

Turner, Natasha C.A. (2021) *The role of the transcriptional regulator, DsdC, in Escherichia coli pathogenicity.* PhD thesis.

https://theses.gla.ac.uk/82598/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

The role of the transcriptional regulator, DsdC, in *Escherichia coli* pathogenicity

A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy

Natasha C A Turner BSc (Hons)

Submitted August 2021

Institute of Infection, Immunity, and Inflammation

College of Medical, Veterinary, and Life Sciences

University of Glasgow

Acknowledgements

Firstly, I would like to thank Professor Andrew Roe for all of his support throughout this PhD. I appreciate all of the advice (and cups of tea) he has given, and for introducing me into the fascinating world of bacterial gene regulation. Thank you also to my second supervisor, Professor Konstantinos Gerasimidis, I am grateful for the time I got to spend in your lab.

I have been lucky enough to have a wonderful, supportive group during my PhD, and I would like to thank all members of the Roe group who I have been fortunate to meet and to have shared many brews, laughs, tears, and cake with. A special thank you goes to Dr James Connolly, Dr Nicky O'Boyle, Dr Liyana Azmi, and Jennifer Hallam, whose guidance and support over the last few years have been invaluable.

Doing a PhD has been one of the hardest, but greatest, times of my life. I want to extend my love and gratitude to everybody in the Bacteriology department that has helped me along the way. A special mention must go to Dr Andreas Haag, Aisling Brady, Dr Michael Ormsby, and Dr Khedidja Mosbahi for their help, patience, and assistance in the worlds of bacteriophages, LPS and protein purification. I'd also like to thank Dr Douglas Browning, from the IMI at the University of Birmingham, for charitably taking me under his wing to learn about DNase I footprinting and the world of radiation. Many thanks must also go to the University of Glasgow MVLS DTP programme for funding my studentship.

To my parents; Carol and Dave. You have always been my biggest supporters, sacrificing so much to get me to where I am today. As your annoyingly daft, laal bébé, I will always be thankful and appreciate the efforts you have made. Also, to my Nanna Chris, thank you for always inspiring me to achieve my greatest. Finally, to Alex. Thank you for your unwavering support during the last several years, but especially during the last few months. Without you, this time wouldn't have been half as fun.

As we say back yam; here's to the future, marras.

Table of contents

Acknowledgements Table of contents List of Figures List of Tables	2 3 7 9
Abbreviations	11
Abstract	14
Author's declaration	10
Chapter 1 Introduction	17
1.1 Escherichia coli	18
1.2 Extraintestinal pathogenic <i>E. coli</i> (ExPEC)	19
1.2.1 Neonatal meningitis-associated E. coli (NMEC) prevalence and	
pathogenesis	21
1.2.2 NMEC K1 polysialic acid capsule	23
1.2.3 Further NMEC-associated Virulence factors	24
1.2.4 Uropathogenic E. coli (UPEC) prevalence and pathogenesis	20
1.3 Bacterial transcriptional regulation	20
1 3 1 Initiation of transcription	29
1.3.2 Sigma (σ) factors	32
1.3.3 Transcription factors (TFs), nucleoid associated proteins	
(NAPs), and two-component systems (TCS)	33
1.3.4 LysR-type transcriptional regulators (LTTR)	36
1.3.5 Transcriptional elongation and termination	37
1.3.6 Elucidating the roles of transcription factors	38
1.4 The role of host metabolites in bacterial virulence	39
1.4.1 Host metabolites affect bacterial gene expression	39
1.4.2 Elucidating the regulon of bacterial transcription factors in	11
1.5 D-serine and the dsdCYA locus	41 /3
1.5.1 The role of D-amino acids	43
1.5.2 The D-serine metabolism locus. <i>dsdCXA</i>	45
1.5.3 D-serine as an environmental signal for bacterial gene	
regulation	47
1.5.4 DsdC, the LysR-type transcriptional regulator	49
1.6 Aims of project	49
Chanten 2 Materiala and matheda	E 4
Chapter 2 Materials and methods	51
2.1 1 Strains, plasmids, growth metha and chemicals	52
2.1.1 Strains and plasmus used in these studies	55
2.1.3 Storage of strains	55
2.1.4 Chemicals and reagents	55
2.1.5 Growth media and buffers	55
2.2 Molecular and genetic techniques	59
2.2.1 Polymerase chain reaction (PCR), primers and PCR purification	59
2.2.2 Plasmid purification	62
2.2.3 Restriction enzyme digest and DNA ligation	63
2.2.4 Preparation of competent cells	03 ∠ 1
2.2.3 Real SHOCK LIGHTSTOFFICIENT	03 67
2.2.0 Electrocompetent transformation 2.2.7 Agarose gel electrophoresis and gel purification of DNA	64
2.2.8 Phenol:chloroform extraction and ethanol precipitation	64
	65

2.2.10 Gibson assembly	66
2.3 Genomic and transcriptomic techniques	66
2.3.1 Chromatin immunoprecipitation (ChIP)	66
2.3.2 Chromatin immunoprecipitation coupled with next generation	1 I
sequencing (ChIP-Seq)	68
2.3.3 ChIP-Seq analysis	69
2.3.4 ChIP-PCR	69
2.3.5 RNA extraction and DNase treatment	70
2.3.6 Quantitative real time PCR (RT-qPCR)	71
2.3.7 Transcriptome profiling by RNA-Seq	72
2.3.8 Sanger sequencing	73
2.4 Biochemical techniques	73
2.4.1 SDS-PAGE and Coomassie staining	73
2.4.2 Protein overexpression of recombinant proteins	74
2.4.3 Protein purification of recombinant proteins	75
2.4.4 BCA protein assay	76
2.4.5 Using Factor Xa to cleave the MBP-DsdC recombinant protein	
	77
2.4.6 Western blotting	77
2.4.7 Electrophoretic mobility shift assay (EMSA)	78
2.4.8 DNase I footprinting	79
2.5 Phenotypical assays	80
2.5.1 Silver staining	80
2.5.2 Serum killing assay	81
2.5.3 K1 bacteriophage titre and plaque assay	81
2.5.4 K1 bacteriophage killing assay	82
2.6 In vitro cell infection models and microscopy	
	82
2.6.1 HeLa cell culture maintenance	82
2.6.2 Infection assays on HeLa cell lines	83
2.6.3 hCMEC/D3 cell culture maintenance	84
2.6.4 Adhesion and invasion assays on hCMEC/D3 cell lines	84
2.7 Bioinformatic analysis	85
2.7.1 Bioinformatic analysis and databases used	85
2.7.2 ChIP-Seq and RNA-Seq bioinformatic analysis	86
2.7.3 Statistical analysis	86
Chapter 3 Investigating the global binding of DsdC and its role on gene	
expression in pathogenic Escherichia coli	87
3.1 Introduction	88
3.2 DsdC and D-serine metabolism	89
3.2.1 Structural differences of DsdC	89
3.2.2 The role of DsdC in D-serine metabolism	93
3.3 Growth conditions and native expression of DsdC	97
3.3.1 Experimental design and growth conditions for the ChIP and	
RNA-Seq	97
3.3.2 Native expression of DsdC	98
3.4 The global binding profile of CF10/3 DsdC and CE10 DsdC1 and	400
USQUZ	100
3.4.1 Genome wide binding of USac	105
3.4.2 Functional characterisation of the ChIP-Seq hits and strain-	407
specific binding of Usac	10/
3.4.3 Genomic context of Usac Dinaing	112
3.5 Transcriptomic regulon of CFT0/3 DSdC and CET0 DSdC1/2	116
s.s. I usue anterentially regulates genes in the presence and	<i>.</i>
absence of D-serine	117

3.5.2 DsdC directly regulates a small, but virulence associated, regulon in NMEC strain CE10	126
3.6 Discussion	127
3.6.1 USOL is absolutely required for D-serine metabolism but has no	127
3.6.2 DsdC is a global transcription factor that binds to multiple	127
regions on the genome	128
athotypes	130
3.6.4 DsdC directly regulates a small subset of virulence-associated genes in NMEC strain CE10	130
3.6.5 The indirect regulon of DsdC	134
3.6.6 DsdC as a canonical transcription factor and as nucleoid	
associated protein	135
3.6.7 Conclusion	137
Chapter 4 Validation of the global sequencing data and purification of the	
LysR-type transcriptional regulator, DsdC	138
4.1 Introduction	139
4.2 Validating the RNA-Seq transcriptomic data using RT-qPCR	140
4.3 Overexpression and purification of the LTIR, DsdC	143
4.3.1 Cloning and overexpression of DSdC with MBP and His tags	143
4.3.2 Purification of the recombinant DSdCs 4.3.3 Cleavage of MBP-DsdC tag	140
4.4 Validating DsdC binding through electrophoretic mobility shift assays	177
(EMSA)	148
4.5 Elucidating the binding motif of DsdC	151
4.6 Discussion	153
4.6.1 Differential gene expression of LPS and capsular biosynthesis	. – –
genes validates the RNA-Seq data	153
4.6.2 Used shows direct binding to <i>dsdCX</i> and to the LPS	154
4.6.3 Elucidating the DNA binding motif of DsdC using DNase I	104
footprinting	155
4.6.4 Conclusion	156
Escherichia coli strain CE10 from K1 bacteriophages, through regulation of	158
the capsular <i>O</i> -acetyltransferase gene, <i>neuO</i>	150
5.1 Introduction 5.2 The binding dynamics of DsdC on the <i>neu</i> O gene	109
5.2 The binding dynamics of back on the metid gene 5.2 Nou Ω is not corridon the metid genetic element. CUS 2, in CE10	142
5.5 Neuron is not carried on the mobile genetic element, $COS-S$, in CETO 5.4 ApeuO does not affect the growth of CETO	164
5.5 NeuO transcription is regulated via DsdC and mediates protection	104
against K1 bacteriophages	164
5.5.1 Phase variation of <i>neuO</i> influences susceptibility to K1	-
bacteriophage killing	174
5.5.2 Phase variation affects transcriptional levels of <i>neuO</i>	176
5.6 Discussion	181
5.6.1 The CUS-3 prophage is not present in the CE10 genome	181
5.6.2 Usal regulates neuro, the U-acetyltransferase	182
lysis in CF10	182
5.6.4 Phase variation as a putative indirect mechanism of	103
transcriptional regulation of <i>neuO</i>	187
5.6.5 Conclusion	188

Chapter 6 Investigating further putative roles of DsdC in uropathogenic	
Escherichia coli and neonatal meningitis-associated Escherichia coli	189
6.1 Introduction	190
6.2 DsdC modulates discrete genes involved in CE10 lipopolysaccharide	
expression	191
6.3 Further potential roles of DsdC in CE10 K1 capsule regulation 6.3.1 Adhesion and invasion of cultured brain microvascular	194
endothelial cells does not appear to be mediated by DsdC	196
6.3.2 DsdC does not appear to affect serum resistance	197
6.4 The role of DsdC in regulating expression of genes involved in	
colibactin synthesis	198
6.4.1 Experimental design and transcriptional analysis of colibactin	
genes	199
6.4.2 DsdC does not appear to affect colibactin production in the <i>in</i>	
vitro infection assay	203
6.5 Discussion	206
6.5.1 DsdC modifies the O-antigen length of CE10 LPS	206
6.5.2 Further putative regulatory roles of DsdC in CE10 K1 capsule	
regulation	208
6.5.3 DsdC does not mediate the reduction in collibration synthesis.	
induced upon exposure to D-serine, in Nissle 1917	211
6.5.4 Conclusion	213
	213
Chapter 7 Final conclusions	214
References	221
Supplementary data	258

List of Figures

Figure 1-1 Composition of the Gram-negative cell wall.	20
Figure 1-2 Mechanisms of NMEC invasion of the BBB.	23
Figure 1-3 Mechanism of UPEC pathogenesis progression within the host.	27
Figure 1-4 Initiation of transcription by bacterial RNA polymerase.	31
Figure 1-5 The five general mechanisms of gene activation and repression, mediated	l
by TFs.	34
Figure 1-6 A representation of LTTR activation	37
Figure 1-7 TF gene regulation mechanisms in response to environmental signals.	46
Figure 1-8 Predicted model of the dsdCXA locus and subsequent D-serine catabolism.	. 46
Figure 3-1 Multiple sequence alignments of the amino acid sequence of CFT073 and	
CE10 DsdC.	90
Figure 3-2 Visualisation of the predicted domains of DsdC.	92
Figure 3-3 Growth profiles of WT and $\triangle dsdC$ in M9 minimal media supplemented with	۱
D-serine.	94
Figure 3-4 Growth profiles of WT and $\Delta ds dC$ on sole carbon source plates.	95
Figure 3-5 Growth profiles of WT, $\triangle dsdC$ and $\triangle dsdC$ + pDsdC in M9 minimal media	
supplemented with D-serine.	96
Figure 3-6 Growth profiles of WT and $\Delta ds dC$ in M9 minimal media spiked with	
D-serine.	97
Figure 3-7 Growth profiles of WT and DsdC ^{FLAG} mutants in M9 minimal media, spiked	
with D-serine.	98
Figure 3-8 The native protein expression of DsdC in CFT073 and CE10.	99
Figure 3-9 RT-qPCR fold change levels of <i>dsdC</i> in response to D-serine.	100
Figure 3-10 Graphical representation of the ChIP aspect of ChIP-Seq.	101
Figure 3-11 Canonical ChIP-Seq peak shape.	102
Figure 3-12 Peak shape filter score for CFT073 ^{DsdC-FLAG} , CE10 ^{DsdC1-FLAG} and	
CE10 ^{DsdC2-FLAG} .	103
Figure 3-13 Expanded view of ChIP-Seq peaks from CE10.	104
Figure 3-14 The global binding profile of CFT073 ^{DsdC-FLAG} , CE10 ^{DsdC1-FLAG} and	
CE10 ^{DsdC2-FLAG} .	106
Figure 3-15 Functionality of the genes predicted as direct binding targets of DsdC.	108
Figure 3-16 Strain-specific binding of DsdC.	110
Figure 3-17 Functional analysis of common binding peaks between CFT073 ^{DsdC-FLAG}	
and CE10 ^{DsdC1-FLAG} .	110
Figure 3-18 Strain-specific functionality of DsdC binding sites.	111
Figure 3-19 Genomic context of ChIP-Seq binding hits.	113
Figure 3-20 Predicted DsdC binding motifs.	115
Figure 3-21 Conditions used in the RNA-Seq experiment.	116
Figure 3-22 Volcano plots of CFT073 RNA-Seq transcriptome data.	119
Figure 3-23 Volcano plots of CE10 RNA-Seq transcriptome data.	120
Figure 3-24 Functional characteristics of the DEGs using the CFT073 and CE10	
transcriptomic data.	124
Figure 3-25 Direct regulation of DsdC in CFT073 and CE10.	126
Figure 4-1 RT-qPCR analysis of capsular and LPS biosynthesis genes.	141
Figure 4-2 RT-qPCR analysis of colibactin genes.	142

Figure 4-3 Coomassie Blue and Western blot analysis of the small-scale overexpression	on
trials of DsdC.	144
Figure 4-4 Purification of DsdC.	146
Figure 4-5 Cleavage of MBP tag from DsdC.	147
Figure 4-6 DsdC binds to the intergenic region upstream of the <i>dsdC</i> start codon.	148
Figure 4-7 DsdC binds to the region upstream of the <i>waaV</i> start codon.	149
Figure 4-8 EMSAs did not show binding of DsdC to ChIP-Seq identified regions.	150
Figure 4-9 A graphical representation of LTTR binding.	151
Figure 4-10 Elucidating the binding motif of DsdC.	152
Figure 5-1 Phase variability of <i>neuO</i> .	160
Figure 5-2 neuO binding dynamics.	161
Figure 5-3 neuO is not encoded on CUS-3 in the CE10 genome.	163
Figure 5-4 Growth profiles of WT and $\Delta neuO$ mutant in M9 minimal media, in the	
presence and absence of D-serine.	164
Figure 5-5 Quantification of viral titre in CE10 WT and isogenic mutants.	165
Figure 5-6 $\triangle dsdC1$ and $\triangle neuO$ present a large plaque phenotype.	166
Figure 5-7 Representation of the haloes surrounding the plaques formed on $\triangle neuO$.	167
Figure 5-8 Growth profiles of WT and mutants in M9 minimal media, on a FLUOstar	
plate reader.	168
Figure 5-9 NeuO protects against K1 bacteriophage lysis, mediated via DsdC1.	169
Figure 5-10 Complementation of NeuO restores protection against K1 bacteriophage	-
mediated lysis.	171
Figure 5-11 Complementation of pGapAp-NeuO restores the phage plaque size	
phenotype to WT levels.	173
Figure 5-12 Graphical representation of the number of CE10 WT NeuO "phase ON" a	nd
"phase OFF" colonies.	176
Figure 5-13 Phase variation of NeuO affects transcriptional expression.	177
Figure 5-14 $\triangle dsdC1$ is constituently NeuO "phase OFF".	180
Figure 6-1 Expanded view of the ChIP-Seq peaks at the waa locus and representation	n
of the E. coli LPS core OS structure.	192
Figure 6-2 DsdC modifies the LPS of CE10.	193
Figure 6-3 Expanded view of the ChIP-Seq peaks at the kps K1 capsular biosynthesis	
region and relative expression of <i>kpsF</i> and <i>kpsM</i> .	195
Figure 6-4 DsdC does not affect invasion or adhesion efficiency of CE10 in an in vitro	2
BBB model cell line.	196
Figure 6-5 DsdC does not appear to affect serum resistance in CE10.	198
Figure 6-6 Expanded view of the <i>clbB-clbR</i> ChIP-Seq peak.	199
Figure 6-7 Growth profiles of Nissle WT and $\triangle ds dC$.	200
Figure 6-8 Relative expression of genes involved in colibactin synthesis.	201
Figure 6-9 DsdC does not affect induction of megalocytosis in HeLa cells.	204
Figure 6-10 DsdC does not appear to affect induction of host DNA DSB.	205

List of Tables

Table 1-1 <i>F. coli</i> σ factors and their respective regulons.	32
Table 2-1 Bacterial strains and associated characteristics used in these studies.	52
Table 2-2 Bacterial plasmids used in this thesis.	54
Table 2-3 LB recipe: pH 7.5.	56
Table 2-4 SOC recipe: $pH 7.0$	56
Table 2-5 M9 minimal media recipe: pH 7.5.	56
Table 2-6 FA lysis buffer (150mM).	56
Table 2-7 FA lysis buffer (500mM).	57
Table 2-8 ChIP wash buffer.	57
Table 2-9 ChIP elution buffer.	57
Table 2-10 Tris-EDTA (TE) buffer.	57
Table 2-11 Tris buffered saline (TBS).	57
Table 2-12 Phosphate buffered saline Tween (PBST).	57
Table 2-13 Tris-acetate-EDTA (TAE).	57
Table 2-14 Western blot stripping buffer (pH 2.2).	57
Table 2-15 Coomassie blue.	58
Table 2-16 4X sample buffer (*100 ml volume).	58
Table 2-17 MBP binding buffer.	58
Table 2-18 MBP elution buffer.	58
Table 2-19 His-tag purification buffer.	58
Table 2-20 His-tag elution buffer.	58
Table 2-21 PB agar.	59
Table 2-22 Phage buffer.	59
Table 2-23 Phage top agar (PTA).	59
Table 2-24 Oligonucleotides used in this study.	61
Table 2-25 Volumes used for a PCR reaction.	62
Table 2-26 Thermocycler conditions for PCR.	64
Table 2-27 ChIP samples and nomenclatures given.	67
Table 2-28 Pooled ChIP samples and their nomenclatures.	68
Table 2-29 Thermocycler conditions for ChIP PCR.	70
Table 2-30 Thermocycler conditions for LunaScript RT SuperMix cDNA synthesis.	71
Table 2-31 Thermocycler conditions for RT-qPCR.	72
Table 2-32 European Nucleotide Archive (ENA) accession numbers for	
RNA-Sequencing data.	73
Table 2-33 Antibody concentrations used for Western blotting.	77
Table 3-1 Amino acid sequence homology between the DsdCs.	91
Table 3-2 Differences between the amino acid sequences in the substrate binding	
domain.	93
Table 3-3 Analysis of the ChIP-Seq peaks called from the CLC ChIP-Seq analysis	
software.	105
Table 3-4 Summary of DEGs from the RNA-Seq experiment.	118
Table 3-5 Commonality of DEGs between CE10 condition 2 and condition 3 datasets.	123
Iable 4-1 Comparisons of the RNA-Seq and RT-qPCR data.	141
I able 4-2 Conditions used in overexpression trials of DsdC recombinant protein.	143
Table 5-1 Sequencing results of the NeuO poly Ψ region in 10 CE10 WT colonies.	175

Table 5-2 Sequencing results of the NeuO poly Ψ region in 10 CE10 $\triangle dsdC1$ and $\triangle dsdC2$ colonies.179

Table S-1 CFT073 binding sites (no D-serine).	259
Table S-2 CFT073 binding sites (+ D-ser)	262
Table S-3 CE10 DsdC1 binding data (no D-ser).	267
Table S-4 CE10 DsdC1 binding sites (+ D-ser).	271
Table S-5 CE10 DsdC2 binding sites (no D-ser).	279
Table S-6 CE10 DsdC2 binding sites (+ D-ser).	284
Table S-7 Overlap of the ChIP binding hits between CFT073 and CE10 (+ D-ser).	292
Table S-8 Overlap of genes involved in binding sites and genes that were	
differentially expressed.	295

Abbreviations

- $\alpha\text{-}\text{CTD}$ $\alpha\text{-}\text{C}\text{-}\text{terminal}$ domain
- $\alpha\text{-NTD}$ $\alpha\text{-N-terminal}$ domain
- ABS activation binding site
- AMR antimicrobial resistance
- APEC avian pathogenic Escherichia coli
- BCA bicinchoninic acid
- BSA bovine serum albumin
- ChIP chromatin immunoprecipitation
- ChIP-Seq chromatin immunoprecipitation coupled with next generation sequencing
- CIP calf intestinal phosphatase
- CFU colony forming units
- CNF1 cytotoxic necrotising factor 1
- CNS central nervous system
- CRC colorectal cancer
- CRP catabolite repressor protein
- CSF cerebral spinal fluid
- CV colume volume
- DAO D-amino acid oxidase
- DAOA D-amino acid oxidase activator
- DAEC diffusely adherent Escherichia coli
- ddH2O distilled deionised water
- DEG differentially expressed gene
- DGE differential gene expression
- DMEM Dulbecco's Minimal Eagle Medium
- DSB double strand breaks
- dsDNA double stranded DNA
- EAEC enteroaggregative Escherichia coli
- EDTA ethylenediaminetetraacetic acid
- EHEC enterohaemorrhagic Escherichia coli
- EIEC enteroinvasive Escherichia coli
- ENA European nucleotide archive
- EMSA electrophoretic mobility shift assay

- EPEC enteropathogenic Escherichia coli
- ETEC enterotoxigenic Escherichia coli
- ETT2 Escherichia coli type III secretion system 2
- ExPEC extraintestinal pathogenic Escherichia coli
- FBS foetal bovine serum
- GO gene ontology
- GST glutathione S-transferase
- HBMEC human brain microvascular endothelial cells
- HTH helix-turn-helix
- HGT horizontal gene transfer
- IBC intracellular bacterial communities
- Ibe invasion of brain endothelial cells
- InPEC intestinal pathogenic Escherichia coli
- IPTG isopropyl B-D-1-thiogalactopyranoside
- LB Luria-Bertani broth
- LEE locus of enterocyte effacement
- LPS lipopolysaccharide
- LTTR LysR-type transcriptional regulator
- MBP maltose binding protein
- MEM-HEPES Minimal Essential Medium, HEPES modification
- MGE mobile genetic elements
- MRSA methicillin resistant Staphylococcus aureus
- N-CAM neural cell adhesion molecule
- nfH₂O nuclease free water
- NMDA N-methyl-D-aspartate
- NMEC neonatal meningitis associated Escherichia coli
- MGE mobile genetic islands
- OMP outer membrane protein
- OmpA outer membrane protein A
- PAI pathogenicity-associated island
- PBS phosphate buffered saline
- PBST phosphate buffered saline Tween
- PCR polymerase chain reaction
- PFA paraformaldehyde
- PFU plaque forming units

- PI post-infection
- PMN polymorphonuclear neutrophils
- PTA phage top agar
- QC quality control
- RBS regulatory binding site
- RNA-Seq RNA sequencing
- **RNAP RNA** polymerase
- RPc RNA polymerase closed complex
- RPo RNA polymerase open complex
- RT-qPCR quantitative real time PCR
- RTX repeats-in-toxin
- SDS sodium dodecyl sulphate
- SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- SEM standard error of the mean
- SEPEC sepsis-associated Escherichia coli
- SOC super optimal broth with catabolite repression
- SSM slipped strand mispairing
- ST sequence type
- TAE Tris-acetate-ethylenediaminetetraacetic acid
- TE Tris- ethylenediaminetetraacetic acid
- TBS Tris buffered saline
- TCS two component systems
- TF transcription factor
- TFBS transcription factor binding site
- TRAP trp RNA-binding attenuation protein
- TSS transcriptional start site
- T1F type 1 fimbriae
- T2SS type two secretion system
- T3SS type three secretion system
- T6SS type six secretion system
- UPEC uropathogenic Escherichia coli
- UTI urinary tract infection
- WT wild-type

Abstract

Within the mammalian host, bacteria are exposed to a large number of nutritional and chemical stimuli. Modification of gene transcription, in response to environmental signals, enables bacteria to compete and adapt within their preferred niches. D-serine is a host metabolite that has become a focus in recent years due to its diverse roles in neurotransmission and signalling in humans, as well as its unique role in affecting gene expression in bacteria. Indeed, previous work from the Roe laboratory revealed that D-serine played a critical role in controlling the expression of a main virulence determinant in enterohaemorrhagic *Escherichia coli* (EHEC), the type three secretion system (T3SS). Conversely, some commensal and extraintestinal pathogenic *E. coli* (ExPEC) can catabolise D-serine, using it as a carbon source.

Uropathogenic *E. coli* (UPEC) and neonatal meningitis-associated *E. coli* (NMEC) represent two clinically relevant pathotypes of ExPEC, that are causal agents of a spectrum of diseases in mammals from uncomplicated urinary tract infections (UTIs), to bacteraemia, and meningitis. ExPEC are distinct amongst *E. coli* in their ability to colonise several anatomical niches within the host. ExPEC strains are able to survive outside of the intestine, partly due to their ability to catabolise a diverse range of host metabolites, including D-serine. UPEC and NMEC carry a locus, *dsdCXA*, for D-serine metabolism. DsdC, a LysR-type transcriptional regulator (LTTR), autoregulates its own expression and further controls the expression of DsdX, a D-serine inner membrane transporter and DsdA, a D-serine deaminase that catabolises D-serine into pyruvate and ammonia. Strikingly, NMEC strains carry two copies of the *dsdCXA* locus: *dsdCXA1* and *dsdCXA2*.

Metabolism and virulence are often interlinked in bacteria, with host metabolites, in addition to being carbon sources, acting as environmental signals that can affect bacterial gene expression. It was thus hypothesised that Dserine, which is abundant in the brain and urinary tract, may act as an environmental stimulus that enables two ExPEC pathogens to sense their environment and modify their gene expression, through the regulatory actions of DsdC. In this work, using a combination of chromatin immunoprecipitation coupled with next generation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq), the direct regulon of DsdC in two prototypical UPEC and NMEC strains, CFT073 and CE10, was elucidated, in the presence and absence of D-serine. It was shown that DsdC bound to distinct regions of both the CFT073 and CE10 genome, indicating that DsdC has been tailored for strain-specific lifestyles. In CFT073, it was shown that DsdC bound and affected expression of genes involved in colibactin synthesis, a bacterial genotoxin. Furthermore, it was revealed that in CE10, DsdC bound and affected expression of several genes involved in outer membrane-associated virulence, such as capsular and LPS biosynthesis genes. Using a range of biochemical techniques, it was established that DsdC, upon exposure to D-serine, modified the O-antigen structure of CE10. Furthermore, it was revealed that DsdC1, but not DsdC2, affected the survival of CE10 against K1-specific bacteriophages, through the regulation of the O-acetyltransferase gene *neuO*, elucidating a distinct role for the homologous proteins. Collectively, this work describes how regulation by DsdC has been tailored to suit strainspecific lifestyles in two ExPEC strains and further enhances our understanding of how bacterial pathogens sense their environment and mediate pathogenesis.

Author's declaration

I hereby declare that this thesis is the result of my own work and has been composed for the degree of PhD at the University of Glasgow. This work has not been submitted for any other degree at this or any other institution. All work presented was performed by myself unless otherwise stated. All sources of information and contributions to the work have been specifically acknowledged in the text.

Natasha C A Turner

August 2021

Chapter 1 Introduction

1.1 Escherichia coli

Escherichia coli is a Gram-negative, facultative anaerobe, first described by Theodor Escherich in the late nineteenth century (Hacker & Blum-Oehler, 2007). For decades, it has been used as a model organism for bacterial studies, often being considered as the molecular biology 'workhorse' of the laboratory (Hacker & Blum-Oehler, 2007). E. coli is both a commensal and pathogenic organism, commonly found within the microbiota of mammals and birds (Rasko et al., 2008). The composition of the microbiome is dynamic, however, E. coli is one of 109 species that form the core baseline microbiome in healthy controls (King et al., 2019). Commensal E. coli are typically found within the caecum and colon of the large intestine in mammals, residing in the mucus layer covering the epithelial cells (Li et al., 2015; Poulsen et al., 1994; Tenaillon et al., 2010). Typically, E. coli is one of the first bacterial species that colonises neonates (Casaburi et al., 2021), providing benefits to the host including preventing the colonisation of other pathogens (reviewed in Tenaillon et al., 2010). Conversely, through both intestinal and extraintestinal disease, E. coli is thought to kill more than 2 million humans per year (reviewed in Tenaillon et al., 2010).

E. coli is broadly divided into eight main phylogenetic groups: A, B1, B2, C, D, E, F, and G (Denamur *et al.*, 2021). An additional group closely related to D, termed H, has also been suggested (Lu et al., 2016). Analysis of multiple E. coli genomes has revealed large differences in size between strains, varying from 4.2 to 6 Mbp, corresponding to 3,900 to 5,800 genes respectively (reviewed in Denamur *et al.*, 2021). This genetic diversity can be ascribed to the relative plasticity of the E. coli genome (Touchon et al., 2009). Indeed, through horizontal gene transfer (HGT), genes can be acquired laterally, on mobile genetic elements (MGE) such as transposons, plasmids, bacteriophages or genomic islands (reviewed in Juhas, 2015). Studies have suggested that up to 75% of genes in each genome have been acquired through HGT (reviewed in Juhas, 2015). Many of the characteristic virulence factors carried by E. coli are encoded on pathogenicity-associated islands (PAI) and are inserted into the genome in tRNA 'hotspots' (Johnson & Russo, 2002). The genome size of E. coli is finite however, with multiple selective pressures often dictating acquisition or loss of genetic elements. Earlier studies reported that all E. coli shared a core genome of \sim 2,000 genes, with the remaining genes obtained from a pangenome

of ~18,000 (Touchon *et al.*, 2009). However, ~26 new genes are purported to be identified with each new strain sequenced, leading to the suggestion that the pangenome now consists of ~75,000 genes (reviewed in Denamur *et al.*, 2021). This would indicate that the *E. coli* genome is potentially inexhaustible.

Through HGT and evolution, several pathotypes of *E. coli* have emerged across the phylogroups. Based upon clinical data, *E. coli* is classified into three main groups: commensal strains; intestinal pathogenic *E. coli* (InPEC); and extraintestinal pathogenic *E. coli* (ExPEC) (Russo & Johnson, 2000). Within the InPEC group, there are six main *E. coli* pathotypes recognised: Shiga-toxin producing/enterohaemorrhagic *E. coli* (STEC/EHEC); enteropathogenic *E. coli* (EPEC); enteroinvasive *E. coli* (EIEC); enteroaggregative *E. coli* (EAEC); enterotoxigenic *E. coli* (ETEC); and diffusely adherent *E. coli* (DAEC) (Russo & Johnson, 2000). These pathotypes cause enteric disease and, although there is some overlap, they each have a distinct repertoire of virulence factors (Russo & Johnson, 2000).

Conversely, whilst InPEC pathogenesis is consigned to the intestinal tract, ExPEC strains can infect almost any organ or anatomical region within the host (Russo & Johnson, 2000). There are several pathotypes that comprise ExPEC strains: neonatal meningitis-associated *E. coli* (NMEC); uropathogenic *E. coli* (UPEC); and sepsis-associated *E. coli* (SEPEC). ExPEC strains predominantly reside asymptomatically within the intestinal tract, causing disease only upon egression of the gut (Johnson & Russo, 2002). ExPEC strains often employ a range of virulence factors such as adhesins, toxins, and host avoidance systems, to help them survive in extraintestinal niches (Kaper *et al.*, 2004).

1.2 Extraintestinal pathogenic *E. coli* (ExPEC)

ExPEC isolates are able to infect multiple anatomical niches within the host, causing urinary tract, bloodstream, prostate, and further infections (Manges *et al.*, 2019). ExPEC isolates have been defined as carrying at least two of the following virulence factors: P-fimbriae (*pap*); S-fimbriae/F1C-fimbriae (*sfa/foc*); Dr binding proteins (*afa/draBC*); capsule (*kpsM II*); or the aerobactin receptor (*iutA*) (Dale & Woodford, 2015). Indeed, it is the collection of virulence factors that enables ExPEC strains to cause disease, with no single virulence factor

acting as the causal agent (Dale & Woodford, 2015). The virulence factor profiles of ExPEC isolates are therefore highly variable; however, as with all *E. coli*, ExPEC strains have an outer membrane layer comprising lipopolysaccharides (LPS) among other components. *E. coli* LPS plays a key role in virulence and protection of the cell from environmental and immune system insults (Ebbensgaard *et al.*, 2018).

Figure 1-1 Composition of the Gram-negative cell wall. Adapted from Schwechheimer & Kuehn, 2015. A Gram-negative cell envelope is composed of three elements: an outer membrane; peptidoglycan; and an inner membrane. The inner leaflet of the outer membrane is composed of phospholipids, and the outer leaflet is composed of LPS and envelope proteins (porins). The cytoplasmic membrane (or inner membrane) is composed of a phospholipid bilayer. Between the two membranes is the periplasm, which contains the peptidoglycan layer.

LPS is composed of three components: lipid A, a hydrophobic protein that embeds the LPS structure into the outer membrane; the core polysaccharide which is comprised of multiple sugars; and the hypervariable O-antigen, which comprises numerous repeating sugar units (reviewed in Liu *et al.*, 2020). In nonencapsulated *E. coli*, the LPS is exposed to the host environment and is often the first line of defence against the host (reviewed in Bertani & Ruiz, 2018). Fundamentally, LPS is a structural component of the outer membrane, and functions as a permeability barrier to the environment (reviewed in Bertani & Ruiz, 2018). However, LPS is also an endotoxin, with lipid A activating the host immune response and the inflammatory system (reviewed in Raetz & Whitfield, 2002). The host's immune response is dependent on the concentration of LPS, with high concentrations of LPS inducing fever and increasing the heart rate within the host, which can lead to septic shock and death (reviewed in Wang & Quinn, 2010). Alternatively, due to the hypervariability of the O-antigen, *E. coli* can evade the immune response and so is protected from host-mediated lysis and phagocytosis (reviewed in Bertani & Ruiz, 2018). The LPS therefore plays a key role in protection and virulence in ExPEC, and indeed all *E. coli*, strains.

1.2.1 Neonatal meningitis-associated *E. coli* (NMEC) prevalence and pathogenesis

Neonatal meningitis is a severe disease that contributes to neonatal morbidity and mortality worldwide, and is characterised as the inflammation of the meninges during the first 28 days of life (Khalessi & Afsharkas, 2014). The incidence of bacterial-associated neonatal meningitis ranges from 0.25-1 per 1,000 live births (Khalessi & Afsharkas, 2014). However, it has been reported that the incidence of meningitis is much greater in lower-income countries, where it can be as high as 0.8-6.1 per 1,000 live births (reviewed in Ku, Boggess & Cohen-Wolkowiez, 2015). The mortality rate in lower-income countries is ~40%, with some 50,000 new-borns dying every year, thereby making meningitis one of the five most prevalent neonatal infections worldwide (reviewed in Bonacorsi & Bingen, 2005). For the neonates that survive, neurological sequelae can occur in 30-50% of cases, presented as learning difficulties, blindness, hydrocephalus, and hearing loss (reviewed in Mann & Jackson, 2008).

E. coli is the second largest etiological agent of neonatal meningitis, after Group B *Streptococcus* (reviewed in Bonacorsi & Bingen, 2005). Indeed, NMEC is the cause of 20-40% of the cases that occur in the USA annually (reviewed in Russo & Johnson, 2003). The most common way in which meningitis develops in neonates is by a primary blood stream infection. Initially, NMEC is acquired in the neonate

from the mother's flora, or from environmental sources (reviewed in Bonacorsi & Bingen, 2005). NMEC then establishes itself within the intestinal tract, before translocating to the bloodstream (reviewed in Bonacorsi & Bingen, 2005). Once there is sufficient bacteraemia (10³ colony forming units (CFU)/ml) within the bloodstream, NMEC penetrates the blood-brain barrier (BBB), invading the central nervous system (CNS) (Huang *et al.*, 1995; reviewed in Xie, Kim & Kim, 2004). Once NMEC passes through the BBB and enters the cerebral spinal fluid (CSF), it is liberated from the immune system and is therefore able to proliferate freely (reviewed in Polin & Harris, 2001). Natural bacterial lysis subsequently causes release of bacterial cell wall products, which act as stimuli for the release of host inflammatory cytokines, and it is this response that causes meningitis (reviewed in Polin & Harris, 2001).

Although the mechanism has not been fully elucidated, a key step in NMEC pathogenesis is traversal of the BBB. The BBB is a structural barrier that is formed by human brain microvascular endothelial cells (HBMEC), pericytes and astrocytes, and which protects the brain from a number of insults (reviewed in Kim, 2012). NMEC has been shown to attach to the BBB using several factors including FimH of the type I pili, which binds to the host receptor CD48, and outer membrane protein A (OmpA) which binds to the host receptor ECGP96 (Khan et al., 2007; Prasadarao, 2002; Prasadarao et al., 1996). Further, transposon mutagenesis revealed that NMEC invasion also occurs through the actions of proteins that are termed the invasion of brain endothelial cell (Ibe) adhesins, although the receptors for this are unknown (Huang et al., 1995, 1999). These interactions trigger a cascade of host cell signalling pathways, resulting in an increase in intracellular Ca²⁺, which stimulates actin cytoskeleton rearrangements, a prerequisite for NMEC invasion (Khan et al., 2007; Maruvada & Kim, 2012). Cytotoxic necrotising factor 1 (CNF1) also contributes to NMEC invasion of the BBB, and has been shown to play a role in host cell myosin rearrangement, as well as actin rearrangement (Khan et al., 2002; Essler et al., 2003; reviewed in Croxen & Finlay, 2010). CNF1 binds to the host receptor 67LR, inducing cytoskeleton rearrangements, promoting internalisation of NMEC into HBMECs (Kim et al., 2005). These data reveal the multifactorial processes that NMEC can use in order to attach and traverse the BBB.

Figure 1-2 Mechanisms of NMEC invasion of the BBB. Adapted from Croxen & Finlay, 2010. Attachment of NMEC to the BBB is mediated by type 1 pili binding to the host receptor CD48 and OmpA binding to the host receptor ECG96. These interactions mediate an increase in intracellular Ca²⁺ which stimulates actin rearrangements. Further, release of CNF1 mediates binding to host receptor 67LR which causes myosin rearrangements, enabling NMEC to invade the brain endothelial cells.

1.2.2 NMEC K1 polysialic acid capsule

Survival within the blood is crucial for eliciting pathogenesis at the BBB interface, as high bacteraemia is required (Huang *et al.*, 1995). NMEC strains therefore characteristically have an antiphagocytic capsule that surrounds the cell and provides protection from the host immune response (reviewed in Croxen & Finlay, 2010). There are over 70 distinct capsular (K) antigens found in *E. coli* (Jann & Jann, 1992), however, the K1 antigen is often over-represented in NMEC infection, with a study showing that 84% of isolates recovered from the CSF of neonates with meningitis had the K1 capsular polysaccharide (Robbins *et al.*, 1974). Furthermore, mutants devoid of the K1 capsule were unable to be detected in the CSF in an *in vivo* rat model, indicating the importance of the K1 capsule to infection (Kim *et al.*, 1992).

A key survival mechanism of bacteria is the ability to evade the host immune response. Indeed, as discussed above, there are over 70 distinct capsular (K)

antigens that have been found in *E. coli* (Jann & Jann, 1992), with each K antigen differing in its sugar composition, thereby presenting the host immune system with a range of differing structures. Moreover, the K1 polysaccharide is homopolymer of $\alpha 2$,8-linked sialic acid residues, which in itself is a molecular mimic of the host polysialic acid of the neural cell adhesion molecule (N-CAM) (reviewed in Silver & Vimr, 1990). K1 polysaccharides are therefore weakly immunogenic in mammals and do not stimulate synthesis of antibodies (reviewed in Silver & Vimr, 1990).

The mammalian complement system also plays a crucial role in defending the host against pathogens and represents one of the main mechanisms of innate immunity (Dunkelberger & Song, 2010). The complement system can be activated through three major pathways: classical, lectin and alternative (Dunkelberger & Song, 2010). The K1 capsule has been reported to play a role in the ability of NMEC to evade complement-mediated killing, with strains that lose the ability to synthesise K1 subsequently losing serum resistance properties (Cross et al., 1986; Leying et al., 1990). Factor H, the main soluble regulator of the alternative complement pathway, has been reported to bind to polyanions, such as the K1 polysialic acid capsule (reviewed in Abreu & Barbosa, 2017). This interaction has been suggested to downregulate the alternative complement pathway, thus impairing the membrane attack complex (reviewed in Abreu & Barbosa, 2017). Moreover, the presence of an extracellular polysaccharide, such as the K1 capsule, is thought to mask underlying bacterial cell surface structures that could activate the complement system (reviewed in Silver & Vimr, 1990). The K1 capsular polysaccharide therefore plays a key role in the virulence of NMEC isolates, enabling them to evade and resist the host immune system.

1.2.3 Further NMEC-associated virulence factors

As well as the K1 capsule, NMEC strains use a wide range of virulence factors in order to survive and evade the host. These factors include iron acquisition systems, invasion proteins (*ibe*), toxins (CNF1), and a cryptic type three secretion system (T3SS), termed the *Escherichia coli* type III secretion system 2 (ETT2) (Lu *et al.*, 2011; Wijetunge *et al.*, 2015). CNF1 is a protein toxin that can be produced by NMEC, and which induces the development of stress fibres in epithelial cells via the Rho pathway (Lemichez *et al.*, 1997). An early study

suggested that CNF1 induced high lethality when injected into mice and caused the formation of multi-nucleated cells *in vitro* (Lemichez *et al.*, 1997). Furthermore, CNF1 has been reported to activate NF-kB in epithelial cells, thereby stimulating the expression of pro-inflammatory factors (reviewed in Fabbri, Travaglione & Fiorentini, 2010). Conversely, further research reported that injection of the entire CNF1 toxin caused no lethal effects in animals, and reported that CNF1 might instead play a role in protecting the host cell from apoptotic stimuli (reviewed in Fabbri, Travaglione & Fiorentini, 2010). Although this has not been proven, this protection may facilitate NMEC survival within the niche by keeping the host cell alive. However, CNF1 plays a key role in invasion of NMEC into the CNS (Khan *et al.*, 2002), indicating that although its role in the host has not been fully elucidated, it is an important virulence determinant for NMEC.

T3SS are macromolecular protein syringes that are unique to Gram-negative bacteria, and are used to inject virulence factors into host cells or bacterial competitors (reviewed in Slater et al., 2018). The T3SS spans the inner and outer membranes of Gram-negative bacteria, with a needle-like filament protruding into the environment. In E. coli, the T3SS is best characterised in EHEC and EPEC strains, which can use the T3SS to form attaching and effacing lesions on host cells and deliver effector proteins (Mellies et al., 1999; Moon et al., 1983). In EHEC and EPEC, the genes for the T3SS are carried on a pathogenicity-associated island (PAI) termed the locus of enterocyte effacement (LEE) (McDaniel *et al.*, 1995). Intriguingly, some NMEC strains have been reported to carry the apparatus genes of a cryptic secondary T3SS, ETT2 (Yao et al., 2009). This secondary T3SS was originally first described in EHEC, having undergone widespread mutational attrition, rendering it unable to form a functional secretion system (Ren et al., 2004). However, studies have reported that the ETT2 plays a role in virulence in bloodstream isolates of *E. coli*, with mutations in CE10 of the ETT2 leading to defects in invasion and intracellular survival in HBMECs (Yao et al., 2009). Although the role of the ETT2 has not been fully elucidated, this data does indicate that the ETT2 is an important virulence factor in NMEC.

1.2.4 Uropathogenic *E. coli* (UPEC) prevalence and pathogenesis

Urinary tract infections (UTIs) are a common disease, and are estimated to affect up to 150 million people per year, posing a significant economic and health burden upon society (Flores-Mireles et al., 2015). Indeed, it is estimated that the societal cost of UTIs in the United States alone is some \$3.5 billion per year (Flores-Mireles et al., 2015). UTIs are often referred to as being either uncomplicated or complicated infections. Uncomplicated UTIs are classified as lower UTIs, which affect the urinary tract/bladder (cystitis), or as upper UTIs, which affect the upper urinary tract/kidneys (pyelonephritis) (Mazzulli, 2012). These often occur in otherwise healthy individuals and can cause symptoms of dysuria and fever. Complicated UTIs often develop in individuals with underlying illnesses or who are immunocompromised, amongst other factors (Mazzulli, 2012). Complicated UTIs can lead to severe pyelonephritis, renal scarring and end-stage disease (Melekos & Naber, 2000). UTIs are caused by a range of different pathogenic organisms, including *Klebsiella pneumoniae*, *Proteus* mirabilis and Staphylococcus saprophyticus (Mazzulli, 2012). However, the most common infectious agent of UTIs is UPEC. Indeed, 75-95% of uncomplicated UTIs are associated with UPEC strains (Hooton, 2012).

The urinary tract was previously classed as a sterile environment, however, metagenomic analysis of the urinary tract has revealed a wealth of information, indicating the existence of a urogenital microbiome (Thomas-White *et al.*, 2018). UPEC pathogenesis occurs when UPEC strains translocate from the gut and colonise the periurethral and urethra (reviewed in Flores-Mireles *et al.*, 2015). UPEC can then ascend into the bladder lumen and adhere, using type 1 fimbriae (T1F) which bind to uroplakin receptors on bladder epithelial cells (Connell *et al.*, 1996; Mulvey *et al.*, 1998). This binding, and further interactions, stimulates invasion of the epithelial cells and triggers local actin rearrangement, resulting in internalisation of the attached UPEC (Martinez *et al.*, 2000). UPEC can then proliferate within the host cell and biofilm-like complexes are formed, termed intracellular bacterial communities (IBCs) (Anderson *et al.*, 2003). The formation of IBCs protects UPEC from neutrophils, antibiotics and other environmental insults (Anderson *et al.*, 2003). Subsequent UPEC invasion and attachment results in an influx of polymorphonuclear neutrophils (PMNs), which cause tissue

damage and apoptosis of the bladder cells (Mulvey *et al.*, 1998; Haraoka *et al.*, 1999; reviewed in Croxen & Finlay, 2010). Left untreated, some UPEC strains can disseminate to the kidney, causing pyelonephritis, and further, penetrate through the endothelial cells into the bloodstream, resulting in bacteraemia (reviewed in Kaper, Nataro & Mobley, 2004) (Fig 1-3).

Figure 1-3 Mechanism of UPEC pathogenesis progression within the host. (A) Adapted from Kaper, Nataro & Mobley, 2004. (1) UPEC contaminate the urethra

and ascend to the bladder. (2) UPEC bind to the epithelial cells of the bladder and invade. (3) Some UPEC ascend up the ureters to the kidney. (4) After disseminating to the kidney, UPEC can release haemolysins, damaging host epithelial cells. (5) UPEC can disseminate further, crossing the cell barrier into the blood supply to initiate bacteraemia. (B) Adapted from Croxen & Finlay, 2010. UPEC attach to the uroplakin receptor on the bladder epithelial cells using T1F. This binding stimulates an unknown pathway which mediates invasion into the host cell. UPEC then form IBCs within the host cell. These interactions cause an influx of PMNs. Apoptosis of the bladder cells occurs. UPEC strains can disseminate from the bladder to the kidneys.

1.2.5 UPEC-associated virulence factors

There are four main phylogenetic groups in which UPEC strains have been identified; A, B1, B2, and D, highlighting the diversity of the pathotype (Terlizzi *et al.*, 2017). Indeed, there is not a single set of virulence determinants that defines the UPEC pathotype. UPEC strains possess numerous virulence factors that enable them to cause disease in hosts. These include structural mechanisms such as fimbriae, pili, and flagella, as well as secreted mechanisms such as outer membrane proteins (OMPs), iron-acquisition systems and bacterial toxins (Najafi *et al.*, 2018; Shah *et al.*, 2019; Welch *et al.*, 2002).

UPEC secrete several bacterial toxins, including colibactin and α -haemolysin (Welch *et al.*, 2002). α -haemolysin is encoded on the *hlyCABD* operon in *E. coli* and is a member of the repeats-in-toxin (RTX) family of toxins (Felmlee, Pellett & Welch, 1985; reviewed in Welch, 2016). *In vitro* studies have revealed that α -haemolysin is cytotoxic to renal cells (Mobley *et al.*, 1990). Indeed, α -haemolysin has been reported to oligomerise and integrate into the host cell (Bhakdi & Tranum-Jensen, 1986; Benz *et al.*, 1989; reviewed in Flores-Mireles *et al.*, 2015). This mechanism has been reported to facilitate the acquisition of iron and nutrients for the bacteria (reviewed in Flores-Mireles *et al.*, 2015). Further, α -haemolysin has been reported to be involved in pathways that could trigger exfoliation of the epithelial cells, exposing deeper layers of host cells for further UPEC colonisation (Dhakal & Mulvey, 2012).

A further important virulence factor for UPEC are iron-acquisition systems. Iron is limited within the urinary tract, however it is essential for bacterial growth (Watts *et al.*, 2012). Bacteria therefore utilise siderophore systems for scavenging iron. Siderophore systems comprise of siderophores, which are low-molecular-weight Fe³⁺-chelating compounds, and a membrane receptor, which internalises the siderophore-bound iron (reviewed in Flores-Mireles *et al.*, 2015). In *E. coli*, four different siderophore systems have been identified (Watts *et al.*, 2012), indicating the importance of iron-acquisition to UPEC. Two siderophores, aerobactin and yersiniabactin, have been reported to be the most critical in iron acquisition in the urinary tract (Garcia *et al.*, 2011). Further, genomic studies *in vivo* using UPEC strain UTI89 revealed, relative to samples obtained from the caecum, IBCs showed a marked increase in expression of components of iron-acquisition in UPEC pathogenesis.

1.3 Bacterial transcriptional regulation

Fine-tuning of gene expression in response to environmental cues is a key survival mechanism for bacteria. Gene expression occurs when template DNA is transcribed into mRNA by RNA polymerase, followed by translation of the mRNA into a functional protein by ribosomal machinery. Transcription can be split into three main steps: initiation, elongation, and termination. Transcriptional regulation can occur at any stage within the transcription process, but most frequently occurs within the initiation stage (reviewed in Browning & Busby, 2004).

1.3.1 Initiation of transcription

All bacterial transcriptional initiation is dependent on RNA polymerase (RNAP). The core enzyme of RNAP is comprised of five subunits: two large β subunits, β and β '; two identical α subunits; and a ω subunit. The two α subunits consist of two domains, an α -N-terminal domain (α NTD) and an α -C-terminal domain (α CTD). The α NTD is responsible for the assembly of the β subunits, which is the active site of the polymerase, and the α CTD plays a role in regulating transcription and binds to DNA (reviewed in Browning & Busby, 2004; Murakami, 2015). The ω subunit of RNAP had long remained elusive to scientists; however,

research has revealed that it plays a structural role in maintenance of β ' and further acts as a chaperone of β ' to the enzyme assembly (Fig. 1-4A) (reviewed in Mathew & Chatterji, 2006).

Although RNAP is required for transcription, it can only weakly bind in an indiscriminate fashion to promoter DNA (reviewed in Ghosh, Bose & Zhang, 2010). Directed transcription cannot be initiated without an additional protein, a σ factor, which is used to recognise specific promoter sequences. Promoter sequences consist of several unique elements, including the -10 and -35 consensus sequence, and it is these two sequence motifs that are recognised by the σ factor. The combined complex of RNAP and σ factor is called the holoenzyme, and it is this complex that can bind to DNA and initiate targeted transcription (Fig.1-4B) (reviewed in Browning & Busby, 2016). Once the σ factor has recruited the RNAP and formed a holoenzyme, it interacts with the promoter region, forming a closed complex (RPc). This closed complex can then switch to an open complex (RPo), which involves the unwinding of ~12 bp of double stranded DNA (dsDNA). The template strand of DNA is then loaded into the RNAP active site for RNA synthesis. The σ factor is released and RNAP enters the elongation phase (Fig.1-4C). Many factors can influence the initiation of transcription including σ factors, transcription factors (TFs), ligands, and nucleoid associated proteins (NAPs), together enabling fine-tuning of bacterial gene expression.

Figure 1-4 Initiation of transcription by bacterial RNA polymerase. (A) General structure of RNAP assembly, adapted from Murakami, 2015. (B) A graphical representation of the RNAP holoenzyme, adapted from Browning & Busby, 2004. The two β subunits, β and β ', form the catalytic part of the RNAP, assembled together by α NTD. The α CTD binds to the promoter region DNA, upstream of the -35 and -10 elements. The σ factor binds to the -10 and -35 elements, initiating transcription. (C) A graphical representation of transcription initiation, adapted from Browning and Busby, 2016. The RNAP holoenzyme binds to the promoter region, forming a closed complex. The closed complex can then switch to an open complex and the dsDNA is unwound. The template strand of DNA is loaded into the active site and RNA transcript is formed. The σ factor is then released and RNAP enters the elongation phase.

1.3.2 Sigma (σ) factors

As discussed above, σ factors are used to recognise specific sequences of promoter regions, directing the RNAP to the appropriate transcriptional start sites (TSS) and initiating strand separation of DNA to form the transcription bubble. Bacteria have multiple σ factors, with *E. coli* carrying seven: σ^{70} , σ^{54} (σ^{N}), σ^{Fecl} , σ^{24} (σ^{E}), σ^{28} (σ^{F}), σ^{32} (σ^{H}), σ^{38} (σ^{S}). σ^{70} is the essential housekeeping σ factor, which regulates the transcription of thousands of genes. Conversely, the other six σ factors are referred to as the alternative σ factors, regulating genes involved in numerous stress responses as detailed in Table 1-1 (reviewed in Ishihama, 2000). All *E. coli* σ factors belong to the σ^{70} family, except σ^{54} which is evolutionarily unrelated to the other σ factors (Lonetto, Gribskov & Gross, 1992; reviewed in Merrick, 1993).

Sigma (σ) factor	Sigma (σ) factor regulon
σ ⁷⁰	Housekeeping
σ ⁵⁴ (σ ^N)	Nitrogen stress response
σ ^{Fecl}	Ferric citrate transport
σ^{24} (σ^{E})	Heat shock response/cell envelope stress
$\sigma^{28} (\sigma^F)$	Flagella/chemotaxis response
σ ³² (σ ^H)	Heat shock response
σ^{38} (σ^{S})	Stationary phase/general stress response

Table 1-1 *E. coli* σ factors and their respective regulans. A table of the seven *E. coli* σ factors and the functions they regulate.

The concentration of each σ factor is dependent on cell growth conditions: σ^{70} is reported to be the most abundant, and has the highest affinity for RNAP (reviewed in Ishihama, 2000; Paget, 2015). Each σ factor is composed of multiple domains, with σ^{70} comprised of four domains: $\sigma_{1.1}$, σ_2 , σ_3 , and σ_4 . Each domain has DNA binding properties, except for $\sigma_{1.1}$, which has been reported to have a role in allowing access to the RNAP active site. The other domains bind to the promoter region: σ_2 binds to the -10 element, σ_3 binds to the extended -10 element, and σ_4 binds to the -35 element (reviewed in Feklístov *et al.*, 2014). As the different σ factors guide the RNAP to different promoter regions depending on the growth conditions and stresses, σ factors represent a simple mechanism of gene regulation in bacteria. The activity of σ factors, and subsequent directed bacterial gene expression, is further controlled by anti- σ factors. Anti- σ factors can sequester σ factors, impeding RNAP binding. Indeed, in *E. coli* stationary phase growth, Rsd interacts with σ^{70} domains σ_2 and σ_4 , preventing binding to the RNAP and the -35 element, allowing σ^{38} to bind to RNAP, promoting expression of stationary phase related genes (reviewed in Paget, 2015). Gene regulation by σ factors is therefore both a simple and complex mechanism of gene regulation in bacteria. Conversely, transcription often cannot occur without the presence of a further protein or ligand, such as TFs.

1.3.3 Transcription factors (TFs), nucleoid associated proteins (NAPs), and two-component systems (TCS)

Both TFs and NAPs are DNA-binding proteins that can influence gene regulation. Around 300 genes in *E. coli* have been predicted to be DNA-binding proteins, indicating the importance of these regulatory elements to the cell (Babu & Teichmann, 2003a; Martínez-Antonio & Collado-Vides, 2003). However, it has been estimated that just seven of these TFs control up to 50% of all regulated genes (Martínez-Antonio & Collado-Vides, 2003). TFs are often expressed in response to host environmental stimuli, with some TFs auto-regulating themselves (reviewed in Browning & Busby, 2004; Maddocks & Oyston, 2008).

In order to regulate gene expression, TFs are reliant on recognising DNA motifs at promoter regions (D'haeseleer, 2006; Goethals *et al.*, 1992). Most TFs therefore carry a DNA-binding motif, although this is usually insufficient to facilitate binding, and thus most TFs bind as dimers (reviewed in Browning, Butala & Busby, 2019). TFs activate or repress the expression of genes by several mechanisms, usually depending on environmental signals. There are two general mechanisms for activation of genes by TFs: simple activation and activation by conformational change (Fig. 1-5). In simple activation, the TF binds upstream of the promoter element and recruits RNAP by directly interacting with either the σ_4 element or the α CTD (Zhou, Zhang & Ebright, 1993; Busby & Ebright, 1994). TFs can also positively regulate gene expression by binding to, or near, the promoter element and altering the conformation, realigning the -10 and -35 element, and thus enabling RNAP to bind (Heldwein & Brennan, 2001).

TFs can also repress gene expression. There are three general mechanisms through which this can occur: steric hinderance, DNA looping, and locking RNAP

at the promoter (Fig. 1-5). The simplest form of gene repression occurs when repressors bind within the promoter element, thereby causing steric hinderance and occluding RNAP from the site (Jacob & Monod, 1961). Further, to repress gene expression, singular or multiple TFs may bind to promoter-distal sites and thus DNA looping may occur, thereby hindering RNAP from binding to the promoter element (Vörös *et al.*, 2017). Finally, TFs can block gene expression by locking RNAP at the promoter region and thus transcription cannot proceed (Grainger *et al.*, 2008). Although these are the main mechanisms of TF regulation, there are numerous other mechanisms that can involve multiple TFs at complex promoter regions (Browning, Butala & Busby, 2019).

Activation

Α В TF RNAP RNAP -35 -10 -35 TF-10 Repression С D RNAP **RNAP** -35 TF -35 -10 -10 Ε **RNAP** -35 -10

Figure 1-5 The five general mechanisms of gene activation and repression, mediated by TFs. Adapted from Browning, Butala & Busby, 2019. (A) and (B) are

two general methods of TF activation. (A) TF binds to the target DNA and recruits RNAP to the promoter element, enabling trancription. (B) TF binds to the promoter elemnt and adjusts the positioning of the -10 and -35, thus enabling the RNAP to bind and transcription to proceed. (C), (D) and (E) are three general methods of TF repression. (C) TF binds within the promoter element, thereby sterically hindering RNAP from binding, thus repressing transcription. (D) Multiple TFs bind near the promoter element, causing DNA looping, thus occluding RNAP binding and thereby repressing transcription. (E) RNAP binds to the promoter element, however the TF locks it into position, thereby repressing transcription.

Unlike TFs, most NAPs bind to DNA in a promiscuous fashion, often in A:T-rich regions (Grainger et al., 2006). NAPs are in high abundance within the cell, effecting numerous transcriptional responses (Azam et al., 1999). E. coli has at least 12 different NAPs, with H-NS being the most well characterised (Babu & Teichmann, 2003a; Martínez-Antonio & Collado-Vides, 2003; reviewed in Dillon & Dorman, 2010). H-NS is often referred to as the 'genome guardian', recognising and binding to A:T-rich regions of DNA, and thus silencing transcription (Grainger et al., 2006; reviewed in Dorman, 2007). As well as affecting gene regulation, NAPs also play a role in the organisation and folding of the nucleoid. *In vitro* studies have revealed that NAPs are able to bend, bridge, wrap and cluster the DNA following binding, with these mechanisms also affecting transcription (Wolf et al., 1999; Dame, Wyman & Goosen, 2000; reviewed in Browning, Grainger & Busby, 2010). Intriguingly however, a recent paper that has redefined the fundamental concepts of transcription initiation suggests that, due to the overlap in functions with TFs, NAPs should no longer be considered a separate class to TFs (Mejía-Almonte et al., 2020).

Two-component systems (TCS) are further regulatory factors of gene expression. Prototypical TCS comprise of a sensor kinase and a response regulator (reviewed in Mitrophanov & Groisman, 2008). The sensor kinase is usually exposed to the environment and responds to environmental signals by modifying the phosphorylated state of the response regulator. The phosphorylation of the response regulator causes a modification in the biochemical properties of the protein and thus enables it to bind to DNA and elicit transcriptional control over genes (reviewed in Mitrophanov & Groisman, 2008).
Regulation through DNA-binding proteins enables a fine-tuning of gene expression in response to environmental signals. This allows bacteria to utilise their genetic material in an appropriate manner, usually enabling them to gain a competitive edge over other bacteria. Although originally TFs were thought to be exclusively proteins, new research has revealed that there are other molecules that play a key role in modulating bacterial gene transcription, including ppGpp and regulatory RNAs (Magnusson *et al.*, 2005; Mejía-Almonte *et al.*, 2020). This further highlights the importance of transcriptional regulation within bacteria.

1.3.4 LysR-type transcriptional regulators (LTTR)

Although TFs are comprised of many distinct protein families, one of the largest groups of prokaryotic TFs are the LysR-type transcriptional regulators (LTTRs) (Pareja *et al.*, 2006). Originally, LTTRs were described as negatively autoregulating themselves and transcriptionally activating a single divergently transcribed gene (Lindquist *et al.*, 1989). However, further research has revealed that LTTRs can be global regulators, affecting the regulation of multiple operons including metabolism, virulence and cell division (reviewed in Maddocks & Oyston, 2008).

LTTRs are typically similar in terms of shape, with the N-terminus comprising of a highly conserved helix-turn-helix (HTH) motif that interacts with the major groove of DNA, and a less-conserved C-terminus that is comprised of a coinducer binding domain (Henikoff *et al.*, 1988; Muraoka *et al.*, 2003; Schell, 1993). Due to poor solubility, the crystal structures of LTTRs have been notably difficult to solve (Ezezika *et al.*, 2007); however, in 2003, the first full length structure of a LTTR, CbnR, was solved (Muraoka *et al.*, 2003). CnbR was resolved as a tetramer (Muraoka *et al.*, 2003), which corresponded with previous data that LTTRs are often functionally active as dimers and tetramers (McFall *et al.*, 1998).

In transcriptional activation, most LTTRs bind as dimers at two regions within the promoter region, the regulatory binding site (RBS) and the activation binding site (ABS) (McFall *et al.*, 1998). The dimers then interact, forming tetramers, causing the DNA to bend. RNAP is then recruited to the region, although no transcriptional activity occurs in the absence of the co-inducer. When the coinducer binds this causes a relaxation of the DNA, allowing activation of transcription (Monroe *et al.*, 1990; McFall *et al.*, 1997; reviewed in Maddocks & Oyston, 2008) (Fig 1-6). There are exceptions to this, however, with the LTTRs Nac and NodD3 not requiring a co-inducer (reviewed in Schell, 1993).

Figure 1-6 A representation of LTTR activation. Adapted from Maddocks & Oyston, 2008. (A) Shows two LTTR dimers binding at the regulatory binding site (RBS) and the activation binding site (ABS). (B) The LTTR dimers interact, forming a tetramer and causing the DNA to bend. RNAP binds at the promoter region, but in the absence of a co-inducer, no transcriptional regulation occurs. (C) The co-inducer binds to the LTTR tetramer, and the DNA bend relaxes, enabling RNAP to interact with the LTTR, thus activating transcription of the gene.

1.3.5 Transcriptional elongation and termination

Although transcriptional regulation occurs most frequently within the initiation phase of transcription, it can also occur in transcriptional elongation and termination. Once the RNAP has 'escaped' the initiation transcription phase, the transcription cycle proceeds with elongation. The speed and termination of the elongation phase can be influenced by regulatory factors, with NusG and NusA suppressing or enhancing pausing (reviewed in Washburn & Gottesman, 2015).

There are two main types of transcriptional termination; intrinsic termination (therefore template encoded), or termination that requires accessory factors such as Rho and Mfd (reviewed in Washburn & Gottesman, 2015). Intrinsic termination occurs at inverted GC-rich sequence repeats that form an RNA hairpin, which is then followed by a poly-A residue tail (Wilson & Von Hippel, 1995). There are three main proposed models as to how this mechanism works (reviewed in Roberts, 2019), with the 'forward translocation' model suggesting that RNA hairpin formation drives RNAP and the transcription bubble downstream without further RNA transcript elongation, thereby freeing the transcript from RNAP and decreasing the stability of the elongation complex (Santangelo & Roberts, 2004; Yarnell & Roberts, 1999). The intrinsic termination mechanism relies on template encoded RNA hairpins, whereas Rho-dependent termination relies on the ATP-dependent Rho protein. Rho binds to rut sites in Rho-dependent terminators and translocates along the RNA 5'-3' to the RNAP (reviewed in Washburn & Gottesman, 2015). This causes the RNAP complex to disassociate from the DNA, terminating transcription; although the mechanism for this is currently unclear.

Regulation of termination can occur in both a positive manner as antiterminators, or a negative manner as anti-antiterminators (reviewed in Henkin, 2000). BglG, a TF of the *E. coli bgl* operon, acts as an antiterminator, binding to the *bgl* leader RNA transcript, blocking the formation of a terminator sequence, thereby allowing expression of the *bgl* operon (Arnster-Choder & Wright, 1993). Conversely, the *trp* RNA-binding attenuation protein (TRAP) in *B. subtilis* acts as an anti-antiterminator of the tryptophan biosynthesis pathway, binding to the nascent *trp* leader transcript, thereby blocking formation of an antiterminator structure, resulting in transcription termination (Babitzke, 1997).

1.3.6 Elucidating the roles of transcription factors

As discussed above, transcriptional regulation can occur within any step of the transcription process. However, it most frequently occurs within the

transcription initiation stage. Encoding DNA-binding proteins that can modulate gene expression in response to environmental signals enables bacteria to survive under fluctuating conditions. Bacterial genomes encode hundreds of TFs, and identifying all of their targets has been a major challenge (reviewed in Wade, 2015). However, with the advent of next generation sequencing, two genomescale approaches, chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-Seq) and RNA-sequencing (RNA-Seq), have been utilised to map TF regulons (reviewed in Wade, 2015).

ChIP-Seq is a method that is now routinely used in elucidating the genome wide binding of TFs (Barski *et al.*, 2007; Johnson *et al.*, 2007; Mikkelsen *et al.*, 2007; Robertson *et al.*, 2007). TFs are cross-linked to the genome, lysed, and the DNA is fragmented by sonication. The TF-bound DNA is then immunoprecipitated out of the solution and converted into a library for next generation sequencing. The reads generated from this analysis are then mapped back to a reference genome, and the enrichment of bound genomic regions can then be determined against a control sample (reviewed in Wade, 2015). Although this reveals a wealth of information about the TF, it is insufficient to reconstruct the regulon.

RNA-Seq is therefore used to compare RNA levels between the wild-type (WT) and a TF-mutant strain, thus determining the direct and indirect regulon of a TF. For RNA-Seq, RNA is extracted from the samples and undergoes mRNA enrichment or rRNA depletion, followed by cDNA synthesis (reviewed in Stark, Grzelak & Hadfield, 2019). The samples are then converted into a library for next generation sequencing. The reads generated from this analysis are then aligned to the reference genome and are used to analyse differential gene expression (DGE) between samples. Thus, combining the ChIP-Seq and the RNA-Seq data reveals the direct regulon of a TF.

1.4 The role of host metabolites in bacterial virulence

1.4.1 Host metabolites affect bacterial gene expression

The mammalian host is a complex environment, where competition for space and resources is often at its greatest. Rapid responses to environmental cues enable bacteria to adapt to preferred niches, resulting in maximised competitiveness, usually through the deployment of virulence machinery or by altering nutrient uptake (reviewed in O'Boyle *et al.*, 2020). A prime example of this is the complex environment of the gastrointestinal tract (reviewed in Cameron & Sperandio, 2015). Indeed, within the intestine there are abundant host metabolites, including free fatty acids, amino acids, and vitamins (reviewed in Li *et al.*, 2018).

Pathogenic bacteria, for example EHEC, utilise these host metabolites to modify gene expression, in order to compete against the resident microbiota (reviewed in Cameron & Sperandio, 2015). EHEC deploy a T3SS, which enables them to form attaching and effacing lesions on host epithelia (McDaniel et al., 1995; Moon et al., 1983). The T3SS is encoded on the LEE, which in turn is controlled by a master regulator Ler (McDaniel et al., 1995; Mellies et al., 1999). Expression of *ler* can be directly regulated by the transcriptional regulators Cra and KdpE, which sense the levels of carbon sources available; in gluconeogenic conditions, expression of *ler* is promoted, whereas glycolytic conditions inhibits expression of *ler* and thus the formation of the T3SS is inhibited (Njoroge *et al.*, 2012). Moreover, other host metabolites have been shown to affect the regulation of the LEE in EHEC strains. Indeed, the host metabolite fucose has been demonstrated to effect expression of the LEE (Pacheco et al., 2012). FusKR is a TCS that senses the mucosal sugar fucose, found in abundance in the intestine. In response to sensing fucose, Fusk phosphorylates and FusR represses transcription of *ler*, thereby inhibiting formation of the T3SS, speculatively to prevent early expression of the energetically costly production of the T3SS (Pacheco et al., 2012). Further, there are numerous more host signals that can affect the expression of the LEE PAI and subsequently the production of the T3SS (reviewed in Cameron & Sperandio, 2015; Connolly, Finlay & Roe, 2015). The two examples presented here represent how EHEC can choose to deploy a virulence determinant, the T3SS, in response to sensing host metabolite signals, and thus enable deployment and attachment at the opportune moment for maximal effectiveness.

Host-derived free fatty acids can also affect bacterial gene regulation (reviewed in Li *et al.*, 2018). In *Staphylococcus aureus*, the type seven secretion system is activated by *cis*-unsaturated fatty acids (Lopez *et al.*, 2017). Moreover, it is not

solely pathogenic bacteria that regulate gene expression in response to environmental signals. *Campylobacter jejuni* is both a commensal and pathogenic organism that resides within the intestinal tract (Luethy *et al.*, 2017). In order to coordinate expression of genes required for commensal colonisation, *C. jejuni* has been shown to respond to lactate (Luethy *et al.*, 2017). Indeed, in response to lactate, which is present in high concentrations in the avian upper intestinal tract and where *C. jejuni* have been demonstrated to have a reduced ability to colonise, the expression of genes required for commensal colonisation were repressed (Luethy *et al.*, 2017). These examples therefore indicate that adapting gene expression in response to environmental signals is widespread within bacteria, enabling them to survive in the competitive niches of the mammalian and avian host.

1.4.2 Elucidating the regulon of bacterial transcription factors in response to environmental signals

As discussed in 1.3.3, altering gene expression in response to environmental signals is often mediated through TFs or TCS (Fig. 1-7). However, through the advent of next generation sequencing, studying the effect of a TF in response to a signal is no longer restricted to a single region or pathogenicity island (reviewed in Wade, 2015). Indeed, through the combined use of ChIP-Seq and RNA-Seq, a TFs regulon, in response to an environmental signal, can be now elucidated in an unbiased global manner (reviewed in Wade, 2015).

Figure 1-7 TF gene regulation mechanisms in response to environmental signals. Adapted from O'Boyle *et al.*, 2020. (A) Signals are sensed and

recognised by TFs inside the bacterial cell. In this figure, this enables recruitment of the RNAP to the promoter region, activating transcription of target genes. However, TFs activated by environmental signals can also repress transcription of target genes. (B) A signal is sensed by an exposed sensor kinase, that phosphorylates in response. The phosphoryl group is then transferred to a TF, or cognate response regulator, which mediates the expression of target genes.

Recent work on the human pathogen Bordetella pertussis has shown how the TCS, BvgAS, integrates virulence and metabolism through the phosphorylation of BvgA (BvgA~P) (Moon et al., 2017). Using RNA-Seq, Moon et al., 2017 elucidated the regulon of BvgA under non-modulating conditions, where BvgA was phosphorylated (BvgA(+)), and modulating conditions, where phosphorylated BvgA was undetectable (Bvg(-)). In this study, BvgA was observed affecting the transcript levels of 550 genes in *B. pertussis* (Moon *et al.*, 2017). It was observed that BvgA~P increased expression of virulence genes including *ptxABDEC*, the pertussis toxin genes and *fimABCD*, the fimbriae genes (Moon *et al.*, 2017). Conversely, when BvgA was unphosphorylated (Bvg(-)), this lead to an upregulation of various metabolic pathways including fatty acid metabolism and the glyoxylate pathway (Moon *et al.*, 2017). These marked differences in regulation suggest that BvgA has adapted to suit the specific lifestyle of the bacterium. Indeed, when *B. pertussis* is in the host, BvgA~P directly activates virulence genes required for colonisation, whereas in the BvgA(-) mode, which has been suggested to be involved in transmission of the pathogen, the metabolic changes could potentially enhance survivability of the pathogen (Moon *et al.*, 2017).

In *Brucella abortus*, VjbR is a LuxR-type transcriptional regulator that has been reported to play a role in expression of known virulence genes (Kleinman *et al.*, 2017). To understand the global role of VjbR in *B. abortus*, ChIP-Seq and RNA-Seq were performed under acidic conditions that mimic the *in vivo* environment *B. abortus* initially encounters within the host. The ChIP-Seq analysis revealed that VjbR was able to bind to 235 regions of DNA, with 37 of those mapped regions correlating with differentially expressed genes (Kleinman *et al.*, 2017). These included genes involved in the *virB* operon (which is responsible for the

type four secretion system) and also genes involved in the electron transport chain (Kleinman *et al.*, 2017). Conversely, a previous study which looked at the direct transcriptional effects of VjbR-mediated regulation in *Brucella melitensis*, in a rich medium, revealed direct regulation of genes *BAB1_0660* and *BAB1_1335* (Uzureau *et al.*, 2010). Although, there were ChIP-Seq peaks in the aforementioned regions in the acidic environment study, there was no transcriptional effects observed, which indicated that VjbR was able to bind under two different environmental conditions but only elicited a transcriptional response in the 'correct' environment (Kleinman *et al.*, 2017).

However, the differences in results observed could also be due to the fact that the studies utilised two different strains of Brucella. Indeed, recent work in the Roe laboratory has revealed that even highly conserved TFs have been tailored to suit strain-specific lifestyles. The LTTR, YhaJ, was demonstrated to directly regulate unique gene sets within two E. coli pathotypes (Connolly et al., 2019). Using a combination of ChIP-Seq and RNA-Seq the direct regulon of YhaJ was established in UPEC and EHEC (Connolly et al., 2019). In EHEC, YhaJ bound to 23 chromosomal locations and when compared with the RNA-Seq data, was revealed to directly activate expression of T3SS components (Connolly et al., 2019). Conversely, in UPEC, YhaJ bound to 7 chromosomal locations, and was shown to activate expression of T1F, a key virulence determinant (Connolly et al., 2019). These results therefore indicated that YhaJ had been repurposed within E. coli to suit strain-specific lifestyles. Bacteria often mediate gene expression in response to environmental signals and cues. The studies discussed here highlight how using a combination of ChIP-Seq and RNA-Seq, a TFs regulon can be elucidated between different environmental conditions, revealing the intricate dynamics of bacterial regulation.

1.5 D-serine and the *dsdCXA* locus

1.5.1 The role of D-amino acids

Host-derived amino acids are often one of the most prevalent metabolites within the gut (Li *et al.*, 2018). Amino acids, except glycine, can be present in two enantiomer states, D- or L-enantiomers, and these chiral forms can be spontaneously converted, usually by racemases (reviewed in Genchi, 2017). L- amino acids are often used in protein synthesis, as this chiral form is more energetically preferred, although recent reports have indicated the increasing discoveries of D-amino acids in some proteins (Genchi, 2017; Zagon *et al.*, 1994). Intriguingly, although D-amino acids do not typically become incorporated into protein, they have been found to be present in high concentrations in most species and to fulfil specific biological functions (Genchi, 2017).

D-amino acids have been shown to play a role in murine mucosal defence against pathogens (Sasabe *et al.*, 2016). In mammals, D-amino acid oxidase (DAO) is produced at the host-microbe interface in intestinal epithelial cells, in response to microbial synthesised D-amino acids (Sasabe *et al.*, 2016). DAO is a flavoenzyme that can convert D-amino acids into α -keto acids and the antimicrobial product, H₂O₂. *In vitro* studies revealed DAO-produced H₂O₂ impacted the survival of *Vibrio cholerae* and *Vibrio parahaemolyticus*, thus protecting the small intestine from these pathogens (Sasabe *et al.*, 2016). Moreover, D-amino acids have been shown to stimulate M1 macrophages, whilst also promoting survival of intestinal naïve B cells (Suzuki *et al.*, 2021). Furthermore, D-amino acids have also been shown to play a role in disease progression in humans, in both neurological and renal diseases (reviewed in Friedman, 2010).

D-amino acids are derived in mammals in three main ways: conversion of Lamino acids by racemases; release from microbial sources; and dietary consumption (Genchi, 2017). D-amino acids can be obtained from the diet and are highly prevalent in dairy and fermented products, with 100 g of Emmental cheese resulting in an intake of 70 mg of D-amino acids (Zagon *et al.*, 1994). Moreover, processing of food also induces the formation of D-amino acids, with exposure to heat and or changes in pH increasing the concentration (Zagon *et al.*, 1994). However, approximately one third of human D-amino acid content derives from microbial synthesis (reviewed in Friedman, 2010; Genchi, 2017). Microorganisms synthesise D-amino acids, releasing them into the environment or incorporating them into the bacterial cell wall (Lam *et al.*, 2009). Indeed, Dalanine, D-aspartic acid, and D-glutamic acid have all been found in the bacterial peptidoglycan (Zagon *et al.*, 1994). D-amino acids in the peptidoglycan have been demonstrated to provide resistance to proteases, as well contributing to the architecture of the peptidoglycan (Lam *et al.*, 2009; reviewed in Cava *et al.*, 2011).

The most abundant D-amino acids in mammals are D-serine and D-aspartate (Genchi, 2017). Although the presence of DAO was found in 1935, it was not until the early 1990's that D-serine was found in mammalian tissues (Nishikawa, 2011). D-serine is produced in higher organisms, often converted from L-serine by the serine racemase, in astrocytes and neurons within the brain; although it can also accumulate from dietary sources and intestinal bacteria (Pollegioni & Sacchi, 2010; Zagon *et al.*, 1994). D-serine has been found to be prevalent in multiple niches of the body, including the brain, spinal cord, retina, kidney, bone, and urine (reviewed in Nishikawa, 2011).

1.5.2 The D-serine metabolism locus, *dsdCXA*

Within the human host, bacteria are often competing for space and resources, which has led to the diversification of carbon source utilisation within bacteria (Hibbing et al., 2010). In 1950, Maas and Davis described how, upon exposure to increased levels of D-serine, E. coli could not proliferate due to inhibition of the pantothenic acid pathway (Maas & Davis, 1950). However, it was later discovered that E. coli K12 carried dsdA, a gene encoding a D-serine deaminase, and thus could metabolise D-serine, converting it to pyruvate and ammonia (McFall, 1964). Further work by McFall and colleagues pioneered the early research on the D-serine metabolism locus in E. coli, revealing a secondary gene of the locus, dsdC (McFall, 1967). dsdC encoded a LTTR that was shown to positively regulate dsdA, whilst negatively autoregulating itself (McFall & Heincz, 1983; Nørregaard-Madsen et al., 1995). However, it was not until 1995, after DNA sequencing, that the *dsdCXA* locus was fully annotated, concluding a middle gene of the operon, *dsdX*, which was later revealed to be a D-serine transporter (Anfora & Welch, 2006; Nørregaard-Madsen et al., 1995). Thus, the D-serine metabolism pathway was elucidated. In the absence of D-serine, DsdC negatively auto-regulates its own transcription. Upon exposure to D-serine, DsdC induces the transcription of *dsdXA*, thus enabling greater expression of DsdA, which is then able to break down D-serine into pyruvate and ammonia (Nørregaard-Madsen et al., 1995). Pyruvate is then transported into the Krebs cycle, for use as a carbon source. Furthermore, DsdX was revealed to be the

second D-serine transporter, as D-serine is also able to enter the bacterial cell via CycA (Fig. 1-8) (Anfora & Welch, 2006).

Figure 1-8 Predicted model of the *dsdCXA* **locus and subsequent D-serine catabolism.** Adapted from Anfora & Welch, 2006. D-serine enters the bacterial cell through DsdX and CycA, the two D-serine transporters. D-serine then interacts with DsdC, causing an increase in expression of *dsdX* and *dsdA*. DsdA breaks down D-serine into ammonia and pyruvate, which subsequently enters the Krebs cycle.

Strikingly, the *dsdCXA* locus was found to be absent in some strains of *E. coli*. A global comparison of three *E. coli* strains revealed that in EHEC, the *dsdCXA* locus had been replaced by genes that encoded for sucrose utilisation, *cscRAKB* (Roesch *et al.*, 2003). D-serine is present in high concentrations within the urinary tract and the brain, however is in low abundance within the intestine (Nishikawa, 2011), indicating that *E. coli* strains have adapted to metabolise the carbon sources available.

1.5.3 D-serine as an environmental signal for bacterial gene regulation

D-amino acids can be utilised in bacteria in three main ways: as a carbon source; as an environmental signal for regulation; and as components of peptides and the bacterial cell wall (reviewed in Cava *et al.*, 2011). Indeed, previous studies have revealed that D-amino acids are involved in numerous regulatory pathways including: regulating the amount of peptidoglycan produced in stationary phase *Vibrio cholerae*; inhibiting spore germination in *Bacillus* species; and inducing the disassembly of *Bacillus subtilis* biofilms (Lam *et al.*, 2009; Kolodkin-Gal *et al.*, 2010; reviewed in Cava *et al.*, 2011).

As discussed above, D-serine can be metabolised in strains that carry the Dserine deaminase, DsdA. Indeed, it was the presence of this regulated and intact *dsdCXA* locus in the UPEC strain CFT073 that drew the focus of Welch and colleagues (Roesch *et al.*, 2003). In an *in vivo* mouse model, it was demonstrated that a $\Delta dsdA$ mutant "hypercolonised" the bladder and was recovered 300 times more frequently than the WT (Roesch *et al.*, 2003). Furthermore, the $\Delta dsdA$ mutant was demonstrated to be more motile than the WT (Roesch *et al.*, 2003). Moreover, it was reported in an *in vivo* mouse model, that a $\Delta dsdA$ strain had upregulated virulence genes that encode P-fimbriae, F1C fimbriae and haemolysin, relative to the WT (Haugen *et al.*, 2007). These results indicated that the accumulation of D-serine affected the gene expression and virulence status of UPEC. However, the authors later established that the $\Delta dsdA$ mutant phenotypes, and subsequent further study results, were due to an unrecognised secondary mutation in *rpoS*, and *dsdA* neither positively or negatively affected urinary tract colonisation (Hryckowian *et al.*, 2015).

Although UPEC and other *E. coli* strains can metabolise D-serine, many of the diarrheagenic *E. coli* strains have lost this capacity (Roesch *et al.*, 2003). Indeed, Roesch *et al.*, 2003 revealed that out of 60 urinary tract and urosepsis *E. coli* isolates, 49 could metabolise D-serine as the sole carbon source, whereas only 4 out of 74 diarrheal *E. coli* strains were able to. In the EHEC strain EDL933, it was revealed that the *dsdCXA* locus was truncated and had been partially replaced by the genes encoding sucrose utilisation, *cscRAKB* (Roesch *et al.*, 2003). Strikingly, further research revealed that in EHEC, exposure to D-serine

resulted in activation of the SOS response and repression of the T3SS (Connolly *et al.*, 2015). As discussed above, the T3SS enables EHEC strains to form attaching and effacing lesions on host epithelia and is encoded on the LEE (reviewed in Turner, Connolly & Roe, 2018). It was demonstrated that 26 out of the 42 genes that encode the LEE were downregulated in response to D-serine exposure, and furthermore in an *in vitro* cell model there were 77% fewer infected host cells relative to the non-D-serine control (Connolly *et al.*, 2015). As exposure to D-serine had repressed the T3SS irrespective of D-serine catabolism, the authors hypothesised that carriage of both *dsdCXA* and the LEE would be rare (Connolly *et al.*, 2015). Indeed, it was demonstrated that only 1.6% of 1,591 strains carried both the LEE and *dsdCXA*, suggesting a genetic incompatibility between the two loci (Connolly *et al.*, 2015).

Further roles of D-serine as an environmental signal effecting gene regulation have been elucidated, including in the uropathogen *Staphylococcus saprophyticus* (Korte-Berwanger *et al.*, 2013). Exposure to D-serine was demonstrated to upregulate Ssp, a surface-associated lipase and known virulence factor of S. *saprophyticus* (Korte-Berwanger *et al.*, 2013). Furthermore, the $\Delta dsdA$ mutant was revealed to have a significant disadvantage in comparison to the WT in *in vivo* coinfection experiments (Korte-Berwanger *et al.*, 2013). Moreover, D-serine has been shown to repress gene expression of several virulence associated genes in methicillin resistant S. *aureus* (MRSA) (Iwata *et al.*, 2021). *agrA*, *icaA*, *sarS*, *dltD*, and *sdrD* were all repressed upon exposure to D-serine and thus inhibited the attachment and biofilm formation of MRSA (Iwata *et al.*, 2021). Further, utilisation of D-serine also contributed to the fitness of *Proteus mirabilis* during polymicrobial catheter-associated urinary tract infections (Brauer *et al.*, 2019).

These studies therefore highlight the diverse responses that bacteria undergo in response to exposure to the host metabolite, D-serine. Indeed, recent research has indicated that the transcriptional response to D-serine is distinct even within the same species of bacteria that can utilise D-serine (Connolly *et al.*, 2021). In two pathotypes of *E. coli* that carry the *dsdCXA* locus, UPEC and NMEC, exposure to D-serine induced differential expression of 55 genes in NMEC and 140 genes in UPEC, with only 12 genes commonly differentially regulated in both strains

(Connolly *et al.*, 2021). This indicated that even within strains of the same species that can metabolise D-serine, exposure to the host metabolite results in distinct transcriptional responses.

1.5.4 DsdC, the LysR-type transcriptional regulator

The D-serine metabolism locus comprises of three genes: *dsdC*, the LTTR; *dsdX*, the D-serine inner membrane transporter; and *dsdA*, the D-serine deaminase (Nørregaard-Madsen *et al.*, 1995). In 1967, McFall first described DsdC as a potential regulatory protein that regulated *dsdA*, with further research confirming that DsdC affected the transcription of *dsdA* and not the translation (Heincz & McFall, 1978; McFall, 1967). DsdC was demonstrated to be resolutely required for the activation of *dsdA*, with rate of enzyme synthesis increasing 3,000-5,000 fold upon exposure to D-serine (Bornstein-Forst *et al.*, 1987). Although DsdC has been shown to be the transcriptional regulator of the *dsdCXA* operon in *E. coli*, it is unknown whether DsdC plays any further roles in regulation.

1.6 Aims of project

D-serine is a host metabolite for strains of *E. coli* that can live in extraintestinal niches of the body. D-serine is present in high concentrations within the urinary tract and the brain; however, it is in low abundance within the intestine. Indeed, *E. coli* strains living in the intestine have lost the ability to catabolise D-serine, replacing the D-serine tolerance locus (*dsdCXA*) with a sucrose utilisation locus (*cscRAKB*). NMEC and UPEC are both *E. coli* pathotypes that can metabolise D-serine, carrying the *dsdCXA* locus. Strikingly, NMEC pathotypes have been discovered carrying two copies of the *dsdCXA* locus, potentially indicating its importance for the strain. In addition to being carbon sources, host metabolites can also be environmental signals that can affect gene expression. DsdC is known to regulate the *dsdCXA* locus, however any further regulatory roles are currently unknown. As metabolism and virulence are often interlinked processes, it has been hypothesised that DsdC may regulate other genes in UPEC and NMEC. Thus, the three specific aims of this work were:

- 1. To elucidate the direct regulon of the TF DsdC, in the presence and absence of D-serine, in two pathotypes of *E. coli*, UPEC (strain CFT073) and NMEC (strain CE10).
- 2. To elucidate whether there was any significance in CE10 carrying two copies of *dsdC*: *dsdC1* and *dsdC2*.
- 3. To establish whether DsdC regulation mediated any phenotypes that affected the physiology of CFT073 and CE10.

Chapter 2 describes the materials and methods used in this thesis. Chapter 3 discusses the use of ChIP-Seq and RNA-Seq, which was performed to elucidate the direct regulon of DsdC, in the presence and absence of D-serine. Chapter 4 discusses the validation of the techniques used in Chapter 3 and the annotation of the binding motif of DsdC. Finally, Chapters 5 and 6 delve into the potential phenotypes mediated by DsdC regulation in CFT073 and CE10.

Chapter 2 Materials and methods

2.1 Bacterial strains, plasmids, growth media and chemicals

2.1.1 Strains and plasmids used in these stu	ıdies
--	-------

Strain	Characteristics	Source
CFT073	Wild type UPEC O6:H1:K2	Prof Rodney
		Welch (Welch et
		al., 2002)
CFT073 ^{DsdC-FLAG}	UPEC strain with FLAG-tag attached to	Roe lab
	the <i>dsdC</i> gene	inventory
CFT073 ∆dsdC	UPEC <i>dsdC</i> knockout	Roe lab
		inventory
CE10	Wild type NMEC 07:K1	Prof Kwang Sik
		Kim (Lu et al.,
		2011)
CE10 ^{DsdC1-FLAG}	NMEC strain with FLAG-tag attached to	Roe lab
	the <i>dsdC1</i> gene	inventory
CE10 ∆dsdC1	NMEC <i>dsdC1</i> knockout	Roe lab
		inventory
CE10 ^{DsdC2-FLAG}	NMEC strain with FLAG-tag attached to	Roe lab
	the dsdC2 gene	inventory
CE10 ∆dsdC2	NMEC dsdC2 knockout	Roe lab
		inventory
CE10 ∆∆ <i>dsdC1/2</i>	NMEC dsdC1/dsdC2 knockout	Roe lab
		inventory
CE10 <i>∆neuO</i>	NMEC <i>neuO</i> knockout	This study - Dr
		James PR
		Connolly
Nissle 1917	Probiotic E. <i>coli</i> strain	Dr Donal Wall
		(Reister et al.,
		2014)
Nissle 1917	Nissle <i>dsdC</i> knockout	This study
∆dsdC		
MG1665	Lab strain K-12 <i>E. coli</i>	Roe lab
		inventory
DH5a	Commercial E. coli storage strain	Invitrogen
BL21 DE3	Commercial E. coli overexpressing strain	Invitrogen

Table 2-1 Bacterial strains and associated characteristics used in these studies.

Plasmid	Characteristics	Source
pMAL-c5X	Plasmid for	New England Biolabs
•	overexpression of N-	5
	terminal maltose binding	
	protein (MBP) tagged	
	proteins (Amp ^R)	
pMAL-c5X_dsdC	MBP-tag overexpression	This study
	plasmid with CF10/3	
	between Ramul and	
	HindIII (Amp ^R)	
pMAL-c5X_dsdC1	MBP-tag overexpression	This study
	plasmid with CE10	
	derived <i>dsdC1</i> inserted	
	between BamHI and	
	HindIII (Amp ^R)	
pMAL-c5X_dsdC2	MBP-tag overexpression	This study
	plasmid with CE10	
	derived dsdC2 inserted	
	Hindly (Amp ^R)	
nSR	Plasmid used for DNase	Dr Douglas Browning
port	foot-printing (Amp ^R)	
pSR dsdCX1	pSR with CE10 derived	This study
. –	<i>dsdCX1</i> intergenic region	
	inserted between EcoRI	
	and HindIII (Amp ^R)	
p <i>dsdA</i>	pACYC184-dsdA	Roesch <i>et al.</i> , 2003.
	complementation	
	Construct (Lm ^k)	Dec lab inventory
pe1-26A	Plasifild for	Roe tab inventory
	terminal His tagged	
	proteins (Kan ^R)	
pET-28A_dsdC1	His-tag overexpression	This study
	plasmid with CE10	
	derived dsdC1 inserted	
	between BamHI and	
	HindIII (Kan ^R)	
рКD3	Template plasmid for	Datsenko and Wanner.,
	Lambda Red mutagenesis	2000.
pKD4	(RdII [*]) Template plasmid for	Datsenko and Wanner
pro-	Lambda Red mutagenesis	
	(Cm ^R)	2000.
pKD46	Lambda Red	Datsenko and Wanner.,
	recombinase expressing	2000.
	plasmid (Amp ^R)	
pACYC184	Multicopy plasmid (Cm ^R)	Roe lab inventory
pdsdC	pACYC184 with CFT073	Roe lab inventory
	derived dsdC	

	complementation	
	construct (Cm ^R)	
pdsdC1	pACYC184 with CE10	Roe lab inventory
	derived dsdC1	
	complementation	
	construct (Cm ^R)	
pdsdC2	pACYC184 with CE10	Roe lab inventory
	derived dsdC2	
	complementation	
	construct (Cm ^R)	
pneuO	pACYC184 with CE10	This study
	derived neuO	
	complementation	
	construct (Cm ^R)	
pgapAp_neuO	pACYC184 with the gapA	This study
	promoter region fused to	
	neuO (Cm ^R)	

Table 2-2 Bacterial plasmids used in this thesis.

2.1.2 Bacterial growth

Bacteria were inoculated using a single colony and grown in 5 ml of Luria-Bertani broth (LB) overnight (16 hours) at 37°C, 200 RPM (New Brunswick Scientific controlled environment incubator shaker). The cultures were then diluted into fresh media the following day at a concentration of 1/100, until the desired OD_{600} had been reached. If growth curves were being undertaken, the bacteria were grown until hour 8.

2.1.3 Storage of strains

For each bacterial strain, a single colony was taken from a LB plate, and grown overnight (16 hours) at 37°C, 200 RPM (New Brunswick Scientific controlled environment incubator shaker). 0.75 ml of this culture was added to a sterile tube with the addition of 1 ml sterile glycerol (40%) and peptone (2%). The stocks were then frozen at -80°C.

2.1.4 Chemicals and reagents

All chemicals used in this thesis were purchased from Merck, Invitrogen, Sigma-Aldrich and ThermoFisher Scientific unless otherwise stated. PCR primers, 1kb Plus DNA ladder and SeeBlue Plus 2 protein standard were all purchased from Invitrogen. Chemiluminescent Western blotting substrates: Femto, Pierce ECL, and Pierce ECL Plus were all purchased from ThermoFisher Scientific. Restriction enzymes were purchased from New England Biolabs. Antibodies: Anti-FLAG, Anti-MBP and Anti-Mouse HRP conjugate were purchased from Sigma-Aldrich; Anti-Rabbit HRP conjugate was purchased from Invitrogen; and Phospho-Histone H2A.X (Ser139/Tyr142) and Beta-tubulin antibodies were purchased from Cell Signalling Technologies. Antibiotics were used at their recommended working concentrations; ampicillin at 100 µg/ml, chloramphenicol at 25 µg/ml and kanamycin at 50 µg/ml.

2.1.5 Growth media and buffers

All growth media and buffers were prepared using either nuclease free water (nfH₂O) or distilled deionised water (ddH₂O) and sterilised either by autoclaving

or filtration (0.2 μ M). Solid media was prepared by adding 15 g/L agar to liquid media before autoclaving. All growth medias and buffers were made to 1 litre unless stated otherwise. The relevant components were added to 950 ml ddH₂O, the pH was adjusted, and media topped to 1 litre before sterilisation.

Ingredient	Quantity
Tryptone	10 g
Yeast extract	5 g
NaCl	10 g

Table 2-3 LB recipe; pH 7.5

Ingredient	Quantity
Tryptone	20 g
Yeast extract	5 g
NaCl	0.5 g
KCl (1 M)	2.5 ml
MgSO4 (1 M)	2 ml

Table 2-4 Super optimal broth with catabolite repression (SOC) recipe; pH

7.0. Preceding usage, 5 ml of MgCl₂ (2 M) and 20 ml of glucose (1 M) was added.

Ingredient	Quantity
M9 salts (5X)	200 ml

Table 2-5 M9 minimal media recipe; pH 7.5. Preceding usage; 20 ml of 20%

Glucose, 2 ml of 1M MgSO₄ and 100 μl of 1M CaCl₂.

Ingredient	Concentration
Hepes-KOH pH 7.5	50 mM
Sodium deoxycholate	0.1%
Sodium dodecyl sulphate	0.1%
(SDS)	
Ethylenediaminetetraacetic	1 mM
acid (EDTA)	
Triton X-100	1%
NaCl	150 mM

Table 2-6 FA lysis buffer (150mM).

Ingredient	Concentration
Hepes-KOH pH 7.5	50 mM
Sodium deoxycholate	0.1%
SDS	0.1%
EDTA	1 mM
Triton X-100	1%
NaCl	500 mM

Table 2-7 FA lysis buffer (500mM).

Ingredient	Concentration
Tris-HCl (pH 8.0)	10 mM
LiCl	250 mM
Sodium deoxycholate	0.5%
Nonidet P-40	0.5%
EDTA	1 mM

Table 2-8 ChIP wash buffer.

Ingredient	Concentration
Tris-HCl (pH 7.5)	50 mM
SDS	1%
EDTA	10 mM

Table 2-9 ChIP elution buffer.

Ingredient	Concentration
Tris-HCl (pH 7.5)	10 mM
EDTA	1 mM

Table 2-10 Tris-EDTA (TE) buffer.

Ingredient	Concentration
Tris-HCl (pH 7.5)	20 mM
NaCl	150 mM

Table 2-11 Tris buffered saline (TBS).

Ingredient	Quantity
10X phosphate buffered	100 ml
saline (PBS)	
Tween-20	0.4 ml

Table 2-12 Phosph	ate buffered	saline Tween ((PBST).
-------------------	--------------	----------------	---------

Ingredient	Quantity
Tris	242 g
Acetic acid (glacial)	57.1 ml
EDTA 0.5M (pH 8.0)	100 ml

Table 2-13 Tris-acetate-EDTA (TAE).

Ingredient	Quantity
Glycine	3.75 g
SDS	0.25 g
Tween-20	2.5 ml

Table 2-14 Western blot stripping buffer (pH 2.2).

Ingredient	Quantity
Methanol	500 ml
Coomassie	2 g
Acetic acid	100 ml

Table 2-15 Coomassie blue.

Ingredient	Quantity
Tris (pH 6.8)	1 M
SDS	8.52 g
Bromophenol blue	0.43 g
Glycerol	42.6 ml
β- mercapthenol	4.97 ml

Table 2-16 4X sample buffer (*100 ml volume).

Ingredient	Concentration
Tris	20 mM
NaCl	200 mM
EDTA	1 mM

Table 2-17 MBP binding buffer.

Ingredient	Concentration
Tris	20 mM
NaCl	200 mM
EDTA	1 mM
Maltose	10 mM

Table 2-18 MBP elution buffer.

Ingredient	Concentration
Tris	50 mM
NaCl	200 mM
Imidazole	40 mM
Glycerol	10 %

Table 2-19 His-tag purification buffer.

Ingredient	Concentration
Tris	50 mM
NaCl	200 mM
Imidazole	500 mM
Glycerol	10 %

Table 2-20 His-tag elution buffer.

Ingredient	Quantity
Nutrient Broth N°2	18 g
Agar	6.3 g

Table 2-21 PB agar.

Ingredient	Concentration
MgSO ₄	1 mM
CaCl ₂	4 mM
NaCl	1 mM
Tris-HCl (pH 7.8)	0.05 M

Table 2-22 Phage buffer.

Ingredient	Quantity
Nutrient Broth N°2	20 g
Agar	3.5 g

Table 2-23 Phage top agar (PTA).

2.2 Molecular and genetic techniques

2.2.1 Polymerase chain reaction (PCR), primers and PCR purification

Primers were designed using Primer3web or NCBI PrimerBLAST. They were designed (unless stated differently) to be around 20 bp long, with a Tm between 55-65°C. Primers involved in cloning were designed to have the relevant restriction enzyme flanks. Primers were ordered from Life Technologies and came as lyophilised samples and were made to a concentration of 100 μ M. Working stocks of 10 μ M were prepared for use in PCR reactions.

Primer name	Description	Sequence (5' - 3')
DsdC_FLAG_CHECK_ALL_F	Forward check for DsdC-FLAG tag	GTTTGGCGATATGACGGTGA
DsdC_FLAG_CHECK_UPEC_		
R	Reverse check for CFT073 DsdC-FLAG tag	TTCGACGCCAAGAAGAAGTG
DsdC1_FLAG_CHECK_NME		
C_R	Reverse check for CE10 DsdC1-FLAG tag	TTCGACGCCAAGAAGATGTG
DsdC2_FLAG_CHECK_NME		
С_К	Reverse check for CE10 DsdC2-FLAG tag	LGALILLGGIALAIALGALA
	dedCX	
	Peverse for ChIP-DCP for the intergenic region between	CGCCAAAATTTCAGCTGTAAG
DsdC ChIP aPCR 1 ALL R	dsdCX	G
	Forward for ChIP-PCR for CFT073, for a transcriptionally	
CitF_ChIP_qPCR_UPEC_F	silent gene (<i>citF</i>)	CGATGATGGAAAGCGCAGAA
	Forward for ChIP-PCR for CE10, for a transcriptionally	
CitF_ChIP_qPCR_NMEC_F	silent gene (<i>citF</i>)	GATGATGGAAAGCGCAGAGG
	Reverse for ChIP-PCR for a transcriptionally silent gene	
CitF_ChIP_qPCR_ALL_R	(citF)	ATCACATCGAAATCAGCGCC
MBP_CHECK_DSDC_F	Forward check for pMAL-C5X insertion	CGCGCAGACTAATTCGA
MBP_CHECK_DSDC_R	Reverse check for pMAL-C5X insertion	
Dade Clana III MPD F	Forward for cloning CF10/3 dsdC with BamHI restriction	CAG <u>GGAICC</u> GIGAIIAIGGAA
DsdC_Clone_U1_MBP_F	enzyme Deverse for cloning CET072/CE10 dcdC/dcdC1 with HindIII	
R	restriction enzyme	CGACGCC
DsdC Clone N1/N2 MBP	Forward for cloning CF10 dsdC1/2 gene with BamHI	
F	restriction enzyme	CG
·	Reverse for cloning CE10 <i>dsdC2</i> with HindIII restriction	CGCAAGCTTCGACTCCGGTAC
DsdC_Clone_N2_MBP_R	enzyme	ATACGACA
	Forward for the ChIP peak region for EMSA for dsdC region	
EMSA_DsdC_CE10_F	on CE10	CGTGCTCACAACCCAGATTT
	Reverse for the ChIP peak region for EMSA for dsdC region	
EMSA_DsdC_CE10_R	on CE10	CCTGGCTGCCACTTCAAAAG
	Forward for the ChIP peak region for EMSA for <i>envR</i> region	
EMSA_EnvR_CE10_F	on CE10	CCAAAAGCGCGTTATTTACCC
	Reverse for the ChIP peak region for EMSA for <i>envR</i> region	ACAGAGTGAGAAAATAGCGAA
EMSA_EnVR_CE10_R	ON CE1U	GG
EMSA FimE CE10 E	on CE10	GATAGTTGAGATACCAGGGAT
	Reverse for the ChIP neak region for EMSA for fimE region	
FMSA FimE CE10 R	on CF10	Δ
BLA FMSA F	Forward for the beta-lactamase (blg)	
BLA EMSA R	Reverse for the beta-lactamase (blg)	GGTCGCCGCATACACTATTC
CTX EMSA F	Forward for the cholera toxin (<i>ctx</i>)	CGGGCAGATTCTAGACCTCC
CTX EMSA R	Reverse for the cholera toxin (ctx)	TGGATGAGGACTGTATGCCC
	Forward for the ChIP peak region for EMSA for fimB region	
UPEC_EMSA_FimB_F	on CFT073	ACCCGAAGTGATGTGGCTAT
	Reverse for the ChIP peak region for EMSA for fimB region	GATAGTTGAGATACCAGGGAT
UPEC_EMSA_FimB_R	on CFT073	GG
	Forward for the ChIP peak region for EMSA for waaV region	
EMSA_WaaV_F	on CE10	TATTCCTGGCAGACGAAACG
	Reverse for the ChIP peak region for EMSA for waaV region	
EMSA_WaaV_R	on CE10	AGCCACGAATGAAAAGCAGT
All_DsdC_qPCR_F	Forward to check relative expression of dsdC using R1-qPCR	GIIIGGCGAIAIGACGGIGA
NMEC_UPEC_DSdC1_qPCR_	Reverse to check relative expression of CF10/3/CE10	
	Reverse to check relative expression of CE10 dedC2 using	
NMEC DsdC2 aPCR R	RT-aPCR	ΔΟΤΩΔΟΔΑΘΑΟΤΩΔΟΔΤΑΟΟΤΩ
gapA gPCR F	Forward for housekeeping control $(aanA)$ used in RT-aPCR	TTTCCGTGCTGCTCAGAAAC
gapA_qPCR_R	Reverse for housekeeping control (gapA) used in RT-qPCR	GGCGTGAGTGGAGTCATAT
pSR check F	Forward check pSR insertion	CCGAAAAGTGCCACCTGAC
pSR_check_R	Reverse check pSR insertion	CGACAAGTTGCTGCGATTCT
dsdC1 insert pSR footpri	Forward to clone the $dsdCX1$ intergenic region into pSR	CGCGAATTCCGTGCTCACAAC
nt_F	plasmid for footprinting with EcoRI RE	CCAGATTT
dsdC1_insert_pSR_footpri	Reverse to clone the <i>dsdCX1</i> intergenic region into pSR	GCG <u>AAGCTT</u> CCTGGCTGCCAC
nt_R	plasmid for footprinting with HindIII RE	TTCAAAAG
waaV_qPCR_F	Forward for waaV gene expression using RT-qPCR	TATACGCAAGGCGCAAGGAC
waaV_qPCR_R	Reverse for waaV gene expression using RT-qPCR	TCCCGTCTCATGTTGTCTGG
neuB_qPCR_F	Forward for neuB gene expression using RT-qPCR	AAAAGCCAAAGAGGCCGGT
		CTGCCTTAGGTGCAATAGCTG
neuB_qPCR_R	Reverse for neuB gene expression using RT-qPCR	A
	Forward for now gon-	
	Polyara for neulogene expression using KI-qPCK	
	Reverse for near gene expression using KT-qPCK	
neu() FMSA ChiPsite F	Forward for FMSA to check ChIP neak binding site for $peuO$	
neuO EMSA ChIPsite R	Reverse for EMSA to check ChIP peak binding site for neu0	ΑCGACTTCAAAACCTGCACC

neuO EMSA intergenicsite	Forward for EMSA to check for intergenic binding site for	
F	neuO	GCAGCGCAGAGAAATGGATA
neuO EMSA intergenicsite	Reverse for FMSA to check for intergenic binding site for	TCAATGGAAAACGAGTCTTGA
R	neuO	GT
		TAGTGGTAAAATAACGTAGGA
		TACTAACGTGTAGGCTGGAGC
neuO Red F	Forward for <i>neuO</i> lambda red mutagenesis in CE10	TGCTTC
heuo_heu_h		
		GGTAATATGTCTGCATGATGT
neu O Red P	Peverse for neul lambda red mutagenesis in CE10	
2010 184 E	Check forward for neuO lambda red mutagenesis in CE10	
2010 194 B	Chack reverse for neuOlembde red mutagenesis in CE10	
	Check reverse for neuo tambua reu mutagenesis in CETO	
EMSA_CIDR_F	FORWARD FOR EMSA FOR VALIDATION OF CHIP at CIDR region	
	Barris and the ENGL (a see literative of Children with Barris a	GGIGGCIGIAICAATICATAC
EMSA_CIDR_R	Reverse for EMSA for validation of ChiP at ClDR region	
		AGCIIGGIGICGAIAIIGAAC
EMSA_CIDA_F	Forward for EMSA for validation of ChIP at clbA region	A
EMSA_CIDA_R	Reverse for EMSA for validation of ChIP at <i>clbA</i> region	GGIGAIGAGIGGAGAGGCIA
	Forward for <i>clbA</i> gene expression using RT-qPCR	TAGCCTCTCCACTCATCACC
qPCR_ClbA_R	Reverse for clbA gene expression using RT-qPCR	TCAATTCTGCCCATTTGACGA
qPCR_ClbR_F	Forward for clbR gene expression using RT-qPCR	ACCCGTTATCTCTGCGTGAA
		TCTCATTCCTGTTAGCAATGTG
qPCR_ClbR_R	Reverse for <i>clbR</i> gene expression using RT-qPCR	Т
qPCR_ClbM_F	Forward for <i>clbM</i> gene expression using RT-qPCR	GCAGGTATACGACAGGGACA
qPCR_ClbM_R	Reverse for clbM gene expression using RT-qPCR	TTACTCGTGTTGTTGCCGTG
		CATCTAAAAATGAAGGTGAATT
		GAGATATGGTTCACTTTAGCT
		CACCTTAGTGTAGGCTGGAGC
DsdC_Red_nissle_F	Forward for <i>dsdC</i> lambda red mutagenesis in Nissle 1917	TGCTTC
		TGACAAAACAATTCCCATATAA
		AAATTGCAATTTATAAAGCCAA
		CATACACATATGAATATCCTCC
DsdC_Red_Nissle_R	Reverse for <i>dsdC</i> lambda red mutagenesis in Nissle 1917	TTAG
	Check forward for <i>dsdC</i> lambda red mutagenesis in Nissle	
DsdC_Nissle_check_F	1917	CGCAGGCTGACAAACGATAA
	Check reverse for <i>dsdC</i> lambda red mutagenesis in Nissle	
DsdC_Nissle_check_R	1917	GCTCTCCAATATTCGACGCC
	Reverse for ChIP-PCR of the <i>neuO</i> region - EMSA_neuO is	
NeuO_ChIP_qPCR_R	forward to match	GCCATCGACACTCAACATCA
		TCAAGTGAAATACCAACATGCA
WaaV_ChIP_qPCR_F	Forward for ChIP-PCR of the waaV region	А
WaaV_ChIP_qPCR_R	Reverse for ChIP-PCR of the waaV region	GCTCATCGTGTTCTCTTGCC
	Reverse for ChIP-PCR of the neuB region - EMSA_neuB is	
NeuB_ChIP_qPCR_R	forward to match	TCCTTATTCTCGATGTCTGCAA
kpsF_EMSA_F	Forward for EMSA for validation of ChIP at kpsF region	CGGCCAGATTTAATTCCGCA
kpsF EMSA R	Reverse for EMSA for validation of ChIP at kpsF region	GCCCACCTATTTAACACACTCC
kpsM_EMSA_F	Forward for EMSA for validation of ChIP at kpsM region	ACTGAGGGATGGTGTTGGTT
kpsM_EMSA_R	Reverse for FMSA for validation of ChIP at kpsM region	TGCGTAACAACACCTGCAAT
kpsF aPCR F	Forward for knsE gene expression using RT-gPCR	GGGCACGTTATTCTTTCGGG
kpsE aPCR R	Reverse for knsE gene expression using RT-gPCR	GTAATCATGCCCAGATCGCC
kpsM aPCR F	Forward for knsM gene expression using RT-gPCR	GGGGTATTTGTGGGCGATTC
kpsM_qPCP_P	Poverse for knsM gene expression using RT-gPCP	
pACVC 184 gibson E	Forward for pACYC 184 linearisation	
pACTC-104_glDSUI_F	Peverse for pACYC-184 linearisation	
pacte-164_gibsoll_R	Reverse for pactic-to4 linearisation	
nACVC now gibson F	Forward for novO for sibeen personally	
pacto_neuo_gibson_r	Forward for <i>neuo</i> for gibson assembly	
	Deverse for new for silven second	
	Reverse for neuclifor gibson assembly	
appin new orthogon	Forward for gent promotor for effort when the	
gapAp_neuO_gibson_F	Forward for gapA promoter for gibson assembly	
	Deverse for gap 4 promotor for ribeer and by	
gapap_pacic_k	Reverse for gapa promoter for gibson assembly	GTAATTOCCCTTTAAAATTC

Table 2-24 Oligonucleotides used in this study.

The DNA polymerase used was GoTaq Green Master Mix (Promega) or Q5 High-Fidelity 2X Master Mix (NEB). A single colony of bacteria was mixed with 50 μ l of nfH₂O and used as a template for the PCR reaction.

Component	Volume
GoTaq Green Master Mix 2X	10 μl
Template DNA	1 μl
Forward and reverse primer (10 μ M)	0.5 μl each
nfH ₂ O	8 μl

Table 2-25 Volumes used for a PCR reaction.

Extension time was altered dependent on the size of PCR product with the general rule of 1 minute per 1 Kb of amplification. Thermocyclers were set for 30 cycles (Eppendorf Mastercycler Nexus gradient).

Step	Temperature (°C)	Time (min)	Cycles
Initial	95	5.00	1
denaturation			
Denaturation	95	0.25	30
Annealing	55	0.25	
Extension	72	0.50	
Final extension	72	10.00	1

Table 2-26 Thermocycler conditions for PCR.

DNA was purified using 25-100 μ l of PCR product and the QIAQuick PCR purification kit (QIAGEN) to the manufacturer specifications. Purified DNA was eluted in 30 μ l of nfH₂O and concentrations measured using the NanoDrop DS-11+ Spectrophotometer (DeNovix).

2.2.2 Plasmid purification

5 ml of overnight culture containing the plasmid were centrifuged at 13,000 g for 5 minutes. Using the QIAprep Spin Miniprep kit (QIAGEN), plasmid DNA purification was performed to the manufacturer specifications. Plasmid DNA was eluted in 30 μ l of nfH₂O and concentrations measured using the NanoDrop DS-11+ Spectrophotometer (DeNovix). Plasmids were also purified using the QIAprep Spin Maxiprep kit (QIAGEN) and were performed to the manufacturer specifications. Plasmid DNA was eluted in $30 \ \mu l$ of nfH₂O.

2.2.3 Restriction enzyme digest and DNA ligation

For restriction enzyme digests, 1 μ g of purified DNA (2.2.1) was incubated with 1 μ l of the respective restriction enzyme (NEB), 2 μ l of respective buffer and made up to an overall volume of 20 μ l using nfH₂O. These were incubated at 37°C for 1 hour, unless specified differently. The digests were run on a 1% agarose TAE gel and the samples purified using the QIAquick Gel extraction kit (QIAGEN) (2.2.6).

Digested DNA was ligated into linearised plasmid at a ratio of 3:1 respectively. 1 μ l of T4 ligase (NEB) and 2 μ l of T4 buffer (NEB) were added to the reaction with nfH₂O to a total volume of 10 μ l. These were incubated at room temperature for 2 hours. 5 μ l of the sample was used for transformation and added to 50 μ l of competent cells and transformed either using heat shock transformation (2.2.5) or electrocompetent cell transformation (2.2.6). These were plated onto antibiotic plates for selected screening and positive colonies were confirmed by both PCR and DNA sequencing (Eurofins).

2.2.4 Preparation of competent cells

A single colony was inoculated in 5 ml of LB and grown to an OD₆₀₀ of 0.4 at 37°C, 200 RPM (New Brunswick Scientific controlled environment incubator shaker). The cells were centrifuged at 3,750 g for 5 minutes at 4°C. The supernatant was removed, and the cells were washed and centrifuged at 15,000 RPM three times in 1 ml of ice cold ddH₂O. Cells were then suspended in 50 μ l of ice cold ddH₂O and used in transformations.

2.2.5 Heat shock transformation

50 μ l of competent cells was mixed with 5 μ l of ligated plasmid and incubated on ice for 30 minutes. The samples were then heat shocked at 42°C for 30 seconds and samples placed back on ice for 2 minutes. 950 μ l of pre-warmed SOC was added to each reaction and incubated for 1 hour at 37°C. 100 μ l of the reaction was then plated out onto the antibiotic selective plate.

2.2.6 Electrocompetent cell transformation

50 μ l of competent cells was mixed with 5 μ l of ligated plasmid and incubated on ice for 5 minutes. The samples were added to a pre-chilled electroporation cuvette and shocked at 2,500 volts in an Eporator electroporator (Eppendorf). 950 μ l of pre-warmed SOC was added to each reaction and incubated for 1 hour at 37°C. 100 μ l of the reaction was then plated out onto the antibiotic selective plate.

2.2.7 Agarose gel electrophoresis and gel purification of DNA

1% agarose TAE gels were used for gel electrophoresis. 10,000X GelRed Nucleic acid gel stain (Cambridge Bioscience) was added to the liquid agarose. A 1kb Plus DNA ladder (Invitrogen) was used as the molecular weight marker. Gels were run for 40 minutes at 100 volts. The DNA was visualised using a UV transilluminator.

DNA that needed to be purified from the agarose gels was extracted using QIAquick Gel extraction kit (QIAGEN) to the manufacturer specifications, and purified DNA was eluted in 30 μ l of nfH₂O.

2.2.8 Phenol:chloroform extraction and ethanol precipitation

For phenol:chloroform extractions, samples were made up to 400 μ l and mixed with an equal volume of phenol:chloroform:isoamillic alcohol 25:24:1 (PCIA) (Sigma Aldrich). These were centrifuged at maximum speed for 5 minutes. After the centrifugation, the top layer was dispensed into a new Eppendorf and 400 μ l of chloroform:isolamillic alcohol 24:1 (CIA) (Sigma Aldrich) was added. The samples were then inverted several times carefully and centrifuged at maximum speed for 1 minute. After centrifugation, the top layer was again dispensed into a new Eppendorf and 40 μ l of sodium acetate, 1 μ l of GlycoBlue Coprecipitant 15

mg/ml (ThermoFisher Scientific) and 800 μ l of 100% ethanol was added to the samples. The samples were then inverted several times and the stored in the - 80°C for 1 hour. The samples were then centrifuged at maximum speed for 20 minutes at 4°C. The supernatant was discarded and 1 ml of 70% ethanol was added. The samples were centrifuged for a further 5 minutes at maximum speed. The supernatant was then carefully removed, and the samples were left to airdry. The pellets were then suspended in appropriate media, nfH₂O or TE buffer.

2.2.9 Lambda Red genetic recombination

This method was carried out as described in Datsenko and Wanner, 2000. For this technique, concentrated PCR product of the resistance cassette, from either pKD3 or pKD4, was generated with 50 bp overhangs directly adjacent to the gene of interest to be knocked out. Four 50 μ l PCR reactions were set up and checked by gel electrophoresis, before they were pooled. A phenol:chloroform extraction and ethanol precipitation (2.2.8) was then completed on the PCR product.

Strains desired for gene knock outs were transformed with pKD46 prior to the recombination, with recovery at 30°C. A transformed colony was inoculated into 5 ml of LB broth, 100 μ g/ml ampicillin and 100 μ l of 1M arabinose, the inducer of the Lambda Red system. Cultures were grown at 30°C at 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series) until an OD₆₀₀ of 0.3 was reached. Cultures were then centrifuged at 3,750 g for 5 minutes and the supernatant removed. The pellet was suspended three times in 1 ml of ice-cold ddH₂O and centrifuged at 10,000 g for 1 minute, with the supernatant removed. The pellets were suspended in a final volume of 50 μ l of ddH₂O and mixed with 1 μ g of PCR purified DNA. These samples were then added to pre-chilled electroporation cuvettes and electroporated. 500 μ l of SOC was immediately added and the samples recovered at 37°C at 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series). 200 μ l of the reaction was plated out onto selection plates and incubated at 37°C. Colonies were then screened by PCR and gel electrophoresis. Successful recombinants were then plated on LB at 42°C to get rid of the resistance cassette, leaving a clean mutant.

2.2.10 Gibson assembly

Primers were designed for Gibson assembly using the NEBuilder assembly tool (NEB). Sequences were amplified by PCR with the relevant overhangs and pACYC184 was linearised. Gibson assemblies were carried out using a Gibson Assembly Cloning Kit (NEB) to the manufacturer specifications. The following reaction was set up on ice; 0.5 pmols of vector:insert at a ratio of 1:1, 10 μ l of NEBuilder HiFi DNA Assembly Master Mix, and nfH₂O to a total volume of 20 μ l. Samples were incubated in a thermocycler at 50°C for 15 minutes. 2 μ l of the sample was transformed into DH5 α using the heat shock method (2.2.5). The samples were then sequenced to ensure for correct alignment and insertion.

2.3 Genomic and transcriptomic techniques

2.3.1 Chromatin immunoprecipitation (ChIP)

The ChIP experiment was based on methods previously established by Bonocora and Wade, (2015) with minor alterations. Prior to the ChIP experiment commencing, protein A sepharose beads (CL4B; GE Healthcare), in a 50% TBS slurry, were pre-blocked overnight with 0.1% and 1% bovine serum albumin (BSA).

For the ChIP, duplicate CFT073^{DsdC-FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG} strains were grown in 50mL of M9 minimal media for 5 hours at 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series). Further, duplicate CFT073^{DsdC-FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG} strains were grown in 50mL of M9 minimal media for 3 hours at 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series), before they were spiked with 1 mM D-serine, and grown for a further 2 hours. Non-tagged CFT073 WT and CE10 WT samples were also grown in parallel, to be used as negative control in the ChIP (Table 2-27).

ChIP sample	ChIP sample name
CFT073 WT	NT01
CE10 WT	NT02
CFT073 ^{DsdC-FLAG} + 1mM D-ser	NT03
CFT073 ^{DsdC-FLAG} + 1mM D-ser	NT04
CFT073 ^{DsdC-FLAG}	NT05
CFT073 ^{DsdC-FLAG}	NT06
CE10 ^{DsdC1-FLAG} + 1mM D-ser	NT07
CE10 ^{DsdC1-FLAG} + 1mM D-ser	NT08
CE10 ^{DsdC1-FLAG}	NT09
CE10 ^{DsdC1-FLAG}	NT10
CE10 ^{DsdC2-FLAG} + 1mM D-ser	NT11
CE10 ^{DsdC2-FLAG} + 1mM D-ser	NT12
CE10 ^{DsdC2-FLAG}	NT13
CE10 ^{DsdC2-FLAG}	NT14

Table 2-27 ChIP samples and nomenclatures given.

Samples were crosslinked with 1% formaldehyde for 20 minutes before the reaction was stopped by addition of 0.5 M glycine. The samples were centrifuged, washed with TBS, and suspended in FA lysis buffer with 4 mg/ml lysozyme and incubated at 37° C for 30 minutes. Samples were then sonicated for 2x15 cycle runs (30 seconds on/off) (Bioruptor Pico; Diagenode). The samples were then centrifuged at maximum speed for 5 minutes and the chromatin (supernatant) was removed. A 20µL input sample was saved at this point for ChIP-PCR.

For immunoprecipitation of the samples, 60 μ l of 1% BSA Protein A sepharose bead slurry was added to the chromatin and rotated for 2 hours at 4°C. This step was performed to reduce background noise. The lysate was then removed by centrifugation at 4,000 g for 1 minute. 60 μ l of 0.1% BSA Protein A sepharose bead slurry was then added to the lysate, along with 4 μ l of M2 anti-FLAG antibody, and rotated overnight at 4°C. The protein A Sepharose beads are able to bind to the anti-FLAG antibody, which in turn has bound to the DsdC^{FLAG}-DNA.

The beads were then pelleted by centrifugation at 4,000 g for 1 minute, the lysate removed, and the beads suspended in 700 μ l of FA lysis buffer (150 mM NaCl) and transferred to a Spin-X column (Corning). These columns were then rotated at room temperature for 3 minutes, before centrifugation for 1 minute

at 4,000 g, and removal of the supernatant. 2 further washes, rotations and centrifugation with FA lysis buffer (150 mM NaCl) were performed. This was followed by one wash, rotation and centrifugation with FA lysis buffer (500 mM NaCl), followed by one wash, rotation and centrifugation with ChIP wash buffer. A final wash, rotation and centrifugation in TE buffer was performed before columns were transferred to dolphin nosed tubes. The supernatant was incubated with 100 μ l of ChIP elution buffer at 65°C for 10 minutes. Samples were then eluted by centrifugation at 4,000 g for 1 min. The samples, and the inputs collected earlier, were then de-crosslinked by boiling for 10 minutes. The supernatants were then concentrated using the phenol:chloroform extraction method, followed by ethanol precipitation described in 2.2.8. The ChIP DNA and inputs were then air-dried before resuspending in 12 μ l nfH₂O.

2.3.2 Chromatin immunoprecipitation coupled with next generation sequencing (ChIP-Seq)

The ChIP samples were then sent to the University of Glasgow Polyomics where DNA concentration was measured using a Qubit HS DNA kit (ThermoFisher Scientific). Due to low DNA concentration, another set of duplicate ChIP samples were obtained for CFT073 WT, CFT073^{DsdC-FLAG} and CE10^{DsdC2-FLAG}, with and without D-serine, and the ChIP samples were then pooled together before sequencing (Table 2-28).

ChIP sample	ChIP sample name	
CFT073 WT	NT01, NT01B, NT01C	
CE10 WT	NT02	
CFT073 ^{DsdC-FLAG} + 1mM D-ser	NT03, NT03B	
CFT073 ^{DsdC-FLAG} + 1mM D-ser	NT04, NT04B	
CFT073 ^{DsdC-FLAG}	NT05, NT05C	
CFT073 ^{DsdC-FLAG}	NT06, NT06B	
CE10 ^{DsdC1-FLAG} + 1mM D-ser	NT07	
CE10 ^{DsdC1-FLAG} + 1mM D-ser	NT08	
CE10 ^{DsdC1-FLAG}	NT09	
CE10 ^{DsdC1-FLAG}	NT10	
CE10 ^{DsdC2-FLAG} + 1mM D-ser	NT11, NT11B	
CE10 ^{DsdC2-FLAG} + 1mM D-ser	NT12, NT12B	
CE10 ^{DsdC2-FLAG}	NT13, NT13B	
CE10 ^{DsdC2-FLAG}	NT14, NT14B	

Table 2-28 Pooled ChIP samples and their nomenclatures.

University of Glasgow Polyomics then generated a ChIP-Seq library which was prepared using a NEBNext Ultra II DNA library prep kit for Illumina (NEB). The libraries were quantified using the Qubit HS DNA kit (ThermoFisher Scientific). The profiles and the size of the libraries were analysed on the Bioanalyser High Sensitivity DNA ChIP (Agilent). Illumina next generation sequencing was performed on the samples using an Illumina NextSeq 500 platform (75 bp length; single end).

2.3.3 ChIP-Seq analysis

Reads were quality assessed (minimum Phred threshold of 20) with FastQC (Babraham Bioinformatics) before importing into CLC Genomics Workbench 7. Raw fastq files were aligned to the CFT073 and CE10 reference genomes (NCBI accession numbers respectively; NC_004431.1 and CP003034). The ChIP-Seq analysis tool software was used, and the DsdC^{FLAG}-tagged samples were then aligned against the mock ChIP WT control samples to establish enrichment. The maximum *p*-value for calling enriched peaks was set to ≤ 0.05 .

Peaks were called from two biological replicates and checked manually to ensure they were the correct bimodal peak shape. Regions that did not conform were omitted. As ChIP-Seq is known to predict false positives, it was decided that each peak that was called would be manually checked (from the lowest *p*value generated) until there were at least 10 'peaks' in a row that did not conform to the bimodal peak shape and then the manual search would cease.

2.3.4 ChIP-PCR

Prior to library generation, ChIP-PCR was done to ensure enrichment of target DNA over the non-FLAG tagged control. The conditions used are described in Table 2-29. This enrichment was measured by calculating the signal over the background using fold enrichment $2^{-\Delta\Delta CT}$ ($\Delta CT = CT^{ChIP} - CT^{CONTROL}$). The region between *dsdCX* was used as it was the only verified binding site of DsdC. Regions of *citF* were used as controls for non-specific enrichment.

Cycle step	Temperature (°C)	Time (minutes)	Cycles
Initial	95	1	1
denaturation			
Denaturation	95	0.25	40
Extension	60	0.5	

Table 2-29 Thermocycler conditions for ChIP PCR.

2.3.5 RNA extraction and DNase treatment

RNA extraction was carried out using the PureLink RNA Mini Kit (ThermoFisher Scientific). CFT073, CE10, and corresponding isogenic $\triangle dsdC$ strains, were grown in triplicate, in M9 minimal media for 5 hours at 37°C, 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series). Further, CFT073, CE10, and corresponding isogenic $\triangle dsdC$ strains, were grown in triplicate, in M9 minimal media for 3 hours at 37°C, 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series), before being spiked with 1 mM D-serine and grown for a further 2 hours. The OD₆₀₀ of the samples was adjusted to 1.0. 1 ml of culture was then centrifuged for 10 minutes at maximum speed and the supernatant discarded. The pellet was suspended in 1 ml of RNA protect (QIAGEN) and incubated at room temperature for 10 minutes. The samples were centrifuged for a further 10 minutes at maximum speed and the supernatant discarded. To the samples, 100 μ l of TE solution containing lysozyme (10 mg/ml) was added with 0.5 μ l 10% SDS and vortexed until the pellet was suspended. These were left to incubate for 5 minutes at room temperature. 350 μ l of lysis buffer with 1% 2-mercaptoethanol was added to the samples and vortexed to mix. 250 μ l of 100% ethanol was added to the samples and vortexed vigorously to remove any visible precipitation.

The samples were then transferred to a PureLink RNA Mini Kit spin column and centrifuged at maximum speed for 15 seconds. The flow through was discarded and 700 μ l of Wash Buffer 1 was added to the same column and centrifuged at maximum speed for 15 seconds. The flow through was discarded again and 500 μ l of Wash Buffer 2 was added to the same column and centrifuged at maximum speed for 15 seconds. This was repeated again with 500 μ l of Wash Buffer 2. The column was then centrifuged for 1 minute at maximum speed, the supernatant discarded, and the column was inserted into a new recovery tube. 100 μ l of

nfH₂O was added to the centre of the column and incubated at room temperature for 1 minute. The column was then centrifuged for 1 minute at maximum speed. The samples were then DNase treated. 4 μ l of TURBO DNase (ThermoFisher Scientific) and 10 μ l of 10X TURBO DNase buffer was added to each sample. The samples were centrifuged at maximum speed for 30 seconds, mixed gently and incubated for 60 minutes at 37°C. During the 60 minutes incubation, the samples were vortexed and centrifuged every 15 minutes.

The samples were then analysed on a NanoDrop DS-11+ Spectrophotometer (DeNovix) and by electrophoresis on an agarose gel. Readings between 1.8 and 2.0 of 260/280 absorbance were accepted values on the NanoDrop. Further analysis was done by a *groEL* PCR check to ensure that there was no DNA present in the RNA samples.

The RNA from the samples was then concentrated using phenol:chloroform extraction method followed by ethanol precipitation outlined in 2.2.8. The samples were then airdried and suspended in 100 μ l of TE buffer. The samples were then normalised to a total concentration of 10 ng/ μ l in 100 μ l.

2.3.6 Quantitative real time PCR (RT-qPCR)

RNA samples were extracted as detailed above (2.3.5) and normalised to a total concentration of 10 ng/ μ l. The LunaScript RT SuperMix kit (NEB) was used for the cDNA synthesis of the RNA samples. For each reaction: 2 μ l of 5X LunaScript RT SuperMix, 7 μ l of nfH₂O, and 1 μ l of RNA template was used. These samples were put on the thermocycler (Eppendorf Mastercycler Nexus gradient) under the following conditions (Table 2-30).

Cycle step	Temperature (°C)	Time (minutes)
Annealing	25	2
cDNA synthesis	55	10
Heat inactivation	95	1

Table 2-30 Thermocycler conditions for LunaScript RT SuperMix cDNA synthesis.

This was then followed by RT-qPCR performed on a CFX-Connect Real-Time PCR detection system (BIORAD) using the Luna Universal qPCR Master Mix kit (NEB). 1
μ l of cDNA was added to 10 μ l of 2X Luna Universal qPCR Master Mix, 1 μ l of forward and reverse primers (10 μ M) respectively, and 7 μ l of nfH₂O. The reactions were performed in duplicate and each gene that was analysed was performed in biological triplicate. Two controls were used for the RT-qPCR, a no reverse transcriptase control and a no template control.

Cycle step	Temperature (°C)	Time (minutes)	Cycles
Initial	95	1	1
denaturation			
Denaturation	95	0.25	40
Extension	60	0.5	

Table 2-31 Thermocycler conditions for RT-qPCR.

All primers used in RT-qPCR were checked for efficiency prior to the experiment, using the thermocycler conditions described in Table 2-31. Primers are detailed in Table 2-24. 5 standards were made using template cDNA of 100, 20, 4, 0.8 and 0.16 ng/ μ l. Primers were only used if they had efficiency between 90-110%. The data was then analysed using the CFX-Connect BIORAD software, according to the 2^{- $\Delta\Delta$ CT} method.

2.3.7 Transcriptome profiling by RNA-Seq

RNA samples were extracted as detailed above (2.3.5). RNA quality was assessed by Agilent Bioanalyzer 2100. Samples were subjected to ribosomal depletion using MICROBExpress (ThermoFisher Scientific) according to the manufacturer's instructions. Library preparation and sequencing was carried out at the University of Glasgow Polyomics facility. Sequencing libraries were prepared with the TrueSeq Stranded mRNA Library Prep kit (Illumina) according to manufacturer's instructions. Sequencing was carried out on the Illumina NextSeq 500 platform with at least 10 million 75 bp single end reads being obtained. Reads were quality assessed (minimum Phred threshold of 20) with FastQC (Babraham Bioinformatics) before importing into CLC Genomics Workbench (Qiagen) and mapping to the CFT073 and CE10 reference genome and plasmids respectively (NCBI accession number: NC_004431.1, CP003034, CP003035, CP003036, CP003037, CP003038) using default CLC mapping parameters. Differential expression was assessed using the empirical analysis of differential expression (EdgeR) with genes displaying absolute fold changes of ≥ 1.5; ≤ -1.5 and having a false-discovery rate corrected *p*-value of ≤0.05 being considered. Pairwise comparison of WT and either $\Delta dsdC$ or $\Delta\Delta dsdC1/2$ was conducted to identify any changes in gene expression caused by the removal of the transcription factor DsdC. Pairwise comparison of WT^{D-ser} and either $\Delta dsdC^{D-ser}$ or $\Delta\Delta dsdC1/2^{D-ser}$ was used to identify the extent gene expression in the presence of D-serine. Further pairwise comparisons were done with WT^{D-ser} and either $\Delta dsdC^{D-ser}$ + pDsdA, or $\Delta\Delta dsdC1/2^{D-ser}$ + pDsdA1/2 to identify gene expression caused by DsdC and the inducement of D-serine, and not by the toxic effects of D-serine accumulation.

RNA-Sequencing was completed prior to this PhD commencing and the raw data is available on the European Nucleotide Archive (ENA) under accession numbers:

Strain	ENA accession numbers
UPEC	ERS4281315 - ERS4281325, ERS4281353
NMEC	ERS4281326 - ERS4281334, ERS4281354 - ERS4281356

Table 2-32 European Nucleotide Archive (ENA) accession numbers for RNA-Sequencing data. The accession numbers on ENA for the RNA-Seq data "Establishing the global regulatory role of DsdC in UPEC and NMEC".

2.3.8 Sanger sequencing

For samples less than 1 Kb that required sequencing, primers were designed around the sequence of interest. The sequence was then amplified using PCR and purified using a QIAquick PCR purification kit (QIAGEN). Purified PCR products and primers were then sent to Eurofins Genomics for Sanger sequencing. Results were returned as FASTA files and Clustal Omega (EMBL-EBI) was used for multiple sequence alignment.

2.4 Biochemical techniques

2.4.1 SDS-PAGE and Coomassie staining

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie staining were used to analyse whole cell and purified protein samples, using the NuPAGE system (Invitrogen). The samples were grown under ChIP-Seq growth conditions; 3 hours grown in M9 minimal media at 37°C, 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series), spiked with or without 1 mM of D-serine and left to grow for a further 2 hours. The samples were normalised using OD₆₀₀ and centrifuged at 4°C for 3 minutes at 10,000 g. The supernatant was discarded, and the pellet was suspended in 75 μ l of ddH₂O and 25 μ l of sample buffer (Table 2-16). Samples were then heated for 10 minutes at 95°C.

An alternative method was also used. The samples were grown up and normalised using OD₆₀₀, before being centrifuged at 10,000 g for 3 minutes. The supernatant was discarded and 100 μ l of BugBuster Protein Extraction Reagent (Merck) was added to the sample. The samples were then vortexed every 10 minutes for 30 minutes. The samples were centrifuged again for 3 minutes at 10,000 g. The samples were then standardised again using a bicinchoninic acid (BCA) protein assay (Sigma Aldrich). 25 μ l of 4X NuPAGE LDS sample buffer (Invitrogen) was added to the samples which were then heated for 10 minutes at 95°C.

Pre-cast NuPAGE 4-12% Bis-Tris gels (Invitrogen) were used. 15 μ l of sample was loaded onto the gel and run in NuPAGE MES buffer (Invitrogen) at 180 volts for 40 minutes, until the dye front had reached the end of the gel. SeeBlue Plus 2 was used as the molecular weight ladder. SDS-PAGE gels were then either transferred for Western blotting (2.4.4) or Coomassie stained. The gels were stained for 1 hour in Coomassie blue stain (Table 2-15) and destained overnight in ddH₂O. Coomassie stained SDS-PAGE gels were then imaged on a transilluminator (BIO-RAD ChemiDoc MP Imaging system).

2.4.2 Protein overexpression of recombinant proteins

The CE10 and CFT073 *dsdC* genes were cloned into the maltose binding protein (MBP) overexpression plasmid pMAL-C5X and used for overexpression in *E. coli* BL21 DE3 cells. Several trial over-expression methods were tested before large scale over-expression and purification commenced. Single colonies were used to inoculate LB and were incubated for 16 hours at 37°C, 200 RPM (New Brunswick Scientific controlled environment incubator shaker). These overnight cultures were then used to inoculate fresh LB and grown to an OD₆₀₀ of 0.6 at 200 RPM, 37°C (New Brunswick Scientific Innova 44 incubator shaker series). The samples

were then induced with 1 mM isopropyl B-D-1-thiogalactopyranoside (IPTG) and left to grow for a further 3 hours at 37°C, 200 RPM. The samples were then centrifuged at 7,000 g for 10 minutes and the supernatant removed. The pellet was suspended in 75 μ l of nfH₂O and 25 μ l of 4X sample buffer (Table 2-16) and heated to 95°C for 10 minutes. Samples were then run on pre-cast NuPAGE 4-12% Bis-Tris gels and Coomassie stained (2.4.1) or Western blotted (2.4.5). The CE10 *dsdC1* gene was also cloned into the overexpression plasmid pET-28A and used for overexpression in *E. coli* BL21 DE3 cells.

2.4.3 Protein purification of recombinant proteins

Prior to purification of the MBP-tagged proteins, the plasmids were freshly transformed into BL21 DE3. A single colony was then inoculated and left overnight at 37°C at 200 RPM (New Brunswick Scientific controlled environment incubator shaker). The overnight culture was then diluted into 1L of LB and antibiotic and grown to an OD₆₀₀ of 0.6 at 37°C, 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series). 1 mM of IPTG was added and left to grow for a further 3 hours, 225 RPM, at 37°C. The samples were centrifuged for 20 minutes at 5,000 g and the supernatant removed. The samples were centrifuged again, at 7,500 g for 10 minutes to remove any final supernatant. To the pellet, 35 mg of lysozyme was added with cOmplete EDTA-free protease inhibitor cocktail (Promega), DNase I and 35 ml of MBP binding buffer (Table 2-17). The sample was sonicated on ice, 10 seconds ON and 30 seconds OFF for 20 cycles and centrifuged for 40 minutes at 15,000 g. The supernatant was removed and filtered through a 0.22 μ M filter. 15 μ l of the sample was removed at this stage to use as a control. The sample was then run through the MBP HP column (GE Healthcare) using a MasterFlex L/S (Cole-Parmer). The flow-through was collected to use as a control. The column was washed with 5 column volumes (CVs) of MBP binding buffer (Table 2-17), followed by 5CVs of MBP elution buffer (Table 2-18), eluting into 2 mL fractions. 5 μ l of 4X sample buffer (Table 2-16) was added to 15 µL of each of the fractions and heated to 95°C for 10 minutes. Samples were then run on pre-cast NuPAGE 4-12% Bis-Tris gels and Coomassie stained (2.4.1) in order to determine which fraction contained the purified recombinant protein. These samples were then aliquoted and kept for long term storage at -80°C.

Prior to purification of the His-tagged protein, the same protocol was used as above, with the exception of 35 ml of His binding buffer (Table 2-19) was added to the pellet instead of MBP binding buffer. The sample was then either run through the HisTrap HP column (GE Healthcare) using a MasterFlex L/S (Cole-Parmer) or a HisTrap HP column (GE Healthcare) using an AKTA Start (University of Glasgow Protein Purification Service). For the MasterFlex L/S the flowthrough was collected to use as a control. The column was washed with 5 column volumes (CVs) of His binding buffer (Table 2-19), followed by 5CVs of His elution buffer (Table 2-20), eluting into 2 mL fractions. 5 µl of 4X sample buffer (Table 2-16) was added to 15 µL of each of the fractions and heated to 95°C for 10 minutes. Samples were then run on pre-cast NuPAGE 4-12% Bis-Tris gels (Invitrogen) (2.4.1) and Coomassie stained (2.4.1) in order to determine which fraction contained the purified recombinant protein. These samples were then aliquoted and kept for long term storage at -80°C. For the AKTA Start, this was performed by the University of Glasgow Protein Purification Service. Fractions were run on pre-cast NuPAGE 4-12% Bis-Tris gels and Coomassie stained (2.4.1).

2.4.4 BCA protein assay

To measure the concentration of the recombinant protein, a BCA Protein Assay was used (Pierce, ThermoFisher Scientific). This was completed using the standard microplate protocol according to the manufacturer specifications. Briefly, standards of BSA were made to concentrations between 25 μ g/ml to 2000 μ g/ml. A BCA working reagent was made by mixing 50 parts of BCA Reagent A with 1 part of BCA Reagent B. 25 μ l of each standard and recombinant protein was added to a 96 well microplate in technical duplicates. 200 μ l of working reagent was then covered and incubated for 30 minutes at 37°C. Absorbance was measured on a FLUOstar Optima plate reader (BMG Labtech) at 562 nm. A standard against its concentration in μ g/ml. The standard curve was then used to measure the relative concentration of the recombinant protein.

2.4.5 Using Factor Xa to cleave the MBP-DsdC recombinant protein

The recombinant protein was cleaved of its MBP tag. Using 1 mg/ml of recombinant protein, 200 μ g/ml of Factor Xa Protease (NEB) was added to the sample. The samples were left at room temperature and 5 μ l of sample was removed at 2-, 4-, 6- and 24-hours intervals. 1.5 μ l of 4X sample buffer was added to the samples, heated for 10 minutes, and run on pre-cast NuPAGE 4-12% Bis-Tris gels and Coomassie stained (2.4.1). A control using no Factor Xa protease was used to check for complete cleavage.

2.4.6 Western blotting

Following SDS-PAGE (2.4.1) the gel was then transferred to either an Amersham Protran NC Nitrocellulose membrane (ThermoFisher Scientific) or Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore) using the XCell SureLock Transfer system (Invitrogen). The transfer was run at 30 volts for 60 minutes in NuPAGE transfer buffer (Novex). The membrane was then blocked in 5% milk (Marvel) in PBST for 60 minutes. Primary antibody was added in 1% milk in PBST and left at room temperature rocking for 60 minutes. Membranes were washed 3 times in PBST for 10 minutes before being incubated with the secondary antibody for 60 minutes at room temperature. Membranes were washed again 3 times in PBST. Either Pierce ECL Western Blotting Substrate, SuperSignal West Femto Maximum Sensitivity Substrate or Pierce ECL Plus Western Blotting Substrate was added to the membrane for 5 minutes. These were transferred to either the transilluminator or the C-digit (Li-Cor) and exposed; or exposed to Medical X-ray Blue film (Carestream) and developed using a film processor.

Antibody	Source	Primary antibody concentration	Secondary antibody
			concentration
FLAG	Mouse	1/1,000	1/2,000
GroEL	Rabbit	1/10,000	1/10,000
DnaK	Mouse	1/3,000	1/6,000
MBP	Mouse	1/2,000	1/5,000
Phospho-Histone H2A.X	Rabbit	1/1,000	1/2,500
(Ser139/Tyr142)			
Beta tubulin	Rabbit	1/10,000	1/10,000

Table 2-33 Antibody concentrations used for Western blotting.

2.4.7 Electrophoretic mobility shift assay (EMSA)

The EMSA assays were completed using a DIG gel shift kit (2nd generation) to the manufacturer specifications using DIG wash and block buffer set (Roche) and performed in duplicate. Purified MBP-tagged protein (2.4.3), was used for this experiment. Promoter regions, which were analysed from the ChIP-Seq data set, thought to contain DsdC DNA-binding sites were amplified using PCR and confirmed by agarose gel electrophoresis. These were then purified by QIAquick gel extraction kit (QIAGEN) for use as binding probes. The EMSA probes were then DIG-labelled as to the manufacturer specifications, 100 ng of purified DNA was adjusted to a final volume of 10 μ L in sterile distilled water. 4 μ L labelling buffer (5X), 4 μ L CoCl₂ solution, 1 μ L DIG-ddUTP solution and 1 μ L of terminal transferase (400 U) was added to the probes on ice, mixed and centrifuged briefly. The probes were then incubated at 37°C for 15 minutes before being returned to the ice. The reaction was stopped by adding 2 µL of 0.2 M EDTA (pH 8.0) and 3 μ L of sterile distilled water. This gave the labelled probes a final concentration of 4 ng/ μ L. The efficiency of probe labelling was tested by using serial dilutions and spotting 1 µL of DIG labelled probe onto positively charged nylon membrane (Roche). The probe was cross-linked to the membrane using UV light for 20 minutes. The membrane was washed in DIG washing buffer and incubated for 5 minutes at room temperature. The membrane was blocked for 30 minutes using DIG blocking solution and then blocked for a further 30 minutes using DIG antibody solution. Membranes were washed twice for 15 minutes in DIG wash buffer and then incubated in DIG detection buffer for 2 minutes. Membranes were then placed on cling film and 1 ml of CSPD working solution was applied to the membrane. Cling film was immediately placed on top covering the membrane and left to incubate at room temperature for 5 minutes. The excess liquid was then lightly squeezed out of the cling film and sealed. The sealed membranes were then incubated for 10 minutes at 37°C and exposed on the transilluminator (BIO-RAD Chemidoc).

For the EMSAs: 4 μ L of binding buffer, 1 μ L of poly [d(I-C)], 1 μ L of poly L-lysine, 1 μ L of DIG labelled probe and 11 μ L of nfH₂O, were added for each reaction. Differing concentrations of purified protein was added to the reactions. These were mixed carefully on ice and incubated at room temperature for 15 minutes. The samples were placed back onto ice and 5 μ L of loading buffer was added to each reaction. 20 μ L of sample was then loaded onto a pre-run NOVEX 6% retardation gel (Invitrogen) and ran in 0.5X TBE buffer at 100 V for 1 hour and 45 minutes. The gel was then transferred onto a positively charged nylon membrane (Roche), using the XCell SureLock Transfer system, at 30 V for 1 hour. The membranes were then cross-linked using UV light for 20 minutes. The protocol then follows the same procedure as stated above for the probes.

2.4.8 DNase I footprinting

This was performed at the University of Birmingham under the supervision of Dr Douglas Browning, who then completed the experiment. Briefly, the *dsdCX* intergenic promoter region fragment was cloned into the pSR vector using EcoRI and HindIII. Fragments were sequenced to ensure correct insertion. pSR-dsdCX was purified using a QIAGEN MaxiPrep kit (detailed in 2.2.2) with a concentration of at least 100 µg of DNA needed for DNase I footprinting. The fragments were then cut using HindIII and incubated for 3 hours at 37°C, before being phosphotase treated with calf intestinal phosphatase (CIP). The fragments were then precipitated using a phenol:chloroform extraction followed by an ethanol precipitation (outlined in 2.2.8). Samples were suspended in 50 μ l of TE. The fragments were then further cut with Aatll, incubated for 3 hours at 37°C. The samples were then run on a 7.5% acrylamide gel. If the band was the appropriate size, based upon on a molecular ladder, it was cut from the gel and the DNA was electroeluted from the gel slice. Electroelution occurred by preparing dialysis tubing, inserting the gel slice into the tubing and adding 200 μ L of 0.1X TBE. These were then run for 20 minutes at 40 mA. The supernatant was removed from the tubing and placed in an Eppendorf. The tube was washed with a further 200 μ L of sterile H₂O and the supernatant removed and combined with the sample. The fragments were precipitated using a phenol:chloroform extraction followed by an ethanol precipitation (outlined in 2.2.8). 0.5 μ L of sample was run on a 7.5% acrylamide gel to check for DNA. The fragments were then able to be radiolabelled. For each 20 μ L reaction: 8 μ L of DNA fragment, 8 μ L of sterile H₂O, 2 μ L of PNK buffer, 1 μ L of ATP γ P32, and 1 μ L of T4 polynucleotide kinase (NEB) was used. This was incubated at 37°C for 30 minutes. The unincorporated nucleotides were then removed by passing the

samples through a Sephadex G-50 column. The filtration of the DNA fragments from the unincorporated nucleotides was done by adding 200 μ L of Sephadex G-50 beads to a spin column. This was allowed to settle for 5 minutes, before centrifugation at low speed (3.5 g) occurred for 2 minutes. The DNA fragments were then pipetted onto the beads and centrifuged for 2 minutes (3.5 g). The supernatant was kept as the ³²P-end radiolabelled DNA fragments, and the columns disposed of appropriately.

For DNase I footprinting, each 20 μ L reaction was made up as follows: 0.2 μ L of 32 P-end labelled DNA fragment, 2 μ L of 10X HEPES buffer, 1 μ L of 10 mg/ml⁻¹ BSA, 1 μ L of 0.6 mg/ml⁻¹ Herring sperm DNA, varying concentrations of DsdC, and H₂O to bring the volume up to 20 μ L. Samples were then incubated for 20 minutes at 37°C and 2 μ L of DNase I was added to the sample for 40 seconds before the reaction was stopped with 200 μ L of DNase I stop solution. The samples were then precipitated using phenol:chloroform extraction followed by ethanol precipitation (outlined in 2.2.8). The samples were suspended in loading buffer and heated to 90°C for 2 minutes. The samples were loaded onto a 6% denaturing gel with a GA ladder and visualised on a Bio-Rad PMI imager.

2.5 Phenotypical assays

2.5.1 Silver staining

Samples were prepared for silver staining using the ChIP-Seq growth conditions; 3 hours grown in M9 minimal media at 37°C, 200 RPM, spiked with or without 1 mM of D-serine and left to grow for a further 2 hours (New Brunswick Scientific Innova 44 incubator shaker series). Samples were centrifuged for 3 minutes at 12,000 g. 100 μ L of BugBuster was added to each of the samples and left to incubate at room temperature for 30 minutes, vortexing every 10 minutes. The samples were centrifuged at 12,000 g for 3 minutes and 25 μ L of 4X LDS NuPAGE sample buffer was added. Samples were heated to 95°C for 10 minutes. Proteinase K (NEB) was added to the samples at a concentration of 25 μ g and incubated at 60°C for 1 hour. The samples were then run on a pre-cast NuPAGE 4-12% Bis-Tris gel (2.4.1). Silver staining was carried out using the SilverQuest Silver Staining kit (ThermoFisher Scientific) to the manufacturer specifications. The gel was washed briefly in ddH₂O before 100 ml of fixative solution was added for 20 minutes. The gel was then washed in 30% ethanol for 10 minutes, before 100 ml of sensitising solution was added for a further 10 minutes. 30% ethanol was added to the gel for 10 minutes, before the gel was washed in ddH₂O for 10 minutes. The gel was incubated for 15 minutes in 100 ml of staining solution and washed in ddH₂O for 1 minute. 100 ml of developing solution was added to the gel and incubated for 4-8 minutes until bands started to appear. 10 ml of stopper was immediately to the gel and the gel was incubated for a further 10 minutes being gently agitated. The gel was washed for a final time in ddH₂O and imaged on the transilluminator. All experiments were completed in triplicate.

2.5.2 Serum killing assay

This protocol was adapted from Sarkar *et al.*, 2014. The *E. coli* strains were grown overnight in LB at 37°C, 200 RPM (New Brunswick Scientific controlled environment incubator shaker). The cultures were washed twice in PBS and suspended to an OD₆₀₀ of 0.8. 50 μ l of each culture was mixed with 50 μ l of human sera (Life Science Group) and incubated at 37°C for 90 minutes at 120 RPM (New Brunswick Scientific controlled environment incubator shaker). This was serially diluted and plated on LB plates. As a control 50 μ l of each culture was also mixed with 50 μ l of heat inactivated serum, where the serum was incubated at 56°C for 30 minutes prior to the experiment. This was to ensure the complement cascade was inactivated. Samples were also mixed separately with 50 μ l of PBS and serially diluted. This experiment was performed in triplicate. CFU/ml was calculated as:

 $\frac{CFU}{ml} = \frac{number \ of \ colonies}{dilution \ of \ plate \ counted \ x \ volume \ of \ lysate \ plated}$

2.5.3 K1 bacteriophage titre and plaque assay

E. coli strains were grown in LB at 37°C, 200 RPM for 16 hours (New Brunswick Scientific controlled environment incubator shaker). The strains were diluted

1/100 in M9 minimal media and grown until an OD₆₀₀ of 0.6 was reached. 100 μ l of bacterial culture was added to 3 ml of warm PTA agar, spread onto PB plates, and allowed to dry. Serial dilutions of K1 bacteriophage (SSI Diagnostica) were done in phage buffer and 10 μ l of each dilution was spotted onto the plates in technical replicates. PFU/ml was calculated as:

 $\frac{PFU}{ml} = \frac{number of plaques}{dilution of plate counted x volume of lysate plated}$

Plaque size was also measured using ImageJ software (Fiji). All experiments were completed in triplicate.

2.5.4 K1 bacteriophage killing assay

For the bacteriophage killing assay, *E. coli* strains were grown in LB at 37°C, 200 RPM for 16 hours (New Brunswick Scientific controlled environment incubator shaker). The strains were diluted 1/100 in M9 minimal media in a 96 well microplate and grown for 3 hours in a humidity chamber at 37°C, 200 RPM (New Brunswick Scientific Innova 44 incubator shaker series). 1 μ l of K1 phage (SSI Diagnostica) was added to the strains and the OD₆₀₀ was measured every 30 minutes or hour for 3 hours using a FLUOstar Optima plate reader (BMG Labtech). All experiments were completed in triplicate.

2.6 In vitro cell infection models and microscopy

2.6.1 HeLa cell culture maintenance

HeLa cell lines were cultured and maintained in Dulbecco's Minimal Eagles Medium (DMEM), containing 20% (v/v) FBS (foetal bovine serum) and 20 mM Lglutamine, at 37°C, 5% CO₂. Cells were cultured in T75 vented flasks and kept until passage 25. The cells were split after the flasks had reached 80% confluency. For splitting, 2 ml of Trypsin-EDTA was added to the flasks and left at 37°C, 5% CO₂ for 5 minutes. 8 ml of pre-warmed DMEM media was added to the flasks and the cells were removed from the flask. Cells were counted using a haemocytometer.

2.6.2 Infection assays on HeLa cell lines

For the genotoxin assays on the HeLa cell lines, 24-well tissue culture plates were coated in a 0.5% (v/v) collagen for 30 minutes prior to seeding. The collagen solution was removed, and the cells were washed once with PBS. 40,000 cells were seeded per well and left for 24 hours, at 37° C, 5% CO₂ to form a confluent monolayer. The Nissle strains were grown in minimal essential medium, HEPES modification (MEM-HEPES) media, with or without 1 mM D-serine for 4.5 hours at 200 RPM, 37°C and normalised to an OD₆₀₀ of 0.1 (New Brunswick Scientific Innova 44 incubator shaker series). For an MOI of 400; 200 μ l of bacteria was added to each well, with 300 μ l of MEM-HEPES, supplemented with 1% (v/v) L-glutamine. The cells were centrifuged at 200 g for 2 minutes and incubated for 4 hours at 37°C, 5% CO₂. The cells were washed once with PBS and the media replaced with MEM-HEPES, supplemented with 1% (v/v) L-glutamine and 50 μ g/ml gentamicin. The cells were incubated for a further 4 hours at 37°C, 5% CO₂. 100 μ l of 1X sample buffer (Table 2-16) was added to each well and left for 5 minutes. The cells were removed and boiled for 10 minutes for Western blot analysis (2.4.6). To visualise the genotoxic effect on the host cells via Western blotting, phosphorylated Histone H2A.X (Cell Signalling Technologies) antibodies were used.

Additionally, cells were also used in immunofluorescence microscopy to visualise genotoxic effects. The infection was carried out as above, with some minor changes. The cells were seeded at 40,000 cells per well onto 0.5% (v/v) collagen-coated coverslips and left for 24 hours at 37° C, 5% CO₂ to form a confluent monolayer. The Nissle strains were grown in MEM-HEPES, with or without 1 mM D-serine for 4.5 hours at 200 RPM, 37° C and normalised to an OD₆₀₀ of 0.1 (New Brunswick Scientific Innova 44 incubator shaker series). For an MOI of 400; 200 µl of bacteria was added to each well, with 300 µl of MEM-HEPES, supplemented with 1% (v/v) L-glutamine. The cells were centrifuged at 200 g for 2 minutes and incubated for 4 hours at 37° C, 5% CO₂. The cells were washed once with PBS and the media replaced with MEM-HEPES, supplemented with 1% (v/v) L-glutamine. The cells were incubated for a further 48 hours at 37° C, 5% CO₂. The cells were washed twice with PBS and 250 µl of 4% paraformaldehyde (PFA) (w/v) was added to each well and left for 20

minutes. The cells were washed three times with PBS and 250 μ l of 0.1% Triton X-100 was added to each well and left for 5 minutes. Host cell actin was stained with AlexaFluor-555 Phalloiden (Invitrogen), which was added to each well and left to rock in darkness for 1 hour. The cells were washed again three times with PBS and the coverslips were mounted onto 4 μ l of VECTASHIELD (Vector Laboratories) on microscope slides. These were left to dry for a few minutes and secured using clear nail varnish. Slides were imaged on a Zeiss M1 Axioskopp microscope and deconvolved using Zen Pro software.

2.6.3 hCMEC/D3 cell culture maintenance

hCMEC/D3 (Merck), the blood-brain barrier cell line, were cultured and maintained in hCMEC/D3 ENDOGro-LS Complete medium (Merck), containing ENDOGro Basal Medium, ENDOGro-LS Supplement (0.2% v/v), rh epidermal growth factor (5 ng/ml), ascorbic acid (50 μ g/ml), L-glutamine (10 mM), hydrocortisone hemisuccinate (1 μ g/ml), heparin sulfate (0.75 U/ml), FBS (2% v/v), and recombinant human fibroblast growth factor (1 ng/ml). A 1:20 Collagen T1 Rat Tail (Sigma) solution was used to coat the T75 flasks prior to seeding. Cells were cultured in T75 vented flasks, at 37°C, 5% CO₂ and kept until passage 10. For splitting, 2 ml of Trypsin-EDTA was added to the flasks and left at 37°C, 5% CO₂ for 5 minutes. 8 ml of pre-warmed hCMEC/D3 ENDOGro-LS Complete media was added to the flasks and the cells were removed. Cells were counted using a haemocytometer.

2.6.4 Adhesion and invasion assays on hCMEC cell lines

For the adhesion and invasion assays on the hCMEC cell lines; 24-well tissue culture plates were coated in a 0.5% (v/v) collagen solution for 1 hour prior to seeding and kept at 37°C. The collagen solution was removed, and wells were washed once with PBS. 40,000 cells were seeded per well and left for 24 hours to form a confluent monolayer. The CE10 strains were grown in M9 minimal media for 5 hours, with or without the addition of 1 mM D-serine spiked in at hour 3, at 37°C, 200 RPM, and normalised to an OD₆₀₀ of 0.1 (New Brunswick Scientific Innova 44 incubator shaker series). For an MOI of 100; 50 μ l of bacteria was added to each well with 450 μ l of hCMEC/D3 ENDOGro-LS Complete media.

The cells were centrifuged at 200 g for 2 minutes and incubated for 2 hours at 37° C, 5% CO₂.

For the adhesion assay, the cells were washed three times with 500 μ l of PBS, with the washes kept to serially dilute in PBS and calculate the CFU/ml. 300 μ l of 1% Triton X-100 was added to the wells and left for 5 minutes. The cells were removed from the wells and serially diluted in PBS and the CFU/ml was calculated. Bacterial counts were analysed in GraphPad Prism 8.

For the invasion assay, the cells were washed three times with 500 μ l of PBS, with the washes kept to serially dilute in PBS and calculate the CFU/ml. 500 μ l of hCMEC/D3 ENDOGro-LS Complete media with 100 μ g/ml of gentamicin was added to the cells and left to incubate at 37°C, 5% CO₂ for a further hour. 300 μ l of 1% Triton X-100 was added to the wells and left for 5 minutes. The cells were removed from the wells and serially diluted in PBS and the CFU/ml was calculated. Bacterial counts were analysed in GraphPad Prism 8.

2.7 Bioinformatic analysis

2.7.1 Bioinformatic analysis and databases used

DNA and protein sequences were obtained using NCBI. Multiple sequence alignments were done using NCBI BLAST

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) or Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). Venny 2.1.0 was used for Venn diagram analysis (https://bioinfogp.cnb.csic.es/tools/venny/). Reverse Complement was used to convert a DNA sequence into its reverse complement (https://www.bioinformatics.org/sms/rev_comp.html). Bioline was used for sixframe translation of nucleotide sequences

(<u>https://www.bioline.com/media/calculator/01_13.html</u>). SnapGene was used to visualise plasmid maps and restriction cloning. GraphPad Prism 8 was used to create diagrams. Figures were made using Microsoft PowerPoint.

2.7.2 ChIP-Seq and RNA-Seq bioinformatic analysis

ChIP and RNA-Seq analysis was carried out on CLC Genomics Workbench 7 (CLC Bio). Functional characteristics were assigned to predicted targets using UniPROT Knowledgebase and the GO functions (<u>https://www.uniprot.org</u>). MEME was used to predict DNA-protein binding motifs (<u>https://meme-suite.org/meme/</u>).

2.7.3 Statistical analysis

Statistical analysis was carried out on GraphPad Prism unless stated otherwise. For analysis between 2 samples, an unpaired Student *t*-test was used. RT-qPCR analysis was computed using CFX-Connect BIORAD software, according to the 2^{-} $^{\Delta\Delta CT}$ method. Chapter 3 Investigating the global binding of DsdC and its role on gene expression in pathogenic *Escherichia coli*

3.1 Introduction

The capacity to utilise different carbon sources contributes to the ability of ExPEC to thrive in niches of the body that are otherwise less favourable. D-serine is a host metabolite present in the body, particularly in the urinary tract and the brain. Recent works have described the numerous ways in which D-serine can affect the physiology of many bacteria, including inhibiting the formation of the T3SS in EHEC, inhibiting adherence and biofilm production in MRSA and contributing to the increased fitness of *P. mirabilis* in catheter-associated UTIs (Brauer *et al.*, 2019; Connolly *et al.*, 2015; Iwata *et al.*, 2021).

DsdC is a LTTR that regulates the D-serine metabolism locus in *E. coli* by upregulating the *dsdXA* operon whilst negatively autoregulating itself (Nørregaard-Madsen *et al.*, 1995). The *dsdCXA* locus is important for ExPEC, with 344 out of 427 strains from the B2 clade positively carrying the *dsdCXA* locus (Connolly *et al.*, 2015). Moreover, *E. coli* K1 strains often carry two unlinked copies of *dsdCXA*, with 73% of 41 K1 strains carrying two copies; thus highlighting the importance of D-serine metabolism to these strains (Moritz & Welch, 2006). DsdC is therefore a highly conserved transcription factor in ExPEC strains, although strikingly it has been lost in many InPEC strains. A recent study showed that concurrent carriage of the LEE and *dsdCXA* was a rare occurrence in *E. coli*, with only 1.6% of 1,591 strains tested carrying both, suggesting a genetic 'incompatibility' between the two loci (Connolly *et al.*, 2015). Indeed, D-serine inhibits the formation of the T3SS, a key virulence determinant of EHEC and EPEC strains, providing a powerful selective pressure to lose *dsdCX* in these *E. coli* pathotypes (Connolly *et al.*, 2015).

DsdC is known to autoregulate itself and the *dsdXA* operon. However, any wider regulatory functions are currently unknown. This work therefore aimed to identify whether DsdC regulated genes beyond the *dsdCXA* locus and whether exposure to D-serine led to any global effects on regulation in two clinically important ExPEC strains, CFT073 and CE10. CFT073 and CE10 are two prototypic UPEC and NMEC strains respectively and were selected due to their carriage of the *dsdCXA* operon and thereby their ability to metabolise D-serine. Although they are both ExPEC, they utilise distinct mechanisms to infect and persist within the host.

CFT073 is a highly virulent UPEC strain that was isolated from a patient with acute pyelonephritis (Mobley *et al.*, 1990). Previous reports have indicated that D-serine may influence pathogenesis of CFT073, with a $\Delta dsdA$ mutant reportedly showing "hypercolonisation" and "hypermobility" in comparison to the WT (Roesch *et al.*, 2003). However, further research revealed these "hyper" phenotypes were due to an unrecognised secondary mutation in *rpoS*, rather than the $\Delta dsdA$ mutation (Hryckowian *et al.*, 2015). Nonetheless, D-serine remains an important factor for UPEC colonisation, with expression of *dsdA* and *dsdX* increasing 2.4-8.3-fold and 7.4-7.8-fold respectively in UPEC strain 83972 *in vivo* (Roos & Klemm, 2006).

CE10 is a K1 NMEC strain that was isolated from the CSF of a patient with meningitis (Yao *et al.*, 2006). Like many K1 NMEC strains, CE10 carries two unlinked copies of the *dsdCXA* locus. It has been hypothesised that NMEC may be able to use D-serine as a carbon source for growth in the brain or as an environmental signal for gene expression (Moritz & Welch, 2006). Indeed, it has recently been shown that D-serine affects the transcriptome of CE10, causing differential expression of 55 genes and intriguingly repressing genes involved in acid tolerance (Connolly *et al.*, 2021). This work aimed to understand whether both copies of the NMEC CE10 DsdC were homologous in functionality. This chapter sought to address these questions by characterising the roles of CFT073 DsdC and CE10 DsdC1 and DsdC2. ChIP-Seq and RNA-Seq experiments were used to assess the global binding and the transcriptional response of CFT073 and CE10 DsdC in the presence and absence of D-serine.

3.2 DsdC and D-serine metabolism

3.2.1 Structural differences of DsdC

As with many NMEC K1 isolates, CE10 is interesting as it carries two copies of the *dsdCXA* locus. As it is yet unknown why CE10 carries two copies, the differences in amino acid structure of DsdC1 and DsdC2, as well as CFT073 DsdC were analysed.

В

CFT073_DsdC CE10_DsdC1 CE10_DsdC2	MEPLREIRNRLLNGWQLSKLHTFEVAARHQSFALAAEELSLSPSAVSHRINQLEEELGIQ 60 MEPLREIRNRLLNGWQLSKLHTFEVAARHQSFALAAEELSLSPSAVSHRINQLEEELGIQ 60 MEPLREIRNRLLNGWQLSKLHTFEVAARHQSFALAAEELSLSPSAVSHRINQLEEELGIQ 60
CFT073_DsdC CE10_DsdC1 CE10_DsdC2	LFVRSHRKVELTHEGKRVYWALKSSLDTLNQEILDIKNQELSGTLTLYSRPSIAQCWLVP120 LFVRSHRKVELTHEGKRVYWALKSSLDTLNQEILDIKNQELSGTLTLYSRPSIAQCWLVP120 LFVRSHRKVELTHEGKRVYWALKSSLDTLNQEILDIKNQELSGTLTLYSRPSIAQCWLVP120
CFT073_DsdC CE10_DsdC1 CE10_DsdC2	ALGDFTRRYPSISLTVLTGNDNVNLQRAGIDLAIYFDDAPSAQLAHHFLMDEEILPVCSP180 ALGDFTRRYPSISLTVLTGNDNVNLQRAGIDLAIYFDDAPSAQLTHHFLMDEEILPVCSP180 ALGDFTRRYPSISLTVLTGNDNVNLQRAGIDLAIYFDDAPSAQLTHHFLMDEEILPVCSP180
CFT073_DsdC CE10_DsdC1 CE10_DsdC2	EYAQRHDLTNTVINLRHCTLLHDRQAWSNDSGTDEWHSWAQHYAVNLPTSSGIGFDRSDL 240 EYAQRHALTNQVINLRHCTLLHDRQAWSNDSGTDEWHSWAQHYAVNLPTSSGIGFDRSDL 240 ENAQRHDLTNTVINLSHCTLLHDRQAWSNDSGTDEWHSWAQHYAVNLPTSSGIGFDRSDL 240
CFT073_DsdC CE10_DsdC1 CE10_DsdC2	AVIAAMNHIGVAMGRKRWVQKRLASGELVAPFGDMTVKCHQHYYITTLPGRQWPKIEAFI 300 AVIAAMNHIGVAMGRKRÜVQKRLASGELVAPFGDMTVKCHQHYYITTLPGRQWPKIEAFI 300 AVIAAMNHIGVAMGRKRUVQKRLASGELVAPFGDMTVKCHQHYYITTLPGRQWPKIEAFI 300
CFT073_DsdC CE10_DsdC1 CE10_DsdC2	TWLREQVSOYEGYTL 315 TWLREQVSOYEGYTL 315 TWLREQVEOSEGYQ- 314

Figure 3-1 Multiple sequence alignments of the amino acid sequence of CFT073 and CE10 DsdC.

Figure 3-1 Multiple sequence alignments of the amino acid sequence of CFT073 and CE10 DsdC. The sequence for CFT073 DsdC was downloaded from NCBI Reference Sequence: NC_004431.1; protein ID WP_001327519.1. For CE10 DsdC1 and DsdC2, the sequences were downloaded from the GenBank file CP003034.1; protein ID AEQ13502.1 and AEQ14956.1 respectively. (A) The multiple sequence alignment of CFT073 DsdC vs CE10 DsdC1, CFT073 DsdC vs CE10 DsdC2, and CE10 DsdC1 vs CE10 DsdC2, using NCBI Protein BLAST with the standard parameters used. This was visualised using NCBI Multiple Sequence Alignment Viewer 1.20.0 with the colouring reflecting Rasmol Amino Acid colours. Each amino acid is rendered in a different colour. (B) The multiple sequence alignment of CFT073 DsdC, CE10 DsdC1 and CE10 DsdC2 was generated on Clustal Omega (EMBL-EBI). Grey shading indicates differences in amino acid sequence.

Figure 3-1 shows the multiple sequence alignments of CFT073 DsdC and CE10 DsdC1 and DsdC2. This analysis revealed that the amino acid sequence of the three DsdCs were highly conserved, with few differences between them. Indeed, a protein BLAST confirmed that DsdC was highly conserved with >98% percentage identity, as presented in Table 3-1.

Alignments	Query cover (%)	E-value	Percentage identity (%)
CFT073 DsdC against CE10 DsdC1	100	0	98.73
CFT073 DsdC against CE10 DsdC2	98	0	98.38
CE10 DsdC1 against CE10 DsdC2	98	0	98.38

Table 3-1 Amino acid sequence homology between the DsdCs. Data derived from the NCBI protein BLAST. Query cover is the percentage of the sequences aligned, E-value is the Expect value which describes the number of hits expected to be seen by chance, and percentage identity is the extent of which two amino acid sequences are similar.

However, there were a few differences between the amino acid sequences. Figure 3-1(B) indicated that there was a small cluster of differences between codon 182 and 199, and differences towards the end of the gene. Using Pfam (EMBL-EBI), DsdC was modelled to visualise the predicted domains of a classical LTTR.

Figure 3-2 Visualisation of the predicted domains of DsdC. Using the CE10 DsdC1 amino acid sequence, UniProt entry A0A0E0V7F3, a Pfam model was generated to predict the HTH DNA binding domain and the predicted LysR substrate binding domain on CE10 DsdC1. E-values of these domains were 4.2e-16 and 3.5e-25 for the HTH and substrate binding domain respectively. E-values are based upon searching the Pfam-A family against UniProtKB using hmmsearch (Pfam version 34.0; EMBL-EBI). The data was visualised and exported from SnapGene.

Based upon the data obtained in Figure 3-2, it appeared that the differences in the amino acid sequence between CE10 DsdC1, DsdC2 and CFT073 DsdC were in the predicted substrate binding domain. As they were clustered closely together, the difference in amino acids has potentially caused a change in the tertiary structure, thus potentially altering the properties of the co-inducer binding pocket. Theoretically, this could enable a different substrate to bind to the TF. Table 3-2 shows the amino acid changes between CE10 DsdC1 and DsdC2.

CE10 DsdC1		CE10 DsdC2	
Amino acid	Chemical property	Amino Acid	Chemical property
Tyrosine (Y)	Polar uncharged (also hydrophobic)	Asparagine (N)	Polar uncharged
Alanine (A)	Hydrophobic	Aspartic acid (D)	Negative electronic charge
Glutamine (Q)	Polar uncharged	Threonine (T)	Polar uncharged
Arginine (R)	Positive electronic charge	Serine (S)	Polar uncharged

Table 3-2 Differences between the amino acid sequences in the substratebinding domain. The differences in amino acids and their chemical propertiesbetween CE10 DsdC1 and DsdC2 in the substrate binding domain.

The main differences highlighted in Table 3-2 were the changes between alanine (hydrophobic) to aspartic acid (negatively charged) and arginine (positively charged) to serine (uncharged). The chemical properties of amino acids can affect the folding of proteins. Hydrophobic amino acids are often buried within the core of the protein, whereas polar uncharged amino acids are often hydrophilic, clustering at the surface of a protein. The changes between the CE10 DsdC1 and DsdC2 structures may therefore result in a difference in the folding of the tertiary protein structure.

3.2.2 The role of DsdC in D-serine metabolism

Previous work by McFall and colleagues demonstrated that the transcriptional regulator DsdC was needed for D-serine metabolism in the laboratory *E. coli* strain K12 (Heincz *et al.*, 1984; Nørregaard-Madsen *et al.*, 1995). As CE10 contains two copies of this transcriptional regulator, both copies were assessed for functionality in D-serine metabolism. Furthermore, deletion of the regulator in both CFT073 and CE10 was assessed.

Figure 3-3 Growth profiles of WT and $\Delta dsdC$ in M9 minimal media supplemented with D-serine. Growth curves of CFT073 (A) and CE10 (B) in M9 minimal media supplemented with 1 mM of D-serine, measured as OD₆₀₀ over time. Growth curves shown represent mean values of triplicate experiments with error bars indicating standard error of the mean (SEM).

Qualitative assessment of Figure 3-3(A) revealed that deletion of the regulator did not affect the growth of CFT073. This was the same for CE10 in Figure 3-3(B), where deletion of either the single regulators or the double regulator did not appear to impact growth. Figure 3-3(A) confirmed previous reports that DsdC was required for D-serine metabolism, with the CFT073 $\Delta dsdC$ mutant unable to grow in the presence of D-serine. Figure 3-3(B) showed that $\Delta dsdC1$ and $\Delta dsdC2$ could both metabolise D-serine, whereas the double $\Delta \Delta dsdC1/2$ mutant could not. There appeared to be no difference in the growth between $\Delta dsdC1$ and $\Delta dsdC2$ when D-serine was supplemented into the media. These results indicated that both DsdC1 and DsdC2 were functionally redundant in enabling metabolism of D-serine, and it also appeared that one was not dominant to the other. This was also shown using minimal media sole carbon source plates in which D-serine was the only carbon source present (Fig. 3-4).

Figure 3-4 Growth profiles of WT and $\Delta dsdC$ on sole carbon source plates. Growth on minimal media plates where the sole carbon source was 10 mM Dserine. Depicting the characteristic growth profile of CFT073 (A) and CE10 (B) and isogenic mutants.

Figure 3-4(B) showed that both $\Delta dsdC1$ and $\Delta dsdC2$ could metabolise D-serine on the sole carbon source plates, with each appearing to grow as effectively as the other. However, as expected, the double $\Delta\Delta dsdC1/2$ could not grow. Furthermore, the growth phenotype was restored when dsdC1 and dsdC2 were transformed into pACYC184 and complemented back into the double $\Delta\Delta dsdC1/2$ mutant strain (Fig.3-5).

Figure 3-5 Growth profiles of WT, $\Delta dsdC$ and $\Delta dsdC$ + pDsdC in M9 minimal media supplemented with D-serine. Growth curves of CFT073 (A) and CE10 (B) in M9 minimal media supplemented with 1 mM of D-serine, measured as OD₆₀₀ over time. Growth curves shown represent mean values of triplicate experiments with error bars indicating the SEM.

Qualitative assessment of Figure 3-5 revealed that when pDsdC was complemented back into the mutant, the growth phenotype was almost restored to WT levels in both CFT073 (A) and CE10 (B), although there was a slight growth lag. Nonetheless, pDsdC1 and pDsdC2 both appeared to grow comparably when complemented back into the double mutant $\Delta\Delta dsdC1/2$. This data correlated with previous reports that DsdC is essential in both CFT073 and CE10 for the metabolism of D-serine, with the complementation of pDsdC restoring growth. Furthermore, the results indicated that DsdC1 and DsdC2 appear to be functionally redundant with regard to D-serine metabolism.

3.3 Growth conditions and native expression of DsdC

3.3.1 Experimental design and growth conditions for the ChIP and RNA-Seq

Based on previous data from the Roe laboratory, it was established that the ChIP-Seq experiment would be performed under conditions matching an existing RNA-Seq experiment. Bacterial strains were grown in M9 minimal media for 3 hours at 37°C, 200 RPM. A subset was spiked with 1 mM D-serine, and all samples were grown for a further 2 hours at 37°C, 200 RPM. These experiments were designed to test the direct and indirect regulatory response of DsdC in relation to D-serine exposure. These conditions were chosen to limit the toxic effects that occurs within the $\Delta dsdC$ strains when D-serine is added to the samples at the start of the experiment, as shown in Figure 3-3.

Figure 3-6 Growth profiles of WT and $\Delta dsdC$ in M9 minimal media spiked with D-serine. Growth curves of CFT073 (A) and CE10 (B) in M9 minimal media spiked with 1mM of D-serine at hour 3, measured as OD₆₀₀ over time. Growth curves shown represent mean values of triplicate experiments with error bars indicating SEM.

Qualitative assessment of Figure 3-6 revealed when D-serine was spiked into CFT073 WT and $\Delta dsdC$ mutant at hour 3 (Fig. 3-6A), there was a slight growth defect. This growth defect was also present in CE10 (Fig. 3-6B), although not to the same extent. The growth in CE10 and $\Delta\Delta dsdC1/2$ mutant was restored to that of the samples which had no additional D-serine by hour 6. CFT073 and CE10 were both sampled at hour 5, during the logarithmic growth phase of the bacteria, when cell uniformity is most likely.

3.3.2 Native expression of DsdC

To establish if DsdC was being expressed at the time point chosen for the ChIP-Seq, the native expression of DsdC was analysed for CFT073 and CE10, in the presence and absence of D-serine. All copies of DsdC were chromosomally FLAGtagged to ensure only the native levels of expression were observed. These were then qualitatively assessed to ensure that the DsdC-FLAG tagged strains grew comparably to the WT (Fig. 3-7).

Figure 3-7 Growth profiles of WT and DsdC^{FLAG} mutants in M9 minimal media, spiked with D-serine. DsdC^{FLAG} tagged *E. coli* were assessed in M9 minimal media to ensure growth was similar to the non-FLAG tagged WT, measured as OD_{600} over time. This was performed with and without addition of 1 mM D-serine at hour 3 for CFT073 (A) and CE10 (B). Growth curves shown represent mean values of triplicate experiments with error bars indicating SEM.

No qualitative differences were observed in growth between WT and DsdC^{FLAG} tagged strains (Fig. 3-7), indicating that engineering the FLAG tag to DsdC had had no impact upon growth. The native expression of DsdC was then analysed using SDS-PAGE and Western blot analysis (Fig. 3-8).

Western blot analysis revealed the relatively low abundance of CFT073 DsdC, in comparison to CE10 DsdC1 and DsdC2, in both the presence and absence of D-serine (Fig. 3-8). This finding potentially indicates that there are different regulatory mechanisms that control DsdC expression between the two strains. Western blot analysis also revealed that there was no difference in expression between DsdC1 and DsdC2, suggesting that there was no preferential favour to either DsdC1 or DsdC2 in the cell. When D-serine was spiked into the samples, it caused expression of all three DsdCs to increase, which correlates with previous findings. As a control, anti-DnaK antibody and Ponceau stain was used to ensure normal housekeeping expression and no differential loading of samples. In addition to investigating the native protein expression of DsdC at hour 5, the transcriptional levels of *dsdC* were also analysed.

Figure 3-9 RT-qPCR fold change levels of *dsdC* in response to D-serine. RTqPCR analysis of the transcriptional fold change levels of CFT073 *dsdC*, CE10 *dsdC1* and CE10 *dsdC2*, with * denoting significance of *p*-value \leq 0.05. The purple dashed line indicates the baseline expression of *dsdC* at hour 5. (A) CFT073 *dsdC* with a fold change of 2.46 and a *p*-value of 0.00027. (B) CE10 *dsdC1* with a fold change of -1.24 and a *p*-value of 0.9. (C) CE10 *dsdC2* with a fold change of -1.63 and a *p*-value of 0.7.

Figure 3-9 indicated that for CE10 *dsdC1* and *dsdC2*, there was no significant difference in gene expression between the addition or absence of D-serine at hour 5, suggesting that *dsdC* expression had reverted to basal levels. Conversely, CFT073 *dsdC* was shown to be significantly upregulated when D-serine was spiked in (2.46-fold higher; *p*-value 0.0002). This suggests that potentially DsdC is regulated differently between the two strains, as both transcriptionally and translationally they function differently.

3.4 The global binding profile of CFT073 DsdC and CE10 DsdC1 and DsdC2

Until 2007, TF studies were limited to a small number of genetic locations, usually based upon prior knowledge of where a TF would be likely to be bound. However, with the advent of ChIP-Seq it is now possible to map protein-DNA interactions in an unbiased, high-throughput manner across the whole genome (Barski *et al.*, 2007; Johnson *et al.*, 2007; Mikkelsen *et al.*, 2007; Robertson *et al.*, 2007). To assess natively where DsdC was binding on the ExPEC genomes, DsdC^{FLAG} tagged strains were genetically engineered and a ChIP-Seq experiment

performed. The conditions used for the ChIP-Seq experiment were performed to correlate with a previous RNA-Seq experiment and are described in Figure 3-10.

Figure 3-10 Graphical representation of the ChIP aspect of ChIP-Seq. 2 biological replicates of the DsdC^{FLAG} tagged strains were grown in M9 minimal media for 3 hours, 200 RPM at 37°C. 1 mM of D-serine was added to a subset of the samples and the samples were incubated for a further 2 hours. Proteins were then cross-linked to the DNA using formaldehyde and the DNA was sheared into 200-300 bp fragments by sonication. The DNA fragments bound by DsdC were immunoprecipitated out and the cross-links were reversed. The isolated DNA was then sent for Illumina sequencing. A non-FLAG tagged WT was used as a mock ChIP control.

Once the chromatin was immunoprecipitated and cross-links reversed, the samples were sent for library preparation and Illumina Next Generation sequencing at Glasgow Polyomics, performed by Julia Galbraith. The reads were quality controlled (QC) checked, uploaded onto CLC Genomics Workbench 7 and mapped against the CFT073 and CE10 reference genomes; NCBI accession numbers NC_004431.1 and CP003034 respectively. The Transcription Factor ChIP-Seq tool was then used to analyse the genomic coverage of the reads,

identifying a set of positive regions with very apparent peaks. The mock ChIP experiment was used as a negative example for the software. Once the positive and negative regions were identified, the software builds a filter which was used to identify other genomic regions, of which the read coverage profile matches the characteristic peak shape (Fig. 3-11). Figure 3-12 shows the peak shapes generated for CFT073^{DsdC FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG} tagged samples.

Figure 3-11 Canonical ChIP-Seq peak shape. The canonical peak shape of a transcription factor based upon the Hotelling Observer filter used in CLC Genomic Workbench 7 (QIAGEN). The green line indicates the forward read and the red line indicates the reverse read. Figure adapted from CLCBio (QIAGEN).

Figure 3-12 Peak shape filter score for CFT073^{DsdC-FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG}. The blue and black lines represent the ChIP forward and reverse strands respectively, whilst the red and aqua lines represent the mock ChIP control forward and reverse sample respectively. This shape should give the classical bimodal peak that genuine ChIP peaks must adhere to. (A) Peak shape filter score for CFT073^{DsdC-FLAG} with D-serine; (B) CE10^{DsdC1-FLAG} with D-serine; (C) CE10^{DsdC2-FLAG} with D-serine. This data was obtained from CLC Genomics Workbench 7 (QIAGEN).

The CFT073 peak shape filter scores observed in Figure 3-12 represented the canonical TF peak shape that genuine TF peaks must adhere to. However, the CE10 peak shape score appeared to be slightly broader in frame. Subsequently, the peaks were manually checked to look at the binding profiles. Interestingly, two distinct peak shapes emerged from the ChIP-Seq data (Fig. 3-13). The first peak shape (Fig. 3-13A/C/E) was the canonical TF peak shape, whereas the second peak shape was broader and covered larger regions of the genome (Fig. 3-13B/D/F).

Figure 3-13 Expanded view of ChIP-Seq peaks from CE10. An expanded view of the ChIP-Seq peaks from CE10^{DsdC1-FLAG} and CE10^{DsdC2-} ^{FLAG} highlighting the differences in binding patterns. (A, C and E) show the canonical ChIP TF binding peak. (B, D and F) show a broader peak encompassing small sections of the genome.

Due to the high number of false positives associated with ChIP-Seq, peaks called by the software were manually checked until there were 10 in a row that did not conform to the canonical TF shape. Table 3-3 shows the number of ChIP-Seq peaks called by the CLC software, and after manual inspection the number of peaks that were deemed to be "true" binding peaks (data listed in Supplementary Table S1-6).

Sample	Number of statistically significant peaks called (<i>p</i> -value ≤0.05)	Number of "true" ChIP- Seq peaks
CFT073 ^{DsdC-FLAG}	375	88
CFT073 ^{DsdC-FLAG} + 1mM D-	1,115	129
serine		
CE10 ^{DsdC1-FLAG}	7,001	95
CE10 ^{DsdC1-FLAG} + 1mM D-	5,724	217
serine		
CE10 ^{DsdC2-FLAG}	4,820	140
CE10 ^{DsdC2-FLAG} + 1mM D-	5,498	177
serine		

Table 3-3 Analysis of the ChIP-Seq peaks called from the CLC ChIP-Seq analysis software. The number of statistically significant peaks (p-value ≤ 0.05) called using CLC and a summary of the potential "true" direct binding sites of DsdC that was established after manual inspection of the ChIP-Seq data.

As Table 3-3 shows, the CLC software predicted >250 peaks for CFT073^{DsdC-} ^{FLAG}and >1,000 peaks for CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG}. Upon manual inspection however, many of these were deemed false positives and the number of "true" DsdC binding peaks ranged between 88 and 217 peaks. These results indicated that DsdC was more than just the transcriptional regulator for D-serine metabolism and that it was significantly binding to multiple regions across the genome.

3.4.1 Genome wide binding of DsdC

Using the ChIP-Seq data, the global binding profile of DsdC was overlayed onto the CFT073 and CE10 genome (Fig. 3-14).

Figure 3-14 The global binding profile of CFT073^{DsdC-FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG}.

Figure 3-14 The global binding profile of CFT073^{DsdC-FLAG}, CE10^{DsdC1-FLAG} and CE10^{DsdC2-FLAG}. The global binding profile of the genomic regions bound by DsdC. Significant peaks (*p*-value \leq 0.05) of interest are labelled above each track map in black. (A) CFT073^{DsdC-FLAG} ChIP-Seq peak score in the presence and absence of D-ser; (B) CE10^{DsdC1-FLAG} ChIP-Seq peak score in the presence and absence of D-ser; (C) CE10^{DsdC2-FLAG} ChIP-Seq peak score in the presence and absence of D-ser.

Analysis of Figure 3-14 indicated that the DsdC peaks were distributed across the whole genome, and that DsdC was not solely binding in a single region. These results indicated that DsdC could potentially be a global regulator, and was not just acting locally on the *dsdCXA* locus. The track maps of the ChIP-Seq peak scores (Fig. 3-14A-C) highlighted how similar the DsdC binding profiles were in the presence or absence of D-serine. Indeed, upon further analysis of the ChIP-Seq data, it was revealed that there was no difference in binding patterns between presence and absence of D-serine in each of the data sets. Further, there was no difference in binding patterns observed between CE10 DsdC1 and DsdC2. Peaks that appeared to be unique to DsdC1 were in fact present in the DsdC2 sample, and vice versa, but had not made the "canonical" TF shape cutoff. It is therefore likely that there was no real difference in binding sites between the two homologous TFs. Instead, any differences observed were likely to be due to experimental artefacts. In contrast, there were differences observed between the binding sites for DsdC in CE10 and CFT073, indicating for the first time that there was strain-specific regulation mediated by DsdC.

3.4.2 Functional characterisation of the ChIP-Seq hits and strain-specific binding of DsdC

Functional analysis and characterisation was carried out on the ChIP-Seq hits. Genes with the 5' end closest to the nearest associated ChIP binding peak were assumed to be the gene regulated by DsdC (Fig. 3-15).

Figure 3-15 Functionality of the genes predicted as direct binding targets of DsdC. Genes with 5' ends closest to the nearest associated ChIP binding peak were functionally characterised using UniProtKB GO functional groupings (Bateman et al., 2021). Functional groups were broken down into broad categories such as metabolism and virulence associated genes for (A) CFT073^{DsdC-FLAG} + D-ser and (B) CE10^{DsdC1-FLAG} + D-ser.

Functional analysis of the genes predicted to be regulated by CFT073 DsdC revealed great insight into the potential roles of the TF. Indeed, 18% of the genes (24/129) that were bound were involved in transport or were membrane associated. These included genes such as *pitB*, a phosphate transporter; c5298, a hexuronate transporter; and *garP*, a galactarate transporter. Intriguingly, DsdC also bound to several virulence associated regions in CFT073: 7% of the genes (9/129) were associated with fimbriae production, including *papA*, *fimE*, and *fimA*, and 5% of the genes (7/129) were associated with LPS biosynthesis including *rfaJ*, *waaL* and *waaV*. These were segregated from the general 'virulence associated' functional grouping to highlight the large abundance of genes within these categories. The remaining functional groups included genes involved in metabolism (15/129), other regulators (10/129), virulence associated (9/129), transcription and translation (5/129), electron transport (2/129), and

uncharacterised (48/129). These results illustrated that DsdC binds to a wide range of genes that are involved in multiple different functional mechanisms in CFT073, further indicating the possibility of DsdC as a global regulator.

As the ChIP binding profiles had revealed no differences in binding pattern between CE10 DsdC1 and DsdC2, the data set of CE10^{DsdC1-FLAG} + D-ser was used as a representative of the group. Gene ontology (GO) analysis revealed the largest functional group bound by DsdC was transport and membrane associated genes which accounted for 25% of the targets (55/217). These included genes such as *fepE*, a ferric enterobactin transporter; *fucP*, an L-fucose transporter; and *feoA*, a ferrous iron transporter. Further, DsdC was also shown to bind to genes involved in LPS and capsular biosynthesis (14/217), with targets such as *neuO* and *neuB*. The K1 capsule plays an essential role in NMEC pathogenicity and is encoded on the kps operon. This operon is not present in CFT073, potentially therefore alluding to strain-specific regulation by DsdC of a key virulence mechanism in CE10. The remaining functional groups included genes involved in metabolism (31/217), fimbriae (14/217), other regulators (27/217), virulence associated (17/217), transcription and translation (5/217), phage encoded (2/217), electron transport (3/217) and uncharacterised (49/217). These results all indicated a global role of DsdC in binding to the CE10 genome.

Interestingly, the global binding and functional analysis of the ChIP-Seq results had revealed strain-specific binding of DsdC in CFT073 and CE10. Indeed, highly conserved TFs have recently been shown to be "repurposed", uniquely controlling separate gene sets in different bacteria and tailoring gene regulation to suit strain-specific lifestyles (reviewed in O'Boyle *et al.*, 2020). A comparison of the ChIP-Seq binding peaks between CFT073^{DsdC-FLAG} and CE10^{DsdC1-FLAG}, both in the presence of D-serine, was therefore made (Fig. 3-16; Supplementary Table 7). NCBI BLAST was used to map gene sequences to the relevant reference genome for gene homology.

Figure 3-16 Strain-specific binding of DsdC. A Venn diagram highlighting the difference in binding sites between CFT073^{DsdC-FLAG} and CE10^{DsdC1-FLAG}, in the presence of D-serine. NCBI BLAST was used to assess homology of genes. Diagram made on Venny 2.1.0 (Oliveros, 2007).

Figure 3-16 showed that 35% of targets (90 genes) predicted to be bound by DsdC were common to both CFT073 and CE10. Functional characterisation of the commonly bound genes revealed functions involved in both core processes of the cell such as metabolism and transport but also virulence associated genes, specifically LPS biosynthesis genes and putative fimbrial genes (Fig. 3-17).

Figure 3-17 Functional analysis of common binding peaks between CFT073^{DsdC-FLAG} and CE10^{DsdC1-FLAG}. A graphical representation of the shared binding peaks and their associated gene functionality between CFT073^{DsdC-FLAG} and CE10^{DsdC1-FLAG}.

Notably however, there were differences between the data sets, with CE10 DsdC1 uniquely binding to 127 regions of the genome, and CFT073 DsdC uniquely binding to 39, indicating that there was strain-specific binding by DsdC (Fig. 3-16). Of the 39 putatively bound genes that were unique to the CFT073 data set, 26 of these were specific to CFT073 and had no homology in CE10. The 13 other genes all had homology in CE10 and contained a peak in the CE10 data set; however, the peaks did not meet the peak threshold criteria. Therefore, only the 26 genes that were completely unique to CFT073 will be discussed (Fig. 3-18A).

Functional analysis revealed virulence associated genes were one of the largest functional groups in the unique CFT073 DsdC binding data set (4/26) and included the genes *tssB* and *yheE*. These genes are involved in the type 6 secretion system (T6SS) and a putative type 2 secretion system (T2SS)

respectively. Both of these mechanisms are utilised by bacteria to secrete effector molecules into the host or neighbouring bacteria and are key virulence mechanisms. Furthermore, it was shown that DsdC also bound uniquely to *clbR*, the regulator of colibactin biosynthesis. Colibactin is a bacterial genotoxin produced by UPEC and has recently been associated with colorectal cancer in humans. The other genes uniquely bound by CFT073 DsdC were found to be involved in metabolism (2/26), transport and membrane associated (2/26), fimbriae (3/26), transcription and translation (2/26) and uncharacterised (12/26). These results indicated that DsdC bound uniquely to multiple genes, and strikingly to several virulence associated genes, indicating that DsdC has potentially been tailored in CFT073 strains.

Of the 127 genes that were unique to the CE10 data set, 67 of these were specific to CE10, 25 had homology in CFT073 but no peak, and 35 had homology in CFT073 and had a peak but did not meet the peak threshold criteria (Fig. 3-16). Therefore, only the 92 genes that appeared to be completely unique to CE10 will be discussed (Fig. 3-18B). Interestingly, many of the potential genes bound by CE10 DsdC were also found to be associated with virulence. Indeed, capsular and LPS genes (5/92), fimbriae genes (6/92) and general virulence associated genes (12/92) accounted for 26% of the unique CE10 hits. Notably, genes involved in the NMEC putative secondary T3SS ETT2, were shown to be bound by DsdC. This virulence factor is not carried by CFT073 (Ren et al., 2004) and again could indicate a role for DsdC in strain-specific regulation. The other genes found to be bound uniquely by CE10 DsdC were involved in metabolism (10/92), transport and membrane associated (19/92), other regulators (9/92), transcription and translation (2/92), phage encoded (2/92), electron transport (1/92), and uncharacterised (26/92). These results all indicate that DsdC has been tailored in ExPEC to mediate different regulatory pathways specific to individual strain requirements.

3.4.3 Genomic context of DsdC binding

Where on the genome a TF binds to, in relation to the 5' end of a gene, can reveal a lot about the dynamics of the TF. Indeed, the canonical TF model is that TFs bind at the 5' region of a gene, usually in intergenic non-coding regions. The genomic context of DsdC binding were therefore analysed (Fig. 3-19).

Figure 3-19 Genomic context of ChIP-Seq binding hits. The position of the ChIP-Seq binding peak in terms of intergenic and intragenic regions of the genome for (A) CFT073^{DsdC-FLAG} + D-ser and (B) CE10^{DsdC1-FLAG} + D-ser. The distance (bp) of the ChIP-Seq binding peak position in relation to the start of the 5' end of the gene for (C) CFT073^{DsdC-FLAG} + D-ser and (D) CE10^{DsdC1-FLAG} + D-ser. Raw data for figures are in Supplementary Table S1-6.

Figure 3-19(A-B) shows the majority of the CFT073 and CE10 DsdC ChIP peaks were binding to intergenic regions of the genome, 81% and 74% respectively. However, there were peaks that were binding in ORFs, with 19% of the CFT073 peaks (25/129) and 26% of the CE10 peaks (57/217) binding in intragenic regions. The distance of the binding peak, in relation to the 5' end of the gene, was also analysed (Fig. 3-19C-D). As would be expected of a canonical TF, DsdC binds mainly at the 5' end of the gene, with most peaks being in the 0 bp 'bin' away from the 5' end. However, there was a vast range in binding site distance for DsdC, with 7 and 31 binding sites over 150 bp downstream of the 5' end for CFT073 and CE10 respectively. A large proportion of the peaks were downstream to the 5' end of the gene with 122 out of 127 CFT073 DsdC peaks and 198 out of

217 CE10 DsdC peaks fitting this description. These results all indicated that DsdC was binding as a classical TF, with the majority of peaks being intergenic and near the TSS of the gene.

Further analysis of the ChIP-Seg data could be performed in relation to the DsdC binding motif. A binding motif is the common consensus sequence that a TF uses to recognise and bind to DNA. The generally accepted LTTR binding motif consists of a 13 bp sequence $T-N_{11}-A$, although this can vary in base pair composition and length (Goethals et al., 1992; Maddocks & Oyston, 2008). Although ChIP-Seq maps DNA-TF interactions at a high resolution, this resolution is not high enough to map the TF binding motif (Wade, 2015), and therefore the MEME-Suite software was used to generate the DsdC binding motif (Bailey et al., 2009). The 60 most significant predicted peaks of CE10^{DsdC1-FLAG} + D-ser were used to generate the binding motif. The standard parameters were used in the MEME-Suite software with advanced options stating a motif minimum width of 11 bp and maximum width of 27 bp. The software was to run until 10 motifs had been found. However, no significant binding motifs under these parameters were generated. As there had been two types of binding patterns observed in the ChIP-Seq data analysis, the search was refined using only the top 20 predicted binding regions that had a canonical peak shape. The same advanced options were used and three statistically significant predicted binding motifs were generated (Fig. 3-20).

Figure 3-20 Predicted DsdC binding motifs. Predicted DsdC binding motifs that were generated from the $CE10^{DsdC1-FLAG}$ + D-ser dataset using MEME-Suite. These binding motifs were statistically significant with E-values of (A) 5.5e-007, (B) 1.2e-002, and (C) 3.3e-002.

Figure 3-20 presents three predicted DsdC binding motifs generated from the ChIP-Seq data. The LTTR binding box is the consensus sequence $T-N_{11}-A$, however, none of the motifs generated fit that consensus sequence. Conversely, Figure 3-20(A) predicts two $T-N_{11}-A$ sequences joined together and Figure 3-20(C) predicts a consensus sequence of $T-N_{24}-A$. Although these predictations are statistically significant, DNase I footprinting should be used to experimentally validate the binding motif. Together, the data presented here indicated that DsdC is a global TF, that binds in intergenic and intragenic regions across the genome.

3.5 Transcriptomic regulon of CFT073 DsdC and CE10 DsdC1/2

Although DsdC was shown to bind globally across the genome in the ChIP-Seq binding data, this did not demonstrate transcription of downstream genes. Indeed, direct binding of a TF does not necessarily equate to a transcriptional response. Global transcriptome profiling by RNA-Seq can identify the direct and indirect regulon of a given TF, revealing novel networks and pathways. Therefore, to determine whether DsdC was playing a direct regulatory role in CFT073 and CE10, a transcriptomics experiment was carried out, comparing the RNA levels between WT and mutant, in the presence and absence of D-serine. This was performed by Dr Nicky O'Boyle, as described in 2.3.7, with the conditions used represented in Figure 3-21.

Figure 3-21 Conditions used in the RNA-Seq experiment. A graphical representation of the conditions used in the RNA-Seq experiment in CFT073 and CE10. Condition 1 examined the transcriptional changes between "WT vs.

 $\Delta dsdC$ " (or $\Delta \Delta dsdC1/2$ for CE10). Strains were grown for 5 hours in M9 minimal media. Condition 2 examined the transcriptional changes between "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ " (or $\Delta \Delta dsdC1/2^{D-ser}$ for CE10). Strains were grown for 3 hours in M9 minimal media, 1 mM of D-serine was added, and strains were grown for a further 2 hours. Condition 3 examined the transcriptional changes between "WT^{D-ser} vs. $\Delta dsdC + pDsdA^{D-ser}$ " (or $\Delta \Delta dsdC1/2 + pDsdA^{D-ser}$ for CE10). Strains were grown for 5 hours in M9 minimal media with 1 mM D-serine added in from the start.

Figure 3-21 shows a graphical representation of the three conditions used in the RNA-Seq experiment. All conditions were performed in M9 minimal media, at 37°C, 200 RPM. Condition 1 examined the transcriptional changes between "WT vs. $\Delta dsdC$ ". This pairwise comparison sought to reveal any roles of the TF DsdC in the absence of D-serine. Condition 2 examined the transcriptional changes between "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ ". This condition was chosen to show the role of DsdC in the presence of D-serine. The samples were spiked with 1 mM D-serine at hour 3, to minimise any toxic side effects of D-serine on the mutant as described in 3.2.2 and 3.3.1. Further, as there was the potential that D-serine accumulation, even after spiking at hour 3, could cause detrimental effects upon the mutant and affect changes in gene regulation, pDsdA was complemented into the $\Delta dsdC$ mutant (condition 3). As DsdA is the D-serine deaminase, this experimental condition would reveal the transcriptional changes between "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ ", whilst theoretically minimising any potential D-serine accumulation side effects.

3.5.1 DsdC differentially regulates genes in the presence and absence of D-serine

The reads from the RNA-Seq experiment were quality assessed and mapped to the CFT073 and CE10 genome and plasmids (NCBI accession number: NC_004431.1, CP003034, CP003035, CP003036, CP003037, CP003038) using CLC Genomics Workbench 7. Differential expression was assessed using the empirical analysis of differential expression (EdgeR) with genes displaying absolute fold changes of \geq 1.5; \leq -1.5 and having a false-discovery rate corrected *p*-value of \leq 0.05 being considered. Pairwise comparisons were done using the three conditions stated above (Fig. 3-21). This analysis was performed by Dr Nicky O'Boyle prior to this PhD commencing. Table 3-4 shows a summary of the total number of differentially expressed genes (DEGs). Full differential expression data is available on ENA under the accession numbers detailed in Chapter 2. Figures 3-22 and 3-23 are volcano plots of the CFT073 and CE10 transcriptomic data respectively.

RNA-Seq pairwise comparison	Total no. of differentially expressed genes (DEGs)	No. of genes upregulated	No. of genes downregulated
CFT073 WT vs. $\triangle dsdC$ (condition 1)	47	29	18
CFT073 WT ^{D-ser} vs. $\Delta dsdC^{D-ser}$ (condition 2)	1067	542	525
CFT073 WT ^{D-ser} vs. $\Delta dsdC$ + pDsdA ^{D-ser} (condition 3)	175	162	12
CE10 WT vs. $\Delta\Delta ds dC1/2$ (condition 1)	82	42	40
CE10 WT ^{D-ser} vs. $\Delta\Delta ds dC1/2^{D-ser}$ (condition 2)	436	287	149
CE10 WT + D-ser vs. $\Delta\Delta ds dC 1/2$ + pDsdA1/2 ^{D-ser} (condition 3)	552	300	252

Table 3-4 Summary of DEGs from the RNA-Seq experiment. A summary of the total number of DEGs from each pairwise comparison, and subdivided into number of DEGs upregulated and downregulated. Genes were classed as DEGs if they displayed absolute fold changes of ≥ 1.5 ; ≤ -1.5 and had a false-discovery rate corrected *p*-value of ≤ 0.05 .

Figure 3-22 Volcano plots of CFT073 RNA-Seq transcriptome data. This data displays the Log₂ fold change in genes for the pairwise comparisons between (A) $\Delta dsdC$ compared to the WT; (B) $\Delta dsdC$ compared to the WT in the presence of 1 mM D-serine; (C) $\Delta dsdC$ + pDsdA compared to the WT in the presence of 1 mM D-serine. Significant DEG (*p*-value ≤0.05) are displayed in red, with the grey line indicating the *p*-value cut off for DEGs.

Figure 3-23 Volcano plots of CE10 RNA-Seq transcriptome data. This data displays the Log₂ fold change in genes for the pairwise comparisons between (A) $\Delta\Delta ds dC1/2$ compared to the WT; (B) $\Delta\Delta ds dC1/2$ compared to the WT in the presence of 1 mM D-serine; (C) $\Delta\Delta ds dC1/2$ + pDsdA1/2 compared to the WT in the presence of 1 mM D-serine. Significant DEG (*p*-value ≤0.05) are displayed in red, with the grey line indicating the *p*-value cut off for DEGs.

Table 3-4 displays the total number of DEGs from each pairwise comparison (visualised in the volcano plots; Fig. 3-22 and 3-23). Condition 1, "WT vs. $\Delta dsdC$ ", yielded the least amount of DEGs for both CFT073 and CE10, 47 and 82 respectively. For CFT073, the fold changes of DEGs were relatively low, with all but 5 of the DEGs having fold changes ranging between >3 and <-3. The most upregulated DEG, *purE*, had a 3.07-fold change (*p*-value 7.61E-04), and the two most downregulated DEGs bar *dsdC*, *c1089* and *fruB*, had a -6.97 (*p*-value 0.03) and -3.64-fold change (*p*-value 5.08E-04) (Fig. 3-22A). The low fold changes between >3 and <-3. The most upregulated DEG and *s* a

Conversely, when D-serine was added to the experiment (condition 2), the number of DEGs increased vastly, to 1,067 and 436 in CFT073 and CE10 respectively (Table 3-4; Fig. 3-22B and 3-23B). Furthermore, in condition 2, the fold changes observed were also more pronounced. In the CFT073 "WT^{D-ser} vs. $\Delta ds dC^{D-ser}$ ", the two most up-regulated genes, yhaU and glnK, had fold changes of 208.42 (p-value 2.76E-80) and 141.49 (p-value 6.33E-39), and the two most downregulated genes bar dsdC, c4437 and c1142, had fold changes of -22.35 (pvalue 0.04) and -22.18 (p-value 0.04). Indeed, 246 DEGs had fold changes ranging between >3 and <-3. This increase in fold change levels was also reflected in the "CE10 WT^{D-ser} vs. $\Delta\Delta ds dC1/2^{D-ser}$ " transcriptomic comparison. The two most upregulated genes, *ais* and *CE10 0081*, had fold changes of 38.93 (p-value 0.01) and 33.97 (p-value 0.01) and the two most downregulated genes bar dsdC2, rhaB and neuO, had fold changes of -24.76 (p-value 0.05) and -4.57 (p-value 8.56E-10). These results indicated that in the presence of D-serine there is a greater transcriptional effect of DsdC in both CFT073 and CE10. Indeed, the differences in number of DEGs was substantial between absence and presence of D-serine. To rule out any potential adverse side effects that may have arisen from D-serine accumulation in the $\Delta ds dC^{D-ser}$ mutant, and therefore

any potential changes to the transcriptome as a consequence, dsdA was transformed into pACYC184 and complemented into $\Delta dsdC$ (condition 3).

Notably, there was a pronounced difference in the number of genes differentially expressed between the CFT073 "WT^{D-ser} vs. $\Delta dsdC + pDsdA^{D-ser}$ " data set, in comparison to "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ "; the number of DEGs dropped from 1,067 to 175. This result indicated that the majority of DEGs present in the "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ " pairwise comparison was likely due to D-serine accumulation and toxicity within the cells. The degree of fold change was also less pronounced with only 7 genes, including *dsdA* and *dsdC* having fold changes of >3 and <-3. The two most significant upregulated genes bar *dsdA*, *yjiY* and *c0881* had fold changes of 41.57 (*p*-value 0) and 32.38 (*p*-value 9.42E-03), and the two most downregulated genes bar *dsdC*, *c3818* and *c5343* had fold changes of -4.6 (*p*-value 0.04) and -2.76 (*p*-value 0.03). When the two D-serine data sets were overlapped, there were 56 genes that were commonly differentially expressed, although only 6 of these were transcriptionally differentially expressed in the same direction: *metL*, *bfr*, *yfiD*, *dsdC*, *c3149*, and *c2566*.

There was also a difference in the number of genes differentially expressed between the CE10 "WT^{D-ser} vs. $\Delta\Delta dsdC1/2 + pDsdA1/2^{D-ser}$ " data set, in comparison to "WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ "; the number of DEGs increased from 436 to 552, with 38 of these DEGs having fold changes of >3 and <-3. The two most significant upregulated genes bar *dsdA1* and *dsdA2*, *gadE* and *yfiD* had fold changes of 16.68 (*p*-value 1.45E-04) and 11.59 (*p*-value 8.38E-90). Notably, in this pairwise comparison *dsdC2* was downregulated -210.52-fold (*p*-value 1.61E-07), whereas *dsdC1* was downregulated -36.41 (*p*-value 2.32E-03). The two most downregulated genes bar *dsdC1* and *dsdC2*, *CE10_4853* and *mdtJ*, had fold changes of -161.47 (*p*-value 2.44E-13) and -11.2 (*p*-value 7.77E-07). These results indicated that addition of pDsdA to $\Delta\Delta dsdC1/2^{D-ser}$ caused more differential gene expression, suggesting that overexpression of pDsdA put the cell under undue stress. When the two CE10 D-serine data sets were overlapped, this revealed 124 common DEGs, although only 30 of these were transcriptionally differentially expressed in the same direction (Table 3-5).

	Condition 2		Condition 3	
	CE10 WT ^{D-ser} vs. $\Delta\Delta ds dC1/2^{D-ser}$		CE10 WT ^{D-ser} vs. $\Delta\Delta ds dC1/2$ +	
	Fold change	EDP ovalue	pDsdA Fold change	1/2 ^{0-ser}
knsT		2 08F-04	1 66	1 04F-04
neuΔ	4.32	1.99F-06	2.01	1.11E-08
neuR	6.93	9.96E-08	1.99	6.19E-09
neuF	4.27	6.44E-04	3.1	3.41E-11
neuC	6.57	1.99E-06	2.31	2.56E-11
neuS	6.89	1.30E-04	3.98	2.71E-16
neuO	-4.57	8.56E-10	-8.15	5.07E-71
papA2	2.46	6.43E-04	1.57	2.50E-03
metQ	1.59	1.65E-04	2.5	5.03E-07
wbbD	10.02	5.74E-04	1.98	2.00E-02
wbbA	6.17	1.02E-03	1.98	2.00E-02
rfaY	2.33	1.00E-02	1.73	8.36E-03
wbbC	7.38	8.82E-05	2.12	1.35E-03
WZX	7.6	2.05E-05	2.29	3.87E-04
waaW	2.04	1.00E-02	1.88	1.67E-04
waaT	2.31	1.30E-03	2.06	1.13E-05
vioA	3.71	5.23E-04	2.25	1.48E-07
waaV	2.12	3.00E-02	4.25	2.40E-10
gudD	4.29	5.68E-06	1.68	2.00E-02
hdhA	2.39	3.06E-03	1.64	3.07E-03
metL	3.05	2.70E-09	1.55	6.10E-04
metB	5.32	3.64E-19	1.7	3.93E-05
CE10_1649	-2.9	1.77E-05	-3.17	3.31E-14
repB	1.95	4.00E-02	1.59	2.19E-03
gnsB	7.02	7.90E-06	2.69	6.58E-11
dsdC2	-74.42	1.15E-05	-210.52	1.61E-17
yjiY	21.21	2.55E-38	1.82	1.00E-02
dppA	1.65	3.00E-02	1.53	6.36E-04
CE10_1029	2.09	4.51E-03	1.51	8.11E-03
CE10_3484	7.12	1.67E-07	2.54	6.15E-06

Table 3-5 Commonality of DEGs between CE10 condition 2 and condition 3 datasets. Fold change and FDR *p*-values for the 30 common genes that overlapped between the CE10 "WT^{D-ser} vs. $\Delta\Delta ds dC1/2^{D-ser}$ " and "WT^{D-ser} vs. $\Delta\Delta ds dC1/2$ + pDsdA1/2^{D-ser}" pairwise comparisons. Genes that had an increase in fold change values are shown in green, and genes that had a decrease in red.

GO analysis was used to assess the functionality of the DEGs for the pairwise comparisons. The combined datasets of condition 2 and condition 3 ("WT^{D-ser} vs. $\Delta dsdC^{D-ser}$ " and "WT^{D-ser} vs. $\Delta dsdC + pDsdA^{D-ser}$ ") were used. Figure 3-24 shows the up- and down-regulated genes for the pairwise comparisons in their functional groups as determined by UniProtKB.

Figure 3-24 Functional characteristics of the DEGs using the CFT073 and CE10 transcriptomic data. Genes that were differentially expressed (*p*-value ≤ 0.05) were characterised using GO analysis from UniProtKB into broad functional groups; (A) CFT073 WT vs. $\Delta dsdC$; (B) combined gene list from condition 2 and 3 (CFT073 WT^{D-ser} vs. $\Delta dsdC^{D-ser}$); (C) CE10 WT vs. $\Delta \Delta dsdC1/2$; (D) combined gene list from condition 2 and 3 (CFT073 WT^{D-ser} vs. $\Delta dsdC^{D-ser}$); (C) CE10 WT vs. $\Delta \Delta dsdC1/2$; (D) combined gene list from condition 2 and 3 (CFT073 WT^{D-ser} vs. $\Delta dsdC^{D-ser}$); (C) CE10 WT vs. $\Delta \Delta dsdC1/2$; (D) combined gene list from condition 2 and 3 (CFT073 WT^{D-ser} vs. $\Delta dsdC^{D-ser}$); (C) CE10 WT vs. $\Delta \Delta dsdC1/2$; (D) combined gene list from condition 2 and 3 (CE10 WT^{D-ser} vs. $\Delta \Delta dsdC1/2^{D-ser}$)

Figure 3-24 shows in the absence of D-serine, functional group patterns largely indicated that metabolism was one of the most affected functional groups. Indeed, in the CFT073 data set 15 of the 47 DEGs were involved in metabolism processes. Further functional analysis revealed DEGs involved in DNA replication (1/47), electron transport (2/47), ribosomal assembly (1), ribosomal proteins (6/47), stress response (3/47), transcriptional regulation (3/47), transport and membrane associated (9/47), virulence associated (1/47), and uncharacterised (6/47). This was also reflected in CE10, were 29 of the 82 DEGs were metabolism related. Similarly to CFT073, many DEGS were involved in transport or were membrane associated (18/82). Functions also included cell division (4/82), cofactors (1/82), DNA modification (2/82), phage associated (1/82), ribosomal proteins (2/82), stress response (3/82), transcriptional regulators (3/82), virulence associated (7/82), and uncharacterised (12/82). These results indicated that in the absence of D-serine, DsdC regulates core processes of the cell. Indeed, only 1 DEG was associated with virulence in the CFT073 data set when D-serine was absent, *fimG* (1.88-fold change; *p*-value 1.5E-03), a protein involved in cell adhesion.

Overlap of the CFT073 D-serine transcriptomic data sets had revealed only 6 DEGs that were transcriptionally differentially expressed in the same direction. GO analysis of these 6 DEGs revealed no functional group patterns: *metL* (lysine biosynthesis), *bfr* (bacterioferritin), *yfiD* (putative radical cofactor), *dsdC* (transcriptional regulator), *c3149* (hypothetical), and *c2566* (hypothetical) (Fig. 3-24B). Strikingly, GO analysis of the DEGs overlapped in the CE10 D-serine data sets revealed a link between D-serine and virulence (Fig. 3-24D). Indeed, there were three functional groups that were associated with NMEC virulence: capsule (7/30), LPS (9/30), and fimbriae (1/30). Further functions also included genes involved in lipoprotein (1/30), metabolism (5/30), plasmid maintenance (1/30), prophage (1/30), transcriptional regulator (1/30), transport (2/30) and uncharacterised (2/30). These results indicated that DsdC in the presence of Dserine is involved in the regulation of capsule and LPS, two important virulence determinants in NMEC.

Global transcriptome profiling using RNA-Seq had revealed the novel regulon of DsdC, in the presence and absence of D-serine. Intriguingly, genes involved in core processes like cell division and ribosomal proteins were differentially

expressed when D-serine was absent. However, in the presence of D-serine in CE10, the regulon became virulence associated with differential expression of capsule and LPS biosynthesis genes. These results may indicate that D-serine is being used by the bacteria as a signal involved in virulence associated mechanisms. To establish if the DEGs were caused by direct DsdC regulation, or if this was due to indirect effects such as DsdC involved in the regulation of another TF or the toxic effects of D-serine, the ChIP-Seq binding data and the RNA-Seq transcriptomic data was compared.

3.5.2 DsdC directly regulates a small, but virulence associated, regulon in NMEC strain CE10

To understand the direct role of DsdC on gene expression in CFT073 and CE10, the binding and transcriptomic datasets were compared. The comparisons of the data are presented in Figure 3-25 and the common genes list is presented in Supplementary Table S8.

Figure 3-25 Direct regulation of DsdC in CFT073 and CE10. Venn diagram showing commonality between the binding sites in the ChIP-Seq data compared to the differential gene expression from the transcriptomic data for DsdC. (A)

CFT073 with no D-serine, (B) CFT073 + 1 mM D-serine, (C) CE10 with no D-ser and (D) CE10 + 1 mM D-serine.

Figure 3-25 revealed there was little overlap between the DsdC binding and transcriptomic data. Indeed, for CFT073 DsdC, in both the presence and absence of D-serine, the only overlap between the datasets was *dsdC* (Fig. 3-25(A-B)). These results therefore indicated that DsdC plays no direct role in regulation in CFT073, bar D-serine metabolism. For CE10 (Fig. 3-25C), when D-serine was absent there were only 4 genes that appeared to be directly regulated by DsdC: *dsdC2*, *ypdI* (putative lipoprotein), *gadB* (acid tolerance) and *neuO* (capsule). When D-serine was present this increased to 9, and solely included genes involved in capsule production and LPS biosynthesis bar *dsdC2*: *neuA*, *neuB*, *neuO*, *rfaY*, *wbbC*, *wzx*, *waaT*, and *waaV*. These results indicated a direct role of DsdC in CE10 gene regulation in both the presence and absence of D-serine. Strikingly, in the presence of D-serine, a direct role of DsdC in the regulation of capsule and LPS expression emerged, two key virulence mechanisms in NMEC. These results could therefore indicate that DsdC has been tailored in CE10 to regulate a strain-specific phenotype.

3.6 Discussion

3.6.1 DsdC is absolutely required for D-serine metabolism but has no effect on growth in general

As has been reported extensively elsewhere, DsdC is absolutely required for Dserine metabolism (Nørregaard-Madsen *et al.*, 1995). The data presented here concurs, showing that D-serine concentrations relative to host levels inhibited the growth of the $\Delta dsdC$ mutants completely, with growth only restored with complementation of pDsdC (Fig. 3-3, 3-4, and 3-5). Further, deletion of the regulator did not appear to affect growth, with no defects reported when $\Delta dsdC$ was grown in minimal media. This correlates with data reported in *P. mirabilis*, where deletion of the operon did not affect growth where other carbon and nitrogen sources were available (Brauer *et al.*, 2019).

Gene duplication is present in many bacterial genomes. Indeed, 94 genes in CFT073 are duplicated, with some of these duplications revealed to be

pathotype specific (Bernabeu et al., 2019). 30 out of 41 K1 strains tested were reported to carry two copies of the dsdCXA operon, with both copies functional in D-serine metabolism (Moritz & Welch, 2006). CE10 also carries two unlinked copies of the dsdCXA operon. To establish functional redundancy of D-serine metabolism between the two copies, single $\Delta ds dC1$ and $\Delta ds dC2$ mutations were made. Figure 3-3 and 3-4 revealed both DsdC1 and DsdC2 were functionally redundant in regard to D-serine metabolism. Further, when the native levels of expression of both DsdC1 and DsdC2 were analysed, there appeared to be no difference in protein expression (Fig. 3-8). Gene duplications are often associated with adaption of cells to changing environments (Bernabeu et al., 2019). As stated in 3.2.1 there are small changes in the amino acid structure between CE10 DsdC1 and DsdC2, with most changes occurring in a small cluster in the predicted substrate binding domain. Speculatively, these differences could cause changes in the tertiary structure of the protein, potentially altering the specificity of the binding pocket and allowing a different substrate to bind. DsdC1 and DsdC2 could therefore be recognising different co-inducers in CE10. Although this is an interesting hypothesis, determining the specific co-inducers for DsdC was not carried out in this work. However, as the ChIP-Seq global binding data revealed, under the conditions that were used, there were no clear differences in differential binding sites between DsdC1 and DsdC2, suggesting therefore that they are likely to play a redundant role in CE10.

3.6.2 DsdC is a global transcription factor that binds to multiple regions on the genome

Although Anfora *et al.*, 2007, speculated a larger role in gene regulation for DsdC in ExPEC strains; this is to our knowledge, the first report that DsdC plays a role in *E. coli* gene regulation, beyond D-serine metabolism. Analysis of the ChIP-Seq binding data revealed that DsdC bound to multiple regions of the genome, with CE10^{DsdC1-FLAG} in the presence of D-serine, binding to 217 regions (Table 3-3; Supplementary Table S1-6). As Maddocks and Oyston (2008) reviewed, LTTRs can be local or global regulators, and indeed previous studies on LTTRs have revealed a range in the number of binding sites. YhaJ, a LTTR in *E. coli* had shown binding to 7 peaks in CFT073, whereas MetR, a LTTR in *Streptococcus pneumoniae* had shown binding to 52 loci of the genome, and OxyR, a LTTR in *Pseudomonas aeruginosa* showed binding to 122 regions

(Connolly *et al.*, 2019; Wei *et al.*, 2012; Zhang *et al.*, 2021). Strikingly, NAPs such as Fis and H-NS can bind up to 1,464 and 458 regions of the *E. coli* genome respectively (Kahramanoglou *et al.*, 2011). The number of ChIP peaks generated from this experiment was more akin to a global LTTR and indicated that DsdC is not just binding to the *dsdCX* region but is binding throughout the genome.

The canonical TF model, based on early work by Jacob and Monad on the lac operon, is that TFs bind within the TSS at the 5' region of a gene, usually in intergenic non-coding regions. Many of the DsdC ChIP-Seq peaks fitted this model, although ~25% of the ChIP-Seq peaks obtained were binding in intragenic regions. Singh *et al.*, (2014) reported that in the *E. coli exhCABD* operon, there were multiple intragenic promoters. Further, mapping of the NikR regulon using a combination of ChIP-Seq and RNA-Seq in *Helicobacter pylori* revealed intragenic binding, with 41 out of 72 peaks positioned within annotated genes (Vannini *et al.*, 2017). This phenomenon does not appear to be limited to bacteria either. Research in archaeal operons and coding sequences revealed the presence of intragenic promoters, with 11 TFs reported to bind inside operons and annotated genes (Koide *et al.*, 2009). Intragenic binding therefore appears to be widespread.

Intragenic binding of TFs could have arisen due to a limitation on space within the chromosome or due to the TF previously regulating a gene that has since been lost due to chromosomal rearrangement (Galagan *et al.*, 2012). Alternatively, binding in these intragenic regions could be to prevent transcriptional elongation or hinder processing. TF binding site (TFBS) positions in relation to the promoter have been suggested to be an important factor in determining regulatory function, with TF repressors more likely to bind downstream of the promoter than TF activators (Babu & Teichmann, 2003b). One study showed that a third of repressor binding sites occurred after the TSS (Babu & Teichmann, 2003b). This could suggest that DsdC may be binding in intragenic regions of the gene to hinder transcription. Although intergenic peaks were considered the norm for transcriptional regulation, an unexpected observation of ChIP-Seq data has been that many TFBS occur within the ORF (Wade, 2015). The results presented here correlate with that finding, with DsdC showing binding in both intergenic and intragenic sites. Further genomic analysis of the ChIP-Seq hits revealed that DsdC bound mainly in the TSS of the gene, in the '0 bp bin'. This is typical of a LTTR which often binds at -35 to +20 bp sites (Maddocks & Oyston, 2008). However, there was a range in distance of DsdC binding sites, with 7 TFBS being further than 150 bp upstream from the TSS in CFT073^{DsdC-FLAG}. Although unusual, this has been reported in prokaryotes before, with several TFs binding >150 bp upstream of the TSS (reviewed in Galagan, Lyubetskaya & Gomes, 2012). Indeed, AraC binds 280 bp upstream to the P_{BAD} TSS and mediates gene expression by DNA looping (Dunn *et al.*, 1984). A further study revealed that VjbR, a LuxR-type transcriptional regulator, bound to the genome >300 bp upstream of the TSS; although, there was preferential binding between 20 and 140 bp upstream (Kleinman *et al.*, 2017). The data presented here therefore seems consistent with previous reports of TFBS.

3.6.3 DsdC binds in a strain-specific manner in two ExPEC pathotypes

As the DsdC ChIP-Seq data had revealed multiple binding sites on the genome, functional characteristic analysis of the putatively bound genes was carried out. This analysis revealed that DsdC bound to genes involved in multiple different processes ranging from metabolism to electron transport and even virulence, suggesting that DsdC plays a global role in two ExPEC strains, and does not simply regulate one functional group. This is also the case for the LTTR OxyR. A ChIP-exo experiment in *E. coli* MG1665 revealed, under oxidative stress conditions, OxyR bound to genes involved in detoxification and DNA damage repair, as well as amino acid biosynthesis, cell wall synthesis and metal ion transport (Seo *et al.*, 2015). Furthermore, a ChIP-chip experiment of the LTTR, LeuO, revealed binding to 178 genes on the genome of *Salmonella enterica* serovar Typhimurium, with gene functions ranging from housekeeping to virulence-associated (Dillon *et al.*, 2012).

GO functional analysis upon the CE10 DsdC ChIP-Seq hits revealed similar binding patterns to CFT073; however, there were also differences suggesting that DsdC has been tailored for strain-specific regulation. Indeed, in CFT073 there was binding to *tssB* and *yheE*. *tssB* and *yheE* (*gspC* in K12) are genes involved in the T6SS and a putative T2SS respectively (Korotkov *et al.*, 2011; Navarro-Garcia *et*

al., 2019). These are both mechanisms utilised by bacteria to secrete virulence effectors into the host or close neighbouring bacteria, with one study revealing, in UPEC, the T2SS was important for persistent infection in the upper urinary tract (Kulkarni *et al.*, 2009). Although NMEC reportedly has an orthologue of the T6SS (Navarro-Garcia *et al.*, 2019), there were no homologues of *tssB* nor *yheE* found in CE10. Furthermore in CFT073, DsdC was shown to bind to *clbR*, the colibactin master regulator (Wallenstein *et al.*, 2020). Colibactin is a bacterial genotoxin found on the *pks* island and has been linked with colorectal cancer (CRC). Although many B2 *E. coli* strains carry the *pks* island (Faïs *et al.*, 2018), CE10, which is in phylogroup D, does not carry it.

In CE10 it was shown that DsdC uniquely bound to genes involved in the K1 capsule and the putative T3SS, ETT2. The ETT2 in the past has been termed 'cryptic' due to lack of understanding of what role it played. However, it has been suggested to play an important role in bloodstream isolates of *E. coli*, with mutations in CE10 of the ETT2 leading to defects in invasion and intracellular survival in HBMECs (Yao *et al.*, 2009). Recently Fox *et al.*, (2020), analysed bloodstream *E. coli* isolates and found that strains from the sequence type (ST) 69 lineage contained an intact ETT2, indicating its importance in virulence. As CFT073 does not carry these genes, these results taken together, indicate that DsdC has been tailored in ExPEC strains, mediating different regulatory pathways that are important to the individual strains requirement.

The central dogma for many years has been that TFs regulate the same set of genes in different strains of the same species, indeed even in different bacteria. Perez and Groisman (2009a) revealed that the homologous TF PhoP was shown to regulate the same 'ancestral' set of genes in two different bacterial species, S. Typhimurium and *Yersinia pestis*. However, recent studies have started showing the potential repurposing and tailoring of TFs for strain-specific regulation. Recent work from the Roe group has shown that the conserved TF YhaJ directly regulates strain-specific virulence mechanisms, regulating expression of T3SS components and effectors in EHEC, whilst in UPEC regulating T1F expression (Connolly *et al.*, 2019). Indeed, even homologous TFs have recently been shown to regulate different pathways. *Xanthomonas campestris* pv *campestris* carries two sigma factor 54 proteins, RpoN1 and RpoN2. Recent data indicates that these two homologues have distinct roles in pathogenesis in *X. campestris*, with

RpoN2 regulating flagellation, and RpoN1 potentially regulating fatty acid synthesis (Li *et al.*, 2020). Although this is an important observation, it should also be noted that these two proteins share only 56% of residues.

The results presented here indicate that there is strain-specific binding in two ExPEC pathotypes, by the conserved TF DsdC. The relative plasticity, but finite size, of the *E. coli* genome has led to several distinct *E. coli* pathotypes emerging; indeed, CFT073 and CE10 both utilise distinct virulence mechanisms whilst infecting the host. As they both are able to use D-serine as a carbon source, DsdC likely plays a role in the success of these two ExPEC strains. Further, it is likely, due to the need of newly acquired genes to be integrated into 'ancestral' networks (Perez & Groisman, 2009b), DsdC has been tailored to bind in a strain-specific manner.

3.6.4 DsdC directly regulates a small subset of virulence-associated genes in NMEC strain CE10

As direct binding does not always equate to a transcriptional response, a comparison between the global binding data and the transcriptomics experiment was made. Intriguingly, there was little direct regulation of genes observed when comparing the ChIP-Seq and RNA-Seq data. DsdC is therefore binding to the genome but not causing a direct regulatory effect upon many genes. This was initially surprising, although several other studies have reported results of TF binding but no transcriptional responses being observed. ChIP-chip analysis of the TF RutR in *E. coli* strain BW2511 revealed 14 out of the 20 peaks observed were intragenic, and appeared to play little to no role on transcription (Shimada *et al.*, 2008). In *H. pylori*, a combined ChIP-Seq and RNA-Seq analysis of NikR revealed the presence of 'transcriptionally orphaned' NikR binding sites, with no apparent role in transcription (Vannini *et al.*, 2017). Further, in *B. abortus*, ChIP-Seq analysis combined with RNA-Seq, revealed binding of VjbR to 235 regions of DNA, with only 37 of those correlating with differentially expressed genes (Kleinman *et al.*, 2017).

As the *E. coli* genome is ever-evolving, it has been suggested that these nonregulatory bindings could be evolutionary relics, with the genes the TF used to regulate since 'lost' from the genome (Shimada *et al.*, 2008). Moreover, it has also been suggested that there could be binding on the genome at nonregulatory sites so that the cell can maintain an optimum amount of TF present (MacQuarrie *et al.*, 2011). Indeed, it has been described for the *lac* repressor that up to 98% is bound to sites other than the *lac* operator (Lin & Riggs, 1975). This hypothesis was also proposed by Vannini *et al.*, (2017), theorising that NikR bound to the genome at dedicated 'parking bays', in order to maximise the concentration of the regulator in certain regions. Furthermore, one study that made a genome-wide reconstruction of the OxyR/SoxRS regulon in *E. coli* MG1655, suggested that co-regulation could play a role in not seeing a transcriptional effects; with co-regulating TFs taking over the regulatory role when the relevant TF is missing (Seo *et al.*, 2015).

There were also limitations within the experiments presented in this thesis. Due to the nature of the project, the two global experiments were carried out separately, with the RNA-Seq experiment performed prior by Dr Nicky O'Boyle. Although every effort was made to limit the differences in experimental setup, small discrepancies between the procedures may have arisen, potentially contributing to the differences between the binding and transcriptomic data. To minimise variation for RNA-Seq, Gao *et al.*, (2021) performed all biological replicate experiments on the same day. Further, the same samples were then used for observing bacterial motility by microscopy and video analysis, enabling a direct comparison of the two experiments (Gao *et al.*, 2021). The technique of using the same samples for combination experiments, should potentially be used for future comparison experiments, thereby limiting any possible variation observed.

Further, there is the possibility that the RNA-Seq samples were taken at a time point where the transcriptional effects of DsdC, after induction of D-serine, were no longer being observed. *Vibrio coralliilyticus* has been reported to differentially regulate 2,705 genes, 10 minutes after exposure to an inducer (Gao *et al.*, 2021). After 60 minutes, the number of DEGs dropped to 2,235 genes (Gao *et al.*, 2021). Strikingly, only 30% of DEGs were shared between the 10- and 60-minute data sets, indicating that sampling time is a relevant factor when making observations of transcriptional responses. Another recent study that observed the transcriptional effects of the regulator ppGpp, identified a transcriptional response in 757 genes 5 minutes after induction (Sanchez-

Vazquez *et al.*, 2019). This data therefore begs the question of whether the RNA-Seq sampling time point (120 minutes post-induction) was potentially taken too late, and had the time point been taken earlier after induction, would more overlap have been seen between the two global sequencing data sets? Future studies could answer this by sampling and performing RNA-Seq or RT-qPCR studies over a gradient of time post-induction.

The large number of non-regulatory binding sites, compared to the relatively low number of regulatory binding sites, could also be down to the nature of the ChIP-Seq experiment. ChIP-Seq data is known to produce false positives (Pickrell *et al.*, 2011); indeed, one study using *Drosophila melanogaster* embryos revealed 3,000 non-specific ChIP-Seq peaks, that they described as 'Phantom Peaks' (Jain *et al.*, 2015). Marx (2019) discussed the occurrence of phantom ChIP-Seq peaks which can arise from non-specific antibody binding at promoter elements. Further, some regions of the genome are 'hyper-ChIPable', leading to false positive data outputs (Marx, 2019). However, as a non-tagged control was used in the DsdC analysis, the number of false positives obtained in this data set should be limited.

In CFT073, in both the presence and absence of D-serine, the only gene common between the binding and transcriptomic data sets was *dsdC*. Conversely in CE10, in the absence of D-serine, DsdC bound and showed differential expression of 4 genes. GO analysis of these genes revealed there was no functional group consensus that DsdC is binding to. Strikingly, in the presence of D-serine for CE10, all of the genes that overlapped in the global binding and transcriptomic data sets were involved in virulence, bar *dsdC2*. Indeed, the 8 genes were all involved in LPS and K1 capsular biosynthesis, two major virulence determinants of NMEC. This data indicated that DsdC directly regulates a small, but virulenceassociated regulon in CE10.

3.6.5 The indirect regulon of DsdC

As discussed above, at the time points sampled, there was little overlap between the binding and transcriptomic data sets, indicating that DsdC indirectly regulates multiple processes within the cell. In the absence of Dserine DsdC was found to, indirectly, differentially regulate 46 and 78 genes in CFT073 and CE10 respectively. Upon exposure to D-serine, 1,055 and 411 genes were, indirectly, differentially expressed in CFT073 and CE10 respectively. This data indicated that DsdC was more transcriptionally active in the presence of its suspected co-inducer, D-serine, which is comparable with other LTTRs (Maddocks & Oyston, 2008). However, the increased number of DEGs could also be due to the toxic side effects of D-serine accumulation in the $\Delta dsdC$ background. DsdC is required for expression of dsdA, the D-serine deaminase, which breaks down D-serine into pyruvate and ammonia (Nørregaard-Madsen *et al.*, 1995). In the absence of DsdA, D-serine becomes toxic to the cell by inhibiting the L-serine and pantothenate pathway (Cosloy & McFall, 1973; Maas & Davis, 1950). By including the pDsdA plasmid in the transcriptomics experiment it was hoped to alleviate the problem of D-serine accumulation and corresponding toxicity.

Indeed, in the CFT073 data set the number of DEGs dropped dramatically from 1,067 to 174. However, upon comparing the two data sets it was revealed that only 6 were transcriptionally differentially expressed in the same direction. This could be an accurate representation of the DsdC regulon, although, it was also considered the possibility that overexpression of pDsdA was exerting a toxic effect within the cell. Conversely, in CE10 the number of DEGs increased from 436 to 552 when pDsdA was overexpressed. When the two data sets were compared only 30 genes were transcriptionally differentially expressed in the same direction. Therefore, it is possible that the overexpression of pDsdA is causing a metabolic burden upon the cell, thus affecting the transcriptomic response (Bolognesi & Lehner, 2018). As the primary interest of this work was in elucidating the direct role of DsdC, the remainder of the work presented in this thesis will focus upon the genes that were present in both the global binding data and the transcriptomics data sets.

3.6.6 DsdC as a canonical transcription factor and a nucleoid associated protein

Intriguingly, two distinct patterns emerged from the ChIP-Seq binding data: peaks that were canonical in shape, and peaks that were broader and covered larger sections of the genome. The canonical binding profile of a TF is that it binds as a 'narrow' peak in the TSS of the gene it is regulating, whereas 'broader' peaks are usually associated with histones (Starmer & Magnuson, 2016). Figure 3-13 highlighted the differences in these binding profiles with the narrow binding peak spanning a few hundred base pairs whereas the broader peak spanned much larger regions, in the case of the LPS biosynthesis region >6,000 bp. Although most prokaryotes do not contain histones, NAPs have been described previously as being 'histone-like' in manner (Dillon & Dorman, 2010). Indeed, the NAP H-NS often binds to longer regions of DNA; a study in *E. coli* showed binding up to 1,759 bp, whereas in S. Typhimurium the average binding region was 1,500 bp, however it had been noted to increase to 10,750 bp (Dillon *et al.*, 2010; Kahramanoglou *et al.*, 2011). As it appears for DsdC, H-NS also has the ability of binding in longer and shorter regions. Kahramanoglou *et al.*, (2011) found that the shorter regions tended to behave as canonical TFs whereas the longer regions enfolded large regions of the genome, likely acting as a transcriptional silencer.

These results could indicate that DsdC is acting in both a classical TF manner and a NAP. Indeed, the lines between the two have often been blurred (Dorman et al., 2020), and a recent paper redefining fundamental concepts in transcriptional initiation has suggested that as NAPs often have functions that overlap TFs, they should no longer be defined as two separate classes (Mejía-Almonte *et al.*, 2020). Therefore, it is entirely plausible that DsdC is acting both as a TF and as a NAP. This would also correlate to the ChIP-Seq binding data that indicates that ~25% of the peaks are binding in intragenic regions. NAPs such as H-NS are known to bind intragenic regions, silencing transcription (Singh et al., 2014). It could also explain why many of the ChIP-Seg binding hits are not associated with direct regulatory functions. Hypothetically DsdC is acting more like a NAP and is involved in chromosomal organisation, and is therefore binding along the genome in order to potentially fine tune bending, bridging or wrapping of DNA (Dame, 2005). This hypothesis could also explain why a classical $T-N_{11}-A$ motif was not obtained when the sequence data was analysed on MEME. NAPs are known to bind to the genome with low sequence specificity (Wade, 2015), and it was not until canonical TF binding peaks were used that the MEME software generated a statistically significant motif. Indeed, LTTRs are known to rely on DNA shape rather than on nucleotide sequence in recognising their DNA targets, a trait that is shared by NAPs (Dorman et al., 2020). Given this data,

this could indicate that DsdC potentially acts as both a canonical TF and as global NAP.

3.6.7 Conclusion

To our knowledge, the work presented here is the first evidence that DsdC plays a role in *E. coli* beyond regulating the D-serine metabolism locus. Using global binding and transcriptomic data, it has been revealed that DsdC binds globally across the CFT073 and CE10 genome. Further, it has been shown that although there were many overlaps, DsdC bound in a strain-specific manner in two ExPEC strains, binding to colibactin synthesis genes in CFT073 and ETT2 effector genes in CE10. Moreover, using transcriptomics it was shown that DsdC differentially regulates multiple genes outside the *dsdCXA* locus. Strikingly, overlap of the transcriptomic and binding data in CE10 revealed a small subset of genes that were common to both sets, all involved in LPS and K1 capsular biosynthesis. These results together indicate, that over time, DsdC has been tailored for strain-specific regulation of virulence factors. Chapter 4 Validation of the global sequencing data and purification of the LysR-type transcriptional regulator, DsdC

4.1 Introduction

Regulatory control of genes in response to environmental cues is central to bacterial survival (Browning & Busby, 2016). Indeed, the rapid recognition of environmental signals and subsequent change in gene expression allows bacteria to survive in fluctuating environmental conditions (Shimizu, 2013). Control of bacterial gene expression is a multifaceted process, with multiple regulatory mechanisms that can influence both transcription and translation (Browning & Busby, 2004; Starosta et al., 2014). Bacteria that are pathogenic, or that can survive in multiple niches within the host, often carry larger numbers of regulatory elements, including TFs, reflecting their adaptability to diverse host environments (Bervoets & Charlier, 2019). UPEC and NMEC are two versatile ExPEC pathotypes that can cause serious disease in humans (Kaper *et al.*, 2004). ExPEC strains predominantly reside asymptomatically within the gut, causing disease upon egression (Johnson & Russo, 2002). Within the urinary tract, UPEC strains often survive in a nutritionally depleted environment, containing mostly amino acids and small peptides, whereas NMEC strains can translocate from the mucosal epithelium to the bloodstream and traverse the BBB into the CNS (Alteri et al., 2009; Silver & Vimr, 1990). Although UPEC and NMEC can reside in distinct niches of the human body, they both utilise D-serine as a carbon source. In E. coli, DsdC is a TF that regulates the D-serine metabolism locus.

In Chapter 3, results from global binding and transcriptomic experiments demonstrated that DsdC bound to a large number of genetic regions in prototypic UPEC and NMEC strains and caused differential gene expression upon exposure to D-serine. This chapter aims to validate the RNA-Seq data presented in Chapter 3 using RT-qPCR analysis, demonstrating that DsdC affects expression of genes involved in capsular and LPS biosynthesis. Moreover, to explore the ChIP-Seq binding results presented in Chapter 3 and to demonstrate that DsdC directly binds to regions of the CE10 and CFT073 genome, DsdC (CFT073), DsdC1 (CE10) and DsdC2 (CE10) were purified. As LTTRs are generally known to be insoluble proteins, a maltose binding protein (MBP) tag was used to enhance the solubility of the DsdC fusion protein (Sachdev & Chirgwin, 2000). Furthermore, DsdC1 (CE10) was also tagged with a 6xHis tag. The purified DsdC was then used in electrophoretic mobility shift assays (EMSA) to confirm binding of DsdC to its own promoter and also to an LPS glycosyltransferase gene, *waaV*. Finally, the

functionality of a TF often relies on the recognition of specific DNA sequences at a promoter (reviewed in Browning, Butala & Busby, 2019). The binding motif of DsdC is currently unknown and therefore this chapter aimed, using DNase I footprinting and purified DsdC, to elucidate the binding motif.

4.2 Validating the RNA-Seq transcriptomic data using RTqPCR

As discussed in Chapters 1 and 3, global transcriptome profiling by RNA-Seq can identify the regulon of a TF, measuring differences in RNA levels between WT and isogenic mutants. RT-qPCR is often used as validation for RNA-Seq data and is a sensitive method that measures gene quantification (Fang & Cui, 2011). The RNA-Seq data presented in Chapter 3 revealed a number of genes that were differentially expressed in the CE10 $\Delta\Delta ds dC1/2$ background upon exposure to D-serine.

Several of these genes were related to LPS biosynthesis and K1 capsular production. Validation of the RNA-Seq data was therefore carried out on genes of biological interest, including *neuB*, *waaV*, *kpsF* and *neuO*. RNA was extracted from CE10 WT and $\Delta\Delta dsdC1/2$ isogenic mutants. The samples were cultured in M9 minimal media for 3 hours and spiked with 1 mM D-serine and left to incubate for a further 2 hours. RT-qPCR analysis on three biological replicates confirmed and validated the RNA-Seq results. Upon exposure to D-serine, gene expression of *neuB* (1.56-fold; *p*-value 0.00038), *waaV* (1.36-fold; *p*-value 0.0091), and *kpsF* (1.91-fold; *p*-value 0.0042) were significantly increased in the $\Delta\Delta dsdC1/2$ mutant compared to CE10 WT, whereas gene expression of *neuO* was decreased (-2.36-fold; *p*-value 0.026) (Table 4-1; Fig. 4-1). These results validated the RNA-Seq data, indicating that DsdC affects the regulation of genes involved in CE10 LPS and capsular biosynthesis.

Gene	RNA-Seq		RT-qPCR	
	Fold change	<i>p-</i> value	Fold change	<i>p-</i> value
neuB	1.99	6.19E-09	1.56	3.8E-05
waaV	2.12	0.03	1.36	9.1E-03
kpsF	1.71	9.07E-03	1.91	4.2E-03
neuO	-4.57	8.56E-10	-2.36	2.6E-02

Table 4-1 Comparisons of the RNA-Seq and RT-qPCR data. A direct comparison of the fold changes and respective *p*-values from the RNA-Seq and RT-qPCR data for several biologically relevant genes; *neuB*, *waaV*, *kpsF* and *neuO*, for which fold change was measured in the CE10 $\Delta\Delta ds dC1/2$ mutant relative to the CE10 WT, in the presence of D-serine.

Figure 4-1 RT-qPCR analysis of capsular and LPS biosynthesis genes. RT-qPCR validation of the RNA-Seq data showed increased fold changes for (A) *neuB*, (B) *waaV*, and (C) *kpsF*, in the CE10 $\Delta\Delta dsdC1/2$ mutant relative to the CE10 WT, in the presence of D-serine. (D) shows the decreased fold change in *neuO* in the CE10 $\Delta\Delta dsdC1/2$ mutant relative to the CE10 WT, in the presence of D-serine. The purple dashed line indicates baseline expression of each gene in CE10 WT. Gene expression analyses were based off three biological repeats. * denotes $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; **** $p \le 0.0001$; ns (no significance) p > 0.05.

Results from a previous RNA-Seq experiment had revealed that in CFT073, genes involved in colibactin production were down-regulated upon exposure to Dserine (Connolly *et al.*, 2021). Colibactin is a bacterial genotoxin produced by some strains of *E. coli* and has been linked to CRC in humans. Interestingly, analysis of the RNA-Seq data presented in Chapter 3 for the pairwise comparison of CFT073 vs. $\Delta dsdC$ had revealed poor coverage for the colibactin biosynthesis region. As analysis of the ChIP-Seq data had revealed a peak at the intergenic region between the colibactin master regulator, *clbR*, and a colibactin synthesis gene, *clbB*; RT-qPCR analysis was performed on *clbR* and another colibactin gene, *clbA*. RNA was extracted from CFT073 WT and $\Delta dsdC$ isogenic mutants. The samples were cultured in M9 minimal media for 3 hours and spiked with 1 mM D-serine and left to incubate for a further 2 hours. RT-qPCR analysis on three biological replicates revealed a 2.02-fold (*p*-value 0.0003) increase in gene expression of the colibactin regulator, *clbR*, in the $\Delta dsdC$ mutant background (Fig. 4-2A). Moreover, upon exposure to D-serine, *clbR* gene expression increased further to 4.58-fold (*p*-value 0.0003) in the $\Delta dsdC$ mutant background (Fig. 4-2A), indicating that in the presence of D-serine, DsdC represses the colibactin master activator. In the presence of D-serine, expression of *clbA* was also increased in the $\Delta dsdC$ mutant background (2.85-fold; *p*-value 0.0008) (Fig. 4-2B).

Figure 4-2 RT-qPCR analysis of colibactin genes. RT-qPCR analysis of two colibactin genes (A) *clbR* and (B) *clbA*, showing the levels of fold change in the CFT073 $\triangle dsdC$ mutant relative to the CFT073 WT. The purple dashed line indicates baseline expression of each gene in CFT073 WT. * denotes *p*≤0.05; ** *p*≤0.01; *** *p*≤0.001; **** *p*≤0.0001; ns (no significance) *p*>0.05.

4.3 Overexpression and purification of the LTTR, DsdC

4.3.1 Cloning and overexpression of DsdC with MBP and His tags

To purify DsdC, both an MBP tag and a 6xHis tag were used. Using the DNA sequence of *dsdC* (CFT073), *dsdC1* (CE10) and *dsdC2* (CE10), BamHI and HindIII restriction sites were amplified onto the 5' and 3' ends respectively. The product was then cloned on to the MBP in the pMAL-C5X vector, with the MBP tag at the N-terminal of *dsdC*. *dsdC1* (CE10) was also cloned onto a 6xHis tag on the pET-28a vector. The recombinant vectors were then cloned into the *E*. *coli* strain BL21 DE3 for overexpression.

Both MBP and 6xHis tag vectors rely on IPTG, a molecular mimic of allolactose, for activation of recombinant proteins. Small scale overexpression trials were performed with various concentrations of IPTG, time and temperature, to determine the best conditions for overexpression (Table 4-2). Western blot analysis and Coomassie staining revealed bands at ~78 kDa, which corresponded to the predicted molecular weight of DsdC (~36 kDa) and MBP tag (~42 kDa), and ~38 kDa for the His tagged DsdC1. It was established that 3 hours induction of 1 mM IPTG at 37°C was sufficient for DsdC overexpression (Fig. 4-3 A-D).

Temperature	Conc.	Time after
(°C)	of	induction of
	IPTG	IPTG (hours)
37	0.1mM	3
37	0.3mM	3
37	0.5mM	3
37	0.7mM	3
37	1.0mM	3
28	1.0mM	16
32	1.0mM	16

Table 4-2 Conditions used in overexpression trials of DsdC recombinant protein. To maximise overexpression of DsdC, samples were grown in LB to an OD₆₀₀ of 0.6. The samples were then induced with several differing concentrations of IPTG, along with variations in temperature and exposure to IPTG.

Figure 4-3 Coomassie Blue and Western blot analysis of the small-scale overexpression trials of DsdC. Overexpression trial of (A) pMAL-C5X_DsdC1 (CE10) and pMAL-C5X_DsdC2 (CE10) and (B) pMAL-C5X_DsdC (CFT073). "-" indicates no IPTG induction, "+" indicates induction of IPTG. Cell lysate indicated large bands between 62 and 98 kDa, with the MBP-DsdC fusion ~78 kDa. (C) Overexpression test of pET-28a-DsdC1 (CE10). "-" indicates no IPTG induction, "+" indicates induction of IPTG. Cell lysate indicated a band at ~38 kDa. (D) Western blot analysis of recombinant MBP-DsdC for CE10 DsdC2, CE10 DsdC1, and CFT073 DsdC, using anti-MBP antibody. "-" indicates no IPTG induction, "+" indicates induction of IPTG. Analysis indicated a band between 62 and 98 kDa, with the MBP-DsdC fusion ~78 kDa.

4.3.2 Purification of the recombinant DsdCs

Using the information obtained from the small-scale overexpression trials detailed above, full scale recombinant protein overexpression and purification of MBP-DsdC and His-DsdC was then performed. Cells were grown in 1 L of LB and induced with 1 mM IPTG. Cells were pelleted and resuspended in either MBP or His binding buffer and sonicated. The supernatant was then purified using affinity chromatography in either a MBP HP column or a HisTrap HP column. The elution fractions were then run on an SDS-PAGE gel to determine which elution fraction contained the purified recombinant protein (Fig. 4-4). Analysis of the gels revealed that DsdC purified in as a monomer when attached with a MBP-tag but potentially as a monomer and as a dimer when attached with a His-tag, as indicated by the red arrows. However, column purification is a crude method of protein purification and there were other bands present on all of the gels.

Figure 4-4 Purification of DsdC. SDS-PAGE analysis of purified DsdC, with the red arrows indicating the predicted size for DsdC-tagged

complexes. Lane 1, SeeBlue +2 ladder; lane 2, whole cell lysate; lanes 3-4, flowthrough; lanes 5-15, elution fractions. The large band at ~78 kDa indicates (A) pMAL-C5X_DsdC1 (CE10) complex; (B) pMAL-C5X_DsdC2 (CE10) complex; (C) pMAL-C5X_DsdC (CFT073) complex. Purification of the (D) 6xHis-DsdC1 (pET28a_DsdC1) complex revealed two oligomeric states of DsdC1 at ~38 kDa and ~62 kDa.

4.3.3 Cleavage of MBP-DsdC tag

The MBP tag was used in purification to alleviate the potential solubility issue of DsdC. However, it is a large protein complex that could potentially interfere with DsdC's protein structure and function (Waugh, 2011). Therefore, Factor Xa was used for a trial cleavage experiment, performed on pMAL-C5X_DsdC1 to remove the MBP tag (Fig. 4-5). The trial cleavage experiment revealed that after 24 hours of digestion with Factor Xa, the recombinant protein was almost fully digested, leaving the singular MBP and DsdC proteins. However, upon cleavage with Factor Xa, the proteins precipitated out of solution, forming aggregates, suggesting that MBP was required for the solubility of DsdC.

Figure 4-5 Cleavage of MBP tag from DsdC. SDS-PAGE showing the trial cleavage experiment of MBP from DsdC1 using Factor Xa over 24 hours. The black arrows indicate the DsdC-MBP complex and the singular MBP and DsdC proteins.

4.4 Validating DsdC binding through electrophoretic mobility shift assays (EMSA)

The ability of DsdC to bind to regions of the CFT073 and CE10 genome, as indicated by the ChIP-Seq data, was assessed using purified DsdC protein and the EMSA technique. EMSAs detect protein-DNA interactions *in vitro* and relies on the observation that protein-DNA complexes run slower in electrophoresis than free nucleic acid (Hellman & Fried, 2007). Regions of the CFT073 and CE10 genome that had been bound by DsdC in the ChIP-Seq experiment were amplified by PCR and DIG-labelled using the DIG gel shift kit (Roche). The DNA regions were then mixed with increasing concentrations of purified DsdC (CFT073), DsdC1 (CE10), or DsdC2 (CE10). EMSA analysis confirmed that DsdC bound to its own promoter region, and DsdC1 and DsdC2 also bound to the LPS glycosyltransferase gene, *waaV* (Fig. 4-6 and 4-7).

Figure 4-6 DsdC binds to the intergenic region upstream of the *dsdC* **start codon.** EMSA assay of DsdC1 (CE10), DsdC2 (CE10) and DsdC (CFT073) binding to the *dsdC-dsdX* intergenic region. Increasing concentrations of DsdC were used, as indicated by the triangle above the gel. DNA retardation was observed with the DsdC-DNA complexes remaining at the top of the gel whilst the free DNA ran further down the gel. EMSA experiments were performed in duplicate, with similar results obtained each time.

NMEC DsdC1

NMEC DsdC2

Figure 4-7 DsdC binds to the region upstream of the *waaV* **start codon.** EMSA assay of DsdC1 (CE10) and DsdC2 (CE10) binding to the *waaV-waaW* region. Increasing concentrations of DsdC were used, as indicated by the triangle above the gel. DNA retardation was observed with the DsdC-DNA complexes remaining at the top of the gel whilst the free DNA ran further down the gel. EMSA experiments were performed in duplicate, with similar results obtained each time.

These results correlated with previous findings that DsdC was able to bind to its own promoter, typical of a LTTR (Nørregaard-Madsen *et al.*, 1995). DsdC1 and DsdC2 were also shown to bind to the LPS glycosyltransferase gene, *waaV*. Together these data implied that DsdC was able to bind to regions of the genome outside of the *dsdC-dsdXA* intergenic region, validating the ChIP-Seq. Strikingly however, no other sites were able to be validated by EMSA. Indeed, multiple regions identified from the ChIP-Seq were tested including *espX4*, *kpsF*, *neuO*, *fimB*, *clbR*, *neuB*, *gadB*, and *envR*, however no shifts in DNA were observed in the presence of DsdC (Fig. 4-8). Both cleaved and intact MBP-DsdC recombinant proteins were tested, and 6xHis-DsdC, however no binding was observed.

Figure 4-8 EMSAs did not show binding of DsdC to ChIP-Seq identified regions. (A) EMSA assay showing no DsdC binding to the predicted DsdC binding site for *neuO*. Increasing concentrations of DsdC were used, as indicated by the triangle above. (B) EMSA assay showing no DsdC binding to the predicted DsdC binding site for *kpsF*. Increasing concentrations of DsdC were used, as indicated by the triangle above. (C) EMSA assay showing no DsdC binding to the predicted DsdC binding site for *clbR*. Increasing concentrations of DsdC were used, as indicated by the triangle above. (D) EMSA assay showing no DsdC binding to the predicted DsdC binding site for *neuB*. Increasing concentrations of DsdC were used, as indicated by the triangle above. (D) EMSA assay showing no DsdC binding to the predicted DsdC binding site for *neuB*. Increasing concentrations of DsdC were used, as indicated by the triangle above. A positive DNA retardation control was used in the form of the *dsdC-dsdX* intergenic DNA and a negative control of using *ctx* DNA, a gene absent in *E. coli*. EMSA experiments were performed in duplicate, with similar results obtained each time.

4.5 Elucidating the binding motif of DsdC

Although the resolution of ChIP-Seq is high and gives vast amounts of information regarding potential binding sites, it does not give sufficient resolution to resolve the binding motif at the nucleotide level. DNase I footprinting is a technique that detects protein-DNA interaction by subjecting DNA to digestion by DNase I. DNA that is bound by the protein, will be protected from digestion, thereby revealing the specific binding motif of the protein (Galas & Schmitz, 1978). As discussed in Chapter 1, LTTRs typically bind as dimers in two distinct places in the promoter region; at a regulatory binding site (RBS) -35 to +20 bp and at an activation binding site (ABS) -40 to -20 bp (Fig. 4-9) (Goethals *et al.*, 1992; McFall *et al.*, 1998). They often bind to a palindromic DNA sequence, referred to as the LTTR box, consisting of a T-N₁₁-A sequence, which is present at the RBS site but not the ABS site. To elucidate the binding motif of DsdC, the *dsdC-dsdX* intergenic region was radiolabelled and using purified MBP-DsdC, a DNase I footprint was performed. This was performed at the University of Birmingham in conjunction with Dr Douglas Browning, who completed the experiment.

The DNase I footprint revealed two distinct binding sites of DsdC within the *dsdC-dsdX* intergenic region, as indicated in Figure 4-10. The first protected site was a 19 bp region that overlapped the predicted -10 site of *dsdC*, as predicted by RegulonDB. This site contained a putative T-N₁₁-A LTTR box. The second protected site was a 47 bp region that was closer to the start codon of *dsdC*. This site contained two putative LTTR boxes, a T-N₂₄-A LTTR box and a secondary T-N₁₁-A LTTR box further along the region. Strikingly, addition of D-serine to the footprint caused a reduction in binding to the second protected region. These results revealed the novel binding motif for DsdC and suggested that D-serine influences the strength of DsdC binding to target promoters.

Figure 4-10 Elucidating the binding motif of DsdC. (A) DNase I footprinting analysis revealed the protected region (red) of the CE10 genome, where DsdC1 (CE10 derived) and DsdC2 (CE10 derived) were bound to the dsdC1-dsdX1 region, in the presence and absence of D-serine (lanes 2-6). Lanes 1 and 4 indicate no protein controls and lane 7 indicates uncut fragment. (B) Organisation of the intergenic region between dsdC and dsdX. Nucleotides in bold signify the start codon of the gene above. Nucleotides underlined in green signify the -10 and -35 region of dsdX as reported by Nørregaard-Madsen, Mcfall and Valentin-Hansen, (1995). Nucleotides underlined in purple signify the -10 and -35 region of dsdC as predicted by RegulonDB. Nucleotides in bold and in red signify the protected region of the genome, revealing the binding motif of DsdC. Highlighted above the binding motifs are potential DsdC LTTR binding boxes of T-N₂₄-A and T-N₁₁-A.

4.6 Discussion

4.6.1 Differential gene expression of LPS and capsular biosynthesis genes validates the RNA-Seq data

The RNA-Seq data reported in Chapter 3 revealed there was differential expression in 30 genes in the pairwise comparison between CE10 WT and $\Delta\Delta dsdC1/2$, upon exposure to D-serine. Strikingly, most of these genes were involved in capsular and LPS biosynthesis, two key virulence determinants of NMEC. RT-qPCR was used to measure the differences in transcript levels in four genes related to the capsule and LPS, and thus demonstrated the validity of the RNA-Seq data (Table 4-1). These results further indicated that DsdC plays a role in regulation of NMEC specific pathogenic traits, repressing expression of capsular and LPS biosynthesis genes, whilst activating expression of *neuO*, an *O*-acetyltransferase.

Furthermore, RT-qPCR analysis was carried out on two colibactin genes, *clbR* and *clbA*. Colibactin is a bacterial genotoxin that can be produced by UPEC strains and is synthesised by genes encoded on a 54-kb genomic island (Nougayrède *et al.*, 2006). *clbR* and *clbA* are transcribed divergently from the main operon, with *clbR* the master regulator of colibactin production (Wallenstein *et al.*, 2020). Examination of the *clb* region in the RNA-Seq data revealed poor coverage and so no analysis could be made in regard to differential expression of the colibactin synthesis genes between the CFT073 WT and $\Delta dsdC$. RT-qPCR analysis of *clbR* revealed a 2-fold increase in gene expression between $\Delta dsdC$ mutant and WT, which further increased to 4.58-fold upon exposure of D-serine. This data implies that DsdC represses the colibactin synthesis activator in CFT073, suggesting a novel role for DsdC in regulation of a bacterial genotoxin.

The differential expression of the K1 capsular biosynthesis genes in CE10 and the colibactin synthesis genes in CFT073, in response to exposure to D-serine, further indicates that DsdC has been tailored for strain-specific lifestyles in ExPEC. Adapting to a specific niche within the host is a multifactorial process, often involving the alteration of carbon source intake and expression of virulence factors involved in host colonisation (reviewed in O'Boyle *et al.*, 2020).

Virulence factors are often encoded on genetic islands (Ho-Sui *et al.*, 2009), which is indeed the case for the K1 capsule and colibactin synthesis genes which reside on the *kps* and *pks* islands respectively (Nougayrède *et al.*, 2006; Silver & Vimr, 1990). As genetic islands are often acquired through HGT, they must be integrated into a cells already established regulatory network (Perez & Groisman, 2009b). Ancestral TFs are therefore often repurposed and tailored to accommodate the newly integrated genomic islands (Perez & Groisman, 2009a; Connolly *et al.*, 2019; reviewed in O'Boyle *et al.*, 2020). As metabolism and virulence gene expression are two closely linked processes within the bacterial cell (reviewed in Poncet *et al.*, 2009), hypothetically exposure to D-serine in the urinary tract and the brain, mediated through DsdC, may be used as signal to alter the regulation of colibactin and capsular biosynthesis, two key virulence factors of ExPEC. This is an interesting hypothesis which further chapters in this thesis will try and elucidate.

4.6.2 DsdC shows direct binding to *dsdCX* and to the LPS glycosyltransferase gene, *waaV*

DsdC is a LTTR, which in the past have generally been reported to be insoluble proteins (Ezezika *et al.*, 2007). A common method to overcome protein insolubility is by using a fusion protein strategy. This involves cloning a gene of interest onto a plasmid that will increase the solubility. These plasmids often contain the genes encoding glutathione S-transferase (GST), thioredoxin A or MBP (Kapust & Waugh, 1999; Young *et al.*, 2012). To purify DsdC, both an MBP and a 6xHis tag was used. Small-scale overexpression trials revealed that 1 mM IPTG was sufficient for overexpression of the recombinant protein, with both recombinant proteins appearing to be overexpressed at similar levels.

The ChIP-Seq data reported in Chapter 3 revealed that DsdC bound to multiple regions of the CE10 and CFT073 genome. Indeed, it was shown that in CE10 DsdC bound to 217 regions and in CFT073 DsdC bound to 129 regions (Table 3-3). To validate the ChIP-Seq data, purified DsdC was used in EMSAs to detect binding to predicted regions. DsdC1 and DsdC2 (CE10) were shown to bind to the region upstream of the *waaV* gene and to the intergenic region between *dsdCX*, but not to any of the other ChIP-Seq predicted sites. DsdC (CFT073) was only shown to bind to the intergenic region between *dsdCX*. Although the ChIP-Seq data had

indicated multiple regions of DsdC binding, there are several explanations for why these were not evident in the EMSAs. Indeed, EMSAs are *in vitro* techniques and therefore environmental components required for native binding may have been absent. Additionally, LTTRs often require a co-inducer in order to bind (reviewed in Maddocks & Oyston, 2008), and although D-serine was tested in the EMSAs and did not appear to elicit an effect, the concentration may have been insufficient for facilitating *in vitro* binding. Further as TFs sometimes work in tandem with other TFs (Martínez-Antonio & Collado-Vides, 2003), potentially *in vitro* binding was not evident because a secondary TF was required. Indeed, it has been reported that DsdC and catabolite repressor protein (CRP) can coregulate the *dsdXA* locus, with CRP presence increasing expression of the genes 7-fold (Nørregaard-Madsen *et al.*, 1995). Furthermore, although crude preparations of protein are routinely used in EMSAs, the protein quality could have been affected by various enzymes still in the preparation, affecting the efficiency of the binding (Holden & Tacon, 2011).

Conversely, although many of the ChIP-Seq binding sites were unable to be validated *in vitro*, DsdC binding was still shown in the upstream region of the *waaV* gene. Further, the RNA-Seq and RT-qPCR data revealed differential gene expression of *waaV*, indicating that DsdC directly regulates an LPS biosynthesis gene, a key virulence mechanism in NMEC. Suggested future studies to validate the ChIP-Seq could include testing a different solubility tag for DsdC overexpression, perhaps GST. Moreover, further steps could be performed in the purification of DsdC, such as size exclusion chromatography and post tag cleavage. These future studies may then be able to validate more of the ChIP-Seq results presented here.

4.6.3 Elucidating the DNA binding motif of DsdC using DNase I footprinting

Although the ChIP-Seq analysis revealed a wealth of information regarding DsdC binding, it did not reveal the specific binding motif of DsdC. LTTRs often function as tetramers, binding as dimers at the RBS and ABS site within the intergenic region upstream of the promoter (McFall *et al.*, 1998; Schell, 1993). Typically, LTTRs have been found to protect large regions of DNA, often between 50-60 bp (Muraoka *et al.*, 2003). LTTRs often bind to a palindromic DNA

sequence, termed the LTTR box, consisting of the sequence T-N₁₁-A, although this can vary both in size and nucleotide composition (Goethals et al., 1992). Conversely, it has recently been suggested that LTTRs rely heavily on DNA shape rather than on nucleotide sequence when recognising target DNA (Dorman et al., 2020). Strikingly, the DsdC footprint revealed two distinct protection sites in the intergenic region between *dsdC-dsdX*. The first protected site was 19 bp in length and contained a putative $A-N_{11}-T$ box. This site was closer to the start codon of *dsdX* and could indicate the potential binding region of DsdC when regulating *dsdXA*. The second protected region was 47 bp in length, indicative of a tetramer binding. This region contained two putative LTTR boxes, T-N₂₄-A and T-N₁₁-A. This site was closer to the start codon of the *dsdC* gene and could indicate the binding region of DsdC to its own promoter. Indeed, this was further indicated when D-serine was added to the reaction. LTTRs are known to negatively auto-regulate themselves, with transcription occurring when the protein has been dissociated from the promoter, often because it is interacting with the co-inducer (reviewed in Maddocks & Oyston, 2008). D-serine addition to the footprint caused a reduction in binding to the secondary protected region, suggesting that DsdC had been dissociated from the promoter region. Therefore, using DNase I footprinting, the DsdC binding motif has been elucidated. It is a 47 bp binding region, likely indicating that DsdC binds as a tetramer, in conjunction with other LTTR reports.

4.6.4 Conclusion

To survive in fluctuating and competitive environmental conditions, bacteria maintain gene expression under tight regulatory control. Such is the importance of gene regulation, *E. coli* has devoted 6% of its genome to encoding gene regulatory elements and encodes up to 300 putative TFs (Martínez-Antonio & Collado-Vides, 2003). As discussed in Chapter 3, ChIP-Seq and RNA-Seq are both powerful global tools that can be used in an unbiased manner to elucidate a TFs regulon. These tools were used to elucidate the regulon of DsdC in CE10 and CFT073, revealing that DsdC bound in a global manner to multiple regions of the genome, and upon exposure to D-serine, affected the expression of 30 genes in CE10. In this chapter, using RT-qPCR, the RNA-Seq data was validated, demonstrating differential expression of LPS and capsular biosynthesis genes in the CE10 $\Delta\Delta dsdC1/2$ background. Furthermore, differential gene expression of

the colibactin synthesis genes in the CFT073 $\triangle dsdC$ background was revealed, indicating a potential role of DsdC in colibactin synthesis. Using EMSAs, two of the ChIP-Seq binding peaks were validated and it was demonstrated that DsdC directly binds to an LPS glycosyltransferase gene, a key virulence factor in NMEC. Moreover, using DNase I footprinting, the binding motif of DsdC was elucidated, revealing a 47 bp region close to the *dsdC* start codon, indicating that DsdC binds as a tetramer. These results combined further highlight that DsdC plays a larger role in gene regulation beyond D-serine metabolism and further suggests that DsdC has been tailored in ExPEC strains for strain-specific lifestyles.

Chapter 5 DsdC influences susceptibility of neonatal meningitis-associated *Escherichia coli* strain CE10 from K1 bacteriophages, through the regulation of the capsular *O*-acetyltransferase gene, *neuO*

5.1 Introduction

Gene expression is a tightly regulated process in bacteria, often governed by environmental signals and cues. In Chapters 3 and 4, the novel roles of DsdC in CFT073 and CE10 gene regulation were discussed. Intriguingly, it was discovered that DsdC bound and altered gene expression of capsular and LPS biosynthesis genes in CE10 in the presence of the host metabolite, D-serine. The LPS and capsule are a bacterium's first line of defence against the host immune system, and thus are deemed two key virulence factors in a bacterium's arsenal. There are over 70 distinct capsular (K) antigens found in *E. coli* (Jann & Jann, 1992), however, the K1 antigen is often over-represented in NMEC infection (Robbins et al., 1974). The K1 capsular polysaccharide is comprised of Neu5Ac polysialic acid, and has been reported to play a role in NMEC's ability to evade phagocytosis and enhance serum resistance (reviewed in Silver & Vimr, 1990; Croxen & Finlay, 2010). Furthermore, molecular mimicry of the host polysialic acid of N-CAM, results in the poor immunogenicity and enhanced survival of the K1 capsule strains within the host (reviewed in Silver & Vimr, 1990). Moreover, the K1 capsule is also phase variable, with the polysialic acids that comprise the capsule able to O-acetylate (Orskov et al., 1979).

Strikingly, irrespective of D-serine presence, *neuO* was one of the most downregulated genes in the CE10 $\Delta\Delta ds dC1/2$ transcriptomics in relation to the CE10 WT. NeuO is a capsular O-acetyltransferase that was first described in E. coli in 2005 by Deszo et al., (2005). O-acetylation of capsular polysaccharide is a mechanism used by many bacteria and fungi including Streptococcus pneumoniae, Neisseria meningitidis and Cryptococcus neoformans (reviewed in O'Meara & Alspaugh, 2012; Geno et al., 2015; Tzeng, Thomas & Stephens, 2016). Considerable research has been performed in N. meningitidis where Oacetylation has been shown to be involved in protection from serum bactericidal activities, immunogenicity and physiology (Fusco et al., 2007), indicating Oacetylation plays a role in virulence in N. meningitidis. Conversely, in E. coli the role of capsule O-acetylation has been less clear, with one study reporting Oacetylated strains had an increased virulence in patients, whereas another study revealed no difference in virulence between O-acetylated and non-O-acetylated strains in a neonatal mouse model of infection (Colino & Outschoorn, 1999; Frasa et al., 1993). Further findings have suggested that O-acetylation may play more

of an environmental role, with strains that were *O*-acetylated enhancing desiccation resistance (Mordhorst *et al.*, 2009).

neuO, the *O*-acetyltransferase in *E. coli*, was originally described as being encoded on the prophage CUS-3, which is integrated in the NMEC genome in the hypervariable region between *dsdC-argW* (Deszo *et al.*, 2005). NeuO-mediated *O*-acetylation is phase variable and is modulated by slipped strand mispairing (SSM) of 7 highly repeated nucleotides (5'-AAGACTC-3'). This contingency locus occurs at the start of the ORF of *neuO*, in a region termed the poly Ψ region (Fig. 5-1). Multiples of 3 heptanucleotides will result in an active protein; whereas loss or gain of anything other than 3 heptanucleotides will result in a translational frame shift, and in an inactive truncated protein. This chapter will discuss the role of DsdC in the regulation of the capsular *O*-acetyltransferase, *neuO*, and any phenotypes observed from this regulation using a K1 bacteriophage killing assay.

Figure 5-1 Phase variability of *neuO*. The phase variability of *neuO* is mediated by slipped strand mispairing of DNA during DNA replication. This often occurs in bacteria within regions of highly repeated nucleotides, with an example shown as the inset. This contingency locus occurs in the poly Ψ region of *neuO*, at the start of the ORF. Multiples of 3 heptanucleotides (5'-AAGACTC-3') result in an active protein. Loss or gain of anything over than 3 heptanucleotides results in an inactive, truncated protein.

5.2 The binding dynamics of DsdC on the *neuO* gene

Comparative transcriptomics had revealed *neuO*, an *O*-acetyltransferase, was one of the most down-regulated differentially expressed genes in the CE10 data sets, irrespective of exposure to D-serine (Fig 3-23). Analysis of the CE10^{DsdC} ChIP-Seq binding profiles revealed that DsdC bound in the ORF of *neuO* (Fig. 5-2A). There also appeared to be a secondary peak, indicated by the gold dashed line on Figure 5-2(A), at the end of the gene. However, upon further analysis, the origin of the reads were unable to be confirmed as specific to that region.

Figure 5-2 *neuO* binding dynamics. (A) DsdC1 and DsdC2 ChIP binding peaks for *neuO*, in the presence and absence of D-serine, are shown to be intragenic. The gold dashed line indicates the two binding peaks of DsdC for *neuO*. (B) A graphical representation of the two binding peaks of *neuO*. The peak to the left of the gold dashed line showed single reads mapping in both the forward (green) and reverse (red) direction. The peak to the right of the gold dashed line showed non-specific read mapping (yellow), indicating it matched to somewhere else on the genome and the software was unable to clarify which was the true peak.

5.3 NeuO is not carried on the mobile genetic element, CUS-3, in NMEC CE10

Original reports stated that *neuO* was encoded on the prophage CUS-3, and was integrated within the RS218 genome, a prototypical NMEC K1 strain, in the hypervariable region between *dsdC-argW* (Deszo *et al.*, 2005). Intriguingly, analysis of the CE10 genome revealed that *neuO* was encoded 2 mb upstream of *dsdC* (Fig. 3-14). Nucleotide BLAST analysis of the 40 kb CUS-3 genetic island from the RS218 genome against the CE10 genome revealed 38 out of the 59 genes that encode CUS-3 had no similarity to any region in the CE10 genome.

Using PHASTER, a database that identifies prophage sequences within the genome (Arndt *et al.*, 2016), 15 prophage regions were identified in the CE10 genome. This included a 16.2 kb region immediately upstream of *neuO*, between 824561 and 840854 bp. This region was shown to carry an incomplete prophage of 15 genes. The incomplete prophage found had homology to the bacteriophage HK620. Using EasyFig (Sullivan *et al.*, 2011), a linear BLAST comparison was made between CUS-3 in RS218 and the incomplete prophage in CE10 (Fig. 5-3). This analysis revealed homology at the start of the CUS-3 prophage and the incomplete prophage, between *neuO* and the endosialidase gene. Further homology was revealed at the end of the CUS-3 prophage and the incomplete prophage, between 37 genes in the central region of CUS-3. This suggests that if CUS-3 originally carried *neuO* into CE10, the phage has since been excised, although *neuO* has been retained. These results therefore indicate that *neuO* in CE10 is no longer linked to the prophage CUS-3.

Figure 5-3 *neuO* is not encoded on CUS-3 in the CE10 genome. Linear BLAST analysis using EasyFig revealed little to no homology over the central region of CUS-3 to the incomplete prophage of CE10, indicating CUS-3 has been lost, or was never present. Shaded blocks between sequences represent homologous regions, shaded according to BLASTn. Coloured arrows indicate GO functionality.

5.4 \triangle *neuO* does not affect growth of CE10

In order to establish if any future phenotypes found in the $\Delta dsdC$ mutants were mediated via NeuO, a $\Delta neuO$ mutant was generated in CE10 using the Lambda Red mutagenesis system, and provided by Dr James Connolly. To ensure there were no growth defects with the $\Delta neuO$ mutant that could contribute to any phenotypes observed, a growth curve was performed in M9 minimal media, in the presence and absence of D-serine, and qualitatively assessed (Fig. 5-4). The $\Delta neuO$ mutation appeared to have no effect on growth in M9 minimal media in comparison to the WT. *neuO* was also cloned into pACYC184 and transformed into $\Delta neuO$, with the growth also comparable to the WT.

Figure 5-4 Growth profiles of WT and $\triangle neuO$ mutant in M9 minimal media, in the presence and absence of D-serine. Growth curves of CE10 and isogenic mutants in M9 minimal media in the presence and absence of 1mM D-serine, measured as OD₆₀₀ over time. Growth curves shown represent mean of triplicate experiments with error bars indicating SEM.

5.5 NeuO transcription is regulated via DsdC and mediates protection against K1 bacteriophages

The K1 capsule is a known barrier to many bacteriophages, including the lytic T7 bacteriophage (Scholl *et al.*, 2005). K1-specific phages, however, often carry endosialidases which have the ability to degrade the α 2,8-linked polysialic acid capsule (Stummeyer *et al.*, 2006). As the ChIP and RNA-Seq data had indicated

that DsdC was regulating *neuO*, it was hypothesised that this may affect the capsule and therefore the ability of the K1 bacteriophage to bind and lyse the cell. As previously described in Goh *et al.*, 2017, a K1-specific bacteriophage was purchased from SSI Diagnostica, and the ability of the bacteriophage to lyse the bacterial cells was measured.

Figure 5-5 Quantification of viral titre in CE10 WT and isogenic mutants. The plaque forming units (PFU)/ml of the CE10 WT and isogenic mutants in (A) the absence of D-serine and (B) the presence of D-serine. The plaque assays were performed in triplicate with each replicate portrayed as a circle in the graph. Statistical non-paired Student's *t*-tests were performed on GraphPad Prism 8, comparing isogenic mutants against the CE10 WT. ns denotes a p>0.05.

Quantifying the viral titre showed the lytic effect the K1 bacteriophage was having upon CE10 and the $\Delta dsdC$ and $\Delta neuO$ isogenic mutants (Fig. 5-5). It was apparent from the PFU/ml, regardless of exposure to D-serine, there was no difference in the lytic activity of the K1 bacteriophage. It appears therefore that the K1 bacteriophage was lysing all of the bacteria comparably. However, although there was no difference observed in the phage titre results there was a difference in the size and morphology of plaques formed. Figure 5-6 shows the plaques formed on the CE10 WT and isogenic mutants and quantitative analysis of plaque sizes.

Figure 5-6 $\Delta dsdC1$ and $\Delta neuO$ present a large plaque phenotype. Images of phage plaques taken after infection on bacterial lawns of (A) CE10, (B) $\Delta dsdC1$, (C) $\Delta dsdC2$, (D) $\Delta \Delta dsdC1/2$, (E) $\Delta neuO$. These images are representative of 3 independent experiments. Scale bars were generated on Fiji ImageJ software. (F) Quantitative analysis of plaque sizes measured in mm.

Statistical non-paired Student's *t*-tests were performed on GraphPad Prism 8, comparing isogenic mutants against the CE10 WT. * denotes a p- \leq 0.05; ns>0.05.

Significant differences in mean plaque size were observed comparing WT (1.15 mm) with $\Delta dsdC1$ (3.6 mm), $\Delta\Delta dsdC1/2$ (3.65 mm) and $\Delta neuO$ (3.8 mm), but not $\Delta dsdC2$ (1.6 mm). This indicated that NeuO plays a role in protection from K1-bacteriophage induced lysis and that regulation of bacteriophage protection is likely DsdC1-specific. Further, there were also differences in the plaque morphology between samples. All of the plaques presented as clear, which is common for lytic phages, however some of the plaques formed on $\Delta dsdC1$, $\Delta\Delta dsdC1/2$ and $\Delta neuO$ mutants contained haloes (Fig. 5-7). These larger plaques with haloes surrounding them were not present on either the CE10 WT or $\Delta dsdC2$ plaques over 3 biological replicates. These results indicated a difference in the plaque phenotype presented between the WT and $\Delta dsdC2$ in comparison to $\Delta dsdC1$ and $\Delta neuO$.

Figure 5-7 Representation of the haloes surrounding the plaques formed on \triangle *neuO*. An image of haloes surrounding the plaques that were representative of plaques formed on \triangle *dsdC1*, $\triangle \triangle$ *dsdC1/2* and \triangle *neuO* mutants. The black arrow signifies the halo.

The observation of a difference in phage plaque morphology suggested a difference in the K1 bacteriophage lytic lifestyle between WT and mutants (Abedon, 2021). A K1 bacteriophage killing assay, based on a method previously described in Goh *et al.*, 2017, was therefore performed to assess the rate of lysis

in CE10 and isogenic mutants. Briefly, the bacteria were grown on a microtitre plate for 3 hours in M9 minimal media, ensuring they were in logarithmic phase, as can be seen in Figure 5-8. 1 μ l of K1 phage suspension was added to the samples and OD₆₀₀ was measured every 30 minutes for 3 hours.

Figure 5-8 Growth profiles of WT and mutants in M9 minimal media, on a FLUOstar plate reader. Growth curves of CE10 and mutants in M9 minimal media, measured as OD₆₀₀ over time on a FLUOstar Optima plate reader. Growth curves shown represent mean of triplicate experiments with error bars indicating SEM.

Figure 5-8 shows the growth profiles of CE10 and mutants on the FLUOstar Optima plate reader, measured over 16 hours. Qualitative assessment of Figure 5-8 revealed that the WT and mutants grew comparably, and therefore any effect observed in the K1 phage killing assay would be likely due to lysis by the bacteriophage. As lysis can start occurring quickly after addition of bacteriophage (Wang *et al.*, 1996), the OD₆₀₀ was measured every 30 minutes for 3 hours (Fig. 5-9). Statistical non-paired Student's *t*-tests were performed at hour 4.5 (1.5 hours post infection (PI) of bacteriophage) and hour 6 (3 hours PI of bacteriophage).

Figure 5-9 NeuO protects against K1 bacteriophage lysis, mediated via DsdC1. A K1 bacteriophage killing assay was performed on CE10 and isogenic $\Delta dsdC$ and $\Delta neuO$ mutants. (A) Two distinct WT phenotypes emerged in the K1 bacteriophage killing assay; WT colonies that could survive K1 bacteriophage-mediated lysis (blue) and WT colonies that couldn't (purple). OD₆₀₀ of the samples measured 1.5-hours PI of K1 bacteriophage. (B) OD₆₀₀ of the samples measured 1.5- and 3-hours PI of K1 bacteriophage. (C) K1 bacteriophage killing assay measured as OD_{600} over time. The samples were measured every 30 minutes PI of K1 bacteriophage for 3 hours. Statistical non-paired Student's *t*tests were performed using GraphPad Prism on (A) and (B), comparing infected samples to uninfected samples. * denotes $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; **** $p \le 0.0001$; ns p > 0.05.

Strikingly, the K1 bacteriophage killing assay revealed two distinct phenotypes from the clonal CE10 WT population (Fig. 5-9(A)); one set that was almost completely lysed, and one set that had no significant difference in killing in comparison to the non-infected sample. Through SSM of the poly Ψ region, NeuO is phase variable. Therefore, NeuO can either be in a "phase ON" state and *O*acetylating the capsule, or in a "phase OFF" state and no *O*-acetylation of the capsule occurs. Sequencing of the WT colonies revealed those that were associated with higher levels of protection from the K1 bacteriophage were NeuO "phase ON" and those that were almost entirely lysed were NeuO "phase OFF" (Table 5-1). These results indicated that the phase variation of NeuO mediates protection against K1 bacteriophage-mediated lysis.

Figure 5-9(B) shows the K1 bacteriophage killing results 1.5- and 3-hours PI. At 1.5-hours, significant differences were observed when comparing non-infected to infected samples in WT "phase OFF", $\Delta ds dC1$, $\Delta \Delta ds dC1/2$ and $\Delta neuO$ colonies. Conversely, $\Delta dsdC2$ infected with K1 bacteriophage showed no significant killing in comparison to the non-infected sample, nor did the WT "phase ON" colonies. At 3-hours PI, WT "phase OFF" colonies were almost entirely lysed and the $\triangle dsdC1$, $\triangle \Delta dsdC1/2$ and $\triangle neuO$ mutants were fully killed. Significant differences were also observed between non-infected and infected WT "phase ON" and $\triangle dsdC2$ colonies at this time point. Figure 5-9(C) shows the growth dynamics of CE10 and isogenic mutants in the K1 bacteriophage killing assay, measured every 30 minutes PI. Killing of the $\Delta ds dC1$, $\Delta \Delta ds dC1/2$ and $\Delta neuO$ mutants occurs within 30 minutes PI. By 4.5 hours they are almost completely lysed, with complete lysis occurring at hour 5. WT "phase OFF" colonies behave similarly to $\triangle ds dC1$ and are lysed by hour 5.5. WT "phase ON" colonies and the $\triangle dsdC2$ mutant were not killed as guickly and there was still survival at hour 6 (3 hours PI).

These data corresponded with the plaque size assays, which showed that $\Delta dsdC1$, $\Delta \Delta dsdC1/2$ and $\Delta neuO$ mutants all presented significantly larger plaques in comparison to the WT and $\Delta dsdC2$ mutant. These data combined potentially implies that *O*-acetylation of the capsule, mediated by NeuO, is used by the cell to stop K1 bacteriophage-mediated lysis. This protection is transient however, with the NeuO "phase ON" colonies starting to be lysed at 3-hours PI. These data also implies that *neuO* regulation is DsdC1-specific, with DsdC2 not eliciting the same "hyper-susceptibility" to K1 bacteriophage. To determine if it was a DsdC1 and NeuO mediated phenotype, pDsdC1 and pNeuO were transformed into $\Delta dsdC1$ and $\Delta neuO$. Furthermore, as pDsdC1 and pNeuO contained their respective native promoter sequences, the GapA promoter region was also assembled onto the 5' end of *neuO* and cloned into pACYC184 for the K1 bacteriophage killing assay. This was performed in order to elicit a greater transcriptional response of *neuO*.

Figure 5-10 Complementation of NeuO restores protection against K1 bacteriophage-mediated lysis. A K1 bacteriophage killing assay measured as OD₆₀₀. (A) pDsdC1 transformed into $\Delta dsdC1$, measured 1.5-hour PI; (B) pNeuO and pGapAp-NeuO transformed into $\Delta dsdC1$, measured 1.5-hour PI; (C) pNeuO

and pGapAp-NeuO transformed into $\Delta neuO$, measured 1.5-hour PI. Statistical non-paired Student's *t*-tests were performed using GraphPad Prism 8 between uninfected sample and infected sample, and further between infected sample and infected sample with the complement plasmid. * denotes $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; **** $p \le 0.0001$; ns p > 0.05.

Figure 5-10 (A) shows the complementation of pDsdC1 in the $\Delta dsdC1$ background did not restore protection against the K1 bacteriophage. Therefore, a strategy was devised in which to assemble the GapA promoter onto DsdC1 in place of its native promoter in order to facilitate a strong constitutive transcription. However, this work is still ongoing. Figure 5-10 (B) and (C) show pNeuO complemented back into $\Delta dsdC1$ and $\Delta neuO$ with its native promoter and also with the GapA promoter. pNeuO restores moderate protection from the K1 bacteriophage in the $\Delta dsdC1$ background (Fig. 5-10B). pGapAp-NeuO was able to give greater protection and in both mutant backgrounds there was significant protection from the K1 bacteriophage, compared to the infected sample (Fig. 5-10B/C). These data therefore suggests that NeuO, when sufficiently overexpressed, can protect the cell from K1 bacteriophages. Furthermore, as the pGapAp-NeuO complement had restored some protection from the K1 bacteriophage in the phage killing assay, the phage plaque size assay was performed to determine if the size phenotype would be restored.

Figure 5-11 Complementation of pGapA*p*-NeuO restores the phage plaque size phenotype to WT levels. Complementation of pGapA*p*-NeuO in $\Delta dsdC1$ and $\Delta neuO$ restored the small plaque phenotype that was observed on the CE10 WT bacterial lawn. Images of phage plaques taken after infection on bacterial lawns of (A) CE10 WT; (B) $\Delta neuO$; (C) $\Delta dsdC1$ + pGapA*p*-NeuO; (D) $\Delta neuO$ + pGapA*p*-NeuO. Images are representative of three independent experiments. Scale bars were generated on Fiji ImageJ software. (E) Quantitative analysis of phage plaque sizes. Statistical non-paired Student's *t*-tests were performed using GraphPad Prism 8. * denotes $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$; **** $p \leq 0.0001$; ns p > 0.05. Complementing pGapAp-NeuO into the $\Delta dsdC1$ and $\Delta neuO$ mutants restored the small phage plaque size that was characteristic of infection on CE10 WT lawns and revealed no significant difference in plaque size between WT and complement (Fig. 5-11). Moreover, it was demonstrated that there was a significant difference in plaque size between $\Delta dsdC1$ and $\Delta neuO$ mutants, and the pGapAp-NeuO complemented mutants (Fig. 5-11E). Furthermore, the complementation also removed the halo effect that had been seen on the $\Delta dsdC1$ and $\Delta neuO$ bacterial lawns. When all of these data are combined, a DsdC1-specific regulatory role over *neuO* starts to emerge. It appears as though NeuO, an *O*-acetyltransferase, regulated through DsdC1, is able to mediate protection against K1 bacteriophages.

5.5.1 Phase variation of *neuO* influences susceptibility to K1 bacteriophage killing

As noted above during the K1 phage killing assays, two distinct phenotypes emerged from clonal CE10 WT populations: those that were protected against the K1 bacteriophage and those that were lysed in similar rates to the $\Delta dsdC1$ and $\Delta neuO$ mutants (Fig. 5-9A). Those colonies were sequenced and revealed those that were able to protect from the K1 bacteriophage-mediated lysis were NeuO "phase ON" and those that were lysed were NeuO "phase OFF" (Table 5-1).

Sample	First 64 codons of NeuO	Phase state?	Number of 5'- AAGACTC-3' repeats
NeuO reference	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_1	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSRLVFH***WVR* YFCMWRSCK*	Phase OFF	19
WT_2	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_3	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSRLVFH***WVR* YFCMWEIL*I	Phase OFF	19
WT_4	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_5	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_6	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTRFPLMIMGQVIFLYV EIL*IAKR	Phase OFF	17
WT_7	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_8	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_9	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTQDSFSIDDNGSGNIF VCGDLVNS	Phase ON	18
WT_10	MSRLKTQDSRLKTQDSRLKTQDSRLKTQ DSRLKTQDSRLKTRFPLMIMGQVIFLYV EIL*IAKR	Phase OFF	17

Table 5-1 Sequencing results of the NeuO poly Ψ region in 10 CE10 WT colonies. Sequencing results of the first 192 nucleotides (64 codons) of the NeuO poly Ψ region in 10 independent CE10 WT colonies. Six frame translation from the ATG start codon revealed the amino acid sequence and consequently the "phase ON/OFF" status of the colony. The red stars indicate a stop codon. The blue and green "SRLKTQD" amino acids indicate the poly Ψ region. The number of 5'-AAGACTC-3' heptanucleotides in each poly Ψ region of NeuO is also indicated.

Table 5-1 revealed the differences in sequence variability of the NeuO poly Ψ region of the CE10 WT colonies. Indeed, although any multiple of 3 heptanucleotides would result in a "phase ON" colony, all "phase ON" colonies were 18 heptanucleotides long. Further, again, although any loss or gain of other than 3 heptanucleotides would result in a "phase OFF" colony, all the "phase

OFF" colonies were either 17 or 19 heptanucleotides long. As phase variation is described as a random event (Henderson et al., 1999); the percentage of CE10 WT colonies that were "phase ON" and "phase OFF" were measured (Fig. 5-12).

Figure 5-12 Graphical representation of the number of CE10 WT NeuO "phase ON" and "phase OFF" colonies. Number of NeuO "phase ON" and "phase OFF" colonies from (A) sequencing data and (B) experimental data from the K1 bacteriophage killing assay.

The number of "phase ON" colonies identified appeared to be greater than the number of "phase OFF" colonies (Fig. 5-12). In the experimental data, a colony was deemed "phase OFF' if it had been completely lysed or mostly lysed by hour 6 (3 hours PI). Populations that were protected from the K1 bacteriophage-mediated lysis were deemed "phase ON". From 31 K1 phage killing experiments, 68% were "phase ON" (21/31), whereas "phase OFF" colonies accounted for 32%. The sequencing data revealed a similar proportion of "phase OFF" colonies (40% (4/10)), whereas 60% (6/10) where "phase ON".

5.5.2 Phase variation affects transcriptional levels of *neuO*

An RT-qPCR comparison of *neuO* in the $\triangle dsdC1$ mutant background, in relation to the CE10 WT, showed a 4.3-fold reduction in expression (Fig. 5-13A). However, the *p*-value was not significant at 0.051. As the phase state of NeuO had

affected the CE10 WT phage killing assay, it was hypothesised that it may also have an effect on observable transcript levels. For this experiment, colonies were deemed "phase ON" or "phase OFF" due to prior survival or lysis in the K1 bacteriophage killing assay.

Figure 5-13 Phase variation of NeuO affects transcriptional expression. Phase variation affects the transcription of *neuO*. (A) The WT was a mixed population of "phase ON" and "phase OFF" colonies. (B) Individual expression values for the colonies used in (A). (C) The WT was a population of "phase OFF" colonies. (D) The WT was a population of "phase ON" colonies. The purple dashed line indicates baseline expression of *neuO* in CE10 WT. Gene expression analyses were based off three biological repeats. * denotes $p \le 0.05$; ** $p \le 0.01$; **** $p \le 0.001$; ns p > 0.05.

Figure 5-13 indicated that the phase variation of NeuO in the CE10 WT affected transcriptional expression. Indeed, when the WT was a mixed population, there was no significant difference in fold changes in the $\Delta dsdC1$ and $\Delta \Delta dsdC1/2$

backgrounds, -4.32 (p-value 0.051) and -3.64 (p-value 0.1) respectively (Fig. 5-13A). However, when three "phase ON" colonies were used, there was a significant reduction in expression of neuO -42.35-fold (p-value 0.0004) in the $\Delta ds dC1$ background and -35.51-fold (*p*-value 0.0004) in the $\Delta \Delta ds dC1/2$ background (Fig. 5-13D). Moreover, when three WT "phase OFF" colonies were used as the control, *neuO* expression was reduced to -2.75-fold (*p*-value 0.006) and -2.28-fold (*p*-value 0.01) in the $\triangle dsdC1$ and $\triangle \Delta dsdC1/2$ backgrounds respectively (Fig. 5-13C). Although these colonies were not sequenced, it is clear that the WT and $\triangle ds dC2$ colonies have variable levels of *neuO* transcript, whereas the $\Delta ds dC1$ and $\Delta \Delta ds dC1/2$ colonies did not (Fig 5-13B). Here it has been shown that the WT and $\triangle ds dC2$ display both high and low levels of *neuO* transcript, whereas $\Delta ds dC1$ was consistently low. This is consistent with the previous findings of variation in the CE10 and $\Delta ds dC2$ backgrounds, in the K1 bacteriophage killing assay, compared to the relative consistency of the $\triangle dsdC1$ and $\Delta\Delta ds dC1/2$ backgrounds that was observed. Due to the consistency observed from $\triangle dsdC1$ in the K1 bacteriophage assay and consistently low levels of *neuO* transcript, it was hypothesised that potentially the extent of NeuO phase switching was playing a role in the $\triangle dsdC1$ phenotype. To test this, 10 $\triangle dsdC1$ and 10 $\Delta ds dC2$ colonies were sequenced at the NeuO poly Ψ region.

∆dsdC1				∆dsdC2				
Sample	First 64 codons of NeuO	Phase state?	Number of 5'- AAGACTC-3' repeats	Sample	First 64 codons of NeuO	Phase state?	Number of 5'- AAGACTC-3' repeats	
NeuO reference	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	NeuO reference	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta ds dC 1_1$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_1	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
∆dsdC1_2	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_2	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta dsdC1_3$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_3	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta dsdC1_4$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_4	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta dsdC1_5$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	$\Delta ds dC2_5$	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta dsdC1_6$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	$\Delta ds dC2_6$	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta dsdC1_7$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_7	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
$\Delta ds dC1_8$	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_8	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
∆dsdC1_9	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	∆dsdC2_9	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	
∆ <i>dsdC1</i> _10	MSRLKTQDSRLKTQDSRLKTQDSRLKTRFP LMIMGQVIFLYVEIL*IAKRIKFSSMETIT NLL*	Phase OFF	11	$\Delta dsdC2_{10}$	MSRLKTQDSRLKTQDSRLKTQDSRLKTQDS RLKTQDSRLKTQDSFSIDDNGSGNIFVCGD LVNS	Phase ON	18	

Table 5-2 Sequencing results of the NeuO poly Ψ region in 10 CE10 Δ *dsdC1* and Δ *dsdC2* colonies. Sequencing results of the first 192 nucleotides (64 codons) of the NeuO poly Ψ region in 10 independent CE10 Δ *dsdC1* and Δ *dsdC2* colonies. Six frame translation from the ATG start codon revealed the amino acid sequence and consequently the "phase ON/OFF" status of the colony. The red stars indicate a stop codon. The number of 5'-AAGACTC-3' heptanucleotides in each poly Ψ region of NeuO is also indicated.
The data contained within Table 5-2 revealed that all of the $\Delta dsdC1$ mutants that were sequenced were "phase OFF" whereas all of the $\Delta dsdC2$ mutants were "phase ON". Intriguingly, all of the $\Delta dsdC1$ "phase OFF" colonies were 11 heptanucleotides long, whereas the $\Delta dsdC2$ "phase ON" colonies were all 18 heptanucleotides long. The proportion of experimentally determined $\Delta dsdC1$ and $\Delta dsdC2$ NeuO "phase ON" and "phase OFF" colonies from the K1 bacteriophage killing assay were also measured (Fig. 5-14).

Figure 5-14 $\triangle dsdC1$ is constituently NeuO "phase OFF". Number of NeuO "phase ON" and "phase OFF" colonies from the K1 bacteriophage killing assay experimental data for (A) $\triangle dsdC1$ and (B) $\triangle dsdC2$.

Using the K1 bacteriophage killing assay data, "phase ON" and "phase OFF" states were assigned to the $\Delta dsdC1$ and $\Delta dsdC2$ mutants. A colony was deemed "phase OFF" if it had been completely lysed or mostly lysed by hour 6 (3 hours PI). Those that were still able to mediate protection from the K1 bacteriophage were deemed "phase ON". Figure 5-14 revealed all of the $\Delta dsdC1$ colonies were NeuO "phase OFF". By hour 6, the cells had been completely lysed in 100% of experiments (17/17). This corresponds with the sequencing data, where 100% of the colonies sequenced were "phase OFF". It appears therefore that $\Delta dsdC1$ has a permanently "phase OFF" NeuO. Conversely, for the $\Delta dsdC2$ mutant, although it appeared in the sequencing data that all of the colonies were "phase ON", in the phage killing assay there were two occasions out of 44 were $\Delta dsdC2$ colonies

were "phase OFF" (4.5%). Although this is significantly lower than the WT "phase OFF" variability of ~32%, it does imply that the $\Delta dsdC2$ mutant may also be able to undergo phase switching, but at a lower rate. Taken together, these data suggests that DsdC1 directly regulates the phase state of *neuO*, however the underlying mechanism of this regulation was not investigated and will be subject to further work.

5.6 Discussion

5.6.1 The CUS-3 prophage is not present in the CE10 genome

When *neuO* was first described in 2005, it was suggested to be genetically linked to the prophage CUS-3 (Deszo et al., 2005). CUS-3 was integrated into the RS218 genome in the hypervariable region between dsdC and argW. Indeed in the results reported, the strains lacking CUS-3, lacked O-acetyltransferase activity (Deszo et al., 2005), thereby suggesting without CUS-3, neuO was not present on the genome. Further studies revealed that CUS-3 was an active mobile contingency locus in K1 E. coli, able to infect sensitive K1 hosts (King et al., 2007); thereby disseminating *neuO* further into the population. However, a later study of 111 K1 clinical isolates revealed that although 61% carried the neuO gene, 11% of those NeuO-positive strains lacked CUS-3 (King et al., 2007). This indicated for the first time that CUS-3 has been potentially excised or lost from these strains, leaving neuO, or that neuO was potentially integrated into the genome on a different MGE. PHASTER analysis of the CE10 genome revealed 15 different genomic regions in which prophages had been identified, including an incomplete prophage of 16.2 kb between nucleotide positions 824561-840854 bp, immediately upstream of the endosialidase gene and *neuO*. PHASTER analysis revealed the phage with the closest homology was the HK620 phage. HK620 phages encode a tail-spike protein and can recognise host cell receptor polysaccharides in *E. coli* (Barbirz *et al.*, 2008). Intriguingly, CUS-3 has been reported to be a close relative of HK620, differing in CUS-3's acquisition of *neuO* and the endosialidase gene (King *et al.*, 2007).

Further BLAST analysis, using EasyFig, revealed homology between the incomplete prophage and CUS-3 at the start and at the end of the prophage,

with 37 genes in the centre having no homology (Fig. 5-3). As the PHASTER analysis revealed, the incomplete prophage is only 16.2 kb long, which indicates that it is not big enough to be a different prophage to CUS-3 and is likely therefore to be either a degraded CUS-3, or neuO is encoded on a separate MGE (Touchon *et al.*, 2016). Due to the high homology between the two prophage regions, this potentially indicates that *neuO* was likely integrated into the CE10 genome on CUS-3, however CUS-3 has subsequently been lost. Indeed, over time, prophage genes can be lost from the genome and prophages can be degraded so much that the few genes remaining can no longer be characterised as a prophage (Touchon et al., 2016). Analysis of bacterial genomes revealed that after successful lysogenisation into the bacterial host, prophages undergo a complex decay, consisting of genomic rearrangements, inactivation of genes due to point mutations, and modular exchanges (Canchaya *et al.*, 2003). This "domestication" of prophages allows the bacteria to retain desired functions, which in the case of *neuO* is the ability to *O*-acetylate the capsule, whilst removing a molecular "time bomb" (Bobay et al., 2014). Further, analysis has indicated that genes encoded in the central part of the prophage are more frequently deleted than genes at the edges (Bobay et al., 2014), which appears to be the case in the incomplete prophage in CE10 and further indicates that CUS-3 originally integrated into the CE10 genome, but has since been lost. However, *neuO* has been retained, suggesting its importance to CE10.

5.6.2 DsdC regulates *neuO*, the *O*-acetyltransferase

Using the ChIP-Seq analysis it was shown that DsdC, the D-serine metabolism locus regulator, binds to the DNA sequence encoding NeuO, the *O*-acetyltransferase. Interestingly the binding peak of DsdC1 and DsdC2 in *neuO* was in the ORF of the gene. As discussed in section 3.6.2, intragenic binding peaks have become more common in the analysis of ChIP-Seq data sets and this could be for a multitude of reasons (Galagan *et al.*, 2012). Often however it is only repressors that bind after the TSS, with one study showing the binding sites of activators only occurred before the TSS (Babu & Teichmann, 2003b). This suggests therefore that DsdC is repressing *neuO*. However, directly testing this hypothesis using transcriptomics and RT-qPCR data contradicts this assumption, as in the $\Delta\Delta dsdC1/2$ mutant background *neuO* is down-regulated, indicating that DsdC is an activator of *neuO*.

Transcription is a tightly controlled process within bacteria and is often regulated in response to environmental signals and cues. Investigating the regulation of *neuO* by DsdC in the presence and absence of D-serine, revealed new insights into the role of this metabolite. The RNA-Seq data presented in Chapter 3 revealed that in the absence of D-serine, *neuO* expression was reduced -7.9-fold in the $\Delta\Delta dsdC1/2$ mutant background. Upon exposure to Dserine, the fold-change increased to -4.57-fold, indicating that when D-serine was present, DsdC reduces its activation of *neuO*. However, when pDsdA was transformed into $\Delta\Delta dsdC1/2$, *neuO* expression decreased -8.15-fold, similar to the *neuO* levels of transcript observed in the absence of D-serine data. This suggests that the accumulation of D-serine affected the transcription of *neuO*, rather than exposure to D-serine. Overall, this indicated that DsdC regulates *neuO* independently of D-serine presence.

As discussed above, *O*-acetylation of the capsule can change the biophysical properties of the capsular polysaccharides (Fusco *et al.*, 2007), as well as potentially affecting the virulence status of the bacterial cell (Frasa *et al.*, 1993). Intriguingly, non-enzymatic acetylation has been suggested to be in response to environmental signals and the metabolism status of the cell (reviewed in Christensen *et al.*, 2019). Indeed, depending on the concentrations of glucose, lactate, fructose, and xylose, these carbon sources have all been reported to potentially affect acetylation in *E. coli* (reviewed in Christensen *et al.*, 2019). As DsdC is the D-serine metabolism locus regulator, this could indicate a putative link between *O*-acetylation of the capsule and the host environment.

5.6.3 NeuO mediates protection from K1 bacteriophage lysis in CE10

Prophages that encode receptor modifying enzymes often do so to prevent further phage entry into the host bacterial cell, thereby stopping bacteriophage "super-infections" (reviewed in Labrie, Samson & Moineau, 2010). Indeed, a recent study reported that 29 out of 30 prophages that could infect *Pseudomonas aeruginosa* mediated resistance to at least 3 phages (Bondy-Denomy *et al.*, 2016). Furthermore, 12 of these phages had the capacity to mediate resistance to over 20 different phages (Bondy-Denomy *et al.*, 2016). From the CE10 genome sequence, it indicated that *neuO* appeared to have been integrated into the genome by a MGE (Fig. 5-3). To test the hypothesis that NeuO-mediated *O*-acetylation modifies the bacteriophage receptor on the capsule surface, and this in turn is regulated by DsdC, a K1 bacteriophage titre and killing assays were performed on CE10 and isogenic mutants.

The common assumption is that each plague present on a plate is initiated by a single virus particle (Gallet *et al.*, 2011). As can be seen in Figure 5-5, there was no significant difference between the ability of the K1 bacteriophage to form plaques on CE10 and isogenic mutants. Therefore, it was assumed that the K1 bacteriophage is able to infect CE10 and the mutants at similar frequency. Strikingly however, there was a difference between WT and some of the mutants in plaque size and morphology (Fig. 5-6). Circular plaque morphology is due to a cycle of infections of the bacterial cell by bacteriophages disseminating outwards from the original infected host (Gallet *et al.*, 2011). All of the plaques formed by the K1 phage were clear and had a clean periphery, typical for lytic virulent phages (Jurczak-Kurek et al., 2016). However, some of the plaques formed on $\triangle dsdC1$, $\triangle \triangle dsdC1/2$ and $\triangle neuO$ had haloes surrounding them (Fig. 5-7). Haloes have been described as semi-transparent zones around the plague, which have been suggested to be formed by phage-produced depolymerases, which are destroying the bacterial cell surface structures (Jurczak-Kurek et al., 2016; Pires et al., 2016). Bacteriophages produce degrading enzymes, for example sialidases, in order to cleave the glycosidic bonds in the capsule, enabling adsorption and invasion into the host bacteria (Pires et al., 2016). Intriguingly, *O*-acetylation of bacterial cell wall polysaccharides have been shown to increase resistance to degradative enzymes (Bernard et al., 2011). As the haloes indicated an increase in depolymerase activity of the K1 bacteriophage on the $\triangle dsdC1$, $\triangle \triangle dsdC1/2$ and $\triangle neuO$ bacterial lawns, this indicated that potentially these mutants were unable to O-acetylate their capsule, thus allowing for increased depolymerisation.

Furthermore, there was also a difference in the size of the plaques formed. Plaques formed on $\triangle dsdC1$, $\triangle \triangle dsdC1/2$ and $\triangle neuO$ were significantly larger than plaques formed on CE10 WT and $\triangle dsdC2$ (Fig. 5-6). A recent paper classed plaques that were ≤ 1 mm in size as 'small' and plaques that were ≥ 2 mm as 'large' (Montso et al., 2019). Clearly, the data presented here shows that the plaques formed on the WT and $\Delta ds dC2$ were small-medium, whereas the plaques formed on $\triangle dsdC1$, $\triangle \triangle dsdC1/2$ and $\triangle neuO$ were large plaques. As phage replication often ceases when the bacteria reach stationary phase (Abedon, 2021), the size of a plaque can reveal several interesting characteristics of the behaviour of the bacteriophage. Although larger plagues could be due to a number of reasons including, shorter phage latent periods, virion physical properties and greater nutrient availability (Abedon, 2021), it was assumed due to the conditions staying constant between all of the experiments, that the only difference was the mutations in the bacterial hosts, and corresponding changes in the capsule. Therefore, the size of plague likely corresponded to how guickly the virion diffused out of the initial infected cell and subsequent bacterial lysis. K1 bacteriophages use tailspike proteins, that act as capsule depolymerases, to recognise and bind to the host bacterial capsular polysaccharide (Stummeyer et al., 2006). O-acetylation of bacterial outer surface structures has been shown to effect phage adsorption, with acetyl groups on the O-antigen protecting E. coli 4s from infection (reviewed in Prokhorov et al., 2017). Furthermore, some bacteriophages have counter-evolved enzymes that can deacetylate the cell surface structures, thereby allowing infection (Prokhorov et al., 2017). The bacteriophage G7C encodes the tailspike protein gp63.1, which can deacetylate the polysaccharide of *E. coli* 4s, whilst leaving the polysaccharide backbone intact (Prokhorov *et al.*, 2017), thus enabling recognition and subsequent infection of the cell. These results therefore potentially indicate that the Oacetylation of the K1 capsule, mediated by the O-acetyltransferase NeuO and activated by DsdC1, inhibits K1 bacteriophage dissemination in CE10, evidenced by the smaller plaque sizes observed in the WT and $\triangle ds dC2$ mutant.

Furthermore, using a K1 bacteriophage killing assay, it was shown that $\Delta neuO$ and $\Delta dsdC1$ were "hyper-susceptible" to the K1 bacteriophage and almost entirely lysed 1.5-hours PI, whereas the WT and $\Delta dsdC2$ were not lysed until 3hours PI (Fig. 5-9). This again further supports the hypothesis that NeuO, regulated by DsdC1, modifies the K1 capsule by *O*-acetylation of the polysialic acid, thereby preventing immediate lysis by the K1 bacteriophage. Furthermore, overexpression of NeuO partially restored the survival phenotype observed of the WT (Fig. 5-10) and fully restored the plaque size phenotype observed on the WT bacterial lawn (Fig. 5-11). These data combined suggests that *neuO* regulation is a DsdC1-mediated specific phenotype, not facilitated by DsdC2, showing different roles for these highly homologous TFs.

Strikingly, original work by Vimr and colleagues suggested that NeuO did not mediate protection against K1 bacteriophages (King, Steenbergen & Vimr., 2007). However, the data presented here clearly supports the hypothesis that NeuO mediates protection against K1 bacteriophages. The differences in data reported could be due to the differences in genetic makeup between the two strains. Vimr and colleagues used the strain RS218, which has the full CUS-3 prophage including *neuO* encoded on its genome, unlike CE10 which has a degraded incomplete prophage. Further, *neuO* is integrated downstream of *dsdC* in RS218, whereas in CE10, *neuO* is integrated 2 mb away from *dsdC*. These differences in genetic makeup may have led to the observation that NeuO does not protect against K1 bacteriophage, and further highlights how even highly conserved genes may play differing roles in strains of the same pathotype.

NeuO was also shown to be responsible for protection against K1 bacteriophage lysis, due to the two different WT phenotypes that arose from the phage killing assay. It was established through sequencing that the WT colonies that were able to protect against K1 bacteriophage were "phase ON", whereas the WT colonies that were not able to protect against K1 bacteriophage were "phase OFF". Phase variation of the capsule is not uncommon, indeed as stated above, it is a mechanism used by multiple bacteria and fungi. Why though, if Oacetylation of the capsule prevents K1 bacteriophage-mediated lysis, is the capsule not O-acetylated all of the time? Certainly, it has been reported that the degree of acetylation can vary between isolates, ranging from 5-95% (King, Steenbergen & Vimr., 2007). However, by modifying capsular states by phase variation, this allows bacteria to evade specific immune responses against one capsule form. The K1 polysialic capsule mimics host N-CAM surfaces, thus minimising immune responses from the host (Silver & Vimr, 1990). However, further heterogeneity of the population, mediated through O-acetylation of the capsule, means that in an event of antibody recognition to one phase state, the other will survive and proliferate (Van Der Woude & Bäumler, 2004). Further, recent research has suggested that O-acetylation plays a role in environmental survival, with O-acetylated strains more resistant to desiccation, but having a

reduced ability to form biofilms (Mordhorst *et al.*, 2009). Therefore, like most phase variable genes there is a delicate balance between phase switching, likely in relation to the host environment.

5.6.4 Phase variation as a putative indirect mechanism of transcriptional regulation of *neuO*

The data above suggests that a DsdC1-specific regulatory mechanism mediates transcription of *neuO*. Interestingly however, the RT-qPCR data suggested that phase state of the colonies correlated with the level of transcription of *neuO* (Fig. 5-13). Indeed, when the WT population was a mix between "phase ON" and "phase OFF" colonies, there was a -4.32 decrease in fold change of *neuO* between WT and $\Delta dsdC1$. However, when the WT population was selected for only "phase ON" colonies, there was a decrease in fold change of -42.35 between WT and $\Delta dsdC1$. Moreover, when the WT population was comprised of "phase OFF" colonies the fold change was -2.75. Although these colonies were not sequenced, they were determined to be "phase ON" or "phase OFF" using the K1 bacteriophage killing assay.

This suggests therefore that phase variation affects transcription of *neuO*. In CE10, it is the random event of SSM that causes NeuO to be "phase ON" or "phase OFF". SSM commonly occurs in genes that benefit from phase variation between "ON" and "OFF" states, such as those involved the production of antigenic surface appendages. Indeed, SSM occurs in the Neisseria spp. for phase variation of the capsule (reviewed in Tzeng, Thomas & Stephens, 2016). SSM can affect transcription or translation, dependent on where the repeated homologous regions are (Henderson et al., 1999). The SSM of neuO occurs within the ORF of the gene, and hence, alters the reading frame of the mRNA produced. SSM also causes phase variation of the *N*. *meninigitis* capsule, mediated via the polysialyltransferase gene *siaD* (Hammerschmidt *et al.*, 1996). Interestingly, it has been reported that transcription of the "phase OFF" siaD can be prematurely terminated (Lavitola et al., 1999). It was shown that Rho, the canonical transcription termination factor, was responsible for premature transcription termination of the out of frame *siaD* (Lavitola *et al.*, 1999). Potentially therefore, a similar mechanism is occurring in CE10, and the "phase OFF" *neuO* is prematurely transcriptionally terminated, thereby explaining how

phase variation is affecting the transcriptional levels in the RT-qPCR. Interestingly it appears from this data that DsdC1 affects the SSM of NeuO. When $\Delta dsdC1$ is knocked out, this caused *neuO* to remain in a "locked off" position (Table 5-2).

5.6.5 Conclusion

It has been stated that up to 50% of prokaryotic genes may have arisen from gene duplication (Brenner *et al.*, 1995; Teichmann *et al.*, 1998; Teichmann & Babu, 2004). In 2006, it was noted that in K1 strains, there were two genetically unlinked copies of the *dsdCXA* locus, with both copies retaining functionality for metabolising D-serine (Moritz & Welch, 2006). When TFs evolve by duplication, regulatory networks are either inherited or lost (Teichmann & Babu, 2004). Although Chapter 3 indicated that, in CE10, DsdC1 and DsdC2 regulated the same set of genes, the results presented in Chapter 5 have revealed novel differing roles between the highly homologous proteins. Indeed, the data in Chapter 5 has revealed novel phenotypical properties of DsdC1 in *E. coli* K1 pathogenicity. The data presented here have shown that DsdC1 mediates protection from K1 bacteriophage lysis, through the regulation of *neuO*, likely therefore affecting the *O*-acetylation state of the capsule and thus blocking K1 bacteriophage receptors. This work indicates that DsdC1 has been tailored in CE10 in a strain-specific manner.

Chapter 6 Investigating further putative roles of DsdC in uropathogenic *Escherichia coli* and neonatal meningitis-associated *Escherichia coli*

6.1 Introduction

Whilst E. coli is an incredibly diverse species, a key virulence trait shared by all E. coli is the presence of the LPS (Ebbensgaard et al., 2018). LPS is an integral element of the *E. coli* outer membrane, protecting the cell from the host environment and providing resistance to host complement (Heinrichs et al., 1998; Lerouge & Vanderleyden, 2002). E. coli LPS comprises of three components: lipid A (the hydrophobic anchor that is embedded in the cell outer membrane); the core oligosaccharide (core OS) composed of sugar molecules; and the O-antigen, a structurally variable polysaccharide composed of several repeating side chains (Whitfield et al., 1999). There are over 170 O-antigen serogroups that have been found in E. coli, reflecting the hypervariability of the polysaccharide (Whitfield et al., 1999). Conversely, there is much less structural diversity within the core OS, with only 5 currently known outer core OS structures in E. coli; R1, R2, R3, R4, and K12 (Whitfield et al., 1999). In E. coli, the core OS biosynthesis genes are encoded on the waa locus (Heinrichs et al., 1998). Analysis of the CE10^{DsdC} ChIP-Seq data revealed that DsdC bound to the waa locus. Furthermore, upon exposure to D-serine, the transcriptomic data revealed that several of the *waa* genes were differentially regulated, indicating a direct regulatory role for DsdC in LPS biosynthesis.

Another key virulence determinant for some *E. coli* strains is the presence of an extracellular polysaccharide layer, the capsule. There are over 70 distinct capsular (K) antigens in *E. coli*, differing in several properties including sugar residues, branching and charge density (Jann & Jann, 1992). The capsule is of particular biological importance, with some K-antigens known to play roles in immune evasion and serum resistance (Jann & Jann, 1992). In *E. coli*, a ~20 kb region encodes the capsule biosynthesis genes, termed the *kps* island (Silver & Vimr, 1990). The *kps* island is organised into three adjacent genomic regions: Regions 1, 2 and 3 (Vimr *et al.*, 1995). Regions 1 and 3 are generally conserved amongst group 2 capsule expressing strains, and encode for proteins involved in the transport of the capsular polysaccharides to the cell surface, whereas Region 2 is serotype specific, and therefore in K1 strains it encodes the sialic acid biosynthesis proteins (reviewed in Whitfield & Roberts, 1999). The capsule is transcribed from two major promoter elements, PR1 and PR3, that sit upstream of Regions 1 and 3 respectively (reviewed in Jia *et al.*, 2017). Comparisons of

the CE10 ChIP-Seq and RNA-Seq data had revealed DsdC differentially expresses genes encoded on the *kps* island, thus indicating a direct regulatory role for DsdC in K1 capsule synthesis.

As well as protecting themselves from the host environment through LPS and capsule synthesis, *E. coli* can mediate pathogenesis by the production of toxins. Colibactin is a bacterial-produced genotoxin that interferes with the eukaryotic cell cycle, inducing DNA double stranded breaks (DSB) and cellular senescence (Secher *et al.*, 2013). Colibactin-producing *E. coli* are over-represented in CRC patients, with reports suggesting they are found in up to 67% of CRC patients, but in less than 20% of controls (reviewed in Faïs *et al.*, 2018). The colibactin synthesis genes are encoded on a 54-kb island, termed the *pks* island (Nougayrède *et al.*, 2006), and is mainly carried in the B2 phylogroup, which typically comprise ExPEC strains (reviewed in Faïs *et al.*, 2018). ClbR is the transcriptional activator for colibactin gene expression and is encoded within the *pks* island (Wallenstein *et al.*, 2020). Analysis of the CFT073^{DsdC} ChIP-Seq and RT-qPCR data revealed DsdC bound and differentially regulated *clbR*, thus indicating a direct role of DsdC in colibactin synthesis.

In Chapter 5, it was described how DsdC affected the regulation of *neuO*, the capsule *O*-acetyltransferase. Using a combination of the ChIP-Seq and RNA-Seq data, as indicators of potential regulation, this chapter will focus on any further phenotypes that were mediated by DsdC and the host metabolite D-serine in CE10 and CFT073; namely LPS expression in CE10, invasion and adhesion to an *in vitro* BBB cell model, and colibactin synthesis in CFT073.

6.2 DsdC modulates discrete genes involved in CE10 lipopolysaccharide expression

As discussed above, *E. coli* LPS comprises of three components: lipid A, core OS, and the O-antigen (Yethon *et al.*, 2000). Using the CE10 ChIP-Seq data, DsdC was shown to occupy several sites along the core OS biosynthesis region, the *waa* locus, binding in a broad manner across the region (Fig. 6-1A). Nucleotide analysis of the *waa* region in the UPEC strain CFT073 revealed that the region was A:T-rich, with the GC content comprising between 33-38% of the sequence (Fig. 6-1C). BLAST analysis of the *waa* region revealed 99% homology over 100%

of the sequence between CFT073 and CE10, indicating that the *waa* region in CE10 is also A:T-rich. The *waa* locus is comprised of several glycosyltransferases which sequentially elongate the core OS from a lipid A acceptor molecule, to the O-antigen attachment (Fig. 6-1B) (Heinrichs *et al.*, 1998).

Figure 6-1 Expanded view of the ChIP-Seq peaks at the *waa* locus and representation of the *E. coli* LPS core OS structure. (A) An expanded view of the ChIP-Seq peaks from CE10^{DsdC1} and CE10^{DsdC2}, with and without D-serine, at the *waa* LPS core OS biosynthesis region. (B) Adapted from Yethon *et al.*, 2000. An overview of the sugar residues in the core OS and some of the core enzymes that modulate it. The blue rectangles indicate ketodeoxyoctonate; yellow rectangles indicate L-glycero-D-manno-heptose sugars; red rectangles indicate phosphates; grey rectangle indicates 2-aminoethyl phosphate; green rectangles indicate D-glucose and salmon rectangles indicate D-galactose sugar residues. (C) GC content of the *waa* locus genes in CFT073. BLAST analysis of the CFT073

waa locus to CE10 revealed 99% homology over 100% of the sequence. Adapted from xBase (Chaudhuri & Pallen, 2006).

Silver staining assays can be used to define LPS profiles, revealing any differences in core OS or O-antigen formation (Fomsgaard *et al.*, 1990; Tsai & Frasch, 1982). A silver staining assay was therefore performed to determine the LPS profiles of CE10 and the $\Delta\Delta ds dC1/2$ mutant, in the presence of D-serine (Fig. 6-2).

Figure 6-2 DsdC modifies the LPS of CE10. Silver-stained LPS profiles from five biological replicates of CE10 and $\Delta\Delta dsdC1/2$, in the presence of D-serine. Black arrows indicate differences in intensity in O-antigen repeat units.

Figure 6-2 showed the difference in LPS profiles between CE10 and $\Delta\Delta dsdC1/2$, in the presence of D-serine. The intense bands at the bottom of the gel represented the core OS and lipid A, and was present in all of the samples. The bands above the core represented the number of repeating O-antigen units in the samples. The $\Delta\Delta dsdC1/2$ LPS profiles appeared to have two bands that were thicker than in the WT LPS profiles, indicated on Figure 6-2 by two black arrows. This difference in banding intensity suggests that DsdC may be playing a role in modifying the LPS of CE10, potentially altering the number of O-antigen repeats that are present on the cell surface.

6.3 Further potential roles of DsdC in CE10 K1 capsule regulation

Further to regulating *neuO*, the capsule *O*-acetyltransferase, DsdC was observed binding to other genes involved in the synthesis of the K1 capsular polysaccharide in CE10 (Fig. 6-3A). Figure 6-3(A) highlighted the two types of binding patterns that were observed in the ChIP-Seq data. In the intergenic region before *kpsF* and *kpsM*, there was a single canonical TF binding peak. However, within Region 2 of the *kps* island, DsdC bound in a broad manner, encompassing many of the genes. Nucleotide analysis of the *kps* island in UTI89, another K1 *E. coli* strain, revealed that Region 2 was heavily A:T-rich, with the GC content comprising between 26-32% (Fig. 6-3B). A BLAST analysis of the entire *kps* pathogenicity island between UTI89 and CE10 revealed 99% homology over 94% of the sequence, indicating that Region 2 in CE10 is also A:T-rich.

As the ChIP-Seq data had revealed DsdC binding in the two major promoter elements of the K1 capsule pathogenicity island, RT-qPCR was performed on *kpsF* and *kpsM* to measure the changes in gene expression between CE10 WT and $\Delta\Delta dsdC1/2$, in the presence and absence of D-serine (Fig.6-3C). Intriguingly, in the $\Delta\Delta dsdC1/2$ mutant, expression of *kpsF* was 1.7-fold higher (*p*-value 0.002) in relation to the CE10 WT (Fig. 6-3C). Upon exposure to D-serine, this increased to 2.5-fold higher (*p*-value 0.001) (Fig. 6-3C). This data implies that DsdC directly represses *kpsF*, the first gene in the Region 1 *kps* pathway. Furthermore, *kpsM* was expressed 4.6-fold higher in the $\Delta\Delta dsdC1/2$ mutant, in the presence of Dserine, in relation to the CE10 WT (Fig. 6-3C). However, in the absence of Dserine, there was no difference in expression of *kpsM* between CE10 WT and $\Delta\Delta dsdC1/2$, suggesting accumulation of D-serine may have led to increase in *kpsM* gene expression described above.

Figure 6-3 Expanded view of the ChIP-Seq peaks at the *kps* K1 capsular **biosynthesis region and relative expression of** *kpsF* and *kpsM*. (A) An expanded view of the ChIP-Seq peaks from CE10^{DsdC1} and CE10^{DsdC2}, with and without D-serine, at the *kps* K1 capsular biosynthesis region. The three genomic regions of the K1 capsule are annotated: Region 1 in red and inclusive of genes from *kpsF* to *kpsS*; Region 2 in orange and inclusive of genes from *neuS* to *neuB*; and Region 3 in blue, inclusive of the genes *kpsT* and *kpsM*. The two major promoter elements are represented by the green curved arrows, which indicate the direction of transcription, adapted from Jia *et al.*, 2017. (B) GC content of the *kps* locus genes in UT189. BLAST analysis of the UT189 *kps* locus to CE10 revealed 99% homology over 94% of the sequence. Adapted from xBase

(Chaudhuri & Pallen, 2006). (C) RT-qPCR analysis of the *kpsF* and *kpsM* K1 capsular genes. Fold changes were measured relative to the CE10 WT, with the purple dashed line indicating baseline expression of *kpsF* and *kpsM* genes in CE10 WT. * indicates a $p \le 0.05$; ** indicates a $p \le 0.01$; **** indicates a $p \le 0.001$.

6.3.1 Adhesion and invasion of cultured brain microvascular endothelial cells does not appear to be mediated by DsdC

Although the full role of the NMEC K1 capsule has not been completely elucidated yet, it is thought to be involved in invasion and adhesion of the BBB in humans (Xie *et al.*, 2004). The adhesion and invasion capacities of CE10 and isogenic mutants were therefore measured. An *in vitro* brain microvascular endothelial cell line, hCMEC/D3, was used as a BBB model to measure invasion and adhesion levels of CE10 and isogenic mutants. Adhesion and invasion assays were carried out by incubating hCMEC/D3 cells with bacteria at an MOI of 100 for 2 hours. An MOI of 100 was used based upon prior NMEC *in vitro* research (Kim, 2000).

Figure 6-4 DsdC does not affect invasion or adhesion efficiency of CE10 in an *in vitro* BBB model cell line. Using the hCMEC/D3 brain microvascular endothelial cell line, the percentage of (A) invasion efficiency and (B) adhesion efficiency was measured in CE10, $\Delta\Delta dsdC1/2$ and $\Delta neuO$ against the total bacterial count (adherent, invasive and unattached). The hCMEC/D3 cells were incubated with bacteria at an MOI of 100, for 2 hours. Cells for the adhesion assay were lysed and bacterial counts performed. Cells for the invasion assay

were treated with gentamicin and grown for a further hour. Cells were lysed and bacterial counts performed. An unpaired Student *t*-test measurement was performed between the WT and isogenic mutants for each assay; p- \geq 0.05 were non-significant (ns). Data presented is from three independent biological repeats.

Of the total bacterial count, CE10 $\Delta\Delta dsdC1/2$ displayed an invasion efficiency of ~0.002% to the hCMEC/D3 cell line. This was not significantly different to the percentage of invasion displayed by the WT, nor $\Delta neuO$ (Fig 6-4A). Furthermore, there was no apparent difference in the percentage of adhesion efficiency for $\Delta\Delta dsdC1/2$ compared to the WT (Fig. 6-4B). Of the total bacterial count, ~20% of WT and $\Delta\Delta dsdC1/2$ adhered to the hCMEC/D3 cell line, and ~36% of $\Delta neuO$. These results indicate that any alterations to the polysialic acid K1 capsule, mediated by DsdC, did not affect the adhesion and invasion capabilities of CE10 in an *in vitro* cell line model.

6.3.2 DsdC does not appear to affect serum resistance

The K1 polysialic acid capsule is known to be involved in protection against host complement-mediated killing, providing a steric barrier to the cell (Miajlovic & Smith, 2014). To establish if modification of the K1 capsule by DsdC was involved in host complement-mediated killing, a serum resistance assay was performed on CE10 and $\Delta dsdC$ mutants, with K12 used as a serum sensitive positive control. Bacteria were incubated for 90 minutes with either PBS or human serum. Bacterial colony counts were then performed (Fig. 6-5).

Figure 6-5 DsdC does not appear to affect serum resistance in CE10. Serum resistance was measured in K12, CE10, and CE10 isogenic mutants. Bacteria were incubated with PBS (P) or human serum (S) for 90 minutes, at a 1:1 concentration, and bacterial counts were performed (CFU/ml). (A) An unpaired Student *t*-test was performed on the K12, CE10 and CE10 isogenic mutant bacterial counts (CFU/ml (Log₁₀)) between PBS incubation and serum incubation.

No significant difference was observed in the bacterial colony counts between CE10 WT incubated in PBS, compared to CE10 WT incubated in human serum (Fig. 6-5). This correlates with previous data that NMEC protects against host complement-mediated killing. Furthermore, no differences were observed in the bacterial colony counts in the isogenic mutants that were incubated in PBS compared to those incubated in human sera (Fig. 6-5). This implies that any modification of the capsule via regulation by DsdC, does not play a role in serum resistance.

6.4 The role of DsdC in regulating expression of genes involved in colibactin synthesis

Colibactin is a bacterial genotoxin that is produced by some strains of *E. coli* (Faïs *et al.*, 2018). Recent work in our lab has shown that D-serine can reduce the genotoxic effects caused by colibactin, however the mechanism for this remains unknown (Hallam *et al.*, unpublished). Intriguingly, the CFT073 ChIP-Seq data revealed binding of DsdC, upstream of the *clbR* gene (Fig. 6-6).

Furthermore, the RT-qPCR transcriptional data showed a 4.6-fold increase in expression of *clbR* in the $\triangle dsdC$ mutant plus D-serine background (*p*-value 0.0003) (Fig. 4-2A); indicating that DsdC, upon exposure to D-serine, represses *clbR* and thus colibactin synthesis, thereby reducing the damaging genotoxic effects inflicted upon the cell. To understand the role of DsdC in colibactin synthesis, an *in vitro* genotoxin infection model was used.

Figure 6-6 Expanded view of the *clbB-clbR* **ChIP-Seq peak.** An expanded view of the ChIP-Seq peak from CFT073^{DsdC}, in the presence and absence of D-serine, at the *clbB-clbR* intergenic region.

6.4.1 Experimental design and transcriptional analysis of colibactin genes

Colibactin synthesis can be measured in vitro using the eukaryotic model cell line, HeLa (Nougayrède et al., 2006). Infection of HeLa cells by colibactinproducing E. coli results in DNA DSB, which can be measured indirectly through the phosphorylation of histone H2AX, and by the induction of megalocytosis, characterised by enlargement of the HeLa cell (Nougayrède et al., 2006). As UPEC already encodes several different protein toxins (Welch, 2016), the model commensal strain for colibactin synthesis, Nissle 1917, was used to assess if DsdC was affecting colibactin synthesis. A nucleotide BLAST comparison revealed that CFT073 dsdC and Nissle 1917 dsdC were highly conserved with 100% conservation across 91% of the sequence. A $\Delta dsdC$ mutant was therefore generated in Nissle 1917. Growth profiles of Nissle 1917 and isogenic $\triangle dsdC$ mutant were performed to gualitatively assess growth in both M9 minimal media and MEM-HEPES, the media in which the *in vitro* infection assay would be performed. Furthermore, to ensure the Nissle $\triangle dsdC$ mutation had been successful, Nissle $\triangle dsdC$ was grown on 10 mM D-serine sole carbon source plates, with the expectation that it would not be able to metabolise D-serine and therefore no growth would be observed.

Moreover, dsdC was transformed into pACYC184 and complemented into Nissle $\Delta dsdC$, with the expectation this would restore any growth defects observed in the $\Delta dsdC$ mutant.

In M9 minimal media, when D-serine was present, the $\Delta dsdC$ mutant was unable to grow (Fig. 6-7A/C). From this data, it was implied that without the DsdC regulator, D-serine metabolism could not occur in Nissle 1917. Furthermore, when pDsdC was complemented into the $\Delta dsdC$ mutant, the growth phenotype was restored (Fig. 6-7C). Intriguingly, in M9 minimal media without D-serine, upon deletion of the DsdC regulator, there was a qualitative difference in growth between Nissle WT and the $\Delta dsdC$ mutant, with the $\Delta dsdC$ mutant appearing to grow faster than the WT (Fig. 6-7A). This phenotype was not observed in MEM-HEPES, where Nissle WT and the $\Delta dsdC$ mutant grew comparably (Fig. 6-7B). Upon exposure to D-serine, there was a slight difference in growth, with Nissle WT proliferating faster from hour 5 (Fig. 6-7B).

In Chapter 4, the expression of genes involved in colibactin synthesis had been measured using RT-qPCR in CFT073 (Fig. 4-2). This data revealed that *clbR* expression was 2-fold higher in the $\Delta dsdC$ mutant (*p*-value 0.0003), and 4.6-fold higher in the $\Delta dsdC$ mutant (*p*-value 0.0003) upon exposure to D-serine, in comparison to the CFT073 WT. As the *in vitro* infection would be performed with the Nissle 1917 strain, RT-qPCR was performed to measure the fold changes in gene expression of three genes involved in colibactin synthesis: *clbR*, the transcriptional regulator of colibactin synthesis; *clbA*, a phosphopantethinyl transferase; and *clbB*, a non-ribosomal peptide synthetase. The RT-qPCR was performed in M9 minimal media and MEM-HEPES on the Nissle WT and isogenic $\Delta dsdC$ mutant, in the presence and absence of D-serine.

Upon exposure to D-serine, expression of *clbR* in the $\triangle dsdC$ mutant in M9 minimal media, was 2.5-fold higher than in Nissle WT (*p*-value 0.005) (Fig. 6-8A). This correlates with the transcriptional data obtained earlier in CFT073 where the fold change was 4.6-fold higher in $\triangle dsdC$ compared to WT (*p*-value 0.0003) (Fig.4-2). However, in M9 minimal media without D-serine, changes in expression

of *clbR* in the $\Delta dsdC$ mutant were not significant in relation to the Nissle WT (Fig.6-8A). This was in contrast to the CFT073 transcriptomic data, in which expression of *clbR* in the $\Delta dsdC$ mutant was 2-fold higher compared to the CFT073 WT (*p*-value 0.0003) (Fig.4-2). Expression of *clbA*, the phosphopantethinyl transferase also required for production of colibactin, was 2.83-fold higher in the $\Delta dsdC$ mutant with D-serine in comparison to the Nissle WT (*p*-value 0.00002), which further correlates with the CFT073 data (Fig.6-8A/Fig.4-2). Expression of *clbA* was also 1.4-fold higher in the $\Delta dsdC$ mutant in the absence of D-serine (*p*-value 0.004). This indicates that upon exposure to D-serine in M9 minimal media, DsdC represses the expression of colibactin synthesis genes *clbR* and *clbA*. However, as *clbR* expression did not change in the $\Delta dsdC$ mutant and the change in *clbA* was only 1.4-fold increased, the changes in expression described above could be due to D-serine accumulation, rather than transcriptional effects mediated by DsdC.

The expression of colibactin synthesis genes were also measured in MEM-HEPES, as the *in vitro* infection cell assay would be performed in this media. This data revealed that there was no significant difference in expression of *clbR* between the $\Delta dsdC$ mutant and Nissle WT in MEM-HEPES, in the presence or absence of D-serine (Fig. 6-8B). This data indicated that DsdC is not regulating *clbR*. However, expression of *clbA* (-1.9-fold; *p*-value 0.007) and *clbB* (-2.4-fold; *p*-value 0.01) were both reduced in the $\Delta dsdC$ mutant in relation to the Nissle WT, indicating that DsdC is indirectly involved in the regulation of two colibactin synthesis genes. Expression of *clbB* was also -2.3-fold lower in the Nissle WT upon exposure to D-serine, in relation to the Nissle WT without D-serine (*p*-value 0.051), correlating to previous data obtained in our lab.

This data demonstrated that in different media, the expression of *clbA* and *clbR* changes in the $\Delta dsdC$ mutant compared to the Nissle WT. In MEM-HEPES, *clbR* is no longer differentially expressed by DsdC, indicating that DsdC does not regulate colibactin synthesis through the colibactin synthesis regulator. Thus, any differences therefore observed in the *in vitro* infection assay, would not be due to this regulatory mechanism. However, *clbA* and *clbB*, which are both also essential in colibactin synthesis, were repressed in the $\Delta dsdC$ mutant, suggesting that DsdC is involved in activation of colibactin synthesis in Nissle WT, in MEM-

HEPES. As the *in vitro* infection assay will be performed in MEM-HEPES, the transcriptional data indicates that the $\triangle dsdC$ mutation may potentially exacerbate any phenotypes observed.

6.4.2 DsdC does not appear to affect colibactin production in the *in vitro* infection assay

Previous work from our lab has revealed that upon exposure to D-serine, colibactin synthesis is reduced (Hallam et al., unpublished). This was measured transcriptionally through the reduced expression of *clbB* in Nissle WT upon addition of D-serine. Furthermore, this was indirectly measured in vitro through Western blot analysis of the phosphorylated γ H2A.X, a sensitive indicator of DNA DSB, and by the induction of megalocytosis ("giant cell phenotype") in the HeLa cells. To understand the potential role of DsdC in colibactin synthesis, an in *vitro* infection assay was performed on Nissle WT and the $\triangle dsdC$ mutant, in the presence and absence of D-serine. Briefly, the megalocytosis phenotype was observed by infecting HeLa cells with bacteria at an MOI of 400 for 4 hours. The HeLa cells were then treated with gentamicin and incubated for a further 48 hours, to elicit the genotoxic effect of colibactin. To measure, indirectly, the DNA DSB, the HeLa cells were infected with bacteria at an MOI of 400 for 4 hours. The HeLa cells were then treated with gentamicin and incubated for a further 4 hours, before the cells were removed for Western blot analysis. The in vitro infection experiments were completed in co-ordination with a fellow PhD student of the Roe group, Jennifer Hallam, who then performed the Western blot analysis.

Α

Uninfected

Nissle 1917

В

Nissle ∆*dsdC*

С

Ε

Nissle 1917 +D-ser

Nissle ∆*dsdC* +D-ser

Figure 6-9 DsdC does not affect induction of megalocytosis in HeLa cells.

Figure 6-9 DsdC does not affect induction of megalocytosis in HeLa cells. Using the HeLa model cell line, colibactin-induced megalocytosis was observed microscopically. HeLa cells were incubated with bacteria at an MOI of 400. Images are representative immunofluorescence images of HeLa cells, 48 hours after infection with (B) Nissle 1917, (C) Nissle $\Delta dsdC$, (D) Nissle 1917 + D-ser, (E) Nissle $\Delta dsdC$ + D-ser and (A) uninfected. Filamentous-actin was stained with Phalloidin AlexaFlour 555 (red), and host nuclei stained with DAPI (blue). Images were taken at 40X magnification.

Figure 6-9 shows the genotoxic effects of colibactin on the host cell. Infection of the HeLa cells by both Nissle and the $\Delta dsdC$ mutant caused the megalocytosis phenotype that is characteristic of colibactin production (Fig. 6-9B/C). No differences were observed between WT and $\Delta dsdC$. Moreover, exposure to D-serine to both Nissle WT and $\Delta dsdC$ infections, produced a cell phenotype more characteristic of the uninfected cells (Fig. 6-9A/D/E). This correlated with previous data from our lab, showing that addition of D-serine to Nissle inhibits colibactin production. The $\Delta dsdC$ mutant did not appear to show a difference in colibactin production, measured qualitatively through the megalocytosis phenotype, in comparison to the Nissle WT, with or without D-serine.

As colibactin can induce DNA DSB in host cells, using the *in vitro* infection cell model, the concentration of phosphorylated histone γ -H2A.X was measured using Western blot analysis.

Figure 6-10 DsdC does not appear to affect induction of host DNA DSB. Western blot analysis of phosphorylated histone, γ -H2A.X, in both uninfected HeLa cells and HeLa cells infected with Nissle and $\Delta dsdC$, in the presence and absence of D-serine. β -tubulin was used as a loading control. This figure is representative of 3 biological repeats.

Phosphorylated histone γ -H2A.X is a sensitive marker of DNA DSB. Infection of both the Nissle WT and $\Delta dsdC$ mutant on the HeLa cells revealed an increase in phosphorylated γ -H2A.X in relation to the uninfected cells, indicating DNA DSB have occurred within the cell (Fig. 6-10). Over three biological experiments, Western blot analysis revealed no difference between Nissle WT and the $\Delta dsdC$ mutant in regard to γ -H2A.X expression (Fig. 6-10). Upon exposure to D-serine, there was a clear reduction in γ -H2A.X in both the Nissle WT and $\Delta dsdC$ mutant, indicating that D-serine was repressing the genotoxic effects of colibactin. In the presence of D-serine, there did not appear to be a difference between the Nissle WT and $\Delta dsdC$ mutant in regard to γ -H2A.X expression (Fig. 6-10). These data suggest therefore, that although there appeared to be direct binding and regulation of DsdC to *clbR* in the CFT073 background, this did not translate to a phenotype that showed a difference in the genotoxic effects of colibactin.

6.5 Discussion

6.5.1 DsdC modifies the O-antigen length of CE10 LPS

A key virulence factor of *E. coli* is the LPS, which constitutes a major component of the outer cell envelope, covering ~75% of the cell surface area (reviewed in Lerouge & Vanderleyden, 2002). It is the O-antigen region of the LPS molecule that is exposed to the host environment, thus variation in O-antigen composition is an important mechanism for the bacteria to evade the host immune system (reviewed in Liu *et al.*, 2020). Analysis of the ChIP-Seq binding data revealed occupancy of DsdC along the full *waa* operon, the major operon responsible for core LPS biosynthesis (Fig. 6-1A). Nucleotide analysis of this region revealed it was A:T-rich, with a GC content comprising between 33-38% of the sequence (Fig. 6-1C). The GC content amongst all strains of *E. coli* is relatively constant, ~50% (Muto & Osawa, 1987); with CE10-specific GC content at 50.6% (Liu *et al.*, 2015). Differences in GC content in the genome can be due to the acquisition of "foreign" DNA by horizontal gene transfer (Mann & Chen, 2010). NAPs, for example H-NS, can bind to A:T-rich regions of the genome as a mode of gene regulation, silencing "foreign" genes (Grainger *et al.*, 2006). As discussed in section 3.6.5, DsdC has many similarities to NAPs. As the *waa* operon is A:T-rich, in comparison to the GC content of the CE10 genome, DsdC may be occupying the *waa* operon in a NAP-like manner, ensuring silencing of the operon. This correlates with the transcriptomic data which revealed expression of genes involved in LPS core OS biosynthesis (*waaV*, *waaY*, *waaL*, *waaW*, and *waaT*) were increased in the $\Delta\Delta dsdC1/2$ mutant in relation to the WT, in the presence of D-serine, suggesting that DsdC directly represses the *waa* operon.

As discussed previously, the *waa* operon is the major operon responsible for core OS biosynthesis (Heinrichs et al., 1998). Elongation of the LPS molecule is tightly regulated, and the assembly of sugars is mediated by a host of glycosyltransferases (Whitfield et al., 1999). One of the most significant DsdC binding peaks in the waa operon was in the region of a glycosyltransferaseencoding gene, *waaV* (Table S3-6). WaaV has been shown to link the final sugar to the core region before the O-antigen is added by the O-antigen ligase, waaL (Yethon et al., 2000). Mutations of waaV have been shown to eliminate the ligation of the O-antigen, revealing its importance in LPS formation (Heinrichs et al., 1998). Using EMSAs, direct binding of DsdC to the waaV gene was demonstrated (Fig. 4-7). Furthermore, RT-qPCR showed a 1.36-fold increase in waaV expression in the $\Delta\Delta ds dC1/2$ mutant compared to the WT (Fig. 4-1). This suggests that DsdC represses the waaV gene, through direct binding. Speculatively, the repression of *waaV* could cause a difference in the number of O-antigen repeat units. Silver staining of LPS from CE10 and the $\Delta\Delta ds dC1/2$ mutant, in the presence of D-serine, revealed two bands of increased intensity in the O-antigen side chain region in the $\Delta\Delta ds dC1/2$ mutant. This implies that in the WT, DsdC inhibits the formation of two O-antigen polysaccharides of varying lengths.

Alterations of the LPS and O-antigen can occur in response to different host environmental stimuli (Lerouge & Vanderleyden, 2002). Indeed, Van Den Akker, (1998) reported that temperature affected expression of the O-antigen in *Bordetella parapertussis*. Furthermore, pathogenic *Yersinia enterocolitica* were shown to modulate their LPS profile upon exposure to differences in pH and Ca²⁺ restriction (Bengoechea *et al.*, 2003). Intriguingly, the length of the O-antigen has been shown to affect complement resistance and evasion of macrophage cells in *Salmonella* (Murray *et al.*, 2006). Hypothetically therefore, it could be speculated that DsdC, upon exposure to the host metabolite D-serine, directly represses *waaV* and the *waa* operon, causing alterations in the LPS O-antigen length as a defence mechanism of immune evasion. Although it has not been definitively proven if direct regulation of *waaV* by DsdC causes the difference in O-antigen length, it does appear using the silver staining data that DsdC, upon exposure to D-serine, modifies the composition of the LPS, a key virulence determinant in *E. coli*.

6.5.2 Further putative regulatory roles of DsdC in CE10 K1 capsule regulation

E. coli is one of the leading causes of blood-stream infections, with bacteraemia-causing strains often associated with serum resistance (Miajlovic & Smith, 2014). Human serum contains over thirty proteins involved in the complement-killing system, one of the primary defences in the host's immune response (Miajlovic & Smith, 2014). The K1 capsule is a known virulence factor that protects against complement-mediated killing (reviewed in Abreu & Barbosa, 2017). Analysis of the CE10 ChIP-Seq data revealed that DsdC bound in a broad manner in the A:T-rich Region 2 of the *kps* pathogenicity island (Fig. 6-3A/B), the island responsible for K1 capsule synthesis (Silver & Vimr, 1990). This suggests, as discussed above, that DsdC may potentially be acting in a similar manner as a NAP, and silencing "foreign" DNA. Furthermore, DsdC was shown to bind in the two major promoter regions of the *kps* island, upstream of *kpsF* and *kpsM* (Fig. 6-3A). RT-qPCR analysis revealed expression of the capsular gene, *kpsF*, was higher in the $\Delta\Delta dsdC1/2$ mutant in relation to the WT, implying that DsdC represses *kpsF*, the first gene in the Region 1 operon (Fig. 6-3C).

To determine if binding and differential expression of capsular genes by DsdC affected protection from complement-mediated killing, a serum resistance assay was performed on CE10 and the isogenic $\Delta dsdC$ mutants. As expected of the CE10 WT with a functioning capsule, there was no difference in bacterial growth between samples incubated in PBS and samples incubated in human serum, whereas the K12 serum sensitive strain was fully killed (Fig.6-5) (Leying *et al.*, 1990). Furthermore, the serum resistance assay revealed no difference in bacterial growth of the isogenic $\Delta dsdC$ mutants between the samples incubated

in PBS and the samples incubated in human serum, suggesting that the capsule is intact in the $\triangle dsdC$ isogenic mutants (Fig. 6-5).

As discussed above, DsdC was shown to repress the first gene in Region 1 of the kps island, kpsF. KpsF functions as an accessory translocation factor for capsular components, with $\Delta kpsF$ mutations reducing capsular expression in E. coli (Cieslewicz & Vimr, 1997). Serum resistance has been linked to the proportion of K capsule present, with strains producing more K-antigen having an enhanced resistance to serum (Glynn & Howard, 1970). This suggests that the $\triangle dsdC$ mutant should have enhanced survival in serum. However, analysis of serum survival in $\triangle ds dC$ mutants showed no significant difference. Conversely, Vermeulen et al., (1988) suggested that there is a threshold level of K1 capsular polysaccharide that is needed to confer protection from complement-mediated killing. Hypothetically therefore, increased expression of kpsF in the $\Delta\Delta dsdC1/2$ mutant may not have affected serum resistance, as the cell is already expressing the maximal amount of capsule needed to confer protection. Conversely, other capsular genes (neuB, neuE, neuC, neuA, and neuS) were only upregulated in the $\Delta\Delta ds dC1/2$ mutant, in relation to the WT, in the presence of D-serine. Therefore, a difference in serum resistance may have been seen if the samples had been exposed to D-serine during the experiment. Indeed, exposure to environmental factors have been known to modify E. coli K1 resistance to serum, with exposure to 0.2 M NaCl eliciting a 3.3-fold decrease in survival (Badger & Kim, 1998). Although an interesting hypothesis, this experiment was not carried out in this project, but could be the subject of future work.

Furthermore, the K1 capsule is also one of many determinants that is required for successful invasion of the BBB (reviewed in Xie, Kim & Kim, 2004). Indeed, 84% of 77 isolates recovered from the CSF of neonates with meningitis had the K1 polysaccharide (Robbins *et al.*, 1974). An *in vitro* model cell line was therefore used to indirectly assess the role of DsdC on adherence and invasion of the BBB, through adhesion and invasion of brain endothelial cells. In the *in vitro* model, no difference in adhesion and invasion of CE10 and the $\Delta\Delta dsdC1/2$ mutant was observed. Strikingly however, invasion to the hCMEC/D3 cells was low, with the bacteria showing an invasion efficiency of ~0.002% of the total bacterial cells. In comparison, an *in vitro* study that used HBMEC cells, *E. coli* K1 were shown to invade routinely at an efficiency of 0.1%-0.5% (Badger *et al.*, 2000). Indeed, a non-invasive K12 was used as a negative control and was shown to bind to the HBMEC cells at a similar percentage as the data presented here, $\leq 0.002\%$ (Badger *et al.*, 2000). This insinuates that the CE10 WT is not efficiently invading the hCMEC/D3 cell line, thus no differences could be observed between WT and $\Delta\Delta ds dC1/2$. It should be noted however, that Badger *et al.*, (2000) based their invasion efficiency percentages off the initial inoculum used, unlike the data presented here which was based off the total number of bacteria in the experiment (adherent, invasive and unattached bacteria).

The BBB is a dynamic interface between the brain and vasculature, composed of endothelial cells and connected by tight junctions (reviewed in Jamieson, Searson & Gerecht, 2017). Transwell models are often employed in *in vitro* studies, in order to mediate the dynamic nature of the BBB (reviewed in Stone, England & O'Sullivan, 2019). HBMEC confluent monolayers are grown on a porous membrane (transwell) that separates apical and basolateral chambers (Jamieson *et al.*, 2017). Addition of further cells involved in the maintenance of the BBB, including astrocytes and pericytes, can be added to the basolateral chamber, upregulating barrier function and allowing for a more dynamic BBB *in vitro* cell model (Jamieson *et al.*, 2017). For the *in vitro* invasion assays presented in this work, transwells were not used, and hCMEC/D3 cells were grown to a confluent monolayer in collagen coated wells. Potentially therefore, invasion efficiency was low because the *in vitro* cell model cell line was not optimised. Further studies could use transwell inserts to optimise CE10 WT binding before further

There was also no difference in adhesion and invasion between CE10 and $\Delta neuO$. This corresponds with data obtained with NMEC strain RS218, which also showed no dependency on NeuO for adherence or invasion of HBMEC cells (Mordhorst *et al.*, 2009). Therefore, it appears from this data that neither DsdC nor NeuO plays a role in invasion of CE10 into hCMEC/D3 cells. However, invasion efficiencies were so low for CE10 WT in the *in vitro* BBB cell model, further studies would need to be performed in order to fully rule out the role of DsdC in K1 capsule invasion.

6.5.3 DsdC does not mediate the reduction in colibactin synthesis, induced upon exposure to D-serine, in Nissle 1917

Previous work in our lab had revealed that, upon exposure to D-serine, the genotoxic effects to eukaryotic cells mediated by the bacterial genotoxin, colibactin, was reduced (Hallam *et al.*, unpublished). Although this was an exciting discovery, the molecular mechanism underpinning the reduction in colibactin synthesis, mediated by D-serine, remained unknown. Analysis of the CFT073^{DsdC} ChIP-Seq data had revealed binding on the *pks* island, at the intergenic region between *clbR*, the colibactin transcriptional activator and *clbB* (Fig. 6-6). Transcriptional analysis revealed that expression of *clbR* was 2-fold higher in the CFT073 $\triangle dsdC$ mutant in relation to the WT and moreover, upon exposure to D-serine, this increased to 4.6-fold higher (Fig. 4-2). This indicated that in CFT073, DsdC represses *clbR* and thus colibactin expression. Furthermore, upon exposure to D-serine, this repression was exacerbated, and thus theoretically could explain how the induction of D-serine causes a repression of colibactin synthesis.

As UPEC encodes multiple toxins (Shah *et al.*, 2019; Welch *et al.*, 2002; Welch, 2016), the probiotic Nissle 1917 is used as the model UPEC strain in *in vitro* assays. Indeed, a recent analysis revealed few genetic differences between CFT073 and Nissle 1917, with only 308 CFT073 genes absent in Nissle 1917 (Vejborg *et al.*, 2010). A nucleotide BLAST analysis between CFT073 and Nissle 1917 revealed *dsdC* is highly conserved between the two strains. A Nissle $\Delta dsdC$ mutant was therefore made to assess the effects of DsdC on colibactin synthesis *in vitro*. Intriguingly it was qualitatively observed in a growth profile, in M9 minimal media, that the Nissle $\Delta dsdC$ mutant proliferated faster than the Nissle WT. This potentially implies that DsdC is repressing a gene involved in metabolism in Nissle. This phenotype was not present in the CFT073 $\Delta dsdC$ mutant and potentially shows strain-specific regulation of carbon sources between CFT073 and Nissle. Although this was an interesting observation, this was not investigated further due to time constraints.

Conversely, unlike the CFT073 transcriptomic data, in the Nissle $\triangle dsdC$ there was no difference in gene expression of *clbR* in relation to the Nissle WT,

suggesting that DsdC does not repress colibactin synthesis in Nissle. However, upon exposure to D-serine, *clbR* was repressed by DsdC in M9 minimal media. As LTTR need a co-inducer in order to differentially regulate genes, perhaps this was why a difference was seen in *clbR* expression in the presence of D-serine (reviewed in Maddocks & Oyston, 2008). Conversely, perhaps the difference in *clbR* expression in the $\triangle dsdC$ mutant was due to the inability to break down Dserine. Therefore, it is the negative effects associated with D-serine accumulation that is causing *clbR* to be differentially expressed. Strikingly though in MEM-HEPES, *clbR* expression was no longer significantly differentiated in the mutant, with or without D-serine. Different medias have been known to affect gene expression in bacteria (Ray et al., 2009). Indeed in S. aureus, it was shown that transcription of *hla* (α -haemolysin) was reduced in CYGP media compared to BHI or LB media (Ray *et al.*, 2009). Furthermore, even slight changes in the carbon content of medias can vastly influence bacterial gene expression. In Streptococcus mutans, genes related to biofilm formation (atlA, sacB, and wapA) were significantly upregulated in 1% xylitol-supplemented media in comparison to media containing 0.58% glucose (Decker et al., 2014). These studies highlight the complexity of researching gene regulation and how the different components of media can vastly affect gene expression. Overall, from this data however, it appeared that DsdC does not regulate colibactin synthesis through the transcriptional activator, *clbR*, in MEM-HEPES.

Intriguingly in MEM-HEPES, RT-qPCR analysis revealed *clbA* and *clbB* were downregulated in the Nissle $\Delta dsdC$ mutant. This suggested that DsdC is indirectly activating the expression of colibactin. This did not however translate into a phenotype in the *in vitro* infection assay. Western blot analysis of a marker of DNA DSB did not show a difference between Nissle WT and $\Delta dsdC$ mutant, in the presence or absence of D-serine, over three biological replicates. Furthermore, no differences were observed in the megalocytosis phenotype between Nissle WT and $\Delta dsdC$ mutant, suggesting that DsdC does not play a significant role in the regulation of colibactin in Nissle.

6.5.4 Conclusion

Exposure to environmental signals can cause rapid changes in bacterial gene expression. The work presented in this chapter revealed that upon exposure to D-serine, DsdC mediated changes in the O-antigen length of the LPS, potentially as a mechanism for immune evasion. This adds to the evidence presented in this thesis that DsdC plays a larger role in gene regulation in CE10 and does not solely regulate the *dsdCXA* locus. Further, although no differences were observed between the CE10 WT and $\Delta\Delta dsdC1/2$ mutant in serum resistance and invasion to the *in vitro* BBB model cell line, the possibility that DsdC modulates properties of the K1 capsule cannot be ruled out, and further experiments are required for conclusiveness. Chapter 7 Final conclusions

E. coli is estimated to kill more than 2 million humans per year, posing a serious clinical threat to the world (reviewed in Tenaillon *et al.*, 2010). With extraintestinal infections on the rise (Vihta et al., 2018), as well as the impending anti-microbial resistance (AMR) crisis, it is essential that we understand the fundamental processes that govern bacterial survival. CFT073 and CE10 are both prototypical UPEC and NMEC strains, that elicit disease in the urinary tract, and the brain respectively. Both UPEC and NMEC are able to use Dserine as a carbon source, and thus DsdC plays an integral role in the success of these two ExPEC strains. Tight regulatory control of genes in response to fluctuating metabolic and environmental signals is central to bacterial success. Indeed, *E. coli* has been reported to dedicate up to 6% of its genome on TFs, reportedly encoding over 300 DNA-binding regulatory proteins (Pérez-Rueda & Collado-Vides, 2000). Although, Anfora et al., 2007 speculated a larger role in gene regulation for DsdC, to our knowledge this has yet to be ascertained. Therefore, there were three main questions that this work aimed to elucidate. Firstly, what was the direct regulon of DsdC in two E. coli pathotypes? Secondly, was there any significance in CE10 carrying two copies of the dsdCXA locus? And lastly, did DsdC-dependent regulation affect the physiology of either CFT073 or CE10.

Using a combination approach of ChIP-Seq and RNA-Seq, the direct regulon of DsdC was elucidated. It was revealed that DsdC bound to 217 regions of the CE10 genome and 129 regions of the CFT073 genome, indicating that DsdC plays a global role in *E. coli* regulation. Upon cross-examination with the RNA-Seq and RT-qPCR data, DsdC was found to directly regulate the colibactin master regulator *clbR*, in CFT073, and LPS and K1 capsular biosynthesis genes in CE10. Intriguingly, this revealed that DsdC has been adapted for strain-specific regulation within two distinct ExPEC pathotypes. The genetic diversity between *E. coli* strains is often ascribed to the relative plasticity of the genome, with some studies suggesting that up to 75% of genes were acquired through HGT (Touchon *et al.*, 2009; reviewed in Juhas, 2015). However, the *E. coli* genome is finite, and multiple selective pressures often dictate the acquisition or loss of genes, leading to vast phenotypic differences between strains of the same species (reviewed in Perez & Groisman, 2009b). Indeed, Welch *et al.*, 2002 described the relative mosaic fluidity of the *E. coli* genome; revealing that
between K12, UPEC, and EHEC, only 39.2% of combined proteins were shared between the three *E. coli* strains. Many characteristic virulence factors are encoded on PAI and thus were likely acquired through HGT. However, newly acquired genes are only beneficial if they are expressed at the optimum time, thus requiring a need to be integrated into the ancestral regulatory network of the cell (Perez & Groisman, 2009b). Ancestral TFs have therefore been discovered to be repurposed and tailored to regulate newly acquired genes (Perez & Groisman, 2009a; Connolly *et al.*, 2019). The results presented here indicate that is the case for DsdC, regulating distinct virulence factors in two strains of *E. coli*. Therefore, these findings further support that the common assumption that TFs regulate the same network within strains of the same species is not always correct, and TF studies using "model" laboratory strains should be interpretated with care.

The role of gene duplication in driving regulatory network evolution cannot be understated (Teichmann & Babu, 2004). Duplications are often pathotype specific, and are typically associated with the adaption of cells to a fluctuating environment (Bernabeu et al., 2019). In 2006, Moritz and Welch, revealed that 30 out of 41 K1 strains were reported to carry two copies of the *dsdCXA* operon, with both copies able to catabolise D-serine, indicating that they are functionally redundant. This suggests an importance of duplication of the operon to K1 strains. Amino acid BLAST analysis revealed that in CE10, DsdC1 and DsdC2 were 98% homologous over 98% of the sequence. When genes evolve by duplication, regulatory networks are either conserved, lost or new interactions are gained (Teichmann & Babu, 2004). From the CE10 ChIP-Seq binding data, it appeared that the regulatory network between DsdC1 and DsdC2 had been conserved, as there were no differences observed between the two TFs. Furthermore, there appeared to be no demonstratable observable differences in D-serine metabolism between either copy, nor any difference in expression levels. However, genes with identical functions are often not stably maintained within the genome, unless the additional expression of gene product is advantageous (Zhang, 2003); leading to the conclusion that high levels of DsdC must be physiologically important for CE10. Indeed, both DsdC1 and DsdC2 were more abundant when compared to CFT073 DsdC, when native levels of DsdC were compared by Western blot analysis in Chapter 3.

While functionally redundant in their shared capacity to activate D-serine catabolism and appearing to share similar genomic binding sites, a distinction in regulatory potential between DsdC1 and DsdC2 was revealed during an analysis of *neuO*, a capsular *O*-acetyltransferase encoding gene that appeared to be bound by both DsdC1 and DsdC2. The capsule is a key virulence determinant for E. coli and is the first line of defence against the host immune system. Although there are over 70 capsular antigens, the K1 polysialic acid capsule is often overrepresented in NMEC infections (Robbins *et al.*, 1974; Jann & Jann, 1992), indicating its importance in NMEC survival. Indeed, other pathogens that are associated with neonatal meningitis, such as K. pneumoniae and N. meningitidis, commonly possess a similar polysialic acid capsule (Opal, 2014; Stephens et al., 1993). O-acetylation of the polysialic acids that comprise the capsule occurs through the phase variable gene, neuO (Deszo et al., 2005). Although Oacetylation of the *N. meningitidis* capsule has been implicated in virulence of the strain, the role of O-acetylation of the E. coli K1 capsule has been more obscure, with conflicting reports on its role in virulence (Frasa et al., 1993; Colino & Outschoorn, 1999; Fusco et al., 2007).

As neuO was originally described as being encoded on the prophage CUS-3, a logical hypothesis would suggest that O-acetylation of the capsule modifies the bacteriophage receptor, thereby preventing further phage entry and stopping bacteriophage "super-infections" (Deszo et al., 2005; Labrie, Samson & Moineau, 2010). In this work it was speculated that CUS-3 has been lost in CE10, with sequence homology between the incomplete prophage in CE10 and CUS-3 revealing potential degradation. Conversely, the *neuO* gene was conserved, further indicating its importance to NMEC and thereby its potential role in receptor modification. Indeed, the data presented here revealed that deletion of *neuO* resulted in "hyper-susceptibility" to K1-specific bacteriophage, supporting the idea that NeuO prevents "super-infection" by modifying the bacteriophage receptor. Furthermore, it was revealed that deletion of dsdC1 but not dsdC2 caused a similar "hyper-susceptible" phenotype, suggesting that DsdC1 may be required for activation of NeuO. O-acetylation of LPS has been shown to effect phage adsorption, with acetylation protecting E. coli 4s from infection (reviewed in Prokhorov et al., 2017). This potentially indicates that NeuO-mediated O-acetylation of the K1 capsule likely provides a similar

protection. Conversely, previous work by Vimr and colleagues suggested that NeuO had no effect against K1 bacteriophage-mediated lysis in archetypal NMEC strain RS218 (King, Steenbergen & Vimr., 2007) . However, NeuO-dependent survival was further evidenced by two distinct phenotypes that arose from the CE10 WT population. Through DNA sequencing, it was revealed that colonies that were protected from the K1 bacteriophage were NeuO "phase ON", whereas those that were rapidly killed were NeuO "phase OFF". The differences therefore in data reported, could be due to differences in the genetic makeup between CE10 and RS218.

Metabolic signals have been demonstrated to affect non-enzymatic acetylation in E. coli, with glucose, lactate, fructose, and xylose inducing acetylation (reviewed in Christensen et al., 2019). Although D-serine did not appear to affect the transcriptional regulation of *neuO*, DsdC is the D-serine metabolism regulator, and therefore could integrate host metabolic signals with virulence. The results presented here indicated a DsdC1-specific regulatory mechanism that mediated transcription of *neuO*, which potentially indicates why CE10 carries two homologous TFs with seemingly redundant functionalities. However, the exact mechanism of DsdC1-specific regulation of *neuO* is yet to be solved. Preliminary data suggested that the phase variation of *neuO* affected transcription. Previous reports on *siaD*, a capsular polysialyltransferase in *N*. *meningitidis*, have revealed that the transcription of "phase OFF" *siaD* was prematurely terminated (Lavitola et al., 1999); indicating that this mechanism is not unique to NMEC. Further, preliminary sequencing data has alluded to the hypothesis that DsdC1 affects the SSM of *neuO*. In the $\triangle dsdC1$ mutant, *neuO* was found to be in a constant "phase OFF" position. Although the regulatory mechanism at play has yet to be solved, it has been demonstrated in this thesis that DsdC1 affects the survival of CE10 against K1 bacteriophage-mediated lysis.

However, this is not the complete story of DsdC's role in *E. coli* gene regulation. The binding and transcriptomic data presented in Chapters 3 and 4 alluded to putative roles for DsdC in regulation of colibactin biosynthesis in CFT073, and LPS and capsule biosynthesis in CE10. Indeed, upon exposure to D-serine, it was revealed that DsdC modified the O-antigen length of LPS in CE10. Silver staining of LPS revealed two bands of increased intensity in the O-antigen side chain of the $\Delta\Delta ds dC1/2$ mutant compared to the WT. As alterations of the O-antigen can occur in response to environmental signals (Lerouge & Vanderleyden, 2002), it could be speculated that upon sensing D-serine, DsdC represses LPS biosynthesis genes, causing alterations in the exposed O-antigen as a defence mechanism for immune evasion. Furthermore, although no differences were observed in the assays performed to elucidate the role of DsdC in K1 capsule regulation; the possibility that there are further physiological effects mediated by DsdC, in regard to capsule formation, cannot be ruled out, with further experiments therefore required.

In an era where AMR is on the rise, it is crucial to understand the fundamental processes underpinning bacterial success. Indeed, through the widespread overuse and misuse of anti-microbials, multi-drug resistant bacteria are now endemic in certain regions of the world (reviewed in Christaki, Marcou & Tofarides, 2020). Approximately 700,000 people die annually from deaths attributed to AMR and it is estimated that by 2050 this figure could rise to 10 million, indicating it is a serious and imminent threat to the human population (reviewed in Christaki, Marcou & Tofarides, 2020). Due to the cytotoxic nature of antimicrobials, there is a strong selective pressure for bacteria to evolve to resist them, with genetic AMR arising from horizontally-acquired AMR genes or mutations within the genome (reviewed in Schrader, Vaubourgeix & Nathan, 2020). Anti-virulence (or anti-infective) strategies aim to supersede this inherent problem by using small molecules to block or interfere in bacterial virulence pathways (reviewed in Rasko & Sperandio, 2010). This, in theory, disables the bacteria from colonising the host or preventing toxin production, amongst other processes, while applying less evolutionary pressure to evolve resistance (reviewed in Rasko & Sperandio, 2010).

Further, anti-virulence strategies, in theory, do not compromise the host commensal microbiota in the same way that traditional antibiotics do, providing an extra layer of protection to the host (reviewed in Dickey, Cheung & Otto, 2017). Anti-bactericidal molecular inhibitors of LcrF, a TF involved in the regulation of *Yersinia pseudotuberculosis* T3SS, were revealed to reduce virulence *in vitro* and *in vivo* (Garrity-Ryan *et al.*, 2010); indicating that the inhibition of virulence-associated transcriptional regulators are a viable novel strategy for preventing infection. Due to the role that DsdC plays in the survival of CE10 against K1 bacteriophages, DsdC could potentially make an attractive target for anti-virulence strategies. A DsdC inhibitor, used in tandem with a K1specific bacteriophage, could therefore present a novel pathogen-specific alternative to treating NMEC, without the use of antibiotics.

In conclusion, this work has elucidated the direct regulon of DsdC in two clinically relevant ExPEC strains, CFT073 and CE10. These data led to the conclusion that DsdC has been tailored in distinct *E. coli* strains to mediate strain-specific regulation. Further, a novel role of DsdC1 in protection against K1 bacteriophages has been elucidated, through the regulation of the *O*-acetyltransferase gene, *neuO*. Whilst *E. coli* cases are on the rise across Europe, these findings provide a greater understanding into the complex world of *E. coli* gene regulation, enabling for future utilisation of this knowledge for the potential development of new antibacterial strategies.

References

- Abedon, S. T. (2021). Detection of bacteriophages: phage plaques. In: Harper D.R.,
 Abedon S.T., Burrowes B.H., McConville M.L. (eds). *Bacteriophages* pp. 507-538.
 Springer International Publishing. doi.org/10.1007/978-3-319-41986-2_16.
- Abreu, A. G., & Barbosa, A. S. (2017). How Escherichia coli circumvent complementmediated killing. Frontiers in Immunology, 8(452), pp. 1-6. doi.org/10.3389/fimmu.2017.00452.
- Alteri, C. J., Smith, S. N., & Mobley, H. L. T. (2009). Fitness of *Escherichia coli* during urinary tract infection requires gluconeogenesis and the TCA cycle. *PLoS Pathogens*, 5(5), pp. e1000448. doi.org/10.1371/journal.ppat.1000448.
- Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J., & Hultgren, S. J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. *Science*, 301(5629), pp. 105-107. doi.org/10.1126/science.1084550.
- Anfora, A. T., Haugen, B. J., Roesch, P., Redford, P., & Welch, R. A. (2007). Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by *Escherichia coli* CFT073. *Infection and Immunity*, 75(11), pp. 5298-5304. doi.org/10.1128/IAI.00652-07
- Anfora, A. T., & Welch, R. A. (2006). DsdX is the second D-serine transporter in uropathogenic *Escherichia coli* clinical isolate CFT073. *Journal of Bacteriology*, 188(18), pp. 6622-6628. doi.org/10.1128/JB.00634-06
- Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. S. (2016).
 PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic Acids Research*, 44(W1), W16-W21. doi.org/10.1093/nar/gkw387
- Arnster-Choder, O., & Wright, A. (1993). Transcriptional regulation of the *bgl* operon of *Escherichia coli* involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator. *Journal of Cellular Biochemistry*, *51*(1), pp. 83-90. doi.org/doi: 10.1002/jcb.240510115
- Azam, T. A., Iwata, A., Nishimura, A., Ueda, S., & Ishihama, A. (1999). Growth phasedependent variation in protein composition of the *Escherichia coli* nuclei. *Journal*

- Babitzke, P. (1997). Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how
 Bacillus subtilis reinvented the wheel. Molecular Microbiology, 26(1), pp. 1-9. doi: 10.1046/j.1365-2958.1997.5541915.x.
- Babu, M. M., & Teichmann, S. A. (2003a). Functional determinants of transcription factors in *Escherichia coli*: protein families and binding sites. Trends in Genetics, 19(2), pp. 75-79. doi: 10.1016/S0168-9525(02)00039-2.
- Babu, M. M., & Teichmann, S. A. (2003b). Evolution of transcription factors and the gene regulatory network in *Escherichia coli*. *Nucleic Acids Research*, 31(4), pp. 1234-1244. doi: 10.1093/nar/gkg210
- Badger, J. L., & Kim, K. S. (1998). Environmental growth conditions influence the ability of *Escherichia coli* K1 To invade brain microvascular endothelial cells and confer serum resistance. *Infection and Immunity*, 66(12), pp. 5692-5697. doi: 10.1128/IAI.66.12.5692-5697.1998.
- Badger, J. L., Wass, C. A., & Kim, K. S. (2000). Identification of *Escherichia coli* K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. *Molecular Microbiology*, *36*(1), pp. 174-182. doi: 10.1046/j.1365-2958.2000.01840.x.
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li,
 W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. *Nucleic Acids Research*, *37*, pp. W202-W208. doi.org/10.1093/nar/gkp335
- Barbirz, S., Müller, J. J., Uetrecht, C., Clark, A. J., Heinemann, U., & Seckler, R. (2008). Crystal structure of *Escherichia coli* phage HK620 tailspike: Podoviral tailspike endoglycosidase modules are evolutionarily related. *Molecular Microbiology*, 69(2), pp. 303-316. doi.org/10.1111/j.1365-2958.2008.06311.x
- Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G.,
 Chepelev, I., & Zhao, K. (2007). High-resolution profiling of histone methylations in
 the human genome. *Cell*, 129(4), pp. 823-837. doi.org/10.1016/j.cell.2007.05.009
- Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi,E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R.,

Cukura, A., Silva, A. Da, Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Castro, L. G., ... Zhang, J. (2021). UniProt: The universal protein knowledgebase in 2021. *Nucleic Acids Research*, *49*(D1), pp. D480-D489. doi.org/10.1093/nar/gkaa1100

- Bengoechea, J. A., Brandenburg, K., Arraiza, M. D., Seydel, U., Skurnik, M., & Moriyón,
 I. (2003). Pathogenic *Yersinia enterocolitica* strains increase the outer membrane permeability in response to environmental stimuli by modulating lipopolysaccharide fluidity and lipid A structure. *Infection and Immunity*, *71*(4), pp. 2014-2021. doi.org/10.1128/IAI.71.4.2014-2021.2003
- Benz, R., Schmid, A., Wagner, W., & Goebel, W. (1989). Pore formation by the *Escherichia coli* hemolysin: Evidence for an association-dissociation equilibrium of the pore-forming aggregates. *Infection and Immunity*, 57(3), pp. 887-895. doi: 10.1128/iai.57.3.887-895.1989
- Bernabeu, M., Sánchez-Herrero, J. F., Huedo, P., Prieto, A., Hüttener, M., Rozas, J., & Juárez, A. (2019). Gene duplications in the *E. coli* genome: Common themes among pathotypes. *BMC Genomics*, 20(313), pp. 1-11. doi.org/10.1186/s12864-019-5683-4
- Bernard, E., Rolain, T., Courtin, P., Guillot, A., Langella, P., Hols, P., & Chapot-Chartier, M. P. (2011). Characterization of O-acetylation of N-acetylglucosamine: A novel structural variation of bacterial peptidoglycan. *Journal of Biological Chemistry*, 286(27), pp. 23950-23958. doi.org/10.1074/jbc.M111.241414
- Bertani, B., & Ruiz, N. (2018). Function and Biogenesis of Lipopolysaccharides. *EcoSal Plus*, 8(1), pp. 1-33. doi.org/10.1128/ecosalplus.esp-0001-2018
- Bervoets, I., & Charlier, D. (2019). Diversity, versatility and complexity of bacterial gene regulation mechanisms: Opportunities and drawbacks for applications in synthetic biology. *FEMS Microbiology Reviews*, 43(3), pp. 304-339. doi.org/10.1093/femsre/fuz001
- Bhakdi, S., & Tranum-Jensen, J. (1986). Membrane damage by pore-forming bacterial cytolysins. *Microbial Pathogenesis*, *1*, pp. 5-14. doi: 10.1016/0882-4010(86)90027-6.
- Bobay, L. M., Touchon, M., & Rocha, E. P. C. (2014). Pervasive domestication of defective prophages by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 111(33), pp. 12127-12132.

- Bolognesi, B., & Lehner, B. (2018). Protein Overexpression: Reaching the limit. *ELife*, 7(e39804), pp. 1-3. doi.org/10.7554/eLife.34595
- Bonacorsi, S., & Bingen, E. (2005). Molecular epidemiology of Escherichia coli causing neonatal meningitis. International Journal of Medical Microbiology, 295(6-7), pp. 373-381. doi.org/10.1016/j.ijmm.2005.07.011
- Bondy-Denomy, J., Qian, J., Westra, E. R., Buckling, A., Guttman, D. S., Davidson, A.
 R., & Maxwell, K. L. (2016). Prophages mediate defense against phage infection through diverse mechanisms. *ISME Journal*, *10*(12), pp. 2854-2866.
 doi.org/10.1038/ismej.2016.79
- Bonocora, R. P., & Wade, J. T. (2015). ChIP-seq for genome-scale analysis of bacterial DNA-binding proteins. In I. Artsimovitch & T. Santangelo (Eds.), *Bacterial Transcriptional Control: Methods in molecular biology*, *1276*, pp. 327-340. Humana Press. doi.org/10.1007/978-1-4939-2392-2_20
- Bornstein-Forst, S. M., McFall, E., & Palchaudhuri, S. (1987). In vivo D-Serine deaminase transcription start sites in wild-type Escherichia coli and in dsdA promoter mutants. Journal of Bacteriology, 169(3), pp. 1056-1060. doi.org/doi: 10.1128/jb.169.3.1056-1060.1987
- Brauer, A. L., White, A. N., Learman, B. S., Johnson, A. O., & Armbruster, C. E. (2019).
 D-Serine degradation by *Proteus mirabilis* contributes to fitness during single-species and polymicrobial catheter-associated urinary tract infection. *MSphere*, 4(1), pp. e00020-19. doi.org/10.1128/msphere.00020-19
- Brenner, S. E., Hubbard, T., Murzin, A., & Chothia, C. (1995). Gene duplications in *H. influenza*. *Nature*, *378*(6553), pp. 140-140. doi: 10.1038/378140a0.
- Browning, D. F., & Busby, S. J. W. (2004). The regulation of bacterial transcription initiation. *Nature Reviews Microbiology*, 2(1), pp. 57-65. doi.org/10.1038/nrmicro787
- Browning, D. F., & Busby, S. J. W. (2016). Local and global regulation of transcription initiation in bacteria. *Nature Reviews Microbiology*, *14*(10), pp. 638-650. doi.org/10.1038/nrmicro.2016.103

- Browning, D. F., Butala, M., & Busby, S. J. W. (2019). Bacterial Transcription Factors:
 Regulation by Pick "N" Mix. *Journal of Molecular Biology*, 431(20), pp. 4067-4077.
 doi.org/10.1016/j.jmb.2019.04.011
- Browning, D. F., Grainger, D. C., & Busby, S. J. W. (2010). Effects of nucleoidassociated proteins on bacterial chromosome structure and gene expression. *Current Opinion in Microbiology*, 13(6), pp. 773-780. doi.org/10.1016/j.mib.2010.09.013
- Busby, S., & Ebright, R. H. (1994). Promoter structure, promoter recognition, and transcription activation in prokatyotes. *Cell*, 79(5), pp. 743-746. doi: 10.1016/0092-8674(94)90063-9
- Cameron, E. A., & Sperandio, V. (2015). Frenemies: signaling and nutritional integration in pathogen-microbiota-host interactions. *Cell Host and Microbe*, *18*(3), pp. 275-284. doi.org/10.1016/j.chom.2015.08.007
- Canchaya, C., Proux, C., Fournous, G., Bruttin, A., & Brüssow, H. (2003). Prophage genomics. *Microbiology and Molecular Biology Reviews*, 67(2), pp. 238-276. doi.org/10.1128/mmbr.67.2.238-276.2003
- Casaburi, G., Duar, R. M., Brown, H., Mitchell, R. D., Kazi, S., Chew, S., Cagney, O., Flannery, R. L., Sylvester, K. G., Frese, S. A., Henrick, B. M., & Freeman, S. L. (2021). Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States. *Scientific Reports*, *11*(1472), pp. 1-12. doi.org/10.1038/s41598-020-80583-9
- Cava, F., Lam, H., De Pedro, M. A., & Waldor, M. K. (2011). Emerging knowledge of regulatory roles of D-amino acids in bacteria. *Cellular and Molecular Life Sciences*, 68, pp. 817-831. doi.org/10.1007/s00018-010-0571-8
- Chaudhuri, R. R., & Pallen, M. J. (2006). xBASE, a collection of online databases for bacterial comparative genomics. *Nucleic Acids Research*, 34, pp. D335-D337. doi.org/10.1093/nar/gkj140
- Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. *Journal of Molecular Evolution*, 88(1), pp. 26-40. doi.org/10.1007/s00239-019-09914-3

- Christensen, D. G., Xie, X., Basisty, N., Byrnes, J., McSweeney, S., Schilling, B., & Wolfe, A. J. (2019). Post-translational protein acetylation: An elegant mechanism for bacteria to dynamically regulate metabolic functions. *Frontiers in Microbiology*, *10*(1604), pp. 1-22. doi.org/10.3389/fmicb.2019.01604
- Cieslewicz, M., & Vimr, E. (1997). Reduced polysialic acid capsule expression in Escherichia coli K1 mutants with chromosomal defects in kpsF. Molecular Microbiology, 26(2), pp. 237-249. doi: 10.1046/j.1365-2958.1997.5651942.x.
- Colino, J., & Outschoorn, I. (1999). The form variation of the capsular polysaccharide K1 is not a critical virulence factor of *Escherichia coli* in a neonatal mouse model of infection. *Pathogenesis*, 27(4), pp. 187-196. doi: 10.1006/mpat.1999.0291
- Connell, H., Agace, W., Klemm, P., Schembri, M., Marild\$, S., & Svanborg, C. (1996).
 Type 1 fimbrial expression enhances *Escherichia coli* virulence for the urinary tract. *Proceedings of the National Academy of Sciences USA*, 93(18), pp. 9827-9832. doi: 10.1073/pnas.93.18.9827
- Connolly, J. P. R., Finlay, B, B., & Roe, A. J. (2015). From ingestion to colonization: The influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic *Escherichia coli*. *Frontiers in Microbiology*, 6(568), pp. 1-15. doi.org/10.3389/fmicb.2015.00568
- Connolly, J. P. R., Goldstone, R. J., Burgess, K., Cogdell, R. J., Beatson, S. A., Vollmer, W., Smith, D. G. E., & Roe, A. J. (2015). The host metabolite D-serine contributes to bacterial niche specificity through gene selection. *ISME Journal*, 9(4), pp. 1039-1051. doi.org/10.1038/ismej.2014.242
- Connolly, J. P. R., O'Boyle, N., Turner, N. C. A., Browning, D. F., & Roe, A. J. (2019). Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. *Proceedings of the National Academy of Sciences of the United States of America*, 116(39), pp. 19695-19704. doi.org/10.1073/pnas.1903461116
- Connolly, J. P. R., Turner, N. C. A., Hallam, J. C., Rimbi, P. T., Flett, T., McCormack,
 M. J., Roe, A. J., & O'Boyle, N. (2021). d-Serine induces distinct transcriptomes in diverse *Escherichia coli* pathotypes. *Microbiology*, *167*(10), pp. 1-6. doi.org/10.1099/mic.0.001093

Cosloy, S. D., & McFall, E. (1973). Metabolism of D-Serine in Escherichia coli K-12:

Mechanism of growth inhibition. *Journal of Bacteriology*, *114*(2), pp. 685-694. doi: 10.1128/jb.114.2.685-694.1973.

- Cross, A. S., Kim, K. S., Wright, D. C., Sadoff, J. C., & Gemski, P. (1986). Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of *Escherichia coli*. *The Journal of Infectious Diseases*, 154(3), pp. 497-503. doi: 10.1093/infdis/154.3.497.
- Croxen, M. A., & Finlay, B. B. (2010). Molecular mechanisms of *Escherichia coli* pathogenicity. *Nature Reviews Microbiology*, 8(1), pp. 26-38. doi.org/10.1038/nrmicro2265
- D'haeseleer, P. (2006). What are DNA sequence motifs? *Nature Biotechnology*, 24(4), pp. 423-425. doi:10.1038/nbt0406-423.
- Dale, A. P., & Woodford, N. (2015). Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. Journal of Infection, 71(6), pp. 615-626. doi.org/10.1016/j.jinf.2015.09.009
- Dame, R. T. (2005). The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. *Molecular Microbiology*, 56(4), pp. 858-870. doi.org/10.1111/j.1365-2958.2005.04598.x
- Dame, R. T., Wyman, C., & Goosen, N. (2000). H-NS mediated compaction of DNA visualised by atomic force microscopy. *Nucleic Acids Research*, 28(18), pp. 3504-3510. doi: 10.1093/nar/28.18.3504.
- Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97(12), pp. 6640-6645. doi.org/10.1073/pnas.120163297
- Decker, E. M., Klein, C., Schwindt, D., & Von Ohle, C. (2014). Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. International Journal of Oral Science, 6, pp. 195-204. doi.org/10.1038/ijos.2014.38
- Denamur, E., Clermont, O., Bonacorsi, S., & Gordon, D. (2021). The population genetics of pathogenic *Escherichia coli*. *Nature Reviews Microbiology*, *19*(1), pp. 37-54. doi.org/10.1038/s41579-020-0416-x

- Deszo, E. L., Steenbergen, S. M., Freedberg, D. I., Vimr, E. R., & Robbins, J. B. (2005). *Escherichia coli* K1 polysialic acid O-acetyltransferase gene, *neuO*, and the mechanism of capsule form variation involving a mobile contingency locus. *Proceedings of the National Academy of Sciences*, *102*(15), pp. 5564-5569. doi: 10.1073/pnas.0407428102.
- Dhakal, B. K., & Mulvey, M. A. (2012). The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. *Cell Host and Microbe*, *11*(1), pp. 58-69. doi.org/10.1016/j.chom.2011.12.003
- Dickey, S. W., Cheung, G. Y. C., & Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. *Nature Reviews Drug Discovery*, 16(7), pp. 457-471. doi.org/10.1038/nrd.2017.23
- Dillon, S. C., Cameron, A. D. S., Hokamp, K., Lucchini, S., Hinton, J. C. D., & Dorman, C. J. (2010). Genome-wide analysis of the H-NS and Sfh regulatory networks in *Salmonella* Typhimurium identifies a plasmid-encoded transcription silencing mechanism. *Molecular Microbiology*, *76*(5), pp. 1250-1265. doi.org/10.1111/j.1365-2958.2010.07173.x
- Dillon, S. C., & Dorman, C. J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. *Nature Reviews Microbiology*, 8(3), pp. 185-195. doi.org/10.1038/nrmicro2261
- Dillon, S. C., Espinosa, E., Hokamp, K., Ussery, D. W., Casadesús, J., & Dorman, C. J. (2012). LeuO is a global regulator of gene expression in *Salmonella enterica* serovar Typhimurium. *Molecular Microbiology*, *85*(6), pp. 1072-1089. doi.org/10.1111/j.1365-2958.2012.08162.x
- Dorman, C. J. (2007). H-NS, the genome sentinel. *Nature Reviews Microbiology*, 5(2), pp. 157-161. doi:10.1038/nrmicro1598.
- Dorman, C. J., Schumacher, M. A., Bush, M. J., Brennan, R. G., & Buttner, M. J. (2020). When is a transcription factor a NAP? *Current Opinion in Microbiology*, 55, pp. 26-33. doi.org/10.1016/j.mib.2020.01.019
- Dunkelberger, J. R., & Song, W. C. (2010). Complement and its role in innate and adaptive immune responses. *Cell Research*, 20(1), pp. 34-50.

- Dunn, T. M., Hahn, S., Ogdent, S., & Schleif, R. F. (1984). An operator at-280 base pairs that is required for repression of *araBAD* operon promoter: Addition of DNA helical turns between the operator and promoter cyclically hinders repression. *Proceedings of the National Academy of Sciences*, *81*, pp. 5017-5020. doi: 10.1073/pnas.81.16.5017.
- Ebbensgaard, A., Mordhorst, H., Aarestrup, F. M., & Hansen, E. B. (2018). The role of outer membrane proteins and lipopolysaccharides for the sensitivity of *Escherichia coli* to antimicrobial peptides. *Frontiers in Microbiology*, 9(2153), pp. 1-13. doi.org/10.3389/fmicb.2018.02153
- Essler, M., Linder, S., Schell, B., Hüfner, K., Wiedemann, A., Randhahn, K., Staddon, J.
 M., & Aepfelbacher, M. (2003). Cytotoxic necrotizing factor 1 of *Escherichia coli* stimulates Rho/Rho-kinase-dependent myosin light-chain phosphorylation without inactivating myosin light-chain phosphatase in endothelial cells. *Infection and Immunity*, *71*(9), pp. 5188-5193. doi.org/10.1128/IAI.71.9.5188-5193.2003
- Ezezika, O. C., Haddad, S., Neidle, E. L., & Momany, C. (2007). Oligomerization of BenM, a LysR-type transcriptional regulator: Structural basis for the aggregation of proteins in this family. *Acta Crystallographica Section F: Structural Biology and Crystallization Communications*, 63(5), pp. 361-368. doi.org/10.1107/S1744309107019185
- Fabbri, A., Travaglione, S., & Fiorentini, C. (2010). Escherichia coli cytotoxic necrotizing factor 1 (CNF1): Toxin biology, in vivo applications and therapeutic potential. Toxins, 2, pp. 283-296. doi.org/10.3390/toxins2020282
- Faïs, T., Delmas, J., Barnich, N., Bonnet, R., & Dalmasso, G. (2018). Colibactin: More than a new bacterial toxin. *Toxins*, 10(151), pp. 1-16. doi.org/10.3390/toxins10040151
- Fang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments.Briefings in Bioinformatics, 12(3), pp. 280-287. doi.org/10.1093/bib/bbr004
- Feklístov, A., Sharon, B. D., Darst, S. A., & Gross, C. A. (2014). Bacterial sigma factors:
 A historical, structural, and genomic perspective. *Annual Review of Microbiology*, 68, pp. 357-376. doi.org/10.1146/annurev-micro-092412-155737

- Felmlee, T., Pellett, S., & Welch, R. A. (1985). Nucleotide sequence of an *Escherichia coli* chromosomal hemolysin. *Journal of Bacteriology*, *163*(1), pp. 94-105. doi: 10.1128/jb.163.1.94-105.1985.
- Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. *Nature Reviews Microbiology*, 13(5), pp. 269-284. doi.org/10.1038/nrmicro3432
- Fomsgaard, A., Freudenberg, M. A., & Galanos, C. (1990). Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. *Journal of Clinical Microbiology*, 28(12), pp. 2627-2631. doi: 10.1128/jcm.28.12.2627-2631.1990.
- Fox, S., Goswami, C., Holden, M., Connolly, J. P. R., Mordue, J., O'Boyle, N., Roe, A., Connor, M., Leanord, A., & Evans, T. J. (2020). A highly conserved complete accessory *Escherichia coli* type III secretion system 2 is widespread in bloodstream isolates of the ST69 lineage. *Scientific Reports*, *10*(4135), pp. 1-11. doi.org/10.1038/s41598-020-61026-x
- Frasa, H., Procee, J., Torensma, R., Verbruggen, A., Algra, A., Rozenberg-Arska, M., Kraaijeveld, K., & Verhoef Eijkman-Winkler, J. (1993). *Escherichia coli* in bacteremia: O-acetylated K1 strains appear to be more virulent than non-Oacetylated K1 strains. *Journal of Clinical Microbiology*, *31*(12), pp. 3174-3178. doi: 10.1128/jcm.31.12.3174-3178.1993.
- Friedman, M. (2010). Origin, microbiology, nutrition, and pharmacology of D-amino acids. *Chemistry and Biodiversity*, 7(6), pp. 1491-1530. doi: 10.1002/cbdv.200900225.
- Fusco, P. C., Farley, E. K., Huang, C. H., Moore, S., & Michon, F. (2007). Protective meningococcal capsular polysaccharide epitopes and the role of O acetylation. *Clinical and Vaccine Immunology*, *14*(5), pp. 577-584. doi.org/10.1128/CVI.00009-07
- Galagan, J., Lyubetskaya, A., & Gomes, A. (2012). ChIP-Seq and the Complexity of Bacterial Transcriptional Regulation. Systems Biology: Current topics in microbiology and immunology. (M. Katza (ed.); Vol. 363). pp. 43-68. Springer. doi: 10.1007/82_2012_257.

- Galas, D. J., & Schmitz, A. (1978). DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. *Nucleic Acids Research*, 5(9), pp. 3157-3170. doi:10.1093/nar/5.9.3157.
- Gallet, R., Kannoly, S., & Wang, I. N. (2011). Effects of bacteriophage traits on plaque formation. BMC Microbiology, 11(181), pp. 1-16. doi.org/10.1186/1471-2180-11-181
- Gao, C., Garren, M., Penn, K., Fernandez, V. I., Seymour, J. R., Thompson, J. R.,
 Raina, J. B., & Stocker, R. (2021). Coral mucus rapidly induces chemokinesis and
 genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral
 pathogen. *ISME Journal*, *15*, pp. 1-15. doi.org/10.1038/s41396-021-01024-7
- Garcia, E. C., Brumbaugh, A. R., & Mobley, H. L. T. (2011). Redundancy and specificity of *Escherichia coli* iron acquisition systems during urinary tract infection. *Infection and Immunity*, 79(3), pp. 1225-1235. doi.org/10.1128/IAI.01222-10
- Garrity-Ryan, L. K., Kim, O. K., Balada-Llasat, J. M., Bartlett, V. J., Verma, A. K.,
 Fisher, M. L., Castillo, C., Songsungthong, W., Tanaka, S. K., Levy, S. B., Mecsas,
 J., & Alekshun, M. N. (2010). Small molecule inhibitors of LcrF, a *Yersinia pseudotuberculosis* transcription factor, attenuate virulence and limit infection in
 a murine pneumonia model. *Infection and Immunity*, 78(11), pp. 4683-4690.
 doi.org/10.1128/IAI.01305-09
- Genchi, G. (2017). An overview on D-amino acids. *Amino Acids*, 49, pp. 1521-1533. doi.org/10.1007/s00726-017-2459-5
- Geno, K. A., Gilbert, G. L., Song, J. Y., Skovsted, I. C., Klugman, K. P., Jones, C.,
 Konradsen, H. B., & Nahm, M. H. (2015). Pneumococcal capsules and their types:
 Past, present, and future. *Clinical Microbiology Reviews*, 28(3), pp. 871-899.
 doi.org/10.1128/CMR.00024-15
- Ghosh, T., Bose, D., & Zhang, X. (2010). Mechanisms for activating bacterial RNA polymerase. FEMS Microbiology Reviews, 34(5), pp. 611-627. doi.org/10.1111/j.1574-6976.2010.00239.x
- Glynn, A. A., & Howard, C. J. (1970). The sensitivity to complement of strains of *Escherichia coli* related to their K antigens. *Immunology*, 18(3), pp. 331-346. PMID: 4986073.

- Goethals, K., Van Montagu, M., & Holsters, M. (1992). Conserved motifs in a divergent nod box of *Azorhizobium caulinodans* ORS571 reveal a common structure in promoters regulated by LysR-type proteins. *Proceedings of the National Academy of Sciences USA*, 89(5), pp. 1646-1650. doi: 10.1073/pnas.89.5.1646.
- Goh, K. G. K., Phan, M. D., Forde, B. M., Chong, T. M., Yin, W. F., Chan, K. G., Ulett,
 G. C., Sweet, M. J., Beatson, S. A., & Schembri, M. A. (2017). Genome-wide
 discovery of genes required for capsule production by uropathogenic *Escherichia coli*. *MBio*, *8*(5), pp. e01558-17. doi.org/10.1128/mBio.01558-17
- Grainger, D. C., Goldberg, M. D., Lee, D. J., & Busby, S. J. W. (2008). Selective repression by Fis and H-NS at the *Escherichia coli dps* promoter. *Molecular Microbiology*, 68(6), pp. 1366-1377. doi.org/10.1111/j.1365-2958.2008.06253.x
- Grainger, D. C., Hurd, D., Goldberg, M. D., & Busby, S. J. W. (2006). Association of nucleoid proteins with coding and non-coding segments of the *Escherichia coli* genome. *Nucleic Acids Research*, *34*(16), pp. 4642-4652. doi.org/10.1093/nar/gkl542
- Hacker, J., & Blum-Oehler, G. (2007). In appreciation of Theodor Escherich. *Nature Reviews Microbiology*, 5, pp. 902. doi.org/10.1038/nrmicro1810
- Hammerschmidt, S., Muller, A., Sillmann, H., Muhlenhoff, M., Borrow, R., Fox, A., Van Putten, J., Zollinger, W. D., Gerardy-Schahn, R., & Frosch, M. (1996). Capsule phase variation in *Neisseria meningitidis* serogroup B by slipped-strand mispairing in the polysialyltransferase gene (*siaD*): correlation with bacterial invasion and the outbreak of meningococcal disease. *Molecular Microbiology*, 20(6), pp. 1211-1220. doi: 10.1111/j.1365-2958.1996.tb02641.x.
- Haraoka, M., Hang, L., Frendéus, B., Godaly, G., Burdick, M., Strieter, R., & Svanborg,
 C. (1999). Neutrophil recruitment and resistance to urinary tract infection. *The Journal of Infectious Diseases*, *180*(4), pp. 1220-1229. doi: 10.1086/315006.
- Haugen, B. J., Pellett, S., Redford, P., Hamilton, H. L., Roesch, P. L., & Welch, R. A. (2007). *In vivo* gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic *Escherichia coli* strain CFT073 *dsdA*. *Infection and Immunity*, *75*(1), pp. 278-289. doi.org/10.1128/IAI.01319-06

- Heincz, M. C., Bornstein, S. M., & McFall, E. (1984). Purification and characterization of D-Serine deaminase activator protein. *Journal of Bacteriology*, *160*(1), pp. 42-49. doi: 10.1128/jb.160.1.42-49.1984.
- Heincz, M. C., & McFall, E. (1978). Role of the *dsdC* activator in regulation of D-Serine deaminase synthesis. *Journal of Bacteriology*, *136*(1), pp. 96-103. doi: 10.1128/jb.136.1.96-103.1978.
- Heinrichs, D. E., Yethon, J. A., Amor, P. A., & Whitfield, C. (1998). The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of *Escherichia coli*: the R1 core-specific b-glucosyltransferase provides a novel attachment site for O-polysaccharides. *Journal of Biological Chemistry*, 273(45), pp. 29497-29505. doi:10.1074/jbc.273.45.29497.
- Heldwein, E. E. Z., & Brennan, R. G. (2001). Crystal structure of the transcription activator BmrR bound to DNA and a drug. *Nature*, 409(6818), pp. 378-382. doi: 10.1038/35053138.
- Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. *Nature Protocols*, 2(8), pp. 1849-1861. doi.org/10.1038/nprot.2007.249
- Henderson, I. R., Owen, P., & Nataro, J. P. (1999). Molecular switches the ON and OFF of bacterial phase variation. *Molecular Microbiology*, 33(5), pp. 919-932. doi: 10.1046/j.1365-2958.1999.01555.x.
- Henikoff, S., Haughno, G. W., Calvot, J. M., & Wallace, J. C. (1988). A large family of bacterial activator proteins. *Proceedings of the National Academy of Sciences USA*, 85(18), pp. 6602-6606. doi: 10.1073/pnas.85.18.6602.
- Henkin, T. M. (2000). Transcription termination control in bacteria. *Current Opinion in Microbiology*, 3(2), pp. 149-153. doi: 10.1016/s1369-5274(00)00067-9.
- Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. *Nature Reviews Microbiology*, 8(1), pp. 15-25. doi.org/10.1038/nrmicro2259
- Ho-Sui, S. J., Fedynak, A., Hsiao, W. W. L., Langille, M. G. I., & Brinkman, F. S. L. (2009). The association of virulence factors with genomic Islands. *PLoS ONE*, *4*(12),

- Holden, N. S., & Tacon, C. E. (2011). Principles and problems of the electrophoretic mobility shift assay. *Journal of Pharmacological and Toxicological Methods*, 63(1), pp. 7-14. doi.org/10.1016/j.vascn.2010.03.002
- Hooton, T. M. (2012). Uncomplicated urinary tract infection. *The New England Journal of Medicine*, *366*(11), pp. 1028-1037. doi.org/10.1056/NEJMcp1104429
- Hryckowian, A. J., Baisa, G. A., Schwartz, K. J., & Welch, R. A. (2015). DsdA does not affect colonization of the murine urinary tract by *Escherichia coli* CFT073. *PLoS ONE*, *10*(9), pp. e0138121. doi.org/10.1371/journal.pone.0138121
- Huang, S-H., Chen, Y.-H., Fu, Q. I., Stins, M., Wang, Y., Wass, C., Kwang, A., & Kim, S. (1999). Identification and characterization of an *Escherichia coli* invasion gene locus, *ibeB*, required for penetration of brain microvascular endothelial cells. *Infection and Immunity*, 67(5), pp. 2103-2109. doi: 10.1128/IAI.67.5.2103-2109.1999.
- Huang, S-H., Wass, C., Fu, Q. I., Prasadarao, N. V, Stins, M., Kwang, A., & Kim, S. (1995). *Escherichia coli* invasion of brain microvascular endothelial cells *in vitro* and *in vivo*: molecular cloning and characterization of invasion gene *ibe10*. *Infection and Immunity*, *63*(11), pp. 4470-4475. doi: 10.1128/iai.63.11.4470-4475.1995.
- Ishihama, A. (2000). Functional modulation of *Escherichia coli* RNA polymerase. *Annual Review of Microbiology*, *54*, pp. 499-518. doi: 10.1146/annurev.micro.54.1.499.
- Iwata, Y., Sakai, N., Yoneda, I., Senda, Y., Sakai-Takemori, Y., Oshima, M., Nakagawa-Yoneda, S., Ogura, H., Sato, K., Minami, T., Kitajima, S., Toyama, T., Yamamura, Y., Miyagawa, T., Hara, A., Shimizu, M., Furuichi, K., Matsushima, K., & Wada, T. (2021). D-Serine inhibits the attachment and biofilm formation of methicillin-resistant *Staphylococcus aureus*. *Biochemical and Biophysical Research Communications*, 537, pp. 50-56. doi.org/10.1016/j.bbrc.2020.12.078.
- Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. *Journal of Molecular Biology*, *3*, pp. 318-356. doi.org/10.1016/S0022-2836(61)80072-7.

- Jain, D., Baldi, S., Zabel, A., Straub, T., & Becker, P. B. (2015). Active promoters give rise to false positive "Phantom Peaks" in ChIP-seq experiments. *Nucleic Acids Research*, 43(14), pp. 6959-6968. doi.org/10.1093/nar/gkv637
- Jamieson, J. J., Searson, P. C., & Gerecht, S. (2017). Engineering the human bloodbrain barrier *in vitro*. *Journal of Biological Engineering*, *11*(37), pp. 1-11. doi.org/10.1186/s13036-017-0076-1
- Jann, K., & Jann, B. (1992). Capsules of *Escherichia coli*, expression and biological significance. *Canadian Journal of Microbiology*, 38(7), pp. 705-710. doi: 10.1139/m92-116.
- Jia, J., King, J. E., Goldrick, M. C., Aldawood, E., & Roberts, I. S. (2017). Three tandem promoters, together with IHF, regulate growth phase dependent expression of the *Escherichia coli kps* capsule gene cluster. *Scientific Reports*, 7(1), pp. 1-11. doi.org/10.1038/s41598-017-17891-0
- Johnson, David, S., Mortazavi, A., Myers, Richard, M., & Wold, B. (2007). Genome-wide mapping of *in vivo* protein-DNA interactions. *Science*, *316*(5830), pp. 1497-1502. doi.org/10.1126/science.1142265
- Johnson, J. R., & Russo, T. A. (2002). Extraintestinal pathogenic *Escherichia coli*: "The other bad *E coli*." *Journal of Laboratory and Clinical Medicine*, *139*(3), pp. 155-162. doi.org/10.1067/mlc.2002.121550
- Juhas, M. (2015). Horizontal gene transfer in human pathogens. *Critical Reviews in Microbiology*, *41*(1), pp. 101-108. doi.org/10.3109/1040841X.2013.804031
- Jurczak-Kurek, A., Gasior, T., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Topka, G., Necel, A., Jakubowska-Deredas, M., Narajczyk, M., Richert, M., Mieszkowska, A., Wróbel, B., Węgrzyn, G., & Węgrzyn, A. (2016). Biodiversity of bacteriophages:
 Morphological and biological properties of a large group of phages isolated from urban sewage. *Scientific Reports*, 6(34338), pp. 1-17. https://doi.org/10.1038/srep34338
- Kahramanoglou, C., Seshasayee, A. S. N., Prieto, A. I., Ibberson, D., Schmidt, S.,
 Zimmermann, J., Benes, V., Fraser, G. M., & Luscombe, N. M. (2011). Direct and
 indirect effects of H-NS and Fis on global gene expression control in *Escherichia coli*. *Nucleic Acids Research*, *39*(6), pp. 2073-2091. doi.org/10.1093/nar/gkq934

- Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2, pp. 123-140. doi.org/10.1038/nrmicro818
- Kapust, R. B., & Waugh, D. S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science, 8(8), pp. 1668-1674. doi: 10.1110/ps.8.8.1668.
- Khalessi, N., & Afsharkas, L. (2014). Neonatal meningitis: Risk factors, causes, and neurologic complications. *Iran J Child Neurol*, 8(4), pp. 46-50. PCMID: PMC4307368.
- Khan, N. A., Kim, Y., Shin, S., & Kim, K. S. (2007). FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. *Cellular Microbiology*, 9(1), pp. 169-178. doi.org/10.1111/j.1462-5822.2006.00779.x
- Khan, N. A., Wang, Y., Kim, K. J., Chung, J. W., Wass, C. A., & Kim, K. S. (2002).
 Cytotoxic necrotizing factor-1 contributes to *Escherichia coli* K1 invasion of the central nervous system. *Journal of Biological Chemistry*, 277(18), pp. 15607-15612.
 doi.org/10.1074/jbc.M112224200
- Kim, K. J., Chung, J. W., & Kim, K. S. (2005). 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing *Escherichia coli* K1 into human brain microvascular endothelial cells. *Journal of Biological Chemistry*, 280(2), pp. 1360-1368. doi.org/10.1074/jbc.M410176200
- Kim, K. S. (2012). Current concepts on the pathogenesis of *Escherichia coli* meningitis: Implications for therapy and prevention. *Current Opinion in Infectious Diseases*, 25(3), pp. 273-278. doi.org/10.1097/QCO.0b013e3283521eb0
- Kim, K. S. (2000). E. coli invasion of brain microvascular endothelial cells as a pathogenetic basis of meningitis. In T. Oelschlaeger & J. Hacker (Eds.), Bacterial Invasion into Eukaryotic Cells. Subcellular Biochemistry. 33, pp. 47-59. doi: 10.1007/978-1-4757-4580-1_3.
- Kim, K. S, Itabashi, H., Gemski, P., Sadoff, J., Warren, R. L., & Cross, A. S. (1992). The K1 capsule is the critical determinant in the development of *Escherichia coli* meningitis in the rat. *Journal of Clinical Investigation*, 90(3), pp. 897-905. doi.org/10.1172/JCI115965

King, C. H., Desai, H., Sylvetsky, A. C., LoTempio, J., Ayanyan, S., Carrie, J., Crandall,

K. A., Fochtman, B. C., Gasparyan, L., Gulzar, N., Howell, P., Issa, N., Krampis, K., Mishra, L., Morizono, H., Pisegna, J. R., Rao, S., Ren, Y., Simonyan, V., ... Mazumder, R. (2019). Baseline human gut microbiota profile in healthy people and standard reporting template. *PLoS ONE*, *14*(9), pp. e0206484. doi.org/10.1371/journal.pone.0206484

- King, M. R., Steenbergen, S. M., & Vimr, E. R. (2007). Going for baroque at the Escherichia coli K1 cell surface. Trends in Microbiology, 15(5), pp. 196-202. doi.org/10.1016/j.tim.2007.03.006
- King, M. R., Vimr, R. P., Steenbergen, S. M., Spanjaard, L., Plunkett, G., Blattner, F.
 R., & Vimr, E. R. (2007). *Escherichia coli* K1-specific bacteriophage CUS-3
 distribution and function in phase-variable capsular polysialic acid O acetylation. *Journal of Bacteriology*, 189(17), pp. 6447-6456. doi.org/10.1128/JB.00657-07
- Kleinman, C. L., Sycz, G., Bonomi, H. R., Rodriguez, R. M., Zorreguieta, A., & Sieira, R. (2017). ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the *Brucella* virulence gene expression network. *Nucleic Acids Research*, 45(10), pp. 5757-5769. doi.org/10.1093/nar/gkx165
- Koide, T., Reiss, D. J., Bare, J. C., Pang, W. L., Facciotti, M. T., Schmid, A. K., Pan, M., Marzolf, B., Van, P. T., Lo, F. Y., Pratap, A., Deutsch, E. W., Peterson, A., Martin, D., & Baliga, N. S. (2009). Prevalence of transcription promoters within archaeal operons and coding sequences. *Molecular Systems Biology*, 5(285), pp. 1-16. doi.org/10.1038/msb.2009.42
- Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., & Losick, R. (2010). Damino acids trigger biofilm disassembly. *Science*, 328(5978), pp. 627-629. https://doi.org/10.1126/science.1187113
- Korotkov, K. V., Johnson, T. L., Jobling, M. G., Pruneda, J., Pardon, E., Héroux, A., Turley, S., Steyaert, J., Holmes, R. K., Sandkvist, M., & Hol, W. G. J. (2011).
 Structural and functional studies on the interaction of GspC and GspD in the type ii secretion system. *PLoS Pathogens*, 7(9), pp. e1002228. doi.org/10.1371/journal.ppat.1002228
- Korte-Berwanger, M., Sakinc, T., Kline, K., Nielsen, H. V., Hultgren, S., & Gatermann,
 S. G. (2013). Significance of the D-serine-deaminase and D-serine metabolism of
 Staphylococcus saprophyticus for virulence. Infection and Immunity, 81(12), pp.

- Ku, L. C., Boggess, K. A., & Cohen-Wolkowiez, M. (2015). Bacterial meningitis in infants.
 Clinics in Perinatology, 42(1), pp. 29-45. doi.org/10.1016/j.clp.2014.10.004
- Kulkarni, R., Dhakal, B. K., Slechta, E. S., Kurtz, Z., Mulvey, M. A., & Thanassi, D. G. (2009). Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic *Escherichia coli*. *PLoS ONE*, *4*(3), pp. e4752. doi.org/10.1371/journal.pone.0004752
- Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. *Nature Reviews Microbiology*, 8(5), pp. 317-327. doi.org/10.1038/nrmicro2315
- Lam, H., Oh, D-C., Cava, F., Takacs, C. N., Clardy, J., de Pedro, M. A., & Waldor, M. K. (2009). D-amino acids govern stationary phase cell wall remodeling in bacteria.
 Science, 325(5947), pp. 1552-1555. doi.org/10.1098/rsif.2008.0435
- Lavitola, A., Bucci, C., Salvatore, P., Maresca, G., Bruni, C. B., & Alifano, P. (1999).
 Intracistronic transcription termination in polysialyltransferase gene (*siaD*) affects
 phase variation in *Neisseria meningitidis*. *Molecular Microbiology*, 33(1), pp. 119 127. doi: 10.1046/j.1365-2958.1999.01454.x.
- Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P., & Gauthier, M. (1997). Molecular localization of the *Escherichia coli* cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. *Molecular Microbiology*, 24(5), pp. 1061-1070. doi: 10.1046/j.1365-2958.1997.4151781.x.
- Lerouge, I., & Vanderleyden, J. (2002). O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. *FEMS Microbiology Reviews*, 26(1), pp. 17-47. doi.org/10.1111/j.1574-6976.2002.tb00597.x
- Leying, H., Suerbaum, S., Kroll, H-P., Stahl, D. and Opferkuch, W. (1990). The capsular polysaccharide is a major determinant of serum resistance in K-1-positive blood culture isolates of *Escherichia coli*. *Infection and Immunity*, 58(1), 222-227. doi: 10.1128/iai.58.1.222-227.1990.
- Li, H., Limenitakis, J. P., Fuhrer, T., Geuking, M. B., Lawson, M. A., Wyss, M., Brugiroux, S., Keller, I., Macpherson, J. A., Rupp, S., Stolp, B., Stein, J. V.,

Stecher, B., Sauer, U., McCoy, K. D., & Macpherson, A. J. (2015). The outer mucus layer hosts a distinct intestinal microbial niche. *Nature Communications*, 6(8292), pp. 1-13. doi.org/10.1038/ncomms9292

- Li, K., Wu, G., Liao, Y., Zeng, Q., Wang, H., & Liu, F. (2020). RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in *Xanthomonas campestris*. *Molecular Plant Pathology*, 21(7), pp. 907-922. doi.org/10.1111/mpp.12938
- Li, Z., Quan, G., Jiang, X., Yang, Y., Ding, X., Zhang, D., Wang, X., Hardwidge, P. R., Ren, W., & Zhu, G. (2018). Effects of metabolites derived from gut microbiota and hosts on pathogens. *Frontiers in Cellular and Infection Microbiology*, 8(314), pp. 1-12. doi.org/10.3389/fcimb.2018.00314
- Lin, S-Y., & Riggs, A. D. (1975). The general affinity of *lac* repressor for *E. coli* DNA: implications for gene regulation in procaryotes and eucaryotes. *Cell*, 4(2), pp. 107-111. doi: 10.1016/0092-8674(75)90116-6.
- Lindquist, S., Lindberg, F., & Normark, S. (1989). Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC B-Lactamase gene. Journal of Bacteriology, 171(7), pp. 3746-3753. doi: 10.1128/jb.171.7.3746-3753.1989.
- Liu, B., Furevi, A., Perepelov, A. V., Guo, X., Cao, H., Wang, Q., Reeves, P. R., Knirel,
 Y. A., Wang, L., & Widmalm, G. (2020). Structure and genetics of *Escherichia coli*O antigens. *FEMS Microbiology Reviews*, 44(6), pp. 655-683.
 doi.org/10.1093/femsre/fuz028
- Liu, C., Zheng, H., Yang, M., Xu, Z., Wang, X., Wei, L., Tang, B., Liu, F., Zhang, Y.,
 Ding, Y., Tang, X., Wu, B., Johnson, T. J., Chen, H., & Tan, C. (2015). Genome analysis and *in vivo* virulence of porcine extraintestinal pathogenic *Escherichia coli* strain PCN033. *BMC Genomics*, *16*(717) pp. 1-18. doi.org/10.1186/s12864-015-1890-9
- Lonetto, M., Gribskov, M., & Gross, C. A. (1992). The sigma factor 70 family: sequence conservation and evolutionary relationships. *Journal of Bacteriology*, *174*(12), pp. 3843-3849. doi: 10.1128/jb.174.12.3843-3849.1992.

Lopez, M. S., Tan, I. S., Yan, D., Kang, J., McCreary, M., Modrusan, Z., Austin, C. D.,

Xu, M., & Brown, E. J. (2017). Host-derived fatty acids activate type VII secretion in *Staphylococcus aureus*. *Proceedings of the National Academy of Sciences of the United States of America*, *114*(42), pp. 11223-11228. doi.org/10.1073/pnas.1700627114

- Lu, S., Jin, D., Wu, S., Yang, J., Lan, R., Bai, X., Liu, S., Meng, Q., Yuan, X., Zhou, J.,
 Pu, J., Chen, Q., Dai, H., Hu, Y., Xiong, Y., Ye, C., & Xu, J. (2016). Insights into
 the evolution of pathogenicity of *Escherichia coli* from genomic analysis of
 intestinal *E. coli* of Marmota himalayana in Qinghai-Tibet plateau of China. *Emerging Microbes and Infections*, 5(e122), pp. 1-9. doi.org/10.1038/emi.2016.122
- Lu, S., Zhang, X., Zhu, Y., Kim, K. S., Yang, J., & Jin, Q. (2011). Complete genome sequence of the neonatal-meningitis-associated *Escherichia coli* strain CE10. *Journal of Bacteriology*, 193(24), pp. 7005. doi.org/10.1128/JB.06284-11
- Luethy, P. M., Huynh, S., Ribardo, D. A., Winter, S. E., Parker, C. T., & Hendrixson, D.
 R. (2017). Microbiota-derived short-chain fatty acids modulate expression of
 Campylobacter jejuni determinants required for commensalism and virulence.
 MBio, 8(3), pp. e00407-17. https://doi.org/10.1128/mBio
- Maas, W. K., & Davis, B. D. (1950). Interference by D-serine and L-aspartic acid with pantothenate synthesis in *Escherichia coli*. *Pantothenate Studies*, 60(6), pp. 733-745. doi: 10.1128/jb.60.6.733-745.1950.
- MacQuarrie, K. L., Fong, A. P., Morse, R. H., & Tapscott, S. J. (2011). Genome-wide transcription factor binding: Beyond direct target regulation. *Trends in Genetics*, 27(4), pp. 141-148. doi.org/10.1016/j.tig.2011.01.001.
- Maddocks, S. E., & Oyston, P. C. F. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. *Microbiology*, 154(12), pp. 3609-3623. doi.org/10.1099/mic.0.2008/022772-0
- Magnusson, L. U., Farewell, A., & Nyström, T. (2005). ppGpp: A global regulator in Escherichia coli. Trends in Microbiology, 13(5), pp. 236-242. doi.org/10.1016/j.tim.2005.03.008
- Manges, A. R., Geum, H. M., Guo, A., Edens, T. J., Fibke, C. D., & Pitout, J. D. D.
 (2019). Global extraintestinal pathogenic *Escherichia coli* (Expec) lineages. *Clinical Microbiology Reviews*, 32(3), pp. e00135-18. doi.org/10.1128/CMR.00135-18

- Mann, K., & Jackson, M. A. (2008). Meningitis. *Pediatrics in Review*, 29(12), pp. 417-430. doi.org/10.1542/pir.29-12-417
- Mann, S., & Chen, Y. P. P. (2010). Bacterial genomic G + C composition-eliciting environmental adaptation. *Genomics*, 95, pp. 7-15. https://doi.org/10.1016/j.ygeno.2009.09.002
- Martínez-Antonio, A., & Collado-Vides, J. (2003). Identifying global regulators in transcriptional regulatory networks in bacteria. *Current Opinion in Microbiology*, 6(5), pp. 482-489. doi.org/10.1016/j.mib.2003.09.002
- Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S., & Hultgren, S. J. (2000).
 Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. *The EMBO Journal*, *19*(12), pp. 2803-2812. doi: 10.1093/emboj/19.12.2803.
- Maruvada, R., & Kim, K. S. (2012). IbeA and OmpA of *Escherichia coli* K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells. *Infection* and Immunity, 80(6), pp. 2035-2041. doi.org/10.1128/IAI.06320-11
- Marx, V. (2019). What to do about those immunoprecipitation blues. *Nature Methods*, *16*(4), pp. 289-292. doi.org/10.1038/s41592-019-0365-3
- Mathew, R., & Chatterji, D. (2006). The evolving story of the omega subunit of bacterial RNA polymerase. *Trends in Microbiology*, *14*(10), pp. 450-455. doi.org/10.1016/j.tim.2006.08.002
- Mazzulli, T. (2012). Diagnosis and management of simple and complicated urinary tract infections (UTIs). *The Canadian Journal of Urology*, *19*, pp. 42-48. PMID: 23089347.
- McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S., & Kaper, J. B. (1995). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens.
 Proceedings of the National Academy of Sciences USA, 92(5), 1664-1668. doi: 10.1073/pnas.92.5.1664.
- McFall, E. (1964). Genetic structure of the D-serine deaminase system of *Escherichia* coli. Journal of Molecular Biology, 9(3), 746-753. doi.org/10.1016/S0022-2836(64)80179-0
- McFall, E. (1967). Dominance studies with stable merodiploids in the D-Serine

deaminase system of *Escherichia coli* K-12. *Journal of Bacteriology*, *94*(6), pp. 1982-1988. doi: 10.1128/jb.94.6.1982-1988.1967.

- McFall, E., & Heincz, M. C. (1983). Identification and control of synthesis of the *dsdC* activator protein. *Journal of Bacteriology*, 153(2), pp. 872-877. doi: 10.1128/jb.153.2.872-877.1983.
- McFall, S. M., Chugani, S. A., & Chakrabarty, A. M. (1998). Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. *Gene*, 223, pp. 257-267. doi: 10.1016/s0378-1119(98)00366-7.
- McFall, S. M., Klem, T. J., Fujita, N., Ishihama, A., & Chakrabarty, A. M. (1997). DNase I footprinting, DNA bending and *in vitro* transcription analyses of ClcR and CatR interactions with the *clcABD* promoter: evidence of a conserved transcriptional activation mechanism. *Molecular Microbiology*, 24(5), pp. 965-976. doi: 10.1046/j.1365-2958.1997.4041763.x.
- Mejía-Almonte, C., Busby, S. J. W., Wade, J. T., van Helden, J., Arkin, A. P., Stormo, G. D., Eilbeck, K., Palsson, B. O., Galagan, J. E., & Collado-Vides, J. (2020).
 Redefining fundamental concepts of transcription initiation in bacteria. *Nature Reviews Genetics*, 21(11), pp. 699-714. doi.org/10.1038/s41576-020-0254-8
- Melekos, M. D., & Naber, K. G. (2000). Complicated urinary tract infections. International Journal of Antimicrobial Agents, 15(4), pp. 247-256. doi: 10.1016/s0924-8579(00)00168-0.
- Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S., & Kaper, J. B. (1999).
 The Per regulon of enteropathogenic *Escherichia coli*: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). *Molecular Microbiology*, *33*(2), pp. 296-306. doi: 10.1046/j.1365-2958.1999.01473.x.
- Merrick, M. J. (1993). In a class of its own the RNA polymerase sigma factor 54.
 Molecular Microbiology, 10(5), pp. 903-909. doi: 10.1111/j.1365-2958.1993.tb00961.x.
- Miajlovic, H., & Smith, S. G. (2014). Bacterial self-defence: How Escherichia coli evades serum killing. FEMS Microbiology Letters, 354, pp. 1-9. doi.org/10.1111/1574-6968.12419.

- Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., ...
 Bernstein, B. E. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. *Nature*, 448(7153), pp. 553-560. doi.org/10.1038/nature06008
- Mitrophanov, A. Y., & Groisman, E. A. (2008). Signal integration in bacterial twocomponent regulatory systems. *Genes and Development*, 22(19), pp. 2601-2611. doi.org/10.1101/gad.1700308
- Mobley, H. L. T., Green, D. M., Trifillis, A. L., Johnson, D. E., Chippendale, G. R., Lockatell, C. V., Jones, B. D., & Warren, J. W. (1990). Pyelonephritogenic *Escherichia coli* and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. *Infection and Immunity*, 58(5), pp. 1281-1289. doi: 10.1128/iai.58.5.1281-1289.1990.
- Monroe, R. S., Ostrowski, J., Hryniewicz, M. M., & Kredich, N. M. (1990). In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. Journal of Bacteriology, 172(12), pp. 6919-6929. doi: 10.1128/jb.172.12.6919-6929.1990.
- Montso, P. K., Mlambo, V., & Ateba, C. N. (2019). Characterization of lytic bacteriophages infecting multidrug-resistant shiga toxigenic atypical *Escherichia coli* 0177 strains isolated from cattle feces. *Frontiers in Public Health*, 7(355), pp. 1-13. doi.org/10.3389/fpubh.2019.00355
- Moon, H. W., Whipp, S. C., Argenzio, R. A., Levine, M. M., & Giannella, R. A. (1983).
 Attaching and effacing activities of rabbit and human Enteropathogenic *Escherichia coli* in pig and rabbit intestines. *Infection and Immunity*, *41*(3), pp. 1340-1351. doi: 10.1128/iai.41.3.1340-1351.1983.
- Moon, K., Bonocora, R. P., Kim, D. D., Chen, Q., Wade, J. T., Stibitz, S., & Hinton, D.
 M. (2017). The BvgAS Regulon of *Bordetella pertussis*. *MBio*, 8(5), pp. e01526-17.
 doi.org/10.1128/mBio
- Mordhorst, I. L., Claus, H., Ewers, C., Lappann, M., Schoen, C., Elias, J., Batzilla, J.,
 Dobrindt, U., Wieler, L. H., Bergfeld, A. K., Mühlenhoff, M., & Vogel, U. (2009). O-acetyltransferase gene *neuO* is segregated according to phylogenetic background

and contributes to environmental desiccation resistance in *Escherichia coli* K1. *Environmental Microbiology*, *11*(12), pp. 3154-3165. doi.org/10.1111/j.1462-2920.2009.02019.x

- Moritz, R. L., & Welch, R. A. (2006). The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA. Journal of Clinical Microbiology, 44(11), pp. 4038-4048. doi.org/10.1128/JCM.01172-06
- Mulvey, M. A., Lopez-Boado, Y. S., Wilson, C. L., Roth, R., Parks, W. C., Heuser, J., & Hultgren, S. J. (1998). Induction and evasion of host defences by Type 1-piliated Uropathogenic *Escherichia coli*. *Science*, 282(5393), pp. 1494-1497. doi: 10.1126/science.282.5393.1494.
- Murakami, K. S. (2015). Structural biology of bacterial RNA polymerase. *Biomolecules*, 5(2), pp. 848-864. doi.org/10.3390/biom5020848.
- Muraoka, S., Okumura, R., Ogawa, N., Nonaka, T., Miyashita, K., & Senda, T. (2003).
 Crystal Structure of a full-length LysR-type transcriptional regulator, CbnR: Unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. *Journal of Molecular Biology*, *328*(3), pp. 555-566.
 doi.org/10.1016/S0022-2836(03)00312-7
- Murray, G. L., Attridge, S. R., & Morona, R. (2006). Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar typhimurium with macrophages and complement. Journal of Bacteriology, 188(7), pp. 2735-2739. doi.org/10.1128/JB.188.7.2735-2739.2006
- Muto, A., & Osawa, S. (1987). The guanine and cytosine content of genomic DNA and bacterial evolution. Proceedings of the National Academy of Sciences USA, 84(1), 166-169. doi: 10.1073/pnas.84.1.166.
- Najafi, A., Hasanpour, M., Askary, A., Aziemzadeh, M., & Hashemi, N. (2018).
 Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic *Escherichia coli* isolates. *Folia Microbiologica*, 63, pp. 335-343. doi.org/10.1007/s12223-017-0570-3
- Navarro-Garcia, F., Ruiz-Perez, F., Cataldi, Á., & Larzábal, M. (2019). Type VI secretion system in pathogenic *Escherichia coli*: Structure, role in virulence, and acquisition.

- Nishikawa, T. (2011). Analysis of free D-serine in mammals and its biological relevance. Journal of Chromatography B, 879(29), pp. 3169-3183. doi.org/10.1016/j.jchromb.2011.08.030
- Njoroge, J. W., Nguyen, Y., Curtis, M. M., Moreira, C. G., & Sperandio, V. (2012). Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic *Escherichia coli. MBio*, 3(5), pp. e00280-12. doi.org/10.1128/mBio.00280-12
- Nørregaard-Madsen, M., McFall, E., & Valentin-Hansen, P. (1995). Organization and transcriptional regulation of the *Escherichia coli* K-12 D-Serine tolerance locus. *Journal of Bacteriology*, 177(22), pp. 6456-6461. doi: 10.1128/jb.177.22.6456-6461.1995.
- Nougayrède, J-P., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., Buchrieser, C., Hacker, J., Dobrindt, U., & Oswald, E. (2006). *Escherichia coli* induces DNA double-strand breaks in eukaryotic cells. *Science*, *313*(5788), pp. 848-851. doi.org/10.1126/science.1128439
- O'Boyle, N., Turner, N. C. A., Roe, A. J., & Connolly, J. P. R. (2020). Plastic circuits: regulatory flexibility in fine tuning pathogen success. *Trends in Microbiology*, 28(5), pp. 360-371. doi.org/10.1016/j.tim.2020.01.002
- O'Meara, T. R., & Alspaugh, J. A. (2012). The Cryptococcus neoformans capsule: A sword and a shield. Clinical Microbiology Reviews, 25(3), pp. 387-408. doi.org/10.1128/CMR.00001-12
- Oliveros, J. (2007). Venny. An interactive tool for comparing lists with Venn's diagrams. Https://Bioinfogp.Cnb.Csic.Es/Tools/Venny/Index.Html.
- Opal, S. M. (2014). Significance of sialic acid in *Klebsiella pneumoniae* K1 capsules. *Virulence*, 5(6), pp. 648-649. doi.org/10.4161/viru.34349
- Orskov, F., Orskov, I., Sutton, A., Schneerson, R., Lin, W., Egan, W., Hoff, E., & Robbins, J. B. (1979). Form variation in *Escherichia coli* K1: Determined by Oacetylation of the capsular polysaccheride. *Journal of Experimental Medicine*, 149(3), pp. 669-685. doi: 10.1084/jem.149.3.669.

- Pacheco, A. R., Munera, D., Waldor, M. K., Sperandio, V., & Ritchie, J. M. (2012).
 Fucose sensing regulates bacterial intestinal colonization. *Nature*, 492, pp. 113-117. doi.org/10.1038/nature11623
- Paget, M. S. (2015). Bacterial sigma factors and anti-sigma factors: Structure, function and distribution. *Biomolecules*, 5(3), pp. 1245-1265. doi.org/10.3390/biom5031245
- Pareja, E., Pareja-Tobes, P., Manrique, M., Pareja-Tobes, E., Bonal, J., & Tobes, R. (2006). ExtraTrain: A database of extragenic regions and transcriptional information in prokaryotic organisms. *BMC Microbiology*, 6(29), pp. 1-10. doi.org/10.1186/1471-2180-6-29
- Pérez-Rueda, E., & Collado-Vides, J. (2000). The repertoire of DNA-binding transcriptional regulators in *Escherichia coli* K-12. *Nucleic Acids Research*, 28(8), pp. 1838-1847. doi: 10.1093/nar/28.8.1838.
- Perez, J. C., & Groisman, E. A. (2009a). Transcription factor function and promoter architecture govern the evolution of bacterial regulons. *Proceedings of the National Academy of Sciences USA*, 106(11), pp. 4319-4324. doi: 10.1073/pnas.0810343106.
- Perez, J. C., & Groisman, E. A. (2009b). Evolution of Transcriptional Regulatory Circuits in Bacteria. *Cell*, 138(2), pp. 233-244. doi.org/10.1016/j.cell.2009.07.002
- Pickrell, J. K., Gaffney, D. J., Gilad, Y., & Pritchard, J. K. (2011). False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. *Bioinformatics*, 27(15), pp. 2144-2146. doi.org/10.1093/bioinformatics/btr354
- Pires, D. P., Oliveira, H., Melo, L. D. R., Sillankorva, S., & Azeredo, J. (2016). Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. *Applied Microbiology and Biotechnology*, *100*(5), pp. 2141-2151. doi.org/10.1007/s00253-015-7247-0
- Polin, R. A., & Harris, M. C. (2001). Neonatal bacterial meningitis. Seminars in Neonatology, 6(2), pp. 157-172. doi.org/10.1053/siny.2001.0045
- Pollegioni, L., & Sacchi, S. (2010). Metabolism of the neuromodulator D-serine. *Cellular* and Molecular Life Sciences, 67(14), pp. 2387-2404. doi.org/10.1007/s00018-010-

- Poncet, S., Milohanic, E., Mazé, A., Abdallah, J. N., Aké, F., Larribe, M., Deghmane, A.-E., Taha, M-K., Dozot, M., De Bolle, X., Letesson, J. J., & Deutscher, J. (2009).
 Correlations between carbon metabolism and virulence in bacteria. In M. Collin & R. Schuch (Eds.), *Bacterial sensing and signalling*, 16, pp. 88-102. doi: 10.1159/000219374.
- Poulsen, L. K., Lan, F., Kristensen, C. S., Hobolth, P., Molin, S., & Krogfelt, K. A. (1994). Spatial distribution of *Escherichia coli* in the mouse large intestine inferred from rRNA *in situ* hybridization. *Infection and Immunity*, 62(11), pp. 5191-5194. doi: 10.1128/iai.62.11.5191-5194.1994.
- Prasadarao, N. V. (2002). Identification of *Escherichia coli* outer membrane protein A receptor on human brain microvascular endothelial cells. *Infection and Immunity*, 70(8), pp. 4556-4563. doi.org/10.1128/IAI.70.8.4556-4563.2002
- Prasadarao, N. V., Wass, C. A., Weiser, J. N., Stins, M. F., Huang, S-H., & Kim, K. S. (1996). Outer membrane protein A of *Escherichia coli* contributes to invasion of brain microvascular endothelial cells. *Infection and Immunity*, 64(1), pp. 146-153. doi: 10.1128/iai.64.1.146-153.1996.
- Prokhorov, N. S., Riccio, C., Zdorovenko, E. L., Shneider, M. M., Browning, C., Knirel,
 Y. A., Leiman, P. G., & Letarov, A. V. (2017). Function of bacteriophage G7C
 esterase tailspike in host cell adsorption. *Molecular Microbiology*, *105*(3), pp. 385-398. doi.org/10.1111/mmi.13710
- Raetz, C. R. H., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71, pp. 635-700. doi.org/10.1146/annurev.biochem.71.110601.135414
- Rasko, D. A., Rosovitz, M. J., Myers, G. S. A., Mongodin, E. F., Fricke, W. F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N. R., Chaudhuri, R., Henderson, I. R., Sperandio, V., & Ravel, J. (2008). The pangenome structure of *Escherichia coli*: Comparative genomic analysis of *E. coli* commensal and pathogenic isolates. *Journal of Bacteriology*, *190*(20), pp. 6881-6893. doi.org/10.1128/JB.00619-08.
- Rasko, D. A., & Sperandio, V. (2010). Anti-virulence strategies to combat bacteriamediated disease. *Nature Reviews Drug Discovery*, 9(2), pp. 117-128.

doi.org/10.1038/nrd3013.

- Ray, B., Ballal, A., & Manna, A. C. (2009). Transcriptional variation of regulatory and virulence genes due to different media in *Staphylococcus aureus*. *Microbial Pathogenesis*, 47(2), pp. 94-100. doi.org/10.1016/j.micpath.2009.05.001.
- Reigstad, C. S., Hultgren, S. J., & Gordon, J. I. (2007). Functional genomic studies of uropathogenic *Escherichia coli* and host urothelial cells when intracellular bacterial communities are assembled. *Journal of Biological Chemistry*, 282(29), pp. 21259-21267. doi.org/10.1074/jbc.M611502200
- Reister, M., Hoffmeier, K., Krezdorn, N., Rotter, B., Liang, C., Rund, S., Dandekar, T.,
 Sonnenborn, U., & Oelschlaeger, T. A. (2014). Complete genome sequence of the
 Gram-negative probiotic *Escherichia coli* strain Nissle 1917. *Journal of Biotechnology*, 187, pp. 106-107. doi.org/10.1016/j.jbiotec.2014.07.442
- Ren, C. P., Chaudhuri, R. R., Fivian, A., Bailey, C. M., Antonio, M., Barnes, W. M., & Pallen, M. J. (2004). The ETT2 gene cluster, encoding a second type III secretion system from *Escherichia coli*, is present in the majority of strains but has undergone widespread mutational attrition. *Journal of Bacteriology*, *186*(11), pp. 3547-3560. doi.org/10.1128/JB.186.11.3547-3560.2004
- Robbins, J. B., McCracken Jr, G. H., Gotschlich, E. C., Orskov, F., Orskov, I., & Hanson,
 L. A. (1974). *Escherichia coli* K1 capsular polysaccharide associated with neonatal meningitis. *The New England Journal of Medicine*, 290(22), pp. 1216-1220. doi: 10.1056/NEJM197405302902202.
- Roberts, J. W. (2019). Mechanisms of bacterial transcription termination. *Journal of Molecular Biology*, *431*(20), 4030-4039. doi.org/10.1016/j.jmb.2019.04.003.
- Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., & Jones, S. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. *Nature Methods*, *4*(8), pp. 651-657. doi.org/10.1038/nmeth1068.
- Roesch, P. L., Redford, P., Batchelet, S., Moritz, R. L., Pellett, S., Haugen, B. J.,
 Blattner, F. R., & Welch, R. A. (2003). Uropathogenic *Escherichia coli* use D-serine deaminase to modulate infection of the murine urinary tract. *Molecular*

- Roos, V., & Klemm, P. (2006). Global gene expression profiling of the asymptomatic bacteriuria *Escherichia coli* strain 83972 in the human urinary tract. *Infection and Immunity*, 74(6), pp. 3565-3575. doi.org/10.1128/IAI.01959-05
- Russo, T. A., & Johnson, J. R. (2000). Proposal for a new inclusive designation for extraintestinal pathogenic isolates of *Escherichia coli*: ExPEC. *The Journal of Infectious Diseases*, 181(5), 1753-1754. doi: 10.1086/315418.
- Russo, T. A., & Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to *Escherichia coli*: focus on an increasingly important endemic problem. *Microbes and Infection*, 5, pp. 449-456. doi: 10.1016/s1286-4579(03)00049-2.
- Sachdev, D., & Chirgwin, I. M. (2000). Fusions to maltose-binding protein: control of folding and solubility in protein purification. *Methods in Enzymology*, 326, pp. 312-321. doi: 10.1016/s0076-6879(00)26062-x.
- Sanchez-Vazquez, P., Dewey, C. N., Kitten, N., Ross, W., & Gourse, R. L. (2019).
 Genome-wide effects on *Escherichia coli* transcription from ppGpp binding to its two sites on RNA polymerase. *Proceedings of the National Academy of Sciences of the USA*, *116*(17), pp. 8310-8319. doi.org/10.1073/pnas.1819682116.
- Santangelo, T. J., & Roberts, J. W. (2004). Forward translocation is the natural pathway of RNA release at an intrinsic terminator. *Molecular Cell*, *14*(1), 117-126. doi: 10.1016/s1097-2765(04)00154-6.
- Sarkar, S., Ulett, G. C., Totsika, M., Phan, M. D., & Schembri, M. A. (2014). Role of capsule and O antigen in the virulence of uropathogenic *Escherichia coli*. *PLoS ONE*, 9(4), pp. e94786. doi.org/10.1371/journal.pone.0094786
- Sasabe, J., Miyoshi, Y., Rakoff-Nahoum, S., Zhang, T., Mita, M., Davis, B. M., Hamase, K., & Waldor, M. K. (2016). Interplay between microbial D-amino acids and host D-amino acid oxidase modifies murine mucosal defence and gut microbiota. *Nature Microbiology*, 1, pp. 16125. doi.org/10.1038/nmicrobiol.2016.125.
- Schell, M. A. (1993). Molecular biology of the LysR family of transcriptional regulators. Annual Review of Microbiology, 47, pp. 597-626. doi:

10.1146/annurev.mi.47.100193.003121.

- Scholl, D., Adhya, S., & Merril, C. (2005). Escherichia coli K1's capsule is a barrier to bacteriophage T7. Applied and Environmental Microbiology, 71(8), pp. 4872-4874. doi.org/10.1128/AEM.71.8.4872-4874.2005
- Schrader, S. M., Vaubourgeix, J., & Nathan, C. (2020). Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med, 12, pp. eaaz6992. doi: 10.1126/scitranslmed.aaz6992.
- Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gramnegative bacteria: Biogenesis and functions. *Nature Reviews Microbiology*, 13(10), pp. 605-619. doi.org/10.1038/nrmicro3525.
- Secher, T., Samba-Louaka, A., Oswald, E., & Nougayrède, J. P. (2013). Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS ONE, 8(10), pp. e77157. doi.org/10.1371/journal.pone.0077157
- Seo, S. W., Kim, D., Szubin, R., & Palsson, B. O. (2015). Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in *Escherichia coli* K-12 MG1655. *Cell Reports*, *12*, pp. 1289-1299. doi.org/10.1016/j.celrep.2015.07.043
- Shah, C., Baral, R., Bartaula, B., & Shrestha, L. B. (2019). Virulence factors of uropathogenic *Escherichia coli* (UPEC) and correlation with antimicrobial resistance. *BMC Microbiology*, *19*(204), pp. 1-6. doi.org/10.1186/s12866-019-1587-3
- Shimada, T., Ishihama, A., Busby, S. J. W., & Grainger, D. C. (2008). The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Research, 36(12), pp. 3950-3955. doi.org/10.1093/nar/gkn339
- Shimizu, K. (2013). Regulation systems of bacteria such as *Escherichia coli* in response to nutrient limitation and environmental stresses. *Metabolites*, 4, pp. 1-35. doi.org/10.3390/metabo4010001
- Silver, R., & Vimr, E. R. (1990). Polysialic acid capsule of *Escherichia coli* K1. In B.

Iglewski & V. Clark (Eds.), *Molecular Basis of Bacterial Pathogenesis*, *11*, pp. 39-54. Academic Press Ltd, London, NW1 7DX.

- Singh, S. S., Singh, N., Bonocora, R. P., Fitzgerald, D. M., Wade, J. T., & Grainger, D.
 C. (2014). Widespread suppression of intragenic transcription initiation by H-NS. *Genes and Development*, 28, pp. 214-219. doi.org/10.1101/gad.234336.113
- Slater, S. L., Sågfors, A. M., Pollard, D. J., Ruano-Gallego, D., & Frankel, G. (2018). The type III secretion system of pathogenic *Escherichia coli*. *Current Topics in Microbiology and Immunology. Escherichia coli*: A versatile pathogen, 416, pp. 51-72. doi.org/10.1007/82_2018_116
- Stark, R., Grzelak, M., & Hadfield, J. (2019). RNA sequencing: the teenage years.
 Nature Reviews Genetics, 20(11), pp. 631-656). doi.org/10.1038/s41576-019-0150 2
- Starmer, J., & Magnuson, T. (2016). Detecting broad domains and narrow peaks in ChIPseq data with hiddenDomains. BMC Bioinformatics, 17(144), pp. 1-10. doi.org/10.1186/s12859-016-0991-z
- Starosta, A. L., Lassak, J., Jung, K., & Wilson, D. N. (2014). The bacterial translation stress response. FEMS Microbiology Reviews, 38(6), pp. 1172-1201. doi.org/10.1111/1574-6976.12083
- Stephens, D. S., Spellman, P. A., & Swartley, J. S. (1993). Effect of the (a2-8)-linked polysialic acid capsule on adherence of *Neisseria meningitidis* to human mucosal cells. *Journal of Infectious Diseases*, 167, pp. 475-478. doi: 10.1093/infdis/167.2.475.
- Stone, N. L., England, T. J., & O'Sullivan, S. E. (2019). A novel transwell blood brain barrier model using primary human cells. *Frontiers in Cellular Neuroscience*, 13(230), pp. 1-11. doi.org/10.3389/fncel.2019.00230
- Stummeyer, K., Schwarzer, D., Claus, H., Vogel, U., Gerardy-Schahn, R., & Mühlenhoff,
 M. (2006). Evolution of bacteriophages infecting encapsulated bacteria: Lessons
 from *Escherichia coli* K1-specific phages. *Molecular Microbiology*, *60*(5), pp. 1123-1135. doi.org/10.1111/j.1365-2958.2006.05173.x

Sullivan, M. J., Petty, N. K., & Beatson, S. A. (2011). Easyfig: A genome comparison
visualizer. *Bioinformatics*, 27(7), pp. 1009-1010. doi.org/10.1093/bioinformatics/btr039

- Suzuki, M., Sujino, T., Chiba, S., Harada, Y., Goto, M., Takahashi, R., Mita, M.,
 Hamase, K., Kanai, T., Ito, M., Waldor, M. K., Yasui, M., & Sasabe, J. (2021). Host-microbe cross-talk governs amino acid chirality to regulate survival and
 differentiation of B cells. *Science Advances*, 7(10), pp. eabd6480. doi: 10.1126/sciadv.abd6480.
- Teichmann, S. A., & Babu, M. M. (2004). Gene regulatory network growth by duplication. *Nature Genetics*, *36*(5), pp. 492-496. doi.org/10.1038/ng1340
- Teichmann, S. A., Park, J., & Chothia, C. (1998). Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proceedings of the National Academy of Sciences USA, 95, pp. 14658-14663. doi: 10.1073/pnas.95.25.14658.
- Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal *Escherichia coli*. *Nature Reviews Microbiology*, 8, pp. 207-217. doi.org/10.1038/nrmicro2298
- Terlizzi, M. E., Gribaudo, G., & Maffei, M. E. (2017). UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and nonantibiotic antimicrobial strategies. Frontiers in Microbiology, 8(1566), pp. 1-23. doi.org/10.3389/fmicb.2017.01566
- Thomas-White, K., Forster, S. C., Kumar, N., Van Kuiken, M., Putonti, C., Stares, M. D., Hilt, E. E., Price, T. K., Wolfe, A. J., & Lawley, T. D. (2018). Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. *Nature Communications*, 9(1557), pp. 1-7. doi.org/10.1038/s41467-018-03968-5
- Touchon, M., Bernheim, A., & Rocha, E. P. C. (2016). Genetic and life-history traits associated with the distribution of prophages in bacteria. *ISME Journal*, *10*(11), pp. 2744-2754. doi.org/10.1038/ismej.2016.47
- Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., Bingen, E.,
 Bonacorsi, S., Bouchier, C., Bouvet, O., Calteau, A., Chiapello, H., Clermont, O.,
 Cruveiller, S., Danchin, A., Diard, M., Dossat, C., El Karoui, M., Frapy, E., ...
 Denamur, E. (2009). Organised genome dynamics in the *Escherichia coli* species

results in highly diverse adaptive paths. *PLoS Genetics*, 5(1), pp. e1000344. doi.org/10.1371/journal.pgen.1000344

- Tsai, C-M., & Frasch, C. E. (1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. *Analytical Biochemistry*, 119, pp. 115-119. doi: 10.1016/0003-2697(82)90673-x.
- Turner, N. C. A., Connolly, J. P. R., & Roe, A. J. (2018). Control freaks—signals and cues governing the regulation of virulence in attaching and effacing pathogens. *Biochemical Society Transactions*, 47(1), pp. 229-238.
 doi.org/10.1042/BST20180546
- Tzeng, Y. L., Thomas, J., & Stephens, D. S. (2016). Regulation of capsule in Neisseria meningitidis. Critical Reviews in Microbiology, 42(5), pp. 759-772. doi.org/10.3109/1040841X.2015.1022507
- Uzureau, S., Lemaire, J., Delaive, E., Dieu, M., Gaigneaux, A., Raes, M., De Bolle, X., & Letesson, J. J. (2010). Global analysis of quorum sensing targets in the intracellular pathogen *Brucella melitensis* 16 M. *Journal of Proteome Research*, 9(6), pp. 3200-3217. doi.org/10.1021/pr100068p
- Van Den Akker, W. M. R. (1998). Lipopolysaccharide expression within the genus Bordetella: influence of temperature and phase variation. *Microbiology*, 144, pp. 1527-1535. doi: 10.1099/00221287-144-6-1527
- Van Der Woude, M. W., & Bäumler, A. J. (2004). Phase and antigenic variation in bacteria. *Clinical Microbiology Reviews*, 17(3), pp. 581-611. doi.org/10.1128/CMR.17.3.581-611.2004
- Vannini, A., Pinatel, E., Costantini, P. E., Pelliciari, S., Roncarati, D., Puccio, S., De Bellis, G., Peano, C., & Danielli, A. (2017). Comprehensive mapping of the *Helicobacter pylori* NikR regulon provides new insights in bacterial nickel responses. *Scientific Reports*, 7(45458), pp. 1-14. doi.org/10.1038/srep45458
- Vejborg, R. M., Friis, C., Hancock, V., Schembri, M. A., & Klemm, P. (2010). A virulent parent with probiotic progeny: Comparative genomics of *Escherichia coli* strains CFT073, Nissle 1917 and ABU 83972. *Molecular Genetics and Genomics*, 283(5), pp. 469-484. doi.org/10.1007/s00438-010-0532-9

- Vermeulen, C., Cross, A., Byrne, W. R., & Zollinger2, A. W. (1988). Quantitative relationship between capsular content and killing of K1-encapsulated *Escherichia coli*. *Infection and Immunity*, *56*(10), pp. 2723-2730. doi: 10.1128/iai.56.10.2723-2730.1988.
- Vihta, K. D., Stoesser, N., Llewelyn, M. J., Quan, T. P., Davies, T., Fawcett, N. J., Dunn, L., Jeffery, K., Butler, C. C., Hayward, G., Andersson, M., Morgan, M., Oakley, S., Mason, A., Hopkins, S., Wyllie, D. H., Crook, D. W., Wilcox, M. H., Johnson, A. P., ... Walker, A. S. (2018). Trends over time in *Escherichia coli* bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998-2016: a study of electronic health records. *The Lancet Infectious Diseases, 18*(10), pp. 1138-1149. doi.org/10.1016/S1473-3099(18)30353-0
- Vimr, E., Steenbergen, S., & Cieslewicz, M. (1995). Biosynthesis of the polysialic acid capsule in *Escherichia coli* K1. *Journal of Industrial Microbiology*, 15, pp. 352-360. doi: 10.1007/BF01569991.
- Vörös, Z., Yan, Y., Kovari, D. T., Finzi, L., & Dunlap, D. (2017). Proteins mediating DNA loops effectively block transcription. *Protein Science*, 26, pp. 1427-1438. doi.org/10.1002/pro.3156
- Wade, J. T. (2015). Mapping transcription regulatory networks with ChIP-seq and RNAseq. Advances in Experimental Medicine and Biology, 883, pp. 119-134). doi.org/10.1007/978-3-319-23603-2_7
- Wallenstein, A., Rehm, N., Brinkmann, M., Selle, M., Bossuet-Greif, N., Sauer, D., Bunk,
 B., Spröer, C., Wami, H. T., Homburg, S., Von Bünau, R., König, S., Nougayrède, JP., Overmann, J., Oswald, E., Müller, R., & Dobrindt, U. (2020). ClbR Is the key
 transcriptional activator of colibactin gene expression in *Escherichia coli*. *MSphere*, 5(4), pp. e00591-20. doi.org/10.1128/mSphere
- Wang, I-N., Dykhuizen, D. E., & Slobodkin, L. B. (1996). The evolution of phage lysis timing. *Evolutionary Ecology*, *10*(5), pp. 545-558. doi:10.1007/BF01237884
- Wang, X., & Quinn, P. J. (2010). Endotoxins: Lipopolysaccharides of Gram-negative bacteria. Endotoxins: Structure, function and recognition, Subcellular Biochemistry, 53, pp. 3-27. doi: 10.1007/978-90-481-9078-2_1.

- Washburn, R. S., & Gottesman, M. E. (2015). Regulation of transcription elongation and termination. *Biomolecules*, 5(2), pp. 1063-1078. doi.org/10.3390/biom5021063
- Watts, R. E., Totsika, M., Challinor, V. L., Mabbett, A. N., Ulett, G. C., Voss, J. J. D., & Schembri, M. A. (2012). Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria *Escherichia coli*. *Infection and Immunity*, 80(1), pp. 333-344. doi.org/10.1128/IAI.05594-11
- Waugh, D. S. (2011). An overview of enzymatic reagents for the removal of affinity tags. Protein Expression and Purification, 80(2), pp. 283-293. doi.org/10.1016/j.pep.2011.08.005
- Wei, Q., Le Minh, P. N., Dötsch, A., Hildebrand, F., Panmanee, W., Elfarash, A., Schulz, S., Plaisance, S., Charlier, D., Hassett, D., Häussler, S., & Cornelis, P. (2012).
 Global regulation of gene expression by OxyR in an important human opportunistic pathogen. *Nucleic Acids Research*, *40*(10), pp. 4320-4333.
 doi.org/10.1093/nar/gks017
- Welch, R A, Burland, V., Plunkett III, G., Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S.-R., Boutin, A., Hackett, J., Stroud, D., Mayhew, G. F., Rose, D. J., Zhou, S., Schwartz, D. C., Perna, N. T., Mobley, H. L. T., & Blattner, F. R. (2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic *Escherichia coli*. *Proceedings of the National Academy of Sciences USA*, *99*(26), pp. 17020-17024. doi: 10.1073/pnas.252529799.
- Welch, R A. (2016). Uropathogenic *Escherichia coli*-associated exotoxins. *Microbiology Spectrum*, *4*(3), pp. 1-16. doi.org/10.1128/microbiolspec.uti-0011-2012
- Whitfield, C., Heinrichs, D. E., Yethon, J. A., Amor, K. L., Monteiro, M. A., & Perry, M.
 B. (1999). Assembly of the R1-type core oligosaccharide of *Escherichia coli* lipopolysaccharide. *Journal of Endotoxin Research*, 5(3), pp. 151-156. doi: 10.1074/jbc.273.45.29497.
- Whitfield, C., & Roberts, I. S. (1999). Structure, assembly and regulation of expression of capsules in *Escherichia coli*. *Molecular Microbiology*, *31*(5), pp. 1307-1319. doi: 10.1046/j.1365-2958.1999.01276.x.
- Wijetunge, D. S. S., Gongati, S., Debroy, C., Kim, K. S., Couraud, P. O., Romero, I. A., Weksler, B., & Kariyawasam, S. (2015). Characterizing the pathotype of neonatal

meningitis causing *Escherichia coli* (NMEC). *BMC Microbiology*, *15*(211), pp. 1-15. doi.org/10.1186/s12866-015-0547-9

- Wilson, K. S., & Von Hippel, P. H. (1995). Transcription termination at intrinsic terminators: The role of the RNA hairpin. *Proceedings of the National Academy of Sciences USA*, 92, pp. 8793-8797. doi: 10.1073/pnas.92.19.8793.
- Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S. E., Kolter, R., & Minsky, A. (1999). DNA protection by stress-induced biocrystallization. *Nature*, 400, pp. 83-85. doi: 10.1038/21918.
- Xie, Y., Kim, K. J., & Kim, K. S. (2004). Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunology and Medical Microbiology, 42(3), pp. 271-279. doi.org/10.1016/j.femsim.2004.09.001
- Yao, Y., Xie, Y., & Kim, K. S. (2006). Genomic comparison of *Escherichia coli* K1 strains isolated from the cerebrospinal fluid of patients with meningitis. *Infection and Immunity*, 74(4), pp. 2196-2206. doi.org/10.1128/IAI.74.4.2196-2206.2006
- Yao, Y., Xie, Y., Perace, D., Zhong, Y., Lu, J., Tao, J., Guo, X., & Kim, K. S. (2009).
 The type III secretion system is involved in the invasion and intracellular survival of *Escherichia coli* K1 in human brain microvascular endothelial cells. *FEMS Microbiology Letters*, 300(1), pp. 18-24. doi.org/10.1111/j.1574-6968.2009.01763.x
- Yarnell, W. S., & Roberts, J. W. (1999). Mechanism of intrinsic transcription termination and antitermination. Science, 284(5414), pp. 611-615. doi: 10.1126/science.284.5414.611.
- Yethon, J. A., Vinogradov, E., Perry, M. B., & Whitfield, C. (2000). Mutation of the lipopolysaccharide core glycosyltransferase encoded by *waaG* destabilizes the outer membrane of *Escherichia coli* by interfering with core phosphorylation. *Journal of Bacteriology*, 182(19), pp. 5620-5623. doi: 10.1128/JB.182.19.5620-5623.2000.
- Young, C. L., Britton, Z. T., & Robinson, A. S. (2012). Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. *Biotechnology Journal*, 7(5), pp. 620-634. doi.org/10.1002/biot.201100155

- Zagon, J., Dehne, L-I., & Bogl, K.-W. (1994). D-amino acids in organisms and food. Nutrition Research, 14(3), pp. 445-463. doi.org/10.1016/S0271-5317(05)80182-4
- Zhang, C., An, H., Hu, J., Li, J., Zhang, W., Lan, X., Deng, H., & Zhang, J. (2021). MetR is a molecular adaptor for pneumococcal carriage in the healthy upper airway. *Molecular Microbiology*, 116(2), pp. 438-458. doi.org/10.1111/mmi.14724
- Zhang, J. (2003). Evolution by gene duplication: An update. *Trends in Ecology and Evolution*, *18*(6), pp. 292-298. doi.org/10.1016/S0169-5347(03)00033-8
- Zhou, Y., Zhang, X., & Ebright, R. H. (1993). Identification of the activating region of catabolite gene activator protein (CAP): Isolation and characterization of mutants of CAP specifically defective in transcription activation. *Proceedings of National Academy of Sciences USA*, 90, pp. 6081-6085. doi: 10.1073/pnas.90.13.6081.

Supplementary data

				Replicate 1			Replicate 2Co-ordinatesCentreLengthp-va3222943227293225424363.3161164795116524011650524461.8363525893352631335261254219.4864234927423534942351164233.5562399020239949323993054745.3464230274423071942305314462.3964233850423435442340385056.1162990962994782992843831.0064022325402270340225143793.1364068903406931842323343875.4963600475360085836006703847.9364068903406931840691314164.8764964007496456949641965633.3564082833408326140830224291.0065171634517209751719094641.0064021051402143540212473854.6864152604157804155935212.1862757262275784727575514862.466			
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p</i> -value	Co-ordinates	Centre	Length	<i>p</i> -value
c0346	-54	Intergenic	322255322761	322527	507	3.93E-15	322294322729	322542	436	3.31E-03
c1208	-72	Intergenic	11647751165252	1165010	478	5.09E-14	11647951165240	1165052	446	1.83E-03
c3694	0	Intragenic	35257363526315	3526079	580	8.71E-10	35258933526313	3526125	421	9.48E-04
rfaJ	0	Intergenic	42348414235368	4235076	528	2.33E-09	42349274235349	4235116	423	3.55E-05
wzy	128	Intragenic	23992002399768	2399437	569	2.08E-08	23990202399493	2399305	474	5.34E-04
waaL	705	Intragenic	42302814230846	4230516	566	2.37E-08	42302744230719	4230531	446	2.39E-04
rfaY	0	Intragenic	42338014234394	4234038	594	2.38E-08	42338504234354	4234038	505	6.11E-03
с0327	0	Intergenic	299056299527	299293	472	2.55E-08	299096299478	299284	383	1.00E-02
yrhA	0	Intragenic	40222944022777	4022529	484	3.79E-08	40223254022703	4022514	379	3.13E-03
waaV	0	Intergenic	42321184232633	4232400	516	4.08E-08	42321324232518	4232334	387	5.49E-05
c3766	0	Intragenic	36003963600931	3600633	536	5.12E-08	36004753600858	3600670	384	7.93E-03
yhiM	0	Intergenic	40688834069381	4069147	499	3.79E-07	40689034069318	4069131	416	4.87E-04
с5209	-224	Intragenic	49642894964816	4964524	528	3.81E-07	49640074964569	4964196	563	3.35E-03
c4303	0	Intergenic	40828264083296	4083061	471	4.61E-07	40828334083261	4083022	429	1.00E-02
c5426	146	Intragenic	51715495172100	5171786	552	6.92E-07	51716345172097	5171909	464	1.00E-02
yhhZ	0	Intragenic	40210354021608	4021272	574	1.14E-06	40210514021435	4021247	385	4.68E-04
c0430	-159	Intergenic	415182415654	415420	473	1.21E-06	415260415780	415593	521	2.18E-03
c2897	0	Intergenic	27572082757733	2757445	526	1.24E-06	27573622757847	2757551	486	3.46E-04
c3302	0	Intergenic	31485583149079	3148843	522	2.08E-06	31484633148959	3148652	497	2.00E-02
c4739	0	Intergenic	45071514507687	4507453	537	2.12E-06	45071204507601	4507413	482	1.72E-03
ycdT	0	Intergenic	11256201126089	1125855	470	1.06E-05	11256781126058	1125871	381	3.89E-03
cydA	0	Intragenic	792719793303	792954	585	1.58E-05	792750793161	792939	412	2.00E-02

tauA	0	Intergenic	459923460449	460158	527	1.90E-05	460046460429	460241	384	4.47E-03
c4423	0	Intergenic	42048694205392	4205106	524	2.18E-05	42048774205275	4205087	399	3.05E-03
yicL	-71	Intragenic	43424194342916	4342653	498	2.20E-05	43426344343028	4342840	395	1.00E-02
yfcV	-19	Intergenic	27377412738222	2737988	482	3.19E-05	27377112738226	2738038	516	2.45E-03
arcA	0	Intragenic	50949715095445	5095211	475	3.54E-05	50949335095340	5095097	408	3.00E-02
c0080	0	Intragenic	7475875274	75040	517	4.19E-05	7474475153	74933	410	1.13E-03
c5435	0	Intergenic	51815925182228	5181992	637	4.72E-05	51818035182216	5182036	414	3.00E-02
tssB	0	Intergenic	32225153223024	3222750	510	4.94E-05	32225043223023	3222693	520	2.83E-03
asst	0	Intergenic	36183693618857	3618623	489	5.68E-05	36184383618843	3618655	406	1.80E-04
c4498	585	Intergenic	42827364283276	4282971	541	1.16E-04	42828224283234	4283011	413	6.68E-03
caiT	0	Intergenic	4460645107	44841	502	1.33E-04	4459745059	44871	463	9.97E-03
c0322	0	Intergenic	292356292924	292591	569	1.94E-04	292333292766	292522	434	5.12E-03
hemB	-41	Intergenic	465027465546	465262	520	2.37E-04	464974465388	465163	415	7.11E-03
c4214	0	Intergenic	39995664000053	3999801	488	2.67E-04	39997044000094	3999906	391	3.00E-03
cmtB	0	Intergenic	33727273373422	3373186	696	2.89E-04	33730683373500	3373314	433	2.58E-03
c0321	20	Intragenic	291198291685	291451	488	3.28E-04	291150291637	291449	488	8.83E-03
leuO	-115	Intergenic	8760288079	87839	478	3.36E-04	8771088087	87899	378	7.60E-03
yjjQ	-47	Intergenic	51919075192418	5192184	512	4.58E-04	51920055192417	5192191	413	2.00E-02
с0077	0	Intergenic	7381974471	74056	653	4.59E-04	7393174480	74292	550	8.17E-03
c3686	-151	Intergenic	35114163511940	3511704	525	4.66E-04	35114133511823	3511602	411	2.00E-02
c2383	0	Intergenic	21853542185881	2185645	528	5.22E-04	21853852185931	2185743	547	2.00E-02
c2405	95	Intragenic	22081652208658	2208424	494	5.42E-04	22081502208572	2208384	423	8.25E-03
hlyC	-412	Intergenic	34173543417959	3417591	606	5.79E-04	34180383418550	3418363	513	7.32E-03
c5164	0	Intergenic	49312574931885	4931651	629	6.81E-04	49314244931959	4931613	536	3.00E-02
ygiK	0	Intragenic	35888843589367	3589118	484	1.00E-03	35889183589335	3589147	418	5.00E-02
yfaL	0	Intergenic	26309872631481	2631245	495	1.24E-03	26310132631424	2631202	412	2.31E-04
c2406	-190	Intergenic	22099582210494	2210195	537	1.32E-03	22100432210457	2210269	415	8.27E-03

ygiL	0	Intergenic	36240393624631	3624395	593	1.35E-03	36241673624606	3624418	440	9.37E-04
fimE	0	Intergenic	51362865136775	5136521	490	1.52E-03	51363635136759	5136552	397	4.00E-02
envR	0	Intergenic	38451403845648	3845414	509	2.14E-03	38452183845607	3845419	390	2.39E-03
c4896	0	Intragenic	46559444656436	4656181	493	2.15E-03	46560514656439	4656251	389	7.32E-03
c2348	0	Intergenic	21602582160757	2160493	500	2.21E-03	21602792160658	2160468	380	3.06E-04
yadN	0	Intergenic	167376167865	167613	490	2.31E-03	167517167920	167732	404	2.14E-04
yjdA	0	Intergenic	48852924885787	4885551	496	2.57E-03	48853584885754	4885547	397	4.89E-03
fucP	0	Intragenic	32085533209172	3208788	620	2.65E-03	32086383209130	3208827	493	4.00E-02
nanC	0	Intergenic	51340745134599	5134309	526	3.38E-03	51341345134528	5134341	395	2.00E-02
ydbA_1	0	Intergenic	16639301664429	1664195	500	3.91E-03	16639131664348	1664160	436	7.37E-03
ompC	0	Intergenic	14210351421524	1421271	490	4.73E-03	14210601421453	1421248	394	6.79E-03
bglG	0	Intergenic	44073834408063	4407827	681	4.81E-03	44077384408118	4407932	381	3.00E-02
c5298	0	Intergenic	50380535038523	5038288	471	4.84E-03	50380575038439	5038246	383	3.87E-03
yicO	0	Intragenic	43482674348913	4348677	647	5.01E-03	43485564348934	4348745	379	3.00E-02
frc	0	Intergenic	27756572776157	2775924	501	5.94E-03	27756162776057	2775805	442	6.82E-03
c1618	0	Intragenic	14609051461431	1461195	527	6.11E-03	14609301461353	1461119	424	3.00E-02
c0407	0	Intragenic	388028388586	388262	559	6.37E-03	387986388442	388254	457	5.00E-02
c4894	0	Intergenic	46527694653327	4653004	559	6.40E-03	46526864653084	4652897	399	2.00E-02
sat	0	Intergenic	34600363460533	3460297	498	6.68E-03	34600913460470	3460282	380	1.00E-02
pitB	0	Intergenic	35580843558565	3558331	482	6.90E-03	35581603558572	3558384	413	1.00E-02
tnaA	0	Intergenic	43900794390574	4390316	496	1.00E-02	43900474390517	4390329	471	3.00E-02
tdcB	0	Intergenic	37053043705792	3705541	489	1.00E-02	37053543705737	3705549	384	3.00E-02
ypdl	0	Intergenic	27768732777347	2777110	475	1.00E-02	27768542777242	2777054	389	2.00E-02
c5088	0	Intragenic	48632744863764	4863528	491	1.00E-02	48634464863833	4863635	388	2.00E-02
c4492	0	Intergenic	42758224276303	4276067	482	1.00E-02	42758724276340	4276061	469	2.10E-03
c2815	0	Intergenic	26706402671153	2670875	514	1.00E-02	26707132671119	2670902	407	5.76E-03
iraD	18	Intergenic	51499725150464	5150207	493	1.00E-02	51499695150413	5150225	445	1.00E-02

c3712	0	Intergenic	35448663545334	3545101	469	1.00E-02	35449283545394	3545206	467	2.00E-02
yegR	0	Intergenic	24593722459884	2459607	513	1.00E-02	24594562459853	2459643	398	2.00E-02
c4020	0	Intergenic	38367963837307	3837031	512	2.00E-02	38368963837303	3837085	408	1.00E-02
yebN	-133	Intergenic	20567512057226	2056988	476	2.00E-02	20568592057294	2057048	436	2.00E-02
yliE	483	Intragenic	894352894882	894648	531	2.00E-02	894394894792	894604	399	3.00E-02
c3031	0	Intergenic	29038882904394	2904122	507	2.00E-02	29039422904350	2904162	409	1.62E-03
yjcS	0	Intergenic	48656264866130	4865863	505	2.00E-02	48656084866002	4865815	395	2.00E-02
dsdC	0	Intergenic	27596122760084	2759848	473	3.00E-02	27599622760486	2760151	525	9.03E-04
stpA	0	Intergenic	30769823077460	3077219	479	3.00E-02	30770523077532	3077241	481	4.00E-02
yeeN	0	Intergenic	22569402257468	2257177	529	4.00E-02	22569862257371	2257175	386	2.00E-02
yheE	0	Intragenic	38867793887278	3887016	500	5.00E-02	38867453887144	3886956	400	4.00E-02
fdeC	0	Intergenic	395223395931	395460	709	5.00E-02	395288395692	395477	405	2.00E-02

Table S-2 CFT073 binding sites (+ D-ser)

				Replicate 1			Replicate 2				
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p-</i> value	Co-ordinates	Centre	Length	<i>p</i> -value	
rfaJ	0	Intragenic	42348864235313	4235116	428	1.83E-15	42349534235367	4235155	415	6.13E-19	
c4214	-88	Intergenic	39997134000110	3999911	398	1.31E-12	39996924000097	3999896	406	5.78E-10	
waaL	511	Intragenic	42303304230726	4230528	397	2.78E-11	42303254230760	4230526	436	3.29E-16	
waaV	0	Intergenic	42321104232540	4232343	431	6.50E-11	42321274232555	4232357	429	1.91E-14	
yhhZ	0	Intergenic	40210474021474	4021245	428	3.42E-10	40208944021491	4021096	598	1.22E-10	
ygiL	0	Intergenic	36241183624613	3624416	496	5.70E-10	36241293624532	3624332	404	6.51E-08	
yadN	-44	Intergenic	167507167907	167705	401	7.12E-10	167478167898	167697	421	2.25E-10	

c0080	0	Intragenic	7475875189	74955	432	2.39E-09	7494975356	75151	408	1.88E-10
c3694	0	Intragenic	35258533526314	3526117	462	2.54E-09	35258973526325	3526099	429	3.43E-10
c4739	0	Intergenic	45071764507645	4507448	470	3.87E-09	45071654507576	4507375	412	4.87E-12
c2897	-52	Intergenic	27574112757939	2757609	529	2.96E-08	27574682757891	2757692	424	8.94E-11
c4498	847	Intergenic	42827764283226	4282974	451	4.43E-08	42828104283273	4283012	464	4.17E-07
c5435	0	Intergenic	51817035182135	5181901	433	4.45E-08	51817015182152	5181951	452	3.37E-07
c3692	776	Intergenic	35199573520396	3520155	440	5.56E-08	35199563520336	3520158	381	1.83E-06
c4896	0	Intergenic	46560524656453	4656256	402	6.68E-08	46560154656455	4656254	441	6.45E-08
yfcV	-33	Intergenic	27377552738225	2738028	471	7.76E-08	27377622738198	2737998	437	4.27E-06
с3686	-144	intergenic	35115463511947	3511750	402	1.29E-07	35115023511925	3511724	424	1.00E-09
c4492	-71	Intergenic	42758144276225	4276012	412	2.28E-07	42758114276260	4276059	450	3.24E-11
asst	0	Intergenic	36184013618899	3618702	499	2.80E-07	36183703618840	3618639	471	2.75E-08
leu0	0	Intergenic	8770388224	87901	522	2.82E-07	8773688181	87938	446	2.37E-06
cmtB	0	Intergenic	33731103373525	3373328	416	3.62E-07	33730883373543	3373342	456	2.96E-07
с0322	0	Intergenic	292319292758	292517	440	3.99E-07	292337292791	292539	455	1.31E-07
ycdT	0	Intergenic	11256901126096	1125900	407	4.74E-07	11256931126125	1125895	433	5.07E-06
c4423	0	Intergenic	42049354205359	4205162	425	7.60E-07	42048794205363	4205162	485	8.04E-07
rfaY	0	Intragenic	42338774234333	4234073	457	7.70E-07	42338324234313	4234034	482	5.15E-13
papA	0	Intergenic	34380203438517	3438320	498	1.13E-06	34380323438492	3438291	461	3.14E-08
yfaL	0	Intergenic	26310232631424	2631221	402	1.17E-06	26309792631459	2631181	481	4.47E-07
с0327	-22	Intergenic	299139299565	299337	427	1.32E-06	299083299498	299297	416	1.68E-07
caiT	0	Intergenic	4450245047	44700	546	1.58E-06	4449745045	44699	549	2.67E-07
yjjQ	-27	Intergenic	51919905192438	5192188	449	1.85E-06	51919685192375	5192174	408	7.68E-07
fimE	-15	Intergenic	51363465136753	5136544	408	2.22E-06	51362825136722	5136521	441	5.52E-10
pitB	0	Intergenic	35581533558579	3558351	427	2.31E-06	35581593558582	3558381	424	8.80E-07
c0077	0	Intergenic	7394174415	74218	475	2.50E-06	7387274426	74225	555	6.85E-08
c5298	0	Intergenic	50380495038452	5038255	404	2.54E-06	50380535038523	5038255	471	1.82E-11

c5209	-157	Intragenic	49642024964678	4964481	477	2.63E-06	49639814964586	4964183	606	1.88E-08
yhiM	0	Intergenic	40688214069290	4069019	470	2.83E-06	40688794069312	4069111	434	1.03E-10
pagP	-67	Intergenic	696667697080	696883	414	3.48E-06	696605697166	696807	562	4.66E-08
hlyC	-486	Intergenic	34173223417723	3417520	402	3.64E-06	34181683418696	3418370	529	8.40E-06
envR	0	Intergenic	38451963845596	3845394	401	3.66E-06	38452043845621	3845420	418	1.47E-09
с0325	822	Intragenic	297396297797	297600	402	3.81E-06	297399297913	297600	515	5.78E-08
c3031	0	Intergenic	29039182904358	2904162	441	3.95E-06	29039362904363	2904162	428	3.09E-08
c4303	0	Intergenic	40828254083321	4083023	497	4.56E-06	40828754083342	4083077	468	1.20E-08
c5426	182	Intragenic	51715705171978	5171768	409	4.74E-06	51714085171969	5171769	562	1.20E-06
garP	0	Intergenic	37121213712663	3712319	543	5.12E-06	37121913712685	3712391	495	3.29E-06
cydA	-944	Intergenic	792774793183	792986	410	5.20E-06	792775793255	792977	481	2.57E-04
yjdA	0	Intergenic	48853064885790	4885504	485	6.20E-06	48853094885732	4885511	424	1.15E-08
tauA	-85	Intergenic	460039460438	460241	400	6.69E-06	459988460394	460190	407	8.09E-09
tnaA	0	Intragenic	43900314390481	4390229	451	7.73E-06	43900754390547	4390346	473	3.51E-08
c3766	0	Intragenic	36003683600870	3600566	503	9.08E-06	36004663600989	3600668	524	6.70E-07
c4994	0	Intergenic	47711974771598	4771395	402	1.07E-05	47711904771600	4771399	411	4.69E-07
c0430	-178	Intergenic	415201415788	415591	588	1.20E-05	415235415742	415541	508	1.66E-06
c3302	0	Intragenic	31485553148969	3148753	415	1.33E-05	31485313148975	3148733	445	6.04E-07
arcA	-39	Intergenic	50949955095446	5095193	452	1.48E-05	50949035095360	5095159	458	2.63E-07
frc	0	Intergenic	27756252776068	2775823	444	1.64E-05	27756572776110	2775909	454	1.18E-06
yiiE	0	Intergenic	46031134603511	4603311	399	1.86E-05	46030874603490	4603289	404	4.56E-06
yghT	0	Intergenic	35557393556173	3555977	435	2.15E-05	35557143556137	3555936	424	6.30E-06
wzy	-129	Intragenic	23992052399624	2399403	420	2.18E-05	23992002399653	2399402	454	6.20E-06
dpiB	0	Intergenic	692480692916	692719	437	2.55E-05	692470693001	692671	532	1.15E-05
ompC	-1	Intergenic	14210911421510	1421313	420	2.60E-05	14210621421481	1421280	420	2.08E-07
tssB	-39	Intergenic	32225593222962	3222757	404	2.74E-05	32225923223034	3222794	443	7.29E-06
c4920	0	Intergenic	46850584685508	4685256	451	3.40E-05	46850584685482	4685260	425	1.31E-04

yiaY	0	Intergenic	41934504193849	4193652	400	3.46E-05	41933984193822	4193621	425	4.56E-09
fdeC	0	Intergenic	395279395770	395477	492	3.53E-05	395267395775	395467	509	3.51E-04
gadA	0	Intergenic	41061984106634	4106394	437	3.63E-05	41061624106645	4106364	484	1.94E-06
c3712	0	Intergenic	35449373545337	3545140	401	3.93E-05	35448903545332	3545131	443	5.09E-07
tdcB	0	Intergenic	37052723705738	3705541	467	5.65E-05	37052563705718	3705524	463	7.11E-06
c0346	0	Intragenic	322315322739	322542	425	5.78E-05	322298322742	322542	445	3.12E-04
sat	0	Intergenic	34600043460473	3460276	470	5.88E-05	34600453460516	3460315	472	1.39E-07
c1271	140	Intragenic	12221731222602	1222405	430	6.27E-05	12219941222596	1222396	603	7.71E-06
hemB	-16	Intergenic	465002465419	465200	418	6.50E-05	465037465525	465239	489	1.51E-06
c1208	-75	Intragenic	11648201165259	1165062	440	7.39E-05	11648171165259	1165019	443	2.46E-05
ypdl	0	Intergenic	27768022777225	2777028	424	9.36E-05	27767822777206	2777006	425	1.10E-04
c4020	0	Intergenic	38368923837293	3837096	402	9.76E-05	38369493837363	3837150	415	3.63E-05
wzx	0	Intragenic	23998222400397	2400200	576	1.14E-04	23998042400354	2400153	551	1.73E-05
nanC	0	Intergenic	51340935134568	5134291	476	1.26E-04	51341485134623	5134350	476	1.18E-07
bglG	0	Intergenic	44076204408101	4407904	482	1.33E-04	44076634408091	4407890	429	3.94E-05
li∨K	0	Intergenic	40360624036463	4036266	402	1.35E-04	40360724036507	4036306	436	4.65E-07
hcp	0	Intragenic	45212304521804	4521608	575	1.37E-04	45212564521815	4521614	560	1.43E-07
c5088	0	Intergenic	48634644863897	4863700	434	1.37E-04	48634254863862	4863661	438	6.86E-06
yjeJ	0	Intergenic	49829244983378	4983182	455	1.48E-04	49828924983346	4983147	455	2.94E-06
c2383	0	Intergenic	21853512185883	2185686	533	1.59E-04	21855072185921	2185709	415	6.37E-06
agaB	0	Intergenic	37234693723879	3723667	411	2.21E-04	37235743724084	3723776	511	4.65E-05
c4488	0	Intergenic	42698414270240	4270039	400	2.30E-04	42697624270366	4270165	605	6.08E-05
yicO	0	Intergenic	43484664348882	4348685	417	2.33E-04	43484774348891	4348690	415	4.06E-07
yebN	-137	Intergenic	20567922057222	2057025	431	2.47E-04	20568082057244	2057043	437	1.04E-05
c2348	0	Intergenic	21602762160721	2160474	446	2.94E-04	21602712160721	2160473	451	4.35E-06
adiY	0	Intergenic	48962554896822	4896625	568	3.06E-04	48963714896845	4896644	475	5.31E-05
yheE	0	Intergenic	38867383887177	3886936	440	3.21E-04	38867403887182	3886942	443	1.31E-03

c2815	0	Intergenic	26707062671101	2670903	396	3.36E-04	26706992671213	2670901	515	3.62E-04
fimA	-43	Intergenic	51373815137802	5137578	422	3.47E-04	51373775137833	5137632	457	1.34E-06
aslA	0	Intergenic	44861854486610	4486413	426	3.53E-04	44861704486587	4486372	418	4.94E-05
fucP	0	Intergenic	32085643209130	3208762	567	4.02E-04	32086133209029	3208828	417	1.26E-05
yliE	525	Intragenic	894436894847	894650	412	4.11E-04	894428894834	894630	407	6.69E-05
yjcS	0	Intergenic	48656634866083	4865861	421	4.43E-04	48656384866047	4865840	410	1.04E-05
yegR	0	Intergenic	24593952459841	2459644	447	4.46E-04	24594272459835	2459629	409	1.61E-06
c4983	0	Intragenic	47629244763345	4763122	422	4.56E-04	47629184763329	4763129	412	5.62E-04
c5356	0	Intergenic	50984045098854	5098657	451	5.61E-04	50984405098906	5098642	467	2.92E-05
c1166	0	Intragenic	11306471131048	1130845	402	5.75E-04	11305071131038	1130837	532	9.96E-04
chiA	0	Intergenic	39011803901576	3901379	397	5.93E-04	39010853901616	3901287	532	1.38E-03
с0407	-249	Intergenic	388135388577	388333	443	6.27E-04	388091388542	388293	452	4.87E-06
yhbX	0	Intergenic	37550963755491	3755294	396	6.38E-04	37550623755519	3755318	458	9.79E-05
c1892	0	Intragenic	17262301726742	1726428	513	7.00E-04	17262501726720	1726451	471	4.17E-04
c1618	0	Intragenic	14609931461393	1461197	401	7.14E-04	14610151461465	1461217	451	1.50E-04
yebB	0	Intragenic	20976602098115	2097858	456	7.40E-04	20976602098263	2097861	604	3.19E-03
ydbA_1	0	Intergenic	16638831664336	1664139	454	7.72E-04	16639291664335	1664134	407	1.82E-03
ykgl	0	Intragenic	402822403248	403051	427	8.51E-04	402817403255	403054	439	1.23E-04
yhfL	0	Intergenic	39305283930927	3930725	400	1.14E-03	39305983931017	3930816	420	1.83E-05
dsdC	0	Intergenic	27599962760586	2760194	591	1.15E-03	27599492760549	2760151	601	6.20E-07
yeeN	0	Intergenic	22570222257582	2257220	561	1.40E-03	22570542257516	2257256	463	2.03E-05
c4986	0	Intergenic	47647254765138	4764941	414	1.49E-03	47646894765105	4764889	417	3.10E-04
c4502	0	Intergenic	42896494290046	4289849	398	1.55E-03	42895934290035	4289834	443	9.44E-04
stpA	0	Intergenic	30771023077562	3077300	461	1.65E-03	30770923077555	3077294	464	9.26E-06
c2406	-296	Intergenic	22100642210461	2210262	398	1.78E-03	22106182211182	2210981	565	8.23E-06
fdrA	0	Intergenic	615034615477	615232	444	2.19E-03	615068615503	615302	436	1.20E-04
суоА	-126	Intergenic	525665526079	525882	415	2.22E-03	525588525993	525790	406	9.98E-04

c4015	0	Intragenic	38330743833654	3833457	581	2.41E-03	38332483833688	3833489	441	1.52E-04
rpiB	0	Intergenic	48721154872551	4872313	437	2.55E-03	48720354872514	4872317	480	1.89E-03
iraP	0	Intergenic	475076475575	475274	500	3.11E-03	475090475506	475305	417	2.72E-06
iraD	-36	Intergenic	51499955150446	5150192	452	3.14E-03	51499715150394	5150193	424	3.70E-04
ompN	0	Intergenic	16545471654942	1654745	396	3.36E-03	16545371655003	1654802	467	4.80E-03
c4539	0	Intergenic	43187764319205	4319008	430	4.57E-03	43188234319242	4319024	420	1.00E-02
yffB	0	Intergenic	28616712862106	2861909	436	5.69E-03	28617062862127	2861926	422	1.16E-03
yciF	0	Intergenic	15596551560054	1559853	400	5.84E-03	15595221559938	1559737	417	1.19E-03
araE	0	Intergenic	32901743290572	3290372	399	6.63E-03	32901223290525	3290324	404	6.48E-03
ais	0	Intergenic	26518202652398	2652201	579	7.24E-03	26519522652392	2652191	441	2.71E-04
c0363	0	Intergenic	340655341100	340903	446	8.01E-03	340627341037	340829	411	2.39E-03
bdm	0	Intergenic	17491321749601	1749404	470	8.76E-03	17491991749617	1749416	419	1.98E-03
c0410	0	Intergenic	390881391284	391079	404	2.00E-02	390857391392	391048	536	1.00E-02
clbR	-158	Intergenic	23137702314181	2313984	412	3.00E-02	23146362315118	2314831	483	4.01E-03

Table S-3 CE10 DsdC1 binding data (no D-ser).

				Replicate 1				Replicate 2		
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p</i> -value	Co-ordinates	Centre	Length	<i>p</i> -value
CE10_0023	-701	Intragenic	2744127818	27655	378	0.00+00E	2757027709	27655	140	6.54E-45
CE10_0067	0	Intragenic	7955779975	79725	419	0.00+00E	7953979698	79594	160	5.26E-17
yadN	0	Intergenic	166926167348	167185	423	0.00+00E	166217166355	166272	139	6.19E-12
tauA	-100	Intergenic	365148365547	365378	400	0.00+00E	365288365432	365378	145	3.50E-23
CE10_0889	0	Intergenic	940940941277	941109	338	0.00+00E	941073941226	941173	154	6.93E-17

ysdS	0	Intergenic	22495332249989	2249820	457	0.00+00E	22498022249931	2249877	130	1.99E-18
wbbC	0	Intragenic	23677862368225	2368057	440	0.00+00E	23679372368062	2368008	126	7.20E-71
wzy	-105	Intergenic	23689852369359	2369154	375	0.00+00E	23690392369172	2369118	134	8.65E-37
CE10_2740	4	Intergenic	27886642789046	2788830	383	0.00+00E	27888772788999	2788949	123	1.66E-31
dsdC1	0	Intergenic	27912352791582	2791414	348	0.00+00E	27913682791477	2791423	110	9.87E-156
CE10_3076	0	Intergenic	31380703138508	3138240	439	0.00+00E	31381813138283	3138234	103	9.80E-26
yqel	-59	Intergenic	33404033340735	3340557	333	0.00+00E	33405243340674	3340624	151	4.97E-33
ygeG	-62	Intergenic	33434483343743	3343556	296	0.00+00E	33434813343606	3343533	126	3.75E-43
prgl	28	Intragenic	33504523350809	3350656	358	0.00+00E	33506403350776	3350722	137	1.71E-28
eprH	0	Intergenic	33515643351974	3351806	411	0.00+00E	33516403351757	3351705	118	4.76E-34
epaS	0	Intragenic	33540523354436	3354278	385	0.00+00E	33541923354316	3354262	125	2.86E-46
epaO	0	Intergenic	33565113356931	3356764	421	0.00+00E	33567853356857	3356814	73	1.17E-20
neuE	-169	Intragenic	35446183544986	3544780	369	0.00+00E	35447253544861	3544780	137	7.61E-24
neuA	-364	Intragenic	35472333547655	3547381	423	0.00+00E	35467983546956	3546853	159	4.32E-14
neuB	-278	Intergenic	35481873548660	3548503	474	0.00+00E	35483623548475	3548417	114	9.15E-29
slp	-296	Intragenic	41019194102392	4102088	474	0.00+00E	41024024102530	4102477	129	2.34E-29
rfaL	0	Intragenic	42582494258601	4258438	353	0.00+00E	42583304258481	4258436	152	3.80E-26
waaV	0	Intergenic	42600384260392	4260235	355	0.00+00E	42601814260334	4260235	154	1.76E-29
waaT	0	Intergenic	42628514263201	4263019	351	0.00+00E	42629624263125	4263017	164	7.34E-31
dsdC2	0	Intergenic	43322764332616	4332446	341	0.00+00E	43324014332520	4332456	120	7.67E-151
sipD	0	Intergenic	43656274366074	4365905	448	0.00+00E	43658964366048	4365996	153	2.65E-18
CE10_4297	0	Intergenic	43672984367739	4367571	442	0.00+00E	43675214367649	4367595	129	7.93E-24
espY4	0	Intragenic	44415504442034	4441719	485	0.00+00E	44411794441292	4441238	114	2.01E-19
CE10_4362	118	Intragenic	44422534442560	4442395	308	0.00+00E	44420794442190	4442136	112	1.52E-29
CE10_4466	-357	Intragenic	45532844553676	4553453	393	0.00+00E	45529334553055	4553001	123	1.16E-09
espX4	0	Intragenic	48526144853038	4852784	425	0.00+00E	48527294852847	4852784	119	1.33E-26

ubiC	-671	Intragenic	48532554853725	4853565	471	0.00+00E	48534454853536	4853500	92	3.11E-32
уjbМ	0	Intragenic	48622164862614	4862386	399	0.00+00E	48631244863266	4863178	143	2.15E-15
CE10_4768	163	Intragenic	48703554870783	4870524	429	0.00+00E	48703884870551	4870443	164	3.25E-26
CE10_4943	0	Intergenic	50475625047946	5047777	385	0.00+00E	50476805047795	5047735	116	5.73E-34
fimE	-48	Intergenic	51745595174954	5174728	396	0.00+00E	51746095174720	5174663	112	1.45E-08
yjiC	0	Intergenic	51892835189779	5189610	497	0.00+00E	51895465189702	5189653	157	3.65E-27
yhhZ	0	Intragenic	40292554029623	4029454	369	6.40E-322	40290614029192	4029138	132	2.26E-29
yfaL	0	Intergenic	26512392651608	2651399	370	8.47E-318	26507452650878	2650824	134	6.18E-13
eivC	-375	Intragenic	33602773360778	3360445	502	2.69E-314	33604123360544	3360493	133	8.52E-23
hutU	0	Intergenic	769533769906	769737	374	2.62E-312	769648769781	769727	134	2.00E-14
dusA	-266	Intragenic	48628534863311	4863013	459	1.23E-307	48622524862408	4862306	157	3.57E-33
sipB	0	Intergenic	43625094363016	4362847	508	1.02E-306	43628204362943	4362875	124	1.88E-25
CE10_4870	0	Intergenic	49748684975249	4975038	382	7.45E-303	48631244863266	4863178	143	2.15E-15
rfaY	0	Intragenic	42617654262267	4261929	503	4.35E-293	49749954975105	4975051	111	2.72E-38
fucA	-12	Intergenic	32859963286441	3286164	446	3.97E-291	32860953286228	3286149	134	1.41E-21
leuO	-90	Intergenic	9272193073	92888	353	5.01E-291	9283492931	92887	98	2.96E-16
yghJ	0	Intergenic	35674453567945	3567615	501	3.00E-283	35675383567665	3567579	128	7.89E-16
cmtB	0	Intragenic	34499003450402	3450233	503	1.08E-270	34500523450182	3450106	131	9.36E-16
ydeK	-49	Intergenic	17430921743461	1743292	370	9.24E-265	17432171743352	1743298	136	1.71E-19
CE10_2939	0	Intergenic	29964112996816	2996581	406	2.17E-264	29965662996705	2996651	140	1.34E-18
envR	0	Intergenic	38744403874808	3874610	369	6.73E-263	38745193874636	3874566	118	5.87E-21
caiT	-60	Intergenic	5020450678	50509	475	1.12E-260	5044250571	50517	130	1.62E-14
CE10_4228	-73	Intergenic	43050074305391	4305176	385	7.04E-259	43051084305261	4305163	154	7.41E-09
sfmA	0	Intergenic	561180561551	561349	372	9.25E-253	561286561403	561349	118	4.50E-31
yliE	-718	Intragenic	908923909268	909093	346	2.83E-243	909011909154	909066	144	3.70E-16
CE10_3627	0	Intergenic	37073663707869	3707701	504	2.06E-242	37076463707779	3707736	134	1.38E-13

yhfL	0	Intergenic	39448533945223	3945023	371	2.62E-240	39449453945046	3945001	102	1.47E-17
ycbQ	0	Intergenic	10391381039516	1039308	379	2.65E-235	10392781039383	1039330	106	2.83E-13
kpsM	-233	Intragenic	35503283550769	3550600	442	4.32E-233	35501893550321	3550267	133	7.16E-13
yjbE	0	Intergenic	48392104839675	4839506	466	1.67E-230	48394624839591	4839493	130	1.79E-15
CE10_1660	299	Intragenic	16908071691181	1691023	375	1.10E-227	16909901691128	1691045	139	1.47E-09
CE10_1948	-40	Intergenic	19709831971368	1971152	386	3.21E-212	19711191971281	1971227	163	1.67E-07
yeeN	0	Intergenic	22980042298367	2298203	364	6.41E-204	22980992298252	2298203	154	1.92E-10
CE10_4567	-60	Intergenic	46575074657867	4657703	361	1.60E-203	46576484657784	4657701	137	4.46E-18
CE10_4598	0	Intergenic	46858144686203	4686034	390	4.41E-200	46859914686151	4686046	161	7.97E-21
setC	-19	Intergenic	43580334358399	4358240	367	9.56E-199	43581684358290	4358216	123	6.06E-14
CE10_0066	0	Intergenic	7873879150	78986	413	4.80E-195	7883478948	78896	115	7.89E-17
yiiG	0	Intergenic	46513694651762	4651539	394	7.58E-194	46514974651615	4651561	119	7.52E-27
csiD	-303	Intragenic	31402843140638	3140454	355	3.30E-184	31404043140518	3140458	115	6.38E-21
stpA	0	Intergenic	31503873150730	3150557	344	5.20E-184	31504973150637	3150551	141	1.18E-12
CE10_1661	0	Intergenic	16926051692994	1692825	390	1.37E-181	16927671692883	1692821	117	7.50E-15
yiaW	0	Intergenic	42175894217945	4217759	357	2.10E-166	42176754217805	4217751	131	4.27E-12
ecpD	0	Intergenic	166102166449	166272	348	1.22E-165	166217166355	166272	139	6.19E-12
fimB	0	Intergenic	51735115173987	5173681	477	1.33E-164	51735965173706	5173649	111	3.52E-05
speF	-187	Intergenic	730553731056	730887	504	1.88E-164	730743730811	730784	69	1.12E-11
CE10_5175	999	Intragenic	52800075280442	5280177	436	3.62E-163	52809285281088	5281034	161	1.08E-26
fucP	0	Intragenic	32865833286944	3286776	362	2.65E-162	32867223286845	3286777	124	2.52E-23
yiaY	0	Intergenic	42223574222771	4222602	415	9.83E-157	42226234222735	4222681	113	5.49E-13
fdrA	0	Intergenic	549560550008	549839	449	7.72E-156	549686549819	549741	134	8.66E-16
yqiK	0	Intergenic	36477763648120	3647951	<u>3</u> 45	3.20E-155	36478553647992	36479 <u></u> 38	138	1.81E-10
ais	0	Intergenic	26773052677651	2677475	347	1.35E-151	26774142677528	2677464	115	3.48E-16
yfbL	0	Intergenic	26973982697781	2697568	384	5.01E-151	26974892697584	2697547	96	1.13E-11

ypdl	0	Intergenic	28081392808484	2808306	346	2.05E-147	28082252808359	2808279	135	7.36E-09
nanC	0	Intergenic	51723915172767	5172598	377	2.72E-144	51724515172570	5172517	120	4.46E-12
rpmE2	-210	Intergenic	281778282115	281951	338	6.69E-143	281850282013	281905	164	1.19E-08
yeiT	0	Intergenic	25393402539736	2539510	397	4.77E-137	25394682539591	2539520	124	5.37E-13
yobF	-202	Intergenic	21267242127140	2126973	417	1.52E-135	21269252127080	2127028	156	2.51E-12
yahL	0	Intergenic	326755327210	326924	456	2.96E-127	326904327028	326959	125	4.71E-11
CE10_0335	-24	Intergenic	370032370485	370193	454	3.63E-121	370106370265	370211	160	2.08E-09
CE10_3982	0	Intragenic	40450744045400	4045219	327	1.26E-120	40451414045246	4045203	106	1.91E-11
agaB	0	Intergenic	37468843747262	3747100	379	9.08E-109	37470003747149	3747095	150	3.80E-16
neuO	59	Intragenic	839634840140	839803	507	1.98E-106	839932840043	839987	112	4.87E-07
ycbR	0	Intergenic	10398271040283	1039995	457	1.61E-103	10399721040091	1040027	120	3.18E-18
yjeJ	0	Intergenic	49935864993924	4993757	339	1.01E-101	49937124993820	4993766	109	6.35E-11

Table S-4 CE10 DsdC1 binding sites (+ D-ser).

				Replicate 1			Replicate 2				
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p</i> -value	Co-ordinates	Centre	Length	<i>p-</i> value	
CE10_0023	-671	Intragenic	2749927746	27649	248	0.00E+00	2743927831	27664	393	7.89E-127	
tauA	-160	Intergenic	365260365487	365354	228	0.00E+00	365165365532	365363	368	2.09E-98	
wbbC	0	Intragenic	23679102368130	2368008	221	0.00E+00	23677802368239	2368070	460	3.24E-141	
CE10_2740	-203	Intergenic	27888632789052	2788948	190	0.00E+00	27899782790338	2790146	361	3.88E-100	
dsdC1	-5	Intergenic	27913252791520	2791423	196	0.00E+00	27912432791582	2791413	340	3.73E-196	
CE10_2939	0	Intergenic	29965312996749	2996652	219	0.00E+00	29964392996793	2996624	355	2.76E-77	
ygeG	0	Intergenic	33435543343783	3343652	230	0.00E+00	33429983343347	3343186	350	5.89E-100	
CE10_3282	0	Intergenic	33476613347860	3347759	200	0.00E+00	33475723348074	3347740	503	1.92E-126	

eprH	-55	Intergenic	33516833351896	3351799	214	0.00E+00	33515663351932	3351763	367	2.50E-88
neuB	-378	Intergenic	35482873548559	3548384	273	0.00E+00	35482213548619	3548480	399	1.97E-111
yhhZ	0	Intergenic	40290314029235	4029138	205	0.00E+00	40293344029732	4029497	399	2.42E-77
yiaW	0	Intergenic	42176484217872	4217775	225	0.00E+00	42175974217952	4217784	356	4.65E-42
CE10_4160	0	Intragenic	42336424233911	4233814	270	0.00E+00	42334614233943	4233774	483	3.25E-97
rfaL	615	Intragenic	42582994258534	4258437	236	0.00E+00	42582484258605	4258436	358	2.53E-115
waaV	0	Intergenic	42601054260377	4260280	273	0.00E+00	42600394260378	4260209	340	6.41E-100
waaT	0	Intergenic	42629184263149	4263016	232	0.00E+00	42627994263173	4263006	375	1.34E-121
CE10_4229	0	Intergenic	43083174308519	4308422	203	0.00E+00	43082394308607	4308409	369	1.28E-72
dsdC2	0	Intergenic	43323494332573	4332447	225	0.00E+00	43322724332621	4332452	350	5.07E-201
CE10_4270	0	Intragenic	43473384347592	4347497	255	0.00E+00	43472554347740	4347425	486	7.41E-121
sipD	0	Intergenic	43658604366057	4365960	198	0.00E+00	43656034366105	4365937	503	4.38E-86
CE10_4297	0	Intergenic	43674704367709	4367612	240	0.00E+00	43680274368395	4368231	369	5.29E-74
yjbE	-61	Intergenic	48393514839589	4839492	239	0.00E+00	48392614839654	4839430	394	9.42E-73
espX4	0	Intragenic	48526574852854	4852754	198	0.00E+00	48526054853086	4852775	482	8.16E-99
ubiC	0	Intragenic	48534014853639	4853499	239	0.00E+00	48533304853734	4853565	405	6.39E-119
уjbМ	0	Intragenic	48622914862525	4862389	235	0.00E+00	48622084862551	4862375	344	8.68E-96
CE10_4768	317	Intragenic	48703444870630	4870442	287	0.00E+00	48703174870811	4870487	495	2.86E-98
CE10_4870	0	Intergenic	49749544975169	4975072	216	0.00E+00	49748724975235	4975066	364	2.33E-75
CE10_4943	0	Intergenic	50476405047864	5047738	225	0.00E+00	50475705047909	5047740	340	2.50E-93
yjiC	-179	Intergenic	51894725189709	5189613	238	0.00E+00	51893255189740	5189571	416	1.33E-108
epaS	265	Intragenic	33540763354339	3354242	264	3.10E-322	33540223354405	3354242	384	3.64E-116
wzy	-116	Intergenic	23689962369247	2369093	252	1.20E-320	23689122369293	2369124	382	5.19E-111
CE10_5175	0	Intragenic	52808605281131	5281034	272	6.89E-319	52808035281146	5280973	344	6.96E-73
lpfA	-13	Intergenic	44565134456771	4456674	259	6.76E-318	44564364456798	4456603	363	4.85E-76
WZX	0	Intergenic	23736752373872	2373770	198	1.03E-315	23735702373904	2373739	335	1.04E-74
slp	-116	Intergenic	41023604102572	4102475	213	4.15E-312	41019324102290	4102101	359	9.09E-99
envR	-40	Intergenic	38745013874703	3874606	203	6.27E-311	38744403874838	3874610	399	1.01E-73
setC	-60	Intergenic	43581384358358	4358235	221	4.00E-300	43580634358415	4358232	353	1.34E-56

sfmA	-14	Intergenic	561287561490	561385	204	2.03E-298	561191561547	561360	357	1.03E-65
CE10_3398	-118	Intergenic	34708623471063	3470966	202	4.24E-297	34707963471222	3470966	427	1.14E-55
CE10_4363	504	Intragenic	44455784445794	4445697	217	1.65E-293	44455434445908	4445713	366	8.52E-110
yhiM	0	Intergenic	40832764083495	4083398	220	4.91E-289	40831284083475	4083298	348	7.63E-93
ygiL	0	Intergenic	36416783641883	3641776	206	7.17E-286	36416003641975	3641769	376	2.33E-90
CE10_3627	-18	Intergenic	37076543707851	3707755	198	4.22E-284	37074933707888	3707719	396	1.23E-73
yhal	0	Intergenic	37139983714219	3714096	222	1.23E-276	37139253714268	3714095	344	1.69E-58
eivC	-437	Intragenic	33603393360630	3360437	292	7.47E-275	33603253360830	3360495	506	3.90E-64
CE10_0067	-52	Intragenic	7955779762	79665	206	5.62E-273	7949779989	79666	493	3.48E-111
pitB	-45	Intergenic	35920133592252	3592155	240	8.54E-273	35919083592286	3592117	379	9.69E-67
espY4	0	Intragenic	44416334441849	4441731	217	1.33E-270	44395644439923	4439734	360	7.93E-101
yqel	-39	Intergenic	33405593340755	3340657	197	2.99E-270	33403643340802	3340634	439	4.91E-67
torY	-12	Intergenic	21768152177022	2176913	208	1.36E-264	21767452177084	2176915	340	1.67E-57
fepE	-80	Intergenic	638504638708	638602	205	1.92E-262	638447638874	638617	428	2.12E-33
CE10_4312	398	Intragenic	43903734390601	4390505	229	7.09E-262	43901434390586	4390417	444	5.52E-88
yfaL	-40	Intergenic	26513102651511	2651408	202	7.95E-256	26512242651650	2651394	427	3.47E-87
prgl	-96	Intragenic	33505203350752	3350656	233	5.93E-251	33504693350830	3350638	362	5.96E-100
yhaC	716	Intragenic	37303443730635	3730538	292	2.88E-248	37302453730703	3730535	459	3.01E-110
yadN	-146	Intergenic	167088167288	167192	201	3.31E-243	166959167353	167184	395	1.95E-85
epaO	-41	Intergenic	33567173356947	3356814	231	5.27E-237	33565283356943	3356774	416	1.14E-79
CE10_4466	-433	Intragenic	45533604553551	4553453	192	5.16E-236	45532494553607	4553438	359	6.84E-91
yfcV	-209	Intergenic	27699062770124	2770029	219	5.43E-236	27697102770190	2770021	481	3.64E-89
speF	-416	Intergenic	730782730985	730888	204	2.45E-235	730580731027	730858	448	2.97E-58
rfaY	0	Intragenic	42618424262076	4261940	235	5.12E-234	42617684262126	4261938	359	5.43E-75
CE10_4598	0	Intergenic	46859494686161	4686047	213	8.07E-234	46858204686203	4686034	384	3.02E-58
garP	0	Intragenic	37355863735781	3735684	196	5.16E-231	37355003735905	3735670	406	9.92E-53
tnaA	0	Intergenic	44304004430614	4430498	215	9.00E-231	44301004430607	4430438	508	1.44E-51
yqiK	0	Intergenic	36478403648034	3647938	195	2.68E-229	36477093648091	3647922	383	9.47E-43
CE10_4228	-155	Intergenic	43050944305309	4305212	216	2.04E-228	43050174305384	4305215	368	4.03E-73

yghT	0	Intergenic	35895743589779	3589672	206	4.42E-228	35894943589850	3589681	357	5.52E-50
yiiG	0	Intergenic	46514474651642	4651545	196	7.59E-228	46513804651744	4651550	365	2.49E-47
CE10_4613	0	Intergenic	47038324704039	4703929	208	7.96E-223	47036974704049	4703880	353	9.86E-58
CE10_3508	0	Intergenic	35787433578967	3578870	225	1.03E-222	35785573579003	3578834	447	7.73E-57
ytcA	-32	Intergenic	49042884904497	4904384	210	4.02E-221	49041084904552	4904384	445	3.10E-42
kpsF	-306	Intergenic	35334573533707	3533614	251	2.85E-220	35334433533784	3533615	342	2.02E-101
cmtB	0	Intragenic	34500393450329	3450233	291	4.82E-218	34499103450401	3450233	492	6.04E-73
sipB	0	Intergenic	43628104363009	4362913	200	4.07E-216	43625234363030	4362861	508	1.28E-67
ybcK	0	Intragenic	569810570028	569907	219	4.50E-216	569765570178	569935	414	1.87E-67
CE10_4997	-145	Intergenic	51066305106836	5106727	207	1.89E-212	51065315106937	5106701	407	1.17E-69
yghJ	0	Intergenic	35674813567702	3567579	222	2.98E-212	35674393567947	3567609	509	6.03E-53
fdrA	-40	Intergenic	549671549893	549796	223	4.04E-211	549602549982	549816	381	1.17E-48
yfgH	0	Intergenic	29381032938308	2938211	206	3.32E-208	29380132938372	2938180	360	1.28E-42
espX1	0	Intergenic	2849428696	28587	203	2.06E-208	2836428727	28558	364	1.72E-93
ecpD	0	Intergenic	166165166403	166306	239	4.46E-207	166136166494	166305	359	1.29E-51
caiT	0	Intergenic	5006950289	50192	221	5.56E-199	5035050667	50498	318	7.46E-57
yicO	0	Intergenic	43809064381144	4381052	239	2.01E-198	43808174381160	4380987	344	3.12E-51
CE10_4567	-102	Intergenic	46576094657825	4657707	217	2.19E-196	46575284657918	4657698	391	1.82E-46
yhfL	0	Intergenic	39449033945145	3945001	243	4.41E-196	39448723945215	3945042	344	4.10E-55
yliE	796	Intragenic	908996909193	909096	198	1.42E-195	908922909264	909092	343	7.78E-52
yiaY	-38	Intergenic	42225194222737	4222640	219	1.65E-194	42223724222797	4222628	426	5.94E-51
fimE	-169	Intergenic	51746295174833	5174736	205	3.78E-194	51745405174936	5174710	397	1.07E-86
sat	0	Intergenic	35175173517729	3517614	213	1.46E-192	35174363517832	3517606	397	1.07E-58
agaB	0	Intergenic	37469623747189	3747092	228	5.33E-191	37469103747252	3747086	343	2.30E-37
yajR	-72	Intergenic	429382429611	429480	230	1.44E-190	429398429750	429581	353	2.38E-66
hutU	-51	Intergenic	769569769824	769727	256	1.87E-190	769528769895	769726	368	4.87E-62
neuA	0	Intragenic	35467983547023	3546926	226	7.23E-187	35467113547074	3546941	364	4.16E-62
adiY	-41	Intergenic	49372334937436	4937331	204	1.46E-184	49370184937510	4937348	493	1.84E-47
ygcG	0	Intergenic	32563153256517	3256420	203	3.92E-183	32562393256739	3256409	501	3.71E-60

fucA	-74	Intergenic	32860523286271	3286149	220	1.64E-182	32860263286389	3286220	364	5.68E-67
CE10_3076	0	Intergenic	31382783138518	3138421	241	1.80E-182	31380283138521	3138197	494	8.55E-77
kpsM	-524	Intergenic	35505433550703	3550600	161	3.08E-181	35504283550768	3550597	341	2.02E-50
CE10_0335	-219	Intergenic	370073370290	370171	218	3.30E-180	370014370522	370184	509	3.69E-34
CE10_0889	0	Intergenic	941040941265	941168	226	1.17E-180	941351941810	941515	460	9.99E-86
fucP	133	Intragenic	32867003286946	3286798	247	6.66E-178	32866453286999	3286811	355	9.10E-35
ycdT	-65	Intergenic	11668241167033	1166936	210	9.38E-178	11667551167115	1166925	361	5.86E-60
CE10_0818	0	Intragenic	865714865932	865835	219	1.77E-176	865675866139	865844	465	4.21E-80
ycbQ	-5	Intergenic	10392101039454	1039357	245	6.27E-175	10391401039489	1039310	350	5.18E-70
nmpC	0	Intergenic	25019162502198	2502014	283	1.89E-174	25018892502245	2502076	357	2.96E-64
csiD	-377	Intergenic	31403573140564	3140454	208	6.51E-174	31402883140657	3140458	370	5.22E-44
CE10_3557	478	Intragenic	36274373627729	3627535	293	6.87E-174	36273433627745	3627512	403	6.65E-55
fimZ	398	Intragenic	567147567345	567245	199	1.06E-172	567095567597	567265	503	1.49E-38
iraP	-31	Intergenic	380127380352	380255	226	1.63E-172	380050380418	380220	369	1.43E-58
yfbL	0	Intergenic	26974492697698	2697547	250	4.75E-172	26973762697715	2697546	340	8.05E-51
CE10_5091	-2	Intergenic	52107215210948	5210852	228	1.60E-171	52106885211031	5210858	344	1.44E-85
leu0	-181	Intergenic	9277092982	92887	213	5.50E-171	9271993064	92885	346	5.60E-61
gadA	-136	Intergenic	41253634125562	4125465	200	1.99E-167	41252314125617	4125450	387	1.35E-36
ibrA	-245	Intergenic	23134562313668	2313582	213	4.87E-166	23133962313798	2313629	403	1.05E-77
gadX	-69	Intergenic	41236274123890	4123794	264	3.56E-162	41234224123929	4123760	508	3.30E-51
dusA	-308	Intergenic	48629824863269	4863176	288	4.14E-161	48628514863319	4863150	469	8.07E-79
yeiT	-45	Intergenic	25394012539612	2539515	212	1.15E-159	25393672539714	2539545	348	3.52E-32
yjeJ	0	Intergenic	49936294993865	4993771	237	3.01E-159	49935564993922	4993726	367	1.55E-42
CE10_4295	0	Intergenic	43648254365038	4364941	214	3.42E-159	43647404365136	4364908	397	6.97E-59
yebN	-218	Intergenic	21241962124399	2124302	204	1.17E-158	21239682124471	2124302	504	1.15E-41
yehD	0	Intergenic	24551982455489	2455392	292	5.01E-157	24550672455497	2455329	431	1.36E-64
CE10_0523	-40	Intergenic	575784576005	575882	222	7.25E-155	575775576281	575943	507	6.50E-44
tdcR	0	Intragenic	37285053728731	3728638	227	1.96E-153	37284263728879	3728593	454	4.00E-55
CE10_4234	0	Intragenic	43130334313233	4313131	201	2.02E-151	43129614313314	4313131	354	2.88E-56

ysdS	0	Intergenic	22497612250048	2249951	288	5.19E-146	22497112250083	2249914	373	5.24E-63
eivF	-67	Intergenic	33656263365891	3365724	266	5.28E-144	33655423365916	3365747	375	1.33E-57
CE10_4553	0	Intergenic	46412854641558	4641383	274	6.98E-143	46412424641633	4641404	392	1.34E-62
yiaT	0	Intergenic	42150614215279	4215182	219	5.40E-142	42149884215356	4215187	369	3.42E-45
CE10_3277	0	Intragenic	33420093342207	3342107	199	7.34E-142	33419093342253	3342079	345	1.84E-61
CE10_3982	0	Intragenic	40451064045312	4045203	207	1.22E-141	40450364045387	4045219	352	6.70E-42
matA	-95	Intergenic	280175280390	280295	216	4.62E-141	280131280478	280301	348	4.97E-63
CE10_4519	0	Intragenic	46053624605587	4605490	226	1.43E-140	46052984605800	4605464	503	4.75E-33
ydeK	-129	Intergenic	17431721743407	1743311	236	2.12E-138	17431001743465	1743267	366	2.67E-58
eivG	0	Intragenic	33646903364893	3364787	204	6.94E-137	33645933364953	3364758	361	1.79E-38
ybcM	0	Intragenic	571111571326	571229	216	1.92E-136	571058571422	571253	365	1.33E-43
CE10_0264	-129	Intergenic	289056289330	289154	275	9.27E-136	289032289427	289202	396	5.29E-36
ybdN	-50	Intergenic	656899657119	656997	221	9.56E-133	656777657283	656947	507	2.34E-43
msbB	0	Intergenic	51422215142418	5142322	198	1.67E-132	51421435142485	5142313	343	5.59E-36
yegH	-88	Intergenic	24017972402036	2401895	240	2.68E-132	24016242402086	2401919	463	2.66E-45
stpA	0	Intergenic	31504413150636	3150539	196	2.77E-132	31503623150767	3150531	406	3.51E-38
CE10_2689	-7	Intergenic	27344952734703	2734593	209	4.65E-132	27343792734787	2734618	409	1.60E-46
CE10_5099	-189	Intergenic	52206635220891	5220794	229	8.19E-130	52206195221045	5220788	427	9.50E-53
ais	0	Intergenic	26773702677597	2677500	228	8.62E-130	26773042677649	2677480	346	7.77E-38
CE10_0734	0	Intergenic	789835790057	789932	223	3.57E-126	789781790118	789951	338	3.55E-35
CE10_0366	0	Intragenic	403466403659	403562	194	1.01E-124	403407403808	403575	402	2.50E-56
rpmE2	-259	Intergenic	281827282055	281958	229	7.77E-124	281766282121	281935	356	6.00E-44
yjcS	0	Intergenic	49064024906633	4906536	232	1.54E-122	49062934906678	4906510	386	1.42E-20
eutS	-77	Intergenic	28844282884644	2884526	217	1.54E-121	28843212884700	2884491	380	7.52E-21
ykgl	0	Intergenic	296714296948	296852	235	5.29E-121	296520296971	296802	452	3.14E-49
ydeP	-21	Intergenic	17331971733430	1733295	234	1.76E-120	17331501733514	1733320	365	1.09E-39
ycbR	0	Intergenic	10399261040129	1040024	204	4.40E-118	10398651040268	1040029	404	2.23E-25
CE10_1660	0	Intergenic	16913771691573	1691470	197	6.44E-116	16905251690914	1690695	390	2.80E-52
CE10_3790	-120	Intergenic	38661703866358	3866272	189	2.74E-116	38660953866520	3866265	426	2.63E-39

ugd	-66	Intergenic	23616582361857	2361756	200	1.90E-115	23614432361917	2361748	475	1.01E-34
yeeN	-21	Intergenic	22980602298291	2298196	232	2.40E-115	22979912298362	2298196	372	2.61E-48
fimB	-128	Intergenic	51735985173794	5173696	197	1.51E-114	51734585173870	5173701	413	9.51E-54
sfmC	0	Intergenic	562157562355	562258	199	6.27E-114	562039562383	562208	345	4.47E-24
ttdR	344	Intragenic	36607883661007	3660910	220	2.18E-113	36607283661075	3660906	348	4.99E-25
glgS	-21	Intergenic	36470683647359	3647262	292	5.66E-112	36470093647421	3647179	413	2.37E-36
CE10_3626	0	Intragenic	37068993707188	3706995	290	5.89E-112	37068493707273	3707017	425	3.39E-48
frc	-189	Intergenic	28069332807132	2807029	200	1.08E-111	28068582807355	2807027	498	3.98E-33
yegR	0	Intergenic	24326622432859	2432760	198	1.90E-110	24324202432900	2432733	481	2.75E-31
CE10_1948	132	Intergenic	19710881971324	1971227	237	5.92E-110	19709821971354	1971152	373	2.15E-60
CE10_4706	0	Intergenic	48113424811545	4811448	204	6.76E-108	48112754811649	4811440	375	6.56E-19
ybdO	0	Intergenic	657859658149	658053	291	1.45E-107	657677658144	657975	468	1.13E-55
rfbC	0	Intragenic	23744162374657	2374560	242	1.47E-106	23743472374712	2374543	366	1.22E-38
focA	-136	Intergenic	994945995227	995042	283	2.04E-106	994832995219	995053	388	2.10E-47
CE10_0066	-319	Intergenic	7840778640	78505	234	3.75E-106	7882879327	78997	500	1.85E-45
yebB	0	Intergenic	21650152165237	2165140	223	3.18E-105	21649142165333	2165084	420	2.72E-36
rcsA	-174	Intergenic	22395062239729	2239604	224	1.76E-104	22394502239788	2239620	339	6.76E-26
CE10_1671	0	Intragenic	17030201703237	1703140	218	2.06E-103	17029341703307	1703104	374	8.84E-29
ypdl	0	Intergenic	28082002808425	2808328	226	7.97E-103	28081332808473	2808306	341	7.17E-50
ymgG	-64	Intergenic	13557741356066	1355872	293	5.18E-100	13557561356137	1355968	382	3.68E-52
yobF	-398	Intergenic	21269202127135	2127038	216	1.83E-99	21267252127180	2127011	456	1.04E-34
CE10_4717	-163	Intragenic	48210404821329	4821234	290	2.00E-98	48209874821333	4821157	347	2.37E-27
nanC	0	Intergenic	51724495172718	5172547	270	2.52E-98	51723845172835	5172554	452	3.17E-49
hlyE	0	Intergenic	13631831363379	1363279	197	7.77E-98	13630691363423	1363254	355	3.71E-42
yfdF	0	Intragenic	27769982777270	2777173	273	8.77E-98	27767952777230	2776961	436	7.15E-51
yahL	0	Intergenic	326795327027	326893	233	1.72E-96	326738327153	326908	416	2.19E-42
CE10_1661	-8	Intergenic	16927521692955	1692849	204	2.21E-94	16926101692983	1692814	374	8.73E-41
nanR	-71	Intergenic	38250003825209	3825116	210	3.06E-93	38249593825338	3825169	380	2.19E-34
yjdA	-14	Intergenic	49261524926382	4926250	231	4.06E-93	49260724926458	4926239	387	3.31E-38

yiiE	-72	Intergenic	46436474643845	4643748	199	4.16E-93	46435954643982	4643765	388	2.08E-38
dpiB	-28	Intergenic	670822671031	670934	210	3.28E-92	670615671120	670952	506	8.14E-53
CE10_0275	0	Intragenic	303267303554	303457	288	1.47E-91	303067303573	303404	507	4.24E-43
feoA	-134	Intergenic	39809443981174	3981042	231	5.68E-91	39809033981321	3981073	419	1.07E-19
ybbW	0	Intergenic	540830541052	540928	223	1.87E-90	540772541143	540942	372	4.05E-27
CE10_0560	185	Intergenic	604888605102	605005	215	8.20E-90	604795605170	604965	376	5.60E-39
CE10_0290	0	Intergenic	320948321212	321041	265	3.26E-86	320887321231	321063	345	9.13E-39
CE10_0724	-72	Intergenic	777616777815	777712	200	2.72E-86	777554777900	777723	347	8.78E-51
ompN	-2	Intergenic	16055111605798	1605702	288	1.11E-85	16054721605820	1605642	349	1.44E-41
CE10_4709	0	Intergenic	48131314813407	4813229	277	4.69E-83	48130654813417	4813250	353	4.26E-21
CE10_3786	35	Intragenic	38624733862763	3862666	291	5.35E-82	38624923862833	3862662	342	3.94E-27
CE10_3301	53	Intragenic	33674593367708	3367557	250	1.32E-80	33663103366720	3366556	411	1.06E-40
yiaO	0	Intragenic	42049474205166	4205070	220	1.22E-77	42048284205239	4205070	412	1.07E-24
ydj0	0	Intergenic	20334502033735	2033638	286	7.78E-74	20330792033399	2033253	321	8.73E-58
yhbX	345	Intragenic	37786583778875	3778756	218	8.12E-74	37785773778957	3778747	381	3.79E-28
tsx2	0	Intergenic	47004534700681	4700551	229	5.95E-72	47003844700722	4700553	339	5.83E-26
yfgF	-101	Intragenic	29375532937750	2937653	198	7.91E-72	29374132937810	2937641	398	2.80E-31
araE	-58	Intergenic	33345343334729	3334632	196	2.18E-71	33344353334801	3334632	367	1.26E-21
agaC	0	Intragenic	37475493747788	3747647	240	3.24E-70	37474543747902	3747735	449	9.92E-12
суоА	-269	Intergenic	436794436990	436892	197	4.01E-70	436528437034	436865	507	1.87E-25
pagP	0	Intergenic	675237675495	675335	259	3.40E-70	675121675484	675316	364	7.51E-49
ybeF	-190	Intergenic	680395680594	680499	200	2.07E-69	679992680353	680162	362	1.15E-34
yjgN	0	Intragenic	51100335110322	5110225	290	3.40E-68	51099295110378	5110099	450	1.01E-36
yahA	-152	Intergenic	310056310291	310195	236	3.32E-65	309708310090	309878	383	6.96E-30
ydjE	769	Intragenic	20716052071861	2071764	257	5.06E-64	20716012071970	2071771	370	1.14E-26
CE10_0258	0	Intergenic	283608283893	283706	286	2.65E-64	283551283948	283779	398	1.13E-42
yceJ	0	Intragenic	11901371190368	1190234	232	3.88E-63	11900931190540	1190263	448	3.09E-22
yciD	-271	Intergenic	15008351501071	1500974	237	3.97E-62	15003101500676	1500509	367	8.60E-22
тосА	0	Intragenic	33839313384148	3384051	218	1.57E-61	33838753384289	3384044	415	1.92E-09

CE10_5101	0	Intragenic	52238355224127	5223933	293	2.44E-59	52238245224191	5223994	368	1.94E-14
sfmH	159	Intragenic	565835566060	565930	226	1.15E-55	565700566062	565869	363	1.34E-17
gadB	-153	Intergenic	17188851719158	1719062	274	2.52E-54	17187631719137	1718933	375	3.85E-29
yffB	0	Intergenic	28995482899793	2899696	246	7.69E-54	28994332899823	2899602	391	1.12E-30
neuO	269	Intragenic	839812840043	839946	232	5.43E-50	839606839902	839776	297	1.89E-19
CE10_4222	0	Intergenic	42990494299300	4299203	252	8.13E-48	42989344299442	4299104	509	2.55E-18

Table S-5 CE10 DsdC2 binding sites (no D-ser).

				Replicate 1				Replicate 2		
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p</i> -value	Co-ordinates	Centre	Length	<i>p</i> -value
CE10_0023	-534	Intragenic	2736227811	27681	450	0.00E+00	2744227871	27704	430	9.35E-213
усдХ	-686	Intergenic	13421331342499	1342311	367	0.00E+00	13420231342527	1342193	505	1.23E-214
wbbC	0	Intragenic	23678102368203	2367985	394	0.00E+00	23678142368253	2367984	440	0.00E+00
dsdC1	0	Intergenic	27912402791618	2791420	379	0.00E+00	27912262791600	2791395	375	0.00E+00
waaT	0	Intragenic	42627744263197	4263021	424	0.00E+00	42627684263185	4263017	418	8.06E-166
dsdC2	0	Intergenic	43322794332649	4332458	371	0.00E+00	43322764332631	4332446	356	0.00E+00
CE10_4270	0	Intragenic	43472654347784	4347430	520	0.00E+00	43472644347758	4347434	495	7.32E-239
CE10_4363	1061	Intragenic	44447044445178	4445027	475	0.00E+00	44455024445873	4445654	372	1.25E-237
lpfA	0	Intergenic	44564224456804	4456599	383	0.00E+00	44563924456771	4456628	380	1.11E-108
vioA	0	Intragenic	23725162372867	2372689	352	8.90E-323	23724232372664	2372593	242	1.76E-150
wzy	0	Intergenic	23688962369216	2369049	321	1.82E-315	23688712369265	2369173	395	4.50E-193
neuB	-421	Intergenic	35483303548635	3548441	306	1.37E-302	35482513548595	3548412	345	9.22E-194
CE10_2740	-18	Intergenic	27886782789063	2788885	386	4.43E-302	27886652789166	2789003	502	7.81E-172
waaV	0	Intergenic	42599914260437	4260258	447	7.38E-296	42600824260441	4260280	360	2.76E-188

rfaL	499	Intragenic	42582364258626	4258447	391	2.78E-295	42582764258652	4258442	377	1.61E-154
epaS	188	Intragenic	33540653354430	3354251	366	5.54E-287	33540223354464	3354304	443	8.69E-206
ubiC	706	Intragenic	48533394853690	4853591	352	1.30E-281	48532664853700	4853584	435	7.05E-211
yfcV	-55	Intergenic	27697522770201	2769931	450	1.33E-278	27696932770190	2770021	498	1.69E-116
yjbM	0	Intragenic	48622454862634	4862363	390	7.55E-274	48622454862639	4862414	395	1.45E-131
yjiC	0	Intergenic	51892715189805	5189628	535	1.45E-264	51893025189756	5189464	455	1.38E-162
espX1	0	Intergenic	2837028773	28600	404	1.10E-262	2820928538	28287	330	6.41E-134
ygiL	0	Intergenic	36415693642041	3641733	473	3.65E-259	36415723642003	3641740	432	1.39E-111
yhaC	667	Intragenic	37302873730712	3730466	426	4.99E-252	37304473730759	3730597	313	2.64E-165
CE10_4160	0	Intragenic	42334644233945	4233766	482	2.26E-250	42335134233854	4233685	342	1.41E-179
ybjQ	-414	Intragenic	942239942775	942418	537	2.53E-243	942545942818	942645	274	5.34E-117
CE10_0067	0	Intergenic	7947279809	79662	338	4.14E-243	7962480018	79862	395	7.90E-167
tauA	-100	Intergenic	365174365547	365353	374	1.34E-241	365200365553	365384	354	1.45E-127
espX4	0	Intragenic	48525884853001	4852768	414	4.71E-239	48526134852982	4852813	370	1.46E-150
yjbE	0	Intergenic	48393074839675	4839496	369	6.74E-237	48393054839662	4839494	358	1.31E-110
hutU	-14	Intergenic	769437769861	769682	425	1.17E-236	769481769849	769651	369	2.76E-105
CE10_4870	0	Intergenic	49748494975240	4975061	392	5.12E-234	49748654975238	4975086	374	2.38E-104
yhhZ	0	Intergenic	40289724029264	4029151	293	3.40E-231	40290284029274	4029198	247	5.48E-104
CE10_4297	0	Intergenic	43673414367731	4367502	391	2.40E-228	43672944367769	4367619	476	7.47E-108
kpsF	-102	Intergenic	35333793533911	3533557	533	3.43E-227	35333613533868	3533531	508	6.94E-156
ibrA	-228	Intergenic	23134392313870	2313580	432	2.33E-226	23133522313794	2313522	443	2.46E-114
dusA	-227	Intragenic	48629434863300	4863027	358	6.78E-226	48629214863413	4863244	493	8.59E-143
CE10_4943	0	Intergenic	50475485047940	5047770	393	6.65E-225	50476025047974	5047772	373	4.37E-143
CE10_0818	0	Intragenic	865658866109	865838	452	9.36E-203	865680866090	865850	411	5.01E-107
yqel	0	Intergenic	33402613340795	3340619	535	5.84E-201	33403763340781	3340630	406	2.98E-106
sipB	0	Intergenic	43625314363052	4362886	522	1.32E-200	43625454362997	4362828	453	1.78E-113
yfaL	0	Intergenic	26512122651655	2651388	444	3.05E-198	26505982651022	2650754	425	2.54E-62

cmtB	0	Intragenic	34499793450401	3450155	423	3.05E-193	34499343450266	3450154	333	6.45E-75
leuO	-103	Intergenic	9269793060	92877	364	2.90E-190	9268593057	92888	373	2.35E-108
sfmA	0	Intergenic	561144561543	561365	400	9.68E-188	561186561544	561375	359	5.48E-105
nmpC	0	Intergenic	25018822502248	2502062	367	9.00E-185	25019152502252	2502082	338	4.42E-84
envR	0	Intergenic	38744323874842	3874602	411	3.50E-184	38744413874892	3874608	452	1.39E-107
CE10_1948	0	Intergenic	19709991971344	1971161	346	6.71E-179	19709751971377	1971145	403	9.16E-88
ykgl	0	Intragenic	296587297000	296821	414	1.03E-177	296534296957	296802	424	5.01E-114
CE10_4228	-48	Intergenic	43050074305416	4305187	410	2.78E-177	43050074305370	4305176	364	3.90E-117
yadN	-20	Intergenic	166962167347	167171	386	2.17E-175	166987167325	167156	339	2.42E-149
yhal	0	Intergenic	37139353714331	3714114	397	5.08E-174	37139323714346	3714096	415	7.53E-92
CE10_2939	0	Intergenic	29964282996801	2996622	374	1.64E-172	29963952996787	2996556	393	1.02E-72
ecpD	0	Intergenic	166089166455	166319	367	5.10E-171	166137166580	166307	444	1.51E-69
ysdS	-2	Intergenic	22496962249982	2249774	287	9.91E-170	22496972250095	2249928	399	8.53E-103
fimE	0	Intergenic	51745405175005	5174719	466	2.90E-167	51745535174991	5174706	439	1.24E-115
eivF	0	Intergenic	33655373365942	3365766	406	3.43E-167	33654763365951	3365641	476	2.06E-86
CE10_5099	-53	Intergenic	52206155221027	5220787	413	4.82E-167	52208465221065	5220944	220	3.91E-60
CE10_2689	0	Intergenic	27343782734801	2734629	424	8.09E-166	27343362734811	2734648	476	1.47E-88
CE10_4295	0	Intragenic	43646214365097	4364979	477	8.67E-166	43646364365088	4364974	453	7.28E-86
yfdF	0	Intergenic	27767522777229	2776930	478	2.97E-164	27767972777268	2776946	472	2.01E-82
ycbQ	0	Intergenic	10390761039514	1039335	439	5.13E-162	10391431039484	1039313	342	7.36E-104
yiiG	0	Intergenic	46513544651747	4651569	394	9.84E-162	46513734651738	4651542	366	6.90E-60
CE10_3508	0	Intergenic	35786223579000	3578826	379	6.22E-154	35785963578958	3578866	363	4.72E-77
CE10_3627	0	Intergenic	37075353707897	3707711	363	1.21E-152	37074733707903	3707634	431	8.84E-101
ymgG	0	Intergenic	13557051356177	1355885	473	3.86E-152	13557031356174	1355872	472	1.75E-83
fucA	-48	Intergenic	32860263286411	3286206	386	8.73E-149	32859813286374	3286151	394	2.09E-114
torY	0	Intergenic	21767272177084	2176887	358	2.30E-148	21767442177192	2176914	449	6.53E-80
kpsM	-372	Intergenic	35503913550760	3550608	370	2.32E-148	35504323550730	3550509	299	1.12E-112

matA	-57	Intergenic	280137280561	280314	425	7.16E-147	280121280598	280262	478	2.11E-86
CE10_4598	0	Intragenic	46858494686220	4686045	372	1.38E-146	46857794686266	4686099	488	2.64E-60
ydjO	225	Intragenic	20330832033319	2033244	237	4.06E-146	20333422033737	2033576	396	3.47E-90
yfbL	0	Intergenic	26973812697743	2697560	363	2.99E-145	26973792697799	2697547	421	1.31E-74
ygcG	0	Intergenic	32562403256635	3256419	396	6.84E-145	32562653256590	3256454	326	2.13E-89
yhfL	0	Intergenic	39448423945211	3945021	370	2.46E-144	39448503945263	3945015	414	2.95E-107
ycdT	0	Intergenic	11667501167135	1166927	386	2.46E-142	11666951167145	1166976	451	2.84E-91
yliE	650	Intragenic	908860909306	909139	447	1.70E-139	908896909299	909149	404	2.95E-70
CE10_4613	0	Intergenic	47037064704134	4703859	429	1.40E-137	47037164704119	4703886	404	1.55E-87
ydeK	-14	Intergenic	17430571743518	1743342	462	2.95E-136	17430811743453	1743251	373	1.87E-63
yiaY	0	Intergenic	42224094222788	4222589	380	3.93E-136	42223844222793	4222553	410	8.17E-72
caiT	0	Intergenic	5002450329	50201	306	4.09E-135	5002350271	50191	249	7.11E-115
iraP	0	Intergenic	380060380434	380239	375	5.10E-135	379991380420	380286	430	2.05E-79
yajR	-8	Intergenic	429318429824	429492	507	9.68E-135	429366429789	429533	424	4.88E-111
yghJ	0	Intragenic	35674343567898	3567611	465	2.95E-134	35674703567875	3567638	406	1.60E-103
pagP	-249	Intergenic	674770675139	674944	370	3.87E-132	675168675524	675334	357	2.58E-65
CE10_4234	0	Intragenic	43129284313380	4313105	453	2.38E-131	43129614313301	4313131	341	3.97E-79
pitB	0	Intergenic	35918993592395	3592078	497	1.32E-129	35919093592352	3592183	444	4.22E-66
ybdO	0	Intergenic	657734658132	657967	399	2.06E-129	657795658194	658025	400	2.99E-64
rfbC	0	Intragenic	23743332374738	2374559	406	2.65E-128	23743292374695	2374569	367	1.62E-59
setC	0	Intergenic	43580514358447	4358274	397	1.32E-127	43580614358437	4358231	377	7.13E-79
ais	0	Intergenic	26772732677731	2677556	459	1.78E-126	26773002677681	2677521	382	1.81E-38
CE10_3398	0	Intergenic	34708123471198	3471026	387	6.90E-125	34708203471244	3470982	425	1.41E-81
hipB	-500	Intragenic	17390281739535	1739358	508	8.72E-125	17391631739521	1739352	359	2.40E-56
CE10_3626	0	Intergenic	37068233707193	3707003	371	2.74E-124	37068553707229	3707025	375	5.77E-93
fimB	0	Intergenic	51734765174004	5173646	529	1.21E-119	51734635173786	5173685	324	4.73E-47
fdrA	0	Intergenic	549610549982	549790	373	4.95E-118	549513549940	549801	428	2.69E-74

sat	0	Intergenic	35174613517916	3517634	456	1.00E-118	35174113517844	3517677	434	5.79E-75
tnaA	0	Intergenic	44300544430587	4430234	534	1.80E-117	44302094430597	4430434	389	1.23E-59
yqiG	0	Intragenic	36424023642914	3642582	513	6.12E-117	36423973642702	3642630	306	5.57E-80
garP	0	Intragenic	37354833735991	3735662	509	9.76E-116	37354863735929	3735640	444	3.60E-96
yghT	0	Intergenic	35894853589864	3589685	380	1.17E-114	35895073589892	3589723	386	1.65E-38
CE10_4567	0	Intergenic	46575424657936	4657770	395	4.47E-114	46575244657832	4657743	309	9.52E-70
CE10_2267	-177	Intergenic	22901682290519	2290432	352	2.20E-113	22901642290552	2290331	389	2.86E-94
CE10_3557	500	Intragenic	36274873627733	3627536	247	9.24E-113	36274853627894	3627655	410	4.27E-74
yiaT	0	Intergenic	42149554215397	4215127	443	3.12E-111	42149864215330	4215154	345	4.85E-83
yicO	0	Intergenic	43808074381176	4380977	370	2.84E-110	43807364381220	4381051	485	3.75E-65
yegH	-48	Intergenic	24016982402076	2401876	379	5.27E-110	24016452402032	2401772	388	7.60E-91
yeeN	0	Intergenic	22980262298400	2298206	375	7.14E-110	22979492298402	2298256	454	1.18E-74
CE10_0275	0	Intragenic	303207303549	303328	343	1.07E-107	303163303556	303388	394	9.07E-54
speF	-275	Intergenic	730641731053	730874	413	1.91E-107	730585731020	730853	436	9.40E-62
fimA	-167	Intergenic	51755425175912	5175798	371	2.15E-107	51756005175850	5175782	251	6.78E-76
CE10_3982	0	Intragenic	40450224045392	4045213	371	5.01E-107	40449974045435	4045146	439	2.07E-64
yfgH	0	Intergenic	29380102938381	2938208	372	1.47E-104	29380552938475	2938221	421	2.75E-64
nanC	0	Intergenic	51724345172888	5172605	455	1.06E-102	51724275172782	5172614	356	1.34E-50
CE10_1661	0	Intergenic	16925531693004	1692835	452	1.53E-101	16925811693019	1692850	439	1.74E-54
yiaW	0	Intergenic	42175914217912	4217775	322	9.98E-101	42176354218015	4217800	381	1.77E-61
dpiB	0	Intergenic	670720671107	670863	388	1.83E-99	670710671140	670973	431	2.79E-52
gadX	0	Intergenic	41233964123905	4123732	510	1.90E-99	41234144123921	4123752	508	1.63E-117
adiY	0	Intergenic	49371344937553	4937314	420	7.88E-99	49370534937508	4937362	456	2.93E-73
gadA	0	Intergenic	41252104125622	4125383	413	8.81E-99	41252204125686	4125373	467	2.15E-61
stpA	0	Intergenic	31503263150740	3150505	415	1.51E-98	31503883150759	3150596	372	2.76E-67
yebB	0	Intergenic	21648872165369	2165056	483	2.07E-98	21649002165404	2165070	505	1.06E-61
fucP	75	Intragenic	32866063287099	3286748	494	1.15E-97	32865963287010	3286764	415	5.54E-55

ykgE	-86	Intergenic	299401299767	299579	367	3.46E-97	299337299757	299588	421	1.86E-35
CE10_0735	-119	Intergenic	790984791457	791318	474	2.25E-94	791118791462	791299	345	3.46E-51
rpmE2	-218	Intergenic	281786282149	281959	364	1.37E-92	281769282123	281954	355	3.63E-47
CE10_0366	0	Intragenic	403367403755	403545	389	4.75E-92	403415403787	403585	373	1.88E-60
fimZ	285	Intragenic	567051567472	567230	422	1.56E-91	567094567464	567264	371	4.27E-76
csiD	-967	Intragenic	31395303139974	3139705	445	4.09E-89	31395623139981	3139812	420	4.07E-53
ypdl	0	Intergenic	28081182808499	2808324	382	3.40E-88	28081262808526	2808357	401	1.18E-50
yobF	-268	Intergenic	21267902127203	2127024	414	7.30E-88	21267932127148	2126962	356	2.65E-58
CE10_0724	0	Intergenic	777533777898	777683	366	3.45E-83	777556777950	777645	395	1.95E-45
glgS	0	Intergenic	36470293647437	3647258	409	6.00E-83	36470083647465	3647178	458	1.05E-45
yjdA	0	Intergenic	49260584926477	4926298	420	2.80E-82	49260304926402	4926289	373	3.04E-47
frc	0	Intergenic	28068992807342	2807163	444	1.45E-81	28068802807282	2807017	403	7.72E-45
yebN	-138	Intergenic	21240952124479	2124275	385	1.53E-81	21239972124498	2124330	502	7.66E-57
ytcA	0	Intergenic	49041944904592	4904372	399	7.52E-81	49042144904550	4904382	337	2.48E-61
lfpB	0	Intragenic	44555964455976	4455809	381	1.06E-80	44555794456010	4455842	432	4.25E-63
yihN	0	Intergenic	46247214625143	4624988	423	3.42E-78	46247324625142	4624976	411	7.21E-46
neuO	180	Intragenic	839731840037	839842	307	2.50E-74	839122839433	839361	312	2.24E-22
CE10_4222	0	Intergenic	42990564299433	4299236	378	1.43E-47	42990504299330	4299238	281	2.40E-32

Table S-6 CE10 DsdC2 binding sites (+ D-ser).

				Replicate 1				Replicate 2		
Gene	Dist. Gene	Context	Co-ordinates	Centre	Length	<i>p</i> -value	Co-ordinates	Length	<i>p</i> -value	
dsdC1	0	Intergenic	27912012791623	2791424	423	0.00E+00	27912392791631	2791405	393	0.00E+00

dsdC2	0	Intergenic	43322454332661	4332462	417	0.00E+00	43322764332653	4332446	378	0.00E+00
wbbC	0	Intragenic	23678012368218	2368019	418	7.61E-246	23678492368187	2368018	339	0.00E+00
CE10_4270	0	Intragenic	43473024347887	4347499	586	1.37E-196	43472394347682	4347409	444	0.00E+00
CE10_4160	0	Intragenic	42334154233971	4233772	557	6.72E-166	42334784233946	4233779	469	0.00E+00
wzy	-61	Intergenic	23689412369336	2369143	396	9.88E-163	23689492369329	2369075	381	0.00E+00
CE10_0023	-567	Intragenic	2739527867	27682	473	1.75E-161	2739827802	27567	405	0.00E+00
neuB	-351	Intergenic	35482603548659	3548505	400	5.44E-160	35482103548563	3548377	354	0.00E+00
CE10_2740	-31	Intergenic	27886912789078	2788926	388	2.70E-158	27892502789602	2789408	353	0.00E+00
waaV	0	Intergenic	42599864260392	4260149	407	9.89E-158	42600364260393	4260224	358	0.00E+00
ygiL	0	Intergenic	36415883642068	3641783	481	3.73E-154	36415693642072	3641737	504	0.00E+00
espX4	0	Intragenic	48525604852976	4852760	417	1.24E-150	48525744852929	4852769	356	0.00E+00
rfaL	419	Intragenic	42581874258738	4258380	552	4.45E-146	42582664258601	4258436	336	0.00E+00
epaS	154	Intragenic	33539283354450	3354126	523	1.66E-144	33540343354408	3354242	375	0.00E+00
yjiC	0	Intergenic	51892415189815	5189623	575	2.49E-144	51892975189760	5189591	464	0.00E+00
усдХ	600	Intergenic	13421451342585	1342410	441	5.17E-144	13421071342478	1342309	372	0.00E+00
waaT	0	Intragenic	42627824263209	4263010	428	5.22E-142	42627674263185	4263019	419	0.00E+00
espY4	349	Intragenic	44410084441461	4441273	454	4.53E-140	44409754441325	4441190	351	2.83E-300
CE10_4870	0	Intergenic	49748394975298	4975038	460	9.58E-137	49748624975255	4975032	394	0.00E+00
CE10_0067	0	Intragenic	7952780036	79718	510	4.12E-135	7950579780	79674	276	0.00E+00
prgl	-15	Intragenic	33504393350870	3350639	432	6.54E-130	33504413350883	3350611	443	0.00E+00
yhhZ	0	Intergenic	40289984029273	4029197	276	2.42E-124	40289684029295	4029138	328	0.00E+00
yfaL	0	Intergenic	26511892651693	2651494	505	5.57E-123	26512352651598	2651405	364	1.92E-267
yjbM	70	Intragenic	48622674862581	4862385	315	3.24E-112	48629324863330	4863089	399	2.32E-275
kpsF	-135	Intergenic	35334493533878	3533679	430	8.64E-112	35334223533766	3533614	345	1.14E-298
ubiC	-640	Intragenic	48533584853756	4853561	399	8.80E-112	48532864853763	4853597	478	0.00E+00
CE10_4297	0	Intergenic	43672624367846	4367652	585	2.91E-108	43673004367779	4367611	480	0.00E+00
tauA	-124	Intergenic	365045365523	365326	479	4.47E-107	365186365528	365359	343	0.00E+00

ibrA	-150	Intergenic	23133612313946	2313549	586	4.04E-102	23134182313818	2313583	401	1.44E-293
yhaC	601	Intragenic	37302483730669	3730558	422	1.23E-101	37301463730645	3730316	500	0.00E+00
eivC	-386	Intragenic	33602883360700	3360502	413	7.30E-99	33602733360679	3360443	407	1.52E-292
yghJ	0	Intragenic	35674953567903	3567694	409	1.32E-96	35674123567851	3567579	440	5.16E-274
eprH	0	Intergenic	33515183352032	3351839	515	1.81E-96	33515933351969	3351800	377	0.00E+00
envR	0	Intergenic	38743943874832	3874633	439	1.33E-94	38744343874804	3874604	371	0.00E+00
dusA	-251	Intragenic	48629224863326	4863120	405	1.79E-90	48629324863330	4863089	399	2.32E-275
ybcK	0	Intragenic	569700570111	569916	412	9.24E-90	569742570133	569908	392	1.21E-293
CE10_3508	0	Intergenic	35786063579015	3578816	410	2.43E-87	35786063579032	3578863	427	2.23E-263
setC	0	Intergenic	43579554358444	4358246	490	8.58E-87	43580284358401	4358232	374	2.00E-219
espX1	0	Intergenic	2830928800	28603	492	1.97E-87	2839228756	28559	365	0.00E+00
sfmA	0	Intergenic	561132561550	561351	419	1.71E-85	561191561560	561361	370	7.04E-234
CE10_0818	-110	Intragenic	865607866128	865806	522	3.95E-85	865643866088	865813	446	0.00E+00
CE10_3398	-4	Intergenic	34707723471177	3470964	406	6.67E-84	34707773471175	3470947	399	7.28E-225
yjbE	0	Intergenic	48392644839724	4839462	461	9.84E-83	48392624839689	4839521	428	0.00E+00
CE10_4943	0	Intergenic	50475215048012	5047717	492	7.13E-83	50475185047942	5047773	425	0.00E+00
sipB	0	Intergenic	43625184363039	4362894	522	3.76E-82	43625424363020	4362854	479	0.00E+00
gadX	0	Intergenic	41235304123934	4123735	405	1.66E-81	41234084123914	4123745	507	1.24E-201
eivF	0	Intergenic	33655163365886	3365686	371	3.69E-80	33655043365952	3365783	449	5.75E-162
ysdS	0	Intergenic	22495522250108	2249911	557	4.69E-80	22497082250086	2249917	379	4.66E-197
CE10_4228	0	Intergenic	43049964305491	4305195	496	8.81E-79	43050094305514	4305179	506	1.88E-286
yehD	0	Intergenic	24551122455543	2455344	432	6.98E-78	24551412455485	2455307	345	2.52E-134
CE10_3557	0	Intergenic	36282413628807	3628437	567	2.16E-78	36282553628751	3628424	497	1.25E-246
rfaY	0	Intragenic	42617384262158	4261857	421	3.44E-75	42618014262123	4261980	323	1.47E-278
lpfA	0	Intergenic	44563694456823	4456624	455	5.57E-75	44564714456810	4456642	340	0.00E+00
fimZ	271	Intragenic	567067567513	567317	447	2.79E-74	567021567429	567266	409	1.58E-149
ycbQ	0	Intergenic	10391191039559	1039363	441	8.68E-74	10390981039524	1039356	427	2.36E-311

yiaY	0	Intergenic	42224374222812	4222611	376	3.07E-73	42223804222772	4222603	393	3.22E-220
neuA	0	Intragenic	35467133547161	3546913	449	4.29E-73	35467353547143	3546897	409	3.46E-227
cmtB	0	Intragenic	34499643450395	3450164	432	6.85E-73	34499033450404	3450235	502	4.11E-218
tnaA	0	Intergenic	44301634430581	4430363	419	9.87E-73	44303284430607	4430441	280	2.34E-184
yliE	583	Intragenic	908813909295	909096	483	2.28E-71	908913909264	909096	352	4.15E-157
hutU	-18	Intergenic	769262769857	769658	596	1.78E-71	769533769887	769718	355	0.00E+00
nmpC	0	Intergenic	25018052502289	2502090	485	2.12E-70	25018432502269	2502013	427	9.50E-291
yajR	0	Intergenic	429282429793	429477	512	9.81E-70	429395429749	429580	355	5.17E-257
CE10_4598	0	Intragenic	46857814686273	4686074	493	2.38E-70	46858064686215	4686046	410	9.96E-268
yadN	0	Intergenic	166932167338	167148	407	1.12E-69	166938167356	167187	419	0.00E+00
fimE	-4	Intergenic	51745885174998	5174788	411	1.28E-69	51745575174977	5174727	421	2.97E-284
fucA	0	Intragenic	32859383286459	3286138	522	2.45E-68	32859703286380	3286213	411	2.94E-236
CE10_4567	0	Intergenic	46575134657954	4657713	442	8.36E-68	46575724657925	4657738	354	7.83E-180
CE10_2939	0	Intergenic	29963792996812	2996579	434	1.72E-67	29964612996801	2996632	341	0.00E+00
sipD	0	Intergenic	43648064365170	4364944	365	2.48E-66	43657354366090	4365923	356	0.00E+00
yhal	0	Intergenic	37138553714452	3714055	598	1.68E-65	37139103714266	3714080	357	0.00E+00
garP	0	Intragenic	37354913736089	3735691	599	1.79E-65	37355213735844	3735691	324	2.52E-287
CE10_2689	0	Intergenic	27343272734783	2734587	457	3.07E-65	27342992734791	2734626	493	1.40E-233
pitB	0	Intergenic	35918463592320	3592045	475	3.33E-64	35919243592289	3592120	366	3.87E-315
caiT	0	Intergenic	5011350672	50478	560	6.57E-64	5036250693	50524	332	4.33E-240
yegH	-1	Intergenic	24016492402123	2401924	475	3.00E-63	24017042402035	2401865	332	2.50E-178
CE10_3627	0	Intergenic	37074143707887	3707688	474	4.51E-63	37074783707905	3707736	428	5.20E-295
kpsM	-250	Intergenic	35502453550773	3550588	529	4.71E-62	35503593550819	3550650	461	3.54E-182
CE10_4613	0	Intergenic	47036754704137	4703869	463	8.55E-61	47037134704075	4703906	363	8.90E-220
sat	0	Intergenic	35174343517910	3517626	477	5.64E-60	35173893517834	3517674	446	3.14E-183
ydeP	0	Intergenic	17331251733538	1733339	414	1.65E-59	17331281733543	1733374	416	1.02E-100
focA	-42	Intergenic	994851995268	995072	418	5.48E-58	994837995244	995079	408	7.45E-156
ecpD	0	Intergenic	166100166433	166301	334	7.55E-58	166101166485	166271	385	4.73E-279
-----------	------	------------	----------------	---------	-----	----------	----------------	---------	-----	-----------
neuO	460	Intragenic	839980840574	840375	595	2.92E-57	839682840049	839850	368	1.84E-62
fimB	0	Intergenic	51733835173942	5173582	560	2.79E-55	51723135172781	5172613	469	9.36E-174
matA	-7	Intergenic	280087280499	280309	413	5.70E-55	280132280487	280302	356	2.54E-128
stpA	0	Intragenic	31503913150799	3150588	409	1.20E-53	31503893150796	3150557	408	8.81E-172
leu0	0	Intergenic	9265793240	92857	584	1.38E-53	9269693128	92864	433	1.97E-268
ykgE	-118	Intergenic	299238299735	299431	498	1.88E-53	299344299739	299582	396	1.72E-142
ycdT	0	Intergenic	11667801167160	1166947	381	6.48E-53	11667191167223	1167057	505	4.78E-190
ydeK	-11	Intergenic	17430541743494	1743254	441	2.64E-52	17431031743473	1743304	371	3.33E-245
yiaW	0	Intergenic	42175594218001	4217802	443	5.78E-52	42175894217942	4217759	354	9.29E-199
ykgl	0	Intergenic	296616296991	296780	376	5.62E-52	296611296965	296801	355	1.20E-119
ymgG	0	Intergenic	13556851356124	1355885	440	5.64E-51	13557001356166	1355868	467	1.60E-203
yfcV	-6	Intergenic	27697042770197	2769884	494	6.00E-50	27696662770169	2770000	504	0.00E+00
CE10_4234	0	Intragenic	43128864313336	4313141	451	1.57E-49	43129524313319	4313117	368	7.90E-259
CE10_0724	0	Intergenic	777460777936	777740	477	1.10E-49	777542778046	777712	505	1.50E-89
CE10_3790	0	Intergenic	38660433866625	3866432	583	1.02E-47	38660513866515	3866177	465	2.54E-94
ybcM	62	Intragenic	571029571426	571230	398	1.17E-47	571034571492	571201	459	6.70E-133
pagP	0	Intergenic	675200675525	675326	326	1.18E-47	675148675511	675275	364	4.33E-165
glgS	0	Intergenic	36469743647421	3647225	448	3.61E-47	36469003647400	3647231	501	1.02E-146
CE10_0366	0	Intragenic	403402404000	403602	599	7.37E-47	403365403834	403525	470	9.80E-149
yiiG	0	Intergenic	46512874651811	4651615	525	1.66E-46	46513814651749	4651582	369	1.11E-243
nanR	0	Intergenic	38248753825370	3825171	496	1.79E-46	38249403825262	3825109	323	1.35E-97
CE10_0258	0	Intergenic	283534283987	283733	454	2.03E-46	283567283945	283776	379	7.20E-88
yfbL	0	Intergenic	26973402697935	2697537	596	3.90E-46	26973752697816	2697545	442	1.20E-250
ttdR	270	Intragenic	36606643661092	3660915	429	1.03E-45	36607353661078	3660909	344	3.99E-113
yeal	0	Intragenic	20889892089430	2089240	442	2.68E-45	20890412089446	2089211	406	1.11E-122
ygcG	0	Intergenic	32562173256779	3256399	563	2.45E-45	32562303256703	3256400	474	5.06E-206

yeeN	0	Intergenic	22979452298387	2298145	443	2.37E-44	22979602298355	2298198	396	7.72E-118
adiY	0	Intergenic	49370374937578	4937380	542	2.98E-44	49370594937501	4937332	443	5.50E-216
agaB	0	Intergenic	37468673747317	3747125	451	3.16E-44	37468753747245	3747078	371	5.87E-178
nanC	0	Intergenic	51723525172793	5172545	442	3.35E-44	51723135172781	5172613	469	9.36E-174
ybbW	0	Intergenic	540753541206	540951	454	5.86E-44	540741541217	540907	477	3.44E-86
yjfl	0	Intragenic	50287235029121	5028920	399	6.16E-44	50286855029152	5028839	468	2.05E-168
ytcA	0	Intergenic	49041474904575	4904347	429	1.22E-43	49041044904563	4904397	460	5.28E-175
yhfL	0	Intergenic	39448073945277	3945083	471	2.46E-43	39448463945244	3945014	399	0.00E+00
yiaT	0	Intergenic	42149534215409	4215149	457	5.93E-43	42149834215330	4215162	348	3.70E-220
CE10_5099	0	Intergenic	52207775221310	5221111	534	6.42E-43	52206235221088	5220791	466	1.36E-202
CE10_3982	0	Intragenic	40449274045465	4045270	539	9.27E-43	40450504045404	4045220	355	3.81E-142
iraP	0	Intergenic	379970380442	380156	473	3.42E-42	380017380409	380184	393	2.64E-141
ais	0	Intergenic	26772532677737	2677543	485	1.24E-40	26772452677642	2677476	398	2.37E-188
speF	-254	Intergenic	730620731105	730906	486	1.76E-40	730699731027	730863	329	1.83E-211
fdrA	0	Intergenic	549578549979	549774	402	1.83E-40	549626549978	549809	353	3.33E-180
torY	0	Intergenic	21766632177104	2176905	442	1.42E-39	21767282177090	2176896	363	9.43E-313
rpmE2	-185	Intergenic	281753282201	282006	449	1.43E-39	281742282113	281907	372	6.57E-194
yeiT	0	Intragenic	25392292539663	2539426	435	5.14E-39	25393572539676	2539509	320	2.29E-129
CE10_0735	-142	Intergenic	791007791403	791214	397	5.41E-39	791122791460	791290	339	2.71E-128
yiiE	0	Intergenic	46436384644071	4643838	434	2.57E-38	46435504644028	4643718	479	1.65E-91
gadA	0	Intergenic	41252364125634	4125437	399	4.55E-38	41252674125633	4125437	367	3.83E-176
CE10_0066	0	Intergenic	7882479258	79024	435	7.11E-38	7877779156	78987	380	3.96E-150
fimA	-83	Intergenic	51755685175996	5175763	429	9.04E-38	51754625175893	5175735	432	4.64E-137
CE10_1661	0	Intergenic	16924661693013	1692815	548	1.40E-37	16926031692999	1692836	397	4.86E-142
feoA	-23	Intergenic	39808863981285	3981088	400	3.87E-37	39808973981257	3981092	361	1.21E-138
siiCA	0	Intergenic	498197498591	498397	395	3.90E-37	498178498672	498346	495	7.15E-138
fucP	104	Intragenic	32866303287054	3286819	425	5.55E-36	32866113287057	3286781	447	6.53E-187

CE10_0335	-39	Intergenic	370082370470	370282	389	1.41E-35	370039370542	370209	504	5.41E-146
yghT	0	Intergenic	35894323589897	3589699	466	1.01E-34	35894723589821	3589642	350	6.43E-149
yqiG	0	Intragenic	36423703642917	3642523	548	2.24E-34	36424103642844	3642579	435	6.14E-132
CE10_4295	-781	Intragenic	43635634364019	4363746	457	1.26E-33	43642664364621	4364436	356	3.76E-104
CE10_0290	0	Intergenic	320797321310	321125	514	1.69E-32	320918321276	321088	359	2.39E-86
CE10_1948	0	Intragenic	19710121971415	1971220	404	7.04E-32	19709761971340	1971146	365	4.95E-210
yebN	-190	Intergenic	21239602124427	2124236	468	1.39E-32	21240362124415	2124206	380	2.78E-216
yicO	0	Intergenic	43807804381184	4380980	405	5.56E-31	43808134381260	4380983	448	2.23E-193
lfpB	0	Intergenic	44555024456088	4455702	587	1.21E-31	44556014455950	4455771	350	1.26E-109
CE10_0275	0	Intergenic	303172303592	303358	421	1.37E-31	303137303577	303408	441	6.99E-144
yffB	0	Intergenic	28994152899899	2899611	485	1.07E-31	28993992899841	2899673	443	4.55E-113
yfgH	0	Intergenic	29380152938399	2938226	385	4.07E-30	29380242938372	2938194	349	1.66E-286
ompN	0	Intergenic	16053531605864	1605666	512	4.66E-30	16054801605815	1605645	336	1.00E-122
yobF	-210	Intergenic	21267322127148	2126929	417	1.51E-30	21267882127160	2126958	373	7.80E-119
yjgN	0	Intergenic	51098745110390	5110236	517	2.24E-30	51099395110347	5110107	409	6.79E-116
yjeJ	0	Intergenic	49935044993937	4993748	434	4.27E-30	49935674993930	4993761	364	7.73E-241
yhbX	155	Intragenic	37786013779064	3778786	464	9.46E-29	37786153779013	3778750	399	9.12E-75
yfgF	0	Intergenic	29373682937800	2937603	433	8.10E-29	29374042937812	2937643	409	3.31E-126
yihN	0	Intergenic	46247254625147	4624948	423	3.25E-29	46247114625155	4624991	445	1.68E-84
tsx2	0	Intergenic	47002664700782	4700587	517	1.90E-28	47003784700758	4700546	381	2.16E-106
CE10_4706	0	Intergenic	48112664811714	4811449	449	5.86E-28	48113014811756	4811462	456	1.27E-73
dpiB	0	Intergenic	670579671136	670939	558	1.18E-27	670718671125	670968	408	1.91E-160
hipB	-478	Intragenic	17390061739567	1739206	562	5.88E-27	17391641739566	1739321	403	1.77E-130
CE10_1671	0	Intragenic	17029641703370	1703173	407	2.02E-25	17029381703343	1703105	406	2.64E-121
yihQ	0	Intergenic	46317894632250	4632053	462	1.76E-25	46317904632294	4632125	505	5.24E-65
gadB	0	Intergenic	17187021719278	1719096	577	2.75E-24	17187801719174	1718950	395	5.54E-89
yceJ	0	Intragenic	11900631190659	1190261	597	1.24E-24	11901041190554	1190255	451	4.84E-51

ydjE	741	Intragenic	20715152071933	2071734	419	1.47E-24	20714922071971	2071823	480	2.56E-108
yjfZ	0	Intragenic	50457645046347	5046162	584	3.90E-24	50459915046332	5046161	342	8.84E-96
CE10_3786	0	Intragenic	38639693864391	3864192	423	6.32E-23	38624913862827	3862644	337	1.93E-156
CE10_4709	0	Intergenic	48129864813474	4813276	489	2.45E-22	48130184813406	4813265	389	6.79E-83
CE10_3570	0	Intergenic	36398483640320	3640144	473	9.64E-22	36399393640229	3640086	291	2.45E-87
ypdl	0	Intergenic	28080502808461	2808249	412	2.78E-22	28081402808489	2808306	350	1.33E-261
yegR	0	Intergenic	24324012432923	2432753	523	1.99E-21	24324572432888	2432721	432	7.56E-115
ompT	0	Intragenic	607490607945	607749	456	2.04E-21	607592608028	607728	437	6.42E-48
araE	0	Intergenic	33344053334850	3334605	446	2.35E-21	33344713334797	3334626	327	1.54E-40
CE10_0264	0	Intergenic	289003289480	289200	478	2.88E-21	289016289498	289185	483	1.02E-149
yeiL	313	Intragenic	25609962561409	2561216	414	2.69E-20	25611402561398	2561222	259	1.36E-51
allB	0	Intragenic	542144542568	542344	425	4.19E-20	542248542581	542412	334	2.68E-44
yjdA	0	Intergenic	49260094926492	4926209	484	3.01E-19	49260684926402	4926254	335	4.39E-125
CE10_4222	0	Intergenic	42990364299530	4299227	495	5.03E-14	42989134299400	4299083	488	5.06E-53

Table S-7 Overlap of the ChIP binding hits between CFT073 and CE10 (+ D-ser).

CE10 DsdC1 ChIP peak		CFT073 DsdC ChIP peak
hits	Overlap of ChIP peak hits	hits
CE10_0023	adiY	arcA
agaC	agaB	aslA
CE10_0275	ais	asst
CE10_0290	araE	bglG
CE10_0366	bdm/CE10_1671	с0322
CE10_0523	c0077/CE10_0066	с0325
CE10_0560	c0080/CE10_0067	с0327
CE10_0724	c0346/yahA	с0363
CE10_0734	c0410/CE10_0258	с0430
CE10_0818	fdeC/CE10_0264	c1166
CE10_0889	c1618/ymgG	с1208
CE10_1660	c2348/nmpC	c1271
CE10_1661	c2383/ysdS	c1892
CE10_1948	c2815/yfbL	c2406
CE10_2689	c2897/CE10_2740	c3302
CE10_3076	c3031/CE10_2939	c3692
CE10_3277	c3686/kpsF	c3694
CE10_3282	c3712/CE10_3508	c4214
CE10_3301	c3766/CE10_3557	c4303
CE10_3398	c4015/CE10_3786	c4498
CE10_3626	c4020/CE10_3790	c4502
CE10_3627	c4423/CE10_4160	c4539
CE10_4229	c4488/CE10_4222	c4920
CE10_4234	c4492/CE10_4228	clbR
CE10_4270	c4739/CE10_4466	chiA
CE10_4295	c4896/CE10_4613	cydA
CE10_4297	c4983/CE10_4706	fimA
CE10_4312	c4986/CE10_4709	hcp
CE10_4363	c4994/yjbE	hlyC
CE10_4519	c5088 /ytcA	iraD
CE10_4553	c5209/ibrA	ompC
CE10_4567	c5298/CE10_4943	рарА
CE10_4598	c5356/yjgN	rpiB
CE10_4717	c5426/CE10_5091	tdcB
CE10_4768	c5435/CE10_5099	tssB
CE10_4870	caiT	yciF
CE10_4997	cmtB	ydbA_1
CE10_5101	суоА	yheE
CE10_5175	dpiB	yjjQ
csiD	dsdC	
dsdC2	envR	

dusA	fdrA	
ecpD	fimE	
eivC	frc	
eivF	fucP	
eivG	gadA	
epaO	garP	
epaS	hemB/CE10_0335	
eprH	iraP	
espX1	leuO	
espX4	livK/CE10_3982	
espY4	nanC	
eutS	ompN	
feoA	pagP	
fepE	pitB	
fimB	rfaJ/waaT	
fimZ	rfaY	
focA	sat	
fucA	stpA	
gadB	tauA	
gadX	tnaA	
glgS	waaL/rfaL	
hlyE	waaV	
hutU	wzx	
kpsM	wzy	
lpfA	yadN	
matA	ycdT	
mocA	yebB	
msbB	yebN	
nanR	yeeN	
neuA	yegR	
neuB	yfaL	
neuO	yfcV	
prgl	yffB	
rcsA	yghT	
rfbC	ygiL	
setC	yhbX	
sfmA	yhfL	
sfmC	yhhZ	
sfmH	yhiM	
sipB	yiaY	
sipD	yicO	
slp	yiiE	
speF	yjcS	
tdcR	yjdA	
torY	yjeJ	
tsx2	ykgl	
ttdR	c0407/rpmE2	

ubiC	yliE	
ugd	ypdl	
wbbC		
yahL		
yajR		
ybbW		
ybcK		
ybcM		
ybdN		
ybdO		
ybeF		
ycbQ		
ycbR		
усеЈ		
yciD		
ydeK		
ydeP		
ydjE		
ydjO		
yegH		
yehD		
yeiT		
yfdF		
yfgF		
yfgH		
ygcG		
ygeG		
yghJ		
yhaC		
yhal		
yiaO		
yiaT		
yiaW		
yiiG		
yjbM		
yjiC		
yobF		
yqel		
yqiK		

Table S-8 Overlap of genes involved in binding sites and genes that were differentially expressed

CFT073 no D-ser	CFT073 + D-ser	CE10 no D-ser	CE10 + D-ser
dsdC	dsdC	dsdC2	neuA
		ypdl	neuB
		gadB	neu0
		neuO	rfaY
			wbbC
			WZX
			waaT
			waaV
			dsdC2