Alternatively, ;(P)
can be described as the smallest semigroup of partial bijections on P containing the partial
bijections {P — P, x+— px, p € P} (denoted by p) and their inverses {P — P, px+— x, p € P}
(denoted by p~!). This allows us to regard P as a subsemigroup of I;(P). Furthermore, if P is
a subsemigroup of a group G, then there is a unique partial homomorphism ¢ : [;(P)* — G

identical on P, where [;(P)* :=I;(P) \ {0}.

In the case of partial bijections, every idempotent in /;(P) is a partial identity on P and hence
is given by its domain and image. The idempotents in /;(P) are called the constructible right
ideals of P, whose collection is denoted by Zp. It is easy to see that _Zp is an abelian
semigroup closed under intersection of sets. Indeed, we have such a concrete expression as

follows:

Ip={pn-a;'P1P: pi, ¢i € PYU{q, ' pn---q;'P1P: pi, qi € P}.

Definition 2.2.1. A left cancellative semigroup P is said to satisfies the independence condi-

tionif X, X;, 1 <i<ne ZpwithX =Ui<i<,X; yields X =X for some 1 <i<n.

If P is right LCM, i.e. for all p, g € P, either pPNgP = 0 or pPNgP = rP for some r € P,

then every nonempty constructible right ideal of P is principal. That is,

S =1{pP, p<P}.
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Furthermore, P satisfies independence if P contains an identity element.

Its character space % is defined as follows
Z ={x: #p— {0, 1} nonzero semigroup homomorphism}

and is endowed with the pointwise convergence topology.

When P embeds into a group G, G has a partial action on the character space %. Every

g € G acts on
U1 ={x € }\p . x(x"'x) = 1 for some x € I;(P) \ {0} with 6(x) = g}

and gy = y(x ' Ux) for y € U, and x € [;(P) \ {0} with x(x'x)=1and o(x) =g.

In the case of partial isometries, for every partial isometry V € [;(P) \ {0} and every x € P,

either V&, = 0 or V&, = 0,4y, Wwhere g = o(V). Set

D (P):=C"({lx, X € Fpr}) CC3(P),

where 1x € C; (P) N4~ (P) is the characteristic function on X C P, and define

Qp := Spec(Dy (P)),

then G has a partial action on Qp. For every g € G, let
Ug1:={x €Qp: x(V'V)=1forsomeV € I;(P)\ {0} with 6(V) = g}

and gy = x(V*UV) for x € U, and V € [;(P) \ {0} with x(V*V) =1and 6(V) =g.
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The following proposition comes from [CELY17].

Proposition 2.2.2. (i) Qp can be identified with the subspace of ;‘; consisting of all char-
acters ) with the property that for all X, X;, 1 <i<ne€ fpwithX =U<i<,X;, x(X) =1
implies X (X;) = 1 for some 1 <i<n.

(ii) The identification above is compatible with the partial actions of G on Qp and Z. In

particular, Qp is an G-invariant subspace of _Zp.

Remark 2.2.3. If P is right LCM and contains an identity element, then P satisfies indepen-

dence and hence Qp = Z.

Let ¢ be an étale locally compact groupoid and let r, s be the range and source map. C.(¥)

is a x-algebra with respect to the multiplication

(fxe)r)=Y  f(rB~"eB)
S(BI=5()

and the involution

Alternatively, we can define
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to highlight why this representation plays the role of the left regular representation attached

to left multiplication.

Set

T = Decqo Ty,

then the reduced groupoid C*-algebra C (%) is defined by

CH() = 1(Ce(9)) € L(@:7(s7 (1))

Utilising a reduced crossed product attached to a partial dynamical system as a bridge, we
can write the reduced semigroup C*-algebra Cj (P) as a reduced groupoid C*-algebra. This

result also comes from [CELY17].

Theorem 2.2.4. Let P be a subsemigroup of a group G, then the reduced semigroup C*-
algebra Cy (P) is isomorphic to the reduced groupoid C*-algebra C; (G x Qp) attached to the

transformation groupoid G X Qp.

2.3 K-theory

In this section, I will present briefly some formulae in general K-theory, K-theory for semi-
group C*-algebras and K-theory for partial crossed products, which will be used later in the
thesis. Most of them will come from [CEL13], [CELY17], [Li20] and [RLLOO], which you

can refer to for more details.
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Let A be a C*-algebra and let

where L is a disjoint union.
Define a relation ~ and a binary operation @ on .(A) as follows. Suppose that p is a

projection in 7, (A) and ¢ is a projection in &,,(A), then p ~q q if there exists v € M, ,(A)

such that p =v*v and ¢ = vw*. And

p®q:=diag(p, q) =

Set

and define addition on Z(A) by

(Pl +dla =[p®dla, p, 9 € P=(A),

where [p]y € Z(A) denotes the equivalence class containing p. It is easy to check that

(Z(A), +) is an abelian semigroup.

If A is unital, Ko(A) is defined to be the Grothendick group of Z(A), i.e.,

That is,

Ko(A) ={[plo—lglo: p, g€ Z=(A)},
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where [p]o is the equivalence class of [p]4 with respect to the equivalent relation ~: [p]g ~

[9]2 if [plo + [r]2 = ld]2 + [r]g for some [r]g € Z(A).

In general, consider the split exact sequence

0—— A1+ A-"sC

)

~

with the split section A : C — A. Here A is obtained by adjoining a unit to the C*-algebra A.

Define the scalar mapping s to be
s=Aom: A—A,a+al—al,acA, acC.

If A is not unital, define Kyp(A) to be the kernel of the homomorphism Ky(7) : Ko(A) —

Ko(C).

No matter A is unital or not, Ko(A) has the following standard picture,

Ko(A) = {[plo—[s(p)lo: p € Zw(A)}.

Let A be a unital C*-algebra and let

where U is a disjoint union.
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Define a binary operation & on %.(A) by

u 0
u®v:=diag(u, v) =
0 v

Define a relation ~1 on %.(A) as follows. Let u € %,(A) and v € %,,(A), then u ~; v if
there exists a positive integer k > max{m, n} such that u ® 1;_,, is homotopic to v® 1;_,, in

. (A). Here 1; is the identity matrix in M;(A).

For every C*-algebra A, define

K1 (A) = 02/00(14)/ ~1 .

Let [u]; € K| (A) be the equivalence class containing u in %.(A). Define a binary operation
+ on K;(A) by

[u]1 + V)1 = [u®V]1, u, v € %.(A).

Both Kj and K; are functors from the category of C*-algebras to the category of abelian
groups. They preserve half exactness, split exactness, direct sum and continuity and have

stability.

The suspension of a C*-algebra A is

SA:={feC([0, 1], 4), f(0) = f(1) =0} = Co((0, 1), A).

S is an exact functor from C*-algebras into itself. And we have K (A) = Ky(SA).
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The higher K-functors are defined by induction,

Kn(A) = Ko_1(SA), n > 2.

Let

0—1-2554aY B0

be a short exact sequence of C*-algebras and let u € %,(B), there exist v € %,(A) and

p € Py,(I) such that

By exactness of the functor S, we have the following short exact sequence of C*-algebras,

0—s 57 2% sta 3% srp s 0.

So we can also define the higher index map 6,41 : K,+1(B) — K,(I) via the index map

K1 (S"B) — Ko(S"1).

For K-functors, we have the following results ([RLLOO]).

Theorem 2.3.1. (i) (Bott Periodicity) K,12(A) = K,(A) for all n € N and all C*-algebras A.
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(ii) (The Six Term Exact Sequence) For every short exact sequence of C*-algebras
¢ v
0—1—A—B—0,

the associated six term sequence

K K
Ko(1) 222 ko(a) W ko (p)
&T l(so
KB ey KA) sy K1)

is exact. Here & is the composition of the higher index map & : K>(B) — K\ (I) and the

isomorphism map Ky(B) — K> (B).

All the above are about general K-theory, and now we present some K-theory formulae for
semigroup C*-algebras and partial crossed products. The following definition can be found

in [Definition 5.8.1, CELY 17].

Definition 2.3.2. Let P be a subsemigroup of a group G, we say that P C G is Toeplitz (or

satisfies Toeplitz condition) if for all g € G with g~'P NP # 0, the partial bijection

g_lPﬂP—>PﬂgP, X gx

lies in the inverse hull I;(P) of P.

Let P be a subsemigroup of a group G such that P C G is Toeplitz. Assume that P satis-

fies independence and G satisfies the Baum-Connes conjecture with coefficients (see [p110,
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CELY17]). Let _#;° be the collection of all nonempty contructible right ideals of P and let

Ircc =G I

Choose a set of representatives X C ¢ PX for the G-orbits G\ ¢, ng ¢ and define, for X € X,

Gx :={g € G, gX =X},

and

Ix : Ci(Gx) — Ci(P), lg — ﬂ,glx,

where we identify C; (P) with the crossed product Dpcg %, G.

We have the following theorem on K-theory for semigroup C*-algebras, which can be found

in [Theorem 5.10.1, CELY 17] or [Corollary 1.3, Li20].

Theorem 2.3.3. In the same setting above, we conclude

Bxex(ix)«: Bxex K*(C;[(GX)) — K*(C}'[(P))

is an isomorphism.

If P contains an identity element, then we have ¢, = {pP, p € P} and thus _Zp; has only

one orbit. We choose X = {P} and get

L0 K.(Ch(P")) = Ki(C5(P)),
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where P* C P is the subgroup consisting of all units. In particular, if P* is trivial, then we get

K.(C}(P) = K.(C).

The following theorem on K-theory for partial crossed products comes from [Theorem 1.2,

Li20].

Theorem 2.3.4. Let G be a discrete and countable group and let X be a second countable
totally disconnected locally compact Hausdorff space such that G ~ X is a partial dynamical
system, given by U,—1 — Uy, x — g-x. Assume that G ~ X admits a G-invariant regular basis
YV for the compact open subsets of X and that G satisfies the Baum-Connes conjecture with

coefficients. Then the K-theory of the reduced partial crossed product of G ~ X is given by

K.(Co(X)x,.G)= @ K.(C;(Gy)),
V]eG\ ¥

where G\ V' denotes the set of orbits under the G-action on the non-empty elements V> of

V,and Gy :={g€G, g-V=V}.

In the theorem above, a G-invariant regular basis 7 for the compact open subsets of X is a
family 7" of compact open subsets of X such that for all g € G, 7/g—1 ={Vey,VC Ug—l}
is a regular basis for the compact open subsets of U,-1 and g- 7,1 = ¥;. And here is the

definition for a regular basis, which comes from [Definition 2.9, CEL13].

Definition 2.3.5. Let X be a totally disconnected locally compact Hausdorff space. A family

V' of non-empty compact open subsets of X is called a regular basis for the compact open
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sets of X if the following are satisfied:

(i) ¥ U{0} is closed under finite intersections.

(ii) V generates the compact open sets of X by finite intersections, finite unions and comple-
mentary sets.

(iii) V' is independent. That is, if V, Vi, ---, V, are elements in V with V = U1<<,V;, then

we have V =1V, for some 1 <i<n.



Chapter 3

Graphs of monoids

We explained Serre’s definition of graphs of groups in the last chapter and in this chapter we
want to extend the notion to graphs of monoids. Moreover, we shall discuss the right LCM

property of the graphs of monoids as it is needed later in the thesis.

3.1 Normal Form

Let (G, I') be a graph of groups with I" connected and let G,, v € V be totally ordered with
positive cone P, i.e., G, = P,UP, ' and P,NP, ! = {¢}. Fore € E, define P, := {g € G,, g° €
P,(e)}. In general, it is difficult to find relations between P, and P;. In the thesis, We only
focus on the case where P, = P; for all e € T and either P, = F; or P, = P; U for all e € A.
Define A :={e€A, b,=P;}andA_:={e €A, P, = P; '}, then we have P’ C P, for all
e€Ay and P¢ C P()’(el) forallec A_.

A v-word x = xpejxjez---eyx, € m (G, I, v) is called to be positive if x; € P, and ¢; € E,

32
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where v; = t(e;) = o(ei+1), 0 <i<n. nf(G, I, v) is defined to be all the elements of

m1(G, T, v), which can be written as a positive v-word.

Let Gt be the direct limit of the graph of groups (G, T), then Gr is the subgroup of
m (G, T, T) generated by G,. Let 71 (G, ', T) be the subsemigroup of (G, I', T) gener-

ated by P, and A, and let Pr be the subsemigroup of Gr generated by P,.

A T-word in compact form is a word of the form ypa;yias - - - a,y, with y; € Gy and a; € AUA.
It is called positive if y; € Pr and ¢; € A. If we write y; =y} -y}, 0 <i <n with y; € ij.
for some vj- €Vand 1 < j <k, then we get a T-word in the general normal form. It is called
positive if yz. € Pv§ and a; € Aforall 1 < j<k;andall 0 <i<n. Itis easy to see that every

element in 751+ (G, T', T) can be expressed as a positive 7-word (in compact form).

In this thesis, we make the convention that all the graphs are countable and all the groups
are discrete and countable unless otherwise explicitly stated. We will focus on the fundamen-
tal group 7 (G, I, T) and the fundamental monoid 7, (G, I, T). For brevity, we also call
the fundamental groups by graphs of groups and call the fundamental monoids by graphs of

monoids. Set G:=m (G, I', T) and P:= 7" (G, T, T).

Every element in G can be written as a word in {G,},cy UA, and vise versa. Due to the
relations, two different words can represent the same group element. So we make the follow-
ing convention: for two T-words x, x’, we write x = x’ if they represent the same element in
G and write x = x’ if they are identical words. Similarly, for v-words y, y', we write y = y' if

they represent the same element in 71 (G, T, v) and write y =y’ if they are identical words.

In the above setting, we have the following proposition.
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Proposition 3.1.1. (i) The monoid P is generated by P,, v € V and A, subject to the relation
x=x%foralle € T and x € P, ax* = x*a foralla € A, and x € P,, and (x*)~'ax* = a for
allac A_ and x € P,.

(ii) Every element in P is represented by a reduced positive T-word.

Proof. (i) It follows directly from the definition.

(i1) Let y be a positive T-word with

@(g()’) = Xpejxiez - - - epXy,

we prove the assertion by induction on n = ¢(&(y)).
If &(y) is not reduced, then we have n > 1 and there exists 0 < <n— 1 such that ¢;, | = ¢
and x; € P!, i.e., x; = z¢ for some z € P,,. ;1 = ¢ implies ¢, 1, ¢; € T since y and & (y)

are positive and do not contain elements in A. Then we have

(g‘)(y) :xO...elxlel+1...enxn:xo..,zel...en_xn7

arriving at a word with smaller length. This finishes the induction and thus y can be repre-

sented by a reduced positive T-word.

For different words representing the same group element, we have the following lemma.

Lemma 3.1.2. (i) Let x = xpejx1€3 - - - enX, and x' = x,€'x) €, - - - e,x}, be two reduced v-words

with x; € G, and x}, € Gv;, foralll, I'. If x =X, then we have n =1/, ¢; = e}, and

/ / /
Xpei1Xxi1€2 - Xj—1€]T = Xp€1X1€2 - X;_1€]
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for some z € GZ andall1 <[ <n.
ii) Let y = yoaiy1as - - Gmym and y' = yha\y a,---d v, be two T-words in compact form
y = Yoaiy Y Y = Yod Yy Yy,

with yk, yi, € Gt and ay, a,, € A. If y =Y/, then we have m = m', ay = aj, and

/ / /
Yoaiy1az -« - Yk—1axZ = Yoa1y142 " - - Y10k

for some z € GZ’; andall1 <k<m.

Proof. (i) Recall that 7 (G, T', v) is a subgroup of F (G, I'), which is generated by G,, vE V
and E, subject to the relation e = e landexte ! =xfforalle € Eandall x € G,. x =%
implies that we can get one word from the other by utilisation of the relations. Hence the

conclusion follows from the assumption that x and x’ are reduced.

(i) The group G is generated by G,,, v € V and A, subject to the relation x° = x¢ and ay® = y%a
forallee T, all x € G, alla € A and all y € G,. Similarly as in part (i), the conclusion fol-

lows since we can get one word from the other by utilisation of the relations.

Corollary 3.1.3. G,NP=P, forallveV.

Proof. Let y = ypaiyiaz -+ amym € P be a positive word in compact form and let y € G,
for some v € V. If y = y/, then we have m = 0 and y = yy € Pr by Lemma Assume
y=yo ="y with)? € P,,, 1 <1 <mn, by y =y, we conclude that we can get y’ by
utilisation of the relation x* = x° for all e € T and x € G,. Noting P C P,(e) and P, = P; for

alle € T, we have y € P,.
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In order to study the relation between the reduced word representing the multiplication of two
group elements and the reduced words representing the two elements, we need to introduce

the following notion.

Definition 3.1.4. Let

_ .0 0 1 1 2 -
y _x] . .xkoalxl .. -xklale . .x]r(n

be a T-word, where xé- € G, and a; € A. And let
J

_ 0,0 0 0 1,1 1 1 22 m—1 m—1 m_m m
E(y) =doxiey - -eg 1 xpdixier ey xp doxier- e~ x0T dpxyel el X dig,

where e; = [Vé" V§'+1]’ di = [v;;ll, o(a)lailt(a;), vi], 1 <i<m, dy=[v, W] and dp+1 =
[v?m, v]. y is called properly reduced if all of the following are satisfied:

(a) y is reduced;

(b) If & starts with e € T, then x ¢ G

(c)If el | endswithe €T, then xj' ¢ Ge.

Remark 3.1.5. In the same setting as in the Definition above, define

I(y):= Y E(e;)+ Y, d).

1<j<ki, 0<i<m 1<i<m

Note that if y is reduced but not properly reduced, then we have m > 1 and l(y) > 1.

Lemma 3.1.6. Every element in G is represented by a properly reduced T-word.
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Proof. Every element in G is represented by a T-word

0 0 1 1 2 m—1
y :xl ...xkoalxl ...xklale .o .kailam_x}in...x]]z/l

m

such that

00 .0 0 11 1 145 202 ~1 ~1
E(y) =doxye] - ep X dixier - e _1x daxyey - ekmm,l—lxznm,ldmxﬁnerln s e 1%, At
is a reduced v-word. We now proceed inductively on /(y).
When [(y) = 0, y is properly reduced.
Now assume /(y) > 1 and assume e(l) starts with e € T and x(l) € G. That is, 6(1) = e’ for a

path ¢’ C T and x(l) = 7¢ for some z € G,. Then we have

—.e.0 0 1 1 2 m—1 m m
yY=2 xZ‘ . ‘xkoalxl . 'xklale . ‘kailamxl .. ‘ka

(3.1)

m /

e. 0 0 1 1 2 milamxiln'”ka =y

= Z x2- . ‘xkoal'x] .. .xklale .. -ka |

and

0.0 04 1.1 1 1 5 22 -1 -1
&) =dpez’e'x; - repg_1 X d1xre] e X daxier-cep — ) dpxe ey X0 dit
It is easy to see that /(y') < [(y). And we can apply the induction hypothesis.
When ek’”m _, ends with e € T and kam € G¢, the argument is similar.
Therefore, we prove by induction every element in G is represented by a properly reduced

T-word.

Lemma 3.1.7. Let y be a properly reduced positive word with [(y) > 1, then we have y ¢ P,

foranyveV.
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Proof. Let

_,0 0 1 1 2 -
y _‘xl .. .xkoalxl .. -xklale .. .x;cn

m—

—_

ax Xl

m

be a properly reduced positive word and let y' € P, for some v € V. If y = y/, then we have

m=0andy=2xY---x € Pr by part (ii) of Lemma3.1.2| Then we have
1 ko
E(y) = doxdel -- -ego_lxgodl

and &(y') =dy'd].
Since & (y) = &(y'), we have by part (i) of Lemma3.1.2]

U(dy) +0(dy) = (do) + £(dr) + ().

So we get either ¢(d()) > {(dp) or £(d}) > £(d).
Assume, without loss of generality, ¢(d}) > ¢(d;), and assume 620_1 ends with e € T and

0 _ :
Cry—1 — € € We have by part (i) of Lemma
00 0 0 I gl
doxjeq - ep,_oXg,—1€ 2 =doy dj

for some z € G,(,), where d{' C dj is a sub-path of length £(d) — £(d;) — 1 starting from the

vertex v. Coming back to 7-words, we have

0 0 o
XL Xgg—12 =Y

and hence z = x,?o, contradicting with the fact xgo ¢ G.

The following result is a straightforward consequence of Lemma[3.1.7]
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Corollary 3.1.8. Let

Y=Yoy1-+Yms Yk € Py, 0<k<m

and

Y =yoY Y Yo € By, O K <l

be properly reduced positive words in Pr. If y =y, then [(y) = ('), vo = vy and vy, = V), .

Lemma 3.1.9. Let

and
/0 0 r_1 1 7.2 n—1_1/ n
Y =2y g2y g dpty gy a,7i Ly,

be properly reduced positive words with

_ 0,0 0 0 1,1 1 1 2 2 m—1 m
&(y) = doxyej e X dixyer e 1 x doxiey--ef — x dmxl el ep X dmii,s

/ 1.0 0 0 0 41,1 1 1 4.2 -1 4/ /
&) =dozi fi "'floflzlodlzlfl "'fll—lzlldﬂlf] f 1_111 d Z’fffl---ﬁ,i_lz}i n+1-

Then yy' is a reduced positive word unless X € Pum , z(l) € Pv(l), ey _endswithe €T and f{)

starts with f € T such that ”k = vl, = f and x" Zl eP.

Proof. 1wl # ), we have O([ug 9]) > 1 and hence

0 0 11 m m.m 01,0 0 0 0 3 _1,1 n n gl
E) =doxtel e xp dixier---eft gt VIR S zpdizifl e Sz

is reduced.
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If u =9, then
K 1
nN_ 700 0 05 11 m om0 0 0 0 141 noon gl
&) =doxje; e X dixjer e X 2 f1 - fpi1g,dizi Sy -2, dng-

Assume e}’ | ends with e and f1 starts with f. If e # £, &(yy') is reduced. If e = f and
kamz(l) ¢ P¢, &(yy') is also reduced.
[

Remark 3.1.10. If we assume further [(y) > 1 and I1(y') > 1 in Lemma then yy' is
properly reduced whenever it is reduced. Without this assumption, it does not need to be the

case.

Lemma 3.1.11. Let

X =X0 " X A1 Xkg+1 * " Xkg+k A2 * - AmXg 4+ k1 +1 " " Xkg+-- Ak 1 +him (3.2)

be a positive word and y another positive word. Set

M = Z ki,

0<i<m

then there exists a properly reduced word

2=20" " 2Uyd1Zly+1" " LUy ty A2+ AnZigtotly 141" Lt tly 1+

representing xy such that z(y;) € xP, where

Z(M) = ZO .. .Zlodlzl(yi*l .o ‘Zl()‘l*lldz .. 'd]Zlo++lJ,1+l .o .ZM
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if
Z i <M< Zli

0<i<j—1 0<i<j

and z(yy) 1= xy otherwise.

Proof. (i) We may assume the word representing x in the equation (3.2)) and
/ /
Y=Y Vi Vi +1° Vi +k 42

are properly reduced. We prove the claim inductively on /(y).

If xy is reduced and I(x), I(y) > 1, then xy is properly reduced. Take simply z = xy, it

follows that z(y) € xP.

If xy is reduced and [(y) = 0, either xy;, is properly reduced for some y;, € P, and Yo = Yo Or

Yo<i<nli < M. In both cases, we have z(3;) € xP.

If xy is reduced and /(x) = 0, then x = xo and M = 0. In this case, z(g) = x;, for some x;, € Py
and x(, = xo or z(gy = XoYo -y, with xo € PV’O’ X0Y0-yi € Pg, 0<i<jandxoyy---y; ¢ Peejzi,

where y; € P, and ¢; is the beginning edge of the path [v;, vi11],0 <i < j.

If xy is not reduced, it follows from Lemma [3.1.9]that xj;yo € Py, where Py is as in Lemma
m In this case, we define ' = xyo and y' = y1 -+ ypr d\yp 11+ Vg x5+ - then xy = x'y/
with [(y") < I(y). By induction hypothesis, we can get a properly reduced word z representing

x'y" such that z(3;) € x'P C xP.

Corollary 3.1.12. Let x, y € P be two positive reduced words and let £ := {(x). Then there ex-
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ists a reduced positive v-word 7 = zoe1z1€3 - - - €,2, Fepresenting xy such that zoe1z1e3 -+ - epzy €

xP.

Proof. We may assume x, y are properly reduced. If xy is reduced, let z = & (xy) and we can
write & (x) = x'x", &(y) =y'y" such that £(x') < ¢(x), .#(¥') =xand & (xy) = x'y". The claim

follows from Lemma 3. T.111

If xy is not reduced, it follows from Lemma that xpryo € P¢, where P; is as in Lemma
and xy; is as in Lemma In this case, xy = (xy)y” for some properly reduced
positive word y”" with I(y"") < I(y). We proceed inductively on /(y) and it suffices to treat
the case where [(y) = 0, i.e., y = yo. Then we have x = x"'x3; and xy = x"' (xpry0) for some

properly reduced positive word x”’ with £(xy) < £. Therefore, zoe1z1e3 - - - epzp = 7 € xP.

3.2 The right LCM property

In this section, we assume we are in the same setting as in Section 3.1. Our goal is to study
when the monoid P is right LCM, i.e., for all p, g € P, either pPNgP =0 or pPNgP = rP for
some r € P. For convenience, we introduce a partial order < on P, given by p < g if ¢ € pP.
We denote by pV g the (necessarily unique) minimal element r € P satisfying p,q < r if such
an element exists. In this language, P is right LCM if and only if for all p, g € P, either

pPNgP =0or pV q exists.

Given e € E and p € P, we set

p’lPe-E :={x€P pxe Pf}
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Definition 3.2.1. We say condition (LCM) is satisfied if for all e € E, p € F,), either

l,e._

p_lPEé =0or p_lPe-e_ = qP¢ for some q € Py(e)- In the latter case, we define p~ = € 1= q.
Remark 3.2.2. Lete € E, p € P,y and q € PZp, then we have p~1-¢ =g~ 1-¢,

The main result of this section reads as follows.

Proposition 3.2.3. P is right LCM if condition (LCM) is satisfied.

Before proving Proposition[3.2.3] we need a couple of lemmas. In the following, we always

assume condition (LCM) is satisfied.

Lemma 3.2.4. Forall e € E and p € P, either p_lPe-E =0or p_lPéé = qP¢ for some q € P.

Proof. Note that for all e € E, p, x € P, px € P¢ implies p, x € Pr. So we can work in Pr.

We first consider the case p € P, for some v € V. Let [v, o(e)] =d, ---d; and set dy, :=e.

’ dH—l

Define pg:=p,q1:=p % ifp_lP;-i;‘ #0,and for 1 <i<k, p;:=pq1---qi, qi+1 ::pi_1

if p;lpj__f+ll 0. We claim that p~'P¢ = 0 if and only if pi_lP;”ll £ @ forall 0 <i<k and
i+ i+

L,

that p~'PZ = g1 --- g1 P in that case, i.e., p~ 1 ¢ =q1 - qry1.

It is easy to see that p~1P¢ #£ 0 if p[lPEHII = ( for all 0 < i < k. We now prove the con-
i+

verse and that p~ 1

¢ =gq)- g4+ inductively on £ := £([v, o(e)]). The case where { =0
follows directly from condition (LCM). Now assume ¢ > 1, suppose p_lPéé = ( and take

x € P with px € P¢.
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By Lemma 3.1.9] there exist positive words wy,, X, ym € Pr and f,, € T for 1 <m < n such

that wi = p, X = X1¥1, W = Win—1Xm—1> Ym—1 = XmYm> Wi, Xm € Py, WinXim € P};’f C B,

o(fm) = v, t(fim) = Vm+1, and w, = px. By construction, we have w, = pxj - Xp_1,

X =X1 XpmYm and Wy, X,V = pX.

Let M € {1, ---, n} be maximal such that v,, = v. Then we must have fy = d; as [v, o(e)]

starts with d;. Set x’ := x1 - - - xp1, X" = yyy, then we have px’ = wyxy € Pdl‘ = P;'lll’ which im-
plies p*IPdd-;1 £ (. Condition (LCM) implies x' = p~1 91y = g,y for some y € P:l-i_ll. Hence px =
pxX'x" = (pq1)yx" € P¢, p1 = pq) € lel C gy and yx" € py 'PZ. Note that £([t(d), e)]) < ¢,
we have by induction hypothesis p[lP;,-ll_:l # ( for all 0 < i <k and pfl’ C=qr Qs
The latter yields yx” € g2---qx1P¢. Therefore, x = X'x" = qyx" € q1q2- - qx1P¢ and

P PP Cqiqn qr PE = 611P1_1Pe-é-

Taking z € p; ' PZ, we get pq1z = p1z € P and thus g1z € p~'P. Thatis, p~'P¢ D g1 p; ' PE.

e

l,e _ 7176_
T =4q1Py =4q192" " Gk+1-

Therefore, p~ ' P¢ = qlpl_lPée_ and p—
Now let p € Pr be arbitrary and let p = po--- p», be a properly reduced positive word with
pj € P,;. We proceed inductively on [ :=I(p). The case where / = 0 is dealt with as above.
If > 1, take x € P with px € P¢ and let x = xg - - - x, be a properly reduced positive word with

x; € P,,. Tt follows from Lemma that px is not a properly reduced positive word. If

I(x) > 1, by Lemma 3.1.9|and Remark [3.1.10, we must have wy = v,, and p,,xp € Pg , where

d € T is the ending edge of the path [v,,,—1, vy]. If [(x) =0, i.e., x = xp, then px is a reduced
positive word and thus we can still arrange that wg = v, and p,,xo € Pg . In both cases, we
have xy € pnijg. That is, xg = p,}l’ dx6 for some x{, € P[‘l-i_. Then

—1 >
px:po.pmexn:pO.pmpm 7dx6.xn€Pe_e
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Set p:= po-- pmpm" ¢, then we have [ (p) < I(p). The induction hypothesis implies there
exists G € P such that 5~!1P¢ = GP¢. Tt follows that x,---x, € p~'P¢ = GP¢ and thus x =

P dx6 <o Xp € pm'” 9GP2. Tt is now easy to check that p~!P¢ = ¢P? for g := pp" “4.

We extend the notation p~ " ¢ introduced in Definition as follows:
Definition 3.2.5. We denote by p~" € the element g in Lemma if p_lPEE #£0.
Whenever p~! P¢ # 0, the element ¢ is unique. In this case, we have p~!P¢ = p=1- ¢pe,

Lemma 3.2.6. Let p € P,, x € P such that px is represented by a properly reduced positive
word of the form qoqi - -+ with qo € P,. Let {([v, w]) > 1 such that [v, w| ends with f € T,

thenx € p~ 1 /P,

Proof. As in the proof of Lemma [3.2.4] we can use Lemma [3.1.9] to find positive words
Wiy Xm, Ym and f,, € T for 1 <m < n such that w; = p, x = x1y1, Wi = Wi—1Xm—1, Ym—1 =
XmYms Wiy Xm € Py, s WinXm € PJJ;'n" CP,..»0(fm) =Vm: t(fn) = Vim+1, and wyy, is a properly
reduced positive word representing px. Here we allow the possibility that x,,, = @ or y,, = 0.

By construction, we have wy,, = px1 - Xp—1, X = X1 - - Xp Y and wy X,y = px. By Corollary

3.1.8] we get v, = w.

Let M be minimal such that vy; = w, then we must have fj;_| = f. Asaresult, px;---xp—1 =

WM—_1XM—1 € PJJ; = P}J:. That is, x1---xpy—1 € p’l’ fPJJ;. Therefore, x = x1---xpy—1Ym—1 €

p_17 fP'
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]

Looking at the way p~—! / has been constructed in the proof of Lemma the following

is an immediate consequence.

Lemma 3.2.7. In the situation of Lemma assume that [v, w| starts with d € T, then

pr_LdP.

Let <7 and V7 be the analogues of < and V with Pr in place of P.

Proposition 3.2.8. Given p, q € Pr, pPrNgPr = 0 if and only if pPNgP =0, and pVTq

exists if and only if pV q exists. In the latter case, we have pNTq = pV q.

Moreover, P is right LCM if and only if Pr is right LCM.

Proof. Given p, g € Pr, it is clear that pPr NgPr # 0 implies pP NgP # 0. If pP NgP # 0,
we can find x, y € P with px = qy. Let x = pod;p1 --- and y = gpe1q; - - - be positive words in
compact form, then we have ppod; p1 -+ = qqoe1q1 ---. By Lemma (i1), we get either

PPoa = qqo or ppo = qqoa for some a € Pr. This implies pPr NgPr # 0.

If pV q exists, i.e., pP N gP admits a minimal element, take x, y be as above. We obtain
pV q € Pr since either ppoa = gqo or ppo = qqoa for some a € Pr. Hence pV g € pPrNqPr.
On the other hand, assume px’ = ¢y’ with X', y' € Pr, then we have pV g < px’ by definition.

Thatis, pV g is the minimal element in pPr NgPr. Therefore, pVr g exists and pVrqg=pVgq.
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If pVr q exists, i.e., pPr N gPr admits a minimal element, take x, y be as above. We have
either pVr g < qqo < gy = pxor pNtq < ppo < px = qy. This means p V7 g is the minimal

element in pPNgP,i.e., pVgexistsand pVg=pVrq.

We have already shown Pr is right LCM if P is right LCM. Now we prove the converse.

If p, g € Pr, we have either pPNgP = @ or pV g exists since Pr is right LCM.

If p € Pr and g = qoe1q - - enqn s a positive word in compact form, we proceed induc-
tively on n to show pV g exists if pPNgP #* 0. The case where n = 0 is done. Now as-
sume n > 1. Noting pPNgoP 2 pPNgP # 0, we can find r € Pr with pV g9 = gor. Then
pNVqg=pVqoVq=qorVq=qo(rVeiq;---enq,) exists if and only if rV e1q; - - - enq, exists.
To show the latter, take x € P with rx € e; P. A similar argument involving Lemma|[3.1.9]as in
the proof of Lemma implies that we have a decomposition x = x’x” such that rx’ € Péél'
and that X" € e;P. By Lemma we get X' € r 1 elPef_ll, ie., ¥ =r 1 €y% for some

yEPs. Letrr 14 =a% ac Py

Ife; €A_,wehavee; =ale(a®) ! =rr—1 ¢le)(a®)~! € rP. Therefore, r < e; < e1q1---enqn

and thus rVe1q;---enqn = €191 - enqn.

Ife; €Ay, wehave a®le; =eja® and yle; =e;y°!. Thenrx=rr— 1 €1y%le ... = ¢1a®1y¢1 - €

e1a® P and hence rV e; = eja°'. Therefore,

rveiqi---epqn = (rvel)\/e1‘I1 "‘enQn:elaelvel% "'enQn:el(a61\/CI1 "'enQn)'

In this case, rVeiqy - - - enqy exists if and only if a! V gy - - - e,q,, exists. rPNe1q; - - e,qnP # 0
since qo(rPNe1qi - - - engnP) = pPNgP # 0 and thus a®' PN q - - - e,q, P # 0 since e (a*' PN

q1---engnP) =rPNeiq - - - enq,P. By induction hypothesis, a®' V g - - - ,q, exists.
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Now let p, g € P and let podip1---dnpm and qoe1q; - --eng, be positive words in com-
pact form representing p, g. Without loss of genrality, assume n > m. If pPNqP # 0,
there exists x, y € P such that px = gy. Comparing the compact forms of px and gy, we
get, by Lemma (i), di = e;, 1 < i < m and either pod|p;---dn = qoei1q1 - --ena or

podip1---dma = qoe1q1 - - - ex holds for some a € Pr. In the first case, we have

pPVqg=qoe1qi---emapm VN qoe1q1 - - enqn = qo€iqi - - 'em(apm\/q'nemqm-i-l to )

In the second case, we get

pVq=podip1---dmpmN podip1 - dmaqmemGms1 -+ = podi1p1 - dm(Pm V agmemGme1 -+ )-

In both cases, we can conclude p V g exists by the argument in the case where p € Pr.

Proposition 3.2.9. Pr is right LCM.

Proof. Firstly, assume p € P,, g € P,, and pPNgP # 0, and we show inductively on £([v, w])
that p V g exists. When £([v, w]) = 0, either p < g or ¢ < p. In both cases, it is clear that pV ¢

exists. Now we consider the case when v # w and assume [v, w] starts with d and ends with f.

Suppose that x, y € Pr satisfy px = gy, we can find, by Lemma[3.1.9] positive words wy,, X, ym
and f,, € T for 1 <m <nmsuchthatw; = p,x=X191, Wi = Win—1Xm—1> Ym—1 = XmY¥m> Wm,Xm €

P, WinXm € P}:T CP,..»0(fm) = Vms t(fin) = Vms1, and wyy, is a properly reduced positive

word representing px. Here we allow the possibility that x,, = 0 or y,, = 0. By Lemma[3.1.9]

we can find similarly positive words w,, x/,, v/, and f}, € T for 1 <m' < n’ such that

/
/ — I A | /) / / _ / / / / / f 4
WI=q,Y=X1Y1 Wy =W X, 15 Vo1 = Xy Yt>s Woyt s Xy € PV,’nf’ WX, € Pf;" cpP,

! m'+1
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o(fyy) = Vo> t(fyy) = V,y.» and wy,y, is a properly reduced positive word representing gy.
As before, we allow the possibility that x/ , = @ or y/ , = 0. It follows from Corollary
that v, =V/,. Assume the paths vi, vp, --- and V|, v}, --- meet for the first time at u € V, then
we must have u € [v, w]. So we have x = x'x”" and y = y'y” such that px’, ¢y’ € P,. Note that
P, is the positive cone of the totally ordered group G,, we conclude px'z = gy’ or px' = g¢y'z
for some z € P,. In the first case, we have gy'y" = px'zy” = px’x” and thus zy” = x”. So we
have the decomposition x = (x'z)y” and y = y'y” with p(x¥'z) = ¢y'. In the second case, we
have px'x" = gy'zx" = qy'y" and thus y” = zx”. So we have the decomposition y = (y'z)x”

and x = x'x” with px’ = gy'z. Therefore, we may assume, without loss of generality, px’ = gy’

a) For x, y € P with px = gy such that u € [v, w]\ {v, w}, we obtain as in the proof of

Lemma thatx € p~ L 9Pandy € g~ ’p.

b) For x, y € P with px = gy such that u = v, a similar argument as in the proof of Lemma
3.2.4/and Lemmaﬂyields yeqg fP and yeqgh dp,

If‘]q_l’ d 4 p in P,, then we have g < qq—lv d p.

-1,d -1,d

If p<qq in P, i.e., gq = pz for some z € P,, we have pz = qq~ " depd— Pg CP
and thus z € p~1 9P. Therefore, px € px'P = qy'P C qq~ " 9P = pzP C pp~ 1> 9P and thus

xep_l’dP.

c¢) For x, y € P with px = gy such that u = w, similarly as in b), we have either p < g or

xep bdpandyeqg b p.

In conclusion, one of the following is satisfied: p < ¢; ¢ < p; For all x, y € P with px = gy,

we havex € p~ " 9Pandyc ¢ b p.

Noting that pp~ 1 ¥ ¢ Pg: Pl C P,y and qq "7 € Pf = Pj]; C Py(p) with £([t(d), o(f)]) <
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¢([v, w]), and that px = gy € pp~ 1 4Pngq™ " 7P, we conclude pp b v gqh f exists by

induction hypothesis. Therefore, we have pVg=porpVg=qorpVg=pp b 4vgqg " !

Now we assume p € P, and g = qoq1---qn € Pr is a properly reduced positive word with
q;j € Py, such that pPNgP # 0, and we proceed inductively on /(g) to show pV g exists. The

case where n = 0 is done, so we may assume n > 1.

If v = wy, we have either p = gz or g9 = pz for some z € P, since G, is totally ordered and
P, is the corresponding positive cone. In the first case, pV ¢ = (q0z) V (q0q1 - qn) = qo(zV
g1+ qn) exists if and only if zVV gy - - - g, exists. zPNgqy - - - g, P # 0 since qo(zPNq1 -+ - guP) =
pPNgP # 0. Noting [(q; ---q,) < l(q), we obtain zV q; - - - g, exists by induction hypothesis.

In the second case, p < go < ¢ and thus pV g = gq.

If v £ wy, for all x, y € Pr in the form of properly reduced positive words such that px = gy,
we have, by Corollary either px or gy is not properly reduced. If gy is not properly
reduced, then either I(y) =0ory € g, Lep by Lemma where e is the ending edge of
the path [w,_1, wy]. Moreover, when [(y) = 0, we have either gy’ is properly reduced for
some P, €y =yory€qg, Lep 1t qy 1s properly reduced while px is not properly reduced,
suppose that [v, wg| ends with ey. By Lemma we have x € p~ 1 €P e, x=p~ 1 x
for some x| € P,,,,. Also, we have pp~ 1€ e P, . If pp~1- €0 < go, then p < pp~ 1 % < gp < ¢
and thus pVg=gq. If go < pp~ 1, i.e., pp~ 1 € = gop; for some p; € P,,, then we have

(1) (1) (11)

qy = px = pp 1 “x; = gop1x; and thus g --- g,y = p1x1. Let ¢ g’ -~ qn, 'y be the prop-

erly reduced positive word representing ¢ - - - g,y obtained as in the proof of Lemma (3.1.6}

then we have qSlll)

€ P/ gy, where e is as above. Again, Lemma |3.2.6|yields that x| € pfl’ ‘p,

ie., x] = pl_l’ “Ixp, where ey € T lies in [wy, wy][wa, w3] -+« [wu_1, wy]. If plpl_l’ R q(()]),

then we have p; < plpl_l’ ‘< q(()l) < qél)qgl)“'%(zp

=q1---qy and thus p < pp—17€0 —

qop1 < qoq1---qn = q- Otherwise, we can continue in this way. Unless p < ¢, we ob-
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tain elements x; € P and p; € P;}~! such that x; = p/{]’ P Xpt1s plp;]’ A= q(’}p,ul and

er-1
A A .. A A) .
q(() )---qg,,t)y = pyxy, where e; € T lies in [wy, wa][wa, wa] -+ [wn—1, wy] and q(() )---qg,l)y is
a properly reduced positive word representing qgl_l) . -q,(qijll) y with q,(f) € Pq,. We end up
(v) (v)

with ¢y 'y = pyxy. Again, Lemma [3.2.6/implies x, € Py P and thus pypy ¢ = qp ' Pv+i

by assumption. Since pypy "¢ € P = P, we have py.1 € (q(()v))_l’ ¢p. Therefore, ‘]((JV)y =

(v

-1 1. e —1,¢e
pvXy € pypy ‘P =g, )pv+1P and thus y € py 1P C (q((,v)) Lep=g,"°P.

In conclusion, when v # wy, either p < g or y € g, 1ep for all x, y € Pr in the form of

e

properly reduced positive words such that px = gy. Thatis, pVg=qor pVg=pVqq, he
In the latter case, it is easy to see that pPNqqy - °P # 0 and l(qqn L ®) < I(g), which yields

by induction hypothesis that p V gq, 12 exists and thus pV g exists.

Lastly, we assume p, g € Pr with pPNgP # 0 and let p = pop1--- pm and g = qoq1 - qn
be properly reduced positive words with p; € P, and g; € B,;. We prove inductively on

I(p) +1(q) that pV g exists. The case where m = 0 or n = 0 is done, so we assume m, n > 1.

Suppose that x, y € Pr satisfy px = qy. If x, y are expressed as properly reduced positive
words such that px and gy are properly reduced, by Corollary [3.1.8] we have either py = goz
or go = poz since every semigroup P,, v € V is a positive cone of the totally ordered group G,.
If po = qoz, then p = pop1 -+ pm = qozp1 -+ pm> and pV q = (qozp1 -+ Pm) V (q0q1 -+ - qn) =
qo((zp1-+-pm) V (q1---qn)) exists if and only if (zp1---pm) V (q1---qn) exists. The latter
now follows from induction hypothesis as zp; -+ ppPNq1---quP #0 and zp1 - pm, q1 - - qn
can be expressed as properly reduced positive words with smaller /. The case gy = poz is

analogous.

It remains to consider the case that for all properly reduced positive words x, y € Pr with

px = qy, either px or gy is not properly reduced. As we proceed inductively on I(p) +1(q),
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we may assume vy 7 wy.

If gy is not properly reduced, we have either gy’ is properly reduced for some y' =y or

YEqn 1P as in the case where m = 0, where e is still the ending edge of the path [w,,_1, wy].

If gy is properly reduced while px is not properly reduced, a similar argument entails x €

a5 4P, where d is the ending edge of the path [v,,_1, vy]. Letx = p;l]’ de such that x; is

a properly reduced positive word and let p(()l) fe p,(nll) be the properly reduced positive word

representing popi ---pmp;,L 4 such that p(l)O € P, then we have gy = px = p(()l) . 'Pi(;l)xl.

By Corollary |3.1.8, we have p(()l) e p,(nl,)xl is not properly reduced and thus x; € ( p,(nll))_L g

for some d; € T. Noting [ (p(()l) e p,(nll) ) < I(p), continue the process as above and we can

P

obtain finally gy = pyxy with pg € P,,. As shown in the case where m = 0, we have either

pB’%qoryeq,;l’e_P. Intheﬁrstcase,wehavep<p(()l)mp,(nll)<-~~<p(‘)’<q.

In conclusion, for all properly reduced positive words x, y € Pr with px = gy, we have
é

y € qn " °Punless p < ¢. In this case, pV g = pVqqy " ¢ with l(qq,fl’ ) < I(q) and the latter

exists by induction hypothesis.

Proposition [3.2.8] and Proposition [3.2.9] entails Lemma[3.2.3]



Chapter 4

Amenability and Nuclearity

Having defined our monoid P in Chapter 3] we can now start to study its reduced semigroup
C*-algebra C} (P). Nuclearity, as a kind of finite approximation property of C*-algebras, can
rarely be ignored when referring to the properties of C*-algebras. In this chapter, we will
firstly discuss the nuclearity of our semigroup C*-algebras of graphs of monoids and then
give some examples to show the embeddability of monoids into amenable groups when the

corresponding semigroup C*-algebras are nuclear.

4.1 Nuclearity

Let P be a graph of monoids and assume that we are in the same setting as in Section 3.1 and
that condition (LCM) is satisfied. For the nuclearity of the reduced semigroup C*-algebra

C; (P), we have the following theorem.

Theorem 4.1.1. C; (P) is nuclear if C; (Pr) is nuclear.

53
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Before giving the proof, we need to introduce the following notions, all of which come from

[Exe94].

Let B be a C*-algebra and let & be a group action of the unit circle T on B.

The spectral spaces: For n € Z, the nth spectral subspace for ¢, denoted by By, is defined by:

B, :={beB| a(z)(b) =7"b, Vz € T}.

Semi-saturated: o is called semi-saturated if B is generated, as a C*-algebra, by the union of

By and B;.

Stable: o is called stable if there exist a C*-algebra B’ with B = B’ ® J#" and a circle ac-

tion o’ on B’ such that « is the tensor product of o by the trivial circle action on 7.

Regular: « is called regular if there exists an isomorphism ¢ : B{B; — BB} and a sur-
jective linear isometry ¥ : By — B1Bj such that for all x, y € By, a € B{B; and b € B1B}, we
have

() w(x"b) = y(x")b;

(i) y(ax®) = @(a) y(x");

(i) y(x") w(y") = o

(V) w(x)w(y*)" = o(x"y).

Now we are ready to prove Theorem #.1.1]
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Proof. By Proposition [3.2.3] P is right LCM. We have the following expression:

C; (P) = span{A,A*, p, q € P}.

Here the set {4,A;, p, g € P} is linearly independent.

Let 6 : P — N be a semigroup homomorphism such that 6(e) = 1 for all ¢ € A and that

0 (x) = 0 for all x € Pr. Define a unitary u,,z € T on /,(P) by
u,(8,) =°W§,, xe P,
then Ad(u;) is a *-isomorphism on Cj (P). Furthermore, we have
Ad(u;) (ApA)) =z OWIT0@p 2,

Define an action & of T on C; (P) by o(z) := Ad(u;z), then the kth spectral subspace for « is

given by:

By = span{ApA;, 6(p) —0(q) =k, p, g€ P}, k€ Z.

It is easy to get By = B’l‘, k € Z*, which implies, by [Exe94, Proposition (4.8)], the action «

1s semi-saturated.

If « is regular, by [Exe94, Theorem 4.21], C; (P) is isomorphic to a partial crossed prod-

uct of By by a partial automorphism. In this case, Cj (P) is nuclear if and only if By is nuclear.

If o is not regular, tensor it by the trivial circle action on %, we get a stable action o’.
Furthermore, o' is still semi-saturated. This implies &’ is regular by [Exe94, Corollary 4.5].

Again by [Exe94, Theorem 4.21], C; (P) ® ¢ is isomorphic to a partial crossed product of
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By ® £ by a partial automorphism. In this case, C; (P) is nuclear if and only if By ® %" is
nuclear. While the latter holds if and only if By is nuclear. Therefore, C; (P) is nuclear if and

only if By is nuclear.

For p, g € P, let
p=hoaihay---hy_ahy,hiy € Pr, a; €A, 1 <i<k, iy € Gt Pr

and

g = Hyds iy Hi_yahi, Wy, € Pr. aj €A, 1< j <1, hye GyiPr
be the compact forms. We say p ~ g if

a/
hoathiay - - hy_1a; Gk = hoa llalz-nh;fla;Gaé‘
Alternatively, p ~ g if k =1, a; = d! for all 1 <i < k and there exists x € G4 such that

hoaihiay - - hy_qa; = hf)a/l llalz . ~h;71a;x.
It is easy to check that ~ is a well-defined equivalent relation in P.
For p € P with a compact form as above, define
p:=hoarhias---hi_ay.

Then p is unique up to the equivalent relation ~. Moreover, for all p, g € P, p ~ g if and

only if p ~ g.
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Let P :={peP, 6(p)=1},1€Nandlet

BO, 1= Span{)‘pa’q*v D, qc¢c Pl}7

then By, restricted on > (Ug<;P%), is 0. Therefore, we can regard By ; as a C*-algebra on

the Hilbert space £ (Ug>Px).

When A_ =0, A,A; is of the form 45,47, h, h' € Pr. Furthermore, we have in By,

(

)Lﬁl;thll;;’l )L;lhz}t};k’zlgp q1 = px, x € Pr,

Ao Ao My gy + Mo Py Mgy = 4 Ay o A Ay A Ay, Gnx = P2, x € Pr

q2°

0, otherwise.

\

Let
b(m), [P, 0(p) =1}/ ~[=m <o,

(), {p, 0(p) =1}/ ~[=r°,

Hl .
and define a linear map
Vi H®b(P) — b(Uk=1P)

by sending 8; ® &, to Opy, then V is a unitary.

Let
My, Hﬁ’ 9<p) :l}/N | =m < oo,

K, [{p, 0(p)=1}/~|=e,

then the map

(O B()7 | — Kl®$<£2(}))), T—V*TV

is an injective x-homomorphism. Furthermore, it maps A;A,A;,4; to Ej & ApA;, and hence
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@(Bo, 1) = K; ®C*(A(Pr)). Noting that P = ©,cp,\ pPrx and that every subspace ¢»(Prx) is

Pr-invariant, we have C*(A(Pr)) = C; (Pr). Since C; (Pr) is nuclear, so is By_ ;.
When A_ # 0, for p € P with the expression

p=hoarhiaz--hy_1aphy,hiy € Pry ai € A, 1 <i <k, hy € Gg¥Pr,

define
X, :={xeP{, px~' € P}.

If X, # {€}, then there must exist a sequence (xg,n)) neN C Xp with xl(,") < xl(,"H)

(n)

all x € X, x < x, " for some n € N since every group G,, v € V is totally ordered. For each

such that for

neN, let
P = P X ={eh
P X, # {e}.
Define
B, == span{A DX ys s 4 € By b, 1€ Pr
and define
w M P, 8(p) =1} ~ | =m <o,
K" =
l .
K. [{p", 8(p)=1}/~|=co.
Similarly as in the case when A_ = 0, we obtain B(()n)l = Kl(") ®C*(A(Pr)), which means Bén)l

is nuclear. Noting that there is an injective *-homomorphism from B(()")l to B((;lel)

)Lp(n) lhl}?l;(n) to

, sending
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(

kp<n+1)kx£)n+l)(X;n>)71h1:(n+l)(X;w)*lh/lcj(nJrl)7 if Xp 7é {8}7 Xq 7é {8}7

q

A'P<"+l))'x£,"+l)(xgw)—lhl;/lq*(”“)’ ifXP 7& {8}’ Xq = {8}7
7Lp<n+1>lhl*(n+l) /'Lq*(nm, if X, = {e}, X, # {e},

xg (xg”> ) =1y

| Ao i

if X, ={e}, X, = {¢e},

n+l)?

for p = hoaihiay - - - hy_ axhy and g = hya|hyd) - - - h’j_la’jh’j, we conclude that By ;= UneNB(()n)l

is nuclear as an inductive limit of nuclear C*-algebras.

Define

we have By ;, [ > 1 is an ideal in By <; and the corresponding quotient is a quotient of
By, <(1—1)- Since quotients and extensions of C*-algebras preserve nuclearity, we get, by
induction, By, <; is nuclear. As an inductive limit of nuclear C*-algebras, By = U;>0Bo, < is

nuclear. Therefore, C; (P) is nuclear.

Remark 4.1.2. If {€} # G, C (R, +) and we are in the same setting as in Theorem|5.2.11
then the set X,, defined in the proof above is either {€} or a monoid isomorphic to Z>¢. In

this case, the sequence (xg,n)) neN € X can be chosen to depend only on ay, regardless of p.

4.2 Amenability

It is well known that a reduced group (groupoid) C*-algebra is nuclear if and only if the
group (groupoid, respectively) is amenable, while we do not have an analogue in the semi-

group case. Theorem motivates us to study it via groupoids and groupoid C*-algebras.
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Let P be a subsemigroup of a group G, it follows from Theorem m that C; (P) is nuclear
if and only if the groupoid G x Qp is amenable. By [Exel5, Theorem 20.7] and [Theorem
25.10], we get that G x Qp is amenable if G is amenable. Therefore, Cj{ (P) is nuclear if P
embeds into an amenable group. However, we do not know whether the converse is true or

not. In this section, we give some examples where the converse is true.

Theorem states C; (P) is nuclear if C; (Pr) is nuclear, where P is a graph of monoids.
In this section, we give examples of some special graph of monoids P such that C; (Pr) is

nuclear and then try to embed these P into amenable groups.

4.2.1 Embedding of the Baumslag-Solitar monoids

Recall that the Baumslag-Solitar groups are examples of two-generator one-relator groups

and are given by the group presentation
BS(m, n)=<a, b|ab"a ' =b" >, m, n€ " 4.1)

Since ab~™a~! = b™" is an equivalent relation, we may assume that m is positive. And the

corresponding monoids BS (m, n) are defined to be
<a,b|ab™ =b"a>" ifne N,

and

<a,b|b"ab" =a>" ifneZ\N.

It is a graph of monoids. Indeed, let I" be a circle, consisting of one vertex v and one oriented
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edge a, and let G, = b*, P, =< b >, G, = G; = Z and P, = N. The map G, — Gr=i(a)

(Gg = Gy—o(q)) 1s given by 1 — b™ (1 — b", respectively). If n >0, Pz = N; If n <0,

P; = —N. It is easy easy to check that

P=rn/(G, T, T)=BSy(m, n).

By definition, BS(1, 1) =< a, b | ab = ba >, which is an abelian group and hence isomorphic
to Z2. Tt is also well known that BS(1, —1) =< a, b | aba~! = b~ > is the fundamental

group of the Klein bottle, isomorphic to the group Z x Z induced by the group action
Q©: Z~Z, o(m)(n)=(—=1)"n,Vm, n€Z.

BS(1, 1) and BS(1, —1) are amenable and hence BS (1, 1) and BS, (1, —1) can be embed-
ded into amenable groups. Unfortunately, the Baumslag-Solitar groups are not amenable for

general nonzero integers m and n.

The following theorem gives an embedding into amenable groups for coprime integers m

and n.

Theorem 4.2.1. If |mn| > 1 and gcd(|m|, |n|) = 1, then there exists an injective semigroup
homomorphism @ : BS, (m, n) — Q* x Q such that ¢(a) = (3, 0) and that ¢(b) = (1, 1),
where Q* = Q\ {0} is a multiplicative group and Q is an additive group, and the group

action is the typical multiplication.

Proof. From a trivial calculation we get that (1, 1)" = (1, n), Vn € Z and that

E o), ym=E my=, 1(Z, o).

n n n
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This means the values of ¢ at the two generators a and b lead to a well-defined semigroup

homomorphism. And what remains is to show the injectivity.

From [Spil2, Proposition 2.3], we know each element o« € BS(m, n) has a unique rep-

resentation of the form

o =Dboaba---bi-1ab? with iy €10, [n]), p € Z.

So we have

p(a) = (1, DO, 0)(1, D (7, 0)--(1, DI (7, 0)(1, 1)
= (0 o) (o i) (o i) p) (42)
= (), Eig+ By ti 4+ (Bigr +p)

Mys—1, ...
n) r+ +(n)rs—1+CI)

for

B =b"ab"a---b's1ab? with ry € [0, |n|), g € Z.

If o(a) = @(B), then we have
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Gy—gﬁ 4.3)
(o () i+ (D +p = () o+ (2) o (D)r +q. (4

Since 2 ¢ {0, —1, 1}, it follows from (&.3) that j = s and hence an rearrangement of (4.4)

n

yields

(Y (i —=ro)+ ()7 =) o ()1 —rjo) + (p =) =0, (45)

If |n| = 1, we have by definition iy = ro =i = r; = --- =ij_1 = rj—1 = 0. Substitute these

into (4.5)), we get p = g and thus o = f3.

If |n| # 1, multiple by n/ and then run a mudulo |n| operation on both hand sides of (#.5)), we
obtain [m]‘]n‘ [io — r0] |, = 0. Since m and n are coprime integers, [m], is multiplicatively in-
vertible in Z,. So we have lio — ro]‘n‘ = 0 and thus iy = rg because iy, ro € [0, |n|). Similarly,

we can get iy =y, ---, ij_1 = rj—1. This implies p = ¢ by (4.5) and hence ot = f3.

Remark 4.2.2. Under the same condition as the theorem above, let y : 7. — Aut(Q) be the

unique group homomorphism such that
mr
y(1)(r) =" vreq,

then there exists an embedding ¢ : BS.(m, n) — Z x Q such that ¢(a) = (1, 0) and that
@(b) = (0, 1).
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Before giving the embeddings of the remaining subclass of Baumslag-Solitar monoids, we

need to present the following lemmas.

Lemma 4.2.3. Let P be a subsemigroup of a group G and let Q be a subsemigroup of a group

H such that

0" :=0nQ ' ={e},

then there exists a unique embedding
©:PxQ— (dyG)xH,

sending p € P to (8¢, p, €) and q € Q to (g, q), where the semidirect product (B G) x H is

induced by the group action map
viH— ouG, h — yh) [f = f(h'U)]

forall h € H and all functions f: H— G, and where &¢_, is the function from H to G, taking

the value p at € € H and the value € elsewhere.

Proof. 1t’s trivial to check ¢ is a well-defined semigroup homomorphism. We shall show the

injectivity next.

Define firstly a binary relation R on the semigroup Q as follows: (x, y) € R if there ex-
ists z € Q such that y = xz. It’s easy to check that R defines a partial order < on Q, where we
say x < yif (x, y) € R. Secondly, define 7, : (&g G) xH — (®yG)and m, : (&yG) xH — H

be the trivial coordinate projection maps.
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Every element o € P* Q has a unique expression

Q= pi1q1p2q2- Pngn, P1 € P, p2, -+, pn € P\ {€},

qis - gn—1 € Q\{€}, g € 0, neN.

By definition,

@(a) = (8¢, p,, €)(€, q1)(O¢, p,, €)(E, q2) - (8¢, p,, €)(E, qn)
= (68, P1s QI)((S& P2y 42> T (58, Pns qn) (4.6)

= (687 P 5%7 P25q1427 p3 6611'“%—17 pn> 4192 'Qn)-

Let € (a) C Q be the set

{geQ|g=¢cor (mop(a))(q) # e},

then

C(a)=1¢ q1, 9192, "+ » 192 " Gn—1}

is an ascending chain with cardinality n.

If p(a) = ¢(B) for

B =DP14\P5d5 " Pindin € P*Q, Py €P, p5, -+, pl, € P\ {e},

g1, - Gy € O\{€}, ¢, €0, meN,
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then we have ¢’ (o) = ¢’ (B), where

C(B)={e, 4\, 1495, -, d\d>-dm_1}

is an ascending chain with cardinality m. This happens if and only if n = m and ¢; = ¢ for

i=1,2,---,n— 1. In this case,

p1=(mop(a))(e) = (moe(B))(e) = pi

and

pir1 = (mo@(a))(q1---qi) = (T o@(B))(g) - qi) = Pis

fori=1,2,--- ,n— 1. Finally the fact that m, o (&) = m 0 @(B) yields g, = ¢/,. All of these

entail oo = 3.

Lemma 4.2.4. There exists an embedding from the semigroup 7, « N to the group <, =

Zn* 1) (Zn*Z7)" for any natural number n > 2.

Proof. By Lemma4.2.3| there exists an embedding
VY ZyxN— (DzZ,) X Z,

which can be naturally extended to a group homomorphism from Z, * Z to (©z7Z,) X Z.

Noticing

V((Zu+2)") = (W(Zn*Z))"  (@2Z0) ©Z)" = {(0, 0)},
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v induces further a group homomorphism from @7, to (©7Z,) X Z. Or equivalently, the

followig diagram

Zi’l*N —t >Zn*Z

v > b

(BzZn) N1 —— 2y

is commutative. The injectivity of y entails the semigroup homomorphism 7w o1 from 7Z, x N

to .7, is also injective. O

Remark 4.2.5. From [Hoc69] we know NN can be embedded into o« := L7/ (Z*7)".

Corollary 4.2.6. Assume that G is a group and that Z, x 7. ~ G, N> n > 2 is a group action

such that 7y, acts trivially, then (Z, *N) X G can be naturally embedded into <7, x G.

Proof. Since Z, acts trivially on G, the group homomorphism Z, * Z — Aut(G) factors
through Z. So (Z,*7Z)" acts trivially on G and Z, x Z — Aut(G) factors through <7,. In
combination with the result from Lemma [4.2.4] that the semigroup homomorphism wo1 is

injective, we can naturally get the embedding (Z, *N) x G < 7, x G, induced by wo1.

Theorem 4.2.7. For each pair
(m, n) € (Z\{0})* with ged(|m|, n]) =d > 1,

there exists an injective semigroup homomorphism from BS(m, n) to (Z4+N) x Q, sending
ato (s, 0)and b to (t, 1), where s and t are the generators of N and Z4 respectively, the

group action Zg ~ Q is trivial and the group action N ~ Q is such that s(r) = "7 for any

reQ.
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Proof. Since

(Sa 0)(t7 1>m = (Sa m) = (ta 1)n(sa 0)7

such a semigroup homomorphism ¢ exists and what remains is to show it is injective. For

o =b"ab""a---b'i-'ab” € BS.(m, n), with, iy € [0, |n|), p € Z,

we have

(p(OC) = (la l)io(s7 0)0? l)il(sa 0)"’(t7 l)ij71(57 O)(t7 1)p

. mig. , ; mi| P mij—l
— (g Y (fg YL (Fmtg, LT (4P 4.7
(s, "0 g, T g, O, ) @)
= (tiostils---lif’ISlp, (%)jio—f—(%)j_lil +"'+(%)ij*1 +p).

If (o) = @(B) for

ﬁ _ bkoabkla_ . .bklflabq Wlth k” - [07 |I’l|)7 q € Z,

then
tostlls . i1 stP = thogkig. . fhioigd (4.8)
m. . m. . m m m m
Vi Sy (Y = (=) Zys-l e () .49
(Vo () it ()it p= () o+ (Ot (e g (49)

This first equality yields j =1, d|(iy —ky) and d|(p — g). Substituting these into the equality

(4.9) and rearranging it, we have

/A ! : /o
m 1o — 1o m.; 111 —1n m i1 —rj—q pP—q
J (=) Ly J J= 4 =0,

(W d n) d (7) d d
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where m' =m/d, n' =n/d, i’"‘;r" € (—|n'[, |n'|) and 24 € Z. A similar analysis of the above

equality, as we did in Theorem 4.2.1}, yields i“%r“ =0and 252 =0, which means oo = . [

Corollary 4.2.8. BS (m, n) can be embedded into <y x Q for any pair (m, n) € (Z\ {0})?

and d = gcd(|m|, |n|), where the group action <y ~ Q is induced by such a group action

Zq*Z ~ Q that Zg acts trivially and s(r) = " for s € Z being the generator and any r € Q.

Proof. The conclusion follows directly from Remark [4.2.2] Corollary and Theorem
4.2.7

The second derived group «7;" of .27, is trivial, so .7; is solvable and hence the semidirect
product o7, x QQ is solvable and thus amenable. This means all the Baumslag-Solitar monoids

can be embedded into amenable groups.

4.2.2 Embedding of the generalised Baumslag-Solitar monoids

In last subsection, we embeded successfully the Baumslag-Solitars monoids into amenable

groups. Now we aim at extending the results to generalized Baumslag-Solitar monoids.

A generalized Baumslag-Solitar group is given by presentation as follows,

GBS(N, m;, n;) :=< aj, b | ajp™a;' = b,
(4.10)
mi, , €2*, 1 <i<N, NeN'U{eo} >.
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Without loss of generality, we assume, like we did in the Baumslag-Solitar case,
m;>0,1<i<N.

Set

51:{1§i§N|ni>0}

and

Sy ={1<i<N|nm<0},

then the corresponding GBS monoid is defined by presentation

GBS+(N, m;, l’li) =<a; b | aibmi = bniai, i €Sy,
(4.11)

b "Ma;b" =a;, i €8Sy, my, nj€ Z*, N € N* >t
It is also a graph of monoids. Let I" be a bouquet of circles, consisting of one vertex v and
N oriented edges {a;};, and let G, = b%, P, =< b >N, Gy = Gg, =Z and P,, = N. The
map Gg, — Gy—y(y;) (Goy = Gy—p(q,)) 1s given by 1 — b™ (1 — b", respectively). If n; > 0,

Pz =N; If n; <0, P, = —N. Itis easy easy to check that

P=n/(G,T, T)=GBS.(N, m, n).

To begin with, we have the following Proposition.

Proposition 4.2.9. Each element of GBS(N, m;, n;) has unique representations in the two
forms
(L) bjoall-lbjla}z---a}pbjl’, where 1 € {£1}, 1 <iy <N, ju €0, |nj,,|) if t =1, and jy, €

[0, miuﬂ) fr=-1, jpeZ
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(R) bjoa}1b11a§2--~a}pbjp, where 1 € {£1}, 1 <iy <N, ju €10, my,) if t =1, and j, €
[Oa |niu|) ifl = _17 jO € Z.

The standard L-form (R-form) of the proposition is obtained by moving &'s to the right (left,

respectively) via the equations b¥a; = a;p*™ and bk’"iai_1 =a; Ipkni ke 7.

Corollary 4.2.10. Each element of GBS+ (N, m;, n;) has unique representations in the two

forms
(L) bhaj bl aj, - aj, b, 1 <iy <N, ju €0, i, 1), jp € Zs

(R) bjoailbjlaizn-aipbjp, 1<iy <N, ju €0, my,), jo€Z

Theorem 4.2.11. Assume

N N
gcd(Hmi,Hn,-) =1, my, n; € Z*, N € N*.
i=1 =1

Foreach1<i<N, let P,=<s; > be a semigroup isomorphic to N, and let ¢; be a semigroup
homomorphism defined by

o;i: P — AMZ(Q), Si — (Pi(sz') [l’l—> ?, I’EQ}.

i

Then there exists an injective semigroup homomorphism

¢ : GBS+ (N, mj, nj) — (x;P,) x Q

such that ¢(a;) = (si, 0) and that ¢(b) = (g, 1).
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Proof. For each i € S1, we have
(si, 0)(g, 1)™ = (si, 0)(&, mi) = (si, mi) = (&, ni)(si, 0) = (&, 1)" (s, 0).

Similarly, we get

(e, 1) (s;, 0)(g, 1)™ = (51, 0), i € S».

Therefore, such a semigroup homomorphism ¢ does exist. It remains to show the injectivity.

By Corollary each element oo € GBS (N, m;, n;) has a standard L-form

Oc:bjoa,-lbj‘a,-2~~-a,-pbjp, I<iy <N, ju€ [0, |n,~u+,]), Jp € L.

Then we have

mj, Jo mi, Ji mi, jp—1 .
(o ) o ) o,

If o(a) = @(B) for B € GBS, (N, m;, n;) with the standard L-form
B =blaybag, - ar b, 1 <ky <N, I, €0, |n,. ), Iy € Z,

then we have

Silsiz"'sip :SkISkz"'Skq (413)
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and

p=1 "y u=2 "ty ip
4 my 4 my . | 4.14)
= (TT-2)to+ ([T -2 )+ = 4
p=1 "y =2 Ty M,

It follows from the equality (.13)) that p = g and that iy, =k, 1 < u < p. Substituting these

into the equality (4.14), we obtain, after a rearrangement,

i

m"“) —ly) (f[ ) — 1)+ +—< —lp-1)+ (jp—1p) =0. (4.15)
n, Joo it ]11 Jp—1 —ilp—1 Jp —ip) =Y. &

ni,

If |n;, | = 1, then jjo = Iy = 0 by definition. Otherwise, multiple both hand sides of the equality
(4.15) by HZ:I nj, and then run a modulo |n; | operation, we get

[T

ljo—1lo],, | =0

|n11‘ ‘I’l

By the assumption in the theorem, [szl miu} is multiplicatively invertible in Z|n,»1 - So

‘I’l,‘l ‘
we have [ jo — lo) | = 0 and hence jo—Ip = 0, i.e., jo = ly because jo, lp € [0, |n;,|). In

either case, we have jo = lp. Substituting this into the equality (4.15]) and repeating this
process, we can get, one by one, ji =11, ---, j, = l,, which entails o = 3.
Let G be the free additive abelian group on the family of generators

{b(my, my, -+, my)}, m€Z, 1<i<N,2<NeN.

Any permutation of these generators induces an automorphism of G. Let x;, 1 <i < N be the
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automorphism induced by
b(my, my, -+, my) — b(my, -+, mi_y, mi+1, migq, -+, my).

It is easy to see that the subgroup H of Aut(G) generated by {x;}, 1 <i < N is a free ableian

group. Hence the semidirect product H x G is solvable and amenable. Set

Yi= (Xi, b(oa 07 70))7 ISZSN

Proposition 4.2.12. {y;}, 1 <i < N is a family of free generators for a copy of *;P;, where

P, is as in Theorem[d.2.11]

Proof. Consider a monomial U = uju;---uy of length d > 1, where each u; is some y;.

Suppose y; occurs p; times, then Zﬁ-\': 1 pi =d and U is of the form

N d—1

(KT X b, ).

where for each j,

In particular, (m(l), mg, e mlo\,) =(0,0, ---, 0). Whend > 2, we have

(ml, mb, -, my)=(0, ---,0,1,0, -, 0)

with the i-th entry taking value 1 if u; = y;. These statements are proved by a trivial induction

ond.
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Now suppose that the distinct monomials U = ujus---uy and V =vvy---v, are equal. We
must have that d = e because the length can be recovered as the sum of the exponents of y.s
in the first entry. If d = 1, then uy =U =V =v;. If d > 2, the second entry will be a sum of

d terms, precisely one of which, b(m}, mé, N m}v) will have the property

=
=S
I

~
—

It follows that u; = vy = y; with the i-th entry taking value 1. And then ujur---uy_1 =

ViVv2---Vg_1. So a trivial induction on d finishes the proof.

Corollary 4.2.13. Under the same assumption as in Theorem4.2.11| then the monoid GBS+ (N, m;, n;)

can be embedded into an amenable group.

Proof. From Proposition 4.2.12} we know that the semigroup *;P; can be embedded into the
group H x G, which naturally induces a group homomorphism y from the free group Fy with
N generators to the group H X G. Since G and H are both abelian, the second derived group
(H x G)" of H x G is trivial. Therefore, F), is in the kernel of the group homomorphism y.

Alternatively, y factors through Fy/Fy/. That is to say, the following diagram

Py ——— Fy

| >< |

HxG «— Fy/Fy

is commutative. Since the map x;P; — H X G is injective, the map x;P;, — Fy/ Fz(// is also

injective.
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Recall the definition of ¢/s, there exists a semigroup homomorphism ¢ : P, — Aut(Q)
such that the restriction of ¢ on P, is exactly ¢;. It admits an extention from Fy to Aut(Q),
which we also denote by ¢, briefly. It is easy to see ¢ (Fy) is an abelian subgroup of Aut(Q).

So ¢ factors through Fy/Fy/. That is, we have the follwing commutative diagram

P, ——— Fy

T

— FN/F”

Combined with the fact that *;P, embeds into Fy/Fy;, we conclude that (x;P) X Q embeds
into (Fy/Fy) x Q. By Theorem4.2.11, GBS (N, m;, n;) can be embedded into the group

(Fy/Fy) x Q, which is amenable.

Question 4.2.14. Can we get an analogue for the semigroup GBS, (N, m;d, n;d), d € N*

under the same assumption as in Theoremd.2.11)? And in general case?



Chapter 5

Groupoids

Let G be a group and let P be a subsemigroup of G by an embedding P — G, if we define
a partial group action of G on the character space Qp := Spec(D; (P)) as in Section 2.2, by
Theorem we have C; (P) = C;}(G x Qp), where G x Qp is the transformation groupoid
induced by the partial action of G on Qp. It makes sense to study such a kind of transforma-

tion groupoid, which is indeed what we do in this chapter.

5.1 Amenability of transformation groupoids

If a group G is amenable, we get, by [RW17, Corollary 4.5], for all partial action G ~ X,
the corresponding transformation groupoid G x X is amenable. This means, by definition of
amenability, there exists a topological approxiamate invariant mean on G x X. It is natural to
ask whether we can work out such a topological approximate invariant mean on G X X. In
the following, we give a construction of a Borel approximate invariant mean on G X X and
provide a sufficient condition for the mean to be continuous. The construction is based on the

result in [RW17].

77
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Let G ~ X be a partial dynamical system, where G 1is a discrete, countable and amenable
group, and X is a locally compact, Hausdorff and second countable topological space, then
the associated transformation groupoid G x X := {(g, x) € Gx X|x € U, } is alocally com-

pact, Hausdorff and second countable étale groupoid.

Step 1. Set the groupoid
(GxX)x (G X):={((g %), (h, ) € (GxX) x (G X) | x = hy}
with composition

((g; x), (h, ) ((g, ¥), (W, ) = ((g, x), (hH, ¥'))

if (gh, y) = (¢’, ¥), and inversion

(g ), (hy ) = ((gh, ), (', x)).

We identify the unit space of (G x X) x (G x X) with G x X with the range and source maps
given by

r((g, x), (h, y)) = (g, x) and 5((g, x), (h, y)) = (gh, y).

By [Ren80, Lemma 2.7 and Proposition 2.8], we know G x X admits a counting measure
system A as its left Haar measure system. And a direct application of [ADR00O, Example

2.1.4(1)] gives a Borel invariant mean {m(g’ x)}( on the groupoid (G x X) x (G x X) such

g X)

that

m'® 9 ((g, x), (h, ') = ¢ ((g, x)(h, h~'%)) = ¢((gh, B~ %)),
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where ¢ is a nonnegative Borel function on G x X with A(¢) = 1. Since the unit space X of
G x X i1s clopen, the characteristic function 1y is a nonnegative continuous function on G X X
with A(1x) = 1. Therefore, taking ¢ = 1y, {m(g’ x)}(g %) becomes a continuous invariant

mean on (G X X) X (G x X).

Step 2. Define a cocycle c: Gx X — G, (g, x) — g, then c is a continuous homomor-
phism and ¢! (€) = {€} x X = X is an amenable subgroupoid of G x X.

The skew-product groupoid associated to the cocycle c is, as in [RW17, p2262],
4(c)={(a, (g, x), b)) eGXx (GxX)xG: b=ag}.

((a, (g, x), b), (c, (h, y), d)> is a composable pair if and only if b = ¢ and x = hy. The

multiplication is given by

(a, (g, x), b) (b, (h, y), d) = (a, (gh, y), d)

and inversion by

(a, (g, x), b) = (b, (g_], gx), a).

We can identify the unit space of ¥(c) with X X G, and then the range and source maps are

given as expected:

r(a, (g, x), b) = (gx, a) and s(a, (g, x), b) = (x, b).

Let
Y:={(x,8) €eXxG| (g x) e Gx X},

it is easy to see that ¥ is ¥ (c)-invariant. Indeed, if (a, (g, x), b) € ¥(c) has its source in Y,

then we have (x, b) € Y and hence x € Uj,-1 = U(,,y-1. Combined with the factx € U,-1, we
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conclude gx € U, -1 and r(a, (g, x), b) = (gx, a) €Y.

Define a map

¢: G0y = (GxX)x(GxX), (a, (g, %), ag) = ((a, 8x), (8, %)),

then from a trivial computation it follows that ¢ is a topological groupoid isomorphism.
Hence, by the isomorphism @, ¢(c)|y admits a continuous invariant mean of discrete proba-

bility measures {m(* &)} such that

(x, g)€Y
m™ & (g, (h, h'x), gh) = xx((gh, h~'x)).

So we have

Note that G acts on the left of ¢(c) by groupoid automorphisms:

h- (a, (g, x), b) = (ha, (g, x), hb).

Assume

G:{gla 82, 5 8n; }

with g; = e, we then have X X G = U,g,Y and ¥ (c) o,y = g% (c)|y- So we get the continuous

invariant mean {m: 8 }( on & (c),,y such that

x, g)egnY

(x, 8) — y
" 3(8, (g_]gm g;lgx), gn)’ <x7 g) € gl’l .
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Set

n—1

Yn:gl’lY\Ule7 HGN*,

i=1
then {Y,}, is a disjoint cover of X x G by invariant Borel subsets. For (x, g) € (c)?, define
m™ &) by

m &) = 5( (x, &) € Y.

g (8 gu: gi'80). 8n)’

It’s easy to verify that {m(x> 8)} is a Borel invariant mean of discrete probability

(x, g)EXXG

measures on ¢ (c). Moreover, it is continuous if Y is a clopen subset of X x G.

Step 3. Now we try to construct a continuous approximate invariant mean on G X X. Since G

is amenable, there exists a nonnegative and finitely supported function y;, on G such that

Z Wa(g) =1 and Z (W (gh) — yn(g)| < 1/n

geG geG

for all h € K,,, where {K, }, is an increasing sequence of finite subsets such that | J, K, = G.

Define the function ¥,, on G x X by

W ((h, k') i = Y ya(@)m™ € (g, (h, k'), gh)
geG

= Z Z W"(g)a(& (¢ gms gm'8%). &m) (s, (&, hl), $h) .1

meN*g: (x, g)€ls,

= Y wemh™), (B, x)eGxX.
m: (x7 gn1h71)€Ym

In the last term, (x, g,h~') € Y,, if and only if
(gkilgmhila X) ¢ G X X7

or equivalently,

gk_lgmh_l §é Gy,
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for any 1 < k < m. By [RW17, Proposition 4.1], the sequence {¥,}, forms a Borel approx-
imate invariant mean on G X X. And it becomes a continuous approximate invariant mean if

Y is a clopen subset of X x G.

Indeed, for all x € X,

heG*

=Y Y wi(g)m™ 9 (g, (h, h'x), gh) (5.2)
g€G heG*

= n(g) =1
geG

This means that ¥, is a density function of probability measures. By the equality (5.1)), we

have

¥, ((g, x)(h, hilx)) =W, ((gh, hilx))

= ) Yulgwh™'g™"), (3. %), (', x) €GX.
m: (gx, gmh~'g=1)€Y
Noticing that (gx, gwh~'g™!) € Y, if and only if (x, gu/h~') € ¥, it follows that

Y [%a((g, x)(h, h~'x)) =¥ ((h, h™'5))]
heG*

= -1 1 -1

=X L (vl ) - valewi g ) (5.4)
heG® m: (-x7 gmhil)eym

< )3 W (gmh™") = Wa(gmh g1

h, m: heG*, (x, gmh=')€Y;y,

Assume (hy, my) and (hy, my) are two pairs such that ; € G*, (x, gmihfl) € Y, and that
gmlh]_1 = gmhy L 1 my = myp, then hy = hy. Otherwise, assume, without loss of gen-
erality, m; < mp, we then get g;lll gmyhy L hfl € Gy, which contradicts the assumption

(x, &myhy 1) € Yn,. So in the last term in the equation (5.4), when the sum takes over all
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1

possible 4 and m, the element g,,h~ " is never repeated. Hence

Y | ¥a((g, x)(h, B %)) = ((h, h~'x))]

heG*

< Y |Wn(gmh™") = Walgmh™'g ")) (5.5)
h, m: heG*, (x, gmh~1)E€Yy

<Y |va(k) — wa(kg™")].
keG

The last term tends to O as n tends to infinity. This proves approximate invariance of ¥,,.
When Y is clopen in X x G, ¥, is a continuous function by definition. Take f € C.(G x X),

the function

x Y f((hy h)) W (R, h ')

heG*

is continuous on X because of the fact f¥, € C.(G x X) and the property of the left Haar

measure on groupoids.

In the semigroup case, if P C G satisfies the Toeplitz condition, the set Uy is a clopen subset

of jf\p for all g € G. Therefore,

Y= U Ug—l X{g}

geG

is clopenin _#p x G. This entails that the groupoid G X _¢Zp admits a continuous approximate

invariant mean.

5.2 Closed invariant subsets

In this section, let G be the graph of groups and let P C G be the graph of monoids in the

same setting as in Section 3.1. Assume that condition (LCM) is satisfied.
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Under some circumstances, there is a one-to-one correspondence between the ideals of the
reduced groupoid C*-algebra C;(G x Qp) and the open invariant subsets of the unit space Qp.
Even in general, every open invariant subset in Qp yields an ideal in the reduced groupoid

C*-algebra C;} (G x Qp). Our goal in this section is to study closed invariant subsets of Qp.

By Lemma [3.2.3] P is right LCM, i.e., all nonempty constructible right ideals are princi-
pal. Thatis, #p = {pP | p € P} or {pP | p € P} U{0}. Furthermore, remark states
Qp = ;‘3. For convenience, denote _#p by ¢ and denote Qp by Q.

By definition, every y € € is a nonzero filter function from _# U0 to {0, 1} with (0) = 0.

And Q is endowed with the pointwise convergence topology.

Each p € P determines a character x,, given by x,(xP) = 1 if and only if p € xP. Identity
Xp With p, P is a dense subset in Q. For every finite or infinite positive word w = x1x2x3 - - -,
x. € {P,\ {€}}vev UA, define [w]; :=w if w=x;---x; with j < i and [w]; := x;---x; oth-
erwise. Let {w}; be the rest subword of w after removing [w];, i.e., w = [w];{w},;. Define
Xw € Q by setting x,,(xP) = 1 if and only if [w|; € xP for some i. It is compatible with our

notation ), whenw = p € P.

Define Q.. := Q\P, then we have, by [LOS18, Lemma 2.3], every ) € Qo is of the form
Xw for some infinite positive word w. In conclusion, every character y € Q is of the form %,

for some finite or infinite positive word w.

An easy interpretation of the partial action of G on Q yields that ¥ € dom(g) = Ugr if

and only if g = pg~! for some p, g € P and x(gP) = 1. Furthermore, we have

(g-x)(xP) = x(gqyP) if xPN pP = pyP
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and

(g-x)(xP) =0if xPN pP = 0.

If x = yx for some word w, x(gP) = 1 implies that [w|; € gP for some i. Assume [w]; =
gr, r € P, then we have gx,, = X,r{y};- In this case, define gw := pr{w};. Since the group
element g may have different decomposition, the word pr{w}; is not unique. While we can

always get one from another by rearrangement and the characters %, (,,, coincide.

It is easy to see that P and Q.. are invariant.

Among all the characters in €, we are interested in some special ones under which the preim-
age of 1 is maximal. That is, ¥ € Q is called a maximal character if we have )’ = y whenever
x' € Q satisfies x/(xP) = 1 for all x € P with y(xP) = 1. Let Qmax be the family of all max-
imal characters in Q, then we have Qpax C Qo and that Q. is invariant. The boundary of
Q, denoted by dQ, is defined to be the closure of Qpax in Q, i.e., dQ := Qmax. It is closed

and invariant in Q.

5.2.1 General case

We will focus on the following two situation.

LForallveV,xeP,\€orx €A and )y € Q, there exists an infinite word w with y = x,,,
a strictly increasing sequence (jy)y of positive integers, and a finite positive word y whose
first letter does not lie in P, in the case where x € P, such that,

(i) xy[w] jy is a reduced positive word for all N,

(ii) Whenever pod;p; --- is a properly reduced positive word representing xy[w] ;,,, we must

have x € poPr if x € P, and x € poP if x € A.
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IL. There exists u € V and b € B, such that the following holds:

ForallveV,x€ P,\€orx €A and y € Q., there exists an infinite word w with ¥ = X,
a strictly increasing sequence (jy)y of positive integers, and a finite positive word y whose
first letter does not lie in P, in the case where x € P, such that,

(i) xy[w] jy is a reduced positive word for all N,

(ii) Whenever pod;p; --- is a properly reduced positive word representing xy[w] ;,, then one
of the following holds:

A)x e poPrifxe P,andx € poPifx €A,

B) [w];y € bP and xb’ € poPr if x € P, and xb’ € poP if x € A, where i is some positive integer.

Lemma 5.2.1. Suppose that condition I. holds and let ¥ € Q. be arbitrary. For n € Q such

that 1 = x,, for some infinite positive word w' with lim;_,..t([W'];) = o, we have N € G- .

Proof. Let xqf1x1 -+ Xn_1fnXn be a properly reduced positive word representing [w'];, we dis-
tinguish between two cases:
(@) x, € P, \ {€} for some v € V;

(b) x, = 0 and f, € A.

Condition I. applied to ¥ and x = x, in case (a) and x = f, in case (b) provides w, [w];,

and y as above. Note that these depend on /. We now claim that lim;_,c. X[,y = 7

If n(pP) = 1, then [w']; € pP for all sufficiently big /, so that [w'];y[w];, € pP for all suffi-

ciently big / and all N. Thus x|, (pP) = 1 for all sufficiently big /.
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Conversely, suppose that Xj,,,,,(pP) = 1 for all sufficiently big /, then [w'];y[w];, € pP for
all sufficiently big / and all sufficiently big N, say [w'];y[w];, = pz. Let qoe1q1 - - qm—1emqm

be a reduced v-word representing pz.

Let p be in the form of a properly reduced positive word, for all sufficiently big /, [w']; can be
represented by a reduced v-word of the form x/x€ - -- & with £(x},) > ¢(p). Corollary
applied to m = £(x},) implies that goe1q1 - - - Gm—1€mqm € PP, say qoe1q1 - qm—1€mqm = pZ
and z =7'7. Since y and [w];, are as in condition L, there is a reduced v-word representing
[w'];y[w] jy» which starts with x),x. By Lemma (i), we have goe1q1 -+ * Gm—1€mqma = X}, or
qoe1q1 - gm—1€mqm = X,a. In the first case, we have [w']; € x,P C qoe1q1 - gm—1emgmP C
pP and thus n(pP) = x,»(pP) = 1. In the second case, x,xy[w];, = W]y[w]jy = pz =
pZ?’ = xj,a7" and thus xy[w]j, = az’. Lemma provides a properly reduced posi-
tive word representing az” starting with aa’ € P, for some u € V. Now condition I. im-

plies that x € aa’P C aP. This in turn yields [w']; = x,x € x,,aP = pz’P C pP and thus

n(pP) = xw(pP) = 1.

Lemma 5.2.2. Suppose that condition II. holds.
(i) Let x € Qo with x(bP) = 0. For 1 € Q such that 1 = X, for some infinite positive word
w with limy_..l([W];) = oo, we have 1 € G- .
(ii) Let )y € Qo be arbitrary. For 1 € Q such that = X, for some infinite positive word w'
with limy_..l([W'];) = o and g-n(b'P) = 1 for all g € G for which g -1 is defined and all

positive integers i, we have N € G- .

Proof. Let xf1x| -+ Xn—1fnXn be a properly reduced positive word representing [w']; as in
the proof of Lemma Condition II., applied to ¥ and x = x,, if x, # 0 and x = f,, if

xp, = 0, provides w, [w]j, and y as above. Note that these depend on /. We now claim that
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hml%%%[w’];yw =n.

(i) B) in condition II. leads to a contradiction to the assumption that  (bP) = 0 since [w], €
bP implies x(bP) = 1. Hence we always have statement A) when condition II. is applied

to ¥ and x as above. Therefore, limy_c0 X[,y = 7 follows by the same argument as in the

ww

proof of Lemma [5.2.1]

(i) If n(pP) = 1, we obtain that [,/,,,,(pP) = 1 for all sufficiently big / as in the proof
of Lemma[5.2.11

If X7,y (PP) = 1 for all sufficiently big /, we can then use A) in condition II. and the same
argument as in the proof of Lemma to show n(pP) = 1, or we can use B) in condition
II. and the same argument as in the proof of Lemma to show that [w' ]lbi € pP for some
positive integer i. Now our assumption that g-1(b'P) = 1 for all g € G implies for g = [w' ];1
that [w];"-n(b'P) = 1 and n([w'];b'P) = 1. This, together with [w']|;b’ € pP, yields that

n(pP) = 1.

Suppose that condition II. holds, define

Qo ={x€Q, (g-x)BP)=1, Vg, i},

where we only consider those g € G such that g - y is well defined. Note that we always have

Qp, 0 € Q.

To summarize, here is the conclusion.
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Lemma 5.2.3. Suppose that condition I. holds. For any x, n € Q, we have n € G-Qp, for

someucVorneG-y.

Suppose that condition II. holds.
(i) For any x € Qwith (bP) =0and n € Q, we have n € G-Qp, for someucV orn €G- .

(ii) For any x € Q and 1 € £p, o, we have 11 € G-Qp, for someucV orn e G-¥.

Here Qp, is the collection of all characters of the form Y, where w' = € or w' consists

of letters in P, \ €.

Proof. Tt suffices to show that if n = J,,» with sup;£([w'];) < e, we then have n € G- Qp, for

someu cV.

If w' is a finite word, then 11 = g- e with g =w'.

If w = xixx3- -+ withxj € {P,\ {€}}yev UA is an infinite word, then we must have x; € P,
for all sufficiently big j and some u € V (independent of j), which entails 1 € G- Qp,. Oth-
erwise, there exists a sequence (j,), of positive integers such that either x;, € A for all n or
xj, € P,, with v, # v, for all n. In the first case, we have sup;£([w'];) > ¥, 1 = oo since
each x;, € A contributes at least length 1 in ¢([w'];) with [ sufficiently big. In the second case,
similarly we have sup,Z([w'];) > ¥, ([vn, Vnt1]) = . In both cases, it leads to a contradic-

tion to the assumption that sup,/([w'];) < .

Now we turn to the following question: When do we have condition I. or condition II.?

In the following, we will assume without loss of generality that P, # {€} for all v € V,
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P, # {e} foralle € A and P{ # By, foralle € T.

Lemma 5.2.4. Assume that P, # {€} for all v €V, P, # {€} for all e € A and P; # Py, for

all e € T. If there exists e € T such that P, = {€}, then condition 1. is satisfied.

Proof. Letx € P,\ € or x € A. In the latter case, set v:=#(x). Let ¥ and w be as in condition 1.

First assume that there exists a strictly increasing sequence (jy)y of positive integers such
that, [w];, can be represented by a properly reduced positive word with first letter in P, or
first letter in E with origin v, for all N. Assume that [v, o(e)] does not contain #(e), otherwise
replace e by é. Take y € Py \ {€}. Then xy[w];, is reduced, and we can assume without
loss of generality that xy[w]|;, is properly reduced (when we replace x and [w] ;, by suitable
positive words representing them). Suppose that x € P,, the case x € A is similar. If pod;p; - --
is a properly reduced positive word representing xy[w] ;,, then we have x = poa or xa = py.

In the first case, we are done. The second case leads to a = € using that P, = {€}.

Now assume that there exists a strictly increasing sequence (jy )y of positive integers such
that, [w];, can be represented by a properly reduced positive word with first letter not in P,
or first letter in E' with origin not equal to v, for all N. Assume that [v, o(e)] does not contain
t(e), otherwise replace e by e. Take y; € F(,) \ {€} and y; € P, \Pj:, where [t(e), v] ends
with f € T. Define y := y;y,. Then xy[w], is reduced, and we can assume without loss of
generality that xy[w];, is properly reduced (when we replace x and [w];, by suitable positive
words representing them). The same argument as in the first case shows that condition I.

holds.
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To get examples satisfying condition II., we now assume that G, C (R, +) for all v € V. Fur-
thermore, we assume that, in addition to our assumption above, P; # F;,) for all e € A UA.

For convenience, we will still use multiplicative notation.

Noting that either G, = Z (with a least positive element) or G, is dense in R (without least

positive elements), we have the following result.

Lemma 5.2.5. Assume that {e} # G, C (R, +) forallv eV, P, # {€} for all e € A and
P; # Py for all e € E. Then F; is not dense in Fy,) for all e € E. Moreover, Po = Z>( or

P, ={€} foralle € E.

Proof. 1f P/ is dense in P, for some e € E, then we can find p € B, \ P¢ and a sequence
(pn)n C P¢ such that p < p, and lim, p, = p. Then p~'p, € p~1P¢ = p~1 2P¢, which
implies p~! ¢ < p~!p, for all n. This entails p~! ¢ = £ and thus p~' P = P¢, contradicting

our picking p € Py, \ Py.

For all e € E, we always have one of the following: P, = Z>(, P, = {€} or P, is dense in

(R4, +). In the third case, it entails that P} is dense in P, ,).

Lemma 5.2.6. Assume that {€¢} # G, C (R, +) forallveV, P, # {€} for all e € A and
P # By, forall e € E. If P, # {€} for all e € T, then condition II. is satisfied if one of the
following is satisfied:

(i) 8V > 1;

(ii) tA, > 0,
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Proof. To begin with, we assume #V > 1. Take e € T such that [v, o(e)] does not contain (e)
(otherwise replace e by ), and let b be the generator of PS = Z~(. Take x € P, \ {€} orx € A,

and let ¥ and w be as in condition II..

Suppose that there exists a strictly increasing sequence (jn)n of positive integers such that
[w]jy can be represented by a properly reduced positive word with first letter in P, or first
letter in E with origin vy such that v and vy are on the same side of e for all N. Take
Y1, ¥3 € Bye) and y2 € P, such that y;, y3 <z for all z € ¢\ {€} and that y; < Z for all
z € P¢\ {e}, define y := y1y2y3. Then xy[w] j, is reduced, and we can assume without loss of
generality that xy[w]j, is properly reduced (when we replace x and [w];, by suitable positive

words representing them). Let us now treat the case that x € P, the case x € A is similar.

Let popi---pmyw’ be a properly reduced positive word representing xy[w]j,, then either
X = pop1-+* PmZ OF pop1 -+ pm = Xz for some z € P¢. In the first case, A) in condition IL. is
satisfied. In the second case, we obtain xz € poPr for some z € Pe-é = P¢. That is, xbi e poPr
for some positive integer j. In the mean time, xy[w|;, = pop1 - pmyw = xzgyw’ = xyz'w’
for some 7z’ € P¢ with zy = yz/, which means [w];, = zZ/w’ € ZP C bP. B) in condition II. is

satisfied.

Suppose that there exists a strictly increasing sequence (jy)y of positive integers such that
[w]jy can be represented by a properly reduced positive word with first letter in P, or first
letter in £ with origin vy such that v and vy are on opposite sides of e for all N. Take y; € Fy(,)
and y; € P,,) such that y; <z for all z € P\ {€} and that y, < Z for all Z € P{ \ {€}, define
y :=y1y2. Then xy[w] j, is reduced, and we can assume without loss of generality that xy[w] ;,
is properly reduced (when we replace x and [w]j, by suitable positive words representing

them). Let us now treat the case that x € P,, the case x € A is similar.
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Let popi---pmyw' be a properly reduced positive word representing xy[w];,, then either
X = pop1--PmZ OF pop1 -+ pm = xz for some z € Pcf. In the first case, A) in condition II. is
satisfied. In the second case, we obtain xz € poPr for some z € Pef = P¢. That is, xbi e poPr
for some positive integer j. In the mean time, xy[w]j, = popi- - pmyw = xzyw’ = xyz'w’
for some 7’ € P¢ with zy = yz/, which means [w];, = z'w’ € ZP C bP. B) in condition IL is

satisfied.

Now assume A, > 0. Take ¢ € A and let b be the generator of P¢ = Z~¢. Take x € P, \ {€}
or x € A, and let y and w be as in condition II.. Let (jx)n be a strictly increasing sequence
of positive integers and define y := e. Then xy[w];, is reduced, and we can assume without
loss of generality that xy[w]j, is properly reduced (when we replace x and [w], by suitable
positive words representing them). Let us now treat the case that x € P, the case x € A is

similar.

Let popi---pmyw' be a properly reduced positive word representing xy[w]j,, then either
X = pop1-*+PmZ OF pop1---pm = xz for some z € P¢. In the first case, A) in condition IL
is satisfied. In the second case, we obtain xz € poPr for some z € P{. We can find 7 € P¢
with z < 7. Therefore, xz € xzPr C poPr. That is, xb' € poPr for some positive integer i.
In the mean time, we have xy(w];, = popi - pmyw = xzyw’ = xyz"w' for some 7" € P¢ with

zy = yz”, which means [w];, =Z'w' € Z/P C bP. B) in condition II. is satisfied.

Now we are ready to determine all closed invariant subsets of Q.

Lemma 5.2.7. Assume that {e} # G, C (R, +) forallv eV, P, # {€} for all e € A and

P; # By for all e € E. If condition I. holds and there exists v € V such that G, is dense in
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(R, +), then dQ = Q.

Proof. Let x € Q. be arbitrary and choose x, € P, \ {€} such that lim,,_,..x, = €. Lety, w
and (jn)n be as in condition I.. We now claim that lim,_,c Xxow = Xe- Asin Lemma
we may assume without loss of generality that x,y[w] ;, is properly reduced. If Y ,.(pP) =1
for all sufficiently big n, then x,y[w];, € pP for all sufficiently big n and all sufficiently big
N. Assume p # € and let pod p; - - - be a properly reduced word representing p. We treat the
case po € P, \ {€}, the case pyo = 0 is analogous. x,y[w];, € pP means that x,y[w|;, = pz
for some z. By Lemma there is a properly reduced positive word with first letter poz’
representing pz. Comparing properly reduced positive words, we must have pyz’ € P, by
Lemma m Condition 1. implies x, € po7 Pr and thus py < x, for all sufficiently big n,

contradicting our choice of x;,.

We now turn to condition II. Note that in that case, we must have P, = Z>( forall e € T, and

thus Pr is Ore. We write dQp, = {oo}.

Lemma 5.2.8. Assume that {e} # G, C (R, +) forallv eV, P, # {€} for all e € A and
P} # Py for all e € E. If condition II. holds and {A = 0, then for all y # = and 1 € Qe, we

haven € G- ¥.

If condition II. holds, 1A > 1 and there exists v € V such that G, is dense in R, then 0Q =

Qp. o. Moreover, for every X ¢ Qp o, we have G-y = Q.

Proof. Assume firstly fA = 0. If n = x,, for some infinite positive word w with lim;_,..¢([w];) =
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oo, then we already know that 1 € G-y by Lemma Otherwise Lemma implies
that n € G-Qp, for some v € V. If P, = Z>(, then 1) € Q.. implies 1] = oo, and our claim
follows. If G, is dense in R, let (x,), be a sequence in P, such that N = lim,,_,e),. Without
loss of generality we may assume y(bP) = 0. Let y, w and (jx)n be as in condition II. for
x = x,. Note that in the proof of Lemma y and (jy)y were chosen so that they only
depend on v, not on x,,. Moreover, as in the proof of Lemma @ the first letter of y lies
in P, and suppose that [v, 7] starts with d € T. Without loss of generality we may assume
that x, < z and x, # z for all z € Pg. This is because G, ™~ Qp, \ {eo} is minimal. We claim
that 1) = limy, e Xx,yw. Indeed, suppose that X, (pP) = 1. Then x,y[w] , € pP. As before,
xny[w]jy is reduced, and we can assume without loss of generality that x,y[w] ;, is properly
reduced (when we replace x, and [w];, by suitable positive words representing them). Sup-
pose that p = pop; - pi 18 a properly reduced word with p; € B,,. We proceed inductively
on [(p) to show that x,, € pP. x,y[w]j, € pP implies that x,y[w];, = pz for some z in P.
If [(p) =0, then p = pg and Lemma implies that pz can be represented by a prop-
erly reduced positive word with first letter of the form pyz’. Now condition II. implies that
X, € poZ Pr as otherwise, we would get [w];, € bP, contradicting x (bP) = 0. Now suppose
that /(p) > 1. First let z be expressed as a properly reduced positive word. If pz is properly
reduced, then Lemma implies that pg € P, and [vg, vi| must start with d. As before,
condition II. and y (bP) = 0 imply that x,, = poa for some a € Pg— . But x, < z and x,, # 7 for
all z € Pg implies a = €, and we are done. If pz is not properly reduced, then we can write
pz = (p7)7" such that [(pz') < I(p). By induction hypothesis, we obtain x,, € pz’P C pP, as

desired.

Now we assume #A > 1 and there exists v € V such that G, is dense in R. To prove
dQ = Qy ., we need to prove Qp, . C JQ. By Lemma [5.2.3] it suffices to show {eo} =
.Q.Pu ﬂ.Q.b7 o & Q.



CHAPTER 5. GROUPOIDS 96

Take e € A and a strictly decreasing sequence (yy,), in P, such that lim,_,..y, = €. Let y € Q
be arbitrary and write y = %, for some infinite positive word w. By compactness, we can —
by passing to a subsequence if necessary — assume that ¥ := im0 Xy, ew €Xists. We claim
that ¥’ € Qp,. Indeed, if not, then we must have )’ (peP) = 1 for some p € P. It follows that
pGé = y,G¢ for all n. Hence y,,G¢ = y,,G¢ for all m and n. But this contradicts lim,, .y, = €.

So we obtain that Qp, NG- ¥ # 0, so thateo € G- .

Now we show G- x = Q for every ¥ ¢ Qp, .. We may assume that x(bP) = 0. If {V > 1 or
#A > 0, then a similar argument as in Lemma(5.2.2]shows the following: If we take ¢ € A and
a sequence (x;), in P, such that lim,_,..x, = € and write ¥ = y,, for some infinite positive
word w, then limy, e )x,ew = Xe- If fV =1 and A = A_ # 0, and if we write ¥ = ), for
some infinite positive word w, then x (bP) = 0 implies that no e € A_ can appear in w, so that

x € Qp, \ {o}. Now our claim follows because G, ™~ Qp, \ {e} is minimal.

Lemma 5.2.9. Assume that {e} # G, C (R, +) forallv eV, P, # {€} for all e € A and
P} # By for all e € E. If condition 1. holds and P, = 7> for all v € V, then for all v €V,

there exists an infinite positive word w with lim;_,..{([w];) = e such that QN Qp, C G- Yy

If condition II. holds, 4V > 1 and P, = Z>q for all v € V, then for for all v € V and all

X € Q, we have Q.. NQp C G- .

Note that if condition II. holds and §V = 1, then we are in the case of generalized Baumslag-

Solitar monoids.

Proof. Suppose that condition I. holds, then there exists e € T such that P, = {&}. In partic-



CHAPTER 5. GROUPOIDS 97

ular, §V > 1. Let b, be the generator of P,, then Qo NQp, = {Xp,p,p, - - }- Take v € V with
{([v, V']) = 1, and define f := [v, V/]. Set w := b,b,b,b,---, where b, is the generator of
Py, we claim that lim, e Xpn, = Xp,b,b, - - Indeed, if xpn,,(pP) = 1 for all sufficiently big
n, then we have bb,/b,---b,b, € pP for all sufficiently big n. Since P]J; # P, and PJ{C # Py,

we must have b} € pP for all sufficiently big n. Hence X 4.5, - - - (pP) = 1.

Suppose that condition II. holds and assume #V > 1, then Py is Ore and thus Q. NQp, = {co}.
Take w, v € V with w = v, and let b,, and b,, be the generators of P,, and P,, respectively. Take
x € Q. If x € Qp,, then there is nothing to show. If x ¢ Qp,, then there exist ¢ € Pr and
e € A with x(geP) = 1. By compactness, we can find a sequence n; such that (b,b,)" - x
converges to 1. We claim that n € Qp,. If not, then there exists p € P such that n(peP) = 1.
It follows that (b,b,)"igG¢ = pG¢ and thus (b,b,)"qGS = (b,b, )" qG¢ for all i, j. Hence, if
we set m; = nj — ny, then (byby,)"iq = qg; for some g; € G¢. The length ¢(gg;) is bounded
(independent of j), while the length ¢((b,,b,)™iq) tends to infinity as j — co. So this is a

contradiction, as desired.

Lemma 5.2.10. Assume that {€} # G, C (R, +) forallv eV, P, # {€} for all e € A and
Pl # Py foralle € E. If P, = Z>o forallv €V and P, # {&} forall e € T, then Qp o = Qo

ifandonly if fV =1 and A=A_ # 0.

In particular, if §V > 1, then p o C Q.

Proof. If fV =1 and A = A_ # 0, every character ¥,, € Q. satisfies that w contains either
infinitely many letters in A_ or infinitely many letters in P,, where v € V is the unique vertex.
Noting that G, is totally ordered, we obtain in both cases that (g - xw)(biP) =1forallge G

with g - ¥ defined and all positive integers i. That is, Qp o = Qc.
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If fV > 1, take v, w € V with v # w and let b, and b,, be the generators of P, and P,,, then we

have Xp, b, b, by € Qoo \ by, oo If Ay # 0, take a € A, then Yaua... € Qoo \ 2p, -

We can now summarize our findings as follows:

Theorem 5.2.11. Let P be the fundamental monoid of a graph of monoids with condition
(LCM) for P satisfied. Assume that {€} # G, C (R, +) forallveV, P, #{€} foralle € A
and P; # By forall e € E.

(i) If condition 1. holds and there exists v € V such that G, is dense in R, then the following
is the list of all nonempty closed invariant subsets of Q: d0Q = Q.

(ii) If condition 1. holds and P, = Zx>q for all v € V, then the following is the list of all
nonempty closed invariant subsets of Q: 0Q = Q.. C Q.

(iii) If condition II. holds, there exists v € V such that G, is dense in R and A > 1, then the
following is the list of all nonempty closed invariant subsets of Q.: Qp o = dQ C Q.

(iv) If condition II. holds and A = O, then the following is the list of all nonempty closed
invariant subsets of Q: {} = 9dQ C Q. C Q.

(v) If condition II. holds, P, = Z>q for allv € V, A > 1 and §V > 1, then the following is the

list of all nonempty closed invariant subsets of Q: Qp o = JdQ C Q. CQ.

Proof. (i) It follows directly from Lemma[5.2.7]

(ii) For any characters 11, x € Q.., we have by Lemma[5.2.3|either ) € G- Qp, for some v € V
or 1 € G- x. In the first case, by Lemma|5.2.9| there exists J,, € Qe with lim;[w]; = oo such
that 1 € G- x,,. By Lemma we get x,, € G-y and thus 1 € G - ¥.

(iii) It follows directly from Lemma/[5.2.§]
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(iv) It follows from Lemma/[5.2.§]
(v) For any characters 1 € Qp, « and ¥ € Q.., we have by Lemma[5.2.3]either n € G- Qp, for
somev e Vorn e G-x. In the first case, Lemma implies N € G- x as well. Now take

X ¢ Qp, - and assume without loss of generality that y(bP) = 0. Take N € Q.., by Lemma

and Lemma we obtain similarly n € G- .

The following result is included for completeness.

Lemma 5.2.12. Suppose we are in the same setting as in the theorem above, then Q. = Q. if
and only if one of the following is satisfied:

(a) There exists v € V such that G, is dense in R;

(b) P, = Z>q forallv €V and §V = oo;

(c) P, = Z>o forallv €V and A = oo.

Proof. (<=): Firstly assume there exists v € V such that G, is dense in R. Forallx e R \ P,,
there exists a sequence (x,), C P, such that lim,_..x, = x. Define y := lim,_. Xy, , it is €asy

to see that yx, is well defined and independent of the choice of the sequence (x;),. Moreover,

Xx € Qo. R4\ P, is dense in R since P, is countable. As aresult, y¢ € {¥y, x € R\ P} C

Qeo.

Now assume P, = Z>q for all v € V. If fV = o, set V := {v;};en. Let b, be the genera-

tor of P, and define X, := X», X» -, n € N. Itis easy to see that lim,, ), = Xe.

Xb

Vn+1 Vn+2

If HA4 = oo, set Ay := {a;}ien. Define X, := Xa,Xa,, Xay., -+ » 1 € N. It is easy to see that

limy, 00 Yn = Xe-
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(=): Assume P, = Z>q for all v e V, §V < o and A, < oo. Let b, be the generator of
P,, then for all y € Q.., either x(b,P) = 1 for some v € V or y(aP) =1 for some a € A..
Take a convergent sequence (),), C Q, then either there exists v € V such that x,(b,P) = 1
for all sufficiently big n or there exists a € A such that y,(aP) = 1 for all sufficiently big n,

which implies lim;,_,co X, # Xe-

5.2.2 Generalised Baumslag-Solitar case

As the readers may have found, we assume #V > 1 in Lemma and Theorem
when condition II. holds and P, = Z> for all v € V. In this section, we focus on this missing
case: condition IL. holds, P, = Zx( for all v € V and £V = 1, and then work out all the closed

invariant subsets of Q.

We never consider the case when the graph (V, E) consists of a single vertex. So #V = 1
yields that 4 > 0. We also assume that P, # {e} for all e € A, that is, P, = Z>¢. But in this

section, we do not require P¢ # P, anymore, where e € AUA and v € V is the unique vertex.

Let b be the generator of P,, let A = {a;};cs for some index set S and let x; be the gener-
ator of Fy,. Assume that the map Py, — P,—;(,,) maps x; to b™ and the map Pz, — P,—,(4,)
maps x; to b|"i|. By Proposition , we have the following expression of the graph of

monoids P:
P= GBS+(N, mi, l’ll') =<a;, b ‘ aib™ =b"a;, Vie S, b|ni‘aibmi =a;, VieS), N=A=15>4,

where S;:={i€S, ai€cA;}={ieS, nj>0}and S, :={i€S, a;cA_}={ie S, n <0}.

It is easy to see that P is a generalised Baumslag-Solitar monoid.
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We firstly consider the case when N is finite. Let 6; be the semigroup homomorphism from

Pto N, given by 6;(a;) = §;, j and 6;(b) =0, and let 6 := Y ;¢ 6;.

As we characterize the characters by finite or infinite words, we hope to have also a char-
acterization of the subset Q,.x. To begin with, we need the following Lemma, which is from

[CELY17, Lemma 5.7.4].

Lemma 5.2.13. Let F be a semilattice. If X € Fyay, then for any f € F* with x(f) =0, there
exists e € F* such that x(e) = 1 and ef = 0. Conversely, if x € F is such that for any f € F*

with % (f) = 0, there exists e € F* with x(e) = 1 and ef =0, then ) € Fpa.

Theorem 5.2.14. If S, =0, let x,, € Qoo, then X, € Quuuyx if and only if

(i) w contains infinitely many a;’s (counting multiplicity); (ii) % (b'P) = 1 for all i € N.

Proof. When S, = 0, for all i € N and all x € P, we have b’PNxP # 0. By Lemma|5.2.13] we
must have y,,(h'P) = 1 for all i € N and all characters ¥,, € Quax. Also by Lemma|5.2.13]
we have Yppp... & Qmax- Since Qmax is G-invariant, J,, is not maximal for all w containing

only finitely many a;’s. That is, for all x,, € Qmnax, w contains infinitely many a;’s.
We now assume ¥, € Qo \ Qmax satisfies (i) and (ii) and finish the proof by contradiction.
By Lemma|5.2.13] there exists x € P with y,,(xP) = 0 such that for all y € P with ,,(yP) = 1,

xPNyP # 0. Let

x=b"a; b’ a;, - b a; b’
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be its standard L-form and let
X = bjoailbj‘aiz .. .bjk—lal.k‘

Take y € P with enough q;’s, since xP NyP # 0, there exist r, s, t € P such that r = xs = yt
and xP NyP = rP. xs and yr admit the same standard L-form, so x’ is a prefix of the standard

L-form of yt and hence of y. That is, y = x'z for some z € P and ,,(x'P) = 1.

On the other hand, X’ PNb'P # 0 for all i € N. Actually, there exist j € Nand x” € P such that
x'b/ = b'x” and X PN b'P = x'b/P. Furthermore, when i goes up to infinity, j also tends to co.
Take i big enough such that j > p and hence that x'b/P C xP. Since ),,(x'P) = x,,(b'P) =1,

we have x,,(x¥’b/P) = 1 and hence y,,(xP) = 1, leading to a contradiction.

Theorem 5.2.15. If S, #£ 0, let ¥, € Q.

(i) If w contains infinitely many a;’s with i € S> (counting multiplicity), then X, € Quax-

(ii) If w contains only finitely many a;’s with i € S, (counting multiplicity), then X,, € Quax if
and only if

(a) w contains infinitely many a;’s with i € S| (counting multiplicity); (b) There exists some
j € N such that g - ,,(b'P) = 1 for all i € N with g = [W];l and that {w}; does not contain

a; foralli € 8,.

Proof. (i) Take x € P with y,,(xP) = 0, and take y € P satisfying (1) 6(y) > 0(x); (2) 6;(y) >
6;(x) for some i € S7; (3) xw(yP) = 1. We claim xPNyP = 0.
Let

x=b"a; b aj, - b a; b’

be its standard L-form, and let ¥’ = b0a; b/1a;, - - - b1 a;,. If xPNyP # 0, there existr, s, t €
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P such that r = xs = yt and xP N yP = rP. xs and yt admit the same standard L-form, so x’
is a prefix of the standard L-form of yr and hence of y. That is, y = x'z for some z € P and

Xw(X'P) = 1.

When p <0, x'P C xP and thus y,,(xP) = 1, contradicting our choice of x.

When p > 0, since 6;(y) > 0;(x) for some i € S, we have 6;(z) > 0 for some i € Sp. In
this case, we have z € bPP and thus y € xP. This again leads to the conclusion ), (xP) = 1,
contradicting our choice of x.

In conclusion, our claim is proved. By Lemma|5.2.13] x,, € Qnax.

(i1) If w contains only finitely many q;’s for all i € S;, there exists some j € N such that

{w}; does not contain a; for all i € S,. Take g = [W];l, we have ), € Qmax if and only if
8Xw € Qmax, Which holds if and only if, by Theorem [5.2.14]
(a') gw contains infinitely many a;’s for some i; (b') gx,,(b'P) = 1 for all i € N. An easy

analysis implies the equivalence of conditions (a), (b) and conditions (a'), (b').

Remark 5.2.16. Every maximal character y satisfies Y (b'P) = 1 for all i € N.

Lemma 5.2.17. Let wy, = bbb - -- € L%, then we conclude Y, ¢ 0.

Proof. We assume Y, € dQ and finish the proof by contradiction.

Since Y, € dQ, there exists a sequence { ¥, }i € Qmax such that y,,, converges pointwisely
to X,. For each y,,,, there exist positive integers j and k with 1 < j <N and k € [0, |nj])
such that xwi(bka jP) = 1. Since there are only finitely many possible values for the pair
(j, k), there must be some common 1 < j < N and k € [0, |n,|) such that ¥, (b*a;P) = 1

for infinitely many w;. Taking the limit, we get %, (b*a;P) = 1, which contradicts the fact
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X, (1) ={P, bP, bP, ---}.

Theorem 5.2.18. 0Q = Q,,,4,.

Proof. It suffices to show dQ C Qax.
Since dQ is G-invariant, every orbit under the action of the group G is either included in dQ
or intersects it by the empty set.

Let wy, be as above, and then its orbit is
Orbit(wp) = {xw | w € £™ contains only finitely many a;’s}.
It follows from Lemma[5.2.17] that
Orbit(wp) N dQ =0.
Since the orbit {¥,, p € P} is dense in Q and the fact 0Q C Q, we conclude
{xp, peP}N IQ=0.

In conclusion, every character y € dQ is of the form J;,, for some w € £ containing infinitely
many a;’s.

If w contains infinitely many q;’s for some i € Sy, then X, € Qmax-

If w contains only finitely many a;’s for all i € S,, then it must contain infinitely many a;’s
for some i € S;. Furthermore, there exists some j € N such that {w} ; does not contain a; for

alli € S;. Let g = [w]jfl, then gy, is also in dQ and thus gy, (b'P) = 1 for all i € N. By
Theorem[5.2.15] x € Qmax-
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Now we need to define several maps to help with our analysis of the closed invariant subsets

of Q. We firstly define a map 7,
T2\ {wp} — (UnenSM)USY,
t(b*a;,bra;, - B-1a;,bbb--) = (ji, ja, -+, Jm)-
Then we define the map f as follows,
B\ {wp} — (UnenZ")UZ",

B(b*a; b a;, - b-1a;,bbb--) = (ro, r1, -+, rm—1),

where ry € [0, [n;,.,|) satisfies ro = ko +q1nj, and ry = ky —qum;, +quiinj, ., 4> 1.

Lemma 5.2.19. Let X7 C X% be the subset consisting all infinite words containing infinitely
many a;’s, and then denote by Q, . C Q. be the collection of all characters of the form ¥,
with w € X7. Then we have

(i) If X, X € 9K, then ¥, = X, if and only if T(w) = T(w') and B(w) = B(W).

(D)If X, X € Qa, 0 \ O, then Y, = X, implies T(w) = t(w') and B(w) = B(W').

(i60) If Xws X' € Qoo \ R, 0o then Yo, = X, if and only if T(w) = T(W') and B(w) = B(W').

Proof. (1) When %, = X/, we assume

T(W) = (j17 J25 J3 )7 ﬁ(w): (r07 ry, 2, )

and

T(W/) = (J/17 1/27 ]ga )7 ﬁ(wl> = (ré)a rllv }"/2, )
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We now set out to show jy, = jy,, rv = r),.

For any i € N, there exists k € N such that [w']; € [w];P. That is, [w']; = [w];x for some x € P.
Writing them down in the standard L-form, we get j, = jy,, 4 < 0([w];) and ry =1, v <
O([wl];) — 1. Since w € X7 and i is arbitrary, we conclude j, = JL7 ry=r,.

Conversely, if

t(w) =1(W') = (j1, j2, J3s ---)

and

B(w) :ﬁ(W/) = (ro, r1, 2, **+),

to prove X, = X, it suffices to show ¥, ([w];P) = 1 for all i € N.
If w contains at most finitely many a; for each k € S,, take j € N such that 6([w'];) =

0 ([w];) = M for some M € N, then we have

—pog. b ™M-1g. pP
Wli = b"a;,b"aj,---b™"ajy,b

and

. — poq. K,y o R M=1,. 14
[W]J_b ajbaj,---b aj, b,

where ry € [0, |nj,.,|), p, g € Z. Take i big enough such that {w'}; does not contain a;

for each k € S, by Theorem [5.2.15, g, (b'P) =1 for all [ € N with g = [w/];'. So we

have y,/([w'];#'P) = 1 for all [ € N. Taking [ big enough, we have [w'];b' € [w];P and thus
Xw ([w]iP) = 1 for all i big enough. That is, J,,/([w];P) = 1 for all i € N.
If w contains infinitely many a; for some k € S, take j € N such that 0([w'];) = M, >

6([wli) =My, My, M, € N and that 6;([w'];) > 6([w];), then we have
Wi =b"ajb"aj, - 'berflale b

and

N, —po,. By, ... My—1,. q
Wj=b"a;b"aj,---b"™ ajy, b7,
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where ry, € [0, |nj,,,1), p, q € Z. Furthermore,
"™ _paleH --~brM2—‘ajM2bq €EP
since j,; = k for some My < u < M. So we get
W)y = D™ Py b, b € w]iP
and hence s ([w];P) = 1.

The proof of (ii) and (iii) is similar.

Theorem 5.2.20. (i) Q.. is closed.
(ii1) p, 00 = Qo0 \ Qg 00 = (Qeo \ Qg o) UIQ

Proof. (i) We prove it by contradiction.

If Q.. is not closed, we must have Q., = Q. Take a sequence {y,,.} C Q.. converging to the
character y,, we assume, without loss of generality, w; does not contain any a; with i € S,.
If limsup 6(w;) > 1, then there exist k € N and j € S; such that y;(hka;P) = 1 for infinitely
many i, contradicting lim; Xy, = Xe.

If lim 6(w;) = 0, then there exists k € N such that y,, = X, for all i > k, contradicting

limi Aw; = Xe-

(iil) Take a sequence { ), } C Qo \ Q4 - converging to some character ,, € Q.
When limsup 6(w;) < oo, it is easy to show Xy € Q. \ Q4 oo

When limsup 6 (w;) = oo, we have %, € Qy .
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If w contains infinitely many a;’s for some i € S, then ¥, € Quax = Q.

If w contains only finitely many a;’s for all i € S,, then it must contain infinitely many a;’s
for some i € S;. Furthermore, there exists some j € N such that {w} ; does not contain a; for
allie Sy. Letg = [w];l, then gy, is also in Qo \ Q. and thus gy, (b'P) = 1 for all i € N,
given the fact that x (b'P) = 1 for all ¥ € Qe \ Qq, . By Theorem |5.2.15} 2, € Qmax = Q.
In conclusion,

Qp oo C (o \ Q) UIQ.

For x,, € dQ, let t(w) = (j1, jo, j3, ---) and B(w) = (ko, k1, kp, ---). Define
wy = b*a; ba;, - B-1a;, bbb - - |
it is easy to check Xy, € Qo \ Qq,  and it converges to J,,. Therefore,

(Qee\ Q) UIQ C Q.

Remark 5.2.21. Every character ) € Qo \ Qg o is isolated in Q...

Theorem 5.2.22. (i) If S} =0, Qg o = Q.
(ii) If S» = 0, Q, « is closed.

(iii) If both S| and S» are not empty, Q, « is not closed.

Proof. (i) The conclusion follows directly from Theorem[5.2.13]
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(ii) Take a sequence {¥;} C Q, . converging to some character ¥ € Q. Take M € N, there
exist unique elements (ji, j2, -+, ju) € SM and (ko, ki, -+, ky—1) with ky € [0, )
such that

xi(bkoajlbklajz .. -bkM*lajMP) =1

for all i big enough. As a result, x(b*a; b5aj, - -b*-1a;,P) = 1. Since M is arbitrary,
X € Qo and thus y = y,, for some w € £%. Furthermore, w contains infinitely many g;’s, that

is, w € X7 and hence y = ¥, € 4, co.

(iii) Take a; € §1 and a; € §; and set wy 1= bkajaiai -+, k€N, then y,, € Q4 . We claim
that y,,, converges to X, .

Firstly, 2., (b'P) = 1 for all i € N and thus limy ), (b'P) =1 for all i € N.

Furthermore, if limsupy X, (xP) = 1 for some x € P with 6(x) > 0, then there exists [ € N
such that xP C b'a;P and that limsupy ), (b'a;P) = 1. On the other hand, b*a;a? ¢ b'a;P
for all k > [ and all n € N, contradicting limsupy. Y, (b'a;P) = 1. So limy %, (xP) = 0 for all

x € P with 0(x) > 0. This proves our claim, which implies Q, . is not closed.

Theorem 5.2.23. If S # 0, let ), € Qy,  \ IQ and let X C Q be the minimal closed invari-

ant subset containing Y, then we have Q, - C X.

Proof. 1t follows from Theorem [5.2.15] that w contains infinitely many g;’s for some i € S
and contain only finitely many q;’s for all i € S;. By a group action, we can assume w does
not contain any a; with i € S5.

Assume ,,(bP) = 0. Otherwise, there exists M € N such that x,,(b'P) = 1 if and only if

0<i<M.Letg=b"M theng-y, € X and g- ), (bP) = 0.



CHAPTER 5. GROUPOIDS 110

Take ¥, € Q4  \ dQ such that w’ does not contain any a; with i € S,. Let g; = [w'];, then
we assert g; - Xy, converges to X, .

Take x € P, if ,/(xP) = 1, then there exists M, € N such that [w']; € xP for all i > M,. For
these i, g; - Xw(xP) = 1 and hence lim g; - ), (xP) = 1.

If x,/(xP) =0, we have also lim g; - ,,(xP) = 0. Otherwise, take i big enough with g; -
Zw(xP) = 1. Since y,s(xP) =0, [W']; ¢ xP and thus [w'];[w]; € xP for some j. That is,

[w']i[w]j = xy for some y € P. Let
X = bkoajlbklaj2 . -bkM*Iaijp

be its standard L-form and let x’ = boq jlbk' aj, - bfm-1g ju- By the uniqueness of the stan-
dard L-form, we have p > 0 and there exists z € P such that x'z = [w']; and that z[w]; = bPy.
Since x,,(bP) =0, [w]; ¢ bP and thus z € b”P. This means [w']; = x'z € X'b” P = xP, contra-
dicting the assumption ¥,/ (xP) = 0.

This means all ¥,/ € Q,, « \ dQ, where w' does not contain any a; with i € S5, lie in X. By
the invariance of X, we get Q; o \ dQ C X. As the unique minimal closed invariant subset

of Q, dQ is also contained in X. That is, Qu o CX.

Corollary 5.2.24. The closed invariant subsets of Q are
(i) Q, Qoo Q4 00, Qp oo and IQ if S» = 0.

(ii) Q, Qoo = Q) o and IQ = Q, o if S| = 0.

(iii) €, Qoo, Qp oo and I if both Sy and S, are not empty.

We now consider the case when N = oo. In this case,

P= GBS+(°°, mi, n,-) =< aj, b | a,-bm" = b"ia,-, Vie S1, b'ni|aibmi = a;, Vies, >4,
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where S and S, are as in the case when N is finite. Let 6; be the semigroup homomorphism

from P to N, given by 6;(b) =0and 6;(a;) =l ifand only if j € S;,i=1, 2. Set 0 := 0, + 6.

Theorem 5.2.25. Let ), € Q..

(i) If w contains infinitely many a;’s with i € S> (counting multiplicity), then X, € Quax-

(ii) If w contains at most finitely many a;’s with i € Sy (counting multiplicity), then X, € Quax
if and only if

(a) w contains infinitely many a;’s with i € Sy (counting multiplicity); (b) There exists some
j € N such that g - ,,(b'P) = 1 for all i € N with g = [W];l and that {w} ; does not contain

a; foralli € S,.

Proof. The proof is similar to the proof of Theorem [5.2.15]

Theorem 5.2.26. 0Q = (Qw \ Q4 o) U Q.

Proof. Firstly, xp ¢ 0Q since x(b'P) = 1 for all ¥ € Qmax and all i € N. By invariance of
0Q, 0Q C Q...

Secondly, let %, € Quax With w = bXa;b*1 a,b*2as3 - and let

gm =b" (bkoalbklaz . -bkalaM)_l.
Then limpseo guXw = Xw,. Indeed, for any x € P with 8(x) > 0, gy (xP) = 0 for M big
enough. For all i € N, gy, (b'P) = 1 for M big enough. Therefore, limp s guXw = X,
and hence Q.. \ Q. C IQ.

Lastly, if x,, € dQ with w € X7, as we analysed in the case when N < oo, we can conclude
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Xw € Qimax.
In conclusion, dQ = (Qes \ 24, ) U Lmax-

Remark 5.2.27. Q;, .. =JdQ.

Theorem 5.2.28. When S| # 0, let y € Q.. \ dQ and let X be the minimal closed invariant
subset of Q containing X.

() If1$1] = A, o0, X = Q.

(ii) If |S1] = A, = M < o0, X = Q...

Proof. Similarly as in Theorem [5.2.23] we have Q, . C X. Because of the minimality,

dQ C X. Therefore, Qo = 24, 0o U o C X.

(i) Assume S| = {j1, j2, j3, ---} and let w; = aj,aj, ,a;,,---, then x,, € Q.. It is easy

to check lim; X, = xe. It follows, from Gy = Q, that X = Q.

(ii) It suffices to show x¢ ¢ X, which we will prove by contradiction.

Assume { ¥, }i € Qo tends to X, then there exists M’ € N such that y,,.(bP) =0, i > M.

For i > M’, let b*oa jlbkla jzbkza j3 -+ be the standard L-form of w;, then we have ky = 0 and

Jj1 € S1. In this case, ,,(a;, P) = 1. Since |S;| = M < oo, there must be some j € S; such that

Zw;(ajP) =1 for infinitely many i > M’, contradicting the fact lim; ¥, (a;jP) = xe(a;P) = 0.
O

Corollary 5.2.29. The closed invariant subsets of Q are

(i) Q and 0Q = Qoo = Q) o if S1 = 0.
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(i) Q, Q. and&Q:Q@m if0 < |S1| < oo,
(iii) Q and IQ = Qy, .. if |S1| = oo,

5.3 Topological freeness

As we mentioned in the last section, there is a one-to-one correspondence between the ide-
als of the reduced groupoid C*-algebra C(G x Q) and the open invariant subsets of the unit
space Q under some conditions. The conditions are not unique. In particular, Theorem 3.10
and Corollary 3.12 in [BL18] implies that such a one-to-one correspondence exists if the
groupoid G x Q is étale, inner exact and essentially principal. In this section we investigate

whether G x Q is essentially principal or not.

By definition, G x Q is essentially principal if G x X is topologically principal for every
closed invariant subset X C Q. And G X X is topologically principal if and only if the partial
action of the group G on the space X is topologically free. That is, we need to check whether

the group action of G on those closed invariant subsets of Q is topologically free or not.

First recall that a partial dynamical system G ~ X is topologically free if there exists a dense
subset X’ C X such that if g-x = x for some g € G and some x € X', then we must have g = €.

For each subset Y C X, define
Stab(Y) :={g € G | Dom(g)NY # 0 and 3 x € Dom(g)NY, g-x =x}.

For brevity, denote Stab({x}) by Stab(x) for all x € X. Then G ~ X is topologically free
if and only if there exists a dense subset X’ C X such that Stab(X") = {€}. The following

Proposition follows directly by our definition.
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Proposition 5.3.1. Let G ~ X be a partial dynamical system.
(i) For all g € G and x € Dom(g), Stab(gx) = gStab(x)g~".

(ii) Let {Y;} be a collection of subsets of X and Y = UY;, then we have Stab(Y ) = UStab(Y;).

5.3.1 Generalised Baumslag-Solitar case

In this section, we focus on the generalised Baumslag-Solitar case. That is,
P=GBS.(N, mi, nj)=<aj, b|aib"™ =b"a;, Vie Sy, b"lap™ =a;, Vie S, N=HA =4S >_,

where S| :={i€S, ;€A }={i€S, n;>0}and S, :={i€S, a;eA_}={ieS, n; <0}

Firstly, we assume N is finite.

Theorem 5.3.2. (i) G ~ Q is topologically free.
(ii) G ™~ Qo is not topologically free.
(iii) G ™~ Q) o is not topologically free.

(iv) If nilm;, ¥V 1 <i <N, b" fixes every character in Q, .., where
n:=lem(ny, -, ny)
is the least positive common multiple of all the n;. Furthermore, the quotient action G/ <

b" > Qy o is topologically free if and only if n = 1.

Proof. (i) Since Stab(),) = {€}, Vx € P, the set Q \ Q.. does not admit any non-trivial stabi-

lizer. Observing that Q \ Q. is dense in , we conclude G ~ Q is topologically free.
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(ii) Noticing Stab(y) # {€} for all ¥ € Q.. \ Q, «, any subset X C Q.. satisfying Stab(X) =

{e} is included in ©, , and hence is not dense in Q... So G ™ Q. is not topologically free.

(i11) The proof is similar to that of (i1).

(iv) Take Xy € Qp, . If w =wy, b"w =w. If not, we get 7(b"w) = t(w) and B (b"w) = B(w)
instead. By Lemma[5.2.19] 5", = X

If n =1, Stab(x,,) = {€}, where ¢ is the identity element in the quotient group G/ < b" >.
Therefore, the orbit Q.. \ Q, « in the quotient action G/ < b" > ~ ), ., does not admit any
non-trivial stabilizer and hence the quotient action G/ < b" > ~ €, ., is topologically free.
If n > 1, Stab(y) # {€} forall ¥ € Qu \ Q4, w0, 80 any subset X C Q,, ., satisfying Stab(X) =

{e} is included in d€ and hence is not dense in Qp, . So G/ < b" > ~ Q,; . is not topo-

logically free.
L]
For any y,, € Q, » \dQ and all M € N, there exist unique M-tuple integers (ji, j2, -+, jum)
and (ko, k1, -+, km—1, k) with ky € [0, [nj,|), 0 < <M —1, ky € Z such that
Xw(bkoajlbklajz " 'bkM?laijkMP) =1
Define

m(w) :=supl{q € Z | xn(ba; b"a, - D14, b7P) = 1}

and set y(w) := (Y (w)),,-

The following Lemma is an immediate result.
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Lemma 5.3.3. If Y, X € Qa4 « \ 0Q, then X, = X if and only if T(w) = ('), B(w) =
B(w') and y(w) = y(w").

Remark 5.3.4. If we extend the domain of y onto Q, and take X, X € s, we then have

the following result:

Xow = 2w if and only if T(w) = T(w'), B(w) = B(w') and y(w) = y(W).

Theorem 5.3.5. When Sy =0, Q, o is closed. If we assume further |Si| =1, then P is a
Baumslag-Solitar monoid. Assume P =< a, b| ab™ = b"a, m, n € N* >,

(i) Ifm, n > 2, G~ Qy « is topologically free.

(i) Ifm>2, n=1, G Qy « is topologically free.

(iii) If m = 1,n > 2, G ~ Q, « is not topologically free.

(iv) If m = n =1, a fixes every character in Q, o. Furthermore, the quotient action G/ <

a > Qy o is topologically free.

Proof. Let w = b%ab"ab®a--- be such that a(w) € {0, 1} and that a(w) is not periodic

eventually.

(i) Let g € G with g- ), = Xw, then we have gw = w since w does not contain any relator

as a finite subword. There exist p, g € P with g = pg~!

such that ¢ = [w]; for some i. In this
case, w = gw = p{w}; and thus p = [w]; = ¢. That is, Stab(y,,) = {€}. By our choice of w,
Xw € 4,  \ IQ. So the orbit containing ), is a dense subset in Q, . and does not admit

any non-trivial stabilizer. G ~ €, . is topologically free.



CHAPTER 5. GROUPOIDS 117

(i) Let g € G with g- X, = X, then we have y(gw) = y(w). For N big enough,

w(gw) = w—1(gw)m+ an(gw)

and

Ww) = Ww-1(w)m+ o (w).
This implies oy (gw) = oy (w) for N big enough. So there exist i, N € N such that {gw}; =
{w}; and g[w]; = [w]; = a"b™ ). The latter means

8 X Npmww) p = X Npww) pe

That is, g = € and Stab(),,) = {€}. Similarly as above, we can conclude G ™~ Q,, « is topo-

logically free.

(iii) Let X C Q, - be without non-trivial stabilizer and let w, = aaa---. Since Q,, « \ IQ is
a single orbit containing y,,, and that Stab(y,,,) # {€}, X is contained in JQ and can never

be dense. G ™~ € o 1s not topologically free.
(iv) Stab(xw,) = {€} and hence its orbit £, « \ dQ does not admit any non-trivial stabi-

lizer. Q4 o\ dQ is dense in Q, ., so the quotient action G/ < a > Q, « is topologically

free.

Theorem 5.3.6. When S, = 0 and |S1| > 2, 4, « is closed and G ™ Q, « is topologically

free.

Proof. Let iy, ip € S1 with i} # i and let x,, € Q4 « With w = aj aj,aj, --- such that j, €
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{i1, i2} and that the sequence {j, }, is not periodic. We then have y,, ¢ JQ and Stab(y,,) =
{e}. It follows that the orbit containing y,, is dense in Q, . and does not admit any non-

trivial stabilizer. Hence G ~ Q,, « is topologically free.

Theorem 5.3.7. (i) If n; t m; for some i, then G ~ dQ is topologically free.

(ii) If ni|m;, ¥V 1 <i <N, b" fixes every character in dQ, where

n:=lem(ny, -, ny)

is the least positive common multiple of all the n;. Furthermore, the quotient action G/ <

b" > ~ dQ is not topologically free if and only if there exist p € (0, n), M € N* and a

M-tuple
(j17 j27 Ty ]M) 6{17 27 Tty N}M
satisfying
njl ’pu
0 |p‘mj1mj2“.mjk7 VI<k<M—1,
Jk+1 Nifi N
J1'°)2 Jk

and

J1770)2 M
n|p-——=——
Mj My == My

Proof. (i) To prove G n dQ is topologically free, it suffices to show that {y € 0Q | gx # x}

is dense in dQ for every € # g € G. We divide the proof into three steps.

Step 1. €7, is dense in dQ for 0 # p € N, where Q, := {y € JQ | gx = x} and X is
the complementary set of X with respect to dQ.

If x,, € dQ with T(w) = (j1, Jja, j3, ---) is a solution of the equation b7y = y, we have, by
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Lemma|5.2.19, B(bPw) = B(w). By definition of 8, we get nj, | p and

PPk > 1, (5.6)

nj.,|p-
Jk+1 C .
Rjnj,--Nj

Take x,» € dQ with T(w') = (jy, Jj3, J3, ) such that ji, =i, ¥V u > M for some M € N.
It is easy to see w' does not satisfies equation (3.6)), that is, B (b”w') # B(w'). This means
bPx,» # X A similar analysis yields b” (g)(w/) # gXw for all g € G. The orbit {gx,}, is

dense in d€ and is included in Qf,, so Qf, is dense in Q.

Step 2. Qf, , is dense in dQ for every p, g € P with p # g, where Q,, ,:={x € dQ | px =

qx}-
Let

—pkog . pkig. Lo pkmi-1, . pE
p=>b"a;b"aj,---b™"a;, b

and

— Ko bR e pMa- y
qg==>=b ajrlb aj b2 ajz'uzb

be their standard L-forms and let x,, € dQ with t(w) = (i, iz, i3, ---) and B(w) = (lo, 11, L, - -~
be a solution of the equation py = gx. By Lemma [5.2.19} t(pw) = t(gqw) and B(pw) =

B(gqw).
If My = M3, it follows from 7(pw) = 7(gw) that

(jla J2s le) = (]/17 Jév T JZ/VIZ)
And by B(pw) = B(gw), we have
(k07 k17 ) le—l) = <k67 /1? T klll/lzfl)

and B(b*w) = B(b’w). Since p # g, x # y. Assume, without loss of generality, x >y, we
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then get B(b*>w) = B(w), or equivalently, b* ), = X In this case,

Qp, ¢ C Qpy and Qf,, C QS .

which yields that Qf  is dense in JQ.
If M| # M,, the equation T(pw) = T(gw) determines a unique solution (i1, iz, i3, ---). Also,
the equation 3(pw) = B(gw) determines a unique solution (ly, /1, I, ---). It follows again

from Lemma|5.2.19|that Q,, , is a singleton set, which means pr q is dense in Q.

Step 3. Qg is dense in JQ for every € # g € G.

1

For ) € Q,, there must be some p, g € P with g = pg~" such that p(g~'x) = x. In this case,

xX= (](61_1)() and thus q_]x € Q, 4. So we have

Q¢ C U, 192, g and Ny_p,o1 (g2, 4)° C Q.

Here (¢ 4) = qQ, ,U (dQ\ qdQ) is dense in Q. Since dQ is compact and Haus-
dorff, it is a Baire space. There exist at most countable pairs (p, ¢) with g = pg~', so
Ng—pg-1 (gQp, 4)¢ is dense in JQ as a countable intersection of open dense subsets. Hence

Qg is dense in Q.

(ii) Let x,» € dQ, it is easy to see that B (b"w) = B(w) and that b"y,, = x,,. We now consider
topological freeness of the quotient action G/ < b" > ~ dQ.

If there exist p, M and (jy, j2, --+, jm) as described in the theorem, we then have

Poa.q. iipg: —: g ooeqp: 9N
b*ajaj,---aj, = ajaj,---aj,b
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for some ¢ € N. In this case, b”)x,, = ,, for all x,, € dQ with [w]yy =aj,aj,---aj,. Noticing
{xw € Q| Wlu =ajaj,---ajy,}

is proper clopen subset of JQ, we conclude Qj, is not dense in JQ and thus the quotient
action G/ < b" > ~ dQ is not topologically free.
If not, take x, x; € P, 1 <i < Mj, M; € N such that x;P C xP. Let & be the nonempty basic

open subset

{x€dQ|x(xP)=1, x(x;P) =0, 1 <i< M}.

Let

—phog. prig. .. pkmi-ig. pP
x=0b"a;b" aj,---b aj.b

and

_pkio, . pki,.  Lopkiomi-1 pi
xl_bl’ a]iAlbl a]i,Z b ! a-]lMl/b l?

1 <i < M, be their standard L-forms and let
X =bha; bha, - brur-1a »

and
X.=pkiog. pkiig. _,,bki, Mi-1 .
[ Ji, 1 Ji, 2 Ji Ml{v

i

1 <i< M. Itis easy to verify
O={xecdQ|x(¥P)=1, x(x;P) =0, 1 <i < M}.

Since & is not empty, there must be some y € P with 6(y) big enough, of whose standard

L-form x is a prefix while x}, 1 <i < M is not a prefix.
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For any g € (0, n), set y, := bly. Let
. K ¥ k. B p/
)’—boajflb'ajfz---le ‘aj;vlb

and

" k//

k// /
= 0 : lqun---hbMNlg. q
Yq b a]’l’b a; b™ a;r b

/!
2 Ny
be their standard L-forms, and let
N N O A
Y =>b a_]/]b aj, b™ aj,

and

/ k! 4 k}’\’] 1
—bOa.bla....b —1q.

By our assumption, either y' # y; or nt (¢’ — p').

If y' # yy,, let x, € dQ such that [w]; = y for some ;.

If nt (¢ — p'), there exists some 1 <i < N such that n; { (¢ — p’). Let x,, € dQ such that
[w]; = ya; for some j.

In either case, x’ is a prefix of w while x}, 1 <i <M is not. So x,(xX'P) =1, xw(x;P) =0

and hence y,, € 0. Also, it follows from our choice of w that b%y,, # x,,. That is,
Xw € ONQG,.

Let & run over all nonempty basic open subsets of dQ, we get that Qf, is dense in JQ.
Following Step 2 and Step 3 as in the proof of (i), we can conclude €2 is dense in dQ for

every e # g € G. That is, G/ < b" > ~ dQ is topologically free.

When N is infinite, we have the following results.
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Theorem 5.3.8. G ~ Q is topologically free.

Theorem 5.3.9. (i) If2 < |S)| < oo, G ™~ Qu is topologically free.
(ii) If |S1| = 1 and m; > 2 fori € S}, G ~ Qo is topologically free.

(iii) If |S1| = 1 and m; = 1 for i € S|, G ~ Q« is not topologically free.

Proof. The proof is similar to the proofs of Theorem [5.3.6/and Theorem [5.3.5]

Theorem 5.3.10. (i) If n;t m; for some i, then G ~ dQ is topologically free.

(ii) If n;|m; for all i, then G ~ dQ is topologically free if and only if n = oo, where
n:=lcm(ny, ny, nz, --+)

is the least positive common multiple of all the n;.
(iii) If n < oo, b" fixes every character in dQ. Furthermore, the quotient action G/ < b" >
M dQ is not topologically free if and only if there exist p € (0, n), M € N* and j; € N*,
1 <i < M satisfying

nj | p,
mjmj, -

e wi1<k<M-—1,

nj, lp
Jk+1 . .
Njj, - Nj

and
m.m. .--m.
1M j, im
n|p ————=.
NjRj, - Njy
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5.3.2 General case

In this section, P is the fundamental monoid of a graph of monoids with condition (LCM)
for P satisfied. Assume that {e} # G, C (R, +) forall ve V, P, # {€} for all e € A and
Py # Py, for all e € E. We set out to find the topological freeness of the group action of G

on all closed invariant subspaces of the character space €.

First of all, every character y € Q\ Q. does not admit non-trivial stablizers, so the action

G ~ Q is topologically free.

Proposition 5.3.11. If condition I. holds and P, = Z>q for all v € V, then G ™ Q. is topo-

logically free whenever Qo is closed.

Proof. Since condition I. holds, there exists e € T with P, = {e}. Let v =0(e) and w = 1(e),
and assume ¢ (B) is the generator of P, (P, respectively). Set X := a*1 k2o k4 ... with the
sequence {k;}; aperiodic, then xx € Q. and Stab(xx) = {€}. When Q.. is closed, Qo = JQ

is minimal and thus G- ¥ is dense in Q.. Therefore, G ~ Q.. is topologically free.

Proposition 5.3.12. If condition II. holds and $A = O, then the action G ~ {0} is not topo-

logically free.

Proposition 5.3.13. Suppose condition I1. holds, P, = Z>q for all v € V with 1 <V < e and
A4 <o
(i) when 1A+ > 0, G ~ Q. is topologically free.

(ii) when £V > 2, G " Q. is topologically free.
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(iii) when A+ = 0 and §V =2, take e € T, and assume the two embeddings are P, —
Py, 1 = kand Po — Fy(py, 1 — [, G ™~ Qo is topologically free if and only if either k > 2

orl >2.

Proof. When G ~ Q. is topologically free, we prove it by seeking out a character yy €

Q.. \ Qp, . with Stab(xx) = {e}.

(i) Take e € A4 and let & € P, be the generator, set X := akteake--. with k; € {0, 1}
and the sequence {k;}; aperiodic. Take g € G such that gyx = xx, then there exists j € N

1

such that g = pg~" with ¢ = [X]; and that p{X}; = X since X contians no relators. This

yields p = g and hence g = €.

(ii) Take u, v, w € V and let « € P,, B € P,, Y € P,, be the generators, set X := afy" oSy -

with k; € {0, 1} and the sequence {k;}; aperiodic.

(iii) Let & € P,(,), B € Py () be the generators. If k> 2, set X := ahBak .- withk; € {1, 2}

and the sequence {k;}; aperiodic.

Ifk=1=2,Q.\Qp, is a single orbit containing yy withY = afoaf---. Stab(xy) # {€}.

so G "~ Q. 1s not topologically free.

In the above, we give a complete discussion on the topological freeness of the partial action
of the group G on the closed invariant subsets Q, Q.. and {e}. While we fail obtaining

a complete discussion on the topological freeness of the partial action G ~ dQ in the case
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where condition II. holds and #A > 1. Instead, we give some examples when the partial action

G ~ dQ is topologically free.

Proposition 5.3.14. Suppose condition Il. holds, P, = Z>¢ for allv € V, £V > 1 and §A > 0.
Assume P, — Py (Z>0 — Z>0) sends 1 to m for all e € T UA, P, = Py (Z>0 — Z>0)
sends 1 ton, foralle € TUA, and P, — P()’(el)
me = ne for all e € T and there exists e € A such that n, t m,, then G ~ dQ is topologically

(Z>o — Z<o) sends 1 to n, foralle € A_. If

free.

Proof. A similar argument as in the proof of Theorem [5.3.7] yields that there exists y,, € 0Q
with w consisting of letters from P, and {e} such that Stab(y,,) = {€}, where e lies in A

with n,  m,. The claim follows since G ~ dQ is minimal.

Proposition 5.3.15. Suppose condition I1. holds, there exists v € V such that G, is dense in R
and #A > 0. Assume there exists a € A such that the geodesic path [o(a), t(a)] C T contains

at most one vertex v with G, C R dense.

(i) If P, = Z>q for all v € [0(a), t(a)]. Assume P, — Py(o)(Z>0 — Z>0) sends 1 to m, for all
e € [o(a), t(a)]U{a} and Po — Go)(Z>0 — Z) sends 1 to ne for all e € [o(a), t(a)]U{a}.

If me =ne forall e € [0(a), t(a)] and ng{ mg, then G ~ dQ is topologically free.

(ii) If the geodesic path [o(a), t(a)] C T contains exactly one vertex v with G, C R dense.

Assume the unique relation containing a in G is bZ‘(‘a)a = ab:'(lz), where b, and by, are

the generators of P,,) and Fy,), respectively. Assume further m and n are the least positive

integers such that mg|\m, ng|n, mﬂa = Tl and bz(a), b:’za) € G,. If there does not exist r € N

n
na
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such that b™

ey = (bg(a))r, then G ~ dQ is topologically free.

Proof. Noting that b;’(la) = (b’ol(a))r for some r € N implies b;’(la) =b"forb = bZ(a) € G, and

ab” = ps&(a) g, the claims in (i) and (ii) follow by a similar argument as in the proof of

Proposition [5.3.14]



Chapter 6

Ideal structure

Let P (G) be a graph of monoids (groups, respectively). In last chapter, we worked out all
the closed invariant subsets of the partial action G ~ Q and analysed the topological freeness
of the partial action of G on all these closed invariant subsets. This partial action G ~ Q
induces a transformation groupoid G x Q and hence a groupoid C*-algebra C;(G x Q). In
this chapter, to have a better understanding of the C*-algebra C; (G x ), we shall investigate

the ideals in C; (G x Q).

Since every ideal in a C*-algebra is the intersection of all the primitive ideals (the kernels
of non-zero irreducible representations of the C*-algebra) containing it, we end up with the
list of all primitive ideals with a topology in C}(G x Q). This part of work is based on the
following Lemma, which comes from Christian Bonicke’s and Kang Li’s work in [Theorem

3.10 and Corollary 3.12, BL18].

Lemma 6.0.1. If a groupoid ¥ is étale, inner exact and essentially principal, then there is a

one-to-one correspondence between open invariant subsets in Q and ideals in C} ().

128



CHAPTER 6. IDEAL STRUCTURE 129

It is easy to check that G x Q is étale. The inner exactness of the groupoid G x Q is exactly
the C*-exactness of the group G by definition in [GueO1]. Also by Erik Guentner, a discrete
group acting without inversion on a tree is C*-exact if and only if the vertex stabilizers of the
action are C*-exact. By [p50-p53, Ser80], the fundamental group 7, (G, I', T) acts without
inversion on a tree X = X (G, T, T) such that every vertex stabilizer is isomorphic to G, for
some v € V. Therefore, our group G is C*-exact if and only if G, is C*-exact for all v € V.
Noting G, C (R, +) in our assumption, the latter follows since discrete amenable groups are
C*-exact by [Lan73]. And by definition the essentially principal property of the groupoid
G x Q is exactly the topological freeness of the partial action of G on all nonempty closed
invariant subsets of Q. Equivalently, the groupoid G ix €2 is essentially principal if and only if

the partial action G ~ X is topologically free for all nonempty closed invariant subsets X C Q.

We work out the list of all nonempty closed invariant subsets of €2 and analyse the topologi-
cal freeness of the partial action of G on these nonempty closed invariant subsets in Chapter
5] In the case where the partial action G ~ X is topologically free for all nonempty closed
invariant subsets X C Q, we can easily obtain that every ideal in C; (G x Q) is of the form
CH(G x X') with X’ C Q open and invariant and then analyse whether they are primitive or
not. In other cases, our work is based on the following Lemma, which comes from [Proposi-

tion 3.2.1, Dix77].

Lemma 6.0.2. If J is an ideal in a C*-algebra A, then the canonical map from the closed
subset

Primj(A) :={I € Prim(A): J C 1} C Prim(A)
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to Prim(A/J), induced by the quotient, is a homeomorphism. And the map py from
Prim’ (A) := {I € Prim(A): J ¢ I}

to Prim(J), defined by p;(I) =1NJ, is also a homeomorphism.

To begin with, we still need a couple of Lemmas as following.

Lemma 6.0.3. If X C Q is an orbit, then the x-representations Ty and T, of the x-algebra
C.(G x X) on the Hilbert spaces {2(Gy % {x}) and l2(G, x {x'}) respectively are unitarily
equivalent. Here Ty and T, are sub-x-representations of the left regular representation T of

the groupoid G x  as in section 2.2.

Proof. Let h € G be such that hy’ = x. Define a map
U: b(Gyx{x}) = b(Gyx{x'}),

8(ex) = O, x)s 8 € Gy

it is easy to check that U is a unitary.

Take f € C.(Gx X) and £ € £,(Gy x {x}), then we have

(Uomy(f)) (&) (gh, x') =U(f*&) (gh, 1)
=f*& (g x) 6.1)

= ) f(eg " &n)E (& ), € Gy

8'eGy
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and

(7 (f)oU) (&) (gh, X') = (f*UE) (gh, x')

=Y fleg " d0UEE R )

/. (6.2)
= Y flsg " gn)E(S, %), g€ Gy
g'eGy
From the equation (6.1]) and the equation (6.2)), we conclude 7y (L) = U* o,/ (U)o U.
]

Lemma 6.0.4. 7, (Co(G x (Q\ Q.))) is isomorphic to F ({(N*)) as a normed x-algebra,

where F (£5(N*)) is the finite rank operator algebra on the Hilbert space {,(N*).

Proof. Noting G,, = P, we naturally get a unitary V : l5(Gy, X {Xe}) — 0(2(N*) viaa

bijection v: P — N*. In the mean time, define
9: C(Gx(Q\ Q) = F(La(N), f = (cij)ij

where ¢;; = f(g, xp) if i = v(gp) and j = v(p), and ¢;; = 0 otherwise.

It is easy to check that ¢ is a *-algebraic isomorphism and that 7y, (L) = V*o@(L)o V.

It follows that

175 (II* = sup | <& e (f7f) & >

IG11=1, E€2(Gye < {2e})

= sup | <&, Viop(f f)oVE >|
[E]1=1, E€lo(Gye x{Xe}) (6.3)

= sup l<n, o(f f)n>|
Inll=1, nets(N*)

= @(f)II% f€Ce(Gx (Q\ Q).
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[

Corollary 6.0.5. Whenever Q.. is closed in Q, we have x-isomorphims C; (G x (Q\ Q..)) =
.

6.1 Generalised Baumslag-Solitar case

In this section, we assume P is a generalised Baumslag-Solitar monoid. That is,

P=GBS. (N, m;, nj) =<aj, b|aib" =b"a;, Vie Sy, b"lap™ =a;, Vi€ S, N=HA =4S >_,

where S1:={i€S, a; €A }={i€eS, n,>0}and S, :={i€S, q,cA_} ={i€S, n; <0}.

Take x € P. Let x = b/°q; blta;, ---b/-1a; bP, 1 < iy, <N, j, € [0, i), p € Z be its
standard L-form, and define x’ := b%0a; b/ a;, - -- b1 a;,. Let P’ be the collection of x’ when

x varies all over P and define the map 7’ : P — P’ by sending x to x’.

The orbit Q. \ €4, - is a discrete subspace of Q. Let w, = bbb--- and let H := < b >
be the subgroup of G, generated by b. It is easy to see Gy, = {g € G| xw, € dom(g)} is

equal to PH C G.

Lemma 6.1.1. 7y, (CC(G X (Qoo \ Qq, m))) is isometrically isomorphic to a x-subalgebra of
L (l2(P';02(H))), where (,(H) is a Hilbert space with the operations of convolution and

involution:

fg®) =Y fg(®*") and f*(b*) = f(b7%).

[
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Proof. Define a map

Vi (G, < {2t }) = G(PLG(H)), Sy ) Oy 5,0 PEF,

where 6, S is a function taking value J,« at the point p and taking value O elsewhere. It is
easy to check that V is a unitary.

In the mean time, define

Q: CC(GK (Qo \ Qq, w))) — X(KQ(P’;EQ(H))), f = (fo.q)p.qs P qEP,

where (f), 4)p, ¢ 18 an infinite matrix with finite rank (f finitely supported), and every matrix
entry f, 4 is an element in the Hilbert space ¢5(H), given as follows: f,, 4(b*) = f(g, Xiw,)
if /(h) = g and g = pb*q~!, and £, ,(b*) = 0 otherwise.

It follows easily that ¢ is well-defined, injective and linear. Also, we have

oL p, B = Y. o(fi)p, B)e(f)(g, r)(B*)

qeP’ I€7.

= Y AWP'a, 2gw) (@b Y )
qeP | IeZ

= fixH(pb"r ™, xow,)
:(P(fl*f2)(pﬂ r)<bk>7
fi, LEC(GK (Q\Qq, ))), p, rEP, kEL,

(6.4)
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and

o) (P, Q)(B) = @(f)(g, p)(b~F)
= flab~*p~, Xpw,)
= (P, Xgwy) (6.5)
= o(f)(p, 9 (0"),

FEC(GX (Q\Qq,))), p,gEP, kEL.

That is, ¢ preserves multiplication and involution. Therefore, @ is a x-algebraic isomorphism.

Let f € Co(G X (Qo\ Q. »))) and & € 0>(Gy,, % {Xw,}), then we have

Vomy, (£)(&)(p)(#") =y, (£)(E) (P, 2,)
:f*é(pbk, XWb)

= F(P g™t 2w, )E(ab', 2w,)
qu;leZ " ’ (6'6)

= Y, oNp. V()@ ®)

qeP | IeZ

=p(f)oV(E)(p)¥"), pe P, keL.

That is, 7y, (f) =V*o@(f)oV forall f € Co(G X (Qu\Qy, «))). It follows that

17 ()1 = sup | <& T (f7f) 6> |

IS11=1, S€la (G, < {2y })

= sup | <&, Vioo(f f)oVE>|
[E11=1, € (G {2, }) (6.7)

= sup | <n, o(f*f)n>|
[Inll=1, nelr(P';t2(H))

=[@(NI?, f € Ce(Gx (Q\Qu, )))-
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Proposition 6.1.2. Whenever Q, o is closed in Q.., we have x-isomorphisms C; (G X (Qeo \

Qu ) = QC(T), where T is the unit circle.

Proof. For any f € Ce(G x (w0 \ Qq, ), ¢(f), as defined in Lemma [6.1.1] is an infinite
matrix with finitely many nonzero entries such that each nonzero entry is a finitely supported
function on H. Noting

G(P 6 (H)) = 6(P) @ b(H),
which induces an isomorphism between . (£2(P'; (2(H))) with £ ((2(P')) ®min -Z (¢2(H)),
we can identify these two C*-algebras with each other. Let

o C L(6(P) S 2 (02(HD)

be the collection of all elements of the form ) ;.; M; ® f;, where I is a finite index set, M;
is an infinite matrix of finite rank and f; is a finitely supported function on H, then .o is
a *-subalgebra of .Z ((>(P')) @min £ (¢2(H)). Under the identification, ¢(f) € .« for all
f €Ce(G % (Qe\Qq, ). Conversely, every element ¥ ;c;M; ® f; € < is the image of some
fin Ce(G X (o \ Qq, ) under the map @ since G X Qoo \ Qq, ) is discrete. Therefore,

9(Ce(Gx (Qu\ Q) ) =

and hence 7y, (Ce(G X (Qw\Qq, ))) is isomorphic to 7 by Lemmam

Every finitely supported function on H acts on ¢»(H) via convolution, as exactly it does
in the left regular representation of the group H. In combination with the fact that every

compact operator can be approached by finite rank operators, we conclude

o C Ji/(éz(P/)) ®minc;k(H) - o
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and thus

o =K (L2(P) @min C (H).

Since P’ is countable and C;(H) = C(T), we have

Therefore,

CH(G  (Qu\ Q) 2 Ty, (Co(G % (Quo\ Q) = = H Dyin C(T).

Since % is nuclear, the C*-norm on the algebraic tensor product of .#" and C(T) is unique.

Therefore, by removing the footnote over the tensor product without ambiguity, we have

Cr (G X (Qoo\ Q4 ) =X @C(T).

Proposition 6.1.3. Every primitive ideal in # Q@ C(T) is of the form & @ Cy(T\ {p}), where

p € T is a point.

Proof. Since ¢ is separable and exact and C(T) is separable, by [Bla06, Theorem IV.3.4.25],
every primitive ideal in J#" ® C(T) is of the form % ®uin I + J Qmin C(T), where I is a
primitive ideal of C(T) and J is a primitive ideal of .Z". Since .#" is simple, J = {0}. In this
case, every primitive ideal in .# ® C(T) is of the form % ® I, where I is a primitive ideal
of C(T). Every primitive ideal in C(T) is a maximal ideal since C(T) is commutative. Every
ideal in C(T) is of the form Cy(X) with X C T being an open subset, so I = Co(T \ {p}) for

some p € T.
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Remark 6.1.4. Prim(# @ C(T)) is homeomorphic to T with the usual topology.

When |S| =1 and m; =1 fori € §j, Qg  \ IQ is exactly an orbit. In this case, every char-

acter in Q, o \ dQ is of the form y,, with w = pa;aja;---, p € P, i € Sj.

Proposition 6.1.5. The sub-topology on Q, <\ dQ is discrete.

Proof. Let

Op={xeQ|x(pP)=1, x(pbP) =0}, p€ P,

then 0, is an open subset in Q. It is easy to check that

OpN(Qu, =\ 9Q) = {2},

where w = pa;a;a;--- , i € 1. This entails the discreteness of the sub-topology on £, « \ Q.

U]
Proposition 6.1.6. If |S|| =1 and m; =1 fori € Sy,
Cr (G (Qq »\0Q)) =2 @C(T).

Proof. The proof is similar as the proofs of Lemma[6.1.1]and Proposition [6.1.2]

Now we are ready to work out the primitive ideal space. Our work is based on Lemma [6.0.]]
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and Lemma[6.0.2)

If there exists i with n; { m; or all the n;’s does not admit a common multiple, the action
G ~ dQ is topologically free. In the following, we always assume G ~ d<Q is topologically

free.

When N is infinite:

Case 1. If |S1| = 0 or oo, there are only two nonempty closed invariant subsets, Q and
dQ. G x Q is essentially principal and there is one to one correspondence between ideals

in C} (G x Q) and open invariant subsets in Q.
Prim(C;(Gx Q)) = {C/(Gx (Q\9Q)), 0}.

Here C; (G x (Q\ dQ)) is maximal and thus primitive. The intersection of all primitive ideals

is 0 and thus 0 is primitive. {C}(G x (Q\ dQ))} is the only nontrivial closed subset.

Case 2. If 0 < |S}| < oo, there are three nonempty closed invariant subsets, Q, Q.. and JQ.
When G ~ Q.. is topologically free, G x € is essentially principal and there is one to one

correspondence between ideals in C;(G x Q) and open invariant subsets in Q.
Prim(C;(Gx Q)) = {C/ (G x (Q\ Q)), C;(Gx (2\09Q)), 0}.

Here C; (G x (Q\ Q)) is primitive because it could never be the intersection of other prim-
itive ideals. There are two nontrivial closed subsets: {C;(G x (Q\JdQ))}, {C} (G x (Q\
29)), CH(Gx (Q\Q))}.

Case 3. If [S;| =1 and m; = 1 fori € §1, G ~ Q. is not topologically free. C}(G x dQ) is
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simple and thus
Primy, (C} (G X Qu)) = {J1 :==C} (G x (Qu\ 0Q)) }.
We have an C*-isomorphism ¢; : J; — # ®@C(T) and
Prim(¢ @ C(T)) = {# @Co(T\{p}), p€ T}.

Therefore,

Prim" (CH(G x Q) = {p; ' (I,), p € T},

where I, = ;' (# @ Co(T\ {p})) is a maximal ideal in J;.

So we have
Primy, (C;(Gx Q)) = {C/(Gx (Q\dQ)), 1h+p; ' (I,), pe T},
where J, := C; (G x (Q\ Q)) is isomorphic to .#". By Prim(.%") = {0}, we get
Prim™ (C} (G x Q)) = {0}.

Here {0} is primitive in C;(G x Q) since C; (G x Q) = C; (P) and the left regular represen-

tation of C; (P) on £5(P) is irreducible and faithful.

To determine the topology on Prim (C;k (Gx Q)) , we need to determine firstly the topology on

Prim(C; (G % Q)). To fulfill this, we need to have a better understanding of what p; ' (1,) is.

Recall that

CH(G % (Qu\0Q)) = . @CH(H;) = 4 @C(T),
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where H; = 7. is generated by a;, i € S;. Every continuous function f € C(T) is of the form
Y ez cn?". Such a function corresponds to an element f' =Y, .7 cnla;r in the group C*-
algebra C; (H;) via the isomorphism C;(H;) = C(T). Assume f € C(T\ {1}), then f(1) =0

and thus } ,,c7 ¢, =0.

For every x € P, there exists y € P and j € N such that x = ya{ . Among all the pairs (y, j),
there is a special pair (X, j,) such that j, > j for any other pair (y, j). Let P C P be the

collection of X when x varies over P. The function
0: Co(GX (Qo\IQ)) — f(@z(P;Zz(Hi))), F— (qu)pq,

is defined by F,,(a¥) = F (g, tha,-) if h=q and g = pa¥q~!, and F,,(a¥) = 0 otherwise. If
F € C.(G x (Qo\ dQ)) N1}, then ¢ (F) is of the form }; M; ® f] with f; € C(T \ {1}). Since
F is finitely supported, we can assume, without loss of generality, M; has at most one nonzero

entry. Therefore, Y Fp,(a¥) = 0 for all p, g € P.

Hence, Ji/I} &2 % C Z(¢3(P)) and the quotient map 7 : J; — % sends the function F €
Ce(G X (Qe \ Q) to the infinite matrix (F),) 4, Where F, = Yiey giepF (& Xnw,)-

By [Bla06, 11.6.1.6], there is a unique extension of 7 to a representation of C;(G X Q)

on /5(P). Assume Q. \ dQ:={x1, X2, --- } and let X, = {(¢, x1), (&, x2), -+, (&, Xn)}s
then X, is a compact subset of the groupoid G x Q... Let h, = lx,, then (h,) is an approx-
imate unit for J;. By [Bla06, 11.6.1.6], n(Fh,) — m(F) in the strong operator topology in

Z(£(P)) for every function F € C.(G X Q.,). It is easy to check that (F) = (F,,) ,; with

Fl;q - Zﬁ:q, gih:pF(ga thai)-

7 1s an irreducible representation and its kernel is not /;. Therefore, pj_l1 (1,) is a maximal
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ideal in C} (G x Qo) and thus

Let X C Prim(C; (G x Q.)) be closed, then X NPrim’! (C; (G x Q) is closed in Prim’t (C (G x
Q..)) and thus

XN Prim" (C}(Gx Q) ={p; ' (I,), p€C}
for some closed subset C C T.
Noting C.(G x dQ)NJ; =0 and C.(G x Q) C pj_ll (1,) for all p € T, we conclude, for an

arbitrary closed subset X C Prim(C; (G x Qx)), either X = {J; } or X ={p; ' (I,), p € C} for

some closed subset C C T. Here is a list of all nonempty closed subsets of Prim (C;k (Gx Q)) :
{G (G (Q\0Q))},

{h+p;,'(I,), peC, CCTclosed},
{CHGx (Q\0Q)), L+p; ' (I,), peC, CC T closed},

{0, CH(Gx (Q\9Q)), L+p; ' (I,), peT}.

When N is finite:

Case 4. 1If |S;| = 0, there are three nonempty closed invariant subsets, Q, Q. and JQ.

G " Q. is not topologically free and the analysis of primitive ideals is similar as in Case

3.
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Case 5. If 0 < |S}| < 0 and |S,| = 0, there are five nonempty closed invariant subsets, Q,
Qoo, Q4 o0, p, o and dQ. When G ~ o is topologically free, G x Q, o is essentially
principal and there is one to one correspondence between ideals in C; (G x Q, ) and open

invariant subsets in Q, ... Therefore,
Prim(C; (G X Qg ) = {C/ (G X (Qq, » \ 0Q)), 0}
and thus
Primy, (C; (G X Qu)) = {CF(G X (Qu\ 0Q)), J3:=C}(G X (Quo \ Q4. ) }-
We have C*-isomorphism @3 : J3 = % ® C(T) and thus
Prim” (C} (G Qx)) = {p,,'(I}), p € T},

where I, = @5 Y# @ Cy(T\ {p})) is a maximal ideal in J3. Similarly as in Case 3, we have

;. (1) =1,+C}(Gx Q).

So we have
Primy, (C}(G x Q)) = {C;(G x (Q\9Q)), C;(Gx (Q\Qu, =), J2+p;,'(I), p€ T},
where J, := C; (G x (Q\ Q)) is isomorphic to .#". By Prim(.%") = {0}, we get
Prim™ (CH (G x Q)) = {0}.

Here {0} is primitive in C;'(G x Q) since C; (G x Q) = C; (P) and the left regular represen-
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tation of C; (P) on £5(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim(C}(G x Q)):
{CH(Gx (Q\0Q))}, {G(Gx (Q\ Q4 &), C(Gx (Q\0Q))},

{h+p.,' (1), peC, CCTclosed},
{CHG % (Q\9Q)), h+p;,'(I), p€C, CC T closed},
{CHG X (Q\Qu, ), C(Gx (Q\IQ)), h+p.'(I}), peC, CC T closed},

{0, G (G % (Q\Qq, ), CF (G x (Q\9Q)), L +py ' (I}), pe T}

Case 6. If |S1| =1, m;=1fori € S; and |S2| =0, G ~ Q,, - is not topologically free.
Primy, (C;(G X Qg ) = {J1 = C;(G X (Qq, = \ 0Q)) }.
We have an C*-isomorphism ¢; : J; — % ® C(T) and thus
Prim" (CH(G x Qq, =) = {p; ' (I,), p€ T},

where I, = ;' (# @ Co(T\ {p})) is a maximal ideal in J;. Similarly, we have
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So we have
Primy, (C} (G x Q) = {C/(Gx (Q\9Q)), J3+p; ' (I,), peT}.
We have C*-isomorphism @3 : J3 = % ® C(T) and thus
Prim” (C} (G x Q) = {p;,'(I,), p € T},

p

where I, = @3 (A ®Co(T\ {p})) is a maximal ideal in J3.

So we have
Primy, (CH(Gx Q)) = {C}(Gx (2\9Q)), h+p.'(I,), L +T3 +py1(lp), p€ T},

By Prim(J;) = {0}, we get
Prim”(C}(Gx Q)) = {0}.

Here {0} is primitive in C;'(G x Q) since C; (G x Q) = C; (P) and the left regular represen-

tation of C; (P) on £5(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim(C;(G x Q)):
{CHGx (Q\0Q))}, {C'}, {C"}, {C, C"}, {CH(Gx (Q\09Q)), C'},

{CHGx (Q\09Q)), C"}, {CH(Gx (Q\09Q)), C', C"},
{0, CH(Gx (Q\9Q)), h+p., ' (I}), h+T3+py, ' (Ip), peT}.

Here C' = {J, +p]31(11’,), p € C} for some closed subset C C T and C" = {J, +J3 +pfll(1p), pE

C} for some closed subset C C T.
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Case 7. If 0 < |S| < o and |Sz| # 0, there are four nonempty closed invariant subsets,

Q, Qo, Q) o and JQ. By the isomorphism
@31 J3=C/(GX (Q, -\ Q) = RC(T),

we get

Prim” (C}(G % Q. »)) ={py, (1), p € T},

where I}, = @3 (# @Co(T\ {p})) is a maximal ideal in J3. Similarly as in Case 3, we have

pjgl(ll’)) =1,+C;(Gx Q).

So we have
Primy, (C7(G x Qu.)) = {C} (G x (Qw\0Q)), J1 +p;; (1), p €T}

where J; = C; (G X (Quo \ Qp, o).

If [Si|>2or[Si|=1and m; > 2 forie€ S, GX Quw\Q « is topologically free and hence
Ci (G X (Qu \ Qp, ) is simple.

Take ¥ € Qo \ Q) o, and consider the left regular representation 7, of C;(G x Qo) on
0(Gx {x}). Tt is irreducible and thus the kernel is a primitive ideal of C;}(G X Q). For
nonzero function f € C.(G X Qc), it is nonzero in {g} x & for some g € G and some
open subset & C Q.. Since Gy is dense in Q.. there exists # € G with ¥ € Dom(h)

and hy € Dom(g) N ¢. Thatis, f(g, hy) # 0. It is easy to see that f ¢ ker(my) and that
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ker(m,) = 0.
Therefore,

Prim”" (C} (G x Q) =0

and
Primy, (C; (G % Q)) = {C}(Gx (Q\Qx), (G (Q\9Q)), L+J1+p;, (L), pT}.
By Prim(.#) = {0}, we get
Prim™ (C} (G x Q)) = {0}.

Here {0} is primitive in C;;(G x Q) since C; (G x Q) = C; (P) and the left regular represen-

tation of C; (P) on {»(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim (C;k (G x Q)):
{C(Gx (Q\0Q))}, {C'}, {GH(Gx (Q\09Q)), C'},

{CH G (Q\Qx)), CHG % (Q\Q)), L+Ji+p;'(I,), peT},
{0, G;(G x (2\Q)), CH(Gx (Q\Q)), Ja+Ji+py, (I,), p€T}.

Here C' = {J, +J, +pj_31(1;,), p € C} for some closed subset C C T.

Case 8. If |S;| =1, m; = 1 for i € S| and |S;| # 0, we have

Primy, (C} (G x Q) = {C/ (G x (Q\9Q)), Ji +p;, (I), p€ T},
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where J; = C; (G X (Qo \ Q). ).

We also have C*-isomorphism ¢@; : J; = % ® C(T) and thus
Prim”" (C}(Gx Q..)) = {p; ' (I,), p€ T},

where I, = ;' (# @Cy(T\ {p})) is a maximal ideal in J; .

Therefore,
Primy, (CH(Gx Q)) = {C} (G x (Q\0Q)), Lh+J1+p;, (L), h+p; ' (I,), p€T}.

Prim(J,) = {0}, so we get
Prim” (C} (G x Q)) = {0}.
Here {0} is primitive in C;'(G x Q) since C; (G x Q) = C; (P) and the left regular represen-

tation of C; (P) on £5(P) is irreducible and faithful.

Here is a list of all nonempty closed subsets of Prim (C;k (G x Q)):
{G(Gx(Q\dQ))}, {C'}, {C"}, {C', C"}, {GF (G x (Q\ 9Q)), C'},

{CHGx (Q\09Q)), C"}, {CH(Gx (Q\09Q)), C', C"},
{0, CH(Gx (Q\0Q)), h+p; (1)), h+J1+p;,'(I}), peT}.

Here C' = {J, +p]11 (1,), p € C} for some closed subset C C T and C" = {J,+J, +pj31(I;,), pE

C} for some closed subset C C T.
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6.2 General case

In this section, let P be the fundamental monoid of a graph of monoids with condition (LCM)
for P satisfied. Assume that {e} # G, C (R, +) forallve V, P, # {€} for all e € A and
Py # Py for all e € E. We still aim at the primitive ideal space of the groupoid C*-algebra

CH(Gx Q).

If condition I. holds and there exists v € V such that G, is dense in R, then Q is minimal
and the partial action G ~ Q is topologically free, so the groupoid C*-algebra C;(G x Q) is

simple by [BL18, Corollary 3.14].

If condition I. holds and P, = Zx for all v € V, then G ~ € is minimal and topologically

free whenever Q. is not closed. In this case, C; (G x Q) is simple.

If condition I. holds, P, = Z>¢ for all v € V and Q.. is closed, then G ™ ., is minimal
and topologically free. There is a one-to-one correspondence between open invariant subsets

of Q and ideals in C;(G x Q). It is easy to check

Prim(C*(G x Q)) = {0, C*(G x (Q\ Q..)) = ¢}

If condition II. holds, A = 0 and Q. is not closed, there are two nonempty closed invariant
subsets Q, dQ = {eo}. The action G ~ Q\ {e} is minimal and topologically free, so C;'(G x
(Q\ {oo})) is simple and we have

Prim’ (C* (G x Q)) = {0}.
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C}(G x {o}) = C;(Gr), and we have

Prim(C; (G x Q)) = {0, I+ C; (G x (Q\ {e0})),I C C:(G x {eo}) primitive}.

Every nontrivial closed subset of Prim;(C; (G x Q)) is of the form C+ C}(G x (Q\ {e})),

where C is a nonempty closed subset in Prim(C; (G x {eo})).

If condition II. holds, A = 0 and Q. is closed, there are three nonempty closed invariant
subsets Q, Qo., dQ = {e}. If the action G ~ Q. is topologically free, then the action
G " Qo \ {e} is minimal and topologically free, so C;(G X (Qe \ {e°})) is simple. In this

case, we have

Prim(C; (G X Q) = {0, I +C; (G X (Qe0 \ {o0})),I C C; (G x {oo}) primitive}.

Therefore,

PHm(C* (G x Q)) = {0, C(G % (Q\ Qu)) = ', [+CH(G x (Q\ {=}))},

where I C C; (G x {eo}) is primitive.

If the action G ~ Q. is not topologically free, then we must have fV =2, k=1 =2. (see
Proposition|5.3.13) Let J := C} (G X (Qu \ {0})), we can prove J = # @ C(T). In this case,

we have

Prim(C; (G x Qw)) = {Jp + G (G x {eo}), 14+ C; (G X (Qeo\ {oo})) ],

where J, := @~ (F @ Co(T\ {p})), p € T with ¢ : J — # ®@C(T) is a *-isomorphism,

and I C C;}(G x {eo}) is primitive.
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Therefore,

Prim(C} (G Q) = {0, CH(G x {o0}) +J + C1 (G x (Q\ Q) T+C(Gx (Q\ {o}))},

where J;, and [ are as above.

Here is a list of all nontrivial closed subsets of Prim(C; (G x Q)):

{CH(Gx {eo}) +7p + G (G % (Q\ Q) }pec; {C'+CF(Gx (Q\ {e}))},

{C(Gx{eo}) + 1, +CH(Gx (Q\Q)), pEC, C'+C1(Gx (Q\{e}))},

where C C T is closed and C' C Prim(C} (G x {eo})) is also closed.

If condition II. holds and #A # 0, we assume the action G ~ dQ is topologically free. If
Q. is not closed, there are only two nonempty closed invariant subsets Q, dQ = Qp, . In
this case,

Prim(C: (G x Q)) = {0, C*(G x (Q\ Qp, )}

If Q.. is closed, there are three nonempty closed invariant subsets Q, Q.., dQ = Qp, 0. If
the action G ~ Q. is topologically free, then there is a one-to-one correspondence between

open invariant subsets of Q and ideals in C; (G x Q). It is easy to check

Prim(C; (G x Q) = {0, C} (G x (Q\ Q) = A, CH(Gx (Q\ Qp. o))}

If the action G ~ Q. is not topologically free, then we musthave fV =2, k=[=2and A, =
0. (see Proposition|5.3.13) Let J := C; (G X (e \ Qp, «)), We can prove J = 7 @ C(T). In

this case, we have

Prim(C; (G X Qo)) ={J, J, +C; (GX Qp )},
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where J, := ¢ 1 @ Co(T\ {p})), p€Tand ¢ : J — # @C(T) is a *-isomorphism.

Therefore,

Prim(C* (G x Q)) = {0, C(G % (Q\ b, =), C(G % (Q\ Qus)) +Jp +C1(G X Qpy, o0) }-

Here is a list of all nontrivial closed subsets of Prim(C;:(G x Q)):

{1}, {c}, {1, ¢},

where I := C; (G x (Q\ Qp, «)) and C = {C} (G X (Q\ Qw)) +Jp +C; (G X Qp o) } pec for

some closed subset C’ C T.



Chapter 7

K-theory

In this chapter, we will try to find the K-theory of all the C*-algebras of the form C} (G x X)

with X C Q G-invariant and closed.

First of all, we have C;(G x Q) = C; (P) and by [CELY17, Theorem 5.10.1] there exists
an unital x-homomorphism ¢ : C — C; (P) such that K, (1) : Ki(C) — K«(C;(P)),* =0, 1

is an isomorphism. That is,

Ko(C:(Gx Q) 2 Z and K; (C(G x Q)) 22 0.

7.1 Generalised Baumslag-Solitar case

In this section, we assume P is a generalised Baumslag-Solitar monoid.
Firstly, we compute the K-theory of C;'(G x Q) ) since Q. is always closed in Q.

We claim that {gQ) «}sec is a G-invariant regular basis for the compact open subsets of

152
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Q. . Itis easy to see that g, .., is a compact open subset of €, ., for all g € G and that
{89, « }4cc is G-invariant. Therefore, it remains to show that {gQ), «}¢cc is a regular basis.
We have the following observations.

(i) If N1<i<nPi€p, o 7 O with p; € P, 1 <i <nand n € N, then we must have Nj<;<,p;P # 0

and thus Ny <;<,p;P = rP for some r € P because P is right LCM. Therefore,

M<i<nPiLph, 0 = T, oo

(ii) For every basic compact open subset &' in £, .., there exist p, p;, 1 <i<n € P such that

O={x €Qp o, x(pP) =1, x(piP) = 0}. In this case, we have

O = pQp o \ (U1<i<nPi€, o)-

(i) If pQy o = Ui<i<npidp, » for some p, p;; 1 <i < n € P, then we must have pP =
Ui<i<npiP and thus pP = p;P for some i because P satisfies independence. In this case,
P, o = Pifdp, oo

These observations, together with the fact that for all g € G there exists p € P such that

89 o = pQ} o, yields our claim by Definition

Noting that G satisfies the Baum-Connes conjecture with coefficients, we have by Lemma

R34

K (G X Qp o) 2 K (C(Qp, ) ¥, G) = K. (C; (b7)).

Therefore,

Ko(CH(G X Qp, ) 2 Z and K (C; (G X Qp, o)) = Z.
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Now we compute the K-theory of C; (G x Q) in the case when Q.. is closed in Q.

We have the following exact sequence of C*-algebras,
0—CH{(Gx(Q\Qu)) = Cr(Gx Q) = CF (G X Qo) — 0,

and the six term exact sequence of their K-theories,

Ko(C} (G (Q\Q))) —— Ko(CiH(GX Q) ——— Ko(CH (G X Qo))

I |

K (CHGX Qu)) «—— K (CH(GxQ)) «— K (C}(Gx (Q\Qx))).

By Corollary [6.0.5] we have
C (G (Q\Qw)) =X

and thus

Ko(C; (G % (Q\Qw))) = Zand K; (CF (G x (2\ Qo)) 0.
Noting that we also have
Ko(C/(Gx Q)) =2 Zand K, (C}(Gx Q)) =0,

we obtain the following six term exact sequence

7 klo) . 5 > Ko(Ci (G x Qo))

T |

K (C(Gx Q) < 0 < 0,
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where @ is a unital x-homomorphism from C; (G x (2 \ Q..)) to C, composed by

C:(Gx (Q\ Q) B (GxQ) & ci(P) & C.

To calculate the K-theory of C;'(G x Q.. ), we need to find out the map Ky(¢) from Z to Z. It

suffices to find out Ko(¢)([plo) for some rank one projection p € C; (G x (Q\ Q)).

Recall that the left regular representation of P is such that A,(6x) = 8,x, p, x € P, we define
E(p), p € P to be the range space of 4, in {2(P), and then the projection from ¢,(P) onto

E(p) is ApA,. Itis easy to see that
E(a,-) ﬂE(b) = E(Cl,’bmi> ifies
and that
E(a;) CE(b)ifi€S,.

Since Q. is closed, we have 0 < |S}| < oo. In this case, we always have

4= 1= A5+ Y (AaAl = A A )

€S

is a rank one projection in C; (P), whose range space is exactly C&,. Here e is the identity of
P. Noting A; 4, = A, A4, = 1, it follows that this rank one projection ¢ is in the equivalence

class of 0 in Z.,(C; (P)). So is any other rank one projection in C; (P).

As a unital *-homomorphism, ¢; o1 maps the rank one projection p € C; (G X (Q\ Qw))

to some rank one projection ¢’ € C; (P). Therefore,

Ko(9)([Plo) = Ko(¢2)([¢']0) = Ko(¢2)(0) =0.
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That is, Ko(¢) = 0. From the six term exact sequence, it follows that

Ko(Cf (G X Q) 2 Z and K; (C} (G X Qo)) = Z.

In the next we compute the K-theory of C;(G X Q, «) in the case when Q, o, is closed

in Q.

When Q, - is closed in €, we must N is finite and thus €. is also closed in €. Hence

we have the following exact sequence of C*-algebras,
0—Cr (G X (Q\Qq, ) = Cf (G X Qoo) = Cf (G X Qg o) = 0,

and the six term exact sequence of their K-theories,

Ko(CH{(GX (Q\Qq ) — Ko(CH(GX Q) ———— Ko(Ci(GX Q)

I |

K (CHGX Qg o)) +—— Ki(CHGX Qo)) — K1 (C (G X (Qe\ Qq, 0)))-

By Proposition we have
CH(G X (Qoo\ Qq, ) 2 H RC(T)
and thus

Ko (Cr (G % (Qu\ Qq, ) = Z and K (C (G X (e \ Qu, ) ) = Z.
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By our previous computation,

Ko(Cf (G X Q) 2 Z and K; (C} (G X Qo)) = Z.

Therefore, we have such a six term exact sequence

Z O, 7 » Ko(CH(Gx Q. )

| |

K (CHG X Qq o)) < Z

AN

Ki(1) ’
where 1 is the inclusion map from C; (G X (Qo \ Q4, «)) into C; (G X Qo).

First of all, in the K-theory of the C*-algebra .#” @ C(T), we have [p ® 1]p = 1 for some

rank one projection p € . Via the path of x-isomorphisms
H @C(T) = H @CH(B") = C} (G % (Quo\ Qu, )5

it is easy to find [J,, wa)]o = 1 in the K-theory of C; (G X (Qw \ Qq, »)), where S, Zy) 1S
the delta function which takes value 1 at (e, x,,) and vanishes elsewhere. Via the quotient

map 7 : Ci(Gx Q) — Ci(G x Qu), we find one preimage

fi=lgux=1- Y Lipiaiyx@l{piayxa € Ce(Gx Q)

1<i<N, 0<j<|ni|~1

of the element &, Zw,) € C;(G % Q). Here and in the sequel, 1y is always the characteristic

function on the set Y. When S, = 0,

X = {%bk7 k c N}U{xwh}
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When S| =0,
X = {2w, }U{Xphs k€ N}U (Ur<ian {Xptapir k> |nil, 0 < j <m;—1}).

In Ko(C;f(G X .Q)), [f]o =1- ZISiSN |n,'\. That is, in K()(C;((G X Q.oo)), [5(67 wa)]o =1-

Y 1<i<n |ni|. Therefore, Ko(1) is a multiplication map, sending 1 to 1 — Y <;<y |-

In the K-theory of the C*-algebra .#” ® C(T), we have [p® (z— 1)+ 1]; = 1. Via the path of

*-isomorphisms
H @C(T) = H @CF(B”) = CF (G % (Quo\ Qu, )4

itis easy to find 8, 1) T1 J )J1 = 1 in the K-theory of C; (G X (Qu\ Qq, ).

€, XWb

Letu = gy, Zwy) T1— d(e, 2wy € C:(G X Qo) and let

| Tpx H 1= Leyux Leeysx\ox)
0 l{bfl}xbx"i_l_l{e}xX
We have
u 0
m(v) =
0 u*
and

10 o I=Teexpx)y 0
0 0 0 0

Therefore, we have the index map & : K; (C}(G x Qo)) = Ko (C (G % (Q\ Q))),

61(1) = 81([8(», ,,) + 1= 8, z,,)]1) = [Plo—[s(P)Jo = —[L e} (xrox) o-
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Therefore, K (1) is a multiplication map, sending 1 to —[1 (.1, (x\px)lo-
When S =0, [14.3xx\px)l0 = 1.

When S1 =0, [11.yxx\px)lo = 1+ Xi<icymi-

When Y; <;<n |ni| > 1, it is easy to conclude that

Ko(CH(G X Qq, ) =7y

Yi<ien Inil)—1

and that

K (C:(G X Qa, 00)) = ZH‘ZieSQ m:

Here and in the sequel, Z,, n € N* always stands for the quotient group of Z by its normal

subgroup nZ.

When Y; <;<n |ni| = 1, it is easy to conclude that
Ko(CHGX Qo)) X Z

and that

K (C;k(G X gza7 00)) = Z@Zl+2ieszmi'

Lastly, we try to compute the K-theory of C}(G x dQ). Given our previous computation,

it suffices to work in the case where dQ C Q) ..

In this case, we have the following exact sequence of C*-algebras,

0—Cr (G (Qp, 0\ Q) = CH(GXQ o) = Cr(Gx Q) =0,
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and the six term exact sequence of their K-theories,

Ko(CH{G X (Qp, 0\ 0Q))) —— Ko(Ci(GX Q) o)) ——— Ko(CF (G x 09Q))

I |

K (CHGx Q) +———— Ki(C;H(GXQp o)) «— Ki(C}(Gx (2, \0Q))).

Noting that in our case, we have Q) o\ dQ = Q.. \ Q4 . By Proposition we obtain
CH(G X (Qp, \9Q)) = CF (G X (Qo\ Qg ) = H @C(T)
and thus
Ko(CrH (G X (Qp, \0Q))) = Z and K; (C} (G X (Qp,  \ 0Q))) = Z.

On the other hand, we have

Ko(CH (G X Qp, ) 2 Z and K (C; (G X Qp, o)) = Z.

Therefore, we have such a six term exact sequence

Z O, 7 > Ko(Ci(Gx 0Q))
K (CH(Gx Q) + Z < Z,

where 1 is the inclusion map from C; (G x () « \ dQ)) into C; (G X Q; ).

In the K-theory of the C*-algebra 2" @ C(T), we have [p® 1] = 1 for some rank one projec-
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tion p € % . Via the path of *-isomorphisms
H @C(T) = H @Cr(B") = CE (G x (Qp, =\ 0Q)),
it is easy to find [8(,, 4, ]Jo = 1 in the K-theory of C; (G % (Qp, w\ 9Q)). Noting

6(67 wa) - 1 o Z l{bjai}xgb, mlibjai}xﬂb’ I € CC(G X Qba oo),

1<i<N, 0<j<|n;|—1

we have Ko (1) ([, wa)]o) =1 —Y<i<y|ni|. Thatis, Ko(1) is a multiplication map, sending

1 to 1 —):ISZ-SN]n,'L

In the K-theory of the C*-algebra #" ® C(T), we have [p® (z— 1) + 1]; = 1. Via the path of

x-isomorphisms
H @C(T) = H @CE(B") = CE(Gx (Qp, =\ 0Q)),

itis easy to find [8, 4, )+ 1— 0 4,1 =1 in the K-theory of C; (Gx (Qp, o\ 9Q)).

w b

On the other hand, we have [1(;).q, _]1 = 1 in the K-theory of C;'(G x Qp, o).

Letu = §y, Zwy) T1— d ) € Ce(G X Qp, o) and let

€, Xw,,

u; =1+ Z (1{b}><9b,oo_l)l{bjai}XQb,mlibfai}be wECc(GIXQ.b’ w), 1 <Ii<N,
0<j <[ 1 ’

then we have u- Il <;<yit; = 1y 10, .-
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Take x € Q) . and consider the left regular representation on £>(G x {x }). Define

H;, j = l{bjai}XQb, mlibl‘ai}xgbﬁ wéz(G x {x}),

then u; is an identity on ¢>(G x {)}) © (®;H;, ;) and a unitary on @;H; ;. Let u} be the

restriction of u; on the subspace @ ;H; ;, we have

0 Ly, .

on the right hand side, we get the following diagonal matrix

1{b‘"i‘}><Qb7 -

" __

Therefore, u} is homotopic to u} in % (¢ ;H;, ;) and hence u; is homotopic to

1+ <1{b|"i‘}><§2b" -~ Dlayxa, mlffai}XQlL o
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- (1 - 1{ai}><§2b" m1>{kal~}><Qb7 oo) + l{ai}XQb, wl{ngn("i)’”i}be‘ 001?611'}><Qb7 oo

Before continuing, we need the following Lemma, which comes from [Lemma 4.6.2, HR0O].

Lemma 7.1.1. Let A be a C*-algebra. If u € A is a unitary and v € A is an isometry, then u

is homotopic to vuv* + (1 — vv*).

It follows from Lemma [7.1.1] that u; is homotopic to 1y untrmyyq, .- That is, [ui]y =

sgn(n;)m; and [u]; = 1 — Y1 <;< sgn(n;)m;. Therefore, K; (1) is a multiplication map, sending

1to1l _ZISISN sgn(ni)mi.
When 1 — ZlgigN |i’ll’ 7£ Oand 1 — ZISiSN Sgn(ni)mi 7£ 0, we have
Ko (Cj(G X 8(2)) = Z):lgigN |ni|—1

and

K (CH(GxdQ)) =

Z
‘ 1=Y1<i<nsgn(n;)m;

When 1 —Y <y |ni| =0and 1 — Y, ;< sgn(n;)m; # 0, we have
Ko(CH(Gx Q) = Z

and

K (C/(GX Q) = ZBL

‘ 1=Y<i<n sgn(ni)m;
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When 1 —Y ;< |ni| #0and 1 — Y, ;< sgn(n;)m; = 0, we have
Ko(Cr(Gx 0Q)) ZZD Ly, |m|-1
and
K (CH(Gx0Q)) = Z.
When 1 =Y <<y |n| =0and 1 — Y, <;<ysgn(n;)m; =0, we have
Ko(CH(GX Q) = ZBL
and

K (C/(Gx Q) = ZDL.

7.2 General case

In this section, let P be the fundamental monoid of a graph of monoids with condition (LCM)
for P satisfied. Assume that {e} # G, C (R, +) forallve V, P, # {€} for all e € A and
P, # Py for all e € E. We still set out to compute the K-theory of the reduced groupoid
C*-algebras C*(G x X) for all closed invariant subsets X in Q. By Theorem X may
be Q, Q.,, {0} and O w.

In the case where X = Q, we are done.

When X = {} is closed, we have condition II. holds and #A = 0. In this case, C} (G x {0} ) =
C; (Gr) and thus K, (C; (G x {})) = K.(C; (Gr)).
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When X = Qp, o # {oo} is closed, we have condition II. holds and §4 > 1. In this case,
we claim that {gQp «}¢ci 18 @ G-invariant regular basis for the compact open subsets of
Qp, . Itis easy to see that g€y, o is a compact open subset of €}, ., for all g € G and that
{8, « }geG is G-invariant. Therefore, it remains to show that {gQp, «}eec is a regular ba-
sis. We have the following observations.

() If N1<i<nPi€p, o 7# O with p; € P, 1 <i < nand n € N, then we must have Ny<;<,p;P # 0

and thus Ny<;<,p;P = rP for some r € P because P is right LCM. Therefore,

M<i<nPif2p, oo = rp, oo

(ii) For every basic compact open subset & in &y, .., there exist p, p;, 1 <i<n € P such that

O ={x€Qp « X(pP)=1, x(piP) =0}. In this case, we have

0 = pQp, o\ (Ur<i<aPiQ, o)-

(iii) If pQyp, o = Ui<i<nPif2p, - for some p, p;, 1 <i < n € P, then we must have pP =
Ui<i<npiP and thus pP = p;P for some i because P satisfies independence. In this case,
P&, o0 = PiLp, oo

These observations, together with the fact that for all g € G there exists p € P such that

g0, o = pQp, =, yields our claim by Definition [2.3.5]

Noting that G satisfies the Baum-Connes conjecture with coefficients, we have by Lemma

K*(C;ﬁ(G X -Q-b, oo)) = I(*(C(S-Zb7 oo) Ay G) = K*(CE(GT))

It remains to consider the case where X = Q. is closed. In this case, we have, by Lemma
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5.2.12, P, = Z>0, V <o and A | < o. By the following short exact sequence of C*-algebras
0—-C(GX(Q\Qu)) 2> Cr(GX Q) = Cr(GX Q) — 0,

we get the six term exact sequence of their K-theories as follows

Ko(C} (G (2\Qx))) — Ko(CiH(GXQ)) —— Ko(Ci(G X Qo))

| !

Ki(CH(GX Q) +—— Ki(CHGXQ)) +— K (CF(Gx (Q\Qx))).

Since Cf (G x (Q\ Qu)) = ', we have
Ko(Cr(G X (Q\Qw))) = Z and K (Cr (G % (Q\ Qw))) = 0.

Therefore, we have such an updated six term exact sequence

Ko(o)

Z Y/ > Ko(Cr(G x Qo))
K (CH(Gx Qo)) < 0 < 0,

where @ is a unital x-homomorphism from C; (G x (Q\ ©.)) to C; (P), composed by

CH(Gx (Q\ Q) 5 CHGx Q) L Ci(P).

To calculate the K-theory of C'(G x Q. ), we need to find out the map Ky(¢) from Z to Z. It

suffices to find out Ko(@)([p]o) for some rank one projection p € C}(G x (Q\ Qu)).

If condition II. holds, assume b, is the generator of P,. Then we have relations by = by
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and by" “a = ab,"". Recall that the left regular representation of P is such that Ap(6y) =
Opx, D, x € P, we define E(p), p € P to be the range space of A, in ¢>(P), and then the

projection from £, (P) onto E(p) is ApA,.

Fix v € V, denote by s(w) the vertex connected to w in the geodesic path [v, w] C T for
all v# w €V and by s(a) the origin vertex of a for all a € A. It is easy to see that

ms(

E(a) N E(bs(a)) = E(bs(a

?’ ‘a)ifac Ay
and that
E(a) - E(bs(a)> ifacA_.

Since #V < oo and A+ < oo, we always have

q = 1 o [Abvll;kv + Z (A'bwll;kw - )'bms(w); WA’;mx(w), w) + Z (}Lal; - )vbms(a), uall;km“a% aﬂ)]
V#WEV s(w) s(w) a€A+ s(a) s(a)

is a rank one projection in C; (P), whose range space is exactly C&,. Here e is the identity of
P. Noting A Ay, = A A, = 1forallw € V and all a € A, it follows that this rank one projec-
tion g is in the equivalence class of 0 in Z.(Cj (P)). So is any other rank one projection in

CL(P).

As a unital *-homomorphism, ¥ o1 maps the rank one projection p € C; (G x (Q\ Qu.))

to some rank one projection ¢’ € C; (P). Therefore,

Ko(9)([plo) = [¢'lo=0.

That is, Ko(¢) = 0. From the six term exact sequence, it follows that

Ko(C} (G x Qo)) =2 Z and K (C} (G x Qo)) = Z.
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If condition I holds, Ky(¢) is not 0 anymore. Indeed, there exists e € T such that P, = {€}.
Set n:= 3t{e € T | P. = €}, we get similarly as above that [g]o = —n, where g is a rank
one projection from ¢, (P) onto C§,. Therefore, Ky(¢)(1) = —n. From the six term exact

sequence, we get

Ko (CH(G X Qo)) 2 Zy and K (CF (G x Q) ) 22 0.
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Extension

Based on our work in the thesis, there are some future directions in which we can work.

Firstly, in Chapter[dwe proved the nuclearity of the reduced C*-algebras of graphs of monoids,
but only embedded successfully a part of generalised Baumslag-Solitar monoids into amenable
groups. It is natural to try to extend the result to all generalised Baumslag-Solitar monoids
and even to our graphs of monoids. This may reveal the relation between nuclearity of semi-

group C*-algebras and embeddability of these semigroups into amenable groups.

In Chapter [5| we made some assumptions of the graphs of monoids to get all nonempty
closed invariant subsets of the the partial action G ~ Q. In the process, we focused on the
cases where condition I. or condition II. holds, but we failed having a complete discussion
when either condition I. or condition II. holds. (see Lemma and Lemma [5.2.6)) It would
be better if we can show that either condition I. or condition II. holds in the missing case
where P, # {€} foralle € T,V =1, #A; = 0 and fA_ > 0. It also makes sense to investi-
gate whether all those assumptions of the graphs of monoids we made are necessary. That is,

can we still get a list of all nonempty closed invariant subsets of the the partial action G ~ Q

169
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if some of the assumptions are removed?

In Chapter [5| we also discussed the topological freeness of the partial action G ~ X for
all closed and invariant subset X C Q. In the generalised Baumslag-Solitar monoid case, we
had a full discussion on the topological freeness. While in general case, we could not provide
a complete discussion when the partial action G ~ Qy, ., is topologically free. Instead, we
gave some examples (sufficient conditions) where the partial action G ~ Qy, o, is topologi-

cally free. This problem is also worthy of thinking.

In Chapter [6 we worked out the primitive ideal space (with topology) of the groupoid C*-
algebra C; (G x Q) under the assumption that the partial action G ~ dQ is topologically free
unless dQ = {e} (in the case where #A = 0). We can also try to find the primitive ideal space
(with topology) of the groupoid C*-algebra C; (G x Q) in the case where our assumption does

not hold, that is, the partial action G ~ dQ is not topologically free.

Lastly, we can study other properties of the C*-algebras of graphs of monoids, for instance,

the pure infiniteness and the classification.
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