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ABSTRACT  

Next-generation sequencing (NGS) is a powerful method for detecting the viral mutations. 

The aim of this study was divided into two main sections; initially developed a protocol for 

Hepatitis B virus (HBV) full genome sequencing using NGS and contributed to the 

development of in-house bioinformatics tools to analyze drug resistance and vaccine escape 

mutations in a cohort of HBV-positive samples from Saudi Arabia. Then, performed 

detailed functional analysis using either in vitro infection or replicon system, of selected 

mutation to gain insights into their role conferring resistance to currently available drugs. 

To examine circulating HBV genotypes in Saudi Arabia, 64 patients with chronic hepatitis 

B infection were enrolled in this study. Plasma samples with known viral load were 

collected retrospectively from two major hospitals in Saudi Arabia. We used two sequencing 

approaches: i) Metagenomic approach and ii) Target enrichment. The designed probes were 

validated using MiSeq® platform from Illumina®. We validated a whole-genome 

sequencing protocol for HBV using deep sequencing, which enabled us to characterize the 

prevalence of HBV genotypes. Our results suggest that HBV genotype D is predominant in 

Saudi Arabia, as observed throughout the Middle East.  

A transfection-based in vitro system was developed in second part of this study to 

investigate the effect of changes in the genomes on HBV replication. A variety of cell lines 

were tested, and protein expression and viral DNA were characterised using several 

techniques, including ELISA and western blotting. The Huh7 cell line was validated for 

expressing HBV antigens, and the assessment of several monoclonal antibodies was 

conducted using transfected cells. This system was used to explore the mutations associated 

with antiviral treatment resistance observed in our sequence. Two mutations from NGS 

outcome (rtD134E and rtD134N) utilized for in-vitro drug assays to evaluate the efficacy of 

antiviral drug.  

In this study, none of the above mutant strains conferred resistance to ADV and TDF, 

suggesting the good, sustained antiviral efficacy of these two drugs with regard to inhibiting 

viral replication. This would provide strong support for the two mutations having a clear 

role in resistance to these drugs.  

Lastly, expression of HBcAg was conducted to confirm if the inhibition of the drugs was 

linked to cell toxicity. The results support the initial finding with lack of core expression in 

ADV and TDF treated samples whereas LdT, LAM, and ETV did not demonstrate any effect 

on HBcAg expression.  
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Chapter 1. Introduction  

1.1 The Hepatitis B Virus (HBV)  

1.1.1 The discovery of the HBV  

The history of research on viral hepatitis began in 1963, when Nobel Prize winner Baruch 

S. Blumberg and colleagues reported for the first time publicly on the discovery of a new 

antigen named the Australia antigen (AuAg) (Blumberg, 1977; Blumberg, 2002; Gerlich, 

2013). In the ensuing years, AuAg become the first specific marker of viral hepatitis, 

identified as the hepatitis B virus surface antigen (HBsAg). After that, viral hepatitis type B 

became a driving force for developing modern virus diagnostics and vaccines. Blumberg's 

discovery was significant for two reasons: firstly, it gave a conclusive answer to the decade-

old quest of countless researchers to identify a viral cause of hepatitis. More importantly, it 

demonstrated that millions who were asymptomatically but chronically infected across the 

globe are potential candidates for developing liver cirrhosis and even liver cancer (Al-

Mahtab et al., 2020). 

A century earlier, interest in the basis of this disease had increased when, in 1865, a German 

physician named Rudolf Virchow described a patient with symptoms of epidemic jaundice, 

in whom the lower end of the common bile duct was clogged with a plug of mucus. This led 

to the term "catarrhal jaundice," because the disease was believed to be caused by catarrh 

due to mucus obstructing the bile duct. This confused the understanding of the aetiology of 

epidemic jaundice (Gruber and Virchow, 1865). Initially, the diagnosis of hepatitis required 

the existence of the clinical features of hepatic injury and a corresponding gross diagnosis 

if a liver biopsy was performed. In addition, evidence consistent with what was then known 

about the natural history of hepatitis was needed through the patient's history.  

In the 19th century, a genuine insight into the transmissibility of viral hepatitis emerged, 

with epidemics of jaundice among military and civilian populations (Burns and 

Thompson, 2014). 

In 1885, A. Lurman documented an epidemic of "serum hepatitis", showing that more than 

a thousand German ship workers, initially vaccinated with human lymph to prevent 

smallpox, subsequently became the victims of jaundice (Lurman, 1885). 

During the early 20th century, the research on viral hepatitis was largely descriptive in 

nature, with only the causes of epidemics of jaundice being identified.
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The first documented cases of hepatitis in patients were in 1930 with several serum 

transmitted outbreaks observed.  The next reported case was associated with a massive 

epidemic of jaundice in American soldiers in 1942. This was one of the largest outbreaks 

reported among the U.S. Army, and had followed the administration of a yellow fever 

vaccine containing human serum (Seeff et al., 1987; Martin, 2003).  As they suspected it 

was associated with the vaccine, it inspired several studies using human volunteers, and by 

the end of World War II, it was well recognised that infections of the liver were believed to 

be caused by several distinct viruses, which led to use of the term "viral hepatitis" (Block, 

2016). 

In 1947, the terms "hepatitis A" and "hepatitis B" were classified by a British hepatologist 

named F.O. MacCallum. Hepatitis A was designated as "infectious or epidemic" hepatitis, 

and hepatitis B was designated as "serum" hepatitis to correspond with their observed 

transmission routes within this nomenclature. 

The development of several liver function tests during the 1950s led to the recognition of 

anicteric infections and the existence of chronic carriers. However, the causative agents still 

could not be isolated (Block, 2016). Once Blumberg and colleagues had found a specific 

viral marker, the vast amount of accumulated epidemiologic and clinical data, together with 

huge numbers of stored serum samples, enabled rapid progress in understanding hepatitis 

B, and revealed the existence of a vast population of chronically infected people in Asia and 

Africa (Block, 2016).  

In 1971, using transmission electron microscopy, David Dane and colleagues discovered 

HBV virions composed of the core antigen, which was surrounded by a surface antigen 

envelope. At this stage, it was clear that AuAg was the hepatitis B surface antigen (HBsAg) 

(Reviewed by Gerlich, 2013).  

In 1974, William Robinson discovered HBV Deoxyribonucleic acid (DNA), having 

detected endogenous DNA polymerase activity within the virus (Reviewed by Gerlich, 

2013). 

1.1.2 The classification of the HBV 

The Hepatitis B virus (HBV) is a member of the hepadnavirus family. Hepadnaviruses can 

be found in both mammals (orthohepadnaviruses) and birds (avihepadnaviruses) (Howard, 

2002; Locarnini and Roggendorf, 2013; Karayiannis, 2017). Although these two genera 

differ in terms of their genetic organisation, structure, and biological properties, all of the 
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hepadnaviruses can induce persistent infections in their natural hosts (Howard, 1994; 

Scaglioni et al., 1996). All hepadnaviruses share several common properties, which are a 

partially double-stranded genome, having a viral polymerase able to repair the gap in the 

DNA template, producing an excess of subviral lipoprotein particles composed of envelope 

proteins, and having a narrow host range, infecting only species closely related to their 

natural host (Howard, 1986). 

HBV is a species of the genus Orthohepadnavirus (infecting mammals), including non-

primate species such as the ground squirrel hepatitis virus, woodchuck hepatitis virus, and 

arctic squirrel hepatitis virus (Locarnini and Roggendorf, 2013; Karayiannis, 2017). HBV 

has been identified in non-human primates such as apes (chimpanzees, gorillas, and 

gibbons) and 'Old World monkeys’. such as macaques (Grethe et al., 2000). The 'New World 

primate' woolly monkey HBV is the most genetically divergent among the primate 

hepadnaviruses (Lanford et al., 1998). The transmission of human HBV has been found 

among chimpanzees who had previously been used in experimental models. More recently, 

baboons were under consideration as a xenograft source for human liver transplantation 

(Kedda et al., 2000). Recently, the discovery of hepadnavirus in bats, with a reported 

zoonotic potential, has sparked public health concerns (Drexler et al., 2013).  

1.1.3 HBV structure  

HBV is an enveloped virus with a complete virion (also known as the Dane particle) 

diameter of 42-45nm (Dane et al., 1970). There are two types of HBV viral particles that 

are usually identified in the serum of an infected individual: sub-viral particles and 

infectious virions (Liang, 2009; Venkatakrishnan and Zlotnick, 2016; Karayiannis, 2017). 

The sub-viral particles consist of an outer glycosylated envelope containing surface antigen 

and are usually non-infectious as they lack a viral genome (Karayiannis, 2017). A mature 

infectious virion is composed of an outer glycosylated envelope containing a surface antigen 

surrounding a nucleocapsid enclosing the viral genome and a copy of the viral polymerase 

(Liang, 2009; Venkatakrishnan and Zlotnick, 2016).  

1.1.4 Epidemiology 

It is estimated that approximately two billion people worldwide have confirmation of a past 

or present infection with HBV, and that 248 million individuals are chronic carriers (positive 

for hepatitis B surface antigen (HBsAg)) (Ott et al., 2012). The overall prevalence of HBsAg 

is reported to be 3.6%; however, this varies depending upon the geographic area. The 
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frequency of chronic HBV ranges from <2% in low-prevalence regions (the United States, 

Canada, and Western Europe) to 2-7% in intermediate-prevalence regions (Mediterranean 

countries, Japan, Central Asia, the Middle East, and parts of South America) to ≥8% in high-

prevalence regions (West Africa) (Ott et al., 2012). In their most recent report, the World 

Health Organization estimates the global prevalence of chronic hepatitis B infection to be 

3.5%, or 257 million people globally, with the majority of the burden (68%) falling on the 

African and Western Pacific regions (WHO, 2017). In July 2018, the World Health 

Organisation (WHO) reported that HBV resulted in 887,000 deaths in 2015, mostly from 

complications including cirrhosis and hepatocellular carcinoma (HCC) (WHO, 2018).  

The majority of people with chronic hepatitis B (CHB) are infected in early childhood, with 

a 25% risk of developing life-threatening complications of cirrhosis or hepatocellular 

carcinoma as adults (Edmunds et al., 1993; Lavanchy, 2004). There has been a significant 

reduction in the proportion of children under the age of five years who have become 

chronically infected with HBV, from 4.7% during the pre-vaccination era to current 

estimates of 1.3% (WHO, 2017). Despite this, the estimates for this age group in the African 

region are the highest in the world, at around 3%. Although there has been an overall 

reduction in HBsAg prevalence, particularly in more developed regions, where universal 

HBV vaccination has a high coverage, global migration from highly endemic regions, such 

as sub-Saharan Africa, to low-endemicity countries is changing the local HBV burden, 

requiring vigilant surveillance by the local public health systems and the implementation of 

practical measures regarding prevention, screening, monitoring, and treatment availability. 

1.1.5 HBV transmission  

HBV is a blood-borne virus, present in the blood and bodily fluids (including the saliva, 

semen, menstrual blood and vaginal fluids) of infected individuals (Croagh and Lubel, 

2014). Smaller amounts of the virus have also been demonstrated in perspiration, tears, 

breast milk, and urine (Lavanchy, 2004). HBV can also survive outside the body for at least 

seven days on environmental surfaces at room temperature and can transmit the virus with 

appropriate percutaneous or mucosal exposure even in the absence of visible blood (WHO, 

2017). The incubation period of the hepatitis B virus is around 75 days but can vary from 

30 to 180 days. It may be identified within 30 to 60 days post-infection and can persist and 

develop into CHB (Nelson et al., 2016; WHO, 2017).  
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HBV is transmitted through contact with infected body fluids, and the only natural host is 

humans. Blood is the primary transmission mode, but other bodily fluids have also been 

involved, including saliva and semen. 

To date, three modes of HBV transmission have been recognized: perinatal (vertical), 

horizontal, and sexual transmission, with the two former modes predominating. In the areas 

with the highest endemicity, perinatal and early childhood transmission are the most 

common, with the mode of transmission varying geographically (Nelson et al., 2016). There 

is no reliable indication that airborne infections arise, and faeces are not a source of infection 

(Hou et al., 2005). 

In developed countries (and also, countries with a low endemicity of HBV infection), sexual 

transmission and intravenous drug abuse in adolescence and adult life account for the 

majority of HBV transmission cases. In countries with intermediate and high levels of 

endemicity of HBV infection, mother-to-child and child-to-child transmission during the 

early years of life are the major modes of transmission of HBV infection.  

Perinatal transmission involves mother-to-child transmission (MTCT) of the virus. 

Placental breakdown and the leakage of maternal blood during delivery, in utero infection, 

post-natal infection through breastmilk, a baby's ingestion of blood and tiny scratches to the 

baby during birth are the postulated mechanisms of perinatal transmission (Umar et al., 

2013). The main factors determining perinatal transmission are the mother's hepatitis B 

surface antigen (HBsAg) and hepatitis B e-antigen (HBeAg) status (Hwang et al., 1985). 

HBeAg in the mother's serum correlates with an HBV DNA load and is considered a marker 

of infectivity. The highest risk factor for MTCT is a chronically infected mothers who is 

HBeAg positive with a high viral load (>200,000 IU/mL), with the highest risk of the child 

developing chronic HBV infection being transmission during the new-born period (Ott et 

al., 2012). ).  Perinatal transmission is effectively linked with a positive HBeAg and/or a 

high HBV DNA viral load of childbearing women. A recent report indicated that 

approximately 90% of babies born to HBeAg positive mothers become chronic HBV 

carriers compared to 5%–31% of babies born to HBeAg negative mothers (Johannessen et 

al., 2021). 

In the Middle East, the majority of HBV infections occur through childhood and perinatal 

transmission. Sexual and parenteral transmission are not common modes of infection in the 

Middle East. Sexual transmission is uncommon on a large scale, probably due to the 

conservative culture of Middle Eastern societies. Nevertheless, wife-to-husband 
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transmission was suggested to be important in one study in Tunisia (Coursaget et al., 1994). 

HBV chronic infection was found in 18% (6/33) of the husbands of HBsAg carrier mothers 

compared to only 4-6% in the general population, while 75% (3/4) of the husbands of 

HBeAg positive mothers were also HBsAg positive (Coursaget et al., 1994). 

Horizontal transmission, which represents the second most significant route for HBV 

transmission, that occurs via close contact with infected blood or body fluids, is an important 

cause of CHB, especially if it occurs in children (Franco et al., 2012; Lemoine and Thursz, 

2017). A study conducted in the United States demonstrated, during the pre-vaccination era, 

the age-related risk of HBV acquisition and established chronicity with approximately 30% 

of those below five years-old, compared to 16% of five- to ten-year-old children, and 8% of 

those greater than 30 years (McMahon et al., 1985). Also, another study in Africa showed 

an even higher rate of 50% chronic infection in children infected before the age of two years 

(Coursaget et al., 1987). Early childhood horizontal transmission in sub-Saharan Africa is 

the predominant route, even though vertical transmission still occurs, particularly in the 

HIV-HBV co-infected population (Spearman et al., 2017). Moreover, HBV can survive on 

contaminated surfaces and household items, including toothbrushes and razors, and 

horizontal transmission can occur through exposure to open cuts and scratches (Nelson et 

al., 2016). 

Unsterile injecting medical, surgical and dental equipment, intravenous drug use (IVDU), 

and tattooing needles are also important sources of horizontal transmission, along with 

certain cultural practices, such as circumcision (Nelson et al., 2016). Blood transfusions and 

donated organs are now an uncommon source of HBV infection due to the sensitivity of the 

screening practices; however, it is still a concern in high-risk healthcare environments, 

including emergency departments and dialysis units (Lavanchy, 2004; Nelson et al., 2016). 

Also, the occult hepatitis B infection (OBI) that is described by the lack of HBsAg regardless 

of the presence of HBV DNA blood serum is a challenging clinical entity (Said, 2011). 

Recently, OBI presented a significant risk to those receiving organ transplants or blood 

transfusions because standard donor screening with HBsAg and anti-HBc may return 

serologically negative results despite the presence of HBV DNA (Said, 2011; Martinez et 

al., 2015). There are challenges in detecting the OBI in infected individuals without 

detectable HBsAg due to the very low levels of viral DNA (<200 IU/mL). it has been 

reported that around 20% of OBI infections for all HBV serological markers even though 

HBV DNA is present (Said, 2011; Martinez et al., 2015). 
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1.1.6 The natural course of HBV infection and diagnosis  

There is a wide range of clinical presentations of hepatitis B infection, from asymptomatic 

infection through to the rare occurrence of fulminant hepatitis, and the long-term 

consequences of chronic infection, such as cirrhosis, decompensated liver disease and HCC 

(Shepard et al., 2006). The natural course of acute or CHB is determined by a complex 

interplay of viral factors (genotype, mutations, and viral load), host factors (gender, age, 

immune response, and family history) and environmental factors (liver toxins, alcohol, and 

coinfections such as Hepatitis C Virus (HCV), Hepatitis D Virus (HDV), and Human 

Iimmunodeficiency Virus (HIV) (Croagh, 2014). For example, following acute infection, 

90% of neonates develop chronic infection, whereas 20-60% of children aged under five 

years and 5% of adults do so (WHO, 2017). 

1.2 The HBV genome 

The HBV genome is a circular, partially double-stranded DNA genome of approximately 

3,200 nucleotides in length (Di Bisceglie, 2009). The HBV genome consists of a minus-

strand, which spans the entire genome, and a plus-strand of DNA, spanning roughly two-

thirds of the genome.  

HBV encodes four overlapping open-reading frames (ORFs) that are translated into a 

surface (HBsAg) protein, core proteins, polymerase/reverse transcriptase (RT), and HBx 

(Figure 1-1).  

There are three forms of HBsAg (large, medium, and small or L-HBsAg, M-HBsAg and S-

HBsAg, respectively), which all share an identical 226 amino acid C-terminal region, called 

the surface domain (Barrera et al., 2005). The M protein contains an additional 55 amino 

acid N- terminal domain, called the pre-S2 domain. The L protein is further extended in the 

N-terminal direction with the addition of the 108 or 119 amino acid pre-S1 domain. 

Posttranslational modifications of all three proteins into glycoproteins contribute to their 

biological activities (Chouteau et al., 2001; Wu et al., 2018). The differences in 

posttranslational modification of the different SVP and Dane particles is described later in 

the text (See section  1.4.6). 

Meanwhile, the basal core promoter (BCP) and its adjacent pre-core region are crucial for 

replicating HBV (Wu et al., 2018). The polymerase gene features four domains as follows: 

a terminal protein (TP) region involved in priming the viral template, a spacer (SP) region, 

a catalytic domain with reverse transcriptase (RT) activity, and a C-terminus that has 
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ribonuclease H (RNase H) activity. Further, the HBx, a protein encoded by the HBV Open 

Reading Frame (ORF) X gene, is implicated in many intracellular signal pathways that are 

closely associated with cell proliferation and cell apoptosis (Wu et al., 2018). 

 

 

 
 

 

Figure 1-1: The Hepatitis B Virus Genome. 

Schematic representation of the HBV genome. The genome is composed of a partially 

double-stranded DNA; the incomplete positive inner strand is of variable length, whereas 

the negative outer strand has a definite 5’ and 3’-end (He et al., 2002). The genome is 

organized into four overlapping reading frames: the polymerase protein (coloured yellow), 

(Pre S1/ ORF Pre S2/ ORF S) the HBsAg protein (coloured blue), X protein (coloured red), 

and (C/ pre C) the core/pre-core protein (coloured pink) (Jalali and Alavian, 2006). The 

outer, black arrows represent the viral mRNA transcripts 
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1.3 Viral proteins 

1.3.1 The hepatitis B surface antigen (HBsAg) 

HBsAg consists of three, structurally related envelope proteins called the small (S or SHBs), 

middle (M, MHBs), and large (L, LHBs) surface envelope proteins, all of which exist in two 

forms that differ regarding the extent of their glycosylation. These mRNAs are transcribed 

from the Pre-S/S ORF, comprised of 389-400 codons, entirely overlapped by the Pol ORF. 

The Pre-S/S ORF is divided into three domains by the in-frame start codons: Pre-S1, Pre-

S2, and S. They are encoded by two HBV mRNAs, 2.4kb for the L and 2.1kb for the M and 

S. The translation of these proteins occurs in the endoplasmic reticulum (ER) and exists in 

glycosylated and un-glycosylated forms (Schadler and Hildt, 2009). The nucleocapsid is 

surrounded by a lipid bilayer, in which the S, M and L surface proteins are anchored by the 

S domain to the membrane to form the viral envelope. The HBV surface proteins are also 

secreted in excess to virions and can bud from the ER, forming empty filamentous and 

spherical 22nm subviral particles (SVP) (Huovila et al., 1992; Seeger and Mason, 2000). 

1.3.1.1 The small hepatitis B surface protein  

The small hepatitis B surface protein (SHBs) is 226 amino acids in length and is the most 

abundant of the three HBV envelope proteins, comprising almost 90% of the spherical 

particles and 70% of the filamentous forms (Seeger and Mason, 2000). It is encoded by an 

in-phase start codon within the 2.1kb mRNA and is highly N-glycosylated.  

The 'a’ determinant within the HBsAg is a loop structure created by cross-linked cysteine 

residues, and is the major antigenic determinant of the HBsAg, located in the SHBs between 

amino acids 124 to 147. It is the major neutralisation domain of the antibodies to HBsAg, 

with amino acid substitutions in this region resulting in conformational changes that affect 

the binding of the anti-HBs antibodies that permit immune escape (Lada et al., 2006). The 

minor sub-determinants “d”, “y”, “w” or “r” vary between HBV strains based on the amino 

acid profile in this region, designated as the HBV serotype. Determinant d has a lysine at 

position 122, and y is represented by arginine; thus, the determinants are mutually exclusive. 

Similarly, determinant w has a lysine at position 160, and r has an arginine (Okamoto et al., 

1994). 
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1.3.1.2  The middle hepatitis B surface (MHBs) / Pre-S2 protein  

The middle hepatitis B surface protein (MHBs) is encoded by the 2.1kb RNA transcript and 

represents about 10% of the HBsAg on subviral particles and virions. It contains the extra 

pre-S2 domain, which comprises the SHBs plus an N-terminal extension of 55 amino acids 

(Seeger and Mason, 2000). The membrane topology of the MHBs is the same as that of the 

SHBs (Schadler and Hildt, 2009). The function of the MHBs is unclear, as it does not appear 

to be integral to viral infection (Fernholz et al., 1993; Schadler and Hildt, 2009). The Pre S2 

region appears to stimulate a more remarkable B cell immune response compared to the 

SHBs and has been proposed to be an alternative antigen for the HBV vaccine (Milich et 

al., 1985). 

1.3.2 The large hepatitis B surface protein / Pre-S1 protein  

The large hepatitis B surface protein (LHBs) encompasses the Pre S1, Pre S2 and S domains, 

comprising 389-400 amino acids (depending on HBV genotype) (Churin et al., 2015; 

Cornberg et al., 2017). The LHBs displays a dual membrane topology on the ER, with the 

different orientation of the Pre S1- Pre S2 domains having important properties, including 

viral attachment and entry, interaction with the nucleocapsid, and the regulation of HBV 

replication (Schadler and Hildt, 2009). The Pre-S1 domain of LHBs is crucial for viral entry 

by binding to the recently discovered cellular receptor, sodium taurocholate co-transporting 

polypeptide (NTCP) (Seeger and Mason, 2000; Yan et al., 2012). 

The N-terminal myristylation of the Pre S1 of the L protein is an essential step for viral 

infectivity. The N-terminal also has B and T cell epitopes that are important  stimulating the 

cellular and humoral response against HBV infection (Milich et al., 1986; Kuroki et al., 

1990). 

1.3.3 X protein  

The X gene codes HBV X protein (HBx), and its name were obtained due to the lack of a 

similar protein in the host and other viral proteins. However, similar proteins were later 

identified in ground squirrel and woodchuck hepatitis virus (Murakami, 1999). HBx, 

produced from a 0.7kb mRNA, is a polypeptide of 154 amino acids with a molecular weight 

of 17.5 kDa. It is predominantly localised in the cytosol, with a small amount in the nucleus 

(Hoare et al., 2001; Kew, 2011; Murakami, 1999). It is a highly conserved protein and its 

coding sequence overlaps with those of the polymerase and pre-core proteins as well as 
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enhancer 1 (Enh I) (X promoter) and enhancer 2 (Enh II) (core promoter) regulatory 

elements (Moolla et al., 2002; Kew, 2011; Geng et al., 2015). The two enhancers (Enh I and 

Enh II) interact with host transcription factors that bind HBV promoters and positively 

regulate their transcription. The Direct Repeats DR1 and DR2 present in the viral genome 

play an essential role in directing the initiation of viral DNA synthesis ( Geng et al., 2015). 

These two repeats bind to form a double-stranded intermediate that allow the circularisation 

of the genome to enable replication, without the direct repeats replication is aborted. 

The solved crystal structure of HBx demonstrated that mutations, including deletions in 

HBx, interfere with viral replication and transcriptional regulation (Geng et al., 2015).  

HBx does not bind directly to DNA; however, it has been proposed that it is involved in 

transcriptional activation, which is essential for viral replication, cell cycle progression, the 

modulation of growth regulators, protein degradation, apoptosis, and genetic stability 

through interaction with the host factors, and strongly associated with hepatocellular 

carcinogenesis (Murakami, 2001; Block et al., 2007; Kew, 2011; Geng et al., 2015). 

1.3.4 Polymerase  

The polymerase ORF is the longest reading frame of the HBV genome and it is translated 

from the viral pregenomic RNA. The encoded polymerase (Pol) is enzymatically active and 

plays an essential role in viral replication. It consists of four domains (terminal, spacer, 

reverse transcriptase (RT) and RNase H) (Figure 1-2) (Kann, 2002; Yokosuka and Arai, 

2006; Beck and Nassal, 2007) 

The terminal region (181 aa long) commences with the terminal protein or primase, and it 

has three roles: it initiates DNA synthesis by facilitating attachment of the first nucleotide 

of the viral minus-strand DNA to polymerase enzyme, it facilitates binding and packaging 

of pgRNA into nucleocapsid, and is also essential for protein priming (Clark and Hu, 2015).  

The spacer domain (165 aa long) has been previously considered non-essential for viral 

replication competency (Jones et al., 2014). However, it has been proven to be a highly 

variable site serving as a flexible stretch that allows the virus to adapt to conformational 

changes in response to immune selective pressure given its overlap with pre-S1 domain 

(Chen et al., 2013).  It is located between the primase and RT domains. The envelope ORF 

is located within the Pol-ORF but in a frame-shifted manner, overlapped by the other ORFs 

to varying degrees. This is important, as viral mutations within the polymerase gene, that 
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lead to antiviral drug resistance, may also lead to mutations within the overlapping reading 

frames (Locarnini and Zoulim, 2010).  

The Pol/RT domain (344 aa long) forms the catalytic core of the enzyme and is targeted by 

nucleos(t)ide analogues to inhibit viral replication (Clark and Hu, 2015). RT is classified 

into subdomains (termed ‘finger’, ‘palm’, and ‘thumb’) (Figure 1-2) which are further 

divided into conserved regions annotated A–G (Clark and Hu, 2015). Functions of the 

conserved regions A–G are as follows; A: contains a phenylalanine residue which 

discriminates against deoxyribonucleotide triphosphate (dNTP) and nucleoside triphosphate 

(NTP), and then interacts with regions B and G to form dNTP binding pocket,  B: pairs the 

primer and template strand, C: contains the tyrosine-methionine-aspartate-aspartate 

(‘YMDD’) active site,  D: has no role in dNTP binding, E: aids in polymerase - RNA epsilon 

binding and DNA.  

The RNase H domain (152 aa long) has three functions as follow: it contains the aspartic 

acid-glutamic acid-aspartic acid-aspartic acid (‘DEDD’) motif which coordinates metal ion 

binding, which is essential for viral replication, it is responsible for the RNA cleavage of 

the RNA/DNA hybrids generated during reverse transcription.; and it is essential for pgRNA 

packaging (Kawamoto et al., 1994; Patel et al., 2017). 

 

 

  
 

Figure 1-2: HBV polymerase protein structure. 

HBV Polymerase gene encodes for the polymerase protein which is divided into four 

regions: terminal which has 181 amino acids; spacer which has 165 amino acids; reverse 

transcriptase (RT) (Yellow bar) which has 344 amino acids and RNase H which has 152 

amino acids. RT protein is further classified into sub-domains (green bars): Finger, Palm, 

and Thumb which are further classified into seven active sites of the enzyme regions (A–G) 

(Wang et al., 2012; Clark and Hu, 2015). 
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1.3.5 Precore/core (C) ORF  

The C ORF has between 212 or 214 codons, depending on the HBV genotype. It encodes 

two structurally and functionally distinct proteins: the nucleocapsid or core antigen 

(HBcAg) and the secreted hepatitis B e antigen (HBeAg) (Schödel et al., 1993; Datta et al., 

2012). 

1.3.5.1 HBcAg/ Core protein 

HBcAg (21.5 kDa) is a structural protein and essential for the viral replication cycle. It is 

produced in the hepatocyte cytosol and consists of 183-185 amino acids (depending on the 

genotype). The assembly of the core particles requires the dimerisation of the HBcAg 

subunits via the first 144 amino acids, stabilised by disulfide bonds. HBcAg is divided into 

three regions: an N-terminal domain (amino acid residues 1–140), a linker peptide (amino 

acid residue 141–149) and a C-terminal domain (amino acid residue 150–183/185) (Schödel 

et al., 1993; Zlotnick et al., 2015).  

The N-terminal domain and linker peptide are required for capsid assembly, whereas the C-

terminal domain is required for pre-genomic RNA (pgRNA) packaging and reverse 

transcription (Liu et al., 2018). Following dimerisation and capsid formation, the pg-RNA 

polymerase complex is encapsidated and reverse transcribed within these core particles 

(replication complexes); the core particles are then enveloped with HBsAg proteins and the 

newly-synthesised genomic DNA complexes associated with the enveloped core are 

transported through the endoplasmic reticulum (ER) and Golgi complex to bud as mature 

HBV virions. The C-terminal region of the HBcAg contains nuclear localisation signals that 

facilitate the transfer of mature viral particles into the infected cell nucleus as part of the 

intranuclear HBV DNA amplification pathway. In addition, the nuclear localisation 

signalling also targets the unassembled protein at the nucleus to form empty core 

particles (Belloni et al., 2009). The function of these empty core particles remains unclear; 

however, it is hypothesised that they regulate the transcription by interacting with HBV 

covalently closed circular DNA (cccDNA) (Belloni et al., 2009).  

1.3.5.2 Hepatitis B e antigen (HBeAg)/ Pre core protein 

The HBeAg is a product of the Pre-C/C ORF and is transcribed from a distinct 3.5 kb 

mRNA. The HBV precore (PC) protein is non-structural, overlaps with the core protein by 

around 90%, sharing the central core domain and C-terminal protamine-rich domain, and 
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undergoes processing in the ER/Golgi complex, producing a 22 kDa protein, which can 

either undergo further processing through the cleavage of 10 amino acids from the N 

terminus to form the secreted 17 kDa HBeAg, or traffic to the cytosol, where it remains 

localised (Garcia et al., 1988). 

HBeAg is highly conserved among hepadnaviruses (Revill et al., 2010) and plays an 

immunoregulatory function in the HBV life cycle. HBeAg is essential for establishing 

chronic infection (Milich and Liang, 2003); however, it is not required for viral replication 

(Beck and Nassal, 2007). It plays a role in reducing the effect of host immune response, 

resulting in viral persistence and the development of CHB (Walsh and Locarnini, 2012).  

Approximately 15-30% of synthesised HBeAg is not secreted; this cytoplasmic HBeAg 

appears to play an important regulatory role of inhibiting innate immunity by suppressing 

Toll-like receptor signalling pathways and contribute to host immune exhaustion by forming 

empty capsids that are enveloped and secreted (Milich and Liang, 2003; Yang et al., 2006; 

Datta et al., 2012; Kramvis, 2016).  

Also, the HBeAg is a crucial protein in paediatric HBV infection. It represents the only 

HBV protein known to cross the placenta and is proposed to act as an immune system 

tolerogen that is important for establishing chronic HBV infection in infants born to HBsAg-

positive mothers, especially in patient mothers with a high HBV viral load (Ni, 2011). 

1.4 The HBV replication cycle 

The steps of the HBV replication cycle are illustrated in Figure 1-3. 

1.4.1 HBV entry into hepatocytes 

There are multiple steps involved in the HBV entry into hepatocyte during infection. 

Initially, the virus binds to factors that include heparan sulphate proteoglycans (HSPGs); for 

example, glypican 5 in a low-affinity and non-specific way, thereby attaching itself to the 

host cell’s surface. Subsequently, it interacts with Na⁺-taurocholate co-transporting 

polypeptide (NTCP) receptor in a process that is known as the first step in the replication 

cycle (Ni et al., 2014; Tsukuda and Watashi, 2020).  

NTCP functions as a bile acid transpoter in the liver and as a host receptor for HBV. It has 

been shown to bind to the amino acids (aa) 2–48 of the preS1 region of the viral L envelope 

protein (Yan et al., 2012; Ni et al., 2014; Tsukuda and Watashi, 2020). It is belived that 

virus-receptor interactions initiate virus internalisation into cells receptor-dependent 
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endocytosis (Hao et al., 2011; Yamada et al., 2012). It was revealed in a recent report that 

the internalisation of HBV is activated by the receptor tyrosine kinase, epidermal growth 

factor receptor (EGFR), via its direct interaction with NTCP (Iwamoto et al., 2019, 2020). 

It is believed that internalisation of the virus in vesicles causes fusion between the cell-

derived vesicular membrane and the viral envelope, although the mechanisms remain 

unknown. Following entry and release, the incoming nucleocapsid in the cytoplasm is 

directed to the nucleus along the microtubules and then imported into it through the nuclear 

pore complex in an importin-dependent process (Kann et al., 1999; Rabe et al., 2003; Rabe 

et al., 2006). 

1.4.2 Nucleocapsid trafficking & DNA entry into the nucleus 

The nucleocapsid is degraded at the pore and is part of a procedure known as ‘uncoating’ 

which means that only the relaxed circular DNA (rcDNA) enters the nucleus. The 

association between the nuclear import receptors (importin-α and β) and the nuclear 

localisation signalling in the C-terminal of core protein triggers (or allows for the) 

transportation (Morikawa et al., 2016; Diogo et al., 2021). The interaction between the 

adaptor proteins and the nuclear pore complex are increased by the accumulation of 

nucleocapsid transported along microtubules on the nuclear membrane (Schmitz et al., 

2010). 

Furthermore, it is apparent that nuclear localisation is dependent on the cell cycle (Ko et al., 

2019; Luo et al., 2020). If cells are not in the correct cycle, the capsid is not imported into 

the nucleus and this prevent the packaging and assembly of the newly forming virions ((Ko 

et al., 2019; Luo et al., 2020). Exposure of the nuclear localisation signal initiates a structural 

change in the capsid, and it is generally assumed that it is controlled by and dependent on 

genome maturation that induces structural changes of capsid. There is evidence suggesting 

that the complete disassembly of capsids and release of viral genomic DNA into nucleus 

most possibly occurs in the nuclear basket of nuclear pore complex (Block et al., 2007; 

Morikawa et al., 2016; Diogo et al., 2021). 

Following this, in order to expose the nucleocapsid, the virus is uncoated. The partial 

double-stranded DNA (rcDNA) within the nucleocapsid which is released into the 

cytoplasm is covalently bound to polymerase and it occurs prior to it reaching the hepatocyte 

nucleus through the nuclear pore complex.  

At this point, the rcDNA is repaired and creates a complete double-stranded DNA either by 

repair activity of host proteins or through the HBV polymerase. The nucleocapsid comprises 
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rcDNA that is covalently cross-linked to the viral polymerase terminal protein domain. It is 

recognized that the C-terminal arginine-rich of core protein domain accelerates the 

transportation of the nucleocapsid to a nuclear pore from the cytoplasm (Morikawa et al., 

2016). 

1.4.3 Covalently closed circular DNA formation 

In the HBV life cycle, cccDNA is a crucial stage as a replication template. The rcDNA is 

converted into complete circle, in a process that creates the cccDNA ‘reservoir’. This 

conversion requires various steps: (i) removal of the of a viral polymerase linked to the 5’ 

end of the minus strand of DNA as well as the short terminal redundant sequence in the 5’ 

end of the negative strand; (ii) removal of the capped oligoribonucleotide RNA primer 

linked to the 5’ end of the positive strand; (iii) after step 1 and 2, the positive strand is 

completed and ligation of the two viral DNA strands occurs (Yang and Kao, 2014; 

Morikawa et al., 2016). 

With regard to the cccDNA process formation, it has been revealed that several factors have 

been involved. It has been demonstrated in vitro that a DNA repair enzyme, tyrosyl-DNA 

phosphodiesterase 2 (TDP2), cleaves the tyrosyl-DNA phosphodiester bond between the 

rcDNA and pol (Cui et al., 2015; Koniger et al., 2014). Another factor stated which cleaves 

the flap structure at the 5′ end of the minus strand by a flap structure-specific endonuclease 

1 (FEN1), has also been implicated in cellular DNA replication and repair. Furthermore, 

numerous epigenetic elements are recruited onto the cccDNA; for instance, histones H3 and 

H4, transcription factors that include histone acetyltransferases and deacetylases as well as 

chromatin-modifying enzyme; moreover, it is apparent that the HBc and HBx proteins 

regulate cccDNA transcriptional activity (Morikawa et al., 2016; Karayiannis, 2017; 

Kitamura et al., 2018).   

1.4.4 HBV transcription and translation 

cccDNA acts as a template for host RNA polymerase II (recognizes cis acting elements on 

the viral DNA) for the transcription of the five key HBV mRNAs in the nucleus which are 

then exported to the cytoplasm. Translation of the viral transcripts take place within the 

cytoplasm subsequent to nuclear export (Lamontagne et al., 2016).  

The following are the five mRNAs:  
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(i) 3.5 kb pgRNA encodes the viral proteins necessary for nucleocapsid assembly (HBcAg, 

HBV Pol/RT) which is also the template for the reverse transcription of the HBV DNA 

genome.  

(ii) 3.4 kb precore mRNA that directs the translation of the precore gene product. Precore 

mRNA is translated and proteolytically processed to yield HBV e antigen (HBeAg).  

(iii) 2.4 kb preS1 mRNA encode the envelope small, medium, and large surface proteins. 

(iv) 2.1 kb preS2/S mRNA. 

(v) The transactivating factor HBx protein is encoded by the smallest 0.7 kb mRNA.  

During replication, these transcripts are translated into seven viral proteins which include 

(polymerase (Pol), capsid protein (Core), HBeAg, X protein, and three envelope proteins: 

LHBs (L), MHBs (M) and SHBs (S)) using cellular translation mechanism. There is some 

new evidence to suggest that there is a specific 3.9kb promoter in the genome to allow the 

transcription of the x gene (Doitsh & Shaul, 2003). 

 

1.4.5 Capsid formation, reverse transcription, and DNA synthesis 

Since the viral pgRNA that has an ε-stem-loop (encapsidation signal epsilon structurally 

contains lower stem, bulge region, upper stem and a tri-loop) is close to the 5′-end, the 

polymerase and the pgRNA are selectively encapsidated in core particles within the 

cytoplasm (Flodell, et al., 2002). The reverse transcription-polymerase enables viral DNA 

synthesis to be activated in each core particle. This is followed by negative-strand synthesis 

and concomitant degradation of the RNA template by RNase H.  

Moreover, the generation and/or synthesis of positive-strand DNA synthesis is initiated by 

utilising short RNA from non-degraded pgRNA as a primer (Lamontagne et al., 2016; 

Morikawa et al., 2016). Nucleocapsids containing rcDNA either progress to the subsequent 

step (envelopment) or are recycled by uncoating and importation into the new rcDNA 

nucleus as described above.  

1.4.6 Assembly and secretion  

HBV produces non-infectious particles termed subviral particles (SVPs) which are 

produced in much more quantity than infectious virion (at least 1,000-fold), this is 

commonly referred to as a Dane particle. Filamentous and spherical particles have been 
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observed as the two kinds of SVPs. Where nucleocapsid is present, L- HBsAg interact with 

the coated genome in order to create a total HBV virion (Dane particle) (Morikawa et al., 

2016). Filaments would have fewer L- HBsAg and M-HBsAg than virion, and spheres 

would be composed by S- HBsAg and M-HBsAg without and L-HBsAg. Filaments and 

spheres are varied in size and shape from 22 to 28 nm spheres or as variable length tubular 

filaments of approximately 20 nm wide, both are made of protein dimers organized in a 

helical symmetry (Jiang and Hildt, 2020).  

For a considerable period of time, it has been assumed those viral particles and SVPs 

(spheres and filaments) self-assembled in the endoplasmic reticulum lumen, were 

transported into the ER-Golgi intermediate compartment (ERGIC) and subsequently 

released by the general secretory pathway. Recently, it was shown that the release pathway 

of HBV viral particles differs from that of spheres (Watanabe et al., 2007). 

The egress and budding of HBV rely on intraluminal vesicles of maturing endosomes; 

multivesicular bodies (MVBs), whereas the endosomal sorting complex is necessary for the 

transport, the virus requires the endosomal sorting complex required for transport (ESCRT) 

system (Jiang and Hildt, 2020). 

The ESCRT pathway is specified as being the cargoes necessary for transporting membrane 

proteins into vesicles that bud inwards into the maturing endosomes’ lumen (MVBs). The 

MVBs then either fuse with the plasma membrane to release extracellular exosomes or with 

lysosomes to release vesicle contents (Jiang and Hildt, 2020). 

It is suggested that the HBV virion packaging mechanism comprises these stages: (i) 

nucleocapsid is transported to the MVB surface by the cellular proteins Nedd4 (neuronal 

precursor that is cell-expressed developmentally down-regulated) and γ2-adaptin; and (ii) 

nucleocapsid buds into MVB via the endosomal sorting complex when it is in contact with 

HBV envelope proteins (Morikawa et al., 2016). 
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Figure 1-3: Hepatitis B lifecycle (Thomas and Liang, 2016). 

HBV life cycle: HBV attaches onto the hepatocyte via sodium taurocholate co-transporting 

polypeptide (NTCP), and viral capsids are released and consequently directed to the nucleus. 

Relaxed circular DNA (rcDNA) is converted into covalently closed circular DNA 

(cccDNA) in the nucleus and serves as a template for viral RNA transcription. Also, double-

stranded linear DNA (dsDNA) is produced that can be incorporated into the cellular genome 

or converted into cccDNA. Viral mRNAs are translated into viral proteins after being 

transported into the cytoplasm. The pregenomic RNA (pgRNA) is encapsidated together 

with viral polymerase and is reverse transcribed within the nucleocapsid into progeny 

rcDNA. Then, mature nucleocapsids are either redirected to the nucleus to establish a 

cccDNA pool or directed to a multivesicular body (MVB) pathway for envelopment with 

HBV envelope proteins (Thomas and Liang, 2016). 
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1.5 HBV serotypes 

HBV was initially categorised into nine different serotypes (ayw1, ayw2, ayw3m, ayw4, 

ayr, adw2, adwq, adr, adrq) , which were based on the immune reaction according to the 

amino acid pattern at a specific location of “a” determinant present on the surface protein, 

HBsAg (Norder et al., 1992; Magnius and Norder, 1995). The classification system 

reflected serological reactivity rather than the phylogenetic relationships between the strains 

(Ohba et al., 1995; Okamoto et al., 1988) and was eventually replaced by genotyping, as 

introduced by Okamoto and co-workers (Okamoto et al., 1988).  

1.6 Viral mutations  

Heterogeneity exists in the HBV genome, primarily due to the lack of a proofreading 

function in the viral RT, which ensures that HBV exists in the host as a quasispecies. 

Mutations generated due to the virus and host factors can be selected by the immune 

response or by the exogenous pressure exerted by vaccination or the use of hepatitis B 

immunoglobulin (HBIG) and antiviral therapy. These can lead to clinically important virus 

variants. 

1.6.1 Mutations affecting HBsAg  

HBsAg is cleared during recovery from acute hepatitis B infection, and an anti-HBs immune 

response (>10 IU/mL) offers protective against subsequent infection. The diagnosis of HBV 

infection is based primarily on the detection of HBsAg. However, the presence of a mutation 

in the S gene had affected the diagnostic sensitivity of the current diagnostic serological test 

mainly in the “a” determinant, which might lead to false-negative results. The antigenic 

alterations may also help the virus to escape from the host immune system.  

Despite the reported diversity of the “a” determinant, conserved 17 amino acid residues 

were identified by a Spanish study, in which the fragment encoding the region between 

amino acids 112–212 of HBsAg was sequenced from sera collected from chronic HBV 

carriers (Al-Qudari et al., 2016). The implication of the genetic variability in the S gene is 

well described at both the diagnostic and clinical levels. The mutations lead to the 

emergence of immune escape variants that are missed by the current diagnostic tests based 

on the detection of HBsAg, which raises the number of false negatives in our laboratories.  

The mutations in the S gene will cause changes in the conformational structure of HBsAg, 

leading to diagnostic failure, as the antibodies used in the HBsAg detection assays fail to 
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bind to the distorted antigen. This diagnostic failure could result in the introduction of a 

mutant HBV variant in the supplies in the blood bank, starting a new global pandemic of 

HBV due to the risk of post-transfusion infection (Allain et al., 2012).  

It was reported that substitution mutations in the S region in HBV variants cause diagnostic 

failure in 12.5% of the cases where HBV was misdiagnosed, and the mutant variant is also 

responsible for 6.6% of the cases of failed vaccination, while 9.2% escaping from 

immunoglobulin therapy (Avellon and Echevarrie, 2006). 

Vaccine escape isolates often carry a substitution of glycine to arginine at residue 145 of 

HBsAg (sG145R) or aspartate to alanine/glutamine at residue 144 (sD144A/E). These 

variants can be viable and infectious, and the mutation position can also affect the 

conformation of the L and M envelope proteins as well as that of the S region. 

1.6.1.1 Pre-S mutations 

Naturally occurring or spontaneous point mutations can occur throughout the HBV genome, 

including the Pre-S region (Gerken et al., 1991). Several studies have shown that Pre-S 

deletion variants may be associated with more advanced liver disease in CHB patients, and 

recent reports suggest there may be an association with the development of HCC (Zhang et 

al., 2016; Fan et al., 2001; Li et al., 2016). A study reported that 38% of CHB patients with 

HCC had pre-S2 deletion variants, compared with only 7.14% of those without HCC (Gao et 

al., 2007). Similarly, another study found that the prevalence of HBV Pre-S deletions in 

HBV with HCC and non-HCC patients was 29.2% and 14.6%, respectively (Yeung et al., 

2011). 

It is important to note that the clinical reports vary regarding the significance and prevalence 

of Pre-S mutations. These differences may be due to variations between the study 

populations, including their age, HBV genotype, stage of disease, viral load and exposure 

to antiviral therapy (Choi et al., 2007). It was reported that mutations in the Pre-S are more 

prevalent in a patient infected with HBV genotype C (Sugauchi et al., 2003). 

1.6.2 Mutations affecting the HBV polymerase  

Mutations affecting the polymerase protein with reverse transcriptase (RT) often occur in 

the setting of antiviral therapy with nucleos(t)ide analogues (NA). These mutations will be 

discussed in further detail in the Antiviral Resistance (Sections 1.12.2 and 1.12.3 ). 
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1.6.3 Mutations affecting HBeAg and HBx 

The basal core promoter (BCP) region is an element in the HBV genome that initiates the 

transcription of pgRNA and precore RNA (Okamoto et al., 1994). Precore (PC) and basal 

core promoter (BCP) mutations can abrogate or reduce HBeAg production, respectively. 

These mutations can occur either individually or in combination, and this may be influenced 

by virus genotype.  

The most frequent BCP mutations emerge in two adjacent nucleotide positions, A1762T 

and G1764A, interfering with a transcription factor binding site in this region (Okamoto et 

al., 1994). Several studies have shown that this double mutation reduces the transcription of 

mRNA and secretion of HBeAg and enhances viral replication (Buckwold et al., 1996; Laras 

et al., 2002). At the same time, the most common PC mutation is a single nucleotide 

substitution of G to A at nucleotide (nt) 1896 (G1896A) and was first described in 1989 

(Brunetto et al., 1989; Carman et al., 1989). G1896A induces a TAG stop codon in the PC 

region, which eliminates the production of HBeAg. Later, it was found that this mutation 

was also frequent in HBeAg negative patients with low HBV DNA levels. Other mutations 

in the precore region, e.g., in the start codon or codon 2, may also abolish HBeAg production 

(Lindh et al., 1996). 

The occurrence of substitutions in the BCP region has also been shown to increase viral 

replication, even in the presence of lamivudine resistance (Tacke et al., 2004). In addition 

to the mutations at nt 1762 and nt 1764, others appear at nt 1753 and nt 1766.  

The double mutation in the BCP region is more frequent in genotype C than genotype B and 

has been associated with more severe liver inflammation (Lindh et al., 1999) as well as 

cirrhosis and HCC (Fang et al., 2002; Kao et al., 2003; Takahashi et al., 1998). Despite the 

high frequency of BCP mutations, particularly of mutations at positions 1762 and 1764, and 

their strong association with more severe liver damage, the mechanism for their selection 

remains uncertain. The observation that these mutations evolve in parallel with 

immunologic activity indicates that they represent some form of escape. Of note, they 

usually lead to PC mutations and often appear during the HBeAg positive phase, indicating 

that their selection is driven by other mechanisms rather than PC mutations, even if they 

have been proposed to represent an alternative way of down-regulating the synthesis of 

HBeAg. A further mutation at G1899A is frequently found in association with the G1896A 

mutation. Other changes in the PC region which may prevent the translation of HBeAg 

include nonsense mutations at nt1814-1816, 1817, 1874 and 1897, and frameshift mutations 
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at nt1838-988. Mutations at nt1809-1812 may also result in reduced HBeAg expression 

(Ahn et al., 2003). Many of these changes are genotype dependent. BCP variants 

predominantly have a double mutation of A1762T and G1764A, resulting in the 

transcriptional reduction of Pre-C/C mRNA, with up to a 70% decrease in HBeAg 

production compared to wild type HBV (Hunt et al., 2000).  

BCP mutations are more common in genotype C than genotype B (Lindh et al., 1999). They 

have been associated with an increased risk of developing severe inflammation (Lindh et 

al., 1999), cirrhosis and HCC (Lindh et al., 1999; Fang et al., 2002; Kao et al., 2003). BCP 

mutations have also been shown to predict HBeAg seroconversion (Chan et al., 1999; 

Yamaura et al., 2003). The importance of BCP mutations has been less well studied in 

European patients. However, one study of patients carrying genotype A and D suggest that 

they are associated with a worse clinical course (Jardi et al., 2004). In contrast, a report from 

India failed to find any clinical impact of mutations in this region in the subtypes of genotype 

D (Chandra et al., 2009). As the PC protein has an inhibitory effect on HBV replication, the 

emergence of BCP variants has been associated with high viral loads (Tacke et al., 2004). 

Significantly, changes in the BCP usually directly affect the overlapping X ORF. The BCP 

double mutations A1762T & G1764A result in changes to X at codon 130 and 130, which 

are associated with increase in tumorigenicity and oncogenicity of HBV (Baptista et al., 

1999). 

1.7 HBV genotype  

There are ten different genotypes of HBV (A – J), classified based on the genetic distance 

and differing by >7.5% in genomic sequence diversity. HBV is further classified into 40 

different subtypes (separated by >4% genomic sequence diversity) (Pourkarim et al., 

2014). Genotypes are distributed across different geographical regions and can be 

associated with differences in disease progression, severity and prognosis (Sunbul et al., 

2014) (Figure 1-4) (Table 1-1). Genotype A is the most distributed globally and the leading 

genotype in Europe, North America, Africa and India, whereas B and C are the dominant 

genotypes in East and Southeast Asia (Norder et al., 1993; Kao and Chen, 2006). Genotype 

D prevails in the Middle East and Mediterranean region and India, while genotype E is 

commonly found in sub-Saharan Africa (Mulders et al., 2004; Kramvis et al., 2005), along 

with certain other continents. Genotypes F and H are closely related and almost exclusively 

found in the Americas. Thus, genotype F can be found in South and Central America, 

whereas genotype H is present in Central America and Mexico (Alvarado Mora et al., 2011; 
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Devesa et al., 2008), while Genotype G has been found primarily in the USA, France, and 

Germany (Tanwar and Dusheiko, 2012). Genotype I has been detected in Laos, Vietnam 

and China (Phung et al., 2010; Olinger et al., 2008), while the newest genotype, J, was 

identified and recovered from an 88-year-old patient in Japan, who had been in Borneo 

during World War II (Tatematsu et al., 2009).  

The criteria for assigning a new subgenotype are; i) a comparison of whole-genome 

sequences, ii) a genetic distance with inter-genotypic pairwise distance >7.5% and intra-

genotypic pairwise distance >4.5%, iii) a well-supported phylogenetic tree with bootstrap 

values of more than 75%, iv) the identification of any recombination events, v) the 

identification of fingerprints in the genome sequence, including amino acid motifs, vi) the 

presence of three clinical isolates representing the new strain, and vii) the validation of all 

new subgenotype strains by evolutionary and phylogeny analysis (Pourkarim et al., 2014). 
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Figure 1-4: Global distribution of hepatitis B virus genotypes. 

Global distribution of different HBV genotypes. Pie charts indicate proportional HBV 

genotype distributions in the respective countries (Velkov et al., 2018) . 
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Table 1-1: Hepatitis B virus genotypes. 

Genotype and 

sub genotypes 

Clinical implication Geographical 

location 

A (1-4) ➢ Higher rates of spontaneous HBsAg 

seroconversion compared to the other genotypes 

(Ganem and Prince, 2004; Flink et al., 2006). 

➢ Higher HBeAg clearance compared to genotypes 

B, C and D when on pegylated interferon 

(Janssen et al., 2005).  

Africa, Europe, 

North America, 

and Asia (India) 

B (1-6) ➢ Lower prevalence of HBeAg positivity and 

higher rates of HBeAg seroconversion 

(Hadziyannis and Papatheodoridis, 2006).  

➢ Earlier HCC development among younger 

patients and those with non-cirrhotic HCC (Kao 

et al. 2000; Yin et al. 2008).  

Asia, North 

America and 

Greenland 

C (1-16) ➢ Associated with chronicity in Chinese 

individuals (Zhang et al., 2008).  

➢ Higher HBeAg seropositivity among children 

infected with genotype C compared to those 

infected with genotype B (Ni et al., 2004).  

➢ Higher risk of HCC development and severe 

form of liver disease compared to genotype B 

(Watanabe et al., 2005; McMahon., 2009). 

Asia and Australia 

D (1-10) ➢ High risk of developing HCC and liver cirrhosis 

(Sunbul, 2014). 

➢ Associated with acute liver failure (Wai et al., 

2005). 

Africa, Europe and 

Asia 

E ➢ High rates of HBeAg positivity (Sonderup, 2020) Africa 

F (1-4) ➢ High risk of developing HCC and liver cirrhosis 

(Sunbul, 2014). 

Central and South 

America 

G ➢ Serological diagnosis may prove challenging due 

to the impaired production of HBsAg (Zaaijer et 

al., 2011). 

Europe and North 

America 

H ➢ None described Central America 

I ➢ None described Asia 

J ➢ None described Asia 

Distribution of hepatitis B virus genotypes across geographical locations and their clinical 

associations. HBsAg: Hepatitis B virus surface antigen; HBeAg: Hepatitis E antigen; HCC: 

Hepatocellular carcinoma. 
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1.8  Laboratory investigation of HBV infection 

The serological and virological diagnosis of HBV acute and chronic infection can be 

diagnosed by a characteristic serological and virological marker profile.  

1.8.1 Serum HBsAg and anti-HBs  

Serum HBsAg is the serological indication of HBV infection, and this protein is usually 

detected around 6-12 weeks post-infection, with HBeAg appearing after that (Bowden, 

2006).  

Clinical symptoms, if they occur at all in the early course of acute infection, become 

apparent as the serum alanine aminotransferase (ALT) becomes abnormal after the viral 

antigen titers peak, usually between 2-4 months following exposure to HBV (Table 1-2) 

(Hui et al., 2008). Recovery from acute HBV infection is indicated by the loss of serum 

HBsAg, which usually occurs 4-6 months after virus exposure. Anti-HBs can be detected 

after the loss of serum HBsAg from the systemic circulation. Furthermore, Anti-HBs is a 

serological marker of successful hepatitis B vaccination. 

1.8.2 Serum HBcAg and anti-HBc  

Serum HBcAg is not easily detected in the systemic circulation and thus plays no role in 

hepatitis B diagnosis. However, anti-HBc is often the first marker detected during acute 

hepatitis B infection (Table 1-2). Anti-HBc IgM may be the only marker of HBV infection 

during the window period (gap between the disappearance of HBsAg and the appearance of 

anti-HBs), but may also be detected during flares of CHB , making it serologically 

indistinguishable as a one-off measurement from acute HBV infection; this represents a 

challenge in differentiating between newly-acquired HBV and chronic infection (Tan et al., 

2015).  

Rapidly rising or falling quantitative HBsAg titers suggest acute HBV compared to stable 

quantitative HBsAg levels in chronic infection. Newly acquired infection is assumed if the 

patient has an obvious recent risk factor for acquisition, previously negative HBsAg, and 

high levels of specific antibodies to hepatitis B core protein (anti-HBc IgM) in the absence 

of prior evidence of HBV infection. Anti-HBc IgG is the hallmark of previous exposure to 

HBV, persisting in both resolved acute and chronic HBV (Table 1-2) (Tan et al., 2015).  
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In individuals with positive anti-HBs and negative HBsAg, anti-HBc IgG can be used to 

differentiate between individuals with vaccination (no anti-HBc) or past infection (Tan et 

al., 2015). 

1.8.3 Serum HBeAg and anti-HBe 

Serum HBeAg is an indirect marker of ongoing HBV replication and infectivity. Usually, 

HBeAg seroconversion occurs before HBsAg seroconversion in patients who recover from 

an acute infection (Niederau et al., 1996; Lin et al., 2007). HBeAg seroconversion may be 

delayed for several years in patients with CHB and is considered an essential factor in the 

natural history of HBeAg-positive patients with CHB, as it is associated with low viral 

replication, the remission of liver disease, and an increased prospect of HBsAg 

seroconversion (Niederau et al., 1996; Lin et al., 2007). 

1.8.4 HBV viral load assays 

The HBV viral load is the key virological marker of the clinical management of CHB, which 

indicates viral burden and viral replication, with landmark studies showing the important 

relationship between higher viral loads and the risk of more severe liver disease and HCC 

development (Chen et al., 2006). Several commercial HBV viral load assays are currently 

available, each with its fundamental advantages and disadvantages. The World Health 

Organization (WHO) defined the calibrated measurement of HBV viral load in IU/mL to 

ensure standardisation across the different assays for patient care, and the results from 

different laboratories using different assays can now be correlated (Saldanha et al., 2001). 

The HBV viral load is an essential factor in determining patient eligibility for antiviral drug 

and treatment response after that. Additionally, it is essential to monitor the resistance in 

patients with antiviral drug resistances (Locarnini et al., 2004). Real-time polymerase chain 

reaction (RT-PCR) tests are now the more sensitive viral load assay and the most common 

diagnostic assay used in routine clinical practice, exhibiting a broad dynamic range (from 

10 up to 109 IU/mL) (Bowden, 2006; Song and Kim, 2016). 

1.8.5 Quantitative serum HBsAg and HBeAg assays  

Most commercial serological assays for both serum HBsAg and HBeAg are qualitative; 

however, sensitive, reliable assays have been developed to quantify serum HBsAg. These 

immune enzyme assays are fully automated, with a high throughput capacity, and calibrated 

to the WHO HBsAg standard, with the results reported in IU/mL (Deguchi et al., 2004). The 
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role of quantitative HBsAg has garnered considerable attention due to its potential to 

monitor natural CHB infection as well as the treatment response (Martinot et al., 2013; 

Honer and Cornberg, 2014). Most commercial HBeAg assay kits are not marketed as 

quantitative but produce a signal which is linear, within a restricted range. This assay can 

be further modified and optimized for use as a quantitative assay by reference to an external 

standard. 
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Table 1-2: Hepatitis B virus infection: Clinical course and serological profile. 

 

Clinical course and serological profile of acute hepatitis B virus infection (Liang, 2009; Liu 

and Zhang, 2015). HBsAg: HBV surface antigen; Anti-HBc: antibody to HBV core antigen; 

HBeAg: HBV e antigen; ALT: Alanine Aminotransferase; Anti-HBe: antibody to HBV e 

antigen. 

 

  

Weeks after 

exposure 

Phase Signs and 

symptoms 

Serological profile 

Initial 

exposure 

Incubation phase 

Duration: 2 -3 

months 

No Signs and 

symptoms 

High viral replication 

12 weeks Predicters phase 

Duration: 1 -7 

days 

Fever 

Anorexia 

Nausea 

Fatigue 

Body aches 

Onset of jaundice 

HBsAg present 

Anti-HBc (IgM) present 

High level of HBV DNA 

High level of HBeAg 

High level of ALT 

  

13 weeks Icetric phase 

Duration: 1 -2 

weeks  

Fever 

Anorexia 

Nausea 

Fatigue 

Body aches 

Jaundice 

HBsAg clearance/present 

Anti-HBc(IgM) pesent 

low level of HBV DNA 

low level of HBeAg 

low level of ALT 

15 weeks Convalescent 

phase  

Duration: weeks 

to months 

Jaundice resolves HBsAg clearance and HBV 

DNA (recovery) or HBsAg 

Present (Persistent carriage) 

Anti-HBc(IgM) present 

Anti-HBc(IgG) present 

Anti-HBe present 

Normal level of ALT 
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1.8.6 HBV Genotyping  

The HBV genotype is not routinely used as a standard of care. However, it provides clinical 

support given the known differences in disease progression and response to antiviral 

therapy, as described later in Sections 1.12.2 and 1.12.3. 

The prevalence of antiviral drug resistance and vaccine mutation across different regions is 

influenced by the predominant genotype and may also relate to different drug or vaccine 

exposure patterns within the population. 

There are various methods of HBV genotyping, including restriction fragment-length 

polymorphism, reverse hybridisation, genotype-specific PCR assays, and sequencing 

analysis, that will be described later in this thesis. Genotype-specific PCR is suitable for 

detecting mixed genotype infections. While they all have costs and benefits, sequence 

analysis is the recognised gold standard for genotyping and can identify viral recombinants 

(Downs et al., 2019).  

1.8.7  Viral mutation analysis 

It is possible through viral sequencing techniques to identify viral mutations that are 

associated with antiviral drug resistance and vaccine mutation. This is particularly important 

in the setting where mutation pathways may confer resistance to other nucleos(t)ide 

analogues (NAs), and mutation analysis can facilitate appropriate salvage therapy decisions. 

Common mutations associated with polymerase are described in (Sections 1.12.2 and 

1.12.3) 

1.9  HBV prevention  

HBV prevention can be achieved through the widespread implementation of the HBV 

vaccine (passive or active) and/or ensuring safe practices, such as screening blood and organ 

donors, applying infection control measures, sterilising medical equipment, introducing 

needle exchange programs, and enforcing preventative measures regarding households’ 

contact to minimise exposure to the bloodborne pathogen (Liaw, 2009; Shepard, 2006; 

Chang and Chen, 2015). 

1.9.1 Passive immunisation 

Hepatitis B immunoglobulin (HBIg) is a preparation of purified IgGs obtained from plasma 

of individuals with immunity to HBV and they contain high titres of the antibody to HBsAg. 



51 

 

It is administered to confer temporary passive immunity on non-immune individuals with 

exposure to HBsAg, through either blood or bodily secretions infected with HBV, sexual 

contact with an HBsAg-positive person or to infants with perinatal exposure born to HBsAg-

positive mothers (Habib and Shaikh, 2007; Zuckerman, 2007). HBIg provides immediate 

protection, but its effects last for only three to six months (Zuckerman, 2007).  

In adults, HBIg is provided with the first dose of HBV vaccine within 12 hours of exposure, 

followed by a second and third doses at 1 and 6 months of age. The HBIG can be repeated 

at one month if there is a history of previous vaccine non-response. HBIG in exposed new-

borns should also be administered with the birth dose of the HBV vaccine, and then the 

subsequent doses completed as part of the Expanded Program for Immunization (EPI) 

schedule (Habib and Shaikh, 2007; Zuckerman, 2007). HBIg is not widely available in many 

settings due to its high cost, dependency on a robust cold chain, and relatively short-term 

effectiveness (Zuckerman, 2007; Chang and Chen, 2015). 

1.9.2 Active immunisation 

The HBV vaccine offers active immunity against HBV infection and its associated 

complications, including liver cirrhosis and hepatocellular carcinoma (Chang and Chen, 

2015). 

In the late 1970s, the first generation HBV vaccine, containing purified HBsAg obtained 

from the serum of CHB patients, was developed in the USA (containing 22 nm of SHBs of 

HBsAg) and France (containing SHBs of HBsAg and small amounts of pre-S) (Shouval, 

2003; Shouval et al., 2015). 

In the 1980s, a second-generation HBV vaccine, produced in yeast, was developed using 

advances in recombinant DNA technology due to concerns about the safety of using 

antigens obtained from blood products (Shouval, 2003; Shouval et al., 2015). This second-

generation vaccine composed of SHBs and is widely used as a component of the WHO 

Expanded Programme on the Immunization (EPI) of infants (Shouval, 2003; Shouval et al., 

2015). A third-generation HBV vaccine constructed in transfected mammalian cells has 

been developed in many countries (Shouval, 2003; Shouval et al., 2015).  

The HBV second-generation vaccine is available in both monovalent and combined 

formulations (Lavanchy, 2012). The combined formation (pentavalent or hexavalent) 

contains immunogens against HBV, diphtheria, tetanus, pertussis and Haemophilus 

influenzae type b (Hib), with or without a polio vaccine, and is administered to infants at 
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the age of six, ten and 14 weeks as part of the WHO EPI (Lavanchy, 2012; Nayagam et al., 

2020), aiming to interrupt horizontal transmission (Nayagam et al., 2020). An HBV 

monovalent vaccine should be administered to all infants within 24 hours of birth, especially 

those born in high endemic areas (WHO, 2015). Three doses of this monovalent formulation 

should also be administered to adults in the high-risk groups, including health care 

professionals, people requiring frequent blood or blood products, people who inject drugs, 

prisoners, the household and sexual contacts of people with CHB and travellers to endemic 

areas (Lavanchy, 2012; Chang and Chen, 2015; WHO, 2018). 

1.9.3 The post-vaccine Era: a reduction in HBV  

Since the widespread introduction of the HBV vaccine, the global rates of HBV infection 

and chronic carriage have fallen. Furthermore, the important long-term complications of 

chronic HBV infection, including the rates of HCC, have also significantly decreased. The 

use of combined active and passive vaccination, given to infants with HBsAg-positive 

mothers at birth, has been shown to prevent at least 94% of perinatal HBV transmission 

(Beasley, 1983). In Taiwan, where there was an early implementation of universal infant 

HBV vaccination in a highly endemic area with high rates of perinatal transmission, a 

staggering impact was demonstrated at the 20-year follow-up, showing: that the HBsAg 

prevalence rates in children had decreased from 11% to 1%, an 80-90% protection rate for 

infants born to HBsAg-positive mothers, a 68% reduction in mortality from fulminant 

hepatitis in infants, and a 75% decrease in the incidence of HCC in children (Chien, 2006). 

Other regions of the world have shown similarly impressive trends. However, the burden of 

CHB in some low prevalence countries has continued to increase due to the migration of 

people from highly endemic areas, such as Asia and sub-Saharan Africa (Liaw, 2009). 

1.9.4 Vaccine escape  

Variants in the small surface protein gene have been implicated in cases of vaccine escape. 

The most widely reported of these is glycine to arginine at amino acid position 145 of the 

antigenic ‘a’ determinant of the surface antigen, which is the major neutralising domain of 

the HBsAg (Zanetti, 2008). Changes in the S protein, specifically within the major antigenic 

determinant, can result in conformational alterations, leading to the evasion of vaccine-

induced immunity and HBIg therapy (Cooreman et al., 2001; Caligiuri et al., 2016; 

Lazarevic et al., 2019). Furthermore, diagnostic escape mutations can return false-negative 

HBsAg results (Caligiuri et al., 2016; Lazarevic et al., 2019).  
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Mutations in the HBV polymerase can also lead to amino acid changes in the S protein due 

to their ORF overlaps in the genome (Caligiuri et al., 2016). As mentioned above, the 

surface protein mutation G145R is a well-known VEM which, alone, can be responsible for 

vaccine escape. Experimentally, it fails to bind to the HBsAg antibodies (HBsAb) and has 

also been isolated from vaccinated children who become infected (Steward et al., 1993; 

Lazarevic et al., 2019).  

In addition, the mutation K141E has been reported to have reduced binding to HBsAb and 

has also been isolated from vaccinated children who became HBV core antibody positive (a 

marker of infection) (Steward et al., 1993). 

Several other mutations in the S protein have recently been associated with vaccine/HBIg 

resistance (Lazarevic, 2014; Lazarevic et al., 2019). There exist very limited data for VEMs 

in the Middle East. However, in other areas with high endemicity, VEMs can be common, 

as evidenced by a reported prevalence of 28% among vaccinated HBV-infected children in 

Taiwan (Hsu et al., 1999). 

1.10 Management of HBV Infection 

1.10.1 Acute HBV infection  

The clinical spectrum of acute HBV infection ranges from asymptomatic to fulminant 

hepatitis, occurring in less than 1% of cases (Liang, 2009). In symptomatic infection, a non-

specific prodromal stage is followed by symptoms which may include anorexia, nausea and 

vomiting, fatigue, malaise, arthralgia, myalgia and headache, that precede the onset of 

clinical jaundice by one to two weeks. The rate of acute HBV infection resulting in 

spontaneous resolution is greater than 95% in immunocompetent adults and therapy is not 

required. Antiviral treatment is commonly given to patients with fulminant hepatitis, but 

whether it improves the outcome remains unclear.  

1.10.2 Chronic HBV infection  

The aim of antiviral treatment in CHB management is clearly described in Section 1.11.  

1.11 Antiviral therapy 

Antiviral therapy aims to improve the quality of life and survival of chronically HBV-

infected patients by preventing or delaying disease progression (Grimm et al., 2011). The 

aim is to suppress the viral replication, which usually results in the reduced histological 
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activity of chronic hepatitis and biochemical remission. Therefore, the risk of progression 

to cirrhosis decreases along with the incidence of HCC in non-cirrhotic patients, and also to 

a lower level in cirrhotic patients (EASL, 2017). 

Recently, many clinical studies have demonstrated that the risk of HCC developing 

significantly decreased when patients underwent successful antiviral therapy compared to 

patient groups that remained historically untreated (Seeger & Locarnini, 2015). HBV 

replicates through an RNA intermediate step, despite having a DNA genome. Lack of 

proofreading capacity of the virus-encoded, RNA-dependent DNA polymerase, when 

coupled with an extremely high rate of HBV replication, increases the potential for genome-

wide mutations. Viruses with mutations that confer a replicative advantage are selected 

when subjected to selective pressure in the presence of an antiviral agent. They ultimately 

become the predominant viral species (Richman, 2000). The current therapies for CHB 

include either interferon – α (IFN-α) and its pegylated form (Peg-IFN-α) or oral NA 

treatment (Ward et al. 2016; EASL, 2017).  

1.11.1 Pegylated interferon alpha (PegIFNa) 

PegIFNa was developed in 2005 for CHB treatment (Woo et al., 2017). PegIFNa bind to the 

IFNAR receptors and triggers the JAK/STAT pathway resulting the upregulation of other 

IFN, antiviral cytokines and interferon regulated genes (Tan et al., 2018). It has also been 

shown to augment the immune response against HBV (Tan et al., 2018). PegIFNa is 

administered through subcutaneous injection once a week for a period of 24 weeks; it is 

thought to increase host cell-mediated immunity against HBV and also target various parts 

of the HBV life cycle including decreasing HBV RNA transcription thus inhibiting viral 

replication (EASL, 2017; Woo et al., 2017). Despite the finite duration of treatment and its 

potential ability to induce long-term immunological control, only about 30% of individuals 

achieve a sustained off treatment response (Woo et al., 2017).  

Other disadvantages of PegIFNa include its adverse side effect profile, such that it cannot 

be used in infants below one year of age, pregnant women and individuals with 

decompensated cirrhosis, hypersplenism, thyroid disease, autoimmune diseases, heart 

diseases, kidney diseases, psychiatric illness, retinopathy, and blood disorders, and it is also 

limited by cost (WHO, 2015; EASL, 2017; Woo et al., 2017). 

1.11.2 Nucleos(t)ide analogues (NAs) 
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NAs act directly by inhibiting the reverse transcriptase, all of them target one enzymatic 

activity and the DNA strand elongation of the HBV polymerase (Ismail et al., 2012). 

The first group of NAs contain lamivudine (LAM) and telbivudine (LdT), that are the only 

L-nucleosides that are approved for use in the United States. In addition, clevudine is only 

approved for use in Korea  (Ghany & Doo, 2009). All of the L-nucleosides have a similar 

molecular structure and target site, which contributes to their possession of a similar form 

of antiviral resistance. L-nucleosides act as chain terminators that inhibit the synthesis of 

both the negative and positive HBV DNA strands (Ghany & Doo, 2009).  

LAM was initially developed and widely used for HIV infection, and in 1998 the FDA 

approved it for treatment of CHB (De Clercq et al., 2010; Lingala et al., 2016; Luo et al., 

2018). As mentioned, it is administered orally in its inactive form and then transported into 

the cell where it is converted to its active metabolite, lamivudine triphosphate by 

intracellular kinases (Else et al., 2012). In practice, this is able to reduce the level of HBV 

DNA serum in patients who have been treated. However, in order to sustain inhibition, LAM 

requires a lengthy course (Kang et al., 2015). It has been demonstrated that this well-

accepted drug has a good impact even with patients who suffer from hepatic failure 

(Koumbi, 2015). Where a long-term LAM therapy course is applied in as many as 50 percent 

of HBeAg seroconversions, in both HBeAg-negative and HBeAg-positive patient, it 

sustains low levels of ALT and HBV DNA. Nevertheless, after a period of 12 months of 

treatment, resistant mutations develop in 20 per cent of cases, whereas after a five-year 

period of treatment, the figure is 70 percent (Koumbi, 2015). Among the most frequently 

encountered drug resistant mutations are tyrosine-methionine-aspartate-aspartate mutations 

at position rt204 (otherwise referred to as the YMDD mutant) (Kang et al., 2015). It is 

considered safe for use among both children and adults, including during pregnancy (De 

Clercq et al., 2010). 

LdT was approved for the treatment of CHB in 2006 (Long et al. 2017).  It is a nucleoside 

analogue of thymidine which is administered orally and then gets converted to its active 

form, telbivudine 5’-triphosphate intracellularly by cellular kinases (Amarapurkar, 2007).  

Its active metabolite, 5-triphosphate of β-L-2-deoxynucleosides, is incorporated into the 

second strand of the growing DNA (DNA-to-DNA transcription) thus inhibiting replication 

(Amarapurkar, 2007). The antiviral efficacy of LdT is more potent than that of LAM - the 

number of patients having undetectable HBV DNA is considerably greater than in those 

who are given LAM treatment (Kang et al., 2015).  
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The second group of NAs include adefovir dipivoxil (ADV), tenofovir disoproxil fumarate 

(TDF) and tenofovir alafenamide (TAF), which comprise of acrylic phosphonates that are 

approved for use in CHB therapy (EASL, 2017). Structurally, instead of a simple phosphate 

group, these agents possess a chain terminating phosphonate group that cannot be cleaved 

by the host esterases. Such compounds have improved access to the HBV polymerase active 

site because of their structural similarity to the flexible phosphonate linker and the natural 

substrate dATP (Ghany & Doo, 2009). 

ADV was approved for treatment of CHB in 2002 (Lingala et al., 2016). It is a nucleotide 

analogue administered orally as adefovir which is then converted to ADV in plasma and 

then converted again to its active metabolite adefovir diphosphate (ADV-DP) intracellularly 

(Marcellin et al., 2003). ADV-DP inhibits viral replication by competing with the natural 

substrate deoxyadenosine 5' triphosphate for incorporation into viral DNA thus acting as 

chain terminator (Marcellin et al., 2003). It is a potent inhibitor of viral replication of both 

the wild type and LAM resistance HBV. It displays renal toxicity when administered at a 

daily dose of 30 mg or more, however, no serious effects have been observed at a standard 

dose of 10 mg/day although close monitoring of renal function is recommended (Kang et 

al., 2015). Emergence of resistance mutations have been observed in about 30 percent of 

patients upon long-term treatment (Koumbi, 2015). 

TDF was approved for treatment of CHB in 2008 (Lingala et al., 2016). It was initially 

developed and widely used for HIV treatment and inhibits both HBV and HIV replication 

at the RT step (Lovett et al., 2017; Kang et al., 2015).  It is administered orally as TDF 

which is then converted to tenofovir (TFV) in plasma and finally to its active ingredient 

tenofovir diphosphate (TFV-DP) intracellularly (Kearney et al., 2004; Abdul Basit et al., 

2017; Byrne et al., 2018). Since TFV-DP competes with the natural substrate nucleotide 

deoxyadenosine 5´triphosphate for merging with the viral DNA, it inhibits viral replication, 

thereby terminating DNA chain elongation. TDF can be safely used in pregnancy and is 

included in some guidelines for HBV PMTCT (EASL, 2017; Terrault et al., 2018). 

Approved in 2015, TAF a phosphonate prodrug of TFV, was developed to mitigate the risk 

of renal and bone toxicities associated with TDF (De Clercq, 2016; Byrne et al., 2018) since 

it can be at administered at a lower dose (25 mgs) and has high plasma stability compared 

to TDF (Abdul Basit et al., 2017; Byrne et al., 2018). 

The third group of NAs comprise the cyclopentane group, that include entecavir (ETV), 

which is a carbocyclic analogue of 2’deoxyguanosine and demonstrates potent activity 

against the HBV (EASL, 2017). ETV acts at three stages in the viral replication cycle by 
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inhibiting the priming as well as the synthesis of both the negative and positive strands of 

HBV DNA (Ghany & Doo, 2009). ETV was approved for treatment of CHB in 2005 

(Lingala et al., 2016). ETV is administered orally then converted to its active metabolite, 

entecavir triphosphate (ETV-TP) intracellularly (Yan et al., 2006). ETV is carbocyclic 

analogue of 2’ deoxyguanosine which inserts into the first and second strands of the viral 

DNA inhibiting both RNA-to-DNA and DNA-to-DNA transcription, and also prevents 

replication by inhibiting the unique protein-linked priming activity (Dimou et al., 2007; 

Langley et al., 2007). ETV is considered to have potent antiviral activity with a high genetic 

barrier to resistance (Villamil and Cairo, 2013). ETV cannot be used during pregnancy due 

to its carcinogenic potential shown in animal studies (Lin et al., 2008; Aslam et al., 2018). 

A summary of NAs and therapeutic target are presented in (Table 1-3). Details of each drug 

was cited as presented by provider instructions.  

 

Table 1-3: Summary of therapeutic target of the anti-HBV drugs. 

Drug Therapeutic Target 

LAM 
Inhibition of the DNA and RNA-dependent polymerase HBV reverse 

transcriptase activities. 

LdT 
Inhibition reverse transcriptase by competing with the thymidine 51-

triphosphate natural substrate. 

ADV 

Inhibition of reverse transcriptase by competing with the deoxyadenosine 

triphosphate natural substrate, thereby resulting in the termination of the 
DNA chain subsequent to its merging into viral DNA. 

TDF 

Inhibition of reverse transcriptase activity by competing with the 

deoxyadenosine 51-triphosphate natural substrate subsequent to 

incorporation into DNA, through DNA chain termination. 

ETV 

Inhibition of reverse transcription of the negative DNA strand from the 

pregenomic messenger RNA and Inhibition of the synthesis of the HBV 

DNA positive strand.  

Lamivudine: LAM; Telbivudine: LdT; Adefovir dipivoxil: ADV; Tenofovir: TDF; 

Entecavir: ETV 
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1.12 Guidelines for Currently Approved Medications  

There are two international treatments standards published for HBV management at this 

time, representing the optimal management of HBV infection. These include the European 

Association for the Study of the Liver (EASL, 2017) and the WHO guidelines for the 

prevention, care and treatment of persons with CHB (WHO, 2015). 

The following two strategies for treatment are given in the 2017 EASL guidelines: long-

term treatment with NAs and finite-duration treatment with pegIFN. However, if pegIFN 

treatment is given, it ought to be applied very carefully because its combination with NA 

and its contraindications are not recommended. 

The strongest agent which is the greatest barrier to drug resistance ought to be the NAs that 

are applied for finite-duration treatment, whereas the first-line monotherapies are ETV and 

TDF. It is evident that most patients with monotherapy for a period of greater than three 

years keep a full virological response (Chang et al., 2010; Heathcote et al., 2011). 

Furthermore, the WHO guidelines recommend solutions to antiviral treatment failure. A 

drug switch to entecavir or tenofovir from the initial drug is advised when there is partial 

response or a primary non-response (Table 1-4) (WHO, 2015). Following the identification 

of virological breakthrough and the exclusion of patient compliance as a potential cause, a 

new therapeutic regimen ought to be employed as soon as possible after the HBV DNA 

loads have been monitored, and the pattern of resistance mutations has been detected.   

It is recommended by the WHO that the entecavir and tenofovir, with their high genetic 

drug resistance barrier, ought to be used in the initial treatment for patients of 12 years of 

age and over, but that entecavir ought to be used for children between the ages of two and 

eleven. For the second stage of treatment in the same paediatric group, it is recommended 

that TDF is used. However, it is strongly advised that other NAs, for instance LdT and ADV, 

are not used. Moreover, since pegIFN involves contraindications and resource-limited 

settings, it is not regarded as being a suitable treatment option (WHO, 2015).  
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Table 1-4: International treatment guidelines for Hepatitis B virus. 

 EASL 2017 WHO 2015 

Recommended antiviral 

drug 

TDF: 245 mg/day; TAF: 25 

mg/day; ETV: 0.5 mg/day 

TDF:245 mg/day  

ETV: 0.5 mg/day 

Duration of treatment Until loss of HBsAg (long-

term). 

Indefinite for all patients with 

cirrhosis. 

TDF: Tenofovir disoproxil fumarate; TAF: Tenofovir alafenamide; ETV: Entecavir; 

HBsAg: HBV surface antigen.  

 

1.12.1 End Point of Antiviral Drugs 

Based on the EASL guidelines, the end point of HBV therapy is found to differ between 

patient groups and is recognized based on the following three serological sets: 

1. Patients with positive HBeAg and negative HBeAg for whom the ideal end point 

is sustained HBsAg loss, with or without seroconversion to anti-HBs (Grimm et al., 2011). 

2. Patients with positive HBeAg and durable seroconversion to anti-HBe, which is 

a satisfactory end point (Grimm et al., 2011). 

3. Patients with positive HBeAg who do not achieve an anti-HBe seroconversion, a 

maintained undetectable HBV DNA level of treatment with NAs or a sustained undetectable 

HBV DNA level after interferon-α (IFN-α) therapy, which is the second most desirable end 

point (Grimm et al., 2011). 

1.12.2 The Antiviral Resistance Mechanism 

During the disease course, viral mutants are generated which subsequently result in the 

development of viral quasispecies. Antiviral drug resistance is caused by adaptive mutations 

within the viral genome, whereas HBV infection has particularly high levels of turnover and 

virus production, producing over 1011 virions each day (Figure 1-5) (Locarnini, 2008; 

Zoulim & Locarnini, 2009). The high HBV replication rate, together with the high mutation 

rate (1 in every 105 nucleotide substitutions in each replication cycle, due to the error-prone 

property of reverse transcription) leads to CHB patients having various types of viral 

quasispecies, each differing in at least one mutation. Furthermore, the likelihood of a 

mutation being related to the drug resistance that is chosen during therapy is dependent on 

the potency of that drug (Locarnini, 2008; Zoulim & Locarnini, 2009). 
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Replication fitness, which is described as the capability of replicating when under pressure, 

and the replication capacity of resistant isolates are able to shape the mutation pattern that 

appears in primary mutations. This refers to the amino acid change(s) which lead to a lower 

susceptibility to an antiviral agent as against secondary and compensatory mutations. This 

restores replication defects related to primary drug resistance and could be associated with 

low-level reduced susceptibility. Many evolutionary drug resistant HBV pathways have 

been identified in patients being treated with NAs (Locarnini, 2008; Zoulim & Locarnini, 

2009).   

Furthermore, resistance is recognized by the availability of the HBV replication space. 

However, the liver is able to accommodate new cccDNA transcriptional templates only if 

uninfected cells are created by hepatocyte proliferation, normal liver growth or the direct 

loss of cccDNA. When the genetic barrier to the treatment regimen resistance increases, the 

number of particular mutations needed for drug resistance also increases. Moreover, the host 

characteristics of the virus-infected hepatocytes, the genetic background and the immune 

response have an impact on antiviral drug resistance.   

Additionally, the effectiveness of the treatment could be influenced by pre-existing 

antiviral-resistant mutants and mutation patterns which accumulate in the course of time 

(Ismail et al., 2012). When drug resistance commences with pre-existing mutations, this will 

lead to an increase in the viral load, and the ALT levels will also increase many weeks and 

months later which will result in the progression of liver disease (Zoulim & Locarnini, 

2009). The potential of increased serum ALT is generally associated with identifiability of 

the resistant strain in the case of patients having LAM resistance (Lok et al., 2012). 

Likewise, such patients are particularly vulnerable to ALT flare which could be linked with 

hepatic decompensation (Lok et al., 2012).  

Resistance development is dependent on numerous elements which are associated with the 

progress of antiviral resistance. The principal factors are the potency and genetic barrier to 

resistance of the antiviral agent as well viral fitness, which indicates the capability of a virus 

to replicate within a defined environment (Richman, 2000). It is possible to detect the 

strength of antiviral NAs by their ability to act as a competitive inhibitor of the HBV 

polymerase with regard to that of the natural substrate (Richman, 2000). From a clinical 

perspective, a drug’s strength is reflected by how quickly it is able to restrain viral 

replication, and the more rapidly it does this, then the possibility of it developing antiviral 

resistance is lower (Richman, 2000). The genetic barrier to resistance indicates the number 

of mutations that need to be accumulated by the virus to enable effective replication where 
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the antiviral agent is present. The genetic barrier to resistance partly depends on the antiviral 

compound’s structure, and the constraints imposed by the viral polymerase’s ability to 

tolerate compensatory mutations without impeding its enzymatic activity to any great 

extent. Consequently, if an agent has a high genetic barrier against the accumulation of 

mutations, it will clearly have less possibility of developing resistance (Richman, 2000).  

Figure 1-5: Antiviral Resistance Mechanism in HBV. 

 

 
 

Virus such as HBV and more famously HIV-1, generate quasi-species during replication, 

this is a population of viruses that have accumulated mutations which may or may not be 

associated with a fitness cost. As these viruses are able to tolerate high mutations, it can lead 

to mutations that allow the virus to replicate in the presence of a drug (Rodriguez-Frias et 

al., 2013). Mutations associated with drug resistance occur because of high viral replication. 

Some mutations can lead to severe loss of function thus impairing viral fitness and 

replication capacity, whereas other mutations can lead to the development of variants, which 

can become dominant with exposure to drug. These variants evolve to acquire compensatory 

mutations, which restore their replication capacity.  

 

The mutations in the RT domain of the polymerase gene have been given specific names 

based on the nomenclature introduced by Stuyver et al. (2001). Currently, the resistance 

mutations are divided into two types; namely, primary resistance mutation and secondary 

or compensatory mutation (Lok et al., 2003). 

The primary mutation, namely LAM resistance mutation, causes an amino acid substitution 

that results in resistance, such as rtM204V/I, which occurs within the YMDD motif in the 

C domain of the viral polymerase (Fischer et al., 2001). The rtL180M is the main 

compensatory change caused by LAM resistance and other compensatory mutations, 

including rtV173L and rtL80I (Lok et al., 2003; Ismail et al., 2012). The primary LAM 

resistance mutation also confers cross-resistance to other L-nucleosides, such as LdT and 

CLV (Lok et al., 2003). The primary mutations are rtN236T in addition to rtA181T/V for 
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ADV resistance. In addition, ADV-associated mutations display partial cross-resistance to 

TDF (Lok et al., 2003). 

The mutations (rtL180M + rtA194T + rtM204V) were reported to be associate with TDF 

resistance in HBV-HIV co-infections after dual therapy with TDF and LAM, but not in 

HBV-infected patients undergoing TDF.  

1.12.3 Comparative Worldwide Reports on Antiviral Resistance 

An Indian study conducted in 2011 described the amino acids substitutions in 97 patients 

who had not been prescribed antiviral drugs before. Genotype D was the main genotype 

amongst those patients, followed by Genotype C and Genotype A (Ismail et al., 2012). One 

patient carried a sub-genotype D4 virus with a unique substitution rtE/D263S together with 

rtA329V. A mutation rtI233V, which is associated with ADV resistance, was identified in 

four of the patients who participated in the study.  

Similarly, rtT128N, rtV214A, rtQ215S, rtS219T and rtN238S compensatory mutations were 

identified separately. Atypical mutations with new amino acid substitutions at positions 

rtV84, rtT128, rtS213, rtV214, rtQ215, rtS219, rtP237, rtN238 and rtY245 were identified 

in 19 patients (Ismail et al., 2012). Furthermore, the study showed some amino acid 

substitutions that are common and specific to certain genotypes; for example, in the 

Genotype D patients, rtA/P/S/T54H/Y, rtS135Y/N, rtK149Q, rtW257Y, rtT259S, 

rtI/L/V266R/K, rtI/N/S/T53D and rtH126R were found to be common. Likewise, rtF151Y 

and rtR153W/Q were only found in the patients with Genotype A. In patients with Genotype 

C, only the rtH9Y substitution was identified (Ismail et al., 2012).  

More recently, Hermans et al. (2016) disclosed data on 1317 patients covering 18 European 

countries along with their treatment history. Genotype D was found to be the most common 

genotype, followed by Genotype A and Genotype C. Antiviral resistance was frequently 

encountered in patients who were exposed to monotherapy with LAM and ADV. Based on 

this, 1,102 patients were treated with NAs monotherapy – mainly with LAM (972/1317), 

ADV (59/1317), ETV (50/1317), TDF (18/1317) and LdT (3/1317).  A total of 197 patients 

were exposed to two NAs, either simultaneously or consecutively and mainly received LAM 

+ ADV, LAM + ETV, LAM + TDF, and LAM + LdT. Triple antiviral exposure was present 

in 17 patients, of whom several received LAM + ADV + ETV, while the rest received LAM 

+ ADV + TDF. Lastly, one patient was exposed to four different NAs (LAM + ADV + TDF 

+ LdT) (Hermans et al., 2016).  
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The common primary mutation rtM204V/I associated with LAM and LdT found was 

detected in the results, while the rtA181T/V and rtN236T mutations were identified 

associated with ADV resistance (Hermans et al., 2016). The mutation of rtM204V/I was 

accompanied by additional mutations in many cases. 

Resistance against ADV was present in 43/193 patients, and against ETV in 36/102 patients. 

In patients who used ETV as monotherapy without previous exposure to other NAs, 

intermediate resistance to ETV (rtM204V + rtL180M) was identified in some cases 

(Hermans et al., 2016). 

There are also reports of four different studies based in Middle Eastern countries (Oman, 

Jordan, Iran and Turkey). The first report, from Oman, reported that of 146 HBsAg-positive 

patients, a majority of which infected with the Genotype D virus, eight had developed 

resistance to NAs (Al Baqlani et al., 2014). Amongst these, seven patients treated with 

LAM, had the ADV resistance mutation rtS85A. In particular, one patient showed four 

mutations (rtL80V, rtL180M, rtM204V and rtQ215S), and another three (rtL80V, rtL180M 

and rtM204V) (Al Baqlani et al., 2014). The second study was conducted in Jordan in 2008. 

It targeted 20 genotype D-infected patients, 4 of which were LAM naïve while the rest had 

a history of LAM treatment (Masaadeh et al., 2008). Six mutations in the rt domain were 

detected in five different patients with a history of LAM treatment. Two mutations (rtM204I 

and rtL180M) were detected in one patient. On the other hand, only one mutation (rtM204V) 

was detected in a LAM naive patient (Masaadeh et al., 2008).  

An Iranian study reported 45 CHB genotype D-infected patients who had not been treated 

with any antiviral therapy for at least a year. Viral mutations were identified in 23 patients. 

Specifically, primary resistance mutations rtA181T and rtA181S were identified in two 

patients, whereas one patient had rtM204I (Hamidi-Fard et al., 2013). Secondary mutations 

were found in 20 patients, including an rtQ215S mutation in four patients, an rtQ215P 

mutation in three, an rtQ215H mutation in two and an rtQ215M mutation in one. The 

rtN238H mutation was detected in two patients (Hamidi-Fard et al., 2013). Lastly, each 

mutation of rtV214I, rtL80I, rtV214E, rtV214T, rtS219A, rtV207I, rtF221Y and rtF221V 

was detected in one patient (Hamidi-Fard et al., 2013). To summarize, most of these 

mutations were associated with ADV resistance and only one case demonstrated a LAM 

resistance. The last study, that was conducted in 2016 and covered the Middle East was 

from Turkey. It involved 53 CHB patients who had not received NAs before. The study 

showed that Genotype D was predominant amongst these patients. There was no primary 

drug resistance in any of the patients; however, there were compensatory mutations in 19 
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cases. Mutations associated with LdT were identified in four patients (rtL91I), 13 patients 

showed mutations with LAM and ADV (rtQ149K, rtQ215S, rtQ215H, rtQ249K, rtV214A), 

and two patients indicated mutations associated with ADV (rtN238D) (Altındis et al., 2016). 

An additional report from China in 2016 studied 139 patients experiencing NAs treatment. 

The classic primary mutations (rtM204V/I, rtA181V and rtN236T) were identified and other 

secondary mutations (rtL80I/V, rtV173L, rtL180M and rt250L) were detected (Qian et al., 

2016). The mutation of the rtM204V/I was considered the highest amongst the patients who 

had received the treatment associated with resistance to LAM, LdT and ETV. Mutation in 

rtM204V/I was the major type in the patients who were found to harbour drug-resistant 

mutations. Changes in the amino acids at rtM250 were found in some ETV-naïve patients. 

Amongst these patients, five had received LAM monotherapy, and rtM204I + rtM250L 

mutations were observed in three cases. The rtL180M + rtM204V + rtM250L mutations 

were found in one case, and the rtM250L mutation was found in another (Qian et al., 2016). 

The mutation pattern of rtL180M + rtM204V + rtM250V was detected in one patient 

receiving LAM who had switched to ADV sequential treatment. Combination mutations in 

rtA194G + rtS202N were identified in this report, even though this mutation has not been 

reported before (Qian et al., 2016). However, a previous report showed that the rtA194T 

mutation was associated with ADV and TDF resistance and that rtS202C/G/I was associated 

with ETV resistance (Tenney et al., 2007).  

1.12.4 Management of Antiviral Resistance 

The basic principles of management of antiviral resistance are to change therapy early once 

virological breakthrough is observed, select an add-on approach over switching, and choose 

rescue therapy based on the cross-resistance profile and potency of the rescue drug and 

presence of comorbid conditions. The recommendations guidelines for patients with Drug-

resistant Virus are shown in (Table 1-5). The treatment approach for LAM resistance can 

also be relevant to LdT-resistance because of the shared drug-resistance profile, as 

recommended by EASL, TDF is primary antiviral drug against LAM and LdT resistant as 

well as against wild type HBV. For ETV resistance, TDF is proposed to be effective in 

suppressing the replication of ETV-resistance and combination of TDF plus ETV would be 

a more appropriate treatment for reducing ETV resistance and improving antiviral efficacy. 

ETV and TDF have been recommended for HBV patients with ADV-resistance while TDF 

can also be a treatment option for multidrug resistant HBV (EASL, 2017). Furthermore, 

there are no recommendations have been suggested in the management of TDF resistance. 
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A combination of ADV and LAM indicated no better antiviral efficacy than ADV 

monotherapy for LAM-resistant patients as recommended by EASL (EASL, 2017). 

However, ADV and LAM combination therapy had been recommended for these patients 

to prevent the additional development of ADV-resistant HBV mutants (Lim, 2017). The 

potency of TDF is around 30 times higher than that of ADV, which can be used as a 

substitute for ADV. The responses to TDF and LAM combination therapy are likely to be 

mediated by TDF alone, as LAM might have minimal or no antiviral efficacy in the presence 

of LAM-resistant HBV mutants (Lim, 2017). With this combination, continuous LAM 

treatment is likely only to help to prevent the development of TDF-resistant mutations rather 

than increase the antiviral potency. 

Consequently, the combination of LAM with TDF would be beneficial in terms of providing 

a minimal risk of TDF resistance (Lim, 2017). In addition, TDF monotherapy delivers 

similar antiviral efficacy compared to the combination of TDF and ETV. Moreover, no other 

HBV-resistant mutations emerged during TDF monotherapy for up to 96 weeks (Lim, 

2017). TDF monotherapy would be a practical choice for treating antiviral resistant patients 

with CHB, considering the comparable antiviral efficacy, low risks of resistance, lower costs 

and higher safety potential (Lim, 2017).  

 

Table 1-5: Summary of the Recommendations as Practice Guidelines for Patients with 

Drug-resistant Virus. 

Resistance to: EASL 2017 WHO 2015 

Primary recommendations   

LAM TDF TDF 

ETV TDF or TDF + ETV TDF 

ADV (no LAM exposure) ETV or TDF TDF 

Multidrug TDF + nucleoside analogue TDF 

Secondary recommendations 

LAM ADV + LAM  

ETV ADV + ETV  

ADV (no LAM exposure) TDF  

EASL: European Association for the Study of the Liver; WHO: World Health Organization; 

LAM: Lamivudine; TDF: Tenofovir; ETV: Entecavir; ADV: Adefovir. 
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1.12.5 Prospects in the Drugs  

In the past 20 years, there has been an increase in knowledge and research in the field of 

hepatitis B. Curative antiviral therapy has the potential to prevent morbidity and mortality 

associated with CHB infection. While treatments for hepatitis B have improved, CHB 

patients require lifelong management and prolonged therapies, and these rarely result in 

virus eradication. In order to end the HBV endemic, there is a need for effective therapies 

for CHB given that the approved NAs are not curative, they do not commonly result in the 

clearance of HBsAg, and their indefinite use can result in the emergence of RAMs which 

are a potentially significant concern for their effectiveness. As described, inhibition of RT 

by NAs is of limited efficacy owing to their primary mode of action, which has little impact 

on either cccDNA establishment or viral gene expression. Additional aspects of the HBV 

replication cycle have been explored over the past 5 years, to identify agents that could 

address these limitations and achieve antiviral effects that persist after treatment. 

The crucial goal for future therapy would be to target viral proteins, and host-directed 

antivirals, such as entry inhibitors and immunomodulators as well as   approaches, such as 

direct cccDNA targeting, and RNAse H inhibition (Tavis and Lomonosova, 2015).  

Similarly, it could be possible to succeed in finding a functional cure soon. This is because, 

at present, many new agents in pre-clinical or trials of phases 1 and 2 exist, the objective of 

which is to lead to the loss of HBsAg, thereby enabling the discontinuation of treatment 

(Dawood et al., 2017).  

There are two ways in which such agents can repress viral replication. The first of these is 

by impeding a particular stage this process, which is known as direct-acting antivirals 

(DDAs), while the second is by adjusting the host cell function, a procedure referred to as 

host-targeting agents (Dawood et al., 2017). In their development, the DDAs include: 

core/capsid inhibitors, cccDNA formation and transcription inhibitors, HBsAg release 

inhibitors, RT inhibitors, helioxanthin analogues, and antisense oligonucleotides.  

As the host-targeting agents develop, they include: cyclophilin inhibitors, entry inhibitors 

(Myrcludex-B), and multiple immunomodulatory agents (Lin and Kao, 2016; Dawood et 

al., 2017). MYR GmbH (Gilead Sciences, Inc) is developing bulevirtide (myrcludex B) as 

a specific inhibitor for NTCP. Its objective is to obstruct the viral pre-S1 attachment by 

means of high-affinity binding to NTCP (Wedemeyer et al., 2018). 
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The infectivity of both HDV and HBV is dependent on HBsAg being present in the viral 

envelope. Therefore, the existing clinical studies of bulevirtide concentrate on patients who 

have HDV coinfection, and evaluate the virologic responses of HBV and HDV. 

As Phase 2 data were performed, they indicated a significant decrease in HDV RNA 

following 24 weeks of bulevirtide merged with TDF, as well as after 48 weeks of bulevirtide 

either with or without PegIFNa. In the latter study, the HBsAg decline was greater in the 

case of bulevirtide being combined with PegIFNa (Wedemeyer et al., 2018). Phase 3 of the 

studies investigates the extended therapy either with bulevirtide as monotherapy or in 

conjunction with PegIFNa in patients who have HDV/HBV coinfection, and concentrating 

on HDV clearance as the principal aim. It would not be anticipated that the entry blockers 

would impede the HBV cccDNA formation. However, it would be expected that entry 

inhibition with bulevirtide would protect cells that remained unaffected, thereby 

contributing to HBV therapy either by being merged with other modalities, or alone 

(Wedemeyer et al., 2018; Lopatin, 2019). 

However, the development of CRISPR-Cas9 and other technologies that is able to edit DNA 

directly can target cccDNA directly (Kennedy et al., 2015; Lopatin, 2019).  Numerous firms 

have appeared around this interesting platform. Moreover, many academic groups have 

demonstrated, in non-clinical studies, that this technique has the potential to reduce 

functional cccDNA successfully. Numerous significant warnings remain, despite the fact 

that the data are striking. These include: (1) removal of off-target impacts that should be 

addressed; (2) It would be necessary for the vector for delivery to access all infected 

hepatocytes in order to eliminate the possibility of reactivation; and (3) Cleavage of such 

integrants carries a theoretical risk of inducing genomic instability, as well as the 

concomitant risk of carcinogenesis. This is despite the fact that studies have indicated that 

integrated genomes may be targeted. It is not yet known if such questions can be addressed 

prior to entering the clinic (Lopatin, 2019). 

Thus, the challenge now is to understand these new insights in the context of developing the 

next generation treatments for CHB. With advances in the understanding of the HBV life 

cycle, viral and host immune systems, the goal of a functional cure should be achievable in 

the not-too-distant future.  
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1.12.6 Future Directions 

Resistance to the drug will remain a critical issue when managing patients with CHB, as 

long-term therapy with NAs appears to be mandatory in most cases. It is unknown at present 

whether combination therapy with the currently approved first-line therapies (ETV or TDF) 

is necessary. This is because minimal or no resistance has been reported after approximately 

seven to eight years of monotherapy using these agents (Warner & Locarnini, 2014). 

However, as these patients are neither ‘cured’ nor ‘controlled’, the emergence of resistance 

is always a hidden threat in CHB. Therefore, new therapies against new targets are still 

necessary in order truly to ‘cure’ CHB (Warner & Locarnini, 2014).  

The field of HBV antiviral therapy is entering a new era, and the research, scientific, medical 

and industrial communities have demonstrated an enhanced interest in developing new drug 

concepts for curing HBV infections (Zoulim & Durantel, 2015). A better knowledge of the 

viral life cycle and its interaction with the liver microenvironment and host immune 

responses, along with the development of new study models, will provide the right drive for 

pioneering research in this area. A better understanding and measurement of the major 

clinical endpoints will also provide better guidance for the preclinical and early clinical 

evaluation of the treatment concepts, which, in turn, should translate into improved 

treatment outcomes in the future (Zoulim & Durantel, 2015). 

1.13 DNA Sequencing  

DNA sequencing is not generally employed as a standard diagnostic test for HBV; instead, 

it is implemented to ascertain patterns of resistance exhibited by the virus and provide 

further information on its characteristics. Traditionally, HBV antiviral resistance testing is 

performed using Sanger sequencing. Recently various laboratories introduced deep 

sequencing, also called next generation sequencing for detection of resistance-associated 

mutations.   

1.13.1 Sanger Sequencing 

Sanger sequencing denotes a group of technologies that employ dideoxynucleotides 

(dNTPs) (chain terminator nucleotides) in a polymerase chain reaction (PCR) to acquire 

different length DNA fragments. Electrophoresis is used to divide these fragments based on 

size (Sanger et al., 1977a).  
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Following a series of improvements, such as transferring from radioactive to dye labelling 

of nucleotides and utilising capillary electrophoresis rather than slab gels, the Sanger 

method was made considerably more efficient. Consequently, over the next twenty years, it 

became the foremost DNA sequencing method and enabled the first complete human 

genome sequence to be generated in the year 2000 (Lander et al., 2001; Venter et al., 2001).  

Sanger sequencing has a number of important limitations when applied to viral populations, 

such as an absence of information on linkage and insufficient sensitivity to detect lesser-

known variants. 

1.13.2 Next Generation Sequencing (NGS) 

Next-generation sequencing (NGS), also known as deep sequencing, massively parallel, or 

high throughput, has substantially elevated the output of genetic sequencing. However, the 

power of NGS means it can produce millions of readings of a sequence in a single run. It is 

a technique that can be employed to identify complete viral genomes. Moreover, it is 

unselected (and does not require specific PCR primers), which means it can be applied to 

detect novel viruses. Furthermore, second-generation sequencing technology amplifies and 

then reads separate strands of DNA before providing information on linkage across the full 

length of each strand. Its general availability and low cost mean Sanger sequencing 

continues to be employed in clinical settings to treat hepatitis B. In terms of recent 

applications, NGS has been applied to identify a new bunyavirus in a patient with “severe 

fever with thrombocytopenia syndrome” as well as the aetiology of Merkel cell cancer (Feng 

et al., 2008; Xu et al., 2011). Its metagenomic characteristics means it has also been useful 

in helping characterise the virome in children presenting with acute diarrhoea and fever 

(Wylie et al., 2012). However, because the origin of each sequence read is not viral, it 

remains an inefficient albeit powerful technique. This thesis later describes how target 

enrichment (magnetic beads adhering to virus-specific oligonucleotides) can be utilised to 

improve the technique and purify the virus of concern. Also, Nanopore technology can 

reveal mutations contained within a single viral particle, its directly sequences single 

molecules of amplified PCR products, producing genome-length reads that can reveal 

mutations contained within a single viral particle (McNaughton et al. 2019). Though, its use 

to date has been limited due to high error rate in raw reads of ~5–10% (McNaughton et al. 

2019). Generally, Illumina is considered the most robust sequencing platform with the 

ability to capture within sample diversity with high accuracy (McNaughton et al. 2019). The 

first second-generation sequencing technology to become commercially available was 
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Pyrosequencing (Margulies et al., 2005). Instead of sequencing by chain termination, 

pyrosequencing applies the concept of sequencing-by-synthesis (SBS) (Ronaghi et al., 

1998). In this technique, single-stranded DNA fragments are used as a template to 

manufacture complementary strands and sequence the library. Nucleotides are added 

sequentially to the plate (Voelkerding et al., 2009). The intensity of detected signal 

correlates with the number of bases incorporated. However, it is not possible to determine 

the number of bases accurately when multiple similar nucleotides are incorporated into just 

one cycle. Consequently, an extremely large number of insertion and deletion errors may 

arise in regions that contain long homopolymers. For instance, approximately 65%- 75% 

and 20%-30% of all sequencing errors are thought to be attributable to insertion and deletion 

errors, respectively (Astrovskaya et al., 2011). Several other technologies emerged (e.g., 

SOLiD Sequencing and Ion Torrent ™ Technology). However, the Illumina technology had 

been the main technology implemented in viral population studies. 

1.13.2.1  Illumina  

Illumina became the standard NGS methods in microbial genomics due to its low cost and 

high efficiency. It works using sequencing-by-synthesis (SBS), where the four nucleotides 

along with DNA polymerase are added to a flow cell channel containing primers. PCR is 

then performed to generate multiple clustered copies of the target.  

To detect these, each nucleotide is linked to a distinct fluorescent label (Zhang et al., 2011). 

The NGS process comprises the following sequence of reactions: i) nucleotides added to 

elongating strands of DNA; ii) identification of the nucleotides incorporated into each 

sequenced fragment; and iii) washing by removing the fluorescent labels that block the 

groups to facilitate detection of the subsequent reaction (Mardis, 2011). Further details on 

this process are provided in chapter two. Illumina NGS technology had been used in 

different approaches depending on the objective of the sequencing strategy ranging from 

metagenomic approached in virus discovery studies, amplicon sequencing strategy where a 

targeted region is amplified to understand the diversity and recently the target enrichment 

approach where certain pathogens are targeted in a clinical sample while excluding all other 

DNA present in the sample. The three main approaches are described in (Figure 1-6). 

 Metagenomic Sequencing  

Metagenomics has come to the fore as an area of scientific research that facilitates analysis 

of microbial communities within an environmental sample that is independent of culture 
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(Culligan et al., 2014). The field has grown exponentially since its emergence in 1998, 

allowing researchers to develop an unprecedented understanding of the non-culturable 

microbes both in our environment and within our body (Culligan et al., 2014; Hayes et al., 

2017). The field has been strengthened by the introduction of NGS methods that generate a 

greater volume at a lower cost and in less time than earlier sequencing methods. It is now 

widely applied in the field of deep sequencing (Thomas et al., 2012).  

 Amplicon sequencing approach 

The principle of this approach is to enrich the specific viral genome before sequencing. 

Specific primers utilize for PCR amplification of viral genetic material that are 

complementary to a recognized nucleotide sequence. This approach has been knowing the 

most common for enriching small viral genomes, such as HBV and HIV virus (Houldcroft 

et al., 2017).  Amplicon sequencing approach is more successful than metagenomic 

approach for whole-genome sequencing from samples that have low virus concentrations 

(Thomson et al., 2016).  

 Target enrichment approach 

By targeting specific regions only, target enrichment is employed in NGS workflows to 

eradicate genomic DNA regions that are of no experimental interest (Kozarewa et al., 2015). 

The substantially increased number of reads specific to the viral genome constitutes the 

primary advantage of a target enrichment approach over metagenomics. This facilitates the 

assessment of genetic diversity within hosts. Such data are vital for analysing minority 

variants that are potential precursors to any changes in pathogenicity (Tsetsarkin et al., 

2007). 

 Errors and Limitations of NGS using Illumina technology 

To perform NGS, a small number of non-specific PCR steps is required, leading to a PCR-

based error (Poh et al., 2013). In contrast to traditional PCR-based methods, this error can 

be reduced by restricting the number of PCR cycles and utilising high-fidelity polymerase 

enzymes. However, the technique is extremely sensitive and thus susceptible to cross-

contamination errors. Furthermore, compared to methods such as Sanger sequencing, the 

sequence reads generated using the Illumina platform are generally shorter. This is because 

the NGS read length is restricted by the signal-to-noise ratio (Mardis, 2013).  To assess error 

rates, control samples can be incorporated into each run (Hillier et al., 2008b). Multiple 

instruments have been created to align substantial amounts of data from short fragment reads 
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generated by NGS instruments with a reference genome. Various techniques can be 

employed to identify an over- or under-enriched area, or to define the variants or single 

nucleotide polymorphisms (SNP). 
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Figure 1-6: Illustration of main approaches of NGS (Houldcroft et al., 2017). 

Metagenomic approach offers a simple and accurate description of the sequences in the 

sample, even though at high sequencing and data analysis. It presents lower required number 

of PCR cycles and no primer or probe design required. PCR amplicon approach uses many 

PCR reactions to enrich the viral genome. Most sequencing reads in this approach will be 

pathogen-specific, which decreases sequencing costs (highly specific) and it offer decent 

coverage even at low viral load sample (highly sensitive). Target enrichment approach uses 

virus-specific nucleotide probes that are bound to beads in order to enrich the viral genome 

in a single reaction (highly specific) and introduce less PCR cycles than amplicon approach. 
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1.14 HBV Sequencing  

HBV whole-genome sequencing offers the opportunity to explore mutations associated with 

drug and vaccine resistance, diagnostic failure, and different clinical outcomes, as well as 

to study viral transmission and evolution (Gunther et al., 1995; Chook et al., 2015; Wang et 

al., 2017). Sanger sequencing has also provided insights into HBV genetic sequencing, HBV 

diversity and its role in pathogenesis (Gunther et al., 1995). However, this method generates 

only a consensus-level sequence and cannot capture information on HBV quasispecies 

(McNaughton et al., 2019). HBV evade the host immune system is through the generation 

of individual sequences (haplotypes) that change their antigenic profile. Viral haplotypes 

were explored historically by Sanger sequencing and conventional cloning, which limited 

the analysis to a small number of samples due to the laborious nature of this approach 

(Wagner et al., 2021). Viral haplotype reconstruction programs and NGS are now facilitated 

the deeper characterization of the viral haplotype range. Recently, a haplotype study has 

identified HBV cell-specific infectivity, mutations that lead to immune escape, and 

transmission of haplotypes between individuals (Wagner et al., 2021). 

 

1.14.1 Sequencing of HBV genome using Next-generation Sequencing 

(NGS)  

The NGS platforms, such as Illumina, can reveal the full landscape of HBV quasispecies in 

individual patients, allowing a more detailed analysis of the within- and between-host 

distribution of resistant mutations (McNaughton et al., 2019). NGS is superior to the routine 

diagnostic methods for understanding the viral population due to its enhanced ability to 

detect minority variants with a frequency as low as 1% (Abdelrahman et al., 2015), there 

have been reports of lower frequencies (McNaughton et al., 2019). NGS assays have been 

introduced in clinical laboratories over the last decade, based on their ability to provide 

comprehensive, detailed information. Illumina is considered the most robust sequencing 

platform due to its ability to capture the level of within-sample diversity to a high degree of 

accuracy (McNaughton et al., 2019). The most common type of error identified in Illumina 

is a substitution error. This occurs when poor performance of the de-blocking step results in 

a cluster falling out of phase or incomplete cleavage of the fluorescence label prior to DNA 

cycles, which generates interface noise that results in identification of the wrong nucleotide 

(Mardis, 2013). Nevertheless, Illumina is the preferred choice of platform for most genome-

sequencing projects because it generates superior quality data with low error rates (Zhang 
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et al., 2011). A library comprising millions of DNA fragments is produced by NGS. These 

fragments can be read from both sides, a technique known as paired-end sequencing that 

facilitates the identification of unusual fragment lengths. It also provides information on 

duplicate overlap areas, which leads to an enhanced analysis of NGS data. Utilised to align 

sequences to the reference genomes, alignment scripts are extremely accurate because they 

consider the lengths of the synthesised DNA fragments held in the sequence library (Korbel 

et al., 2007). 

The introduction of NGS to the infectious disease field has elucidated the intra-host viral 

population and enabled scientists to address key questions pertaining to viral genomics and 

the natural history of diseases (Berry et al., 2020). Detailed analyses of the HBV genome 

can enhance understanding of disease pathogenesis, help in the development of new 

therapeutics, enhance treatment, and make accurate predictions of patient outcomes.  

Third-generation sequencing techniques, as compared with second-generation methods, are 

employed to sequence long DNA and RNA molecules. In this domain, the Oxford Nanopore 

Technologies (ONT) MinION and Pacific Biosciences (PacBio) are now the leaders in 

commercialised technology (Slatko et al., 2013). The establishment of the ONT MinION 

and other third-generation platforms allow sequencing where the read length has no 

theoretical upper limit, thereby permitting sequencing of viral genomes or complete genes 

in one read (McNaughton et al., 2019; Astbury et al,. 2020). Although Nanopore-based 

DNA sequencing was proposed during the late 1990s, it is only in recent times that the ONT 

has succeeded in commercialising it. This was achieved by using a portable MinION (512 

nanopore flowcell channels), a high throughput PromethION (in development, 48 flow cells 

of 3000 nanopores each), and benchtop GridION (5 mimIONs in a single module) (Slatko 

et al., 2013; McNaughton et al., 2019; Astbury et al., 2020). These sequencers apply protein 

nanopores in a polymer membrane which is electrically resistant, and causes typical current 

changes as each nucleotide moves through the detector (Slatko et al., 2013; McNaughton et 

al., 2019). However, a methodology for the MinION platform has been developed lately. 

This has been applied to haplotyping and HBV sequencing in order to use the genome’s 

circular properties for the purpose of creating single genome replicates (Slatko et al., 2013; 

McNaughton et al., 2019; Astbury et al., 2020). 

In the PacBio detection procedure and real-time sequencing imaging, it is possible to 

measure the rate of each nucleotide addition in the synthesis process, otherwise known as 

the inter-pulse duration (IPD) (Slatko et al., 2013). This is a significant advantage. It is 
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possible to recognise most nucleotides with base modifications because they change the 

IPD. These include certain cytosine and adenine methylations (Slatko et al., 2013). 

It is possible to identify and record several different modifications for the purpose of 

epigenetic studies. However, not every modification may be recognised at this point, 

because of a small adjustment of the IPD (Slatko et al., 2013). Nevertheless, there is a 

potential for chemical modification of such nucleotides to be identified. Exceptionally 

lengthy fragments (up to 30–50 kb or longer) may be enabled by PacBio sequencing, 

otherwise known as Singe Molecule Real Time (SMRT) (Slatko et al., 2013). PacBio SMRT 

sequencing allows long reads for genome assemblies, and rapid detection of methylation 

sites for epigenetic studies; therefore, it has several advantages over other techniques. 

Recently, two workflows were developed in order to create sequencing data from dried 

serum spot (DSS) sampling by utilising MinION and Sanger platforms, thus acquiring 

totally analysed sequences from the receipt of samples within less than 48 hours for both 

techniques (Astbury et al., 2020). For the six samples that were tested, deep sequencing data 

were created successfully. Additionally, the silico processing produced consensus 

sequences identical to those generated by Sanger sequencing (Astbury et al., 2020). 

Following its development, the assay enabled the determination of HBV genotype, as well 

as the elucidation of HBV resistance associated substitutions to 600 IU/mL by applying a 

550bp amplicon. A MinION sequencer that was sequenced a 1.2 kb amplicon produced 

results that were consistent with Sanger sequencing, permitting the recognition of small 

populations of variants (Astbury et al., 2020). 

1.14.2 Bioinformatic analysis of NGS data 

Assembling and then mapping sequence reads to a reference sequence is the most vital stage 

in NGS data analysis. Given the enormous volume of data produced, two important areas 

need to be addressed: the error profile and how the data will be used. Using traditional 

methods, a number of days are needed to map the data to the original reference genomes or 

use computationally intensive software such as BLAT, BLAST, or Smith-Waterman 

dynamic programming. 

1.15 Current Status in Saudi Arabia and Problem Statements 

Chronic HBV infection in Saudi Arabia is a significant problem that requires a concerted, 

multi-disciplinary research effort to address critical questions relating to the epidemiology, 

pathogenesis, treatment, and natural history of the disease. 
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In an epidemiological study published in 1988, the seroprevalence of HBsAg among Saudi 

children was reportedly 7%, and at least one HBV marker was reported as being positive in 

70% of the screened children (Abdo & Sanai, 2015). This study activated a nationwide 

response, resulting in the introduction of a national universal HBV immunisation 

programme in 1989. A catch-up vaccination programme followed for children of school 

age, healthcare workers, and other at-risk groups. These national efforts resulted in a high 

vaccination uptake rate, with virtually all Saudis aged 27 years or younger being vaccinated 

either at birth or on starting school. 

HBV continues to be a major health problem in Saudi Arabia, even though a vaccination 

programme has been implemented. Some recent studies in the country suggest that the 

prevalence rate for HBV is 3.6% (Schweitzer et al., 2015) while others report a lower rate 

of 1.3%, indicating a gradual decline in HBV infection rates (Aljumah et al., 2019; Alswaidi 

et al., 2013). However, numerous studies have reported a much greater rate of HBV 

infection in high-risk populations, such as HIV positive patients and intravenous drug users 

(Alhuraiji et al., 2014; Alzahrani et al., 2009; Al-Qahtani, 2020). 

During the last two decades, a substantial decline has been observed in the frequency of 

HBV infection in Saudi Arabia; this was evidenced in the decline of HBV prevalence in a 

study that compared the HBV prevalence between two periods (2002-2005) and (2012-

2015) in Saudi Arabia. In this study, the incidence of HBV was assessed amongst couples 

attending an in vitro fertilisation clinic in a tertiary care hospital. The researchers found that 

the prevalence of HBV significantly decreased from 4.7 % in 2002-2005 to 1.67% in 2012-

2015 (Alzahrani et al., 2009; Aljumah et al., 2019; Al-Qahtani, 2020). 

As mentioned above, Saudi Arabia has witnessed a steady decline in HBV infection over 

the past 30 years (Aljumah et al., 2019). This could be attributable to childhood 

immunisation against HBV, improved living conditions, increased awareness of safe 

clinical practices, and the mandated screening programme implemented in the country to 

identify patients through blood tests (Table 1-6). Regardless of this decline in prevalence, 

challenges remain concerning CHB management, and chronic liver disease will continue to 

place enormous pressure on the Saudi healthcare system for many years, with additional 

challenges arising when a substantial number of undiagnosed cases starts to emerge at 

advanced stages of the disease.  
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Table 1-6:  Potential HBV screening points in Saudi Arabia. 

Category Recommendation 

Pre-marital screening  Mandatory  

Pre- employment (Expatriate) Mandatory 

Health care workers and medical students  Mandatory 

Pre-employment (Saudi) in military and police Mandatory 

Blood donation units  Mandatory 

Dialysis patients  Mandatory 

Pregnancy  Recommended  

Any contact with infected patients Recommended 

Drug addicts  Recommended 

Prison inmates Recommended 

Before a patient's procedure  
Done as a part of the 

hospital regulations  

Patients about to start immunotherapy and pre-transplant 

patients  

Done as a part of the 

hospital regulations 

Several mandated and recommended screening forms present in the country aim to identify 

patients through blood tests (Aljumah et al., 2019). 

 

Over the next two to four decades, an increase is expected in the number of patients with 

liver cirrhosis who experience complications and will need a more intensive level of care 

(Alghamdi et al., 2012). To reduce rates of morbidity and mortality within Saudi Arabia, 

substantive work is needed by all primary stakeholders, including policy makers, in every 

phase of the HBV care pathway. A crucial goal would be an initiative that encompasses 

early detection, proper and timely assessment, and successful treatment. However, 

achieving this will need a fully coordinated effort that involves ensuring liver transplantation 

is readily available to patients with end-stage liver disease. Moreover, with respect to the 

epidemiology of viral hepatitis within the Saudi Arabia, a great deal depends on the 

successful in-depth evaluation of risk factors associated with acquiring both HBV and HCV, 
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and large epidemiological, community-based studies of HBV prevalence in older, non-

vaccinated populations (Abdo et al., 2012). 

Regarding the treatment choice for chronic HBV patients, the Saudi Association for the 

Study of Liver Disease and Transplantation (SASLT) developed a series of HBV practice 

guidelines that were published in 2014 (Abaalkhail et al., 2014). However, specialists also 

use other guidelines from the World Health Organization (WHO), the European Association 

for the Study of the Liver (EASL), and the American Association for the Study of Liver 

Disease (AASLD) (Aljumah et al., 2019; WHO, 2017; EASL, 2017; Terrault et al., 2016). 

The antiviral therapies for treatment recommended in Saudi Arabia for CHB are TDF and 

ETV. However, others – pegylated interferon (Peg-IFN-2a), ADV, LAM, and LdT - have 

also been approved. Although all these drugs have received market authorisation, only TDF, 

ETV, and LAM are widely available and free of charge to Saudi patients when prescribed 

by a doctor (Aljumah et al., 2019). 

The molecular characterisation of HBV is understudied in the Middle East. There is a dearth 

of studies characterising the circulating variants in Saudi Arabia and antiviral resistance-

associated mutations. The available data on the dominant genotype in the Kingdom are 

based on the sequencing of the S gene rather than whole-genome sequences. However, there 

is limited data covering the prevalence of resistance-associated mutations in treatment-naïve 

patients. 

In Saudi Arabia, the predominant HBV genotypes are genotype D and E. Knowledge of the 

HBV serologic and genotypic patterns would inform disease management guidelines and 

strategies for eradicating virus infection (Asaad et al., 2015). 

Phyloepidemiology of HBV is an essential step towards eradicating HBV in Saudi Arabia 

as the genotype and subgenotype of HBV are related to the clinical outcome, transmission 

network and treatment outcome (Bui et al., 2017). HBV genotyping is not a routine 

diagnostic test in microbiology laboratories, due to the limited sequencing facilities and 

inaccuracy of the available technologies. There has been a recent drive globally to identify 

circulating variants in the population to improve the clinical decision-making, including 

creating treatment guidelines, identifying prevention strategies via disease modelling, and 

ensuring adequate health resource allocation for managing chronic HBV patients (Bui et al., 

2017). 

The diagnosis of HBV infection is based mainly on the detection of HBsAg. However, the 

presence of a mutation in the S gene had a profound effect on the diagnostic sensitivity of 
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the current serological tests, mainly in the “a” determination; basically, this might lead to 

false-negative results. The antigenic alterations may also help the virus to escape from the 

host immune system (Bernard, 2005). This poses an excellent aspect for studies to unveil 

the circulating variants in Saudi Arabia, as there is a reported genetic diversity in the “a” 

determinant (a short segment of 24 amino acids), even in different geographical regions 

within the same country (Al Qudari, 2016). 

The implication of the genetic variability in the S gene is well-described at both the 

diagnostic and clinical levels, as the mutations lead to the emergence of immune escape 

variants that are missed by the current diagnostic tests based on the detection of HBsAg, 

which increases the number of false negatives in the laboratories.  

Avellon et al. (2006) reported that the substitution mutations in the S region in the HBV 

variants caused diagnostic failure in 12.5% of the cases where HBV was misdiagnosed, and 

the mutant variant is also responsible for 6.6% of cases of invalid vaccination, while 9.2% 

escape immunoglobulin therapy. 

Next-generation sequencing (NGS) is superior to routine diagnostic methods for 

understanding the viral population with an enhanced ability to detect minority variants with 

a frequency as low as 1% (Abdelrahman et al., 2015). 
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1.16 Aim of the Thesis  

The aim of this project is to expand our understanding of the viral diversity of HBV in Saudi 

Arabia using NGS and to develop an in vitro model for investigating HBV replication, 

which includes setting up the infectious/non-infectious virus replication systems.  

Hence, the main objectives of this project were as follows: 

1. Design and validation of target enrichment probe set to perform HBV full genome 

sequencing using NGS technology. 

2. Utilize the new protocol to identify the circulating variants in Saudi Arabia with its 

antiviral resistance profile.  

3. Establishing different assays to determine HBV replication levels. 

4. Characterizing viral replication in HBV infectious and non-infectious replicons. 

5. Generating a panel of mutations potentially associated with drug resistance in the 

replicon. 

6. Functionally analysing these mutants in the presence and absence of the drugs of 

interest in the replicon system to ascertain their role in drug-resistance, if any. 

 

  



82 

 

Chapter 2. Materials and Methods  

2.1 Materials 

The kits and reagents (Table 2.1) and equipment (Table 2.2) used in this thesis are outlined 

below with the manufacturer’s information supplied. This allows for reproducibility 

between studies. 

 

Table 2-1: Kits 

Kit Manufacture 

NEBNext® mRNA Second Strand Synthesis 

Module. 
New England BioLabs Inc. 

KAPA LTP Library Preparation Kit. KAPA Biosystems Inc. 

Nextera XT® DNA Sample Preparation Kit. Illumina. 

NEBNext® Microbiome DNA Enrichment Kit. New England BioLabs Inc. 

Agencourt® Ampure® XP beads. Beckman Coulter. 

Tapestation D1000 ScreenTape System. Agilent. 

Bioanalyzer DNA 7500 Kit. Agilent. 

MagNa Pure® Total Nucleic Acid Extraction 

kit. 
Roche Diagnostics. 

Qiagen Plasmid Maxi Kit. Qiagen. 

QIAprep Spin Miniprep Kit. Qiagen. 

QiaQuick Gel Extraction Kit. Qiagen. 

Monarch® DNA Gel Extraction Kit. New England BioLabs Inc. 

MINI-PROTEAN TGX 4-20% 1mm 10 well. BioRad 4561093 

QuickTiter™ Hepatitis B "e" Antigen 

(HBeAg) ELISA Kit. 
Cell Biolabs, Inc. 

Human hepatitis B virus e antigen (HBeAg) 

ELISA Kit. 
CUSABIO Technology LLC. 
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Human HBeAg ELISA Kit (Colorimetric). Bio-Techne Ltd.  

Chemiluminescence Assay Kit. BioRad. 

 

 

Table 2-2: Equipment 

Equipment Manufacture 

M220 Focused-Ultrasonicator Covaris Limited. 

2200 TapeStation Agilent Technologies. 

Qubit® 2.0 Fluorometer Thermo Fisher Scientific. 

MiSeq System Desktop Sequencer Illumina. 

Nanodrop 1000 spectrophotometer Thermo Fisher Scientific. 

Varioskan microplate reader Thermo Fisher Scientific. 

Odyssey® CLx. Imaging System LI-COR Biosciences. 

EVOS M5000 Imaging System EVOS. 

Applied Biosystems™ 7500 Real-Time PCR 

Systems  

Life Technologies. 
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The reagents (Table 2.3), chemicals used (Table 2.4) mammalian cells used and something 

for the in vitro studies undertaken in this thesis are outlined below. The manufacturer or 

supplier along with the catalogue number is supplied,  

 

Table 2-3: Cell Culture Reagents Utilised 

Component  Manufacture 
Catalogue 

number  

Dulbecco’s Modified Eagles 

Medium (DMEM)  

Gibco (Invitrogen Life 

Technologies)  

41966-029  

 

DMEM/F-12+GlutaMAX 

(Dulbecco's Modified Eagle 

Medium/Nutrient Mixture F-12) 

Gibco (Invitrogen Life 

Technologies)  
10565-018 

Opti-Minimum Essential 

Medium (Opti-MEM) 
Thermo Fisher Scientific 31985062 

10% Fetal calf serum (FCS)  
Gibco (Invitrogen Life 

Technologies) 
A4766801 

Fetal Bovine Serum (FBS)  
Gibco (Invitrogen Life 

Technologies)  
10270-106  

100 units/ml 

Penicillin/streptomycin  

Gibco (Invitrogen Life 

Technologies)  
15140-122 

1x Trypsin (10x Stock)  Sigma  
C100ML-

5927C 

Versene in PBS  E&O laboratories  BM0400  

Phosphate buffer solution (PBS)  
Gibco (Invitrogen Life 

Technologies)  
10010015 

Non-essential amino acids: MEM 

NEAA (100X) 

Gibco (Invitrogen Life 

Technologies)  
11140-035 

L-glutamine 
Gibco (Invitrogen Life 

Technologies)  
25030081  

1000x Ampicillin (100 mg/ml) Melford Laboratories A40040-1.0 

1000x G418 (100 mg/ml) – 

Gentamicin 
Melford Laboratories G64000-1.0 

Puromycin Sigma-Aldrich  P8833 

Dimethyl sulphoxide (DMSO)  Sigma  D2660 
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Table 2-4: Multipurpose Chemicals/Reagents used in the Study 

Chemical Abbreviation Manufacture 

Ethanol EtOH Sigma-Aldrich 

Nuclease free water NFH2O Thermo Fisher Scientific 

Sodium hydroxide NaOH Thermo Fisher Scientific 

Sodium Chloride NaCl Thermo Fisher Scientific 

Ethidium Bromide EtBr Thermo Fisher Scientific 

Isopropanol IPA Thermo Fisher Scientific 

3,3’5,5’-tetramethylbenzidine substrate TMB Sigma-Aldrich 

Tris-acetate-EDTA TAE Thermo Fisher Scientific 

Tris-HCl   Sigma-Aldrich 

Methanol  Thermo Fisher Scientific 

Phosphate Buffered Saline  PBS Thermo Fisher Scientific 

HEPES: HEPES, free acid  Melford 

Skimmed Milk Powder  Marvel 

S.O.C. Media  Invitrogen 

Sodium dodecyl sulphate solution SDS Sigma-Aldrich 

Tris  Roche 

Triton-X-100   Promega 

Tween 20   Millipore 

Formaldehyde  Thermo Fisher Scientific 

Glycerol  BDH 

Sucrose  Sigma-Aldrich 

PageRulerTM Prestain NIR Protein 

Ladder  
 Thermo Scientific  
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The illumine reagents (Table 2.5), buffer used (Table 2.6), and material for transfection 

(Tables 2-7 and 2-8 ) are outlined below. The manufacturer and composition  are  supplied,  

 

Table 2-5: Illumina Sequencing Reagents 

Reagent Abbreviation 

Tagment DNA Buffer TD 

Neutralize Tagment Buffer NT NT 

Nextera PCR Master Mix NPM NPM 

Hybridization buffer HT1 

 

Table 2-6: Buffers made in-house  

Name Component 

Blocking buffer (FBS)  5% filtered FBS in PBS. 

Blocking buffer (milk)  5% Skimmed Milk Powder in PBS. 

DNA loading buffer  65% Sucrose (w/v), 10 mM Tris, 10 mM EDTA. 

PBS-T  0.05% Tween-20 in PBS.  

Coomassie Brilliant Blue 

Stain           

0.12% Coomassie Brilliant Blue powder, 50% Methanol, 

10% Acetic acid in water. 

Coomassie destain Solution       5% Methanol, 7% Acetic acid in water. 

Coomassie fix solution       50% Methanol, 10% Acetic acid in water. 

TAE Buffer (50x)  40 mM Tris, 1 mM EDTA, 5 mM sodium acetate (pH7.6).  

Trypsin-versene  2.5% trypsin (v/v) in versene.  
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Table 2-7: Transfection Reagents 

Reagent Source 

Lipofectamine 3000 Life Technologies 

Opti-MEM I Gibco 

Calcium Phosphate Transfection Kit Sigma-Aldrich 

 

 

Table 2-8: SDS-PAGE and Western Blot Reagent 

Solution Composition 

Sample loading buffer 
31% stacking gel buffer, 31% glycerol, 21% SDS (25%), 9% 2-

mercaptoethanol, 1μg/ml BPB, 8% H2O. 

Gel running buffer 5mM Tris-HCl, 200mM glycine, 0.1% (w/v) SDS. 

Resolving buffer 1.5M Tris-HCl (pH 8.9), 0.4% SDS. 

Stacking buffer 0.5M Tris-HCl (pH 6.8), 0.4% SDS. 

Towbin buffer 25mM Tris-HCl (pH 8.0), 200mM glycine, 20% (v/v) Methanol. 

PBS-T PBS plus 0,05% (v/v) Tween 20. 

Blocking buffer 5% (w/v) milk in PBS-T. 
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Table 2-9: Bacterial Propagation 

Solution Component Source 

Luria-Bertani 

(LB) - broth 

170mM NaCl, 10g/l Bactopeptone, 5g/l yeast 

extract. 

E&O 

Laboratories 

LB-agar LB-broth plus 1.5% (w/v) agar. 
E&O 

Laboratories 

 

Table 2-10: DNA Manipulation 

Solution Component 

DNA loading dye 
30 % glycerol, 0.25 % bromophenol blue, 

0.25 % xylene blue. 

TBE (10x) 
8.9 M Tris-borate, 8.9 M boric acid, 

0.02 M EDTA (pH 8.0). 

TE buffer (Qiagen) 
0.01M Tris-HCl (pH 8.0), 0.001M EDTA, ddH2O water, pH 

adjusted to 8.0. 
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Table 2-11: DNA Analysis 

Solution Component 

TAE Buffer Tris 245.375g, Acetic acid (17.5%), EDTA dehydrate (18.5g). 

Agarose 0.8-1.5% (w/v) diluted in 1x TAE (A9539 Sigma-Aldrich). 

DNA loading buffer 

0.4% orange G, 0.03% bromophenol blue, 0.03% xylene cyanol 

FF, 15% Ficoll® 400, 10mM Tris-HCl (pH 7.5) and 50mM EDTA 

(pH 8.0); Promega. 

P1 buffer (Qiagen) 
Tris 3.03g, EDTA dihydrate 1.86mg, pH 8.0. RNase was added at 

100μg/ml. 

P2 buffer (Qiagen) SDS (20%), NaOH 4g. 

P3 buffer (Qiagen) Potassium acetate 147.25g and Acetic acid until reach pH 5.5. 

 

 

Table 2-12: Cell Lysis 

Solution Component 

Cell Lysis Buffer 

(LB2) 

20 mM Tris-HCl pH 7.4, 20 mM iodoacetamide, 150 mM NaCl, 1 

mM EDTA, 0.5 % Triton X-100 
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Table 2-13: Cell lines 

Name Type Growth and maintenance media 

Growth and 

maintenance 

conditions 

Huh7 
Human 

Hepatoma  

DMEM supplemented with 10% FBS, penicillin, 

100 μg/ml streptomycin, 0.1 mM non-essential 

amino acids and 2 mM glutamine. 

37˚C, 

 5% CO2  

HEK-293T 

Human 

Embryonic 

Kidney 

DMEM supplemented with 10% (v/v) FCS, 

supplemented with 0.1 mM non-essential amino 

acid. 

37˚C,  

5% CO2  

HepG2-

hNTCP-C4  

Human 

liver 

cancer 

DMEM/F-12+GlutaMAX (Invitrogen,10565-

018), 10% FBS, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 5 μg/ml insulin, 10 mM HEPES, 

500 ng/ml G418 (actually 500 μg/ml). 

37˚C,  

5% CO2  

HepG2 

Human 

liver 

cancer 

DMEM/F-12+GlutaMAX (Invitrogen,10565-

018), 10% FBS, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 5 μg/ml insulin, 10 mM HEPES. 

37˚C,  

5% CO2  

Hep38.7-Tet 

Human 

liver 

cancer 

Same as that for HepG2-hNTCP-C4 cells above, 

except also add 400 ng/ml tetracycline 

(sigma, T8032). 

37˚C,  

5% CO2  

Huh7-

hNTCP 

(Huh7N) 

Human 

Hepatoma 
Same as that for HepG2-hNTCP-C4 cells above. 

37˚C,  

5% CO2  

Huh7 express 

3B4  

Human 

Hepatoma 
Same as that for Huh7 cells above. 

37˚C,  

5% CO2 
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Table 2-14: Plasmids 

Plasmid  Description Source 

pTHBV- L- 

Plasmid carries 1.3x HBV genotype D genome. It lacks the 

ATG start codon of L-HBsAg and therefore is L-null 

(assembly defective) but replication-competent. It can be 

used at CL2. It expresses the HBV genes efficiently (and 

also replicates efficiently) in Huh7 cells.  

Provided by 

Professor 

Arvind Patel 

pMD2-G 
For expression of VSV envelope protein for pseudotyped 

lentivirus production. 

Provided by 

Professor 

Arvind Patel 

MLV-Gag/Pol 
Encoding MLV gag and pol genes cloned downstream of a 

human CMV promoter. 

Provided by 

Professor 

Arvind Patel 

L-HBsAg 
Expresses HBV Large envelope glycoprotein in 

mammalian cells. 

Addgene 

(103011) 

S-HBsAg 
Expresses HBV Small envelope glycoprotein in 

mammalian cells. 

Addgene 

(103013) 

M-HBsAg 
Expresses HBV Medium envelope glycoprotein in 

mammalian cells. 

Addgene 

(103012) 

Pol Expresses HBV polymerase in mammalian cells. 
Addgene 

(65520) 

HBV 1.3-mer 

WT replicon 

Plasmid carries the 1.3x HBV genotype D sequence in its 

WT form. It is replication- and assembly competent, so 

upon transfection into Huh7 or HepG2 cells tis plasmid 

initiates HBV DNA replication, and subsequent assembly 

and release of the virus that could be used in infection 

studies. Work involving this plasmid should be done in 

CL3.  

Addgene 

(65459) 

pSVL(D3) Hepatitis delta virus genome from cloned DNA. 
Addgene 

(29335) 

pSVL 

(D2m) 
Hepatitis delta virus genome from cloned DNA. 

Addgene 

(29336) 

pQ-HBV 1.3 

mer wt (2B3) 

The entire HBV genomic sequences from pHBV1.3mer 

WT (from Addgene) subcloned into pQCXIP plasmid 

which has the puromycin-resistance gene downstream. In 

theory, this plasmid would allow generation of cell lines 

stably expressing WT HBV. Work involving this plasmid 

(or the stable cell line carrying it) should be done in CL3. 

Made during 

PhD 

pQ-HBV 2.7 

(3B4) 

Plasmid carries a shorter form of HBV sequence. It doesn’t 

express HBV core or polymerase and therefore it is 

replication-defective and non-infectious. It expresses all 3 

Made during 

PhD 
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HBsAgs (i.e. L, M, and S) and HBx. It has puromycin-

resistance marker so can be used to select a stable cell line.  

pT-HBV- L- 

Puro (1 – 6) 

The entire HBV genomic sequences from pTHBV- L-

subcloned into pQCXIP plasmid which has the puromycin-

resistance gene downstream. In theory, this plasmid would 

allow generation of cell lines stably expressing HBV1.3- L- 

Made during 

PhD 

pTHBV- L- 

Puro (11) 

The entire HBV genomic sequences from pTHBV- L-

subcloned into pQCXIP plasmid which has the puromycin-

resistance gene downstream. In theory, this plasmid would 

allow generation of cell lines stably expressing HBV1.3- L- 

Made during 

PhD 

pQ-HBV1.3mer 

WT (2-8) 

The entire HBV genomic sequences from pHBV1.3mer 

WT (from Addgene) subcloned into pQCXIP plasmid 

which has the puromycin-resistance gene downstream. In 

theory, this plasmid would allow generation of cell lines 

stably expressing WT HBV. Work involving this plasmid 

(or the stable cell line carrying it) should be done in CL3. 

Made during 

PhD 

pTHBV- L- 

Puro (2)  

The entire HBV genomic sequences from pTHBV- L- 

subcloned into pQCXIP plasmid which has the puromycin-

resistance gene downstream. In theory, this plasmid would 

allow generation of cell lines stably expressing HBV1.3- L- 

Made during 

PhD 

pTHBV- L- 

Puro (4)  

The entire HBV genomic sequences from pTHBV- L- 

subcloned into pQCXIP plasmid which has the puromycin-

resistance gene downstream. In theory, this plasmid would 

allow generation of cell lines stably expressing HBV1.3- L- 

Made during 

PhD 
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Table 2-15: Primer Sequences  

Primer 

ID 
Sequence  

HB1 5’ – CCTTTTACACAATGT - 3’ (Forward) nt 1026-1040 

HB2 5’ – TCACATCACCATAC – 3’ (Forward) nt 2047-2060 

HB3 5’ – CACGAGTCTAGACTCT – 3’ (Reverse) nt 260-145 

HB4 5’ – TTTGCTCTGAAGGCTG – 3’ (Reverse) nt 2926-2911 

HB5 5’ – GTATGGTGATGTGA – 3’ (Reverse) nt 2061-2047 

HBV-6   5’ – GGTATATTATATAAGAGAGA – 3’ (Forward) nt2771-2790 

HBV-7  5’ - TATTGTGAGGATTCTTGT – 3’ (Reverse) nt240-223 

HBV-8   5’ – TTGGATCATCCAAATTACTA – 3’ (Reverse) nt2140-2121 

HBV-9   5’ – CTCAGGAGACTCTAAGGCTT – 3’ (Reverse) nt 2040-2021 

HBV-10 5’ – GGTTATCCTGCTTTAATGCC – 3’ (Forward) nt 1041-1060 

HBV-11   5’ – TAAAACTACCTCTCTTCCAA – 3’ (Reverse) nt 2240 – 2231  

HBV-12  5’ – AATGTGGTTATCCTGCTTTAAT – 3' (Reverse) nt 1036-1057 

HBV-13   

5’ – 

CATGGCCTCTCTGGCCACTGAAGGAAAGAAGTCAGA

AG – 3’ (Reverse) 

nt 1206-1226 

HBV-14 
5’ – CATGCTAGCTGTATTCAATCTAAGCA – 5’ 

 (Forward) 
nt 2100-2116 

HBV-15   
5’ – CATGAATTCCACTGCATGGCCTGAGGATGA – 3’ 

(Reverse) 
nt 6-26 

HBV-16   
5’ – CATGAATTCCACAACCTTCCACCAAACTCT – 3’ 

(Forward) 
nt 3162-3181 

HBV-17   
5’ – CATCTCGAGAAGATTGACGATAAGGGAGAG – 3’ 

(Reverse) 
nt 3061-3079 

HBV-18   
5’ – CATCTCGAGGATTGGGGACCCTGCGCTGAACAT 

– 3’ (Forward) 
nt 3030-3052 

HB19   
5’ – TATAGTGAGTCGTATTAATAGCT – 3’  

(Forward) 

nt 28 – 50 of 

pTHBV-L- 

HB20    
5’ – TACAATTAATACATAACCTTAT – 3’  

(Reverse) 

nt 135 – 114 of 

pTHBV-L- 

HB21    
5’ – ATACACTATTCTCAGAATGACTT – 3’  

(Forward) 

nt 617 - 143 of 

pTHBV-L- 

HB22    
5’ – TTAACGTGAGTTTTCGTTCCAC – 3’ 

 (Forward) 

nt 1312 - 1333 of 

pTHBV-L- 
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HB23   
5’ – GCTTTACACTTTATGCTTCC – 3’ 

 (Forward) 

nt 2283 - 2301 of 

pTHBV-L- 

HB24    
5’ – GGAAGCATAAAGTGTAAAGC – 3’  

(Reverse) 

nt 2301 – 2283 of 

pTHBV-L-) 

HB25    
5’ – GTGGAACGAAAACTCACGTTAA – 3’ 

 (Reverse) 

nt 1333 - 1312 of 

pTHBV-L- 

HB26   
5’ – AACCAAGTCATTCTGAGAATAGTGTAT – 3’  

(Reverse) 

nt 643 - 617 of 

pTHBV-L- 

HB27  
5’ – TGAACCTCCTCGTTCGACC – 3’ 

 (Forward) 

nt 1501 – 1519 of 

pQCXIP 

HB28    
5’ – GGAACATACGTCATTATTGA – 3’  

(Reverse) 

nt 1687 – 1665 of 

pQCXIP 

HB29   
5’ – CAT TGATCACTGCAGGGCCCGTCGACAAGCTT – 

3’ 

nt 2378-2400 of 

pTHB-L- 

HB30   
5’– CAT TGATCATAGAATACGAATTCGAGCTCGTATT 

– 3’ 

nt 5542-5566 of 

pHBV1.3-mer-WT 

HB31   
5’ – CAT 

TGATCACAATCTCGGGAATCTCAATGTTAGTATT – 3’ 

nt 101-125 of 

pHBV1.3-mer WT 

HB32 

5’ – 

CATAAGCTTCAATCTCGGGAATCTCAATGTTAGTATT 

– 3’ 

nt 101-125 of 

pHBV1.3-mer WT 

HBV226

8 

5′ – GAGTGTGGATTCGCACTCC-3′  

(Forward) 

nt 3602-3620  

of pTHBV-L- 

HBV237

2 

5′ – GAGGCGAGGGAGTTCTTCT-3′  

(Reverse) 

nt 37706-3724  

of pTHBV-L- 

HBV180

3 

5′ – TCACCAGCACCATGCAAC-3′  

(Forward) 

nt 6320-6336  

of pTHBV-L- 

HBV187

2 

5′ – AAGCCACCCAAGGCACAG-3′ 

 (Reverse) 

nt 6393-6410 

 of pTHBV-L- 

ccc-1582 
5′ – TGCACTTCGCTTCACCT-3′ 

(Forward) 

nt 6096-6112  

of pTHBV-L- 

ccc-2316 
5′ – GACCACCAAATGCCCCT-3′  

(Reverse) 

nt 3632-3638 

 of pTHBV-L- 
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Table 2-16: Enzymes 

Enzyme Manufacture 

RNase H Sigma-Aldrich Co Ltd 

DNase I Sigma-Aldrich Co Ltd 

Proteinase K Sigma-Aldrich Co Ltd 

T5 exonuclease  New England Biolabs (NEB) 

End repair enzyme KAPA Biosystems 

A-tailing enzyme KAPA Biosystems 

Mung bean nuclease New England Biolabs (NEB) 

T4 Ligase New England Biolabs (NEB) 

 

All restriction enzymes were supplied by New England Biolabs (NEB) and used throughout 

the project to confirm successful cloning by digestion, prior to the sequencing of the cloned 

plasmids. 
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Table 2-17: List of Primary Antibodies 

Antibody 

Name 
Description Type Source / Catalogue number 

10-H10M 
Monoclonal HBeAg antibody, 

Anti-HBeAg antibody 
Mouse Fitzgerald Industries Int'l Rdi Div 

10-H10N 
Monoclonal HBeAg antibody, 

Anti-HBeAg antibody 
Mouse Fitzgerald Industries Int'l Rdi Div  

NTCP 

Antibody  
Polyclonal antibody to NTCP Rabbit Biorbyt Ltd (orb13624) 

NTCP 

Antibody  
Polyclonal antibody to NTCP Rabbit 

Thermo Fisher Diagnostics Ltd 

(PA5-80001) 

Gamma-

Tubulin 
Monoclonal Anti-Gamma-Tubulin Mouse Sigma-Aldrich Co Ltd 

HBeAg 

SKU: REC31677-100 Native 

Antigen Company: Hepatitis B 

Virus e Antigen (HBeAg) 

Mouse 2B SCIENTIFIC 

HBV X 
Hepatitis B Virus X Monoclonal 

Antibody (X36C) 
Mouse Life Technologies Ltd 

HBV core 
Hepatitis B Virus Core Antigen 

Monoclonal Antibody (1-5) 
Mouse Life Technologies Ltd 

HBV S 
Hepatitis B Virus Surface 

Monoclonal Antibody (S 26) 
Mouse Life Technologies Ltd 

Hep Pol SC-81590 Hep Pol (2C8) Mouse Insight Biotechnology Ltd 

NTCP 
SLC10A1 / NTCP Antibody 

(aa141-154)  
Mouse 

SOURCE BIOSCIENCE  

(C312823-100) 

Gamma-

Tubulin 
Gamma tubulin antibody   Mouse Provided by Prof. Arvind Patel  

RC28 Anti-HBV preS1 MAb Mouse Provided by Prof. Arvind Patel 

R193 Anti-HBV core polyclonal serum Rabbit Provided by Prof. Arvind Patel 

R143 Anti-HBV preS1 polyclonal serum Rabbit Provided by Prof. Arvind Patel 

HBV cAg 

AB-1 

Anti-HBV core polyclonal 

antibodies 
Rabbit Neomarkers Inc (RB-1413-A) 

HBsAg 

[1834] 

Hepatitis B Virus Surface Antigen 

1834 Monoclonal Antibody 100ug 
Mouse 

INSIGHT BIOTECHNOLOGY 

LTD (GTX40707) 
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Table 2-18: List of Secondary Antibodies 

Antibody Name Species Source 

IRDye® 680RD anti-Rabbit IgG (H + 

L), 0.5 mg (P/N 926-68073) 
Donkey LICOR UK 

IRDye® 800CW anti-Mouse IgG (H + 

L), 0.5 mg (P/N 926-32212) 
Donkey LICOR UK 

IRDye 800CW anti-Mouse IgG2b 

Specific, 0.5 mg lot# 926-32352 
Goat LICOR UK 

Anti-Rabbit IgG H&L (Alexa Fluor® 

488) (ab150077) 
Goat Abcam  

Anti-Mouse IgG (H+L) (Alexa Fluor® 

488) (ab150133) 
Goat Abcam 

Anti-Rabbit IgG (H+L) (Alexa Fluor® 

488) (A21206) 
Donkey Life Technologies 

Anti-Rabbit IgG (H+L) (Alexa Fluor® 

647) (A31573) 
Donkey Life Technologies 

61-H10K, HBEAG ANTIBODY 

(HRP), Monoclonal HBeAg antibody. 
Mouse 

Fitzgerald Industries Int'l Rdi 

Div 

Hepatitis B Virus Surface Antigen 

HRP Polyclonal Antibody 

(GTX19990) 

Goat Insight Biotechnology Ltd 

 

 

 

Table 2-19: Hepatitis B Virus Drugs 

Drug Source Catalogue number 

Adefovir dipivoxil MedChem Express HY-B0255-50 mg 

Tenofovir (Disoproxil) MedChem Express HY-13782A-50 mg 

Telbivudine  MedChem Express HY-B0017-10 mg 

Lamivudine  Cayman Chemical CAY18514-50 mg 

Entecavir (hydrate)  Cayman Chemical  CAY13831-10 mg 
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2.2 Methods 

2.2.1 Sample cohort 

Sixty-four samples with known viral loads ranging from 5.59 x 103 to 1.17 x107 IU/ml were 

collected from the Microbiology Diagnostic Laboratories in tertiary care centres: King 

Fahad Specialist Hospital (KFSH) in Dammam, Saudi Arabia, and King Fahd Medical City 

(KFMC), Riyadh, Saudi Arabia. The Medical Ethics Committee approved the protocol for 

this study (Institutional Review Board log number 17- 404 at KFMC). The specimens were 

sent to the MRC-University of Glasgow Centre for Virus Research, Glasgow (CVR), UK, 

for deep sequencing and analyses. All the samples were anonymised and were supplied 

without associated clinical data.  

2.2.2 DNA extraction 

DNA samples were extracted from the plasma samples using MagNA Pure LC® (Roche 

Diagnostics) using the MagNa Pure® Total NA Extraction kit, following the manufacturer’s 

recommendations, at the Microbiology Diagnostic Laboratories at KFMC. The DNA 

extracts were submitted to MRC-University of Glasgow, Centre for Virus Research, UK. 

The samples were stored at -80 degrees until processed for sequencing. 

2.2.3 DNA Second Strand synthesis  

Double-stranded DNA was synthesised and then purified using AMPure XP beads 

(Agencourt, Beckman Coulter) (Section 2.2.6.2). 

To create double-stranded cDNA, the NEBNext® mRNA Second-Strand Synthesis Module 

(New England BioLabs) was used. The cDNA products were mixed with 48 µL of nuclease-

free water, 8 µL of 10X second-strand synthesis reaction buffer, and 4 µL of second-strand 

synthesis enzyme. Incubation then took place for 2.5 h at 16°C. 
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2.2.4 Library Preparation  

Two methods were tested to fragment the DNA in order to prepare the libraries to be used 

for deep sequencing on Illumina-sequencing platforms.  

2.2.4.1 Physical or Mechanical Shearing 

This method was conducted using the AFA Ultrasonicator® (Covaris M220) with Covaris 

Adaptive Focused Acoustics technology. The parameters employed for the shearing were 

taken from the Covaris M220 protocol, with a target fragment size of 400 bp (Table 2.1). 

Ultrasonication produces DNA fragments containing staggered overhangs. Library 

preparation was performed via the KAPA LTP Library Preparation Kit® for Illumina 

Platforms (KAPA Biosystems), according to the following steps: 

 End Repair:   

Production of blunt-ended, 5’-phosphorylated fragments. End Repair Enzyme master mix 

was used containing T4 DNA Polymerase, T4 Polynucleotide Kinase, and 10X End Repair 

Buffer with dNTPs. 

 A-tailing: 

dAMP was added to the 3’-ends of the dsDNA library fragments. In brief, was added the 

volume of each sample was increased to 50 µL by adding 20 µL of 10 mM Tris-HCl pH 

8.0. The samples were then washed as described previously. The beads were dried for five 

minutes and then eluted in 10 mM Tris-HCl pH 8.0. Next, 4 µL of a master mix containing 

10x A-tail buffer and A-tail enzyme was added. The solution was thereafter incubated for 

60 minutes at 30˚C.  

 Adapter Ligation: 

Ligating dsDNA adapters containing 3’-dTMP overhangs were fused to the A-tailed library 

fragments. We diluted the adapter in water to achieve a solution of 0.15 µM. Then, a master 

mix was prepared for each sample, containing a buffer, T4 ligase, adapter, and water. An 

aliquot of 12.5 µL of the master mix was added to each 12.5 µL sample, following which 

the solution was incubated at 20°C for 15 minutes. We next eluted each sample in 14 µL 10 

mM Tris-Cl pH 8.0. Finally, a 10 µL sample was transferred to a fresh tube to perform PCR 

(Figure 2- 1). 
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 Library amplification: 

PCR was carried out to amplify the library fragments that carried suitable appropriate 

adapter sequences on both ends. To each sample, 45 μL of Solid Phase Reversible 

Immobilization (SPRI) beads were added at a ratio of 0.9. The beads were then washed, as 

described in Section 2.2.6.2). The samples were prepared as follows: 

a) 12.5 µL 2X KAPA HF Real-time Hot Start Mix. 

b) 1.25 µL 10 µM Universal Primer. 

c) Aliquot 13.75 µL of the previous master mix to each 10 µL sample and mixing by 

pipette. 

Add 1.25 µL 10 µM Index Primer individually to each sample. Then, PCR was performed 

in a thermocycler in accordance with the following protocol: 98°C for 45 sec and 98°C for 

15 sec, after which the amplified DNA was purified using AMPure XP magnetic beads, as 

described in Section (2.2.6.2). 

 

Table 2-20: The Parameters used for the Physical Fragmentation of DNA 

Parameter Value 

Target BP (Peak) 500 

Duty Factor 10% 

Peak Incident Power 450 

Cycles per Burst 1000 

Treatment Time: 8 microTUBE‐50 Strip V2 45 Sec & 80 Sec 

Temperature (˚C) 7 

Water Level - 2 

Sample Volume (μL) 55 

 

2.2.4.2 Enzymatic shearing 

The Nextera XT® DNA Sample Preparation kit containing a synthetically manufactured 

transposome was employed to perform shearing. The DNA strands were cut into ~300 bp 
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fragments while the DNA was tagged with adapter sequences. In addition to two flow-cell 

attachment sites, the adapter sequences contained binding sites for dual index sequences that 

were unique for each sample library (Figure 2-2). To help optimise the protocol, five 

samples were tested with Nextera XT® in accordance with the manufacturer’s instructions. 

 Input DNA Quantification and Tagging  

The Nextera XT® DNA Sample Preparation library preparation procedure makes use of a 

biological DNA fragmentation step. Compared to mechanical fragmentation techniques, this 

is a more sensitive method for DNA fragmentation. Furthermore, it requires only 1 ng input 

DNA depending on the undetectable starting input in our samples, the tagging time was 

halved to avoid over-fragmentation. The protocol was optimized by taking the following 

steps: 

Firstly, 10 μL of Tagment DNA (TD) Buffer was added to a 0.2 ml tube, followed by 5 μL 

of input DNA at 0.2 ng/μL (1 ng total) and then 5 μL of Amplicon Tagment Mix (ATM). 

The reaction was then mixed and centrifuged at 280 g for one minute at 20°C. The reaction 

was then placed in a thermocycler at 55°C for two and a half minutes, then maintained at 

10°C. At this temperature, 5 μL of the Neutralisation Tagment (NT) Buffer was added to 

each reaction to initiate neutralization. Each sample was then mixed lightly and centrifuged 

at 280 g for one minute. The samples were then left to settle at room temperature for five 

minutes before proceeding to PCR amplification. 

 PCR Amplification 

For this step, a limited-cycle PCR program was used to amplify the tagmented DNA. Index 

1 (i7) and index 2 (i5), along with the sequences required for cluster formation and the PCR 

step, were then added. The Nextera PCR Master Mix (NPM) and the index primers were 

then thawed at room temperature for 30 minutes, following which 15 µL of NPM was added 

to each reaction tube containing 5 μL of each index and lightly mixed. The reaction was 

then centrifuged at 280 g at 20°C for one minute, following which PCR was carried out in 

a thermocycler in accordance with the following conditions: 72°C for three minutes, 95°C 

for 30 sec, 12 cycles of denaturation at 95°C for 30 sec, annealing at 55°C for 30 sec, 

extension at 72°C for 30 sec and 72°C for five minutes, and final stabilisation at 10°C. 
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2.2.5 Enrichment Process 

2.2.5.1 Host depletion using the NEBNext Microbiome DNA Enrichment Kit 

This section describes a novel method for enriching microbial DNA in which methylated 

host DNA, such as human genomic DNA, is selectively bound and separated from microbial 

DNA prior to the construction of the NGS library. The principle of the kit is to allow micro-

bial DNA from samples containing methylated host DNA to be enriched through the 

selective binding and removal of the CpG-methylated host DNA. It is striking that the 

microbial diversity remains intact after enrichment. To selectively bind and remove the 

CpG-methylated host DNA, the kit uses a rapid, straightforward magnetic bead-based 

method. Further, the technique utilises the MBD2-Fc protein, comprising the methylated 

CpG-specific binding protein, MBD2, fused to the Fc fragment of human IgG. The Fc 

fragment binds easily to Protein A, facilitating an attachment to the Protein A-bound 

magnetic beads. The MBD2 domain of this protein binds tightly and specifically to CpG-

methylated DNA. Applying a magnetic field then extracts the CpG-methylated (eukaryotic) 

DNA, which leaves non-CpG-methylated (microbial) DNA in the supernatant (Figure 2-3). 

The following steps were used in the protocol. 

 Prebinding MBD2-Fc protein to magnetic beads 

First, 1 µL of MBD2-Fc-bound magnetic beads without vortexing was added to a sample 

containing 6.25 ng of input DNA into a 1.5 ml low-binding tube. Next, 0.1 volume was 

added MBD2-Fc protein magnetic bead solution. The tube was placed on a rotating mixer 

for ten minutes. Following incubation, the tube was spun briefly and placed it onto the 

magnetic rack for two to five minutes until the beads had been collected. At that point, the 

supernatant was removed without disturbing the beads. Subsequently, 1 ml of 1X of ice-

cold Bind/wash buffer was added to the tube to wash the beads. The samples was pipetted 

up and down a few times to mix. Afterwards, the tubes was placed on a rotating mixer for 

three minutes at room temperature. Next, the sample was centrifuged, and placed it on the 

magnetic rack for two to five minutes and removed the supernatant. Lastly, a volume equal 

to 1X Bind/wash Buffer was added that calculated during the first step to resuspend the 

beads. 

 Capture-methylated host DNA 

At the start, 1/4 sample volume of 5X Bind/wash buffer was added. then added the volume 

of the sample to yield 1 µg of DNA. This was followed by mixing and incubating within a 
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rotating mixer at room temperature for 3-4 h. Following separation with a magnet (for at 

least five minutes), the supernatant was transferred to fresh tubes (this is the host-depleted 

DNA). 

Later, 1.8X volume of ampure beads was added to the depleted samples and incubated the 

mixture for at least 15 minutes with separation via a magnet (at least five minutes) thereafter 

and removed the supernatant. The remaining solution was washed twice with 800 µL 80% 

ethanol and air dried for three to seven minutes, taking care not to over-dry the beads. 

Finally, the mixture was eluted in 9.5 µL of 10 mM pH 8. Tris, at 9 µL, and was used for 

the dsDNA  synthesis. 

2.2.5.2 Target-enrichment Method 

Using the proprietary tool of NimbleGen, a DNA probe was designed that was placed 

complementary to the target regions. Enrichment of the in-solution target was conducted 

following the NimbleGen standard protocol for preparing an Illumina library. The samples 

for enrichment initially contained relatively high amounts of DNA (based on the pre-

enrichment PCR) and, after the first wash, the non-specific DNA was removed, resulting in 

far lower quantities of DNA. Therefore, to prevent this low amount of DNA from becoming 

contaminated, these stages were separated specifically in the enrichment room. For this, a 

reagent was initially prepared in a clean hood. Second, hybridization and pre-capture were 

performed at the pre-enrichment station. Third, post-capture was conducted at the post-

enrichment station. Later,  library pools  was prepared according to the viral load for each 

sample and calculated the total volumes so that each pool contained a total of 11 μg DNA 

(minimum 0.5 μg). If it were less than 0.5 μg, a double capture was considered to be 

performed. The following optimised capture protocol was adhered to: 

 Hybridisation (pre-enrichment station) 

Library multiplex was prepared as follows: each component with an equal viral load and a 

total mass of 1 µg or 0.5 µg. Then, 1 µg of multiplexed library was mixed and prepared in 

1.1 with 5 µL of COT DNA. 

Thereafter, 2000 pmol (2 µL) of mixed oligos was mixed with the previous DNA mix. Then, 

added 2X volumes of AMPureXP/ KAPA pure, mixed incubated at room temperature for 

ten minutes. Next, the tube was placed on a magnetic rack until the beads and solution had 

fully separated before carefully removing the supernatant. After that, left the solution to air 

dry for five minutes. During this time, a master mix was prepared for each sample under the 
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following conditions: 7.5 µL of hybridisation buffer pH 7.5 with 3 µL hybridisation 

component A 3. Later, 10.5 µL of the master mix was added to bead-bound DNA samples, 

removed them from the magnet and mixed them thoroughly, and then followed this with 

incubation at room temperature for 2 minutes. Each tube was placed on a magnetic rack, 

and eluted 10.5 μL (entire volume) to a new tube containing a SeqCap EZ probe pool, mixed 

thoroughly, and incubated in a PCR machine at 95°C for five minutes, then cooled to 47°C. 

Finally, the tubes quickly was  transferred to a second PCR machine at 47°C for 72 h. 

 Washing and recovering captured multiplex DNA 

In this step, reagents was prepared in the clean hood for each capture as follows: two tubes 

of 20 µL 10x stringent wash buffer with 180 µL of water in each, 10 µL in one tube of 10x 

wash buffer 1 mixed with 90 µL of water plus 20 µL in the other tube mixed with 180 µL 

of water using the same buffer. In addition, there were two tubes of 20 µL of 10x wash 

buffer 2 and buffer 3 mixed with 180 µL of water in each, and, lastly, 200 µL of 2.5x bead 

wash buffer was mixed with 300 µL of water. 

200 µL of the 1x Stringent Wash Buffer and 100 µL of the 1x Wash Buffer 1 was transferred 

to PCR machine, which was set to 47°C. At that time, the Capture Beads and SeqCap EZ 

Pure Capture Bead Kit were equilibrated to room temperature for 30 minutes. Then, the 

beads was vortexed for 15 sec before placing the tubes on a magnet. Later, the liquid was 

removed and resuspended the beads in 1x original volume of 1x Wash Buffer, followed by 

transferring 100 µL resuspended beads per capture to a 0.2 ml PCR tube. 

Next, the capture beads was added to the 15 µL samples. Then mixed the tube by pipetting 

10 times and vortexing 10 times. This step was repeated using an additional 200 µL 1x 

Stringent Wash Buffer, 200 µL 1x Wash Buffer 1, 200 µL 1x Wash Buffer 2, and 200 µL 

1x Wash Buffer 3. Finally,  eluted in 20 µL water. 

➢ Amplifying captured multiplex DNA using LM-PCR. 

First, a master mix was and PCR reactions of 25 µL KAPA HiFi HotStart ReadyMix 

with 5 µL Post-LM-PCR Oligos 1+2 (5 µM) for each sample. Then, aliquoted 15 µL of 

the prepared reaction into two reaction tubes per capture and briefly vortexed the bead-

bound captured DNA. Later, added 10 µL of bead-bound captured DNA to each reaction 

tube, followed by a PCR run. After that, combined 2 x 25 µL reactions for each pool to 

make a total of 50 µL. Next, 45 µL ampure XP (ratio 0.9) was added, mixed each sample 

by pipetting up and down, and then incubated it at room temperature for five minutes. 

The samples were placed on a magnetic rack until the beads and solution had fully 
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separated; this was followed by the removal of the supernatant, washing 2x with 200 µL 

80% EtOH, eliminating all traces of ethanol, air drying for five minutes, and elution in 

17.5 µL of Tris. Finally, the sample was quantified with Qubit® as described in (Section 

2.2.7.1) and verified the size with TapeStation, as described in (Section 2.2.7.2). 
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Figure 2-1: NGS Library Preparation using KAPA LTP Kit. 

Schematic depiction of the method for DNA library construction using KAPA LTP Library 

Preparation Kit Illumina® Platforms (KAPA Biosystems). 
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Figure 2-2: Nextera XT® workflow. 

A) Nextera XT transposome with adapters combined with template DNA. B) Tagmentation 

to fragment the DNA and the addition of the adapters. C) Limited cycle PCR to add 

sequencing primer sequences and indices (SP: sequencing primer). D) Sequence-ready 

fragment. 
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Figure 2-3: NEBNext
 

Microbiome DNA Enrichment Kit. 

Schematic illustration of microbiome DNA enrichment using MBD-fc (NEBNext 

Microbiome protocol, 2018). 
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2.2.6 DNA purification 

2.2.6.1 Isolation and Purification of DNA from Agarose Gels 

First, the DNA fragment was excised from an agarose gel, placed in a microcentrifuge tube, 

and weighed. Binding buffer was then added at a weight/volume ratio of 1:1. The chaotropic 

agent in the binding buffer denatures proteins, dissolves agarose, and promotes DNA 

binding to the silica membrane in the column. The solution was incubated at 50°C for 10 

minute, or until the gel slice had entirely dissolved and the mixture had turned yellow (which 

denotes an optimal pH for DNA binding). Next, 800 µL of the solubilized gel solution were 

placed in a purification column and centrifuged for one minute at 13,000 revolutions per 

minute (rpm). The flow-through was then discarded, the column returned to the collection 

tube, and 100 µL of binding buffer was added to the purification column. The column was 

then centrifuged for one minute, the flow-through discarded, and the column placed back in 

the collection tube. Next, 700 µL of wash buffer was added to the purification column and 

centrifuged for one minute, following which the flow-through was disposed of and the 

column returned to the collection tube. The vacant purification column was then centrifuged 

for a further one minute to ensure all the residual wash buffer was removed. Finally, 50 µL 

of elution buffer was added to the center of the purification column membrane, following 

which the purification column was transferred to a clean 1.5 ml microcentrifuge tube and 

centrifuged for one minute. The purified DNA was then stored at –20°C. 

2.2.6.2 Agencourt AMPure XP® beads  

Before use, magnetic beads were warmed to room temperature. DNA was added and mixed 

thoroughly, and the mix was incubated for three to five minutes at room temperature. To 

separate the beads from the solution, the reaction was placed on a magnetic plate for five to 

ten minutes. Once fully separated, the liquid was aspirated from the reaction tube and 

disposed of. The beads were then washed twice by adding 200 µL of newly prepared 80% 

ethanol. The DNA was then eluted in 40 µL of nuclease-free water (Figure 2-4). 
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Figure 2-4: Workflow for PCR Purification using Agencourt AMPure XP® beads. 

1. AMPure XP. 2. Binding of the DNA fragments to paramagnetic beads. 3. Separation of 

the beads + DNA fragments from contaminants. 4. Beads + DNA fragments were washed 

twice using 70% ethanol to remove contaminants. 5. Purified DNA fragments from the 

beads were eluted. 6. The product was transferred to a new tube (Beckman Coulter User 

Guide, 2013). 
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2.2.7 Measuring DNA concentration 

2.2.7.1 Measurement of nucleic acid concentration using Qubit® 

Using a combination of 200 µL of buffer and 1 µL of dye for every sample, a fluorescent 

dye working solution was prepared in a plastic tube. Following vortexing, an aliquot of 190 

µL of working solution was added to two 0.5 ml Eppendorf tubes. These were labelled 

standard 1 and standard 2. Ten µL of standard 1 (0 ng/ µL) and standard 2 (10 ng/µL) were 

then added to the corresponding tube and mixed by vortexing. At the same time, a 198 µL 

aliquot of working solution in 0.5 ml Eppendorf tubes were mixed with 2 µL of each sample, 

also by vortexing.  

During Qubit analysis, all samples and standards were placed in tubes supplied by the 

manufacturer. A Qubit® 2.0 Fluorometer (Invitrogen) was used to measure the 

concentration of DNA while a Qubit® ds DNA High Sensitivity Assay kit was utilized to 

measure the quantity of DNA. The fluorometer calculates the concentration of nucleic acid 

in the original suspension and presents the result in ng/μL. 

2.2.7.2 Nucleic acid QC using the 2200 TapeStation  

An automated electrophoresis platform with flexible throughput capabilities, the Agilent 

2200 TapeStation® system can be used for just one sample up to an entire 96-well plate. 

D1K ScreenTape analysis of the 2200 TapeStation facilitates an analysis of DNA fragments 

ranging in size from 35 bp to 1000 bp. It can therefore be employed to analyse library 

preparations. The analysis was performed following the manufacturer’s guidelines. To 

prepare libraries for TapeStation analysis, 1 µL of the sample was mixed with 3 µL of D1K 

Sample Buffer Mixtures and loaded onto the TapeStation. The protocols for the R6K were 

similar, although in this case 1 µL High Sensitivity R6K Sample Buffer was mixed with 2 

µL of the RNA sample. The samples were then denatured by incubating them at 72°C for 

three minutes  and placing them on ice for two minutes. We then briefly centrifuged the 

samples in order to retrieve the contents at the base of each tube. 
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2.2.8 Bacterial Techniques  

2.2.8.1 Culturing 

To grow and amplify the DNA plasmids, we used three laboratory strains of Escherichia 

coli (E. coli) as described in Section 2.2.8.2.1. All bacterial strains were grown in a sterile 

Luria-Bertani (LB) broth (E&O Laboratories Ltd) that contained an appropriate plasmid 

selection antibiotic; either 50 µg/ml kanamycin (Kana) (Sigma Aldrich) or 100 µg/ml 

ampicillin (Amp) (Melford Laboratories Ltd.). Agar plates were prepared by pouring melted 

sterile LB agar (E&O Laboratories Ltd), along with the appropriate antibiotic, into 10 cm2 

Petri dishes (Greiner Bio-One) and allowed to set. Using a plastic spreader (VWR), the 

bacteria transformed with appropriate plasmid were streaked onto the surface of the cooled 

agar. The plate was then inverted and incubated overnight (approximately 18 h – 20 h) at 

37°C. Single colonies were then selected and inoculated in an LB broth that contained the 

appropriate antibiotic. Once again, the cultures were incubated overnight at 37°C and 

subjected to orbital shaking at 225 rpm for approximately 18 h to 20 h. Amplified DNA 

plasmids were then purified from the bacteria using Miniprep (Section 2.2.8.3.1) or 

Maxiprep (2.2.8.3.2). 

2.2.8.2 High efficiency Transformation Protocol 

 NEB 5-alpha competent E. coli® 

First, a tube of NEB 5-alpha competent E. coli cells was thawed on ice for ten min. Next, 1-

5 µl of H2O containing an average 50 ng of plasmid DNA was added to the cell mixture. 

The contents of the tube were then mixed by flicking 4-5 times. Next, the mixture was placed 

on ice for 30 minutes before being subjected to heat-shock at 42°C for 30 sec. The mixture 

was then placed back ice for five minutes, after which 950 µL was pipetted into the SOC 

medium and positioned in a shaker (250 rpm) at 37°C for 60 minutes. Upon completion of 

incubation, 100 ul of the mixture was spread on an agarose plate which contained antibiotics 

for colony selection and incubated at 30°C for 24-36 h. 

 NEB 10-beta Competent E. coli® 

First, one tube of NEB 10-beta Competent E. coli cells were thawed on ice, following which 

50 ng of the plasmid DNA were added in a volume of 1-5 µL. The contents of the tube were 

then mixed by flicking 4-5 times. Next, the mixture was placed on ice for 30 minutes before 

being subjected to heat-shock at 42°C for 30 sec. The mixture was then returned to ice for 
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five min, after which 950 µL was pipetted into the SOC medium and placed on a shaker 

(250 rpm) at 37°C for 60 minutes. Upon completion of incubation, 200 ul of the mixture 

was spread on an agarose plate which contained antibiotics for colony selection and 

incubated at 30°C for 24-36 h. 

 One shot® Top 10 cells 

For this phase, one shot® Top 10 cells from Invitrogen® were used in accordance with the 

manufacturer’s instructions. First, one vial of One Shot® TOP10 cells chemically 

competent for each transformation was thawed on ice. Next, approximately 5 µL (depending 

on the concentration) of DNA (10 pg to 100 ng) was added to a vial of One Shot® cells and 

lightly mixed. Pipetting up and down was then performed so that the vial containing the 

DNA and the cells were not mixed. The vial(s) were then incubated on ice for 30 minutes. 

In the next step, they were subjected to heat-shock for exactly 30 sec at 42°C without 

shaking, removed from the bath, and placed on ice for two minutes. 250 µL of pre-warmed 

SOC Medium was then added to each vial aseptically. The vial(s) were then capped tightly 

and shaken horizontally at 37°C for 1 h at 225 rpm in a shaking incubator. Following this 

procedure, 150 µL from each transformation was spread on a pre-warmed selective plate 

and incubated for 24-36 h at 30°C. The remaining transformation mix was then stored at 

4°C before proceeding to the downstream step. 
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2.2.8.3 Bacterial Cloning 

 Small scale plasmid preparation from transformed bacteria  

To inoculate a 2 ml culture of LB with selective antibiotics, a single colony from a newly 

streaked agar plate was used. Following culture for 24 h at 37 ºC with vigorous shaking (180 

rpm), the bacteria were centrifuged in an Eppendorf microcentrifuge at 13,000 rpm. In 

accordance with the manufacturer’s instructions, the QIAprep®Spin Miniprep Kit 

(QIAGEN), was then used to remove the DNA from the bacterial pellet. All purification 

steps were performed at room temperature. Centrifugation was conducted in a 

microcentrifuge at 13,300 rpm, following which the pelleted cells were resuspended in 250 

µL of a resuspension solution. To make sure all the bacteria were completely suspended, up 

and down vertexing and pipetting were performed until cell clumps were no longer evident. 

Next, 250 µL of lysis solution was added and mixed thoroughly by inverting the tube 4-6 

times until it became transparent and viscous. Next, 350 µL of neutralisation solution were 

added and mixed thoroughly in the same way. To pellet the cell debris and DNA, the mixture 

was centrifuged for 10 minutes. Next, 800 μL of the supernatant obtained was applied to a 

QIAprep 2.0 spin column by decanting or pipetting and then centrifuged for one min. 

Washing was then performed by adding 700 µL of buffer PE to the QIAprep®Spin column, 

which was centrifuged for 30-60 sec and the flow-through disposed. To remove all residual 

wash solution, this process was repeated, and the column centrifuged for an additional one 

minute. After transferring the QIAprep®Spin column into a fresh 1.5 ml microcentrifuge 

tube, elution was performed by adding 50 µL of buffer EB (10 mM Tris-Cl, pH 8.5) to the 

centre of the QIAprep®Spin column membrane. The tube was then incubated for two min 

at room temperature and centrifuged for two minutes. Finally, the purified plasmid DNA 

was stored at -20°C. 

 Large scale plasmid preparation from transformed bacteria 

To inoculate a 500 ml starter culture of LB-selective antibiotics, one colony from a freshly 

streaked selective agar plate was selected and used. Using a plasmid Maxi kit (Qiagen) in 

accordance with the manufacturer’s instructions, albeit with a small modification, the 

plasmid DNA from bacteria cultures was isolated on a large scale. First, one colony of 

transformed bacteria was applied to inoculate 2ml of the starter culture of the LB-selective 

antibiotic. Following incubation for 2 h, the starter culture was transferred to 200 ml of LB 

with antibiotics and cultured overnight. Having been incubated for approximately 18 h at 

37°C with 250 rpm shaking, the bacteria were harvested by centrifuging at 5,000 x g for 20 
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minutes at 4°C. The pellet was then fully re-suspended in 10 ml chilled buffer P1 and 

transferred to a 50 ml universal tube (Corning). The bacteria were then lysed by adding 10 

ml of buffer P2 and inverting the tube vigorously six times. The reaction was mixed as 

before and then incubated for five minutes at room temperature. Next, 10 ml of chilled 

buffer P3 was added and mixed by inverting the tube another six times. To purify the lysate, 

a coffee filter was then placed in a QIAGEN-tip 500 through which an 11 ml buffer QBT 

was passed for equilibration. The lysate was then transferred from the coffee filter to the 

universal filter. While the cell debris remained, the cleared supernatant holding the DNA 

passed through the coffee filter into the QIAGEN-tip. Once all supernatants had passed 

through the resin, the QIAGEN-tip was washed using 60 ml buffer QC. The bound DNA 

was eluted with 15 ml buffer QF and collected in a clean 50 ml universal tube. To precipitate 

the DNA, 10.5 ml room temperature isopropanol was added, and the sample was centrifuged 

at 5,000 x g for 60 minutes at 4°C. To remove all traces of the isopropanol, the pellet was 

then washed with 5 ml 70 % EtOH and centrifuged. The pellet was then air-dried for 

approximately ten minutes and the supernatant decanted. The pellet was then re-suspended 

in 300-500 μL TE buffer (Qiagen), measured as before, and stored at -20°C prior to use. 

2.2.8.4 Quantification of Nucleic Acids  

A NanoDrop ND-1,000 spectrophotometer (Thermal Fisher Scientific) was utilized to 

quantify all the nucleic acid (dsRNA, ssRNA and dsDNA) yields. A 2 µL aliquot from each 

sample was placed on the measurement pedestal and a reading taken of concentration and 

purity. Samples were deemed ‘pure’ at a 260/280 ratio of ~2.0 for RNA and ~1.8 for DNA. 

The sequencing of DNA (PCR products or/and plasmid constructs) was outsourced to 

Eurofins along with appropriate primer. The product requirements recommended by the 

companies were followed. 

2.2.9 Sequencing using the MiSeq® Platform 

In this process, the flow cell provided within the MiSeq reagent kit was removed from its 

buffer and washed using distilled H2O. To ensure the outlet and inlet ports were clear, and 

that the surface was dust-free and clean, it was dried with a lint-free wipe, The flow cell was 

then loaded onto the MiSeq instrument. Next, the chiller compartment was opened and the 

wash bottle removed and replaced with an incorporation buffer. The reagent cartridge was 

then loaded into the machine and the run was initiated. A Phi X 174 (phiX) bacteriophage 

genome library is mixed with the sample pool to offer a calibration control for cross-talk 
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matrix generation, phasing and prephasing, and also a quality control for cluster generation, 

sequencing, and alignment. This can be aligned at speed to estimate relevant sequencing 

using synthesis (SBS) metrics, such as the error rate and phasing. By adding 2 μL of a 10nM 

stock solution to 3 μL H2Om Phi X control DNA (Illumina®, UK), dilution to 4 nM was 

achieved. The Phi X library was then denatured by adding 5 μL of 0.2 N NaOH to 5 μL Phi 

X, which was then vortexed and incubated at room temperature for five minutes. This was 

subsequently diluted to a concentration of 20 pM by adding 980 μL HT1 buffer, following 

which it was diluted to the same loading concentration as the DNA library. 100 μL of Phi 

X was then added to the 90 μL DNA library to create a final library with a 10% concentration 

of Phi X (Figure 2-5). 
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Figure 2-5: Illumina Sequencing Workflow. 

A) Flow cell. B) Genomic DNA is fragmented and adaptors ligated to both ends of each 

fragment. C) DNA adheres to the surface. D) Bridge amplification. E) Fragments become 

double stranded, bridges of which form on the flow cell. F) Denaturation of the double-

stranded molecules. G) Amplification: several million dense clusters of double-stranded 

DNA are generated. H) To determine the first base, the first sequencing cycle adds four 

labelled reversible terminators. I) Image of the first base following laser excitation. J) The 

next cycle repeats the incorporation of four labelled reversible terminators. K) Image of the 

second cycle following laser excitation; this image is taken in the same way, and the second 

base is recorded. L) Sequencing over multiple chemistry cycles, one base at a time. M) 

Alignment of the data. The data are then compared to a reference and differences in 

sequencing identified. 

 



118 

 

2.2.10 Data Analysis and Bioinformatics 

The samples were multiplexed with 20 samples per run. Using the 500 cycle v2 Reagent 

Kit, paired-end sequencing was performed on an Illumina MiSeq sequencing platform. The 

NGS data were analysed using the in-house bioinformatics pipeline (Figure 2-6).  

As we carried out paired-end sequencing, each sample generated two files containing both 

forward and reverse reads. The per-base quality scores were tested using FastQC v. 0.118 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The majority of reads had 

base quality scores well above the minimum quality cut-off score of Phred 30. Prior to our 

analysis, the low-quality (<30 Phred score) and short (<50bp) reads were removed from the 

dataset using the Trim galore! (v. 0.6.3) Program 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The Fastq files then 

underwent reference assembly using the in-house assembler Tanoti, a blast-guided mapping 

program (http://bioinformatics.cvr.ac.uk/tanoti.php) based on a reference HBV genome 

(GenBank ID: KX357637.1). The mapped files were saved in SAM (sequence 

alignment/mapping) format for downstream analysis. Using samtools (v 1.10), we 

calculated the mapping statistics, coverage, and depth of the mapped reads for each sample. 

We utilized an in-house program to detect the low-frequency mutations and point mutations 

in the SAM files. 

2.2.11 Genotyping 

We generated consensus sequences from the SAM files with the SAM2CONSENSUS 

(https://github.com/vbsreenu/Sam2Consensus) program and submitted them as query 

sequences using BLASTN (a program available online at 

http://www.ncbi.nlm.nih.gov/BLAST/). The HBV genotypes were then identified for the 

samples. The cut-off used to define the success of whole-genome sequencing was >90% 

coverage of the full HBV genome. To ensure the consensus sequence was robust, a >100-

fold mean read depth was highly recommended and samples that did not accomplish >90% 

in genome were classified as “fail”. 

 

 

 

 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://bioinformatics.cvr.ac.uk/tanoti.php
https://github.com/vbsreenu/Sam2Consensus
https://www.ncbi.nlm.nih.gov/BLAST/
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Figure 2-6: Bioinformatics pipeline for HBV data analysis. 

Different programmes and scripts were employed in the pipeline; examples are given in 

brackets. 
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2.2.12 Construction of the phylogenetic trees  

Phylogenetic trees were generated using exhaustive search method, maximum likelihood 

(ML) trees, ML trees were employed to construct the phylogenetic tree. MUSCLE was used 

to align the sequences while MEGA 7.0 was used to construct the phylogenetic trees The 

Tamura-Nei mode parameter was used l with entire nucleotide sequences. Each data set was 

then tested for the best-fit substitution model. Across our data sets, the best model was the 

Kimura two-parameter distance for all substitutions. The inferred phylogenies were then 

tested with 1,000 bootstrap replications. 

2.2.13  Determination of Antiviral HBV Resistance and HBV Vaccine 

Escape Mutations 

An extensive literature review of the reported HBV antiviral resistant associated mutations 

(RAM) using several databases. The main databases were PubMed and Embase using 

keywords: Lamivudine, Telbivudine, Adefovir dipivoxil, Tenofovir disoproxil, Entecavir 

and 'resistance'. The abbreviated names of these drugs were also used as keywords: LAM, 

LdT, ADV, TDF, and ETV. Resistance-associated mutations (RAMs) identified in the 

literature were listed in the mutation tables (Appendix 1- 5). These refer to the appropriate 

direct-acting agents (DAAs) and alterations in fold-resistance in comparison to wild-type 

variants and the reported genotype. 

Similarly, a literature review was performed on HBsAg that lead to vaccine escape VEMs 

(Appendix 6). All of the collected data, along with the literature review on HBV antiviral 

drugs resistance vaccine escape mutations, were integrated into the database supporting 

HBV-GLUE software (http://hbv-glue.cvr.gla.ac.uk/#/hbvFastaAnalysisAhmedAlessa),  a 

web-based resource specific to HBV developed by the MRC-University of Glasgow Centre 

for Virus Research in collaboration with the University of Oxford Nuffield Department of 

Medicine. GLUE is a data-centric bioinformatics environment for viral sequence data that 

focuses on evolution, variation, and the interpretation of sequences. This provides basic 

genotyping, drug resistance and vaccine escape analysis of the submitted FASTA 

sequences. To detect antiviral therapy resistance mutations, the 846 bp fragment of the 

reverse transcriptase (rt) domain situated between nt130 to nt1161 coding for amino acid 

rtM1 to rtQ344 (numbered according to GenBank reference sequence X02763) of the HBV 

polymerase was utilised to analyse the drug resistant mutations. The sequences were in 

alignment with the corresponding regions of the reference sequences and translated into 

amino acids (aa) sequences.  

http://hbv-glue.cvr.gla.ac.uk/#/hbvFastaAnalysisAhmedAlessa
http://www.gla.ac.uk/researchinstitutes/iii/cvr/
http://www.gla.ac.uk/researchinstitutes/iii/cvr/
https://www.ndm.ox.ac.uk/
https://www.ndm.ox.ac.uk/
http://hbv-glue.cvr.gla.ac.uk/#/project/reference/REF_NUMBERING_X02763


121 

 

2.2.14 Molecular Cloning 

2.2.14.1 Polymerase Chain Reaction (PCR) 

A polymerase chain reaction (PCR) was used to amplify specific regions of DNA. As 

indicated in the table 2-21, different sequences needed specific primers (Table 2-15: Primer 

Sequences) and reaction cycles. All primers were manufactured by Sigma Aldrich. A 50 µL 

reaction volume was prepared on ice in 0.2 ml thin-walled PCR tubes (Axygen). PCR was 

used to amplify the nucleic acids. Briefly, the reaction mix contained 5 µl 10X Advantage 

cDNA Polymerase buffer, 1 µl Advantage cDNA Polymerase enzyme (1 U), 1 µl dNTPs, 1 

µl each of 10 µM forward primer, 10 µM reverse primer, and approximately 50-100 ng 

template DNA or cDNA. The remaining volume was composed of nuclease-free water. The 

reactions were prepared on ice and incubated in a PCR thermal cycler (Veriti®, Applied 

Biosystems). The subsequent standard reactions were cycled as listed in (Table 2-21). Steps 

2- 4 were repeated over 35 cycles. To test for contamination, a non-template (H2O) negative 

control reaction was run in conjunction with the samples for each PCR. Agarose gel 

electrophoresis (Section 2.2.14.4) was applied to analyze all the PCR products, which were 

temporarily stored at 4°C before the downstream application was performed. 

 

Table 2-21:  The Parameter of Polymerase chain reaction (PCR) cycles 

Step Stage Temperature (˚C) Duration 

1 Initial denaturation 94 1 minute 

2 Denaturation 94 30 seconds 

3 Oligo annealing 
5 °C below the lowest primer melting 

temperature 
45 seconds 

4 Extension 68 23 seconds 

5 Final extension 68 3 minutes 
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2.2.14.2 DNA digestion  

Unless specified otherwise, DNA digestion was performed using NEB restriction enzymes 

and buffers at 37°C for 2 h. The total reaction volume in each case was 50 µL. This included 

10 units of restriction enzyme for 10 µg DNA. Unless stated otherwise, the reactions used 

the supplier cut smart buffer and BSA. 

2.2.14.3  DNA ligation  

To confirm the anticipated size and determine the concentration, the restriction enzyme-

digested DNA fragments of the vector insert, and backbone were examined on 0.8 - 2 % 

agarose gel and quantified using a Nanodrop spectrophotometer (2.2.8.4). The products 

were ligated together at an insert fragment to vector backbone ratio of 7:1.  

For DNA ligation reactions, a DNA Ligation kit from Thermo Scientific was employed to 

introduce the intermediate insert into the plasmid vector (Table 2-22). Inserts containing 

specific mutations were then introduced and analyzed in vitro. The plasmid pQHBV- L-/ 

Puro (No 11) (Chapter 5) replicon was utilized as a vector in each case. The samples were 

then incubated overnight at room temperature.  

 

Table 2-22: DNA ligation reaction recipe  

Material  Volume (µL) 

Linearised vector DNA 100 ng 

Insert DNA Variable 

5 X Rapid Ligation Buffer 4 µL 

T4 DNA Ligase, 5 U/μL 1 µL 

Water, nuclease-free Up to 20 µL 

Total reaction volume  20 µL 

 

  



123 

 

2.2.14.4  Agarose gel electrophoresis  

Gel electrophoresis on an agarose gel was performed to fractionate DNA fragments. 

Agarose gels were prepared in 1 X TAE buffer (40 mM Tris containing 20 mM acetic acid 

and 1 mM EDTA). Depending on the sizes of the fragments needing separation, the 

concentration consisted of 0.8-2 % agarose.  

To enable the agarose to dissolve, the preparation was heated and cooled until it was warm 

to the touch. Gel Red® nucleic acid gel stain (Biotium) was then added to a final 

concentration of approximately 0.5 µg/ml. Gel Red binds to DNA to render the nucleic acids 

visible under UV light.  

To make sure there was an equal distribution of Gel Red, the preparation was swirled and 

using a comb, was poured into a gel tray and allowed to solidify. The gel tray was then 

placed into a horizontal gel electrophoresis tank (Bio-Rad), submerged in a 1 x TAE buffer, 

and the comb taken out. 

DNA samples were then mixed with 6x purple loading dye (New England Biolabs) at a 1:5 

ratio and placed into the wells next to a 100 bp or 1 kb DNA ladder marker (New England 

Biolabs, Promega) to provide a reference regarding concentration and fragment size. 

To separate the nucleic acid fragments, an electric current was applied to the gel. Depending 

on the distance required between the bands and the size of the product, gels were run at 100 

V from 30 minutes to 2 h. The nucleic acid products were then visualised using an ultraviolet 

(UV) transilluminator (Bio-Rad). Long wave UV was utilized for gel extraction and 

shortwave UV for the imaging. Using a scalpel, DNA fragments were cut from the gel and 

purified using a Qiagen gel extraction kit (Section 2.2.6.1) in accordance with the 

manufacturer’s instructions. 

2.2.15 Cell Culture 

2.2.15.1 Maintenance, Growth, and Passaging of Cells 

The cells were carefully thawed from frozen cryovials stock in a 37°C water bath and added 

to 9 mL pre-warmed cell culture medium as described in (Table 2-13: Cell lines). They were 

then pelleted, resuspended in a fresh medium and added to a suitable cell culture flask. 

Unless otherwise stated, different cell cultures were maintained in T75 tissue culture flasks 

(Nunc Fisher Scientific UK Ltd) contained in suitable media (Table 2-13: Cell lines) at 37 

˚C with 5% CO2. Passage was carried out when the cells were approximately 80-90% 
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confluent, following which they were washed 2-3 times with 3-4 ml versene. This removed 

dead cells and any residual foetal bovine serum, Incubation then took place with 2 ml 

trypsin-versene until the cells were separated from the flasks. An aliquot of the cells was 

then either counted prior to seeding for maintenance or plating for experimentation or re-

suspended in 5 ml of a suitable media prior to being seeded in another flask. 

2.2.15.2 Seeding of Cells  

Using a Neubauer haemocytometer counting chamber, the number of cells was determined 

under a light microscope. All cells were seeded in 6 -, 12-, or 24-well plates. Seeding density 

was dependent on cell type, with typical seeding density ranging from 1.5 x 105 cells/well 

in a 24-well plate to 3 x 105 cells/well in 12-well plates and 5 x 105 cells/well in six-well 

plates. Cells in the 24-well plates were covered with 1 ml of appropriate media, cells in the 

12-well plates with 1.5 ml media, and cells in the six-well plates with 3 ml media. Cells 

were incubated under the necessary conditions overnight before undergoing further 

manipulation. 

2.2.16  Transfection  

2.2.16.1 Transfection of cells with Lipofectamine 3000  

Transfection of DNA into cells was performed using the Lipofectamine®3000 transfection 

kit (Invitrogen, ref no L3000-008) in accordance with the manufacturer’s guidelines. Unless 

otherwise stated, Huh7 cells at a confluence of 80% were utilized for transfection. These 

cells were seeded on a variety of well plates. Lipofectamine 3000 reagent was then diluted 

in an Opti-MEM medium (Gibco, ref no 31985-047) and thoroughly mixed. By diluting the 

amount of plasmid into an Opti-MEM medium, a master mix of DNA was prepared, to 

which Lipofectamine 3000 reagent was added and mixed by inversion. The diluted 

lipofectamine 3000 reagent was then combined with the DNA master mix and incubated at 

RT for 10 to 15 minutes. Upon completion of this process, the requisite number of DNA-

lipid complexes was added to each well (10 µL/well in a 96-well plate, 50 µL/well in a 24-

well plate, 125 µL/well in a 12-well plate, and 250 µL/well in a 6-well plate). These were 

then incubated overnight. at 37°C. On the following day, the medium was changed for fresh 

medium. Co-transfection of a GFP expression plasmid was utilised to determine the 

transfection efficiency by viewing the cell population under a microscope and counting the 

percentage of GFP-positive cells. The transfection efficiency was generally found to be 

approximately 90%. 
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2.2.16.2 Calcium Phosphate transfection of HEK cells (Generation of 

Lentivirus) 

To introduce plasmid DNA into HEK-293T cells, the calcium phosphate transfection 

method was applied. This technique forms a precipitate containing DNA and calcium 

phosphate. Approximately 24 h before transfection, the cells were seeded into 90 mm tissue 

culture dishes in 15 ml complete DMEM. Using the Sigma-Aldrich Calcium Phosphate 

Transfection Kit, the cells were co-transfected on the following day with three different 

plasmids: (i) pHIV-Luc (8 µg), (ii) pVSV-G (3 µg), and (iii) pCMV- S (8 µg) expressing 

lentivirus gag-pol. The plasmid DNA was mixed with dH2O and 100 µL 2.5 M CaCl2 in a 

sterile 1.5 ml Eppendorf at a volume of 500 µL. Next, 500 µL of 2x HEPES-Buffered Saline 

(HEPES) pH 7.05 was added to a second sterile 1.5 ml tube. To prepare the precipitate, the 

HEPES solution containing sodium phosphate was gradually mixed with the Calcium 

chloride (CaCl2) solution containing the DNA. This involved slowly bubbling the HEPES 

using an automatic pipette pump attached to a 1 ml sterile serological pipette while adding 

the CaCl2/DNA solution in drops using a sterile pipette tip. Prior to being distributed in 

drops over the cells in the culture dish using a sterile pipette tip, the precipitate was 

incubated for 20 min at room temperature. Gentle agitation was then applied to mix the 

solution. The DNA-calcium phosphate co-precipitate attaches to the cell surface and is 

presumably taken up by the cell through endocytosis. At 24 h post-transfection, the medium 

was replaced with a suitable 8 ml fresh medium. At 72 h post-transfection, the culture media 

containing lentivirus particles was filtered through a 0.45 µm pore-sized membrane for 

harvesting. It was then used to infect the target cells or stored at 4° C or cells were then 

lysed with LB2 on a shaker for 10 min. Using SDS-PAGE and western blotting, the target 

protein was continually monitored at the transduction endpoint (Section 2.2.19). 

2.2.17 Drug Treatment  

Huh7 cells were seeded in various sizes of the well tissue culture dishes and transfected 

using lipofectamine 3000 protocol. The following day, the medium was replaced with a 

fresh medium containing various concentrations of drugs. Drugs were purchased from 

MedChem Express (Adefovir dipivoxil, Tenofovir disoproxil, and Telbivudine) and 

(Lamivudine, and Entecavir) from Cayman Chemical. 

All five drugs were provided as pure substances (purity > 98%). These chemicals were 

dissolved in dimethyl sulfoxide (DMSO) as manufacture instructions. Stock solutions them 
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were prepared as shown below and stored at -20°C in aliquots. After drug treatment for 3 

days, the supernatants were collected, and cells were lysed for analysis.  

 

Drug Molecular weight Stock concentration 

(mM) 

Solvent 

Adefovir dipivoxil 229.3 10 DMSO 

Tenofovir 635.51 10 DMSO 

Telbivudine 242.23 10 DMSO 

Lamivudine 229.3 20 DMSO 

Entecavir 295.3 10 DMSO 

 

2.2.18 Immunostaining  

To examine the expression of HBV proteins, transfected/infected cells on coverslips were 

fixed in methanol, washed with PBS, blocked for 10 min with PBS containing 2 % FCS and 

incubated at room temperature for 60-minute with primary antibody at the desired dilution. 

were washed three times with PBS before a 60-minute incubation with the secondary 

antibody.  

The secondary antibodies used were Alexa 488 goat anti-rabbit IgG, Alexa 488 donkey anti-

rabbit IgG, Alexa 647, and Alexa 488 goat anti- mouse IgG. Coverslips were washed three 

times with PBS followed by three washes with distilled water. Plates were allowed to dry 

before being examined under EVOS M5000 Imaging System. 

2.2.19 Western Blot 

2.2.19.1 Sample Preparation 

The appropriate cell lines were seeded in well plates and infected or transfected as required. 

They were then incubated as necessary, a process followed by the removal of the growth 

media, then we directly washed the cell twice with 1X PBS. Cells were lysed in varying 

volumes of lysis buffer 2 (LB2) depending on the well size i.e., 100 µL per well for 24-well 

dish, 150 µL per well of a 12-well dish, and 300 µL per well of a six-well dish. Once lysis 

was complete, the lysate was subjected to centrifugation at 13,000 rpm for 10 min. The 

supernatant with clarified lysate was then placed in a clean 1.5 ml tube and either used 

directly or stored at -20°C for future use. 



127 

 

2.2.19.2 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

Unless stated, otherwise most of the SDS-PAGE gels were prepared in-house, and a 10% or 

15% gel was created using Bio-Rad’s Mini-Protean II apparatus. These comprised two 

elements: the lower resolving gel and the upper stacking gel. The former was prepared by 

combining distilled H2O, acrylamide/bis-acrylamide (40%), 1.5 M Tris-HCl (pH 8.8), and 

10% SDS per gel. Before use, polymerisation was activated by adding 10% APS and 

TEMED. The entirety of the previous solution was then added in various volumes, 

depending on the percentage required. The solution was then placed between two glass 

plates situated approximately 0.75 mm apart. Between the top of the plates and the top of 

the gel, there was a gap of approximately 2 cm. To ensure the gel was set at the required 

level, this was filled with H2O. Approximately 20 min later, once the gel had set, the H2O 

layer was disposed of and replaced with the stacking gel. This composed differing volumes 

of distilled H2O, acrylamide/bis-acrylamide (40 %), 0.5 M Tris-HCl (pH 6.8), and 10% SDS 

per gel. Like the resolving gel, polymerisation was activated by adding TEMED and 10% 

APS immediately before the transfer to the two gel plates on top of the resolving gel. A 10- 

or 15-well comb was then inserted to form the lanes, following which the gel polymerized 

for approximately 30 min. We also used commercial Mini-PROTEAN precast gels, 

including Mini-PROTEAN TGX™ and TGX Stain-Free™, Tris/tricine, TBE, and 

TBE/urea polyacrylamide gels. 

The gel was then placed into an electrophoresis tank and covered with a suitable running 

buffer (1 x SDS-PAGE running buffer (25 mM Tris, 0.25 M Glycine (Calbiochem), 0.1% 

SDS). Next, 20 or 25 µL of protein lysate were mixed with 5 µL SDS-PAGE reducing buffer 

(composed of 200 mM Tris-HCl, pH 6.7; 0.5 % SDS; 5 % β-mercaptoethanol; 10 % 

glycerol, 1 µg/ml bromophenol blue). The protein samples were then boiled at 100°C for 5 

min and, loaded on the gel along with a 5 µL PageRule Plus pre-stained protein ladder 

protein molecular weight marker (Thermo Scientific), and the electrophoresis performed at 

120 V till the bromophenol blue dye front migrated off the resolving gel. 

2.2.19.3 Protein Transfer 

The gel was then extracted from between the two glass plates and the stacking gel removed. 

Two protein transfer techniques were then applied: semi-dry transfer for smaller proteins 

and wet transfer for large proteins > 100 kDa. Unless stated otherwise, wet transfer was 

implemented. This involved assembling a transfer cassette submerged in a tray flooded with 
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1 x wet transfer buffer (50 mM Tris, 375 mM Glycine, 20% Methanol (VWR)). From the 

cathode to the anode, the transfer cassette contained the gel, a sponge, an extra thick 

Whatman paper (Bio-Rad, a Hybond ECL nitrocellulose membrane (GE Healthcare) 

(previously activated in distilled H2O) or a polyvinylidene difluoride (PVDF) membrane 

that needs to be activated in methanol (Immobilon®-FL, Merck Millipore), a second 

sponge, and a second Whatman paper. Having been assembled, the transfer cassette was 

positioned within the electrophoresis tank (Bio-Rad) in such a way as to transfer the proteins 

from the gel to the membrane. An ice pack was then added, and a 1 x wet transfer buffer 

used to fill the tank. A current of 250 mA was then applied for 3 h. Semi-dry transfer was 

performed by soaking two extra-thick Whatman papers, cut to the size of the gel, in a semi 

dry transfer buffer (48 mM Tris, 39 mM Glycine, 0.0375 % SDS, 20 % Methanol). The first 

paper was placed on the blotting plate of the semi-dry blotting machine (Bio- Rad), followed 

by the Hybond ECL (GE Healthcare) nitrocellulose membrane, cut to the appropriate size 

and soaked in distilled water, the gel, and the second Whatman paper. A constant voltage of 

25 V was then applied for 30 min. 

2.2.19.4 Immuno-Detection 

Following transfer, the blotted membranes were blocked post-transfer with ODYSSEY® 

blocking buffer and placed at 4°C overnight or at room temperature for 1 h on a rotating 

shaker.  

The membranes were washed three times with PBS-T prior to being covered with a suitable 

volume of primary antibody, which was diluted in an appropriate buffer. The antibodies 

used are described in (Table 2-17: List of Primary Antibodies). All of the antibody 

incubations of the membranes were performed at room temperature for at least 1 h under 

constant agitation. All antibody dilutions were performed in western blot washing buffer 

and incubated in a sealed box. 

Once incubation was complete, the membranes were washed and covered with fluorescent 

IRdye® secondary antibodies ( 

Table 2-18) diluted in PBS-T solution. They were then incubated at room temperature for 

approximately 1 h, following which the membrane was washed one more time.  

The membranes were washed three times with PBS-tween for ten min followed by one final 

wash for ten min in either 1X PBS or distilled water. Because of the light sensitivity of 

IRdye® LI-COR secondary antibodies, the membranes were kept in darkness during the 
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washing. The membranes were then imaged and analysed using two-colour fluorescent 

western blotting on the Odyssey infrared imaging system (Oddysey® CLx scanner, LI-

COR® Biosciences, Cambridge, UK) and image studio® software (LI-COR® Biosciences, 

Cambridge, UK). 

As an alternative method, after washing three times with PBS-tween for 5 min, the 

membrane was incubated on a rotating shaker at room temperature for 1 h with an 

appropriate horseradish peroxidase (HRP)-conjugated secondary antibody (1:1000) diluted 

in a blocking solution. The membranes were then washed three times for five min with PBS-

Tween, following which a signal was developed with enhanced chemiluminescence 

(ThermoFisher, Renfrew, UK, ref no 32106) for 1 min or with ECL plus (ThermoFisher, 

Renfrew, UK, ref no 32132) for 5 min and then exposed to high-performance 

chemiluminescence film (GE Health, ref no 28906835). 

2.2.19.5 Coomassie staining of SDS-PAGE gels  

The gels required for Coomassie staining analysis were fixed with Coomassie fixing 

solution for five min (Table 2-6). The Coomassie fixing solution was washed off with 

distilled water, and Coomassie Brilliant Blue Stain was added to the gel (Table 2-6). This 

solution was incubated for three min before being washed off once more with distilled water. 

The gel was then rinsed in 100% methanol and left in a Coomassie destain solution at room 

temperature, where it was subjected to continual shaking until the bands could be seen. 

2.2.20  Measurement of HBeAg 

2.2.20.1 Enzyme-linked immunosorbent assay (ELISA) 

An in-house ELISA assay to detect and quantify HBeAg secreted from transfected or HBV-

infected cells was developed during this project. HBeAg is an effective marker of certain 

events in the life cycle of a virus as described earlier. Immulon 96 well flat-bottom ELISA 

plates (Dynatech Laboratories) were coated with 95 µL/well Anti-HBeAg Mouse 

Monoclonal antibody (10-H10M and 10-H10N; Fitzgerald Industries International, USA) 

in PBS and incubated at 4°C overnight. The plates were washed three times with PBS 

containing 0.1% (v/v) Tween (Sigma) (PBS-T) and then wells blocked with 100 µL/well of 

PBS containing 5% milk and 1% (v/v) Tween for 1 h.  

The plate was washed three times with PBS-T, following which anti-HBeAg mouse 

monoclonal conjugated to horseradish peroxidase (HRP) (61-H10K; Fitzgerald Industries 
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Fitzgerald Industries International, USA) in PBS-T was added and incubated for 2 h 

(dilution 1: 8000 in PBS-T).  

The plate was washed three times with PBS-T and 100 µl were added to each well of the 

substrate 3,3′,5,5′-tetramethylbenzidine (TMB; Sigma-Aldrich) which develops a soluble 

blue reaction product (Sigma-Aldrich). The reaction was terminated by adding 50 µl of 0.5 

M H2SO4 after 10 to 15 min and optical density was assessed at 650 nm with a reference 

wavelength of 490 nm. 

2.2.21  Statistical Analysis 

All Statistical analyses were performed using GraphPad Prism Version 7.02 (GraphPad 

Software, Inc., California, USA) and Statistical Package for the Social Sciences (SPSS v. 

23, IBM, New York) for the most of this project. Where other programs were used, this has 

been stated in the individual chapters. 

For SPSS, the statistical analysis included quantitative descriptive analysis and summary 

statistics (means, median, percentages, standard deviations, etc.); p <0.05 was considered 

statistically significant. 
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Chapter 3. Development of an HBV whole-genome 

sequencing protocol using Next-Generation Sequencing 

(NGS) 

3.1 Introduction  

Next-generation sequencing (NGS) is a robust tool for clinical virology with different 

protocols available. The objective of this research was to develop a new deep sequencing 

protocol for whole hepatitis B virus genomes (HBV) that can be employed to detect 

mutations in drug resistance and vaccine escape in HBV (McNaughton et al., 2019). The 

NGS protocols require minimal viral DNA concentrations for optimal results and sufficient 

coverage to detect and analyze virus variants.  

DNA enrichment method is necessary for any NGS sample (Flavia et al., 2020); target 

enrichment improves the capture of specific reads and reduces non-specific genome data, 

mainly from host DNA (Flavia et al., 2020). We, therefore, describe a sequencing strategy 

using NimbleGen® target enrichment probes (Roche, Basel, Switzerland) for whole-

genome sequencing of HBV. This strategy has been successfully applied to sequence whole 

genomes of HCV and HEV (Bowyer and Sim, 2000; Davis et al., 2021). In this study, HBV 

genomes were enriched directly from DNA extracts (human plasma) using a panel of 

custom-designed 120-mer RNA baits (also known as probes) complementing all Hepatitis 

B full genome sequences retrieved from Genebank®. Genomic data were then used to 

describe HBV diversity in Saudi Arabia. 

3.2 Results  

3.2.1 Sample Preparation for Next Generation Sequencing  

The methods employed are described in detail in Chapter 2. In brief, the frozen extract DNA 

was thawed in a water bath at 37°C and 10 µL was used as the template in a reverse 

transcription reaction. Second strand synthesis was then conducted, and the resulting DNA 

was clarified using AmpureXP®. 

3.2.2 DNA library quality  

Following AmpureXP® magnetic bead purification, DNA fragment quality was examined 

and visualized using a 2200 Tapestation (Agilent Technologies), as shown in Figure 3-1. 
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The quality and fragment size of each library was measured using a 2200 TapeStation 

platform (Agilent Technologies), as described in Section 2.2.7.2, following AmpureXP® 

bead purification. Fragment lengths were dependent on the concentration of input DNA used 

in the KAPA LTP reaction. We initially used 1 ng DNA, as recommended by the 

manufacturer, but noted a shift towards longer fragment length as DNA concentration 

increased, reaching saturation at 10 ng (Figure 3-1). 

3.2.3 Sequencing quality scores  

NGS using the Illumina MiSeq® platform is an extremely sensitive method but one that is 

subject to sequencing error. To assess the quality of NGS, a metric method called Phred 

score was utilized to report base-calling accuracy. The quality of Fastq sequences was 

examined using FastQC® (Babrahman Bioinformatics), which measured the Phred score for 

each raw Fastq file (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Before our analysis, low-quality reads were trimmed and removed to increase the average 

quality of the Phred score to a minimum of Q30 (1 base call error in 1000 bases or 99.9 

accuracy) (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 

The large amount of data produced by Illumina sequencing can make downstream analyses 

cumbersome; therefore, the quality score was used to remove all low-quality reads and limit 

the downstream sequence analysis to high-quality score reads. High-quality sequence data 

are essential for accurate alignments and other downstream analyses. Because we performed 

paired-end sequencing, each sample generated two files containing forward and reverse 

reads. The per-base quality scores were tested using FastQC. The majority of reads had base 

quality scores well above the minimum quality cut-off score of Phred 30 (Figure 3-2). 

3.2.4 Sequence alignments 

Fastq sequences were assembled and aligned to several HBV reference sequences using an 

in-house mapping program (Tanoti) developed in-house by Dr. Sreenu Vattipally, as 

described in Section 2.2.10. The trimmed Fastq reads were aligned to several HBV reference 

sequences using the mapping program Tanoti (https://github.com/vbsreenu/Tanoti) with 

default parameters. In our comparison, we found that Tanoti is more sensitive than other 

alignment programs such as BWA and Bowtie.  

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/vbsreenu/Tanoti
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An example of the coverage obtained following mapping with Tanoti is presented in Figure 

3-3. An HBV consensus sequence was calculated (using SAM2CONSENSUS) from SAM 

files along with its coverage. 

 

 

A 

 

 

B 

 

Figure 3-1: DNA fragment size evaluated using a 4200 Tapestation® (Agilent). 

Library size was measured using the D1000 DNA screen tape (TapeStation platform). A) 

DNA ladder. B) DNA input. 
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A 

 
 

B 

 
 

Figure 3-2: Example Phred score data obtained from a Fastq file.  

The quality scores of sequenced reads visualised with FastQC before and after quality 

trimming A) Raw reads (first read) generated by MiSeq run. B) Cleaned reads (first read) 

cleaned using the in-house script weeCleaner. The yellow boxes plot the interquartile range 

around the median with black whiskers extending to the outer range limits. 
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Figure 3-3: Read coverage across the whole HBV genome using Tanoti.  

Sam coverage carried to show the coverage across the whole HBV genome from a single 

sample analysed using Tanoti. 
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3.2.5 Metagenomic sequencing  

We began sequencing whole HBV genomes using a metagenomic sequencing approach 

applied on Illumina® MiSeq platform. The central aim was to provide a detailed method for 

the construction of unbiased metagenomic libraries to design a specific probe for HBV, as 

described in Section 2.2.5.2. 

A total of seven samples with high viral loads (>5000000 IU/mL) were selected for 

sequencing. We generated 14 SAM files from these samples as part of protocol optimisation 

(Table 3.1). Library preparation was performed using the KAPA LTP Library Preparation 

Kit for Illumina Platforms (KAPA Biosystems®). For optimisation purposes, several 

parameters were tested when using physical fragmentation. Samples were processed in 

several runs of the Illumina MiSeq®. The number of total reads generated from each sample 

after quality trimming ranged from 206,898 - 2,235,798 (and after quality trimming, 

1365100- 4673166, mean = 2877682(. Genotype D was identified in all samples using an 

in-house tool, as described in Section 2.2.11.  
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Table 3-1: Overview of all results generated using the metagenomics approach. Summary of the number of reads in the two files generated for each sample, 

along with the calculated per-base sequence coverage using the metagenomics approach. Nt represents the number of nucleotides in each sequence. GC% is the 

GC content in each sequence. All samples had high viral loads. Sample HBV-DMM-10 and sample HBV-DMM-11 were sequenced three times using various 

fragmentation conditions (KAPA LTP Library Preparation Kit). Three samples (HBV-DMM-14, 20, and 26) were sequenced using two different treatment times 

with two target base pairs. Samples HBV-DMM-29 and HBV-DMM-41 were sequenced with one treatment time (45 sec) and one target base pair (500). All 

samples indicated 100% genome coverage with high viral read.   

  Sample 
Fragmentation Condition 

(Metagenomic) 

 Viral load 

(IU/mL) 
Total Read Genotype 

Mapped 

Read 

Converge 

nt 

Coverage 

% 

Average depth 

reads/site 
GC% 

1 
HBV-

DMM-10 

Treatment time (45 sec) 

Target BP (500) 
>110,000,000 1365100 D 

51623 

(3.78%) 
3182 100 2303 48.59 

2 
HBV-

DMM-10 

Treatment time (80 sec) 

Target BP (500) 
>110,000,000 1477588 D 

62039 

(4.20%) 
3182 100 2793 48.59 

3 
HBV-

DMM-10 

Treatment time (160 sec) 

Target BP (200) 
>110,000,000 3755300 D 

66683 

(1.78%) 
3182 100 3329 47.32 

4 
HBV-

DMM-11 

Treatment time (45 sec) 

Target BP (500) 
>110,000,000 2208900 D 

14525 

(0.66%) 
3182 100 660 48.46 

5 
HBV-

DMM-11 

Treatment time (80 sec) 

Target BP (500) 
>110,000,000 2143152 D 

16958 

(0.79%) 
3182 100 773 48.46 

6 
HBV-

DMM-11 

Treatment time (160 sec) 

Target BP (200) 
>110,000,000 3318658 D 

111466 

(3.36%) 
3182 100 5215 47.7 

7 
HBV-

DMM-14 

Treatment time (80 sec) 

Target BP (500) 
5,783,259 2999700 D 

1512 

(0.05%) 
3182 100 70 48.01 

8 
HBV-

DMM-14 

Treatment time (160 sec) 

Target BP (200) 
5,783,259 4178098 D 

437 

(0.01%) 
3182 100 20 48.21 

9 
HBV-

DMM-20 

Treatment time (80 sec) 

Target BP (500) 
57,267,116 3027902 D 

284 

(0.01%) 
3182 100 13 47.1 

10 
HBV-

DMM-20 

Treatment time (160 sec) 

Target BP (200) 
57,267,116 3142972 D 

2003 

(0.06%) 
3182 100 93 48.63 

11 
HBV-

DMM-26 

Treatment time (80 sec) 

Target BP (500) 
32,670,435 4673166 D 

97321 

(2.08%) 
3182 100 4472 46.8 

12 
HBV-

DMM-26 

Treatment time (160 sec) 

Target BP (200) 
32,670,435 3978126 D 

105620 

(2.66%) 
3182 100 4948 47.28 

13 
HBV-

DMM-29 

Treatment time (45 sec) 

Target BP (500) 
>110,000,000 2005170 D 

23574 

(1.18%) 
3182 100 1061 48.93 

14 
HBV-

DMM-41 

Treatment time (45 sec) 

Target BP (500) 
>110,000,000 2013714 D 

108977 

(5.41%) 
3182 100 4911 48.71 
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3.2.6 Nimbelgen target enrichment  

Following the same steps employed in the metagenomic sequencing approach, 22 samples 

were sequenced using designed probes as described in Section 2.2.5.2.  

The probes exhibited a high percentage of mapped reads and average depth reads per site 

only in samples with high viral loads (> 100,000) (Table 3-2). These samples demonstrated 

approximately 100% genome coverage with genotype D observed in each sample. Only one 

sample with viral load (< 100,000) exhibited 96.35% genome coverage with average depth 

reads/site (212). This was considered a successful sample based on the defined cut-off value 

for whole-genome sequencing described in 2.2.11.  

In addition, two samples were sequenced using the metagenomic approach and NimbleGen 

target enrichment to observe the effect of enrichment in the preparation stage, both samples 

had a high viral load and exhibited a substantial effect on mapped reads and average depth 

reads/site when enriched with NimbleGen, compared with non-enriched library. Total reads 

indicated a reliable effect on one sample only (Table 3-3). Full genome coverage was 

observed in these two samples (Figure 3-4) and genotype D was most dominant.  

Regrettably, the remaining samples either did not meet the criteria for a successful run or 

did not provide any valuable data in terms of genome coverage. They did provide sufficient 

nucleotide coverage but the average depth for most was extremely low. Furthermore, there 

was an extremely low percentage of mapped reads, mainly for low-viral load samples.
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Table 3-2: Overview of the results generated using the target enrichment (enriched with NimbleGen) approach. Summary of the number of reads in the 

two files generated for each sample along with the calculated per-base sequence coverage using the target enrichment approach (NimbleGen) along with a KAPA 

LTP Library Preparation Kit. Nt represents the number of nucleotides in each sequence. GC% is the GC content in each sequence. * Repeated sample from the 

metagenomics approach. Samples (1-6) with high viral loads (> 100,000) exhibited nearly 100% genome coverage with good average depth reads/site and total 

viral reads. Only one sample (HBV-DMM-09) with a viral load < 100,000 exhibited 96.35% genome coverage with average depth reads/site (212). This was 

considered a successful sample based on our cut-off value for whole genome sequencing. The remaining samples either did not meet the criteria for a successful 

run or did not provide any valuable data.  

  Sample Viral load 

(IU/mL) 

Total Read Genotype Mapped Read Converge nt Coverage 

% 

Average depth 

reads/site 

GC% 

1 HBV-DMM-20* 57,267,116 502832 D 339551(67.53%) 3182 100 15934 49.14 

2 HBV-DMM- 39 26,011,855 12464510 D 672692(5.40%) 3182 100 31405 49.34 

3 HBV-DMM-14* 5,783,259 3394436 D 116200(3.42%) 3182 100 5451 48.35 

4 HBV-DMM- 18 2,178,551 36147438 D 232336(0.64%) 3182 100 10860 49.35 

5 HBV-DMM- 30 649,607 7864084 D 341084(4.34%) 3182 100 15980 49.57 

6 HBV-DMM- 21 303,959 9299014 D 158011(1.70%) 3182 100 7388 51.25 

7 HBV-DMM- 47 114,378 25821508 D 63326(0.25%) 3124 98.18 3031 48.56 

8 HBV-DMM- 27 96,442 16988168 - 2(0.00%) 196 6.16 1 51 

9 HBV-DMM- 09 56,651 12156632 D 4378(0.04%) 3066 96.35 212 50.23 

10 HBV-DMM- 06 41,641 1739228 - 6138(0.35%) 196 6.16 4696 50.97 

11 HBV-DMM- 16 37,785 14637474 - 325(0.00%) 150 4.71 324 47.05 

12 HBV-DMM- 02 30,040 5522534 - 4(0.00%) 301 9.46 2 50.5 

13 HBV-DMM- 01 29,037 4485828 - 7(0.00%) 800 25.14 1 44.82 

14 HBV-DMM- 07 28,305 141382858 - 580(0.00%) 1833 57.61 47 47.48 

15 HBV-DMM- 37 27,266 - - - - - - - 

16 HBV-DMM- 28 22,662 2219350 D 254(0.01%) 1951 61.31 19 48.74 

17 HBV-DMM- 40 18,552 - - - - - - - 

18 HBV-DMM- 12 17,489 - - - - - - - 

19 HBV-DMM- 19 15,295 4485828 - 12(0.00%) 1038 32.62 1 46.77 

20 HBV-DMM- 36 7,501 - - - - - - - 

21 HBV-DMM-44 6,417 7362718 - 67(0.00%) 513 16.12 19 48.49 

22 HBV-DMM-34 6,386 3183136 - 297(0.01%) 1892 59.46 23 49.99 
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  Sample Method 
 Viral load 

(IU/mL) 
Total Read Genotype Mapped Read 

Converge 

nt 

Coverage 

% 

Average 

depth 

reads/site 

GC% 

1 
HBV-

DMM- 14 

Metagenomic 

5,783,259 

2,999,700 D 
1512  

(0.05%) 
3182 100 70 48.01 

Enriched with 

NimbleGen  
3,394,436 D 

672692 

(5.40%) 
3182 100 31405 49.34 

2 
HBV-

DMM- 20 

Metagenomic 

57,267,116 

3,142,972 D 
2003  

(0.06%) 
3182 100 93 48.63 

Enriched with 

NimbleGen  
502,832 D 

339551 

(67.53%) 
3182 100 15934 49.14 

Table 3-3: Target enrichment versus metagenomic (unenriched) sequencing.  

Two samples with high viral loads were tested with a metagenomics approach using a KAPA LTP Library Preparation Kit and enriched with NimbleGen 

to assess the effect of probes. Nt represents the number of nucleotides in each sequence. Both samples exhibited a massive effect in terms of mapped reads 

and average depth reads/site when enriched compared with when unenriched. Total reads indicated a reliable effect in one sample that was enriched (HBV-

DMM-14) but not in the other. Full genome coverage was observed with genotype D in all runs.
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Metagenomic approach 

 

 
 

 

Target Enrichment approach (Nimblegen) 

 

 
 

Figure 3-4: An illustrative example (HBV-DMM-14) to show the compare Genome 

coverage in target enrichment versus metagenomic sequencing. 

Genome coverage using metagenomic and target enrichment NimbleGen approach for the 

same sample. 100% coverage was observed using both methods. 
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3.2.7 DNA Enrichment using host depletion utilising the NEBNext 

Microbiome 

Because a range of unreliable results were generated using the target enrichment approach, 

we decided to optimise our protocol and included host depletion using the NEBNext 

Microbiome kit, as explained earlier in Section 2.2.5.1. 

Additionally, we included the Nextera XT® DNA Sample Preparation kit described in 

Section 2.2.4.2) to evaluate the outcome and compare it with that using the KAPA LTP 

Library Preparation Kit.  

As an initial stage, we tested the NEBNext Microbiome by sequencing two samples that had 

been tested previously in a metagenomic run using the KAPA Biosystems kit with and 

without the host depletion kit. The results indicated a remarkable change in mapped reads 

in both samples using Nextera XT® and enriched with the NEBNext Microbiome DNA kit. 

This gave us the opportunity to try the aforementioned kit in addition to target enrichment 

(NimbleGen) (Table 3-4). All samples exhibited 100% genome coverage using the three 

methods. 

Subsequently, we sequenced 30 samples using our probe together with the Microbiome Host 

Depletion kit from the NGS protocol. Due to time and cost considerations, we used only the 

KAPA LTP Library Preparation Kit with Covaris for the fragmentation condition. This is 

because KAPA LTP library preparation is less time-consuming and cheaper than Nextera 

XT® library preparation. Moreover, we observed higher viral reads, mapped reads, and 

average depth reads/site using KAPA LTP compared with Nextera XT®, as shown in Table 

3-5. In addition, sample HBV-DMM-27 was included as a control that showed 0%  mapped 

reads in the earlier run with less than 6% coverage when enriched only with NimbleGen and 

100% genome coverage when enriched with NimbleGen in conjunction with NEBNext 

Microbiome DNA. 

To conclude, we sequenced 12 libraries that included eight samples with low viral loads 

(mostly below 1x104 IU/mL) and four samples where the full method had not previously 

been applied (tested with capture but not host depletion) (Table 3-6). 

A summary of the substantial enhancement in genome coverage and mapped reads when 

the NEBNext Microbiome kit was included is presented in Figure 3-6 and Figure 3-7. As 

stated previously, we were able to include one sample only in both runs
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  Sample Method 
 Viral load 

(IU/mL) 

Total 

Read 
Genotype 

Mapped 

Read 

Converge 

nt 

Coverage 

% 

Average 

depth 

reads/site 

GC% 

1 
HBV-

DMM- 29 

Metagenomic 

 (KAPA 

Biosystems) 

>110,000,000 

2,005,170 D 
23574 

(1.18%) 
3182 100 1061 48.93 

Metagenomic 

(Nextera XT®) 
377,860 D 

2415  

(0.64%) 
3182 100 102 48.46% 

Metagenomics 

(Nextera XT®) + 

NEBNext 

Microbiome DNA  

426,020 D 
5664  

(1.33%) 
3182 100 246 48.93% 

2 
HBV-

DMM- 41 

Metagenomic  

(KAPA Biosystems) 

>110,000,000 

2,013,714 D 
108977 

(5.41%) 
3182 100 4911 48.71 

Metagenomic 

(Nextera XT®) 
343,324 D 

30120 

(8.77%) 
3182 100 1248 48.33% 

Metagenomic 

(Nextera XT®) + 

NEBNext 

Microbiome DNA  

335,080 D 
37581 

(11.22%) 
3182 100 1622 48.71% 

Table 3-4: Metagenomic (KAPA Biosystems) versus metagenomic (Nextera XT®) versus metagenomic (Nextera XT®) enriched with NEBNext 

Microbiome DNA.  

Two samples with a viral load >110,000,000 were tested with three different methods to optimise the NGS protocol. High viral reads and average depth reads/site 

were observed using the KAPA Biosystems kit in both samples (HBV-DMM-29 and HBV-DMM-41), compared with the other two methods. Mapped reads were 

higher in both samples using Nextera XT® and enriched with the NEBNext Microbiome DNA kit. Samples exhibited 100% genome coverage using the three 

methods. 
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Table 3-5: Overview of results generated using enrichment methods with NEBNext Microbiome and NimbleGen. * Control sample was sequenced and 

earlier enriched with NimbleGen indicating 0% mapped read and approximately 6% genome coverage.

  Sample 
 Viral load 

(IU/mL) 
Total Read Genotype Mapped Read Converge nt Coverage % 

Average depth 

reads/site 
GC% 

1 HBV-RYD-14 >110,000,000 514912 D 260(0.05%) 3013 94.69% 11 48.69% 

2 HBV-RYD-15 >110,000,000 178678 A 2347 (1.31%) 3212 100.00% 106 48.41% 

3 HBV-RYD-05 >110,000,000 2858246 D 2272500 (79.51%)  3182 100.00% 104588 49.25% 

4 HBV-RYD-06 >110,000,000 1641752 D 3211 (0.20%)   3001 94.31% 156 48.29% 

5 HBV-RYD-48 62,296,440 215022 D 936 (0.44%)  3167 95.47% 43 48.35% 

6 HBV-RYD-13 62,034,425 504706 E  244365 (48.42%)  3182 100.00% 146 48.51% 

7 HBV-RYD-49 43,213,615 7212738 D 6777302 (93.96%)  3182 100.00% 312469 49.15% 

8 HBV-RYD-11 42,226,024 930314 D 1332 (0.14%)  3182 100.00% 60 48.77% 

9 HBV-RYD-50 34,654,734 120220 D 916 (0.76%)  3182 100.00% 41 48.69% 

10 HBV-RYD-03 29,003,877 7669620 D 7453288 (97.18%)  3182 100.00% 342123 48.25% 

11 HBV-RYD-02 24,662,163 1457638 D 1239412 (85.03%)  3182 100.00% 57254 49.00% 

12 HBV-DMM-27* 16,988,168 3235628 D 13191 (0.41%)  3182 100.00% 612 48.25% 

13 HBV-RYD-08 10,026,852 822378 D 688782 (83.75%)  3212 100.00% 30819 48.55% 

14 HBV-RYD-23 5,874,169 237152 D 95 (0.04%)  2641 83.00% 4 48.59% 

15 HBV-RYD-19 2,789,978 1708796 E 815774 (47.74%)  3099 97.39% 37753 48.84% 

16 HBV-RYD-24 1,883,203 1648852 D 29233 (1.77%)  2957 92.93% 1357 45.19% 

17 HBV-RYD-29 1,155,656 1115912 D 278044 (24.92%)  3106 97.61% 146 47.85% 

18 HBV-RYD-51 1,043,095 1711294 D 159296 (9.31%)  3182 100.00% 7429 47.88% 

19 HBV-RYD-26 581,665 1628312 D 100654 (6.18%)  3129 98.33% 4741 48.54% 

20 HBV-RYD-42 562,038 2626016 D 384129 (14.63%)  2802 100.00% 17849 48.43% 

21 HBV-RYD-53 182,070 406034 E 1425 (0.35%)   2069 65.02% 101 46.88% 

22 HBV-RYD-10 161,674 3374730 D 1792447 (53.11%)  3182 100.00% 82075 48.55% 

23 HBV-RYD-34 158,477 306808 D 44347 (14.45%)  3182 100.00% 2021 48.68% 

24 HBV-RYD-01 157,946 7402036 E 6252927 (84.48%)  3182 100.00% 282475 48.77% 

25 HBV-RYD-41 142,777 789098 D 556493 (70.52%)  3182 100.00% 25718 48.40% 

26 HBV-RYD-36 141,022 427004 D  121985 (28.57%)  3173 99.72% 5651 48.51% 

27 HBV-RYD-07 137,855 3558086 D 499650 (14.04%)  3182 100.00% 23152 48.74% 

28 HBV-RYD-20 111,328 1468512 D 69712 (4.75%)  3070 96.48% 3220 48.90% 

29 HBV-RYD-27 109,082 942038 D 3949 (0.42%)  1348 42.36% 184 48.89% 

30 HBV-RYD-25 94,536 3456208 D 5389 (0.16%)  3164 98.41% 244 48.65% 
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Table 3-6: Overview of results generated using enrichment methods with NEBNext Microbiome and NimbleGen for samples with low viral loads. 

Summary of the number of reads in the two files generated for each sample along with the calculated per-base sequence coverage using the probe together 

with the Microbiome Host Depletion kit in the NGS protocol. * Repeated sample was sequenced earlier only enriched with NimbleGen.

  Sample 
 Viral load 

(IU/mL) 
Total Read Genotype Mapped Read Converge nt Coverage % 

Average depth 

reads/site 
GC% 

1 HBV-DMM- 18* 2,180,000 9758406 D 8237593 (84.42%)  3182 100.00% 367953 49.18% 

2 HBV-DMM- 21* 304,000 10717122 D 1616696(15.09%)  3212 100.00% 70434 49.03% 

3 HBV-DMM- 47* 114,000 18829392 D 13569877(72.07%)  3191 99.35% 582342 49.14% 

4 HBV- RYD- 37 79,800 5209690 D 3383072(64.94%)  3182 99.97% 143420 48.78% 

5 HBV-DMM- 09* 56,700 8059626 C 485540(6.02%) 3215 100.00% 21442 48.68% 

6 HBV-RYD- 43 56,100 18033444 E 13170256(73.03%)  3182 99.97% 578774 48.90% 

7 HBV-RYD- 38 36,700 7942610 D 2648716(33.35%)  3211 99.97% 108844 49.15% 

8 HBV-RYD- 16 24,500 14543538 E 9892620(68.02%)  3212 99.97% 432533 48.92% 

9 HBV-RYD- 12 11,000 21185952 D 173704(0.82%) 3212 99.97% 7548 49.42% 

10 HBV-DMM- 15 6,270 4339900 E 16005(0.37%) 3035 95.38% 704 48.47% 

11 HBV-DMM- 48 6,190 5900428 D 151671(2.57%) 3182 95.47% 6703 48.58% 

12 HBV-DMM- 46 5,590 3577944 E 6053(0.17%) 3212 95.11% 267 48.22% 
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Figure 3-5: An illustrative example (HBV-DMM-29) Genome coverage in metagenomic 

sequencing (KAPA Biosystems and Nextera XT®) versus NEBNext Microbiome DNA 

metagenomic (enriched).  

Genome coverage using metagenomic and NEBNext Microbiome DNA (enriched) for the same 

samples. 100 % coverage was observed in the using the three methods.  
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Figure 3-6: Genome coverage and mapped read percentages in metagenomics, target 

enrichment with NimbleGen, and enrichment with NimbleGen/NEBNext Microbiome. 

Improvement when employing the target-enrichment method, compared with the 

metagenomics approach. A) Percentage of genome coverage for the three sequencing 

approaches. B) Percentage of mapped reads for the three sequencing approaches. Bars 

represent the mean. 

 



148 

 

3.2.8 Statistical analysis of the four sequencing runs: metagenomics, 

enrichment with NimbleGen, enrichment with NimbleGen/ NEBNext Microbiome 

(high viral loads), and enrichment with NimbleGen/ NEBNext Microbiome (low 

viral loads) 

In this study, we generated 78 SAM files out of 64 HBV samples separated into four sequencing 

runs, as described earlier. As stated in Chapter Two, we defined the success of whole genome 

sequencing as a cut-off point of >90% coverage of the full HBV genome. To ensure the 

consensus sequence was robust, a >100-fold mean read depth was strongly recommended. 

Samples or files that did not accomplish >90% genome coverage were classified as “fail”. 

We conducted analysis of variance (ANOVA) for the 4 sequencing runs versus all variables 

and cross-tabulation of sequencing runs versus genotypes and coverage (full coverage/failure). 

We covered the main parameter as follows:  

3.2.8.1 Sequencing method versus viral load (IU/mL) and total read 

As presented in Table 3-7, great variation was observed in the means. The mean of viral load 

in the metagenomics approach was the highest, whereas the lowest mean (240070.83) was 

found in the NimbleGen/NEBNext Microbiome (low V/L) approach. These variations were 

highly significant (p = 0.00001). In addition, great variation was observed in the means for 

total reads; the mean in the target enrichment approach was the highest, whereas the lowest 

mean was in the NimbleGen/NEBNext Microbiome (high V/L) approach. These variations 

were highly significant (p = 0.013) (Table 3-8). 
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Table 3-7: Descriptive statistics for viral load (IU/mL) in all NGS runs 

Method 

Number 

of 

samples 

Mean Std. Deviation Minimum Maximum 

Metagenomics 14 82245830.00 47441770.164 5783259 120000000 

Target enrichment 

(NimbleGen) 
22 4215917.91 13100076.520 6386 57267116 

NimbleGen/ NEBNext 

Microbiome (high V/L) 
30 27346428.97 41370239.158 94536 120000000 

NimbleGen/ NEBNext 

Microbiome (low V/L) 
12 240070.83 616523.324 5590 2180000 

Total 78 26505968.37 43429065.501 5590 120000000 

 

Table 3-8: Descriptive statistics for total reads in all NGS runs 

Method 

Number 

of 

samples 

Mean 
Std. 

Deviation 
Minimum Maximum 

Metagenomics 14 2877681.85 1035560.68 1365100 4673166 

Target enrichment 

(NimbleGen) 
18 17203198.66 32307827.40 502832 141382858 

NimbleGen/ NEBNext 

Microbiome (high V/L) 
30 2005624.66 2118003.88 120220 7669620 

NimbleGen/ NEBNext 

Microbiome (low V/L) 
12 10674837.66 6063320.47 3577944 21185952 

Total 74 7273133.97 17085447.14 120220 141382858 
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3.2.8.2 Sequencing method versus mapped read and genotype 

As shown in Table 3-9, great variation was observed in means with the highest in the 

NimbleGen/NEBNext Microbiome (low V/L) approach and the lowest in the metagenomics 

approach. These variations were highly significant (p =0.000). 

Genotype D was dominant 54 (69%) as shown in Table 3-10. The target enrichment approach 

method also exhibited the highest failure (59.1%). These variations were significant (Chi-

square = 55.141, p =0.000). 

Table 3-9: Descriptive statistics for mapped read in all NGS runs 

Method 

Number 

of 

samples 

Mean 
Std. 

Deviation 
Minimum Maximum 

Metagenomics 14 47358.71 44331.786 284 111466 

Target enrichment (NimbleGen) 18 107514.67 183526.885 2 672692 

NimbleGen/ NEBNext 

Microbiome (high V/L) 
30 993779.7 2058706.242 95 7453288 

NimbleGen/ NEBNext 

Microbiome (low V/L) 
12 4445983.5 5287047.906 6053 13569877 

Total 74 1158965.9 2863710.941 2 13569877 

 

Table 3-10: Descriptive statistics for genotype in all NGS runs 

 

Method 

 

A 

 

C 

 

D 

 

E 

 

Failed 

 

Total 

Metagenomics 
0 0 14 0 0 14 

0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 

Target enrichment 

(NimbleGen) 

0 0 9 0 13 22 

0.0% 0.0% 40.9% 0.0% 59.1% 100.0% 

NimbleGen/ NEBNext 

Microbiome (high V/L) 

1 0 25 4 0 30 

3.3% 0.0% 83.3% 13.3% 0.0% 100.0% 

 

NimbleGen/ NEBNext 

Microbiome (low V/L) 

 

0 1 7 4 0 12 

0.0% 8.3% 58.3% 33.3% 0.0% 100.0% 

 

Total 

1 1 54 9 13 78 

1.3% 1.3% 69.2% 11.5% 16.7% 100.0% 
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In summary, Chi-square analysis indicated that target enrichment (NimbleGen) exhibited the 

highest failure (63.6%), compared with other approaches, as shown in Table 3-11. Both runs 

of NimbleGen/NEBNext Microbiome revealed full and significant coverage (100%, p =0.000).  

 

Table 3-11: Coverage group crosstabulation 

 Coverage group Total 

failed Full 

coverage 

Groups Target enrichment 

(NimbleGen) 
14 8 22 

63.6% 36.4% 100.0% 

NimbleGen/ NEBNext 

Microbiome (high V/L) 
3 27 30 

10.0% 90.0% 100.0% 

NimbleGen/ NEBNext 

Microbiome (low V/L) 
0 12 12 

0.0% 100.0% 100.0% 

 

Total 
17 61 78 

21.8% 78.2% 100.0% 
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Additionally, we conducted analysis of variance (ANOVA) for coverage parameter (full or 

failure) versus all variables. 

 

3.2.8.3 Coverage group versus viral load (IU/mL), total reads coverage nt, and 

coverage percentage  

As presented in Table 3-12 for viral load, the mean for those failures (385302.29) was lower 

than for full coverage (33785498.26, p = 0.004). The mean total read for failures was greater 

but not significant (p = 0.051). 

The mean coverage nt for failures was lower than for full coverage (p = 0.000). Similarly, the 

coverage % mean for failures was lower than for full coverage (p = 0.000) (Table 3-13). 

Table 3-12: Coverage group for viral load (IU/mL) and total reads 

 N Mean Std. Deviation Minimum Maximum 

Viral load 

(IU/mL) 

failed 17 385302.29 1415194.66 6386 5874169 

Full 

coverage 

61 33785498.26 46612766.77 5590 120000000 

Total 78 26505968.37 43429065.501 5590 120000000 

Total 

reads 

failed 13 15660949.69 38130981.68 237152 141382858 

Full 

coverage 

61 5485566.68 6772999.74 120220 36147438 

Total 74 7273133.97 17085447.14 120220 141382858 

 

Table 3-13: Descriptive statistics for coverage group, coverage nt and coverage 

percentage 

 N Mean Std. 

Deviation 

Minimum Maximum 

Coverage 

nt 

failed 13 1148.3077 858.64762 150 2641 

Full 

coverage 

61 3159.1967 70.60638 2802 3215 

Total 74 2805.9324 847.87661 150 3215 

Coverage 

% 

failed 13 36.0869 26.98508 4.71 83 

Full 

coverage 

61 99.0985 1.80167 92.93 100 

Total 74 88.0289 26.55607 4.71 100 
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3.2.9 HBV Phylogenetic analysis 

As indicated previously, we obtained 47 consensus sequences from 47 HBV-positive samples 

from Saudi Arabia that exhibited full genome coverage (>90). These samples were eligible for 

inclusion in the phylogenetic analysis. The results indicated that HBV genotype D is 

predominant in Saudi Arabia, followed by genotype E, genotype A, and genotype C. Although, 

there was only one sample that was genotype C specific it represents ~2% of our samples and 

thus should not be discounted. Also, Phylogenetic analysis confirmed that sub genotype D1 is 

the predominant compared to another sub genotype, (Figure 3-7). 
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Figure 3-7: Molecular phylogenetic analysis of HBV/D sub genotype using the Maximum 

Likelihood method. The Maximum Likelihood method based on the Tamura-Nei model and 

used the entire nucleotide sequences of the 10 sub genotypes D1-D10 (green dots). Saudi 

HBV/D sequences were determined in the present study and are indicated with a blue circle. 

The tree is drawn to scale, with branch lengths measured in the number of substitutions per 

site. The analysis involved 51 nucleotide sequences. Evolutionary analyses were conducted 

using MEGA7. 
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Determination of Antiviral HBV Resistance (NAs) and HBV Vaccine Escape Mutations 

(VEMs) 

3.2.9.1 Antiviral HBV Resistance (NAs)  

The mutational analysis indicated that 6 HBV samples exhibited NA resistance. Drug 

resistance mutations were detected at positions rt80, rt91, rt134, rt153, rt204, rt215, and rt221 

(Table 3-14). Notably, one sample with genotype D (HBV-DMM-27) exhibited three 

mutations (L80I, L91I and M204I) (Figure 3-8). The N236T adefovir dipivoxil resistance 

mutation and resistance mutations against other antiviral drugs (e.g., entecavir and telbivudine) 

could not be detected in any HBV sample. In the patient's samples, in order to determine if they 

had resistance to a specific antiviral it had to be at a 50% frequency in the genome sequence. 

 

Table 3-14: Summary of HBV drug resistant mutations (RAMs) identified from HBV 

genome sequences 

Sample Mutation NA resistance Nature of the resistance Genotype 

HBV-

RYD- 38 
Q215S 

Lamivudine 

resistance 
putative drug resistance. D 

HBV-

RYD- 29 

D134N 

 

Lamivudine 

resistance 
related to HCC outcomes. D 

F221Y Adefovir dipivoxil 

putative drug resistance, 

associated with the 

progression of severe liver 

diseases. 

D 

HBV-

DMM- 48 
M204V 

Lamivudine 

resistance 
primary drug resistance. D 

HBV-

DMM-47 
R153W tenofovir resistance 

secondary resistance 

mutation. 
D 

HBV-

DMM-27 

L80I 
Lamivudine 

resistance 
related to HCC outcomes. D 

I91L 
Lamivudine 

resistance 
related to HCC outcomes. D 

M204I 
Lamivudine 

resistance 
primary drug resistance. D 

HBV-

DMM-21 
D134E 

Tenofovir 

resistance 

associated with the 

progression of severe liver 

diseases. 

D 

Primary drug resistance: mutation refer to amino acid change that result in reduced 

susceptibility to an antiviral agent.; Secondary resistance mutation:  restore replication defects 

associated with primary drug resistance and may be associated with low level reduced 

susceptibility; Putative resistance: might be selected under drug pressure, however, it reported 

without sufficient evidence in vitro to classify the functional relevancy. 
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3.2.9.2 HBV Vaccine Escape Mutations (VEMs) 

HBsAg is a surface antigen targeted by antibodies present in vaccinated people and by 

antibodies binding to HBsAg in serological immunoassays (Caligiuri et al., 2015). It is the 

major envelope protein in HBV, which is composed of 226 amino acids. The amino acid 

positions between 99 and 169 are termed the major hydrophilic region (MHR) (Caligiuri et al., 

2015). This contains the ‘a’ determinant (residues 124–147), which was originally defined as 

the antigenic region shared by all serological variants of HBV. It is the region primarily 

associated with the induction of a protective humoral immune response and the 

immunodominant region of HBsAg (Guangxi et al., 2015). Amino acid substitutions and 

multiple changes in the ‘a’ determinant can modify the antigenicity and immunogenicity of the 

hepatitis B virus (HBV), resulting in a failure to react in immunoassays and antibody escape 

(Guangxi et al., 2015). In the current study, we identified different amino acid substitutions 

involving 12 mutations detected in the major hydrophilic loop (I110L, P120S, P120T, T126S, 

T131N, M133I, M133T, Y134F, Y134K, S143T, F161Y and A168V). Six mutations had 

amino acid substitutions (T126S, T131N, M133I/T, Y134F and S143T) within the ‘a’ 

determinant region (a.a 124-147) of the MHR (Figure 3-9). The classical vaccine escape 

mutations D144E and G145R, which are reported to be closely associated with genotype D, 

could not be detected. However, the well-described vaccine escape mutation P120T was found 

in one sequence of an HBV sample.  

Additionally, substitution I110L was detected in two samples, whereas F161Y was found only 

in one sample; both mutations lead to vaccine escape (Coppola et al., 2015). Similarly, 

substitutions P120S, P120T, T126S and S143T were detected and may lead to problems in both 

diagnostic assays and vaccine escape (Guangxi et al., 2015). Substitution T131N, which is 

responsible for the rescue of virion secretion, was also found. In addition, M133T was detected 

and may lead to problems in diagnostic assays; however, it has yet to be identified as VEMs 

(Yan et al., 2017). Furthermore, the Y134K mutation was found, which had not been detected 

in the usual escape setting (Ziaee et al., 2016).
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Figure 3-8: Analysis of antiviral therapy resistance mutations.  

The amino acid sequences of the HBV polymerase (reverse transcriptase region; aa rtM1 to rtQ344) were aligned with the corresponding region of the 

reference sequences. 
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Figure 3-9: Analysis of vaccine escape mutations. 

Distribution of amino acid substitutions (mutations) detected within the major hydrophobic region (MHR) of the HBV S-gene. The amino acid sequences 

in the ‘‘a’’ determinant region were aligned with the corresponding region of the reference sequences (HBV-genotypes A, D, and E). 
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3.3  DISCUSSION 

Chronic hepatitis B infection (CHB) is a prominent public health issue for the 21st century and 

a major health burden in Saudi Arabia and other parts of the world (Lau et al., 2007). HBV is 

the most common cause of chronic viral hepatitis in Saudi Arabia (Tamura et al., 2011). 

However, little is known about the prevalence or distribution of HBV genotypes in this region, 

and few studies have been conducted to determine the genotype variation of HBV in the 

Kingdom with the limitation of the sequencing method leading to partial sequencing rather than 

whole-genome sequencing. In 2006, one investigation (Al Ashgar et al., 2006) assessed the 

distribution of HBV genotypes in Saudi Arabia using the INNO-LiPA methodology (LiPA, 

INNO-LiPA HBV genotyping assay, Innogenetics NV, Ghent, Belgium) and identified HBV 

genotyping among patients at a tertiary referral centre, which serves population groups resident 

in different regions of Saudi Arabia. Serum samples of 54 CHB patients and reported the 

prevalence of 85% had D genotype; while 5.7% has A genotype and E has 1.4% respectively. 

Recent report using what method conducted by Alshabi et al. (2021) reported the prevalence 

of HBV genotype out of 50 patients in the southwestern region in the Saudi Arabia as 90% of 

D genotype, 4% of each A and H genotype and 2% of E genotype (Alshabi et al., 2021). 

Another previous study using this method conducted by Abdo et al. (2006) included 70 patients 

showed that genotype D was in 57 patients (81.4%), 4 patients had genotype E (5.7%), 1 patient 

had genotype A (1.4%), 1 patient had genotype C (1.4%), and 7 patients had mixed genotype 

(10%) (Abdo et al., 2006). 

At the beginning of this thesis, the study of HBV strains and drug resistance was via Sanger 

sequencing and the use of enrichment protocols and NGS was limited. This maybe in part due 

to cost. The analysis of multiple areas of the genome in a single reaction is enabled by NGS, 

while Sanger sequencing only permits the analysis of one region at a time (Slatko et al., 2013). 

Furthermore, in order to identify low-frequency variants, it gives greater sensitivity by 

presenting more discovery power to detect novel or rare variants. It also allows a more rapid 

turnaround time for high-sample volumes which have full genomic coverage (Slatko et al., 

2013; McNaughton et al., 2019). 
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 The beauty of NGS and target enrichment allow us to identify potentially new genotypes, 

subgenotype and mixed infections with greater confidence and reliability. This study validated 

a protocol for deep whole-genome sequencing for HBV using the target enrichment method. 

To the best of our knowledge, this is the first description of whole genome HBV sequencing 

using this method. The data indicated that NGS is a reliable tool for genotype prediction, which 

makes it useful for clinical evaluation; however, a larger number of samples is needed to 

evaluate the method for detection of other genotypes. Our findings using NGS were in in 

agreement with previously published studies implemented in the Saudi Arabia to identify the 

circulating genotypes. Our results confirmed that genotype D is predominant strain in Saudi 

Arabia, followed by genotype E, genotype A, and genotype C. Recently, many publications 

and strategies are in development to bring HBV genome sequence analysis the clinical virology 

laboratory. 

Teng et al. (2018) have developed NGS platform for quantitative detection of pre-S mutants in 

plasma samples from patients with HCC. They have compared the new NGS platform to the 

TA cloning-based approach that is well established for isolation of specific pre-S gene DNA 

from the PCR products. Their data indicated that the NGS approach sensitivity higher in 

detecting pre-S deletion quantitatively which was indicating that this approach could enhance 

the accuracy of detecting pre-S deletion that led to improving the outcome prediction of 

patients with HCC (Teng et al., 2018). 

Another approach that has developed by Barbosa et al. (2020) validated the use of NGS as an 

approach to monitor viral polymorphism and HBV genotypes that are circulating within the 

populations and within an individual. They defined an assay based on amplification in only 

three overlapping regions of the full-length HBV genome. This may be critical in chronically 

infected patients where treatments are failing (Barbosa et al., 2020). 

A Recent project conducted by Ishii et al. (2020) developed an approach for NGS using Target-

capture sequencing method (SeqCap EZ Pure Capture (Roche)). They performed analysis of 

the HBV genome integration in Huh7 cells. , this is relevant in the context of this thesis as we 

use Huh7 in subsequent chapters for the replicon system. They have accomplished functional 

analysis and demonstrated the expression of some HBV proteins of HBV integrants in 

transfected Huh7 cells with DNA sequences. They did not used a clinical sample which was 

the major limitation on their study (Ishii et al., 2020).  

Colson et al. (2020) have also applied NGS approach in clinical microbiology laboratory for 

the purpose of diagnosing of HBV. DNA was extracted from plasma sample utilizing Qiagen 
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kit and then directly sequenced on Illumina instrument using Nextera XT® protocol without 

prior HBV DNA amplification with PCR. They have used their approach only in two patients 

and this was one limitation on their study (Colson et al., 2020). For first patient, they observed 

two mutation (sD144A and sG145R) that were associated with vaccine escape while for second 

patient two mutations (rtL180M/rtM204V) that conferring lamivudine and entecavir resistance 

were detected. Genotype A was observed for both patients (Colson et al., 2020). 

The NGS approach also has advantage over traditional methods as there are issues with 

detecting mixed infection as confirmed by a study mixing different ratios of the different 

genotype (Mercier et al., 2011), NGS results enables a comparison result and allows sensitivity 

of the two methods; hybridization and sanger, to be determined from the same sample to be 

confirmed (Lowe et al., 2016). Some of the challenges encountered during the study included 

the need to deplete host reads, which could involve enrichment and amplification steps. The 

cost of the system and reagents as well as the interpretation of NGS data require substantial 

bioinformatics support and adaptation for different genomic configurations.  

HBV requires methods refined for a circular and partial dsDNA genome. In addition, it presents 

several bioinformatics challenges that include the circular genome, overlapping open reading 

frames, and the different genome lengths of the genotypes. Moreover, large gaps in our 

understanding remain regarding the relationship between HBV genome structure, the 

replication cycle, diversity, transmission, and clinical outcomes. Recent sequencing advances 

offer an enormous opportunity to generate datasets that will help to address some of these 

questions. A repository (or database) of standardised reference genomes of all HBV genotypes 

subtypes has been defined and it has facilitated the consistent assembly and analysis required 

to develop insights into current and future epidemiology, inform better clinical assessment, 

improve deployment of current antiviral drugs and vaccines, and drive the discovery of new 

antiviral agents (McNaughton et al., 2019).  

The method validated in this study paves the way for a better understanding of HBV 

epidemiology by offering a new tool for large scale whole genome sequencing in reference 

laboratories or research settings. Further developments to shorten the sequencing time and 

automate the bioinformatics pipeline would facilitate the introduction of this method into 

diagnostic laboratories and public health settings.  

We contributed to the development of the in-house bioinformatics tools in the centre to analyse 

drug resistance and vaccine escape mutations amongst the Saudi patient samples involved in 

my work. Data collected along with the literature review on HBV antiviral drugs and resistance 
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were shared via GLUE software, which is specifically developed for HBV drugs currently in 

the development phase at the MRC-University of Glasgow Centre for Virus Research.  

GLUE is a data-centric bioinformatics environment for viral sequence data with a focus on 

variation, evolution, and sequence interpretation. Additionally, this is alpha software, which is 

still undergoing testing prior to its official release. Creating an HBV sequence database to 

identify resistance-associated variants and inform any future treatment plans would be of 

tremendous value, this allows a genotype to phenotype study of arising mutations to be 

undertaken.  

Several limitations towards our study are the following: the need to deplete host reads, which 

could involve enrichment and amplification steps, the cost of the system and reagents, as well 

as the interpretation of NGS data, require substantial bioinformatics support and adaptation for 

different genomic configurations. 

In conclusion, the results from this new NGS protocol provide valuable information for the 

identification of the mutant surface antigens and polymerase genes of HBV-infected patients. 

It is hoped that the project will contribute to national guidelines for the eradication of HBV in 

Saudi Arabia. Additionally, a selected set of drug-resistant mutations were used to generate a 

cell culture-based HBV system in which we measured the replication rate by HBeAg secretion 

in the presence and absence of appropriate drugs, as described later in Chapter 5. 

  

http://www.gla.ac.uk/researchinstitutes/iii/cvr/
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Chapter 4. Establishment of infectious/non-infectious HBV 

replication systems  

4.1 Introduction  

The in vitro HBV cell culture system is an essential tool for studying the biological properties 

of HBV and for screening anti-HBV drugs (Iwamoto et al., 2017; Lin et al., 2016; Xu et al., 

2021). The host and tissue specificity of HBV means that the availability of a stable and 

reliable in vitro cell culture system is a key factor affecting research on the mechanism of HBV 

action (Iwamoto et al., 2017; Lin et al., 2016; Xu et al., 2021). Therefore, creating an active 

cell culture system supporting HBV infection has become vital in studying HBV and the 

development of effective therapeutic drugs.  

4.1.1 The history of infection/replicon systems for studying HBV 

Several HBV in vitro infection systems have been established recently. Although these systems 

have weaknesses, they are useful in the study of aspects of the virus life cycle and they represent 

an important tool in the development and evaluation of anti-HBV drugs (Xu et al., 2021). The 

following history reflects the major milestones in the development of cell culture systems for 

HBV, focusing on the cells lines that support HBV replication as well as the cell lines that can 

be infected with HBV (Figure 4-1).  
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Figure 4-1: The history of an in vitro systems for studying HBV.  

Timeline the substantial research achievements in HBV cell culture systems in vitro. The 

discovery of the receptor of HBV (NTCP) in 2012 has advanced the understanding of HBV 

biology. Then, several liver cancer cells overexpressing NTCP that support HBV infection 

have been established, opening a new door for studying HBV infection.  

 

HepG2 and Hep3B were originally established by Aden et al. (1979). They were isolated from 

liver biopsy specimens of a 15-year-old Caucasian male from Argentina with primary primary 

hepatoblastoma, or an 8-year-old black male from the US with primary HCC, respectively 

(Aden et al., 1979; Knowles et al., 1980). Both cell lines contained distinctive rearrangements 

of chromosome 1, and other abnormal chromosomes. But they differ in the number of 

chromosomes per cell as HepG2 cells contain an average of 55 (50–56) chromosomes per cell 

whereas Hep3B cells, 60 (Knowles et al., 1980). In addition, HepG2 was HBV negative and 

non-tumorigenic while Hep3B was HBV positive and tumorigenic (Knowles et al., 1980). 

Analysis of the cell culture fluid from two new human hepatoma-derived cell lines showed that 

17 of the major human plasma proteins were synthesized and secreted by these cells (Knowles 

et al., 1980). 

Hep 3B was also produced the two major polypeptides of the HBV surface antigen. Metastatic 

hepatocellular carcinomas were appeared when Hep 3B was injected into athymic mice. 

Experimental models were provided from these two-cell line for investigation of plasma 

protein biosynthesis and the relation of the HBV genome to tumorigenicity (Knowles et 

al., 1980).  
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In 1982, the human hepatoma cell line Huh7 was established from male hepatoma tissue 

obtained from a 57-year-old Japanese male patient with hepatocellular carcinoma. Huh7 was 

found to replicate continuously in a chemically defined medium when the medium was 

supplemented with Sodium Selenite (Na2SeO3). In this medium, the cells were grown better 

than in serum-containing medium without any adaptation period (Nakabayashi et al., 1982). 

Several human plasma proteins were observed to be produced in this cell line (albumin, alpha 

1-antitrypsin, hemopexin, ceruloplasmin, fibrinogen, beta-lipoprotein, haptoglobin, and alpha 

1-fetoprotein). Moreover, these proteins were detected during periods of serial cultivation over 

9 months under the above culture conditions. The cell line was developed in the fully defined 

synthetic medium which offered a new approach for investigating the growth and metabolism 

of human hepatoma cells in vitro (Nakabayashi et al., 1982).  

Sells et al. (1986) developed a recombinant vector pDoLT-HBV-1 comprising of two head-to-

tail dimers of HBV genome in a tail-to-tail orientation. This plasmid was together with a 

plasmid encoding the neomycin resistance gene to co-transfect into HepG2 cells. Following 

selection and cloning in the presence of G418, individual clones were tested for their ability to 

synthesize and secrete HBsAg and HBeAg. One such clone of the cells, designated 

HepG2.2.15, produced hight levels of both antigens (Sells et al., 1986). As reported, the cell 

line carries a complete and an incomplete HBV DNA along with extra-chromosomal and 

chromosomally integrated DNA and cccDNA (Sells et al., 1986). This line can also generate a 

variety of HBV-specific mRNAs (3.5 kb, 2.5 kb, 2.1 kb). It can also produce all viral markers, 

and stably secrete Dane particles, HBsAg and HBeAg for a considerable period of time (Sells 

et al., 1988). HepG2.2.15 is thus a widely used cell line as it produces infectious virions and 

supports continuous virus replication. The HepG2.2.15 cell line is an efficient tool for the study 

of the function, structure, the first screening of anti-HBV drugs in vitro, as well as the gene 

expression and regulation of HBV DNA. However, this cell line has limitations as it lacks the 

viral receptor NTCP and thus is insensitive to direct infection with HBV. Therefore, it cannot 

be utilised for studying cellular entry, HBV adsorption or virus uncoating (reviewed by Xu et 

al., 2021). 

A technique centred on human embryonic hepatocytes with similar attributes to those of adult 

hepatocytes was developed by Ochiya (1989). A considerable number of mononuclear 

polyhedral hepatocytes – which were in trabeculae from fetal liver tissue at a gestation period 

of between 20 and 24 weeks – were obtained by Ochiya et al. (1989). Glycogen, glucose-6-

phosphatase and transpeptidase were identified in the medium after these were cultured for 

approximately a week. The albumin that was identified on the second day after the cells had 
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been plated continued being secreted until the sixteenth day. The biochemical attributes and 

the regular morphologies were retained for a minimum period of two weeks of subsequent 

culture (Ochiya et al., 1989). Following infection with HBV of primary human fetal 

hepatocytes, viral replication indexes were identified both intracellularly and within the culture 

medium. Fetal human hepatocyte culture in vitro has the ability to imitate the biological role 

of hepatocytes within the human body. Furthermore, in comparison with human primary adult 

hepatocytes, the cells have an improved survivability, differentiation and proliferation (Ochiya 

et al., 1989). It has several benefits as a tool for studying HBV infection: (i) the cells have the 

potential to be infected by sera containing HBV particles; (ii) all known viral protein, DNAs 

and RNAs that are detected in HBV infected livers in vivo can also be produced in infected 

fetal human hepatocytes in vitro; (iii) infectious viral particles are released by the cells; (iv) the 

cells are capable of producing cccDNA. Nevertheless, the fact that productive infection of these 

cells is sustained only for a period of between 16 and 18 days remains a major limitation 

(Reviewed by Lin et al., 2007). 

Ladner et al. (1997) transfected HepG2 cells with the plasmid pTet-HBV. This plasmid carries 

the tetracycline-responsive CMV-IE promoter fused with a 1.1 copy of ayw subtype of the 

HBV genome. It was used to generate the HepAD38 cell line capable under inducible condition 

of high level of HBV production and viral replication (Ladner et al., 1997). HepAD38 cell line 

produces about 11 times more HBV DNA than HepG2.2.15 cells (Ladner et al., 1997).  

Moreover, tetracycline can be applied in order to regulate HBV replication in the cell line. 

HBV is not synthesised in the presence of medium containing tetracycline because pgRNA 

synthesis is inhibited (Ladner et al., 1997). The cells immediately express pgRNAs, cccDNA 

and HBV subsequent to the removal of tetracycline. Due to the low sensitivity of direct 

cccDNA recognition and the fact that its detection is susceptible to interference by rcDNA 

signals, the HBeAg secreted by HepAD38 cells can be utilized as the major surrogate marker 

of cccDNA (Ladner et al., 1997). 

The integration of the HBV genome enables the HepAD38 and HepG2.2.15 cell lines to secrete 

HBV particles continuously. In fact, these cells, are frequently used as the virus source for 

HBV infection in cell culture systems and are broadly utilised in associated studies. 

Furthermore, transient transfection with plasmids carrying more than genome-length HBV 

sequences have also been a useful strategy to study aspects of virus life cycle. 

Compared to HepG2.2.15 cells, in HepAD38 cells the initiation of HBV replication can be 

controlled accurately thus enabling greater levels of virus production. However, like 
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HepG2.2.15, the HepAD38 cell line is limited in that it is inappropriate for the study of the 

interaction between host and virus cells during the early stage of HBV infection as they also 

lack NTCP. Nonetheless, this cell line has been used for the study of anti-HBV drug screening 

and HBV replication process (reviewed by Xu et al., 2021).  

The biochemical attributes and the regular morphologies were retained for a minimum period 

of two weeks of subsequent culture (Ochiya et al., 1989). Following the application of primary 

human fetal hepatocytes with HBV infection, viral replication indexes were identified both 

intracellularly and within the culture medium. Fetal human hepatocyte culture in vitro has the 

ability to imitate the biological role of hepatocytes within the human body. Furthermore, in 

comparison with human primary adult hepatocytes, the cells have an improved survivability, 

differentiation, and proliferation (Ochiya et al., 1989).  

It has several benefits as a tool for studying HBV infection: (i) the cells have the potential to 

be infected by sera containing HBV particles; (ii) all known viral protein, DNAs and RNAs 

that are detected in HBV infected livers in vivo can also be produced in infected fetal human 

hepatocytes in vitro; (iii) infectious viral particles are released by the cells; (iv) the cells are 

capable of producing cccDNA. Nevertheless, the fact that productive infection of these cells is 

sustained only for a period of between 16 and 18 days remains a major limitation (Reviewed 

by Lin et al., 2007). 

Ladner et al. (1997) transfected HepG2 cells with the plasmid pTet-HBV. A mammalian 

promoter derived (pCMV) from a high-copy-number pUC-based plasmid was used to permit 

protein expression in mammalian systems in this vector, the expression is driven by the human 

cytomegalovirus (CMV) immediate early promoter to promote constitutive expression of 

cloned inserts in a wide variety of cell lines. A translation initiation sequence must be 

incorporated if the DNA fragment to be cloned does not have an initiating ATG codon or an 

optimal sequence for initiating translation since the pCMV- vector does not contain an ATG 

initiation codon. It has fifteen unique restriction enzyme recognition sites in the multiple 

cloning site (MCS) that arrange with alternating 5´ and 3´ overhangs to allow serial 

exonuclease III/mung bean nuclease deletions. In order to construct plasmid pTet-HBV, the 

cytomegalovirus immediate-early (CMV-IE) promoter from plasmid pCMV-HBV was 

removed and subsequently fused with the ayw subtype of the HBV genome (Figure 4-2). It was 

replaced by the tetracycline-responsive CMV-IE promoter for the purpose of acquiring the 

HepAD38 cell line that offers a high level of HBV production along with the precisely 

regulation in the initiation of viral replication (Ladner et al., 1997). HepAD38 cells were 

selected due to the low level of virus replication in the previous cell line such as HepG2.2.15. 
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The expression of the 1.1 copies of the HBV genome contained within the HepAD38 cell 

genome is regulated by the inducible CMV-IE promoter. The pre-core gene disruption causes 

the HepAD38 cell line to produce HBV DNA about 11 times more than HepG2.2.15 cells 

(Ladner et al., 1997).  

Moreover, tetracycline can be applied in order to regulate HBV replication in the cell line. 

HBV is not synthesised in the presence of medium containing tetracycline because pgRNA 

synthesis is inhibited (Ladner et al., 1997). The cells immediately express pgRNAs, cccDNA 

and HBV subsequent to the removal of tetracycline. Due to the low sensitivity of direct 

cccDNA recognition and the fact that the detection results are susceptible to interference by 

rcDNA signals, the HBeAg secreted by HepAD38 cells can be utilized as the major 

replacement marker of cccDNA; thus, the estimation level of HBeAg can be used to measure 

the replication level of cccDNA (Ladner et al., 1997). 

The integration of the HBV genome enables the HepAD38 and HepG2.2.15 cell lines to secrete 

HBV particles continuously. In fact, HepAD38 cells and HepG2.2.15 cells, are frequently used 

as the virus source for HBV infection in cell culture systems and are broadly utilised in 

associated studies. Furthermore, transient transfection with plasmids carrying more than 

genome-length HBV sequences have also been a useful strategy to study aspects of virus life 

cycle. 

Compared to HepG2.2.15 cells, HepAD38 cells produce greater levels of HBV than 

HepG2.2.15 cells do and are also able to control the initiation of viral replication accurately. 

However, like HepG2.2.15, the HepAD38 cell line is limited in that it is inappropriate for the 

study of the interaction between host and virus cells during the early stage of HBV infection 

as they also lack NTCP. Nonetheless, this cell line has been used for the study of anti-HBV 

drug screening and HBV replication process (reviewed by Xu et al., 2021).  
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Figure 4-2: Structure diagram ptetHBV (Ladner et al., 1997).  

A map of the plasmid pTet-HBV map; this design was adapted from Ladner et al. (1997). 

Position of three major viral transcripts, pregenomic RNA, Pre-S, and surface are indicated as 

coloured arrows. The position of the CMVtet promoter is also indicted in addition to HBV 

sequences. Plasmid pBR322 was used as vector and polyadenylation signal was introduced by 

the pp-ins-2 segment which is derived from pre-proinsulin gene 2 (Ladner et al., 1997).  
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Guo et al. (2007) generated HepDE19 and HepDES19 cells that were similar to HepAD38.  

with some modifications. Briefly, HepG2 cells were transfected with plasmid pTet-off that 

expresses the Tet-responsive transcriptional activator and plasmid pTREHBVDE in which 

HBV pgRNA expression is controlled by a CMV early promoter with a tetracycline-responsive 

element. Transfected HepG2 cells were selected with 500 μg/ml G418 in the presence of 1 

μg/ml tetracycline. G418-resistant colonies were picked and expanded into cell lines. HBV 

replication was induced by culturing cells in tetracycline-free medium, and the levels of viral 

DNA replicative intermediates were determined by Southern blot hybridization. The cell lines 

with high levels of HBV replication were chosen and designated as HepDE19 and HepDES19 

(Guo et al., 2007). 

HepDE19 contains a 1.1 mer HBV transgene mutated in its 5' pre-core ATG, while the 3' pre-

core ATG remains unaltred. The expression of HBeAg in this cell line emanated from the 

episomal DNA rather than integrated DNA, thereby supplying a platform for a large-scale 

screening of cccDNA-targeting drugs (Guo et al., 2007; Cai et al., 2012). Although HepDE19 

cells accomplish the same function as do HepAD38 cells, but the dependency connection 

between secreted cccDNA and HBeAg is closer than the dependence in the HepAD38 cell line 

(Guo et al., 2007). Subsequently, a cccDNA reporter cell line, known as HepBHAe82 which is 

‘second generation’ was developed. In this case, an in-frame haemagglutinin (HA) epitope tag 

was implemented into the pre-core HBeAg domain’s open reading frame in the transgene of 

HepBHAe82 cells with no disruption to any cis-element, crucial for HBeAg secretion and HBV 

replication (Cai et al., 2016). Although such developments have enabled HBV production in 

vitro, their application regarding studying the regulation of HBV replication is limited because 

some carry a neomycin resistance gene and a greater-than genome length HBV. Therefore, the 

search to establish stable HBV-expressing cell lines continues, but it will encourage the study 

of the connection between host genes and HBV (Wose et al., 2020). 

Iwamoto et al. (2017) isolated Hep38.7-Tet cell line, a clonal derivative of HepAD38 cells, 

exhibiting greater cccDNA levels and HBV replication. They also produced approximately 3 

times higher HBs and 3–5 times higher levels of cccDNA. These findings indicated that HBV 

replicates more efficiently in Hep38.7-Tet cells than in its parental cells. Consequentially, the 

Hep38.7-Tet cells were screened with Nocodazole which is known to disrupt cellular 

microtubules and to arrest cell cycle. Mainly, once the cells reached confluency level 

tetracycline was removed to induce the replication of HBV and the cells were then treated with 

Nocodazole up to six days. Culture supernatant was collected for HBV quantification and cells 

were harvested for cell viability. The results indicated that HBV DNA decreased to less than 
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20% in the supernatant without reducing cell viability. Likewise, the HBV capsid assembly in 

microtubule-disrupted cells was remarkably reduced without substantial change in pre-

assembly process (Iwamoto et al., 2017). The data thus suggested a significant role of 

microtubules in capsid formation during HBV replication. (Iwamoto et al., 2017). 

In order to introduce a replication competent HBV genome into HepG2 cells, Dalaney et al. 

(1999) utilised baculovirus-base system, the purpose of which was to establish the HBV 

recombinant baculovirus/HepG2. The recombinant baculovirus contained 1.3-genome length 

HBV construct originating from pTHBV1.3 which had previously been shown to drive high 

levels of HBV replication in the livers of transgenic mice. Following infection of HepG2 cells 

with this recombinant baculovirus, the presence of high levels of HBsAg and HBeAg was 

demonstrated and shown to be sustained for a minimum period of 35 days (Delaney et al., 

1998). The recombinant baculovirus/HepG2 technique is unique in that expression of cccDNA 

and rcDNA can be detected relatively easily; consequently, it may be applied to quantify the 

impact of antiviral agents on nuclear HBV DNA (Abdelhamed et al., 2002). Furthermore, it is 

amenable to studying viral resistance to nucleoside analogues (Delaney et al., 1999). 

Sprinzl et al. (2001) generated an adenovirus (Ad) vector carrying a 1.3-fold overlength HBV 

or duck HBV genome following transfection into HEK-293 cells, The recombinant Ad-

HBV1.3 release from HEK-293 cells was subsequently used to infect the HepG2 cells (Sprinzl 

et al., 2001). The E1 region was substituted from adenovirus by a reporter gene and replication-

competent HBV genomes. Following transduction into hepatoma cells and primary 

hepatocytes viral proteins and nucleic acids were detected and infectious HBV and duck HBV 

virions were shown to be released.  

These adenovirus vectors were also shown to be suitable for in vivo experiments (Sprinzl et al., 

2001). Among all known delivery vectors, adenovirus vectors are specifically the most efficient 

in the transfer of exogenous DNA into the livers of experimental animals of choice as.no 

species barrier exists for the Ad HBV to transduce target tissue cells, thus enabling it to attain 

replication in hepatocytes of non-specific host (Sprinzl et al., 2001). 

Gripon et al. (2002), isolated hepatocytes from liver tumor tissue of HCV-infected patients. 

After many passages, the cells first acquired an undifferentiated morphology. Subsequently, 

the authors added hydrocortisone and DMSO to the medium for the purpose of differentiating 

into cells that had the functional attributes of biliary cells and mature hepatocytes. Eventually, 

this process led to the generation of HepaRG cells that following differentiation supported the 
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infection and relocation cycle of HBV (Gripon et al., 2002; 2005). Furthermore, HepaRG cells 

have been broadly used to study toxicity and drug metabolism (Marion et al., 2010).  

Yan et al. (2012) utilised the primary Tupaia hepatocytes from tree shrews to conduct photo-

cross-linking experiments with a synthetic pre-S1 peptide. These experiments enabled 

identification of NTCP as a receptor for HDV and HBV (Yan et al., 2012). Tree shrews, except 

for chimpanzees, are the only known animals that can be infected by HBV. Primary 

hepatocytes derived from tree shrews are susceptible to infection by HBV (Walter et al., 1996). 

Yan et al. (2012) showed that expression of NTCP is essential for infection of HepG2 or Huh7 

cells. They established stable cell lines, Huh7-hNTCP and HepG2-hNTCP, which were 

susceptible to infection with both HBV. Such cell lines have the potential for continuous 

propagation and spread of HBV, but they are more useful in the study of early events of virus 

infection.  

Iwamoto et al. (2013) established HepG2-hNTCP-C4 cell line, a clonal derivative of HepG2-

NTCP, which were more efficient at virus infection compared to the polyclonal pool of parent 

cells. HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood–borne and 

cell culture-derived HBV. HBV infection in this cell line was facilitated by pre-treating cells 

with 3% dimethyl sulfoxide (DMSO) enabling nearly 50% of the cells to be infected with HBV. 

In comparison, only 7% to 20% of HepaRG cells were infected (Iwamoto et al., 2013). The 

infection of HBV was blocked by an anti-HBV surface protein neutralizing antibody, by 

compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its 

derivatives. Also, further chemical screening identified oxysterols, oxidized derivatives of 

cholesterol, as inhibitors of HBV infection (Iwamoto et al., 2013). 

 

In our study, we exploited a previously developed plasmid carrying assembly-defective over-

length HBV genome for assessing the effectiveness of antiviral drugs. Specifically, the plasmid 

construct, pTHBV1.3-L-, carrying 1.3 genome length of HBV (ayw subtype) DNA with a point 

mutation in the initiation codon (ATG to ACG) of preS1 was used. This plasmid was kindly 

provided to my supervisor back in 2001 by Professor Heinz Schaller, University of Heidelberg. 

My supervisor had more recently had it sequenced with the help of the CVR NGS team. It 

confirmed that this plasmid carries nt 1068-3182/1-1990 of HBV 1.3 genome with the point 

mutation in preS1 initiation codon as described above. The complete sequence of pTHBV1.3-

L- is shown in Appendix 7. It includes a 59 nt terminal redundancy encompassing enhancers I 

and II, the origin of replication (DR1 and DR2), pregenomic/core promoter regions, 
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transcription initiation site of the pgRNA, the unique polyadenylation site, and the entire X 

ORF (Figure 4-3). This plasmid has been shown to be viral DNA replication-competent but 

assembly-deficient and as such can be used at BSL2 level. Following transfection into 

hepatoma cells, the plasmid is capable of producing replication-competent pre-genomic RNA 

and cccDNA (Ko et al., 2018) and as is amenable to studying viral replication processes. As 

described below, we made further modifications to pTHBV-L- and WT HBV 1.3 length 

genome for use in our studies to evaluate the efficacy of different NA drugs on genomes 

carrying drug-resistance-associated mutations of interest. These molecular tools will also be of 

value in future virus-related research in our laboratory. Specifically, the aim was to construct 

plasmids carrying HBV sequences of interest and a drug resistance gene to enable generation 

of stable cell lines.  
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Figure 4-3: Diagram of pTHBV1.3-L- construction.  

Diagram of pTHBV1.3-L- carrying a 1.3-fold-overlength genome of HBV (derived from 

pHBV1.3) genotype D and subtype ayw. The HBV core (HBc), Pre-Core, X, S Pre-S, and Pol 

sequences are indicated. 
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4.2 Results 

4.2.1 Subcloning of the HBV sequences from pTHBV-L- into the retrovirus 

transfer vector pQCXIP 

The entire HBV genomic sequences from pT-HBV- L- subcloned into the retrovirus transfer 

vector pQCXIP (Clonetech, see Appendix 8 for the sequence) which has the puromycin-

resistance gene downstream. In theory, this plasmid would allow generation of VSV-G 

enveloped retroviral particles carrying the HBV genome following co-transfection into HEK-

293T cells of plasmids expressing VSV-G, MLV-Gag-Pol, and pQCXIP carrying the HBV 

genome described below. The VSV-G-enveloped particles generated thus could then be used 

produce cell lines of interest stably expressing HBV1.3-L-. First, nt 2381-4519 of pT-HBV- L- 

carrying nt 1086 to 3182 of the viral genome were PCR-amplified using the forward primer 

HB29 (CATTGATCA CTGCAGGGCCCGTCGACAAGCTT with Bcl I site) and the reverse 

primer HB15 (CATGAATTCCACTGCATGGCCTGAGGATGA with EcoRI site). 

Separately, the 2 kbp EcoRI to NheI fragment of pT-HBV-L- (nt 4514 to 14 carrying nt 1 to 

1990 of HBV genome) was gel-extracted (as per the protocol described in Section 2.2.6.1). The 

above PCR product was cleaved with BclI and EcoRI and ligated together with the EcoRI-NheI 

fragment into pQCXIP cut with BglII to XbaI just upstream of the CMV promoter which drives 

the IRES-puromycin expression (Figure 4-4). This ligation reaction was called Lig 1. 
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Figure 4-4: Diagram of Ligation 1 construct.  

1) PCR up sequences upstream from the HBV genome in pTHBV-L- to the EcoRI site at nt 

3182. Primers HB29 + HBV-15 were used and pTHBV-L- as template to PCR up a fragment 

of ~2kbp and cut it with BclI + EcoRI. 2) Cut pTHBV-L- with EcoRI and NheI and gel was 

extracted the ~2kp 3’ fragment. 3) pQCXIP: cut with BglII (NE3.1) and XbaI (add CiP also) 

and then gel was extracted linear plasmid fragment. Ligated the three fragments to generate a 

construct (carrying HBV nt 1068-3182/2-1990) that carries the HBV L-minus 1.3 genome in a 

retrovirus transfer construct expressing replication-competent/assembly-deficient HBV 

genome following VSVpp transduction, and a stable cell line can be made following selection 

on puromycin. 

 

An aliquot of Lig 1 was transformed into E. coli Stbl3 (NEB) cells. Following selection on L-

agar ampicillin, 12 colonies (named 1-1 to 1-12) were screened to identify clones carrying the 

desired sequences. These colonies were grown up in small cultures and plasmids prepare using 

the Qiagen Miniprep kit. An aliquot of these plasmids were treated with restriction enzymes 

HindIII and EcoRI. The sizes of the fragments resulting from this digestion were expected to 

be 3872, 2694, 2116, 1169, 859, 348, and 247 bp. As shown in Figure 4-5, plasmids 1-1, 1-4, 

1-6, 1-9 and 1-10 gave the expected profile (the 348 and 247 bp fragments were undetectable 

due to their small size). The plasmid 1-6, named pQ-HBV-L- (1-6), was selected for further 

analysis and was sent off for nucleotide sequencing which confirmed that it carried the 

expected HBV sequence (See Appendix 9). 
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Figure 4-5: Screening of Ligation 1 (pQ-HBV-L-) by Agarose gel electrophoresis. 

As described in the text, the cleaved plasmids were electrophoresed through 0.8% agarose gel, 

and fragments indicated in the gel were extracted. Several samples indicated the fragment 

profile from ligation 1. Only sample (1-6) was selected for further investigation with fragment 

sizes (3872, 2694, 2116, 1169, 859, 348, and 247 bp). Also, plasmids 1-1, 1-4, 1-6, 1-9 and 1-

10 gave the expected profile (the 348 and 247 bp fragments were undetectable due to their 

small size). All products were run alongside with a 1kb DNA ladder. 

  



178 

 

4.2.2 Subcloning of HBV 1.3mer WT (wild type) sequences in pQCXIP  

The plasmid pHBV1.3mer overlength WT HBV genotype D construct (obtained from 

Addgene) contains 1.3 units of HBV genome, spanning nt 1072-3182/1-1990 of HBV ayw 

subtype (Wang et al., 2009). It is replication- and assembly competent, so upon transfection 

into Huh7 or HepG2 cells, this plasmid initiates HBV DNA replication and the subsequent 

assembly and release of the virus that could be used in infection studies. Here, pQCXIP 

carrying WT 1.3 length HBV genome was constructed by combining relevant fragments from 

pHBV1.3mer WT and pT-HBV-L- effectively restored the ATG start codon in preS1. Work 

involving this plasmid were conducted in BSL3 level. 

Briefly, nt 1072 to 3182 of the WT viral genome of pHBV1.3mer WT were PCR-amplified 

using the forward primer HB30 (CATTGATCACTGCAGGGCCCGTCGACAAGCTT with 

Bcl I site) and the reverse primer HB15 (CATGAATTCCACTGCATGGCCTGAGGATGA 

with EcoRI site). Separately, the 2 kbp EcoRI to NheI fragment of pT-HBV-L- (nt 4514 to 14 

carrying nt 1 to 1990 of HBV genome) was gel-extracted (as per the protocol described in 

Section 2.2.6.1.The above PCR product was cleaved with BclI and EcoRI and ligated together 

with the EcoRI-NheI fragment of pT-HBV-L- (described above in 4.1.2) into pQCXIP cut with 

BglII to XbaI just upstream of the CMV promoter which drives the IRES-puromycin 

expression (Figure 4-6). This ligation reaction was called Lig 2. The resulting construct is 

expected to contain chimeric sequences derived from pHBV1.3mer WT (nt 1072-3182) and 

pT-HBV-L- (nt 1-1990) reconstituting 1.3 length WT. 
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Figure 4-6: Diagram of Ligation 2 construct. 

1) PCR up sequences upstream from the HBV genome in pHBV1.3mer WT to the EcoRI site 

at nt 3182. Use primers HB30 + HBV-15 and pHBV1.3mer WT as template to PCR up a 

fragment of ~2kbp and cut it with BclI + EcoRI. 2) Cut pTHBV-L- with EcoRI and NheI and 

gel extract the ~2kp 3’ fragment. 3) pQCXIP: cut with BglII (NE3.1) and XbaI (add CiP also) 

and then gel extract linear plasmid fragment. Ligate the three fragments to generate a construct 

(carrying HBV nt 1072-3182/2-1990) that carries the ‘chimeric’ HBV WT 1.3 genome in a 

retrovirus transfer construct expressing replication-/assembly-competent HBV genome 

following VSVpp transduction, and a stable cell line can be made following selection on 

puromycin. 

 

An aliquot of Lig 2 was transformed into E. coli Stbl3 (NEB) cells. Following selection on L-

agar ampicillin, 8 colonies (named 2A1 to 2A4, 2B1 to 2B4) were screened to identify clones 

carrying the desired sequences. These colonies were grown up in small cultures and plasmids 

prepare using the Qiagen Miniprep kit. An aliquot of these plasmids were treated with 

restriction enzyme EcoRI. The sizes of the fragments resulting from this digestion were 

expected to be 6486, 2694, and 2122 bp. As shown in Figure 4-7, plasmid 2B3 had the expected 

profile. This plasmid, named pQ-HBV1.3mer WT, was selected for further analysis and was 

sent off for nucleotide sequencing which confirmed that it carried the expected HBV sequence 

(See Appendix 10). 
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Figure 4-7: Screening of Ligation 2 (pQ-HBV1.3mer WT) by Agarose gel electrophoresis. 

As described in the text, the cleaved plasmids were electrophoresed through 0.8% agarose gel, 

and fragments indicated in the gel were extracted. Several samples indicated the fragment 

profile from ligation 2. Only sample (2B3) was selected for further investigation with fragment 

sizes (6486, 2694, and 2122 bp) and was sent off for nucleotide sequencing which confirmed 

that it carried the expected HBV sequence. All products were run alongside with a 1kb DNA 

ladder. 
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4.2.3 Generation and Subcloning of the retrovirus transfer vector pQCXIP 

pQCXIP carrying 2.7 of length HBV genome 

To generate a cell line expessing the L-, M- and S-HBsAg, pQCXIP carrying a shorter 2.7 kb 

HBV sequence (compared to the above plasmids) was generated. Similar constructs have been 

described previously (Ni et al., 2019; Lemp et al., 2019). This construct is designed to express 

all 3 HBsAg (i.e., L, M, and S) and HBx from their native promoter/enhancer. It does not, 

however, express the HBV core or polymerase and, therefore, is replication-defective and non-

infectious. Furthermore, pQCXIP has a puromycin-resistance marker, so it can be used to select 

a stable cell line. Indeed, my supervisor Prof. Arvind Patel has used this plasmid to generate a 

cell line, Huh7-3B4, which stably expresses the L-HBsAg. This plasmid, and the stable cell 

line, can be used to generate HDV particles following transfection or co-transfection with HDV 

genome-expressing pSVL (D3) or pSVL(D2m).  

Briefly, nt 2425 to 3182 + 1 to 1990 of the WT viral genome of pHBV1.3mer WT were PCR-

amplified using the forward primer HB31 (CATTGATCA 

CAATCTCGGGAATCTCAATGTTAGTATT with Bcl I site) and the reverse primer HB15 

(CATGAATTCCACTGCATGGCCTGAGGATGA with EcoRI site). Separately, the 2 kbp 

EcoRI to NheI fragment of pT-HBV- L- (nt 4514 to 14 carrying nt 1 to 1990 of HBV genome) 

was gel-extracted (as per the protocol described in Section 2.2.6.1). The above PCR product 

was cleaved with BclI and EcoRI and ligated together with the EcoRI-NheI fragment of pT-

HBV- L- (described above in 4.2.1) into pQCXIP cut with BglII to XbaI just upstream of the 

CMV promoter which drives the IRES-puromycin expression (Figure 4-8). This ligation 

reaction was called Lig 3. The resulting construct is expected to contain chimeric sequences 

derived from pHBV1.3mer WT (nt 2425-3182) and pT-HBV-L- (nt 1-1990) capable of 

expressing the viral surface antigens under their native promoter/enhancer. 
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Figure 4-8: Diagram of Ligation 3 construct.  

1) PCR up nt 1366 to 2123 (to the EcoRI site ) in the HBV genome of pHBV1.3mer WT 

(representing nt 2425-3182 of HBV genome). Use primers HB31 + HBV-15 and pHBV1.3mer 

WT as template to PCR up a fragment of ~750bp and cut it with BclI + EcoRI. 2) Cut pTHBV-

L- with EcoRI and NheI and gel extract the ~2kp 3’ fragment. 3) pQCXIP: cut with BglII 

(NE3.1) and XbaI (add CiP also) and then gel extract linear plasmid fragment (this was done 

previously and not shown below in the gel). Ligate the three fragments to generate a construct 

(carrying HBV nt 2425-3182/2-1990) that carries the ‘chimeric’ replication-defective HBV 

WT 1.3 genome sequences in a retrovirus transfer construct expressing L-, M-, S- HBsAg & 

HBx from own promoters following VSVpp transduction, and a stable cell line can be made 

following selection on puromycin. 

 

An aliquot of Lig 3 was transformed into E. coli Stbl3 (NEB) cells. Following selection on L-

agar ampicillin, 4 colonies (named 3A1, 3A2, 3A4, and 3B4) were screened to identify clones 

carrying the desired sequences. These colonies were grown up in small cultures and plasmids 

prepare using the Qiagen Miniprep kit. An aliquot of these plasmids was treated with restriction 

enzyme EcoRI. The sizes of the fragments resulting from this digestion were expected to be 

7279 and 2694 bp. As shown in Figure 4-9, plasmids 3A2, 3A4 and 3B4 had the expected 

profile. The plasmid 3B4, named pQ-HBV2.7, was selected for further analysis and was sent 

off for nucleotide sequencing which confirmed that it carried the expected HBV sequence (See 

Appendix 11). 
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Figure 4-9: Screening of Ligation 3 (pQ-HBV2.7) by Agarose gel electrophoresis.  

Sample (3B4) was selected for further investigation. All products were run on a 0.8% agarose 

gel alongside a 1kb DNA ladder. 

 

4.2.4 Generation of plasmid pTHBV-L- /Puro  

Lastly, pT-HBV- L- carrying the puromycin-resistance gene was constructed. Specifically, the 

XhoI to SmaI fragment carrying nt 129 to 1990 of pT-HBV- L- with a XhoI to EcoRV fragment 

of pQ-HBV-L- (plasmid 1-6, see 4.2.1) carrying nt 129 to 1990 + CMV promoter-EMCV 

IRES-puromycin resistance gene sequences (Lig 4). The construct was named L- /Puro (Figure 

4-10). 
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Figure 4-10: Diagram of Ligation 4 construct. 

1) Cut pTHBV-L- with XhoI and SmaI. The digest should give 2 fragments (4640 and 1864bp) 

and gel extract the large 4640 bp fragment. 2) Cut pQ-HBV-L- (No 1-6) with XhoI and EcoRV. 

This should give 2 fragments (7252 and 4053bp) and gel extract the small 4053bp fragment. 

Ligate the two extracted fragments to generate a construct expressing the L-null HBV nt 1068-

3182/1-1990 – PCMV-IRES-Puro. 

 

An aliquot of Lig 4 was transformed into E. coli Stbl3 (NEB) cells. Following selection on L-

agar ampicillin, 24 colonies were initially screened to identify clones carrying the desired 

sequences. These colonies were grown up in small cultures and plasmids prepare using the 

Qiagen Miniprep kit. An aliquot of these plasmids were treated with restriction enzyme EcoRI 

+ NheI, and only one plasmid, No 11, had the expected profile, the initial screen was done by 

my supervisor which found no 11 to be of potential interest. This plasmid was transformed into 

E. coli and plasmid DNA from 6 colonies was analysed by digestion with EcoRI + NheI, and 

separately with NheI + XhoI. The sizes of the fragments resulting from this digestion were 

expected to be 4500, 2694, and 1500 bp (EcoRI/NheI) or 4640 and 4055 bp (NheI/XhoI). As 

shown in Figure 4-11, all 6 plasmids had the expected respective profiles. The plasmid, named 

pTHBV-L-/Puro, No 11, was selected for further analysis and was sent off for nucleotide 

sequencing which confirmed that it carried the expected HBV sequence (See Appendix 12). 
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Figure4-11: Screening of Ligation 4 (pTHBV-L-/ Puro, No 11) by Agarose gel 

electrophoresis.  

All products were run on a 0.8% agarose gel alongside a 1kb DNA ladder. 
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4.2.5 Analysis of intracellular HBV core, DNA synthesis and HBc protein 

expression in Hep38.7-Tet cells 

The establishment of infection and viral persistence are both dependent on the formation of 

cccDNA during the HBV replication cycle (Naoki et al., 2014). The half-life of cccDNA is 

longer than other viral nucleic acids, ranging from days to months in animal and tissue culture 

models. As described above, Iwamoto et al. (2017) developed Hep38.7-Tet, an optimized 

derivative of the HepAD38 cell line, that supports HBV replication under tetracycline inducible 

conditions. In Hep38.7-Tet cells, the production of secreted HBeAg is predominantly cccDNA-

dependent and thus acts as a surrogate marker of cccDNA formation. Here, we aimed to set up 

this inducible HBV expression system with a view to studying aspects of virus life cycle. 

Hep38.7-Tet cells, obtained from Drs Masashi Iwamoto and Koichi Watashi, were maintained 

and seeded in a 6-well dish with medium containing 400 ng/mL tetracycline as described by 

Iwamoto et al. (2017).  

Following 36 h incubation at 37°C, tetracycline was removed from the medium of one well of 

cells to induce HBV replication whereas the control cells were incubated in the presence of the 

antibiotic. Following further incubation at 37°C for 7 days, the cells were lysed with LB2 lysis 

buffer and cytoplasmic and nuclear fraction prepared (see Methods, Section 2.2.19.1) and 

analysed by Western blot for the presence of HBV core using an in-house generated rabbit 

polyclonal serum R193 (Clayton, R., 2000, PhD thesis). In parallel, hepG2-hNTCP-C4 cells 

(Iwamoto et al., 2013) were also transfected with pTHBV-L- using the lipofectamine 3000 

protocol, as described in (Section 2.2.16.1) and incubated at 37°C for 4 days. The transfected 

cells were then lysed with LB2 lysis buffer and cytoplasmic/nuclear fractions prepared and 

analysed by Western blot. As shown in Figure 4-12, HBV core was detected predominantly in 

the cytoplasmic extracts and to a lesser extent in the nuclear extracts of induced cells (i.e. minus 

tetracycline; lanes 2 and 3, and 5 an 6, respectively) but not in uninduced culture (with 

tetracycline; lanes 1 and 4, respectively). The small amount of core seen in the nuclear extracts 

is likely due to contamination of cytoplasmic components. As expected, the core protein was 

also seen in the cytoplasmic extract of pTHBV-L- -transfected HepG2-NTCP-C4 cells (lane 7). 
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Figure 4-12: Expression of HBV core in HepAD38-Tet cell line.  

As described in the text, HepAD38-Tet cells were incubated for 7 days in the presence or 

absence of tetracycline. Cells were then lysed and their cytoplasmic and nuclear extracts 

analysed by Western immunoblotting using 1:500 dilution of the polyclonal serum R193. 

Samples were loaded in the gel as follows; Lane 1 – 25 ul cytoplasmic extract (tet+), Lanes 2 

and 3- 25 μl and 25 μl, respectively, of cytoplasmic extract (tet-), Lane 4 – 25 μl nuclear extract 

(tet+), Lanes 5 and 6 -25 μl and 25 μl, respectively, of nuclear extract (tet-), Lane 7 -25 μl of 

cytoplasmic extract of pT-HBV-L- -transfected HepG2-NTCP-C4 cells. 
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4.2.6 Optimisation of transfection efficiency of HBV plasmids  

To obtain optimal conditions for determining viral protein expression by transient transfection 

assay, Huh7 and HEK293T cells seeded into a 6-well plate and a 24-well plate were tested 

using lipofection or calcium phosphate transfection protocols. Huh7 cells were transfected with 

plasmids 1 μg each of pTHBV-L- , pQ-HBV- L- (1-6), and pQ-HBV2.7 (3B4) in a 24-well 

plate and two plasmids (pQ-HBV-L- (1-6) and pQ-HBV2.7 (3B4)) using the lipofectamine 

3000 protocol (see Methods, section 2.2.16.1). HEK-293T cells were transfected with only two 

plasmids (pQ-HBV-L- (1-6) and pQ-HBV2.7 (3B4)) in a 6-well plate using the Calcium 

Phosphate transfection protocol, (see Methods, section 2.2.16.2). At 4 d post-transfection, cells 

were lysed with LB2 lysis buffer, and their cytoplasm extract (CE) analysed on a 15% 

polyacrylamide gel for SDS-PAGE followed by western blotting to verify the expression of 

HBcAg using the in-house developed rabbit polyclonal anti-core antiserum R193 (Clayton, R., 

2000, PhD thesis). As shown in Figure 4-13, HBV core expression was observed only in Huh7 

cells transfected in 6-well dish with pT-HBV-L- and pQ-HBV-L-. There was no core 

expression observed in HEK-293T cells. Thus, this experiment establishes that pQ-HBV-L- as 

well as pTHBV-L- are competent for viral protein expression and likely by inference 

replication with the detection of the core protein. The failure of HBV core expression in HEK-

293T cells may be due to lack of viral DNA replication (as would be expected of this cell line). 

Another reason for this failure may be due to lack of transfection, although this is unlikely as 

the Calcium Phosphate method of DNA transfection is highly effective in HEK-293T cells (see 

figure 4-13). As we had shown that HEK-293T did not support HBV replication with wildtype 

virus, this result was expected. 

.  
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Figure 4-13: Optimisation of DNA transfection efficiency.  

Huh7 and HEK-293T cells seeded into a 24-well or 6-well dish were transfected with the 

indicated plasmids using Lipofectamine 3000 or Calcium Phosphate method, respectively. At 

4 d post-transfection, the cytoplasmic extracts of cells were subjected to 15% SDS-PAGE 

followed by immunoblotting to detect HBV core protein using the anti-core polyclonal 

antiserum R193 at the dilution of 1:500. The bound primary antibody was recognised by a 

secondary IRDye® 680RD anti-Rabbit IgG (H + L) Licor (1:2000). 
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4.2.7 Expression of HBcAg in HepG2-hNTCP-C4 cells by Western blot 

analysis 

We analysed another human hepatoma cell line, HepG2-hNTCP-C4, for expression of HBcAg 

in a transient transfection assay. These cells were seeded in a 6-well plate and transfected with 

5 μg of pTHBV-L- using the Lipofectamine 3000 protocol. Then, the cells were lysed with LB2 

and analysed on a 15% SDS-PAGE to verify the expression of HBcAg in the cytoplasm and 

the nucleus. HBcAg of approximately 20 kDa was detected strongly in the cytoplasmic extract 

and weakly in the nuclei extract (Figure 4-14). The latter is likely due to cross-contamination 

of the cytoplasmic content in the cellular nuclear extract. 

 

 

 

Figure 4-14: Expression of HBcAg in HepG2-hNTCP-C4 cells.  

HepG2-NTCP-C4 cells in a 6-well plate were transfected with pTHBV-L-. At 4 days post-
transfection, cytoplasmic and nuclear fraction of the cells were prepared and analysed on a 

15% Polyacrylamide gel for SDS-PAGE followed by Western blotting to verify the expression 

of HBcAg using 1:1000 diluted rabbit polyclonal serum R193 adding the R193. The bound 

primary antibody was detected using a secondary IRDye® 680RD anti-Rabbit IgG (H + L) 

Licor (1:2000).  
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4.2.8 Assessment of various primary antibodies for detection of HBcAg 

expression by Western blot analysis 

To compare the relative reactivity of our anti-core polyclonal serum R193 with that of 

commercial anti-core antibodies, Huh7 cells in a 6-well plate were transfected with 5 ug each 

of pTHBV-L- and pQ-HBV2.7 (3B4) using the Lipofectamine 3000 protocol. The cells were 

lysed with LB2, and the cytoplasmic cell extracts were analysed on a 15% SDS-PAGE 

followed by Western blotting to verify the expression of HBcAg using R193 (1:1000), another 

polyclonal antibody PAb cAg Ab1 (Neomarkers Inc (RB-1413-A)), HepB cAg 1-5 (Life 

Technologies Ltd (MA1-7607); 1:1000), and mouse monoclonal Anti-HepB cAg Antibody 

(C1-5) (Santa Cruz (sc-23945); 1:1000). 

As shown in Figure 4-15, the HBV cAg Ab-1 polyclonal antibody picked up the viral core 

protein of the same molecular weight (albeit very weakly) as that recognised by R193. As 

expected, no protein was recognised in cells transfected with the negative control plasmid pQ-

HBV-2.7 (3B4) as this plasmid is not expected to express HBV core. The other two antibodies 

failed to recognise the core protein in transfected cells. Together, these data indicate that R193 

is appropriate for use in our studies. 
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Figure 4-15: Assessment of different anti-HBV core antibody reactivities in a Western 

blot assay.  

Huh7 cells in a 6-well dish were transfected with pTHBV-L- or pQ-HBV2.7 (3B4). Following 

incubation at 37°C for 4 days, cells were lysed, and cytoplasmic extracts subjected to 15% 

SDS-PAGE followed by Western blotting using 1:1000 diluted polyclonal antibodies R193 or 

HBV cAg Ab-1, or monoclonal antibodies HepB cAg 1-5 or HepB cAg Antibody (C1-5). The 

bound primary antibodies were detected using secondary IRDye® 680RD anti-Rabbit IgG (H 

+ L) Licor (1:2000) or secondary IRDye® 800CW anti-Mouse IgG (H + L) Licor (1:2000). 

The 20 kDa band representing HBV core is indicated by an arrow. 
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4.2.9 Expression of HBcAg and HBsAg in Huh7 cells transfected with different 

plasmids. 

Huh7 cells in a 6-well plate were first transfected with 5 μg each of pTHBV1.3mer WT, 

pTHBV-L-, pQ-HBV2.7 (3B4), or pQ-HBV1.3mer WT (2B3). Following incubation at 37 ºC 

for 4 days, cells were lysed and their cytoplasmic fraction subjected to Western blotting using 

the anti-core antibody R193 and the in-house-developed mouse monoclonal antibody MAb 

RC28 to the preS1 domain of L-HBsAg (Clayton, R., 2000, PhD thesis). HBV core protein was 

seen in cells transfected with pTHBV1.3mer WT or pTHBV- L-, but not with pQ-HBV1.3mer 

WT (2B3) nor with the negative control pQ-HBV2.7 (3B4) (Figure 4-16 A). Probing the 

Western blot with MAb RC28 revealed the presence of L-HBsAg of the expected molecular 

weight of ~40 kDa in cells transfected with pTHBV1.3mer WT, pQ-HBV2.7 (3B4), or pQ-

HBV1.3mer WT (2B3), but not as expected with the negative control pTHBV-L- (Figure 4-16 

B). It is not clear why there was no core protein seen in cells transfected with pQ-HBV1.3mer 

WT (2B3) but given that it expressed L-HBsAg it would be reasonable to assume that the 

plasmid is functional. 
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Figure 4-16: Expression of HBcAg in transfected cells.  

Huh7 cells transfected with pTHBV1.3mer WT, pTHBV-L-, pQ-HBV2.7 (3B4), or pQ-

HBV1.3mer WT (2B3) were incubated at 37°C for 4 days after which they were lysed and the 

cytoplasmic fraction anlasyed by Western immunoblotting using the (A) 1:1000 diluted anti-

core antibody R193 or (B) neat medium of the mouse hybridoma expressing the anti-L-HBsAg 

MAb RC28. The respective bound antibody was detected using 1:2000 dilution of the 

secondary IRDye® 680RD anti-Rabbit IgG (H + L) Licor (1:2000) or secondary IRDye® 

800CW anti-Mouse IgG (H + L) Licor. The presence of the HbcAg and HBsAg are indicated 

by an arrow. 

 

Nevertheless, this experiment was repeated, this time also including the plasmid pQ-HBV- L- 

Puro (No 11). Furthermore, the plasmid pQ-HBV1.3mer WT (2B3) was linearization with the 

restriction enzyme NheI to assess if that would improve the levels of HBV proteins. Following 

transfection of Huh7 cells with 5 μg each of pTHBV1.3mer WT, pQ-HBV1.3mer WT (2B3) 

(both circular and linearised form), pTHBV- L-, pQ-HBV- L- /Puro (No 11), or pQ-HBV2.7 

(3B4), and incubation at 37°C for 4 days, the cells were lysed and their cytoplasmic fraction 

subjected to Western blotting using the anti-core antibody R193 and the anti-L-HBsAg MAb 

RC28. Separately, as loading control, the same amounts of cell lysates were analysed for the 
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cellular protein γ-tubulin using the monoclonal anti -γ- tubulin antibody produced in mouse 

(Sigma-Aldrich Co Ltd, T6557). As shown in Figure 4-17 A, the anti-core antibody R193 

identified core protein the cells transfected with pTHBV1.3mer WT, pTHBV- L-, or pQ-HBV- 

L-/Puro (No 11), but not with the negative control pQ-HBV2.7 (3B4). Again, no core 

expression was seen in cells transfected with both the circular and linear forms of pQ-

HBV1.3mer WT (2B3). As expected, L-HBsAg expression was seen in cells transfected with 

pTHBV1.3mer WT and pQ-HBV2.7, but not with pTHBV- L-, or pQ-HBV- L-/Puro (No 11) 

(Figure 4-17 B). Furthermore, the L-HBsAg was also present in cells transfected with circular 

pQHBV1.3mer WT (2B3) but not with the linearised form of the plasmid (Figure 4-17 B). 

Western blot analysis using the anti-γ-tubulin MAb showed that this host protein was present 

in all extracts in comparable amounts (Figure 4-17 C).  
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Figure  4-17: Expression of HBcAg and HBsAg in transfected cells.  

Huh7 cells transfected with pTHBV1.3mer WT, pQHBV1.3mer WT (circular), pTHBV-L-, 

pQ-HBV-L-/Puro (No 11), pQ-HBV2.7 (3B4), or linearised pQ-HBV1.3mer WT (2B3) were 

incubated at 37°C for 4 days after which they were lysed and the cytoplasmic fraction analysed 

by Western immunoblotting using the (A) 1:1000 diluted anti-core antibody R193, (B) neat 

medium of the mouse hybridoma expressing the anti-L-HBsAg MAb RC28, (C) 1:1000 diluted 

anti-γ-tubulin MAb. The respective bound antibody was detected using 1:2000 dilution of the 

secondary IRDye® 680RD anti-Rabbit IgG (H + L) Licor (1:2000) or secondary IRDye® 

800CW anti-Mouse IgG (H + L) Licor. The presence of the HBcAg, HBsAg or γ-tubulin is 

indicated by an arrow. 
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4.2.10 Analysis of HBcAg and HBsAg in transfected Huh7 cells by 

immunofluorescence microscopy 

Huh7 cells in a 24-well dish were transfected with 1 μg each of pTHBV L-, pQ-HBV L- /Puro 

(1-6), or pQ-HBV L- /Puro (1-6) Linear (EcoRV-HF®), using the Lipofectamine 3000 protocol. 

The cells were probed with the rabbit anti-core R193 antibody (dilution 1:1000), followed by 

a goat polyclonal Alexa Fluor® 488-labelled secondary anti-Rabbit IgG - H&L (Abcam). 

Separately, cells were transfected with 1 ug each of pQ-HBV 2.7(3B4), pQ-HBV2.7 (3B4) 

Linear (EcoRV-HF®), or phCMV-L (a plasmid expressing L-HBsAg previously generated in 

our lab) using the Lipofectamine 3000 protocol. They were probed with the anti-L-HBsAg 

MAb RC28 (dilution 1:1000), followed by goat polyclonal Alexa Fluor® 488-conjugated 

secondary anti-mouse IgG- H&L (Abcam). As shown in Figure 4-18 A and B, all constructs 

expressed the relevant protein as expected.  

 

 

Figure 4-18: Expression of HBV proteins as detected by immunofluorescence.  

Huh7 cells on coverslips in 24-well dish were transfected with various plasmids as shown. 

Following incubation at 37°C for 3 days, cells were fixed with ice-cold methanol, washed and 

the probed with antibodies as follows: (A) Cells transfected with pTHBV-L-, pQ-HBV L- /Puro 

(1-6), and pQ-HBV L- /Puro (1-6) Linear (EcoRV-HF®) were probed with 1:100 dilution of the 

anti-core antibody R193 antibody followed by Alexa Fluor® 488-conjugated goat 

polyclonal secondary antibody to rabbit IgG - H&L.  (B) Huh7 cells transfected with pQ-HBV 

2.7(3B4), pQ-HBV2.7 (3B4) Linear (EcoRV-HF®), phCMV-L as above and then probed with 

1:1000 diluted anti-L-HBsAg MAb RC28 followed by Alexa Fluor® 488-conjugated goat 

polyclonal secondary antibody to mouse IgG- H&L. The probed cells were analysed and image 

at 10x magnification on EVOS M5000 Imaging System. 
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4.2.11 Introduction to HDV as a model for HBV infection 

Hepatitis delta virus (HDV) is an excellent model for studying the early events leading to HBV 

infection. HDV is a satellite virus that uses HBsAg envelope proteins produced by co-infecting 

HBV to spread and cause disease in patients. As mentioned earlier, previous work with HBV 

and HDV (Yan et al., 2012) identified NTCP as the viral receptor for both viruses. Using this 

knowledge, we tried to generate the surrogate HDV infection model with a view to test a small 

panel of HBV preS1-specific MAbs that had previously been developed in our laboratory for 

their potential to neutralise HBV infection of cultured cells.  

4.2.11.1 Reverse genetics and rescue of HDV 

To produce the HDV particles, two commercial plasmids were acquired from Addgene: pSVL 

(D3) (Addgene plasmid # 29335) and pSVL (D2m) (Addgene plasmid # 29336). pSVL (D3) 

contains a head-to-tail trimer of full-length HDV cDNA, whereas pSVL (D2m) contains a 

dimer of mutated L-HDAg sequence encoding only S- HDAg, and thus is not able to form 

HDV particles as the L-HDAg is essential for assembly. These plasmids were directly 

transfected into Huh7-3B4 stable cell line expressing the HBV L-HBsAg that developed 

previously by my supervisor. The plasmid used to develop this cell line, pQHBV2.7 (3B4), the 

generation and characterisation of which was performed as described in this Chapter. In 

addition to using this stable cell line, attempts were also made to generate HDV particles by 

co-transfection of human hepatoma cells with the pSVL plasmids and pQHBV2.7. In both 

cases, we expected to see HDV particle generation. Transfection was performed using 

Lipofectamine 3000 protocol and cells were maintained at 37 ˚C with 5% CO2 for 12 days. 

Every three-days, medium was collected and replenished with the fresh medium. The collected 

medium was used to test the presence of infections surrogate HDV particles as described below. 

It should be noted that normal hepatoma cell lines such as Huh7 or HepG2 are not susceptible 

for HBV entry on account of the lack of NTCP receptor in them. Therefore, to establish the 

HDV entry model we had obtained the HepG2-NTCP-C4 cells from Masashi Iwamoto and 

Koichi Watashi (Iwamoto et al., 2017). Furthermore, my supervisor had also generated a 

polyclonal Huh7, and a panel of clonal HepG2 cell lines stably expressing the human NTCP. 

Some of these cell lines as described were used in this study to establish a working HDV 

infection model. 
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4.2.11.2 Infection of cell lines by rescued surrogate HDV virus 

To test the generation of infectious HDV, the supernatant collected at day 12 of transfected 

cells was concentrated in presence of 4% PEG8000 as described by Iwamoto et al. (2013). The 

PEG-precipitated particles were resuspended in 3 ml of medium, and 500 ul of this was used 

to infect four HepG2 cell lines expressing the NTCP receptor (G2N1, G2N7, G2N15, and 

G2N21) and the Huh7-NTCP (7N) cell line. Huh7 was also infected as a negative control as it 

lacks NTCP. Medium from infected cells were removed after 16 hr, and cells were washed and 

incubated further in for 7 days at 37˚C. The cells were then methanol-fixed, washed with PBS 

and probed with 1:5000 diluted rabbit polyclonal antiserum to HDV delta antigen (kindly 

provided by Masashi Iwamoto, 2019). The bound antibody was detected using a secondary 

anti-rabbit (Alexa Fluor 488 Goat anti Rabbit IgG (H+L)) at a dilution of 1/2000 and the cells 

analysed by immunofluorescence on EVOS M5000 Imaging System. As expected, no HDV 

delta antigen was detected in Huh7 cells (Figure 4-19). This will require further confirmation 

with an appropriate positive control for HDV, we only had a negative control. In contrast, some 

fluorescent cells were observed in cell lines bearing the NTCP receptor such as the 

representative cell line G2N7 shown in Figure 4-20. It should be noted that the stable Huh7-

3B4 transfected with pSVL (D3) or pSVL (D2m) failed to produce HDV particles as no 

infection was observed from the inoculum derived from it. 

 

 

 

Figure  4-19: Infection of Huh7 cell line with HDV particles.  

The Huh7 cells were infected with HDV inoculum derived from Huh7 cells co-trasnfected with 

pQHBV2.7 (3B4) and pSVL (D3) or pSVL (D2m). At 7 days post-infection cells were fixed 

and probed with the anti-HDV delta antigen antibody (1:5000) followed by Anti-Rabbit IgG 

(H+L) (Alexa Fluor® 488) (Life Technologies), no HDV delta antigen was detected in Huh7 

cells.  
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Figure 4-20: Infection of NTCP-expressing HepG2 cell line G2N7 with HDV particles.  

The G2N7 cells were infected with HDV inoculum derived from Huh7 cells co-trasnfected 

with pQHBV2.7 (3B4) and pSVL (D3) or pSVL (D2m). At 7 days post-infection cells were 

fixed and probed with the angti-HDV delta antigen antibody (1:5000) followed by Anti-Rabbit 

IgG (H+L) (Alexa Fluor® 488) (Life Technologies). The above Immunofluorescence are of 

G2N7 cells infected with rescued virus derived from pSVL (D3) + pQ-HBV2.7 (3B4) or pSVL 

(D2m) + pQ-HBV2.7 (3B4) co-transfection, or transfection of pSVL (D2m) and pSVL (D3) in 

Huh7-3B4 stable cell line. 

 

After analysis of the pictures, it was decided that pSVL (D3) + pQ-HBV2.7 (3B4) co-

transfection produced the highest HDV titre. This combination was then used to infect an 

additional group of 8 NTCP-expressing cell lines along with HepG2 and Huh7.     

The immunofluorescence shown by the cell lines is shown in figure 4-21. The panel cell lines 

included a negative control, Huh7 cells. As expected, this cell line did not show any 

fluorescence as it lacks an adequate receptor. In comparison, some immunofluorescence was 

detected in HepG2-hNTCP-C4 and HepG2, suggesting these cell lines support the HDV viral 

replication (Figure 4-21). 
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Figure 4-21: Immunofluorescence derived from potential HDV infection rescued by 

pSVL (D3) + pQ-HBV2.7 (3B4) co-transfection.  

The panel of cells were infected with HDV inoculum derived from Huh7 cells co-trasnfected 

with pQHBV2.7 (3B4) and pSVL (D3). At 7 days post-infection cells were fixed and probed 

with the angti-HDV delta antigen antibody (1:5000) followed by Anti-Rabbit IgG (H+L) 

(Alexa Fluor® 488) (Life Technologies). Scale bars represent 400 µm. 

 

The results shown in these experiments suggest that the generation of HDV is possible by co-

transfection of pSVL (D3) and pQ-HBV2.7 (3B4) plasmids in the Huh7 cell line. The rescued 

virus particles were concentrated using PEG8000 and then used to infect a series of cell lines 

containing the NTCP receptor. The presence of infectious HDV was tested in 

immunofluorescent studies in various cell lines. The generation of HDV can be useful for the 

indirect investigation of HBV entry process. In the future, this HDV system could be used to 

develop a drug screening assay that could introduce new drugs against HBV. Furthermore, it 

is also amenable for testing anti-HBV neutralising antibodies. Indeed, our intention was to test 

our in-house-developed anti-HBV preS1 MAbs for their virus neutralisation potential as their 

epitopes have previously been mapped to the region in preS1 that has been proposed to be 

involved in virus entry (Clayton, R., 2000, PhD thesis). However, due to COVID-19-related 

lock-down this work could not be performed.  

Taken together, these data confirm that all the plasmids constructed in this study are functional 

in that they produce viral proteins as expected upon transfection into human hepatoma cells 

and as such they are amenable to future molecular studies on aspects of the HBV life cycles. 

Indeed, my intention was to perform some of these studies during the remainder of my PhD 

project. Specifically, the intention was to further develop and explore the HDV surrogate entry 

system and the HepaAD38-Tet- and HepG2-NTCP-C4-based models to investigate the 

possible potential of RC28 and related anti-preS1 MAbs that had previously been developed in 

our laboratory (Clayton, R., 2000, PhD thesis) to neutralise HBV. Furthermore, the plasmids 
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developed in this project would have been excellent tools to study aspects of HBV replication 

and cccDNA formation. However, sadly this was not possible due to the imposition of COVID-

19 pandemic-related country-wide lock-down. Given that the relaxation of the restrictions 

came towards the tail-end of my PhD project, it was decided to use the short time available to 

focus only on establishing, as a proof-of-concept, a cell culture model based on the plasmid 

pQ-HBV- L-/Puro (No 11) to evaluate the drug resistance mutations in the RT domain of the 

viral polymerase that were identified in our cohort of Saudi Arabian patients chronically 

infected with HBV (Chapter 3). Towards this, we first developed an in-house HBeAg ELISA 

to quantitate HBeAg as a surrogate marker of HBV replication in cells transfected with pQ-

HBV- L-/Puro (No 11). This is described in the following section.  
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4.2.12 Introduction to ELISA assay for HBeAg quantitation 

HBeAg is a useful marker for the study of specific viral stages, such as viral DNA replication 

and cccDNA formation in in vitro infection systems. Therefore, an assay allowing rapid 

quantitation of HBeAg secreted into the medium of cells replicating HBV DNA would be ideal 

to evaluate drug resistance conferred by mutant viral genomes.  

Commercial ELISA kits for the recognition of HBeAg are available, however they are 

expensive and not easily amenable to large-scale screens. Instead, to test for the expression and 

secretion of HBeAg, a cost-effective in-house ELISA was developed. The ELISA was 

validated using commercially available HBeAg for the recognition of the viral antigen. 

Moreover, a commercially available ELISA kit was acquired and directly compared with our 

in-house developed ELISA, to provide further validation of our newly made assay. 

 

4.2.12.1 Design and development of in-house ELISA for HBeAg 

The in-house HBeAg ELISA format was essentially based on protocols described by Morey J. 

D. (2004); Goddard et al. (2017); and Guo, H. and Cuconati, A. (eds.). These protocols were 

customised and optimised as described below. 

Two anti-HBeAg mouse monoclonals antibodies were commercially acquired to compare their 

binding affinity to capture HBeAg. As a detection antibody, an anti-HBeAg mouse 

monoclonal, conjugated with horseradish peroxidase (HRP) (Fitzgerald industries), was 

employed. The addition of an HRP-conjugated anti-HBeAg antibody alleviated the use of a 

secondary anti-mouse antibody that would serve to detect the HBeAg-bound primary antibody, 

which is also of mouse origin and therefore cause a high background signal. The assay design 

is presented in (Figure 4-22). 
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Figure 4-22: Design of ELISA for the detection of HBeAg 

 

To test the designed ELISA, capture antibodies (mouse monoclonal HBeAg antibody, anti-

HBeAg (10H10N) Fitzgerald Industries or mouse monoclonal HBeAg antibody, anti-HBeAg 

(10H10M) Fitzgerald Industries) were used to coat a plate, then recombinant HBeAg was 

added followed by an HRP-conjugated 61-H10K detection antibody. A signal was generated 

upon the addition of substrate 3,3′,5,5′-tetramethylbenzidine (TMB; Sigma-Aldrich).  

 

To test and validate the ELISA, a recombinant HBeAg was acquired from Cell Biolabs, Inc. 

The antigen was used to test the binding affinity of the two commercially acquired detection 

antibodies. To identify the best detection antibody for the development of the ELISA, the 

capture antibodies, mouse monoclonal HBeAg antibody, anti-HBeAg (10H10N) Fitzgerald 

Industries and mouse monoclonal HBeAg antibody, anti-HBeAg (10H10M) Fitzgerald 

Industries, were incubated in a 96-well plate in six point 2-fold serial dilutions ranging from 

10.0 to 0.125 µg/ml in PBS, overnight at room temperature. The following day, the plate was 

blocked with 5% non-fat skimmed milk in PBST for 2 hours at room temperature. After plate 

washing with PBST, 100 µl of recombinant HBeAg was added at a concentration of 5 ng/ml 

for 2 hours at room temperature. To test the optimal concentration of the detection antibody, 

mAb 61-H10K-HRP, three-fold serial dilutions of the antibody (ranging from 1/100 to 

1/24,300) were added to the plate. The plate design to test the optimal concentration of both 

the capture and detection antibodies is shown in (Figure 4-23). For assay development, the 

plate was washed with PBST prior to the addition of TMB as a substrate, followed by sulfuric 

acid (H2SO4) to stop the reaction. The optical density was measured at 450nm, using a 

Varioskan plate reader. 
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Figure  4-23: ELISA plate design to determine optimal antibody concentration 

 

 

To find the optimal concentration of the capture and detection antibody, a variety of 

combinations as described in the text were tested using different concentrations of antibodies 

to detect a fixed concentration (5 ng/ml) of recombinant HBeAg. 

 

To determine the optimal concentration of primary and secondary antibody to use, the optical 

density values shown in (Figure 4-24) were analysed. The ideal concentrations should produce 

a positive signal of close to 2 and a background that is ten times lower (0.2). As shown in 

(Figure 4-24A), using a dilution of 1/8100 of the HRP-conjugated detection antibody together 

with 10 μg/ml of the capture antibody mAb 10-H10M produced a strong signal of 2. As the 

capture antibody concentration is decreased, which represents the interpretation of a sample 

expressing less antigen, the optical density is decreased proportionally. It was found that the 

capture mAb 10-H10M paired with mAb 61-H10K-HRP produced a stronger signal than the 

other capture mAb 10-H10N (Figure 4-24B). Therefore, it was concluded that the optimal 

concentration of antibody to use was 10 ug/ml for the capture antibody mAb 10-H10M and 

1/8100 for the HRP-conjugated antibody.  

 

 

 

 

 

 

A 
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Figure  4-24: Optimization of the Antibodies concentration used in ELISA to screen 

secretion of HBeAg.  
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4.2.12.2 Assay validation and plasmid screening 

The in-house ELISA here developed was used to test the expression of HBeAg by the HBV 

genome-carrying plasmids described above. Huh7 cells were transfected with 5 ug each of 

pHBV1.3mer WT and pQ-HBV2.7 (3B4), using Lipofectamine 3000, and the cells incubated 

at 37°C for four days. Then, the medium was collected and adjusted with the buffer LB2 before 

being serially diluted and tested for the presence of HBeAg using the ELISA described above.  

Medium of untransfected cells was used as a negative control, whereas HBeAg antigen (Cell 

Biolabs) was use in dilution range of 2.5 μg/ml to 20 ng/ml in a 2-fold dilutions as a positive 

control to generate a standard curve to quantify the antigen in the sample. As shown in (Figure 

4-25 A and B), the HBeAg antigen formed a concentration-dependent standard curve, which 

also validates the assay here developed. Transfection with pHBV1.3mer WT also showed a 

strong secretion of HBeAg, reaching a similar pattern to the standard curve. In contrast, there 

was no evidence of HBeAg in the medium of cells transfected with plasmid pQ-HBV2.7 (3B4) 

which was expected as this plasmid does not express the protein. In summary, the ELISA here 

developed was validated using a standard antigen curve and used to screen the secretion of 

HBeAg in two plasmids in Huh7 cells. By comparing the absorbance value of the plasmid 

1.3mer with the standard curve, it is possible to calculate the amount of HBeAg expressed after 

cell transfection. The neat supernatant of the transfected cells produced an absorbance unit of 

approximately 3. This roughly corresponds to the signal produced by the standard curve antigen 

at a concentration of 2.5 ug per ml.  
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Figure 4-25: ELISA validation and plasmid screening. 

A) positive control standard curve of HBeAg with known concentrations on the x-axis. B) The 

ELISA was used to screen the expression of HBeAg by plasmids pHBV1.3mer WT and pQ-

HBV2.7 (3B4). A standard antigen curve, obtained from Cell Biolabs, was used as a control of 

HBeAg shown in the top figure. Error bars represent standard deviation from two independent 

experiments performed in duplicate.  
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4.2.12.3 Commercial kit for the analysis screening of additional plasmids 

A commercially available ELISA kit was used to screen the HBeAg expression of another set 

of plasmids for the expression and secretion of HBeAg, including pHBV1.3mer WT, pTHBV- 

L-, pQ-HBV L- /Puro (11), and pQ-HBV2.7 (3B4). Similar to the results obtained from the in-

house assay (Figure 4-19), pHBV1.3mer WT showed a positive signal that was inversely 

proportional to the dilution of the supernatant, as shown in (Figure 4-26). For plasmid pQ-

HBV2.7 (3B4), there was no evidence of a positive signal at any supernatant dilution. In 

addition, the pTHBV- L- and pQ-HBV L-/Puro (11) both expressed HBeAg in the medium in 

a dose-dependent fashion. Together, these data confirm that the commercial kit, although 

expensive, was useful for the screening of HBeAg expression upon transfection.  

 

 

Figure 4-26: Secretion of HBeAg in transfected cells as detected using a commercial 

ELISA kit.  

The secretion of the plasmids was tested using a commercially available ELISA kit from 

Cusabio. A positive and a negative control were included as instructed and provided by the 

manufacturer. Error bars represent the standard deviation of one experiment done in duplicate. 

Absorbance at 450nm was measured in an ELISA plate reader.  
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4.2.12.4 Direct comparison between commercial kit and in-house developed 

ELISA 

To understand if the data obtained from the recently developed in-house ELISA provides 

reliable and accurate data, it was compared with the commercial kit. Commercially available 

ELISA kits are not cost effective as it is only possible to test a limited number of samples and 

the reagents are not usually replaceable. 

To perform this comparison, medium Huh7 cells transfected with pHBV1.3mer WT and pQ-

HBV2.7 (3B4) from the experiment described in Figure 4-19 was used in a 3-fold dilution 

series. Hundred ul of the diluted samples were applied to wells of the commercial ELISA plate 

or to those coated with our capture antibody mouse monoclonal HBeAg antibody, anti-HBeAg 

(10H10M) Fitzgerald Industries. The assay was then performed as per the manufacturer’s 

instruction (commercial kit (Cusabio)) or as described above for our in-house assay. As shown 

in Figure 4-27, dose-dependent antigen expression was seen with both formats in the medium 

of pHBV1.3mer WT-transfected cells, but not in in those transfected with pQ-HBV2.7 (3B4). 

Interestingly, a higher signal was detected in our assay as compared to the commercial one. 

In summary, the in-house ELISA developed in this project is equally effective as commercially 

available ELISAs for the screening of plasmids encoding the expression of HBeAg. It is 

possible that this assay may also be adapted for other uses, such as diagnostics and 

neutralisation assays. The development of the in-house ELISA is an invaluable tool for the 

study of HBV, particularly to test the expression of HBeAg in transfected cells. As HBeAg is 

a marker of virus replication, the use of it as the basis of our ELISA allows it be used as a proxy 

for the replicon. This assay will be later used for the virus-specific inhibition of antigen 

expression upon the addition of drugs. Importantly, mutations in HBV may confer antiviral 

resistance. However, the characterisation of such mutations in the context of viral inhibition 

can be assessed using transfection coupled with this ELISA. Together, this removes the need 

to work with wild type viruses in category 3 laboratories.  
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Figure 4-27: Comparison between commercial and in house ELISA assay.  

The commercial kit was performed as instructed by the manufacturer. The in-house ELISA 

was developed using a concentration of 10 ug/ml capture antibody H-10M and 1/8000 

concentration of HRP-conjugated detection antibody. Absorbance at 450nm was measured in 

an ELISA plate reader.  
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4.3 DISCUSSION 

In this chapter, we aimed to develop and validate HBV replicon system to enable the 

investigation of drug resistance at BSL2 rather than BSL3. Currently, the study of HBV 

requires BSL3 facilities, which can be time consuming, require specialised training and 

facilities and does not necessarily allow for high throughput of drug screens. The approach 

used in this thesis enable the successful generation of a replicon system with the output 

measured using two different viral antigens (E and core), providing a robust measure of 

replicon. Indeed, this system may also enable the different stages of the HBV genome 

replication to be studied. We also attempted the development of a HDV replicon system, while 

the initial development and data appeared promising, the SARS-CoV-2 (COVID-19) outbreak 

and subsequent lockdown stopped/ hampered further validation of this new approach.  

The replication cycle of HBV remains poorly understood, partially due to the limitations of the 

existing in vivo and in vitro models. In recent years, the development of new cells and 

combination of new technologies have made it possible to characterise more effectively the 

replication cycle of HBV and its interaction with the host's antiviral immune system (Chen et 

al., 2015). Advances in understanding the details of virus replication and the mechanisms 

involved in the insufficient induction of anti-HBV immune responses have guided the 

development of strategies aimed at achieving a functional cure for HBV infection (Chen et al., 

2015). 

The existing HBV cell culture systems have performed a crucial role in reviewing the 

pathogenesis of HBV infection, immune mechanisms, and screening of HBV antiviral drugs.  

The different cell culture systems have made a considerable impact on the research of the HBV 

infection process and the development of HBV vaccine (Xu et al., 2021). A caveat of these 

systems is that the studies are reliant on different strains which may influence or unduly bias 

the results particularly when they contain mutation that may provide a replicate advantage or 

contain uncharacterised drug resistant mutant.  

This Chapter describes the successful development of an in vitro replicon methods for 

investigating HBV replication as wells as having critical use in drug screens. We generated 

various HBV genomic DNA-carrying constructs with the aim to examine virus replication in 

the context of expression of the viral HBcAg, HBeAg and HBsAg under the control of their 

native promoters/enhancers. As described earlier, HBs proteins and nucleocapsid play a central 

role in the viral life cycle, and the primary component of the HBV envelope is the preS1 domain 

of L-HBsAg protein which is the primary entry point of infectious viral particles while the core 
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protein is the major component of the viral nucleocapsids that protect the viral genome, in 

addition to its role in capsid assembly (Chen et al., 2015).  

After confirming the nucleotide sequences of the different constructs, we performed their 

functional validation by their transfection in several different cell lines (data unshown) and 

found that human hepatoma cell line (Huh7) was able to support the replicon system. Initially 

we validated expression of the proteins from the plasmid alone in Huh7 cell line by Western 

blotting and ELISA, using several monoclonal antibodies.  

We were able to validate expression of HBcAg and HBsAg in Huh7 cells while expression of 

the proteins in HEK-293T cells when transfected with the same plasmid (pTHBV-L-, pQ-HBV- 

L- (1-6), pHBV1.3mer WT, pQ-HBV2.7 (3B4), and pQ-HBV- L- /Puro (No 11) for core and 

L-HBsAg) showed no expression. 

The ability to measure the release of the viral antigens into the cell culture supernatant is a 

critical measure of virus replication for the replicon system. To date ELISA have been 

previously developed for the detection HBeAg by others (Morey J. D, 2004; Goddard et al., 

2017). The current commercially available kits are expensive and thus adapting the replicon to 

a high-throughput screen method would be non-viable. Therefore, we were able to design, 

develop, and validate an in-house ELISA assay that we then used to test the expression of 

HBeAg from media of the Huh7 cell that had been transfected with a variety of plasmids 

commercially and obtained from our internal plasmid constructions. Comparison of our 

inhouse ELISA to the commercially available kit, showed no difference in sensitivity or 

specificity of the assay. Thus, we can be confident in the limit of detection when comparing 

different drug regimens or examine the different stage of replication. Also, the results obtained 

from our ELISA suggested that the Huh7 was the ultimate cell line for observing HBeAg 

secretion, which will be crucial in the investigation of HBV in the presence and absence of 

appropriate drugs designed to combat RT mutant constructs. 

To further confirm our ELISA data, we examined the production of two HBV antigens 

expressed in vitro. The use of ELISA and western blot allowed for two different outputs as a 

measure of the replicon system output. A further validation would have been the identification 

of the different genomic species generated by HBV during its life cycle. In order to detect the 

different species, we had purchased a commercial kit for detecting the presence of cccDNA 

intermediate of replicon. At the time that these experiments were planned and were being 

validated, the research was interrupted by the COVID-19 pandemic. While promising, the 



214 

 

preliminary data from this experiment was not sufficient to be included in this thesis. It will be 

critical for this to be followed up. 

As an alternative replicon system that only contained the S antigen of HBV, we had developed 

a pseudo virus particle using the HDV backbone as this model would enable entry and 

neutralisation of HBV. We had generated the appropriate clones, and assay but as mentioned 

earlier this work was unable to continue due to COVID-19 restriction. 
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Chapter 5. Functional evaluation of HBV polymerase 

mutations associated with resistance to clincially approved 

antiviral drugs 

5.1 Introduction  

As described in chapter 1, the viral polymerase protein is key protein involved in HBV genome 

replication. It consists of terminal protein (following a spacer), reverse transcriptase (RT), and 

RNAse H domains. The RT domain is responsible for the minus strand DNA synthesis 

occurring from the pregenomic RNA template, which is the first step in HBV replication. 

Hence, RT is a main target for anti-HBV drugs. 

The antiviral drugs act to improve the quality of life and survival of chronically HBV-infected 

patients by preventing or delaying disease progression (Grimm et al., 2011). The goal is to 

suppress viral replication, which usually results in the reduced histological activity of chronic 

hepatitis and biochemical remission. Despite the development of nucleos(t)ide analogue (NA) 

drugs, the emergence of resistance remains a major clinical concern. The prolonged use of 

these antiviral compounds will contribute to the constant elimination of HBV, along with the 

increasing emergence of resistance mutants that may markedly reduce the initial effects of these 

treatments (Fu et al., 2020). All the clinically approved HBV drugs target the activity of viral 

RT and all are reported to have viral resistance (as explained in Chapter 1) due to specific 

mutations in the RT domain, which encourages the development of novel anti-HBV agents that 

target non-polymerase viral or host proteins. Also, the emergence of drug-resistant mutants is 

inevitable due to heterogeneity of the HBV genome and the development of drug resistance is 

associated with a poor prognosis. Problems arising from drug resistance include hepatitis flares, 

the reversion of histologic improvement, and sometimes the severe exacerbation of illness, 

hepatic decompensation, or death (Park et al., 2019). 

As defined in Chapter 3, a total of 64 samples were sequenced in this project and nine known 

resistance mutations were detected, at positions (rt80, rt91, rt134, rt153, rt204, rt215 and rt221). 

Among them, six mutations were associated with resistance to LAM resistance, two with TDF 

resistance (D134E and R153W), and one with ADV (F221Y). Remarkably, one sample 

presented three mutations (L80I, L91I and M204I) associated with LAM resistance. All these 

mutations were found in the viral genotype D isolates. 

In this chapter, we aim to test the drug-resistant mutations identified in this study and measure 

their effect on virus replication in the presence and absence of selected drugs using the cell-
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based assay described in Chapter 4. To do this, new constructs in pT-HBV-L-/Puro background 

were generated. The rationale for their generation and the strategy used is described below. 

The plasmids pTHBV-L- and pTHBV-L-/Puro (11) described above contain one codon change 

in the HBV genome – the ATG start codon of preS1 domain of L-HBsAg changed to ACG 

resulting in no initiation of the L-HBsAg. This change doesn’t affect the amino acid sequence 

encoded by the HBV Pol ORF which overlaps that of L-HBsAg although the codon is changed 

from CAT to CAC (both coding for histidine). Sprinzl et al. (2001) have described another L-

HBsAg-null HBV construct in which stop codons at the 5’ ends of the L and M protein ORFs 

were introduced at HBV nt 1003 and 1279 (numbering starting from the core initiation codon 

with the A residues being nt 1). As an added safety measure, we decided to introduce two stop 

codons at the same L and M amino acid positions in pTHBV-L-/Puro. This would amount to 

changing nt 4234 and 4510 to ‘A’, respectively, of pTHBV-L-/Puro (See Appendix 11). This 

means changing 4233-TTG-4235 and 4509-TGG-4511 each to TAG. This will result in the 

preceding overlapping Pol codons 4232-GTT-4234 and 4508-GTG-4510 changed to GTA in 

both cases but the coding amino acid ‘V’ of Pol will remain the same. Thus, effectively this 

construct will have 3 null mutations, two in the L ORF and one in the M ORF of HBV. The 

construct carrying these mutations was named pTHBV-L- 3-null/Puro. The desired individual 

Pol-RT mutation(s) were generated in this vector background. The strategy to design these 

constructs were developed by Prof Arvind Patel and their cloning, isolation and 

characterisation was performed by me.  

Briefly, nt 3959 to 5342 (covering preS1/S2/Pol gene sequences of interest) with the native 

MfeI and BstZ17I at the 5’ and 3’ end, respectively, of pTHBV-L-/Puro (11) carrying the 

above-described STOP codons, and also separately additional RT mutations of interest as 

shown below were custom synthesized by Genewiz.  

3-Null 

3 Null + RT L80I 

3 Null + RT L91I 

3 Null + RT H126Y 

3 Null + RT D134N 

3 Null + RT D134E, 

3 Null + RT R153W 

3 Null + RT M204I 
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3 Null + RT M204V 

3 Null + RT Q215S 

3 Null + RT F221Y 

The strategy was to cleave the commercially synthesized fragments with MfeI and BstZ17I, 

gel purify, and individually sub-clone to replace the native MfeI/BstZ17I of pTHBV-L- /Puro 

to generate the plasmids carrying the above mutations. Table 5-1 below provides the relevant 

information of the expected mutation changes in the preS1-, preS2- and the overlapping Pol-

encoding sequences.   
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Table 5-1: Expected mutation changes in the preS1, preS2 and the overlapping Pol-

encoding sequences. 

    Codon change Amino acid change   Conferring 

Plasmid 

name 
preS1 preS2 Pol/RT preS1 preS2 

RT 

(Pol aa) 

Overlapping 

ORF 

Resistance 

to 

Sensitivity 

to 

pTHBV- L- 

3Null-Puro-

11 

TTG - 
TAG 

TGG - 
TAG 

N/A 
L19 - 
STOP 

W3 - 
STOP 

N/A No change N/A   

pTHBV- L- 

3Null-Puro-

11-L80I 

" " 
TTA - 
ATA 

" " 
L80I 
(425) 

" 
 LAM, 

LdT, TDF 
  

pTHBV- L- 

3Null-Puro-

11-L91I 

" " 
CTT - 
ATT 

" " 
L91I 
(436) 

" LAM   

pTHBV- L- 

3Null-Puro-

11-H126Y 

" " 
CAC - 
TAC 

" " 
H126Y 
(471) 

" TDF ADV 

pTHBV- L- 

3Null-Puro-

11-D134N 

" " 
GAC - 
AAC 

" " 
D134N 
(479) 

HBsAg 
M125I 

    

pTHBV- L- 

3Null-Puro-

11-D134E 

" " 
GAC - 
GAG 

" " 
D134E 
(479) 

HBsAg 
T126S 

TDF   

pTHBV- L- 

3Null-Puro-

11-R153W 

" " 
CGG - 

TGG 
" " 

R153W 

(498) 
No change LAM LAM 

pTHBV- L- 

3Null-Puro-

11-M204I 

" " 
ATG - 

ATT 
" " 

M204I 

(549) 

HBsAg 

W196L 

LAM, LdT, 

ADV, ETV 
  

pTHBV- L- 

3Null-Puro-

11-M204V 

" " 
ATG - 

GTG 
" " 

M204V 

(549) 

HBsAg 

I195M 

LAM, LdT, 

ADV, ETV 
  

pTHBV- L- 

3Null-Puro-

11-Q215S 

" " 
CAG - 

TCG 
" " 

Q215S 

(560) 

HBsAg 

S207R 

LAM, 

ADV, 

LAM 

  

pTHBV- L- 

3Null-Puro-

11-F221Y 

" " 
TTT - 

TAT 
" " 

F221Y 

(566) 

HBsAg 

L213Y 
ADV   

 

The aim was then to use these constructs in Huh7-based transfection assays to evaluate the 

effect of the mutations on virus replication (i.e. HBeAg secretion and expression of HBcAg) 

in the presence or absence of selected drugs.  
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5.2 Results 

5.2.1 Sub-cloning of custom-synthesized fragments carrying the 3-null or 3-

null plus individual pol mutation of interest into pTHBV-L- /Puro 

As described in the Introduction section above, sequences representing nt 3959 to 5342 on an 

MfeI to BstZ17I were custom synthesized via Genewiz into their vector pUC57-GW. The 

synthetic fragments from pUC57-GW were cleaved with MfeI + BstZ17I, gel-extracted as 

described in Section 2.2.6.1. Separately, pTHBV-L- /Puro was cleaved with MfeI + BstZ17I in 

the presence of Calf-Intestine Phosphatase (CiP) and the large fragment carrying the plasmid 

backbone plus the HBV sequences flanking the MfeI and BstZ17I was gel-extracted. The latter 

was then ligated individually with the gel-extracted fragment carrying the desired mutation as 

shown below:  

Lig 1.   pTHBV-L- /Puro large fragment  3 Null fragment 

Lig 2.   pTHBV-L- /Puro large fragment  3 Null + RT L80I fragment 

Lig 3.   pTHBV-L- /Puro large fragment  3 Null + RT L91I fragment 

Lig 4.   pTHBV-L- /Puro large fragment  3 Null + RT H126Y fragment 

Lig 5.   pTHBV-L- /Puro large fragment  3 Null + RT D134N fragment 

Lig 6.   pTHBV-L- /Puro large fragment  3 Null + RT D134E fragment 

Lig 7.   pTHBV-L- /Puro large fragment  3 Null + RT R153W fragment 

Lig 8.   pTHBV-L- /Puro large fragment  3 Null + RT M204I fragment 

Lig 9.  pTHBV-L- /Puro large fragment  3 Null + RT M204V fragment 

Lig 10.  pTHBV-L- /Puro large fragment  3 Null + RT Q215S fragment 

Lig 11.  pTHBV-L- /Puro large fragment  3 Null + RT F221Y fragment 

Representative images of the gel-extracted fragments of MfeI-BstZ1iI- cleaved pTHBV-L-

/Puro and pUC57GW-3-Null or pUC57GW-3-Null carrying each of the RT mutation above are 

shown in Figures 5-1, 5-2 and 5-3. 
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Figure 5-1: Agarose gel electrophoresis of pTHBV-L-/Puro (11) and pUC-GW cleaved 

with MfeI and BstZ17I. 

As described in the text, the cleaved plasmids were electrophoresed through 0.8% agarose gel, 

and fragments indicated in the gel were extracted. An aliquot each of the extracted fragment 

was used in a ligation reaction Lig 1 to generate pTHBV- L-3-Null/Puro. A 1kb DNA ladder 

marker lane is shown. Samples were loaded in the gel as follow; Lane 1: 2 μl of pTHBV-L-

/Puro (11) + 10 μl water + 2 μl loading dye, Lanes 2 and 3: 25 μl of pTHBV-L-/Puro (11) + 5 

μl loading dye, Lane 4: 2 μl of pUC-GW cleaved with MfeI and BstZ17I + 10 μl water + 2 μl 

loading dye, Lanes 5 and 6: 25 μl of pUC-GW cleaved with MfeI and BstZ17I + 5 μl loading 

dye. 
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Figure 5-2: Agarose gel electrophoresis for 5 ligations (RT D134N, RT D134E, RT 

R153W, RT M204I, and pTHBV-L- /Puro (11)).  

Five constructs were presented A) The desired bands for RT D134E and RT D134N were 

excised, recovered from the gel, and DNA was purified from gel using the purification kit. 

Samples were loaded in the gel as follows; Lanes 1 and 4: 2 μl of pUC-GW cleaved with MfeI 

and BstZ17I + 10 μl water + 2 μl loading dye, Lanes 2, 3, 5 and 6: 25 μl of pUC-GW cleaved 

with MfeI and BstZ17I + 5 μl loading dye. B) The desired bands for RT R153W, RT M204I 

and control sample were excised, recovered from the gel, and DNA was purified from gel using 

the purification kit. Samples were loaded in the gel as follows, Lanes 1 and 7: 2 μl of pUC-GW 

cleaved with MfeI and BstZ17I + 10 μl water + 2 μl loading dye, Lanes 2, 3, and 9: 25 μl of 

pUC-GW cleaved with MfeI and BstZ17I + 5 μl loading dye, Lane 4: 2 μl of pTHBV-L- / Puro 

(11) + 10 μl water + 2 μl loading dye, Lanes 5 and 6: 25 μl of pTHBV-L- /Puro (11) + 5 μl 

loading dye, All products were run on a 0.8% agarose gel alongside a 1kb DNA ladder marker. 
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Figure 5-3: Agarose gel electrophoresis for 4 ligations (RT L80I, RT L91I, RT RH126Y, 

and pTHBV-L- / Puro (11)).  

Four constructs were presented A) The desired bands for RT L80I and RT L91I were excised, 

recovered from the gel, and DNA was purified from gel using the purification kit. Samples 

were loaded in the gel as follows; Lanes 1 and 4: 2 μl of pUC-GW cleaved with MfeI and 

BstZ17I + 10 μl water + 2 μl loading dye, Lanes 2, 3, 5 and 6: 25 μl of pUC-GW cleaved with 

MfeI and BstZ17I + 5 μl loading dye. B) The desired bands for RT H126Y and control sample 

were excised, recovered from the gel, and DNA was purified from gel using the purification 

kit. Samples were loaded in the gel as follows, Lanes 1 and 7: 2 μl of pUC-GW cleaved with 

MfeI and BstZ17I + 10 μl water + 2 μl loading dye, Lanes 2, 3, and 9: 25 μl of pUC-GW 

cleaved with MfeI and BstZ17I + 5 μl loading dye, Lane 4: 2 μl of pTHBV-L- / Puro (11) + 10 

μl water + 2 μl loading dye, Lanes 5 and 6: 25 μl of pTHBV-L- / Puro (11) + 5 μl loading dye. 

All products were run on a 0.8% agarose gel alongside a 1kb DNA ladder marker. 
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An aliquot each of the above ligation reactions was transformed into E. coli Stbl3 cells and the 

transformations selected on ampicillin L-agar plates. Plasmids from several colonies arising 

from each transformation were extracted and analyzed by agarose gel electrophoresis following 

cleavage with EcorI/NheI. As a positive control, pTHBV-L- /Puro (11) was digested with the 

same enzymes was electrophoresed side-by-side. 

As shown in (Figure 5-4), six plasmids (no 1, 2, 4, 6, 7, and 8) from Lig 1 displayed digestion 

profile similar to that of the control plasmid pTHBV-L- /Puro (11). Likewise, plasmid number 

5 arising from Lig 4 (RT R126Y), plasmids 1 and 2 of Lig 5 (RT D134N), and plasmid 1 of 

Lig 6 (RT D134E) had restriction digestion profile similar to that of pTHBV-L-/Puro (11) 

(Figure 5-5 B and C, respectively).  Unfortunately, no plasmids of interest were detected from 

other ligation reactions (Figures 5-5A and D, Figure 5-6). Due to limited time available, it was 

decided not to perform further screens to obtain the whole panel of mutant plasmids. Instead, 

we focused on working with a limited panel of constructs as described below.  

 

 

 
 

 

Figure 5-4: Screening of Lig 1 construct by Agarose gel electrophoresis.  

Eights and two plasmids (no 1 to 8, and 1 and 2, respectively) arising from Ligs 1 and 2 were 

digested with NheI-EcoRI along with the positive control pTHBV-L-/Puro (11). The digests 

were analysed on a 0.8% agarose gel alongside a 1kb DNA ladder marker. 
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Figure 5-5: Screening of Ligs 2, 3, 4, 5, 6, 7, and 8 constructs by Agarose gel 

electrophoresis.  

A) No plasmids of interest were detected from (RT R153W and RT M204I). B) Plasmid no 5 

arising from Lig 4 (RT R126Y) had restriction digestion profile similar to that of pTHBV-L-

/Puro (11). C) plasmids 1 and 2 of Lig 5 (RT D134N), and plasmid 1 of Lig 6 (RT D134E) had 

restriction digestion profile similar to that of pTHBV-L-/Puro (11). D) No plasmids of interest 

were detected from (RT L80I and RT L91I). 

All Ligs were digested with NheI-EcoRI along with the positive control pTHBV-L-/Puro (11). 

The digests were analysed on a 0.8% agarose gel alongside a 1kb DNA ladder marker. 
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Figure 5-6: Screening of Ligs 2, 7, and 8 constructs by Agarose gel electrophoresis.  

No plasmids of interest were detected from ligation reactions similar to that of pTHBV-L-/Puro 

(11). All Ligs were digested with NheI-EcoRI along with the positive control pTHBV-L-/Puro 

(11). The digests were analysed on a 0.8% agarose gel alongside a 1kb DNA ladder marker. 
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5.2.2 Time course of HBeAg expression  

We first performed a time course of HBeAg expression in order to determine optimal condition 

for sample collection for use in our drug efficacy evaluation assay. Huh7 cell in 6-well tissue 

culture dish were transfected with 5 ug of pTHBV-L- / Puro (11) or pQ-HBV2.7 (3B4) using 

Lipofectamine 3000 and incubated at 37°C for five days. At every 24 h, an aliquot of the 

medium was collected (and replaced with equal amount of fresh medium) for analysis of 

HBeAg by the in-house ELISA, described above.   

As shown in Figure 5-7, there was a time-dependent increase in the expression of HBeAg in 

the medium of pTHBV-L- / Puro (11)- transfected cells over the 5-day period. As expected, no 

HBeAg was detected in the medium of pQ-HBV2.7 (3B4)- transfected cells. Based on these 

results, it was decided to assess HBeAg levels at day 4 or day 5 post-transfection for our drug 

evaluation assay described below.  

 

 

 

 

Figure 5-7: Time course of HBeAg secretion.  

As described in the text, Huh7 cells were transfected with the indicated plasmids and incubated 

at 37°C for 5 days. Samples collected at each day post-transfection were analysed by our 

HBeAg ELISA. Briefly, HBeAg from cell medium was captured on coated ELISA plate and 

the captured protein detected using the primary antibody at concentration of 10 µg/ml anti-

HBeAg MAb (10H10M) (Fitzgerald Industries). The bound antibody was then detected using 

the secondary HRP-conjugated MAb (61-H10K) (Fitzgerald Industries) at 1: 8000 dilutions. 

Subsequently, TMB was added for colour development and the readings taken at OD450 in the 

Varioscan ELISA reader. Error bars represent standard deviation from three independent 

experiments each performed in triplicate.  
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5.2.3 Screening pTHBV-L- null-Puro No (11) /RT mutant construct for HBeAg 

expression using ELISA  

We next tested all the ‘3-null’ plasmids selected from the restriction enzyme digestion screen 

above (Figures 5-5 and 5-6) for HBeAg expression using ELISA. The plasmid pHBV1.3mer 

WT was used as a positive control and pQ-HBV2.7 (3B4) as a negative control. Both plasmids 

were verified earlier (Section 4.2.12.2, Figure 4-19). Huh7 cells in 6-well dish were transfected 

with 5 ug of pHBV1.3 mer WT, 5 ug of pQ-HBV2.7 (3B4), 5 ug of pTHBV-L- / Puro (11), or 

the ‘3-null’ plasmids and cells incubated for 5 days. At, 4-day post-transfection the cell medium 

was collected and tested for the presence of HBeAg. As shown in (Figure 5-8), the plasmids 3, 

4, and 5 from the 3-null-D134N (Lig 5) ligation produced a modest signal; however, it was not 

twice as high as the negative control and, therefore, considered negative.  

In contrast, plasmids 1 and 2 from the 3-null-D134N (Lig 5) produced a considerably higher 

OD450nm value, suggesting robust expression and secretion of HBeAg. Of the ‘3-null’ 

constructs without RT mutations (Lig 1), only plasmids 6 and 8 were positive for HBeAg 

expression, whereas plasmids 1, 2, 4, and 7 produced no HBeAg. Only one plasmid (No 1) 

from 3-null-D134E ligation (Lig 6) was screened, and it produced a higher OD450nm value, 

suggesting a strong expression and secretion of HBeAg. 

Furthermore, three plasmids were screened from the 3-null-L91I ligation and one from 3-null-

H126Y ligation. None of them expressed HBeAg. However, they were screened one more time 

to confirm their negativity. 

Thus, based on the data from this ELISA experiment it was decided to use for further 

experiments. The plasmid pTHBV-L- 3null /Puro/D134E (no 1) was sent off for nucleotide 

sequencing using primers HBV07 and AP314. This confirmed to have the expected 3-null and 

the D134E mutation and no other spurious mutations were observed in the sequence (nt 3690 

to 5847) obtained using these primers. The mutations in the other plasmids remain to be 

confirmed by nucleotide sequencing. Given the time constraints it was nevertheless decided to 

proceed with the drug evaluation assays using these plasmids as the aim was to establish a 

proof-of-concept platform.  
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Figure 5-8: Assessment of HBeAg secretion in a panel of plasmid constructs using an in-

house ELISA.  

As described in the text, Huh7 cells were transfected with the indicated plasmids and incubated 

at 37°C for 5 days. The positive control was ptHBV1.3mer WT and the negative control was 

pQ-HBV2.7 (3B4). Briefly, HBeAg from cell medium was captured on coated ELISA plate 

and the captured protein detected using the primary antibody at a concentration of 2.5 µg/ml 

anti-HBeAg MAb (10H10M) (Fitzgerald Industries). The bound antibody was then detected 

using the secondary HRP-conjugated MAb (61-H10K) (Fitzgerald Industries) at 1: 8000 

dilutions. Subsequently, TMB was added for colour development and the readings taken at 

OD450 in the Varioscan ELISA reader.  
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5.2.4 Functional evaluation of drug resistance-associated mutations 

As described in the above section, pTHBV-L- 3null /Puro (no 8), pTHBV-L- 3null /Puro/D134E 

(no 1), and pTHBV-L- 3null /Puro/D134N (no 1) were selected for drug efficacy evaluation. A 

panel of drugs were tested to determine if they interfered with the expression of HBeAg bearing 

the two mutations in the transfected cells. The rationale behind this experiment is to understand 

if the mutations identified ca n confer drug resistance. Five drugs were commercially acquired 

(ADV, TDF, LdT, LAM, and ETV) and tested using the in-house ELISA as an indicator of 

HBeAg expression. 

Initially, only plasmids pTHBV-L- 3null /Puro/D134E (no 1), and pTHBV-L- 3null 

/Puro/D134N (no 1) were chosen to test the effect of the above drugs on HBeAg expression. 

Huh7 cells seeded in a 6-well plate format were transfected as above with 5 ug of these 

plasmids and cells incubate for 1 day. Then, the medium was replaced with fresh medium 

containing serial diluted drugs with their concentration ranging from 0 to 50 uM or 0 to 200 

uM (see Figure 5-9 for plate layouts). The cells were incubated for further 4 days. The medium 

was collected and tested for HBeAg by the capture ELISA. In short, cell supernatant was added 

to a previously coated plate with 10-H10M at 10 ug/ml. Then a secondary-HRP conjugated 

antibody was added at a dilution of 1/8000. Next, TMB was added for ten minutes, and the 

reaction was stopped with 0.1M sulphuric acid. The absorbance values were measured using a 

plate reader. The reason for testing the drugs at two different concentration ranges was to 

determine the optimal range to use in subsequent tests. 

 

 

 
 

Figure 5-9: Schematic representation of experimental design for Antiviral drug assay. 
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As shown in (Figure 5-10), a dose-dependent inhibition of pTHBV-L- 3null /Puro/D134E (no 

1), and pTHBV-L- 3null /Puro/D134N (no 1)- expressed HBeAg was observed with ADV, with 

an IC50 of around 30 μM in both cases. This result suggests that HBeAg bearing these 

mutations is sensitive to ADV. In contrast, the other four drugs failed to inhibit the expression 

of HBeAg by these plasmids which encode the variant sequences  Figure 5-11, 5-12, 5-13 and 

5-14). Although we had a negative control, due the COVID-19 pandemic, we were unable to 

confirm the sequence of the wild type plasmid for these initial drug screen assays. However, 

these outcomes were expected based on the previous finding as reported earlier (Yamani et al., 

2017; Cho et al., 2018; Park et al., 2019). 

To investigate if these drugs had an effect at a higher concentration, the experiment was 

repeated using a concentration range of 50-200 μM. This time, Huh7 cells were transfected 

with the same 2 mutant plasmids but also pTHBV-L- 3null /Puro (no 8) and pTHBV-L- (positive 

control) were used as controls to monitor the expression of HBeAg. At one day post-

transfection, the medium of cells was replaced with fresh medium containing the appropriate 

drug at a concentration ranging from 0 to 200 uM. After incubation for a further 4 days, the 

medium of cells was assessed for HBeAg. This showed that not only ADV, but also TDF 

displayed a dose-dependent inhibition, as shown in (Figures 5-15 and 5-16) which is in 

concordance with Park et al. (Park et al., 2019). The other three drugs (LdT, LAM, and ETV) 

did not indicate any effect in terms of HBe expression (Figures 5-18 to 5-20). ADV showed an 

IC50 value between 50-75 μM, while TDF showed an IC50 of 118-128 μM. Little difference 

was observed between the IC50 of ADV for pTHBV-L- 3null /Puro/D134E (no 1) and pTHBV-

L- 3null /Puro/D134N (no 1)- expressed HBeAg. Similarly, the IC50 of TDF against HBeAg 

expressed by the pTHBV-L- 3null /Puro/D134E (no 1) and pTHBV-L- 3null /Puro/D134N were 

comparable.  

The IC50 for each of the drugs tested was statistically calculated using inhibitor vs. normalized 

response using the OD values from the ELISA. This allowed for use to determine if there was 

a shift in the IC50 due to the specific mutations. The IC50 of ADV calculated for each plasmid 

was (pTHBV-L- 3null /Puro/D134E (no 1): 74.35 μM, pTHBV-L- 3null /Puro/D134N (no 1): 

51.45 μM, and pTHBV-L- 3null /Puro (no 8): 69.27 μM) (Figure 5-21). Similar results were 

observed for TDF with IC50 values of (pTHBV-L- 3null /Puro/D134E (no 1): 128.0 μM, 

pTHBV-L- 3null /Puro/D134N (no 1): 123.0 μM, and pTHBV-L- 3null /Puro (no 8): 118.2 μM) 

(Figure 5-21).  

Importantly, all the IC50 calculated have an appropriate goodness of fit with an R square of 

between 0.8-0.9 (13 degrees of freedom) in ADV (Figure 5-20) and between 0.7-0.8 (8 degrees 
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of freedom) in TDF (Figure 5-21). We would have expected that the wild-type was more 

sensitive to the antivirals test than what is depicted, the assays require further optimisation and 

repeats to be undertaken as we only had significate experiments. 

 

 

Figure 5-10: Effect of ADV on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E. 

Huh7 cells were transfected with 5 ug each of the two plasmid and cells incubated in the 

presence of absence of ADV added at the concentration range of 0 to 50 μM. At 4-day post-

transfection, the medium of cells was tested for HBeAg expression by our capture ELISA and 

OD450 measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 

 
 

Figure 5-11: Effect of TDF on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E.  

Huh7 cells were transfected with 5 ug each of the two plasmid and cells incubated in the 

presence of absence of TDF added at the concentration range of 0 to 50 μM. At 4-day post-

transfection, the medium of cells was tested for HBeAg expression by our capture ELISA and 

OD450 measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   
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Figure 5-12: Effect of LdT on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E. 

Huh7 cells were transfected with 5 ug each of the two plasmid and cells incubated in the 

presence of absence of LdT added at the concentration range of 0 to 50 μM. At 4-day post-

transfection, the medium of cells was tested for HBeAg expression by our capture ELISA and 

OD450 measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 
 

Figure 5-13: Effect of LAM on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E.  

Huh7 cells were transfected with 5 ug each of the two plasmid and cells incubated in the 

presence of absence of LAM added at the concentration range of 0 to 50 μM. At 4-day post-

transfection, the medium of cells was tested for HBeAg expression by our capture ELISA and 

OD450 measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   
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Figure 5-14: Effect of ETV on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E.  

Huh7 cells were transfected with 5 ug each of the two plasmid and cells incubated in the 

presence of absence of ETV added at the concentration range of 0 to 50 μM . At 4-day post-

transfection, the medium of cells was tested for HBeAg expression by our capture ELISA and 

OD450 measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 

 
 

Figure 5-15: Effect of ADV on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8). 

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of ADV added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   
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Figure 5-16: Effect of TDF on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8). 

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of TDF added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 

 
 

Figure 5-17: Effect of LAM on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8). 

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of LAM added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.    
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Figure 5-18: Effect of LdT on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8). 

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of LdT added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 

 
 

Figure 5-19: Effect of ETV on HBeAg expressed by pTHBV-L- 3-null/Puro carrying the 

RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8).  

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of ETV added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   
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Figure 5-20: Normalized effect of ADV on HBeAg expressed by pTHBV-L- 3-null/Puro 

carrying the RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8). 

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of ADV added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   

 

 

 

 
 

Figure 5-21: Normalized effect of TDF on HBeAg expressed by pTHBV-L- 3-null/Puro 

carrying the RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8).  

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of TDF added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD450 

measured as described in the text. Error bars represent standard deviation from three 

independent experiments each performed in singlicate.   
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As shown above, the secretion of HBeAg expressed by mutants (pTHBV-L- 3null /Puro/D134E 

(no 1), pTHBV-L- 3null /Puro/D134N (no 1), and pTHBV-L- 3null /Puro (no 8)) were inhibited 

by high concentrations of ADV and TDF (>50 µM), as shown by the reduction of the OD450nm 

value in (Figure 5-15 and Figure 5-16). The inhibitory activity of these drugs in the different 

constructs (bearing specific mutations (pTHBV-L- 3null /Puro/D134E (no 1), pTHBV-L- 3null 

/Puro/D134N (no 1), and pTHBV-L- 3null /Puro (no 8)) were normalised the signal derived 

from a standard curve from known concentrations of HBeAg, which were assayed alongside 

the samples. In few words, HBeAg ranging from 10 μg/ml to 0.12 ng/ml in 5-fold dilution 

intervals were assayed in the ELISA. Then, a line was fitted to these values and were 

extrapolated for larger antigen concentrations. The signal derived from the expression of the 

plasmids were normalised relative to this regression line for comparison and quantification of 

HBeAg expression.  

As shown in (Figure 5-22), ADV inhibits the expression of transiently transfected HBeAg from 

all constructs in Huh7 cells. It is, however, important to consider that the construct pTHBV-L- 

3null /Puro/D134N (no 1) is more susceptible than pTHBV-L- 3null /Puro/D134E (no 1) and 

pTHBV-L- 3null /Puro (no 8) to ADV. On the contrary, no evidence was found regarding drug 

resistance to TDF, associated with mutations in the pTHBV-L- 3null /Puro/D134N (no 1) or 

pTHBV-L- 3null /Puro/D134E (no 1) or pTHBV-L- 3null /Puro (no 8). Combined, these results 

suggest that ADV and TDF can inhibit the expression of HBeAg antigen, although some drug 

resistance against ADV is shown in construct bearing pTHBV-L- 3null /Puro/D134E (no 1) 

and pTHBV-L- 3null /Puro (no 8). 

The normalisation of the data permits the quantification of the inhibition in terms of the relative 

expression of the HBeAg antigen, which may translate into how the drug would inhibit the 

replication of the WT virus. Additional experimentation to measure the drug’s efficacy in terms 

of inhibiting replication in susceptible cell lines is required to confirm these results. However, 

the results here presented provide essential information on the potential drug resistance effect 

that certain mutations such as pTHBV-L- 3null /Puro/D134N (no 1), pTHBV-L- 3null 

/Puro/D134E (no 1) and pTHBV-L- 3null /Puro (no 8) could have upon treatment with ADV. 

The study of the mutations and their respective susceptibility to different drugs are very 

relevant to providing the best personalised antiviral treatment depending on the mutations 

present in the patient’s quasispecies.  
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Figure 5-22: Effect of ADV and TDF on HBeAg expressed by pTHBV-L- 3-null/Puro 

carrying the RT mutation D134N or D134E and pTHBV-L- 3null /Puro (no 8).  

Huh7 cells were transfected with 5 ug each plasmid and cells incubated in the presence of 

absence of drugs added at the concentration range of 0 to 200 μM. At 4-day post-transfection, 

the medium of cells was tested for HBeAg expression by our capture ELISA and OD 450 

measured as described in the text. The OD450nm values were normalised to relative expression 

% by considering the OD450nm of mock treated as 100% expression. Error bars represent 

standard deviation from three independent experiments each performed in singlicate.   
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5.2.5 Testing of the activity of each drug against pTHBV- L- 3-null-Puro No 11 

and the related RT mutant constructs by Western blot 

To test if the inhibition of the drugs was linked to cell toxicity, Huh7 cells in 6-well-plates were 

transfected with pTHBV-L- 3null /Puro/D134E (no 1), pTHBV-L- 3null /Puro/D134N (no 1), 

pTHBV-L- 3null /Puro (no 8), pQ-HBV-L-/Puro (No 11), and  pQ-HBV2.7 (3B4), incubated 

with a single drug concentration (200 μM) and incubated using similar parameters as 

previously used for the ELISA. 

Then, the cells were lysed with the LB2 buffer, and the cell extracts were subjected to 15% 

SDS-PAGE followed by Western blotting for HBcAg using our polyclonal serum R193 

(Dilution 1:1000). In parallel, and as loading control, the extracts were also probed for tubulin 

which also served as a marker for cell viability. The cellular tubulin was detected using 

monoclonal anti-gamma-tubulin (Sigma-Aldrich) at 1:1000 dilution. 

As shown in the Figure 5-23, none of the drugs prevented the expression of tubulin, although 

its levels varied in some cases (e.g. LdT, LAM). In keeping with the ELISA data above (Figure 

5-22), there was a reduced or complete lack of HBcAg expression in the presence of ADV or 

TDF in cells transfected with all the plasmids (Figure 5-24A). In contrast, the other drugs failed 

to inhibit HBcAg expression in cells transfected with the mutant or the parent 3-null plasmid 

(Figure 5-24 B and C, Figure 5-25). While the HBcAg levels appear variable in some cases, 

overall, these results are in keeping with our ELISA results described above. 
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Figure 5-23: Expression of the intracellular Gamma tubulin in presence/ absence of HBV 

drugs by Western blot analysis. 

 Intracellular expression HBV proteins were detected in the immunoblot by expression of 

control protein gamma tubulin (γ-tubulin) in (Dilution 1:1000). Huh7 cells in 6 – wells plate 

was transfected with various plasmids presence/ absence of drugs and analysed on a 15% 

Polyacrylamide gel for SDS-PAGE to verify the expression of HBV Intracellular proteins.  A) 

Potential targets recognition was achieved in all samples in presence of 200 μM of ADV, TDF, 

and ETV. B)  Potential targets recognition was achieved in all samples in presence of 200 μM 

of LdT, LAM, and in absence of the drugs. The size expected for Intracellular protein was 

approximately 50 kDa. The primary antibody was recognised by secondary IRDye® 800CW 

anti-Mouse IgG (H + L) Licor. (Dilution 1:2000). An arrow indicates the potential protein band 

weight. 
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Figure 5-24: Expression of HBcAg in Huh7 cells in presence of HBV drugs by Western 

blot analysis.  

HBcAg was detected by the binding of R193 primary rabbit monoclonal against the HBcAg 

regions. Huh7 cells in 6 – wells plate were transfected with various plasmids in presence of 

200 μM of each drug and analysed on a 15% Polyacrylamide gel for SDS-PAGE to verify the 

expression of HBcAg.  A) ADV and TDF showed a reduced or complete lack of core 

expression, shown by the 20 kDa protein indicated in the control sample without drug added 

(pTHBV-L- Puro No (11)). B) Potential targets recognition were achieved in experiment by 

adding R193 antibody against HBcAg (Dilution 1:1000) in all samples, LdT and LAM showed 

no effect in HBcAg expression. C) Potential targets recognition was achieved in experiment by 

adding R193 antibody against HBcAg (Dilution 1:1000) in all samples, ETV showed no effect 

in HBcAg expression. The primary antibody was recognised by secondary anti-rabbit IRDye® 

680RD anti-Rabbit IgG (H + L) Licor (Dilution 1:2000). An arrow indicates the potential 

protein band weight. 
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Figure 5-25: Expression of HBcAg in Huh7 cells in absence of HBV drugs by Western 

blot analysis.  

HBcAg was detected by the binding of primary rabbit monoclonal against the HBcAg regions. 

Huh7 cells in 6 – wells plate were transfected with various plasmids in absence drug and 

analysed on a 15% Polyacrylamide gel for SDS-PAGE to verify the expression of HBcAg.  

Potential target recognition was achieved in all samples by adding R193 antibody (Dilution 

1:1000) primary rabbit monoclonal antibody cross-reacting against HBcAg. pQ-HBV2.7 (3B4) 

was used as a negative control as this plasmid should not express HBcAg. The size expected 

for core antigen was approximately 20 kDa. The primary antibody was recognised by an anti-

rabbit secondary antibody (Dilution 1:2000). An arrow indicates the potential protein band 

weight. 
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5.3 DISCUSSION 

The aim of this chapter was to characterise mutations in the RT domain of the polymerase that 

we had detected in our Saudi Arabian samples by the NGS as described in Chapter 3 in respect 

to their susceptibility to different nucleoside analogues. In this chapter, we were able to 

generate three constructs which contained the specific mutation and had good protein 

expression, these mutations included rtD134E and rtD134N, both in the 3 Null background. 

Unfortunately, the HBeAg expression by constructs with rtH126Y and rtL91I mutations was 

very low. The low protein expression could be due to a number of factors including transfection 

efficiency, the mutations causing misfolding of the protein and the cell turning it over, and the 

protein maybe toxic to the cells with these mutations.  There was no time to isolate these and 

the other RT mutants due to the restriction imposed by COVID-19 pandemic. 

All 3 constructs expressed high levels of HBeAg in Huh7 cell. As the ELISA developed in 

Chapter 4 was used as an output of our replicon system, the expression of HBeAg is an essential 

for the investigation of antiviral drugs effect. Besides, it can be used as a marker of infection 

to determine the efficiency of drugs or other antiviral therapies in terms of combatting HBV. 

It is useful marker for the study of specific viral stages of in vitro infection systems as explained 

previously. It is critical to have an ELISA assay that detects the protein within a linear range 

of the standard curve, since if expression is too low or too high, the effect of the drug may not 

be properly quantitated. Indeed, the ELISA used enabled antigen detection in the linear range 

using a commercial antigen as well as the cell-expressed antigen. The results with the cell-

expressed antigen and the commercially sourced HBeAg were comparable, both in detection 

limits and range. This provides greater confidence in the results of our drug screen assays. 

The two RT mutations D134E and D134N analysed in this study were reported previously as 

pre-existing antiviral drug-resistant mutations (LAM) in patients with CHB, as were found 

prior to exposure to therapy (Zhang et al., 2019; Choi et al., 2018). Also, they were reported in 

patients with genotype D associated with the progression of severe liver disease, such as HCC 

and cirrhosis (Choi et al., 2018; Panigrahi et al., 2013). Recent report conducted by Mokaya et 

al. (2020) described D134E, as a primary drug resistance mutation, associated with causing 

resistance to LAM and ETV (Mokaya et al., 2020), whereas D134N was reported to be 

associated with LAM resistance (Choi et al., 2018). 

To validate the robustness of the in-vitro drug assays developed in this chapter, we examined 

whether we observed the same decrease in susceptibility of the; pTHBV-L- 3null /Puro/D134E 

(no 1) and pTHBV-L- 3null /Puro/D134N (no 1), in comparison to wild-type pTHBV-L- 3null 
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/Puro (no 8) using the nucleoside analogues LdT, ETV and LAM. Using both the ELISA 

measuring HBeAg and a Western blot detecting HBcAg, both pTHBV-L- 3null /Puro/D134E 

(no 1) and pTHBV-L- 3null /Puro/D134N (no 1) were confirmed to have antiviral resistance 

using our assays. These three drugs (LdT, LAM, and ETV) did not appear to exert any effect 

on HBeAg expression, clearly indicating resistance by these mutations to these drugs. This is 

in keeping with previous studies (Choi et al., 2018; Mokaya et al., 2020). Although requiring 

further optimisation particularly with the lack of sensitivity of the wildtype to know inhibitors 

of HBV, our date validates the replicon system developed here as an alternate to using live 

virus to study potential new small molecule inhibitors and resistance markers. Our replicon 

system enables single points to be studying in a homogenous background without any other 

confiding mutations within the genome. This is critical in monitoring changes in the genome 

to different drugs. 

We have validated an in vitro model for screening antiviral drugs under BSL2 conditions. 

Importantly we were able to show in our study that none of the mutant variants carrying (D134E 

and D134N) conferred resistance to alternative inhibitors including ADV and TDF. This is in 

concordance with the previously published studies.  

Due to COVID-19-related time restriction and unavailability of kits, it was not possible to 

perform cell toxicity assays for each drug. As an alternative method, expression of control 

protein gamma tubulin was examined to check if the inhibition of the drugs was linked to cell 

toxicity. This was performed by Western blot. This would support our hypothesis that 

expression was affected by the inhibitor and not due to the ‘death’ of the cell due to the addition 

of the drug. Also, as shown in results (ADV and TDF) indicated a complete lack of core 

expression while (LdT and LAM, and ETV) showed no effect in HBcAg expression. 

Importantly, the expression of core matched the output from the ELISA for each mutation in 

the presence or absence of the different drugs. Furthermore, none of these drugs prevented the 

expression of tubulin that served as a marker for cell viability.  

In summary, the development of the tools in this chapter provides alternate, safer means to 

undertake high throughput drug screens with drug resistant strains of HBV. Any hits identified 

in this preliminary screen could then be tested in a live virus assay. Furthermore, the findings 

described in this chapter provide novel insights into the evolution of antiviral resistance. The 

plasmids and cell systems described in this chapter also represent invaluable tools for future 

studies on HBV replicative processes. 
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Chapter 6. Conclusions and Future work 

6.1 Background  

The World Health Organization (WHO) estimates that two billion people have been exposed 

to the HBV and despite the availability of efficacious vaccines and treatments, there are 240 

million people today suffering from CHB. Approximately 25% of these chronically infected 

individuals will go on to develop cirrhosis and/or liver cancer. With the advent of molecular 

testing for HBV DNA, it has been shown that there is a positive correlation between HBV viral 

load and the incidence of cirrhosis and liver cancer. NA therapy including LAM was initially 

approved in 1998 and can lower the HBV viral load reducing the incidence of liver injury and 

frequency of liver cancer.  

WHO sustainable development goals have set a target aiming to combat viral hepatitis as a 

public health threat by the year 2030 by upscaling prevention and treatment strategies which 

include ensuring: (i) 90% coverage of universal hepatitis B immunisation of infants; (ii) 90% 

coverage of hepatitis B birth dose vaccine; (iii) 90% coverage in the diagnosis of HBV and 

HCV; (iv) 80% coverage in treatment of HBV and HCV; (v) 100% coverage in the screening 

of blood donations in a quality-assured manner; (vi) 90% coverage of injections given with 

safety-engineered devices; and (vi) distribution of at least 300 sterile needles and syringes to 

each person who injects drugs every year (WHO, 2016a). However, HBV drug resistance-

associated mutations (RAMs) and/or vaccine escape mutations (VEMs) are potential barriers 

to the achievement of this target. 

Though NA therapy alone cannot achieve a complete or virological cure, defined as loss of all 

HBV markers, including the key replicative intermediate, cccDNA in the hepatocyte nucleus. 

Long term NA therapy can be associated with the emergence of resistant variants which results 

in treatment failure. Development of mutations selected via resistance pathways has been 

implicated in hepatocarcinogenesis, with studies showing the incidence of HCC significantly 

higher in patients with LAM resistance compared to treatment naïve CHB patients. 

6.2  Summary of the thesis 

This project aimed to establish a new sequencing protocol using NGS technology and then 

apply this protocol to detect the resistance associated viral mutations. Subsequently, in vitro 

assay was developed, and antiviral resistance –associated mutations were tested against NAs.  
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Currently, NGS and bioinformatics have been utilized magnificently in a huge selection of 

analyses for infectious disease research of public health relevance. For example, these two 

approaches have been used to discover outbreak origins, track transmissions, determine 

etiological agents of disease, investigate epidemic dynamics and discover novel human 

pathogens (Maljkovic et al., 2020).  However, many challenges have grown in establishing of 

high-quality genomics surveillance in public health laboratories and research setting including 

the limitation in setting up sequencing facilities and its downstream supportive services like 

Bioinformatics analysis. These challenges mostly include the choice of the sequencing 

platform and the sequencing approach, the choice of bioinformatics methodologies, 

availabilities of suitable computational power and information technology (IT) infrastructure. 

Another major challenge is recruiting and retaining personnel with the specialized skills and 

experience in this field. 

Among the various approaches of deep sequencing, the target enrichment approach remains 

the most complicated to implement in diagnostic laboratories. There are various attempts to 

develop target enrichment methods to improve the probability of capturing pathogen-derived 

genomes because metagenomic approaches produce high level of background noise (Maljkovic 

et al., 2020). In this project, we were able to design specific probes for HBV based on the initial 

sequence data generated to develop a target enrichment protocol that allowed large-scale whole 

HBV genome sequencing. A protocol that has been successfully used for HCV and HEV 

sequencing (Thomson et al., 2016; Davis et al., 2021).  

A major improvement in the yield of generated HBV-specific reads was achieved by an 

additional approach to decrease the quantity of human genetic material within a sample which 

can be achieved by exploiting the genetic differences between the host and the pathogen DNA. 

We utilized the method that allow microbial DNA to be enriched through the selective binding 

and removal of the CpG-methylated host DNA from HBV sample containing methylated host 

DNA. Using the target enrichment approach, we produced full genome sequences from most 

of the studied samples using the target enrichment approach. Also, we were able to optimise 

our protocol and produce full genome coverage from most of our samples. The method 

validated in this study paves the way for a better understanding of HBV epidemiology by 

offering a new tool for large scale whole-genome sequencing to achieve cost-effective testing 

in reference laboratories or research settings. Further developments to shorten the sequencing 

time and automate the bioinformatics pipeline would facilitate the introduction of this method 

to diagnostic laboratories and public health settings. 
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The prevalence of HBV infection varies to a great extent in different areas and countries, 

depending on several considerations that include implementation of the HBV vaccination 

program, screening of blood samples from blood donors, or education of the population about 

the risk factors for HBV infection. Saudi Arabia, a country with an intermediate HBV carrier 

prevalence of 3.6%, has implemented HBV vaccination of all new-borns in the country for the 

population free of charge in 1989. 

As explained earlier, the global distribution of HBV genotypes seems to have an obvious 

pattern. Genotype A is the most prevailing in Western Europe, genotypes B, C, I, and J in East 

Asia, genotype E in Africa, genotype F in America, and genotypes G and H in Europe and 

Japan, whereas genotype D is widespread globally. Genotype D is distributed worldwide and 

is the most dominant HBV genotype in the Middle East and neighbouring countries or those in 

close contact to Saudi Arabia (Alfaresi et al., 2010; Gasim, 2013; Sallam and William Tong, 

2004). It has been isolated from almost all HBV carriers in Iran, Afghanistan, Pakistan, and 

Turkey and it is predominant in neighbouring countries as Republic of Yemen (90%), but also 

prevalent in Egypt, Turkey, Iran, and Tunisia (Bahri et al., 2006; Al-Qahtani et al., 2020). We 

have shown in our study the distribution of HBV genotypes, resistance associated mutations, 

and vaccine escape mutations in HBV patients in Saudi Arabia. Our findings will have a major 

impact on therapy management and diagnostics of chronic HBV infections in Saudi Arabia to 

control HBV infection in this intermediate HBV-endemic country. Phylogenetic analysis 

demonstrates genotype D was predominant of our study in Saudi Arabia, which is in line with 

previous molecular epidemiology studies in Saudi Arabia (Al-Qahtani et al., 2020). Various 

pattern is reported in geographical distribution for HBV subgenotypes. As reported; the 

dominant subgenotype in the Mediterranean region is D1, whereas D2, D3, D4, D5, D6, D7, 

and D8 subgenotypes are mainly isolated in Eastern Europe, India, Australia, Indonesia, and 

Africa (Pourkarim et al., 2014; Al-Qahtani et al., 2020). Our analysis showed that the majority 

of subtype were categorized as D1 and a few cases belonged to the subgenotypes D2, D3, and 

D10 which is in line with molecular epidemiology studies conducted previously in Saudi 

Arabia. The data indicated that NGS is a reliable tool for genotype prediction, especially with 

respect to genotype D, which makes it useful for clinical evaluation. 

The current antiviral five NAs have been introduced worldwide for treatment of targeting the 

viral polymerase (RT domain) in addition to interferon. Even though, the introduction of NAs 

for therapy of CHB significantly decreases the progression of the disease and efficiently 

controls HBV replication, unfortunately, NAs can select resistance mutations in the RT- 

domain which is a major limiting factor for long-term viral suppression (Tujios and Lee, 2013). 
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As indicated, the prevalence of resistance mutations rapidly rises to 80% after four years of 

treatment especially in LAM. While ADV, ETV, LdT, and TDF, demonstrate higher genetic 

barriers with a resistance development. For instance, resistance to TDF arise in 0% to 5.9% 

after three years of therapy (Locarnini and Yuen, 2010) 

Little is known about genetic diversity in Saudi Arabia, the prevalence of antiviral resistance, 

and surface antigen vaccine escape mutations. Therefore, we determined the prevalence of 

HBV genotypes among different sequences, we explored the prevalence of antiviral treatment 

resistance mutations and the prevalence of ‘‘a’’ determinant vaccine escape mutant. It is hoped 

that the project will contribute to national guidelines for the eradication of HBV in Saudi 

Arabia. Though, a surveillance program to observe the situation of circulating HBV escape 

mutations in Saudi Arabia is needed to determine the prevalence of HBV escape mutations 

more comprehensively.   

In Saudi Arabia, LAM is widely used and ADV is an alternative drug of choice. Therefore, the 

possibility of detecting pre-existing HBV variants resistant to these drugs is more when 

compared to other drugs introduced rather recently. The mutational analysis showed drug 

resistance identified in ten different mutations that are associated mainly with LAM resistance. 

All mutations were identified in samples with genotype D. From this analysis, drug resistance-

associated mutations (RAMs) were more likely to be present in genotype D sequences; this 

finding is in concordance with a previous report (Al-Qahtani et al., 2020). The mutational 

analysis indicated that 6 samples exhibited NA resistance, detected in nine different mutations 

that linked mainly with LAM resistance (rtQ215S, rtD134N/E, rtF221Y, rtR153W, rtM204V/I, 

rtL80I, rtI91L). These RAMs were selected because they are primary RAMs or have strong 

evidence in causing resistance to LAM, ADV and or TDF. Remarkably, one sample presented 

three mutations (rtL80I, rtL91I and rtM204I). The N236T ADV resistance mutation and 

resistance mutations against other antiviral drugs (e.g., ETV and LdT) could not be detected in 

any sample. 

RTM204I/V mutations were detected and are one of the best-recognised drug resistance motifs 

in HBV within our whole sequence database. The prevalence of rtM204I/V as 4.9% among 

>12,000 treatment-naïve individuals were estimated in a previous meta-analysis (Zhang et al., 

2015) and another review reported a prevalence of rtM204I/V of 5.9% among 8,435 treatment-

naïve individuals (Choi et al., 2018). RTQ215S mutation was detected, and it frequently occurs 

during LAM therapy to restore the replication capability. It is also called secondary or 

compensatory mutations (Ismail et al., 2012). Also, rtR153W mutation was identified and 

reported previously in association with TDF (Mokaya et al., 2020). The Seven mutations in rt 
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region (rtL80I, rtI91L, rtD134N/E, rtM204I/V, and rtF221Y) were reported substantially 

associated with the progression of HCC (Choi et al., 2018).  

In addition, we have described all various vaccine/immune and diagnostic escape mutations 

which are detectable mainly in the most antigenic MHR located in the region of aa124– aa147. 

As reported; mutations G145R, D144E/A, and P120T mutations are the best-described and 

stable vaccine escape mutations (Locarnini et al., 2003; Bock et al., 2002) while G145R 

substitution is the most stable and frequent amino acid change in HBsAg worldwide. This is 

known to cause an immune escape during vaccination and is recorded to be closely associated 

with genotype D viruses (Al-Qudari et al., 2016). Although our phylogenetic analysis 

demonstrated that most of the samples in Saudi Arabia were of genotype D, none of these 

identified HBV genomes had G145R mutation.  

The mutations in HBsAg are mainly caused by the following aspects: vaccine and/or hepatitis 

B immunoglobulin (HBIG) administration, natural selection by the host immune response, and 

antiviral therapy pressure inducing antiviral resistance mutants which alter simultaneously the 

amino acid composition of the surface antigen (Ghany et al., 10998; Khedive et al., 2013). 

Furthermore, the mutations in the ‘a’ determinant in HBsAg can lead to several dilemmas 

include;(i) Missed diagnosis and the current serological screening assays miss the target 

antigen; (ii) conformational changes with altered antigenicity and failure to neutralize the virus; 

(iii) associated with liver disease progression like fulminant hepatitis cirrhosis and HCC (Al 

Baqlani et al., 2014). In our study, we detected 12 mutations in the MHR (I110L, P120S, 

P120T, T126S, T131N, M133I, M133T, Y134F, Y134K, S143T, F161Y and A168V). Six 

mutations had amino acid substitutions (T126S, T131N, M133I/T, Y134F and S143T) within 

the ‘a’ determinant region (aa 124-147) of the MHR. Our result is in good agreement with the 

latest reports showing a prevalence of HBsAg vaccine escape mutations (Al-Qudari et al., 

2016; El-Kafrawy et al., 2018). Well-described vaccine escape mutation P120T was found only 

in one sample while the classical vaccine escape mutations D144E and G145R, which were 

reported to be closely associated with genotype D, could not be detected in any sample.  The 

mutations (I110L and F161Y) were identified and both mutations lead to vaccine escape. 

Likewise, substitutions (P120S, P120T, T126S and S143T) were also detected and may lead to 

problems in both diagnostic assays /vaccine escape (Coppola et al., 2015; Guangxi et al., 2015). 

M133T mutation was found and may lead to problems in diagnostic assays; however, it has yet 

to be categorized as VEMs (Yan et al., 2017). Y134K mutation was also found and had not 

been identified in the usual escape setting (Ziaee et al., 2016). 
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However, the study had few limitations. the lack of sample metadata including patient 

identifiers (e.g. age, gender, etc) and the drug history of the respective patients, the lack of 

these data led to difficulty in linking the genomic data to clinical outcomes. Another limitation 

was difficulty in obtaining geographically representative samples from the western region of 

Saudia Arabia to ensure a representative sample for the prevalence of RAMs and S gene 

mutations on clinical outcomes of the disease. 

In order to maintain the genomic surveillance of HBV, a repository (or database) of 

standardised reference genomes of all HBV genotypes and subtypes is needed to facilitate the 

consistent assembly and analysis required to develop insights into current and future 

epidemiology, inform better clinical assessment, improve deployment of current antiviral drugs 

and vaccines, and drive the discovery of new antiviral agents.  

In the second part of the thesis, we established a successful an in vitro HBV replicon-based 

drug testing platform. This tool has been demonstrated to be useful for testing of future antiviral 

drugs as the in vitro HBV cell culture scheme is a crucial tool for anti-HBV drugs screening 

and for exploring the natural properties of HBV (Xu et al., 2021). Several constructs were 

established using pTHBV1.3-L- that is carrying 1.3 genome length of HBV (ayw subtype). As 

this plasmid viral replication competent. Various modifications were introduced into this 

plasmid with the purpose to study the effectiveness of NA on genomes carrying drug-

resistance-associated mutations of interest.  

Replication of HBV in Huh7 cell line using  integrated or transfected HBV genomes as 

templates has been achieved also well as shown occur with various constructs developed during 

this project, evidence of virus DNA replication was confirmed by expression of HBcAg and 

HBsAg in cell lysates using Western blot analysis to HBeAg in cell medium using ELISA 

method.  

In order to increase the throughput of the replication assay, in this study, an ELISA assay was 

developed and verified for the expression of HBeAg using monoclonal antibodies and antibody 

conjugates. When the in house HBeAg ELISA system was compared with the other 

commercial kit, it was shown that our system corresponded with the results of negative and 

positive samples at similar ratio using pQ-HBV2.7 (3B4) and pHBV1.3mer WT. Suggesting 

that the in-house ELISA developed in this project is equally effective as commercially available 

ELISAs for the screening of plasmids encoding the expression of HBeAg. Thus, this system 

may be a useful tool for screening purposes and outbreak investigations. 
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Then we investigated the mutations were identified previously in chapter 3 for antiviral drugs 

screening using the developed protocol. We explored only two mutations in reverse 

transcriptase domain due to time constraint (rtD134E and rtD134N) which were reported 

previously to be antiviral resistance-associated mutations. Three constructs were developed in 

chapter 5 in order to screen the effectiveness of the antiviral using the expression HBeAg as a 

marker of replication. The result indicated that both mutations (rtD134E and rtD134N) did not 

confer resistance to ADV and TDF while it confer resistance to the other agents (LdT, LAM, 

and ETV). These results were comparable to the previous studies. Additionally, the expression 

of HBcAg was validated as a marker to confirm the antiviral drug in the transfection cells. 

These outcomes provide unique insights into the progress of antiviral resistance. 

6.3    Research impact 

We validated a protocol for deep whole-genome sequencing for HBV using the target 

enrichment method. To the best of our knowledge, this is the first description of whole-genome 

HBV sequencing using this method. Our study will serve as one of the initial efforts to garner 

a better comprehension of the dynamics of HBV circulating variants and link it to the 

epidemiology of the infection in Saudi Arabia. 

Likewise, the in vitro system that has been established in this thesis could support the antiviral 

screening of the future drugs while we were able to target and measure the viral proteins such 

as HBeAg and HBcAg. 

6.4 Concluding remarks  

6.4.1 Future Work  

All PhD, open up further research and optimisation.  The onset of the COVID-19 pandemic 

affected the finalisation of a number of sections of this thesis. The following should be 

considered; 

➢ Further optimisation and validation of the drug screening capacity of the replicon-based 

system. The assays were only undertaken as significates and the wildtype constructs 

were not as sensitive as we expected. 

➢ Once optimised, test other known drugs/antiviral that inhibit HBV replication and test 

new potential antiviral for their activity using a safe method at CL2.  
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➢ Generate new constructs to validate antiviral resistant marker such as we were unable 

to confirm the HBeAg expression in remaining constructs. 

➢ Comparison of the NGS with MinION to generate a cheaper alternate approach to 

screen for potential genotype, and drug resistant markers 

 

6.4.2 Prospective of HBV in Saudi Arabia  

Future studies should be performed with large sample size covering wider geographic 

distribution with a linkage to medical meta data to provide a correlation beween genomic data 

and the disease outcome. Epidemiological and genotyping mapping for HBV should be 

implemented and updated. Studies on genotype D and improvement in liver disease should be 

carried out and the association between clinical presentation and antiviral therapy should be 

shown in future studies. 

6.4.3 Prospective of HBV in Worldwide  

In order to drive progress towards 2030 elimination targets, sustainable long-term investment 

is required to drive improvements in clinical services that include a screening of infection, 

appropriate targeted clinical monitoring for treated patients with monitoring of drug resistance, 

provide universal access to antenatal screening, expand consistent drug and vaccine supply, 

improve the education of the public and health-care workers on HBV prevention, diagnosis 

and treatment. 

Finally, if drug resistance emerges as a substantial clinical problem, there will be a need for 

consideration of synergistic drug regimens, new agents that inhibit a target other than viral rt, 

and for the development of new therapeutic strategies that can bring about the cure. 
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APPENDICES 

APPENDIX 1: Reported resistance mutations to Lamivudine (LAM) 

Mutation Subdomain Genotype References 

A181T B 
A, B, C, 

D 

Strasfeld & Chou, 2010 ; Liu et al., 2010 ; Lim, 2017; 

Choi et al., 2018 

A181V B 
A, B, C, 

D 

Strasfeld & Chou, 2010 ; Liu et al., 2010 ; Salpini et al., 

2011 ; Choi et al., 2018, Lim, 2017 ; Qian et al., 2016 

A200V C B, C Choi et al., 2018 

C256G E B, C Choi et al., 2018 

D134E  B, C, D Cho et al., 2018 

F166L B  Choi et al., 2018 

I91L A B, C, D Choi et al., 2018 

L180M C 
A, B, C, 

D 

Salpini et al., 2011 ; Liu et al., 2010 ; He et al., 2015; 

Lok et al., 2017; Choi et al., 2018; Hermans et al., 2016 

L229F B B, C, D Choi et al., 2018 

L229G B B, C Choi et al., 2018 ; Liu et al., 2010 

L229V B B, C Choi et al., 2018; Liu et al., 2010 

L229W B B, C Choi et al., 2018; Liu et al., 2010 

L80I A 
A, B, C, 

D 

Lok et al., 2017; Strasfeld & Chou, 2010; Choi et al., 

2018 

L80V A 
A, B, C, 

D 

Strasfeld & Chou, 2010; Al Baqlani et al., 2014; Choi et 

al., 2018, Yamani et al., 2017 

L82M A C Liu et al., 2010; Choi et al., 2018 

L91I A C Wasityastuti et al., 2016 

M204I C 
A, B, C, 

D 

Zoulim & Locarnini, 2009; Hermans et al., 2016; Lim, 

2017; Ciftci et al., 2014; He et al., 2015; Al Baqlani et 

al., 2014; Choi et al., 2018; Hermans et al., 2016 

M204S C 
A, B, C, 

D 

Zoulim & Locarnini, 2009; Hermans et al., 2016; Lim, 

2017; Ciftci et al., 2014; He et al., 2015; Al Baqlani et 

al., 2014; Choi et al., 2018 

M204V C 
A, B, C, 

D 

Zoulim & Locarnini, 2009; Hermans et al., 2016; Lim, 

2017; Ciftci et al., 2014; He et al., 2015; Al Baqlani et 

al., 2014; Choi et al., 2018 

N236A D B He et al., 2015 

N236T B  Lim, 2017 

Q215E C 
A, B, C, 

D 
Choi et al., 2018 

Q215H C 
A, B, C, 

D 
Choi et al., 2018 
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Mutation Subdomain Genotype References 

Q215P C 
A, B, C, 

D 
Choi et al., 2018; Liu et al., 2010 

Q215S C D 
Liu et al., 2010; Salpini et al., 2011; Al Baqlani et al., 

2014 

R153Q  C Wasityastuti et al., 2016; Yamani et al., 2017 

S202C C 
A, B, C, 

D 
Lok et al., 2017; Choi et al., 2018 

S202G C 
A, B, C, 

D 
Choi et al., 2018 

S202I C 
A, B, C, 

D 
Choi et al., 2018 

S213T  A, B, C, 

D 
He et al., 2015 

S246A   Wasityastuti et al., 2016 

S256G E B, C 
Choi et al., 2018; Wasityastuti et al., 2016; Yamani et 

al., 2017 

S53N  B, C Ciftci et al., 2014; Liu et al., 2010; Choi et al., 2018 

T184A B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184C B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184F B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184G B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184I B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184L B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

T184M B 
A, B, C, 

D 

Choi et al., 2018; He et al., 2015; Lok et al., 2017; 

Yamani et al., 2017 

V173L C 
A, B, C, 

D 

Salpini et al., 2011; He et al., 2015; Qian et al., 2016; 

Choi et al., 2018  

V191I  B, C, D Liu et al., 2010; Salpini et al., 2011; Choi et all 

V207G C C Wang et al., 2017 

V207I C 
A, D, B, 

C 
Wang et al., 2017; Choi et al., 2018 

V207L C C Wang et al., 2017 

V207M C  He et al., 2015 

V214A  D, C He et al., 2015; Taramasso et al., 2011 

W153E  B, C, D Choi et al., 2018 

W153Q  B, C, D Choi et al., 2018 

W153R  B, C, D Choi et al., 2018 
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APPENDIX 2: Reported resistance mutations to Telbivudine (LdT) 

Mutation Subdomain Genotype References 

A181T B 
A, B, C, 

D 

Strasfeld & Chou, 2010; Liu et al., 2010; Lim, 2017; 

Choi et al., 2018 

A181V B 
A, B, C, 

D 

Strasfeld & Chou, 2010; Liu et al., 2010; Salpini et al., 

2011; Choi et al., 2018 

H238T D  He et al., 2015 

I169T B  Zoulim & Locarnini, 2009 

L180I B  He et al., 2015 

L180M B A, C, D 

Salpini et al., 2011; Liu et al., 2010; He et al., 2015; 

Wang et al., 2017; Zoulim & Locarnini, 2009; Hermans 

et al., 2016; Lim, 2017 

L80I A B You & Jia, 2013 

L80V A B You & Jia, 2013 

M204I C 
A, B, C, 

D 

You & Jia, 2013; Zoulim & Locarnini, 2009; Hermans 

et al., 2016; Ciftci et al., 2014; Wang et al., 2017; Qian 

et al., 2016 

M204S C 
A, B, C, 

D 

Ciftci et al., 2014; Wang et al., 2017; Zoulim & 

Locarnini, 2009 

M204V C 
A, B, C, 

D 
Zoulim & Locarnini, 2009; Choi et al., 2018 

M204V C 
A, B, C, 

D 

Zoulim & Locarnini, 2009; He et al., 2015; Lim, 2017; 

Ciftci et al., 2014; Wang et al., 2017; Choi et al., 2018 

N236A D B He et al., 2015 

S202G C  Zoulim & Locarnini, 2009 

S202I C  Zoulim & Locarnini, 2009 

S213T C  He et al., 2015 

T184A B  He et al., 2015 

V173L B  Zoulim & Locarnini, 2009 

V207M C  He et al., 2015 

V214A C D, C He et al., 2015 
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APPENDIX 3: Reported resistance mutations to Adefovir (ADV) 

Mutation Subdomain Genotype References 

A181T B A, B, C, D 
He et al., 2015; Lee et al., 2014; Wang et al., 2017; 

Choi et al., 2018 

A181V B A, B, C, D 
Liu et al., 2010; Lee et al., 2014; Wang et al., 2017; 

Qian et al., 2016; Choi et al., 2018 

A194T B B, C, D Choi et all 

B236T D  Lee et al., 2014 

B238D D  Lee et al., 2014 

B238T D  Lee et al., 2014 

E218D C A, B, C, D Choi et al., 2018; Jiang et al., 2014 

E218G C  Liu et al., 2010 

F221Y  A, B, C, D Choi et al., 2018; Jiang et al., 2014 

H238T D C He et al., 2015; Wang et al., 2017 

I233V D A, C, D Choi et al., 2018, Yamani et al., 2017 

L180I B  He et al., 2015 

L180M B  He et al., 2015 

L217R  A, B, C, D Choi et al., 2018; Jiang et al., 2014 

M204I  A, B, C, D Choi et al., 2018 

M204S  A, B, C, D Choi et al., 2018 

M204V  A, B, C, D Choi et al., 2018 

N236A D B, C He et al., 2015 

N236T D B, C 
He et al., 2015; Zoulim & Locarnini, 2009; Qian et al., 

2016 

N238D D B, C Choi et al., 2018 

N238S D B, C Choi et al., 2018 

N238T D B, C Choi et al., 2018 

N248H  B, C Wasityastuti et al., 2016; Yamani et al., 2017 

P237H D B, C Lee et al.,2014; Choi et al., 2018 

Q215E  A, B, C, D Choi et al., 2018 
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Mutation Subdomain Genotype References 

Q215H  A, B, C, D Choi et al., 2018 

Q215P  A, B, C, D Choi et al., 2018 

Q215S  C Wang et al., 2017; Micco et all 

S213T   He et al., 2015 

S256G E C Wasityastuti et al., 2016 

S85A A  Jiang et al.,2014; Al Baqlani et al., 2014 

S85A  B, C Choi et al., 2018 

T184A B A He et al., 2015; Lok et al., 2017 

T54N  A, B, C, D Choi et al., 2018 

V191I  B, C, D Choi et al., 2018 

V207M C  He et al., 2015 

V214A  B, C, D He et al., 2015; Wang et al., 2017; Choi et al., 2018 

V84M  B, C Choi et al., 2018 

Y126C  A, B, C, D Choi et al., 2018 

Y126H  A, B, C, D Choi et al., 2018 

Y126R  A, B, C, D Choi et al., 2018 

Y221F  C Wasityastuti et al., 2016; Yamani et al., 2017 

Y245H  B, C Choi et al., 2018 

 

  



258 

 

APPENDIX 4: Reported resistance mutations to Entecavir (ETV) 

Mutation Subdomain Genotype References 

A181V B A Lok et al., 2017 

A194G B  Qian et al., 2016 

C256G E B, C Choi et al., 2018 

H238T D  He et al., 2015 

I169T A B, C 
Ciftci et al., 2014; Locarnin & Devi, 2013; Zoulim & 

Locarnini, 2009; Tenney et al., 2007; Choi et al., 2018 

L180I B 
A, B, C, 

D 
He et al., 2015 

L180M B 
A, B, C, 

D 

Ghany & Doo, 2009; Locarnin & Devi, 2013; He et al., 

2015; Zoulim & Locarnini, 2009; Tenney et al., 2007; 

Choi et al., 2018 

M204I C 
A, B, C, 

D 
He et al., 2015; Zoulim & Locarnini, 2009; Lim, 2017 

M204S C 
A, B, C, 

D 
Choi et al., 2018; He et al., 2015 

M204V C 
A, B, C, 

D 
He et al., 2015; Zoulim & Locarnini, 2009 

M250I E 
A, B, C, 

D 
Choi et al., 2018 

M250L E B Ciftci et al., 2014; Locarnin & Devi, 2013 

M250V E B 
Ghany & Doo, 2009; Baldick et al., 2008; Ciftci et al., 

2014; Locarnin & Devi, 2013 

N236A D B He et al., 2015; Baldick et al., 2008 

S202C C C 
Locarnin & Devi, 2013; Zoulim & Locarnini, 2009; Lok 

et al., 2017 

S202G C 
A, B, C, 

D 

Locarnin & Devi, 2013; Zoulim & Locarnini, 2009; 

Baldick et al., 2008; Choi et al., 2018 

S202I C 
A, B, C, 

D 

Ghany & Doo, 2009; Zoulim & Locarnini, 2009; Zoulim  

and Locarnini. Baldick et al., 2008; Choi et al., 2018 

S202N C  Qian et al., 2016 

S213T C 
A, B, C, 

D 
He et al., 2015; Baldick et al., 2008; Choi et al., 2018 

S256G E B, C Yamani et al., 2017; Choi et al., 2018 

T184A B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; Z., 2008ulim 

& Locarnini, 2009; Tenney et al.,2007; Baldick et al., 

2008 

T184C B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; Zoulim & 

Locarnini, 2009; Tenney et al., 2007 

T184F B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; Zoulim & 

Locarnini, 2009; S.Baldick et al., 2008 

T184G B 
A, B, C, 

D 

Ciftci et al., 2014; Baldick et al., 2008; Ghany & Doo, 

2009; Locarnin & Devi, 2013; Zoulim & Locarnini, 

2009 
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Mutation Subdomain Genotype References 

T184I B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; He et al., 

2015; Baldick et al., 2008; Lok et al., 2017; Zoulim & 

Locarnini, 2009 

T184L B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; Zoulim & 

Locarnini, 2009; Tenney et al., 2007; Baldick et al., 

2008 

T184S B 
A, B, C, 

D 

Ciftci et al., 2014; Locarnin & Devi, 2013; Zoulim & 

Locarnini, 2009; Tenney et al., 2007; Baldick et al., 

2008 

V173L C D, B, C He et al., 2015 

V207M C  He et al., 2015 

V214A C D, C He et al., 2015 
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 APPENDIX 5: Reported resistance mutations to Tenofovir (TDF) 

Mutation Subdomain Genotype References 

A181V B D, C 
Strasfeld & Chou, 2010; Liu et al., 2010; Salpini et al., 

2011; Choi et al., 2018 

A194T B B, C, D Choi et al., 2018; Yamani et al., 2017 

D134E  B, C, D Cho et al., 2018 

H126Y   Cho et al., 2018 

H238T D  He et al., 2015 

L180I C D He et al., 2015 

L180M C A, D 

Salpini et al., 2011; Liu et al., 2010; He et al., 2015; 

Zoulim & Locarnini, 2009; Hermans et al., 2016; Lim, 

2017 

L80I A B You & Jia, 2013 

L80V A  You & Jia, 2013 

M204I C A, B, C, D 
Choi et al., 2018; Zoulim & Locarnini, 2009; Hermans 

et al., 2016; Lim, 2017 

M204S C A, B, C, D 
Ciftci et al., 2014; Zoulim & Locarnini, 2009; Hermans 

et al., 2016; Lim, 2017 

M204V C A, B, C, D 
Zoulim & Locarnini, 2009; Hermans et al., 2016; Lim, 

2017; Ciftci et al., 2014 

N236A D B He et al., 2015 

N236T D B, C Choi et al., 2018 

S106C A  Choi et al., 2018 

S213T C  He et al., 2015 

T184A B  He et al., 2015 

V207M C  He et al., 2015 

V214A C D, C He et al., 2015; Taramasso et al., 2011 
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APPENDIX 6: Reported resistance mutations affecting HBsAg  

Amino 

Acid 

Position 

Native 

Amino 

Acid 

Escape 

Mutation 

References Note 

3 N S Wang et al., 2017 
 

4 W P/R Caligiuri et al., 2016 
 

4 T K/A/V Wang et al., 2017 
 

5 A T/S Wang et al., 2018 
 

5 T A Wang et al., 2019 
 

10 G Q/R/E Wang et al., 2020 
 

21 L S Wang et al., 2021 
 

46 P H Perazzo et al., 2015 
 

47 T K Wang et al., 2017 
 

48 C G Caligiuri et al., 2016 major hydrophilic loop 

49 L H Perazzo et al., 2015 
 

69 C Y Perazzo et al., 2016 
 

90 C Y Perazzo et al., 2017 
 

95 L W Perazzo et al., 2018 
 

98 L V/P Wang et al., 2017 
 

98 L V Wang et al., 2018 
 

100 Y C Sayan et al., 2009 
 

103 M I Caligiuri et al., 2016; 

Ambachew et al., 2017 

outside a determinant 

region, major 

hydrophilic loop 

107 C R Perazzo et al., 2015 
 

109 L I Caligiuri et al., 2016; Sayan et 

al., 2009 

major hydrophilic loop 

109 L R Jaramillo et al., 2017 
 

110 I V Sayan et al., 2009 
 

110 I V/B Sayan et al., 2010 
 

110 L L Perazzo et al., 2015 
 

110 I L Ambachew et al., 2017; 

Mokaya et al., 2018 

HBIg, outside a 

determinant region 

114 T T Perazzo et al., 2015 
 

115 T I Ambachew et al., 2017 outside a determinant 

region 

116 T N Caligiuri et al., 2016; Mokaya 

et al., 2018 

VEM, a determinant 

region 

117 S I/N/S/T Sayan et al., 2009 
 

118 T A/P Ambachew et al., 2017 outside a determinant 

region 

118 T K Caligiuri et al., 2016 major hydrophilic loop 

119 G R Mokaya et al., 2018 HBIg 

119 G E/R Ambachew et al., 2017 outside a determinant 

region 
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Amino 

Acid 

Position 

Native 

Amino 

Acid 

Escape 

Mutation 

References Note 

120 P S/E/T/Q/A Mokaya et al., 2018; Caligiuri 

et al., 2016; Mokaya et al., 

2018; Jaramillo et al., 2017; 

Perazzo et al., 2015; Sayan et 

al., 2009 

VEM, a determinant 

region, major 

hydrophilic loop 

121 I L Perazzo et al., 2015 
 

124 C R/Y Perazzo et al., 2015 
 

125 T A Perazzo et al., 2015 
 

126 T S/I/N Perazzo et al., 2015; Mokaya et 

al., 2018 

 

126 I S/T Perazzo et al., 2015 
 

126 I/T A/F/N/S Mokaya et al., 2018 VEM + HBIg 

126 I T Mokaya et al., 2018 HBIg 

126 T I/N Ambachew et al., 2017 a determinant region 

126 I/T A/N/I/S Caligiuri et al., 2016 a determinant region 

126 T/A S Wang et al., 2017 
 

126 I/S N/V/T Wang et al., 2018 
 

126 I/S T Wang et al., 2019 
 

126 T A/S Jaramillo et al., 2017 
 

127 P Tb Sayan et al., 2009 
 

129 N R Perazzo et al., 2015 
 

129 Q H Perazzo et al., 2015 
 

129 Q R Mokaya et al., 2018 VEM 

129 Q H/R Caligiuri et al., 2016 a determinant region 

129 Q H/R/L Wang et al., 2017 
 

130 G E/R/N Jaramillo et al., 2017; Sayan et 

al., 2009; Perazzo et al., 2015 

genotype F 

131 N T Ambachew et al., 2017 a determinant region 

131 T/N I/A Wang et al., 2017 a determinant region 

131 T P/I/N/A Wang et al., 2017; Mokaya et 

al., 2018; Perazzo et al., 2015 

HBIg, a determinant 

region 

132 S A Sayan et al., 2009 
 

133 M I/K/L/T/V Sayan et al., 2009 genotype D, E 

133 M K Perazzo et al., 2015 
 

133 M L Perazzo et al., 2015 
 

133 M T Mokaya et al., 2018 genotype D 

133 M L Mokaya et al., 2018 VEM 

133 M T Mokaya et al., 2018 HBIg, genotype E 

133 M V Ambachew et al., 2017 a determinant region 

133 M L Caligiuri et al., 2016 a determinant region 

134 Y N Sayan et al., 2009 
 

134 F/P I/V Mokaya et al., 2018 VEM 

134 F Y Ambachew et al., 2017 a determinant region 

134 Y H Caligiuri et al., 2016 major hydrophilic loop 
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Amino 

Acid 

Position 

Native 

Amino 

Acid 

Escape 

Mutation 

References Note 

137 C G/L Sayan et al., 2009 
 

138 C R Perazzo et al., 2015 
 

139 N R Perazzo et al., 2015 
 

139 C Y Perazzo et al., 2015 
 

140 S T Perazzo et al., 2015 
 

141 K E Caligiuri et al., 2016; Mokaya 

et al., 2018 

VEM, a determinant 

region 

142 P S Caligiuri et al., 2016; Mokaya 

et al., 2018 

VEM, a determinant 

region 

143 S L Perazzo et al., 2015 
 

143 T N Mokaya et al., 2018 VEM 

143 S T Mokaya et al., 2018 HBIg 

143 T L Ambachew et al., 2017 a determinant region 

143 S L Caligiuri et al., 2016; Sayan et 

al., 2009 

major hydrophilic loop 

144 D A/E/H/G/V Mokaya et al., 2018; Perazzo et 

al., 2015; Caligiuri et al., 2016; 

Jaramillo et al., 2017; Sayan et 

al., 2009 

VEM + HBIg, a 

determinant region , 

major hydrophilic loop,  

genotype D, E 

145 S A Perazzo et al., 2015 
 

145 G A/E/K/R/X Mokaya et al., 2018; Wang et 

al., 2017; Jaramillo et al., 2017; 

Perazzo et al., 2015, Sayan et 

al., 2009 

VEM + HBIg, 

genotype D, E 

149 C R Mokaya et al., 2018 HBIg 

152 I F Perazzo et al., 2015 
 

153 P T Perazzo et al., 2016 
 

158 L F Perazzo et al., 2017 
 

161 F H/L Romanò et al., 2014 
 

161 Y F/S Ambachew et al., 2017; 

Romanò et al., 2013 

outside a determinant 

region 

164 E D/G Ambachew et al., 2017; 

Romanò et al., 2014 

outside a determinant 

region 

168 A T Perazzo et al., 2015 
 

168 V A Ambachew et al., 2017 outside a determinant 

region 

171 S F Caligiuri et al., 2016 major hydrophilic loop 

172 W L Romanò et al., 2014 
 

173 V L Perazzo et al., 2015 
 

173 L F Romanò et al., 2013 
 

175 L F Romanò et al., 2014 
 

175 L S/F Wang et al, 2017; Romanò et 

al., 2014; Caligiuri et al., 2016 

major hydrophilic loop 

176 C R Perazzo et al., 2015   
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Amino 

Acid 

Position 

Native 

Amino 

Acid 

Escape 

Mutation 

References Note 

176 L V Romanò et al., 2014   

177 V A Ambachew et al., 2017   

178 N S Perazzo et al., 2015   

184 V A Ambachew et al., 2017   

185 G E Caligiuri et al., 201; Perazzo et 

al., 2015 

major hydrophilic loop 

189 T I Ambachew et al., 2017   

190 V A Caligiuri et al., 2016 major hydrophilic loop 

190 V A Caligiuri et al., 2017 major hydrophilic loop 

193 S F/L Romanò et al., 2014   

194 A T Romanò et al., 2015   

194 V S Romanò et al., 2016   

195 I M Romanò et al., 2017   

196 W S/L Romanò et al., 2018   

202 G R Perazzo et al., 2015   

204 N S Mokaya et al., 2018 HBIg 

209 L V Perazzo et al., 2015   

213 L I/S Wang et al., 2017   

224 V A/G Wang et al., 2017   
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APPENDIX 7:  pTHBV1.3-L-  sequences 
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APPENDIX 8: pQCXIP sequences 
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APPENDIX 9: pQ-HBV-L-Null sequences 
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APPENDIX 10: pQ-HBV1.3mer WT sequences 
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APPENDIX 11: pQ-HBV2.7 sequences 
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APPENDIX 12: pTHBV-L- /Puro, No 11 sequences 
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APPENDIX 11: 3-Null - pTHBV-L- 3Null-Puro-11 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 12: RT L80I - pTHBV-L- 3Null-Puro-11-L80I 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGaTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 13: RT L91I - pTHBV-L- 3Null-Puro-11-L91I 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATaTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 14: RT H126Y - pTHBV-L- 3Null-Puro-11-H126Y 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGtACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 



286 

 

APPENDIX 15: RT D134N - pTHBV-L- 3Null-Puro-11-D134N 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATaACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 16: RT D134E - pTHBV-L- 3Null-Puro-11-D134E 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGAgTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 17: RT R153W - pTHBV-L- 3Null-Puro-11-R153W 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

AtGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTAC

TAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAGC

ATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 18: RT M204I - pTHBV-L- 3Null-Puro-11-M204I 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATtGATGATGTGGTATTGGGGGCCAAGTCTGTACAGC

ATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 
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APPENDIX 19: RT M204V - pTHBV-L- 3Null-Puro-11-M204V 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATgTGGATGATGTGGTATTGGGGGCCAAGTCTGTACAGC

ATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 20: RT Q215S - pTHBV-L- 3Null-Puro-11-Q215S 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTAtcGC

ATCTTGAGTCCCTTTTTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC 

 

APPENDIX 21: RT F221Y - pTHBV-L- 3Null-Puro-11-F221Y 

CAATTGATTATGCCTGCCAGGTTTTATCCAAAGGTTACCAAATATTTACCATTGGATAAGGGTATTAAACCTTATTATCCAGAACATCTAGTTAA

TCATTACTTCCAAACTAGACACTATTTACACACTCTATGGAAGGCGGGTATATTATATAAGAGAGAAACAACACATAGCGCCTCATTTTGTGGG

TCACCATATTCTTGGGAACAAGATCTACAGCACGGGGCAGAATCTTTCCACCAGCAATCCTCTGGGATTCTTTCCCGACCACCAGTaGGATCCAG

CCTTCAGAGCAAACACCGCAAATCCAGATTGGGACTTCAATCCCAACAAGGACACCTGGCCAGACGCCAACAAGGTAGGAGCTGGAGCATTCG

GGCTGGGTTTCACCCCACCGCACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATACTACAAACTTTGCCAGCAAATCCGCCTCCTGC

CTCCACCAATCGCCAGTCAGGAAGGCAGCCTACCCCGCTGTCTCCACCTTTGAGAAACACTCATCCTCAGGCCATGCAGTaGAATTCCACAACCT

TCCACCAAACTCTGCAAGATCCCAGAGTGAGAGGCCTGTATTTCCCTGCTGGTGGCTCCAGTTCAGGAACAGTAAACCCTGTTCTGACTACTGCC

TCTCCCTTATCGTCAATCTTCTCGAGGATTGGGGACCCTGCGCTGAACATGGAGAACATCACATCAGGATTCCTAGGACCCCTTCTCGTGTTACA

GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAACTACCGTGT

GTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTCCTCCAACTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTT

TTATCATCTTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGACTATCAAGGTATGTTGCCCGTTTGTCCTCTAATTCCAGG

ATCCTCAACAACCAGCACGGGACCATGCCGGACCTGCATGACTACTGCTCAAGGAACCTCTATGTATCCCTCCTGTTGCTGTACCAAACCTTCGG

ACGGAAATTGCACCTGTATTCCCATCCCATCATCCTGGGCTTTCGGAAAATTCCTATGGGAGTGGGCCTCAGCCCGTTTCTCCTGGCTCAGTTTA

CTAGTGCCATTTGTTCAGTGGTTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAG

CATCTTGAGTCCCTTTaTACCGCTGTTACCAATTTTCTTTTGTCTTTGGGTATAC  
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